
Covers
• verswn

6

·crosoffC
Run!fime Library Reference

I .

®

icrosoffC
Run!Time Library Reference

Written, edited, and produced
by Microsoft Corporation

Distributed by Microsoft Press ® .

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way, Redmond, Washington 98052-6399

Copyright © 1990 by Microsoft Press

All rights reserved. No part of the contents of this book may be reproduced or trans­
mitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Microsoft C run-time library reference.

Inel udes index.
1. C (Computer program language) 2. Microsoft C

(Computer program) 3. Macro instructions (Electronic
computers) I. Microsoft.
QA76.73.CI5M52 1990 005.13'3 89-12240
ISBN 1-55615-225-6

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 HCHC 3 2 1 0 9

Distributed to the book trade in Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the United States and Canada by Penguin
Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available.

Writers:
Phil Nelson
Terry Ward

Editors:
Amanda Clark
Moira Macdonald
Marjorie Manwaring
Bill Nolan

Sample Programs:
Bruce McKinney

Microsoft, the Microsoft logo, MS-DOS, QuickC, and XENIX are registered trademarks
and Windows is a trademark of Microsoft Corporation.
AT&T and UNIX are registered trademarks of American Telephone and Telegraph
Company.
Hercules is a regi~tered trademark of Hercules Computer Technology.
IBM is a registered trademark of International Business Machines Corporation.
Olivetti is a registered trademark of Ing. C. Olivetti.

Contents
Introduction

About the C Run-Time Library

About This Book . . .

Other Books of Interest

Document Conventions

PART 1 Overview

Chapter 1
1.1
1.2
1.3
1.4

1.5
1~6

1.7
1.8
1.9

Chapter 2
2.1

2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9
2.10

Using C Library Routines
Calling Library Routines . . .

Using Header Files

File Names and Path Names

Choosing Between Functions and Macros

Stack Checking on Entry

Handling Errors

Operating-System Considerations

Floating-Point Support

Using Huge Arrays with Library Functions

Run-Time Routines by Category . .
Buffer Manipulation

Character Classification and Conversion

Data Conversion

Directory Control .

File Handling

Graphics

Input and Output

Internationalization

Math

Memory Allocation

· . v
vii
vii

· . ix

· .5
· .6
· .9

10

12
13
14

15
16

20

21

22

23
23
25
35
45

45

48

· . . v

· . . 5

· .. 19

iii

iv Microsoft C Run-Time Library Reference

2.11

2.12

2.13

2.14

2.15

2.16

Process and Environment Control

Searching and Sorting

String Manipulation

System Calls

Time

Variable-Length Argument Lists

.51

.55

.55

.56
..... 60

.62

Chapter 3 Global Variables and Standard Types . . 63
3.1

3.2

3.3

3.4

_amblksiz

daylight, timezone, tzname

_doserrno, errno, sys_errlist, sys_nerr

_fmode

3.5 _osmajor, _osminor, _osmode, _osversion

3.6 environ

3.7 _psp

3.8 Standard Types

PART 2 Run-Time Functions

About the Run-Time Reference

Alphabetic Function Reference

Index
.

.63

· .. 64
.65
.66

· .. 67
.67

· .. 68

· .. 68

. . . . 75

. 76

. 829

Introduction
The Microsoft® C Run-Time Library is a set of over 500 ready-to-use functions
and macros designed for use in C programs. The run-time library makes program­
ming easier by providing

• Fast and effi..cient routines to perform common programming tasks (such as
string manipulation), sparing you the time and effort needed to write such
routines

• Reliable methods of performing operating-system functions (such as opening
and closing files)

The C run-time library is important because it provides basic functions not pro­
vided by the C language itself. These functions include input and output, memory
allocation, process control, graphics, and many others.

This book describes the Microsoft C run-time library routines included with the
Microsoft Professional Development System version 6.0. These comprise all of
the routines included with earlier versions of Microsoft C, as well as many new
routines.

NOTE Microsoft documentation uses the term "OS/2" to refer to the OS/2 systems­
Microsoft Operating System/2 (MS@> OS/2) and IBIv1@ OS/2. Similarly, the term "DOS" refers
to both the MS-DOS@> and IBM Personal Computer DOS operating systems. The name of a
specific operating system is used when it is necessary to note features that are unique to
that system.

About the C Run-Time Library
The Microsoft C run-time library contains a number of new routines and features
which support American National Standards Institute (ANSI) C compatibility,
OS/2 and XENIX® programming, and sophisticated graphics programming. .

To ease the task of transporting programs from one operating system to another,
the description of each library routine includes compatibility boxes, which show
at a glance whether the routine is compatible with ANSI C, MS-DOS, OS/2,
UNIX®, and XENIX. (In this book, references to XENIX systems also encom­
pass UNIX and other UNIX-like systems.)

v

vi Microsoft C Run-Time Library Reference

ANSI C Compatibility
The C run-time library routines are designed for compatibility with the ANSI C

. standard, which Microsoft C compilers support. The major innovation of ANSI C
is to permit argument-type lists in function prototypes (declarations). Given the
information in the function prototype, the compiler can check later references to
the function to make sure that the references use the correct number and type of
arguments and the correct return value.

To take advantage of the compiler's type-checking ability, the include files that
accompany the C run-time library have been expanded. In addition to the defini­
tions and declarations required by library routines, the include files now contain
function declarations with argument-type lists. Several new include files have
also been added. The names of these files are chosen to maximize compatibility
with the ANSI C standard and with XENIX and UNIX names.

OS/2 and XENIX® Programming
Microsoft C run-time library routines are designed to maintain maximum com­
patibility between MS-DOS, OS/2, and XENIX or UNIX systems. The library
offers a number of operating-system interface routines that allow you to take
advantage of specific DOS and OS/2 features.

Most of the functions in the C library for DOS and OS/2 are compatible with like­
named routines in the C library for XENIX. For additional compatibility, the
math library functions have been extended to provide exception handling in the
same manner as the UNIX System V math functions.

Expanded Graphics Library
The Microsoft C run-time library now contains over one hundred graphics
routines. The core of this library consists of several dozen low-level graphics
routines, which allow your programs to select video modes, set points, draw
lines, change colors, and draw shapes such as rectangles and ellipses. You can
display real-valued data, such as floating-point values, within windows of differ­
ent sizes by using various coordinate systems.

Recent additions to the graphics library include presentation graphics and
fonts. The presentation-graphics library provides powerful tools for adding
presentation-quality graphics to your programs. These routines can display data
as a variety of graphs, including pie charts, bar and column charts, line graphs,
and scatter diagrams.

Introduction vii

The fonts library allows your programs to display various styles and sizes of text
in graphics images or charts. You can use font-manipulation routines with any
graphics routines that display text, including presentation graphics.

About This Book
This book assumes that you understand the C language and know how to compile
and link programs. If you have questions about these subjects, consult your com­
piler documentation.

This book has two parts. Part 1, "Overview," introduces the Microsoft C library.
It describes general rules for using the library and summarizes the main catego­
ries of library routines. Part 1 contains the following chapters:

• Chapter 1, "Using C Library Routines," gives general rules for understanding
and using C library routines and mentions special considerations that apply to
certain routines. It is recommended that you read this chapter before using the
run-time library; you may also want to turn to Chapter I when you have ques­
tions about library procedures.

• Chapter 2, "Run-Time Routines by Category," lists the C library routines by
category and discusses considerations that apply to each category. This chap­
ter makes it easy to locate routines by task. Once you find the routine you
want, turn to the reference page in Part 2 for a detailed description.

• Chapter 3, "Global Variables and Standard Types," describes variables and
types that are used by library routines. Global variables and standard types
are also described in the reference descriptions of the routines that use them.

Part 2, "Run-Time Functions," describes the library routines in alphabetical
order. Once you are familiar with the C library rules and procedures, you will
probably use this part most often.

Other Books of Interest
This book provides a guide to the C run-time library provided with the Microsoft
C Professional Development System version 6.0.

viii Microsoft C Run-Time Library Reference

The following books cover a variety of topics that you may find useful. They are
listed only for your convenience. With the exception of its own publications,
Microsoft does not endorse these books or recommend them over others on the
same subject.

• Barkakati, Nabajyoti. The Waite Group's Microsoft C Bible. Indianapolis, IN:
Howard W. Sams, 1988.

A topical guide to the Microsoft C run-time library. A similar volume is avail­
able for the Microsoft QuickC® product.

• Campbell, Joe. C Programmer's Guide to Serial Communications. Indi­
anapolis, IN: Howard W. Sams & Company, 1987.

A comprehensive guide to the specialized area of serial communication pro­
gramming in C.

• Hansen, Augie. Proficient C: The Microsoft Guide to Intermediate & Ad­
vanced C Programming. Redmond, W A: Microsoft Press, 1987.

An intermediate-level guide to C programming.

• Harbison, Samuel P., and Guy L. Steele, Jr. C: A Reference Manual, 2d ed.
Englewood Cliffs, NJ: Prentice Hall, 1987.

A comprehensive guide to the C language and the standard library.

• Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language,
2d ed. EnglewoodCliffs, NJ: Prentice Hall, 1988.

The first edition of this book is the classic definition of the C language. The
second edition includes new information on the proposed ANSI C standard.

• Lafore, Robert. Microsoft C Programmingfor the IBM. Indianapolis, IN:
Howard W. Sams & Company, 1987.

The first half of this book teaches C. The second half concentrates on specif­
ics of the PC environment, such as BIOS calls, memory, and video displays.

• Mark Williams Company. ANSI C: A Lexical Guide. Englewood Cliffs, NJ:
Prentice Hall, 1988.

A dictionary-style guide to the ANSI C standard.

• Plauger, P. J., and Jim Brodie. Standard C. Redmond, WA: Microsoft Press,
1989.

A quick reference guide to the ANSI C implementation by the secretary and
chairman of the ANSI-authorized C Programming Language Standards
Committee.

Introduction ix

• Plum, Thomas. Reliable Data Structures in C. Cardiff, NJ: Plum Hall, 1985.

An intermediate-level look at data structures using the C language.

• Plum, Thomas, and Jim Brodie. Efficient C. Cardiff, NJ: Plum Hall, 1985.

A guide to techniques for increasing the efficiency of C programs.

• Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vet­
terling. Numerical Recipes in C: The Art of Scientific Computing. New York:
Cambridge University Press, 1988.

A comprehensive look at numerical techniques using the C language.

• Schustack, Steve. Variations in C: Programming Techniquesfor Developing
Efficient Professional Applications. Redmond, W A: Microsoft Press, 1985.

An intermediate-level guide to developing business applications in C.

• Ward, Robert. Debugging C. Indianapolis, IN: Que Corporation, 1986.

An advanced guide to the theory and practice of debugging C programs.

• Wilton, Richard. Programmer's Guide to PC and PS/2 Video Systems:Maxi­
mum Video Performance from the EGA, VGA, HGC, & MCGA. Redmond,
W A: Microsoft Press, 1987.

An advanced guide to all the PC and PS/2 video modes.

Document Conventions
This book uses the following document conventions:

Example

STDIO.H

far

expression

[option]

Description

Uppercase letters indicate file names, segment
names, registers, and terms used at the
operating-system command level.

Boldface letters indicate C keywords, operators,
language-specific characters, and library routines.
Within discussions of syntax, bold type indicates
that the text must be entered exactly as shown.

Words in italics indicate placeholders for informa­
tion you must supply, such as a file name. Italics are
also occasionally used for emphasis in the text.

Items inside double square brackets are optional.

x Microsoft C Run-Time Library Reference

#pragma pack {112}

1Iinclude <io.h>

CL options' [files ...]

while()
{

CTRL+ENTER

"argument"

"e string"

Color Graphics
Adapter (CGA)

Braces and a vertical bar indicate a choice among
two or more items. You must choose one of these
items unless double square brackets surround the
braces.

This font is used for examples, user input, program
output, and error messages in text.

Three dots following an item indicate that more
items having the same form may appear.

A column of three dots tells you that part of the ex­
ample program has been intentionally omitted.

Small capital letters are used for the names of keys
on the keyboard. When you see a plus sign (+) be­
tween two key names, you should hold down the
first key while pressing the second.

The carriage-return key, sometimes marked as a
bent arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it
is defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language
have the form " " and' 'rather than" " and ' '.

The first time an acronym is used, it is often
spelled out.

Special Offer xi

Special Offer
Companion Disk for Microsoft C Run-Time Library Reference

Microsoft Press has created a companion disk for Microsoft C Run-Time Library
Reference. This disk, available in 5.25- and 3.5-inch format, contains nearly 300
example programs from the book. You can use code fragments from the compan­
ion disk for commercial or personal purposes without infringing on the copyright
of the book.

Domestic Ordering Information
To order, use the special reply card bound in the back of the book. If the card has
already been used, please send $19.95 (plus sales tax if applicable: CA residents,
5% plus local option tax, CT 8%, FL 6%, IL 5%, KY 5%, MA 5%, MN 6%, MO
4.425%, NJ 6%, NY 4% plus local option tax, SC 5%, TX 6% plus local option
tax, W A State 7.8%) and $2.50 per disk set for domestic postage and handling
charges. Mail your order to: Microsoft Press, Attn: Companion Disk Offer,
21919 20th Ave SE, Box 3011, Bothell, WA 98041-3011. Please specify 5.25-
inch format or 3.5-inch format. Payment must be in U.S. funds. You may pay by
check or money order (payable to Microsoft Press) or by American Express,
VISA, or MasterCard. (If paying by credit card, please include both your card
number and the expiration date.) Allow 2-3 weeks for delivery.

Foreign Ordering Information (within the U.K., see below)
Follow ordering procedures for domestic ordering and add $6.00 for foreign post­
age and handling.

U.K. Ordering Information
Send your order in writing along with £18.95 (includes VAT) to: Microsoft
Press, 27 Wrights Lane, London W8 5TZ. You may pay by check or money
order (payable to Microsoft Press) or by American Express, VISA, MasterCard,
or Diners Club. (If paying by credit card, please include both your card number
and the expiration date.) Specify 5.25-inch format or 3.5-inch format.

Microsoft Press Companion Disk Guarantee
If the disk proves defective, send the defective disk along with your packing slip
(or copy) to: Microsoft Press, Consumer Sales, One Microsoft Way, Redmond,
WA 98052-6399.

If you have questions or comments about the files on the disk, send them to:
Languages User Education, Microsoft Corporation, One Microsoft Way, Red­
mond, WA 98052-6399.

The Companion Disk for Microsoft C Run-Time Library Reference is available
only from Microsoft Press.

PART 1

Overview

CHAPTERS

, 1 Using CLibrary Routines. '. 5

2 Run-Time Routines
by Category•............ 19

3 Global Variables
and Stant/ard Types63

Overview
The first part of this book provides an overview of the run-time
library provided with the Microsoft C Professional Development
System.

Chapter I is a general guide to the use of the run-time library
routines.

Chapter 2 lists the routines by category.

Chapter 3 tells how to access global variables and types defined
in the run-time library.

CHAPTER

Using C Library Routines

This chapter provides basic infonnation about how to use Microsoft C library
routines. It also describes some special rules, such as file- and path-name conven­
tions, that apply to particular routines. You should read this chapter before you
begin to use C library routines, and you may also want to refer back to it if you
have questions about library procedures.

1. 1 Calling Library Routines
To use a C library routine, simply call it in your program, just as if it is defined
there. For instance, suppose you write the following program and name it
SAMPLE.C:

#include (stdio.h)
main()
(

printf("Microsoft e");

The program prints M i c r 0 S 0 ftC by calling the printf routine, which is part
of the standard C library. Calling a library routine nonnally involves two groups
of files: .

1. Header ("include") files that contain declarations and type definitions
required by library routines

2. Library files that contain the library routines in compiled fonn

Header files and library files are both included with Microsoft C. Header files are
used when compiling, and library files are used when linking.

5

6 Microsoft C Run-Time Library Reference

You include the necessary header files in your program source code with
#include directives. The description of each library routine in Part 2, "Refer­
ence," tells you what header file the routine requires. Since printf requires the
STDIO.H header file, the SAMPLE.C program contains the following line:

#include <stdio.h>

This line causes the compiler to insert the contents of STDIO.H into the source
file SAMPLE.C.

After you compile the source file, you link the resulting object (.OBl) file with
the appropriate library (.LIB) file to create an executable (.EXE) file. Your object
file contains the name of every routine that your program calls, including library
routines. If a routine is not defined in your program, the linker searches for its
code in a library file and includes that code in the executable file.

Normally, the code for standard library routines is contained in the "default li­
brary" that you create when installing Microsoft C. Since the linker automat­
ically searches the default li~rary, you do not need to specify that library's name
when linking your program. The following command links the example program
with the default library:

1 ink sa mp 1 e ... ;

If you call a library routine that is not contained in the default library, you must
give the linker the name of the library file that contains the routine. For instance,
suppose your program uses a Microsoft C graphics routine and you did not make
GRAPHICS.LIB part of your default library when installing Microsoft C. You
would then link the program using a line like the following:

link sample ••• graphics.lib;

For more information about libraries and linking, consult the installation docu­
mentation for your compiler.

1.2 Using Header Files
As stated in the previous section, you should include C header files when using
library routines. This section describes particular reasons why header files are
required.

Using C Library Routines 7

1.2. 1 Including Necessary Definitions
Many C library routines use constants, type definitions, or macros defined in a
header file. To use the routine, you must include the header file containing the
needed definition(s). The following list gives examples:

Definition

Manifest constant

Type definition

Example

If a library routine is implemented as a macro, the
macro definition appears in a header file. For in­
stance, the toupper macro is defined in the header
file CTYPE.H.

Many library routines refer to constants that are de­
fined in header files. For instance, the open routine
uses constants such as O_CREAT, which is defined
in the header file FCNTL.H.

Some library routines return a structure or take a
structure as an argument. For example, stream
input/output routines use a structure of type FILE,
which is defined in STDIO.H.

1.2.2 Including Function Declarations
The Microsoft C header files also contain function declarations for every func­
tion in the C library. These declarations are in the style recommended by the
ANSI C standard. Given these declarations, the compiler can perform "type
checking" on every reference to a library function, making sure that you have
used the correct return type and arguments. Function declarations are sometimes
called "prototypes," since the declaration serves as a prototype or template for
every subsequent reference to the function.

A function declaration lists the name of the function, its return type, and the num­
ber and type of its arguments. For instance, below is the declaration of the pow
library function from the header file MA TH.H:

double pow(double x, double y);

The example declares that pow returns a value of type double and takes two ar­
guments of type double. Given this declaration, the compiler can check every ref­
erence to pow in your program to ensure that the reference passes two double
arguments to pow and takes a return value of type double.

The compiler can perform type checking only for function references that appear
after the function declaration. Because of this, function declarations normally ap­
pear near the beginning of the source file, prior to any use of the functions they
declare.

8 Microsoft C Run-Time Library Reference

Function declarations are especially important for functions that return a value of
some type other than int, which is the default. For example, the pow function re­
turns a double value. If you do not declare such a function, the compiler treats its
return value as int, which can cause unexpected results.

It is also a good practice to provide declarations for functions that you write. If
you do not want to type the declarations by hand, you can generate them automat­
ically by using the (Zg compiler option. This option causes the compiler to
generate ANSI-standard function declarations for every function defined in the
current source file. Redirect this output to a file, then insert the file near the
beginning of your source file.

Your program can contain more than one declaration of the same function, as
long as the declarations do not conflict. This is important if you have old pro­
grams whose function declarations do not contain argument-type lists. For in­
stance, if your program contains the declaration

char *calloc();

you can later include the following declaration:

char *calloc(unsigned. unsigned);

Because the two declarations are" compatible, even though they are not identical,
no conflict occurs. The second declaration simply gives more information about
function arguments than the second. A conflict would arise, however, if the decla­
rations gave a different number of arguments or gave arguments of different
types.

Some library functions can take a variable number of arguments. For instance,
the printf function can take one argument or several. The compiler can perform
only limited type checking on such functions, a factor that affects the following
library functions:

• In calls to cprintf, cscanf, printf, and scanf, only the first argument (the for­
mat string) is type checked.

• In calls to fprintf, fscanf, sprintf, and sscanf, only the first two arguments
(the file or buffer and the format string) are type checked.

• In calls to open, only the first two arguments (the path name and the open
flag) are type checked.

• In calls to sopen, only the first three arguments (the path name, the open flag,
and the sharing mode) are type checked.

Using C Library Routines 9

• In calls to exeel, exeele, exeelp, and execlpe, only the first two arguments
(the path name and the first argument pointer) are type checked. .

• In calls to spawnl, spawnle, spawnlp, and spawnlpe, only the first three ar­
guments (the mode flag, the path name, and the first argument pointer) are
type checked.

1.3 File Names and Path Names
Many library routines take strings representing paths and file names as argu­
ments. If you plan to transport your programs to the XENIX operating system,
you should remember that XENIX uses file- and path-name conventions that are
different from those used by DOS and OS/2. If you do not plan to transport your
programs to XENIX, you can skip this section.

Case Sensitivity
The DOS and OS/2 operating systems are not case sensitive (they do not dis­
tinguish between uppercase and lowercase letters). Thus, SAMPLE.C and
Sample.C refer to the same file in DOS and OS/2. However, the XENIX operat­
ing system is case sensitive. In XENIX, SAMPLE.C and Sample.C refer to differ­
ent files. To transport programs to XENIX, choose file and path names that work
correctly in XENIX, since either case works in DOS and OS/2. For instance, the
following directives are identical in DOS and OS/2, but only the second works in
XENIX:

#include <STOIO.H>
#include <stdio.h>

Subdirectory Conventions
Under XENIX, certain header files are normally placed in a subdirectory named
SYS. Microsoft C follows this convention to ease the process of transporting pro­
grams to XENIX. If you do not plan to transport your programs, you can place
the SYS header files elsewhere.

Path-Name Delimiters
XENIX uses the slash (I) in path names, while DOS and OS/2 use the backsla~h
(\). To transport programs to XENIX, it is advantageous to use path-name
delimiters that are compatible with XENIX whenever possible.

10 Microsoft C Run-Time Library Reference

1.4 Choosing Between Functions and Macros
This book uses the words "routine" and "function" interchangeably. However,
the term "routine" actually encompasses both functions and macros. Because
functions and macros have different properties, you should pay attention to
which form you are using. The descriptions in the reference section indicate
whether routines are implemented as functions or as macros.

Most routines in the Microsoft C library are functions. They consist of compiled
C code or assembled Microsoft Macro Assembler (MASM) code. However, a
few library routines are implemented as macros that behave like functions. You
can pass arguments to library macros and invoke them in the same way you in­
voke functions.

The main benefit of using macros is faster execution time. A macro is expanded
(replaced by its definition) during preprocessing, creating in-line code. Thus,
macros do not have the overhead associated with function calls. On the other
hand, each use of a macro inserts the same code in your program, whereas a func­
tion definition occurs only once regardless of how many times it is called. Func­
tions and macros thus offer a trade-off between speed and size.

Apart from speed and size issues, macros and functions have some other impor­
tant differences:

• Some macros treat arguments with side effects incorrectly when the macro
evaluates its arguments more than once (see the example that follows this
list). Not every-macro has this effect. To determine if a macro handles side ef­
fects as desired, examine its definition in the appropriate header file.

• A function name evaluates to an address, but a macro name does not. Thus,
you cannot use a macro name in contexts requiring a function pointer. For in­
stance, you can declare a pointer to a function, but you cannot declare a
pointer to a macro.

• You can declare functions, but you cannot declare macros. Thus, the compiler
cannot perform type checking of macro arguments as it does of function argu­
ments. However, the compiler can detect when you pass the wrong number of
arguments to a macro.

• You must always include the appropriate header file when using a library
macro. Every library macro is defined with a #define directive in a header
file. If you do not include the header file, the macro is undefined.

Using C Library Routines 11

The following example demonstrates how some macros can produce unwanted
side effects. It uses the toupper routine from the standard C library.

#include <ctype.h>

i nt a = I m ';
a = toupper(a++);

The example increments a when passing it as an argument to the toupper
routine, which is implemented as a macro. It is defined in CTYPE.H:

#define toupper(c) ((islower(c»? _toupper(c) : (c))

The definition uses the conditional operator (? :). The conditional expression
evaluates the argument c twice: once to check if it is lowercase and again to cre­
ate the result. This macro evaluates the argument a++ twice, increasing a by 2
instead of 1. As a result, the value operated on by islower differs from the value
operated on by _ toupper. .

Like some other library routines, toupper is provided in both macro and function
versions. The header file CTYPE.H not only declares the toupper function but
also defines the toupper macro.

Choosing between the macro version and function version of such routines is
easy. If you wish to use the macro version, you can simply include the header file
that contains the macro definition. Because the macro definition of the routine al­
ways appears after the function declaration, the macro definition normally takes
precedence. Thus, if your program includes CTYPE.H and then calls toupper,
the compiler uses the to upper macro:

#include <ctype.h>

i nt a :;= I m I ;

a = toupper(a);

You can force the compiler to use the function version of a routine by enclosing
the routine's name in parentheses:

#include <ctype.h>

i nt a = I m ';
a = (toupper) (a);

Because the name toupper is not immediately followed by a left parenthesis, the
compiler cannot interpret it as a macro name. It must use the toupper function.

12 Microsoft C Run-Time Library Reference

A second way to do this is to "undefine" the macro definition with the #Undef
directive:

#include <ctype.h)
#undef toupper

Since the macro definition no longer exists, subsequent references to toupper
use the function version.

A third way to make sure the compiler uses the function version is to declare the
function explicitly:

#include <ctype.h)
int toupper(int _c);

Since this function declaration appears after the macro definition in CTYPE.H, it
causes the compiler to use the toupper function.

1.5 Stack Checking on Entry
For certain library routines, the compiler performs stack checking on entry. (The
"stack" is a memory area used for temporary storage.) Upon entry to such a
routine, the stack is checked to determine if it has enough room for the local vari­
ables used by that routine. If it does, space is allocated by adjusting the stack
pointer. Otherwise, a "stack overflow" run-time error occurs. If stack checking is
disabled, the compiler assumes there is enough stack space; if there is not, you
might overwrite memory locations in the data segment and receive no warning.

Typically, stack checking is enabled only for functions with large local-variable
requirements (more than about 150 bytes), since there is enough free space be­
tween the stack and data segments to handle functions with smaller requirements.
If the function is called many times, stack checking slows execution slightly.

Stack checking is enabled for the following library functions:

execvp
execvpe
fprintf
fscanf
printf

scanf
spawnvp
spawnvpe
sprintf
sscanf

system
vprintf
write

Using C Library Routines 13

1.6 Handling Errors
Many library routines return a value that indicates an error condition. To avoid
unexpected results, your code should always check such error values and handle
all of the possible error conditions. The description of each library routine in the
reference section lists the routine's return value(s).

Some library functions do not have a set error return. These include functions
that return nothing and functions whose range of return values makes it im­
possible to return a unique error value. To aid in error handling, some functions
in this category set the value of a ~lobal variable named errno.

If the reference description of a routine states that it sets the errno variable, you
can use errno in two ways:

1. Compare errno to the values defined in the header file ERRNO.H.

2. Handle errno with the perror or strerror library routines. The perror
routine prints a system error message to the standard error (stderr). The
strerror routine stores the same information in a string for later use.

When you use errno, perror, and strerror, remember that the value of errno re­
flects the error value for the last call that set errno. To avoid confusion, you
should always test the return value to verify that an error actually occurred. Once
you determine that an error has occurred, use errno or perror immediately.
Otherwise, the value of errno may be changed by intervening calls.

Library math routines set errno by calling the math err or _ matherrllibrary
routines, which are described in the reference section. If you wish to handle math
errors differently from these routines, you can write your own routine and name
it matherr or matherrl. Your routine must follow the rules listed in the
math err reference description.

The ferror library routine allows you to check for errors in stream input/output
operations. This routine checks if an error indicator has been set for a given
stream. Closing or rewinding the stream automatically clears the error indicator.
You can also reset the error indicator by calling the clearerr library routine.

The feof library routine tests for end-of-file on a given stream. An end-of-file
condition in low-level input and output can be detected with the eof routine or
when a read operation returns 0 as the number of bytes read.

The _grstatus library routine allows you to check for errors after calling certain
graphics library operations. See the reference page on the _grstatus function for
details. .

14 Microsoft C Run-Time Library Reference

1.7 Operating-System Considerations
The library routines listed in this section behave differently under different oper­
ating system versions. For more information on an individual routine, see the de­
scription of that routine in the reference section.

Routine

locking
sopen
_fsopen

dosexterr

dup
dup2

exec
spawn

Restrictions

These routines are effective only in OS/2 and in
DOS versions :300 and later.

The dosexterr routine provides error handling for
system call Ox59 (get extended error) in DOS ver­
sions 3.0 and later.

The dup and dup2 routines can cause unexpected re­
sults in DOS versions earlier than 3.0. If you use
dup or dup2 to create a duplicate file handle for
stdin, stdout, stderr, stdaux, or stdprn, calling the
close function with one handle causes errors in later
I/O operations that use the other handle. This
anomaly does not occur in OS/2 or in DOS versions
3.0 and later.

When using the exec and spawn families of func­
tions under DOS versions earlier than 3.0, the value
of the argO argument (or argv[O] to the child
process) is not available to the user; a null string
(" ") is stored in that position instead. In OS/2, the
argO argument contains the command name; in DOS
versions 3.0 and later, it contains the complete com­
mandpath.

Microsoft C defines global variables that indicate the version of the current oper­
ating system. You can use these to determine the operating-system version in
which a program is executing. See Chapter 3, "Global Variables and Standard
Types," for more information.

Using C Library Routines 15

1.8 Floating-Point Support
Microsoft math library routines require floating-point support to perform calcula­
tions with real numbers (numbers that can contain fractions). This support can be
provided by the floating-point libraries that accompany your compiler software
or by an 8087, 80287, or 80387 coprocessor. The names of the functions that re­
quire floating-point support are listed below:

acos cos~ fmodl powl
acosl cosl fmsbintoieee sin
asin cosh _fpreset sinl
asinl coshl frexp sinh
atan dieeetomsbin frexpl sinhl
atanl difftime gcvt sqrt
atan2 dmsbintoieee hypot sqrtl
atan21 ecvt hypotl statusS7
atof exp Idexp Strtod

atold expl Idexpl _strtold
bessel fabs log tan
cabs fabsl logl tanl
cabsl fcvt loglO tanh
ceil fieeetomsbin loglOi tanhl
ceill floor modf

clearS7 floorl modfl
-controlS7 fmod pow

Note that the bessel routine does not correspond to a single function, but to
twelve functions namedjO, jl, jn, yO, yl, yn, .J0l, .JU, .Jnl, JOl, Jll, and
Jnl. Also note that the _ clearS7 and _ controlS7 functions are not available with
the /FPa compiler. option.

Also requiring floating-point support is the printf family of functions (cprintf,
fprintf, printf, sprintf, vfprintf, vprintf, and vsprintt). These functions require
support for floating-point input and output if used to print floating-point values.

The C compiler tries to detect whether floating-point values are used in a pro­
gram so that supporting functions are loaded only if required. This behavior
saves a considerable amount of space for programs that do not require floating­
point support.

When you use a floating-point type specifier in the format string for a printf or
scanf call, make sure you specify floating-point values or pointers to floating­
point values in the argument list. These must correspond to any floating-point

16 Microsoft C Run-Time Library Reference

type specifiers in the format string. The presence of floating-point arguments al­
lows the compiler to detect that floating-point support code is required. If a
floating-point type specifier is used to print an integer argument, for example,
floating-point values will not be detected because the compiler does not actually
read the format string used in the printf and scanf functions. For instance, the fol­
lowing program produces an error at run time:

main() 1* This example causes an error *1
(

long f = 10L;
printf("%f", f);

}

In the preceding example, the functions for floating-point support are not loaded
because

• No floating-point arguments are given in the call to printf.

• No floating-point values are used elsewhere in the program.

As a result, the following error occurs:

Floating point not loaded

Here is a corrected version of the above call to printf in which the long integer
value is cast to double:

main() 1* This example works correctly */
(

long f = 10L;
printf("%f", (double) f);

}

1.9 Using Huge Arrays with Library Functions
In programs that use small, compact, medium, and large memory models, Micro­
soft C allows you to use arrays exceeding the 64K (kilobyte) limit of physical
memory in these models by explicitly declaring the arrays as _huge. However,
generally, you cannot pass _huge data items as arguments to C library functions.
In the compact-model library used by compact-model programs and in the large­
model library used by both large-model and huge-model programs, only the func­
tions listed below use argument arithmetic that works with _huge items:

bsearch fmemchr fmemmove lfind
fread =fmemcmp -fmemset lsearch
fwrite _fmemcpy balloc memccpy
_fmemccpy _fmemicmp hfree memchr

Using C Library Routines 17

With this set of functions, you can read from, write to, search, sort, copy, initial­
ize, compare, or dynamically allocate and free _huge arrays; the _huge array can
be passed without difficulty to any of these functions in a compact-, large-, or
huge-model program. The model-independent routines in the above list (those
beginning with _ f) are available in all memory models.

The memset, memcpy, and memcmp library routines are available in two ver­
sions: as C functions and as intrinsic (in-line) code. The function versions of
these routines support huge pointers in compact and large memory models, but
the intrinsic versions do not support huge pointers. (The function version of such
routines generates a call to a library function, whereas the intrinsic version in­
serts in-line code into your program. Your compiler documentation explains how
to select the intrinsic versions of library routines.)

Run-Time Routines
by Category

CHAPTER

Microsoft C library routines handle various kinds of tasks. If you know the type
of task you need done, but don't know exactly which routine to use, the catego­
rized lists of routines in this chapter can help.

The descriptions here are intended only to give you a brief overview of the capa­
bilities of the run-time library. For a complete description of the behavior, syn­
tax, and use of each routine, see Part 2, "Run-Time Functions."

The main categories of library routines are

• Buffer manipulation

• Character classification and conversion

• Data conversion

• Directory control

• File handling

• Graphics

• Input and output

• Internationalization

• Math

• Memory allocation

• Process and environment control

• Searching and sorting

• String manipulation

• System calls

• Time

• Variable-length argument lists

19

20 Microsoft C Run-Time Library Reference

2. 1 Buffer Manipulation
The buffer-manipulation routines are useful for working with areas of memory
on a character-by-character basis. A "buffer" is an array of characters~ similar
to a character string. However, unlike strings, buffers are not usually termi­
nated with a null character ('\0'). Therefore, the buffer-manipulation routines
always take a length or count argument. Function declarations for the buffer­
manipulation routines are given in the include files MEMORY.H and
STRING.H, with an exception being the swab function, which appears in
STDLIB.H.

Routines beginning with _f are model independent; the _ f stands for far. These
routines are useful in writing mixed-model programs because they can be called
from any program, regardless of the memory model being used.

Routine

memccpy,
. _fmemccpy

memchr, _fmemchr

memcmp, _fmemcmp

memcpy, _fmemcpy

memicmp,
_fmemicmp

memmove,
fmemmove

memset, _fmemset

swab

Use

Copy characters from one buffer to another until a
given character or a given number of characters has
been copied

Return a pointer to the first occurrence, within a
specified number of characters, of a given character
in the buffer

Compare a specified number of characters from two
buffers

Copy a specified number of characters from one
buffer to another

Compare a specified number of characters from two
buffers without regard to the case of the letters (up­
percase and lowercase treated as equivalent)

Copy a specified number of characters from one
buffer to another

Use a given character to initialize a specified num­
ber of bytes in the buffer

Swaps bytes of data and stores them at the specified
location

Run-Time Routines by Category 21

When the source and target areas overlap, only the memmove and _ fmemmove
functions are guaranteed to copy the full source properly. (The memcpy and
_fmemcpy routines do not always copy the full source in such cases.)

2.2 Character Classification and Conversion
The character classification and conversion routines allow you to test individual
characters in a variety of ways and to convert between uppercase and lowercase
characters.

Routine

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

toascii

tolower

tolower

toupper

_toupper

Use

Tests for alphanumeric character

Tests for alphabetic character

Tests for ASCII character

Tests for control character

Tests for decimal digit

Tests for printable character except space

Tests for lowercase character

Tests for printable character

Tests for punctuation character

Tests for white-space character

Tests for uppercase character

Tests for hexadecimal digit

Converts character to ASCII code

Tests character and converts to lowercase if
uppercase

Converts character to lowercase (unconditional)

Tests character and converts to uppercase if
lowercase

Converts character to uppercase (unconditional)

22 Microsoft C Run-Time Library Reference

The classification routines identify characters by finding them in a table of classi­
fication codes. Using these routines to classify characters is generally faster than
writing a test expression such as the following:

if « c)= 0) II c (= 0x7f»

All of these routines are implemented in two versions: as functions and as mac­
ros. The function prototypes and macro definitions appear in CTYPE.H. Section
1.4, "Choosing Between Functions and Macros," explains how to choose the
appropriate version. The toupper and tolower functions are also declared in the
STDLIB.H header file.

2.3 Oata Conversion
The data-conversion routines convert numbers to strings .of ASCII characters
and vice versa. These routines are implemented as functions, all of which are de­
clared in the include file STDLIB.H. The atof function, which converts a string
to a floating-point value, is also declared in MATH.H.

Routine Use

abs Finds absolute value of integer

atof Converts string to float

atoi Converts string to int

atol Converts string to long

_atold Converts string to long double

ecvt Converts double to string

fcvt Converts double to string

gcvt Converts double to string

itoa Converts int to string

labs Finds absolute value of long integer

Itoa Converts long to string

strtod Converts string to double

strtol

strtold

strtoul

ultoa

2.4 Directory Control

Run-Time Routines by Category 23

Converts string to a long integer

Converts string to long double

Converts string to an unsigned long integer

Converts unsigned long to string

The directory-control routines let a program access, modify, and obtain infonna­
tion about the directory structure. These routines are functions and are declared
in DIRECT.H.

Routine

chdir

chdrive

getcwd

_getdcwd

_getdrive

mkdir

rmdir

searchenv

2.5 File Handling

Use

Changes current working directory

Changes current drive

Gets current working directory

Gets current working directory for the specified drive

Gets the current disk drive

Makes a new directory

Removes a directory

Searches for a given file on specified paths

The file-handling routines let you create, manipulate, and delete files. They also
set and check file-access pennissions.

File-handling routines work on a file designated by a path name or by a "file
handle," an integer assigned by the operating system that identifies an open file.
These routines modify or give infonnation about the designated file. Most of
them are declared in the include file IO.H, with the exceptions being the fstat
and stat functions' (declared in SYs\sTAT.H), the _full path routine (declared in
DIRECT.H), and the remove and rename functions (also declared in STDIO.H).

24 Microsoft C Run-Time Library Reference

Routine

access

chmod

chsize

filelength

fstat

_full path

isatty

locking

_make path

mktemp

remove

rename

set mode

_splitpath

stat

umask

unlink

Use

Checks file-pennission setting

Changes file-pennission setting

Changes file size

Gets file length

Gets file-status infonnation on handle

Makes an absolute path name from a relative
path name

Checks for character device

Locks areas of file (available with OS/2 and
DOS versions 3.0 and later)

Merges path-name components into a single, full
path name

Creates unique file name

Deletes file

Renames file

Sets file-translation mode

Splits a path name into component pieces

Gets file-status infonnation on named file

Sets default-pennission mask

Deletes file

The access, chmod, _fullpath, _makepath, remove, rename, _splitpath, stat,
and unlink routines operate on files specified by a path name or file name.

The chsize, filelength, fstat, isatty, locking, and setmode routines work with
files designated by a file handle.

The mktemp and umask routines have functions that are slightly different from
the other routines. The mktemp routine creates a unique file name, and the pro­
grammer can use mktemp to create unique file names that do not conflict with
the names of existing files. The umask routine sets the default pennission mask
for any new files created in a program. The mask can override the pennission set­
ting given in the open or creat .call for the new file.

2.6 Graphics

Run-Time Routines by Category 25

Microsoft C graphics routines offer a wide variety of graphics functions, low­
level graphics primitives, font functions, and presentation graphics (displays such
as graphs and pie charts).

Graphics functions are supplied in two libraries that must be explicitly linked
with your program. The GRAPHICS.LIB library provides support for low-level
graphics and character-font routines. The library PGCHART.LIB supports
presentation-graphics routines.

2.6.1 Low-Level Graphics and Character-Font Functions
The low-level graphics and font functions are declared in the include file
GRAPH.H.

The library can be divided into the eight categories listed below, which corre­
spond to the different tasks involved in creating and manipulating graphic objects.

Most graphics routines work only in DOS. Two categories of routines ("configur­
ing mode and environment" and "creating text output") work in OS/2 as well
as DOS.

Category

Configuring mode and
environment (OS/2
and DOS)

Setting coordinates

Setting low-level
graphics palettes

Setting attributes

Creating graphics
output

Creating text output
(OS/2 and DOS)

Transferring images

Displaying fonts

Task

Select the proper display mode for the hardware and
establish memory areas for writing and displaying of
images

Specify the logical origin and the active display area
within the screen

Specify a palette mapping for low-level graphics
routines

Specify background and foreground colors, fill
masks, and line styles for low-level graphics routines

Draw and fill figures

Write text on the screen

Store images in memory and retrieve them

Display text in character fonts compatible with
Microsoft WindowsTM

The following sections explain each of these categories.

26 Microsoft C Run-Time Library Reference

2.6.1.1 Configuring Mode and Environment
. Routines that configure the mode and environment establish the graphics or text
mode of operation, determine the current graphics environment, and control the
display of the cursor.

All of the routines listed in this section are available in OS/2 as well as DOS.

Routine

clearscreen

_getactivepage

_getbkcolor

_getvideoconfig

_getvisualpage

_grstatus

_setactivepage

setbkcolor

settextrows

setvideomode

_ setvideomoderows

_setvisualpage

Use

Erases the screen and fills it with the current back­
ground color

Gets the current active page number

Returns the current background color

Obtains status of current graphics environment

Gets the current visual page number

Returns the status of the most recent graphics func­
tion call

Sets memory area for the active page for writing
images

Sets the current background color

Sets the number of text rows

Selects an operating mode for the display screen

Sets the video mode and the number of rows for text
operations

Sets memory area for the current visual page

2.6. 1.2 Setting Coordinates
The "set coordinates" routines set the current text or graphics position and con­
vert pixel coordinates between the various graphic coordinate systems.

The Microsoft C graphics functions recognize three sets of coordinates:

1. Fixed physical coordinates

2. View coordinates defined by the application

3. Window coordinates that can include floating-point values

Run-Time Routines by Caiegory 27

The functions in this category establish window and view coordinate systems and
translate between physical, view, and window coordinate systems.

Routine

_getcurrentposition

_getcurrentposition _ w

_getphyscoord

_getviewcoord

_getviewcoord _ w

_getviewcoord _ wxy

_getwindowcoord

_setcliprgn

_ setvieworg

_ setviewport

_setwindow

Use

Determines current position in view coordinates

Determines current position in window coordinates

Converts view coordinates to physical coordinates

Converts physical coordinates to view coordinates

Converts window coordinates to view coordinates

Converts window coordinates in _ wxycoord struc ..
ture to view coordinates

Converts view coordinates to window coordinates

Limits graphic output to a region of the screen

Positions the view-coordinate origin

Limits graphics output to a region of the screen and
positions the view-coordinate origin to the Lipper-left
corner of that region

Defines a floating-point window coordinate system

The default view coordinate system is identical to the physical screen coordinate
system. The physical origin (0,0) is always in the upper-left comer of the dis­
play. The x axis extends in the positive direction left to right, while the y axis ex­
tends in the positive direction top to bottom.

The physical horizontal and vertical dimensions depend on the hardware display
configuration and the selected mode. These values are accessible at run time by
examining the nurnxpixels and nurnypixels fields of the videoconfig structure
returned by _getvideoconfig. (The _getvideoconfig routine is listed in the pre­
vious section.)

The _ setvieworg function allows you to move the viewport origin to a new posi­
tion relative to the physical screen.

Routines that refer to coordinates on the physical screen or viewport require in­
teger/ values. However, in real-world graphing applications, you might wish to
use floating-point values, such as stock prices or average rainfal1. The window
coordinate system allows you to display graphics using floating-point values in­
stead of integers.

The _getcurrentposition and _getcurrentposition _ w routines allow you to de­
termine the location of the current graphics-output point.

28 Microsoft C Run-Time Library Reference

The _setcIiprgn function defines a restricted active display area on the screen.
The _ setviewport function does the same thing and also resets the viewport
origin to the upper-left corner of the restricted active display area.

The physical coordinates of any view-coordinate point can be determined with
the _getphyscoord function, and the view coordinates of any physical point can
be determined with the _getviewcoord function.

The view coordinates of any window coordinate can be determined with the
_getviewcoord _wand _getviewcoord _ wxy functions. The window coordinates
of any view coordinate can be determined with the _getwindowcoord function.

The _setwindow function defines the current viewport as a real-coordinate win­
dow bound by the specified floating-point values.

2.6.1.3 Setting Low-Level Graphics Palettes
Use the low-level palette routines to select or remap color palettes.

Routine

_ remapallpalette

_ remappalette

_ selectpalette

Use

Changes all color indexes in the current palette

Changes a single color index in the current palette

Selects a predefined palette

Some video modes support a "color palette," which is a table of the color values
that can be displayed together on the screen at any given time. A "color value" is
a long integer representing a color that can be displayed on your system.

In CGA color graphics modes, you can use the _ selectpalette routine to choose
one of several predefined palettes.

On EGA and VGA video systems, you can "remap" (change) the palette using
the _remappalette or _remapallpalette routines. For instance, the EGA

ERESCOLOR mode offers a total of 64 color values, of which 16 can be dis­
played at a time. In this mode, the palette contains 16 "color indices," or slots to
which you can assign color values.

The _remappalette routine changes a single color index to a specified color
value. The _remapallpalette routine changes all of the available palette entries
simultaneously.

2.6.1.4 Setting Attributes
The low-level output functions that draw lines, arcs, ellipses, and other basic
figures do not specify color or line-style information. Instead, the low-level

Run-Time Routines by Category 29

graphics functions rely on a set of attributes that are set independently by the fol­
lowing functions:

Routine

_getarcinfo

_getcolor

_getfillmask

_getlinestyle

_getwritemode

_setcolor

setfillmask

_ setlinestyle

setwritemode

Use

Determines the endpoints in viewport coordinates of
the most recently drawn arc or pie

Gets the current color

Gets the current fill mask

Gets the current line-style mask

Gets the current logical wri te mode

Sets the current color

Sets the current fill mask

Sets the current line-style mask

Sets logical write mode for line drawing

The _getcolor and _ setcolor functions get or set the current color index for
graphics and font output. The _getbkcolor and _setbkcolor functions get or set
the current background color.

The _getfillmask and _ setfillmask functions get or set the current fill mask. The
mask is an 8-by-8-bit template array, with each bit representing a pixel. If a bit is
0, the pixel in memory is left untouched, as the mask is transparent to that pixel.
If a bit is 1, the pixel is assigned the current color value. The template is repeated
as necessary over the entire fill area.

The _getlinestyle and _setlinestyle functions get or set the current line style. The
line style is determined by a 16-bit template buffer with each bit corresponding
to a pixel. If a bit is I, the pixel is set to the current color. If a bit is 0, the pixel is
not changed. The template is repeated for the length of the line.

The _getwritemode and _setwritemode functions get or set the logical write
mode for straight line drawing. The default mode, _ GPSET, causes lines to be
drawn in the current graphics color. Other modes combine the current graphics
color and the original screen image using various logical operations.

2.6.1.5 Creating Graphics Output
The graphics output functions use a set of specified coordinates and draw various
figures. They use the current or default attributes for line-style mask, fill mask,
write mode, background color, and foreground color.

30 Microsoft C Run-Time Library Reference

The name of each function announces its task or the figure it draws, as the follow­
ing list indicates:

Routine

_ellipse, _ellipse_w,
_ellipse _ wxy

_ flood fill, _ floodfiIl_ w

_getcurrentposition,
~etcurrentposition _ w

getpixel, ~etpixel w

Jineto, Jineto _ w

_ moveto, _ moveto _ w

-pie, -pie_w, _pie_wxy

-polygon, -polygon _ w,
-polygon _ wxy

_rectangle, _rectangle_w,
_rectangle _ wxy

_ setpixel, _ setpixel _ w

Use

Draw an arc

Draw an ellipse or circle

Flood-fill an area of the screen with
the current color

Obtain the current graphic-output
position used by Jineto and
_outgtext

Obtain a pixel's color

Draw a line from the current graphic
output position to a specified point

Move the current graphic-output posi­
tion to a specified point

Draw a pie-slice-shaped figure

Draw or scan-fill a polygon

Draw or scan-fill a rectangle

Set a pixel's color

Most of these routines are available in several forms, which are indicated by their
names. Output functions without a suffix use the view coordinate system. Func­
tions that end with _ w take double values as arguments and use the window
coordinate system. Functions that end with _ wxy use _ wxycoord structures to de­
fine the coordinates and use the window coordinate system.

Circular figures, such as arcs and ellipses, are centered within a "bounding rec­
tangle" specified by two points that define the diagonally opposed corners of the
rectangle. The center of the rectangle becomes the center of the figure, and the
rectangle's borders determine the size of the figure.

2.6.1.6 Creating Text Output
The next group of routines provides text output in both graphics and text modes.
Unlike the standard console I/O library routines, these functions. recognize text­
window boundaries and use the current text color.

Run-Time Routines by Category 31

All of the routines listed in this section work in OS/2 as well as DOS.

Routine

_ displaycursor

_gettextcolor

_gettextcursor

_gettextposition

_gettextwindow

outmem

outtext

scrolltextwindow

settextcolor

settextcursor

_ settextposition

_ settextwindow

_wrapon

Use

Sets the cursor on or off upon exit from a graphics
routine

Obtains the current text color

Returns the current cursor attribute (text modes only)

Obtains the current text-output position

Gets the current text window boundaries

Prints text of a specified length from a memory
buffer

Outputs a text string to the screen at the current text
position

Scrolls the current text window up or down

Sets the current text color

Sets the current cursor attribute (text modes only)

Relocates the current text position

Defines the current text-display window

Enables or disables line wrap
I
I
\

The _outtext and _outmem routines provide no formatting. If you want to out-
put integer or floating-point values, you must convert the values into a string vari­
able (using the sprintffunction) before calling these routines.

The _outtext routine recognizes the \n (newline character) and \r (carriage re­
turn) sequences. The _ outmem routine treats these sequences as printable
graphics characters.

2.6. 1.7 Transferring Images
The functions in this category transfer screen images between memory and the
display, using a buffer allocated by the application, or determine the size in bytes
of the buffer needed to store a given image.

The functions that end with _ w or _ wxy use window coordinates; the other func­
tions in this set use view coordinat~s.

32 Microsoft C Run-Time Library Reference

Routine

_getirnage,
_getirnage _ w,
_getirnage _ wxy

Jrnagesize,
Jrnagesize _ w,
Jrnagesize _ wxy

jlutirnage,
jlutirnage _ w

Use

Store a screen image in memory

Return the size (in bytes) of the buffer needed to
store the image

Retrieve an image from memory and-display it

In some cases, the buffer needed to store an image with the _getimage functions
must be larger than 64K (65,535) bytes. Use the halloc routine to allocate a buff­
er larger than 64K.

2.6.1.8 Displaying Fonts
The functions listed in this section control the display of font-based characters on
the screen.

Routine

_getfontinfo

_getgtextexten t

_getgtextvector

_outgtext

_registerfonts

setfont

_ setgtextvector

_ unregisterfonts

Use

Obtains the current font characteristics

Determines the width in pixels of specified text in
the current font

Gets orientation of font text output

Outputs text in the current font to the screen at the
specified pixel position

Initializes font library

Finds a single font that matches a specified set of
characteristics and makes this font the current font
for use by the _ outgtext function

Sets the current orientation for font text output

Frees memory allocated by _registerfonts

2.6.2 Presentation-Graphics Functions
The presentation-graphics functions are declared in the PGCHART.H include
file. The library can be divided into the three categories listed below, correspond­
ing to the different tasks involved in creating and manipulating graphic objects:

Category

Displaying presen­
tation graphics

Analyzing
presentation-graphics
data

Manipulating
presentation-graphics
structures

Run-Time Routines by Category 33

Task

Initialize video structures for presentation graphics
and establishes the default chart type. Display
presentation-graphics chart: bar, column, pie, scat­
ter, or line chart.

Analyze data (does not display chart).

Modify basic chart structures (e.g., palettes, cross­
hatching styles).

2.6.2. 1 Displaying Presentation Graphics
The functions listed in this section initialize the presentation-graphics library and
display the specified graph type.

Because the j>g)nitchart routine initializes the presentation-graphics library, it
must be called before any other function in the presentation-graphics library. The
j>g_ defaultchart function initializes the variables in the chart environment.

The other routines in this category display the specified graph. The single-series
versions plot one set of data, and the multi series versions (those ending with an
ms suffix) plot several sets of data in the same chart style.

Presentation-graphics programs can display text in different font sizes by taking
advantage of font-based characters (see Section 2.6.1.8, "Displaying Fonts.")
Call the _registerfonts and _setfont routines to select a font before calling the,
j>ginitchart routine. Subsequent charts use the selected font. You can later call
the _unregisterfonts routine to restore the default character font and free the
memory previously allocated for fonts.

Routine

j>g_chart

j>g_ chartms

j>g_ chartpie

j>g_ chartscatter

j>g_ chartscatterms

j>g_ defaultchart

j>g)nitchart

Use

Displays a single-series bar, column, or line chart

Displays a multiseries bar, column, or line chart

Displays a pie chart

Displays a scatter diagram for a single series of data

Displays a scatter diagram for more than one series
of data

Initializes all necessary variables in the chart en­
vironment for a specified chart type

Initializes the presentation-graphics library

34 Microsoft C Run-Time Library Reference

2.6.2.2 Analyzing Presentation-Graphics Charts
These routines calculate default values for the specified graph type but do not dis­
play the chart. The single-series versions analyze one set of data, and the multi­
series versions analyze several sets of data in the same chart style.

Routine

-pg_ analyzechart

yg_ analyzechartms

-pg_ analyzepie

-pg_ analyzescatter

-pg_ analyzescatterms

Use

Analyzes a single series of data for a bar, column, or
line chart

Analyzes a multiseries of data for a bar, column, or
line chart

Analyzes data for a pie chart

Analyzes a single series of data for a scatter diagram

Analyzes a multiseries of data for a scatter diagram

2.6.2.3 Manipulating Presentation-Graphics Structures
These functions control low-level aspects of the presentation-graphics package.

Routine

yg_ hlabelchart

-pg_ vlabelchart

_pg_get pal ette

yg_ resetpalette

yg_getstyleset

-pg_ setstyleset

-pg_resetstyleset

Use

Writes text horizontally on the screen

Writes text vertically on the screen

Retrieves current colors, line styles, fill patterns, and
plot characters for all presentation-graphics palettes

Sets current colors, line styles, fill patterns, and plot
characters for all presentation-graphics palettes

Sets current colors, line styles, fill patterns, and plot
characters to the default values for the current screen
mode

Retrieves the contents of the current styleset

Sets the contents of the current styleset

Resets the contents of the current styleset to the de­
fault value for the current screen mode

Retrieves the current 8-by-8-pixel bit map for a
specified character

Sets the 8-by-8-pixel bit map for a specified
character

Run-Time Routines by Category 35

2.7 Input and Output
The input and output (I/O) routines of the standard C library allow you to read
and write data to and from files and devices. In C, there are no predefined file
structures; all data items are treated as sequences of bytes. The following three
types of I/O functions are available:

1. Stream

2. Low-level

3. Console and port

The "stream" I/O functions treat data as a stream of individual characters. By
choosing among the many stream functions available, you can process data in
different sizes an'" formats, from single characters to large data structures. Stream
I/O also provides buffering, which can significantly improve performance.

The "low-level" I/O routines do not perform buffering and formatting. Instead,
they invoke the operating system's input and output capabilities directly. These
routines let you access files and peripheral devices at a more basic level than the
stream functions.

The "console and port" I/O routines allow you to read or write directly to a con­
sole (keyboard and screen) or an I/O port (such as a printer port). The port I/O
routines simply read and write data in bytes. With console I/O routines, some ad­
ditional options are available, such as detecting whether a character has been
typed at the console. You can also choose between echoing characters to the
screen as they are read or reading characters without echoing.

The C library also provides a number of direct DOS I/O system call routines.
These are described in Section 2.14, "System Calls."

File I/O operations can be performed in two modes: text or binary. The following
section describes these modes and their use.

WARNING Because stream routines are buffered and lOW-level routines are not, the two
types of routines are generally incompatible. You should use either stream or low-level
routines conSistently for processing a given file.

2.7. 1 Text and Binary Modes
Many C programs use data files for input and output. Under DOS and OS/2, data
files are normally processed in text mode. In this mode, each carriage-retum-line­
feed (CR-LF) combination is translated into a single line-feed character during

36 Microsoft C Run-Time Library Reference

input. During output, each line-feed character is translated into a CR-LF
combination.

Sometimes you may want to process a file without making those translations. In
these cases you use binary mode, which suppresses CR-LF translations.

You can control the file translation mode in the following ways:

• To process a few selected files in binary mode, while retaining the default
text mode for most files, you can specify binary mode when you open the
selected files. The fopen routine opens a file in binary mode when you
specify the letter b in the access-mode string for the file. The open routine
opens a file in binary mode when you specify the O_BINARY flag in the oflag
argument. For more information about fopen and open, see the reference de­
scription of each routine.

• To process most or all files in binary mode, you can change the default mode
to binary. The global variable _fmode controls the default translation mode,
which is normally text. If you set _fmode to O_BINARY, the default mode is
binary except for stdaux and stdprn, which are opened in binary mode by
default.

You can change the value of_fmode in two ways:

1. Link with the file BINMODE.OBJ (supplied with Microsoft C). This changes
the initial setting of fmode to the 0 BINARY flag, causing all files except

. stdin, stdout, and stderr to be opened in binary mode.

2. Change the value of _fmode directly by setting it to the 0 _BINARY flag in
your program. This has the same effect as linking with BINMODE.OBJ.

You can still override the default mode (now binary) for a particular file by open­
ing it in text mode. Specify the letter t when using fopen, or specify the 0 _TEXT
flag when using open.

By default, the stdin, stdout, and stderr files are opened in text mode, and the
stdaux and stdprn files are opened in binary mode. The setmode routine allows
you to change these defaults or change the mode of a file after it has been
opened. See the reference description of setmode for details.

2.7.2 Stream Routines
Stream I/O functions handle data as a continuous stream of characters. To
use the stream functions, you must include the file STDIO.H in your program.
This file defines constants, types, and structures used in the stream functions,
and contains function declarations and macro definitions for the stream
routines.

Run-Time Routines by Category 37

When a file is opened for I/O using the stream functions, the opened file is as­
sociated with a structure of type FILE (defined in STOIO.H) containing basic in­
fonnation about the file. A pointer to the FILE structure is returned when the
stream is opened. Subsequent operations use this pointer (also called the "stream
pointer," or just "stream") to refer to the file.

The stream functions provide for buffered, fonnatted, or unfonnatted input and
output. When a stream is buffered, data that is read from or written to the stream
is collected in an intennediate storage location called a "buffer". In write opera­
tions, the output buffer's contents are written to the appropriate final location
when the buffer is full, the stream is closed, or the program tenninates nonnally.
The buffer is said to be "flushed" when this occurs. In read operations, a block of
data is placed in the input buffer read from the buffer; when the input buffer is
empty, the next block of data is transferred into the buffer.

Buffering produces efficient I/O because the system can transfer a large block of
data in a single operation rather than perfonning an I/O operation each time a
data item is read from or written to a stream. However, if a program tenninates
abnonnally, output buffers may not be flushed, resulting in loss of data.

Some of the constants defined in STOIO.H may be useful in your program. The
manifest constant EOF is defined to be the value returned at end-of-file. NULL is
the null pointer. FILE is the structure that maintains infonnation about a stream.
BUFSIZ defines the default size of stream buffers, in bytes.

Routine

clearerr

fclose

fcloseall

fdopen

feof

ferror

mush

fgetc

fgetchar

fgetpos

fgets

fileno

flushall

fopen

Use

Clears the error indicator for a stream

Closes a stream

Closes all open streams

Associates a stream with an open file handle

Tests for end-of-file on a stream

Tests for error on a stream

Flushes a stream

Reads a character fron:' a stream (function version)

Reads a character from stdin (function version)

Gets the position indicator of a stream

Reads a string from a stream

Gets the file handle associated with a stream

Flushes all streams

Opens a stream

38 Microsoft C Run-Time Library Reference

fprintf

fputc

fputchar

fputs

fread

freopen

fscanf

fseek

fsetpos

_fsopen

ftell

fwrite

getc

getchar

gets

getw

printf

putc

putchar

puts

putw

rewind (

rmtmp

scanf

setbuf

setvbuf

sprintf

sscanf

tempnam

/

Writes fonnatted data to a stream

Writes a character to a stream (function version)

Writes a character to stdout (function version)

Writes a string to a stream

Reads unfonnatted data from a stream

Reassigns a FILE pointer to a new file

Reads fonnatted data from a stream

Moves file position to a given location

Sets the position indicator of a stream

Opens a stream with file sharing

Gets current file position

Writes unfonnatted data items to a stream

Reads a character from a stream

Reads a character from stdin

Reads a line from stdin

Reads a binary int item from a stream

Writes formatted data to stdout

Writes a character to a stream

Writes a character to stdout

Writes a line to a stream

Writes a binary int item to a stream

Moves file position to beginning of a stream

Removes temporary files created by tmpfile

Reads fonnatted data from stdin

Controls stream buffering

Controls stream buffering and buffer size

Writes fonnatted data to a string

Reads fonnatted data from a string

Generates a temporary file name in given directory

tmpfile

tmpnam

ungetc

vfprintf

vprintf

vsprintf

Run-Time Routines by Category 39

Creates a temporary file

Generates a temporary file name

Places a character in the buffer

Writes formatted data to a stream

Writes formatted data to stdout

Writes formatted data to a string

2.7.2.1 Opening a Stream
A stream must be opened using the fdopen, fopen, freopen, or _fsopen function
before input and output can be performed on that stream. When opening a
stream, the named stream can be opened for reading, writing, or both, and can be
opened in either text or binary mode.

The fdopen, fopen, freopen, and _fsopen functions return a FILE pointer. You
normally assign the pointer value to a variable and use the variable to refer to the
opened stream. For instance, if your program contains the lines

FILE *infile
infile = fopen ("test.dat", Urn);

you can use the FILE pointer variable i n f i 1 e to refer to the stream.

2.7.2.2 Using Predefined Stream Pointers
When a program begins execution, the C start-up code automatically opens
several streams: standard input, standard output, and standard error. By default,
the standard input, standard output, and standard error streams are directed to the
console (keyboard and screen). This means that when a program expects input
from the "standard input," it receives that input from the console. Similarly, a
program that writes to the "standard output" prints its data to the console. Error
messages generated by the library routines are sent to the "standard error," mean­
ing that error messages appear on the user's console.

Under DOS, two additional streams are opened: standard auxiliary and standard
print. (These streams are not available in OS/2.) The assignment of standard
auxiliary and standard print depends on the machine configuration. These
str~ams usually refer to the first serial port and a printer port, but those ports may
not be available on some systems. Be sure to check your machine configuration
before using these streams.

You can refer to the standard streams with the following predefined stream
pointers:

40 Microsoft C Run-Time Library Reference

Pointer

stdin

stdout

stderr

stdaux

stdprn

Stream

Standard input

Standard output

Standard error

Standard auxiliary (DOS only)

Standard print (DOS only)

You can use these pointers in any function that requires a stream pointer as an ar­
gument. Some functions, such as getchar and putchar, are designed to use stdin
or stdout automatically. The pointers stdin, stdout, stderr, stdaux, and stdprn
are constants, not variables; do not try to assign them a new stream pointer value.

DOS and OS/2 allow you to redirect a program's standard input and standard out­
put at the operating-system command level. OS/2 also allows you to redirect a
program's standard error. See your operating system user's manual for a com­
plete discussion of redirection.

Within your program, you can use freopen to redirect stdin, stdout, stderr,
stdaux, or stdprn so that it refers to a disk file or to a device. See the reference
description of freopen for more details.

2.7.2.3 Controlling Stream Buffering
As mentioned earlier, stream routines can use in-memory buffers to speed I/O
operations. Files opened using the stream routines are buffered by default, except
for stdaux and stdprn, which are normally unbuffered. The stdout and stderr
streams are flushed whenever they are full or (if you are writing to a character
device) after each library call.

By using the setbuf or setvbuf function, you can cause a stream to be unbuff­
ered, or you can associate a buffer with an unbuffered stream. Buffers allocated
by the system are not accessible to you, but buffers allocated with setbuf or
setvbufrefer to arrays in your program and can be manipulated. Buffers can be
any size up to 32,767 bytes. This size is set by the manifest constant BUFSIZ in
STDIO.H if you use seftbuf; if you use setvbuf, you can set the size of the buffer
yourself. (See the descriptions of setbuf and setvbuf in the reference section for
more details.)

NOTE These routines affect only buffers created by C library routines. They have no effect
on buffers created by the operating system.

Run-Time Routines by Category 41

2.7.2.4 Closing Streams
The fclose and fcloseall functions close a stream or streams. The fclose routine
closes a single specified stream; fcloseall closes all open streams except stdin,
stdout, stderr, stdaux, and stdprn. If your program does not explicitly close a
stream, the stream is automatically closed when the program tenninates. How­
ever, it is a good practice to close a stream when your program is finished with it,
as the number of streams that can be open at a given time is limited.

2.7.2.5 Reading and Writing Data
The stream functions allow you to transfer data in a variety of ways. You can
read and write binary data (a sequence of bytes), or specify reading and writing
by characters, lines, or more complicated fonnats.

Reading and writing operations on streams always begin at the current position
of the stream, known as the "file pointer" for the stream. The file pointer is
changed to reflect the new position after a read or write operation takes place.
For example, if you read a single character from a stream, the file pointer is in­
creased by one byte so that the next operation begins with the first unread char­
acter. If a stream is opened for appending, the file pointer is automatically
positioned at the end of the file before each write operation.

The fseek and fsetpos functions allow you to position the file pointer anywhere
in a file. The next operation occurs at the position you specified. The rewind
routine positions the file pointer at the beginning of the file. Use the ftell or
fgetpos routine to detennine the current position of the file pointer.

The feofmacro detects an end-of-file condition on a stream. Once the end-of-file
indicator is set, it remains set until the file is closed, or until clearerr, fseek,
fsetpos, or rewind is called.

Streams associated with a character-oriented device (such as a console) do not
have file pointers. Data coming from or going to a console cannot be accessed
randomly. Routines that set or get the file-pointer position (such as fseek,
fgetpos, fsetpos, ftell, or rewind) have undefined results if used on a stream as­
sociated with a character-oriented device.

2.7.2.6 Detecting Errors
When an error occurs in a stream operation, an error indicator for the stream is
set. You can use the ferror macro .to test the error indicator and determine
whether an error has occurred. Once an error has occurred, the error indicator for
the stream remains set until the stream is closed, or until you explicitly clear the
error indicator by calling clearerr or rewind.

42 Microsoft C Run-Time Library Reference

2.7.3 Low-Level Routines
Low-level input and output calls do not buffer or fonnat data. Declarations
for the low-level functions are given in the include files 10.H, FCNTL.H,
SYs\TYPES.H, and SYs\sTAT.H. Unlike the stream,functions, low-level func­
tions do not require the include file STDIO.H. However, some common con­
stants are defined in STDIO.H; for example, the end-of-file indicator (EOF) may
be useful. If your program requires these constants, you must include STDIO.H.

Routine

close

creat

dup

dup2

eof

Iseek

open

read

sopen

tell

umask

write

Use

Closes a file

Creates a file

Creates a second handle for a file

Reassigns a handle to a file

Tests for end-of-file

Repositions file pointer to a given location

Opens a file

Reads data from a file

Opens a file for file sharing

Gets current file-pointer position

Sets default file-pennission mask

Writes data to a file

2.7.3. 1 Opening a File
You must open a file before perfonning I/O functions on it. The open function
opens a file; it can also c'reate the file when opening it. In OS/2 and DOS ver­
sions 3.0 and later, you can use sopen to open a file with file-sharing attributes.
The creat function can create and open a file.

The file can be opened for reading, writing, or both, and opened in either text or
binary mode (see Section 2.7.1, "Text and Binary Modes"). The include file
FCNTL.H must be included when opening a file, as it contains definitions for
flags used in open. In some cases, the files SYS\TYPES.H and SYs\sT A T.H
must also be included; for more infonnation, see the reference description for the
open function.

These functions return a file handle, which is nonnally assigned to an integer
variable. You use the variable to refer to the opened file.

Run-Time Routines by Category 43

2.7.3.2 Reading and Writing Data
Use the read and write routines to read and write to files. These operations begin
at the current position in the file. The current position is updated each time a read
or write operation occurs.

The lseek function allows you to place the file pointer anywhere in the file. The
next operation occurs at the position you specified. The tell function indicates the
current position of the file pointer. The eof routine tests for the end of the file.

Low-level 110 routines set the errno variable when an error occurs. Chapter 3,
"Global ;Variables and Standard Types," describes errno.

Character-oriented devices, such as the console, do not have file pointers. The
lseek and tell routines have undefined results if used on a handle associated with
a device.

2.7.3.3 Closing Files
The close function closes an open file. Open files are automatically closed when
a program terminates. However, it is a good practice to close a file when your
program is finished with it, as there is a limit to the number of files that can be
open at one time.

2.7.3.4 Using Predefined Handles
When a program begins execution, three files are automatically opened: standard
input, standard output, and standard error. In DOS, two additional files are
opened: standard auxiliary and standard print. (These files are not available in
OS/2.)

Low-level routines can access these files using the following predefined handles:

Stream Handle

stdin 0

stdout

stderr 2

stdaux (DOS only) 3

stdprn (DOS only) 4

You can use these file hancHes without previously opening the files. The files are
opened and the handles are assigned when the program starts.

The dup and dup2 functions allow you to assign multiple handles for the same
file. These functions are typically used to associate the predefined file handles
with different files.

44 Microsoft C Run-Time Library Reference

In DOS and OS/2, you can redirect the standard input and standard output at the
operating-system command level. OS/2 also allows you to redirect the standard
error. See your operating system user's manual for a complete discussion of
redirection.

2.7.4 Console and Port I/O
The console and port I/O routines are implemented as functions and are declared
in the include file CONIO.H. These functions perform reading and writing opera­
tions on your console or on the specified port. The cgets, cscanf, getch, getche,
and kbhit routines take input from the console, while cprintf, cputs, putch, and
ungetch write to the console. The input or output of these functions can be
redirected.

Routine

cgets

cprintf

cputs

cscanf

getch

getche

iitp

inpw

kbhit

outp

outpw

putch

ungetch

Use

Reads a string from the console

Writes formatted data to the console

Writes a string to the console

Reads formatted data from the console

Reads a character from the console

Reads a character from the console and echoes it

Reads one byte from the specified I/O port

Reads a two-byte word from the specified I/O port

Checks for a keystroke at the console

Writes one byte to the specified I/O port

Writes a two-byte word to the specified I/O port

Writes a character to the console

"Ungets" the last character read from the console so
that it becomes the next character read

NOTE Programs that need only run under DOS can also use a number of direct DOS liD
system calls (_dos_open, _dos_read, _dos_close, etc.) These are described in detail in
Section 2. 14, "System Calls. II

The console or port does not have to be opened or closed before I/O is per­
formed, so there are no open or close routines in this category. The port I/O

Run-Time Routines by Category 45

routines inp and outp read or write one byte at a time from the specified port.
The inpw and outpw routines read and write two-byte words, respectively.

The console I/O routines allow reading and writing of strings (cgets and cputs),
formatted data (cscanf and cprintf), and characters. Several options are available
when reading and writing characters.

The putch routine writes a single character to the console. The getch and getche
routines read a single character from the console; getche echoes the character
back to the console, while getch does not. The ungetch routine "ungets" the last
character read; the next read operation on the console begins with the "ungotten"
character.

The kbhit routine determines whether a key has been struck at the console. This
routine allows you to test for keyboard input before you attempt to read from the
console.

NOTE The console liD routines are not compatible with stream or low-level library
routines and should not be used with them.

2.8 Internationalization

2.9 Math

Internationalization routines are useful for creating different versions of a pro­
gram for international markets. These routines are declared in the header file
LOCALE.H, except for strftime, which is declared in TIME.H.

Routine

localeconv

setlocale

strcoll

strftime

strxfrm

Use

Sets a structure with appropriate values for format­
ting numeric quantities

Selects the appropriate locale for the program

Compares strings using locale-specific information

Formats a date and time string

Transforms a string based on locale-specific
information

The math routines allow you to perform common mathematical calculations. All
math routines work with floating-point values and therefore require floating­
point support (see Section 1.8, "Floating-Point Support").

46 Microsoft C Run-Time Library Reference

The math library provides two versions of some routines. The first version of the
routine supports double arguments and return values. The second version sup­
ports an 80-bit data type, allowing the routine to take long double arguments and
return a long double value. The second version usually has the same name with
the suffix I. For instance, the acos routine supports double arguments and return
values, while acosl supports long double arguments and return values.

Routines which support long double values are not available when you compile
with the /Fpa (alternate math) compiler option. The same is true of the _clear 87,
_controI87, and _status87 routines.

Most math declarations are in the include file MATH.H. However, the clear87,
_controI87, _fpreset, and_status87 routines are defined in FLOAT.H;-the abs
and labs functions are defined in MATH.H and STDLIB.H, and the div and Idiv
routines are declared in STDLIB.H.

Routine

acos, acosl

asin, asinl

atan, atanl

atan2, atan21

bessel

cabs, cabsl

ceil, ceill

clear87

control87

cos, cosl

cosh,coshl

dieeetomsbin

div

dmsbintoieee

exp, expl

fabs, fabsl

Use

Calculate the arccosine

Calculate the arcsine

Calculate the arctangent

Calculate the arctangent

Calculates Bessel functions

Find the absolute value of a complex number

Find the integer ceiling

Gets and clears the floating-point status word

Gets the old floating-point control word and sets a
new control-word value

Calculate the cosine

Calculate the hyperbolic cosine

Converts IEEE double-precision number to Micro­
soft (MS) binary format

Divides one integer by another, returning the
quotient and remainder

Converts Microsoft binary double-precision number
to IEEE format

Calculate the exponential function

Find the absolute value

fieeetomsbin

floor, floorl

fmod, fmodl

fmsbintoieee

_fpreset

frexp, frexpl

hypot, hypotl

Idexp, Idexpl

Idiv

log, log I

loglO, loglOi

Jrotl, Jrotr

matherr, _ matherrl

max, min

modf, modfl

pow, powl

rand

_rotl, rotr

sin, sinl

sinh, sinhl

sqrt, sqrtl

srand

status87

tan, tanl

tanh, tanhl

Run-Time Routines by Category 47

Converts IEEE single-precision number to Microsoft
binary format

Find the largest integer less than or equal to the
argument

Find the floating-point remainder

Converts Microsoft binary single-precision number
to IEEE format

Reinitializes the floating-poi nt-math package

Calculate an exponential value

Calculate the hypotenuse of right triangle

Calculate the product of the argument and 2exp

Divides one long integer by another, returning the
quotient and remainder

Calculate the natural logarithm

Calculate the base-lO logarithm

Shift an unsigned long int item left (Jrotl) or right
(_Irotr)

Handle math errors

Return the larger or smaller of two values

Break down the argument into integer and fractional
parts

Calculate a value raised to a power

Gets a pseudorandom number

Shift an unsigned int item left (_rotl) or right
(_rotr)

Calculate the sine

Calculate the hyperbolic sine

Find the square root

Initializes a pseudorandom series

Gets the floating-point status word

Calculate the tangent

Calculate the hyperbolic tangent

48 Microsoft C Run-Time Library Reference

The bessel routine does not correspond to a single function, but to twelve func­
tions namedjO,jl,jn, yO, yl, yn, jOl, jll, jnl, JOl, JlI, and _ynl.

The math err and matherrl routines are invoked by the math functions when er­
rors occur. The math err routine handles functions that return a double value and
_ matherrl handles routines that return a long double.

These routines are defined in the library, but you can redefine them for different
error-handling. The user-defined function, if given, must follow the rules given
in the reference description of matherr and _ matherrl.

You are not required to supply a definition for the matherr routines. If no defini­
tion is present, the default error returns for each routine are used. The reference
description of each routine describes that routine's error returns.

2.10 Memory Allocation
The memory-allocation routines allow you to allocate, free, and reallocate blocks
of memory. Memory-allocation routines are declared in the include file
MALLOC.H.

Routine

alloca

_bfreeseg

_bheapseg

calloc, _ bcalloc, _fcalloc, _ ncalloc

_expand, _ bexpand, _fexpand,
_nexpand

free, _ bfree, _ffree, _ nfree

freect

halloc

_ heapadd, _ bheapadd

_ heapchk, _ bheapchk, _ tbeapchk,
_nheapchk

_ heap min, _ bheapmin,
_ tbeapmin, _ nheapmin

Use

Allocates a block of memory from
the program's stack

Frees a based heap

Allocates a based heap

Allocate storage for an array

Expand or shrink a block of memory
without moving its location

Free an allocated block

Returns approximate number of items
of given size that could be allocated
in the near heap

Allocates storage for huge array

Add memory to a heap

Check a heap for consistency

Release unused memory in a heap

_heapset, _bheapset, _flteapset,
_nheapset

_ heapwalk, _ bheapwalk,
_flteapwalk, _nheapwalk

hfree

malloc, bmalloc, fmalloc,
_nmalloc -

_memavl

memmax

_msize, _bmsize, _fmsize,
nmsize

realloc, brealloc, frealloc,
_nrealloc -

stackavail

Run-Time Routines by Category 49

Fill free heap entries with a specified
value

Return infonnation about each entry
,in a heap

Frees a block allocated by halloc

Allocate a block of memory

Returns approximate number of bytes
available for allocation in the near
heap

Returns size of largest contiguous
free block in the near heap

Return size of an allocated block

Reallocate a block to a new size

Returns size of stack space available
for allocation with alloca

Some memory-management routines, such as malloc, are" available in different
versions that begin with _ b, _f, or _ n. These variations are described in the fol­
lowing section.

The malloc and free routines allocate and free memory space, respectively,
while a program runs. The malloc routine allocates memory from the "heap,"
which is a pool of memory not otherwise used by your program. In tiny-, small-,
and medium-model programs, the heap consists of unused memory in your pro­
gram's default data segment. In compact-, large-, and huge-model programs, it is
unused memory outside the default data segment.

The malloc and free routines satisfy the memory-allocation requirements of most
programs. More specialized memory-management routines are discussed below.

The realloc and _expand routines can expand or shrink an allocated memory
block. They behave differently in cases in which there is not enough room to ex­
pand the block in its current location. In this case, realloc moves the block as
needed, but _expand does not.

The calloc routine allocates memory for an array and initializes every byte in the
allocated block to o.
The halloc routine is similar to calloc, except that it can allocate memory for a
huge array (one that exceeds 64K in size). This routine is useful when you need a

50 Microsoft C Run-Time Library Reference

very large data object, or if you need to return allocated memory to the operating
system for subsequent calls to the spawn family of functions.

2.10.1 Near and Far Heaps
As mentioned in the previous section, heap memory can reside inside or outside
your program's default data segment, depending on what memory model your
program uses. When it lies inside the default data segment, the heap is called the
"near heap," since it can be accessed with near pointers. The "far heap" is
memory that spans one or more segments outside the default data segment. The
far heap can be accessed only with far pointers.

In various memory models, malloc automatically allocates memory from the
near heap or far heap, as appropriate. The C library also includes ne':lr and far ver­
sions of malloc, free, and other memory-management routines, which allow you
to specify the near and far heaps explicitly. These have the same names as stand­
ard memory routines, but are preceded by _n (for near) or _f (for far).

For instance, the _ nmalloc routine always allocates memory from the near heap
and returns a near pointer, no matter which memory model your program uses.
Use _nfree to release memory allocated with _nmalloc.

Similarly, _fmalloc always allocates memory from the far heap and returns a far
pointer, regardless of memory model. Use the _ffree routine to release memory
allocated with fmalloc.

2.10.2 Based Heaps
You can also allocate memory from a "based heap," which is a single segment
that lies outside the default data segment. Based-heap routines generally use the
same names as standard memory routines, but begin with _b. For instance,
_ bmalloc allocates a memory block from the based heap and _ bfree frees the
block.

Based heaps offer the following advantages:

• Localized data. Based heaps allow you to group related data in a single seg­
ment. This can simplify the management of related data. In OS/2, based heaps
can also minimize the risk of general protection faults and improve
performance.

• Faster pointer arithmetic. Although the based heap lies in the far data seg­
ment, pointers to its data items are the same size as near pointers. Thus,
pointer arithmetic on items in a based heap is faster than pointer arithmetic on
items in the far heap.

The _ bheapseg routine allocates a based heap segment, from which you can then
allocate blocks of memory. You can call_ bheapseg more than once to allocate

Run-Time Routines by Category 51

as many based-heap segments as needed (within the confines of available
memory).

The _ bfreeseg routine frees a based-heap segment. This routine frees every block
in the based-heap segment, whether or not you previously freed the blocks
individually.

NOTE Near-, far- , and based-heap calls are not ANSI compatible and will make your pro­
gram less portable.

2.11 Process and Environment Control
The process-control routines allow you to start, stop, and manage processes from
within a program. Environment-control routines allow you to get and change in­
formation about the operating-system environment.

A "process" is a program being executed by the operating system. It consists of
the program's code and data, plus information about the process, such as the num­
ber of open files. Whenever you execute a program at the operating-system level,
you start a process.

All process-control functions except signal are declared in the include file
PROCESS.H. The signal function is declared in SIGNAL.H. The abort, exit,
and system functions are also declared in the STDLIB.H include file. The
environment-control routines (getenv and putenv) are declared in STDLIB.H.

Routine

abort

assert

atexit

_ beginthread

cexit

c exit

cwait

_end thread

Use

Aborts a process without flushing buffers or calling
functions registered by atexit and onexit

Tests for logic error

Schedules routines for execution at program
termination

Creates an execution thread (OS/2 orlly)

Performs the exit termination procedures (such as
flushing buffers) and returns control to the calling
program

Performs the _exit termination procedures and re­
turns control to the calling program

Suspends the calling process until a specified child
process terminates (OS/2 only)

Terminates an execution thread (OS/2 only)

52 Microsoft C Run-Time Library Reference

execl

execle

execlp

execlpe

execv

execve

execvp

execvpe

exit

exit

getenv

getpid

longjrnp

onexit

jlclose

perror

jlipe

, jlopen

putenv

raise

setjrnp

Executes child process with argument list

Executes child process with argument list and given
environment

Executes child process using PATH variable and ar­
gument list

Executes child process using PATH variable, given
environment, and argument list

Executes child process with argument array

Executes child process with argument array and
given environment

Executes child process using PATH variable and ar­
gument array

Executes child process using PATH variable, given
environment, and argument array

Calls functions registered by atexit and onexit, then
flushes all buffers and closes all open files before ter­
minating the process

Terminates process without processing atexit or
onexit functions or flushing buffers

Gets the value of an environment variable

Gets process ID number

Restores a saved stack environment

Schedules routines for execution at program
termination

Waits for a child command and closes a pipe on the
associated stream

Prints error message

Creates a pipe

Creates a pipe and asynchronously executes a child
copy of the command processor

Adds or changes the value of an environment
variable

Sends a signal to the calling process

Saves a stack environment

signal

spawnl

spawnle

spawnlp

spawnlpe

spawnv

spawnve

spawnvp

spawnvpe

system

wait

Run-Time Routines by Category 53

Handles an interrupt signal

Executes child process with argument list

Executes child process with argument list and given
environment

Executes child process using PATH variable and ar­
gument list

Executes child process using PATH variable, given
environment, and argument list

Executes child process with argument array

Executes child process with argument array and
given environment

Executes child process using PATH variable and ar­
gument array

Executes child process using PATH variable, given
environment, and argument array

Executes an operating system command

Suspends the calling process until any of the caller's
immediate child processes terminate (OS/2 only)

The atexit and onexit routines create a list of functions to be executed when the
calling program terminates. The only difference between the two is that atexit is
part of the ANSI standard. The onexit function is offered for compatibility with
previous versions of Microsoft C.

The _exit routine terminates a process immediately, whereas exit terminates the
process only after flushing buffers and calling any functions previously regis­
tered by atexit and onexit. The cexit and c exit routines are identical to exit
and _exit, respectively, except that they return control to the calling program
without terminating the process.

The setjmp and longjmp routines save and restore a stack environment. These
allow you to execute a nonlocal goto.

The exec and spawn routines start a new process called the "child" process. The
difference between the exec and spawn routines is that the spawn routines are
capable of returning control from the child process to its caller (the "parent"
process). Both the parent process and the child process are present in memory
(unless P _OVERLAY is specified). In the exec routines, the child process over­
lays the parent process, so returning control to the parent process is impossible
(unless an error occurs when attempting to start execution of the child process).

54 Microsoft C Run-Time Library Reference

Table 2.1

Routines

There are eight fonns each of the spawn and exec routines (see Table 2.1). The
differences among the fonns involve the method of locating the file to be ex­
ecuted as the child process, the method for passing arguments to the child
process, and the method of setting the environment.

Passing an argument list means that the arguments to the child process are listed
separately in the exec or spawn call. Passing an argument array means that the ar­
guments are stored in an array, and a pointer to the array is passed to the child
process. The argument-list method is typically used when the number of argu­
ments is constant or is known at compile time. The argument-array method is use­
ful when the number of arguments must be detennined at run time.

Several process-control routines take advantage of the multitasking capability of
OS/2. The _beginthread and _endthread routines create and tenninate execu­
tion threads. The cwait and wait routines suspend the calling process until one
child process tenninates. The yipe, yopen, and yclose routines create and
manipulate pipes, which link processes for sequential execution.

Forms of the spawn and exec Routines

Locating the File
Argument-Passing
Convention Environment Settings

exeel, spawnl

exeele, spawnle

Do not use PATH

Do not use PATH

Argument list

Argument list

Inherited from parent

Pointer to environ­
ment table for child
process passed as last
argument

exeelp, spawnlp

exeelpe, spawnlpe

execv, spawnv

execve, spawnve

execvp, spawnvp

execvpe, spawnvpe

Use PATH

Use PATH

Do not use PATH

Do not use PATH

Use PATH

Use PATH

Argument list

Argument list

Argument array

Argument array

Argument array

Argument array

Inherited from parent

Pointer to environ­
ment table for child
process passed as last
argument

Inherited from parent

Pointer to environ­
ment table for child
process passed as last
argument

Inherited from parent

Pointer to environ­
ment table for child
process passed as last
argument

Run-Time Routines by Category 55

The assert macro is typically used to test for logic errors. It prints a message
when a given "assertion" fails to hold true. Defining the identifier NDEBUG to
any value causes occurrences of assert to be removed from the source file, thus
allowing you to tum off assertion checking without modifying the source file.

2. 12 Searching and Sorting
Search and sort routines provide binary-search, linear-search, and quick-sort
capabilities. They are all declared in SEARCH.H.

Routine

bseareh

lfind

lseareh

qsort

2.13 String Manipulation

Use

Performs binary search

Performs linear search for given value

Performs linear search for given value, which is
added to array if not found

Performs quick sort

The string functions are declared in the include file STRING.H. They allow you
to compare strings, copy them, search for strings and characters, and perform
various other operations.

Routines beginning with _fare model-independent versions of the corresponding
routines and are useful in mixed-model programs. These routines can be called
from any point in the program, regardless of which model is being used.

Routine

streat, fstreat

strehr, _fstrehr

stremp, _ fstremp

strepy, _fstrepy

strcspn, _fstrespn

strdup, _fstrdup,
_nstrdup

strerror

Use

Append one string to another

Find first occurrence of a gi ven character in a string

Compare two strings

Copy one string to another

Find first occurrence of a character from a given
character set in a string

Duplicate a string

Maps an error number to a message string

56 Microsoft C Run-Time Library Reference

strerror

stricmp, _fstricmp

strlen, _fstrlen

strlwr, _fstrlwr

strncat, _fstrncat

strncmp, _fstrncmp

strncpy, _ fstrncpy

strnicmp, _ fstrnicmp

strnset, _ fstrnset

strpbrk, _fstrpbrk

strrchr, _fstrrchr

strrev, _fstrrev

strset, _fstrset

strspn, _fstrspn

strstr, _fstrstr

strtok, _fstrtok

strupr, _fstrupr

Maps a user-defined error message to a string

Compare two strings without regard to case

Find length of string

Convert string to lowercase

Append characters of a string

Compare characters of two strings

Copy characters of one string to another

Compare characters of two strings without regard
to case

Set characters of a string to a given character

Find first occurrence of a character from one string
in another

Find last occurrence of a given character in string

Reverse string

Set all ~haracters of a string to a given character

Find first· substring from a gi ven character set in a
string

Find first occurrence of a given string in another
string

Find next token in a string

Convert a string to uppercase

All string functions work on null-terminated character strings. When working
with character arrays that do not end with a null character, you can use the buffer­
manipulation routines, described in Section 2.1.

2.14 System Calls
The followirig routines give access to IBM-PC BIOS interrupts and DOS system
calls. Except for the FP _OFF, FP _SEG, and segread routines, these routines are
for DOS application programs only; they do not work under OS/2.

Run-Time Routines by Category 57

2.14.1 BIOS Interface
The functions in this category provide direct access to the BIOS interrupt ser­
vices. They are all declared in BIOS.H.

Routine

_bios _ equip list

_bios _ keybrd

_bios .Jlrinter

_bios_serialcom

Use

Issues service requests for both hard and floppy
disks, using INT Ox 13

Perfonns an equipment check, using INT Ox 11

Provides access to keyboard services, using
INTOx16

Obtains infonnation about available memory, using
INTOx12

Perfonns printer output services, using INT Ox 17

Perfonns serial communications tasks, using
INTOx14

Provides access to system clock, using INT Ox lA

NOTE BIOS routines are hardware dependent. Some of them may not work as expected
on machines whose hardware differs from the IBM PC.

2.14.2 DOS Interface
These routines are implemented as functions and declared in DOS.H.

Routine

bdos

chain intr - -
_disable

_ dos _ allocmem

_dos_close

_dos_creat

Use

Invokes DOS system call; uses only DX and AL
registers

Chains one interrupt handler to another

Disables interrupts

Allocates a block of memory, using DOS system
call Ox48

Closes a file, using DOS system call Ox3E

Creates a new file and erases any existing file
having the same name, using DOS system call Ox3C

58 Microsoft C Run-Time Library Reference

dos findfirst

dos freemem

_ dos _getdate

_ dos _getdiskfree

_ dos _getdrive

_ dos ~etfileattr

_dos_open

dos read

Creates a new file and returns an error if a file
having the same name exists, using DOS system
call Ox5B

Finds first occurrence of a given file, using DOS sys­
tem call Ox4E

Finds subsequent occurrences of a given file, using
DOS system call Ox4F

Frees a block of memory, using DOS system
call Ox49

Gets the system date, using DOS system call Ox2A

Gets information on a disk volume, using DOS sys­
tem call Ox36

Gets the current default drive, using DOS system
call Ox!9

Gets current attributes of a file or directory, using
DOS system call Ox43

Gets the date and time a file was last written, using
DOS system call Ox57

Gets the current system time, using DOS system
call Ox2C

Gets the current value of a specified interrupt vector,
using DOS system call Ox35

Installs terminate-and-stay-resident (TSR) programs
using DOS system call Ox3!

Opens an existing file, using DOS system call Ox3D

Reads a file, using DOS system call Ox3F

Changes the size of a previously allocated block,
using DOS system call Ox4A

Sets the current system date, using DOS system
call Ox2B

Sets the default disk drive, using DOS system
call OxOE

Sets the current attributes of a file, using DOS sys­
tem call Ox43

Sets the date and time that the specified file was last
written, using DOS system call Ox57

_ dos _ settime

dos setvect

_dos_write

dosexterr

enable

harderr

hardresume

hardretn

int86

int86x

intdos

intdosx

segread

Run-Time Routines by Category 59

Sets the system time, using DOS system call Ox2D

Sets a new value for the specified interrupt vector,
using DOS system call Ox25

Sends output to a file, using DOS system call Ox40

Obtains in-depth error information from DOS sys­
tem call Ox59

Enables interrupts

Returns offset portion of a far pointer (OS/2
and DOS)

Returns segment portion of a far pointer (OS/2
and DOS)

Establishes a hardware error handler

Returns to DOS after a hardware error

Returns to the application after a hardware error

Invokes DOS interrupts

Invokes DOS interrupts with segment register values

Invokes DOS system call using registers other than
DXandAL

Invokes DOS system call using registers other than
DX and AL with segment register values

Returns current values of segment registers (OS/2
and DOS)

The _harderr routine is used to define a hardware-error interrupt handler. The
hardresume and hardretn routines are used within a hardware error handler

to define the return from the error.

The dosexterr function obtains and stores the error information returned by DOS
system call Ox 59 (extended error handling). This function is provided for use
with DOS versions 3.0 and later.

The bdos routine is useful for invoking DOS calls that use either or both of the
DX (DH/DL) and AL registers for arguments. However, bdos should not be used
to invoke system calls that return an error code in AX if the carry flag is set; .
since your program cannot detect whether the carry flag is set, it cannot deter­
mine whether the value in AX is a legitimate value or an error value. In this case,
the intdos routine should be used instead, since it allows the program to detect
whether the carry flag is set. The intdos routine can also be used to invoke DOS
calls that use registers other than DX and AL.

60 Microsoft C Run-Time Library Reference

2.15 Time

The intdosx routine is similar to the intdos routine, but is used when ES is re­
quired by the system call, when DS must contain a value other than the default
data segment (for instance, when a far pointer is used), or when making the sys­
tem call in a large-model program. When calling intdosx, give an argument that
specifies the segment values to be used in the call.

The int86 routine can be used to invoke any interrupt. The int86x routine is simi­
lar; however, like the intdosx routine, it is designed to work with large-model
programs and far items, as described in the preceding paragraph.

The FP _OFF and FP _ SEG routines allow easy access to the segment and offset
portions of a far pointer value. FP _OFF and FP _SEG are implemented as macros
and defined in DOS.H. You can use these macros in OS/2 as well as DOS.

The segread routine returns the current values of the segment registers. This
routine is typically used with the intdosx and int86x routines to obtain the cor­
rect segment values.

The _chainJntr routine is useful for chaining interrupt handlers together. The
_enable routine enables interrupts, while the _disable routine disables interrupts.

The routines prefixed with _ dos_are all direct system interfaces that use the sys­
tem calls noted above. More detailed information on these system calls can be
found in the MS-DOS Encyclopedia (Duncan, ed.; Redmond, WA: Microsoft
Press, 1988)or the Programmer's PC Sourcebook (Hogan; Redmond, W A:
Microsoft Press, 1988).

NOTE The DOS interface liD routines are generally incompatible with console, low-level,
and stream liD routines. Do not mix different types of liD routines in the same source file.

The time functions allow you to obtain the current time, then convert and store it
according to your particular needs. The current time is always taken from the sys­
tem time.

Routine

asctime

clock

ctime

Use

Converts time from type struct tm to a character
string

Returns the elapsed CPU time for a process

Converts time from a long integer to a character
string

difftime

ftime

gmtime

localtime

mktime

_strdate

strftime

_strtime

time

tzset

utime

Run-Time Routines by Category 61

Computes the difference between two times

Puts current system time in variable of type
struct tm

Converts time from integer to struct tm

Converts time from integer to struct tm with local
correction

Converts time to a calendar value

Returns the current system date as a ,string

Formats a date and time string

Returns the current system time as a string

Gets current system time as a long integer

Sets external time variables from the environment
time variable

Sets file-modification time

The time and ftime functions return the current time as the number of seconds
elapsed since midnight Universal Coordinated Time (UTC) on January 1, 1970.
This value can be converted, adjusted, and stored in a variety of ways by using
the asctime, ctime, gmtime, localtime, and mktime functions. The utime func-

. tion sets the modification time for a specified file, using either the current time or
a time value stored in a structure.

The clock function returns the elapsed CPU time for the calling process.

The ftime function requires two files: SYs\TYPES.H and SYs\TIMEB.H. It is
declared in SYs\TIMEB.H. The utime function also requires two include files:
SYs\TYPES.H and SYS\UTIME.H. It is declared in SYs\UTIME.H. The re­
mainder of the time functions are declared in the include file TIME.H.

Whe,n you want to use ftime or localtime to make adjustments for local time,
you must define an environment ,variable named TZ. Section 3.2, which de­
scribes the global variables daylight, timezone, and tzname, includes a discus­
sion of the TZ variable. TZ is also described on the tzset reference page in Part 2
of this book.

The _ strdate and _ strtime routines return strings containing the current date and
time, respectively, in the DOS and OS/2 date and time format rather than in the
XENIX-style formats.

The stfrtime function is useful for creating international versions of a program.
See Section 2.8, "Internationalization."

62 Microsoft C Run-Time Library Reference

2.16 Variable-Length Argument Lists
The va_arg, va_end, and va_start routines are macros that provide a portable
way to access the arguments to a function when the function takes a variable
number of arguments. Two versions of the macros are available: the macros de­
fined in the VARARG.H include file, which are compatible with the UNIX Sys­
tem V definition, and the macros defined in STDARG.H, which conform to the
ANSI C standard.

Routine

va_arg

va_end

va start

Use

Retrieves argument from list

Resets pointer

Sets pointer to beginning of argument list

For more information on the differences between the two versions and for an ex­
planation of how to use the macros, see their descriptions in Part 2 of this book.

Global Variables
and Standard Types

CHAPTER

The Microsoft C Run-Time Library contains definitions for a number of varia­
bles and standard types used by library routines. You can access these variables
and types by including in your program the files in which they are declared, or by
giving appropriate declarations in your program, as shown in the following
sections.

3. 1 _amblksiz
The _ amblksiz variable controls memory heap granularity.

It is declared in the MALLOC.H include file as follows:

extern unsigned iot _amblksiz;

The _ amblksiz variable controls the amount of memory used in the heap for dy­
namic memory allocation.

Memory space is always requested from the operating system in blocks contain­
ing _ amblksiz bytes. The first time a program calls a memory-allocation func­
tion such as malIoc, the operating system allocates a block of heap memory. The
size of this block is defined by_amblksiz, which has a default value of 8K
(8,192 bytes).

Later memory requests are satisfied from the original block. When that block is
exhausted, another block of _amblksiz bytes is allocated. If your C program
allocates a block larger than _amblksiz, multiple blocks that are each of size
_amblksiz are allocated until the request is satisfied.

To change the size of the default memory block, assign the desired size to the
_ amblksiz variable, as in the following example:

_amblks;z = 2048;

63

64 Microson C Run-Tims Library Reference

The heap allocator always rounds the operating-system request to the nearest
power of 2 greater than or equal to _amblksiz. The above statement allocates
memory in multiples of2K (2,048 bytes).

Fewer system calIs are required if you set _amblksiz to a large value, but your
program may use more memory than needed. If program speed is important, set
_amblksiz to a large value. If size is important, set _amblksiz to a smalIer value.

Note that adjusting the value of _amblksiz affects allocation in the near, far, and
based heaps. The value of _amblksiz has no effect on huge memory blocks
(those alIocated with halloc and similar functions).

3.2 daylight, timezone, tzname
The daylight, timezone, and tzname variables are global timezone variables
used in time functions.

They are declared in the TIME.H include files as follows:

extern int daylight;

extern long timezone;

extern char *tzname [2];

Some time and date routines use the daylight, timezone, and tzname variables
to make local-time adjustments. Whenever a program calls the ftime, localtime,
or tzset function, the value of daylight, timezone, and tzname is determined
from the value of the TZ environment variable. If you do not explicitly set the
value of TZ, the default value of PST8PDT is used. The following list shows
each variable and its value:

Variable

daylight

timezone

tzname[O]

tzname[1]

Value

Nonzero if a daylight-saving-time zone (DST) is
specified in TZ; otherwise zero. Default value is one.

Difference in seconds between Greenwich mean
time and the local time. Default value is 28,800.

Three-letter time zone name derived from the TZ en­
vironment variable. Default value is "PST" (Pacific
standard time).

Three-letter daylight-saving-time zone name derived
from the TZ environment variable. Default value is
PDT. If the DST zone is omitted from TZ,
tzname[l] is an empty string.

Global Variables and Standard Types 65

3.3 _doserrno, errno, sys_errlist, sys_nerr
The _ doserrno, errno, sys _ errlist, and sys _ nerr variables contain error codes,
and are used by the perror and _ strerror routines to print error infonnation.

These variables are declared in the STDLIB.H include file. Manifest constants
for the errno variables are declared in the ERRNO.H include file. The declara­
tions are as follows:

extern int _ doserrno;

extern int errno;

extern char *sys_errlist[];

extern int sys _ nerr;

The errno variable is set to an integer value to reflect the type of error that has
occurred in a system-level call. Each errno value is associated with an error mes­
sage, which can be printed with the perror routine or stored in a string with the
strerror routine.

Note that only some routines set the errno variable. If a routine sets errno, the
description of the routine in the reference section says so explicitly.

The value of errno reflects the error value for the last call that set errno. How­
ever, this value is not necessarily reset by later successful calls. To avoid confu­
sion, test for errors immediately after a call.

The include file ERRNO.H contains the definitions of the errno values. How­
ever, not all of the definitions given in ERRNO.H are used in DOS and OS/2.
Some of the values in ERRNO.H are present to maintain compatibility with
XENIX and UNIX operating systems.

The errno values in DOS and OS/2 are a subset of the values for errno in
XENIX systems. Thus, the errno value is not necessarily the same as the actual
error code returned by a DOS or OS/2 system call. To access the actual DOS and
OS/2 error code, use the _ doserrno variable, which contains this value.

In general, you should use _ doserrno only for error detection in operations in­
volving input and output, since the errno values for input and output errors have
DOS and OS/2 error-code equivalents. In other cases, the value of _ doserrno is
undefined.

The syserrlist variable is an array; the perror and strerror routines use it to
process error infonnation. The sys_nerr variable tells how many elements the
sys _ errlist array contains.

66 Microsoft C Run-Time Library Reference

3.4 _fmode

Table 3.1 gives the errno values for DOS and OS/2, the system error message
for each value, and the value of each constant. Note that only the ERANGE and
EDOM constants are specified in the ANSI standard.

Table 3.1 errno Values and Their Meanings

Constant Meaning Value

E2BIG Argument list too long 7

EACCES Permission denied 13

EBADF Bad file number 9

EDEADLOCK Resource deadlock would occur 36
EDOM Math argument 33
EEXIST File exists 17

EINVAL Invalid argument 22

EMFILE Too many open files 24
ENOENT No such file or directory 2

ENOEXEC Exec format error 8

ENOMEM Not enough memory 12
ENOSPC No space left on device 28
ERANGE Result too large 34

EXDEV Cross-device link 18

The fmode variable controls the default file-translation mode.

It is declared in the STDLm.H include file as follows:

extern int _ fmode;

By default, the value of _fmode is 0 _TEXT, causing files to be translated in
text mode (unless specifically opened or set to binary mode). When _fmode is
set to O_BINARY, the default mode is binary. You can set _fmode to the flag
O_BINARY by linking with BINMODE.OBJ or by assigning it the O_BINARY
value.

Global Variables and Standard Types 67

3.5 _osmajor, _osminor, _osmode, _osversion

3.6 environ

The _ osmajor, _ osminor, _ osmode, and _ osversion variables specify the ver­
sion number of the operating system or the current mode of operation.

They are declared in the STDLIB.H include file as follows:

extern unsigned char _ osmajor;

extern unsigned char _ osminor;

extern unsigned char _ osmode;

extern unsigned char _ osversion;

The _osmajor, _osminor, and _osversion variables specify the version number
of DOS or OS/2 currently in use. The _ osmajor variable holds the "major" ver­
sion number and the osminor variable stores the "minor" version number.
Thus, under DOS version 3.20, _osmajor is 3 and _osminor is 20. The
_ osversion variable holds both values; its low byte contains the major version
number and its high byte the minor version number.

These variables are useful for creating programs that run in different versions of
DOS and OS/2. For example, you can test the _osmajor variable before making
a call to sopen; if the major version number is earlier (less) than 3, open should
be used instead of sopen.

The _ osmode variable indicates whether the program is in OS/2 protected mode
or in real mode (DOS or OS/2 real mode). An osmode value of DOS MODE in­
dicates real mode operation and a value of OS~MODE indicates protected
operation.

The environ variable is a pointer to the strings in the process environment. .

It is declared in the STDLIB.H include file as follows:

extern char *environ [];

The environ variable provides access to memory areas containing process­
specific infonnation.

68 Microsoft C Run-Time Library Reference

3.7 _psp

The environ variable is an array of pointers to the strings that constitute the
process environment. The environment consists of one or more entries of
the form

N AME=stl'ing

where NAME is the name of an environment variable and string is the value of
that variable. The string may be empty. The initial environment settings are taken
from the operating-system environment at the time of program execution.

The getenv and putenv routines use the environ variable to access and modify
the environment table. When putenv is called to add or delete environment set­
tings, the environment table changes size; its location in memory may also
change, depending on the program's memory requirements. The environ varia­
ble is adjusted in these cases and always points to the correct table location.

The -psp variable contains the segment address of the program segment prefix
(PSP) for the process.

It is declared in the STDLIB.H include file as follows:

extern unsigned int -psp;

The PSP contains execution information about the process, such as a copy of the
command line that invoked the process and the return address on process termina­
tion or interrupt. The -psp variable can be used to form a long pointer to the
PSP, where -psp is the segment value and 0 is the offset value.

Note that the -psp variable is supported only in DOS.

3.8 Standard Types
A number of library routines use values whose types are defined in include files.
In the following list, these types are described, and the include file defining each
type is given.

Standard Type

clock t

complex

Description

The clock _ t type, defined in TIME.H, stores time
values. It is used by the clock function.

The complex structure, defined in MA TH.H, stores
the real and imaginary parts of complex numbers. It
is used by the cabs function.

diskfree t

diskinfo t

dostime t

DOS ERROR

exception

FILE

lconv

Global Variables and Standard Types 69

The diskfree t structure, defined in DOS.H, stores
disk information used by the _ dos ~etdiskfree
routine.

The diskinfo t structure, defined in BIOS.H, re­
cords information about disk dri ves returned by the

bios disk routine.

The div t and ldiv t structures, defined in
STDLIRH, store the values returned by the div and
ldiv functions, respectively.

The dosdate_t structure, defined in DOS.H, records
the current system date used in the _ dos ~etdate
and dos setdate routines.

The dostime_t structure, defined in DOS.H, records
the current system time used in the _ dos ~ettime
and dos settime routines.

The DOS ERROR structure, defined in DOS.H,
stores values returned by DOS system call 59H
(available under DOS versions 3.0 and later).

The exception structure, defined in MA TH.H, stores
error information for math routines. It is used by the
matherr routine.

The FILE structure, defined in STDIO.H, is the
structure used in all stream input and output opera­
tions. The fields of the FILE structure store informa­
tion about the current state of the stream.

The find t structure, defined in DOS.H, stores file­
attribute information returned by the _ dos _findfirst
and dos find next routines.

The fgetpos and fsetpos functions use the fpos_t ob­
ject type, defined in STDIO.H, to record all the infor­
mation necessary to uniquely specify every position
within the file.

Thejmp_buftype, defined in SETJMP.H, is an
array type rather than a structure type. A buffer of
this type is used by the setjrnp and longjrnp
routines to save and restore the program
environment.

The lconv type is a structure containing formatting
rules for numeric values in different countries. It is
defined in LOCALE.H.

70 Microsoft C Run-Time Library Reference

REGS

size t

SREGS

stat

time t

timeb

tm

utimbuf

va list

The onexit routine is declared as an onexit_t pointer
type, which is defined in STDLIB.H. .

The ptrdiff_t type is used for the signed integral re­
sult of the subtraction of two pointers.

The REGS union, defined in DOS.H, stores byte and
word register values to be passed to and returned
from calls to the DOS interface functions.

The sig_atomic_t type, defined in SIGNAL.H, is the
integral type of an object that can be modified as an
atomic entity, even in the presence of asynchronous
interrupts. It is used in conjunction with the signal
routine.

The size_t type, defined in STDDEF.H and several
other include files, is the unsigned integral result of
the sizeof operator.

The SREGS structure, defined in DOS.H, stores the
values of the ES, CS, SS, and DS registers. This
structure is used by the DOS interface functions that
require segment register values (int86x, intdosx,
and segread).

The stat structure, defined in SYS\sTAT.H, con­
tains file-status information returned by the stat and
fstat routines.

The time _ t type, defined in TIME.H, represents
time values in the mktime and time routines.

The timeb structure, defined in SYs\TIMEB.H, is
used by the ftime routine to store the current system
time.

The tm structure, defined in TIME.H, is used by the
asctime, gmtime, and localtime functions to store
and retrieve time information.

The utimbuf structure, defined in SYS\UTIME.H,
stores file access and modification times used by the
utime function to change file-modification dates.

The vaJist array type, defined in STDARG.H, is
used to hold information needed by the va _ arg
macro and the va end routine. The called function
declares a variable of type va_list, which may be
passed as an argument to another function.

iiiiiiiiiiiiiiiiiiiiiiil

PART 2

. Run-Time
Functions

Run-Time Functions
The second part of this book is the reference section. It describes,
in alphabetical order, each function of the run-time library pro­
vided with the Microsoft C Professional Development System.

Each reference entry gives syntax, return values, and other useful
information about the library functions. Information on compati­
bility is supplied to assist you in writing portable programs.

About the Run-Time Reference
The following pages describe, in alphabetical order, the more than 400 func­
tions in the Microsoft run-time library. In some cases, related routines are
clustered in the same description. For example, the based, near, and far versions
of _ heapwalk are in the same discussion, as are the regular and long double
versions of the math functions, such as acos and atan. Differences are noted
where appropriate. Refer to Chapter 2, "Run-Time Routines by Category," or
to the index to locate any function that does not appear in the expected position
within the alphabetical reference.

75

The discussion of each function (or group of functions) is divided into the follow­
ing sections:

• Description. Summarizes the routine's effect, names the include file(s) contain­
ing its declaration, illustrates the syntax, and briefly describes the arguments.

1

• Remarks. Gives a more detailed description of the routine and how it is used.

• Return Value. Describes the value returned by the routine.

• Compatibility. Tells whether the routine is compatible with ANSI C, MS-DOS,
OS/2, UNIX, and XENIX.

• See Also. Names related routines.

• Example. Gives a complete program showing the use of the routine.

abort

Description

Remarks

Return Value

Compatibility

See Also

Aborts the current process and returns an error code.

#include <process.h>
#include <stdlib.h>

void abort(void);

Required only for function declarations; use either
PROCESS.H or STDLIB.H

The abort function prints the message

abnormal program termination

76

to stderr, then calls raise(SIGABRT). The action taken in response to the SIGABRT signal
depends on what action has been defined for that signal in a prior call to the signal func­
tion. The default SIGABRT action is for the calling process to terminate with exit code 3,
returning control to the parent process or operating system.

The abort function do'es not flush stream buffers or do atexit/onexit processing.

The abort function does not return control to the caller. Rather, it terminates the process
and, by default, returns an exit code of 3 to the parent process.

• ANSI • DOS • OS/2 • UNIX • XENIX

In multithread libraries, the abort function does not call raise(SIGABRT). Instead, it
simply terminates the process with exit code 3.

exec functions, exit, _exit, raise, signal, spawn functions

Exampre __ __

1* ABORT.C: This tries to open a file and aborts if the attempt fails. *1

#include <stdio.h>
#include <stdlib.h>

77

void main()
{

FILE *stream;

if((stream - fopen("NOSUCHF.ILE", "r" » == NULL)
(

perror("Couldn't open file");
abort() ;

else
fclose(stream);

Output

Couldn't open file: No such file or directory

abnormal program termination

abort

abs 78

Description Calculates the absolute value.

#include <stdlib.h>
#include <math.h>

Required only for function declarations; use either STDLIB.H
orMATH.H

int abs(int 11);

11 Integer value

Remarks The abs function returns the absolute value of its integer argument 11.

Return Value The abs function returns the absolute value of its argument. There is no error return.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also cabs, fabs, labs

Exampw __ ___

1* ABS.C: This program computes and displays the absolute values of
* several n~mbers.

*1 \

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void main()
[

i nt i x -4, iy;
long 1 x -41567L, ly;
double dx -3.141593, dy;

iy = abs(ix) ;
printf("The absolute value of %d

ly = labs(lx) ;
printf("The absolute value of %ld

dy = fabs(dx) ;
printf("The absolute value of %f

is %d\n", ix, i y) ;

is %ld\n", 1 x, 1 y) ;

is %f\n" , dx, dy) ;

79 abs

Output

The absolute value of -4 ;s 4
The absolute value of -41567 ;s 41567
The absolute value of -3.141593 ;s 3.141593

access

Description

Remarks

Return Value

Detennines file-access pennission.

#include <io.h>

#include <errno.h>

Required only for function declarations

Required for definition of errno constants

int access(char *pathname, int mode);

pathname

mode

File or directory path name

Pennission setting

With files, the access function detennines whether the specified file exists and can be
accessed in mode. The possible mode values and their meanings in the access call are as
follows:

Value

00

02

04

06

Meaning

Check for existence only

Check for write pennission

Check for read pennission

Check for read and write pennission

With directories, access detennines only whether the specified directory exists; under
DOS and OS/2, all directories have read and write access.

80

The access function returns the value 0 if the file has the given mode. A return value of -1
indicates that the named file does not exist or is not acces.sible in the given mode, and
errno is set to one of the following values:

Value

EACCES

ENOENT

Meaning

Access denied: the file's pennission setting does not allow the
specified access.

File or path name not found.

81 access

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also chmod, fstat, open, stat

Exampre __ __

1* ACCESS.C: This example uses access to check the file named "data"
* to see if it exists and if writing is allowed.
*1

/finclude <io.h)
/finclude <stdio.h)
/finclude <stdlib.h)

void main()
(

1* Check for existence *1
if((access("access.c", " » 1= -1)
(

Output

printf("File exists\n");

1* Check for write permission *1
if((access("access.c", 2 » 1= -1)

printf("File has write permission\n");

File exists
File has write permission

acos Functions

Description Calculate the arccosine.

#include <math.h>

#include <errno.h>

double acos(double x);

Required for definition of errno constant

long double acosl(long double x);

x Value whose arccosine is to be calculated

82

Remarks The acos functions return the arccosine of x in the range 0 to 1t radians. The value of x
must be between -1 and 1. The acosl function is the 80-bit counterpart, which uses an 80-
bit, 10-byte coprocessor fonn of arguments and return values. See the reference page on
the long double functions for more details on this data type.

Return Value

Compatibility

See Also

The acos functions return the arccosine result. If x is less than -lor greater than 1, the
function sets errno to EDOM, prints a DOMAIN error message to stderr, and returns O.
Error handling can be m~dified with the matherr (or _matherrl) routine.

acos

• ANSI • DOS • OS/2 • UNIX • XENIX

acosl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

asin functions, atan functions, cos functions, math err, sin functions, tan functions

Exampre __ __

/* ASINCOS.C: This program prompts for a value in the range -1 to 1.
* Input values outside this range will produce DOMAIN error messages.
* If a valid value is entered, the program prints the arcsine and the
* arccosine of that value.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

83

void main()
[

double x, Y;

printf("Enter a real number between -1 and 1: ");
scanf("%If", &x);
y = asin(x);
printf("Arcsine of %f = %f\n", x, y);
y = acos(x);
printf("Arccosine of %f = %f\n", x, y);

Output

Enter a rea 1 number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

acos Functions

a//oca

Description

Remarks

Return Value

Allocates memory on the stack.

#include <malloc.h> Required only for function declarations

void *alloca(size_t size);

size Bytes to be allocated from stack

The alloca routine allocates size bytes from the program's stack. The allocated space is
automatically freed when the calling function is exited.

84

When you compile with optimization on (either by default or by using one of the /0 op­
tions), the stack pointer may not be restored properly in functions that have no local varia­
bles and that also reference the alloca function. The following program demonstrates the
problem:

1* Compile with CL ILp lAM lOx IFc *1
#include <malloc.h>

void maine void
(

func(10);

void func(register int
(

alloca(i);

To ensure that the stack pointer is properly restored, make sure that any function refer­
encing alloca declares at least one local variable.

The pointer value returned by alloca should never be passed as an argument to free, nor
should alloca be used in an expression that is an argument to a function.

The alloca routine returns a void pointer to the allocated space, which is guaranteed to be
suitably aligned for storage of any type of object. To get a pointer to a type other than
char, use a type cast on the return value. The return value is NULL if the space cannot be
allocated.

85 a//oca

Compatibility o ANSI • DOS • OS/2 • UNIX 0 XENIX

See Also ealloe functions, malloe functions, realloe functions

Exampre __ __

/* ALLOCA.C: This program checks the stack space available before
* and after using the alloca function to allocate space on the stack.
*1

#include <malloc.h>
#include <stdio.h>

void maine)
[

char *buffer;

printf("Bytes available on stack: %u\n", stackavail());

1* Allocate memory for string. */
buffer = alloca(120 * sizeof(char));
printf("Enter a string: ");
gets(buffer);
printf("You entered: %s\n", buffer);

printf("Bytes available on stack: %u\n", stackavail());

Output

Bytes available on stack: 2028
Enter a string: How much stack space will this string take?
You entered: How much stack space will this string take?
Bytes available on stack: 1902

_arc Functions 86

Description

Remarks

Draw elliptical arcs.

#include <graph.h>

short _far _arc(short xl, short yl, short x2, short y2, short x3, short y3,
short x4, short y4);

short _far _arc_w(double xl, double yl, double x2, double y2, double x3, double y3,
double x4, double y4);

short _far _arc_wxy(struct _wxycoord _far *pwxyl, struct _wxycoord _far *pw.\y2,
struct _ wxycoord _far *pwxy3, struct _ wxycoord _far *pwxy4);

xl,yl

x2,y2 .

x3,y3

x4,y4

pwxyl

pwxy2

pwxy3

pwxy4

Upper-left comer of bounding rectangle

Lower-right corner of bounding rectangle

Second point of start vector (center of bounding rectangle is
first point)

Second point of end vector (center of bounding rectangle is
first point)

Upper-left comer of bounding rectangle

Lower-right corner of bounding rectangle

Second point of start vector (center of bounding rectangle is
first point)

Second point of end vector (center of bounding rectangle is
first point)

The _arc functions draw elliptical arcs. The center of the arc is the center of the bounding
rectangle, which is defined by points (xl, yl) and (x2, y2) for _arc and _arc_wand by
pointspw.\yl andpwxy2 for _arc_wxy. The arc starts where it intersects an imaginary line
extending from the center of the arc through (x3, y3) for _arc and _arc _wand through
pwxy3 for _arc_wxy. It is drawn counterclockwise about the center of the arc, ending
where it intersects an imaginary line extending from the center of the arc through (x4, y4)
for _arc and _arc _wand through pw.\y4 for _arc _ wxy.

The _arc routine uses the view coordinate system. The _arc _wand _arc..:.. wxy functions
use the real-valued window coordinate system.

In each case, the arc is drawn using the current color. Since an arc does not define a closed
area, it is not filled.

87 _arc Functions

Return Value These functions return a nonzero value if the arc is successfully drawn; otherwise, they
returnO.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _ellipse functions, Jineto functions, yie functions, _rectangle functions, _setcolor

Exampre __ __

1* ARC.C: This program draws a simple arc. *1

#include <graph.h>
#include <stdlib.h>
#include <conio.h>

void main()
(

short x, y;
struct xycoord xystart, xyend, xyfill;

1* Find a valid graphics mode *1
if(!_setvideomode(_MAXRESMODE))

ex it (1);

1* Draw arcs *1
x = 100; y = 100;
_arc(x - 60, y - 60, x, y, x - 30, y - 60, x - 60, y - 30);
_arc(x + 60, y + 60, x, y, x, y + 30, x + 30, y);

1* Get endpoints of second arc and enclose the figure, then fill it. *1
_getarcinfoC &xystart, &xyend, &xyfill);
_moveto(xystart.xcoord, xystart.ycoord);
_lineto(xyend.xcoord, xyend.ycoord);
_floodfillC xyfill.xcoord, xyfill.ycoord, _getcolorC));

getch();
_setvideomode(_DEFAULTMODE);

asctime

Description

Remarks

Return Value

88

Converts a tm time structure to a character string.

#include <time.h>

char *asctime(const struct tm *timeptr);

timeptr Time/date structure

The asctime function converts a time stored as a structure to a character string. The
timeptr value is usually obtained from a call to gmtime or localtime, both of which return
a pointer to a tm structure, defined in TIME.H. (See gmtime for a complete description of
the tm structure fields.)

The tm structure contains the following elements:

Element Description

int tm_sec Seconds after the minute (0-59)

int tm min Minutes after the hour (0-59)

int tm hour Hours since midnight (0-23)

int tm_mday Day of the month (0-31)

int tm mon Months since January (0-11)

int tmJear Years since 1900

int tm_wday Days since Sunday (0-6)

int tmJday Days since January 1 (0-365)

int tm isdst Daylight-saving-time flag

The string result produced by asctime contains exactly 26 characters and has the form of
the following example:

Wed Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The newline character (\n) and
the null character ('\0') occupy the last two positions of the string. The asctime function
uses a single statically allocated buffer to hold the return string. Each call to this routine de­
stroys the result of the previous call.

The asctime function returns a pointer to the character string result. There is no error
return.

89 asctime

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also ctime, ftime, gmtime, localtime, time, tzset

Exampw __ __

1* ASCTIME.C: This program places the ,system time in the long integer aclock,
* translates it into the structure newtime and then converts it to
* string form for output, using the asctime function.
*1

#include <time.h>
#include <stdio.h>

struct tm *newtime;
time_t aclock;

void main()
(

time(&aclock);

newtime = localtime(&aclock);

/* Print local time as a string */

/* Get time in seconds *1

1* Convert time to struct tm form *1

printf("The current date and time are: %s\n", asctime(newtime));

Output

The current date and time are: Thu Jun 15 06:57:59 1989

asin Functions

Description Calculate the arcsine.

#include <math.h>

#include <errno.h>

double asin(double x);

long double asinl(long double' x);

x Value whose arcsine is to be calculated

90

Remarks The asin functions calculate the arcsine of x in the range -rc/2 to n/2 radians. The value of
x must be between -1 and 1. The asinl function is the 80-bit counterpart; which uses an 80-
bit, 10-byte coprocessor form of arguments and return values. See the reference page on
the long double functions for more details on this data type.

Return Value The asin functions return the arcsine result. If x is less than -lor greater than 1, asin sets
errno to EDOM, prints a DOMAIN error message to stderr, and returns O.

Error handling can be modified by using the matherr (or _ matherrl) routine.

Compatibility asin

• ANSI • , DOS • OS/2 • UNIX • XENIX

asinl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also acos functions, atan functions, cos functions, matherr, sin functions, tan functions

Exampre __ __

/* ASINCOS.C: This program prompts for a value in the range -1 to 1.
* Input values outside this range will produce DOMAIN error messages.
* If a valid value is entered. the program prints the arcsine and the
* arccosine of that value.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

91

void main()
(

double x, Y;

printf("Enter a real number between -1 and 1: ");
scanf("%If", &x);
y = asin(x);
printf("Arcsine of %f = %f\n", x, y);
y = acos(x);
printf("Arccosine of %f = %f\n", x, y);

Output

Enter a rea 1 number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

asin Functions

assert

Description

Remarks

Return Value

Compatibility

See Also

Prints an error message and aborts the program.

#include <assert.h>

#include <stdio.h>

void assert(int expression);

expression C expression specifying assertion being tested

,92

The assert routine prints a diagnostic message and calls the abort routine if expression is
false (0). The diagnostic message has the form

Assert i on fa il ed: expression, fil e filename, 1 i ne linen umber

where filename is the name of the source file and linenumber is the line number of the
assertion that failed in the source file. No action is taken if expression is true (nonzero).

The assert routine is typically-used in program development to identify program logic er­
rors. The given expression should be chosen so that it holds true only if the program is .
operating as intended. After a program has been debugged, the special "no debug" identi­
fier NDEBUG can be used to remove assert calls from the program. If NDEBUG is defined
(by any value) with a /D command-line option or with a #define directive, the C preproces­
sor removes all assert calls from the program source.

The assert routine is implemented as a macro.

None.

• ANSI • DOS • OS/2 • UNIX • XENIX

abort, raise, signal

Exampre __ ____

/* ASSERT.C: In this program, the analyze_string function uses the
* assert function to test several conditions related to string and
* length. If any of the conditions fails, the program prints a
* message indicating what caused the failure.
*/

#include <stdio.h>
#include <assert.h>
#include <string.h>

93 assert

void analyze_string(char *string); 1* Prototype *1

void main()
(

char testl[] = "abc", *test2 = NULL, test3[] "";

printf ("Analyzing string '%s'\n", testl) ;
analyze_string(testl) ;
printf ("Analyzing string '%s'\n", test2) ;
analyze_string(test2) ;
printf ("Analyzing string '%s'\n", test3) ;
analyze_string(test3) ;

1* Tests a string to see if it is NULL, empty, or longer than 0 characters *1
void analyze_string(char * string)
(

assert(string != NULL);
assert(*string != '\0');
assert(strlen(string) > 2);

Output

Analyzing string 'abc'
Analyzing string '(null)'

1* Cannot be NULL *1
1* Cannot be empty *1
1* Length must be greater than 2 *1

Assertion failed: string != NULL, file assert.c, line 28

abnormal program termination

atan Functions 94

Description

Remarks

Return Value

Compatibility .

See Also

Calculate the arctangent of x (atan and at ani) and the arctangent of y/x (atan2 and atan21).

#include <math.h>

double atan(double x);

double atan2(double y, double x);

long double atanl(long double x);

long double atan21(long double y, long double x);

x,y Any number

The atan family of functions calculates the arctangent of x, and the atan2 family of func­
tions calculates the arctangent of y/x. The atan group returns a value in the range -'It/2 to
'It/2 radians, and the atan2 group returns a value in the range -'It to 'It radians. The atan2
functions use the signs of both arguments to determine the quadrant of the return value.

The atan family of functions returns the arctangent result. If both arguments of atan2 or
atan21 are 0, the function sets errno to EDOM, prints a DOMAIN error message to stderr,
and returns O.

Error handling can be modified by using the matherr (or _ matherrl) routine.

atan, atan2

• ANSI • DOS • OS/2 • UNIX • XENIX

atanl, atan2l

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

acos functions, asin functions, cos functions, math err, sin functions, tan functions

Exampre __ __

1* ATAN.C: This program calculates the arctangent of 1 and -1. *1

#include <math.h>
#include <stdio.h>
#include <errno.h>

95

void main()
(

double xl, x2, y;

printf("Enter a real number: ");
scanf("%If", &x1);
y = atan(xl);
printf("Arctangent of %f: %f\n", xl, y);
printf("Enter a second real number: ");
scanf(''%If", &x2);
y = atan2(xl, x2);
printf("Arctangent of %f / %f: %f\n", xl, x2, y);

Output

Enter a real number: -862.42
Arctangent of -862.420000: -1.569637
Enter a second real number: 78.5149
Arctangent of -862.420000 / 78.514900: -1.480006

atan Functions

atexit

Description

Remarks

Return VaiuB

Compatibility

See Also

96

Processes the specified function at exit.

#include <stdIib.h> Required only for function declarations

int atexit(void (*fune)(void));

June Function to be called

The at exit function is passed the address of a function (fune) to be called when the pro­
gram terminates normally. Successive calls to atexit create a register of functions that are
executed in LIFO (last-in-first-out) order. No more than 32 functions can be registered
with atexit or onexit. The functions passed to atexit cannot take parameters.

All routines passed to atexit should have the Joadds attribute if used in multithread
dynamic-link libraries.

The at exit function returns 0 if it is successful, or a nonzero value if an error occurs (e.g.,
if there are already 32 exit functions defined).

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

Use the ANSI-standard atexit function (rather than the similar onexit function) whenever
ANSI portability is desired.

In the OS/2 environment, the atexit function calls the OS/2 function DosExitList.

abort, exit, _exit, on exit

Exampw __ __

/* ATEXIT.C: This program pushes four functions onto the stack of functions
* to be executed when atexit is called. When the program exits, these
* programs are executed on a "last in, first out" basis.
*/

#include <stdlib.h>
#include <stdio.h>

97

void fnl(void), fn2(void), fn3(void), fn4(void);

void main()
(

atexit(fnl);
atexit(fn2);
atexit(fn3);
atexit(fn4);
printf("This is executed first.\n");

void fril()
(

printf(. "next.\n");

void fn2()
(

pri ntf("executed ");

void fn3()
(

printf("is");

void fn4()
(

printf("This");

Output

This is executed first.
This is executed next.

alexil

atoi, atoi, atol, _atold 98

Oescrlpllon

Remarks

Convert strings to double (atot), long double Latold) integer (atoi), or long (atol).

#include <math.h>

#include <stdlib.h>

atof, _ atold

atof, _ atold, atoi, atol

double atof(const char *string);

long double _atold(const char *string);

int atoi(const char *string);

long atol(const char * string);

string String to be converted

These functions convert a character string to a double-precision floating-point value (atot),
an integer value (atoi), a long integer value (atol), or a long double value (_atold). The
input string is a sequence of characters that can be interpreted as a numerical value of the
specified type.

The string size that can be handled by the atof or _atold function is limited to 100
characters.

The function stops reading the input string at the first character that it cannot recognize as
part of a number. This character may be the null character (,\0') tenninating the string.

The atof and _ atold functions expect string to have the following fonn:

[whitespace] [(sign)] [IKOdigitsD [.digitsD [(d I Die I E}[sign]digitsD "--

A whitespace consists of space and/or tab characters, which are ignored; sign is either plus
(+) or minus (-); and digits are one or more decimal digits. If no digits appear before the
decimal point, at least one must appear after the decimal point. The decimal digits may be
followed by an exponent, which consists of an introductory letter (d, D, e, or E) and an op­
tionally signed decimal integer ..

The atoi and atol functions do not recognize decimal points or exponents. The string argu­
ment for these functions has the fonn

[whites pace] [sign]digits

where whitespace, sign, and digits are exactly as described above for atof.

99 atol, atoi, atol, _atold

Return Value Each function returns the double, long double, int, or long value produced by interpret­
ing the input characters as a number. The return value is 0 (for atoi), OL (for atol), and 0.0
(for atof and _atold) if the input cannot be converted to a value of that type. The return
value is undefined in case of overflow.

Compatibility atof, atoi, atol

• ANSI • DOS • OS/2 • UNIX • XENIX

_atold

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also ecvt, fcvt, gcvt

Exampre __ __

1* ATOF.C: This program shows how numbers stored as strings can be
* converted to numeric values using the atof, atoi, and atol functions.
*1

#include <stdlib.h>
#include <stdio.h>

void main()
(

char *s; double x; int i; long 1;

s =" -2309:12E-15"; 1* Test of atof *1
x = atof (s);
printf("atof test: ASCII string: %s\tfloat:

s = "7.8912654773d210"; 1* Test of atof *1
x ... atof(s);
printf("atof test: ASCII string: %s\tfloat:

s =" -9885 pigs"; 1* Test of ato; *1
i = atoi (s);

%e\n", s, x);

%e \ n", s, x);

printf("atoi test: ASCII string: %s\t\tinteger: %d\n", s,);

s = "98854 dollars"; 1* Test of atol *1
1 = atol(s);
printf("atol test: ASCII string: %s\t\tlong: %ld\n", s, 1);

alol, aloi, alol, _alold

Output

atof test: ASCII string: -2309.12E-15
atof test: ASCII string: 7.8912654773d210
atoi test: ASCII string: -9885 pigs
atol test: ASCII string: 98854 dollars

100

float: -2.309120e-012
float: 7.891265e+210
integer: -9885
long: 98854

101

Description

Remarks

Return Value

Compatibility

See Also

Example

Invokes the DOS system call.

#include <dos.h>

int bdos(int dosftmc, unsigned int dosdx, unsigned int dosal);

dos/unc

dosdx

dosal

Function number

DX register value

AL register value

bdos

The bdos function invokes the DOS system call specified by dos/unc after placing the
values specified by dosdx and dosal in the DX and AL registers, respectively. The bdos
function executes an INT 21 H instruction to invoke the system call. When the system call
is complete, bdos returns the contents of the AX register.

The bdos function is intended to be used to invoke DOS system calls that either take no
arguments or take arguments only in the DX (DH, DL) and/or AL registers.

Do not use the bdos function to call interrupts that modify the DS register. Instead, use the
intdosx or int86x function. The intdosx and int86x functions load the DS and ES registers
from the segregs parameter and also store the DS and ES registers into segregs after the
function call.

This call should not be used to invoke system calls that indicate errors by setting the carry
flag. Since C programs do not have access to this flag, your program cannot determine
whether the return value is an error code. The intdos function should be used in these
cases.

The bdos function returns the value of the AX register after the system call has completed.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

intdos, intdosx

/* BDOS.C: This example calls DOS function 0x9 (display string)
* to display a $-terminated string.
*/

#include <dos.h>

bdos

1* Function 0x09 assumes that OS will contain segment of the string.
* This will be true for all memory models if the string is declared near.
*1

char _near str[] = "Hello world!\r\n$";

void main()
[

1* Offset of string must be in OX, segment in OS. AL is not needed,
* so 0 is used.
*1

bdos(0x09, (int)str, 0);

Output

Hello world!

102

103

Description

Remarks

Begins thread in OS/2 process.

#include <process.h>

#include <stddef.h:>

Multithread version of PROCESS.R

Declaration of threadid variable

int _far _beginthread(void(_far *start_address)(void _far *),

_beginthread

void _far *stack_bottom, unsigned stack_size, void _far *argUst);

start address

stack bottom

stack size

argUst

Starting address

Address of the thread stack

Stack size for thread

Argument list for thread

The _beginthread function creates a thread that begins execution of a far routine at
start_address. When the thread returns from that far routine, it is terminated automatically.
The user can also terminate the thread by calling _endthread.

The address of the thread stack is given by stack_bottom. If stack_bottom is set to NULL,
the run-time library code will allocate and deallocate the thread stack as needed. Since the
_beginthread function can determine the current status of all thread IDs, it can free the old
stack and allocate a new stack whenever a thread is reused~

If it is not NULL, the stack __ bottom argument must specify a word address, and the stack
must be at least as long as specified by the stack _size argument. Usually this memory is
either a global array or memory returned by malloc or _fmalloc.

The stack _size argument must be even and nonzero.

If you are writing multithread programs that make C run-time calls from child threads, be
sure to allocate a sufficiently large stack. For example, the C function printf requires
more than 500 bytes of stack space. To be safe, allocate at least 2,048 bytes for a thread's
stack. (If your child thread makes no run-time calls, stack space is generally not a
problem.)

As a general rule, you should have 2K of stack space free when calling any API (Applica­
tions Program Interface) routine (e.g., OS/2 system calls).

The argUst is a parameter, the size of a far pointer, to be passed to the newly created
thread. Typically it is the address of a data item, such as a character string, to be passed to
the new thread. The argUst may be NULL if not needed, but _ begin thread should be pro­
vided with some value to pass to the child thread.

, _beginthread

All threads will be tenninated if any thread calls abort, exit, _exit, or DosExit. A good
practice in multithread programming is to make the first thread the main thread and wait
until other threads have tenninated before exiting the program.

104

The OS/2 function DosCreateThread should not be called directly to create threads. The
_ begin thread function perfonns initialization procedures required to call other C run-time
library functions safely.

Return Value The function returns the thread identification number of the new thread, if successful. A re­
turn value of -1 indicates an error, and errno is set to one of the following values:

Value

EAGAIN

EINVAL

Meaning

Too many threads

Invalid argument, "bad stack"

Compatibility o ANSI 0 DOS • OS/2 0 UNIX 0 XENIX

See Also _endthread

Exampw __ __

1* BEGTHRD.C illustrates multiple threads using functions:
* _beginthread endthread
*
* Also the global variable:
* _threadid
*
* This program requires the multithread library. For example, compile
* with the following command line:
* CL IMT THREADS.C
*1

#define INCL_NOCOMMON
#define INCL_NOPM
#define INCL_DOSPROCESS
#define INCL_VIO
#include <os2.h>
#include <process.h) 1* _beginthread, _endthread *1
#include <stddef.h> 1* _threadid *1
#include <stdlib.h>
#include <conio.h>

void Bounce(int c); 1* Prototypes *1
void CheckKey(void *dummy);

105 _beginthread

/* GetRandom returns a random integer between min and max. */
#define GetRandom(min, max) «rand() % (int)«(max) + 1) - (min») + (min»

#define STACK_SIZE 4096

BOOL repeat = TRUE; /* Global repeat flag and video variable */
VIOMODEINFO vmi = (sizeof(VIOMODEINFO) };

void main()
(

PCHAR stack;
CHAR ch = 'A';

/* Get display screen's text row and column information. */
VioGetMode(&vmi, 0);

/* Launch CheckKey thread to check for terminating keystroke. */
_beginthread(CheckKey, NULL, STACK_SIZE, NULL);

/* Loop until CheckKey terminates program. */
whil e(repeat)
(

/* On first loops, launch character threads. */
_beginthread(Bounce, NULL, STACK_SIZE, (void *)ch++);

/* Wait one second between loops. */
DosSleep(1000L);

/* CheckKey - Thread to wait for a keystroke, then clear repeat flag. */
void CheckKey(void *dummy)
(

getch() ;
repeat = 0; /* _endthread implied */

/* Bounce - Thread to create and control a colored letter that moves
* around on the screen.
*
* Params: ch - the letter to be moved
*/

void Bounce(int ch
(

/* Generate letter and color attribute from thread argument. */
char blankcell[2] = (0x20, 0x07);
char blockcell[2] = (ch , (ch % 16) + 1 };
int xold, xcur, yold, ycur;
BOOL first = TRUE;

_beginthread 106

1* Seed random number generator and get initial location. *1
srand(*_threadid);
xcur = GetRandom(0, vmi .col - 1);
ycur = GetRandom(0, vmi .row - 1);
while(repeat)
(

1* Pause between loops. *1
DosSleep(100L);

1* Blank out our old position on the screen, and draw new letter. *1
if(first)

first = FALSE;
else

VioWrtCellStr(blankcell, 2, yold, xold, 0);
VioWrtCellStr(blockcell, 2, ycur, xcur, 0);

1* Increment the coordinate for next placement of the block. *1
xold = xcur;
yold = ycur;
xcur += GetRandom(-I, 1);
ycur += GetRandom(-I, 1);

1* Correct placement (and beep) if about to go off the screen. *1
if(xcur < 0)

xcur = 1;
else if(xcur == vmi .col

xcur = vmi .col - 2;
else if(ycur < 0)

ycur = 1;
else if(ycur == vmi .row

ycur = vmi .row - 2;

1* If not at screen border, continue, otherwise beep. *1
else

continue;
DosBeep((ch - 'A') * 100,175);

1* _endthread given (but not really needed) to terminate. *1
_endth read () ;

107

Description

Remarks

Compute the Bessel function.

#include <math.h>

double jO(double x);

double jl(double x);

double jn(int n, double x);

double yO(double x);

double yl(double x);

double yn(int Il, double x);

long double -oiOl(long double x);

long double -oinl(int n, long double x);

long double -oill(long double x);

long double JOl(long double x);

long double Jll(long double x);

long double Jnl(int n, long double x);

x

n

Floating-point value

Integer order

Bessel Functions

The jO, jl, and jn routines return Bessel functions of the first kind-orders 0, 1, and n,
respecti vel y.

The yO, yl, and yn routines return Bessel functions of the second kind-orders 0, 1, and n,
respectively. The argument x must be positive.

The long double versions of these functions are the 80-bit counterparts and use the 80-bit,
la-byte coprocessor form of arguments and return values. See the reference page on the
long double functions for more details on this data type.

The Bessel functions are explained more fully in most mathematics reference books, such
as the Handbook of Mathematical Functions (Abramowitz and Stegun; Washington: U.S.
Government Printing Office, 1964). These functions are commonly used in the mathemat­
ics of electromagnetic wave theory.

Bessel Functions 108

Return Value These functions return the result of a Bessel function of x.

For yO, yl, or yo, if x is negative, the routine sets erroo to EDOM, prints a DOMAIN error
message to stderr, and returns -HUGE_ VAL.

Error handling can be modified by using the math err (or _ matherrl) routine.

Compatibility jO,jl,jo, yO, yl, yo

o ANSI • DOS • OS/2 • UNIX • XENIX

..JOI, ..J1I, jol, JOI, JII, Jol

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also matherr

Exampre __ __

1* BESSEL.C: This program illustrates Bessel functions, including:
* j 0 j 1 j n y0 y 1 yn
*1

#include <math.h>
#include <stdio.h>

void main()
(

double x = 2.387;
i nt n = 3, c;

printf("Bessel functions for x = %f:\n", x);
printf(" Kind\t\tOrder\t\Function\tResult\n\n");
printf(" First\t\t0\tj0(x)\t\t%f\n", j0(x));
printf(" First\t\tl\tjl(x)\t\t%f\n", jl(x));
fore c = 2; c < 5; c++)

printf(" First\t\t%d\tjn(n, x)\t%f\n", c, jn(c, x));

printf(" Second\t0\ty0(x)\t\t%f\n", y0(x));
printf(" Second\tl\tyl(x)\t\t%f\n", yl(x));
fore c = 2; c < 5; c++)

printf(II Second\t%d\tyn(n, x)\t%f\n", c, yn(c, x));

109 Bessel Functions

Output

Besse 1 functions for x = 2.387000:
Kind Order Function Result

First 0 j0(x) 0.009288
First 1 j1(x) 0.522941
First 2 jn(n, x 0.428870
First 3 jn(n, x 0.195734
First 4 jn(n, x 0.063131
Second 0 y0(x) 0.511681
Second 1 yl(x) 0.094374
Second 2 yn(n, x) -0.432608
Second 3 yn(n, x) -0.819314
Second 4 yn(n, x) -1. 626833

_bfreeseg 110

Description Frees a specified based heap.

#include <malloc.h> Required only for function declarations

int _hfreeseg(_segment seg);

seg Segment selected

Remarks The _ hfreeseg function frees a based heap. The seg argument is a based heap returned by
an earlier call to _ hheapseg. It specifies the based heap to be freed.

The number of bytes freed is the number of bytes specified when the block was allocated.
After the call, the freed heap is again available for allocation.

Return Value The _ hfreeseg function returns 0 if successful and -1 in the case of an error.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _ hheapseg, caIloc functions, free functions, malloc functions, realloc functions

Exampw __ __

1* BHEAPSEG.C: This program C illustrates dynamic allocation of based
* memory using functions _bheapseg, _bfreeseg, _bmalloc, and _bfree.
·*1

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>

void main()
(

_segment seg;
char _based(seg
char _based(seg
char tmpstr[80];
int len;

*outstr, _based(seg
*pout, _based(seg

p r i n tf (" En t era s t r i n g: ");
gets(tmpstr);

*instr;
*pin;

1* Request a based heap. Use based so that memory won't be taken from
* near heap.
*1

111

i f((seg = _bheapseg(1000)) == _NULLSEG
exit(1) ;

1* Allocate based memory for two strings. *1
len = strlen(tmpstr);
if («instr = _bmalloc(seg, ~ en + 1 » == _NULLOFF) II

«outstr = _bmalloc(seg, 1 en + 1 » == _NULLOFF))

exit(1) ;

1* Copy a lowercased string to dynamic memory. The based memory is
* far when addressed as a whole.
*1

_fstrlwr(_fstrcpy((char _far *)instr, (char _far *)tmpstr));

1* Copy input string to output string in reversed order. When reading
* and writing individual characters from a based heap, the compiler will
* try to process them as near, thus speeding up the processing.
*1

fore pin = instr + len - I, pout = outstr;
pout < outstr + len; pin--, pout++

*pout = *pin;
*pout = '\0';

1* Display strings. Again strings as a whole are far. *1
printf("Input: %Fs\n", (char _far *)instr);
printf("Output: %Fs\n", (char _far *)outstr);

1* Free blocks and release based heap. *1
_bfree(seg, instr);
_bfree(seg, outstr);
_bfreeseg(seg);

Output

Enter a string: Was I god
Input: was i god
Output: dog i saw

_bfreeseg

_bheapseg 112

Description Allocates a based heap.

Remarks

Return Value

Compallbllity

See Also

#include <malloc.b> Required only for function declarations

_segment _hbeapseg(size_t size);

size Segment size to allocate

The _ hbeapseg function allocates a based-heap segment of at least size bytes. (The block
may be larger than size bytes because of space required for alignment and for maintenance
information.)

The heap code will try to enlarge the heap as necessary. If the original block of memory is
depleted (e.g., by calls to _hmalloc and _hrealloc), the run-time code will try to enlarge
the heap as necessary.

The value returned by _hbeapseg is the identifier of the based-heap segment. This value
should be saved and used in subsequent calls to other based-heap functions.

The _hbeapseg function can be called repeatedly. For each call, the C library will allocate
a new based-heap segment.

The _ hbeapseg function returns the newly allocated segment selector that the user must
save for use in subsequent based-heap functions. A return value·of -1 indicates failure.

Always check the return from the _hbeapseg function (especially when it is used in real
mode), even if the amount of memory requested is small.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

calloc functions, free functions, malloc functions, realloc functions

Exampw __ __

/* BHEAPSEG.C: This program C illustrates dynamic allocation of based
* memory using functions _bheapseg, _bfreeseg, _bmalloc, and _bfree.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>

113

void main()
(

_segment seg;
char _based(seg
char _based(seg
char tmpstr[80];
int len;

*outstr, _based(seg
*pout, _based(seg

printf("Enter a string: ");
gets(tmpstr);

*instr;
*pin;

1* Request a based heap. Use based so that memory won't be taken from
* near heap.
*1

if((seg ~ _bheapseg(1000 » =~ _NULLSEG)
exit(1);

1* Allocate based memory for two strings. *1
len = strlen(tmpstr);
if(«instr = _bmalloc(seg, len + 1 » == _NULLOFF) I I

«outstr = _bmalloc(seg, len + 1 » == _NULLOFF))
exit(1);

1* Copy a lowercased string to dynamic memory. The based memory is
* far when addressed as a whole.
*1

_fstrlwr(_fstrcpy((char _far *)instr, (char _far *)tmpstr));

1* Copy input string to output string in reversed order. When reading
* and writing individual characters from a based heap, the compiler 0ill
* try to process them as near, thus speeding up the processing.
*1

for(pin = instr + len - 1, pout = outstr;
pout < outstr + len; pin--, pout++

*pout = *pin;
*pout = '\0';

1* Display strings. Again, strings as a whole are far. *1
printf("Input: %Fs\n", (char _far *)instr);
printf("Output: %Fs\n", (char _far *)outstr);

1* Free blocks and release based heap. *1
_bfree(seg, instr);
_bfree(seg, outstr);
_bfreeseg(seg);

_bheapseg

_bheapseg

Output

Enter a string: Was I god
Input: was i god
Output: dog i saw

114

115

Description

Remarks

Calls BIOS disk services using system call INT Ox13.

#include <bios.h>

unsigned _bios_disk(unsigned service, struct diskinfo_t *diskinfo);

service

diskinfo

Disk function desired

Disk parameters

The _bios_disk routine uses system call INT Ox13 to provide several disk-access func­
tions. The service parameter selects the function desired, while the diskinfo structure pro­
vides the necessary parameters. Note that the low-level disk operations allowed by the
_bios_disk routine are very dangerous to use because they allow direct manipulation of
the disk.

The diskinfo structure provides the following parameters:

Element

unsigned drive

unsigned head

unsigned track

unsigned sector

unsigned nsectors

void far *buffer

Description

Drive number

Head number

Track number

Starting sector number

Number of sectors to read, write, or compare

Memory location to write to, read from, or compare

The service argument can be set to one of the following manifest constants:

Constant . Function

Formats the track specified by diskinfo. The head and track
fields indicate the track to format. Only one track can be for­
matted in a single call. The buffer field points to a set of sector
markers. The format of the markers depends on the type of
disk drive; see a technical reference to the PC BIOS to deter­
mine the marker format. There is no return value.

116

Reads one or more disk sectors into memory. This service
uses all fields of the structure pointed to by diskin/a, as de­
fined earlier in this section. If no error occurs, the function re­
turns 0 in the high-order byte and the number of sectors read
in the low-order byte. If there is an error, the high-order byte
will contain a set of status flags. If there is an error, the high­
order byte will contain a set of status flags, as defined under
_DISK_READ. Status is returned in the 8 high-order bits of
the return value, as listed below:

Bits Meaning

OxOl** Invalid request or a bad command

Ox02** Address mark not found

Ox04** Sector not found

Ox05** Reset failed

Ox07** Drive parameter activity failed

Ox09** Direct Memory Access (DMA) overrun

OxOA** Bad sector flag detected

OxlO** Data read (ECC) error

Ox 11 ** Corrected data read (ECC) error

Ox20** Controller failure

Ox40** Seek error

Ox80** Disk timed out or failed to respond

OxAA** Drive not ready

OxBB** Undefined error

OxCC** Write fault on drive

OxEO** Status error

Forces the disk controller to do a hard reset, preparing for
floppy-disk I/O. This is useful after an error occurs in another
operation, such as a read. If this service is specified, the
diskinfa argument is ignored.

Obtains the status of the last disk operation. If this service is
specified, the diskinfa argument is ignored.

117

Checks the disk to be sure the specified sectors exist and can
be read. It also runs a CRC (cyclic redundancy check) test.
This service uses all fields (except buffer) of the structure
pointed to by diskin/o, as defined earlier in this section. If no
error occurs, the function returns 0 in the high-order byte and
the number of sectors compared in the low-order byte. If there
is an error, the high-order byte will contain a set of status
flags, as defined under _DISK_READ (above).

Writes data from memory to one or more disk sectors. This
service uses all fields of the structure pointed to by diskin/o,
as defined earlier in this section. If no error occurs, the func­
tion returns 0 in the high-order byte and the number of sectors
written in the low-order byte. If there is an error, the high­
order byte will contain a set of status flags, as defined under
_DISK_READ (above).

Return Value The _bios_disk function returns the value in the AX register after the BIOS interrupt.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Examp~ __ __

1* BDISK.C: This program first attempts to verify a disk by using an
* invalid disk head number. After printing the return value error code,
* the program verifies the disk by using a valid disk head code.
*1

#include <conio.h>
#include <stdio.h>
#include <bios.h>

void main()
(

unsigned status = 0;
struct diskinfo_t disk_info;

disk_info.drive
disk_info.head
disk_info. track
disk_info.sector
disk_info.nsectors

= 0;
= 10;
= 1;
= 2;
= 8;

1* Invalid head number *1

printf("Insert disk in drive A: and press any key\n");
getch();
status = _bios_disk(_DISK_VERIFY, &disk_info);
printf("Return value: 0x%.4x\n", status);
if(status & 0xff00) /* Error if high byte is 0 */

printf("Seek error\n");
else

printf("No seek error\n");

printf("Press any key\n");
getch();
disk_info.head ~ 0; /* Valid head number */
status = _bios_disk(_DISK_VERIFY, &disk_info);
printf("Return value: 0x%.4x\n",status);
if(status & 0xff00) /* Error if high byte is 0 */

printf("Seek error\n");
else

printf("No seek error\n");

Output

Insert disk in drive A: and press any key
Return value: 0x0400
Seek error
Press any key
Return value: 0x0008
No seek error

118

119

Oeserlpllon

Remarks

Return Value

Compatibility

Calls BIOS equipment-list service, using system call INT Oxll.

#include <bios.h>

unsigned_bios_equiplist(void);

The _bios_equiplist routine uses system call INT Oxll to determine what hardware and
peripherals are currently installed on the machine.

The function returns a set of bits indicating what is installed, as defined below:

Bits

o

2-3

4-5

6-7

8

9-11

12

13

14-15

Meaning

Any disk drive installed if true

True (1) if math coprocessor installed

System RAM in 16K blocks (16-64K)

Initial video mode

Number of floppy-disk drives installed (00 = 1, 01 = 2, etc.)

False (0) if and only if a Direct Memory Access (DMA) chip
is installed

Number of RS232 serial ports installed

True (1) if and only if a game adapter is installed

True (1) if and only if an internal modem is installed

Number of printers installed

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampre __ ___

1* BEQUIPLI.C: This program checks for the presence of diskettes. *1

#include <bios.h)
#include <stdio.h)

void main()
(

unsigned equipment;

equipment = _bios_equiplist();
printf("Equipment bits: 0x%.4x\n", equipment);
if(equipment & 0x1000) 1* Check for game adapter bit *1

pri ntf("Game adapter install ed\n");
else

printf("No game adapter installed\n");

Output

Equipment bits: 0x4061
No game adapter installed

120

121

Description

Remarks

Calls BIOS keyboard services, using iNT Ox 16.

#include <bios.h>

unsigned _bios_keybrd(unsigned service);

service Keyboard function desired

The _bios_keybrd routine uses system call INT Ox16 to access the keyboard services. The
service argument can be any of the following manifest constants:

Constant

_KEYBRD_READ,
_NKEYBRD _READ

_KEYBRD_READY,
_NKEYBRD _READY

Meaning

Reads the next character from the key­
board. If no character has been typed, the
call will wait for one. If the low-order
byte of the return value is nonzero, the
call contains the ASCII value of the char­
acter typed. The high-order byte contains
the keyboard scan code for the character.
The NKEYBRD READ constant is used
with enhanced keyboards to obtain the
scan codes for function keys FII and Fl2
and the cursor control keys.

Checks whether a keystroke is waiting to
be read and, if so, reads it. The return
value is 0 if no keystroke is waiting, or it
is the character waiting to be read, in the
same fonnat as the _KEYBRD _READ or
_NKEYBRD_READY return. This service
does not remove the waiting character
from the input buffer, as does the
_KEYBRD_READor_NKEYBRD_READ
service. The NKEYBRD READY con­
stant is used with enhanced keyboards to
obtain the scan codes for function keys FII
and Fl2 and the cursor control keys.

Return Value

_KEYBRD _SHIFTSTATUS,
_NKEYBRD _SHIFTSTATUS

Bit

OOH

01H

02H

3H

04H

05H

06H

07H

08H

09H

OAH

OBH

OCH

ODH

OEH

OFH

122

Returns the current sHIFf-key status. Only
the low-order byte of the return value is af­
fected. The NKEYBRD SHIFTSTATUS
constant is Used to get a full 16-bit status
value. Any combination of the following
bits may be set:

Meaning if True

Rightmost SHIFf key pressed

Leftmost SHIFf key pressed

Either CTRL key pressed

Either ALT key pressed

SCROLL LOCK on

NUMLOCKon

CAPS LOCK on

In insert mode (INS)

Left CTRL key pressed

Left ALT key pressed

Right CTRL key pressed

Right ALT key pressed

SCROLL LOCK key pressed

NUM LOCK key pressed

CAPS LOCK key pressed

SYS REQ key pressed

With the •.• READ and •.. SHIFTST ATUS arguments, the _bios _ keybrd function returns the
contents of the AX register after the BIOS call.

With the ••• READY argument, _bios _ keybrd returns 0 if there is no key. If there is a key,
_bios_keybrd returns the key waiting to be read (Le. the same value as _KEYBRD_READ).

With the ••• READ and the •.• READY arguments, the _bios_keybrd function returns -1 if
CTRL+BREAK has been pressed and is the next keystroke to be read.

123

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampw __ __

/* BKEYBRD.C: This program prints a message on the screen until the
* right SHIFT key is pressed.
*/

#include <bios.h>
#include <stdio.h>

void main()
{

while(!(_bios_keybrd(_KEYBRD_SHIFTSTATUS) & 0001))
printf("Use the right SHIFT key to stop this message\n");

printf("Right SHIFT key pressed\n");

Output

Use the right SHI FT key to stop this message
Use the right SHI FT key to stop this message
Use the right SHIFT key to stop this message
Use the right SHIFT key to stop this message
Right SHIFT key pressed

DescriptiDn

Remarks

Calls the BIOS memory-size service, using system call INT Ox 12.

#include <bios.h>

unsigned _bios_memsize(void);

The _bios _ memsize routine uses system call INT Ox 12 to determine the total amount of
main memory installed.

124

Return Value The routine returns the total amount of installed memory in lK blocks. The maximum re-
turn value is 640, representing 640K of main memory. (

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampw-.... __ -....-....-....-.... __ -.... __ -.... ____ -.... __ ___

1* BMEMSIZE.C: This program displays the amount of memory installed. *1

#include <bios.h>
#include <stdio.h>

void maine)
(

unsigned memory;

memory = _bios_memsize();
printf ("The amount of memory installed is: %dK\n", memory);

Output

The amount of memory installed is: 639K

125

Description

Remarks

Calls BIOS printer services using system call INT Ox 17.

#include <bios.h>

unsigned _biosjlrinter(unsigned service, unsigned printer, unsigned data);

service

printer

data

Printer function desired

Target printer port

Output data

The _bios jlrinter routine uses system call INT Ox 17 to perform printer output services
for parallel printers. The printer argument specifies the affected printer, where 0 is LPT1,
1 is LPT2, and so forth.

Some printers do not support the full set of signals. As a result, the "Out of Paper" condi­
tion, for example, may not be returned to your program.

The service argument can be any of the following manifest constants:

Constant Meaning

Initializes the selected printer. The data argument is ignored.
The return value is the low-order status byte defined below.

Returns the printer status in the low-order status byte defined
below. The data argument is ignored.

Sends the low-order byte of data to the printer specified by
printer. The low-order byte of the return value indicates the
printer status after the operation, as defined below:

Bit Meaning if True

0 Printer timed out

Not used

2 Not used

3 I/O error

4 Printer selected

5 Out of paper

6 Acknowledge

7 Printer not busy

126

Return Value The _bios jlrinter function returns the value in the AX register after the BIOS interrupt.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampw __ __

/* BPRINTER.C: This program checks the status of the printer attached to
* LPTI when it is off line, then initializes the printer.
*/

#include <bios.h)
#include <conio.h)
#include <stdio.h)

#define LPTI 0

void main()
{

unsigned status;

printf ("Place printer off line and press any key\n");
getch() ;

status = _bios_printer(_PRINTER_STATUS, LPTl, 0);
printf("Status with printer off line: 0x%.4x\n\n", status);
printf("Put the printer on line and then\n");
printf("Press any key to initialize printer\n");
getch() ;

status = _bios_printer(_PRINTER_INIT, LPTl, 0);
printf("Status after printer initialized: 0x%.4x\n", status);

Output

Place printer off line and press any key
Status with printer off line: 0x0018

Put the printer on line and then
Press any key to initialize printer
Status after printer initialized: 0x0090

127

Description

Remarks

Calls BIOS communications services, using system call INT Ox 14.

#include <bios.h>

unsigned _bios_serialcom(unsigned service, unsigned seriaiyort, unsigned data);

service

serialyort

data

Communications service

Serial port to use

Port configuration bits

The _bios _serialcom routine uses system call INT Ox 14 to provide serial communications
services. The serialyort argument is set to 0 for COM1, to 1 for COM2, and so on.

The _bios _ serialcom routine may not be able to establish reliable communications at baud
rates in excess of 1,200 baud (_COM_1200) due to the overhead associated with servicing
computer interrupts. Faster data communication rates are possible with more direct pro­
gramming of serial-port controllers. See C Programmer's Guide to Serial Communications
for more details on serial-communications programming in C.

The service argument can be set to one of the following manifest constants:

Constant

_COM_INIT

_COM_SEND

_COM_RECEIVE

_COM_STATUS

Service

Sets the port to the parameters specified in the data argument

Transmits the data characters over the selected serial port

Accepts an input character from the selected serial port

Returns the current status of the selected serial port

The data argument is ignored if service is set to _COM_RECEIVE or _COM_STATUS.
The data argument for _COM_INIT is created by combining (with the OR operator) one or
more of the following constants:

Constant Meaning

_COM_CUR7 7 data bits

_COM_CURS 8 data bits

_COM_STOPl 1 stop bit

_COM_STOP2 2 stop bits

_COM_NOPARITY No parity

Return Value

128

_COM_EVENPARITY Even parity

_COM_ODDPARITY Odd parity

_COM_110 110 baud

_COM_ISO 150 baud

_COM_300 300 baud

_COM_600 600 baud

_COM_I200 1,200 baud

_COM_2400 2,400 baud

_COM_4800 4,800 baud

_COM_9600 9,600 baud

The default value of data is 1 stop bit, no parity, and 110 baud.

The function returns a 16-bit integer whose high-order byte contains status bits. The mean­
ing of the low-order byte varies, depending on the service value. The high-order bits have
the following meanings:

Bit Meaning if Set

15 Timed out

14 Transmission-shift register empty

13 Transmission-hold register empty

12 Break detected

11 Framing error

10 Parity error

9 Overrun error

8 Data ready

When service is _COM_SEND, bit 15 will be set if data could not be sent.

When service is _COM_RECEIVE, the byte read will be returned in the low-order bits if
the call is successful. If an error occurs, any of the bits 9, 10, 11, or 15 will be set.

129

When service is _COM_INITor _COM_STATUS, the low-order bits are defined as
follows:

Bit Meaning if Set

7 Receive-line signal detected

6 Ring indicator

5 Data set ready

4 Clear to send

3 Change in receive-line signal detected

2 Trailing-edge ring indicator

Change in data-set-ready status

0 Change in clear-to-se~d status

Note that this function works only with IBM personal computers and true compatibles.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampre __ ____

1* BSERIALC.C: This program checks the status of serial port COM!. *1

#include (bios.h>
#include (stdio.h>

void main()
(

unsigned com!_status;

com!_status = _bios_serialcom(_COM_STATUS, 0, 0);
printf ("COM! status: 0x%.4x\n", com!_status);

Output

COM! status: 0x6000

Description

Remarks

Return Value

Compatibility

130

Calls BIOS time and date services, using system call !NT Ox 1A.

#include <hios.h>

unsigned _hios_timeofday(unsigneU service, long *timeval);

service Time function desired

timeval Oock count

The _hios_timeofday routine uses system call INT Ox1A to get or set the clock count. The
service argument can be either of the following manifest constants:

Constant Meaning

Copies the current value of the clock count to the location
pointed to by timeval. If midnight has not passed since the last
time the system clock was read or set, the function returns 0;
otherwise, the function returns 1.

Sets the current value of the system clock to the value in the
location pointed to by timeval. There is no return value.

The _hios_timeofday function returns the value in the AX register after the BIOS
interrupt.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampre __ __

1* BTIMEOFD.C: This program "gets the current system clock count before and after
* a "do-nothing" loop and displays the difference.
*1

#include (bios.h)
#include (stdio.h)

131

void maine)
(

long i, begin_tick, end_tick;

_bios_timeofday(_TIME_GETCLOCK, &begin_tick);
printf("Beginning tick count: %lu\n", begin_tick);
fore i = 1; i <= 900000; i++)

,
_bios_timeofday(_TIME_GETCLOCK, &end_tick);
printf("Ending tick count: %lu\n", end_tick);
printf("Elapsed ticks: %lu\n", end_tick - begin_tick);

Output

Beginning tick count: 1114255
Ending tick count: 1114287
Elapsed ticks: 32

bsearch

Description

Remarks

Return Value

Perfonns binary search of a sorted array.

#include <stdIib.h>

#include <search.h>

Required for ANSI compatibility

Required only for function declarations

void *bsearch(const void *key, const void *base, size_t num, size_t width,
int (*compare)(const void *eleml, const void *elem2));

key

base

num

width

compare

eleml

elem2

Object to search for

Pointer to base of search data

Number of elements

Width of elements

Function that compares two elements: eleml and elem2

Pointer to the key for the search

Pointer to the array element to be compared with the key

132

The bsearch function perfonns a binary search of a sorted array of num elements, each of
width bytes in size. The base value is a pointer to the base of the array to be searched, and
key is the value being sought.

The compare argument is a pointer to a user-supplied routine that compares two array ele­
ments and returns a value specifying their relationship. The bsearch function calls the
compare routine one or more times during the search, passing pointers to two array ele­
ments on each call. The routine compares the elements, then returns one of the following
values:

Value

<0

=0

>0

Meaning

eleml less than elem2

eleml identical to elem2

eleml greater than elem2

If the array you are searching is not in ascending sort order, bsearch does not work prop­
erly. If the array contains duplicate records with identical keys, there is no way to predict
which of the duplicate records will be located by bsearch.

The bsearch function returns a pointer to the first occurrence of key in the array pointed to
by base. If key is not found, the function returns NULL.

133 bsearch

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also (find, (search, qsort

Examp~ __ __

1* BSEARCH.C: This program reads the command-line arguments, sorting them
* with qsort, and then uses bsearch to find the word "cat."
*1

#include <search.h>
#include <string.h>
#include <stdio.h>

int comparee char **argl, char **arg2); 1* Declare a function for compare *1

void maine int argc, char **argv)
{

char **result;
char *key = "cat";
i nt i;

1* Sort using Quicksort algorithm: *1
qsort((char *)argv, argc, sizeof(char *), compare);

fore i = 0; i < argc; ++i
printf("%s ", argv[i]);

1* Output sorted list *1

1* Find the word "cat" using a binary search algorithm: *1
result = (char **)bsearch((char *) &key, (char *)argv, argc,

sizeof(char *), compare);
if(result)

printf("\n%s found at %Fp\n", *result, result);
else

printf("\nCat not found!\n");

int comparee char **argl, char **arg2
(

1* Compare all of both strings: *1
return strcmpi(*argl, *arg2);

Output

[C:\LIBREF] bsearch dog pig horse cat human rat cow goat
bsearch cat cow dog goat horse human pig rat
cat found at 0292:0FD0

cabs, cabsl 134

Description Calculate absolute value of a complex number.

Remarks

Return Value

Compatibility

See Also

#include <math.h>

double cabs(struct complex z);

long double cabsl(struct _ complexl z);

z Complex number

The cabs and cabsl functions calculate the absolute value of a complex number, which
must be a structure of type complex (or _ complexl). The structure z is composed of a real
component x and an imaginary component y. A call to one of the cabs routines is equiv­
alent to the following:

sqrt(z.x*z.x + z.y*z.y)

The cabsl function is the 80-bit counterpart and it uses the 80-bit, IO-byte coprocessor
form of arguments and return values. See the reference page on the long double functions
for more details on this data type.

On overflow, these functions call matherr or _ matherrl, return HUGE _ VAL, and set
errno to ERANGE.

cabs

o ANSI • DOS • OS/2 • UNIX • XENIX

cabsl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

abs, fabs, labs

Exampw __ ___

/* CABS.C: Using cabs, this program calculates the absolute value of
* a complex number.
*/

#include <math.h>
#include <stdio.h>

135

void main()
{

struct complex number ~ (3.0, 4.0);
double d;

d = cabs(number);
printf("The absolute value of %f + %fi is %f\n",

number.x, number.y, d);

Output

The absolute value of 3.000000 + 4.000000i is 5.000000

cabs, cabsl

ca//oc Functions 136

Description

Remarks

Return Value'

Allocate an array in memory with elements initialized to O.

#include <stdlih.h>

#include <malloc.h>

For ANSI compatibility (calloc only)

Required only for function declarations

void *calloc(size_t num, size_t size);

void _based(void) * _bcalloc(_segment seg, size_t num, size_t size);

void _far * _fcalloc(size_t num, size_t size);

void _near * _ncalloc(size_t num, size_t size);

num

size

seg

Number of elements

Length in bytes of each element

Segment selector

/
The calloc family of functions allocates storage space for an array of llum elements, each
of length size bytes. Each element is initialized to O.

In large data models (compact-, large-, and huge-model programs), calloc maps to
_fcalloc. In small data models (tiny-, small-, and medium-model programs), calloc maps
to _ ncalloc.

The various calloe functions allocate storage space in the data segments shown in the list
below:

Function

ealloe

_bealloc

fealloe

"caIloc

Data Segment

Depends on data model of program

Based heap, specified by seg segment selector

Far heap (outside default data segment)

Near heap (inside default data segment)

The calloe functions return a pointer to the allocated space. The storage space pointed to
by the return value is guaranteed to be suitably aligned for storage of any type of object.
To get a pointer to a type other than void, use a type cast on the return value.

The _fealloe and _nealloe functions return NULL if there is insufficient memory available
or if Ilum or size is O. The _bealloe function returns _NULLOFF in this case.

137 ca//oc Functions

Compatibility calloc

• ANSI • DOS • OS/2 • UNIX • XENIX

_hcalloc, _fcalloc, ncalloc

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also free functions, halloc, hfree, malloc functions, realloc functions

Exampw __ __

/* CALLOC.C: This program uses calJoc to allocate space for 40 long integers.
* It initializes each element to zero.
*/

#include <stdio.h>
#include <malloc.h>

void maine)
{

long *buffer;

buffer = (long *)calloc(40, sizeof(long));
if(buffer 1= NULL)

printf("Allocated 40 long integers\n");
else

printf("Can't allocate memory\n");
free(buffer);

Output

Allocated 40 long integers

ceil, ceill 138

Description Calculate the ceiling of a value.

Remarks

Return Value

Compatibility

See Also

#include <math.h>

double ceil(double x);

long double ceill(long double x);

x Floating-point value

The ceil and ceill functions return a double (or long double) value representing the
smallest integer that is greater than or equal to x.

The ceill function is the 80-bit counterpart and it uses the 80-bit, lO-byte coprocessor form
of arguments and return values. See the reference page on the long double functions for
more details on this data type.

These functions return the double or long double result. There is no error return.

ceil

• ANSI • DOS • OS/2 • UNIX • XENIX

ceill

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

floor, fmod

Exampre __ __

1* FLOOR.C: This example displays the largest integers less than or equal
* to th~ floating-point values 2.8 and -2.8. It then shows the smallest
* integers greater than or equal to 2.8 and -2.8.
*1

#include <math.h)
#include <stdio.h)

139

void main()
(

double Yj

Y = floor(2.8)j

printf("The floor of 2.8 is %f\n", Y)j
Y = floor(-2.8)j

printf("The floor of -2.8 is %f\n", Y)j

Y = ceil(2.8)j

printf("The ceil of 2.8 is %f\n", Y)j
Y = ceil(-2.8);
printf("The ceil of -2.8 is %f\n", Y);

Output

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 ;s 3.000000
The ceil of -2.8 is -2.000000

ceil, ceill

Description

Remarks

Return Value

Compatibility

See Also

Perfonn clean-up operations and return without tenninating the process.

#include <process.h>

void _ cexit(void);

void _c_exit(void);

140

The cexit function calls, in LIFO ("last in, first out") order, the functions registered by
atexii and onexit. Then the cexit function flushes all I/O buffers and closes all open files
before returning. -

The _c_exit function returns to the calling process without processing atexit or onexit
functions or flushing stream buffers.

The behavior of the exit, exit, cexit, and c exit functions is described in the following
list: - - - -

Function

exit

exit

cexit

c exit

None.

Action

Perfonns complete C library tennination procedures, tenni­
nates the process, and exits with the supplied status code

Perfonns "quick" C library tennination procedures, tenninates
the process, and exits with the supplied status code

Perfonns complete C library tennination procedures and re­
turns to caller, but does not tenninate the process

Perfonns "quick" C library tennination procedures and re­
turns to caller, but does not tenninate the process

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

abort, atexit, exec functions, exit, onexit, spawn functions, system

141

Description

Remarks

Return Value

Compatibility

See Also

cgets

Gets a character string from the console.

#include <conio.h> Required only for function declarations

char *cgets(char *buffer);

buffer Storage location for data

The cgets function reads a string of characters directly from the console and stores the
string and its length in the location pointed to by buffer. The buffer argument must be a
pointer to a character array. The first element of the array, bujfer[O], must contain the maxi­
mum length (in characters) of the string to be read. The array must contain enough ele­
ments to hold the string, a terminating null character (,\0'), and two additional bytes.

The cgets function continues to read characters until a carriage-return-line-feed (CR-LF)
combination is read, or the specified number of characters is read. The string is stored
starting at str[2]. If a CR-LF combination is read, it is replaced with a null character ('\0')
before being stored. The cgets function then stores the actual length of the string in the sec­
ond array element, buffer[l].

Because all DOS editing keys are active when you call cgets, pressing F3 repeats the last
entry.

The cgets function returns a pointer to the start of the string, at buffer[2]. There is no error
return.

D ANSI • DOS • OS/2 D UNIX 0 XENIX

getch, getche

Exampre __ ___

1* CGETS.C: This program creates a buffer and initializes the first byte
* to the size of the buffer - 2. Next, the program accepts an input string
* using cgets and displays the size and text of that string.
*1

#include <conio.h>
#include <stdio.h>

cge's

void main()
{

char buffer[82] = { 80}; 1* Maximum characters in first byte *1
char *result;

printf("Input line of text, followed by carriage return:\n");
result = cgets(buffer); 1* Input a line of text *1
printf("\nLine length = %d\nText = %s\n", buffer[l], result);

Output

Input line of text, followed by carriage return:
This is some text
Line length = 17
Text = This is some text

142

143

Description

Remarks

Chains an interrupt from one handler to another.

#include <dos.h>

void _chainJntr(void(Jnterrupt _far *target)(»;

target Target interrupt routine

The _chain Jntr routine passes control from one interrupt handler to another. The stack
and the registers of the first routine are passed to the second, allowing the second routine
to return as if it had been called directly.

The _chain Jntr routine is generally used when a user-defined interrupt handler begins
processing, then chains to the original interrupt handler to finish processing.

Chaining is one of two techniques, listed below, that can be used to transfer control from a
new interrupt routine to an old one:

1. Call_chain Jntr with the interrupt routine as an argument. Do this if your routine is
finished and you want the second interrupt routine to terminate the interrupt call.

void _interrupt new_int(unsigned _es, unsigned _ds,
unsigned _di, unsigned _si , ...)

++_di; 1* Initial processing here *1
_chain_intr(old_int); 1* New 01 passed to old_int *1
--_di; 1* This is never executed *1

2. Call the interrupt routine (after casting it to an interrupt function if necessary). Do this
if you need to do further processing after the second interrupt routine finishes.

void _interrupt new_int(unsigned _es, unsigned _ds,
unsigned _di, unsigned _si, ...)

++_di;
(*old_int)() ;
_asm mov _di, di

1* Initial processing here *1
1* New 01 passed to old_int *1
1* Put real 01 from old_int *1
1* into _di for return *1

Note that the real registers set by the old interrupt function are not automatically set to the
pseudoregisters of the new routine.

Return Value

Compatibility

See Also

144

Use the _chainJntr function when you do not want to replace the default interrupt han­
dler, but you do need to see its input. An example is a TSR (terminate-and-stay-resident)
program that checks all keyboard input for a particular "hot key" sequence.

The _chain Jntr function should be used only with C functions that have been declared
with type Jnterrupt. The Jnterrupt declaration ensures that the procedure's entry/exit
sequence is appropriate for an interrupt handler.

The _chain Jntr function does not return to the caller.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

145

Description

Remarks

Return Value

Compatibility

Changes the current working directory.

#include <direct.h>

#include <errno.h>

int chdir(char *dirl1ame);

dirname

Required only for function declarations

Required for errno constants

Path name of new working directory

chdir

The chdir function changes the current working directory to the directory specified by
dirname. The dirname argument must refer to an existing directory.

This function can change the current working directory on any drive; it cannot be used to
change the default drive itself. For example, if A: is the default drive and \BIN is the
current working directory, the following call changes the current working directory for
drive C:

chdir("c:\\temp");

Notice that you must place two backslashes (\\) in a C string in order to represent a single
backslash (\); the backslash is the escape character for C strings and therefore requires
special handling.

This function call has no apparent immediate effect. However, when the _chdrive function
is called to change the default drive to C:, the current working directory becomes
C:\TEMP.

In OS/2 protected mode, the current working directory is local to a process rather than
system-wide. When a process tenninates, the current working directory is restored to its
original value. Under DOS, the new directory set by the program becomes the new current
working directory.

The chdir function returns a value of 0 if the working directory is successfully changed. A
return value of -1 indicates an error, in which case errno is set to ENOENT, indicating
that the specified path name could not be found.

o ANSI • DOS • OS/2 • UNIX • XENIX

chdir 146

See Also _dos_setdrive, mkdir, rmdir, system

Exampw __ __

1* CHGDIR.C: This program uses the chdir function to verify that a
* given directory exists. Under real mode that directory also becomes
* the current directory. Under protected mode, it is only the default
* directory for the current process.
*1

#include (direct.h)
#include (stdio.h)
#include (stdlib.h)

void maine int argc, char *argv[])
(

if(chdir(argv[1]
printf("Unable to locate the directory: %s\n", argv[1]);

else
system("dir *.c");

Output

[C:\LIBREF] chgdir \tmp

The volume label in drive C is OS2.
Directory of C:\TMP

DUP C
TEST C

2 File(s)

232 4-18-89 11:18a
713 4-07-88 2:49p

14155776 bytes free

147

Description

Remarks

Return Value

Compatibility

See Also

chdrive

Changes the current working drive.

#include <direct.h> Required only for function declarations

int _ chdrive(int drive);

drive Number of new working drive

The _chdrive function changes the current working drive to the drive specified by drive.
The drive argument uses an integer to specify the new working drive (l=A, 2=B, etc.).

This function changes only the working drive; the chdir function changes the working
directory.

In OS/2 protected mode, the working drive is local to a process rather than system-wide.
When a process terminates, the working drive is restored to its original value. Under DOS,
the new drive set by the program becomes the new working drive.

The _ chdrive function returns a value of 0 if the working drive is successfully changed. A
return value of -1 indicates an error.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

chdir, _dos_setdrive, _fullpath, _getcwd, _getdrive, mkdir, rmdir, system

Exampw __ ___

1* GETDRIVE.C illustrates drive functions including:
* _getdrive chdrive _getdcwd
*1

#include <stdio.h>
#include <conio.h>
#include <direct.h>
#include <stdlib.h>

chdrive

void maine)
(

int ch, drive, curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists. */
fore drive = 1; drive (= 26; drive++)

if(!_chdrive(drive))
printf("%c: ", drive + 'A' - 1);

while(1)
(

printf("\nType drive letter to check or ESC to quit: ");
ch = getch();
if(ch == 27)

break;
if(isalpha(ch))

putch(ch);
if(_getdcwd(toupper(ch) - 'A' + 1, path, _MAX_PATH) != NULL

printf("\nCurrent directory on that drive is %s\n", path);

/* Restore original drive. This is only necessary for DOS. Under OS/2
* the current drive of the calling process is always restored.
*/

_chdrive(curdrlve);
printf("\n");

Output

Available drives are:
A: B: C:
Type drive letter to check or ESC to quit: q
Type drive letter to check or ESC to quit: a
Current directory on that drive is A:\

Type drive letter to check or ESC to quit: c
Current directory on that drive is C:\LIBREF

Type drive letter to check or ESC to quit:

148

149

Description

Remarks

Return Value

Changes the file-pennission settings.

#include <sys\types.h>

#include <sys\stat.h>

#include <errno.h>

#include <io.h> Required only for function declarations

int chmod(char *filename, int pmode);

filename

pmode

Path name of existing file

Permission setting for file

chmod

The chmod function changes the pennission setting of the file specified by filename. The
permission setting controls read and write access to the file. The constant expression
pmode contains one or both of the manifest constants S _ IWRITE and S _ IREAD, defined in
SYs\sTAT.H. Any other values for pm ode are ignored. When both constants are given,
they are joined with the bitwise-OR operator (I). The meaning of the pmode argument is
as follows:

Value

S_IWRITE

S_IREAD

S_ IREAD I S _IWRITE

Meaning

Writing pennitted

Reading pennitted

Reading and writing permitted

If write permission is not given, the file is read-only. Under DOS and OS/2, all files are
readable; it is not possible to give write-only permission. Thus the modes S_IWRITE and
S_IREAD I S_IWRITE are equivalent.

The chmod function returns the value 0 if the permission setting is successfully changed.
A return value of -1 indicates an error; in this case, errno is set to ENOENT, indicating
that the specified file could not be found.

chmod 150

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also access, creat, fstat, open, stat

Exampw __ __

/* CHMOD.C: This program uses chmod to change the mode of a file to
* read-only. It then attempts to modify the file.
*/

#include (Sys\types.h>
#include (sys\stat.h>
#include (io.h>
#include (stdio.h>
#include (stdlib.h>

void maine)
(

/* Make file read-only: */
if(chmod("CHMOD.C", S_IREAD) -= -1)

perror("File not found\n");
else

printf("Mode changed to read-only\n");
system("echo /* End of file */ » CHMOD.C");

/* Change back to read/write: */
if(chmod("CHMOD.C", S~IWRITE) -1)

perror("File not found\n");
else

printf("Mode changed to read/write\n");

Output

Mode changed to read-only
Access denied
Mode changed to read/write

151

Description

Remarks

Return Value

Compatibility

See Also

Changes the file size.

#include <io.h>

#include <errno.h>

chsize

Required only for function declarations

int chsize(int handle, long size);

handle

size

Handle referring to open file

New length of file in bytes

The chsize function extends or truncates the file associated with handle to the length
specified by size. The file must be open in a mode that permits writing. Null characters
('\0') are appended if the file is extended. If the file is truncated, all data from the end of
the short~ned file to the original length of the file is lost.

In DOS, the directory update is done when a file is closed. Consequently, while a program
is running, requests to determine the amount of free disk space may receive inaccurate
results.

The chsize function returns the value 0 if the file size is successfully changed. A return
value of -1 indicates an error, and errno is set to one of the following values:

Value

EACCES

EBADF

ENOSPC

Meaning

Specified file is locked against access (OS/2 and DOS
versions 3.0 and later only).

Specified file is read-only or an invalid file handle.

No space is left on device.

o ANSI • DOS • OS/2 • UNIX • XENIX

close, creat, open

Exampre __ __

1* CHSIZE.C: This program uses filelength to report the size of a
* file before and after modifying it with chsize.
*1

chsize

lIinclude (io.h>
lIinclude (fcntl.h>
lIinclude (sys\types.h>
lIinclude (sys\stat.h>
lIinclude (stdio.h>

void maine)
{

int fh, result:
unsigned int nbytes = BUFSIZ:

/* Open a file */
i f((fh - open("data", O_RDWR I O_CREAT, S_IREAD I S_IWRITE » I- -1)
(

Output

printf("File length before: %ld\n", filelength(fh)):
if(chsize(fh, 329678) == 0)

printf("Size successfully changed\n"):
else

printf("Problem in changing the size\n"):
printf("File length after: %ld\n", filelength(fh)):
close(fh):

File length before: 0
Size successfully changed
File length after: 329678

152

153 clear87

Description Gets and clears the floating-point status word.

#include <fIoat.h>

unsigned int _clearS7(void);

Remarks The _ clearS7 function gets and clears the floating-point status word. The floating-point sta­
tus word is a combination of the 8087/80287 status word and other conditions detected by
the 8087/80287 exception handler, such as floating-point stack overflow and underflow.

Return Value The bits in the value returned indicate the floating-point status. See the FLOAT.H include
file for a complete definition of the bits returned by _ clearS7.

Many of the math library functions modify the 8087/80287 status word, with unpredict­
able results. Return values from clearS7 and statusS7 become more reliable as fewer
floating-point operations are performed between known states of the floating-point status
word.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _controIS7, _statusS7

Exampre __ ___

1* CLEAR87.C: This program creates various floating-point problems,
* then uses _clear87 to report on these problems.
*1

#include <stdio.h>
#include <float.h>

void main()
(

double a = le-40, b;
float x, Y;

printf("Status: %.4x - clear\n", _clear87());

1* Store into y is inexact and underflows: *1
y =- a;
printf("Status: %.4x - inexact, underflow\n", _clear87());

_clear87

1* y is denormal: *1
b = y;
printf("Status: %.4x - denormal\n", _clear87());

Output

Status: 0000 - clear
Status: 0030 - inexact, underflow
Status: 0002 - denormal

154

155 clearerr

Description Resets the error indicator for a stream.

#include <stdio.h>

void clearerr(FILE *stream);

stream Pointer to FILE structure

Remarks The clearerr function resets the error indicator and end-of-file indicator for stream. Error
indicators are not automatically cleared; once the error indicator for a specified stream is
set, operations on that stream continue to return an error value until clearerr, fseek,
fsetpos, or rewind is called.

Return Value None.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also eof, feof, ferror, perror

Exampw __ _____

1* CLEARERR.C: This program creates an error on the standard input
* stream, then clears it so that future reads won't fail.
*/

#include <stdio.h>

void main()
{

int e;

1* Create an error by writing to standard input. *1
putc('e', stdin);
if(ferror(stdin))
{

perror("Wri te error");
clearerr(stdin);

clearerr

1* See if read causes an error. *1
printf("Will input cause an error? ");
c = getc(stdin);
if(ferror(stdin)
(

Output

perror("Read error");
clearerr(stdin);

Write error: Error 0
Will input cause an error? n

156

157 _clearscreen

Description Clears the specified area of the screen.

#include <graph.h>

void _far _clearscreen(short area);

area Target area

Remarks The _clearscreen function erases the target area, filling it with the current background
color. The area parameter can be one of the following manifest constants (defined in
GRAPH.H):

Return Value

Constant

_GCLEARSCREEN

_GVIEWPORT

_GWINDOW

None.

Action

Clears and fills the entire screen

Clears and fills only within the current view port

Clears and fills only within the current text window

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _getbkcolor, _ setbkcolor

Exampw __ ___

1* CLRSCRN.C *1
#include <conio.h>
#include <graph.h>
#include <stdlib.h>

void maine)
{

short xhalf. yhalf. xquar. yquar;
struct videoconfig vc;

_clearscreen

/* Find a valid graphics mode. */
if(!_setvideomode(_MAXRESMODE)

exit(1);

_getvideoconfig(&vc);

xhalf = vc.numxpixels / 2;
yhalf = vc.numypixels / 2;
xquar = xhalf / 2;
yquar = yhalf / 2;

_setviewport(0, 0, xhalf - I, yhalf - 1);
_rectangle(_GBORDER, 0, 0, xhalf - I, yhalf - 1);
_ellipse(_GFILLINTERIOR, xquar / 4, yquar / 4,

xhalf - (xquar / 4), yhalf - (yquar / 4));
getch();
_clearscreen(_GVIEWPORT);

getch();
_setvideomode(_DEFAULTMODE);

158

159

Description

Remarks

Return Value

Compatibility

See Also

clock

Calculates the time used by the calling process.

#include <time.h>

c1ock_t c1ock(void);

The clock function tells how much processor time has been used by the calling process.
The time in seconds is approximated by dividing the clock return value by the value of the
CLOCKS_PER_SEC constant.

In other words, the clock function returns the number of processor timer ticks that have
elapsed. A timer tick is approximately equal to 1/CLOCKS_PER_SEC seconds.

The clock function returns the product of the time in seconds and the value of the
CLOCKS_PER_SEC constant. If the processor time is not available, the function returns
the value -1, cast as c1ock_t.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

In both DOS and OS/2, clock returns the time elapsed since the process started. This may
not be equal to the actual processor time used by the process.

In previous versions of Microsoft C, the CLOCKS_PER_SEC constant was called
CLK_TCK.

difftime, time

Exampm __ __

1* CLOCK.C: This example prompts for how long the program is to run and
* then continuously displays the elapsed time for that period.
*1

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void sleep(clock_t wait);

void main()
(

long i = 600000L;
clock_t start, finish;
double duration;

clock

1* Delay for a specified time. *1
printf("Delay for three seconds\n");
sleep((clock_t)3 * CLOCKS_PER_SEC);
printf("Done!\n");

1* Measure the duration of an event. *1
printf("Time to do %ld empty loops is ", i);
start = clock();
wh il e (i - -)

,
finish = clock();
duration = (double)(finish - start) I CLOCKS_PER_SEC;
printf("%2.1f seconds\n", duration);

1* Pauses for a specified number of microseconds. *1
void sleep(clock_t wait)
(

goal = wa5t + clock();
while(goal> clock())

Output

Delay for five seconds
Done!
Time to do 900000 empty loops is 2.0 seconds

160

161

Description

Remarks

Closes a file.

#include <io.h>

#include <errno.h>

int close(int handle);

handle

Required only for function declarations

Handle referring to open file

The close function closes the file associated with handle.

close

Return Value The close ftinction returns 0 if the file was successfully closed. A return value of -1 indi­
cates an error, and errno is set to EBADF, indicating an invalid file-handle argument.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also chsize, creat, dup, dup2, open, unlink

Exampw __ __

1* OPEN.C: This program uses open to open a file named OPEN.C for input
* and a file named OPEN.OUT for output. The files are then closed.
*1

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>

void maine)
(

int fh1, fh2;
fh1 = open("OPEN.C", O_RDONLY);
if(fh1 == -1)

perror("open failed on input file");
else
(

printf("open succeeded on input file\n");
close(fh1);

close

fh2 = open("OPEN.OUT", O_WRONLY I O_CREAT, S_IREAD I S_IWRITE);
if(fh2 == -1)

perror("open failed on output file");
else
(

Output

printf("open succeeded on output file\n");
close(fh2);

open succeeded on input file
open succeeded on output file

162

163

Descripllon

Remarks

control87

Gets and sets the floating-point control word.

#include <float.h>

unsigned int _controIS7(unsigned int new, unsigned int mask);

new New control-word bit values

mask Mask for new control-word bits to set

The _ controlS7 function gets and sets the floating-point control word. The floating-point
control word allows the program to change the precision, rounding, and infinity modes in
the floating-poi nt-math package. Floating-point exceptions can also be masked or un­
masked using the _ controlS7 function.

If the value for mask is equal to 0, then _ controlS7 gets the floating-point control word. If
mask is nonzero, then a new value for the control word is set in the following manner: for
any bit that is on (equal to 1) in mask, the corresponding bit in /lew is used to update the
control word. To put it another way,

fpcntrl = «fpcntri & -mask) I (new & mask»

where fpcntrl is the floating-point control word.

The possible values for the mask constant (mask) and new control values (new) are shown
in Table R.I.

Table R.i Hex Values

Mask Hex Value Constant Hex Value

MeW_EM OxOO3F
(Interrupt
exception)

EM_INVALID OxOOOl
EM_DENORMAL OxOOO2
EM_ZERODIVIDE OxOOO4
EM_OVERFLOW OxOOO8
EM_UNDERFLOW OxOOlO
EM_INEXACT OxOO20

control87 164

Table R.t (cOllfillued)

Mask Hex Value Constant Hex Value

MCW_IC OxlOOO
(Infinity
control)

IC_AFFINE OxlOOO

IC _PROJECTIVE OxOOOO

MCW_RC OxOCOO
(Rounding
control)

RC_CHOP OxOCOO

RC_UP Ox0800

RC_DOWN Ox0400

RC_NEAR OxOOOO

MCW_PC Ox0300
(Precision
control)

PC_24 (24 bits) OxOOOO

PC_53 (53 bits) Ox0200

PC_64 (64 bits) Ox0300

Return Value The bits in the value returned indicate the floating-point control state. See the FLOA T.H
include file for a complete definition of the bits returned by _controI87.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _clear87, status87

Exampw ___ __

1* CNTRL87.C: This program uses _contro187 to output the control word,
* set the precision to 24 bits, and reset the status to the default.
*1

#include (stdio.h)
#include <float.h>

165

void maine)
(

double a = 0.1;

1* Show original control word and do calculation. *1
printf("Original: 0x%.4x\n", _contro187(0, 0));
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

1* Set precision to 24 bits and recalculate. *1
printf("24-bit: 0x%.4x\n", _contro187(PC_24, MCW_PC));
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

1* Restore to default and recalculate: *1
printf("Default: 0x%.4x\n", _contro187(CW_DEFAULT, 0xffff));
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

Output

Original: 0x1332
0.1 * 0.1 = 1.000000000000000e-002
24-bit: 0x1332
0.1 * 0.1 = 9.999999776482582e-003
Default: 0x1032
0.1 * 0.1 = 1.000000000000000e-002

control87

cos Functions 166

Description

Remarks

Return Value

Compallbillty

Calculate the cosine (cos and cos I) or hyperbolic cosine (cosh and coshl).

#include <math.h>

double cos(double x);

double cosh(double x);

long double cosl(long double x);

long double coshl(long double x);

x Angle in ,radians

The cos and cosh functions return the cosine and hyperbolic cosine, respectively, of x.

The cosl and coshl functions are the 80-bit counterparts and use the 80-bit, 10-byte co­
processor fonn of arguments and return values. See the reference page on the long double
functions for more details on this data type.

If x is large, a partial loss of significance in the result may occur in a call to cos, in which
case the function generates a PLOSS error. If x is so large that significance is completely
lost, cos prints a TLOSS message to stderr and returns O. In both cases, errno is set to
ERANGE.

If the result is too large in a cosh call, the function returns HUGE_VAL and sets errno to
ERANGE. .

cos,cosh

• ANSI • DOS • OS/2 • UNIX • XENIX

cos I, coshl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

167 cos Functions

See Also acos functions, as in functions, atan functions, math err, sin functions, tan functions

Exampw __ __

/* SINCOS.C: This program displays the sine, hyperbolic sine, cosine,
* and hyperbolic cosine of pi / 2.
*/

#include <math.h>
#include <stdio.h>

void main()
(

double pi = 3.1415926535;
double x, y:

x =< pi / 2:
y = sin(x):
printf("sin(%f) = %f\n", x, y);
y = sinh(x):
printf("sinh(%f) = %f\n",x, y);
y = cos(x);
printf("cos(%f) = %f\n", x, y);
y = cosh(x):
printf("cosh(%f) = %f\n",x, y);

Output

sin(1.570796) = 1.000000
sinh(1.570796) = 2.301299
cos(1.570796) = 0.000000
cosh(1.570796) = 2.509178

cprinlf

Description

Remarks

Return Value

Compatibility

See Also

Fonnats and prints to the console.

#include <conio.h> Required only for function declarations

int cprintf(char *format [, argument] ...);

format

argument

Fonnat control string

Optional arguments

168

The cprintf function fonnats and prints a series of characters and values directly to the
console, using the putch function to output characters. Each argument (if any) is con­
verted and output according to the corresponding fonnat specification informat. The for­
mat has the same fonn and function as the format argument for the printf function; see
printf for a description of the fonnat and arguments.

Note that unlike the fprintf, printf, and sprintf functions, cprintf does not translate line­
feed characters into carriage-return-line-feed combinations on output.

The cprintf function returns the number of characters printed.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

cscanf, fprintf, printf, sprintf, vprintf

Exampw __ __

1* CPRINTF.C: This program displays some variables to the console. *1

#include <conio.h>

void mainO
{

int i = -16, h = 29;
unsigned u = 62511;
cha r c = 'A';
char s[] = "Test";

169

1* Note that console output does not translate \n as
* standard output J does. Use \r\n instead.
*1

cprintf("%d %.4x %u %c %s\r\n", i, h, u, c, s);

Output

-16 001d 62511 A Test

cprintf

cputs 170

Description Puts a string to the console.

#include <conio.h> Required only for function declarations

int cputs(char *string);

string Output string

Remarks The cputs function writes the null-tenninated string pointed to by string directly to the con­
sole. Note that a carriage-return-line-feed (CR-LF) combination is not automatically ap­
pended to the string.

Return Value If successful, cputs returns a O. If the function fails, it returns a nonzero value.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also putch

Exampw __ ___

I(CPUTS.C: This program first displays a string to the console. *1

#include (conio.h>

void maine)
{

1* String to print at console. Note the \r (return) character. *1
char *buffer = "Hello world (courtesy of cputs)!\r\n";

cputs(buffer);

Output

Hello world (courtesy of cputs)!

171

Description

Remarks

Creates a new file.

#include <sys\types.h>

#include <sys\stat.h>

#include <errno.h>

#include <io.h> Required only for function declarations

int create char *filename, int pmode);

filename

pmode

Path name of new file

Permission setting

creal

The creat function either creates a new file or opens and truncates an existing file. If the
file specified by filename does not exist, a new file is created with the given permission set­
ting and is opened for writing. If the file already exists and its permission setting allows
writing, creat truncates the file to length 0, destroying the previous contents, and opens it
for writing.

The permission setting,pmode, applies to newly created files only. The new file receives
the specified permission setting after it is closed for the first time. The integer expression
pmode contains one or both of the manifest constants S_IWRITE and S_IREAD, defined in
SYS'STAT.H. When both of the constants are given, they are joined with the bitwise-OR
operator (I). The pmode argument is set to one of the followin"g values:

Value

S_IWRITE

S_IREAD

S_ IREAD I S _ IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read-only. Under DOS and OS/2, it is not
possible to give write-only permission. Thus, the S_IWRITE and S_IREAD I S_IWRITE
modes are equivalent. Under DOS versions 3.0 and later, files opened using creat are al­
ways opened in compatibility mode (see sopen).

The creat function applies the current file-permission mask to pmode before setting the
permissions (see umask).

Note that the creat routine is provided primarily for compatibility with previous libraries.
A call to open with O_CREAT and O_TRUNC in the oflag argument is equivalent to creat
and is preferable for new code.

creal

Return Value

Compatibility

See Also

If successful, creat returns a handle for the created file. Otherwise, it returns -1 and sets
errno to one of the following constants:

Value

EACCES

EMFILE

ENOENT

Meaning

Path name specifies an existing read-only file or specifies a
directory instead of a file

No more handles available (too many open files)

Path name not found

o ANSI • DOS • OS/2 • UNIX • XENIX

chmod, chsize, close, dup, dup2, open, sopen, umask

172

Exampw __ __

1* CREAT.C: This program uses creat to create the file (or truncate the
* existing file) named data and open it for writing.
*1

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void main()
(

int fh;

fh = create "data", S_IREAD I S_IWRITE);
i f(fh == -1)

perror("Couldn't create data file");
else
(

Output

printf("Created data file.\n");
close(fh);

Created data file.

173

Description

Remarks

Return Value
•

Compatibility

See Also

Reads formatted data from the console.

#include <conio.h> Required only for function declarations

int cscanf(char *format [, argument] ...);

format

argument

Format-control string

Optional arguments

cscanf

The cscanf function reads data directly from the console into the locations given by
argument. The getche function is used to read characters. Each optional argument must be
a pointer to a variable with a type that corresponds to a type specifier informat. The for­
mat controls the interpretation of the input fields and has the same form and function as the
format argument for the scanf function; see scanf for a description of format.

While cscanf normally echoes the input character, it will not do so if the last call was to
ungetch.

The cscanf function returns the number of fields that were successfully converted and as­
signed. The return value does not include fields that were read but not assigned .

The return value is EOF for an attempt to read at end-of-file. This may occur when key­
board input is redirected at the operating system command-line level. A return value of 0
means that no fields were assigned.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

cprintf, fscanf, scanf, sscanf

Exampw __ ___

1* CSCANF.C: This program prompts for a string and uses cscanf to read
* in the response. Then cscanf returns the number of items matched,
* and the program displays that number.
*1

#include <stdio.h)
#include <conio.h)

cscanf

void main()
{

int result, i[3J;

cpri ntf("Enter three integers: ");
result = cscanf("%i %i %i", &i[0], &i [1], &i[2J);
cprintf("\r\nYou entered");
while(result--)

cprintf("%i ", i[resultJ);
cprintf("\r\n");

Output

Enter three integers: 34 43 987k
You entered 987 43 34

174

175

Description

Remarks

Return Value

Compatibility

See Also

clime

Converts a time stored as a time_t value to a character string.

#include dime.h> Required only for function declarations

char *ctime(const time_t *timer);

timer Pointer to stored time

The ctime function converts a time stored as a time_t value to a character string. The
timer value is usually obtained from a call to time, which returns the number of seconds
elapsed since 00:00:00 Greenwich mean time, January 1, 1970.

The string result produced by ctime contains exactly 26 characters and has the fonn of the
following example:

Wed Jan 02 02:03:55 1980\n\0
\

A 24-hour clock is used. All fields have a constant width. The newline character (\n) and
the null character ('\0') occupy the last two positions of the string.

Calls to the ctime function modify the single statically allocated buffer used by the
gmtime and the localtime functions. Each call to one of these routines destroys the result
of the previous call. The'ctime function also shares a static buffer with the asctime func­
tion. Thus, a call to ctime destroys the results of any previous call to asctime, localtime,
orgmtime.

The ctime function returns a pointer to the character string result. If time represents a date
before 1980, ctime returns NULL.

• ANSI • DOS • OS/2 • UNIX • XENIX

asctime, ftime, gmtime, localtime, time

Exampw __ __

/* ASCTIME.C: This program places the system time in the long integer aclock,
* translates it into the structure newtime and then converts it to
* string form for output, using the asctime function.
*/

#include <time.h>
#include <stdio.h>

clime

struct tm *newtime;
time_t aclock;

void main()
{

time(&aclock);

newtime = localtime(&aclock);

/* Print local time as a string. */

/* Get time in seconds. */

/* Convert time to struct tm form. */

printf("The current date and time ~re: %s\n", asctime(newtime));

Output

The current date and time are: Thu Jun 15 06:57:59 1989

176

177

Oeserlpllon

Remarks

cwait

Waits until the child process terminates.

#include <process.h>

int cwait(int *termstat, int procid, int action);

termstat

procid

action

Address for termination status code

Process ID of child

Action code

The cwait function suspends the calling process until the specified child process
terminates.

If not NULL, terms tat points to a buffer where cwait will place the termination-status word
and the return code of the terminated child process.

The termination-status word indicates whether or not the child process terminated nor­
mally by calling the OS/2 DosExit function. (Programs that terminate with exit or by
"falling off the end of main" use DosExit internally.) If the process did terminate nor­
mally, the low-order and high-order bytes of the termination-status word are as follows:

Byte

High order

Low order

Contents

Contains the low-order byte of the result code that the child
code passed to DosExit. The DosExit function is called if the
child process called exit or _exit, returned from main, or
reached the end of main. The low-order byte of the result
code is either the low-order byte of the argument to _exit or
exit, the low-order byte of the return value from main, or a
random value if the child process reached the end of main.

o (normal termination).

cwail

Return Value

178

If the child process tenninates without calling DosExit, the high-order and low-order bytes
of the tennination-status word are as follows:

Byte

High order

Low order

Contents

o
Tennination code from DosCWait:

Code

2

3

Meaning

Hard-error abort

Trap operation

SIGTERM signal not intercepted

The procid argument specifies which child-process tennination to wait for. This value is re­
turned by the call to the spawn function that started the child process. If the specified child
process tenninates before cwait is called, the function returns immediately.

The action argument specifies when the parent process resumes execution, as shown in the
following list:

Value

WAIT_GRANDCHILD

Meaning

The parent process waits until the specified child process has
ended.

The parent process waits until the specified child process and
all child processes of that child process have ended.

The WAIT_CHILD and WAIT_GRANDCHILD action codes are defined in PROCESS.H.

If the cwait function returns after nonnal tennination of the child process, it returns the
child's process ID.

If the cwait function returns after abnonnal tennination of the child process, it returns -1
and sets errno to EINTR.

Otherwise, the cwait function returns -1 immediately and sets errno to one of the follow­
ing error codes:

Value

ECHILD

EINVAL

Meaning

No child process exists, or invalid process ID

Invalid action code

179 cwait

Compatibility o ANSI 0 DOS • OS/2 0 UNIX 0 XENIX

Note that the OS/2 DosExit function allows programs to return a 16-bit result code. How­
ever, the wait and cwait functions return only the low-order byte of that result code.

See Also exit, _exit, spawn functions, wait

Exampre __ ___

/* CWAIT.C: This program launches several child processes and waits
* for a specified process to finish.
*/

#define INCL_NOPM
/Idefi ne INCL_NOCOMMON
#define INCL_DOSPROCESS
#include <os2.h> 1* DosSleep */
#include <process.h> /* cwait */
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

/* Macro to get a random integer within a specified range */
#define getrandom(min, max) «rand() % (int)«(max) + 1) - (min»)) + (min)

struct CHILD
{

int pid;
char name[10];

child[4] = { (0, "Ann"), (0, "Beth"), (0, "Carl"), (0, "Dave" } };

void main(int argc, char *argv[]
{

int termstat, pid, c, tmp;

srand((unsigned)time(NULL));
/* If no arguments, this is the parent. */
i f (a r g c == 1)
(

/* Spawn children in numeric order. *1
for(c = 0; c < 4; c++)

/* Seed randomizer */

child[c].pid = spawnl(P_NOWAIT, argv[0], argv[0],
child[c].name, NULL);

cwait 180

/* Wait for randomly $pecified child, and respond when done. */
c = getrandom(0, 3);
printf("Come here, %s\n", child[c].name);
cwait(&termstat, child[c].pid, WAIT_CHILD);
printf("Thank you, %s\n", child[c].name);

/* If there are arguments, this must be a child. */
else
{

Output

/* Delay for a period determined by process number. */
DosSleep((argv[1][0] - 'A' + 1) * 1000L);
printf("Hi, dad. It's %s.\n", argv[l]);

Come here, Carl
Hi, dad. It's Ann.
Hi, dad. It's Beth.
Hi, dad. It's Carl.
Thank you, Carl
Hi, dad. It's Dave.

181

Description

Remarks

Return Value

Compatibility

See Also

dieeetomsbin, dmsbintoieee

Convert between IEEE double value and Microsoft (MS) binary double value.

#include <math.h>

int dieeetomsbin(double *srcB, double *dstB);

int dmsbintoieee(double *srcB, double *dstB);

srcB

dstB

Buffer containing value to convert

Buffer to store converted value

The dieeetomsbin routine converts a double-precision number in IEEE (Institute of
Electrical and Electronic Engineers) format to Microsoft (MS) binary format. The routine
dmsbintoieee converts a double-precision number in MSbinary format to IEEE format.

These routines allow C programs (which store floating-point numbers in the IEEE format)
to use numeric data in random-access data files created with those versions of Microsoft
BASIC that store floating-point numbers in MS binary format, and vice versa.

The argument srcB is a pointer to the double value to be converted. The result is stored at
the location given by dstB.

These routines do not handle IEEE NANs ("not a numberU
) and infinities. IEEE denormals

are treated as 0 in the conversions.

These functions return 0 if the conversion is successful and I if the conversion causes an
overflow.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

fieeetomsbin, fmsbintoieee

difftime

Description

Remarks

Return Value

Compatibility

Finds the difference between two times.

#include <time.h> Required only for function declarations

double difftime(time_t timerl, time_t timerO);

timerO

timerl

Beginning time

Ending time

The difftime function computes the difference between the supplied time values, timerO
and timer1.

The difftime function returns, in seconds, the elapsed time from timerO to timer 1. The
value returned is a double-precision number.

• ANSI • DOS • OS/2 • UNIX • XENIX

See Also time

182

Exampre __ __

1* DIFFTIME.C: This program calculates the amount of time needed to
* do a floating-point multiply 50000 times.
*1

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void maine)
{

time_t start, finish;
unsigned loop;
double result, elapsed_time;

printf("This program will do a floating pOint multiply 50000 times\n");
printf("Working ... \n");

time(&start);
fore loop = 0; loop < 50000L; loop++)

result = 3.63 * 5.27;
time(&finish);

183

elapsed_time = difftime(finish, start);
printf("\nProgram takes %6.2f seconds.\n", elapsed_time);

Output

This program will do a floating point multiply 50000 times
Working ...

Program takes 4.00 seconds.

difftime

disable

Descriptio"

Remarks

Return Value

Compatibility

See Also

Disables interrupts.

#include <dos.h>

void _ disable(void);

The _disable routine disables interrupts by executing an 8086 eLI machine instruction.
Use _disable before modifying an interrupt vector.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

enable

184

185 _displaycursor

Description Sets the cursor toggle for graphics functions.

#include <graph.h>

short _far _displaycursor(short toggle);

toggle Cursor state

Remarks Upon entry into each graphic routine, the screen cursor is turned off. The _displaycursor
function detennines whether the cursor will be turned back on when programs exit graphic
routines. If toggle is set to _ GCURSORON, the cursor will be restored on exit. If toggle is
set to _GCURSOROFF, the cursor will be left off.

Return Value The function returns the previous value of toggle. There is no error return.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _gettextcursor, _ settextcursor

Exampw __ __

/* DISCURS.C: This program changes the cursor shape using _gettextcursor
* and _settextcursor, and hides the cursor using _displaycursor.
*/

#include <conio.h)
#include <graph.h)

void main()
(

short oldcursor;
short newcursor = 0x007; /* Full block cursor */

/* Save old cursor shape and make sure cursor is on */
oldcursor = _gettextcursor();
_clearscreen(_GCLEARSCREEN);
_displaycursor(_GCURSORON);
_outtext("\nOld cursor shape: ");.
getch();

/* Change cursor shape */
_outtext("\nNew cursor shape: ");
_settextcursor(newcursor);
getch();

_displaycursor

/* Restore original cursor shape */
_outtext ("\n");
_settextcursor(oldcursor);

186

187 div

Description Computes the quotient and the remainder of two integer values.

#include <stdlih.h>

div _t div(int numer, int denom);

numer Numerator

denom Denominator

Remarks The div function divides numer by denom, computing the quotient and the remainder. The
div _t structure contains the following elements:

Return Value

Compatibility

Element

int quot

int rem

Description

Quotient

Remainder

The sign of the quotient is the same as that of the mathematical quotient. Its absolute value
is the largest integer that is less than the absolute value of the mathematical quotient. If the
denominator is 0, the program will terminate with an error message.

The div function returns a structure of type div _t, comprising both the quotient and the re­
mainder. The structure is defined in STDLIB.H.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also Idiv

Exampw ___ ___

/* DIV.C: This example takes two integers as command-line arguments and
* displays the results of the integer division. This program accepts
* two arguments on the command line following the program name, then
* calls div to divide the first argument by the second. Finally,
* it prints the structure members quot and rem.
*/ .

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

div

void maine 'int argc, char *argv[])
(

int x,y;
div_t div_result;

x = atoi(argv[l]);
y = atoi(argv[2]);

printf("x is %d, y is %d\n", x, y);
div_result = dive x, y);
printf("The quotient is %d, and the remainder is %d\n",

div_result.quot, div_result.rem);

Output

[C:\LIBREF] div 876 13
x is 876, y is 13
The quotient is 67, and the remainder is 5

188

189

Description

Remarks

Return Value

Compatibility

See Also

Allocates a block of memory, using DOS service Ox48.

#include <dos.h>

#include <errno.h>

unsigned _dos_allocmem(unsigned size, unsigned *seg);

size Block size to allocate

seg Return buffer for segment descriptor

The dos allocmem function uses DOS service Ox48 to allocate a block of memory size
paragraphS long. (A paragraph is 16 bytes.) Allocated blocks are always paragraph
aligned. The segment descriptor for the initial segment of the new block is returned in the
word that seg points to. If the request cannot be satisfied, the maximum possible size (in
paragraphs) is returned in this word instead.

If successful, the dos allocmem returns O. Otherwise, it returns the DOS error code and
sets errno to ENOMEM, indicating insufficient memory or invalid arena (memory area)
headers.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

alloca, calloc functions, _dos_freemem, _dos_setblock, halloc, malloc functions

Exampw __ __

/* DALOCMEM.C: This program allocates 20 paragraphs of memory, increases
* the allocation to 40 paragraphs, and then frees the memory space.
*/

#include <dos.h>
#include <stdio.h>

void main()
{

unsigned segment;
unsigned maxsize;

1* Allocate 20 paragraphs *1
if(_dos_allocmem(20, &segment) 1= 0)

printf("allocation failed\n");
else

printf("allocation successful\n");

1* Increase allocation to 40 paragraphs *1
if(_dos_setblock(40, segment, &maxsize) 1= 0)

printf("allocation increase failed\n");
else

printf("allocation increase suc~essful\n");

1* free memory *1
i f(_dos_freemem(segment) 1= 0)

printf("free memory failed\n");
else

printf("free memory successful\n");

Output

allocation successful
allocation increase successful
free memory successful

190

191

Description

Remarks

Return Value

Compatibility

See Also

Closes a file using system call INT Ox3E.

#include <dos.h> .

#include <errno.h>

unsigned _dos_close(int handle);

handle Target file handle

The _dos_close function uses system call Ox3E to close the file indicated by handle. The
file's handle argument is returned by the call that created or last opened the file.

The function returns 0 if successful. Otherwise, it returns the DOS error code and sets
errno to EBADF, indicating an invalid file handle.

Do not use the DOS interface I/O routines with the console, low-level, or stream I/O
routines.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampw __ __

/* DOPEN.C: This program uses DOS I/O functions to open and close a file. */

#include <fcntl.h>
#include <stdi6.h>
#include <dos.h>

void main()
{

int fh;

1* Open file with _dos_open function */
if(_dos_open("datal", O_RDONLY, &fh) 1= 0

perror("Open failed on input file\n");
else

printf("Open succeeded on input file\n");

/* Close file with _dos_close function */
i f(_dos_close(fh) 1= 0)

perror("Close failed\n");
else

printf("File successfully closed\n");

Output

Open succeeded on input file
File successfully closed

192

193

Oeserlpllon

Remarks

Relurn Value

Create a new file.

#include <dos.h>

#include <errno.h>

dos_creatFuncUons

unsigned _dos_creat(char *filename, unsigned attrib, int *handle);

unsigned _dos_creatnew(char *filename, unsigned attrib, int *handle);

filename

attrib

handle

File path name

File attributes

Handle return buffer

The _dos_creat and _dos_creatnew routines create and open a new file namedfilename;
this new file has the access attributes specified in the attrib argument. The new file's
handle is copied into the integer location pointed to by handle. The file is opened for both
read and write access. If file sharing is installed, the file is opened in compatibility mode.

The _ dos _ creat routine uses system call INT Ox3C, and the _ dos _ creatnew routine uses
system call INT Ox5B. If the file already exists, _ dos _ creat erases its contents and leaves
its attributes unchanged; however, the _ dos _ creatnew routine fails if the file already exists.

If successful, both routines return O. Otherwise, they return the DOS error code and set
errno to one of the following values:

Constant

EACCES

EEXIST

EMFILE

ENOENT

Meaning

Access denied because the directory is full or, for _ dos _ creat
only, the file exists and cannot be overwritten

File already exists L dos _ creatnew only)

Too many open file handles

Path or file not found

dos_creatFuncffons 194

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampm __ __

/* DCREAT.C: This program creates a file using the _dos_creat function. The
* program cannot create a new file using the _dos_creatnew function
* because it already exists.
*/

#include <stdio.h)
#include <stdlib.h>
#include <dos.h>

void main()
(

int fhl, fh2;
i nt result;

if(_dos_creat("data", _A_NORMAL, &fhl) 1= 0
printf("Couldn't create data file\n");

else
{

Output

printf("Created data file.\n");

/* If _dos_creat is successful, the _dos_creatnew call
* will fail since the file exists
*/

if(_dos_creatnew("data", _A_RDONLY, &fh2) 1= 0)
printf("Couldn't create data file\n");

else
{

)

printf("Created data file.\n");
_dos_close(fh2);

_dos_close(fhl);

Created data file.
Couldn't create data file

195

Description

Remarks

dos~find Functions

Find the file with the specified attributes or find the next file with the specified attributes.

#include <dos.h>

#include <errno.h>

unsigned _dos_findfirst(char *.filename, unsigned attrib, struct find_t *fileinfo);

unsigned _dos_findnext(struct find_t *fileinfo);

filename

affl'ib

file info

Target file name

Target attributes

File-information buffer

The _dos_findfirst routine uses system call INT Ox4E to return infonnation about the first
instance of ~ file whose name and attributes match filename and attrib.

The filename argument may use wildcards (* and ?). The attrib argument can be any of the
following manifest constants:

Constant

_A_NORMAL

_A_RDONLY

Meaning

Archive. Set whenever the file is changed, and cleared by the
DOS BACKUP command.

Hidden file. Cannot be found with the DOS DIR command.
Returns information about normal files as well as about files
with this attribute.

Normal. File can be read or written without restriction.

Read-only. File cannot be opened for writing. and a file with
the same name cannot be created. Returns infonnation about
nonnal files as well as about files with this attribute.

Subdirectory. Returns infonnation about nonnal files as well
as about files with this attribute.

System file. Cannot be found with the DOS DIR command.
Returns information about normal files as well as about files
with this attribute.

Volume ID. Only one file can have this attribute, and it must
be in the root directory.

Multiple constants can be combined (with the OR operator), using the vertical-bar (I)
character.

196

If the attributes argument to either of these functions is _A _ RDONL Y , _A_HIDDEN,
_A_SYSTEM, or _A_SUBDIR, the function also returns any normal attribute files that
match the filename argument. That is, a normal file does not have a read-only, hidden, sys­
tem, or directory attribute.

Information is returned in a find t structure, defined in DOS.H. The find t structure con-
tains the following elements: - -

Element

char reserved[21]

char attrib

unsigned wr _time

unsigned wr _date

long size

char name[13]

Description

Reserved for use by DOS

Attribute byte for matched path

Time of last write to file

Date of last write to file

Length of file in bytes

Null-terminated name of matched file/directory, without
the path

The formats for the wr time and wr .date elements are in DOS format and are not usable
by any other C run-time function. The time format is shown below:

Bits

0-4

5-10

11-15

Contents

N umber of 2-second increments (0 - 29)

Minutes (0-59)

Hours (0-23)

The date format is shown below:

Bits

0-4

5-8

9-15

Contents

Day of month (1-31)

Month (1-12)

Year (relative to 1980)

Do not alter the contents of the buffer between a call to _ dos _findfirst and a subsequent
call to the dos find next function. Also, the buffer should not be altered between calls to
_ dos _findiiext.-

197 dos_find Functions

The _dos_findnext routine uses system call Ox4F to find the next name, if any, that
matches the filename and attrib arguments specified in a prior call to _dos_find first. The
fileinfo argument must point to a structure initialized by a previous call to _dos_findfirst.
The contents of the structure will be altered as described above if a match is found.

Return Value If successful, both functions return O. Otherwise, they return the DOS error code and set
errno to ENOENT, indicating that filename could not be matched.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampw __ ___

/* DFIND.C: This program finds and prints all files in the current directory with
* the .c extension.
*/

#include <stdio.h>
#include <dos.h>

main()
(

/* find first .c file in current directory */
_dos_findfirst("*.c", _A_NORMAL, &c_file);

printf("Listing of .c files\n\n");
printf("File: %s is %ld bytes\n", c_file.name, c_file.size);

/* find the rest of the .c files */
while(_dos_findnext(&c_file) == 0)

printf("File: %s is %ld bytes\n", c_file.name, c_file.size);

Output

Listing of .c files

File: CHDIR.C is 524 bytes
File: SIGFP.C is 2674 bytes
File: MAX.C is 258 bytes
File: CGETS.C is 577 bytes
File: FWRITE.C is 1123 bytes

198

Description Releases a block of memory (INT Ox49).

#include <dos.h>

#include <errno.h>

unsigned _dos_freemem(unsigned seg);

seg Block to be released

Remarks The _dos_freemem function uses system call Ox49 to release a block of memory pre­
viously allocated by _ dos _ allocmem. The seg argument is a value returned by a previous
call to _ dos _ allocmem. The freed memory may no longer be used by the application
program. .

Return Value If successful, _ dos _freemem returns O. Otherwise, it returns the DOS error code and sets
errno to ENOMEM, indicating a bad segment value (one that does not correspond to a seg­
ment returned by a previous _dos_allocmem call) or invalid arena headers.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _ dos _ alIocmem, _ dos _ setblock, free functions

Exampw ___ ___

1* DALOCMEM.C: This program allocates 20 paragraphs of memory, increases
* the allocation to 40 paragraphs, and then frees the memory space.
*1

#include (dos.h>
#include (stdio.h>

void main()
(

unsigned segment;
unsigned maxsize;

1* Allocate 20 paragraphs *1
if(_dos_allocmem(20, &segment) != 0

printf("allocation failed\n");
else

printf("allocation successful\n");

199

/* Increase allocation to 40 paragraphs */
if(_dos_setblock(40, segment, &maxsize) != 0)

printf("allocation increase failed\n");
else

printf("allocation increase successful\n");

/* Free memory */
if(_dos_freemem(segment) != 0)

printf("free memory failed\n");
else

printf("free memory successful\n");

Output

allocation successful
allocation increase successful
free memory successful

Description

Remarks

Return Value

Compatibility

See Also

Gets current system date using system call INT Ox2A.

#include <dos.h>

void _dos~etdate(struct dosdate_t *date);

date Current system date

The _dos~etdate routine uses system call Ox2A to obtain the current system date. The
date is returned in a dosdate _ t structure, defined in DOS.H.

The dosdate _ t structure contains the following elements:

Element

unsigned char day

unsigned char month

unsigned int year

unsigned char dayofweek

None.

Description

1-31

1-12

1980-2099

0-6 (0 = Sunday)

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_dos~ettime, _dos_setdate, _dos_settime, gmtime, localtime, mktime, _strdate,
_ strtime, time

200

Exampm __ __

1* DGTIME.C: This program gets and displays current date and time values. *1

#include <stdio.h>
#include <dos.h>

void main()
{

struct dosdate_t date;
struct dostime_t time;

201

1* Get current date and time values *1

_dos_getdate(&date);
_dos_gettime(&time);

printf("Today's date is %d-%d-%d\n", date.month, date.day, date.year);
printf("The time is %02d:%02d\n", time.hour, time.minute);

Output

Today's date is 6-15-1989
The time is 18:07

Description

Remarks

Gets disk infonnation using system call1NT Ox36.

#include <dos.h>

#include <errno.h>

unsigned _dos_getdiskfree(unsigned drive, struct diskfree_t *diskspace);

drive

disks pace

Drive number (default is 0)

Buffer to hold disk infonnation

The _dosJetdiskfree routine uses system call Ox36 to obtain infonnation on the disk
drive specified by drive. The default drive is 0, drive A is 1, drive B is 2, and so on.
Infonnation is returned in the diskfree_t structure (defined in DOS.H) pointed to by
disks pace.

The struct diskfree _ t structure contains the following elements:

Element

unsigned totat clusters

unsigned avail_clusters

unsigned sectors yer _cluster

unsigned bytes yer _sector

Description

Total clusters on disk

Available clusters on disk

Sectors per cluster

Bytes per sector

202

Return Value If successful, the function returns O. Otherwise, it returns a nonzero value and sets errno to
EINV AL, indicating that an invalid drive was specified.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _ dos Jetdrive, _ dos _ setdrive

Exampw __ __

1* DGDISKFR.C: This program displays information about the default disk drive. *1

#include <stdio.h>
#include <dos.h>

203

rna i n()
{

struct diskfree_t drive;

/* Get information on default disk drive 0 */

_dos_getdiskfree(0, &drive);
printf("total clusters: %d\n", drive.total_clusters);
printf("available clusters: %d\n", drive.avail_clusters);
printf("sectors per cluster: %d\n", drive.sectors_per_cluster);
printf("bytes per sector: %d\n", drive.bytes_per_sector);

Output

total clusters: 9013
available clusters: 6030
sectors per cluster: 4
bytes per sector: 512

204

Description Gets the current disk drive using system call INT Ox19.

#include <dos.h>

void _dos_getdrive(unsigned *drive);

drive Current-drive return buffer

Remarks The _dosJetdrive routine uses system call Ox19 to obtain the current disk drive. The cur­
rent drive is returned in the word that drive points to: 1 = drive A, 2 = drive B, and so on.

Return Value None.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _ dos Jetdiskfree, _ dos _ setdrive, _getdrive

Exampre __ ___

1* DGDRIVE.C: This program prints the letter of the current drive,
* changes the default drive to A, then returns the number of disk drives.
*1

#include <stdio.h>
#include <dos.h>

void main()
(

unsigned olddrive, newdrive;
unsigned number_of_drives;

1* Print current defau~t drive information *1
_dos_getdrive(&olddrive);
printf("The current drive is: %c\n", 'A' + olddrive - 1);

1* Set default ~rive to be drive A *1
printf("Chartging default drive to A\n");
_dos_setdrive(1, &number_of_drives);

1* Get new default drive information and total number of drives *1
_dos_getdrive(&newdrive);
printf("The current drive is: %c\n", 'A' + newdrive - 1);
printf("Number of logical drives: %d\n", number_of_drives);

205

1* Restore default drive *1
_dos_setdrive< olddrive, &number_of_drives);

Output

The current drive is: C
Changtng default drive to A
The current drive is: A
Number of logical drives: 26

Description

Remarks

Return Value

206

Gets the current attributes of a file or directory, using system call INT Ox43.

#include <dos.h>

#include <errno.h>

unsigned _dos_getfileattr(char *pathname, unsigned *attrib);

pathname

attrib

Full path of target file/directory

Word to store attributes in

The _ dos _getfileattr routine uses system call Ox43 to obtain the current attributes of the
file or directory pointed to by pathname . The attributes are copied to the low-order byte of
the attrib word. Attributes are represented by manifest constants, as described below:

Constant

_A_HIDDEN

_A_NORMAL

_A_RDONLY

_A_SUBDIR

A SYSTEM -- ~

_A_VOLID

Meaning

Archive. Set whenever the file is changed, or cleared by the
DOS BACKUP command.

Hidden file. Cannot be found by a directory search.

Normal. File can be read or written without restriction.

Read-only. File cannot be opened for a write, and a file with
the same name cannot be created.

Subdirectory.

System file. Cannot be found by a directory search.

Volume ID. Only one file can have this attribute, and it must
be in the root directory.

If successful, the function returns O. Otherwise, it returns the DOS error code and sets
errno to ENOENT, indicating that the target file or directory could be found.

207

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also access, chmod, _ dos _setfileattr, umask

Exampre __ __

1* OGFILEAT.C: This program creates a file with the specified attributes,
* then prints this information before changing the file attributes back
* to normal.
*1

#include <stdio.h)
Iii ncl ude <dos. h)

void main()
(

unsigned oldattrib, newattrib;
int fh;

1* Get and display file attribute *1
_dos_getfileattr("OGFILEAT.C", &oldattrib);
printf("Attribute: 0x%.4x\n", oldattrib);
if((oldattrib & _A_ROONLY) != 0)

printf("Read only file\n");
else

printf("Not a read only file.\n");

1* Reset file attribute to normal file *1
_dos_setfileattr("OGFILEAT.C", _A_ROONLY);
_dos_getfileattr("OGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

1* Restore file attribute *1
_dos_setfileattr("OGFILEAT.C", oldattrib);
_dos_getfileattr("OGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

Output

Attribute: 0x0020
Not a read only file.
Attribute: 0x0001
Attribute: 0x0020

Description

Remarks

Return Value

Gets the date and time a file was last written, using system call INT Ox57.

#include <dos.h>

#include <errno.h>

unsigned _dos_getftime(int handle, unsigned *date, unsigned *time);

handle

date

time

Target file

Date-return buffer

Time-return buffer

208

The _ dos ~etftime routine uses system call Ox57 to get the date and time that the specified
file was last written. The file must have been opened with a call to _dos_open or
_ dos _ creat prior to calling _ dos ~etftime.The date and time are returned in the words
pointed to by date and time. The values appear in the DOS date and time format:

Time Bits Meaning

0-4 Number of 2-second increments (0-29)

5-10 Minutes (0-59)

11-15 Hours (0-23)

Date Bits Meaning

0-4 Day (1-31)

5-8 Month (1-12)

9-15 Year (1980-2099)

If successful, the function returns O. Otherwise, it returns the DOS error code and sets
errno to EBADF, indicating that an invalid file handle was passed.

209

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _ dos _ setftime, fstat, stat

Exampw __ __

1* DGFTIME.C: This program displays and modifies the date and time
* fields of a file. /
*1

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void maine)
(

unsigned new_date = 0x184f;
unsigned new_time = 0x48e0;
unsigned old_date, old_time;

int fh;

1* FEDC BA98 7654 3210 *1
/* 0001 1000 0100 1111 2/15/92 *1
1* 0100 1000 1110 0000 9:07 AM *1

1* Open file with _dos_open function *1
if(_dos_open("dgftime.obj", O_RDONLY, &fh) 1= 0)

exit (1);

1* Get file date and time */
_dos_getftime('fh, &old_date, &old_time);
printf("Old date field: 0x%.4x\n", old_date);
printf("Old time field: 0x%.4x\n", old_time);
system("dir dgftime.obj");

1* Modify file date and time *1
if(!_d'os_setftime(fh, new_date, new_time))
(

}

_dos_getftime(fh, &new_date, &new_time);
printf("New date fie1d: 0x%.4x\n", new_date);
printf("New time field: 0x%.4x\n", new_time);
system("dir dgftime.obj");

1* Restore date and time *1
_dos_setftime(fh, old_date, old_time);

_dos_close(fh);

Output

Old date field:.0x12cf
Old time field: 0x94bb

Volume in drive C is OS2
Directory of C:\LIBREF

DGFTIME OBJ 3923 6-15-89 6:37p
1 File(s) 13676544 bytes free

New date field: 0x184f
New time field: 0x48e0

Volume in drive C is OS2
Directory of C:\LIBREF

DGFTIME OBJ 3923 2-15-92 9:07a
1 File(s) 13676544 bytes free

210

211

Description

Remarks

Return Value

Compatibility

See Also

Gets the current system time, using system call INT Ox2C.

#include <dos.h>

void _dos_gettime(struct dostime_t *time);

time Current system time

The _ dos Jettime routine uses system call Ox2C to obtain the current system time. The
time is returned in a dostime_t structure, defined in DOS.H.

The dostime _ t structure contains the following elements:

Element

unsigned char hour

unsigned char minute

unsigned char second

unsigned char hsecond

None.

Description

0-23

0-59

0-59

1/1 00 second; 0 -99

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_dosJetdate, _dos_setdate, _dos_settime, gmtime, localtime, _strtime

Exampw __ __

/* DGTIME.C: This program gets and displays current date and time values. */

#include <stdio.h>
#include <dos.h>

void main()
{

struct dosdate_t date;
struct dostime_t time;

/* Get current date and time values */

_dos_getdate(&date);
_dos_gettime(&time);

printf("Today's date is %d-%d-%d\n", date.month, date.day, date.year);
printf("The time is %02d:%02d\n", time.hour, time.minute);

Output

Today's date is 6-15-1989
The time is 18:07

212

213

Description

Remarks

Return Value

Compatibility

See Also

Gets the current value of the interrupt vector, using system call INT Ox35.

#include <dos.h>

void (Jnterrupt _far * _dos_getvect(unsigned intllllm»();

illtnllm Target interrupt vector

The _ dos Jetvect routine uses system call INT Ox35 to get the current value of the inter­
rupt vector specified by intnllm.

This routine is typically used in conjunction with the _dos_setvect function. To replace an
interrupt vector, first save the current vector of the interrupt using _ dos Jetvect. Then set
the vector to your own interrupt routine with _ dos _ setvect. The saved vector can later be
restored, if necessary, using _ dos _setvect. The user-defined routine may also need the orig­
inal vector in order to call that vector or chain to it with _chain Jntr.

The function returns a far pointer for the illtllum interrupt to the current handler, if there
is one.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Description Installs TSR (terminate-and-stay-resident) programs in memory, using system call
INTOx31.

Remarks

Return Value

#include <dos.h>

void _dos_keep(unsigned retcode, unsigned memsize);

retcode Exit status code

memsize Allocated resident memory (in 16-byte paragraphs)

The _dos_keep routine installs TSRs (terminate-and-stay-resident programs) in memory,
using system call INT Ox31.

The routine first exits the calling process, leaving it in memory. It then returns the low­
order byte of retcode to the parent of the calling process. Before returning execution to
the parent process, _dos_keep sets the allocated memory for the now-resident process to
memsize 16-byte paragraphs. Any excess memory is returned to the system.

The _dos,..:.keep function calls the same internal routines called by exit. It therefore takes
the following actions:

• Calls atexit and onexit if defined.

iI Flushes all file buffers.

• Restores interrupt vectors replaced by the C start-up code. The primary one is interrupt
o (divide by zero). If the emulator math library is used and there is no coprocessor,
interrupts Ox34 through Ox3D are restored. If there is a coprocessor, interrupt 2 is
restored.

The _dos_keep function does not automatically close files; you should do this specifically
unless you want files opened by the TSR installation code to remain open for the TSR.

Do not use the emulator math library in TSRs unless you are familiar with the C start-up
code and the coprocessor. Use the alternate math package (not supplied with Microsoft
QuickC) if the TSR must do floating-point math.

Do not run programs that use _dos_keep from inside the Microsoft Programmer's
WorkBench environment, since doing so causes subsequent memory problems. The
_dos_keep function terminates the program when executed in the Programmer's
WorkBench environment.

None.

215

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also

Description Opens a file, using system call INT Ox3D.

Remarks

#include <dos.h>

#include <errno.h>

#include <fcntl.h>

#include <share.h>

Access mode constants

Sharing mode constants

unsigned _dos_open(char *filename, unsigned mode, int *handle);

filename

mode

handle

Path to an existing file

Permissions

Pointer to integer

The _dos_open routine uses system call INT Ox3D to open the existing file pointed to by
filename. The handle for the opened file is copied into the integer pointed to by handle.
The mode argument specifies the file's access, sharing, and inheritance modes by combin­
ing (with the OR operator) manifest constants from the three groups shown below. At
most, one access mode and one sharing mode can be specified at a time.

Constant Mode Meaning

O_RDONLY Access Read-only

O_WRONLY Access Write-only

O_RDWR Access Both read and write

SH_COMPAT Sharing Compatibility

SH_DENYRW Sharing Deny reading and writing

SH_DENYWR Sharing Deny writing

SH_DENYRD Sharing Deny reading

SH_DENYNO Sharing Deny neither

o _NOINHERIT Inheritance by the child File is not inherited
process

Do not use the DOS interface I/O routines in conjunction with the console, low-level, or
stream I/O routines.

217

Return Value If successful, the function returns O. Otherwise, it returns the DOS error code and sets
errno to one of the following manifest constants:

Constant

EACCES

EINVAL

EMFILE

ENOENT

Meaning

Access denied (possible reasons include specifying a directory
or volume ID forji/ename, or opening a read-only file for
write access)

Sharing mode specified when file sharing not installed, or
access-mode value is invalid

Too many open file handles

Path or file not found

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also

Exampw __ _____

1* DOPEN.C: This program uses DOS 1/0 functions to open and close a file. *1

#include <fcntl.h>
#include <stdio.h>
#include <dos.h>

void main()
(

int fh;

1* Open file with _dos_open function *1
if(_dos_open("datal", O_RDONLY, &fh) != 0

perror("Open failed on input file\n");
else

printf("Open succeeded on input file\n");

1* Close file with _dos_close function *1
if(_dos_close(fh) != 0)

perror("Close failed\n"); .
else

printf("File successfully closed\n");

Output

Open succeeded on input file
File successfully closed

218

219

Description

Remarks

Return Value

Compatibility

See Also

Reads data from a file, using system call INT Ox3F.

#include <dos.h>

unsigned _dos_read(int handle, void _far *buffer, unsigned count,
unsigned *numread);

handle

buffer

count

numread

File to read

Buffer to write to

Number of bytes to read

Number of bytes actually read

The _dos_read routine uses system call INT Ox3F to read count bytes of data from the file
specified by handle. The routine then copies the data to the buffer pointed to by buffer.
The integer pointed to by numread will show the number of bytes actually read, which
may be less than the number requested in count. If the number of bytes actually read is 0, it
means the routine tried to read at end-of-file.

Do not use the DOS interface I/O routines in conjunction with the console, low-level, or
stream I/O routines.

If successful, the function returns O. Otherwise, it returns the DOS error code and sets
errno to one of the following constants:

Constant

EACCES

EBADF

Meaning

Access·denied (handle is not open for read access)

File handle is invalid

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_dos_close, _dos_open, _dos_write, read

Exampw __ ___

1* DREAD.C: This program uses the DOS I/O operations to read the contents
* of a file.
*/

#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

void maine)
{

int fh;
char buffer[50];
unsigned number_read;

1* Open file with _dos_open function *1
if(_dos_open("dread.c", O_RDONLY, &fh) != 0

perror("Open failed on input file\n");
else

printf("Open succeeded on input file\n");

1* Read data with _dos_read function *1
_dos_read(fh, buffer, 50, &number_read);
printf("First 40 characters are: %.40s\n\n", buffer);

1* Close file with _dos_close function *1
_dos_close(fh);

Output

Open succeeded on input file
First 40 characters are: 1* DREAD.C: This program uses the DOS II

220

221

Description

Remarks

Return Value

Compatibility

See Also

Changes the size of a memory segment, using system call INT Ox4A.

#include <dos.h>

unsigned _dos_setblock(unsigned size, unsigned seg, unsigned *maxsize);

size

seg

maxsize

New segment size

Target segment

Maximum-size buffer

The _dos_setblock routine uses system call INT Ox4A to change the size of seg, pre­
viously allocated by _dos_allocmem, to size paragraphs. If the request cannot be satisfied,
the maximum possible segment size is copied to the buffer pointed to by maxsize.

The function returns 0 if successful. If the call fails, it returns the DOS error code and
sets errno to ENOMEM, indicating a bad segment value was passed. A bad segment value
is one that does not correspond to a segment returned from a previous _ dos _allocmem
call, or one that contains invalid arena headers.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_ dos _ allocmem, _ dos _freemem, realloc functions

Exampw ___ ____

/* DALOCMEM.C: This program allocates 20 paragraphs of memory, increases
* the allocation to 40 paragraphs, and then frees the memory space.
*/

/linclude <dos.h>
/linclude <stdio.h>

void main()
{

unsigned segment;
unsigned maxsize;

1* Allocate 20 paragraphs *1
if(_dos_allocmem(20, &segment) 1= 0)

printf("allocation failed\n");
else

pri'ntf("allocation successful\n");

1* Increase allocation to 40 paragraphs *1
if(_dos_setblock(40, segment, &maxsize) 1= 0)

printf("allocation increase failed\n");
else

printf("allocation increase successful\n");

1* Free memory *1
if(_dos_freemem(segment) 1= 0)

printf("free memory failed\n");
else

printf("free memory successful\n");

Output

allocation successful
allocation increase successful
free memory successful

222

223

Description

Remarks

Return Value

Compatibility

See Also

Sets the current system date, using system call INT Ox2B.

#include <dos.h>

unsigned _dos_setdate(struct dosdate_t *date);

date New system date

The _dos_setdate routine uses system call INT Ox2B to set the current system date. The
date is stored in the dosdate_t structure pointed to by date, defined in DOS.H. The
dosdate_t structure contains the following elements:

Element

unsigned char day

unsigned char month

unsigned int year

unsigned char dayofweek

Description

1-31

1-12

1980-2099

0-6 (0 = Sunday)

If successful, the function returns O. Otherwise, it returns a nonzero value and sets errno to
EINV AL, indicating an invalid date was specified.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_dos_gettime, _dos_setdate, _dos_settime, gmtime, localtime, mktime, _strdate,
_ strtime, time

Exampre __ __

1* DSTIME.C: This program changes the time and date values and displays the
* new date and time values.
*1

#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <time.h>

void maine)
(

struct dosdate_t olddate, newdate =

struct dostime_t oldtime, newtime =

char datebuf[40], timebuf[40];

1* Get current date and time values *1
_dos_getdate(&olddate);
_dos_gettime(&oldtime);

4), 7}, (1984) };
3 }, 45}, (30), (0) };

printf("%5 %s\n" , _strdate(datebuf), _5trtime(timebuf));

1* Modify date and time structures *1
_dos_setdate(&newdate);
_dos_settime(&newtime);
printf("%5 %s\n" , _strdate(datebuf). _strtime(timebuf));

1* Restore old date and time *1
_dos_setdate(&olddate);
_dos_settime(&oldtime);

Output

06/15/89
07/04/84

18:26:09
03:45:30

224

225

Description

Remarks

Return Value

Compatibility

See Also

Sets the default drive, using system call !NT OxOE.

#include <dos.h>

void _dos_setdrive(unsigned drive, unsigned *numdrives);

drive

numdrives

New default drive

Total drives available

The _dos_setdrive routine uses system call INT OxOE to set the current default drive to the
drive argument: I = drive A, 2 = drive B, and so on. The numdrives argument indicates the
total number of drives in the system. If this value is 4, for example, it does not mean the
drives are designated A, B, C, and D; it means only that four drives are in the system.

There is no return value. If an invalid drive number is passed, the function fails without in­
dication. Use the _dos~etdrive routine to verify whether the desired drive has been set.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_ dos ~etdiskfree, _ dos ~etdrive

Exampm __ ___

1* DGDRIVE.C: This program prints the letter of the current drive,
* changes the default drive to A, then returns the number of disk drives.
*1

#include <stdio.h>
#include <dos.h>

void maine)
(

unsigned olddrive, newdrive;
unsigned number_of_drives;

1* Print current default drive information *1
_dos_getdrive(&olddrive);
printf("The current drive is: %c\n", 'A' + olddrive - 1);

1* Set default drive to be drive A *1
printf("Changing default drive to A\n");
_dos_setdrive(1, &number_of_drives);

1* Getne~ default drive information and total number of drives *1
_dos_getdrive(&newdrive);
printf("The current drive is: %c\n", 'A' + newdrive - 1);
printf("Number of logical drives: %d\n", number_of_drives);

1* Restore default drive *1
_dos_setdr;ve(olddrive, &number_of_drives);

Output

The current drive is: C
Changing default drive to A
The current drive is: A
Number of logical drives: 26

226

227

Description

Remarks

Return Value

dos_setfileattr

Sets the attributes of the file or directory, using system call !NT Ox43.

#include <dos.h>

unsigned _dos_setfileattr(char *pathname, unsigned attrib);

pathname

attrib

Full path of target file/directory

New attributes

The _ dos _setfileattr routine uses system call INT Ox43 to set the attributes of the file or
directory pointed to by pathname. The actual attributes are contained in the low-order byte
of the attrib word. Attributes are represented by manifest constants, as described below:

Constant

_A_HIDDEN

_A_NORMAL

_A_RDONLY

_A_SUBDIR

_A_SYSTEM

_A_VOLID

Meaning

Archive. Set whenever the file is changed, or cleared by the
DOS BACKUP command.

Hidden file. Cannot be found by a directory search.

Normal. File can be read or, written to without restriction.

Read-only. File cannot be opened for writing, and a file with
the same name cannot be created.

Subdirectory.

System file. Cannot be found by a directory search.

Volume ID. Only one file can have this attribute, and it must
be in the root directory.

The function returns 0 if successful. Otherwise, it returns the DOS error code and sets
errno to one of the following:

Constant

EACCES

ENOENT

Meaning

Access denied; cannot change the volume ID or the
subdirectory.

No file or directory matching the target was found.

dos_setlileattr 228

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _ dos Jetflleattr

Exampre __ __

1* OGFILEAT.C: This program creates a file with the specified attributes,
* then prints this information before changing the file attributes back
* to normal.
*1

#include <stdio.h>
#include <dos.h>

void maine)
(

unsigned oldattrib, newattrib;
int fh;

1* Get and display file attribute *1
_dos_getfileattr("OGFILEAT.C", &oldattrib);
printf("Attribute: 0x%.4x\n", oldattrib);
if((oldattrib & _A_ROONLY) != 0)

printf("Read only file\n");
else

printf("Not a read only file.\n");

1* Reset file attribute to normal file *1
_dos_setfileattr("OGFILEAT.C", _A_ROONLY);
_dos_getfileattr("OGFILEAT.C", &newattrib);
printf("Attributei 0x%.4x\n", newattrib);

1* Restore file attribute *1
_dos_setfileattr("OGFILEAT.C", oldattrib);
_dos_getfi 1 eattr("OGFI LEAT. e", &newattri b);
printf("Attribute: 0x%.4x\n", newattrib);

Output

Attribute: 0x0020
Not a read only file.
Attribute: 0x0001
Attribute: 0x0020

229

Description

Remarks

Return Value

Sets the date and time for a file, using system call INT Ox57.

#include <dos.h>

unsigned _dos_setftime(int handle, unsigned date, unsigned time);

handle

date

time

Target file

Date of last write

Time of last write

The _ dos _ setftime routine uses system call INT Ox57 to set the date and time at which the
file identified by handle was last written to. These values appear in the DOS date and time
format, described in the following lists:

Time Bits

0-4

5-10

11-15

Date Bits

0-4

5-8

9-15

Meaning

Number of two-second increments (0-29)

Minutes (0-59)

Hours (0-23)

Meaning

Day (1-31)

Month (1-12)

Year since 1980 (for example, 1989 is stored as 9)

If successful, the function returns O. Otherwise, it returns the DOS error code and sets
errno to EBADF, indicating that an invalid file handle was passed.

230

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _ dos ~etftime, fstat, stat

Exampw __ __

/* DGFTIME.C: This program displays and modifies the date and time
* fields of a file.
*/

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void maine)
(

unsigned new_date = 0x184f;
unsigned new_time = 0x48e0;
unsigned old_date, old_time;

int fh;

/* FEDC BA98 7654 3210 */
/* 0001 1000 0100 1111 2/15/92 */
/* 0100 1000 1110 0000 9:07 AM */

/* Open file with _dos_open function */
if(_dos_open("dgftime.obj", O_RDONLY, &fh) 1= 0)

exit(1);

/* Get file date and time */
_dos_getftime(fh, &old_date, &old_time);
printf("Old date field: 0x%.4x\n", old_date);
printf("Old time field: 0x%.4x\n", old_time);
system("dir dgftime.obj");

/* Modify file date and time */
if(!_dos_setftime(fh, new_date, new_time))
(

}

_dos_getftime(fh, &new_date, &new_time);
printf("New date field: 0x%.4x\n", new_date);
printf("New time field: 0x%.4x\n", new_time);
system("dir dgftime.obj");

/* Restore date and time */
_dos_setftime(fh, old_date, old_time);

_dos_close(fh);

231

Output

Old date field: 0x12cf
Old time field: 0x94bb

Volume in drive C is OS2
Directory of C:\LIBREF

DGFTIME OBJ 3923 6-15-89 6:37p
1 File(s) 13676544 bytes free

New date field: 0x184f
New time field: 0x48e0

Volume in drive C is OS2
Directory of C:\LIBREF

DGFTIME OBJ 3923 2-15-92 9:07a
1 File(s) 13676544 bytes free

232

Description Sets the current system time, using system call INT Ox2D.

#include <dos.h>

unsigned _dos_settime(struct dostime_t *time);

time New system time

Remarks The _ dos _ settime routine uses system call INT Ox2D to set the current system time to the
value stored in the dostime _ t structure that time points to, as defined in DOS.H. The
dostime _ t structure contains the following elements:

Return Value

Compatibility

See Also

Element

unsigned char hour

unsigned char minute

unsigned char second

unsigned char hsecond

Description

0-23

0-59

0-59

Hundredths of a second; 0 -99

If successful, the function returns O. Otherwise, it returns a nonzero value and sets errno to
EINV AL, indicating an invalid time was specified.

o ANSI • DOS 0 OS/2 0 UNIX D· XENIX

_ dos Jetdate, _ dos _gettime, _ dos _ setdate, gmtime, localtime, mktime,
_ strdate, _ strtime

Exampw __ __

1* DSTIME.C: This program changes the time and date values and displays the
* new date and time values.
*1

#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <time.h>

233

void maine)
[

struct dosdate_t olddate. newdate =
struct dostime_t oldtime. newtime =

char datebuf[40]. timebuf[40];

/* Get current date and time values */
_dos_getdate(&olddate);
_dos_gettime(&oldtime);

4 }. [7 }. [1984 } };
3 }. { 45 }. { 30 }. { 0 } };

pr;ntf("%s %s\n". _strdate(datebuf). _strtime(timebuf));

/* Modify date and time structures */
_dos_setdate(&newdate);
_dos_settime(&newtime);
printf("%s %s\n". _strdate(datebuf). _strtime(timebuf));

/* Restore old date and time */
_dos_setdate(&olddate);
_dos_settime(&oldtime);

Output

06/15/89
07/04/84

18:26:09
03:45:30

Description

Remarks

234

Sets the current value of the interrupt vector, using system call INT Ox25.

#include <dos.h>

void _dos_setvect(unsigned intnum, void(Jnterrupt _far *handler)O);

intnum Target-interrupt vector

handler Interrupt handler for which to assign intnum

The _ dos _ setvect routine uses system call INT Ox25 to set the current value of the inter­
rupt vector intnum to the function pointed to by handler. Subsequently, whenever the
intnum interrupt is generated, the handler routine will be called. If handler is a C function,
it must have been previously declared with the interrupt attribute. Otherwise, you must
make sure that the function satisfies the requirements for an interrupt-handling routine. For
example, if handler is an assembler function, it must be a far routine that returns with an
IRET instead of a RET.

The interrupt attribute indicates that the function is an interrupt handler. The compiler
generates appropriate entry and exit sequences for the interrupt-handling function, includ­
ing saving and restoring all registers and executing an IRET instruction to return.

The _dos_setvect routine is generally used with the _dos~etvect function. To replace an
interrupt vector, first save the current vector of the interrupt using _ dos _getvect. Then set
the vector to your own interrupt routine with _ dos _ setvect. The saved vector can later be
restored, if necessary, using _ dos_ setvect. The user-defined routine may also need the orig­
inal vector in order to call it or to chain to it with _chainJntr .

...

Registers and Interrupt Functions

When you call an interrupt function, the DS register is initialized to the C data segment.
This allows you to access global variables from within an interrupt function.

In addition, all registers except SS are saved on the stack. You can access these registers
within the function if you declare a function parameter list containing a formal parameter
for each saved register. The following example illustrates such a declaration:

235

void _interrupt far int_handler(unsigned _es, unsigned _ds,
unsigned _di, unsigned _si,
unsigned _bp, unsigned _sp,
unsigned _bx, unsigned _dx,
unsigned _cx, unsigned _ax,
unsigned _ip, unsigned _cs,
unsigned _flags)

The formal parameters must appear in the opposite order from which they are pushed onto
the stack. You can omit parameters from the end of the list in a declaration, but not from
the beginning. For example, if your handler needs to use only DI and SI, you must still
provide ES and DS, but not necessarily BX or DX.

You can pass additional arguments if your interrupt handler will be called directly from C
rather than by an INTinstruction. To do this, you must declare all register parameters and
then declare your parameter at the end of the list.

The compiler always saves and restores registers in the same, fixed order. Thus, no matter
what names you use in the formal parameter list, the first parameter in the list refers to ES,
the second refers to DS, and so on. If your interrupt routines'will use in-line assembler,
you should distinguish the parameter names so that they will not be the same as the real
register names.

If you change any of the register parameters of an interrupt function while the function is
executing, the corresponding register contains the changed value when the function re­
turns. For example:

void _interrupt _far int_handler(unsigned _es, unsigned _ds,
un~igned _di, unsigned si)

_di = -1;

This code causes the DI register to contain -1 when the handler function returns. It is not a
good idea to modify the values of the parameters representing the IP and CS registers in in­
terrupt functions. If you must modify a particular flag (such as the carry flag for certain
DOS and BIOS interrupt routines), use the OR operator (I) so that other bits in the flag
register are not changed.

When an interrupt function is called by an INT instruction, the interrupt-enable flag is
cleared. If your interrupt function needs to do significant processing, you should use the
_enable function to set the interrupt flag so that interrupts can be handled.

Return Value

Compatibility

See Also

236

Precautions for Interrupt Functions

Since DOS is not reentrant (a DOS interrupt cannot be called from inside a DOS interrupt),
it is usually not safe to call from inside an interrupt function any standard library function
that calls DOS INT 21H. Similar precautions apply to many BIOS functions. Functions
that rely on INT 21 H calls include I/O functions and the _ dos family of functions. Func­
tions that rely on the machine's BIOS include graphics functions and the _bios family of
functions. It is usually safe to use functions that do not rely on INT 21H or BIOS, such as
string-handling functions. Before using a standard library function in an interrupt function,
be sure that you are familiar with the action of the library function.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

237

Description

Remarks

Return Value

Compatibility

See Also

Writes a buffer to a file, using system call INT Ox40.

#include <dos.h>

unsigned _dos_write(int handle, void _far *buffer, unsigned count,
unsigned *numwrt);

handle

buffer

count

numwrt

File to write to

Buffer to write from

Number of bytes to write

Number of bytes actually written

dos_write

The _dos_write routine uses system call INT Ox40 to write data to the file that handle ref­
erences; count bytes of data from the buffer to which buffer points are written to the file.
The integer pointed to by Ilumwrt will be the number of bytes actually written, which may
be less than the number requested.

Do not use the DOS interface routines with the console, low-level, or stream I/O routines.

If successful, the function returns O. Otherwise, it returns the DOS error code and sets
errno to one of the following manifest constants:

Constant

EACCES

EBADF

Meaning

Access denied (handle references a file not open for write
access)

Invalid file handle

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampw ___ __

/* DWRITE.C: This program uses DOS I/O functions to write to a file. */

#include (fcntl.h)
#include (stdio.h)
#include (stdlib.h)
#include (dos.h)

dos_write

void main()
(

char out_buffer[J = "Hello";
int fh;
unsigned n_written;

1* Open file with _dos_creat function *1
if(_dos_creat("data", _A_NORMAL, &fh) == 0
(

Output

1* Write data with _dos_write function *1
_dos_write(fh, out_buffer, 5, &n_written);
printf("Number of characters written: %d\n", n_written);

_dos_close(fh);
printf("Contents of file are:\n");
system("type data");

Number of characters written: 5
Contents of file are:
Hell 0

238

239

Description

Remarks

Return Value

Compatibility

dosexterr

Gets register values returned by INT Ox59.

#include <dos.h>

int dosexterr(struct DOSERROR *errorinfo);

errorinfo Extended DOS error information

The dosexterr function obtains the extended error information returned by the DOS sys­
tem call INT Ox59 and stores the values in the structure pointed to by errorinfo. This func­
tion is useful when making system calls under DOS versions 3.0 or later, which offer
extended error handling.

The structure type DOSERROR is defined in DOS.H. The DOS ERROR structure contains
the following elements:

Element

int exterror

char class

char action

char locus

Description

AX register contents

BH register contents

BL register contents

CH register contents

Giving a NULL pointer argument causes dosexterr to return the value in AX without
filling in the structure fields. See MS-DOS Encyclopedia (Duncan, ed.; Redmond, W A:
Microsoft Press, 1988) or Programmer's PC Sourcebook (Hogan; Redmond, W A:
Microsoft Press, 1988) for more information on the register contents.

The dosexterr function returns the value in the AX register (identical to the value in the
exterror structure field).

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

The dosexterr function should be used only under DOS versions 3.0 or later.

dosexterr 240

See Also p~rror

Exampre __ __

/* DOSEXERR.C: This program tries to open the file test.dat. If the
* attempted open operation fails, the program uses dosexterr to display
* extended error information.
*/

#include <dos.h>
#include <io.h>
#include <fcntl.h>
#include <stdio.h>

void main()
{

struct DOSERROR doserror;
int fd;

/* Attempt to open a non-existent file */
if((fd = open("NOSUCHF.ILE", O_RDONLY» -1)
{

dosexterr(&doserror);
printf("Error: %d Class: %d Action: %d Locus: %d\n",

doserror.exterror, doserror.class,
doserror.action, doserror.locus);

else
{

Output

printf("Open succeeded so no extended information printed\n");
close(fd);

Error: 2 Class: 8 Action: 3 Locus: 2

241

Description

Remarks

Return Value

Compatibility

See Also

dup, dup2

Create a second handle for an open file (dup), or reassign a file handle (dup2).

#include <io.h Required only for function declarations

int dup(int handle);

int dup2(int handlel, int handle2);

handle, handlel

handle2

Handle referring to open file

Any handle value

The dup and dup2 functions cause a second file handle to be associated with a currently
open file. Operations on the file can be carried out using either file handle. The type of
access allowed for the file is unaffected by the creation of a new handle.

The dup function returns the next available file handle for the given file. The dup2 func­
tion forces handle2 to refer to the same file as handlel. If handle2 is associated with an
open file at the time of the call, that file is closed.

The dup function returns a new file handle. The dup2 function returns 0 to indicate
success. Both functions return -1 if an error occurs and set errno to one of the following
values:

Value

EBADF

EMFILE

Meaning

Invalid file handle

No more file handles available (too many open files)

D ANSI • DOS • OS/2 • UNIX • XENIX

close, creat, open

Exampre __ __

1* DUP.C: This program uses the variable old to save the original stdout.
* It then opens a new file named new and forces stdout to refer
* to it. Finally. it restores stdout to its original state.
*1

l/i ncl ude <i o. h)
#include <stdlib.h)
#include (stdio.h)

dup, dup2

void maine)
(

int old;
FILE *new;

old = dupe 1);

if(old == -1)
(

1* "old" now refers to "stdout" *1
1* Note: file handle 1 == "stdout" *1

perror("dupe 1) failure");
exit(1);

write(old, "This goes to stdout first\r\n", 27);
if((new = fopen("data", "w"')) == NULL)
(

puts("Can't open file 'data'\n");
exit(1);

1* stdout now refers to file "data" *1
if(-1 == dup2(fileno(new), 1))
(

perror("Can't dup2 stdout");
exit(1);

puts("This goes to file 'data'\r\n");

1* Flush stdout stream buffer so it goes to correct file */
.fflush(stdout);
fclose(new);

1* Restore original stdout *1
dup2(old, 1);
puts("This goes to stdout\n");
puts ("The fil e 'data' conta ins:");
system("type data");

Output

This goes to stdout first
This goes to stdout

The file 'data' contains:
This goes to file 'data'

242

243

Description

Remarks

Return Value

Compatibility

See Also

Converts a double number to a string.

#include <stdlib.h> Required only for function declarations

char *ecvt(double value, int coullt, int *dec, int *sign);

value

count

dec

sign

Number to be converted

Number of digits stored

Stored decimal-point position

Sign of converted number

ecvt

The ecvt function converts a floating-point number to a character string. The value argu­
ment is the floating-point number to be converted. The ecvt function stores up to coullt
digits of value as a string and appends a null character ('\0'). If the number of digits in
value exceeds coullt, the low-order digit is rounded. If there are fewer than coullt digits,
the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign of value
can be obtained from dec and sign after the call. The dec argument points to an integer
value giving the position of the decimal point with respect to the beginning of the string. A
o or negative integer value indicates that the decimal point lies to the left of the first digit.
The sign argument points to an integer indicating the sign of the converted number. If the
integer value is 0, the number is positive. Otherwise, the number is negative.

The ecvt and fcvt functions use a single statically allocated buffer for the conversion. Each
call to one of these routines destroys the result of the previous call.

The ecvt function returns a pointer to the string of digits. There is no error return.

o ANSI • DOS • OS/2 • UNIX • XENIX

atof, atoi, atol, fcvt, gcvt

Exampw __ _____

/* ECVT.C: This program uses ecvt to convert a floating-point
* number to a character string.
*/

#include <stdlib.h>
#include <stdio.h>

ecvt

void main()
(

int decimal, sign;
char *buffer;
int precision = 10;
double source = 3.1415926535;

buffer = ecvt(source, precision, &decimal, &sign);
printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",

source, buffer, decimal, sign);

Output

source: 3.1415926535 buffer:' 3141592654' deci rna 1: 1 sign: 0

244

245

Description

Remarks

~ellipse Functions

Draw ellipses.

#include <graph.h>

short _far _ellipse(short control, short xl, short yl, short x2, short y2);

short _far _ellipse_ w(short control, double wxl, double wyl, double wx2,
double wy2);

short _far _ellipse _ wxy(short control, struct _ wxycoord _far *pw,,\y 1,
struct _ wxycoord _far *pwxy2);

control

xl,yl

x2,y2

wxl, wyl

wx2, wy2

pwxyl

pwxy2

Fill flag

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

The _ellipse functions draw ellipses or circles. The borders are drawn in the current color.
In the _ellipse function, the center of the ellipse is the center of the bounding rectangle de­
fined by the view-coordinate points (xl, yl) and (x2, y2).

In the _ellipse _ w function, the center of the ellipse is the center of the bounding rectangle
defined by the window-coordinate points (wxl, wyl) and (wx2, wy2).

In the _ellipse _ wxy function, the center of the ellipse is the center of the bounding rec­
tangle defined by the window-coordinate pairs (pwxyl) and (pwxy2).

If the bounding-rectangle arguments define a point or a vertical or horizontal line, no fig­
ure is drawn.

The control argument can be one of the following manifest constants:

Constant

_ GFILLINTERIOR

_GBORDER

Action

Fills the ellipse using the current fill mask

Does not fill the ellipse

_ellipse Functions 246

The control option given by _ GFILLINTERIOR is equivalent to a subsequent call to the
_ floodtill function, using the center of the ellipse as the starting point and the current color
(set by _setcolor) as the boundary color.

Return Value

Compatibility

See Also

The _ellipse functions return a nonzero value if the ellipse is drawn successfully; other­
wise, they return O.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_arc functions, _ floodtill, _grstatlls, Jineto functions, -pie functions,
-polygon functions, _rectangle functions, _ setcolor, _settillmask

Exampre ___ __

1* ELLIPSE.C: This program draws a simple ellipse. *1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main()
{

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE)

exit(1);

_ellipse(_GFILLINTERIOR, 80, 50, 240, 150);

1* Strike any key to clear screen. *1
getch();
_setvideomode(_DEFAULTMODE);

247

Description

Remarks

Return Value

Compatibility

See Also

Enables interrupts.

#include <dos.h>

void _enable(void);

enable

The _enable routine enables interrupts by executing an 8086 STI machine instruction.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

disable

endthread 248

Description Tenninates an OS/2 thread.

Description

Return Value

Compatibility

See Also

Example

#include <process.h> Multithread version of PROCESS.H

void _far _endthread(void);

The _ end thread function tenninates a thread created by _ beginthread.

Because threads tenninate automatically, the _endthread function is nonnally not re­
quired. It is used to tenninate a thread conditionally.

The OS/2 function DosExit should not be used to tenninate threads created by the
_ begin thread function. If DosExit is used, the results are unpredictable.

None.

o ANSI 0 DOS • OS/2 0 UNIX 0 XENIX

_ beginthread

See the example for _ begin thread.

249 eot

Description Tests for end-of-file.

#include <io.h> Required only for function declarations

int eof(int handle);

handle Handle referring to open file

Remarks The eof function detennines whether the end of the file associated with handle has been
reached.

Return Value

Compatibility

See Also

The eof function returns the value 1 if the current position is end-of-file, or 0 if it is not. A
return value of -1 indicates an error; in this case, errno is set to EBADF, indicating an
invalid file handle.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

clearerr, feof, ferror, perror

Exampre __ __

/* EOF.C: This program reads data from a file ten bytes at a time
* until the end of the file is reached or an error is encountered.
*/

/Finclude <io.h>
/Finclude <fcntl.h>
/Finclude <stdio.h>
/Finclude <stdlib.h>

void main()
{

int fh, count, total = 0;
char buf[10];

if((fh = open("eof .c", O_RDONLY » - 1)
ex it (1);

eDt

1*"Cycle until end of file reached: *1
while(!eof(fh))
(

1* Attempt to read in 10 bytes: *1
if((count = read(fh, buf, 10 » == -1
(

perror("Read error");
break;

1* Total up actual bytes read *1
total += count;

printf("Number of bytes read = %d\n", total);
close(fh);

Output

Number of bytes read 715

250

251

Description

Remarks

exec Functions

Load and execute new child processes.

#include <process.h> Required only for function declarations

int execl(char *cmdname, char *argO, ... char *argll, NULL);

int execle(char *cmdname, char *argO, ... char *argn, NULL, char **ellvp);

int execlp(char *cmdname, char *argO, ... char *argn, NULL);

int execlpe(char *cmdname, char *argO, ... char *argn, NULL, char **ellvp);

int execv(char *cmdllame, char **argv);

int execve(char *cmdname, char **a1:gv, char **ellvp);

int execvp(char *cmdname, char **argv);

int execvpe(char *cmdname, char **a1:gv, char **envp);

cmdname

argO, ... argn

argv

envp

Path name of file to be executed

List of pointers to arguments

Array of pointers to arguments

Array of pointers to environment settings

The exec functions load and execute new child processes. When the call is successful in
DOS, the child process is placed in the memory previously occupied by the calling
process. Under OS/2, calling an exec function is equivalent to calling the corresponding
function with the P _NOWAITO argument specified, followed by a call to the exit function.
Sufficient memory must be available for loading and executing the child process.

All of the exec functions use the same operating system function. The letter(s) at the end
of the function name determine the specific variation, as shown in the following list:

Letter

e

p

v

Variation

An array of pointers to environment arguments is explicitly
passed to the child process.

Command-line arguments are passed individually to the exec
function.

Uses the PATH environment variable to find the file to be
executed.

Command-line arguments are passed to the exec function as
an array of pointers.

exec Functions 252

The cmdname argument specifies the file to be executed as the child process. It can specify
a full path (from the root), a partial path (from the current working directory), or just a file
name. If cmdname does not have a file-name extension or does not end with a period (.),
the exec function searches for the named file; if the search is unsuccessful, it tries the same
base name, first with the extension .COM, then with the extension .EXE. If cmdname has
an extension, only that extension is used in the search. If cmdname ends with a period, the
exec calls search for cmdname with no extension. The exeelp, exeelpe, execvp, and
execvpe routines search for cmdname (using the same procedures) in the directories
specified by the PATH environment variable.

If cmdname contains a drive specifier or any slashes (Le., if it is a relative path name), the
exec call searches only for the specified file and no path searching is done.

Arguments are passed to the new process by giving one or more pointers to character
strings as arguments in the exec call. These character strings form the argument list for the
child process. The combined length of the strings forming the argument list for the new
process must not exceed 128 bytes (in real mode only). The terminating null character
('\0') for each string is not included in the count, but space characters (inserted automat­
ically to separate the arguments) are counted.

The argument pointers can be passed as separate arguments (exeel, exeele, exeelp, and
exeelpe) or as an array of pointers (execv, execve, execvp, and execvpe). At least one ar­
gument, argO, must be passed to the child process; this argument is argv[O] of the child
process. Usually, this argument is a copy of the cmdname argument. (A different value
will not produce an error.) Under versions of DOS earlier than 3.0, the passed value of
argO is not available for use in the child process. However, under OS/2 and under DOS
versions 3.0 and later, cmdname is available as argO.

The exeel, exeele, exeelp, and exeelpe calls are typically used when the number of argu­
ments is known in advance. The argument argO is usually a pointer to cmdname. The argu­
ments arg] through argn point to the character strings forming the new argument list. A
null pointer must follow argn to mark the end of the argument list.

The execv, execve, execvp, and execvpe calls are useful when the number of arguments to
the new process is variable. Pointers to the arguments are passed as an array, argv. The ar­
gument argv[O] is usually a pointer to cmdname. The arguments argv[1] through argv[n]
point to the character strings forming the new argument list. The argument argv[n+ 1] must
be a NULL pointer to mark the end of the argument list.

Files that are open when an exec call is made remain open in the new process. In the exeel,
exeelp, execv, and execvp calls, the child process inherits the environment of the parent.
The exeele, exeelpe, execve, and execvpe calls allow the user to alter the environment for
the child process by passing a list of environment settings through the envp argument. The
argument envp is an array of character pointers, each element of which (except for the
final element) points to a null-terminated string defining an environment variable. Such a
string usually has the form

253

Return Value

exec Functions

NAME=value

where NAME is the name of an environment variable and value is the string value to which
that variable is set. (Note that value is not enclosed in double quotation marks.) The final
element of the envp array should be NULL. When envp itself is NULLt the child process in­
herits the environment settings of the parent process.

A program executed with one of the exec family of functions is always loaded into
memory as if the "maximum allocationU field in the program t s .EXE file header is set to
the default value of OFFFFH. You can use the EXEMOD utility to change the maximum
allocation field of a program; howevert such a program invoked with one of the exec func­
tions may behave differently from a program invoked directly from the operating-system
command line or with one of the spawn functions.

The exec calls do not preserve the translation modes of open files. If the child process
must use files inherited from the parentt the setmode routine should be used to set the
translation mode of these files to the desired mode.

You must explicitly flush (using fflush or flushall) or close any stream prior to the exec
function call.

Signal settings are not preserved in child processes that are created by calls to exec
routines. The signal settings are reset to the default in the child process.

The exec functions do not normally return to the calling process. If an exec function re­
turnst an error has occurred and the return value is -1. The errno variable is set to one of
the following values:

Value

E2BIG

EACCES

EMFILE

ENOENT

ENOEXEC

ENOMEM

Meaning

The argument list exceeds 128 by test or the space required for
the environment information exceeds 32K.

The specified file has a locking or sharing violation
(OS/2t and DOS versions 3.0 or later).

Too many files open (the specified file must be opened to de­
termine whether it is executable).

File or path name not found.

The specified file is not executable or has an invalid
executable-file format.

Not enough memory is available to execute the child process;
or the available memory has been corrupted; or an invalid
block existst indicating that the parent process was not allo­
cated properly.

exec Functions 254

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

Because of differences in DOS versions 2.0 and 2.1, child processes generated by the exec
family of functions (or by the equivalent spawn functions with the P _ OVERLAY argu­
ment) may cause fatal system errors when they exit. If you are running DOS 2.0 or 2.1,
you must upgrade to DOS version 3.0 or later to use these functions.

,Bound programs cannot use the exec family of functions in real mode.

See Also abort, atexit, exit, _exit, onexit, spawn functions, system

Exampw __ ___

1* EXEC.C: This program accepts a number in the range 1 through 8 from the
* command line. Based on the number it receives, it executes one of the
* eight different procedures that spawn the process named child. For
* some of these procedures, the child.exe file must be in the same
* directory; for others, it need only be in the same path.
*1

#include <stdio.h>
#include <process.h>

char *my_env[] = {
"THIS=environment will be",
"PASSED=to child.exe by the",
"EXECLE=and",
"EXECLPE=and",
"EXECVE=and",
"EXECVPE-functions",
NULL
} ;

void maine int argc, char *argv[])
{

char *args[4];
i nt result;

args[0] = "child";
args[l] "execv??";
args[2] "two";
args[3] NULL;

1* Set up parameters to send *1

255

switch(argv[1][0]
(

1* Based on first letter of argument *1

)

case '1':
execl(argv[2], argv[2], "execl", "two", NULL);
break;

case '2':
execle(argv[2], argv[2], "execle", "two", NULL, my_env);
break;

case '3':
execlp(argv[2], argv[2], "execlp", "~wo", NULL);
break;

case '4':
execlpe(argv[2], argv[2], "execlpe", "two", NULL, my_env);
break;

case '5':
execv(argv[2], args);
break;

case '6':
execve(argv[2], args, my_env);
break;

case '7':
execvp(argv[2], args);
break;

case '8':
execvpe(argv[2], args, my_env);
break;

default :
printf("SYNTAX: EXEC <1-8> <childprogram>\n");
ex it (1);

printf("Process was not spawned.\n");
printf("Program 'child' was not found.");

exec Functions

exit, _exit 256

Description Tenninate the calling process after cleanup (exit) or immediately (_exit).

Remarks

#include <process.h>

#include <stdJih.h>

void exit(int status);

void _ exit(int status);

status

Required only for function declarations

Use either PROCESS.H or STDLffi.H

Exit status

The exit and _exit functions tenninate the calling process. The exit function first calls, in
LIFO (last-in-first-out) order, the functions registered by atexit and onexit, then flushes
all file buffers before tenninating the process. The _exit function tenninates the process
without processing atexit or onexit functions or flushing stream buffers. The status value
is typically set to 0 to indicate a nonnal exit and set to some other value to indicate an
error.

Although the exit and exit calls do not return a value, the low-order byte of status is
made available to the waiting parent process, if one exists, after the calling process exits.
The status value is available to the operating-system batch command ERRORLEVEL.

The behavior of the exit, _exit, _ cexit, and _ c _exit functions is as follows:

Function

exit

c exit

Action

Perfonns complete C library tennination procedures, tenni­
nates the process, and exits with the supplied status code.

Perfonns "quick" C library tennination procedures, tenninates
the process, and exits with the supplied status code.

Perfonns complete C library tennination procedures and re­
turns to caller, but does not tenninate the process.

Perfonns "quick" C library tennination procedures and re­
turns to caller, but does not tenninate the process.

257 exit, _exit

Return Value None.

Compatibility exit

• ANSI • DOS • OS/2 • UNIX • XENIX

_exit

o ANSI • DOS • OS/2 o UNIX o XENIX

See Also abort, atexit, _ cexit, exec functions, onexit, spawn functions, system

Exampre __ __

1* EXITER.C: This program prompts the user for a yes or no and returns
* a DOS error code of 1 if the user answers V or y: otherwise it
* returns 0. The error code could be tested in a batch file.
*1

#include <conio.h>
#include <stdlib.h>

void main()
(

char ch;

cputs("Ves or no? "):
ch = getch():
cputs("\r\n"):
if(toupper(ch) 'V')

exit(1):
else

exit(0):

exp, exp/

Description

Remarks

Return Value

Compatibility

See Also

Calculate the exponential.

#include <math.h>

double exp(double x);

long double expl(long double x);

x Floating-point value

The exp and expl functions return the exponential function of their floating-point argu­
ments (x).

258

The expl function is the 80-bit counterpart; it uses an 80-bit, IO-byte coprocessor form of
arguments and return values. See the reference page on the long double functions for more
details on this data type.

These functions return eX, The functions return HUGE_VAL on overflow and set errno to
ERANGE; on underflow, they return 0 but do not set errno.

exp

• ANSI • DOS • OS/2 • UNIX • XENIX

expl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

log functions

Exampw __ ____

/* EXP.C */
#include <math.h>
#include <stdio.h>

259

void maine)
(

double x ~ 2.302585093, y;

y = exp(x);
printf("exp(%f) = %f\n", x, y);

Output

exp(2.302585) - 10.000000

exp, expl

_expand Functions 260

Description

Remarks

Changes the size of a memory block.

#include <malIoc.h> Required only for function declarations

void * _expand(void *memblock, size_t size);

void _based(void) * _bexpand(_segment seg, void _based(void) *memblock,
size_t size);

void _far * _fexpand(void _far *memblock, size_t size);

void _near * _nexpand(void _near *memblock, size_t size);

memblock

size

seg

Pointer to previously allocated memory block

New size in bytes

Value of base segment

The _expand family of functions changes the size of a previously allocated memory block
by attempting to expand or contract the block without moving its location in the heap. The
memblock argument points to the beginning of the block. The size argument gives the new
size of the block, in bytes. The contents of the block are unchanged up to the shorter of the
new and old sizes.

The memblock argument can also point to a block that has been freed, as long as there has
been no intervening call to calloc, expand, malloc, or realloc. If memblock points to a
freed block, the block remains free-after a call to one of the _expand functions.

The seg argument is the segment address of the _based heap.

In large data models (compact-, large-, and huge-model programs), _expand maps to
_fexpand. In small data models (tiny-, small-, and medium-model programs), expand
maps to _ nexpand.

The various _expand functions change the size of the storage block in the data segments
shown in the list below:

Function

_expand

_bexpand

_fexpand

_nexpand

Data Segment

Depends on data model of program

Based heap specified by seg, or in all based heaps if seg
is zero

Far heap (outside default data segment)

Near heap (inside default data segment)

261 _expand Functions

Return Value The _expand family of functions returns a void pointer to the reallocated memory
block. Unlike realloc, _expand cannot move a block to change its size. This means the
memblock argument to _expand is the same as the return value if there is sufficient
memory available to expand the block without moving it.

With the exception of the _ bexpand function, these functions return NULL if there is in­
sufficient memory available to expand the block to the given size without moving it. The
_ bexpand function returns _NULLOFF if insufficient memory is available. The item
pointed to by memblock will have been expanded as much as possible in its current
location.

The storage space pointed to by the return value is guaranteed to be suitably aligned for
storage of any type of object. The new size of the item can be checked with the _msize
function. To get a pointer to a type other than void, use a type cast on the return value.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also calloc functions, free functions, malloc functions, _ msize functions, realloc functions

Exampre ___ ___

/* EXPAND.C */
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void ma;n()
(

char *bufchar;

printf("Allocate a 512 element buffer\n");
if((bufchar = (char *)calloc(512, sizeof(char)))

ex it (1);
printf("Allocated %d bytes at %Fp\n",

_ms;ze(bufchar), (void _far *)bufchar);

NULL)

if((bufchar = (char *)_expand(bufchar, 1024)) NULL)
printf("Can't expand");

else
pr;ntf("Expanded block to %d bytes at %Fp\n",

_m s i z e (b u f c h a r), (v 0 i d _fa r *) b u f c h a r);

/* Free memory */
free(bufchar);
exit(0);

_expand Functions

Output

Allocate a 512 element buffer
Allocated 512 bytes at 0067:142A
Expanded block to 1024 bytes at 0067:142A

262

263

Description

Remarks

Return Value

Compatibility

See Also

tabs, tabsl

Calculate the absolute value of their floating-point arguments.

#include <math.h>

double fabs(double x);

long double fabsl(long double x);

x Floating-point value

The fabs and fabsl functions calculate the absolute value of their floating-point arguments.

The fabsl function is the 80-bit counterpart; it uses an 80-bit, la-byte coprocessor form of
arguments and return values. See the reference page on the long double functions for more
details on this data type.

These functions return the absolute value of their arguments. There is no error return.

fabs

• ANSI • DOS • OS/2 • UNIX • XENIX

fabsl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

abs, cabs, labs

Exampre __________________________________ ~ ______________________________ __

1* ABS.C: This program computes and displays the absolute values of
* several numbers.
*1

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

tabs, tabsl

void maine)
(

i nt i x = -4, i y ;
long lx = -41567L, ly;
double dx = -3.141593, dy;

iy = abs(ix);
printf("The absolute value of %d is %d\n", ix, iy);

ly = labs(lx);
printf("The absolute value of %ld is %ld\n", lx, ly);

dy = fabs(dx);
printf("The absolute value of %f is %f\n", dx, dy);

Output

The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

264

265

Description

Remarks

Return Value

Compatibility

See Also

Closes a stream (fclose) or closes all open streams (fcloseall).

#include <stdio.h>

int fclose(FILE *stream);

int fcloseall(void);

stream Pointer to FILE structure

fc/ase, fc/asea//

The fclose function closes stream. The fcloseall function closes all open streams except
stdin, stdout, stderr (and in DOS, stdaux and stdprn). It also closes and deletes any tem­
porary files created by tmpfile.

In both functions, all buffers associated with the stream are flushed prior to closing.
System-allocated buffers are released when the stream is closed. Buffers assigned by the
user with setbuf and setvbuf are not automatically released.

The fclose function returns 0 if the stream is successfully closed. The fcloseall function re­
turns the total number of streams closed. Both functions return EOF to indicate an error.

fclose

• ANSI • DOS • OS/2 • UNIX • XENIX

fcloseall

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

close, fdopen, fflush, fopen, freopen

Exampre __ _____

1* FOPEN.C: This program opens files named "data" and "data2". It uses
* fclose to close "data" and fcloseall to close all remaining files.
*1

#include <stdio.h>

felose, feloseall

FILE *stream, *stream2;

void main()
{

int numclosed;

/* Open for read (will fail if 'data does not exist) */
i f ((s t rea m = fop e n (" d a t a ", "r " » == NUL L)

printf("The file 'data' was not opened\n");
else

printf("The file 'data' was opened\n");

/* Open for write */
i f ((s t rea m 2 = fop e n (" d a t a 2", " w+ H » == NUL L

printf("The file 'data2' was not opened\n");
else

printf("The file 'data2' was opened\n");

/* Close stream */
if(fclose(stream)

printf("The file 'data' was not closed\n");

/* All other files are closed: */
numclosed = fcloseall();
printf("Number of files closed by fcloseall: %u\n", numclosed);

Output

The file 'data' was opened
The file 'data2' was opened
Number of files closed by fcloseall: 1

266

267

Description

Remarks

Return Value

Compatibility

See Also

Converts a floating-point number to a string.

#include <stdlib.h> Required only for function declarations

char *fcvt(double value, int count, int *dec, int *sigll);

value

count

dec

sign

N umber to be converted

Number of digits after decimal point

Pointer to stored decimal-point position

Pointer to stored sign indicator

levi

The fcvt function converts a floating-point number to a null-terminated character string.
The value argument is the floating-point number to be converted. The fcvt function stores
the digits of value as a string and appends a null character (,\0'). The count argument speci­
fies the number of digits to be stored after the decimal point. Excess digits are rounded off
to count places. If there are fewer than count digits of precision, the string is padded with
zeros.

Only digits are stored in the string. The position of the decimal point and the sign of value
can be obtained from dec and sign after the call. The dec argument points to an integer
value; this integer value gives the position of the decimal point with respect to the begin­
ning of the string. A zero or negative integer value indicates that the decimal point lies to
the left of the first digit. The argument sign points to an integer indicating the sign of
value. The integer is set to 0 if value is positive and is set to a nonzero number if value is
negative.

The ecvt and fcvt functions use a single statically allocated buffer for the conversion. Each
call to one of these routines destroys the results of the previous call.

The fcvt function returns a pointer to the string of digits. There is no error return.

o ANSI • DOS • OS/2 • UNIX • XENIX

at of, atoi, atol, ecvt, gcvt

Exampw __ ___

1* FCVT.C: This program converts the constant 3.1415926535 to a string and
* sets the pOinter *buffer to point to that string.
*1

levi

#include <stdlib.h>
#include <stdio.h>

void main()
(

int decimal, sign;
char *buffer;
double source = 3.1415926535;

buffer = fcvt(source, 7, &decimal, &sign);
printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",

source, buffer, decimal, sign);

Output

source: 3.1415926535 buffer: '31415927' decimal: 1 sign: 0

268

269

Description

Remarks

fdopen

Opens a stream using a handle.

#include <stdio.h>

FILE *fdopen(int handle, char *mode);

handle

mode

Handle referring to open file

Type of access permitted

The fdopen function associates an input/output stream with the file identified by handle,
thus allowing a file opened for "low-level" I/O to be buffered and formatted. (See Section
2.7, "Input and Output," for an explanation of stream I/O and low-level I/O.) The mode
character string specifies the type of access requested for the file, as shown below. The fol­
lowing list gives the mode string used in the fop en and fdopen functions and the corre­
sponding oflag arguments used in the open and sopen functions. A complete description
of the mode string argument is given in the remarks section of the fopen function.

Type String

"r"

"w"
"a"

"r+"

"w+"

"a+"

Equivalent Value for open/sopen

O_RDONLY

O_WRONLY (usually O_WRONLY I O_CREAT IO_TRUNC)

O_WRONLY 10_APPEND (usually O_WRONLY I O_CREAT I
O_APPEND)

O_RDWR

O_RDWR (usually O_RDWR I O_CREAT I O_TRUNC)

O_RDWR 10_APPEND (usually O_RDWR 10_APPEND I
O_CREAT)

In addition to the values listed above, one of the following characters can be included in
the mode string to specify the translation mode for newlines. These characters correspond
to the constants used in the open and sopen functions, as shown below:

Mode

t

b

Equivalent Value for open/sopen

If tor b is not given in the mode string, the translation mode is defined by the default­
mode variable fmode.

fdopen

The t option is not part of the ANSI standard for fopen and fpopen, but is instead a
Microsoft extension and should not be used where ANSI portability is desired.

270

Return Value The fdopen function returns a pointer to the open stream. A null pointer value indicates an
error.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also dup, dup2, fcIose, fcIoseall, fopen, freopen, open

Exampw __ __

/* FDOPEN.C: This program opens a file using low-level I/O, then uses
* fdopen to switch to stream access. It counts the lines in the file.
*/

#include <stdlib.h>
#include (stdio.h>
#i ncl ude (fcntl. h>
#include (io.h>

void main()
(

FILE *stream;
i nt fh, ·count 0;
char inbuf[128J;

/* Open a file handle. */
if((fh = open("fdopen.c", O_RDONLY)) -1)

exit(1);

/* Change handle access to stream access. */
i f ((s t rea m = f do pen (f h, "r ")) == NUL L)

ex it (1);

while(fgets(inbuf, 128, stream) != NULL)
count++;

271

1* After fdopen, close with fclose, not close. *1
fclose(stream);

printf("Lines in file: %d\n", count);

Output

Lines in file: 31

fdopen

feof 272

Description Tests for end-of-file on a stream.

#include <stdio.h>

int feof(FILE *stream);

stream Pointer to FILE structure

Remarks The feof routine (implemented as a macro) determines whether the end of stream has been
reached. Once the end of the file is reached, read operations return an end-of-file
indicator until the stream is closed or until rewind, fsetpos, fseek, or clearerr is called
against it.

Return Value The feof function returns a nonzero value after the first read operation that attempts to read
past the end of the file. It returns 0 if the current position is not end-of-file. There is no
error return.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also clearerr, eof, ferror, perror

Exampre __ ___

1* FEOF.C: This program uses feof to indicate when it reaches the end
* of the file FEOF.C. It also checks for errors with ferror.
*1

#include <stdio.h>
#include <stdlib.h>

void main()
{

int count, total = 0;
char buffer[100];
FILE *stream;

if((stream = fopen("feof.c", "r"))
exit(1);

NULL)

1* Cycle until end of file reached: *1
while(!feof(stream))
(

}

1* Attempt to read in 10 bytes: *1
count ~ fread(buffer, sizeof(char), 100, stream);
if(ferror(stream))
(

perror("Read error");
break;

1* Total up actual bytes read *1
total += count;

printf("Number of bytes read = %d\n", total);
fclose(stream);

Output

Number of bytes read = 697

feof

ferror 274

Description Tests for an error on a stream.

#include <stdio.h>

int ferror(FILE *stream);

stream Pointer to FILE structure

Remarks The ferror routine (implemented as a macro) tests for a reading or writing error on the file
associated with stream. If an error has occurred, the error indicator for the stream remains
set until the stream is closed or rewound, or until clearerr is called against it.

Return Value If no error has occurred on stream, ferror returns O. Otherwise, it returns a nonzero value.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also clearerr, eof, feof, fopen, perror

Exampw __ __

/* FEOF.C: This program uses feof to indicate when it reaches the end
* of the file FEOF.C. It also checks for errors with ferror.
*/

#include <stdio.h>
#include <stdlib.h>

void main()
{

int count, total 0;
char buffer[100];
FILE *stream;

if((stream = fopen("feof.c", "r" »
exit(1);

NULL)

275

1* Cycle until end of file reached: *1
while(!feof(stream))
(

}

1* Attempt to read in 10 bytes: *1
count = fread(buffer, sizeof(char), 100, stream);
if(ferror(stream))
(

perror("Read error");
break;

1* Total up actual bytes read *1
total += count;

printf("Number of bytes read = %d\n", total);
fclose(stream);

Output

Number of bytes read 697

ferror

II/ush

Description

Remarks

Return Value

Compatibility

See Also

276

Flushes a stream.

#include <stdio.h>

int mush(FILE *stream);

stream Pointer to FILE" structure

If the file associated with stream is open for output, mush writes to that file the contents
of the buffer associated with the stream. If the stream is open for input, mush clears the
contents of the buffer. The mush function negates the effect of any prior call to ungetc
against stream.

Buffers are automatically flushed when they are full, when the stream is closed, or when a
program terminates normally without closing the stream.

The stream remains open after the call. The fflush function has no effect on an unbuffered
stream.

The fflush function returns the value 0 if the buffer was successfully flushed. The value 0
is also returned in cases in which the specified stream has no buffer or is open for reading
only. A return value of EOF indicates an error.

• ANSI • DOS • OS/2 • UNIX • XENIX

fclose, flushall, setbuf

Exampre __________________________ ~--

/* FFLUSH.C */
#include <stdio.h>
#include <conio.h>

void main()
[

int integer;
char string[81];

277

1* Read each word as a string. *1
printf("Enter a sentence of four words with scanf: ");
fore integer = 0; integer < 4; integer++)
(

scanf("%s", string);
printf("%s\n", string);

1* You must flush the input buffer before using gets. *1
fflush(stdin);
printf("Enter the same sentence with gets: ");
gets(string);
printf("%s\n", string);

Output

Enter a sentence of four words with scanf: This is a test
This
is
a

. test
Enter the same sentence with gets: This is a test
This is a test

Illush

tgetc, tgetchar 278

Description

Remarks

Return Value

Compatibility

See Also

Read a character from a stream (fgetc) or stdin (fgetchar).

#include <stdio.h>

int fgetc(FILE *stream);

int fgetchar(void);

stream Pointer to FILE structure

The fgetc function reads a single character from the current position of the file associated
with stream. The character is converted and returned as an int. The function then incre­
ments the associated file pointer (if any) to point to the next character. The fgetchar func­
tion is equivalent to fgetc(stdin).

The fgetc and fgetchar routines are identical to getc and get char, but they are functions
rather than macros.

i

The fgetc and fgetchar functions return the character read. They return EOF to indicate an
error or end-of-file. Use feof or ferror to distinguish between an error and an end-of-file
condition.

fgetc

• ANSI • DOS • OS/2 • UNIX • XENIX

fgetchar

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

fputc, fputchar, getc, getchar

Exampw __ __

/* FGETC.C: This program uses getc to read the first 80 input characters
* (or until the end of input) and place them into a string named buffer.
*/

#include <stdio.h)
#include <stdlib.h)

279

void main()
(

FILE *stream;
char buffer[81];
int i, ch;

1* Open file to read line from: *1
if((stream == fopen("fgetc.c", "r" » == NULL)

ex it (0);

1* Read in first 80 characters and place them in "buffer": */
ch fgetc(stream);
for(i=0; (i < 80) && (feof(stream) == 0); i++)
(

buffer[i] ch;
ch = fgetc(stream);

1* Add null to end string */
buffer[i] = '\0';
printf("%s\n", buffer);
fclose(stream);

Output

1* FGETC.C: This program uses getc to read the first 80 input characters
1* (or

tgelc, fgelchar

fgetpos

Description

Remarks

Return Value

Compatibility

See Also

Gets a stream's file-position indicator.

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

stream

pos

Target stream

Position-indicator storage

280

The fgetpos function gets the current value of the stream argument's file-position indicator
and stores it in the object pointed to by pOSe The fsetpos function can later use information

. stored in pos to reset the stream argument's pointer to its position at the time fgetpos was
called.

The pos value is stored in an internal format and is intended for use only by the fgetpos
and fsetpos functions.

If successful, the fgetpos function returns O. On failure, it returns a nonzero value and sets
errno to one of the following manifest constants (defined in STDIO.H):

Constant

EBADF

EINVAL

Meaning

The specified stream is not a valid file handle or is not
accessible.

The stream value is invalid.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

fsetpos

Exampre ________________________________ ~ ________________________________ ___

/* FGETPOS~C: This program opens a file and reads bytes at several
* different locations.
*/

#include <stdio.h>

281

void main()
(

FILE *stream;
fpos_t pos;
int val;
char buffer[20];

if((stream = fopen("fgetpos.c", Orb" »
printf("Trouble opening file\n");

else
(

NULL)

1* Read some data and then check the position. *1
fread(buffer, sizeof(char), 10, stream);

Output

i f(fgetpos (stream, &pos) != 0)
perror("fgetpos error");

else
(

fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);

1* Set a new position and read more data *1
pos = 140;
if(fsetpos(stream, &pos) != 0)

perror("fsetpos error");

fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);

fclose(stream);

10 bytes at byte 10: .C: This p
10 bytes at byte 140: FILE *

fgetpos

fgets

Description

Remarks

Return Value

Compatibility

See Also

Gets a string from a stream.

#include <stdio.h>

char *fgets(char *string, int n, FILE *stream);

string

n

stream

Storage location for data

Number of characters stored

Pointer to FILE structure

282

The fgets function reads a string from the input stream argument and stores it in string.
Characters are read from the current stream position up to and including the first newline

. character (,\n '), up to the end of the stream, or until the number of characters read is equal
to n - 1, whichever comes first. The result is stored in string, and a null character ('\0') is
appended. The newline character, if read, is included in the string. If n is equal to 1, string
is empty (""). The fgets function is similar to the gets function; however, gets replaces the
newline character with NULL.

If successful, the fgets function returns string. It returns NULL to indicate either an error or
end-of-file condition. Use feof or ferror to determine whether an error occurred.

• ANSI • DOS • OS/2 • UNIX • XENIX

fputs, gets, puts

Exampre __ ___

1* FGETS.C: This program uses fgets to displ~y a line from a file on the
* screen.
*1

#include <stdio.h>

FILE *stream;

void main()
{

char line[100], *result;

283

if((stream = fopen("fgets.c", "r" » 1= NULL
(

Output

if(fgets(line, 100, stream) == NULL)
printf("fgets error\n");

else
printf("%s", line);

fclose(stream);

1* FGETS.C: This program uses fgets to display a line from a file on the

fgets

fieeetomsbin, fmsbintoieee 284

Description

Remarks

. Return Value

Compatibility

See Also

Convert floating-point numbers between IEEE and Microsoft binary formats.

#include <math.h>

int fieeetomsbin(float *src4, float *dst4);

int fmsbintoieee(float *src4, float *dst4);

scr4

dst4

Value to be converted

Converted value

The fieeetomsbin routine converts a single-precision floating-point number in IEEE (Insti­
tute of Electrical and Electronic Engineers) format to Microsoft (MS) binary format.

The fmsbintoieee routine converts a floating-point number in Microsoft binary format to
IEEE format.

These routines allow C programs (which store floating-point numbers in the IEEE format)
to use numeric data in random-access data files created with Microsoft BASIC (which
stores floating-point numbers in the Microsoft binary format), and vice versa.

The argument src4 points to the float value to be converted. The result is stored at the loca­
tion given by dst4.

These routines do not handle IEEE NANs ("not a number") and infinities. IEEE denormals
are treated as 0 in the conversions .

These functions return 0 if the conversion is successful and 1 if the conversion causes an
overflow.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

dieeetomsbin, dmsbintoieee

285 fiieiength

Description Gets the length of a file.

#include <io.h> Required only for function declarations

long filelength(int handle);

handle Target file handle

Remarks The filelength function returns the length, in bytes, of the target file associated with
handle.

Return Value

Compatibility

See Also

The filelength function returns the file length in bytes. A return value of -IL indicates an
error, and an invalid handle sets errno to EBADF.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

chsize, fileno, fstat, stat

Exampw __ __

1* CHSIZE.C: This program uses filelength to report the size of a
* file before and after modifying it with chsize.
*1

#include <io.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h)

void main()
(

int fh, result;
unsigned int nbytes = BUFSIZ;

fiieiength

1* Open a file *1
if((fh = open("data", O_RDWR I O_CREAT, S_IREAD I S ... :.IWRITE » != ... 1)
(

Output

printf("File length before: %ld\n", filelength(fh));
if(chsize(fh, 329678) == 0)

printf("Size successfully changed\n");
else

printf("Problem in changing the size\n");
printf("File length after: %ld\n", filelength(fh));
close(fh);

File length before: 0
Size successfully changed
File length after: 329678

286

(\

287 Ii/en a

Description Gets the file handle associated with a stream.

#include <stdio.h>

int fileno(FILE *stream);

stream Pointer to FILE structure

Remarks The fileno routine returns the file handle currently associated with stream. This routine is
implemented as a macro.

Return Value

Compatibility

See Also

The file no routine returns the file handle. There is no error return. The result is undefined
if stream does not specify an open file.

o ANSI • DOS • OS/2 • UNIX • XENIX

fdopen, filelength, fop en, freopen

Exampre __ __

/* FILENO.C: This program uses fileno to obtain the file handle for
* some standard C streams.
*/

#include <stdio.h>

void main()
(

printf("The file handle for stdin is %d\n", fileno(stdin));
printf("The file handle for stdout is %d\n", fileno(stdout));
printf("The file handle for stderr is %d\n", fileno(stderr));

Outpul

The file handle for stdin is 0
The file handle for stdout is 1
The file handle for stderr is 2

Description

Remarks

Return Value

Compatibility

See Also

Fill an area of a display using the current color and fill mask

#include <graph.h>

short _far _floodfiIl(short x, short y, short boundary);

short _far _floodfiIl_w(double wx, double wy, short boundary);

x,y

wx,wy

boundary

Start point

Start point

Boundary color of area to be filled

288

The functions in the _ floodfill family fill an area of the display, using the current color and
fill mask. The _ flood fill routine begins filling at the view-coordinate point (x, y). The
_floodfiIl_wroutine begins filling at the window-coordinate point (wx, wy).

If this point lies inside the figure, the interior is filled; if it lies outside the figure, the back­
ground is filled. The point must be inside or outside the figure to be filled, not on the fig­
ure boundary itself. Filling occurs in all directions, stopping at the color of boundary.

The flood fill functions return a nonzero value if the fill is successful. It returns 0 if the fill
could not be completed, the starting point lies on the boundary color, or the start point lies
outside the clipping region.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_ellipse functions, Jetcolor, Jetfillmask, Jrstatus, yie functions, _ setfillmask,
_ setcliprgn, _ setcolor

Exampre ___ ___

1* FLOODFIL.C: This program draws a series of nested rectangles in
* different colors, constantly changing the background color.
*1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

289

void main()
(

int loop;
int xvar, yvar;

1* find a valid graphics mode *1
if(!_setvideomode(_MAXCOLORMODE))

exit(1);

for(xvar = 163, loop = 0; xvar < 320; loop++, xvar += 3)
(

_setcolor(loop % 16);
yvar = xvar * 5 I 8;
_rectangle(_GBORDER, 320-xvar, 200-yvar, xvar, yvar);
_setcolor(rand() % 16);
_floodfill(0, 0, loop % 16);

}

getch();
_setvideomode(_DEFAULTMODE);

floor, floorl 290

Description Calculate the floor of a value.

Remarks

Return Value

Compatibility

See Also

#include <math.h>

double floor(double x);

long double floorl(long double x);

x Floating-point value

The.floor and floorl functions return a floating-point value representing the largest integer
that is less than or equal to x.

The floorl function is th~ 80-bit counterpart, and it uses the 80-bit, 10-byte coprocessor
fonn of arguments and return values. See the reference page on the long double functions
for more details on this data type.

These functions return the floating-point result. There is no error return.

floor

• ANSI • DOS • OS/2 • UNIX • XENIX

floorl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

ceil, fmod

Exampw __ _____

1* FLOOR.C: This example displays the largest integers less than or equal
* to the floating-point values 2.8 and -2.8. It then shows the smallest
* integers greater than or equal to 2.8 and -2.8.
*1

#include <math.h)
#include <stdio.h)

291

void maine)
(

double y;

y = floor(2.8);
printf("The floor of 2.8 is %f\n", y);
y = floor(-2.8);
printf("The floor of -2.8 is %f\n", y);

y = ceil(2.8);
printf("The ceil of 2.8 is %f\n", y);
y = ceil(-2.8);
printf("The ceil of -2.8 is %f\n", y);

Output

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil. of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

floor, floorl

flushall

Description

Remarks

Return Value

Compatibility

See Also

292

Flushes all streams; Clears all buffers.

#include <stdio.h>

int flushall(void);

The flushall function writes to its associated files the contents of all buffers associated
with open output streams. All buffers associated with open input streams are cleared of
their current contents. The next read operation (if there is one) then reads new data from
the input files into the buffers.

Buffers are automatically flushed when they are full, when streams are closed, or when a
program terminates normally without closing streams.

All streams remain open after the call to flushall.

The flushall function returns the number of open streams (input and output). There is no
error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

mush

Exampre __ __

1* FLUSHALL.C: This program uses flushall to flush all open buffers. *1

#include <stdio.h)·

void main()
(

i nt numfl ushed;

numflushed = flushall();
printf("There were %d streams flushed\n", numflushed);

Output

There were 3 streams flushed

293

Description

Remarks

Return Value

Compatibility

See Also

fmod, fmodl

Calculates the floating-point remainder.

#include <math.h>

double fmod(double x, double y);

long double fmodl(long double x, long double y);

x,y floating-point values

The fmod and fmodl functions calculate the floating-point remainder f of x / y such that
x = i * Y + f, where i is an integer, f has the same sign as x, and the absolute value of f is
less than the absolute value of y.

The fmodl function is the 80-bit counterpart; it uses the 80-bit, 10-byte coprocessor form
of arguments and return values. See the discussion of the long double functions for more
details on this data type.

These functions return the floating-point remainder. If y is 0, the function returns O.

fmod

• ANSI • DOS • OS/2 • UNIX • XENIX

fmodl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

ceil, fabs, floor

Exampw __ _____

/* FMOD.C: This program displays a floating-point remainder. */

#include <math.h>
#include <stdio.h>

fmod, fmod/

void main()
(

double x = -10.0, y = 3.0, z;

z = fmod(x, y);
printf("The remainder of %.2f / %.2f is %f\n", x, y, z);

Output

The remainder of -10.00 / 3.00 is -1.000000

294

295

Description

Remarks

fop en

Opens a file.

#include <stdio.h>

FILE *fopen(const char *filellame, const char *mode);

filename

mode

Path name of file

Type of access pennitted

The fopen function opens the file specified by filename. The character string mode speci­
fies the type of access requested for the file, as follows:

"r"

"w"

"a"

"r+"

"w+"

"a+"

Description

Opens for reading. If the file does not exist or cannot be
found, the fopen call will fail.

Opens an empty file for writing. If the given file exists, its
contents are destroyed.

Opens for writing at the end of the file (appending); creates
the file first if it doesn't exist.

Opens for both reading and writing. (The file must exist.)

Opens an empty file for both reading and writing. If the given
file exists, its contents are destroyed.

Opens for reading and appending; creates the file first if it
doesn't exist.

When a file is opened with the" a" or "a+" access type, all write operations occur at the
end of the file. Although the file pointer can be repositioned using fseek or rewind, the file
pointer is always moved back to the end of the file before any write operation is carried
out. Thus, existing data cannot be overwritten.

When the" r+", "w+", or "a+" access type is specified, both reading and writing are al­
lowed (the file is said to be open for "update"). However, when you switch between read­
ing and writing, there must be an intervening fsetpos, fseek, or rewind operation. The
current position can be specified for the fsetpos or fseek operation, if desired.

(open

Return Value

Compatibility

See Also

296

In addition to the values listed above, one of the following characters can be included in
mode to specify the translation mode for newline characters:

Mode

t

b

Meaning

Open in text (translated) mode. In this mode, carriage-return­
line-feed (CR-LF) combinations are translated into single line
feeds (LF) on input and LF characters are translated to CR-LF
combinations on output. Also, CTRL+Z is interpreted as an end­
of-file character on input. In files opened for reading or for
reading/writing, fopen checks for a CTRL+Z at the end of the
file and removes it, if possible. This is done because using the
fseek and ftell functions to move within a file that ends with a
CTRL+Z may cause fseek to behave improperly near the end of
the file.

Open in binary (untranslated) mode; the above translations are
suppressed.

If t or b is not given in mode, the translation mode is defined by the default-mode variable
_fmode. 1ft or b is prefixed to the argument, the function will fail and return NULL.

See Section 2.7, "Input and Output," for a discussion of text and binary modes.

The fopen function returns a pointer to the open file. A null pointer value indicates an
error.

• ANSI • DOS • OS/2 • UNIX • XENIX

Note that the t option is not part of the ANSI standard for fopen; it is a Microsoft exten­
sion and should not be used where ANSI portability is desired.

fclose, fcloseall, fdopen, ferror, fileno, freopen, open, setmode

Exampre __ ___

1* FOPEN.C: This program opens files named "data" and "data2". It uses
* fclose to close "data" and fcloseall to close all remaining files.
*1

#include <stdio.h>

297

FILE *stream, *stream2;

void main()
[

int numclosed;

/* Open for read (will fail if 'data' does not exist) */
i f ((s t rea m = fop e n (" d a t a ", "r " » == NUL L)

printf("The file 'data' was not opened\n");
else

printf("The file 'data' was opened\n");

/* Open for write */
if((stream2 = fopen("data2", "w+" » .=;:a NULL

printf("The file 'data2' was not opened\n");
else

printf("The file 'data2' was opened\n");

/* Close stream */
if(fclose(stream)

printf("The file 'data' was not closed\n");

/* All other files are closed: */
numclosed = fcloseall();
printf("Number of files closed by fcloseall: %u\n", numclosed);

Output

The file 'data' was opened
The file 'data2' was opened
Number of files closed by fcloseall: 1

fopen

Description Get or set a far-pointer offset (FP _OFF) or a far-pointer segment (FP _SEG).

#include <dos.h>

unsigned FP _ OFF(void _far *address);

unsigned FP _SEG(void _far *address);

address Far pointer to memory address

29Sf

Remarks The FP _OFF and FP _SEG macros can be used to set or get the offset and segment, respec­
tively, of the far pointer at address.

Return Value The FP _OFF macro returns an offset. The FP _SEG macro returns a segment address.

Compatibility o ANSI • DOS • OS/2 D UNIX 0 XENIX

Exampw __ ___

1* FP_SEG.C: This program uses FP_SEG and FP_OFF to obtain
* the segment and offset of the long pointer p.
*1

#include <dos.h>
#include <malloc.h>
#include <stdio.h>

void main()
{

void _far *p;
unsigned int seg_val;
unsigned int off_val;

p = _fmalloc(100);

seg_val = FP_SEG(P);
off_val = FP_OFF(P);

1* Points pointer at something */

1* Gets address pointed to *1

printf("Segment is %.4X; Offset is %.4X\n", seg_val, off_val);

299

Output

Segment ;s 00C7; Offset ;s 0016

_fpreset 300

Description Resets the floating-point package.

#include <float.h>

void _fpreset(void);

Remarks The _fpreset function reinitializes the floating-poi nt-math package. This function is usu­
ally used in conjunction with signal, system, or the exec or spawn functions.

Return Value

Compatibility

See Also

If a program traps floating-point error signals (SIGFPE) with signal, it can safely recover
from floating-point errors by invoking _fpreset and using longjmp.

In DOS versions prior to 3.0, a child process executed by exec, spawn, or system may
affect the floating-point state of the parent process if an 8087 or 80287 coprocessor is
used. If you are using either coprocessor, the following precautions are recommended:

• The exec, spawn, and system functions should not be called during the evaluation of a
floating-point expression.

• The _fpreset function should be called after these routines if there is a possibility of
the child process performing any floating-point operations.

None.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

exec functions, signal, spawn functions

Exampw ___ __

/* FPRESET.C: This program uses signal to set up a routine for handling
* floating-point errors.
*/

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <string.h>

301

jmp_buf mark;
int fperr;

1* Address for long jump to jump to *1
1* Global error number *1

void fphand1er(int sig, int num); 1* Prototypes *1
void fpcheck(void);

void main()
f

double nl, n2, r;
int jmpret;

1* Set up floating point error handler. *1
if(signa1(SIGFPE, fphand1er) == SIG_ERR
(

fprintf(stderr, "Couldn't set SIGFPE\n");
abort();

1* Save stack environment for return in case of error. First time
* through, jmpret is 0, so true conditional is executed. If an
* error occurs, jmpret will be set to -1 and false conditional
* will be executed.
*1

jmpret = setjmp(mark);
if(jmpret == 0)
(

printf("Test for invalid operatio~ - ");
printf("enter two numbers: ");
scanf("%If %lf H

, &nl, &n2);

r = nl I n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g I %4.3g = %4.3g\n", nl, n2, r);

r = nl * n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g * %4.3g = %4.3g\n", nl, n2, r);

else
fpcheck();

_'preset

_fpreset

1* Handles SIGFPE (floating point error) interrupt. *1
void fphandler(int sig, int num)
(

1* Set global for outside check since we don't want to do 1/0 in the
* handler.
*1

fperr = num;

1* Initialize floating-point package. *1
_fpreset();

1* Restore calling environment and jump back to setjmp. Return -1
* so that setjmp will return false for conditional test.
*1

longjmp(mark, -1);

void fpcheck()
{

char fpstr[30];

switch (fperr)
(

)

case FPE_INVALID:
strcpy(fpstr, "Invalid number")i

break;

case FPE_OVERFLOW:
strcpy(fpstr, "Overflow");
break;

case FPE_UNDERFLOW:
strcpy(fpstr, "Underflow");
break;

case FPE_ZERODIVIDE:
strcpy(fpstr, "Divide by zero");
break;

default :
strcpy(fpstr, "Other floating point error");
break;

printf("Error %d: %s\n", fperr, fpstr);

Output

Test for invalid operation - enter two numbers: 5 0
Error 131: Divide by zero

302

303

Description

Remarks

Return Value

Compatibility

See Also

Prints formatted data to a stream.

#include <stdio.h>

int fprintf(FILE *stream, const char *format [, argument] ...);

stream

format

argument

Pointer to FILE structure

Format-control string

Optional arguments

fprintf

The fprintf function formats and prints a series of characters and values to the output
stream. Each argument (if any) is converted and output according to the corresponding
format specification informat.

The format argument has the same form and function that it does for the printf function;
see the Remarks section for the printf function for more information onformat and
argument.

The fprintf function returns the number of characters printed, or a negative value in the
case of an output error.

• ANSI • DOS • OS/2 • UNIX • XENIX

cprintf, fscanf, printf, sprintf

Exampw __ ___

1* FPRINTF.C: This program uses fprintf to format various data and
* print them to the file named FPRINTF.OUT. It then displays
* FPRINTF.OUT on the screen using the system function to invoke
* the DOS TYPE command.
*1

#include <stdio.h>
#include <process.h>

fprintf

FILE *stream;

void maine)
(

int i = 10;
double fp = 1.5;
char s[] = "this is a string";
char c = '\n';

stream = fopen("f~intf.out", "w");
fprintf(stream, "%s%c", s, c);
fprintf(stream, "%d\n", i);
fprintf(stream, "%f\n", fp);
fclose(stream);
system("type fprintf.out");

Output

this is a string
10
1.500000

304

305

Description

Remarks

Return Value

Compatibility

See Also

Write a character to a stream (fpute) or to stdout (fputehar).

#include <stdio.h>

int fpute(int c, FILE *stream);

int fputehar(int c);

c

stream

Character to be written

Pointer to FILE structure

fputc, fputchar

The fpute function writes the single character c to the output stream at the current posi­
tion. The fputehar function is equivalent to fpute(c, stdout).

The fpute and fputehar routines are similar to pute and putehar, but are functions rather
than macros.

The fpute and fputehar functions return the character written. A return value of EOF indi­
cates an error.

fpute

• ANSI • DOS • OS/2 • UNIX • XENIX

fputehar

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

fgete, fgetehar, pute, putehar

Exampre __ __

1* FPUTC.C: This program uses fputc and fputchar to send a character
* array to stdout.
*/

#include <stdio.h>

(putc, (putchar

void main()
(

char strptrl[]
char strptr2[]
char *p;

"This is a test of fputc!!\n";
"This is a test of fputchar!!\n";

1* Print line to stream using fputc. *1
p = strptrl;
while((*p != '\0') && fputc(*(p++), stdout != EOF)

1* Print line to stream using fputchar. *1
p = strptr2;
while((*p!= '\0') && fputchar(*(p++)) != EOF)

Output

This is a test of fputc!!
This is a test of fputchar!!

306

307

Description Writes a string to a stream.

#include <stdio.h>

int fputs(const char *string, FILE *stream);

string

stream

String to be output

Pointer to FILE structure

(puts

Remarks The fputs function copies string to the output stream at the current position. The tenninat­
ing null character ('\0') is not copied.

Return Value

Compatibility

See Also

The fputs function returns a nonnegative value if it is successful. If an error occurs, it re­
turns EOF.

• ANSI • DOS • OS/2 • UNIX • XENIX

fgets, gets, puts

Exampre __ __

/* FPUTS.C: This program uses fputs to write a single line to the
* stdout stream.
*/

#include <stdio.h)

void main()
{

fputs("Hello world from fputs.\n", stdout);

Output

Hello world from fputs.

tread

Description

Remarks

Return Value

Compatibility

See Also

Reads data from a stream.

#include <stdio.h>

size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

buffer

size

count

stream

Storage location for data

Item size in bytes

Maximum number of items to be read

Pointer to FILE structure

308

The fread function reads up to count items of size bytes from the input stream and stores
them in buffer. The file pointer associated with stream (if there is one) is increased by the
number of bytes actually read.

If the given stream is opened in text mode, carriage-return-line-feed pairs are replaced
with single line-feed characters. The replacement has no effect on the file pointer or the re­
turn value.

The file-pointer position is indeterminate if an error occurs. The value of a partially read
item cannot be determined.

The fread function returns the number of full items actually read, which may be less than
count if an error occurs or if the file end is encountered before reaching count.

The feof or ferror function should be used to distinguish a read error from an end-of-file
condition. If size or count is 0, fread returns ° and the buffer contents are unchanged.

• ANSI • DOS • OS/2 • UNIX • XENIX

fwrite, read

Exampw __ ___

1* FREAD.C: This program opens a file named FREAD.OUT and writes 25
* characters to the file. It then tries to open FREAD.OUT and
* read in 25 characters. If the attempt succeeds, the program
* displays the number of actual items read.
*1

309

#include <stdio.h>

void main()
(

FILE *stream;
char list[30];
int i, numread, numwritten;

1* Open file in text mode: *1
if((stream = fopen("fread.out", "w+t" » 1= NULL)
{

for (i = 0; i < 25; i++)
list[i] = 'z' - i;

1* Write 25 characters to stream *1
numwritten = fwrite(list, sizeof(char), 25, stream);
printf("Wrote %d items\n", numwritten);
fclose(stream);

else
printf("Problem opening the file\n");

if((stream = fopen("fread.out", "r+t" » 1= NULL)
(

1* Attempt to read in 25 characters *1
numread = fread(list, sizeof(char), 25, stream);
printf("Number of items read = %d\n", numread);
printf("Contents of buffer = %.25s\n", list);
fclose(stream); •

else
printf("Was not able to open the file\n");

Output

Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

tread

free Functions 310

Description

Remarks

Deallocate a memory block.

#include <stdlib.h>

#include <malIoc.h>

For ANSI compatibility (free only)

Required only for function declarations

void free(void *memblock);

void _bfree(_segment seg, void _based(void) *memblock);

void _ffree(void _far *memblock);

void _nfree(void _near *memblock);

memblock

seg

Allocated memory block

Based-heap segment selector

The free family of functions deallocates a memory block. The argument memblock points
to a memory block previously allocated through a call to calIoc, malloc, or realloc. The
number of bytes freed is the number of bytes specified when the block was allocated (or
reallocated, in the case ofreaUoc). After the call, the freed block is available for
allocation.

The seg argument specifies the based heap containing the memory block to be freed by the
_ bfree function.

Attempting to free an invalid pointer may affect subsequent allocation and cause errors.
An invalid pointer is one not allocated with the appropriate call.

The following restrictions apply to use of the free, _ bfree, _ffree, and _ nfree functions:

Blocks allocated with:

calloc, malloc, realloc

_ bcalloc, _ bmalloc, "7" brealloc

_fcalloc, _fmalloc, _frealloc

_ ncalloc, _ nmaIIoc, _ nrealloc

A NULL pointer argument is ignored.

Should be freed with:

free

bfree

ffree

nfree

In large data models (compact-, large-, and huge-model programs), free maps to _ffree. In
small data models (tiny-, small-, and medium-model programs), free maps to _nfree.

311 free Functions

The various free functions deallocate a memory block in the segments shown in the list
below:

Return Value

Compatibility

Function

free

_bfree

ffree

nfree

None.

free

Data Segment

Depends on data model of program

Based heap specified by seg value

Far heap (outside default data segment)

Near heap (inside default data segment)

• ANSI • DOS • OS/2 • UNIX • XENIX

_ bfree, _ ffree, _ nfree

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also calloc functions, malloc functions, realloc functions

Exampre __ __

/* MALLOC.C: This program allocates memory with malloc, then frees
* the memory with free.
*/

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

free Functions

void main()
(

char *string;

/* Allocate space for a path name */
string = malloc(_MAX_PATH);
if(string == NULL)

printf("Insufficient memory available\n");
'el se

printf("Memory space allocated for path name\n");
free(string);
printf("Memory freed\n");

Output

Memory space allocated for path name
Memory freed

312

313 _!reeet

Description Returns the amount of memory available for memory allocation.

#include <malloc.h> Required only for function declarations

unsigned int _freect(size_t size);

size Item size in bytes

Remarks The _freect function tells you how much memory is available for dynamic memory alloca­
tion in the near heap. It does so by returning the approximate number of times your pro­
gram can call_nmalloc (or malloc in small data models) to allocate an item size bytes
long in the near heap (default data segment).

Return Value The _freect function returns the number of calls as an unsigned integer.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also calloc functions, _expand functions, malloc functions, _ memavl, _ msize functiQns,
realloc functions

Exampm __ ___

1* FREECT.C: This program determines how much free space is available for
* integers in the default data segment. Then it allocates space for
* 1.000 integers and checks the space again. using _freect.
*1

#include <malloc.h>
#include <stdio.h>

void main()
(

int i;

1* First report on the free space: *1
printf("Integers (approximate) available on heap: %u\n\n".

_freect(sizeof(int)));

1* Allocate space for 1000 integers: *1
for(i = 0; i < 1000; ++i)

malloc(sizeof(int));

freect

1* Report again on the free space: *1
printf("After allocating space for 1000 integers:\n");
printf("Integers (approximate) available on heap: %u\n\n",

_freect(sizeof(int)));

Output

Integers (approximate) available on heap: 15212

After allocating space for 1000 integers:
Integers (approximate) available on heap: 14084

314

315

Description

Remarks

freopen

Reassigns a file pointer.

#include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE *stream);

filename

mode

stream

Path name of new file

Type of access permitted

Pointer to FILE structure

The freopen function closes the file currently associated with stream and re'assigns stream
to the file specified by filename. The freopen function is typically used to redirect the pre­
opened files stdin, stdout, and stderr to files specified by the user. The new file associ­
ated with stream is opened with mode, which is a character string specifying the type of
access requested for the file, as follows:

"r"

"w"

"a"

"r+"

"w+"

"a+"

Description

Opens for reading. If the file does not exist or cannot be
found, the freopen call fails.

Opens an empty file for writing. If the given file exists, its
contents are destroyed.

Opens for writing at the end of the file (appending); creates
the file first if it does not exist.

Opens for both reading and writing. (The file must exist.)

Opens an empty file for both reading and writing. If the given
file exists, its contents are destroyed.

Opens for reading and appending; creates the file first if it
does not exist.

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the" a" or "a+" access type, all write operations take place at
the end of the file. Although the file pointer can be repositioned using fseek or rewind, the
file pointer is always moved back to the end of the file before any write operation is car­
ried out. Thus, existing data cannot be overwritten.

(reopen

Return Value

Compatibility

See Also

316

When the "r+" , "w+", or "a+" access type is specified, both reading and writing are al­
lowed (the file is said to be open for "update"). However, when you switch between read­
ing and writing, there must be an intervening fsetpos, fseek, or rewind operation. The
current position can be specified for the fsetpos or fseek operation, if desired.

In addition to the values listed above, one of the following characters may be included in
the mode string to specify the translation mode for newlines.

Mode

t

b

Meaning

Open in text (translated) mode; carriage-return-line-feed
(CR-LF) combinations are translated into single line-feed
(LF) characters on input; LF characters are translated to CR­
LF combinations on output. Also, CTRL+Z is interpreted as an
end-of-file character on input. In files opened for reading, or
writing and reading, the run-time library checks for a CTRL+Z

at the end of the file and removes it, if possible. This is done
because using the fseek and ftell functions to move within a
file may cause fseek to behave improperly near the end of the
file.

Open in binary (untranslated) mode; the above translations are
suppressed.

If t or b is not given in the mode string, the translation mode is defined by the default
mode variable fmode.

See Section 2.7, "Input and Output," for a discussion of text and binary modes.

The freopen function returns a pointer to the newly opened file. If an error occurs, the orig­
inal file is closed and the function returns a NULL pointer value.

• ANSI • DOS • OS/2 • UNIX • XENIX

The t option is not part of the ANSI standard for freopeD; it is a Microsoft extension that
should not be used where ANSI portability is desired.

fclose, fcloseall, fdopeD, fileno, fopen, open, setmode

Exampre __ _____

1* FREOPEN.C: This program reassigns stdaux to the file
* named FREOPEN.OUT and writes a line to that file.
*1

317

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

void main()
(

1* Reassign "stdaux" to "freopen.out": *1
stream = freopen("freopen.out", "w", stdaux);

if(stream == NULL)
fprintf(stdout, "error on freopen\n");

else
(

fprintf(stream, "This will go to the file 'freopen.out'\n");
fprintf(stdout, "successfully reassigned\n");
fclose(stream);

system("type freopen.out");

Output

successfully reassigned
This will go to the file 'freopen.out'

frexp, frexpl 318

Description Get the mantissa and exponent of a floating-point number.

Remarks

Return Value

Compatibility

See Also

#include <math.h>

double frexp(double x, int *expptr);

long double frexpl(long double x, int *expptr);

x Floating-point value

expptr Pointer to stored integer exponent

The frexp and frexpl functions break down the floating-point value (x) into a mantissa (m)
and an exponent (n), such that the absolute value of m is greater than or equal to 0.5 and
less than 1.0, and x = m*2n. The integer exponent n is stored at the location pointed to by
expptr.

The frexpl function is the 80-bit counterpart and uses an 80-bit, 10-byte coprocessor form
of arguments and return values. See the reference page on the long double functions for
more details on this data type.

These functions return the mantissa. If x is 0, the function returns 0 for both the mantissa
and the exponent. There is no error return.

frexp

• ANSI • DOS • OS/2 • UNIX • XENIX

frexpl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

ldexp functions, modf

Exampw __ __

1* FREXP.C: This program calculates frexp(16.4, &n), then displays y
* and n.
*1

#include <math.h>
#include <stdio.h>

319

void maine)
(

double x, y;
int n;

x = 16.4;
y = frexp(x, &n);
printf("frexp(%f, &n) = %f, n = %d\n", x, y, n);

Output

frexp(16.400000, &n) = 0.512500, n = 5

frexp, frexpl

tscant

Description

Remarks

Return Value

Compatibility

See Also

Reads fonnatted data from a stream.

#include <stdio.h>

int fscanf(FILE *stream, const char *format [, argument] •••)

stream

format

argument

Pointer to FILE structure

Fonnat-control string

Optional arguments

320

The fscanf function reads data from the current position of stream into the locations given
by argument (if any). Each argument must be a pointer to a variable with a type that corre­
sponds to a type specifier informat. The fonnat controls the interpretation of the input
fields and has the same fonn and function as the format argument for the scanf function;
see scanf for a description offormat.

The fscanf function returns the number of fields that were successfully converted and as­
signed. The return value does not include fields that were read but not assigned.

The return value is EOF for an error or end-of-file on stream before the first conversion. A
return value of 0 means that no fields were assigned.

• ANSI • DOS • OS/2 • UNIX • XENIX

cscanf, fprintf, scanf, sscanf

Exampw __ __

1* FSCANF.C: This program writes formatted dati to a file. It
* then uses fscanf to read the various data back from the file.
*1

#include <stdio.h>

321

FILE *stream;

void main()
(

long 1;
float fp;
char s[81];
char c;
int result;

stream = fopen("fscanf.out", "w+");
if(stream ~~ NULL)

printf("The file fscanf.out was not opened\n");
else
(

fprintf(stream, "%s %ld %f%c", "a-string", 65000, 3.14159, 'x');

1* Set pOinter to beginning of file: *1
fseek(stream, 0L, SEEK_SET);

1* Read data back from file:
fscanf(stream, "%s", s) ;
fscanf(stream, "%ld", &1) ;
fscanf(stream, "%f", &fp);

Output

fscanf(stream, "%c", &c);

1* Output data read: *1
printf("%s\n", s);
printf("%ld\n", 1);
printf("%f\n", fp);
printf("%c\n", c);

fclose(stream);

a-string
65000
3.141590
x

*1

fscanf

fseek

Description

Remarks

Moves the file pointer to a specified location.

#include <stdio.h>

int fseek(FILE *stream, long offset, int origin);

stream

offset

origin

Pointer to FILE structure

Number of bytes from origin

Initial position

322

The fseek function moves the file pointer (if any) associated with stream to a new location
that is offset bytes from origin. The next operation on the stream takes place at the new lo­
cation. On a stream open for update, the next operation can be either a read or a write.

The argument origin must be one of the following constants defined in STDIO.H:

Origin

SEEK_CUR

SEEK_END

SEEK_SET

Definition

Current position of file pointer

End of file

Beginning of file

The fseek function can be used to reposition the pointer anywhere in a file. The pointer
can also be positioned beyond the end of the file. However, an attempt to position the
pointer in front of the beginning of the file causes an error.

The fseek function clears the end-of-file indicator and negates the effect of any prior
ungetc calls against stream.

When a file is opened for appending data, the current file position is determined by the last·
I/O operation, not by where the next write would occur. If no I/O operation has yet oc­
curred on a file opened for appending, the file position is the start of the file.

For streams opened in text mode, fseek has limited use because carriage-return-line-feed
translations can cause fseek to produce unexpected results. The only fseek operations
guaranteed to work on streams opened in text mode are the following:

• Seeking with an offset of 0 relative to any of the origin values

• Seeking from the beginning of the file with an offset value returned from a call to ftell

323 fseek

Return Value If successful, fseek returns O. Otherwise, it returns a nonzero value. On devices incapable
of seeking, the return value is undefined.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also ftell, lseek, rewind

Exampw __ __

1* FSEEK.C: This program opens the file FSEEK.OUT and
* moves the pointer to the file's beginning.
*1

#include <stdio.h>

void main()
(

FILE *stream:
char line[81];
int result;

stream = fopen("fseek.out", "w+");
if(stream == NULL)

printf("The file fseek.out was not opened\n");
else
(

Output

fprintf(stream, "The fseek begins here: "
"This is the file 'fseek.out'.\n");

result = fseek(stream, 23L. SEEK_SET);
if(result)

perror("Fseek failed");
else
(

printf("File pointer is set to middle of first line.\n");
fgets(line, 80, stream);
printf("%s", line);

fclose(stream);

File pointer is set to middle of first line.
This is the file 'fseek.out'.

(setpos

Description

Remarks

Return Value

Compatibility

See Also

Sets the stream-position indicator.

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos) ;

stream

pos

Target stream

Position-indicator storage

324

The fsetpos function sets the file-position indicator for stream to the value of pos, which is
obtained in a prior call to fgetpos against stream.

The function clears the end-of-file indicator and undoes any effects of the ungetc function
on stream. After calling fsetpos, the next operation on stream may be either input or
output.

If successful, the fsetpos function returns O. On failure, the function returns a nonzero
value and sets errno to one of the following manifest constants (defined in ERRNO.H):

Constant

EBADF

EINVAL

Meaning

The object that stream points to is not a valid file handle, or
the file is not accessible.

An invalid stream value was passed.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

fgetpos

Exampw __ ___

1* FGETPOS.C: This program opens a file and reads bytes at several
* different locations.
*1

#include <stdio.h)

325

void maine)
(

FILE *s tream;
fpos_t pos;
int val;
char buffer[20];

if((stream = fopen("fgetpos.c", "rb" »
printf("Trouble opening file\n");

else
(

NULL)

1* Read some data and then check the position. *1
fread(buffer, sizeof(char), 10, stream);

Output

if(fgetpos(stream, &pos) 1= 0)
perror("fgetpos error");

else
(

fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);

1* Set a new position and read more data. *1
pos = 140;
if(fsetpos(stream, &pos) 1= 0)

perror("fsetpos error");

fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);

fclose(stream);

10 bytes at byte 10: .C: This p
10 bytes at byte 140: FILE *

fsetpos

_fsopen

Description

Remarks

Opens a stream with file sharing.

#include <stdio.h>

#include <share.h> shflag constants

FILE * _fsopen(const char *filename, const char *mode, int shflag);

filename

mode

sliflag

File name to open

Type of access permitted

Type of sharing allowed

The_fsopen function opens the file specified by filename as a stream and prepares the
file for subsequent shared reading or writing, as defined by the mode and shflag
arguments.

The character string mode specifies the type of access requested for the file, as follows:

"r"

"w"

Description

Opens for reading. If the file does not exist or cannot be
found, the _fsopen call will fail.

Opens an empty file for writing. If the given file exists, its
contents are destroyed.

326

"a" Opens for writing at the end of the file (appending); creates
the fil~ first if it does not exist.

"r+"

"w+"

"a+"

Opens for both reading and writing. (The file must exist.)

Opens an empty file for both reading and writing. If the given'
file exists, its contents are destroyed.

Opens for reading and appending; creates the file first if it
does not exist.

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" access type, all write operations occur at the
end of the file. Although the file pointer can be repositioned using fseek or rewind, the file
pointer is always moved back to the end of the file before any write operation is carried
out. Thus, existing data cannot be overwritten.

327 _fsopen

When the "r+", "w+", or "a+" access type is specified, both reading and writing are al­
lowed (the file is said to be open for "update"). However, when switching between reading
and writing, there must be an intervening fsetpos, fseek, or rewind operation. The current
position can be specified for the fsetpos or fseek operation, if desired.

In addition to the values listed above, one of the following characters can be included in
mode to specify the translation mode for newlines:

Mode

t

b

Meaning

Open in text (translated) mode. In this mode, carriage-return­
line-feed (CR-LF) combinations are translated into single line
feeds (LF) on input and LF characters are translated to CR-LF
combinations on output. Also, CTRL+Z is interpreted as an end­
of-file character on input. In files opened for reading or read­
ing/writing, _fsopen checks for a CTRL+Z at the end of the file
and removes it, if possible. This is done because using the
fseek and ftell functions to move within a file that ends with a
CfRL+Z may cause fseek to behave improperly near the end of
the file.

Open in binary (untranslated) mode; the above translations are
suppressed.

If t or b is not given in mode, the translation mode is defined by the default-mode variable
_fmode. If t or b is prefixed to the argument, the function will fail and will return NULL.

See Section 2.7, "Input and Output," for a discussion of text and binary modes.

The argument shflag is a constant expression consisting of one of the following manifest
constants, defined in SHARE.H. If SHARE.COM -{)r SHARE.EXE for some versions of
DOS- is not installed, DOS ignores the sharing mode. (See your system documentation
for detailed information about sharing modes.)

Constant

SH_COMPAT

SH_DENYNO

SH_DENYRD

SH_DENYRW

SH_DENYWR

Meaning

Sets compatibility mode (not available in OS/2)

Permits read and write access

Denies read access to file

Denies read and write access to file

Denies write access to file

The _fsopen function should be used only under OS/2 and DOS versions 3.0 and later.
Under earlier versions of DOS, the shflag argument is ignored.

_fsopen 328

Return Value The _fsopen function returns a pointer to the stream. A NULL pointer value indicates an
error.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also fclose, fcloseall, fdopen, ferror, fileno, fopen, freopen, open, set mode, sopen

Exampre __ __

1* FSOPEN.C: This program opens files named "data" and "data2". It uses
* fclose to close "data" and fcloseall to close all remaining files.
*1

#include <stdio.h>
#include <share.h>

FILE *stream;

void maine)
{

FILE *stream;

1* Open output file for wri~ing. Using _fsopen allows us to ensure
* that no one else writes to the file while we are writing to it.
*1

if((stream = _fsopen("outfile", "wt", SH_DENYWR » 1= NULL
(

fprintf(stream, "No one else in the network can write"
"to this file until we are done.\n");

fclose(stream);

1* Now others can write to the file while we read it. *1
system("type outfil e");

Output

No one else in the network can write to this file until we are done.

329

Description

,Remarks

Istat

Gets information about an open file.

#include <sys\types.h>

#include <sys\stat.h>

int fstat(int handle, struct stat *buffer);

handle

buffer

Handle of open file

Pointer to structure to store results

The fstat function obtains information about the open file associated with handle and
stores it in the structure pointed to by buffer. The structure, whose type stat is defined in
SYS\'5TAT.H, contains the following fields:

Field

st atime

st ctime

st dev

st mode

st mtime

st_nlink

st_rdev

Value

Time of last modification of file (same as st_mtime and
st_ctime).

Time of last modification of file (same as st atime and
st_mtime). -

Either the drive number of the disk containing the file, or
handle in the case of a device (same as st_rdev). .

Bit mask for file-mode information. The S IFCHR bit is set if
handle refers to a device. The S_IFREG bit is set if handle re­
fers to an ordinary file. The read/write bits are set according to
the file's permission mode. (S_IFCHR and other constants are
defined in SYs\ STAT.H.)

Time of last modification of file (same as st atime and
st_ctime). -

Always 1.

Either the drive number of the disk containing the file, or
handle in the case of a device (same as st_dev).

. Size of the file in bytes.

If handle refers to a device, the size and time fields in the stat structure are not
meaningful.

Istat 330

Return Value The fstat function returns the value 0 if the file-status infonnation is obtained. A return
value of -1 indicates an error; in this case, errno is set to EBADF, indicating an invalid file
handle.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

In OS/2, the st_dev field does not contain meaningful infonnation. In fact, it is set to zero.
OS/2 provides no way to recover the host drive from just the open file handle.

See Also access, chmod, filelength, stat

Exampw __ ___

1* FSTAT.C: This program uses fstat to report the size of a file
* named FSTAT.OUT.
*1

/finclude. <io.h>
#i ncl ude <fcntl. h>
#include <time.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main()
{

struct stat buf;
int fh, result;
char buffer[] = "A line to output";

if((fh = open("fstat.out", O_CREAT O_WRONLY I O_TRUNC)) -1)
exit(1);

write(fh, buffer, strlen(buffer));

1* Get data associated with "fh": *1

result = fstat(fh, &buf);

331

/* Check if statistics are valid: */
if(result != 0

printf("Bad file handle\n");
else
(

}

printf("File size
printf("Drive number
printf("Time modified

close(fh);

Output

File size 16
Drive number 0

%ld\n", buf.st_size);
%d\n", buf.st_dev);
%s", ctime(&buf.st_atime));

Time modified Thu Jun 15 21:38:46 1989

Istat

Itell

Description

Remarks

Return Value

Gets the current position of a file p~inter.

#include <stdio.h>

long ftell(FILE * stream);

stream Target FILE structure

The ftell function gets the current position of the file pointer (if any) associated with
stream. The position is expressed as an offset relative to the beginning of the stream.

332

Note that when a file is opened for appending data, the current file position is determined
by the last I/O operation, not by where the next write would occur. For example, if a file is
opened for an append and the last operation was a read, the file position is the point where
the next read operation would start, not where the next write would start. (When a file is
opened for appending, the file position is moved to end-of-file before any write operation.)
If no I/O operation has yet occurred on a file opened for appending, the file position is the
beginning of the file.

The ftell function returns the current file position. The value returned by ftell may not re­
flect the physical byte offset for streams opened in text mode, since text mode causes
carriage-return-line-feed translation. Use ftell in conjunction with the fseek function to re­
turn to file locations correctly. On error, the function returns -IL and errno is set to one of
the following constants, defined in ERRNO.H:

Constant

EBADF

EINVAL

Description

Bad file number. The stream argument is not a valid file­
handle value or does not refer to an open file.

Invalid argument. An invalid stream argument was passed to
. the function.

On devices incapable of seeking (such as terminals and printers), or when stream does not
refer to an open file, the return value is undefined.

333 flell

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also fgetpos, fseek, lseek, tell

Exampw __ __

1* FTELL.C: This program opens a file named FTELL.C for reading and
* tries to read 100 characters. It then uses ftell to determine the
* position of the file pointer and displays this position.
*1

#include <stdio.h>

FILE *stream;

void main()
{

long position;
char list[100];

if((stream = fopen("ftell.c", "rb" » != NULL)
(

Output

1* Move the pointer by reading data: *1
fread(list, sizeof(char), 100, stream);

1* Get position after read: *1
position = ftell(stream);
printf("Position after trying to read 100 bytes: %ld\n", position);
fclose(stream);

Position after trying to read 100 bytes: 100

ftime

Description

Remarks

Return Value

Compatibility

Gets the current time.

#include <sys\types.h>

#include <sys\timeb.h>

334

void ftime(struct timeb *timeptr);

timeptr Pointer to structure defined in SYs\TIMEB.H

The ftime function gets the current time and stores it in the structure pointed to by timepfr.
The timeb structure is defined in SYS\TIMEB.H. It contains four fields (dstflag, millitm,
time, and timezone), which have the following values:

Field

dstflag

millitm

time

timezone

Value

Nonzero if daylight saving time is currently in effect for the
local time zone. (See tzset for an explanation of how daylight
saving time is determined.)

Fraction of a second in milliseconds. The last digit is always 0
since milIitm is incremented to the nearest one-hundredth of a
second.

Time in seconds since 00:00:00 Greenwich mean time,
January 1, 1970.

Difference in minutes, moving westward, between Greenwich
mean time and local time. The value of timezone is set from
the value of the global variable timezone (see tzset).

The ftime function gives values to the fields in the structure pointed to by timeptr. It does
not return a value.

o ANSI • DOS • OS/2 • UNIX • XENIX

335 ftime

See Also asctime, ctime, gmtime, localtime, time, tzset

Exampre __ __

/* FTIME.C: This program uses ftime to obtain the current time
* and then stores this time in timebuffer.
*/

#include <stdio.h>
#include <sys\timeb.h>
#include <time.h>

void maine)
(

struct timeb timebuffer;
char *timeline;

ftime(&timebuffer).;
timeline = ctime(& (timebuffer.time));

printf("The time is %.19s.%hu Is",
timeline, timebuffer.millitm, &timeline[20]);

Output

The time is Thu Jun 15 21:40:34.870 1989

_Iu//path

Description

Remarks

Return Value

Compatibility

See Also

Makes an absolute path name from a relative path name.

#include <stdlih.h>

char *_fullpath(char *buffer, const char *patlmame, size_t maxlen);

buffer

pathname

maxlell

Full path-name buffer

Relative path name

Length of the buffer pointed to by buffer

336

The fullpath routine converts the partial path stored in patlmame to a fully qualified path
that is stored in buffer. Unlike _makepath, the _fullpath routine can be used with .\ and .• \
in the path.

If the length of the fully qualified path is greater than the value of maxlen, then NULL is
returned; otherwise, the address of buffer is returned.

If the buffer is NULL, _fullpath will allocate a buffer of MAX_PATH size and the
ma:rlell argument is ignored.

If the patl1l1ame argument specifies a disk drive, the current directory of this drive is com­
bined with the path. If the drive is not valid, _fullpath returns NULL.

The _fullpath function returns a pointer to the buffer containing the absolute path
(buffer). If there is an error, _fullpath returns NULL.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

getcwd, _getdcwd, _makepath, _splitpath

Exampre ________________________________ ~ __________________________________ __

/* FULLPATH.C: This program demonstrates how _fullpath creates a full
* path from a partial path.
*/

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <direct.h>

337

void maine)
(

while(1
(

Output

printf("Enter partial path or ENTER to quit: ");
gets(part);
if(part[0] == 0)

break;

if(_fullpath(full, part, _MAX_PATH) 1= NULL)
printf("Full path is: %s\n", full);

else
printf("Invalid path\n H

);

Enter partial path or ENTER to quit:
Full path is: C:\
Enter partial path or ENTER to quit: .. \include
Full path is: C:\include
Enter partial path or ENTER to quit: p:
Full path is: P:\
Enter partial path or ENTER to quit: fullpath.c
Full path is: C:\LIBREF\fullpath.c
Enter partial path or ENTER to quit:

_tu//path

fwrite

Description

Remarks

Return Value

Compatibility

See Also

·338

Writes data to a stream.

#include <stdio.h>

size_t fwrite(const void *buffer, size_t size, size_t count, FILE *stream);

buffer Pointer to data to be written

size Item size in bytes

count Maximum number of items to be written

stream Pointer to FILE structure

The fwrite function writes up to count items, of length size each, from buffer to the output
stream. The file pointer associated with stream (if there is one) is incremented by the num­
ber of bytes actually written.

If stream is opened in text mode, each carriage return is replaced with a carriage-return­
line-feed pair. The replacement has no effect on the return value.

The fwrite function returns the number of full items actually written, which may be less
than count if an error occurs. Also, if an error occurs, the file-position indicator cannot be
determined.

• ANSI • DOS • OS/2 • UNIX • XENIX

fread, write

Exampre __ ___

1* FREAD.C: This program opens a file named FREAD.OUT and writes 25
* characters to the file. It then tries to open FREAD.OUT and
* read in 25 characters. If the attempt succeeds, the program
* displays the number of actual items read.
*1

#include <stdio.h>

339

void main()
(

FILE *stream;
char list[30];
i nt i, numread, numwri tten;

1* Open file in text mode: *1
if((stream = fopen("fread.out", "w+t" » != NULL)
(

for (i = 0; i < 25; i ++)
list[i] = 'z' - i;

1* Write 25 characters to stream *1
numwritten = fwrite(list, sizeof(char), 25, stream);
printf("Wrote %d items\n", numwritten);
fclose(stream);

else
printf("Problem opening the file\n");

if((stream = fopen("fread.out", "r+t" » != NULL)
{

1* Attempt to read in 25 characters *1
numread = fread(list, sizeof(char), 25, stream);
printf("Number of items read = %d\n", numread);
printf("Contents of buffer = %.25s\n", list);
fclose(stream);

else
printf("Was not able to open the file\n");

Output

Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

fwrite

gevl

Description

Remarks

Return Value

Compatibility

See Also

Converts a floating-point value to a string, which it stores in a buffer.

#include <stdIib.h> Required only for function declarations

char *gcvt(double value, int digits, char *buffer);

value

digits

buffer

Value to be converted

Number of significant digits stored

Storage location for result

340

The gcvt function converts a floating-point value to a character string and stores the string
in buffer. The buffer should be large enough to accommodate the converted value plus a
terminating null character ('\0'), which is appended automatically. There is no provision
for overflow.

The gcvt function attempts to produce digits significant digits in decimal format. If this is
not possible, it produces digits significant digits in exponential format. Trailing zeros may
be suppressed in the conversion.

The gcvt function returns a pointer to the string of digits. There is no error return.

o ANSI • DOS • OS/2 • UNIX • XENIX

atof, atoi, atol, ecvt, fcvt

Exampre __ __

1* GCVT.C: This program converts -3.1415e5 to its string representation. *1

#include (stdlib.h)
#include (stdio.h)

341

void main()
(

char buffer[50];
double source = -3.1415e5;

gcvt(source. 7. buffer);
printf("source: %f buffer: '%s'\n". source. buffer);

Output

source: -314150.000000 buffer: '-314150.'

gevl

_getactivepage 342

Description Gets the current active page number.

#include <graph.h>

short _far ~etactivepage(void);

Remarks The _getactivepage function returns the number of the current active page.

Return Value The function returns the number of the current active page. All hardware combinations sup­
port at least one page (page number 0). In OS/2, only page 0 is valid.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _getactivepage, _getvideoconfig, _getvisuaJpage, _grstatus, _ setactivepage,
_ setvideomode, _ setvisuaJpage

Exampre __________________________ ~ ____________________________________ __

/* PAGE.C illustrates video page functions including:
* _getactivepage _getvisualpage _setactivepage _setvisualpage
*/

#include <conio.h>
#include <graph.h>
#include <stdlib.h>

void main()
(

short oldvpage, oldapage, page, row, col, line;
struct videoconfig vc;
cha r buf[80] ;

_getvideoconfig(&vc);
if(vc.numvideopages < 4

exit(1); /* Fail for OS/2 or monochrome. */
oldapage = _getactivepage();
oldvpage = _getvisualpage();
_displaycursor(_GCURSOROFF);

343

1* Draw arrows in different place on each page. *1
fore page = 1; page < 4; page++)
(

_setactivepage(page);
_settextposition(12, 16 * page);
_outtext("»»»»");

while(!kbhit())
1* Cycle through pages 1 to 3 to show moving image. *1
fore page = 1; page < 4; page++)

_setvisualpage(page);
getch();

1* Restore original page (normally 0) to restore screen. *1
_setactivepage(oldapage);
_setvisualpage(oldvpage);
_displaycursor(_GCURSORON);

_getaclivepage

_oetarcinio 344

Description Determines the endpoints in viewport coordinates of the most recently drawn arc or pie.

Remarks

Return Value

Compatibility

See Also

Example

#include <graph.h>

short _far _getarcinfo(struct xycoord _far *start, struct xycoord _far *end,
struct xycoord _far *fillpoint);

start

end

fillpoint

Starting point of arc

Ending point of arc

Point at which pie fill will begin

The _getarcinfo function determines the endpoints in viewport coordinates of the most re­
cently drawn arc or pie.

If successful, the _getarcinfo function updates the start and end xycoord structures to con­
tain the endpoints (in viewport coordinates) of the arc drawn by the most recent call to one
of the _arc or -pie functions. .

In addition,jil/point specifies a point from which a pie can be filled. This is useful for
filling a pie in a color different from the border color. After a call to _getarcinfo, change
colors using the _setcolor function. Use the color, along with the coordinates in/iI/point,
as arguments for thefloodfil/ function.

The ~etarcinfo function returns a nonzero value if successful. If neither the _arc nor the
-pie function has been successfully called since the last time the screen was cleared or a
new graphics mode or viewport was selected, the _getarcinfo function returris O.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_arc functions, _ floodfill, _getvideoconfig, _grstatus, -pie functions

See the example for _arc.

345

Description

Remarks

Return Value

Compatibility

See Also

Example

_getbkcolor

Gets the current background color.

#include <graph.h>

long _far _getbkcolor(void);

The _getbkcolor function returns the current background color. The default is O.

In a color text mode such as _TEXTC80, _setbkcolor accepts, and _getbkcolor returns, a
color index. For example, _setbkcolor(2L) sets the background color to color index 2. The
actual color displayed depends on the palette mapping for color index 2. The default for
color index 2 is green in a color text mode.

In a color graphics mode such as _ERESCOLOR, _setbkcolor accepts and _getbkcolor re­
turns a color value (as used in _remappalette). The value for the simplest background
colors is given by the manifest constants defined in the GRAPH.H include file. For ex­
ample, _setbkcolor(_GREEN) sets the background color in a graphics mode to green.
These manifest constants are provided as a convenience in defining and manipulating the
most common colors. In general, the actual range of colors is much greater.

In most cases, whenever an argument is long, it refers to a color value, and whenever it is
short, it refers to a color index. The two exceptions are _ setbkcolor and _getbkcolor, de­
scribed above. For a more complete discussion of colors, see _remappalette.

The function returns the current background color value. There is no error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_ remappalette, _ setbkcolor

See the example for _getcolor.

gelc, gelchar 346

Description

Remarks

Return Value

Compatibility

See Also

Reads a character from a stream (gete), or gets a character from stdin (getehar).

#include <stdio.h>

int gete(FILE *stream);

int getehar(void);

stream Current stream

The gete macro reads a single character from the stream position and increments the as­
sociated file pointer (if there is one) to point to the next character. The getehar macro is
identical to gete(stdin).

The gete and getehar routines are similar to fgete and fgetehar, respectively, but are mac­
ros rather than functions.

The gete and getehar macros return the character read. A return value of EOF indicates an
error or end-of-file condition. Use ferror or feof to determine whether an error or end-of­
file occurred.

gete

• ANSI • DOS • OS/2 • UNIX • XENIX

getehar

• ANSI • DOS • OS/2 • UNIX • XENIX

fgete, fgetehar, geteh, getehe, pute, putehar, ungete

Exampre __ __

1* GETC.C: This program uses getchar to read a single line of input
* from stdin, places this input in buffer, then terminates the
* string before printing it to the screen.
*1

#include <stdio.h>

347

void main()
(

char buffer[81];
int i, ch;

printf("Enter a line: ");

/* Read in single line from "stdin": */

gelc, gelchar

for(; = 0; (; < 80) && «ch =- getchar(» 1= EOF) && (ch 1= '\n'); i++)
buffer[;] = ch;

/* Terminate string with null character: */
buffer[i] = '\0';
printf("%s\n", buffer);

Output

Enter a line: This is a line of text.
This is a line of text.

gelch, gelehe 348

Description

Remarks

Return Value

Compatibility

See Also

Get a character from the console without echo (getch) or with echo (getche).

#include <conio.h>

int getch(void);

int getche(void);

Required only for function declarations

The getch function reads a single character from the console without echoing. The getche
function reads a single character from the console and echoes the character read. Neither
furiction can be used to read CTRL+C.

When reading a function key or cursor-moving key, the getch and getche functions must
be called twice; the first call returns 0 or OxEO, and the second call returns the actual key
code.

The getch function returns the character read. There is no error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

cgets, getchar, ungetch

Exampw __ __

1* GETCH.C: This program reads characters from the keyboard until it
* receives a 'Y' or 'y'.
*1

#include (conio.h>
#include (ctype.h>

349

void maine)
(

int ch;

cputs("Type 'Y' when finished typing keys: ");
do
(

ch = getch();
ch = toupper(ch);

while(ch 1= 'Y');

putch(ch);
putch('\r');
putch('\n');

Output

1* Carriage return *1
1* Line feed *1

Type 'Y' when finished typing keys: Y

getch, getche

_getc%r 350

Description Gets the current color.

#include <graph.h>

short _far _getcolor(void);

Remarks The _getcolor function returns the current graphics color index. The default is the highest
legal value of the current palette.

Return Value The _getcolor function returns the current color index.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _setcolor

Exampre __ __

1* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition _outtext
* settextcolor _setbkcolor _settextposition
*1

#include <conio.h>
#include <stdio.h>
#include <graph.h>

char buffer [80];

void main()
(

1* Save original foreground, background, and text position. *1
short blink, fgd, oldfgd;
long bgd, oldbgd;
struct rccoord oldpos;

1* Save original foreground, background, and text position. *1
oldfgd = _gettextcolor();
oldbgd = _getbkcolor();
oldpos = _gettextposition();
_clearscreen(_GCLEARSCREEN);

351

1* First time no blink, second time blinking. *1
for(blink = 0; blink <= 16; blink += 16)
(

1* Loop through 8 background colors. *1
for(bgd = 0; bgd < 8; bgd++)
(

_setbkcolor(bgd);
_settextposition((short)bgd + «blink I 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Back: %d Fore:", bgd);
_outtext(buffer);

1* Loop through 16 foreground colors. *1
for(fgd = 0; fgd < 16; fgd++)
(

_settextcolor(fgd + blink);
sprintf(buffer, " %2d ", fgd + blink);
_outtext(buffer);

}

getch();

1* Restore original foreground, background, and text position. */
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);

_oetc%r

_getcurrentposition Functions 352

Description

Remarks

Return Value

Get the current position and return it as a structure.

#include <graph.h>

struct xycoord _far _getcurrentposition(void);

struct _ wxycoord _far ..,getcurrentposition _ w(void);

The _getcurrentposition functions return the coordinates of the current graphics output
position. The ..,getcurrentposition function returns the position as an xycoord structure,
defined in GRAPH.H.

The xycoord structure contains the following elements:

Element

short xcoord

short ycoord

Description

x coordinate

y coordinate

The _getcurrentposition _ w function returns the position as an _ wxycoord structure, de­
fined in GRAPH.H.

The _ wxycoord structure contains the following elements:

Element

double wx

double wy

Description

window x coordinate

window y coordinate

The current position can be changed by the Jineto, _ move to, and _ outgtext functions.

The default position~ set by _setvideomode, _setvideomoderows, or _setviewport, is the
center of the viewport.

Only graphics output starts at the current position; these functions do not affect text output,
which begins at the current text position. (See _settextposition for more information.)

The _getcurrentposition function returns the coordinates of the current graphics output
position. There is no error return.

353 _getcurrentposition Functions

Compatibility o ANSI • DOS 0 05/2 0 UNIX 0 XENIX

See Also ~rstatus, Jineto functions, _ move to functions, _ outgtext

Exampw __ __

1* GCURPOS.C: This program sets a random current location, then gets that
* location with _getcurrentposition.
*1

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <graph.h>

char buffer[255];

void main()
(

struct videoconfig vc;
struct xycoord position;

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE

exit(1);
_getvideoconfig(&vc);

1* Move to random location and report that location. *1
_moveto(rand() % vc.numxpixels, rand() % vc.numypixels);
position = _getcurrentposition();
sprintf(buffer, "x = %d, y = %d", position.xcoord, position.ycoord);
_settextposition(I, 1);
_~uttext(buffer);

getch();
_setvideomode(_DEFAULTMODE);

getcwd

Description

Remarks

Return Value

Compatibility

See Also

Gets the current working directory.

#include <direct.h> Required only for function declarations

char *getcwd(char *buffer, int max/en);

buffer

max/en

Storage location for path name

Maximum length of path name

354

The getcwd function gets the full path name of the current working directory and stores it
at buffer. The integer argument max/en specifies the maximum length for the path name.
An error occurs if the length of the path name (including the terminating null character)
exceeds max/en.

The buffer argument can be NULL; a buffer of at least size max/en (more only if neces­
sary) will automatically be allocated, using malloc, to store the path name. This buffer can
later be freed by calling free and passing it the getcwd return value (a pointer to the allo­
cated buffer).

The getcwd function returns a pointer to buffer. A NULL return value indicates an error,
and errno is set to one of the following values:

Value Meaning

ENOMEM Insufficient memory to allocate max/en bytes (when a NULL
argument is given as buffer) ,

ERANGE Path name longer than max/en characters

o ANSI • DOS • OS/2 • UNIX • XENIX

chdir, mkdir, rmdir

Exampre __ __

1* This program places the name of the current directory in the buffer
* array, then displays the name of the current directory on the screen.
* Specifying a length of _MAX_DIR leaves room for the longest legal
* directory name.
*1

355

#include <direct.h)
#include <stdlib.h)
#include <stdio.h)

void main()
(

1* Get the current working directory: *1
if(getcwd(buffer, _MAX_DIR) == NULL)

perror("getcwd error");
else

printf("%s\n", buffer);

Output

C:\LIBREF

getcwd

_getdcwd 356

Description Gets full path name of current working directory, including disk drive.

Remarks

Return Value

Compatibility

See Also

#include <direct.h> Required only for function declarations

char * Jetdcwd(int drive, char *buffer, int maxlen);

drive

buffer

maxlen

Disk drive

Storage location for path name

Maximum length of path name

The Jetdcwd function gets the full path name of the current working directory, including
disk drive specification, and stores it at buffer. The argument maxlen specifies the maxi­
mum length for the path name. An error occurs if the length of the path name (including
the terminating null character) exceeds maxlen.

The drive argument specifies the drive (0 = default drive, l=A, 2=B, etc.). The buffer argu­
ment can be NULL; a buffer of at least size maxlen (more only if necessary) will automat­
ically be allocated, using malIoc, to store the path name. This buffer can later be freed by
calling free and passing it the _getdcwd return value (a pointer to the allocated buffer).

The _getdcwd function returns buffer. A NULL return value indicates an error, and errno
is set to one of the following values:

Value

ENOMEM

ERANGE

Meaning

Insufficient memory to allocate maxlen bytes (when a NULL
argument is given as buffer)

Path name longer than maxlen characters

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

chdir, getcwd, Jetdrive, mkdir, rmdir

Exampre ___ __

1* GETDRIVE.C illustrates drive functions including:
* _getdrive _chdrive _getdcwd
*1

357

#include <stdio.h>
#include <conio.h>
#include <direct.h>
#include <stdlib.h>

void main()
(

int ch, drive, curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists. */
for(drive = 1; drive <= 26; drive++)

if(!_chdrive(drive))
printf("%c: ", drive + 'A' - 1);

whil e(1)
(

printf("\nType drive letter to check or ESC to quit: ");
ch = getch();
if(ch == 27)

break;
if(isalpha(ch))

putch(ch);
if(_getdcwd(toupper(ch) - 'A' + I, path, _MAX_PATH) != NULL

printf("\nCurrent directory on that drive is %s\n", path);

/* Restore original drive. This is only necessary for DOS. Under OS/2
* the current drive of the calling process is always restored.
*/

_chdrive(curdr;ve);
pr;ntf("\n");

_getdcwd

_getdcwd

Output

Available drives are:
A: B: C:
Type drive letter to check or ESC to quit: q
Type drive letter to check or ESC to quit: a
Current directory on that drive is A:\

Type drive letter to check or ESC to quit: c
Current directory on that drive is C:\LIBREF

Type drive letter to check or ESC to quit:

358

359

Description

Remarks

Return Value

Compatibility

See Also

Example

_getdriv6

Gets the current disk drive.

#include <direct.h>

int ~etdrive(void);

The ~etdrive function returns the current working drive (l=A, 2=B, etc.).

The return value is stated above. There is no error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_chdrive, _dos_getdrive, _dos_setdrive, ~etcwd, ~etdcwd

See the example for _getdcwd.

getenv

Description

Remarks

Return Value

Compatibility

See Also

360

Gets a value from the environment table.

#include <stdlih.h> Required only for function declarations

char *getenv(const char *varname);

varname Name of environment variable

The getenv function searches the list of environment variables for an entry corresponding
to varname. Environment variables define the environment in which a process executes.
(For example, the LIB environment variable defines the default search path for libraries to
be linked with a program.) Because the getenv function is case sensitive, the varname vari­
able should match the case of the environment variable.

The getenv function returns a pointer to an entry in the environment table. It is, however,
only safe to retrieve the value of the environment variable using the returned pointer. To
modify the value of an environmental variable, use the putenv function.

The getenv and putenv functions use the copy of the environment contained in the global
variable environ to access the environment. Programs that use the envp argument to main
and the putenv function may retrieve invalid information. The safest programming prac­
tice is to use getenv and putenv.

The getenv function returns a pointer to the environment table entry containing the current
string value of varna me. The return value is NULL if the given variable is not currently
defined.

• ANSI • DOS • OS/2 • UNIX • XENIX

The getenv function operates only on the data structures accessible to the run-time library
and not on the environment "segment" created for a process by DOS or OS/2.

putenv

Exampm __ ~ ______________________ _____

1* GETENV.C: This program uses get en v to retrieve the LIB environment
* variable and then uses put en v to change it to a new value.
*1

#include <stdlib.h>
#include <stdio.h>

361

rna in ()
{

char *libvar;

1* Get the value of the LIB environment variable. *1
libvar=getenv("LIB");
if(libvar != NULL)

printf("Original LIB variable is: %s\n", libvar);

1* Attempt to change path. Note that this only affects the environment
* variable of the current process. The command processor's environment
* is not changed.
*1
p~tenv("LIB-c:\\mylib;c:\\yourlib");

1* Get new value. *1
libvar = getenv("LIB");
if(libvar 1- NULL)

printf("New LIB variable is: %s\n", libvar);

Output

Original LIB variable is: C:\LIB
New LIB variable is: c:\mylib;c:\yourlib

getenv

_getfillmask 362

Description

Remarks

Return Value

Compatibility

See Also

Gets the current fill mask for some graphics routines.

#include <graph.h>

unsigned char _far * _far _getfillmask(unsigned char _far *mask);

mask Mask array

Some graphics routines Lellipse, _floodfilI, -pie, -polygon, and _rectangle) can fill part
or all of the screen with the current color or background color. The fill mask controls the
pattern used for filling.

The _getfillmask function returns the current fill mask. The mask is an 8-by-8-bit array, in
which each bit represents a pixel. If the bit is 1, the corresponding pixel is set to the current
color; if the bit is 0, the pixel is left unchanged. The mask is repeated over the entire fill
area. If no fill mask is set, or if mask is NULL, a solid (unpatterned) fill is performed using
the current color.

If no mask is set, the function returns NULL.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_ellipse functions, _ floodfill, -pie functions, -polygon functions, _rectangle functions,
setfillmask

Exampre· __ ___

/* GFILLMSK.C: This program illustrates _getfillmask and _setfillmask. */

#include <conio.h>
#include <stdlib.h>
#i nc 1 ude,-<gra ph. h>

363 _getfillmask

void ellipsemask(short xl, short y1, short x2, short y2, char _far *newmask);

unsigned char mask1[8] (0x43, 0x23, 0x7c, 0xf7, 0x8a, 0x4d, 0x78, 0x39);
unsigned char mask2[8] = { 0x18, 0xad, 0xc0, 0x79, 0xf6, 0xc4, 0xa8, 0x23 };
char oldmask[8];

void main()
(

int loop;

/* Find a valid graphics mode. */
if(Lsetvideomode(_MAXRESMODE)

exit(1);

/* Set first fill mask and draw rectangle. */
_setfillmask(mask1);
_rectangle(_GFILLINTERIOR, 20, 20, 100, 100);
getch() ;

/* Call routine that saves and restores mask. */
ellipsemask(60, 60, 150, 150, mask2);
getch();

/* Back to original mask. */
_rectangle(_GFILLINTERIOR, 120, 120, 190, 190);
getch() ;

_setvideomode(_DEFAULTMODE);

1* Draw an ellipse with a specified fill mask. */
void ellipsemask(short xl, short y1, short x2, short y2, char _far *newmask)
(

unsigned char savemask[8];

_getfillmask(savemask);
_setfillmask(newmask);
_ellipse(_GFILLINTERIOR, xl, y1, x2, y2);
_setfillmask(savemask);

/* Save mask */
1* Set new mask */
/* Use new mask */
/* Restore original */

_getfontinfo ,364

Description Gets the current font characteristics.

Remarks

Return Value

Compatibility

See Also

Example

#include <graph.h>

short _far _getfontinfo(struct _fontinfo _far *fontbuffer);

fontbuffer Buffer to hold font infonnation

The _getfontinfo function gets the current font characteristics and stores them in a
_fontinfo structure, defined in GRAPH.H.

The _fontinfo structure contains the following elements:

Element

int type

int ascent

int pixwidth

int pixheight

int avgwidth

char filename [81]

char facename [32]

Contents

Specifies vector (1) or bit-mapped (0) font

Specifies pixel distance from top to baseline

Specifies the character width in pixels; 0 indicates a
proportional font

Specifies the character height in pixels

Specifies the average character width in pixels

Specifies the file name, including the path

Specifies the font name

The ~etfontinfo function returns a negative number if a font has not been registered or
loaded.

D ANSI • DOS D OS/2 D UNIX 0 XENIX

_getgtextextent, _ outgtext, _ registerfonts, _ setfont, _ setgtextvector,
_ unregisterfonts

See the example for _ outgtext.

365

Description

Remarks

Return Value

Compatibility

See Also

Example

_gelglexlexlenl

Gets the width in pixels of font-based text.

#include <graph.h>

short _far _getgtextextent(unsigned char _far *text);

text Text to be analyzed

The _getgtextextent function returns the width in pixels that would be required to print the
text string using _ outgtext with the current font.

This function is particularly useful for detennining the size of text that uses proportionally
spaced fonts.

The _getgtextextent function returns the width in pixels. It returns -1 if a font has not
been registered.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getfontinfo, _ outgtext, _ registerfonts, _setfont, _ unregisterfonts

See the example for _ outgtext.

_getgtextvector 366

Description

Remarks

Return Value

Compatibility

See Also

Changes the orientation of font text output.

#include <graph.h>

struct xycoord _far _getgtextvector(void);

The _getgtextvector function gets the current orientation for font text output. The current
orientation is used in calls to the _ outgtext function.

The text-orientation vector, which detennines the direction of font-text rotation on the
screen, is returned in a structure of type xycoord. The xcoord and ycoord members of the
structure describe the vector. The text-rotation options are shown below:

(x, y)

(1,0)

(0,1)

(-1,0)

(0,-1)

Text Orientation

Horizontal text (default)

Rotated 90 degrees counterclockwise

Rotated 180 degrees

Rotated 270 degrees counterclockwise

The _getgtextvector function returns the current text-orientation vector in a struc'ture of
type xycoord.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getgtextextent, _grstatus, _ outgtext, _ setfont, _ setgtextvector

367

Description

Remarks

Return Value

Compatibility

_getimage Functions

Store images in buffers.

#include <graph.h>

void _far _getirnage(short xl, short yl, short x2, short y2, char _huge *image);

void _far _getirnage_w(double wxl, double wyl, double wx2, double wy2,
char _huge *image);

void _far _getirnage_wxy(struct_wxycoord _far *pwxyl,
struct_ wxycoord _far *pwxy2, char _huge *image);

xl,yl

x2,y2

wxl, wyl

wx2, wy2

pwxyl

pwxy2

image

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

Storage buffer for screen image

The _getirnage functions store the screen image defined by a specified bounding rectangle
into the buffer pointed to by image.

The _getirnage function defines the bounding rectangle with the view coordinates (xl, yl)
and (x2, y2).

The _getirnage _ w function defines the bounding rectangle with the window coordinates
(wxl, wyl) and (wx2, wy2).

The _getirnage _ wxy function defines the bounding rectangle with the window-coordinate
pairs pwxyl and pwxy2.

The buffer must be large enough to hold the image. You can determine the size by calling
the appropriate Jrnagesize function at run time, or by using the formula described on the
Jrnagesize reference page.

None. Use _grstatus to check success.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getimage Functions 368

See A/so _grstatus, Jmagesize functions, jlutimage functions

Examp~ __ __

1* GIMAGE.C: This example illustrates animation routines including:
* _imagesize _getimage _putimage
*1

#include <conio.h>
#include <stddef.h>
#include <stdlib.h>
#include <malloc.h>
#include <graph.h>

short actionES] = {_GPSET, _GPRESET, _GXOR, _GOR,
char *descrip[5] = { "PSET ", "PRESET", "XOR ", "OR

void exitfree(char _huge *buffer);

void main()
{

_GAND) ;
", "AND ");

char _huge *buffer; 1* Far pointer (with _fmalloc) could be used. *1
long imsize;
short i, x, y = 30;

if(!_setvideomode(_MAXRESMODE))
ex it (1);

1* Measure the image to be drawn and allocate memory for it. *1
imsize = (size_t)_imagesize(-16, -16, +16, +16);
buffer = halloc(imsize, sizeof(char));
if (buffer == (char _far *)NULL)

ex; t (1);

_setcolor(3);
for (i = 0; i < 5; i ++)
{

1* Draw ellipse at new position and get a copy of it. *1
x = 50; y += 40;
_ellipse(_GFILLINTERIOR, x - 15, y - 15, x + 15, y + 15);
_getimage(x - 16, y - 16, x + 16, y + 16, buffer);
if(_grstatus())

exitfree(buffer); 1* Quit on error *1

369 _getimage Functions

1* Display action type and copy a row of ellipses with that type. *1
_settextposition(1, 1);
_outtext(descrip[i]);
while(x < 260)
(

x += 5;
_putimage(x - 16, y - 16, buffer, action[i]);
if(_grstatus() < 0) 1* Ignore warnings, quit on errors. *1

exitfree(buffer);
)

getch() ;

exitfree(buffer);

void exitfree(char _huge *buffer)
(

hfree(buffer);
exit(!_setvideomode(_DEFAULTMODE));

_getlinestyle

Description

Remarks

Gets the current line style.

#include <graph.h>

unsigned short _far _getlinestyle(void);

Some graphics routines (Jineto, -polygon, and _rectangle) output straight lines to the
screen. The type of line can be controlled with the current line-style mask.

370

The _getlinestyle function returns the current line-style mask. The mask is a 16-bit array
in which each bit represents a pixel in the line being drawn. If the bit is 1, the correspond­
ing pixel is set to the color of the line (the current color). If the bit is 0, the corresponding
pixel is left unchanged. The mask is repeated over the length of the line. The default mask
is OxFFFF (a solid line).

Return Value

Compatibility

See Also

If no mask has been set, _getlinestyle returns the default mask.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Jineto functions, -polygon functions, _rectangle functions, _setlinestyle,
setwritemode

Exampre __ __

1* GLINESTY.C: This program illustrates _setlinestyle and _getlinestyle. *1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void zigzag(short xl, short y1, short size);

void·main()
(

1* Find a valid graphics mode. */
if(!_setvideomode(_MAXCOLORMODE))

exit(1);

1* Set line style and draw rectangle. */
_setlinestyle(0x4d);
_rectangle(_GBORDER, 10, 10, 60, 60);
getch() ;

371

1* Draw figure with function that changes and restores line style. *1
zigzag(100, 100, 90);
getch() ;

1* Original style reused. *1
_rectangle(_GBORDER, 190, 190, 130, 130);
getch();

_setvideomode(_DEFAULTMODE);

1* Draw box with changing line styles. Restore original style. *1
void zigzag(short xl, short y1, short size)
{

short x, y, oldcoior;
unsigned short oldstyle;
unsigned short style[16]

oldcolor = _getcolor();
oldstyle = _getlinestyle();
for(x = 3, y = 3; x < size;
{

_setcolor(x % 16);

0x0001,
0x001f,
0x01ff,
0xlfff,

x += 3.

0x0003, 0x0007, 0x000f,
0x003f, 0x007f, 0x00ff,
0x03ff, 0x07ff, 0x0fff,
0x3fff, 0x7fff, 0xffff I;

1* Save old line style.
y += 3)

*1

_setlinestyle(style[x % 16]); 1* Set and use new line styles *1
_rectangle(_GBORDER. xl - x. y1 - y. xl + x, y1 + y);

I
_setlinestyle(oldstyle);
_setcolor(oldcolor);

o 1* Restore old line style. *1

_getlinestyle

_getphyscoord 372

Description

Remarks

Return Value

Compatibility

See Also

Example

Gets physical coordinates.

#include <graph.h>

struct xycoord _far _getphyscoord(short x, short y);

x,y View coordinates to translate

The _getphyscoord function translates the view coordinates (x, y) to physical coordinates
and returns them in an xycoord structure, defined in GRAPH.H.

The xycoord structure contains the following elements:

Element

short xcoord

short ycoord

None.

Description

x coordinate

y coordinate

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getviewcoord functions, _grstatus, _setvieworg~ _setviewport

See the example for _ setwindow.

373 getpid

Description Gets the process identification.

#include <process.h> Required only for function declarations

int getpid(void);

Remarks The getpid function returns the process ID, an integer that uniquely identifies the calling
process.

Return Value The getpid function returns the process ID. There is no error return.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also mktemp

Exampre __ __

1* GETPID.C: This program uses getpid to obtain the process 10 and
* then prints the 10.
*1

#include <stdio.h>
#include <process.h>

void main(}
{

1* If run from DOS, shows different 10 for DOS than for DOS shell.
* If execed or spawned, shows 10 of parent.
*1

printf("\nProcess id of parent: %d\n", getpid(} };

Output

Process id of parent: 828

_getpixel Functions

Description Get pixel values.

#include <graph.h>

short _far _getpixel(short x, short y);

short _far _getpixet w(double wx, double wy);

x,y

wx,wy

Pixel position

Pixel position

374

Remarks The functions in the _getpixel family return the pixel value (a color index) at a specified
location. The _getpixel function uses the view coordinate (x, y). The _getpixel_ w function
uses the window coordinate (wx, wy). The range of possible pixel values is determined by
the current video mode. The color translation of pixel values is determined by the current
palette.

Return Value

Compatibility

See Also

If successful, the function returns the color index. If the function fails (for example, the
point lies outside the clipping region, or the program is in a text mode), it returns -1.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getvideoconfig, _grstatus, _remapallpalette, _remappalette, _selectpalette,
_setpixel functions, _setvideomode

Exampw __ __

1* GPIXEL.C: This program assigns different colors to randomly
* selected pixels.
*1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main()
{

short xvar, yvar;
struct videoconfig vc;

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXCOLORMODE))

exit(1);
_getvideoconfig(&vc);

1* Draw filled ellipse to turn on certain pixels. *1

_gelpixelFuncffons

_ellipse(_GFILLINTERIOR, vc.numxpixels I 6, vc.numypixels I 6,
vc.numxpixels I 6 * 5, vc.numypixels I 6 * 5);

1* Draw random pixels in random colors ... *1
while(!kbhit())
{

1* ... but only if they are already on (inside the ellipse). *1
xvar = rand() % vc.numxpixels;
yvar - rand() % vc.numypixels;
if(_getpixel(xvar, yvar) != 0
(

_setcolor(rand() % 16);
_setpixel(xvar, yvar);

getch(); 1* Throwaway the keystroke. *1
_setvideomode(_DEFAULTMODE);

gets 376

Description Gets a line from the stdin stream.

#include <stdio.h>

char *gets(char *buffer);

buffer Storage location for input string

Remarks The gets function reads a line from the standard input stream stdin and stores it in buffer.
The line consists of all characters up to and including the first newline character (\n). The
gets function then replaces the newline character with a null character (,\0') before return-

Return Value

Compatibility

See Also

ing the line. In contrast, the fgets function retains the newline character. .

If successful, the gets function returns its argument. A NULL pointer indicates an error or
end-of-file condition. Use ferror or feofto determine which one has occurred.

• ANSI • DOS • OS/2 • UNIX • XENIX

fgets, fputs, puts

Exampre __ _____

1* GETS.C *1

#include <stdio.h>

void main()
(

char line[81];

printf("Input a string: ");
gets(line);
printf("The line entered was: %s\n", line);

Output

Input a string: This is a string
The line entered was: This is a string

377

Description

Remarks

Return Value

Compatibility

See Also

Example

_oettextcoiOf

Gets the current text color.

#include <graph.h>

short _far _gettextcolor(void);

The _gettextcolor function returns the color index of the current text color. The text color
is set by the _settextcolor function and affects text output with the _outtext and _outmem
functions only. The _setcolor function sets the color for font text output using the
_ outgtext function.

The default is 7 in test modes; it is the highest legal color index of the current palette in
graphics modes.

The ~ettextcolor function returns the color index of the current text color.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_getvideoconfig, _remappalette, _selectpalette, _setcolor, _settextcolor

See the example for _gettextposition.

_gettextcursor 378

Description

Remarks

Return Value

Compatibility

See Also

Example

Gets the current cursor attribute.

#include <graph.h>

short _far _gettextcursor(void);

The gettextcursor function returns the current cursor attribute (i.e., the shape). This func­
tion works only in text video modes.

The function returns the current cursor attribute, or -1 if an error occurs (such as a call to
the function in a graphics mode).

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_ displaycursor, _grstatus, _ settextcursor

See the example for _ settextcursor.

379

Description

Remarks

Remarks

Return Value

Compatibility

See Also

_gellexlposilion

Gets the current text position.

#include <graph.h>

struct rccoord _far ..,gettextposition(void);

The _gettextposition function returns the current text position as an rccoord structure,
defined in GRAPH.H.

The r~coord structure contains the following elements:

Element

short row

short col

Description

Row coordinate

Column coordinate

The text position given by the coordinates (1,1) is defined as the upper-left comer of the
text window.

Text output from the _ outtext and _ outmem functioris begins at the current text position.
Font text is not affected by the current text position. Font text output begins at the current
graphics output position, which is a separate position.

None.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_getcurrentposition functions, _ moveto functions, _ outmem, _ outtext,
_ settextposition, _ settextwindow, _ wrapon

Exampre __ __

/* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition _outtext
* _settextcolor _setbkcolor _settextposition
*/

#include <conio.h>
#include <stdio.h>
#include <graph.h>

_gettextposition

char buffer [80];

void maine)
(

1* Save original foreground, background, and text position. *1
short blink, fgd, oldfgd;
long bgd, oldbgd;
struct rccoord oldpos;

1* Save original foreground, background, and text position. *1
oldfgd = _gettextcolor();
oldbgd = _getbkcolor();
oldpos = _gettextposition();
_clearscreen(_GCLEARSCREEN);

1* First time no blink, second time blinking. *1
fore blink = 0; blink <= 16; blink += 16)
(

1* Loop through 8 background colors. *1
fore bgd = 0; bgd < 8; bgd++)
(

_setbkcolor(bgd);
_settextposition((short)bgd + «blink I 16) * 9) + 3, 1);
_settextcolor(7); .
sprintf(buffer, "Back: %d Fore:", bgd);
_outtext(buffer);

1* Loop through 16 foreground colors. *1
fore fgd = 0; fgd < 16; fgd++)
(

_settextcolor(fgd + blink);
sprintf(buffer, " %2d ", fgd + blink);
_outtext(buffer);

}
getch() ;

1* Restore original foreground, background, and text position. *1
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldp~s.col);

380

381

Description

Remarks

Return Value

Compatibility

See Also

Example

_gettextwindow

Gets the boundaries of the current text window.

#include <graph.h>

void _far _gettextwindow(short _far *rl, short _far *el, short _far *r2,
short _far *e2);

rl

c1

r2

e2

Top row of current text window

Leftmost column of current text window

Bottom row of current text window

Rightmost column of current text window

The Jettextwindow function finds the boundaries of the current text window. The text
window is the region of the screen to which output from the _ outtext and _ outmem func­
tions is limited. By default, this is the entire screen, unless it has been redefined by the
_ settextwindow function.

The window defined by _settextwindow has no effect on output from the _outgtextfunc­
tion. Text displayed with _ outgtext is limited to the current viewport.

None.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_gettextposition, _outmem, _outtext, _scrolltextwindow, _settextposition,
_ settextwindow, _ wrap on

See the example for _ scrolltextwindow.

_getvideoconfig 382

Description '

Remarks

Gets graphics video configuration infonnation.

#include <graph.h>

struct videoconfig _far * _far _getvideoconfig(struct videoconfig _far *config);

config Configuration infonnation

The ~etvideoconfig function returns the current graphics environment configuration in a
videoconfig structure, defined in GRAPH.H.

The values returned reflect the currently active video adapter and monitor, as well as the
current video mode.

The videoconfig structure contains the following members, each of which is of type short:

Member

adapter

bitsperpixel

memory

mode

monitor

numcolors

numtextcols

numtextrows

numvideopages

nurnxpixels

numypixels

Contents

Active display adapter

Number of bits per pixel

Adapter video memory in kilobytes

Current video mode

Active display monitor

Number of color indices

Number of text columns available

Number of text rows available

Number of available video pages

Number of pixels on the x axis

Number of pixels on the y axis

383 _getvideoconfig

The values for the adapter member of the videoconfig structure are given by the manifest
constants shown in the list below. For any applicable adapter (_ CGA, _EGA, or _ VGA),
the corresponding Olivetti® adapter (_ OCGA, _ OEGA, or _ OVGA) represents a superset
of graphics capabilities.

Adapter Constant

_CGA

_EGA

_HGC

_MCGA

_MDPA

_OCGA

_OEGA

_OVGA

_VGA

Meaning

Color Graphics Adapter

Enhanced Graphics Adapter

Hercules® Graphics Card

Multicolor Graphics Array

Mono'chrome Display Printer Adapter

Olivetti (AT&T®) Color Graphics Adapter

Olivetti (AT&T) Enhanced Graphics Adapter

Olivetti (AT&T) Video Graphics Array

Video Graphics Array

The values for the monitor member of the videoconfig structure are given by the manifest
constants listed below:

Monitor Constant

_ANALOG

_ANALOGCOLOR

_ANALOGMONO

_COLOR

_ENHCOLOR

_MONO

Meaning

Analog monochrome and color

Analog color only

Analog monochrome only

Color (or enhanced monitor emulating a color monitor)

Enhanced color

Monochrome monitor

In every text mode, including monochrome, the _getvideoconfig function returns the value
32 for the number of available colors. The value 32 indicates the range of values (0-31)
accepted by the _ settextcolor function. This includes 16 normal colors (0-15) and 16
blinking colors (16-31). Blinking is selected by adding 16 to the normal color index. Be­
cause monochrome text mode has fewer unique display attributes, some color indices are
redundant. However, because blinking is selected in the same manner, monochrome text
mode has the same range (0-31) as other text modes.

_getvideoconfig 384

Return Value The _getvideoconfig function returns the video configuration infonnation in a structure, as
noted above. There is no error return.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _ setvideomode, _setvideomoderows

Exampre __ __

/* GVIDCFG.C: This program displays information about the current
* video configuration.
*/

#include <stdio.h>
#include <graph.h>

void maine)
(

struct videoconfig vc;
short c;
char b[500];

_getvideoconfig(&vc);

/* Buffer for string */

/* Write all information to a string, then output string. */
c = sprintf(b, "X pixels: %d\n", vc.numxpixels);
c +- sprintf(b + c, "Y pixels: %d\n", vc.numypixels);
c += sprintf(b + c, "Text columns: %d\n", vc.numtextcols);
c += sprintf(b + c, "Text rows: %d\n", vc.numtextrows);
c += sprintf(b + c, "Colors: %d\n", vc.numcolors);
c += sprintf~ b + c, "Bits/pixel: %d\n", vc.bitsperpixel);
c += sprintf(b + c, "Video pages: %d\n", vc.numvideopages);
c +- sprintf(b + c, "Mode: %d\n", vc.mode);
c +- sprintf(b + c, "Adapter: %d\n", vc.adapter);
c += sprintf(b + c, "Monitor: %d\n", vc.monitor);
c +- sprintf(b + c, "Memory: %d\n", vc.memory);
_outtext(b);

385

Output

x pixels: 0
Y pixels: 0
Text columns: 80
Text rows: 25
Colors: 32
Bits/pixel: 0
Video pages: 1 .
Mode: 3
Adapter: 8
Monitor: 24
Memory: 256

_getvideoconfig

_getviewcoord Functions 386

Description

Remarks

Return Value

Translate coordinates to view coordinates.

#include <graph.h>

struct xycoord _far ~etviewcoord(short x, short y);

struct xycoord _far Jetviewcoord_w(double wx, double wy);

struct xycoord _far _getviewcoord_wxy(struct _wxycoord _far *pwxyl);

x,y

wx,wy

pwxyl

Physical point to translate

Window point to translate

Window point to translate

The _getviewcoord routines translate the specified coordinates (x, y) from one coordinate
system to view coordinates and then return them in an xycoord structure, defined in
GRAPH.H. The xycoord structure contains the following elements:

Element

short xcoord

short ycoord

Description

x coordinate

y coordinate

The various _getviewcoord routines translate in the following manner:

Routine

~etviewcoord

~etviewcoord _ w

~etviewcoord _ wxy

Translation

Physical coordinates (x, y) to view coordinates

Window coordinates (wx, wy) to view coordinates

Window coordinates structure (pwxyl) to view coordinates

C 5.1 Version Difference In Microsoft C version 5.1, the function _getviewcoord was called
_getlogcoord.

The ~etviewcoord function returns the coordinates as noted above. There is no error
return.

387

Compatibility

See Also

Example

_getviewcoord Functions

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getpbyscoord, ~etwindowcoord, ~rstatus

See the example for _setwindow.

_getvisualpage 388

Description

Remarks

Return Value

Compatibility

See Also

Example

Gets the current visual page number.

#include <graph.h>

short _far _getvisualpage(void);

The ~etvisualpage function returns the current visual page number.

The function returns the number of the current visual page. All hardware combinations sup­
port at least one page (page number 0). In OS/2, only page 0 is available.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_getactivepage, _gettextcolor, ~ettextposition, _ outtext, _ setactivepage,
_settextcolor, _settextposition, _settextwindow, _setvideomode,
_setvisualpage, _ wrapon

See the example for ~etactivepage.

389 getw

Description Gets an integer from a stream.

#include <stdio.h>

Remarks

Return Value

Compatibility

int getw(FILE :Ie stream);

stream Pointer to FILE structure

The getw function reads the next binary value of type int from the file associated with
stream and increments the associated file pointer (if there is one) to point to the next un­
read character. The getw function does not assume any special alignment of items in the
stream.

The getw function returns the integer value read. A return value of EOF may indicate an
error or end-of-file. However, since the EOF value is also a legitimate integer value, feof
or ferror should be used to verify an end-of-file or error condition.

o ANSI • DOS • OS/2 • UNIX • XENIX

The getw function is provided primarily for compatibility with previous libraries. Note
that portability problems may occur with getw, since the size of the int type and the order':
ing of bytes within the int type differ across systems.

See Also putw

Exampre __ __

/* GETW.C: This program uses getw to read a word from a stream,
* then performs an error check.
*/

#include <stdio.h>
#include <stdlib.h>

void main()
(

FILE *stream;
int i;

getw

if((stream = fopen("getw.c", "rb" »
printf("Couldn't open file\n");

else
(

1* Read a word from the stream: *1
i = getw(stream);

1* If there is an error ... *1
if(ferror(stream))
(

printf("getw failed\n");
clearerr(stream);

else

NULL)

printf("First data word in file: 0x%.4x\n",);
fclose(stream);

Output

First data word in file: 0x2a2f

390

391

Description

Remarks

Return Value

Compatibility

See Also

Example

_yetwindowcoord

Translates view coordinates to window coordinates.

#include <graph.h>

struct _ wxycoord _far Jetwindowcoord(short x, short y);

x,y Physical point to translate

The _getwindowcoord function translates the view coordinates (x, y) to window coordi­
nates and returns them in the _ wxycoord structure, defined in GRAPH.H.

The _ wxycoord structure contains the following elements:

Element

double wx

double wy

Description

x coordinate

y coordinate

The function returns the coordinates in the _ wxycoord structure. There is no error return.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getphyscoord, _getviewcoord functions, _ move to functions, _setwindow

See the example for _ setwindow.

_getwritemode 392

Description Gets the current logical mode for line drawing.

#include <graph.h>

short _far Jetwritemode(void);

Remarks The _getwritemode function returns the current logical write mode, which is used when
drawing lines with the Jineto, -polygon, and _rectangle functions.

Return Value

Compatibility

See Also

The default value is _ GPSET, which causes lines to be drawn in the current graphics color.
The other possible return values are _ GXOR, _ GAND, _ GOR, and _ GPRESET. See
-putimage for more details on these manifest constants.

The _getwritemode function returns the current logical write mode, or -1 if not in
graphics mode.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_grstatus, Jineto functions, -putimage functions, _rectangle functions,
_setcolor, _setlinestyle, _setwritemode

Exampre __ __

1* GWRMODE.C: This program illustrates _getwritemode and _setwritemode. *1

#include <conio.h>
#include <stdlib.h>
#include <graph.h)

short wmodes[5]
char *wmstr[5]

{_GPSET, _GPRESET, _GXOR,
-= ("PSET " "PRESET"," XOR

_GOR,
"OR

_GAND
"AND

) ;
");

void box(short x, short y, short size, short writemode, short fillmode);

void main()
{

short i, x, y;

393

/* Find a valid graphics mode. */
if(!_setvideomode(_MAXCOLORMODE))

exit(1);

x = y = 70;
box(x, y, 50, _GPSET, _GFILLINTERIOR);
_setcolor(2);
box(x, y, 40, _GPSET, _GFILLINTERIOR);
fore i = 0; i < 5; i++)
(

_settextposition(1, 1);
_outtext(wmstr[i]);
box(x += 12, Y += 12, 50, wmodes[i], _GBORDER);
getch() ;

_setvideomode(_DEFAULTMODE);

_getwritemode

void box(short x, short y, short size, short writemode, short fil1mode)
(

short wm, side;

wm = _getwritemode(); /* Save write mode and set new. */
_setwritemode(writemode);
_rectangle(fillmode, x - size, y - size, x + size, y + size);
_setwritemode(wm); /* Restore original write mode. */

gmtime

Description

Remarks

Return Value

Compatibility

Converts a time value to a structure.

#include <time.h>

struct tm *gmtime(const time_t *timer);

timer Pointer to stored time

The gmtime function converts the timer value to a structure. The timer argument repre­
sents the seconds elapsed since 00:00:00, January 1, 1970, Greenwich mean time. This
value is usually obtained from a call to the timer function.

394

The gmtime function breaks down the timer value and stores it in a structure of type tm,
defined in TIME.H. (See asctime for a description of the structure members.) The struc­
ture result reflects Greenwich mean time, not local time.

The fields of the structure type tm store the following values, each of which is an int:

Field Value Stored

tm sec Seconds

tm min Minutes

tm hour Hours (0-24)

tm_mday Day of month (1-31)

tm mon Month (0-11; January = 0)

tmJear Year (current year minus 1900)

tm_wday Day of week (0-6; Sunday = 0)

tmJday Day of year (0-365; January 1 = 0)

tm isdst Always 0 for gmtime

The gmtime, mktime, and localtime functions use a single statically allocated structure to
hold the result. Each call to one of these routines destroys the result of any previous call.

DOS and OS/2 do not accommodate dates prior to 1980. If timer represents a date prior to
1980, gmtime returns NULL.

The gmtime function returns a pointer to the structure result. There is no error return.

• ANSI • DOS • OS/2 • UNIX • XENIX

395 gmtime

See Also asctime, ctime, ftime, locaitime, time

Exampre __ __

1* GMTIME.C: This program uses gmtime to convert a long-integer
* representation of Greenwich mean time to a structure named newtime,
* then uses asctime to convert this structure to an output string.
*1

#include <time.h>
#include <stdio.h>

void mainC)
(

struct tm *newtime;
long ltime;

time C & It i me);

1* Obtain Greenwich mean time: *1
newtime = gmtimeC <ime);
printfC "Greenwich mean time is %s\n", asctimeC newtime));

Output

Greenwich mean time is Fri Jun 16 16:37:53 1989

_grstatus

Description

Remarks

396

Returns the status of the most recent graphics function call.

#include <graph.h>

short _far Jrstatus(void);

The _grstatus function returns the status of the most recently used graphics function. The
_grstatus function can be used immediately following a call to a graphics routine to deter­
mine if errors or warnings were generated. Return values less than 0 are errors, and values
greater than 0 are warnings.

The following manifest constants are defined in the GRAPH.H header file for use with the
_grstatus function:

Value Constant Meaning

0 _GROK Success

-1 -GRERROR Graphics error

-2 _ GRMODENOTSUPPORTED Requested video mode not supported

-3 _ GRNOTINPROPERMODE Requested routine only works in cer-
tain video modes

.-4 _ GRINVALIDPARAMETER One or more parameters invalid

-5 -GRFONTFILENOTFOUND No matching font file found

-6 _ GRINVALIDFONTFILE One or more font files invalid

-7 _GRCORRUPTEDFONTRLE One or more font files inconsistent

-8 _ GRINSUFFICIENTMEMORY Not enough memory to allocate buff-
er or to complete a _ floodfiII
operation

-9 _ GRINVALIDIMAGEBUFFER Image buffer data inconsistent

1 -GRMOOUTPUT No action taken

2 _GRCLIPPED Output was clipped to viewport

3 -GRPARAMETERALTERED One or more input parameters was al-
tered to be within range, or pairs of
parameters were interchanged to be
in the proper order

397 _grstatus

After a graphics call, use an if statement to compare the return value of _grstatus to
_ GROK. For example:

if(_grstatus < _GROK)
/*handle graphics error*/

The functions listed below cannot cause errors, and they all set Jrstatus to GROK:

_ display cursor _gettextposition _outmem

Jetactivepage _gettextwindow _outtext

_getgtextvector Jetvideoconfig _ unregisterfonts

_gettextcolor Jetvisualpage _wrapon

See the list below for the graphics functions that affect _grstatus. The list shows error or
warning messages that can be set by the graphics function. In addition to the error codes
listed, all of these functions can produce the _ GRERROR error code.

Function

_arc functions

_ c1earscreen

...:. ellipse functions

_getarcinfo

_getcurrentposition
functions

_getfontinfo

_getgtextextent

Jetgtextvector
_getimage

_getpbyscoord

Jetpixel

_gettextcursor

Jetviewcoord functions

Continued on next page

Possible Jrstatus
Error Codes

_ GRNOTINPROPERMODE,
_ GRINVALIDPARAMETER

_ GRNOTINPROPERMODE,
_ GRINVALIDPARAMETER

_ GRNOTINPROPERMODE,
_ GRINVALIDPARAMETER,
_ GRINSUFFICIENTMEMORY

_ GRNOTINPROPERMODE

_ GRNOTINPROPERMODE

(_ GRERROR only)

(_ GRERROR only)

_GRPARAMETERALTERED

_ GRNOTINPROPERMODE

_ GRNOTINPROPERMODE

_ GRNOTINPROPERMODE

_ GRNOTINPROPERMODE

_ GRNOTINPROPERMODE

Possible Jrstatus
Warning Codes

GRNOOUTPUT,
=GRCLIPPED

GRNOOUTPUT,
=GRCLIPPED

_GRPARAMETERALTERED

_orstatus 398

Function Possible _grstatus Possible _grstatus
Error Codes Warning Codes

_getwindowcoord -GRNOTINPROPERMODE

_getwritemode -GRNOTINPROPERMODE

_ image size functions -GRNOTINPROPERMODE

_lineto functions _ GRNOTINPROPERMODE _ GRNOOUTPUT,
GRCLIPPED -

-moveto functions _ GRNOTINPROPERMODE

_outgtext _ GRNOTINPROPERMODE _ GRCLIPPED,
GRNOOUTPUT -

yie functions _ GRNOTINPROPERMODE, _ GRNOOUTPUT,
_ GRINVALIDPARAMETER, _GRCLIPPED

GRINSUFFICIENTMEMORY -
yolygon functions _ GRNOTINPROPERMODE, _ GRNOOUTPUT,

_ GRINVALIDPARAMETER, -GRCLIPPED
_ GRINSUFFICIENTMEMORY

yutimage functions _GRERROR, _ GRPARAMETERALTERED,
_ GRNOTINPROPERMODE, -GRNOOUTPUT
_ GRINVALIDPARAMETER,

GRINVALIDIMAGEBUFFER -
_rectangle functions _ GRNOTINPROPERMODE, _ GRNOOUTPUT,

_ GRINVALIDPARAMETER, -GRCLIPPED
GRINSUFFICIENTMEMORY -

_registerfonts _ GRCORRUPTEDFONTFILE,
_ GRFONTFILENOTFOUND, .
_ GRINSUFFICIENTMEMORY,

GRINVALIDFONTFILE -
_scrolltextwindow _GRNOOUTPUT

_ selectpalette _ GRNOTINPROPERMODE,
GRINVALIDPARAMETER -

_ setactivepage -GRINVALIDPARAMETER

setbkcolor -GRINVALIDPARAMETER -GRPARAMETERALTERED

_setcliprgn -GRNOTINPROPERMODE -GRPARAMETERALTERED

setcolor -GRNOTINPROPERMODE _GRPARAMETERALTERED

setfont _GRERROR,
_ GRFONTFILENOTFOUND,
_ GRINSUFFICIENTMEMORY,

GRPARAMETERALTERED -

. Continued on next page

399

Function

_ setgtextvector

_ settextcolor

_ settextcursor

_ settextposi tion

settextrows

settextwindow

_ setvideomode

Possible _grstatus
Error Codes

_GRPARAMETERALTERED

_ GRNOTINPROPERMODE

_ GRINVALIDPARAMETER

_GRERROR,
_ GRMODENOTSUPPORTED,
_ GRINVALIDPARAMETER

Possible ~rstatus
Warning Codes

_grstatus

_GRPARAMETERALTERED

_GRPARAMETERALTERED

_GRPARAMETERALTERED

_GRPARAMETERALTERED

setvideomoderows _GRERROR,

_ setvieworg

_ setviewport

_ setvisualpage

setwindow

setwritemode

Return Value

See Also

Compatibility

_ GRMODENOTSUPPORTED,
_ GRINVALIDPARAMETER

_ GRNOTINPROPERMODE

-GRNOTINPROPERMODE _GRPARAMETERALTERED

_ GRINVALIDPARAMETER

_ GRNOTINPROPERMODE, _GRPARAMETERALTERED
_ GRINVALIDPARAMETER

_ GRNOTINPROPERMODE,
_ GRINVALIDPARAMETER

The _grstatus function returns the status of the most recently used graphics function.

_arc functions, _ellipse functions, _ floodfill, _Uneto functions, yie functions,
_remapallpalette, _setactivepage, _setbkcolor, _setcolor, _setpixel functions,
_ settextcolor, _ settextcursor, _ setvisualpage, _ setwindow, _ setwritemode

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

halloc

Description

Remarks

Return Value

Compatibility

See Also

400

Allocates a huge memory block.

#include <maIloc.h> Required only for function declarations

void _huge *halloc(long num, size_t size);

num Number of elements

size Length in bytes of each element

The halloc function allocates a huge array from the operating system consisting of num ele­
ments, each of which is size bytes long. Each element is initialized to 0. If the size of the
array is greater than 128K (131 ,072 bytes), the size of an array element must then be a
powerof2.

The halloc function returns a void huge pointer to the allocated space, which is guaranteed
to be suitably aligned for storage of any type of object. To get a pointer to a type other than
void huge, use a type cast on the return value. If the request cannot be satisfied, the return
value is NULL.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

calloc functions, free functions, hfree, malloc functions

Exampre __ __

1* HALLOC.C: This program uses halloc to allocate space for 30,000 long
* integers, then uses hfree to deallocate the memory.
*1

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

void main()
(

long _huge *hbuf;

401

1* Allocate huge buffer *1
hbuf = (long _huge *)halloc(30000L, sizeof(long));
if (hbuf =~ NULL)

printf("Insufficient memory available\n");
else

printf("Memory successfully allocated\n");

1* Free huge buffer *1
hfree(hbuf);

Output

Memory successfully allocated

haHoc

_hard Functions 402

Description

Remarks

Handle critical error conditions.

#include <dos.h>

void _harderr(void(_far *handler)(»;

void _ hardresume(int result);

void _ hardretn(int error);

handler ()

result

error

New INT Ox24 handler

Handler return parameter

Error to return from

These three functions are used to handle critical error conditions that use DOS interrupt
Ox24. The _harderr function installs a new critical-error handler for interrupt Ox24.

The _ hardresume and _ hardreturn functions control how the program will return from
the new critical-error handler installed by _harderr. The _hardresume function returns to
DOS from a user-installed critical-error handler, and the _hard return function returns
directly to the application program from a user-installed critical-error handler.

The _ harderr function does not directly install the handler pointed to by handler; instead,
_harderr installs a handler that calls the function referenced by handler. The handler calls
the function with the following parameters:

handler(unsigned deverror, unsigned ern'ode, unsigned far *devhdr);

The deverror argument is the device error code. It contains the AX register value passed
by DOS to the INT Ox24 handler. The errcode argument is the DI register value that DOS
passes to the handler. The low-order byte of ern'ode can be one of the following values:

Code

o
1

2

3

4

5

Meaning

Attempt to write to a write-protected disk

Unknown unit

Drive not ready

Unknown command

Cyclic-redundancy-check error in data

Bad drive-request structure length

403 hard Functions -

6 Seek error

7 Unknown media type

8 Sector not found

9 Printer out of paper

10 Write fault

11 Read fault

12 General failure

The devhdr argument is a far pointer to a device header that contains descriptive informa­
tion about the device on which the error occurred. The user-defined handler must not
change the information in the device-header control block.

Errors on Disk Devices

If the error occurred on a disk device, the high-order bit (bit 15) of the deverror argument
will be set to 0, and the deverror argument will indicate the following:

Bit

15

14

13

12

11

10,9

8

Meaning

Disk error if false (0).

Not used.

"Ignore" response not allowed if false (0).

"Retry" response not allowed if false (0).

"Fail" response not allowed if false (0). Note that DOS
changes "fail" to "abort".

Code Location

00 DOS

01 File allocation table

10 Directory

11 Data area

Read error if false; write error if true.

hard Functions 404

The low-order byte of deverror indicates the drive in which the error occurred (0 = drive
A, 1 = drive B, etc.).

Errors on Other Devices

If the error occurs on a device other than a disk drive, the high-order bit (bit 15) of the
deverror argument is 1. The attribute word located at offset 4 in the device-header block in­
dicates the type of device that had the error. If bit 15 of the attribute word is 0, the error is
a bad memory image of the file allocation table. If the bit is 1, the error occurred on a char­
acter device and bits 0-3 of the attribute word indicate the type of device, as shown in the
following list:

Bit Meaning

0 Current standard input

1 Current standard output

2 Current null device

3 Current clock device

Restrictions on Handler Functions

The user-defined handler function can issue only system calls OxOl through OxOC, or
Ox59. Thus, many of the standard C run-time functions (such as stream I/O and low-level
I/O) cannot be used in a hardware error handler. Function Ox59 can be used to obtain
further information about the error that occurred.

Using _hardresume and _harderr

If the handler returns, it can do so

1. From the return statement

2. From the _ hardresume function

3. From the hardretn function

If the handler returns from hardresume or from a return statement, the handler returns
to DOS. -

405

Return Value

Compatibility

See Also

_hard Functions

The _hardresume function should be called only from within the user-defined hardware
error-handler function. The result supplied to _ hardresume must be one of the following
constants:

Constant

_HARDERR_ABORT

_HARDERR_FAIL

_HARDERR_IGNORE

_HARDERR_RETRY

Action

Abort the program by issuing !NT Ox23

Fail the system call that is in progress (this is not supported on
DOS 2.x)

Ignore the error

Retry the operation

The _ hardretn function allows the user-defined hardware error handler to return directly
to the application program rather than returning to DOS. The application resumes at the
point just after the failing I/O function request. The _hardretn function should be called
only from within a user-defined hardware error-handler function. .

The error parameter of _hardretn should be a DOS error code, as opposed to the XENIX­
style error code that is available in errno. Refer to MS-DOS Encyclopedia (Duncan, ed.;
Redmond, Wa.: Microsoft Press, 1988) or Programmer's PC Sourcebook (Hogan; Red­
mond, Wa.: Microsoft Press, 1988) for information about the DOS error codes that may be
returned by a given DOS function call.

If the failing I/O function request is an INT Ox21 function greater than or equal to function
Ox38, _hardretn will then return to the application with the carry flag set and the AX reg­
ister set to the _ hardretn error parameter. If the failing INT Ox21 function request is less
than function Ox38 and the function can return an error, the AL register will be set to OxFF
on return to the application. If the failing INT Ox21 does not have a way of returning an
error condition (which is true of certain INT Ox21 functions below Ox38), the error param­
eter of _ hardretn is not used, and no error code is returned to the application.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_heapadd Functions

Description Add memory to the heap C beapadd) or to the based heap (_ bbeapadd).

#include <malloc.b> Required only for function declarations

int _beapadd(void _far *memblock, size_t size);

int _bbeapadd(_segment seg, void _based (void) *memblock, size_t size);

seg

buffer

size

Based-heap segment selector

Pointer to heap memory

Size in bytes of memory to add

406

Remarks The _ beapadd and _ bbeapadd functions add an unused piece of memory to the heap. The
_bbeapadd function adds the memory to the based heap specified by seg. The _beapadd
function looks at the segment value and, if it is DGROUP, adds the memory to the near
heap. Otherwise, _ beapadd adds the memory to the far heap.

Return Value These functions return 0 if successful, or -1 if an error occurred.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also free functions, balloe, bfree, malloe functions, realloe functions

Exampw ___ __

1* HEAPMIN.C: This program illustrates heap management using
* _heapadd and _heapmin.
*1

#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <malloc.h>

407 _heapadd Functions

void heapdump(char *msg); 1* Prototype *1

char sl[] =

char s2[] =
"Here are some strings that we use at first, then don't\n" };
"need any more. We'll give their space to the heap.\n~ };

void main()
{

int*p[3],i;

printf("%s%s", sl, s2);
heapdump("Initial heap");

1* Give space of used strings to heap. *1
_heapadd(sl, si zeof(sl));
_heapadd(s2, sizeof(s2));
heapdump("After adding used strings");

1* Allocate some blocks. Some may use string blocks from _heapadd. *1
for(i = 0; i < 2; i++)

if((p[i] = (int *)calloc(10 * (i + 1), sizeof(int) » == NULL
{

}

--i ;
break;

heapdump("After allocating memory");

1* Free some of the blocks. *1
free(p[l]);
free(p[2]);
heapdump("After freeing memory");

1* Minimize heap. *1
_heapmin();
heapdump("After compacting heap");

1* Walk through heap entries, displaying information about each block. *1
void heapdump(char *msg
{

struct _heapinfo hi;

printf("%s\n", msg);
hi._pentry = NULL;
whil e(_heapwal k(&hi) == _HEAPOK)

printf("\t%s block at %Fp of size %u\t\n",
hi._useflag == _USEDENTRY ? "USED" : "FREE",
hi ._pentry,
hi ,_s i ze);

getch();

heapadd Functions

Output

Here are some strings that we use at first, then don't
need any more. We'll give their space to the heap.
Initial heap

USED block at 2039:0E9C of size 364
USED block at 2039:100A of size 36
USED block at 2039:1030 of size 512
FREE block at 2039:1232 of size 460

After adding used strings
FREE block at 2039:0044 of size 52
FREE block at 2039:007A of size 50
USED block at 2039:00AE of size 3564
USED block at 2039:0E9C of size 364
USED block at 2039:100A of size 36
USED block at 2039:1030 of size 512
FREE block at 2039:1232 of size 460

After allocating memory
USED block at 2039:0044 of size 20
USED block at 2039:005A of size 40
FREE block at 2039:0084 of size 40
USED block at 2039:00AE of size 3564
USED block at 2039:0E9C of size 364
USED block at 2039:100A of size 36
USED block at 2039:1030 of size 512
FREE block at 2039:1232 of size 460

After freeing memory
USED block at 2019:0044 of size 20
FREE block at 2039:005A of size 40
FREE block at 2039:0084 of size 40
USED block at 2039:00AE of size 3564
USED block at 2039:0E9C of size 364
USED block at 2039:100A of size 36
USED block at 2039:1030 of size 512
FREE block at 2039:1232 of size 460

After compacting heap
USED block at 2039:0044 of size 20
FREE block at 2039:005A of size 82
USED block at 2039:00AE of size 3564
USED block at 2039:0E9C of size 364
USED block at 2039:100A of size 36
USED block at 2039:1030 of size 512
FREE block at 2039:1232 of size 12

408

409

Description

Remarks

Return Value

Compatibility

_heapchk Functions

Run consistency checks on the heap.

#include <malloc.h>

int _heapchk(void);

int _hheapchk(_segment seg);

int _tbeapchk(void);

int _nheapchk(void);

seg Specified base heap

The _ heapchk routines help to debug heap-related problems by checking for minimal con­
sistency of the heap.

Each function checks a particular heap, as listed below:

Function

_heapchk

_hheapchk

_tbeapchk

_nheapchk

Heap Checked

Depends on data model of program

Based heap specified by seg value

Far heap (outside the default data segment)

Near heap (inside the default data segment)

In large data models (that is, compact-, large-, and huge-model programs), _heapchk maps
to _tbeapchk. In small data models (tiny-, small-, and medium-model programs),
_ heapchk maps to _ nheapchk.

All four routines return an integer value that is one of the following manifest constants (de­
fined in MALLOC.H):

Constant

_HEAPBADBEGIN

_HEAPBADNODE

_HEAPEMPTY

_HEAPOK

Meaning

Initial header information cannot be found, or it is bad

Bad node has been found, or the heap is damaged

Heap has not been initialized

Heap appears to be consistent

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_heapchk Functions 410

See Also _ heapset functions, _ heapwalk functions

E~ampre __ __

1* HEAPCHK.C: This program checks the heap for consistency
* and prints an appropriate message.
*1

#include <malloc.h>
#include (stdio.h>

void main()
(

int heapstatus;
char *buffer;

1* Allocate and deallocate some memory *1
if((buffer =- (char *)malloc(100)) != NULL

free(buffer);

1* Check heap status *1
heapstatus = _heapchk();
switch(heapstatus)
(

Output

case _HEAPOK:
printf(" OK - heap is fine\n");
break;

case _HEAPEMPTY:
printf(" OK - heap is empty\n");
break;

case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;

case _HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

OK - heap is fine

411

Description

Remarks

Return Value

Compatibility

See Also

_heapmin Functions

Release unused heap memory to the operating system.

#include <malloc. h>

int _heapmin(void);

int _bheapmin(_segment seg)

int _fbeapmin(void);

int _nheapmin(void);

seg Specified based-heap selector

The _ heapmin functions minimize the heap by releasing unused heap memory to the oper­
ating system.

The various _ heapmin functions release unused memory in these heaps:

Function

_heapmin

_bheapmin

_fbeapmin·

_nheapmin

Heap Minimized
\

Depends on data model of program

Based heap specified by seg value; _NULLSEG specifies all
based heaps

Far heap (outside default data segment)

Near heap (inside default data segment)

In large data models (that is, compact-, large-, and huge-model programs), _heapmin
maps to _fbeapmin. In small data models (tiny-, small-, and medium-model programs),
_heapmin maps to _nheapmin.

Based-heap segments are never freed (Le., unlinked from the based heap list and released
back to the operating system) by the _ bheapmin function. The _ bfreeseg function is used
for that purpose.

The _heapmin functions return 0 if the function completed successfully, or-l in the case
of an error.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_ bfreeseg, free functions, malloc functions

_heapsetFuncffons 412

Oescrlpllon

Remarks

Check heaps for minimal consistency and set the free entries to a specified value.

#include <malloc.h>

int _heapset(unsigned intfill);

int _hheapset(_segment seg, unsigned intfill);

int _fbeapset(unsigned intfill);

int _nheapset(·unsigned intfill);

fill Fill character

seg Specified based-heap segment selector

The _ heapset family of routines helps debug heap-related problems in programs by show­
ing free memory locations or nodes unintentionally overwritten.

The _ heapset routines first check for minimal consistency on the heap in a manner identi­
cal to that of the _ heapchk functions. After the consistency check, the _ heapset functions
set each byte of the heap's free entries to the fill value. This known value shows which
memory locations of the heap contain free nodes and which locations contain data that
were unintentionally written to freed memory.

The various _ heapset functions check and fill these heaps:

Function

_heapset

_hheapset

_fbeapset

_nheapset

Heap Filled

Depends on data model of program

Based heap specified by seg value; _NULLSEG specifies all
based heaps

Far heap (outside default data segment)

Near heap (inside default data segment)

In large data models (that is, compact-, large-, and huge-model programs), _ heapset maps
to _fbeapset. In small data models (tiny-, small-, and medium-model programs), _heapset
maps to _ nheapset.

413 _heapsetFuncnons

Return Value All four routines return an int whose value is one of the following manifest constants
(defined in MALLOC.H):

Constant

_HEAPBADBEGIN

_HEAPBADNODE

_HEAPEMPfY

_HEAPOK

Meaning

Initial header information cannot be found, or it is invalid

Bad node has been found, or the heap is damaged

Heap has not been initialized

Heap appears to be consistent

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _ heapchk functions, _ heapwalk functions

Exampm __ __

/* HEAPSET.C: This program checks the heap and fills in free entries
* with the character 'Z'.
*/

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

void main()
{

int heapstatus;
char *buffer;

_heapsetFuncnons

if((buffer = malloc(1» NULL) /* Make sure heap is initialized */
ex it (0);

heapstatus = _heapset('Z'); /* Fill in free entries */
switch(heapstatus)
{

case _HEAPOK:
printf("OK - heap is fine\n");
break;

case _HEAPEMPTY:
printf("OK - heap is empty\n");
break;

case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;

case _HEAPBADNODE:
printf("ERROR bad node in heap\n");
break;

free(buffer);

Output

OK - heap is fine

414

415

Description

Remarks

_heapwalk Functions

Traverse the heap and return infonnation about the next entry.

include <malloc.h>

int _heapwalk(_HEAPINFO *entlyinfo);

int _hheapwalk(_segment seg, _HEAPINFO *entlyinfo);

int _fbeapwalk(_HEAPINFO *entryinfo);

int _nheapwalk(_HEAPINFO *entryinJo);

entryinfo

seg

Buffer to contain heap infonnation

Based-heap segment selector

The _heapwalk family of routines helps debug heap-related problems in programs.

The _ heapwalk routines walk through the heap, traversing one entry per call, and return a
pointer to a _ heapinfo structure that contains infonnation about the next heap entry. The

'~ _ heapinfo structure, defined in MALLOC.H, contains the following elements:

Element

int far * ~entry
.size_t _size

int _useflag

Description

Heap entry pointer

Size of heap entry

Entry "in use" flag

A call to _heapwalk that returns _HEAPOK stores the size of the entry in the _size field
and sets the _useflag field to either _FREEENTRY or _USEDENTRY (both are constants
defined in MALLOC.H). To obtain this infonnation about the first entry in the heap, pass
the _heapwalk routine a pointer to a _heapinfo structure whose ~entry field is NULL.

The various _ heapwalk functions walk through and gather infonnation on these heaps:

Function

_heapwalk

_hheapwalk

_fbeapwalk

_nheapwalk

Heap Walked

Depends on data model of program

Based heap specified by seg value; _NULLSEG specifies all
based heaps

Far heap (outside default data segment)

Near heap (inside default data segment)

_heapwalk Functions 416

Return Value

Compatibility

See Also

In large data models (that is, compact-, large-, and huge-model programs), _ heapwalk
maps to _theapwalk. In small data models (tiny-, small-, and medium-model programs),
_ heapwalk maps to _ nheapwalk.

All three routines return one of the following manifest constants (defined in MALLOC.H):

Constant

_HEAPBADBEGIN

_HEAPBADNODE

_HEAPBADPTR

_HEAPEND

_HEAPEMPTY

_HEAPOK

Meaning

The initial header information cannot be found, or it is invalid.

A bad node has been found, or the heap is damaged.

The -pen try field of the _ heapinfo structure does not contain
a valid pointer into the heap.

The end of the heap has been reached successfully.

The heap has not been initialized.

No errors so far; the _heapinfo structure contains information
about the next entry.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_ heapchk functions, _ heapset functions

Exampw ___ __

1* HEAPWALK.C: This program "walks" the heap, starting at the beginning
* (_pentry = NULL). It prints out each heap entry's use, location,
* and size. It also prints out information about the overall state
* of the heap as soon as _heapwalk returns a value other than _HEAPOK.
*1

#include <stdio.h>
#intlude <malloc.h>

417

void heapdump(void);

void main()
(

char *buffer;

heapdump();
if((buffer = malloc(59 » 1= NULL)
(

heapdump();
free(buffer);

}

heapdump() ;

void heapdump(void
{

struct _heapinfo hinfo;
int heapstatus;

hinfo._pentry = NULL;
while((heapstatus = _heapwalk(&hinfo)) == _HEAPOK
{

printf("%6s block at %Fp of size %4.4X\n".
(hinfo._useflag == _USEDENTRY ? "USED" : "FREE").
hinfo._pentry. hinfo._size);

switch(heapstatus)
(

case _HEAPEMPTY:
printf("OK - empty heap\~");
break;

case _HEAPEND:
printf("OK - end of heap\n");
break;

case _HEAPBADPTR:
printf("ERROR - bad pointer to heap\n");
break;

case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;

case _HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

_heap walk Functions

_heapwalk Functions

Output

USED block at 0067:103E of size 000E
USED block at 0067:104E of size 01F4
USED biock at 0067:1244 of size 0026
USED block at 0067:126C of size 0200
FREE block at 0067:146E of size 0B90

OK - end of heap
USED block at 0067:103E of size 000E
USED block at 0067:104E of size 01F4
USED block at 0067:1244 of size 0026
USED block at 0067:126C of size 0200
USED block at 0067:146E of size 003C
FREE block at 0067:14AC of size 0B52

OK - end of heap
USED block at 0067:103E of size 000E
USED block at 0067:104E of size 01F4
USED block at 0067:1244 of size 0026
USED block at 0067:126C of size 0200
FREE block at 0067:146E of size 003C
FREE block at 0067:14AC of size 0B52

OK - end of heap

418

419 hfree

Description Frees a huge memory block.

#include <malloc.h> Required only for function declarations

void hfree(void _huge *memblock);

memblock Pointer to allocated memory block

Remarks The hfree function deallocates a memory block; the freed memory is returned to the oper­
ating system. The memblock argument points to a memory block previously allocated
through a call to halloc. The number of bytes freed is the number of bytes specified when
the block was allocated.

Note that attempting to free an invalid memblock argument (one not allocated with halloc)
may affect subsequent allocation and cause errors.

Return Value None.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also halloc

Exampre __ __

/* HALLOC.C: This program uses halloc to allocate space for 30,000 long
* integers, then uses hfree to deallocate the memory.
*/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

void main()
(

long _huge *hbuf;

/* Allocate huge buffer */
hbuf = (long _huge *)halloc(30000L, sizeof(long));
if (hbuf == NULL)

printf("Insufficient memory available\n");
else

printf("Memory successfully allocated\n");

(

hlree

1* Free huge buffer *1
hfree(hbuf);

Oulpul

Memory successfully allocated

/

420

421

Description

Remarks

Return Value

Compatibility

hypot, hypotl

Calculate the hypotenuse.

#include <math.h>

double hypot(double x, double y);

long double hypotl(long double x, long double y);

x,y Floating-point values

The hypot and hypotl functions calculate the length of the hypotenuse of a right triangle,
given the length of the two sides x andy (or xl andyl). A call to hypot is equivalent to the
following:

sqrt(x '" x + y '" y);

The hypotl function uses the 80-bit, IO-byte coprocessor fonn of arguments and return
values. See the reference page on the long double functions for more details on this data
type.

The functions return the length of the hypotenuse. If an overflow results, the functions re­
turn HUGE_VAL and set errno to ERANGE.

hypot

o ANSI • DOS • OS/2 • UNIX • XENIX

hypotl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also cabs

Exampre __ __

/* HVPOT.C: This program prints the hypotenuse of a right triangle. */

#include <math.h>
#include <stdio.h>

hypot, hypotl

void main()
(

double x = 3.0, y = 4.0;

printf("If a right triangle has sides %2.1f and %2.1f, "
"its hypotenuse is %2.1f\n", x, y, hypot(x, y));

Output

If a right triangle has sides 3.0 and 4.0, its hypotenuse is 5.0

422

423

Description

Remarks

Return Value

Compatibility

_imagesize Functions

Get amount of memory required to store graphics images.

#include <graph.h>

long _far Jmagesize(short xl, short yl, short x2, short y2);

long _far Jma~esize_w(double wxl, double wyl, double wx2, double wy2);

long _far Jmagesize_wxy(struct _wxycoord _far *pw.xyl,
struct _ wxycoord _far *pw.xy2);

xl,yl

x2,y2

wxl, wyl

wx2, wy2

pwxyl

pwxy2

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

The functions in the _imagesize family return the number of bytes needed to store the
image defined by the bounding rectangle and specified by the coordinates given in the
function call.

The Jmagesize function defines the bounding rectangle in terms of view-coordinate
points (xl, yl) and (x2, y2).

The:imagesize _ w function defines the bounding rectangle in terms of window-coordinate
points (xl, yl) and (x2, y2).

The Jmagesize _ wxy function defines the bounding rectangle in terms of the window­
coordinate pairs pw.xyl and pw.xy2.

The number of bytes needed to store the image is determined by the following formula:

xwid = abs(xl-x2)+1;
ywid = abs(yl-y2)+1;
size = 4+«long)«xwid*bits_per_pixel+7)/S)*(long)ywid);

A call to _getvideoconfig stores the bi ts_per _pi xel information in the bitsperpixel
field of a videoconfig structure.

The function returns the storage size of the image in bytes. There is no error return.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_imagesize Functions

See Also

Example

_getimage functions, ~etvideoconfig, j1utimage functions

See the example for _getimage.

424

425

Description

Remarks

Return Value

Compatlblllty

See Also

Example

Input a byte (inp) or a word (inpw) from a port.

#include <conio.h> Required only for function declarations

int inp(unsigned port);

unsigned inpw(unsigned port);

port Port number

inp, inpw

The inp and inpw functions read a byte and a word, respectively, from the specified input
port. The input value can be any unsigned integer in the range 0 - 65,535.

To use inp and inpw in OS/2 protected mode, you must use a .DEF file to declare the
IOSEG segment that the run-time library uses to perform input/output on the port. In addi­
tion, the intrinsic (/Oi) versions of these functions do not work unless you put the code in a

. segment that is marked with the IOPL keyword in the .DEF file.

Because you cannot do IOPL from a regular code segment, the run-time library
declares a separate code segment called _IOSEG. In order to use inp, inpw, outp,
or outpw in any of the protected-mode run-time libraries (?LmCp, LLIBCDLL,
LLIBCMT, or CDLLOBJS-based DLL), you must have a .DEF file containing this line:

SEGMENTS _IOSEG CLASS 'IOSEG_CODE' IOPL

The functions return the byte or word read from port. There is no error return.

o ANSI • DOS • OS2 0 UNIX 0 XENIX

outp,outpw

See the example for outp.

inl86

Description

Remarks

Return Value

Compatibility

See Also

Executes the 8086 interrupt.

#include <dos.h>

int int86(int intnum, union REGS *inregs, union REGS *outregs);

intnum

inregs

outregs

Interrupt number

Register values on call

Register values on return

426

The int86 function executes the 8086-processor-family interrupt specified by the interrupt
number intnum. Before executing the interrupt, int86 copies the contents of inregs to the
corresponding registers. After the interrupt returns, the function copies the current register
values to outregs. It also copies the status of the system carry flag to the cflag field in the
outregs argument. The inregs and outregs arguments are unions of type REGS. The union
type is defined in the include file DOS.H.

Do not use the int86 function to call interrupts that modify the DS register. Instead, use the
int86x function. The int86x function loads the DS and ES registers from the segregs para­
meter and also stores the DS and ES registers into segregs after the function call.

The REGS type is defined in the include file DOS.H.

The return value is the value in the AX register after the interrupt returns. If the cflag field
in outregs is nonzero, an error has occurred; in such cases, the _ doserrno variable is also
set to the corresponding error code.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

bdos, int86x, intdos, intdosx

Exampw __ __

1* INT86.C: This program uses int86 to call the BIOS video service
* (INT 10H) to get information about the cursor.
*1

#include <dos.h>
#include <stdio.h>

427

void main()
(

union REGS inregs, outregs;

1* Set up to get cursor information. *1
inregs.h.ah 3; 1* Get Cursor Position function *1
inregs.h.bh = 0; 1* Page 0 *1

1* Execute video interrupt: *1
int86(0x10, &inregs, &outregs);

1* Display results. *1
printf("Cursor position\n\tRow: %d\n\tColumn: %d\n",

outregs.h.dh, outregs.h.dl);
printf("Cursor shape\n\tStart: %d\n\tEnd: %d\n",

outregs.h.ch, outregs.h.cl);

Output

Cursor position
Row: 2
Column: 0

Cursor shape
Start: 6
End: 7

int86

int86x

Description

Remarks

Return Value

Compatibility

See Also

Executes the 8086 interrupt; accepts segment-register values.

#include <dos.h>

int int86x(int intnum, union REGS *inregs, union REGS *outregs,
struct SREGS *segregs);

intnum

inregs

outregs

segregs

Interrupt number

Register values on call

Register values on return

Segment-register values on call

428

The int86x function executes the 8086-processor-family interrupt specified by the inter­
rupt number intnum. Unlike the int86 function, int86x accepts segment-register values in
segregs, enabling programs that use large-model data segments or far pointers to specify
which segment or pointer should be used during the system call.

Before executing the specified interrupt, int86x copies the contents of inregs and segregs
to the corresponding registers. Only the DS and ES register values in segregs are used.
After the interrupt returns, the function copies the current register values to outregs, cop­
ies the current ES and DS values to segregs, and restores DS. It also copies the status of
the system carry flag to the cflag field in outregs.

The REGS and SREGS types are defined in the include file DOS.H.

Segment values for the segregs argument can be obtained by using either the segread func­
tion or the FP _ SEG macro.

The return value is the value in the AX register after the interrupt returns. If the cflag field
in outregs is nonzero, an error has occurred; in such cases, the doserrno variable is also
set to the corresponding error code. -

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

bdos, FP _SEG, int86, intdos, intdosx, segread

429 int86x

Exampw __ __

1* INT86X.C: In this program, int86x executes an INT 21H instruction
* to invoke DOS system call 43H (change file attributes). The program
* uses int86x because the file, which is referenced with a far pointer,
* may be in a segment other than the default data segment. Thus, the
* program must explicitly set the OS register with the SREGS structure.
*1

#include <signal.h>
#include <dos.h>
#include <stdio.h>
#include <process.h>

char _far *filename

void main()
(

"int86x.c";

union REGS ·inregs, outregs;
struct SREGS segregs;
int result;

inregs.h.ah = 0x43; 1* DOS function to change attributes */
inregs.h.al = 0; 1* Subfunction 0 to get attributes) */
inregs.x.dx = FP_OFF(filename); 1* DS:DX points to file name */
segregs.ds = FP_SEG(filename);
result = int86x(0x21, &inregs, &outregs, &segregs);
if(outregs.x.cflag)

printf("Can't get file attributes; error no. %d\n", result);
else

printf("Attribs = 0x%.4x\n", outregs.x.cx);

Output

Attribs 0x0020

intdos

Description

Remarks

Return Value

Compatibility

See Also

Executes the DOS system call.

#include <dos.h>

int intdos(union REGS *inregs, union REGS *olltregs);

in regs

olltregs

Register values on call

Register values on return

430

The intdos function invokes the DOS system call specified by register values defined in
inregs and returns the effect of the system call in outregs. The illregs and olltregs argu­
ments are unions of type REGS. The REGS type is defined in the include file DOS.H.

To invoke a system call, intdos executes an INT 21 H instruction. Before executing the in­
struction, the function copies the contents of inregs to the corresponding registers. After
the INT instruction returns, intdos copies the current register values to olltregs. It also cop­
ies the status of the system carry flag to the cflag field in outregs. A nonzero cflag field in­
dicates the flag was set by the system call and also indicates an error condition.

The intdos function is used to invoke DOS system calls that take arguments for input or
output in registers other than DX (DH/DL) and AL. The intdos function is also used to in­
voke system calls that indicate errors by setting the carry flag. Under any other conditions,
the bdos function can be used.

Do not use the intdos function to call interrupts that modify the DS register. Instead, use
the intdosx or int86x function.

The intdos function returns the value of the AX register after the system call is completed.
If the cflag field in outregs is nonzero, an error has occurred and _ doserrno is also set to
the corresponding error code.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

bdos, intdosx

Exampw __ __

1* INTDOS.C: This program uses intdos to invoke DOS system call 2AH
* (gets the current date).
*1

#include <dos.h>
#include <stdio.h>

431

void main()
(

union REGS inregs, outregs;

inregs.h.ah = 0x2a; /* DOS Get Date function: */
intdos(&inregs, &outregs);
printf("Date: %d/%d/%d\n", outregs.h.dh, outregs.h.dl, outregs.x.cx);

Output

Date: 6/16/1989

intdos

intdosx

Description

Remarks

Return Value

Compatibility

See Also

Executes the DOS system call; accepts segment-register values.

#include <dos.h>

int intdosx(union REGS *inregs, union REGS *outregs, struct SREGS *segregs);

inregs

outregs

segregs

Register values on call

Register values on return

Segment-register values on call

432

The intdosx function iQvokes the DOS system call specified by register values defined in
inregs and returns the results of the system call in outregs. Unlike the intdos function,
intdosx accepts segment-register values in segregs, enabling programs that use large­
model data segments or far pointers to specify which segment or pointer should be used
during the system call. The REGS and SREGS types are defined in the include file DOS.H.

To invoke a system call, intdosx executes an INT 21 H instruction. Before executing the in­
struction, the function copies the contents of inregs and segregs to the corresponding regis­
ters. Only the DS and ES register values in segregs are used. After the INT instruction
returns, intdosx copies the current register values to outregs and restores DS. It also copies
the status of the system carry flag to the cflag field in outregs. A nonzero cflag field indi­
cates the flag was set by the system call and also indicates an error condition.

The intdosx function is used to invoke DOS system calls that take an argument in the ES
register or that take a DS register value different from the default data segment.

Segment values for the segregs argument can be obtained by using either the segread func­
tion or the FP _SEG macro.

The intdosx function returns the value of the AX register after the system call is com­
pleted. If the cflag field in outregs is nonzero, an error has occurred; in such cases,
_ doserrno is also set to the corresponding error code.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

bdos, FP _SEG, intdos, segread

Exampre __ ___

/* INTDOSX.C */
#include <dos.h>
#include <stdio.h>

433

char far *buffer

void main()
(

"Dollar-sign terminated string\n\r\n\r$";

union REGS inregs, outregs;
struct SREGS segregs;

1* Print a $-terminated string on the screen using DOS function 0x09. *1
inregs.h,ah = 0x9;
inregs.x.dx = FP_OFF(buffer);
segregs.ds = FP_SEG(buffer);
intdosx(&inregs, &outregs, &segregs);

Output

Dollar-sign terminated string

intdosx

is Functions 434

Description Test characters for specified conditions.

Remarks

#include <ctype.h>

int isalnum(int c);

int isalpha(int c);

int isascii(int c);

int iscntrl(int c);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c);

int isspace(int c);

int isupper(int c);

int isxdigit(int c);

c Integer to be tested

Each function in the is family tests a given integer value, returning a nonzero value if the
integer satisfies the test condition and 0 if it does not. The ASCII character set is assumed.

The is functions and their test conditions are listed below:

Function

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

islower

Test Condition

Alphanumeric CA'-'Z', 'a'-'z', or '0'-'9')

Letter CA'-'Z' or 'a'-'z')

ASCII character (OxOO - Ox7F)

Control character (OxOO - Ox IF or Ox7F)

Digit CO' -'9')

Printable character except space C ')

Lowercase letter Ca'-'z')

435

Return Value

Compatibility

See Also

Example

is Functions

Printable character (Ox20 - Ox7E)

Punctuation character

isprint

ispunct

isspace

isupper

isxdigit

White-space character (Ox09 - OxOD or Ox20) ,

Uppercase letter C A'-'Z')

Hexadecimal digit CA'-'F','a'-'f', or '0'-'9')

The isascii routine produces meaningful results for all integer values. However, the remain­
ing routines produce a defined result only for integer values corresponding to the ASCII
character set (that is, only where isascii holds true) or for the non-ASCII value EOF (de­
fined in STDIO.H).

These routines are implemented both as functions and a& macros . .For details on choosing a
function or a macro implementation, see Section 1.4, "Choosing/Between Functions and
Macros."

These routines return a nonzero value if the integer satisfies the test condition and 0 if it
does not.

isaInum, isaIpha, iscntrI, isdigit, isgraph, isIower, isprint, ispunct, isspace, isupper,
isxdigit

• ANSI • DOS • OS/2 • UNIX • XENIX

isascii

o ANSI • DOS • OS/2 • UNIX • XENIX

toascii, toIower, toupper functions

1* ISFAM.C: This program tests all characters between 0x0 and 0x7F,
* then displays each character with abbreviations for the character-type
* codes that apply.
*1

#include <stdio.h)
#include <ctype.h)

is Functions

void maine)
(

i nt ch;
fore ch = 0; ch <= 0x7F; ch++
(.

Output

00
01
02

38 8
39 9
3a
3b
3c <
3d
3e >
3f ?
40 @

41 A
42 B

printf("%.2x "
printf(" %c" ,
printf("%4s",
printf("%3s;' •
pri ntf("%3s
pri ntf("%3s
printf("%3s
printf("%3s
printf("%3s
printf("%3s
printf("%3s
printf("%3s
printf("%3s
printf("%3s ,
printf("\n") ;

AN
AN

AN
AN

AS C
AS C
AS C

AS
AS
AS
AS
AS
AS
AS
AS
AS

A AS
A AS

0
0

, ch) ;
isprint(ch
isalnum(ch
isalpha(ch
isascii(ch
i scntrl (ch
isdigit(ch
isgraph(ch
islower(ch
ispunct(ch
isspace(ch
isprint(ch
isupper(ch
isxdigit(ch

G
G
G PU
G PU
G PU
G PU
G PU
G PU
G PU
G
G

436

) ? ch '\0') ;
) ? "AN") ;
) ? nAil) ;
) ? "AS") ;
) ? "C") ;
) ? "0") ;
) ? fiG") ;
) ? .. L") ;
) ? "PU") ;
) ? "S") ;
) ? " PR") ;
) ? "U") ;

) ? "X") ;

PR X
PR X
PR
PR
PR
PR
PR
PR
PR
PR U X
PR U X

437 isatty

Description Checks for a character device.

#include <io.h> Required only for function declarations

int isatty(int handle);

handle Handle referring to device to be tested

Remarks The isatty function determines whether handle is associated with a character device (a ter­
minal, console, printer, or serial port).

Return Value

Compatibility

The isatty function returns a nonzero value if the device is a character device. Otherwise,
the return value is O.

o ANSI • DOS • OS/2 • UNIX • XENIX

Exampw __ __

1* ISATTY.C: This program checks to see whether stdout has been
* redirected to a file.
*1

#include <stdio.h>
#include <io.h>

void maine)
(

if(isatty(fileno(stdout)))
printf("stdout has not been redirected to a file\n" i;

else
printf("stdout has been redirected to a file\n");

Output

stdout has not been redirected to a file

itoa

Description Converts an integer to a string.

#include <stdlih.h> Required only for function declarations

char *itoa(int value, char *string, int radix);

value

string

radix

Number to be converted

String result

Base of value

438

Remarks The itoa function converts the digits of the given value argument to a null-terminated char­
acter string and stores the result (up to 17 bytes) in string. The radix argument specifies the
base of value; it must be in the range 2-36. If radix equals 10 and value is negative, the
first character of the stored string is the minus sign (-).

Return Value The itoa function returns a pointer to string. There is no error return.

Compatibility D ANSI • DOS • OS/2 D UNIX D XENIX

See Also itoa, ultoa

Exampre ___ ____

/* ITOA.C: This program converts integers of various sizes to strings
* in various radixes.
*/

#include <stdlib.h>
#include <stdio.h>

void main()
(

char buffer[20];
int i = 3445;
long 1 = -344115L;
unsigned long ul = 1234567890UL;

439

itoa(i , buffer, 10) :
printf("String of integer %d (radix 10): %s\n", i , buffer) :
i toa (i , buffer, 16) ;
printf("String of integer %d (radix 16): 0x%s\n", i , buffer) :
itoa (i , buffer, 2) :
printf("String of integer %d (radix 2) : %s\n", i , buffer) :

ltoa(1, buffer, 16):
printf("String of long int %ld (radix 16): 0x%s\n", 1, buffer);

ul toa (ul, buffer, 16);
printf("String of unsigned long %lu (radix 16): 0x%s\n", ul, buffer);

Output

String of integer 3445 (radix 10): 3445
String of integer 3445 (radix 16): 0xd75
String of integer 3445 (radix 2): 110101110101
String of long int -344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

itoa

kbhit 440

Description Checks the console for keyboard input.

#include <conio.h> Required only for function declarations

int kbhit(void);

Remarks The kbhit function checks the console for a recent keystroke. If the function returns a non­
zero value, a keystroke is waiting in the buffer. The program can then call getch or getche
to get the keystroke.

Return Value The kbhit function returns a nonzero value if a key has been pressed. Otherwise, it re­
turns O.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

Exampre __ _____

1* KBHIT.C: This program loops until the user presses a key.
* If kbhit returns nonzero, a keystroke is waiting in the buffer.
* The program can call getch or getche to get the keystroke.
*1

#include <conio.h>
#include (stdio.h>

void main()
(

1* Display message until key is pressed. *1
while(!kbhit())

cputs("Hit me!!");

1* Use getch to throw key away. *1
printf("\nKey struck was '%c'\n", getch());
getch();

Output

Hit me!! Hit me!! Hit me!! Hit me!! Hit me!! Hit me!! Hit me!!
Key struck was 'k'

441

Description

Remarks

Return Value

Compatibility

See Also

•

Calculates the absolute value of a long integer.

#include <stdlib.h>

#include <math.h>

Required only for function declarations

long labs(long Il);

Il Long-integer value

The labs function produces the absolute value of its long-integer argument fl.

The labs function returns the absolute value of its argument. There is no error return.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

abs, cabs, fabs

labs

Exampw __ ___

/* ABS.C: This program computes and displays the absolute values of
* several numbers.
*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void main()
(

int ix = -4, iy;
long lx = -41567L, ly;
double dx = -3.141593, dy;

iy = abs(ix);
printf("The absolute value of %d is %d\n", ix, iy);

ly =- labs(lx);
printf("The absolute value of %ld is %ld\n", lx, ly);

dy = fabs(dx);
printf("The absolute value of %f is %f\n", dx, dy);

labs • 442

Output

The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

443

Description

Remarks

Return Value

Compute a real number from the mantissa and exponent.

#include <math.h>

double ldexp(double x, int exp);

long double ldexpl(long double x, int exp);

x

exp

Floating-point value

Integer exponent

The ldexp and ldexpl functions calculate the value of x * 2exp
•

Jdexp, JdexpJ

The ldexp and ldexpl functions return x * 2exp
• If an overflow results, the functions return

± HUGE_VAL (depending on the sign of x) and set errno to ERANGE.

The ldexpl function uses the 80-bit, 10-byte coprocessor fonn of arguments and return
values. See the reference page on the long double functions for more details on this data
type.

Compatibility ldexp

• ANSI • DOS • OS/2 • UNIX • XENIX

ldexpl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also frexp, modf

Exampre __ ___

1* LDEXP.C */
#include <math.h>
#include <stdio.h>

Idexp, Idexpl

void main()
(

double x = 4.0, y;
int p = 3;

y = ldexp(x, p);
printf("%2.1f times two to the power of %d is %2.1f\n", x, p, y);

Output

4.0 times two to the power of 3 is 32.0

444

445

Description

Remarks

Return Value

Compatibility

Idiv

Computes the quotient and remainder of a long integer.

#include <stdlih.h>

Idiv_t Idiv (long int numer, long int denom);

numer Numerator

denom Denominator

The Idiv function divides numer by denom, computing the quotient and the remainder. The
sign of the quotient is the same as that of the mathematical quotient. Its absolute value is
the largest integer that is less than the absolute value of the mathematical quotient. If the
denominator is 0, the program will terminate with an error message.

The ldiv function is similar to the div function, with the difference being that the argu­
ments and the members of the returned structure are all of type long into

The ldiv _t structure, defined in STDLIB.H, contains the following elements:

Element

long int quot

long int rem

Description

Quotient

Remainder

The ldiv function returns a structure of type Idiv _t, comprising both the quotient and the
remainder.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also div

Exampw __ ___

1* LDIV.C: This program takes two long integers as command-line
* arguments and displays the results of the integer division.
*1

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

Idiv

void main()
(

long x = 5149627, Y = 234879;
ldiv_t div_result;

div_result = ldiv(x, y);
printf("For %ld / %ld, the quotient is %ld, and the remainder is %ld\n",

x, y, div_result.quot, div_result.rem);

Output

For 5149627 / 234879, the quotient is 21, and the remainder is 217168

446

447

Description

Remarks

Return Value

Compatibility

Ifind

Perfonns a linear search for the specified key.

#include <search.h> Required only for function declarations

char *lfind(const void *key, const void *base, unsigned int *num, unsigned int width,
int (*compare)(const void *eleml, const void *elem2));

key

base

num

width

compare()

eleml

elem2

Object to search for

Pointer to base of search data

Number of array elements

Width of array elements

Pointer to comparison routine

Pointer to the key for the search

Pointer to the array element to be compared with the key

The lfind function perfonns a linear search for the value key in an array of num elements;
each element is width bytes in size. (Unlike bsearch, lfind does not require the array to be
sorted.) The base argument is a pointer to the base of the array to be searched.

The compare argument is a pointer to a user-supplied routine that compares two array ele­
ments and then returns a value specifying their relationship. The lfind function calls the
compare routine one or more times during the search, passing pointers to two array ele­
ments on each call. This routine must compare the elements, then return one of the follow­
ing values:

Value Meaning

Nonzero Elements are different

o Elements are identical

If the key is found, lfind returns a pointer to the element of the array at base that matches
key. If the key is not found, lfind returns NULL.

o ANSI • DOS • OS/2 • UNIX • XENIX

Ifind 448

See Also bsearch, Isearch, qsort

Exampm __ ___

1* LFIND.C: This program uses lfind to search for the word "hello"
* in the command-line arguments.
*1

#include <search.h>
#include <string.h)
#include <stdio.h)

int comparee char **argl, char **arg2);

void maine int argc. char **argv)
(

char **result;
char *key = "hello";

result = (char **)lfind((char *)&key, (char *)argv,
&argc, sizeof(char *). compare);

if(result
printf("%s found\n". *result);

else
printf("hello not found!\n");

int compare(char ** argl, char **arg2
(

return(strcmpi(*argl. *arg2));

Output

[C:\LIBREF] lfind What if I said Hello world
Hello found

449

Description

Remarks

Return Value

Compatibility

See Also

Draw lines to specified points.

#include <graph.h>

short _far Jineto(short x, short y);

short _far _lineto_w(double wx, double wy);

x,y

wx,wy

Endpoint

Endpoint

_Iineto Functions

The functions in the Jineto family draw a line from the current graphics position up to
and including the destination point. The destination point for the Jineto function is given
by the view-coordinate point (x, y). The destination point for the _lineto_w function is
given by the window-coordinate point (wx, wy).

The line is drawn using the current color, logical write mode, and line style. If no error
occurs, _lineto sets the current graphics position to the view-coordinate point (x, y);
_lineto_w sets the current position to the window-coordinate point (wx, wy).

If you use _floodfill to fill in a closed figure drawn with _lineto calls, the figure must be
drawn with a solid line-style pattern.

The Jineto and _lineto _ w routines return a nonzero value if anything is drawn; otherwise,
they return O.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getcurrentposition functions, _move to functions, _setlinestyle

Exampw __ ___

/* MOVETO.C: This program draws line segments of different colors. */

#include <graph.h>
#include <stdlib.h>
#include <conio.h>

lineto Functions

void maine)
{

short x, y, xinc, yinc, color = 1;
struct videoconfig v;

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXCOLORMODE))

exit(1);
_getvideoconfig(&v);
xinc = v.numxpixels I 50;
yinc = v.numypixels I 50;

fore x = 0, y = v.numypixels 1; x < v.numxpixels; x += xinc, y -= yinc
{

_setcolor(color++ % 16);
_moveto(x, 0);
_lineto(0, y);

}

getch() ;

_setvideomode(_DEFAULTMODE);

450

451

Description

Remarks

localeconv

Gets detailed infonnation on locale settings.

#include <locale.h>

struct Iconv *localeconv(void);

The localeconv function gets detailed infonnation on the locale-specific settings for
numeric fonnatting of the program's current locale. This infonnation is stored in a struc-
ture of type lconv. .

The Iconv structure, defined in LOCALE.H, contains the following elements:

Element

char *decimaljloint

char *thousands_sep

char *grouping

char *currency _symbol

char *mon _decimal jloint

char *mon_grouping

char *positive _sign

Description

Decimal-point character for nonmonetary
quantities.

Character used to separate groups of digits
to the left of the decimal point for non­
monetary quantities.

Size of each group of digits in non­
monetary quantities.

International currency symbol for the cur­
rent locale. The first three characters
specify the alphabetic international cur­
rency symbol as defined in the ISO 4217
Codes for the Representation of Currency
and Funds standard. The fourth character
(immediately preceding the null character)
is used to separate the international cur­
rency symbol from the monetary quantity.

Local currency symbol for the current
locale.

Decimal-point character for monetary
quantities.

Separator for groups of digits to the left of
the decimal place in mopetary quantities.

Size of each group of digits in monetary
quantities.

String denoting sign for nonnegative
monetary quantities.

localeconv

char *negative_sign

char int_frac_digits

char frac_digits

char p _ cs jlrecedes

char n_ cs jlrecedes

char p _sign jlosn

char n _sign jlosn

452

String denoting sign for negative monetary
quantities.

Number of digits to the right of the deci­
mal point in internationally formatted
monetary quantities.

Number of digits to the right of the deci­
mal point in formatted monetary
quantities.

Set to 1 if the currency symbol precedes
the value for a nonnegative formatted
monetary quantity. Set to 0 if the symbol
follows the value.

Set to I if the currency symbol is sepa­
rated by a space from the value for a non­
negative formatted monetary quantity. Set
to 0 if ~here is no space separation.

Set to 1 if the currency symbol precedes
the value for a negative formatted
monetary quantity. Set to 0 if the symbol
succeeds the value.

Set to I if the currency symbol is sepa­
rated by a space from the value for a nega­
tive formatted monetary quantity. Set to 0
if there is no space separation.

Position of positive sign in nonnegative
formatted monetary quantities.

Position of positive sign in negative for­
matted monetary quantities.

453

Return Value

Compatibility

See Also

locale con v

The elements of grouping and mon~rouping are interpreted according to the following
rules:

Value

n

Interpretation

No further grouping is to be performed.

The previous element is to be repeatedly used for the re­
mainder of the digits.

The integer value n is the number of digits that make up the
current group. The next element is examined to determine the
size of the next group of digits before the current group.

The values for p _sign Jlosn and n _sign Jlosn are interpreted according to the following
rules:

Value

o

2

3

4

Interpretation

Parentheses surround the quantity and currency symbol

Sign string precedes the quantity and currency symbol

Sign string follows the quantity and currency symbol

Sign string immediately precedes the currency symbol

Sign string immediately follows the currency symbol

The localeconv function returns a pointer to a structure of lconv type. Calls to the
setlocale function with category values of LC_ALL, LC_MONETARY, or
LC_NUMERIC will overwrite the contents of the structure.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

setlocale, strcoll, strftime, strxfrm

loealtime

Description

Remarks

454

Converts a time value and corrects for the local time zone.

#include <time.h>

struct tm *localtime(const time_t *timer);

timer Pointer to stored time

The localtime function converts a time stored as a time t value and stores the result in a
structure of type tm. The long value timer represents the seconds elapsed since 00:00:00,
January 1, 1970, Greenwich mean time; this value is usually ob~ained from the time
function.

The fields of the structure type tm store the following values:

Element

int tm_sec

int tm_min

int tm hour

int tm_mday

int tm mon

int tmJear

int tm_wday

int tm_yday

int tm isdst

Value Stored

Seconds

Minutes

Hours (0-24)

Day of month (1-31)

Month (0-11; January = 0)

Year (current year minus 1900)

Day of week (0-6; Sunday = 0)

Day of year (0-365; January 1 = 0)

Nonzero if daylight saving time is in effect, otherwise 0

Note that the gmtime, mktime, and localtime functions use a single statically allocated
tm structure for the conversion. Each call to one of these routines destroys the result of the
previous call.

The localtime function makes corrections for the local time zone if the user first sets the
environment variable TZ. When TZ is set, three other environment variables (timezone,
daylight, and tzname) are automatically set as well. See tzset for a description of these
variables.

The TZ variable is not part of the ANSI standard definition of locaItime but is a Microsoft
extension.

455 loealtime

Return Value The localtime function returns a pointer to the structure result. DOS and OS/2 do not ac­
commodate dates prior to 1980. If the value in timer represents a date prior to January 1,
1980, the function returns NULL.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also asctime, ctime, ftime, gmtime, time, tzset

Exampw __ __

1* LOCALTIM.C: This program uses time to get the current time and
* then uses local time to convert this time to a structure representing
* the local time. The program converts the result from a 24-hour clock
* to a 12-hour clock and determines the proper extension (AM or PM).
*1

#inc1ude <stdio.h>
#inc1ude <string.h)
#inc1ude <time.h>

void main()
(

struct tm *newtime;
char am_pm[] = "AM";
time_t long_time;

time(&long_time);
newtime = 10ca1time(&long_time);

if(newtime->tm_hour < 12
strcpy(am_pm, "AM");

if(newtime->tm_hour > 12
newtime->tm_hour -=12;

1* Get time as long integer. *1
1* Convert to local time. *1

1* Set up extension. *1

1* Convert from 24-hour *1
1* to 12-hour clock. *1

printf("%.19s %s\n", asctime(newtime), am_pm);

Output

Fri Jun 16 06:27:02 AM

locking

Description

Remarks

456

Locks or unlocks bytes of a file.

#include <sys\locking.h>

#include <io.h> Required only for function declarations

int locking(int handle, int mode, long nbytes);

handle

mode

nbytes

File handle

File-locking mode

Number of bytes to lock

The locking function locks or unlocks nbytes bytes of the file specified by handle. Lock­
ing bytes in a file prevents access to those bytes by other processes. All locking or unlock­
ing begins at the current position of the file pointer and proceeds for the next nbytes bytes.
It is possible to lock bytes past the end of the file.

The mode argument specifies the locking action to be performed. It must be one of the fol­
lowing manifest constants:

Constant

LK_NBRLCK

LK_RLCK

LK_UNLCK

Action

Locks the specified bytes. If the bytes cannot be locked, imme­
diately tries again after 1 second. If, after 10 attempts, the
bytes cannot be locked, returns an error.

Locks the specified bytes. If bytes cannot be locked, returns,
an error.

Same as LK _ NBLCK.

Same as LK_ LOCK.

Unlocks the specified bytes. (The bytes must have been pre­
viously locked.)

More than one region of a file can be locked, but no overlapping regions are allowed.

When a region of a file is being unlocked, it must correspond to a region that was pre­
viously locked. The locking function does not merge adjacent regions; if two locked re­
gions are adjacent, each region must be unlocked separately.

Regions should be locked only briefly and should be unlocked before closing a file or exit-
ing' the program. .

457 locking

The locking function should be used only under OS/2 or under DOS versions 3.0 and later;
it has no effect under earlier versions of DOS. Also, file sharing must be loaded to use the
locking function. Note that under DOS versions 3.0 and 3.1, the files locked by parent
processes may become unlocked when child processes exit.

Return Value The locking function returns 0 if successful. A return value of -1 indicates failure, and
errno is set to one of the following values:

Value

EACCES

EBADF

EDEADLOCK

EINVAL

Meaning

Locking violation (file already locked or unlocked).

Invalid file handle.

Locking violation. This is returned when the LK_LOCK or
LK _ RLCK flag is specified and the file cannot be locked after
10 attempts.

An invalid argument was given to the function.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also creat, open

Exampw __ ___

/* LOCKING.C: This program opens a file with sharing. It locks some
* bytes before reading them, then unlocks them. Note that the program
* works correctly only if the following conditions are met:
* - The file exists
* - The program is run under OS/2, under DOS 3.0 or later
* with file sharing installed (SHARE.COM or SHARE.EXE), or
* if a Microsoft Networks compatible network is running
*/

#include <io.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <sys\locking.h>
#include <share.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

locking

void maine)
(

int fh, numread;
lnng pos, result;
char buffer[40];

1* Quit if can't open file or DOS version doesn't support sharing. */
fh = sopen("locking.c", O_RDWR, SH_DENYNO, S_IREAD I S_IWRITE);
if((fh == -1) I I (_osmajor < 3))

ex it (1);

1* Lock some bytes and read them. Then unlock. *1
if(locking(fh, LK_NBLCK, 30L) 1= -1)
(

printf("No one can change these bytes while I'm reading them\n");
numread = read(fh, buffer, 30);
printf("%d bytes read: %.30s\n", numread, buffer);
locking(fh, LK_UNLCK, 30L);
printf("Now I'm done. Do what you will with them\n");

else
perror("Locking failed\n");

close(fh);

Output

No one can change these bytes while I'm reading them
30 bytes read: 1* LOCKING.C: This program ope
Now I'm done. Do what you will with them

458

459

Description

Remarks

Return Value

Compatibility

See Also

Calculate logarithms.

#include <math.h>

double log(double x);

double loglO(double x);

long double logl(long double x);

long double loglOl(long double x);

x Value whose logarithm is to be found

log Functions

The log and loglO functions calculate the natural logarithm and the base-IO logarithm, re­
spectively, of x. The logl and loglOi functions are the 80-bit counterparts and use the 80-
bit, IO-byte coprocessor form of arguments and return values. See the reference page on
the long double functions for more details on this data type.

The log functions return the logarithm of the argument x. If x is negative, the functions
print a DOMAIN error message to stderr, return the value -HUGE_ VAL, and set errno to
EDOM. If x is 0, the functions print a SING error message to stderr, return the value
-HUGE_VAL, and set errno to ERANGE.

Error handling can be modified by using the matherr or _ matherrl routine.

log,loglO

• ANSI • DOS • OS/2 • UNIX • XENIX

logl, loglOi

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

exp, matherr, pow functions

Exampw __ ___

1* LOG.C: This program uses log and 10g10 to calculate the natural
* logarithm and the base-10 logarithm of 9,000.
*1

#include <math.h>
#include <stdio.h>

log FunctiDns

void maine)
(

double x = 9000.0;
double y;

y = loge x);
printf("loge %.2f) = %f\n", x, y);
y = log10(x);
printf("log10(%.2f) - %f\n", x, y);

Output

loge 9000.00) = 9.104980
log10(9000.00) = 3.954243

460

461 long double Functions

The 8087 family of numeric coprocessor chips supports the 80-bit precision floating-point
data type. In Microsoft C, version 6.0, the long double functions, whose names end with I,
map the C long double type into this 80-bit, to-byte form. Unlike the regular floating­
point functions (such as acos), which return values of type double, these long double func­
tions (such as acosl) return values of type long double. The long double functions also
return their values on the coprocessor stack for all calling conventions.

The long double type is also supported by the addition of the "L" prefix for a floating­
point format specification in the printf and scanf family of functions.

The long double versions are described on the reference pages for their regular counter­
parts. These are the regular C run-time math functions with corresponding long double
eq ui valents:

Regular Function Long Double Form

acos acosl

asin asinl

atan atanl

atan2 atan21

atof atold

cabs cabsl

ceil ceiII

cos cosl

cosh coshl

exp expl

fabs fabsl

floor floorl

fmod fmodl

frexp frexpl

hypot hypotl

Idexp Idexpl

log logl

loglO loglOi

matherr matherrl

modf modfl

long double Functions 462

pow powl

sin sinl

sinh sinh I

sqrt sqrtl

tan tanl

tanh tanhl

463

Description

Remarks

Return Value

longjmp

Restores stack environment and execution locale.

#include <setjmp.h>

void longjrnp(jrnp_buf ellV, int value);

env Variable in which environment is stored

value Value to be returned to setjmp call

The longjmp function restores a stack environment and execution locale previously saved
in ellv by setjrnp. The setjrnp and longjrnp functions provide a way to execute a nonlocal
goto; they are typically used to pass execution control to error handling or recovery code
in a previously called routine without using the normal call and return conventions.

A call to setjrnp causes the current stack environment to be saved in env. A subsequent
call to longjrnp restores the saved environment and returns control to the point immedi­
ately following the corresponding setjrnp call. Execution resumes as if value had just been
returned by the setjrnp call. The values of all variables (except register variables) that are
accessible to the routine receiving control contain the values they had when longjrnp was
called. The values of register variables are unpredictable.

The longjrnp function must be called before the function that called setjrnp returns. If
longjrnp is called after the function calling setjrnp returns, unpredictable program be­
havior results.

The value returned by setjrnp must be nonzero. If value is passed as 0, the value I is substi­
tuted in the actual return.

Observe the following three restrictions when using longjrnp:

I. Do not assume that the values of the register variables will remain the same. The values
of register variables in the routine calling setjrnp may not be restored to the proper
values after longjrnp is executed.

2. Do not use longjrnp to transfer control from within one overlay to within another. The
overlay manager keeps the overlay in memory after a call to longjrnp.

3. Do not use longjrnp to transfer control out of an interrupt-handling routine unless the
interrupt is caused by a floating-point exception. In this case, a program may return
from an interrupt handler via longjrnp if it first reinitializes the floating-point math
package by calling _fpreset.

None.

/ongjmp

Compatibility

See Also

Example

464

• ANSI • DOS • OS/2 • UNIX • XENIX

setjmp

See the example for _ fpreset.

465

Description Rotate bits to the left (Jrotl) or right (Jrotr).

#include <stdlih.h>

unsigned long _Irotl(unsigned long value, int shift);

unsigned long _Irotr(unsigned long value, int shift);

value

shift

Value to be rotated

Number of bits to shift

_Irotl, _Irotr

Remarks The _Irotl and Jrotr functions rotate value by shift bits. The Jrotl function rotates the
value left. The Irotr function rotates the value right. Both functions "wrap" bits rotated
off one end of Value to the other end.

Return Value Both functions return the rotated value. There is no error return.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also

Exampre __ __

1* LROT.C *1
#include <stdlib.h>
#include <stdio.h>

void main()
{

unsigned long val = 0x0fac35791;

printf("0x%8.8lx rotated left eight times is 0x%8.8lx\n",
val, _lrotH val, 8));

printf("0x%8.8lx rotated right four times is 0x%8.8lx\n",
val, _lrotr(val, 4));

Output

0xfac35791 rotated left eight times is 0xc35791fa
0xfac35791 rotated right four times is 0xlfac3579

/search

Description

Remarks

Return Value

Perfonns a linear search for a value; adds to end of list if not found.

#include <search.h> Required only for function declarations

char *Isearch(const void *key, const void *base, unsigned int *num,
unsigned int width, int (*compare)(const void *eleml, const void *elem2));

key

base

num

width

compare

eleml

elem2

Object to search for

Pointer to base of search data

Number of elements

Width of elements

Pointer to comparison routine

Pointer to the key for the search

Pointer to the array element to be compared with the key

466

The Isearch function perfonns a linear search for the value key in an array of nUnl ele­
ments, each of width bytes in size. (Unlike bsearch, Isearch does not require the array to
be sorted.) The base argument is a pointer to the base of the array to be searched.

If key is not found, Isearch adds itto the end of the array.

The compare argument is a pointer to a user-supplied routine that compares two array ele­
ments and returns a value specifying their relationship. The Isearch function calls the
compare routine one or more times during the search, passing pointers to two array ele­
ments on each call. This routine must compare the elements, then return one of the follow­
ing values:

Value

Nonzero

o

Meaning

Elements are different

Elements are identical

If the key is found, Isearch returns a pointer to the element of the array at base that
matches key. If the key is not found, Isearch returns a pointer to the newly added item at
the end of the array.

467

Compatibility

See Also

Example

/search

o ANSI • DOS • OS/2 • UNIX • XENIX

bsearch, lfind

See the example for lfind.

Iseek

Description

Remarks

Return Value

Moves a file pointer to the specified location.

#include <io.h>

#include <stdio.h>

Required only for function declarations

long Iseek(int handle, long .offset, int origin);

handle

offset

origin

Handle referring to op~n file

Number of bytes from origin

Initial position

468

The Iseek function moves the file pointer associated with handle to a new location that is
offset bytes from origin. The next operation on the file occurs at the new location. The
origin argument must be one of the following constants, which are defined in STDIO.H:

SEEK_SET

SEEK_CUR

SEEK_END

Definition

Beginning of file

Current position of file pointer

End of file

The Iseek function can be used to reposition the pointer anywhere in a file. The pointer can
also be positioned beyond the end of the file. However, an attempt to position the pointer
before the beginning of the file causes an error.

The Iseek function returns the offset, in bytes, of the new position from the beginning of
the file. The function returns -1 L to indicate an error and sets errno to one of the follow­
ing values:

Value

EBADF

EINVAL

Meaning

Invalid file handle

Invalid value for origin, or position specified by offset is
before the beginning of the file

On devices incapable of seeking (such as terminals and printers), the return value is
undefined.

469 Iseek

Compatibility o ANSI • DOS • 05/2· • UNIX • XENIX

See Also fseek, tell

Exampre __ __

1* LSEEK.C: This program first opens a file named LSEEK.C.
* It then uses lseek to find the beginning of the file.
* to find the current position in the file. and to find
* the end of the file.
*1

I/include <io.h>
I/include <fcntl.h>
I/include <stdlib.h>
I/include <stdio.h>

void maine)
(

int fh;
long pos;
char buffer[10];

1* Position of file pOinter *1

fh = open("lseek.c". O_RDONLY);

1* Seek the beginning of the file: *1
pos = lseek(fh. 0L. SEEK_SET);
if(pos == -1L)

perror("lseek to beginning failed");
else

printf("Position for beginning of file seek %ld\n". pos);

1* Move file pointer a little *1
read(fh. buffer. 10);

1* Find current position: *1
pos = lseek(fh. 0L. SEEK_CUR);
if(pos == -IL)

perror("lseek to current position failed");
else

printf("Position for current position seek = %ld\n". pos);

Iseek

1* Set the end of the file: *1
pos = lseek(fh, 0L, SEEK_END);
if(pos == -lL)

perror("lseek to end failed");
else

printf("Position for end of file seek = %ld\n", pos);

close(fh);

Output

Position for beginning of file seek = 0
Position for current position seek = 10
Position for end of file seek = 1183

470

471

Description Converts a long integer to a string.

#include <stdlib.h> Required only for function declarations

char *ltoa(long value, char *string, int radix);

value

string

radix

N umber to be converted

String result

Base of value

1108

Remarks The ltoa function converts the digits of value to a null-terminated character string and
stores the result (up to 33 bytes) in string. The radix argument specifies the base of value,
which must be in the range 2-36. If radix equals 10 and value is negative, the first charac­
ter of the stored string is the minus sign (-).

Return Value The ltoa function returns a pointer to string. There is no error return.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also itoa, ultoa

Exampw __ __

1* ITOA.C: This program converts integers of various sizes to strings
* in various radixes.
*1

#include <stdlib.h>
#include <stdio.h>

void main()
[

char buffer[20];
int i = 3445;
long 1 = -344115L;
unsigned long ul = 1234567890UL;

1108

itoa(i , buffer, 10) ;
printf("String of integer %d (radix 10) : %s\n", i , buffer) ;
itoa(i , buffer, 16) ;
printf("String of integer %d (radix 16): 0x%s\n", i , buffer) ;
itoa(i , buffer, 2) ;
printf("String of integer %d (radix 2) : %s\n", i , buffer) ;

ltoa(1, buffer, 16);
printf("String of long int %ld (radix 16): 0x%s\n", 1, buffer);

ul toa (ul, buffer, 16);
printf("String of unsigned long %lu (radix 16): 0x%s\n", ul, buffer);

Output

String of integer 3445 (radix 10): 3445
String of integer 3445 (radix 16): 0xd75
String of integer 3445 (radix 2): 110101110101
String of long int -344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

472

473

Description

Remarks

_makepath

Creates a single path name.

#include <stdlib.h>

void _makepath(char *path, char *drive, char *dir, char */name, char *ext);

path Full path-name buffer

drive Drive letter

dir Directory path

/name File name

ext File extension

The _makepath routine creates a single path name, composed of a drive letter, directory
path, file name, and file-name extension. The path argument should point to an empty buff­
er large enough to hold the complete path name. The constant_MAX_PATH, defined in
STDLIB.H, specifies the maximum size path that the _ make path function can handle.
The other arguments point to buffers containing the path-name elements:

Buffer

drive

dir

Description

The drive argument contains a letter (A, B, etc.) correspond­
ing to the desired drive and an optional trailing colon. The
_ makepath routine will insert the colon automatically in the
composite path name if it is missing. If drive is a null char­
acter or an empty string, no drive letter and colon will appear
in the composite path string.

The dir argument contains the path of directories, not includ­
ing the drive designator or the actual file name. The trailing
slash is optional, and either forward slashes (I) or
backslashes (\) or both may be used in a single dir argument.
If a trailing slash (I or \) is not specified, it will be inserted
automatically. If dir is a null character or an empty string, no
slash is inserted in the composite path string.

_makepath

fname

ext

474

The fname argument contains the base file name without any
extensions. Iffname is NULL or points to an empty string, no
file name is inserted in the composite path string.

The ext argument contains the actual file-name extension,
with or without a leading period (.). The _make path routine
will insert the period automatically if it does not appear in ext.
If ext is a null character or an empty string, no period is in­
serted in the composite path string.

There are no size limits on any of the above four fields. However, the composite path must
be no larger than the _MAX_PATH constant. The _MAX_PATH limit permits a path name
much larger than any of the current versions of DOS or OS/2 will handle.

Return Value None.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _full path, _splitpath

Exampre __ __

1* MAKEPATH.C *1
#include <stdlib.h)
#include <stdio.h)

void main()
[

char path_buffer[_MAX_PATH];
char drive[_MAX_DRIVE];
char dir[_MAX_DIR];
char fname[_MAX_FNAME];
char ext[_MAX_EXT];

_rna kepath (path_buffer, "c", "\ \c60\ \cl i bref\\", "rna kepath", "c");
printf("Path created with _makepath: %s\n\n", path_buffer);
_splitpath(path_buffer, drive, dir, fname, ext);
printf("Path extracted with _splitpath:\n");
printf(" Drive: %s\n", drive);
printf(" Dir: %s\n", dir);
printf(" Filename: %s\n", fname);
printf(" Ext: %s\n", ext);

475

Output

Path created with _makepath: c:\c60\clibref\makepath.c

Path extracted with _splitpath:
Drive: c:
Dir: \c60\clibref\
Filename: makepath
Ext: . c

_makepath

ma//oc Functions 476

Description

Remarks

Allocate memory blocks.

#include <stdlib.h>

#include <malloc.h>

void *malloc(size_t size);

For ANSI compatibility (malloc only)

Required only for function declarations

void _based(void) * _bmalloc(_segment seg, size_t size);

void _far * _fmalloc(size _ t size);

void _near * _nmalloc(size_t size);

size Bytes to allocate

seg Based heap segment selector

Functions in the malloc family allocate a memory block of at least size bytes. The block
may be larger than size bytes because of space required for alignment and maintenance in­
formation. If size is 0, each of these functions allocates a zero-length item in the heap and
returns a valid pointer to that item. .

The storage space pointed to by the return value is guaranteed to be suitably aligned for
storage of any type of object. To get a pointer to a type other than void, use a type cast on
the return value.

In large data models (compact-, large-, and huge-model programs), malloc maps to
_fmalloc. In small data models (tiny-, small-, and medium-model programs), malloc maps
to nmalloc.

The _fmalloc function allocates a memory block of at least size bytes in the far heap,
which is outside the default data segment. The return value is a far pointer to void.

The _ bmalloc function allocates a memory block of at least size bytes in the based heap
segment specified by the segment selector seg.

The malloc functions allocate memory in the heap segment specified below.

Function

malloc

bmalloc

fmalloc

nmalloc

Heap Segment

Depends on data model of program

Based heap segment specified by seg value

Far heap (outside default data segment)

Near heap (within default data segment)

477 malloc Functions

If you are creating programs to run in both real mode and protected mode, you should prob­
ably bind with APILMR.OBJ as well as API.LIB and OS2.LIB. This is necessary if a pro­
gram will use the _ nmalloc function.

The functions listed below call the malloc family of routines. In addition, the C start-up
code uses malloc to allocate storage for the environ/envp and argv strings and arrays.

The following routines call malloc:

calloc fseek searchenv

execv fsetpos spawn v

execve fullpath spawnve

execvp fwrite spawnvp

execvpe getc spawnvpe

exeel getchar spawnl

exeele getcwd spawnle

exeelp _getcwd spawnlp

exeelpe gets spawnlpe

fgetc getw strdup

fgetchar yopen system

fgets printf scanf

fprint putc setvbuf

fputc putchar tempnam

fputchar putenv ungetc

fputs puts vfprintf

fread putw vprintf

fscanf

The following routines call malloc only in the multithread run-time libraries (LLmCMT,
LLIBCDLL, CDLLOBJS), not in the regular run-time libraries:

asctime localtime _strerrpr

_ begin thread mktime tmpfile

ctime sterror tmpnam

gmtime

ma//oc Functions 478

Return Value

Compatibility

See Also

The following routines call_ nmaIloc:

nrealloe

ncalloc

_nstrdup

realloc (in small data models)

The following routines call_fmalIoc:

_frealloc

fcalloe

_fstrdup

realloc (in large data models)

C5.1 Differences In Microsoft C version 5.1, the _'mal/Dc function would retry allocating within the
, default data segment (i.e., in the near heap) if sufficient memory was not available outside the default
data segment. Version 6.0 returns NULL under these conditions.

In version 5.1, the start-up code used mal/Dc only if wild-card expansion was used.

The _'reeet, _memavl, and _memmax functions called mal/Dc in version 5.1 but do not do so in ver­
sion 6.0.

The malloc function r~turns a void pointer to the allocated space. The _ nmalloc function
returns a (void near *) and fmalloc returns a (void far *). The bmalloe function
returns a (void =based(void)*). --

The malloc, fmalloc and nmalloc functions return NULL if there is insufficient mem­
ory available. The _ bmalloc-function returns _NULLOFF if there is insufficient memory
available.

Always check the return from the malloc function, even if the amount of memory re­
quested is small.

malloc

• ANSI • DOS • OS/2 • UNIX • XENIX

_ bmalloc, _fmalloc, _ nmalloc

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

calloc functions, free functions, realloc functions

479 malloc Functions

Exampw __ __

1* MALLOC.C: This program allocates memory with malloc, then frees
* the memory with free.
*1

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

1* Definition of _MAX_PATH *1

void main()
{

char *string;

1* Allocate space for a path name */
string = malloc(_MAX_PATH);
if(string == NULL)

printf("Insufficient memory available\n");
else

printf("Memory space allocated for pathname\n");
free(string);
printf("Memory freed\n");

Output

Memory space allocated for pathname
Memory freed

matherr, _matherrl 480

Description

Remarks

Handle math errors.

#include <math.h>

int matherr(struct exception *except);

int _matherrl(struct _exceptionl *except);

except Pointer to structure containing error infonnation

The math err functions process errors generated by the functions of the math library. The
math functions call the appropriate matherr routine whenever an error is detected. The
_ matherrl function uses the 80-bit, 10-byte coprocessor form of arguments and return
values. See the reference page on the long double functions for more details on this data
type.

The user can provide a different definition of the matherr or _ matherrl function to carry
out special error handling.

When an error occurs in a math routine, math err is called with a pointer to an exception
type structure (defined in MATH.H) as an argument.

The exception structure contains the following elements:

Element

int type

char *name

double argl, arg2

double retval

Description

Exception type

Name of function where error occurred

First and second (if any) argument to function

Value to be returned by function

The type specifies the type of math error. It is one of the following values, defined in
MATH.H:

Value

DOMAIN

SING

OVERFLOW

PLOSS

TLOSS

Meaning

Argument domain error

Argument singularity

Overflow range error

Partial loss of significance

Total loss of significance

481

Return Value

Compatibility

See Also

matherr, _matherrl

UNDERFLOW Underflow range error

The structure member name is a pointer to a null-terminated string containing the name of
the function that caused the error. The structure members argl and arg2 specify the values
that caused the error. (If only one argument is given, it is stored in argl.)

The default return value for the given error is retval. If you change the return value, re­
member that the return value must specify whether an error actually occurred. If the
matherr function returns 0, an error message is displayed and errno is set to an appro­
priate error value. If matherr returns a nonzero value, no error message is displayed, and
errno remains unchanged.

The matherr functions should return 0 to indicate an error, and a nonzero value to indicate
successful corrective action.

matherr

o ANSI • DOS • OS/2 • UNIX • XENIX

_matherrl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

acos functions, as in functions, atan functions, bessel functions, cabs, cos functions, exp,
hypot, log functions, pow, sin functions, sqrt, tan functions

Exampre __ __

1* MATHERR.C: To use matherr, you must turn off the Extended Dictionary
* flag within the Microsoft Programmer's WorkBench environment, or use the
* INOE linker option outside the environment. For example:
* CL matherr.c Ilink INOE
*1

#include <math.h>
#include <string.h>
#include <stdio.h>

matherr, _matherrl

void main()
(

1* Do several math operations that cause errors. The matherr
* routine handles DOMAIN errors, but lets the system handle
* other errors normally.
*1

printf("log(-2.0) = %e\n", log(-2.0));
printf("10g10(' -5.0) = %e\n", 10g10(-5.0));
printf(,"log(0.0) = %e\n", log(0.0));

1* Handle several math errors caused by passing a negative argument
* to log or 10g10 (DOMAIN errors). When this happens, matherr returns
* the natural or base-10 logarithm of the absolute value of the
* argument and suppresses the usual ~rror message.
*1

int matherr(struct exception *except)
(

1* Handle DOMAIN errors for log or 10g10. *1
if(except->type == DOMAIN)
(

else
(

if(strcmp(except->name, "log") == 0)
(

}

except-)retval = log(-(except->arg1));
printf("Special: using absolute value: Is: DOMAIN error\n",

except->name);
return 1;

else if(strcmp(except-)name, "10g10") == 0)
(

except-)retval = 10g10(-(except->arg1));
printf("Special: using absolute value: Is: DOMAIN error\n",

except->name);
return 1;

p r in t f ("N 0 rma 1: ");
return 0; 1* Else use the default actions *1

482

483

Output

Special: using absolute value: log: DOMAIN error
loge -2.0) = 6.931472e-001
Special: using absolute value: 10g10: DOMAIN error
10g10(-5.0) - 6.989700e-001
Normal: log: SING error
loge 0.0) = -1.797693e+308

matherr, _matherrl

max 484

Description Returns the larger of two values.

#include <stdlih.h>

type max(type a, type h);

type Any numeric data type

a,b Values of any numeric type to be compared

Remarks The max macro compares two values and returns the value of the larger one. The argu­
ments can be of any numeric data type, signed or unsigned. Both arguments and the return
value must be of the same data type.

Return Value The macro returns the larger of the two arguments.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also min

Exampw __ _____

/* MINMAX.C */
#include <stdlib.h>
#include <std~o.h>

void main()
(

int a = 10;
int b = 21;

printf("The larger of %d and %d is %d\n", a, b, max(a, b);
printf("The smaller of %d and %d is %d\n", a, b, min(a, b);

Output

The larger of 10 and 21 is 21
The smaller of 10 and 21 is 10

485 _memavl

Description Returns the size of memory available.

#include <malloc.h> Required only for function declarations

size_t _memavl(void);

Remarks The _ memavl function returns the approximate size, in bytes, of the memory available for
dynamic memory allocation in the near heap (default data segment). The _memavl func­
tion can be used with calloc, malloc, or realloc in tiny, small, and medium memory mod­
els and with _ncalloc, _nmaUoc or _nrealloc in any memory model.

Return Value

Compatibility

See Also

The number returned by the _memavl function may not be the number of contiguous
bytes. Consequently, a call to malloc requesting allocation of the size returned by
_memavl may not succeed. Use the _memmax function to find the size of the largest
available contiguous block of memory.

The _ memavl function returns the size in bytes as an unsigned integer.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

calloc functions, _ freect, malloc functions, _ memmax, realloc functions

Exampw __ ____

/* MEMAVL.C: This program uses _memavl to determine the amount of
* memory available for dynamic allocation. It then uses malloc to
* allocate space for 5,000 long integers and uses _memavl again to
* determine the new amount of available memory.
*/

#include <malloc.h>
#include <stdio.h>

void main()
(

long *longptr;

printf("Memory available before _nmalloc = %u\n", _memavl());
if((longptr = _nmalloc(5000 * sizeof(long))) 1= NULL)
(

printf("Memory available after _nmalloc = %u\n", _memavl());
_nfree(longptr);

_memavl

Output

Memory available before _nmalloc = 60906
Memory available after _nmalloc = 40390

486

487

Description

Remarks

Return Value

Compatibility

See Also

memccpy, _fmemccpy

Copy characters from a buffer.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H or MEMORY.H

void *memccpy(void *dest, void *src, int c, unsigned int count);

void _far * _far _fmemccpy(void _far *dest, void _far *src, int c, unsigned int count);

dest

src

c

count

Pointer to destination

Pointer to source

Last character to copy

Number of characters

The memccpy and _fmemccpy functions copy 0 or more bytes of src to dest, halting when
the character c has been copied or when count bytes have been copied, whichever comes
first.

The _fmemccpy function is a model-independent (large-model) form of the memccpy
function. It can be called from any point in any program.

If the character c is copied, memccpy or _fmemccpy returns a pointer (or far pointer) to
the byte in dest that immediately follows the character. If c is not copied, memccpy re­
turns NULL.

memccpy

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_fmemccpy

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

memchr, memcmp, memcpy, memset

Exampw __ __

1* MEMCCPY.C *1
#include (memory.h)
#include (stdio.h)
#include (string.h)

memccpy, _fmemccpy

char stringl[60]

void main()
(

"The quick brown dog jumps over the lazy fox";

char buffer[61];
char *pdest;

printf("Function:\tmemccpy 60 characters or to character 's'\n");
printf(" "Source: \t\t%s\n", string!);
pdest = memccpy(buffer, stri ngl, 's', 60);
*pdest = '\0';
printf("Result:\t\t%s\n", buffer);
printf("Length:\t\t%d characters\n\n", strlen(buffer));

Output

Function:
Source:
Result:
Length:

memccpy 60 characters or to character's'
The quick brown dog jumps over the lazy fox
The quick brown dog jumps
25 characters

488

489

Description

Remarks

Return Value

Compatibility

See Also

memchr, _fmemchr

Find characters in a buffer.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H (for ANSI compatibility) or
MEMORY.H

void *memchr(const void *buf, int c, size_t count);

. void _far * _far _fmemchr(const void _far *buf, int c, size_t count);

buf

c

count

Pointer to buffer

Character to look for

Number of characters

The memchr and fmemchr functions look for the first occurrence of c in the first count
bytes of buJ. They-stop when they find c or when they have checked the first count bytes.

The _fmemchr function is a model-independent (large-model) form of the memchr func­
tion. It can be called from any point in any program. I

If successful, meQlchr or _fmemchr returns a pointer (or a far pointer) to the first location
of c in buJ. Otherwise, they return NULL.

memchr

• ANSI • DOS • OS/2 • UNIX • XENIX

fmemchr

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

memccpy, memcmp, memcpy, memset, strchr

Exampw ___ __

1* MEMCHR.C *1
#include <m~mory.h>
#include <stdio.h>

memchr, _fmemchr

int ch = 'r';
char str[] =

char string[] =
char fmtl[]
char fmt2[]

void main()
(

char *pdest;
int result;

"lazy";
"The quick brown dog jumps over the lazy fox";
" 1 2 3 4 5";
"12345678901234567890123456789012345678901234567890";

printf("String to be searched:\n\t\t%s\n", string);
printf("\t\t%s\n\t\t%s\n\n", fmt1, fmt2);

printf("Search char:\t%c\n", ch);
pdest = memchr(string, ch, sizeof(string));
result = pdest - string + 1;
if(pdest 1= NULL)

printf("Result:\t\t%c found at position %d\n\n", ch, result);
else

printf("Result:\t\t%c not found\n");

Output

String to be searched:
The quick brown dog jumps over the lazy fox

1 2 3 4 5
12345678901234567890123456789012345678901234567890

Search char: r
Result : r found at position 12

490

491

Description

Remarks

Return Value

Compatibility

memcmp, _fmemcmp

Compare characters in two buffers.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H (for ANSI compatibility) or
MEMORY.H

int memcmp(const void *bufl, const void *buj2, size_t count);

int _far _fmemcmp(const void _far *bufl, const void _far *buj2, size_t count);

bufl

buj2
•
count

First buffer

Second buffer

Number of characters

The memcmp and _fmemcmp functions compare the first count bytes of bufl and buj2
and return a value indicating their relationship, as follows:

Value

<0

=0

>0

Meaning

bufl less than buj2

bufl identical to buj2

bufl greater than buj2

The _fmemcmp function is a model-independent (large-model) form of the memcmp
function. It can be called from any point in program.

There is a semantic difference between the function version of memcmp and its intrinsic
version. The function version supports huge pointers in compact-, large-, and huge-model
programs, but the intrinsic version does not.

The memcmp function returns an integer value, as described above.

memcmp

• ANSI • DOS • OS/2 • UNIX • XENIX
\

_fmemcmp

D ANSI • DOS • OS/2 D UNIX D XENIX

memcmp, _fmemcmp 492

See Also memccpy, memchr, memcpy, memset, strcmp, strncmp

Exampre __ __

1* MEMCMP.C: This program uses memcmp to compare the strings named
* first and second. If the first 19 bytes of the strings are
* equal, the program considers the strings to be equal.
*1

#include <string.h>
#include <stdio.h>

void main()
(

char fi rst[J
char second[]
int result;

"12345678901234567890";
"12345678901234567891";

printf("Compare '%.19s' to '%.19s':\n",.first, second);
result = memcmp(first, second, 19);
if(result < 0)

printf("First is less than second.\n");
else if(result == 0)

printf("First is equal to second.\n");
else if(result> 0)

printf("First is greater than second.\n");
printf("Compare '%.20s' to '%.20s':\n", first, second);
result = memcmp(first, second, 20);
if(result (0)

printf("First is less than second.\n");
e 1 s e if (res u lt == 0)

printf("First is equal to second.\n");
else if(result> 0)

printf("First is greater than second.\n");

I

493 memcmp, _fmemcmp

Output

Compare '1234567890123456789' to '1234567890123456789':
First is equal to second.
Compare '12345678901234567890' to '12345678901234567891':
First is less than second.

memcpy, _fmemcpy 494

Description

Remarks

Return Value

Compatibility

Copy characters between buffers.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H (for ANSI compatibility) or
MEMORY.H

void *memcpy(void *dest, const void *src, size_t count);

void _far * _far _fmemcpy(void _far *dest, const void _far *src, size_t count);

dest New buffer

src Buffer to copy from

count Number of characters to copy

The memcpy and _fmemcpy functions copy count bytes of src to dest. If the source and
destination overlap, these functions do not ensure that the original source bytes in the over­
lapping region are copied before being overwritten. Use memmove to handle overlapping
regions.

The _fmemcpy function is a model-independent (large-model) form of the memcpy func­
tion. It can be called from any point in any program.

There is a semantic difference between the function version of memcpy and its intrinsic
version. The function version supports huge pointers in compact-, large-, and huge-model
programs, but the intrinsic version does not.

The memcpy and _fmemcpy functions return a pointer to dest.

memcpy

• ANSI • DOS • OS/2 • UNIX • XENIX

_fmemcpy

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

495 memcpy, _fmemcpy

See Also memccpy, memchr, memcmp, memmove, memset, strcpy, strncpy

Exampre __ __

1* MEMCPY.C. Illustrate overlapping copy: memmove handles it
* correctly; memcpy does not.
*1

#include (memory.h>
#include (string.h>
#include (stdio.h>

char string1[60]
char string2[60]
1*

"The quick brown dog jumps over the lazy fox";
"The quick brown fox jumps over the lazy dog";

1 234 5
* 12345678901234567890123456789012345678901234567890
*1

void main()
(

printf("Function:\tmemcpy without overlap\n");
printf("Source:\t\t%s\n", string1 + 40);
printf("Destination:\t%s\n", string1 + 16);
memcpy(string1 + 16, string1 + 40, 3);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

1* Restore string1 to original contents *1
memcpy(string1 + 16, string2 + 40, 3);

printf("Function:\tmemmove with overlap\n");
printf("Source:\t\t%s\n", string2 + 4);
printf("Destination:\t%s\n", string2 + 10);
memmove(string2 + 10, string2 + 4, 40);
printf("Result:\t\t%s\n", string2);
printf("Length:\t\t%d characters\n\n", strlen(string2));

printf("Function:\tmemcpy with overlap\n");
printf("Source:\t\t%s\ri", string1 + 4);
printf("Destination:\t%s\n", string1 + 10);
memcpy(string1 + 10, string! + 4, 40);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

memcpy, _fmemcpy

Output

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

memcpy without overlap
fox
dog jumps over the lazy fox
The quick brown fox jumps over the lazy fox
43 characters

memmove with overlap
quick brown fox jumps over the lazy dog
brown fox jumps over the lazy dog
The quick quick brown fox jumps over the lazy dog
49 characters

memcpy with overlap
quick brown dog jumps over the lazy fox
brown dog jumps over the lazy fox
The quick quick quick quick quick quick quick quic
50 characters

496

497

Description

Remarks

Return Value

Compallbllity

memicmp, _fmemicmp

Compare characters in two buffers (case-insensitive).

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H or 11EMORY.H

int memicmp(void *bufl, void *buj2, unsigned int count);

int _far _fmemicmp(void _far *bufl, void _far *buj2, unsigned int count);

bufl

buj2

count

First buffer

Second buffer

Number of characters

The memicmp and _ fmemicmp functions compare the first count characters of the two
buffers bufl and buj2 byte-by-byte. The comparison is made without regard to the' case of
letters in the two buffers; that is, uppercase and lowercase letters are considered equiv­
alent. The memicmp and _fmemicmp functions return a value indicating the relationship
of the two buffers, as follows:

Value

<0

=0

>0

Meaning

bufl less than buj2

bufl identical to buj2

bufl greater than buj2

The _fmemicmp function is a model-independent (large-model) form of the memicmp
function. It can be called from any point in any program.

The memicmp and _fmemicmp functions return an integer value, as described above.

memicmp

o ANSI • DOS • OS/2 • UNIX • XENIX

_fmemicmp

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

memicmp, _fmemicmp 498

See Also memccpy, memchr, memcmp, memcpy, memset, stricmp, strnicmp

Exampw __ __

1* MEMICMP.C: This program uses memicmp to compare the first
* 29 letters of the strings named first and second without
* regard to the case of the letters.
*1

#include <memory.h>
#include <stdio.h>
#include <string.h>

void main()
[

int result;
char first[] = "Those Who Will Not Learn from History";
char second[] = "THOSE WHO WILL NOT LEARN FROM their mistakes";
1* Note that the 29th character is right here A *1

printf("Compare '%.29s' to '%.29s'\n", first, second);
result = memicmp(first, second, 29);
if(result < 0)

printf("First is less than second.\n");
e 1 s e i f (res u lt == 0)

printf("First is equal to second.\n");
else if(result> 0)

printf("First is greater than second.\n");

Output

Compare 'Those Who Will Not Learn from' to 'THOSE WHO WILL NOT LEARN FROM'
First is equal to second.

499 _memmax

Description Finds the size of the largest contiguous memory block.

#include <malloc.h>

size_t _memmax(void);

Remarks The _memmax function returns the size (in bytes) of the largest contiguous block of
memory that can be allocated from the near heap (Le., the default data segment). Calling
_nmalloe with the value returned by the _memmax function will succeed as long as

Return Value

Compatibility

See Also

_ memmax returns a nonzero value.

The function returns the block size, if successful. Otherwise, it returns 0, indicating that
nothing more can be allocated from the near heap.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

malloe functions, msize functions

Exampw __ __

1* MEMMAX.C: This program uses _memmax and _nmalloc to allocate
* the largest block of memory available in the near heap.
*1

#include <stddef.h>
#include <malloc.h>
#include <stdio.h>

void main()
{

size_t contig;
char *p;

_memmax

/* Determine contiguous memory size */
contig = _memmax();
printf("Largest block of available memory is %u bytes long\n", contig);
if(contig)
(

p = _nmalloc(contig * sizeof(int));
i f (p == NUL L)

printf("Error with malloc (should never occur)\n");
else
(

printf("Maximum allocation succeeded\n");
free (p);

else
printf("Near heap is already full\n");

Output

Largest block of available memory is 60844 bytes long
Maximum allocation succeeded

500

501

Description .

Remarks

Return Value

Compatibility

See Also

memmove, _fmemmove

Move one buffer to another.

#include <string.h>

void *memmove(void *dest, const void *src, size_t count);

void _far * _far _fmemmove(void _far *dest, const void _far *src, size_t count);

dest

src

count

Destination object

Source object

Number of characters to copy

The memmove and _fmemmove functions copy count characters from the source (src) to
the destination (dest). If some regions of the source area and the destination overlap, the
memmove and _ fmemmove functions ensure that the original source bytes in the overlap­
ping region are copied before being overwritten.

The _fmemmove function is a model-independent (large-model) form of the memmove
function. It can be called from any point in any program.

The memmove and _fmemmove functions return the value of dest.

memmove

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

_fmemmove

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

memccpy, memcpy, strccpy, strncpy

Exampre __ ____

1* MEMCPY.C. Illustrate overlapping copy: memmove handles it
* correctly; memcpy does not.
*1

#include <memory.h)
#include <string.h)
#include <stdio.h)

memmove, _fmemmove

char string1[60]
char string2[60]
1*

"The quick brown dog jumps over the lazy fox";
"The quick brown fox jumps over the lazy dog";

1 234 5
* 12345678901234567890123456789012345678901234567890
*1

void main()
(

printf("Function:\tmemcpy without overlap\n");
printf("Source:\t\t%s\n", string1 + 40);
printf("Destination:\t%s\n", string1 + 16);
memcpy(string1 + 16, string1 + 40, 3);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strle~Jtring1));

1* Restore string1 to original contents */
memcpy(string1 + 16, string2 + 40, 3);

printf("Function:\tmemmove with overlap\n");
printf("Source:\t\t%s\n", string2 + 4);
printf("Destination:\t%s\n", string2 + 10);
memmove(string2 + 10, string2 + 4, 40);
printf("Result:\t\t%s\n", string2);
printf("Length:\t\t%d characters\n\n", strlen(string2));

printf("Function:\tmemcpy with overlap\n");
printf("Source:\t\t%s\n", string1 + 4);
printf("Destination:\t%s\n", string1 + 10);
memcpy(string1 + 10, string1 + 4, 40);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

Output

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

memcpy without overlap
fox
dog jumps over the lazy fox
The quick brown fox jumps over the lazy fox
43 characters

memmove with overlap
quick brown fox jumps over the lazy dog
brown fox jumps over the lazy dog
The quick quick brown fox jumps over the lazy dog
49 characters

502

503

Function:
Source:
Destination:
Result:
Length:

memcpy with overlap
quick brown dog jumps over the lazy fox
brown dog jumps over the lazy fox

memmove, _fmemmove

The quick quick quick quick quick quick quick quic
50 characters

memset, _fmemset 504

Description

Remarks

Return Value

Compatibility

See Also

Set buffers to a specified character.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H (for ANSI compatibility) or
MEMORY.H

void *memset(void *dest, int c, size_t count);

void _far * _far _fmemset(void _far *dest, int c, size_t count);

dest

c

count

Pointer to destination

Character to set

Number of characters

The memsetand _fmemset functions set the first count bytes of dest to the character c.

The _fmemset function is a model-independent (large-model) form of the memset func­
tioJ;1. It can be called from any point in any program.

There is a semantic difference between the function version of memset and its intrinsic
version. The function version supports huge pointers in compact-, large-, and huge-model
programs, but the intrinsic version does not.

The memset and _fmemset functions return a pointer to dest.

memset

• ANSI • DOS • OS/2 • UNIX • XENIX

_fmemset

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

memccpy, memchr, memcmp, memcpy, strnset

Exampre __ ___

1* MEMSET.C: This program uses memset to set the first four bytes
* of buffer to "*"
*1

505

#include <memory.h)
#include <stdio.h)

void main()
(

char buffer[] - "This is a test of the memset function";

printf("Before: %s\n", buffer);
memset(buffer, '*',4);
printf("After: %s\n", buffer);

Output

Before: This is a test of the memset function
After: **** is a test of the memset function

memset, _fmemset

min 506

Description Returns the smaller of two values.

#include <stdJih.h>

type min(type (I, type b);

type Any numeric data type

(I,b Values of any numeric type to be compared

Remarks The min macro compares two values and returns the value of the smaller one. The argu­
ments can be of any numeric data type, signed or unsigned. Both arguments and the return
value must be of the same data type.

Return Value The macro returns the smaller of the two arguments.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also max

Exampw __ __

1* MINMAX.C *1
#include <stdlib.h>
#include <stdio.h>

void main()
(

int a = 10;
int b = 21;

printf("The larger of %d and %d is %d\n", a, b, max(a, b);
printf("The smaller of %d and %d is %d\n", a, b, min(a, b);

Output

The larger of 10 and 21 is 21
The smaller of 10 and 21 is 10

507

Description

Remarks

Return Value

Compatibility

See Also

mkdir

Creates a new directory.

#include <direct.h> Required only for function declarations

int mkdir(char *dirname);

db"name Path name for new directory

The mkdir function creates a new directory with the specified dirname. Only one
directory can be created at a time, so only the last component of dirname can name a new
directory.

The mkdir function does not do any translation of path-name delimiters. Both DOS and
OS/2 accept either "\" or "/" internally as valid delimiters within path names.

The mkdir function returns the value 0 if the new directory was created. A return value of
-1 indicates an error, and errno is set to one of the following values:

Value

EACCES

ENOENT

Meaning

Directory not created. The given name is the name of an
existing file, directory, or device.

Path name not found.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

chdir, rmdir

Exampw __ ___

1* MAKEDIR.C *1
#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

mkdir

void maine)
(

int result;

if(mkdir("\\testtmp") == 0)
(

printf("Directory '\\testtmp' was successfully created\n");
system("di r \ \testtmp");
if(rmdir("\\testtmp") == 0)

printf("Directory '\\testtmp' was successfully removed\n");
else

printf("Problem removing directory '\\testtmp'\n");

else
printf("Problem creating directory '\\testtmp'\n");

Output

Directory '\testtmp' was successfully created

The volume label in drive C is OS2.
Directory of C:\TESTTMP

<DIR) 6-19-89 11:20a
<DIR) 6-19-89 11:20a

2 File(s) 12730368 bytes free
Directory '\testtmp' was successfully removed

508

509

Description

Remarks

Return Value

Compatibility

mktemp

Creates a unique file name.

#include <io.h> Required only for function declarations

char *mktemp(char *template);

template File-name pattern

The mktemp function creates a unique file name by modifying the given template argu­
ment. The template argument has the form:

baseXXXXXX

where base is the part of the new file name that you supply, and the X's are placeholders
for the part supplied by mktemp; mktemp preserves base and replaces the six trailing X's
with an alphanumeric character followed by a five-digit value. The five-digit value is a
unique number identifying the calling process. The alphanumeric character is 0 ('0') the
first time mktemp is called with a given template.

In subsequent calls from the same process with copies of the same template, mktemp
checks to see if previously returned names have been used to create files. If no file exists
for a given name, mktemp returns that name. If files exist for all previously returned
names, mktemp creates a new name by replacing the alphanumeric character in the name
with the next available lowercase letter. For example, if the first name returned is
t 012345 and this name is used to create a file, the next name returned will be
ta 12345. When creating new names, mktemp uses, in order, '0' and then the lowercase
letters 'a' through 'z'.

Note that the original template is modified by the first call to mktemp. If you then call the
mktemp function again with the same template (i.e., the original one), you will get an
error.

The mktemp function generates unique file names but does not create or open files.

The mktemp function returns a pointer to the modified template. The return value is
NULL if the template argument is badly formed or no more unique names can be created
from the given template.

o ANSI • DOS • OS/2 • UNIX • XENIX

mktemp 510

• See Also fopen, getpid, open, tempnam, tmpfile

Exampw __ ___

1* MKTEMP.C: The program uses mktemp to create five unique file names.
* It opens each file. name to ensure that the next name is unique.
*1

#include <io.h>
#include <string.h>
#include <stdio.h>

char *template = "fnXXXXXX";
char *result;
char names[5][9];

void main()
{

i nt i;
FILE *fp;

for(i = 0; i < 5; i++)
{

Output

Unique
Unique
Unique
Unique
Unique

strcpy(names[i], template);

1* Attempt to find a unique file name: *1
result = mktemp(names[i]);
if(result == NULL)

printf("Problem creating the template");
else
{

if((fp = fopen(result, "w" » 1= NULL
printf("Unique file name is %s\n", result);

else
printf("Cannot open %s\n", result);

fclose(fp);

fil e name is fn000686
fil e name is fna00686
fil e name is fnb00686
fil e name is fnc00686
fil e name is fnd00686

511

Description

Remarks

Return Value

Compatibility

See Also

mktime

Converts the local time to a calendar value.

#include <time.h>

time_t mktime(struct tm *timeptr);

timeptr Pointer to time structure

The mktime function converts the supplied time structure (possibly incomplete) pointed to
by timeptr into a fully defined structure with "normalized" values and then converts it to a
time _ t calendar time value. The structure for the tm is described in the reference page for
asctime.

The converted time has the same encoding as the values returned by the time function.
The original values of the tm _ wday and tm Jday components of the timeptr structure are
ignored, and the original values of the other components are not restricted to their normal
ranges.

If successful, mktime sets the values of tm _ wday and tm Jday appropriately, and sets
the other components to represent the specified calendar time, but with their values forced
to the normal ranges; the final value of tm _ mday is not set until tm _ mon and tm Jear are
determined.

DOS and OS/2 do not accommodate dates prior to 1980. If timeptr references a date before
January 1, 1980, mktime returns-I.

Note that the gmtime and localtime functions use a single statically allocated buffer for
the conversion. If you supply this buffer to mktime, the previous contents will be .
destroyed.

The mktime function returns the specified calendar time encoded as a value of type
time _ t. If the calendar time cannot be represented, the function returns the value -1 cast as
type time _ t.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

asctime, gmtime, localtime, time

Exampw __ __

1* MKTIME.C: The example takes a number of days as input and returns
* the time, the current date, and the specified number of days.
*1

mktime 512

--':
#include <time.h>
#include <stdio.h>

void maine)
(

struct tm when;
time_t now, result;
int days;

time(&now);
when - *localtime(&now);
printf("Current time is %s\n", asctime(&when));
printf("How many days to look ahead: ");
scanf("%d", &days);

when.tm_mday = when.tm_mday + days;
if((result - mktime(&when » !- (time_t)-l

printf("In %d days the time will be %s\n",
days, asctime(&when));

else
perror("mktime failed");

Output

Current time is Mon Jun 19 11:45:20 1989

How many days to look ahead: 23
In 23 days the time will be Wed Jul 12 11:45:20 1989

;'

513

Description

Remarks

Return Value

modI, modll

Split a floating-point value into a mantissa and an exponent.

#include <math.h>

double modf(double x, double *intptr);

long double modO(long double x, long double *intptr);

x Floating-point value

intptr Pointer to stored integer portion

The modf functions break down the floating-point value x into fractional and integer parts,
each of which has the same sign as x. The signed fractional portion of x is returned. The in­
teger portion is stored as a floating-point value at intptr.

The modO function uses the SO-bit, 10-byte coprocessor form of arguments and return
values. See the reference page on the long double functions for more details on this data
type.

The modf and modfl functions return the signed fractional portion of x. There is no error
return.

Compatibility modf

• ANSI • DOS • OS/2 • UNIX • XENIX

modO

o ANSI • DOS • OS/2 0 UNIX ,0 XENIX

See Also frexp, Idexp

Exampre __ _____

1* MODF.C *1
#include <math.h>
#include <stdio.h>

modI, modll

void main()
(

double x, y, n;

x = -14.87654321;
y = modf(x, &n);

1* Divide x into its fractional */
1* and integer parts */

printf("For If, the fraction is %f and the integer is %.f\n", x, y, n);

Output

For -14.876543, the fraction is -0.876543 and the integer is -14

514

515

Description

Remarks

Return Value

Compatibility

movedata

Moves characters to another segment.

Required only for function declarations #include <memory.h>

#include <string.h> Use either STRING.H (for ANSI compatibility) or
MEMORY.H

void movedata(unsigned int srcseg, unsigned int srcoff, unsigned int destseg,
unsigned int destoff, unsigned int count);

srcseg

srcoff

destseg

destoff

count

Segment address of source

Segment offset of source

Segment address of destination

Segment offset of destination

Number of bytes

The movedata function copies count bytes from the source address specified by
srcseg:srcoffto the destination address specified by destseg:destoJf.

The movedata function was intended to move far data in small-data-model programs. The
newer model-independent _fmemcpy and _fmemmove functions should be used instead
of the movedata function. In large-data-model programs, the memcpy and memmove
functions can also be used.

Segment values for the srcseg and destseg arguments can be obtained by using either the
segread function or the FP _SEG macro.

The movedata function does not handle all cases of overlapping moves correctly. These
occur when part of the destination is the same memory area as part of the source. The
memmove function correctly handles overlapping moves.

None.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

movedata 516

See Also FP _OFF, FP _SEG, memcpy, memmove, segread

Exampw __ __

1* MOVEOATA.C *1
#include <memory.h>
#include <stdio.h>
#include <string.h>
#include <dos.h>
#include <malloc.h>

char _far *src = "This is a test.";

void maine)
(

char _far *dest;

if((dest = _fmalloc(80 » != NULL)
(

Output

movedata(FP_SEG(src), FP_OFF(src),
FP_SEG(dest), FP_OFF(dest), _fstrlen(src) + 1);

printf("The source data at %Fp is '%Fs'\n", src, src);
printf("The destination data at %Fp is '%Fs'\n", dest, dest);
_ffree(dest);

The source data at 200A:02B8 is 'This is a test.'
The destination data at 300B:0016 is 'This is a test.'

517

Description

Remarks

Return Value

Compatibility

Move current graphics positions.

#include <graph.h>

struct xycoord _far _moveto(short x, short y);

struct _wxycoord _far _moveto_w(double wx, double wy);

x,y

wx,wy

View-coordinate point

Window-coordinate point

_moveto Functions

The _ moveto functions move the current position to the specified point. The _ moveto
function uses the view-coordinate point (x, y) as the current position. The _moveto_w func­
tion uses the window-coordinate point (wx, wy) as the current position. No drawing takes
place.

The function returns the coordinates of the previous position. The _ moveto function re­
turns the coordinates in an xycoord structure. The xycoord structure, defined in
GRAPH.H, contains the following elements:

Element

short xcoord

short ycoord

Description

x coordinate

y coordinate

The _ moveto _ w function returns the coordinates in an _ wxycoord structure, defined in
GRAPH.H. The _ wxycoord structure contains the following elements:

Element

double wx

double wy

Description

x window coordinate

y window coordinate

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_moveto Functions 518

See Also Jineto functions

Exampw __ __

1* MOVETO.C: This program draws line segments of different colors. *1

#include <graph.h>
#include <stdlib.h>
#include <conio.h>

void main()
(

short x, y, xinc, yinc, color = 1;
struct videoconfig v;

1* Find a valid graphics mode. *1
if(!_setvi deomode(_MAXCOLORMODE))

exi t(1);
_getvideoconfig(&v);
xinc = v.numxpixels I 50;
yinc = v.numypixels I 50;

for(x = 0, y = v.numypixels 1; x < v.numxpixels; x += xinc, y -= yinc
(

_setcolor(color++ % 16);
_moveto(x, 0);
_lineto(0, y);

}
getch() ;

_setvideomode(_DEFAULTMODE);

519

Description

Remarks

Return Value

Compatibility

msize Functions

Return the size of a memory block allocated in the heap.

#include <maIloc.h> Required only for function declarations

size_t _msize(void *memblock);

size_t _bmsize(_segment seg, void _based(void) *memblock);

size_t _fmsize(void _far *memblock);

size_t _nmsize(void _near *memblock);

memblock

seg

Pointer to memory block

Based-heap segment selector

The _ msize family of functions returns the size, in bytes, of the memory block allocated
by a call to the appropriate version of the caIloc, malloc, or realloc functions.

In large data models (compact-, large-, and huge-model programs), _msize maps to
_fmsize. In small data models (tiny-, small-, and medium-model programs), _msize maps
to nmsize.

The _nmsize function returns the size (in bytes) of the memory block allocated by a call to
_nmaIloc, and the _fmsize function returns the size (in bytes) of the memory block allo­
cated by a call to _fmalloc or _frealloc. The _bmsize function returns the size of a block
allocated in segment seg by a call to _bmaIloc, _bcaIloc, or _brealloc.

The location of the memory block is indicated below:

Function

_msize

_bmsize

_fmsize

nmsize

Data Segment

Depends on data model of program

Based heap segment specified by seg value

Far heap segment (outside default data segment)

Default data segment (inside near heap)

All four functions return the size (in bytes) as an unsigned integer.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_msize Functions 520

See Also calloc functions, _expand functions, malloc functions, realloc functions

Exampre __ __

1* REALLOC.C: This program allocates a block of memory for buffer
* and then uses _msize to display the size of that block. Next, it
* uses realloc to expand the amount of memory used by buffer
* and then calls _msize again to display the new amount of
* memory allocated to buffer.
*1 .

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void maine)
{

long *buffer;
size_t size;

if((buffer = (long *)malloc(1000 * sizeof(long) »
exit(1);

size = _msize(buffer);

NULL)

printf("Size of block after malloc of 1000 longs: %u\n", size);

1* Reallocate and show new size: *1
if((buffer = realloc(buffer, size + (1000 * sizeof(long » » == NULL)

exit(1);
size = _msize(buffer);
printf("Size of block after realloc of 1000 more longs: %u\n", size);

free(buffer);

Output

Size of block after mal lac of 1000 longs: 4000
Size of block after realloc of 1000 more longs: 8000

521

Description

Remarks

Return Value

Compatibility

onexit

Registers a routine to be called at exit time.

#include <stdlih.h>

onexit_t onexit(onexit_t June);

J

June Pointer to function to be called at exit

The onexit function is passed the address of a function (June) to be called when the pro­
gram terminates normally. Successive calls to onexit create a register of functions that is
executed in LIFO (last-in-first-out) order. No more than 32 functions can be registered
with onexit; onexit returns the value NULL if the number of functions exceeds 32. The
functions passed to onexit cannot take parameters.

The onexit function is not part of the ANSI definition, but is instead a Microsoft exten­
sion. The ANSI-standard atexit function does the same thing as onexit, and should be used
instead of on exit when ANSI portability is desired.

All routines passed to on exit should have the Joadds attribute if used in multithread
dynamic-link libraries.

The on exit function returns a pointer to the function if successful and returns NULL if
there is no space left to store the function pointer.

o ANSI • DOS • OS/2 • UNIX • XENIX

See Also exit

Exampre __ ____

1* ONEXIT.C *1
#include <stdlib.h>
#include <stdio.h>

1* Prototypes *1
void fnl(void), fn2(void), fn3(void), fn4(void);

onexit

void main()
(

onexit(fnl);
onexit(fn2);
onexit(fn3);
onexit(fn4);
printf("This is executed first.\n");

void fnl()
(

printf("next.\n");

void fn2()
(

pri ntf("executed ");

void fn3()
(

printf("is");

void fn4()
(

printf("This");

Output

This is executed first.
This is executed next.

522

523

Description

Remarks

Opeqs a file.

#include <fcntl.h>

#include <sys\types.h>

#include <sys\stat.h>

#include <io.h>

open

Required only for function declarations

int open(char *jilename, int oflag [, int pmode]);

filename

oflag

pmode

File name

Type of operations allowed

Permission mode

T~e open function opens the file specified by filename and prepares the file for subsequent
reading or writing, as defined by oflag. The oflag argument is an integer expression
formed from one or more of the manifest constants defined in FCNTL.H (listed below).
When two or more manifest constants are used to form the oflag argument, the constants
are combined with the bitwise-OR operator (I). See Section 2.5, "File Handling," for a dis­
cussion of binary and text modes.

The FCNTL.H file defines the following manifest constants:

Constant Meaning

Repositions the file pointer to the end of the file before every
write operation.

Opens file in binary (untranslated) mode.

Creates and opens a new file for writing; this has no effect if
the file specified by filename exists.

Returns an error value if the file specified by filename exists.
Only applies when used with O_CREAT.

Opens file for reading only; if this flag is given, neither
O_RDWR nor O_WRONLY can be given.

Opens file for both reading and writing; if this flag is given,
neither 0 _RDONLY nor 0_ WRONLY can be given.

Opens file in text (translated) mode.

open 524

Opens and truncates an existing file to zero length; the file
must have write permission. The contents of the file are de­
stroyed. If this flag is given, you cannot specify O_RDONLY.

Opens file for writing only; if this flag is given,neither
O_RDONLY nor O_RDWR can be given.

WARNING Use the O_TRUNC flag with care, as it destroys the complete contents of an existing file.

Either 0 _RDONLY, 0 _RDWR, or 0_ WRONLY must be given to specify the access mode.
There is no default value for the access mode.

The pmode argument is required only when 0_ CREAT is specified. If the file exists,
pmode is ignored. Otherwise, pmode specifies the file's permission settings, which are set
when the new file is closed for the first time. The pmode is an integer expression contain­
ing one or both of the manifest constants S_IWRITE and S_IREAD, defined in
SYs\sTAT.H. When both constants are given, they are joined with the bitwise-OR opera­
tor (I). The meaning of the pmode argument is as follows:

Value

S_IWRITE

S_IREAD

S _ IREAD I S _IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read-only. Under DOS and OS/2, all files are
readable; it is not possible to give write-only permission. Thus the modes S_IWRITE and
S_IREAD I S_IWRITE are equivalent.

The open function applies the current file-permission mask to pm~de before setting the per­
missions (see umask).

The filename argument used in the open function is affected by the DOS APPEND com­
mand.

Note that under DOS versions 3.0 and later, a problem occurs when SHARE is installed
and a new file is opened with oflag set to 0_ CREAT I 0_ RDONL Y or 0_ CREAT I
o _ WRONLY and pmode set to S_IREAD. Under these conditions, the operating system
prematurely closes the file during system calls made within open. This problem does not
occur under OS/2.

To work around the problem, open the file with the pmode argument set to S _ IWRITE.
Then close the file and use chmod to change the access mode back to S _IREAD. Another
work-around is to open the file withpmode set to S_IREAD and oflag set to.O_CREAT I
O_RDWR.

525 open

Return Value The open function returns a file handle for the opened file. A return value of -1 indicates
an error, and errno is set to one of the following values:

Value

EACCES

EEXIST

EINVAL

EMFILE

ENOENT

Meaning

Given path name is a directory; or an attempt was made to
open a read-only file for writing; or a sharing violation oc­
curred (the file's sharing mode does not allow the specified
operations).

The 0_ CREAT and 0_ EXCL flags are specified, but the
named file already exists.

An invalid oflag or pmode argument was given.

No more file handles available (too many open files).

File or path name not found.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also access, chmod, close, creat, dup, dup2, fopen, sopen, umask

Exampre ______________________________________ ~ ________________________ __

1* OPEN.C: This program uses open to open a file named OPEN.C for input
* and a file named OPEN.OUT for output. The files are then closed.
*1

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>

void maine)
{

int fhl, fh2;

open

fhl = open("OPEN.C", O_RDONLY);
if(fhl == -I)

perror("open failed on input file");
else
{

p r i n t f (" ope n s u c c e e de don i n put f i 1 e \ n "); (-',,-
close(fhl);

fh2 = open("OPEN.OUT", O_WRONLY I O_CREAT, S_IREAD S_IWRITE);
if (fh2 == -I)

perror("open failed on output file");
else
(

Output

printf("open succeeded on output file\n");
close(fh2);

open succeeded on input file
open succeeded on output file

526

527 _outgtext

Description Prints font-based text in graphics mode.

#include <graph.h>

void _far_outgtext(unsigned char _far *text);

text Text string to output

Remarks The _outgtext function outputs on the screen the null-terminated string that text points to.
The text is output using the current font at the current graphics position and in the current
color.

Return Value

Compatibility

See Also

No formatting is provided, in contrast to the standard console I/O library routines such as
printf.

After it outputs the text, _ outgtext updates the current graphics position.

The _outgtext function operates only in graphics video modes (e.g., _MRES4COLOR).
Because it is a graphics function, the color of text is set by the _ setcolor function, not by
the settextcolor function.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_ move to functions, _setcolor, setfont

Exampm __ __

1* OUTGTXT.C illustrates font output using functions:
* _registerfonts _setfont _outgtext
* _unregisterfonts _getfontinfo _getgtextextent
* _setgtextvector
*1

#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <graph.h>

_outgtext

#define NFONTS 6

unsigned char *face[NFONTS]
(

"Courier", "Helvetica", "Times Roman", "Modern", "Script", "Roman"
) ;
unsigned char *options[NFONTS] =
(

"courier", "helv", "tms rmn", "modern", "script", "roman"
) ;

void main()
{

unsigned char list[20];
char fondir[_MAX_PATH];
struct videoconfig vc;
struct _fontinfo fi;
short fontnum, x, y;

1* Read header info from all .FON files in current or given directory. *1
if(_registerfonts("*.FON") <= 0)
{

_outtext("Enter full path where .FON files are located: ");
gets(fondir);
strcat(fondir, "*.FON");
if(_registerfonts(fondir) (= 0.)
{

_outtext("Error: can't register fonts");
ex it (1);

1* Set highest available graphics mode and get configuration. *1
if(!_setvideomode(_MAXRESMODE))

exit (1);
_getvideoconfig(&vc);

1* Display each font name centered on screen. *1
for(fontnum = 0; fontnum < NFONTS; fontnum++)
{

1* Build options string. *1
strcat(strcat(strcpy(list, Nt'"), options[fontnum]), "'H);
strcat(list, "h30w24b");

_clearscreen(_GCLEARSCREEN);
if(_setfont(list))= 0)
{

528

~9 _outgtext

else
(

1* Use length of text and height of font to center text. */
x = (vc.numxpixels / 2) - (_getgtextextent(face[fontnum]) / 2);
y ~ (vc.numypixels / 2) + (_getgtextextent(face[fontnum]) / 2);
if(_getfontinfo(&fi))
(

_outtext("Error: Can't get font information");
break;

_moveto(x, y);
if(vc.numcolors > 2)

_setcolor(fontnum + 2);

/* Rotate and display text. */
_setgtextvector(I, 0);
_outgtext(face[fontnum]);
_setgtextvector(0, 1);
_outgtext(face[fontnum]);
_setgtextvector(-I, 0);
_outgtext(face[fontnum]);
_setgtextvector(0, -1);
_outgtext(face[fontnum]);

_outtext("Error: Can't set font: ");
_outtext(list);

}
getch();

_unregisterfonts();
_setvideomode(_DEFAULTMODE);

_outmem

Description

Remarks

Return Value

Compatibility

See Also

Prints text of a specified length in graphics mode.

#include <graph.h>

void _far _outmem(unsigned char _far *text, short length);

text

length

Text string to output

Length of string to output

530

The _ outmem function outputs the string that text points to. The length argument specifies
the number of characters to output.

Unlike _outtext, the _outmem function prints all characters literally, including ASCII 10,
13, and 0 as the equivalent graphics characters. No formatting is provided. Text is printed
using the current text color, starting at the current text position.

To output text using special fonts, you must use the _ outgtext function.

None.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_outtext, _settextcolor, _settextposition, _settextwindow

Exampw __ __

/* OUTMEM.C illustrates:
* _outmem
*/

#include <stdio.h>
#include <graph.h>

void maine)
(

int i, len;
cha r tmp[10] ;

531

_clearscreen(_GCLEARSCREEN);
for(i = 0; i < 256; i++)
{

_settextposition((i % 24) + 1, (i / 24) * 7);
len - sprintf(tmp, "%3d SCM, i, i);
_outmem(tmp, len);

_settextposition(24, 1);

Dutmem

·
Dutp, DutpW 532

Descrlpllon Outputs a byte (outp) or a word (outpw) at a port.

Remarks

Return Value

Compatibility

See Also

#include <conio.h> Required only for function declarations

int outp(unsigned port, int databyte);

unsigned outpw(unsigned port, unsigned dataword);

port

databyte

dataword

Port number

Output value

Output value

The outp and outpw functions write a byte and a word, respectively, to the specified out­
put port. The port argument can be any unsigned integer in the range 0 - 65,535; byte
can be any integer in the range 0 - 255; and dataword can be any value in the range
0-65,535.

Both outp and outpw are supported in OS/2. You must use a .DEF file to declare the
IOSEG segment the run-time library uses to perform input/output on the port. In addition,
the intrinsic (/Oi) versions of these functions do not work unless you put the code in a seg­
ment that is marked with the IOPL keyword in the .DEF file.

You cannot do IOPL from a regular code segment, so the run-time library has declared a
separate code segment called _IOSEG. In order to use inp, inpw, outp, or outp in any of
the protected mode run-time libraries (?LmCp, LLIBCDLL, LLIBCMT, or CDLLOBJS­
based DLL), you must have a .DEF file with this line in it:

SEGMENTS _IOSEG CLASS 'IOSEG_CODE' IOPL

The functions return the data output. There is no error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

inp, inpw

Exampre ___ ___

1* OUTP.C: This program uses inp and outp to make sound of variable tone
* and duration.
*1

533

#include <conio.h>
#include <stdio.h>
#include <time.h>

void Beep(unsigned duration, unsigned frequency); /* Prototypes */
void Sleep(clock_t wait);

void main ()
(

Beep(698, 700);
Beep(523, 500);

/* Sounds the speaker for a time specified in microseconds by duration
* at a pitch specified in hertz by frequency.
*/

void Beep(unsigned frequency, unsigned duration)
(

int control;

/* If frequency is 0, Beep doesn't try to make a sound. */
if(frequency)
(

/* 75 is about the shortest reliable duration of a sound. */
if(duration < 75)

duration = 75;

/* Prepare timer by sending 10111100 to port 43. */
outp(0x43, 0xb6);

/* Divide input frequency by timer ticks per second and
* write (byte by byte) to timer.
*/

frequency = (unsigned)(1193180L / frequency);
outp(0x42, (char)frequency);
outp(0x42, (char)(frequency » 8));

/* Save speaker control byte. */
control = inp(0x61);

/* Turn on the speaker (with bits 0 and 1). */
outp(0x61, control I 0x3);

Sleep((clock_t)duration);

/* Turn speaker back on if necessary. */
if(frequency)

outp(0x61, control);

Dutp, Dutpw

Dutp, Dutpw

1* Pauses for a specified number of microseconds. *1
void Sleep(clock_t wait)
(

goal = wait + clock();
while(goal> clock())

534

535 outtext

Description Prints text in graphics mode.

#include <graph.h>

void _far _ outtext(unsigned char _far *text);

text Text string to output

Remarks The _ outtext function outputs the null-terminated string that text points to. No formatting
is provided, in contrast to the standard console I/O library routines such as printf. This
function will work in any screen mode.

Text output begins at the current text position.

To output text using special fonts, you must use the _ outgtext function.

Return Value None.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _outmem, _settextcolor, _settextposition, _settextwindow

Exampre __ __

1* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition _outtext
* _settextcolor _setbkcolor _settextposition
*1

#include <conio.h>
#include <stdio.h>
#include <graph.h>

char buffer [80];

void main()
{

1* Save original foreground, background, and text position *1
short blink, fgd, oldfgd;
long bgd, oldbgd;
struct rccoord oldpos;

outtext

1* Save original foreground, background, and text position. *1
oldfgd = _gettextcolor();
oldbgd = _getbkcolor();
oldpos - _gettextposition();
_clearscreen(_GCLEARSCREEN);

1* First time no blink, second time blinking. *1
for(blink = 0; blink <- 16; blink +- 16)
(

1* Loop through 8 background colors. */
for(bgd = 0; bgd < 8; bgd++)
(

_setbkcolor(bgd);
_settextposition((short)bgd + «blink I 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Back: %d Fore:", bgd);
_outtext(buffer);

1* Loop through 16 foreground colors. *1
for(fgd = 0; fgd < 16; fgd++)
(

_settextcolor(fgd + blink);
sprintf(buffer, " %2d ", fgd + blink);
_outtext(buffer);

)
getch();

1* Restore original foreground, background, and text position. *1
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);

536

537

Description

Remarks

Return Value

Compatibility

See Also

Example

_pc/ase

Waits for a child command and closes the stream on the associated pipe.

#include <stdio.h> Function declaration

int jlclose(FILE *stream);

'stream File stream returned by previous call to jlopen

The jlclose function waits for a child command and closes the stream on the associated
pipe. The argument stream is the return value from a previous call to jlopen. The jlclose
function looks up the process ID of the child command started by the associated jlopen
call, closes the stream, executes a cwait call on the child command, and returns the exit sta­
tus of the child command. See jlipe for a general discussion of pipes in OS/2.

The jlclose function returns the exit status of the child command. The format of the return
value is the same as that for cwait, with the exception that the low-order and high-order
bytes are swapped. If an error occurs, -1 is returned.

o ANSI 0 DOS • OS/2 • UNIX • XENIX

A similar function (pclose) is available in the XENIX and UNIX operating environments.

cwait" jlipe, jlopen

See the example for jlopen.

perror

Description

Remarks

Return Value

Compatibility

See Also

538

Prints an error message.

#include <stdio.h> Required only for function declarations

void perror(const char *string);

string String message to print

The perror function prints an error message to stderr. The string argument is printed first,
followed by a colon, then by the system error message for the last library call that pro­
duced the error, and finally by a newline character. If string is a null pointer or a pointer to
a null string, perror prints only the system error message.

The actual error number is stored in the variable errno (defined in ERRNO.H). The sys­
tem error messages are accessed through the variable sys _ err list, which is an array of mes­
sages ordered by error number. The perror function prints the appropriate error message
by using the err no value as an index to sys _ errlist. The value of the variable sys _ nerr is
defined as the maximum number of elements in the sys _ err list array.

To produce accurate results, perror should be called immediately after a library routine re­
turns with an error. Otherwise, the errno value may be overwritten by subsequent calls.

Under DOS and OS/2, some of the errno values listed in ERRNO.H are not used. These
additional errno values are reserved for UNIX and XENIX use. See Section 3.3,
"_doserrno, errno, sys_errlist, sys_nerr," for a list of errno values used on DOS and
OS/2 and the corresponding error messages. The perror function prints an empty string
for any errno value not used under the operating system.

None.

• ANSI • DOS • OS/2 • UNIX • XENIX

clearerr,ferror,strerror

Exampre ___ __

/* PERROR.C: This program attempts to open a file named NOSUCHF.ILE.
* Since this file probably doesn't exist, an error message is displayed.
* The same message is created using perror, strerror, and _strerror.
*/

539 perror

/Ii ncl ude <fcntl. h)
/linclude <sys\types.h)
/linclude <sys\stat.h)
/linclude <io.h>
/linclude <stdlib.h>
/linclude <stdio.h>
/linclude <string.h>

void main()
[

int fh;

if((fh = open("NOSUCHF.ILE", O_RDONLY » == -1
[

1* Three ways to create error message: *1
perror("perror says open failed");
printf("st~error says open failed: %s\n", strerror(errno));
printf(_strerror("_strerror says open failed"));

else
[

Output

printf("open succeeded on input file\n");
close(fh);

perror says open failed: No such file or directory
strerror says open falled: No such file or directory
_strerror says open failed: No such file or directory

_pg_analyzechart Functions 540

Description

Remarks

Analyze a series of data.

#include <pgchart.h>

short _far yg_analyzechart(chartenv _far *env, char _far * _far *categories,
float far *values, short n); - ,

short _far yg_analyzechartms(chartenv _far *env, char _far * _far *categories,
float _far *values, short nseries, short n, short arraydim,
char _far * _far *serieslabels);

env Chart environment variable

categories Array of category variables

values Array of data values

nseries Number of series to chart

n Number of data values to chart

arraydim Row dimension of data array

serieslabels Array of labels for series

The yg_ analyze chart routines analyze a single or multiple series of data without actually
displaying the presentation-graphic image.

The yg_ analyzechart function fills the chart environment with default values for a
single-series bar, column, or line chart, depending on the type specified by the call to the
yg_ defaultchart function. The variables calculated by yg_ analyzechart reflect the data
given in the arguments categories and values. All arguments are the same as those used
with the yg_ chart function.

The yg_analyzechartms function fills the chart environment with default values for a
multi series bar, column, or line chart, depending on which type is specified in the
yg_ defaultchart function. The variables calculated by yg_analyzechartms reflect the
data given in the arguments categories and values. All arguments are the same as those
used with the yg_ chartms function.

Boolean flags in the chart environment, such as AUTOSCALE and LEGEND, should be set
to TRUE before calling either yg_ analyze chart function. This will ensure that the func­
tion will calculate all defaults.

For a discussion of the chart environment and related topics, see Section 2.6.2,
"Presentation-Graphics Functions."

541 _Pu_analyzechart Functions

Return Value The Jlg_analyzechart and Jlg_analyzechartms functions return 0 if there were no er­
rors. A nonzero value indicates a failure.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also Jlg_ chart functions, jlg_ defaultchart, JlgJnitchart

Exampre ___ ___

/* PGACHART.C: This example
* analyze functions.
* The example uses
* _pg_analyzechartms
* The same principles apply
* _pg_analyzepie
* _pg_analyzescatter
*/

#include <conio.h>
#include <string.h>
#include <stdlib.h>
#include <graph.h>
#include <pgchart.h>

#define FALSE 0
#define TRUE 1

illustrates presentation-graphics

for
_pg_analyzechart
_pg_analyzescatterms

/* Note data declared as a single-dimension array. The multiseries
* chart functions expect only one dimension. See _pg_chartms
* example for alternate method using multidimension array.
*/

#define TEAMS 4
#define MONTHS 3
float _far values[TEAMS * MONTHS] .435, .522, .671,

.533, .431, .590,

.723, .624, .488,

.329, .226, .401 };
char _far *months[MONTHS] = "May", "June", "July" };
char _far *teams[TEAMS] = ("Reds", "Sox", "Cubs", "Mets");

void maine)
(

chartenv env;

/* Find a valid graphics mode. */
if(!_setvideomode(_MAXRESMODE)

ex it (1);

_pg_initchart(); /* Initialize chart system. */

_pg_analyzechart Functions

1* Default multiseries bar chart *1
_pg_defaultchart(&env, _PG_BARCHART, _PG_PLAINBARS);
strcpy(env.maintitle.title, "Little League Records - Default");
_pg_chartms(&env, months, values, TEAMS, MONTHS, MONTHS, teams);
getch() ;
_clearscreen(_GCLEARSCREEN);

1* Analyze multi series bar chart with autoscale. This sets all
* default scale values. We want y axis values to be automatic.
*1

_pg_defaultchart(&env, _PG_BARCHART, _PG_PLAINBARS);
strcpy(env.maintitle.title, "Little League Records - Customized");
env.xaxis.autoscale = TRUE;
_pg_analyzechartms(&env, months, values, TEAMS, MONTHS, MONTHS, teams);

/* Now customize some of the x axis values. Then draw the chart. */
env.xaxis.autoscale = FALSE;
env.xaxis.scalemax = 1.0; 1* Make scale show 0.0 to 1.0. */
env.xaxis.ticinterval = 0.2; /* Don't make scale too crowded. */
env.xaxis.ticdecimals = 3; /* Show three decimals. */
strcpy(env.xaxis.scaletitle.title, "Win/Loss Percentage");
_pg_chartms(&env, months, values, TEAMS, MONTHS, MONTHS, teams);
getch();

_setvideomode(_DEFAULTMODE);

542

543

Description

Remarks

Return Value

Compa tibi/ity

See Also

Example

_py_analyzepie

Analyzes a single series of data for a pie chart.

#include <pgchart.h>

short _far -pg_ana1yzepie(chartenv _far *env, char _far *_far *categories,
float _far *values, short _far *explode, short n);

env

categories

values

explode

n

Chart environment variable

Array of category variables

Array of data values

Array of explode flags

Number of data values to chart

The -pg_ana1yzepie function analyzes a single series of data without actually displaying
the graphic image.

The -pg_ analyzepie function fills the chart environment for a pie chart using the data con­
tained in the array values. All arguments are the same as those used in the -pg_ chartpie
function.

For a discussion of the chart environment and related topics, see Section 2.6.2,
"Presentation-Graphics Functions."

The -pg_ analyzepie function returns 0 if there were no errors. A nonzero value indicates a
failure.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

-pg_ chartpie, -pg_ defaultchart, -pg_ initchart

See the example for -pg_ analyzechart.

_pg_analyzescatter Functions 544

Description

Remarks

Return Value

Analyze a series of data for a scatter chart.

#include <pgchart.h>

short _far yg_analyzescatter(chartenv _far *env, float _far *xvalues,
float _far *yvalues, short n);

short _far yg_analyzescatterms(chartenv _far *env, float _far *xvalues,
float _far *yvalues, short nseries, short n, short rowdim,
char _far * _far *serieslabels);

env Chart environment structure

xvalues Array of x-axis data values

yvalues Array of y-axis data values

n Number of data values to chart

nseries Number of series to chart

rowdim Row dimension of data array

serieslabels Array of labels for series

The yg_analyzescatter set of routines analyzes a single or multiple series of data without
actually displaying the graph!c image.

The yg_ analyzescatter function fills the chart environment for a single-series scatter dia­
gram. The variables calculated by this function reflect the data given in the arguments
xvalues and yvalues. All arguments are the same as those used in the yg_ chartscatter
function.

The yg_ analyzescatterms function fills the chart environment for a multiseries scatter di­
agram. The variables calculated by yg_analyzescatterms reflect the data given in the ar­
guments xvalues and yvalues. All arguments are the same as those used in the function
yg_ chartscatterms.

Boolean flags in the chart environment, such as AUTOSCALE and LEGEND, should be
set to TRUE before calling yg_analyzescatterms; this ensures that the function will cal­
culate all defaults.

For a discussion of the chart environment and related topics, see Section 2.6.2,
"Presentation-Graphics Functions."

The yg_ analyzescatter and yg_ analyzescatterms functions return 0 if there were no er­
rors. A nonzero value indicates a failure.

545

Compatibility

See Also

Example

_pg_analyzescatter Functions

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

jlg_ chartscatter functions, jlg_ defaultchart, jlgJnitchart

See the example for jlg_ analyzechart.

_pg_chart Functions 546

Description

Remarks

Display single-series or multiseries charts.

#include <pgchart.h>

short _far -pg_chart(chartenv _far *env, char _far * _far *categories,
float _far *values, short n);

short _far -pg_ chartms(chartenv _far *env, char _far * _far *categories,
float _far *values, short nseries, short n, short arraydim,
char _far * _far *serieslabels);

env

categories

values

n

nseries

arraydim

serieslabels

Chart environment variable

Array of category variables

Array of data values

Number of data values to chart

N umber of series to chart

Row dimension of data array

Array of labels for series

The -pg_ chart function displays a single-series bar, column, or line chart, depending on
the type specified in the chart environment variable (env).

The -pg_chartms function displays a multiseries bar, column, or line chart, depending on
the type specified in the chart environment. All the series must contain the same number of
data points, specified by the argument n.

The array values is a two-dimensional array containing all value data for every series to
be plotted on the chart. Each column of values represents a single series. The parameter
rowdim is the integer value used to dimension rows in the array declaration for values.

For example, the following code fragment declares the identifier val u e s to be a two­
dimensional floating-point array with 20 rows and 10 columns:

#define ARRAYDIM 20
float values [ARRAYDIM][10];
short rowdim = ARRAYDIM;

Note that the number of columns in the values array cannot exceed 10, the maximum num­
ber of data series on a single chart. Note also that rowd i m must be greater than or equal
to the argument n, and the column dimension in the array declaration must be greater than
or equal to the argument nseries. If nand nseries are set to values less than the full dimen­
sional size of the values array, only part of the data contained in values will be plotted.

547 _po_chart Functions

The array serieslabels holds the labels used in the chart legend to identify each series.

For a discussion of the chart environment and related topics, see Section 2.6.2,
"Presentation-Graphics Functions."

Return Value The yg_ chart and yg_ chartms functions return 0 if there were no errors. A nonzero
value indicates a failure.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also yg_ analyzechart functions, yg_ defaultchart, ygJnitchart

Exampw ___ __

/* PGCHART.C: This example illustrates presentation-graphics support
* routines and single-series chart routines, including
* _pg_initchart _pg_defaultchart _pg_chart _pg_chartpie
*/

#include <conio.h>
#include <graph.h>
#include <string.h>
#include <stdlib.h>
#include <pgchart.h>

#define COUNTRIES 5
float _far value[COUNTRIES]
char _far *category[COUNTRIES]
short _far explode[COUNTRIES] =

void main()
(

chartenv env;
short mode = _VRES16COLOR;

42.5,
"USSR",
0,

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE)

ex it (1);

14.3, 35.2, 21. 3,
"France" , "USA" , "UK",
1, 0, 1,

_P9_initchart(); /* Initialize chart system. */

1* Single-series bar chart */
_pg_defaultchart(&env, _PG_BARCHART, _PG_PLAINBARS);
strcpy(env.maintitle.title, "Widget Production");
_pg_chart(&env, category, value, COUNTRIES);
getch();
_clearscreen(_GCLEARSCREEN);

32.6 };
"Other" };
o };

_pg_chart Functions

1* Single-series column chart *1
_pg_defaultchart(&env, _PG_COLUMNCHART, PG PLAINBARS);
strcpy(env.maintitle.title, "Widget Production");
_pg_chart(&env, category, value, COUNTRIES);
getch();
_clearscreen(_GCLEARSCREEN);

1* Pie chart *1
_pg_defaultchart(&env, _PG_PIECHART, _PG_PERCENT);
strcpy(env.maintitle.title, "Widget Production");
_pg_chartpie(&env, category, value, explode, COUNTRIES);
getch();

_setvideomode(_DEFAULTMODE);

548

549

Description

Remarks

Return Value

Compatibility

.. See Also

Example

Displays a pie chart.

#include <pgchart.h>

short _far -pg_chartpie(chartenv _far *env, char _far * _far *categories,
. float _far *values, short _far *explode, short n);

env

categories

values

explode

n

Chart environment structure

Array of category labels

Array of data values

Array of explode flags

Number of data values to chart

The -pg_ chartpie function displays a pie chart for the data contained in the array values.
Pie charts are formed from a single series of data-there is no multiseries version of pie
charts as there is for other chart types.

The array explode must be dimensioned so that its length is greater than or equal to the
argument n. All entries in explode are either 0 or 1. If an entry is I, the corresponding pie

slice is displayed slightly removed from the rest of the pie.

For example, if the explode array is initialized as

short explode[5] = {0, I, 0, 0, 0};

the pie slice corresponding to the second entry of the categories array will be displayed
"exploded" from the other four slices.

For a discussion of the chart environment and related topics, see Section 2.6.2,
"Presentation-Graphics Functions."

The -pg_ chartpie function returns 0 if there were no errors. A nonzero value indicates a
failure.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

-pg_ analyzepie, -pg_ defauItchart, -pgJnitchart

See the example for -pg_ chart.

_pg_chartscatter Functions 550

Description

Remarks

Return Value

Display scatter charts.

#include <pgchart.h>

short _far yg_chartscatter(chartenv _far *env, float _far *xvalues,
float _far *yvalues, short n);

short _far yg_chartscatterms(chartenv _far *env, float _far *xvalues,
float _far *yvalues, short IlSeries, short n, short rowdim,
char _far * _far *serieslabels);

env

xvalues

yvalues

n

nseries

rowdim

serieslabels

Chart environment structure

Array of x-axis data values

Array of y-axis data values

Number of data values to chart

Number of series to chart

Row dimension of data array

Array of labels for series

The yg_ chartscatter function displays a scatter diagram for a single series of data.

The yg_ chartscatterms function displays a scatter diagram for more than one series
of data.

The arguments xvalues and yvalues are two-dimensional arrays containing data for the
x axis and y axis, respectively. Columns for each array hold data for individual series; thus
the first columns of xvalues and yvalues contain plot data for the first series, the second
columns contain plot data for the second series, and so forth.

The n, rowdim, nseries, and serieslabels arguments fulfill the same purposes as those used
in the yg_ chartms function. See yg_ chartms for an explanation of these arguments.

For a discussion of the chart environment and related topics, see Section 2.6.2,
"Presentation-Graphics Functions."

The yg_ chartscatter and yg_ chartscatterms functions return 0 if there were no errors.
A nonzero value indicates a failure.

551

Compatibility

See Also

Example

_po_chartscatter Functions

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

jlg_ analyzescatter functions, jlg_ defaultchart, jlgJnitchart

See the example for jlg_ chart.

_pg_defaultchart 552

Description

Remarks

Initializes the chart environment.

#include <pgchart.h>

short _far jlg_defaultchart(chartenv _far *env, short charttype, short chartstyle);

env

charttype

chartstyle

Chart environment structure

Chart type

Chart style

The jlg_ defaultchart function initializes all necessary variables in the chart environment
for the chart type by the variable charttype.

All title fields in the environment structure are blanked. Titles should be set in the proper
fields after calling jlg_ defaultchart.

The charttype variable can be set to one of the following manifest constants:

Chart Type

_PG_BARCHART

_PG_COLUMNCHART

PG LINECHART

_PG_PIECHART

_PG_SCATTERCHART

Description

Bar chart

Column chart

Line chart

Pie chart

Scatter chart

The chartstyle variable specifies the style of the chart with either the number "1" or the
number "2." Each of the five types of presentation-graphics charts can appear in two differ­
ent chart styles, as described below:

Chart Type Chart Style 1 Chart Style 2

Bar Side by side Stacked

Column Side by side Stacked

Line Points with lines Points only

Pie Percent No percent

Scatter Points with lines Points only

553

Return Value

Compatibility

See Also

Example

_pg_defaultchart

In a pie chart, the pieces are "exploded" according to the explode array argument in the
jlg_ chartpie function. In the "percent" format, percentages are printed next to each slice.
Bar and column charts have only one style when displaying a single series of data. The
styles "side by side" and "stacked" are applicable only when more than one series appear
on the same chart. The first style arranges the bars or columns for the different series side
by side, showing relative heights or lengths. The stacked style emphasizes relative sizes be­
tween bars and columns.

The jlg_ defaultchart function returns 0 if there were no errors. A nonzero value indi­
cates a failure.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

jlg_getchardef, jlg_getpalette, jlg_getstyleset, jlg_hlabelchart, jlgJnitchart,
jlg_resetpalette, jlg_resetstyleset, yg_ setchardef, jlg_ setpalette, jlg_ setstyleset,
jlg_ vlabelchart

See the example for jlg_ chart.

_pg_getchardef 554

Description

Remarks

Return Value

Compatibility

See Also

Gets the pixel bit map for the specified character.

#include <pgchart.h>

short _far yg~etchardef(short charnum, unsigned char _far *charde!);

charnum'

charde!

ASCII number of character

Pointer to 8-by-8 bit map array

The yg_getchardeffunction retrieves the current 8-by-8 pixel bit map for the character
having the ASCII number charnum. The bit map is stored in the charde! array.

The yg_getchardef function returns 0 if there were no errors. A nonzero value indicates
an error.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

yg_ defaultchart, ygJnitchart, jlg_ setchardef

555 _pg_gelpalelle

Description Gets palette colors, line styles, and patterns.

#include <pgchart.h>

short _far -pg~etpalette(paletteentry _far *palette);

- palette Pointer to first palette structure in array

Remarks The -pg_getpalette function retrieves palette colors, line styles, fill patterns, and plot char­
acters for all palettes. The pointer palette points to an array of palette structures that will
contain the desired palette values.

Return Value

Compatibility

See Also

The palette used by the presentation-graphics routines is independent of the palette used by
the low-level graphics routines.

The function -pg_getpalette returns 0 if there were no errors, and it returns the value
_BADSCREENMODE if current palettes have not been initialized by a previous call to
-pg_ setpalette.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

Exampre __ __

1* PGGPAL.C: This example illustrates presentation-graphics palettes
* and the routines that modify them, including
* _pg_getpalette _pg_resetpalette _pg_setstyleset
* _pg_getstyleset _pg_resetstyleset _pg_vlabelchart
* _pg_hlabelchart _pg_setpalette
*1

#include <conio.h>
#include <string.h>
#include <stdlib.h>
#include <graph.h>
#include <pgchart.h>

_pg_gelpalelle

1Fdefine TEAMS 2
1Fdefine MONTHS 3
float _far values[TEAMS][MONTHS] = { {.435, .522, .671 },

.401));
"July");

{.533, .431,
char _far *months[MONTHS] = { "May", "June",
char _far *teams[TEAMS] = { "Cubs", "Reds" };

fillmap fil11 = { 0x99, 0x33, 0x66, 0xcc, 0x99, 0x33, 0x66, 0xcc);
fillmap fil12 = { 0x99, 0xcc, 0x66, 0x33, 0x99, 0xcc, 0x66, 0x33);
styleset styles;
pa 1 ettetype pa 1 ;

vold mai n()
{

chartenv env;
short mode = _VRES16COLOR;

/* Find a valid graphics mode. */
if(!_setvideomode(_MAXRESMODE))

exit(1);

_pg_initchart(); /* Initialize chart system. */

/* Modify global set of line styles used for borders, grids, and
* data connectors. Note that this change is used before
* _pg_defaultchart, which will use the style set.
*/

_pg_getstyleset(styles); /* Get styles and modify */
styles[1] = 0x5555; /* style 1 (used for */
_pg_setstyleset(styles); /* borders)-then set new. */

/* Modify palette for data lines,
* characters. Note that the line
* in the style set, so that only
*/

_pg_getpalette(pal);
pal[1].plotchar = 16;
pal[2].plotchar = 17;
memcpy(pal[1].fill, fil11, 8);
memcpy(pal[2].fill, fil12, 8);
pal[1].color = 3;
pal[2].color = 4;
pal[1].style = 0xfcfc;
pal[2].style = 0x0303;
_pg_setpalette(pal);

colors, fill patterns, and
styles are set in the palette, not
data connectors will be affected.

/* Get default palette. */
/* Set to ASCII 16 and 17. */

/* Copy fill masks to palette. */

/* Change palette colors. */

/* Change palette line styles. */

/* Put modified palette. */

556

557

1* Multiseries bar chart *1
strcpy(env.maintitle.title, "Little League Records - Customized"):
_pg_chartms(&env, months, (float _far *)values,

TEAMS, MONTHS, MONTHS, teams):
getch():
_clearscreen(_GCLEARSCREEN):

1* Multiseries line chart *1
_pg_defaultchart(&env, _PG_LINECHART, _PG_POINTANDLINE);
strcpy(env.maintitle.title, "Little League Records - Customized");
_P9_chartms(&env, months, (float _far *)values,

TEAMS, MONTHS, MONTHS, teams);

1* Print labels. *1
_pg_hlabelchart(&env, (short)(env.chartwindow.x2 * .75),

(short)(env.chartwindow.y2 * .10),
12, "Up and up!");

_P9_vlabelchart(&env, (short)(env.chartwindow.x2 * .75),
(short)(env.chartwindow.y2 * .45),
13, "Sliding down!");

getch();
_clearscreen(_GCLEARSCREEN);

_P9_resetpalette();
_P9_resetstyleset();

1* Multiseries bar chart *1

1* Restore default palette
1* and style set.

_pg_defaultchart(&env, _PG_BARCHART, _PG_PLAINBARS);
strcpy(env.maintitle.title, "Little League Records - Default"):
_P9_chartms(&env, months, (float _far *)values,

TEAMS, MONTHS, MONTHS, teams);
getch();
_clearscreen(_GCLEARSCREEN):

1* Multiseries line chart *1
_P9_defaultchart(&env, _PG_LINECHART, _PG_POINTANDLINE):
strcpy(env.maintitle.title, "Little League Records - Default"):
_P9_chartms(&env, months, (float _far *)values,

TEAMS, MONTHS, MONTHS, teams):
getch();

_setvideomode(_DEFAULTMODE):

_po_oelpalelle

*1
*1

_pg_getstyleset

Description

Remarks

Return Value

Compatibility

See Also

Example

Gets the current sty leset.

#include <pgchart.h>

void _far yg~etstyleset(unsigned short _far *styleset);

styleset Pointer to current styleset

The yg_getstyleset function retrieves the contents of the current style set.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

yg_defaultchart, ygJnitchart, yg_resetstyleset, yg_setstyleset

See the example for yg_getpalette. .

558

559

Description

Remarks

Return Value

Compatibility

See Also

Example

_Po_hlabeichart

Writes text horizontally on the screen.

#include <pgchart.h>

short _far -pg_hlabelchart(chartenv _far *env, short x, short y, short color,
char _far *label);

env

x

y

color

label

Chart environment structure

x-coordinate for text

Pixel y-coordinate for text

Color code for text

Label text

The -pg_ hlabelchart function writes text horizontally on the screen. The arguments x and
yare pixel coordinates for the beginning location of text relative to the upper-left comer of
the chart window.

The -pg_ hlabelchart functions return 0 if there were no errors. A nonzero value indicates
a failure.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

-pg_ defaultchart, -pgJnitchart, -pg_ vlabelchart

See the example for -pg_getpalette.

Description

Remarks

Return Value

Compatibility

See Also

Example

560

Initializes presentation graphics.

#include <pgchart.h>

short _far ygJnitchart(void);

The ygJnitchart function initializes the presentation-graphics package. It initializes the
color and style pools, resets the chartline styleset, builds default palette modes, and reads
the presentation-graphics font definition from the disk. This function is required in all pro­
grams that use presentation graphics. The ygJnitchart function must be called before
any of the other functions in the presentation-graphics library.

The ygJnitchart function assumes a valid graphics mode has been established. There­
fore, it must be called only after a successful call to the library function _ setvideomode.

The ygJnitchart functions return 0 if there were no errors. A nonzero value indicates a
failure.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

yg_ defaultchart, yg_getchardef, yg_getpalette, yg~etstyleset,
yg_ hlabelchart, yg_ resetpalette, _ resetstyleset, yg_ setchardef, yg_ setpalette,
yg_ setstyleset, yg_ vlabelchart, _ setvideomode

See the example for yg_ chart.

561

Description

Remarks

Return Value

Compatibility

See Also

Example

_pg_resetpalette

Resets palette colors, line styles, and patterns to default values.

#include <pgchart.h>

short _far -pg_resetpalette(void);

The -pg_resetpalette function sets the palette colors, line styles, fill patterns, and plot
. characters for the palette to the default for the current screen mode.

The palette used by the presentation-graphics routines is independent of the palette used by
the low-level graphics routines.

The -pg_ resetpalette function returns 0 if there were no errors. If the screen mode is not
valid, the value _BADSCREENMODE is returned.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See the example for -pg_getpalette.

_pu_resetstyleset

Description

Remarks

Return Value

Compatibility

See Also

Example

Resets styleset to default values.

#include <pgchart.h>

void _far yg_resetstyleset(void);

The yg_resetstyleset function reinitializes the styleset to the default values for the
current screen mode.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

yg_ defaultchart, yg_getstyleset, ygJnitchf)rt, yg_ setstyleset

See the example for yg_getpalette.

562

563

Description

Remarks

Return Value

Compatibility

See Also

_pg_selchardef

Sets the pixel bit map for the specified character.

#include <pgchart.h>

short _far -pg_setchardef(short charllum, unsigned char _far *chardef);

charnum ASCII number of character

chardef Pointer to an 8-by-8 bit map array for the character

The -pg_setchardeffunction sets the 8-by-8 pixel bit map for the character with the
ASCII number charnum. The bit map is stored in the chardef array.

The -pg_setchardeffunction returns 0 if there was no error. A nonzero value indicates an
error.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_pg_setpalette 564

Description

Remarks

Return Value

Compatibility

See Also

Example

Sets palette colors, line styles, and patterns.

#include <pgchart.h>

short _far -pg_setpalette(paletteentry _far *palette);

palette Pointer to first palette structure in array

.
The -pg_setpalette function sets palette colors, line styles, fill patterns, and plot charac-
ters for all palettes. The pointer palette points to an array of palette structures that contain
the desired palette values.

The palette used by the presentation-graphics routines is independent of the palette ~sed by
the low-level graphics routines.

The -pg_ setpalette function returns 0 if there were no errors. If the new palettes are not
valid, the value _ BADSCREENMODE is returned.

·0 ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See the example for -pg_getpalette.

565

Description

Remarks

Return Value

Compatibility

See Also

Example

Sets the current styleset.

#include <pgchart.h>

void _far yg_setstyleset(unsigned short _far *styleset);

styleset Pointer to new styleset

The yg_setstyleset function sets the current styleset.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_po_selslylesel

yg_ defaultchart, yg_getstyleset,' ygJnitchart, yg_ resetstyleset

See the example for yg_getpalette.

_pg_vlabelchart 566

Description

Remarks

Return Value

Compatibility

See Also

Example

Writes text vertically on the screen.

#include <pgchart.h>

short _far yg_ vlabelchart(chartenv _far *env, short x, short y, short color,
char _far *label);

env

x

y

color

label

Chart environment structure

Pixel x coordinate for text

Pixel y coordinate for text

Color code for text

Label text

The yg_ vlabelchart function writes text vertically on the screen. The arguments x and y
are pixel coordinates for the beginning location of text relative to the upper-left corner of
the chart window.

The yg_ vlabelchart function returns 0 if there were no errors. A nonzero value indicates
a failure.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

yg_ defauitchart, yg_ hlabelchart, JlgJnitchart

See the example for yg_getpaleUe.

567

Description

Remarks

_pie Functions

Draw wedge-shaped figures.

#include <graph.h>

short _far yie(short control, short xl, short yl, short x2, short y2, short x3, short y3,
short x4, short y4);

short _far yie_ w(short control, double xl, double yl, double x2, double y2,
double x3, double y3, double x4, double y4);

short _far yie_wxy(short control, struct _wxycoord _far *pwxyl,
struct _ wxycoord _far *pwxy2, struct _ wxycoord _far *pwxy3,
struct _wxycoord _far*pwxy4);

control Fill-control constant

xl,yl Upper-left corner of bounding rectangle

x2,y2 Lower-right comer of bounding rectangle

x3,y3 Start vector

x4,y4 End vector

pwxyl Upper-left corner of bounding rectangle

pwxy2 Lower-right comer of bounding rectangle

pwxy3 Start vector

pwxy4 End vector

The yie functions draw a pie-shaped wedge by drawing an elliptical arc whose center and
two endpoints are joined by lines.

The yie function uses the view coordinate system. The center of the arc is the center of
the bounding rectangle specified by the view coordinate points (xl, yl) and (x2, y2). The
arc starts where it intersects the vector defined by (x3, y3) and ends where it intersects the
vector (x4, y4).

The yie _ wxy and yie _ w functions use the window coordinate system. The center of the
arc is the center of the bounding rectangle specified by the window coordinate pairs pwxyl
andpwxy2 for yie_wxy, and by the points (xl,yl) and (x2,y2) for yie_w. The arc starts
where it intersects the vector defined by pwxy3 or (x3, y3) and ends where it intersects the
vector defined by pwxy4 or (x4, y4).

_pie Functions 568

Return Value

Compatibility

See Also

The _ wxycoord structure is defined in GRAPH.H and contains the following elements:

Element

double wx

double wy

Description

Window x coordinate

Window y coordinate

The wedge is drawn using the current color moving in a counterclockwise direction. The
control parameter can be one of the following manifest constants:

Constant

_ GFILLINTERIOR

_GBORDER

Action

Fills the figure using the current color and fill mask

Does not fill the figure

The control option given by _ GFILLINTERIOR is equivalent to a subsequent call to the
_floodfill function using the approximate center of the arc as the starting point and the cur­
rent color (set by _setcolor) as the boundary color.

These functions return a nonzero value if successful; otherwise, they return O.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_arc functions, _ellipse functions, _floodfill, _getcolor, Jineto functions,
_rectangle functions, _setcolor, _ setfillmask

Exampw ___ ___

/* PIE.C: This program draws a pie-shaped figure. */

#include <stdlib.h>
#include <conio.h>
#include <graph.h>

569

void maine)
(

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE)

ex it (1);

_pie(_GBORDER, 80, 50, 240, 150, 240, 12, 0, 150);
getch() ;

_setvideomode(_DEFAULTMODE);

_pie Functions

_pipe

Description

Remarks

Creates a pipe for reading and writing.

#include <fcntl.h>

#include <errno.h>

#include <io.h>

For O_BINARY and O_TEXT definitions

errno definitions

Prototype declaration

int jlipe(int *phandles, unsigned int psize, int textmode);

phandles[2]

psize

textmode

Array to hold read and write handles

Amount of memory to reserve

File mode

570

A pipe is an artificial file-like I/O channel that a program can create and use to pass infor­
mation to other programs. A pipe is similar to a file in that it has a file pointer or a file de­
scriptor, or both, and can be read from or written to using the input and output functions of
the standard library. Unlike a file, a pipe does not represent a specific file or device. In­
stead, a pipe represents temporary storage in memory that is independent of the program's
own memory and is controlled entirely by the operating system.

Pipes may be used to pass information between programs. For example, the command pro­
cessor in OS/2 creates a pipe when executing a command such as

PROGRAMl I PROGRAM2

The standard output handle of PROGRAM I is attached to the pipe's write handle. The
standard input handle ofPROGRAM2 is attached to the pipe's read handle. This elimi­
nates the need for creating temporary files to pass information to other programs.

The jlipe function creates a pipe. This function is similar to open but opens the pipe for
both reading and writing, returning two file handles instead of one. The program can either
use both sides of the pipe or close the one it does not need. This function typically opens a
pipe in preparation for linking it to a child process.

The jlipe function opens a pipe and returns two handles to the pipe in the phandles argu­
ment. The element phandles[O] contains the read handle, and the element phandles[1] con­
tains the write handle. Pipe file handles are used in the same way as other file handles.
(The low-level input and output functions read and write can read from and write to a
pipe.)

The psize argument specifies the amount of memory, in bytes, to reserve for the pipe.

·571

Return Value

Compatibility

See Also

_pipe

The textmode argument specifies the translation mode for the pipe. The manifest constant
O_TEXT specifies a text translation, and the constant O_BINARY specifies binary transla­
tion. (See fopen for a description of text and binary modes.) If the textmode argument is 0,
the ~ipe function uses the default translation mode specified by the default-mode variable
_fmode.

In multithread programs, no locking is performed. The handles returned are newly opened
and should not be referenced by any thread until after the ~ipe call is complete.

Under OS/2, a pipe is destroyed when all its handles have been cJosed. (If all read handles
on the pipe have been closed, writing to the pipe will cause an error.) All read and write
operations on the pipe wait until there is enough data or enough buffer space to complete
the I/O request.

The ~ipe function returns 0 if successful. A return value of -1 indicates an error, and
errno is set to one of the following values:

Value

EMFILE

ENFILE

Meaning

No more file handles available (too many open files)

System file table overflow

o ANSI 0 DOS • OS/2 • UNIX • XENIX

A similar function (pipe) is available in the XENIX and UNIX operating environments.

cwait, ~close, -popen

Exampw ___ ___

/* PIPE.C: This program uses _pipe to pass streams of text to
* child processes.
*/

#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <math.h>

/* _pipe */

enum PIPES (READ. WRITE 1;
#define NUMPROBLEM 8

/* Constants 0 and 1 for READ and WRITE */

void maine int argc. char *argv[])
(

int hpipe[2];
char hstr[20];
int termstat. pid. problem. c;

/* If no arguments. this is the parent. */
if(argc == 1)
(

/* Open a sets of pipes. */
if(_pipe(hpipe. 256. O_BINARY) == -1)

exit(1);

/* Convert pipe read handle to string and pass as argument to
* spawned child. Program spawns itself (argv[0]).
*/

itoa(hpipe[READ]. hstr. 10);
if(spawnl(P_NOWAIT. argv[0]. argv[0]. hstr. NULL -1)

printf("Spawn failed");

/* Put problem in write pipe. Since child is running simultaneously.
* first solutions may be done before last problem is given.
*/

fore problem = 1000; problem (= NUMPROBLEM * 1000; problem += 1000
(

printf("Son. what is the square root of %d?\n". problem);
write(hpipe[WRITE]. (char *)&problem. sizeof(int));

/* Wait until child is done processing. */
waite &termstat);
if(termstat & 0xff)

printf("Child failed\n");

close(hpipe[READ]);
close(hpipe[WRITE]);

5n

573

1* If there is an argument, this must be the child. *1
else
(

1* Convert passed string handle to integer handle. *1
hpipe[READ] = atoi(argv[1]);

1* Read problem from pipe and calculate solution. *1
for(c = 0; c < NUMPROBLEM; c++)
{

read(hpipe[READ], (char *)&problem, sizeof(int));
printf("Dad, the square root of %d is %3.2f.\n",

problem, sqrt((double)problem));;

Output

Son, what is the square root of 10001
Dad, the square root of 1000 is 31. 62.
Son, what is the square root of 20001
Son, what is the square root of 30001
Dad, the square root of 2000 is 44.72.
Son, what is the square root of 40001
Dad, the square root of 3000 is 54.77 .
Son, what is the square root of 50001
Dad, the square root of 4000 is 63.25.
Son, what is the square root of 60001
Dad, the square root of 5000 is 70.71.
Son, what is the square root of 70001
Dad, the square root of 6000 is 77 .46.
Son, what is the square root of 80001
Dad, the square root of 7000 is 83.67.
Dad, the square root of 8000 is 89.44.

_pipe

_polygon Functions 574

Description

Remarks

Return Value

Compatibility

Draw polygon shapes.

#include <graph.h>

short _far yolygon(short control, struct xycoord _far *points, short numpoints);

short _far yolygon_w(short control, double _far *points, short numpoints);

short _far yolygon _ wxy(short control, struct _ wxycoord _far *points,
short numpoints);

control

points

numpoints

Fill flag

Pointer to an array of structures defining the polygon

Number of points

The yolygon functions draw polygons. The border of the polygon is drawn in the current
color and line style. The yolygon routine uses the view coordinate system (expressed in
xycoord structures), and the yolygon _ wxy and yolygon _ w routines use real-valued win­
dow coordinates (expressed in _ wxycoord structures and in pairs of double-precision float­
ing-point values, respectively).

The argument points is an array of xycoord or _ wxycoord structures or pairs of doubles,
each of which specifies one of the polygon's vertices. (For yolygon_w,points[O] and
points[l] specify the x and y coordinates, respectively, of the first point.) The argument
numpoints indicates the number of elements (the number of vertices) in the points array.

The control argument can be one of the following manifest constants:

Constant

_ GFILLINTERIOR

_GBORDER

Action

Fills the polygon using the current fill mask

Does not fill the polygon

The _ setwritemode, _ setlinestyle, and _ setfillmask functions all affect the output from
the yolygon functions.

The yolygon functions return a nonzero value if the arc is successfully drawn; otherwise,
they return O.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

575 _polygon Functions

See Also _ellipse functions, _floodfill, Jineto functions, -pie functions, _rectangle functions,
_setcolor, _ setflllmask, _setlinestyle, _ setwritemode

Exampw __ __

1* POLYGON.C: This program draws a star-shaped polygon. *1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>
#include <math.h>
#include <stdlib.h>

#define PI 3.1415

void maine)
(

short side, radius = 90, x 0, y = 0;
double radians;
struct xycoord polyside[5];
struct videoconfig vc;

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE

exit(1);

_getvideoconfig(&vc);
_setvieworg(vc.numxpixels I 2, vc. numypixels I 2);

1* Calculate points of star every 144 degrees, then connect them. *1
fore side = 0; side < 5; side++)
(

}

radians = 144 * PI I 180;
polyside[side].xcoord = x + (short)(cos(side * radians
polyside[side].ycoord = y + (short)(sin(side * radians

_polygon(_GFILLINTERIOR, polyside, 5);

getch();
_setvideomode(_DEFAULTMODE);

* radius);
* radius);

Description

Remarks

Return Value

Compatibility

See Also

576

Creates a pipe and executes a command.

#include <stdio.h> Required for function declarations only

FILE * jlopen(char *command, char *mode);

command Command to be executed

mode Mode of returned stream

The jlopen function creates a pipe and asynchronously executes a child copy of the com­
mand processor with the specified command string command. See -pipe for a general dis­
cussion of pipes in OS/2. The character string mode specifies the type of access requested,
as follows:

"r"

"w"

"b"

"t"

Description

The calling process can read the child command's standard
output via the returned stream.

The calling process can write to the child command's standard
input via the returned stream.

Open in binary mode.

Open in text mode.

See Section 2.7, "Input and Output," for a discussion of text and binary modes.

The jlopen function returns a stream associated with one end of the created pipe. The
other end of the pipe is associated with the child command's standard input or standard out­
put. If an error occurs, NULL is returned.

o ANSI 0 DOS • OS/2 • UNIX • XENIX

A similar function (popen) is available in the XENIX and UNIX operating environments.

jlclose, jlipe

Exampw __ __

/* POPEN.C: This program uses _popen and _pclose to receive a stream
* of text from a child system process.
*/

577

#include <stdio.h>
#include <stdlib.h>

void maine)
(

char buffer[128];
FILE *chkdsk;

1* Run CHKDSK so that it writes its output to a pipe. Open pipe
* with read text attribute so that we can read it like a text file.
*1

if((chkdsk = _popen("dir po*.c I sort I more", "rt" » == NULL)
exit(1);

1* Read pipe until end of file. End of file indicates that CHKDSK
* closed its standard out (probably meaning it terminated).
*1

while(!feof(chkdsk)
(

if(fgets(buffer, 128, chkdsk) != NULL)
printf(buffer);

1* Close pipe and print returrr value of CHKDSK. *1
printf("\nChild returned %d\n", _pclose(chkdsk));

Output

3 File(s) 12683264 bytes
Directory of C:\LIBREF
The volume label in drive C is

POLYGON C 921 6-14-89
POPEN C 845 6-19-89
POW C 190 6-13-89

Child returned 0

free

OS2.
6:51p
2:48p
6:07p

_popen

pow Functions 578

Description

Remarks

Return Value

Calculate x raised to the power of y.

#include <math.h>

double pow(double x, double y);

long double powl(long double x, long double y);

x Number to be raised

y Powerofx

. The pow and powl functions compute x raised to the power of y.

The powl function is the 80-bit counterpart, and it uses an 80-bit, 10-byte coprocessor
form of arguments and return values. See the reference page on the long double functions
for more details on this data type.

The pow and powl functions return the value of xY. If x is not 0.0 andy is 0.0, pow and
powl return the value 1. If x is 0.0 and y is negative, pow and powl set errno to ED OM
and return 0.0. If both x and yare 0.0, or if x is negative and y is not an integer, the func­
tion prints a DOMAIN error message to stderr, sets errno to EDOM, and returns 0.0. If an
overflow results, the function sets errno to ERANGE and returns ±HUGE VAL. No mes-
sage is printed on overflow or underflow. -

The pow function does not recognize integral floating-point values greater than 264
, such

as 1. 0E100.

Compatibility pow

II ANSI II DOS • OS/2 • UNIX • XENIX

powl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also exp, log functions, sqrt

Exampw __ __

1* POW.C *1
#include <math.h>
#include <stdio.h>

579

void main()
{

double x = 2.0, y = 3.0, z;

z = pow(x, y);
printf("%.If to the power of %.If ;s %.If\n",x, y, z);

Output

2.0 to the power of 3.0 is 8.0

pow Functions

print!

Description

Remarks

580

Prints fonnatted output to the standard output stream.

#include <stdio.h>

int printf(const char *format [, argument] ...);

format Fonnat control

al:f(ument Optional arguments

The printf function fonnats and prints a series of characters and values to the standard out­
put stream, stdout. The format argument consists of ordinary characters, escape sequen­
ces, and (if arguments follow format) fonnat specifications. The ordinary characters and
escape sequences are copied to stdout in order of their appearance. For example, the line

printf("Line one\n\t\tLine two\n");

produces the output

li ne one
li ne two

If arguments follow theformat string, theformat string must contain specifications that de­
tennine the output fonnat for the arguments.

Fonnat specifications always begin with a percent sign (%) and are read left to right.
When the first fonnat specification (if any) is encountered, the value of the first argument
afterformat is converted and output accordingly. The second fonnat specification causes
the second argument to b.e converted and output, and so on. If there are more arguments
than there are fonnat specifications, the extra arguments are ignored. The results are unde­
fined if there are not enough arguments for all the fonnat specifications.

A fonnat specification, which consists of optional and required fields, has the following
fonn:

%[f7ags] [width] [.precision] [{F I Nih III L}]type

Format Specification Fields

Each field of the fonnat specification is a single character or a number signifying a particu­
lar fonnat option. The simplest fonnat specification contains only the percent sign and a
type character (for example, % 5). The optional fields, which appear before the type charac­
ter, control other aspects of the fonnatting. The fields in a printf fonnat specification are
described in the following list:

581

Field

type

flags

width

precision

F,N

h,l, L

print!

Description

Required character that detennines whether the associated ar­
gument is interpreted as a character, a string, or a number.
(See Table R.2.)

Optional character or characters that control justification of
output and printing of signs, blanks, decimal points, and octal
and hexadecimal prefixes. (See Table R.3.) More than one
flag can appear in a fonnat specification.

Optional number that specifies minimum number of charac­
ters output.

Optional number that specifies maximum number of charac­
ters printed for all or part of the output field, or minimum
number of digits printed for integer values. (See Table RA.)

Optional prefixes that refer to the "distance" to the object
being printed (near or far).

F and N are not part of the ANSI definition for printf. They
are Microsoft extensions that should not be used if ANSI
portability is desired.

Optional prefixes that detennine the size of the argument ex­
pected, as shown below:

Prefix

h

L

Use

Used with the integer types d, i, 0, x, and X
to specify that the argument is short int, or
with u to specify short unsigned int. If
used with %p, it indicates a 16-bit pointer.

Used with d, i, 0, x, and X types to specify
that the argument is long int, or with u to
specify long unsigned int; also used with
e, E, f, g, and G types to specify double
rather than float. If used with %p, it indi­
cates a 32-bit pointer.

Used with e, E, f, g, and G types to specify
long double.

If a percent sign is followed by a character that has no meaning as a fonnat field, the char­
acter is copied to stdout. For example, to print a percent-sign character, use %%.

print! 582

Type Field Characters

The type character is the only required fonnat field for the printf function; it appears after
any optional fonnat fields. The type character detennines whether the associated argument
is interpreted as a character, a string, or a number. (See Table R.2.)

Table R.2 Type Characters for printf

Character

d

u

0

x
X

f

e

E

g

G

c

s

o

p

Type

iot

iot

iot

iot

iot

iot

double

double

double

double

double

iot

String

Pointer to
integer

Far pointer
to void

Output Format

Signed decimal integer.

~igned decimal integer.

Unsigned decimal integer.

Unsigned octal integer.

Unsigned hexadecimal integer, using "abcdef."

Unsigned hexadecimal integer, using "ABCDEF."

Signed value having the form [-]dddd.dddd, where dddd is one or
more decimal digits. The number of digits before the decimal point
depends on the magnitude of the number, and the number of digits
after the decimal point depends on the requested precision.

Signed value having the form [-]d.dddd e [sign]ddd, where d is a
single decimal digit, dddd is one or more decimal digits, ddd is ex­
actly three decimal digits, and sign is + or-.

Identical to the e format, except that E, rather than e, introduces the
exponent.

Signed value printed in for e format, whichever is more compact for
the given value and precision. The e format is used only when the
exponent of the value is less than - 4 or greater than or equal to the
precision argument. Trailing zeros are truncated, and the decimal
point appears only if one or more digits follow it.

Identical to the g format, except that G, rather than g, introduces the
exponent (where appropriate).

Single character.

Characters printed up to the first null character ('\0') or until the
precision value is reached.

Number of characters successfully written so far to the stream or
buffer; this value is stored in the integer whose address is given as
the argument.

Prints the address pointed to by the argument in the form x.nx:yyyy,
where xux is the segment and yyyy is the offset, and the digits x and
yare uppercase hexadecimal digits; %hp indicates a near pointer
and prints only the offset of the address.

583 print!

Flag Directives

The first optional field of the fonnat specification isflag. A flag directive is a character
that justifies output and prints signs, blanks, decimal points, and octal and hexadecimal pre­
fixes. More than one flag directive may appear in a fonnat specification. (See Table R.3.)

Table R.3 Flag Characters for printf

Flag

+

o

blank (' ')

Meaning

Left justify the result within the given
field width.

Prefix the output value with a sign
(+ or -) if the output value is of a
signed type.

If width is prefixed with 0, zeros are
added until the minimum width is
reached. If 0 and - appear, the 0 is
ignored. If 0 is specified with an
integer format (i, u, x, X, 0, d), the
o is ignored.

Prefix the output value with a blank if
the output value is signed and positive;
the blank is ignored if both the blank
and + flags appear.

When used with the 0, x, or X format,
the # flag prefixes any nonzero output
value with 0, Ox, or OX, respectively.

When used with the e, E, or f format,
the # flag forces the output value to con­
tain a decimal point in all cases.

When used with the g or G format, the
flag forces the output value to contain
a decimal point in all cases and pre­
vents the truncation of trailing zeros.

Ignored when used with c, d, i, u, or s.

Default

Right justify.

Sign appears only for negative
signed values (-).

No padding.

No blank appears.

No blank appears.

Decimal point appears only if
digits follow it.

Decimal point appears only if
digits follow it. Trailing zeros are
truncated.

print! 584

Width Specification

The second optional field of the fonnat specification is the width specification. The width
argument is a non-negative decimal integer controlling the minimum number of characters
printed. If the number of characters in the output value is less than the specified width,
blanks are added to the left or the right of the values-depending on whether the
- flag (for left justification) is specified-until the minimum width is reached. If width is
prefixed with 0, zeros are added until the minimum width is reached (not useful for left­
justified numbers).

The width specification never causes a value to be truncated. If the number of characters in
the output value is greater than the specified width, or width is not given, all characters of
the value are printed (subject to the precision specification).

The width specification may be an asterisk (*), in which case an iot argument from the
argument list supplies the value. The width argument must precede the value being for­
matted in the argument list. A nonexistent or small field width does not cause a truncation
of a field; if the result of a conversion is wider than the field width, the field expands to
contain the conversion result.

Precision Specification

The third optional field of the fonnat specification is the precision specification. It speci­
fies a non-negative decimal integer, preceded by a period (.), which specifies the number
of characters to be printed, the number of decimal places, or the number of significant
digits. (See Table R.4.) Unlike the width specification, the precision specification can
cause truncation of the output value, or rounding in the case of a floating-point value. If
precision is specified as zero and the value to be converted is zero, the result is no charac­
ters output, as shown below:

printf("%.0d", 0); 1* No characters output *1

The precision specification may be an asterisk (:Ie), in which case an iot argument from the
argument list supplies the value. The precision argument must precede the value being for­
matted in the argument list.

The interpretation of the precision value and the default when precision is omitted depend
on the type, as shown in Table R.4.

585 print!

Table R.4 How printf Precision Values Affect Type

Type

d
i
u
o
x
X

e
E

f

g
G

c

s

Meaning

The precision specifies the minimum num­
ber of digits to be printed. If the number
of digits in the argument is less than
precision, the output value is padded on
the left with zeros. The value is not trun­
cated when the number of digits exceeds
precision.

The precision specifies the number of
digits to be printed after the decimal
point. The last printed digit is rounded.

The precision value specifies the number
of digits after the decimal point. If a deci­
mal point appears, at least one digit
appears before it. The value is rounded to
the appropriate number of digits.

The precision specifies the maximum
number of significant digits printed.

The precision has no effect.

The precision specifies the maximum
number of characters to be printed. Char­
acters in excess of precision are not
printed.

Default

If precision is 0 or omitted entirely, or if
the period (.) appears without a number
following it, the precision is set to 1.

Default precision is 6; if precision is 0 or
the period (.) appears without a number
following it, no decimal point is printed.

Default precision is 6; if precision is 0, or
if the period (.) appears without a number
following it, no decimal point is printed.

Six significant digits are printed, with any
trailing zeros truncated.

Character is printed.

Characters are printed until a null charac­
ter is encountered.

If the argument corresponding to a floating-point specifier is infinite, indefinite, or not a
number (NAN), the printffunction gives the following output:

Value

+ infinity

-infinity

Indefinite

NAN

Output

1.#INFrandom-digits

-l.#INFrandom-digits

digit.#INDrandom-digits

digit.#NANrandom-digits

print!

Return Value

Compatibility

Size and Distance Specification

For printf, the format specification fields F and N refer to the "distance" to the object
being read (near or far), and h and I refer to the "size" of the object being read (16-bit
short or 32-bit long). The following list clarifies this use of F, N, h, I, and L:

Program Code

printf (It %Nslt);

printf (It %Fslt);

. printf (" %Nn");

printf (" %Fn");

printf (" %hp");

printf (" %Ip");

printf (" %Nhn");

printf (" %Nln");

printf (" %Fhn");

printf (" %Fln");

Action

Print near string

Print far string

Store char count in near int

Store char count in far int

Print a 16-bit pointer (xxxx)

Print a 32-bit pointer (xxxx:xxxx)

Store char count in near short int

Store char count in near long int

Store char count in far short int

Store char count in far int

The specifications" %hs" and" %Is" are meaningless to printf. The specifications

586

It %Nplt and" %Fp" are aliases for" %hp" and It %Iplt for the sake of compatibility with
Microsoft C version 4.0.

The printf function returns the number of characters printed, or a negative value in the
case of an error.

• ANSI. DOS • OS/2 • UNIX • XENIX

587 printf

See Also fprintf, scanf, sprintf, vfprintf, vprintf, vsprintf

Exampre __ ___

/* PRINTF.C illustrates output formatting with printf. *1

#include <stdio.h)

void maine)
(

char ch = 'h', *string "computer";
int count = -9234;
double fp = 251.7366;

1* Display integers. *1
printf("Integer formats:\n~

"\tDecimal: %d Justified: %.6d Unsigned: %u\n",
count, count, count, count);

printf("Decimal %d as:\n\tHex: %Xh C hex: 0x%x Octal: %o\n",
count, count, count, count);

1* Display in different radixes. *1
printf("Digits 10 equal:\n\tHex: %i Octal: %i Decimal: %i\n",

0x10, 010, 10);

1* Display characters. *1
printf("Characters in field:\n%10c %5c\n", ch, ch);

1* Display strings. *1
printf("Strings in field:\n%25s\n%25.4s\n", string, string);

1* Display real numbers. *1
printf("Real numbers:\n\t%f

1* Display pointers. *1

%.2f %e %E\n", fp, fp, fp, fp);

printf("Address as:\n\tDefault: %p Near: %Np Far: %Fp\n",
&count, (int _near *)&count, (int _far *)&count);

1* Count characters printed. *1
printf("Display to here:\n");
printf("1234567890123456%n78901234567890\n" , &count);
printf("\tNumber displayed: %d\n\n", count);

print!

Output

Integer formats:
Decimal: -9234 Justified: -009234 Unsigned: 56302

Decimal -9234 as:
Hex: DBEEh C hex: 0xdbee Octal: 155756

Digits 10 equal:
Hex: 16 Octal: 8 Decimal: 10

Characters in field:
h h

Strings in field:

Real numbers:

computer
camp

251. 736600 251. 74
Address as:

2.517366e+002

Default: 141C Near: 141C Far: 0087:141C
Display to here:
123456789012345678901234567890

Number displayed: 16

2.517366E+002

588

589

Description

Remarks

Return Value

Compatibility

See Also

Writes a character to a stream (pute) or to stdout (putehar).

#include <stdio.h>

int pute(int c, FILE *stream);

int putehar(int c);

c

stream

Character to be written

Pointer to FILE structure

putc, putchar

The pute routine writes the single character c to the output stream at the current position.
The putehar routine is identical to pute(e, stdout).

These routines are implemented as both macros and functions. See S~ction 1.4, "Choosing
Between Functions and Macros," for a discussion of how to select between the macro and
function forms.

The pute and putehar routines return the character written, or EOF in the case of an error.
Any integer can be passed to pute, but only the lower 8 bits are written.

• ANSI • DOS • OS/2 • UNIX • XENIX

fpute, fputehar, gete, getehar

Exampre __ ___

1* PUTC.C: This program uses putc to write buffer to a stream.
* If an error occurs, the program will stop before writing the
* entire buffer.
*1

#include <stdio.h>

void maine)
(

FILE *stream;
char *p, buffer[] = "This is the line of output\n";
int ch;

putc, putchar

1* Make standard out the stream and write to it. *1
stream = stdout;
for(p = buffer; (chl= EOF) && (*p 1= '\0'); p++)

ch = putc(*p, stream);

Output

This is the line of output

590

591 patch

Description . Writes a character to the console.

#include <conio.h> Required only for function declarations

int putch(int c);

c Character to be output

Remarks The putch function writes the character c directly (without buffering) to the console.

Return Value The function returns c if successful, and EOF if not.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also cprintf, getch, getche

Exampw __ __

1* GETCH.C: This program reads characters from the keyboard until it
* receives a 'Y' or 'y'.
*1

#include <conio.h>
#include <ctype.h>

void main()
(

int ch;

cputs("Type 'Y' when finished typing keys: ");
do
(

ch = getch();
ch = toupper(ch);

while(ch 1= 'Y');

putch(ch);
putch('\r');
putch ('\n');

Output

1* Carriage return *1
1* Line feed *1

Type 'Y' when finished typing keys: Y

pulenv

Description

Remarks

Return Value

592

Creates new environment variables.

#include <stdlib.h> Required only for function declarations

int putenv(char *envstring);

envstring Environment-string definition

The putenv function adds new environment variables or modifies the values of existing en­
vironment variables. Environment variables define the environment in which a process ex­
ecutes (for example, the default search path for libraries to be linked with a program).

The envstring argument must be a pointer to a string with the form

varname=string

where varname is the name of the environment variable to be added or modified and string
is the variable's value. If varname is already part of the environment, its value is replaced
by string; otherwise, the new varname variable and its string value are added to the en­
vironment. A variable can be set to an empty value by specifying an empty string.

This function affects only the environment that is local to the currently running process; it
cannot be used to modify the command-level environment. When the currently running
process terminates, the environment reverts to the level of the parent process (in most
cases, the operating system level). However, the environment affected by putenv can be
passed to any child processes created by spawn, exec, system, or (in OS/2 only) ~open,
and these child processes get any new items added by putenv.

Never free a pointer to an environment entry, because the environment variable will then
point to freed space. A similar problem can occur if you pass putenv a pointer to a local
variable, then exit the function in which the variable is declared.

The putenv function operates only on data structures accessible to the run-time library and
not on the environment "segment" created for a process by DOS or OS/2.

Note that environment-table entries must not be changed directly. If an entry must be
changed, use putenv. To modify the returned value without affecting the environment
table, use strdup or strcpy to make a copy of the string.

The getenv and putenv functions use the global variable environ to access the environ­
ment table. The putenv function may change the value of environ, thus invalidating the
envp argument to the main function. Therefore, it is safer to use the environ variable to
access the environment information.

The putenv function returns 0 if it is successful. A return value of -1 indicates an error.

593 putenv

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also getenv

Exampw __ __

1* GETENV.C: This program uses getenv to retrieve the LIB environment
* variable and then uses put en v to change it to a new value.
*1

#include <stdlib.h>
#include <stdio.h>

main()
(

char *libvar;

1* Get the value of the LIB environment variable. *1
libvar'" getenv("LIB");
if(libvar != NULL)

printf("Original LIB variable is: %s\n", libvar);

1* Attempt to change path. Note that this only affects the environment
* variable of the current process. The command processor's environment
* is not changed.
*1

putenv("LIB=c:\\mylib;c:\\yourlib");

1* Get new value. *1
libvar = getenv("LIB");
if(libvar != NULL)

printf("New LIB variable is: %s\n", libvar);

Output

Original LIB variable is: C:\LIB
New LIB variable is: c:\mylib;c:\yourlib

_putimage Functions 594

Description

Remarks

Retrieve images from a buffer.

#include <graph.h>

void _far _putimage(short x, short y, char _huge *image, short action);

void _far -putimage_w(double wx, double wy, char _huge *image, short action);

x,y

image

action

wx,wy

Position of upper-left corner of image

Stored image buffer

Interaction with existing screen image

Position of upper-left corner of image

The -putimage function transfers to the screen the image stored in the buffer that image
points to.

In the -putimage function, the upper-left corner of the image is placed at the view coordi­
nate point (x, y). In the -putimage_ w function, the upper-left corner of the image is placed
at the window coordinate point (wx, wy).

The action argument defines the interaction between the stored image and the one that is
already on the screen. It may be anyone of the following manifest constants (defined in
GRAPH.H):

Constant

GAND

_GPRESET

Meaning

Transfers the image over an existing image on the screen. The
resulting image is the logical-AND product of the two images:
points that had the same color in both the existing image and
the new one will remain the same color, while points that have
different colors are joined by logical-AND.

Superimposes the image onto an existing image. The new
image does not erase the previous screen contents.

Transfers the data point-by-point onto the screen. Each point
has the inverse of the color attribute it had when it was taken
from the screen by _getimage, producing a negative image.

595

Return Value

Compatibility

See Also

Example

_GPSET

None.

_putimage Functions

Transfers the data point-by-point onto the screen. Each point
has the exact color attribute it had when it was taken from the
screen by ~etimage.

Causes the points on the screen to be inverted where a point
exists in the image buffer. This behavior is exactly like that of
the cursor: when an image is put against a complex back­
ground twice, the background is restored unchanged. This al­
lows you to move an object around without erasing the
background. The _GXOR constant is a special mode often
used for animation.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getimage, _ imagesize

See the example for _getimage.

puts 596

Description Writes a string to stdout.

#include <stdio.h>

int puts(const char *string);

string String to be output

Remarks The puts function writes string to the standard output stream stdout, replacing the string's
terminating null character (,\0') with a newline character (\n) in the output stream.

Return Value

Compatibility

See Also

The puts function returns a nonnegative value if it is successful. If the function fails, it
returns EOF.

• ANSI • DOS • OS/2 • UNIX • XENIX

fputs, gets

Exampw __ __

1* PUTS.C: This program uses puts to write a string to stdout. *1

#include <stdio.h>

void main()
(

puts("Hello world from puts!");

Output

Hello world from puts!

597

Description Writes an integer to a stream.

#include <stdio.h>

int putw(int binint, FILE *stream);

binint

stream

Binary integer to be output

Pointer to FILE structure

putw

Remarks The putw function writes a binary value of type int to the current position of stream. The
putw function does not affect the alignment of items in the stream, nor does it assume any
special alignment.

The putw function is provided primarily for compatibility with previous libraries. Note
that portability problems may occur with putw, since the size of an int and ordering of
bytes within an int differ across systems.

Return Value The putw function returns the value written. A return value of EOF may indicate an error~
Since EOF is also a legitimate integer value, ferror should be used to verify an error.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also getw

Exampm __ __

1* PUTW.C: This program uses putw to write a word to a stream,
* then performs an error check.
*1

#include <stdio.h>
#include <stdlib.h>

void main()
(

FILE *stream;
unsigned u;

i f ((s t rea m = fop e n (" d a t a . 0 u t", H W b H » == NUL L)
ex it (1);

for(u.= 0; u < 10; u++)
(

putw(u + 0x2132, stdout);
putw(u + 0x2132, stream); 1* Write word to stream. *1

putw

}

if(ferror(stream))
{

printf("putw failed");
clearerr(stream);
ex it (1);

printf("\nWrote ten words\n");
fclose(stream);

Output

2131415161718191:1;1
Wrote ten words

598

1* Make error check. *1

599

Description

Remarks

Perfonns a quick sort.

#include <stdJih.h>

#include <search.h>

For ANSI compatibility

Required only for function declarations

void qsort(void *base, size_t num, size_t width,
int(*compare) (const void *eleml, const void *elem2));

base

num

width

Start of target array

Array size in elements

Element size in bytes

Comparison function

Pointer to the key for the search

qsort

compare

eleml

elem2 Pointer to the array element to be compared with the key

The qsort function iinplements a quick-sort algorithm to sort an array of num elements,
each of width bytes. The argument base is a pointer to the base of the array to be sorted.
The qsort function overwrites this array with the sorted elements.

The argument compare is a pointer to a user-supplied routine that compares two array ele­
ments and returns a value specifying their relationship. The qsort function calls the
compare routine one or more times during the sort, passing pointers to two array elements
on each call:

compare((void *) eleml, (void *) elem2);

The routine must compare the elements, then return one of the following values:

Value

<0

=0

>0

Meaning

eleml less than elem2

eleml equivalent to elem2

eleml greater than elem2

The array is sorted in increasing order, as defined by the comparison function. To sort an
array in decreasing order, reverse the sense of "greater than" and "less than" in the com­
parison function.

qsort 600

Return Value None.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also bsearch, lsearch

Exampre __________ ~--
/* QSORT.C: This program reads the command-line parameters and
* uses qsort to sort them. It then displays the sorted arguments.
*/

#include <search.h>
#include <string.h>
#include <stdio.h)

int comparee char **argl. char **arg2); /* Prototype */

void maine int argc. char **argv)
{

i nt i;

/* Eliminate argv[0] from sort: */
argv++;
argc-;

/* Sort remalnlng args using Quicksort algorithm: */
qsort((void *)argv. (size_t)argc. sizeof(char *). compare);

/* Output sorted list: */
fore i = 0; i < argc; ++i

printf("%s ". argv[i]);
printf("\n");

int comparee char **argl. char **arg2
(

/* Compare all of both strings: */
return strcmpi(*argl. *arg2);

Output

[C:\LIBREF] qsort every good boy deserves favor
boy deserves every favor good

601

Description

Remarks

raise

Sends a signal to the executing program.

#include <signal.h>

int raise(int sig);

sig Signal to be raised

The raise function sends sig to the executing program. If a signal-handling routine for sig
has ben installed by a prior call to signal, raise causes that routine to be executed. If no
handler routine has been installed, the default action (as listed below) is taken.

The signal value sig can be one of the following manifest constants:

Signal

SIGABRT

SIGBREAK

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

SIGUSRI
SIGUSR2
SIGUSR3

Meaning

Abnormal termination.

CfRL+ BREAK interrupt.

Floating-point error.

Illegal· instruction. This signal
is not generated by DOS or
OS/2, but is supported for
ANSI compatibility.

CfRL+ c interrupt.

Illegal storage access. This
signal is not generated by
DOS or OS/2, but is supported
for ANSI compatiblity.

Termination request sent to
the program. This signal is not
generated by DOS or OS/2,
but is supported for ANSI
compatibility.

User-defined signals.

Default

Terminates the calling pro­
gram with exit code 3.

Terminates the calling pro­
gram with exit code 3.

Terminates the calling
program.

Terminates the calling
program.

Issues INT23H.

Terminates the calling
program.

Ignores the signal.

Ignores the signal.

raise

Return Value

Compatibility

See Also

Example

602

If successful, the raise function returns O. Otherwise, it returns a nonzero value.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

abort, signal

See the example for signal.

603 rand

Description Generates a pseudorandom number.

#include <stdlih.h> Required only for function declarations

int rand(void);

Remarks The rand function returns a pseudorandom integer in the range 0 to RAND_MAX. The
srand routine can be used to seed the pseudorandom-number generator before calling
rand.

Return Value The rand function returns a pseudorandom number, as described above. There is no error
return.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also srand

Exampw __ __

/* RAND.C: This program seeds the random-number generator with the
* time, then displays 20 random integers.
*/

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void main()
[

int i;

/* Seed the random-number generator with current time so that
* the numbers will be different every time we run.
*/

srand((unsigned)time(NULL));

/* Display 10 numbers. */
for(i = 0; i < 10; i++)

printf(" %6d\n", rand());

rand

Output

19471
16395
8268

15582
6489

28356
27042

5276
23070
10930

604

605

Description

Remarks

Return Value

Compatibility

read

Reads data from a file.

#include <io.h> Required only for function declarations

int read(int handle, void *buffer, unsigned int count);

handle

buffer

count

Handle referring to open file

Storage location for data

Maximum number of bytes

The read function attempts to read count bytes into buffer from the file associated with
handle. The read operation begins at the current position of the file pointer associated with
the given file. After the read operation, the file pointer points to the next unread character.

The read function returns the number of bytes actually read, which may be less than count
if there are fewer than count bytes left in the file, or if the file was opened in text mode
(see below). The return value 0 indicates an attempt to read at end-of-file. The return value
-1 indicates an error, and errno is set to the following value:

Value

EBADF

Meaning

The given handle is invalid; or the file is not open for reading;
or (DOS versions 3.0 and later and OS/2 only) the file is
locked.

If you are reading more than 32K (the maximum size for type int) from a file, the return
value should be of type unsigned int (see the example that follows). However, the maxi­
mum number of bytes that can be read from a file in one operation is 65,534, since 65,535
(or OxFFFF) is indistinguishable from -1, and therefore cannot be distinguished from an
error return.

If the file was opened in text mode, the return value may not correspond to the number of
bytes actually read. When text mode is in effect, each carriage-return-line-feed (CR-LF)

pair is replaced with a single line-feed character. Only the single line-feed character is
counted in the return value. The replacement does not affect the file pointer.

Note that under DOS and OS/2, when files are opened in text mode, a CTRL+Z character is
treated as an end-of-file indicator. When the CTRL+Z is encountered, the read terminates,
and the next read returns 0 bytes. The Iseek function will clear the end-of-file indicator.

o ANSI • DOS • OS/2 • UNIX • XENIX

read 606

See Also creat, fread, open, write

Exampre __ __

1* READ.C: This program opens a file named READ.C and tries to read 60,000
* bytes from that file using read. It then displays the actual
* number of bytes read from READ.C.
*1

#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

char buffer[60000];

void main()
(

int fh;

1* Needed only for O_RDWR definition *1

unsigned int nbytes = 60000, bytesread;

1* Open file for input: *1
if((fh = open("read.c", O_RDONLY » == -1
(

perror("open failed on input file");
ex it (1);

1* Read in input: *1
if ((bytes read = read (fh, buffer, nbytes)) <= 0)

perror("Problem reading file");
else

printf("Read %u bytes from file\n", bytesread);

close(fh);

Output

Read 747 bytes from file

607

Oescrlpllon

Remarks

Reallocate memory blocks.

#include <stdlib.h>

#include <malloc.h>

rea//oc Functions

For ANSI compatibility (realloe only)

Required only for function declarations

void *realloc(void *memblock, size_t size);

void _based(void) * _brealloc(_segment seg, void _based(void) *memblock,
size_t size);

void _far * _frealloe(void _far *memblock, size_t size);

void _near * _nrealloe(void _near *memblock, size_t size);

memblock

size

seg

Pointer to previously allocated memory block

New size in bytes

Segment selector

The realloe family of functions changes the size of a previously allocated memory block.
The memblock argument points to the beginning of the memory block. If memblock is
NULL, realloe functions in the same way as malloe and allocates a new block of size
bytes. If memblock is not NULL, it should be a pointer returned by ealloe, malloe, or a
prior call to realloe.

The size argument gives the new size of the block, in bytes. The contents of the block are
unchanged up to the shorter of the new and old sizes, although the new block may be in a
different location.

The memblock argument can also point to a block that has been freed, as long as there has
been no intervening call to the corresponding ealloe, malloe, _expand, or realloe func­
tion. If successful, the reallocated block is marked in use.

In large data models (that is, compact-, large-, and huge-model programs), realloe maps to
_frealloe. In small data models (tiny-, small-, and medium-model programs), realloe maps
to nrealloe.

rea//oc Functions 608

The various realloe functions reallocate memory in the heap specified in the following list:

Return Value

Compatibility

See Also

Function

realloc

brealloe

_frealloe

nrealloe

Heap

Depends on data model of program

Based heap specified by seg value

Far heap (outside default data segment)

Near heap (inside default data segment)

The realloe functions return a void pointer to the reallocated (and possibly moved)
memory block.

The return value is NULL if the size is zero and the buffer argument is not NULL, or if
there is not enough available memory to expand the block to the given size. In the first
case, the original block is freed. In the second, the original block is unchanged.

The storage space pointed to by the return value is guaranteed to be suitably aligned for
storage of any type of object. To get a pointer to a type other than void, use a type cast on
the return value.

realloe

• ANSI • DOS • OS/2 • UNIX • XENIX

_brealloe, _frealloe, _nrealloe

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

ealloe functions, free functions, malloe functions

Exampw __ __

/* REALLOC.C: This program allocates a block of memory for buffer
* and then uses _msize to display the size of that block. Next, it
* uses realloc to expand the amount of memory used by buffer
* and then calls _msize again to display the new amount of
* memory allocated to buffer.
*/

609

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void maine)
{

long *buffer;
size_t size;

if((buffer = (long *)malloc(1000 * sizeof(long) » == NULL
exit(1);

size - _msize(buffer);
printf("Size of block after malloc of 1000 longs: %u\n", size);

/* Reallocate and show new size: */

rea//oc Functions

if((buffer = realloc(buffer, size + (1000 * sizeof(long » » == NULL)
ex it (1);

size = _msize(buffer);
printf("Size of block after realloc of 1000 more longs: %u\n", size);

free(buffer);

Output

Size of block after mal lac of 1000 longs: 4000
Size of block after real lac of 1000 more longs: 8000

_rectangle Functions 610

Description

Remarks

Draw rectangles.

#include <graph.h>

short _far _rectangle(short control, short xl, short yl, short x2, short y2);

short _far ~rectangle _ w(short control, double wxl, double wyl, double wx2,
double wy2);

short _far _rectangle_wxy(short control, struct _wxycoord _far *pwAyl,
struct _ wxycoord _far *pwxy2);

control Fill flag

xl,yl Upper-left comer

x2,y2 Lower-right comer

wxl, wyl Upper-left comer

wx2, wy2 Lower-right comer

pwxyl Upper-left comer

pwxy2 Lower-right comer

The _rectangle functions draw a rectangle with the current line style.

The _rectangle function uses the view coordinate system. The view coordinate points
(xl, yl) and (x2, y2) are the diagonally opposed comers of the rectangle.

The _rectangle _ w function uses the window coordinate system. The window coordinate
points (wxl, wyl) and (wx2, wy2) are the diagonally opposed comers of the rectangle.

The _rectangle _ wxy function uses the window coordinate system. The window coordinate
points (pwxyl) and (pwxy2) are the diagonally opposed comers of the rectangle. The
coordinates for the _rectangle_wxy routine are given in terms of an _wxycoord structure
(defined in GRAPH.H), which contains the following elements:

Element

double wx

double wy

Description

window x coordinate

window y coordinate

611

Return Value

Compatibility

See Also

_rectangle Functions

The control parameter can be one of the following manifest constants:

Constant

_ GFILLINTERIOR

_GBORDER

Action

Fills the figure with ~he current color using the current fill
mask

Does not fill the rectangle

If the current fill mask is NULL, no mask is used. Instead, the rectangle is filled with the
current color.

If you try to fill the rectangle with the _ floodfill function, the rectangle must be bordered
by a solid line-sty Ie pattern.

The function returns a nonzero value if the rectangle is drawn successfully, or 0 if not.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_arc functions, _ellipse functions, _floodfill, ~etcolor, Jineto functions,
J1ie functions, _setcolor, _ setfillmask

Exampw __ __

1* RECT.C: This program draws a rectangle. *1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void maine)
(

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE)

. ex it (1);

_rectangle(_GBORDER, 80, 50, 240, 150);

getch() ;

_setvideomode(_DEFAULTMODE);

_register/onts 612

Description

Remarks

Return Value

Compatibility

See Also

Example

Initializes the fonts graphics system.

#include <graph~h>

short _far _registerfonts(unsigned char _far *pathname);

pathname Path name specifying .FON files to be registered

The _registerfonts function initializes the fonts graphics system. Font files must be
registered with the _registerfonts function before any other font-related library function
Lgetgtextextent, _outgtext, _setfont, _unregisterfonts) can be used.

The _registerfonts function reads the specified files and loads font header information
into memory. Each font header takes up about 140 bytes of memory.

The path name argument is the path specification and file name of valid .FON files. The
pathname can contain standard DOS wild-card characters.

The font functions affect only the output from the font output function _ outgtext; no other
C run-time output functions are affected by font usage.

The _registerfonts function returns a positive value which indicates the number of fonts
successfully registered. A negative return value indicates failure. The following negative
values may be returned:

Value

-1

-2

-3

Meaning

No such file or directory.

One or more of the .FON files was not a
valid, binary .FON file.

One or more of the .FON files is damaged.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getfontinfo, Jetgtextextent, _outgtext, _setfont, _unregisterfonts

See the example for _ outgtext.

613

Description

Remarks

_remapaiipaiette, _remappaiette

Remap all palette colors.

#include <graph.h>

short _far _remapallpalette(long _far *colors);

long _far _remappalette(short index, long color);

colors

index

color

Color value array

Color index to reassign

Color value to assign color index to

The _remapallpalette function remaps the entire color palette simultaneously to the colors
. given in the colors array. The colors array is an array of long integers where the size of the

array varies from 16 to 64 to 256, depending on the video mode. The number of colors
mapped depends on the number of colors supported by the current video mode. The
_remapallpalette function works in all video modes (except _ ORESCOLOR mode), but
only with EGA, MCGA, or VGA hardware.

The default color values for a color text on 16-color graphic~ mode are shown below:

Number Color Number Color

0 Black 8 Dark gray

Blue 9 Light blue

2 Green 10 Light green

3 Cyan 11 Light cyan

4 Red 12 Light red

5 Magenta 13 Light magenta

6 Brown 14 Yellow

7 White 15 Bright white

The first array element specifies the new color value to be associated with color index 0
(the background color in graphics modes). After the call to _remapallpalette, calls to
_setcolor will index into the new array of colors. The mapping done by _remapallpalette
affects the current display immediately.

_remapallpalette, _remappalette 614

The colors array can be larger than the number of colors supported by the current video
mode, but only the first n elements are used, where n is the number of colors supported by
the current video mode, as indicated by the numcolors element of the videoconfig
structure.

The long color value is defined by specifying three bytes of data representing the three
component colors: red, green, and blue.

Each of the three bytes represents the intensity of one of the red, green, or blue component
colors, and must be in the range 0-31. In other words, the low-order six bits of each byte
specify the component's intensity and the high-order two bits should be zero. The fourth
(high-order) byte in the long is unused and should be set to zero. The diagram below
shows the ordering of bytes within the long value.

For example, to create a lighter shade of blue, start with lots of blue, add some green, and
maybe a little bit of red. The three-byte color value would be:

blue byte green byte
00011111 00101111
high ------> low order

red byte
00011111

Manifest constants are defined in GRAPH.H for the default color values corresponding to
color indices 0-15 in color text modes and 16-color graphics modes, as sho.wn below:

Index Constant Index Constant

0 _BLACK 8 _GRAY

_BLUE 9 _LIGHTBLUE

2 _GREEN 10 _LIGHTGREEN

3 _CYAN 11 _LIGHTCYAN

4 _RED 12 _LIGHTRED

5 _MAGENTA 13 _LIGHTMAGENTA

6 _BROWN 14 _YELLOW

7 _WHITE 15 _BRIGHTWHITE

The VGA supports a palette of 262,144 colors (256K) in color modes, and the EGA sup­
ports a palette of only 64 different colors. Color values for EGA are specified in exactly
the same way as with the VGA; however, the low-order four bits of each byte are simply
ignored.

The _ remappalette function assigns a new color value color to the color index given by
index. This remapping affects the current display immediately.

615

Return Value

Compatibility

See Also

_remapaiipaiette, _remappaiette

The _remap palette function works in all graphics modes, but only with EGA, MeGA,
or VGA hardware. An error results if the function is called while using any other
configuration.

The color value used in _remappalette is defined and used exactly as noted above for
_remap all palette. The range of color indices used with _remappalette depends on the
number of colors supported by the video mode.

The _remapallpalette and _remappalette functions do not affect the presentation­
graphics palettes, which are manipulated with the -pg_getpalette, -pg_setpalette, and
-pg_resetpalette functions.

If a VGA or MeGA adapter is connected to an analog monochrome monitor, the color
value is transformed into its gray-scale equivalent, based on the weighted sum of its red,
green, and blue components (30% red + 50% green + 11 % blue). The original red, green,
and blue values are lost.

If successful, _remapallpalette returns -1 (short). In case of an error, _remapallpalette
returns 0 (short).

If successful, _remappalette returns the color value previously assigned to index, or -1 if
the function is inoperative (not EGA, VGA, or MeGA), or if the color index is out of
range.

Note that _remapallpalette returns a short value and _remap palette returns a long value.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_ selectpalette, _ setbkcolor, _ setvideomode

Exampw __ __

1* RMPALPAL.C: This example illustrates functions for assigning
* color values to color indices. Functions illustrated include:
* _remappalette _remapallpalette
*1

#include <graph.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>

1* Macro for mixing Red, Green, and Blue elements of color */
#define RGB(r,g,b) «(long) «b) « 8 I (g» « 8) I (r»

_remapailpaiette, _,emappaiette

long tmp, pal[256];
void main()
(

short red, blue, green;
short inc, i, mode, cells, x, y, xinc, yinc;
cha r buf[40] ;
struct videoconfig vc;

/* Make sure all palette numbers are valid. */
for(i. = 0; i < 256; i++)

pal[i] = _BLACK;

/* Loop through each graphics mode that supports palettes. */
for(mode = _MRES4COLOR; mode <= _MRES256COLOR; mode++)
(

if(mode == _ERESNOCOLOR
mode++;

if(!_setvideomode(mode
continue;

/* Set variables for each mode. */
_getvideoconfig(&vc);
switch(vc.numcolors)
{

case 256: /* Active bits in this order: */
cells = 13;
inc = 12; 1* ???????? ??bbbbbb ??gggggg ??rrrrrr */
break;

case 16:
cells = 4;
if((vc.mode == _ERESCOLOR) I I (vc.mode == _VRES16COLOR))

inc = 16; /* ???????? ??bb???? ??gg???? ??rr???? */
else

inc = 32;
brea k;

case 4:
cell s = 2;
inc = 32;
brea k;

default:
continue;

/* ???????? ??Bb???? ??Gg???? ??Rr???? */

/* ???????? ??Bb???? ??Gg???? ??Rr???? */

xinc vc.numxpixels / cells;
yinc = vc.numypixels / cells;

616

617 _remapallpaiette, _remappalette

1* Fill palette arrays in BGR order. *1
for(i = 0, blue = 0; blue < 64; blue += inc)

for(green = 0; green < 64; green += inc)
for(red = 0; red < 64; red += inc)
(

pal[i] = RGB(red, green, blue);
1* Special case of using 6 bits to represent 16 colors.
* If both bits are on for any color, intensity is set.
* If one bit is set for a color, the color is on.
*1

if(inc == 32
pal[i + 8] = pal[i] I (pal[i] » 1);

i++;

1* If palettes available, remap all palettes at once. *1
if(!_remapallpalette(pal))
(

_setvideomode(_DEFAULTMODE);
_outtext("Palettes not available with this adapter");
ex it (1);

1* Draw colored squares. *1
for(i = 0, x = 0; x < (x;nc * cells); x += x;nc

for(y = 0; Y < (yinc * cells); y += yinc)
(

_setcolor(;++);
_rectangle(_GFILLINTERIOR, x, y, x + xinc, y + yinc);

1* Note that for 256-color mode, not all colors are shown. The number
* of colors from mixing three base colors can ne~er be the same as
* the number that can be shown on a two-dimensional grid.
*1

sprintf(buf, "Mode %d has %d colors", vc.mode, vc.numcolors);
_setcolor(vc.numcolors 1 2);
_outtext(buf);
getch();

_remapallpalette, _remappalette

1* Change each palette entry separately in GRB order. *1
for(i = 0, green = 0; green < 64; green += inc)

for(red = 0; red < 64; red += inc)
for(blue = 0; blue < 64; blue += inc
(

}
getch() ;

tmp = RGB(red, green, blue);
_remappalette(i, tmp);
if (inc == 32)

_remappal ette(i + 8, tmp I (tmp » 1));
i++;

_setvideomode(_DEFAULTMODE);

618

619

Description

Remarks

Deletes a file.

#include <stdio.h>

#include <io.h>

Required for ANSI compatibility

Use either IO.H or STDIO.H

int remove(const char *path);

path Path name of file to be removed

The remove function deletes the file specified by path.

remove

Return Value The function returns 0 if the file is successfully deleted. Otherwise, it returns -1 and sets
errno to one of these values:

Value

EACCES

ENOENT

Meaning

Path name specifies a read-only file.

File or path name not found, or path name specifies a
directory.

Compatibility • ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also unlink

Exampw __ __

1* REMOVE.C: This program uses remove to delete REMOVE.OBJ. *1

#include <stdio.h>

void main()
(

if(remove("remove.obj") == -1)
perror("Could not delete 'REMOVE.OBJ'");

else
printf("Deleted 'REMOVE.OBJ'\n");

Output

Deleted 'REMOVE.OBJ'

rename

Description

Remarks

Return Value

Compatibility

Renames a file or directory.

#include <stdio.h>

#include <io.h>

Required for ANSI compatibility

Use either IO.H or STDIO.H

int rename(const char *oldname, const char *newname);

oldname Pointer to old name

newname Pointer to new name

620

The rename function renames the file or directory specified by oldname to the name given
by newname. The old name must be the path name of an existing file or directory. The new
name must not be the name of an existing file or directory.

The rename function can be used to move a file from one directory to another by giving a
different path name in the newname argument. However, files cannot be moved from one
device to another (for example, from drive A to drive B). Directories can only be renamed,
not moved. .

The rename function returns 0 if it is successful. On an error, it returns a nonzero value
and sets errno to one of the following values:

Value

EACCES

ENOENT

EXDEV

Meaning

File or directory specified by new/wnze already exists or could
not be created (invalid path); or oldname is a directory and
newname specifies a different path.

File or path name specified by oldname not found.

Attempt to move a file to a different device.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

Exampw __ ___

/* RENAMER.C: This program attempts to rename a file named RENAMER.OBJ to
* RENAMER.JBO. For this operation to succeed, a file named RENAMER.OBJ
* must exist and a file named RENAMER.JBO must not exist.
*/

#include <stdio.h>

621

void main()
(

int result;
char old[] - "RENAMER.OBJ", newel "RENAMER.JBO";

1* Attempt to rename file: *1
result - rename(old, new);
if(result 1- 0)

printf("Could not rename '%s'\n", old);
else

printf("File '%s' renamed to '%s'\n", old, new);

Output

File 'RENAMER.OBJ' renamed to 'RENAMER.JBO'

rename

rewind 622

Description Repositions the file pointer to the beginning of a file.

#include <stdio.h>

void rewind(FILE *stream);

stream Pointer to FILE structure

Remarks The rewind function repositions the file pointer associated with stream to the beginning of
the file. A call to rewind is equivalent to

Return Value

Compatibility

(void) fseek(stream, OL, SEEK_SET);

except that rewind clears the error indicators for the stream, and fseek does not. Both
rewind and fseek clear the end-of-file indicator. Also, fseek returns a value that indicates
whether the pointer was successfully moved, but rewind does not return any value.

You can also use the rewind function to clear the keyboard buffer. Use the rewind func­
tion with the stream stdin, which is associated with the keyboard by default.

The rewind function has no return value.

• ANSI • DOS • OS/2 • UNIX • XENIX

Exampre __ ___

/* REWIND.C: This program first opens a file named REWIND.OUT for input and
* output and writes two integers to the file. Next, it uses rewind to
* reposition the file pointer to the beginning of the file and reads
* the data back in.
*/

#include <stdio.h>

void main()
(

FILE *stream;
int datal, data2;

datal 1;
data2 = -37;

if((stream = fopen("rewind.out", "w+" » 1= NULL)
(

fprintf(stream, "%d %d", datal, data2);
printf("The values written are: %d and %d\n", datal, data2);

~3

Output

rewind(stream);
fscanf(stream, "%d %d", &datal, &data2);
printf("The values read are: %d and %d\n", datal, data2);
fclose(stream);

The values written are: I and -37
The values read are: I and -37

rmdir

Description

Remarks

Return Value

Deletes a directory.

#include <direct.h> Required only for function declarations

int rmdir(char *dirname);

dirname Path name of directory to be re~oved

The rmdir function deletes the directory specified by dirname. The directory must be
empty, and it must not be the current working directory or the root directory.

The rmdir function returns the value 0 if the directory is successfully deleted. A return
value of -1 indicates an error, and errno is set to one of the following values:

Value Meaning

624

EACCES The given path name is not a directory; or the directory is not
empty; or the directory is the current working directory or the
root directory.

ENOENT Path name not found.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also chdir, mkdir

Exampw __ __

1* MAKEDIR.C *1
#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

void main()
(

int result;

if(mkdir("\\testtmp") == 0)
(

printf("Directory '\\testtmp' was successfully created\n");
system("dir \\testtmp");
if(rmdir("\\testtmp") == 0)

printf("Directory '\\testtmp' was successfully removed\n");
else

}
else

printf("Problem removing directory '\\testtmp'\n");

printf("Problem creating directory '\\testtmp'\n");

Output

Directory '\testtmp' was successfully created

The volume label in drive C is OS2.
Directory of C:\TESTTMP

(OrR> 6-19-89 11:20a
(OrR> 6-19-89 11:20a

2 File(s) 12730368 bytes free
Directory '\testtmp' was successfully removed

rmtmp

Description

Remarks

Return Value

Compatibility

See Also

Removes temporary files.

#include <stdio.h>

int rmtmp(void);

The rmtmp function is used to clean up all the temporary files in the current directory.
The function removes only those files created by tmpfile and should be used only in the
same directory in which the temporary files were created.

The rmtmp function returns the number of temporary files closed and deleted.

o ANSI • DOS • OS/2 • UNIX • XENIX

flushall, tmpfile, tmpnam

626

Exampw __ __

1* TMPFILE.C: This program uses tmpfile to create a temporary file,
* then deletes this file with rmtmp.
*1

#include (stdio.h>

void main()
(

FILE *stream;
char tempstring[]
i nt i;

"String to be written";

1* Create temporary files. */
fore i = 1; i (= 10; i++)
(

if((stream = tmpfile(» == NULL)
perror("Could not open new temporary file\n");

else
printf("Temporary file %d was created\n", i);

1* Remove temporary files. */
printf("%d temporary files deleted\n", rmtmp());

627 rmtmp

Output

Temporary file 1 was created
Temporary file 2 was created
Temporary file 3 was created
Temporary file 4 was created
Temporary fil e 5 was created
Temporary fil e 6 was created
Temporary fil e 7 was created
Temporary fi 1 e 8 was created
Temporary fil e 9 was created
Temporary file 10 was created
10 temporary files deleted

Description Rotate bits to the left Crotl) or right Crotr).

Remarks

Return Value

Compatibility

See Also

#include <stdlih.h>

unsigned int _rotl(unsigned int value, int shift);

unsigned int _rotr(unsigned int value, int shift);

value

shift

Value to be rotated

Number of bits to shift

The _rotl and _rotr functions rotate the unsigned value by shift bits. The _rotl function
rotates the value left. The _rotr function rotates the value right. Both functions "wrap" bits
rotated off one end of value to the other end.

Both functions return the rotated value. There is no error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

Jrotl, Jrotr

Exampw __ __

1* ROT.C: This program uses rotr and rotl with different shift
* values to rotate an integer.
*1

#include <stdlib.h>
#include <stdio.h>

void main()
(

unsigned val = 0x0fd93;

printf("0x%4.4x rotated left three times is 0x%4.4x\n",
val, _rotH val, 3));

printf("0x%4.4x rotated right four times is 0x%4.4x\n",
val, _rotr(va.l, 4));

629

Oulpul

0xfd93 rotated left three times is 0xec9f
0xfd93 rotated right four times is 0x3fd9

scant

Description

Remarks

630

Reads formatted data from the standard input stream.

#include <stdio.h>

int scanf(const char *format [,argument] ...);

format Format control

argument Optional argument

The scanf function reads data from the standard input stream stdin into the locations given
by argument. Each argument must be a pointer to a variable with a type that corresponds
to a type specifier informat. The format controls the interpretation of the input fields. The
format can contain one or more of the following:

• White-space characters: blank (' '); tab (\t); or newline (\n). A white-space character
causes scanf to read, but not store, all consecutive white-space characters in the input
up to the next non-white-space character. One white-space character in the format
matches any number (including 0) and combination of white-space characters in the
input.

• 'Non-white-space characters, except for the percent sign (%). A non-white-space char­
acter causes scanf to read, but not store, a matching non-white-space character. If the
next character in stdin does not match, scanf terminates.

• Format specifications, introduced by the percent sign (%). A format specification
causes scanf to read and convert characters in the input into values of a specified type.
The value is assigned to an argument in the argument list.

The format is read from left to right. Characters outside format specifications are expected
to match the sequence of characters in stdin; the matching characters in stdin are scanned
but not stored. If a character in stdin conflicts with the format specification, scanf termi­
nates. The character is left in stdin as if it had not been read.

When the first format specification is encountered, the value of the first input field is con­
verted according to this specification and stored in the location that is specified by the first
argument. The second format specification causes the second input field to be converted
and stored in the second argument, and so on through the end of the format string.

An input field is defined as all characters up to the first white-space character (space, tab,
or newline), or up to the first character that cannot be converted according to the format
specification, or until the field width (if specified) is reached. If there are too many argu­
ments for the given specifications, the extra arguments are evaluated but ignored. The re­
sults are unpredictable if there are not enough arguments for the format specification.

631

A fonnat specification has the following fonn:

%[*ll [widthll [{F I NIll [{h Illlltype

scant

Each field of the fonnat specification is a single character or a number signifying a particu­
lar fonnat option. The type character, which appears after the last optional fonnat field, de­
tennines whether the input field is interpreted as a character, a string, or a number. The
simplest fonnat specification contains only the percent sign and a type character (for ex­
ample, %s).

Each field of the fonnat specification is discussed in detail below. If a percent sign (%) is
followed by a character that has no meaning as a fonnat-control character, that character
and the following characters (up to the next percent sign) are treated as an ordinary
sequence of characters-that is, a sequence of characters that must match the input. For ex­
ample, to specify that a percent-sign character is to be input, use %%.

An asterisk (*) following the percent sign suppresses assignment of the next input field,
which is interpreted as a field of the specified type. The field is scanned but not stored.

The width is a positive decimal integer controlling the maximum number of characters to
be read from stdin. No more than width characters are converted and stored at the corre­
sponding argument. Fewer than width characters may be read if a white-space character
(space, tab, or newline) or a character that cannot be converted according to the given for­
mat occurs before width is reached.

The optional F and N prefixes allow the user to specify whether the argument is far or
near, respectively. F should be prefixed to an argument pointing to a far object, while N
should be prefixed to an argument pointing to a near object. Note also that the F and N pre­
fixes are not part of the ANSI definition for scanf, but are instead Microsoft extensions,
which should not be used when ANSI portability is desired.

The optional prefix I indicates that the long version of the following type is to be used,
while the prefix h indicates that the short version is to be used. The corresponding
argument should point to a long or double object (with the I character) or a short object
(with the h character). The I and h modifiers can be used with the d, i, n, 0, x, and u type
characters. The I modifier can also be used with the e, f, and g type characters. The I and h
modifiers are ignored if specified for any other type.

For scanf, Nand F refer to the "distance" to the object being read in (near or far) and h
and I refer to the "size" of the object being read in (16-bit short or 32-bit long). The list
below clarifies this use ofN, F, I, and h:

scant 632

Program Code Action

scanf("% N s " , &x) ; Read a string into near memory

scanf("% F s " , &x) ; Read a string into far memory

scanf("%Nd" , &x) ; Read an int into near memory

scanf("% F d" , &x) ; Read an int into far memory

scanf("%Nl d" , &x) ; Read a long int into near memory

scanf("% F 1 d" , &x) ; Read a long int into far memory

scanf("% N h p" , &x) ; Read a 16-bit pointer into near memory

scanf("% N 1 p" , &x) ; Read a 32-bit pointer into near memory

scanf("% Fhp" , &x) ; Read a 16-bit pointer into far memory

scanf("% F 1 p" , &x) ; Read a 32-bit pointer into far memory

The type characters and their meanings are described in Table R.S.

To read strings not delimited by space characters, a set of characters in brackets ([]) can
be substituted for the s (string) type character. The corresponding input field is read up to
the first character that does not appear in the bracketed character set. If the first character
in the set is a caret (1\), the effect is reversed: the input field is read up to the first character
that does appear in the rest of the character set.

Note that % [a-z] and % [z-a] are interpreted as equivalent to % [abcde ••. z]. This is a com­
mon scanf extension, but note that it is not required by the ANSI specification.

To store a string without storing a terminating null character ('\0'), use the specification
%nc, where n is a decimal integer. In this case, the c type character indicates that the argu­
ment is a pointer to a character array. The next n characters are read from the input stream
into the specified location, and no null character (,\0') is appended. If n is not specified, the
default value for it is 1.

The scanf function scans each input field, character by character. It may stop reading a par­
ticular input field before it reaches a space character for a variety of reasons: the specified
width has been reached; the next character cannot be converted as specified; the next char­
acter conflicts with a character in the control string that it is supposed to match; or the next
character fails to appear in a given character set. For whatever reason, when scanf stops
reading an input field, the next input field is considered to begin at the first unread charac­
ter. The conflicting character, if there is one, is considered unread and is the first character
of the next input field or the first character in subsequent read operations on stdin.

Return Value

Table R.S Type Characters for scanf

Character

d

o

x

u

u
e,E
f
g,G

c

s

n

p

Type of Input Expected

Decimal integer

Octal integer

Hexadecimal integer}

Decimal, hexadecimal, or octal in­
teger

Unsigned decimal integer

Unsigned decimal integer

Floating-point value consisting of
an optional sign (+ or-), a series of
one or more decimal digits contain­
ing a decimal point, and an optional
exponent ("e" or "E") followed by
an optionally signed integer value.

Character. White-space characters
that are ordinarily skipped are read
when c is specified; to read the next
non-white-space character, use % 1 s.

String

No input read from stream or buffer.

Value in the form xx,xx:yyyy, where
the digits x and yare uppercase hex­
adecimal djgits.

Type of Argument

Pointer to int

Pointer to int

Pointer to int

Pointer to int

Pointer to unsigned int

Pointer to unsigned long

Pointer to float

Pointer to char

Pointer to character array large
enough for input field plus a termi­
nating null character (,\0'), which is
automatically appended.

Pointer to int, into which is stored
the number of characters success­
fully read from the stream or buffer
up to that point in the current call to
scanf.

Pointer to far pointer to void

Since the input for a %x fonnat specifier is always interpreted as a hexadecimal number, the input should
not include a leading Ox. (If Ox is included, the 0 is interpreted as a hexadecimal input value.)

The scanf function returns the number of fields that were successfully converted and as­
signed. The return value may be less than the number requested in the call to scanf. The re­
turn value does not include fields that were read but not assigned.

The return value is EOF if the end-of-file or end-of-string is encountered in the first at­
tempt to read a character.

scant 634

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also fscanf, printf, sscanf, vfprintf, vprintf, vsprintf

Exa~re __ __

/* SCANF.C: This program receives formatted input using scanf. */
#include <stdio.h>

void main()
(

i nt i ;
float"fp;
char c, s[81];
int result;

printf("Enter an integer, a floating-point number, "
"a character and a string:\n");

result = scanf("%d %f %c %s", &i, &fp, &c, s);

printf("\nThe number of fields input is %d\n", result);
printf("The contents are: %d %f %c %s\n", i, fp, c, s);

Output

Enter an integer, a floating-point number, a character and a string:
71
98.6
h
White space stops input

The number of fields input is 4
The contents are: 71 98.599998 h White

635 _scrolltextwindow

Description Scrolls the text in a text window.

#include <graph.h>

void _far _scrolltextwindow(short lines);

lines Number of lines to scroll

Remarks The _s~rolltextwindow function scrolls the text in a text window (previously defined by
the _settextwindow function). The lines argument specifies the number of lines to scroll.
A positive value of lines scrolls the window up (the usual direction); a negative value
scrolls the window down. Specifying a number larger than the height of the current text
window is equivalent to calling _ clearscreen(_ GWINDOW). A value of 0 for lines has no
effect on the text.

Return Value None.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _gettextposition, _ outmem, _ outtext, _ settextposition, _ settextwindow

Exampre __ ___

/* SCRTXWIN.C: This program displays text in text windows and then
* scrolls, inserts, and deletes lines."
*/

#include <stdio.h)
#include <conio.h)
#include <graph.h)

void deleteline(void);
void insertline(void);
void status(char *msg);

void main()
(

short row;
char buf[40];

1* Set up screen for scrolling, and put text window around scroll area. */
_settextrows(25);
_clearscreen(_GCLEARSCREEN);

_scrolltextwindow

for(row = 1; row <= 25; row++
(

_settextposition(row, 1);
spri ntf(buf, "Li ne %c
_outtext(buf);

}
getch() ;
_settextwindow(1, 1, 25, 10);

/* Delete some lines. */
_settextposition(11, i);
for(row = 12; row < 20; row++

del etel i ne() ;
status("Deleted 8 lines");

/* Insert some lines. */
_settextposition(5, 1);
for(row = 1; row < 6; row++

i nsertl i ne() ;
status("Inserted 5 lines");

/* Scroll up and down. *1
_scrolltextwindow(-7);
status("Scrolled down 7 lines");
_scrolltextwindow(5);
status("Scrolled up 5 lines");
_setvideomode(_DEFAULTMODE);

%2d", row + 'A' - 1,. row);

1* Delete lines by scrolling them off the top of the current text window.
* Save and restore original window.
*/

void deleteline()
(

short left, top, right, bottom;
struct rccoord rc;

_gettextwindow(&top, &left, &bottom, &right);
rc = _gettextposition();
~settextwindow(rc.row, left, bottom, right);
_scrolltextwindow(_GSCROLLUP);
_settextwindow(top, left, bottom, right);
_settextposition(rC.row, rc.col);

636

637 _scrolltextwindow

1* Insert some lines by scrolling in blank lines from the top of the
* current text window. Save and restore original window.
*1

void insertline()
(

short left, top, right, bottom;
struct rccoord rc;

_gettextwindow(&top, &left, &bottom, &right);
rc = _gettextposition();
_settextwindow(rC.row, left, bottom, right);
_scrolltextwindow(_GSCROLLDOWN);
_settextwindow(top, left, bottom, right);
_settextposition(rC.row, rc.col);

1* Display and clear status in its own window. */
void status(char *msg)
(

short left, top, right, bottom;
struct rccoord rc;

~gettextwindow(&top, &left, &bottom, &right);
_settextwindow(1, 50, 2, 80);
_outtext(msg);
getch();
_clearscreen(_GWINDOW);
_settextwindow(top, left, bottom, right);

_searchenv 638

Description Searches for a file using environment paths.

Remarks

Return Value

Compatibility

See Also

#include <stdUh.h>

void _searchenv(char *filename, char *varname, char *pathname);

filename N arne of file to search for

varname Environment to search

pathname Buffer to store complete path

The _searchenv routine searches for the target file in the specified domain. The varname
variable can be any environment variable which specifies a list of directory paths, such as
PATH, LIB, INCLUDE, or other user-defined variables. It is most often PATH, which
searches for filename on all paths specified in the PATH variable. The _searchenv func­
tion is case-sensitive, so the varname variable should match the case of the environment
variable.

The routine first searches for the file in the current working directory. If it doesn't find the
file, it next looks through the directories specified by the environment variable.

If the target file is found in one of the directories, the newly created path is copied into the
buffer pointed to by pathname. You must ensure that there is sufficient space for the con­
structed path name. If the filename file is not found, pathname will contain an empty null­
terminated string.

The _searchenv function does not return a value.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

getenv, putenv

Exampre ___ __

/* SEARCHEN.C: This program searches for a file in a directory
* specified by an environment variable.
*/

#include (stdlib.h>
#include (stdio.h>

639

void maine)
(

char pathbuffer[_MAX_PATH];
char searchfile[] = "CL.EXE";
char envvar[] = "PATH";
1* Search for file in PATH environment variable: *1
_searchenv(searchfile, envvar, pathbuffer);
if(*pathbuffer 1= '\0')

printf("Path for %s: %s\n", searchfile, pathbuffer);
else

printf("%s not found\n", searchfile);

Output

Path for CL.EXE: C:\BIN\CL.EXE

_searchenv

segread 640

Description Gets the current values of segment registers.

#include <dos.h>

void segread(struct SREGS *segregs);

segregs Segment-register values

Remarks The segread function fills the structure pointed to by segregs with the current contents of
the segment registers. The SREGS union is described in the reference section for int86x.
This function is intended to be used with the intdosx and int86x functions to retrieve
segment-register values for later use.

Return Value None.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also FP _SEG, intdosx, int86x

Exampre __ __

1* SEGREAO.C: This program gets the current segment values with segread. *1

#include <dos.h>
#include <stdio.h>

void main()
(

struct SREGS segregs;
unsigned CS, ds, es, ss;

1* Read the segment register values *1
segread(&segregs);
cs segregs.cs;
ds = segregs.ds;
es = segregs.es;
ss = segregs.ss;
printf("CS = 0x%.4x os = 0x%.4x

cs, ds, es, ss);
ES = 0x%.4x SS = 0x%.4x\n",

641

Output

CS = 0x0047

CS ... 0x2bcc

DS ... 0x0067

DS ... 0x2ce8

ES ... 0x0067

E5 = 0x2ba3

55 = 0x0067

55 = 0x2ce8

segread

_select palette 642

Description

Remarks

Selects a graphics palette.

#include <graph.h>

short _far _selectpalette(short number);

number Palette number

The _selectpalette function works only under the video modes _MRES4COLOR and
_MRESNOCOLOR. A palette consists of a selectable background color (Color 0) and three
set colors. Under the _MRES4COLOR mode, the number argument selects one of the four
predefined palettes shown in Table R.6.

Table R.6 _MRES4COLOR Palette Colors

Palette Number

o

2

3

Colorl

Green

Cyan

Light green

Light cyan

ColorIndex

Color2

Red

Magenta

Light red

Light magenta

Color3

Brown

Light
gray

Yellow

White

The _MRESNOCOLOR video mode is used with black-and-white displays, producing
palettes consisting of various shades of gray. It will also produce color when used with a
color display. The number of palettes available depends upon whether a eGA or EGA
hardware package is employed. Under a eGA configuration, only the two palettes shown
in Table R.7 are available.

Table R.7 _MRESNOCOLOR Mode CGA Palette Colors

Palette Number . Colorl

o Blue

Light blue

Color Index

Color2

Red

Light red

Color3

Light
gray

White

643 _seiectpaiette

Under the EGA configuration, the three palettes shown in Table R.8 are available in the
_MRESNOCOLOR video mode.

Table R.S _MRESNOCOLOR Mode EGA Palette Colors

Color Index

Palette Number Color! Color2 Color3

0 Green Red Brown

1 Light green Light red Yellow

2 Light cyan Light red Yellow

Note that with an EGA in _MRESNOCOLOR video mode, Palette 3 is identical to
Palette 1.

Return Value The function returns the value of the previous palette. There is no error return.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _getvideoconfig, _ setbkcolor, _ setvideomode

Exampw __ ___

1* SELPAL.C: This program changes the current CGA palette. *1

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <graph.h>

long bkcolor[8]

char *bkname []

void main()
{

int i~ j, k;

_BLACK, _BLUE, _GREEN, _CYAN,
_RED, _MAGENTA, _BROWN, _WHITE J;
"BLACK", "BLUE", "GREEN", "CYAN",
"RED", "MAGENTA", "BROWN", "WHITE" J;

if (Lsetvi deomode(_MRES4COLOR)
(

printf("No palettes available");
ex it (1);

_seiectpaiette

for(i =0; i <4; i++)
(

_selectpalette(i);

1* Palette loop */

for(k = 0; k < 8; k++ 1* Background color loop */
(

}

_clearscreen(_GCLEARSCREEN);
_setbkcolor(bkcolor[k]);
_settextposition(1, 1);
printf("Background: %s\tPalette: %d", bkname[k], i);
for(j = 1; j < 4; j++) 1* Foreground color loop */
(

_setcolor(j);
_ellipse(_GFILLINTERIOR, 100, j * 30, 220, 80 + (j * 30));

}
getch() ;

_setvideomode(_DEFAULTMODE);

644

645

Description

Remarks

Return Value

Compatibility

See Also

_setactivepage

Sets the active page.

#include <graph.h>

short _far _setactivepage(short page);

page Memory page number

For hardware and mode configurations with enough memory to support multiple screen
pages, _setactivepage specifies the area in memory in which graphics output is written.
The page argument selects the current active page. The default page number is O.

Screen animation can be done by alternating the graphics pages displayed. Use the
_ setvisualpage function to display a completed graphics page while executing graphics
statements in another active page.

These functions can also be used to control text output if you use the text functions
_gettextcursor, _ settextcursor, _ outtext, _ settextposition, _gettextposition,
_ settextcolor, _gettextcolor, _ settextwindow, and _ wrapon instead of the standard
C-Ianguage I/O functions.

The CGA hardware configuration has only 16K of RAM available to support multiple
video pages, and only in the text mode. The EGA and VGA configurations may be
equipped with up to 256K of RAM for multiple video pages in graphics mode.

If successful, the function returns the page number of the previous active page. If the func­
tion fails, it returns a negative value.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getactivepage, _getvisualpage, _ setvisualpage

Exampw __ __

1* PAGE.C illustrates video page functions including:
* _getactivepage _getvisualpage _setactivepage _setvisualpage
*1

#include <conio.h>
#include <graph.h>
#include <stdlib.h>

_setacffvepage

void maine)
(

short oldvpage, oldapage, page, row, col, line;
struct videoconfig vc;
char buf[80];

_getvideoc~nfig(&vc);
if(vc.numvideopages < 4

exit(1); /* Fail for OS/2 or monochrome */
oldapage = _getactivepage();
oldvpage = _getvisualpage();
_displaycursor(_GCURSOROFF);

/* Draw arrows in different place on each page. */
fore page = 1; page < 4; page++)
(

_setactivepage(page);
_settextposition(12, 16 * page);
_outtext("»»»»");

while(!kbhit())
/* Cycle through pages 1 to 3 to show moving image. */
fore page = 1; page < 4; page++)

_setvisualpage(page);
getch();

/* Restore original page (normally 0) to restore screen. */
_setactivepage(oldapage);
_setvisualpage(oldvpage);
_displaycursor~ _GCURSORON);

~6

647

Description

Remarks

Return Value

Compatibility

See Also

Example

_setbkcolor

Sets the current background color.

#include <graph.h>

long _far _setbkcolor(long color);

color Desired color

The _setbkcolor function sets the current-background color to the color value color.

In a color text mode (such as _TEXTC80), _setbkcolor accepts (and _getbkcolor returns)
a color index. The value for the default colors is given in a table in the description of the
_settextcolor function. For example, _setbkcolor(2L) sets the background color to color
index 2. The actual color displayed depends on the palette mapping for color index 2. The
default is green in a color text mode.

In a color graphics mode (such as _ERESCOLOR), _setbkcolor accepts (and _getbkcolor
returns) a color value. The value for the background color is given by the manifest con­
stants defined in the GRAPH.H include file. For example, _setbkcolor(_GREEN) sets the
background color in a graphics mode to green. These manifest constants are provided as a
convenience in defining and manipulating the most common colors. The actual range of
colors is, in general, much greater.

In general, whenever an argument is long, it refers to a color value, and whenever it is
short, it refers to a color index. The two exceptions are _setbkcolor and _getbkcolor.

Since the background color is color index 0, the _remappalette function will act identi­
cally to the _setbkcolor function. Unlike _remappalette, however, _setbkcolor does not
require an EGA or VGA environment.

In a text mode, the setbkcolor function does not affect anything already appearing on the
display; only the subsequent output is affected. In a graphics mode, it immediately changes
all background pixels.

In text modes, _ setbkcolor returns the color index of the old background color. In graphics
modes, _ setbkcolor returns the old color value of color index O. There is no error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_getbkcolor, _remappalette, _ selectpalette

See the example for _getcolor.

setbuf

Description

Remarks

Return Value

Compatibility

See Also

648

Controls stream buffering.

#include <stdio.h>

void setbuf(FILE *stream, char *buffer);

stream Pointer to FILE structure

buffer User-allocated buffer

The setbuf function allows the user to control buffering for stream. The stream argument
must refer to an open file that has not been read or written. If the buffer argument is NULL,
the stream is unbuffered. If not, the buffer must point to a character array of length
BuFSIZ, where BUFSIZ is the buffer size as defined in STDIO.H. The user-specified buff­
er, instead of the default system-allocated buffer for the given stream, is used for I/O
buffering.

The stderr and (in DOS only) stdaux streams are unbuffered by default, but may be as­
signed buffers with setbuf.

The setbuf function has been subsumed by the setvbuf function, which should be the pre­
ferred routine for new code. The setbuf function is retained for compatibility with ex­
isting code.

None.

• ANSI • DOS • OS/2 • UNIX • XENIX

fclose, mush, fopen, setvbuf

Exampw __ ___

1* SETBUF.C: This program first opens files named DATAl and DATA2.
* Then it uses setbuf to give DATAl a user-assigned buffer
* and to change DATA2 so that it has no buffer.
*1

#include <stdio.h>

void main()
{

char buf[BUFSIZ];
FILE *streaml, *stream2;

649 setbuf

if(((stream! fopen("data!", "a" » 1= NULL) &&
((stream2 fopen("data2", "w" » 1= NULL))

Output

1* "stream!" uses user-assigned buffer: *1
setbuf(stream!, buf);
printf("stream! set to user-defined buffer at: %Fp\n", buf);

1* "stream2" is unbuffered *1
setbuf(stream2, NULL);
printf("stream2 buffering disabled\n");
fcJoseall();

stream! set to user-defined buffer at: 0298:0DF2
stream2 buffering disabled

_setcliprgn 650

Description Sets the clipping region for graphics.

Remarks

Return Value

Compatibility

See Also

#include <graph.h>

void _far _setcliprgn(short xl, short yl, short x2, short y2);

xl,yl

x2,y2

Upper-left comer of clip region

Lower-right comer of clip region

The _setcliprgn function limits the display of subsequent graphics output and font text out­
put to an area of the screen called the "clipping region." The physical points (xl, yl) and
(x2, y2) are the diagonally opposed sides of a rectangle that defines the clipping region.
This function does not change the view coordinate system. Rather, it merely masks the
screen.

Note that the _setcliprgn function affects graphics and font text output only. To mask the
screen for text output, use the _settextwindow function.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_ settextwindow, _ setvieworg, _ setviewport, _ setwindow

Exampre __ __

/* SCLIPRGN.C */
#include <stdlib.h>
#include <conio.h>
#include <graph.h>

void main()
{

/* Find a valid graphics mode. */
if(!_setvideomode(_MAXRESMODE)

exit(1);

/* Set clip region, then draw and ellipse larger than the region. */
_setcliprgn(0, 0, 200, 125);
_ellipse(_GFILLINTERIOR, 80, 50, 240, 190);

651 _selcliprgn

getch() ;
_setvideomode(_DEFAULTMODE);

_setcolor

Description

Remarks

Return Value

Compatibility

See Also

652

Sets the current color.

#include <graph.h>

short _far _setcolor(short color);

color Desired color index

The _setcolor function sets the current color index to color. The color parameter is
masked but always within range. The following graphics functions use the current color:
_are, _ellipse, _floodflll, Jineto, _outgtext, -pie, _rectangle, and _setpixel.

The _setcolor function accepts an int value as an argument. It is a color index.

The default color index is the highest numbered color index in the current palette.

Note that the _setcolor function does not affect the output of the presentation-graphics
functions.

This function returns the previous color. If the function fails (e.g., if used in a text mode),
it returns -1.·

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_arc functions, _ellipse functions, _ floodflll, Jetcolor, _lineto functions, _ outgtext,
-pie functions, _rectangle functions, _selectpalette, _setpixel functions

Exampw __ __

1* GPIXEL.C: This program assigns different colors to randomly
* selected pixels.
*/

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main()
{

short xvar, yvar;
struct videoconfig vc;

653

1* Find a valid graphics mode. *1
if (I_set vi deomode (_MAXCOLORMODE))

ex it (1);
_getvideoconfig(&vc);

1* Draw filled ellipse to turn on certain pixels. *1
_ellipse(_GFILLINTERIOR, vc.numxpixels I 6, vc.numypixels I 6,

vc.numxpixels I 6 * 5, vc.numypixels 16* 5);

1* Draw random pixels in random colors ... *1
while(!kbhit())
{

1* ... but only if they are already on (inside the ellipse). *1
xvar = rand() % vc.numxpixels;
yvar = rand() % vc.numypixels;
if(_getpixel(xvar, yvar) != 0
(

_setcolor(rand() % 16);
_setpixel(xvar, yvar);

getch(); 1* Throwaway the keystroke. *1
_setvideomode(_DEFAULTMODE·);

_setcolor

_setfillmask 654

Description Sets the fill mask.

#include <graph.h>

void _far _setfillmask(unsigned char _far *mask);

mask Mask array

Remarks The _ setfillmask function sets the current fill mask, which determines the fill pattern. The
mask is an 8-by-8 array of bits in which each bit represents a pixel. A 1 bit sets the corre­
sponding pixel to the current color, while a 0 bit leaves the pixel unchanged. The pattern is
repeated over the entire fill area.

Return Value

Compatibility

See Also

If no fill mask is set (mask is NULL-the default), only the current color is used in fill
operations.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_ellipse functions, _ floodfill, ~etfillmask, yie functions, _rectangle functions

Exampre __ ~-

1* GFILLMSK.C: This program illustrates _getfillmask and _setfillmask. *1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void ellipsemask(short xl, short yl, short x2, short y2, char _far *newmask);

unsigned char maskl[8] {0x43, 0x23, 0x7c, 0xf7, 0x8a, 0x4d, 0x78, 0x39 };
unsigned char mask2[8] = { 0x18, 0xad, 0xc0, 0x79, 0xf6, 0xc4, 0xa8, 0x23 };
char oldmask[8]; .

void main()
{

i nt loop;

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE

ex it (1);

655

1* Set first fill mask and draw rectangle. *1
_setfillmask(mask1);
_rectangle(_GFILLINTERIOR, 20, 20, 100, 100);
getch() ;

1* Call routine that saves and restores mask. *1
ellipsemask(60, 60, 150, 150, mask2);
getch() ;

1* Back to original mask. *1
_rectangle(_GFILLINTERIOR, 120, 120, 190, 190);
getch() ;

_setvideomode(_DEFAULTMODE);

1* Draw an ellipse with a specified fill mask. *1

_set/illmask

void ellipsemask(short xl, short y1, short x2, short y2, char _far *newmask)
{

unsigned char savemask[8];

_getfillmask(savemask);
_setfillmask(newmask);
_ellipse(_GFILLINTERIOR, xl, y1, x2, y2);
_setfillmask(savemask);

1* Save mask *1
1* Set new mask *1
1* Use new mask *1
1* Restore original *1

_setlont

Description

Remarks

656

Finds a single font.

#include <graph.h>

short _far _setfont(unsigned char _far *options);

options String describing font characteristics

The _ setfont function finds a single font, from the set of registered fonts, that has the char­
acteristics specified by the options string. If a font is found, it is made the current font. The
current font is used in all subsequent calls to the _ outgtext function. There can be only one
active font at any time.

The options string is a set of characters that specifies the desired characteristics of the font.
The _ setfont function searches the list of registered fonts for a font matching the specified
characteristics.

The characteristics that may be specified in the options string are shown in the list below.
Characteristics specified in the options string are not case- or position-sensitive.

Characteristic

t'fontname'

hx

wy

f

p

v

r

b

ox

Description

'!Ypeface.

Character height, where x is the number of pixels.

Character width, where y is the number of pixels.

Find only a fixed-space font (should not be used with the
p characteristic).

Find only a proportionally spaced font (should not be used
with the f characteristic).

Find only a vector font (should not be used with the r
characteristic).

Find only a raster-mapped (bit-mapped) font (should not be
used with the v characteristic).

Select a best fit font.

Select font number x, where x is less than or equal to the value
returned by the _registerfonts function. Use this option to
"step through" an entire set of fonts.

657 _seltonl

You can request as many options as desired, except with nx, which should be used alone.
If mutually exclusive options are requested (such as the pair f/p or r/v), the _ setfont func­
tion ignores them. There is no error detection for incompatible parameters used with nx.

Options can be separated by blanks in the options string. Any other character is ignored by
setfont.

The t (the typeface specification) in options is specified as a "t" followed by fontname in
single quotes. Choosefontname from the following list:

Fontname

Courier

Helv

TmsRmn

Script

Modem

Roman

Description

Fixed-width bit-mapped font with serifs

Sans serif proportional bit-mapped font

Proportional bit-mapped font with serifs

Proportional vector-mapped font of slanted characters formed
from nearly continuous lines

Proportional vector-mapped font without serifs

Proportional vector-mapped font with serifs

A b in the options field causes the setfont routine to automatically select the "best fit"
font that matches the other characteristics you have specified. If the b parameter is spec­
ified and at least one font is registered, _ setfont will always be able to set a font and will
return 0 to indicate success.

In selecting a font, the _ setfont routine uses the following precedence (rated from highest
precedence to lowest):

1. Pixel height

2. Typeface

3. Pixel width

4. Fixed or proportional font

You can also specify a pixel width and height for fonts. If a nonexistent value is chosen for
either, and the b option is specified, the _selfont function will chose the closest match. A
smaller font size has precedence over a larger size. If _setfont requests Helv 12 with best
fit, and only Helv 10 and Helv 14 are available, _setfont will select Helv 10 ..

If a nonexistent value is chosen for pixel height and width, the _ setfont function will apply
a magnification factor to a vector-mapped font to obtain a suitable font size. This auto­
matic magnification does not apply if the r (raster-mapped font) option is specified, or if a
specific typeface is requested and no best fit (b) option is specified.

_seltonl

Return Value

Compatibility

See Also

Example

If you specify the ox parameter, _setfont will ignore any other specified options and
supply only the font number corresponding to x.

658

Note that the font functions affect only the output from the font output function_outgtext;
no other C run-time output functions are affected by font usage.

The setfont function returns a 0 to indicate success and a -1 to indicate an error. An
errofoccurs if a request for a specific font fails and the b option was not specified, or if
fonts have not yet been registered.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getfontinfo, _getgtextextent, _ outgtext, _ registerfonts, _ unregisterfonts

See the example for _ outgtext.

,

659

Description

Remarks

Return Value

Compatibility

See Also

Example

_setgtextvector

Changes the orientation of font text output.

#include <graph.h>

struct xycoord _far _ setgtextvector(short x, short y);

x,y Integers specifying font rotation

The _setgtextvector function sets the current orientation for font text output to the vector
specified by x andy. The current orientation is used in calls to the _outgtext function.

The values of x and y define the vector which determines the direction of rotation of font
text on the screen. The text-rotation options are shown below:

(x, y)

(0,0)

(1,0)

(0, 1)

(-1,0)

(0, -1)

Text Orientation

Unchanged

Horizontal text (default)

Rotated 90 degrees counterclockwise

Rotated 180 degrees

Rotated 270 degrees counterclockwise

If other values are input, only the sign of the input is used. For example, (-3, 0) is inter­
preted as (-1, 0).

The _ setgtextvector function returns the previous vector in a structure of xycoord type. If
you pass the _ setgtextvector function the values (0, 0), the function returns the current
vector values in the xycoord structure.

o ANSI • DOS 0 05/2 0 UNIX 0 XENIX

_getfontinfo, _getgtextextent, ~rstatus, _ outgtext, _ registerfonts, _ setfont,
_ unregisterfonts

See the example for _ outgtext.

setjmp

Description

Remarks

Return Value

Compatibility

See Also

Example

660

Saves the current state of the program.

#include <setjrnp.h>

int setjrnp(jrnp_huf ellv);

env Variable in which environment is stored

The setjrnp function saves a stack environment that can be subsequently restored using
Iongjrnp. Used together this way, setjrnp and longjrnp provide a way to execute a "non­
local goto." They are typically used to pass execution control to error-handling or recovery
code in a previously called routine without using the normal calling or return conventions.

A call to setjrnp causes the current stack environment to be saved in ellv. A subsequent
call to Iongjrnp restores the saved environment and returns control to the point just after
the corresponding setjrnp call. All variables (except register variables) accessible to the
routine receiving control contain the values they had when setjrnp was called.

The setjrnp function returns 0 after saving the stack environment. If setjrnp returns as a re­
sult of a longjrnp call, it returns the value argument of Iongjrnp, or, if the value argument
of longjrnp is 0, setjrnp returns 1. There is no error return.

• ANSI • DOS • OS/2 • UNIX • XENIX

Iongjrnp

See the example for _fpreset.

661

Description

Remarks

Return Value

Compatibility

See Also

Example

_setlinestyle

Sets the line style.

#include <graph.h>

void _far _setlinestyle(unsigned short mask);

mask Desired line-style mask

Some graphics routines (Jineto and _rectangle) draw straight lines on the screen. The
type of line is controlled by the current line-style mask.

The _ setIinestyle function selects the mask used for line drawing. The mask argument is a
16-bit array, where each bit represents a pixel in the line being drawn. If a bit is I, the
corresponding pixel is set to the color or the line (the current color). If a bit is 0, the corre­
sponding pixel is left unchanged. The template is repeated for the entire length of the line.

The default mask is OxFFFF (a solid line).

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getlinestyle, Jineto functions, _rectangle functions

See the example for _getlinestyle.

setloeale

Description

Remarks

662

Defines the locale.

#include <locale.h>

char *setlocale(int category, const char *locale);

category

locale

Category affected by locale

Name of the locale that will control the specified category

The setlocale function sets the categories specified by category to the locale specified by
locale. The "locale" refers to the locality (country) for which certain aspects of your pro­
gram can be customized. Some locale-dependent aspects include the formatting of dates
and the display format for monetary values.

The setlocale function is used to set or get the program's current entire locale or simply
portions of the locale information. The category argument specifies which portion of a pro­
gram's locale information will be used. The manifest constants used for the category argu­
ment are listed below:

Category

LC_ALL

LC_COLLATE

LC_CTYPE

LC_TIME

Parts of Program Affected

All categories listed below.

The strcoll and strxfrm functions.

The character-handling functions (except for isdigit and
isxdigit, which are unaffected).

Monetary formatting information returned by the localeconv
function.

Decimal point character for the formatted output routines
(such as printf), for the data conversion routines, and for
the nonmonetary formatting information returned by the
localeconv function.

The strftime function.

The locale argument is a pointer to a string that specifies the name of the locale. If
locale points to an empty string, the locale is the implementation-defined native environ­
ment. A value of "C" specifies the minimal ANSI conforming environment for C transla­
tion. This is the only locale supported in Microsoft C, version 6.0.

If the locale argument is a null pointer, setlocale returns a pointer to the string associated
with the category of the program's locale. The program's current locale setting is not
changed.

663

Return Value

Compatibility

See Also

setlDeale

If a valid locale and category are given, _setlocale returns a pointer to the string associated
with the specified category for the new locale. If the locale or category is invalid, the
setlocale function returns a null pointer and the program's current locale settings are not
changed.

The pointer to a string returned by setlocale can be used in subsequent calls to restore that
part of the program's locale information. Later calls to setlocale will overwrite the string.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

localeconv, strcoll, strftime, strxfrm

setmode

Description

Remarks

Return Value

Compatibility

Sets the file translation mode.

#include <fcntl.h>

#include <io.h> Required only for function declarations

int setmode (int handle, int mode);

handle File handle

mode New translation mode

664

The setmode function sets to mode the translation mode of the file given by handle. The
mode must be one of the following manifest constants:

Constant

O_TEXT

Meaning

Sets text (translated) mode. Carriage-retum-line-feed (CR­
LF) combinations are translated into a single line-feed (LF)
character on input. Line-feed characters are translated into CR­
LF combinations on output.

Sets binary (untranslated) mode. The above translations are
suppressed. .

The setmode function is typically used to modify the default translation mode of stdin,
stdout, stderr, stdaux, and stdprn, but can be used on any file. If setmode is applied to
the file handle for a stream, the setmode function should be called before any input or out­
put ,operations are performed on the stream.

If successful, setmode returns the previous translation mode. A return value of -1 indi­
cates an error, and errno is set to one of the following values:

Value

EBADF

EINVAL

Meaning

Invalid file handle

Invalid mode argument (neither O_TEXT nor O_BINARY)

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

665 setmode

See Also creat, fopen, open

Exampw __ ___

1* SETMODE.C: This program uses setmode to change stdin from text
* mode to binary mode.
*1

#include <stdio.h>
#include <fcntl.h>
#include <io.h>

void main()
(

i nt result;

1* Set "stdin" to have binary mode: *1
result = setmode(fileno(stdin), O_BINARY);
if(result == -1)

perror("Cannot set mode");
else

printf(H'stdin' successfully changed to binary mode\n");

Output

'stdin' successfully changed to binary mode

_setpixel Functions

Description

Remarks

Set a pixel to the current color.

#include <graph.h>

short _far _setpixel(short x, short y);

short _far _setpixel_ w(double wx, double wy);

x,y

wx,WY

Target pixel

Target pixel

The _setpixel and the _setpixel_w functions set a pixel at a specified location to the
current color.

666

The _ setpixel function sets the pixel at the view-coordinate point (x, y) to the current color.

The _setpixel_ w function sets the pixel at the window-coordinate point (wx, wy) to the
current color.

Return Value

Compatibility

See Also

The function returns the previous value of the target pixel. If the function fails (for ex­
ample, the point lies outside of the clipping region), it will return -1.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getpixel functions, _ setcolor

Exampw __ ___

1* GPIXEL.C: This program assigns different colors to randomly
* selected pixels.
*1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void·main()
{

short xvar, yvar;
struct videoconfig vc;

667

1* Find a valid graphics mode. *1
if(l_setvideomode(_MAXCOLORMODE))

exit(1);
_getvideoconfig(&vc);

1* Draw filled ellipse to turn on certain pixels. *1

_setpixe/ Functions

_ellipse(_GFILLINTERIOR, vc.numxpixels I 6, vc.numypixels I 6,
vc.numxpixels 16* 5, vc.numypixels I 6 * 5);

1* Draw random pixels in random colors ... *1
while(lkbhit())
[

1* ... but only if they are already on (inside the ellipse). *1
xvar = rand() % vc.numxpixels;
y v a r = ran d () '% v c . n u my pix e 1 s ;
if(_getpixel(xvar, yvar) 1= 0)
[

_setcolor(rand() % 16);
_setpixel(xvar, yvar);

getch(); 1* Throwaway the keystroke. *1
_setvideomode(_DEFAULTMODE);

_settextcolor 668

Description

Remarks

Return Value

Sets the current text color.

#include <graph.h>

short _far _settextcolor(short index);

index Desired color index

The _settextcolor function sets the current text color to the color index specified by index.
The default text color is the same as the maximum color index.

The _settextcolor routine sets the color for the _outtext and _outmem functions only. It
does not affect the color of the printf function or the color of text output with the
_ outgtext font routine. Use the _ setcolor function to change the color of font output.

In text color mode, you can specify a color index in the range 0-31. The colors in the
range 0-15 are interpreted as normal (non-blinking). The normal color range is defined
below:

Index Color Index Color

0 Black 8 Dark gray

. Blue 9 Light blue

2 Green 10 Light green

3 Cyan 11 Light cyan

4 Red 12 Light red

5 Magenta 13 Light magenta

6 Brown 14 Yellow

7 White 15 Bright white

Blinking is selected by adding 16 to the normal color value.

In every text mode, including monochrome, _getvideoconfig returns the value 32 for the
number of available colors. The value 32 indicates the range of values (0-31) accepted by
the _settextcolor function. This includes sixteen normal colors (0-15) and sixteen blink­
ing colors (16-31). Monochrome text mode has fewer unique display attributes, so some
color values are redundant. However, because blinking is selected in the same manner,
monochrome text mode has the same range (0-31) as other text modes.

The function returns the color index of the previous text color. There is no error return.

669 _settextcolor

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also ~ettextcolor, _ outtext

Exampw __ __

1* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition _outtext
* _settextcolor _setbkcolor _settextposition
*1

#include <conio.h>
#include <stdio.h>
#include <graph.h>

char buffer [80];

void maine)
{

1* Save original foreground, background, and text position *1
short blink, fgd, oldfgd;
long bgd, oldbgd;
struct rccoord oldpos;

1* Save original foreground, background, and text position. *1
oldfgd = _gettextcolor();
oldbgd = _getbkcolor();
oldpos = _gettextposition();
_clearscreen(_GCLEARSCREEN);

1* First time no blink, second time blinking. *1
fore blink = 0; blink <= 16; blink += 16)
{

1* Loop through 8 background colors. *1
fore bgd - 0; bgd < 8; bgd++)
{

_setbkcolor(bgd);
_settextposition((short)bgd + «blink I 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Back: %d Fore:", bgd):
_outtext(buffer);

_settextcolor

/* Loop through 16 foreground colors. */
for(fgd = 0; fgd < 16; fgd++)
(

}
getch() ;

_settextcolor(fgd + blink);
sprintf(buffer, " %2d ". fgd + blink);
_outtext(buffer);

/* Restore original foreground. background. and text position. */
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);

670

671

Description

Remarks

Return Value

Compatibility

See Also

_settextcursor

Sets the current cursor attribute.

#include <graph.h>

short _far _ settextcursor(short attr);

attr Cursor attribute

The _settextcursor function sets the cursor attribute (i.e., the shape) to the value specified
by attr. The high-order byte of attr detennines the top line of the cursor within the charac­
ter cell. The low-order byte of attr detennines the bottom line of the cursor.

The _settextcursor function uses the same fonnat as the BIOS routines in setting the cur­
sor. Typical values for the cursor attribute are listed below:

Attribute

Ox0707

Ox0007

Ox0607

Ox2000

Cursor Shape

Underline

Full block cursor

Double underline

No cursor

Note that this function works only in text video modes.

The function returns the previous cursor attribute, or -1 if an error occurs (such as calling
the function in a graphics screen mode).

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_ displaycursor, _gettextcursor

Exampre __ __

/* DISCURS.C: This program changes the cursor shape using _gettextcursor
* and _settextcursor, and hides the cursor using _displaycursor.
*/

#include <conio.h>
#include <graph.h>

settextcursor

void main()
{

short oldcursor;
short newcursor = 0x007; /* Full block cursor */

1* Save old cursor shape and make sure cursor is on. *1
oldcursor = _gettextcursor();
_clearscreen(_GCLEARSCREEN);
_displaycursor(_GCURSORON);
_outtext("\nOld cursor shape: ");
getch();

1* Change cursor shape. *1
_outtext("\nNew cursor shape: ");
_settextcursor(newcursor);
getch();

1* Restore original cursor shape. ~I
_outtext("\n");
_settextcursor(oldcursor);

672

673 _settextposition

Description Sets the text position.

#include <graph.h>

struct rccoord _far _settextposition(short row, short column);

row, column New output start position

Remarks The _ settextposition function sets the current text position to the display point

Return Value

Compatibility

See Also

(row, column). The outtext and outmem functions (and standard console I/O routines,
such as print!) output text at that point.

The rccoord structure, defined in GRAPH.H, contains the following elements:

Element Description

short row Row coordinate

short col Column coordinate

The function returns the previous text position in an rccoord structure, defined in
GRAPH.H.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

Jettextposition, _ outtext, _ settextwindow

Exampre __ __

1* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition _outtext
* _settextcolor "_setbkcolor _settextposition
*1

#include <conio.h)
#include <stdio.h)
#include <graph.h)

char buffer [80J;

void main()
{

_settextposition

1* Save original foreground, background, and text position *1
short blink, fgd, oldfgd;
long bgd, oldbgd;
struct rccoord- 01 dpos;

1* Save original foreground, background, and text position. *1
oldfgd = _gettextcolor();
oldbgd = _getbkcolor();
oldpos = _gettextposition();
_clearscreen(_GCLEARSCREEN);

1* First time no blink, second time blinking. *1
for(blink = 0; blink <= 16; blink += 16)
(

1* Loop through 8 background colors. *1
for(bgd = 0; bgd < 8; bgd++)
(

_setbkcolor(bgd);
_settextposition((short)bgd + «blink I 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Sack: %d Fore:", bgd);
_outtext(buffer);

1* Loop through 16 foreground colors. *1
for(fgd = 0; fgd < 16; fgd++)
(

_settextcolor(fgd + blink);
sprintf(buffer, n %2d ", fgd + blink);
_outtext(buffer);

)
getch();

1* Restore original foreground, background, and text position. *1
_settextcolor(6ldfgd);
_setbkcolor(oldbgd):
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);

674

675 _settextrows

Description Sets the number of screen rows for text modes.

#include <graph.h>

short _far _settextrows(short rows);

rows Number of text rows

Remarks The _settextrows function specifies the number of screen rows to be used in text modes.

If the constant _MAXTEXTROWS is specified for the rows argument, the function

Return Value

Compatibility

See Also

will choose the maximum number of rows available. In text modes, this is 50 rows on
VGA, 43 on EGA, and 25 on others. In graphics modes that support 30 or 60 rows,
_MAXTEXTROWS specifies 60 rows.

This function returns the numbers of rows set. The function returns 0 if an error occurred.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_getvideoconfig, _ setvideomode, _ setvideomoderows

Exampw __ ___

1* STXTROWS.C: This program attempts to set the screen height. It returns
* an errorlevel code of 1 (fail) or 0 (success) that could be tested in
* a batch file.
*1

#include <graph.h)
#include <stdlib.h)

void main(int argc, char **argv)
{

short rows;

if(!(rows = atoi(argv[l] »)
{

_outtext("\nSyntax: STXTROWS [25 I 43 I 50]\n");
ex it (1);

_settextrows

/* Make sure new rows are the same as requested rows. */
if(_settextrows(rows) 1= rows)
(

_outtext("\nlnvalid rows\n");
exit(1);

else
exit(0);

676

677

Description

Remarks

Return Value

Compatibility

See Also

Example

_settextwindow

Creates a text window.

#include <graph.h>

void _far _settextwindow(short r1, short cl, short r2, short c2);

r1, cl

r2, c2

Upper-left corner of window

Lower-right comer of window

The _settextwindow function specifies a window in row and column coordinates where
all text output to the screen is displayed. The arguments (r1, c1) specify the upper-left
corner of the text window, and the arguments (r2, c2) specify the lower-right corner of the
text window.

Text is output from the top of the text window down. When the text window is full, the
uppermost line scrolls up out of it. •

Note that this function does not affect the output of presentation-graphics text (e.g., labels,
axis marks, etc.). It also does not affect the output of the font display routine _outgtext.
Use the _setviewport function to control the display area for presentation graphics or
fonts.

None.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

~ettextposition, _gettextwindow, _ outtext, _ settextposition

See the example for _ scrolltextwindow.

setvbuf

Description

Remarks

Return Value

Controls stream buffering and buffer size.

#include <stdio.h>

int setvbuf(FILE *stream, char *buffer, int mode, size_t size);

stream

buffer

mode

size

Pointer to FILE structure

User-allocated buffer

Mode of buffering: _IOFBF (full buffering), _IOLBF (line
buffering), _IONBF (no buffer)

Size of buffer

678

The setvbuf function allows the program to control both buffering and buffer size for
stream. The stream must refer to an open file that has not been read from or written to
since it was opened. The array pointed to by buffer is used as the buffer, unless it is NULL,
and an automatically allocated buffer size bytes long is used.

The mode must be _IOFBF, _IOLBF, or _IONBF. If mode is _IOFBF or _IOLBF, then size
is used as the size of the buffer. If mode is _IONBF, the stream is unbuffered and size and
buffer are ignored.

Values for mode and their meanings are:

_IOLBF

_IONBF

Meaning

Full buffering; that is, buffer is used as the buffer and size is
used as the size of the buffer. If buffer is NULL, an automat­
ically allocated buffer size bytes long is used.

Under DOS and OS/2, the same as _IOFBF.

No buffer is used, regardless <?f buffer or size.

The legal values for size are greater than 0 and less than 32,768.

The return value for setvbuf is 0 if successful, and a nonzero value if an illegal type or
buffer size is specified.

679 setvbuf

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also fclose, mush, fopen, setbuf

Exampw __ __

/* SETVBUF.C: This program opens two streams named stream1 and stream2.
* It then uses setvbuf to give stream1 a user-defined buffer of 1024
* bytes and stream2 no buffer.
*/

#include <stdio.h>

void main()
(

char buf[1024];
FILE *stream1, *stream2;

if(«stream1 fopen("datal", "a" » != NULL> &&
«stream2 = fopen("data2", "w" » != NULL>)

Output

if(setvbuf(stream1, buf, _IOFBF, sizeof(buf)) 1= 0)
printf("Incorrect type or size of buffer for stream1\n");

else
printf("'stream1' now has a buffer of 1024 bytes\n");

if(setvbuf(stream2, NULL, _IONBF, 0) 1= 0)
printf("Incorrect type or size of buffer for stream2\n");

else
printf("'stream2' now has no buffer\n");

fcloseall();

'stream!' now has a buffer of 1024 bytes
'stream2' now has no buffer

_setvideomode 680

Description Sets the video mode.

#include <graph.h>

short _far _setvideomode(short mode);

mode Desired mode

Remarks The _setvideomode function selects a screen mode appropriate for a particular hard-
ware/di~play configuration. The mode argument can be one of the manifest constants
shown in Table R.9 and defined in GRAPH.H.

Table R.9 Manifest Constants for Screen Mode

Mode Type l Size2 Colors3 Adapter4

DEFAULTMODE Hardware default -
mode

-MAXRESMODE Highest resolution
,in graphics mode

MAXCOLORMODE Maximum colors - in graphics mode

_TEXTBW40 Mff 40x25 16 CGA

_TEXTC40 crr 40x25 16 CGA

_TEXTBW80 Mff 80 x25 16 CGA

_TEXTC80 crr 80x25 6 CGA

-MRES4COLOR C/G 320 x 200 4 CGA

-MRESNOCOLOR M/G 320 x 200 4 CGA

-HRESBW M/G 640 x 200 2 CGA

_TEXTMONO Mff 80 x25 MDPA

-HERCMON05 Hercules graphics 720 x 348 HGC

MRES16COLOR - C/G 320 x 200 16 EGA

HRES16COLOR - C/G 640 x 200 16 EGA

_ERESNOCOLOR Mff 640 x 350 1 EGA

-ERESCOLOR C/G 640 x 350 16 EGA

681 _setvideomode

Table R.9 (continued)

Mode Type1 Size2 Colors3 Adapter4

VRES2COLOR - C/G 640 x 480 2 VGA

_ VRES16COLOR C/G 640 x480 16 VGA

_MRES256COLOR C/G 320 x 200 256 VGA

ORESCOLOR - C/G 640 x 400 1 of 16 aLlv

1. M indicates monochrome, C indicates color output, T indicates text, and G indicates graphics generation.

2. For text modes, size is given in characters (columns x rows). For graphics modes, size is given in pixels
(horizontal x vertical).

3. For monochrome displays, the number of colors is the number of gray shades.

4. Adapters are the IBM (and compatible) Monochrome Adapter (MDPA), Color Graphics Adapter (CGA),
Enhanced Graphics Adapter (EGA), Video Graphics Array (VGA), Hercules-compatible adapter (HGC), and
Olivetti-compatible adapter (OLlV).

5. In _"ERe MONO mode, the text dimensions are 80 columns by 25 rows, with a 9 by 14 character box. The
bottom two scan lines of row 25 are not visible.

Note that only standard hardware is described here, but display hardware that is strictly
compatible with IBM, Hercules, or Olivetti hardware should also work as described.

_MAXRESMOOE and The two special modes _MAXRESMODE and _MAXCOLORMODE select the highest reso­
_MAXCOLORMOOE lution or greatest number of colors available with the current hardware, respectively.

These two modes fail for adapters that do not support graphics modes.

Table R.l 0 lists the video mode selected for different adapter and monitor combinations
when _MAXRESMODE or _MAXCOLORMODE is specified:

Table R.I0 Modes Selected by _MAXRESMODE and _MAXCOLORMODE

Adapter/Monitor _MAXRESMODE _MAXCOLORMODE

MDPA fails fails

HGC _HERCMONO _HERCMONO

CGAcolor* _HRESBW _MRES4COLOR

CGA noncolor* _HRESBW _MRESNOCOLOR

OCGA _ORESCOLOR _MRES4COLOR

OEGAcoior _ORESCOLOR _ERESCOLOR

EGA color 256K _HRES16COLOR _HRES16COLOR

EGA color 64K _HRES16COLOR _HRES16COLOR

_setvideomode 682

Table R.IQ (collfinued)

Adapter/Monitor

EGAecd 256K

EGAecd 64K

EGA mono

MeGA
VGA

OVGA

_MAXRESMODE

_ERESCOLOR

_ERESCOLOR

_ERESNOCOLOR

_ VRES2COLOR

_ VRES16COLOR

_ VRES16COLOR

_MAXCOLORMODE

_ERESCOLOR

_HRES16COLOR

_ERESNOCOLOR

_MRES256COLOR

_MRES256COLOR

_MRES256COLOR

* Color monitor is assumed if the stan-up text mode was TEXTC80 orTEXTC40 or if the stan-up mode
was graphics mode. Composite or other noncolor CGA monitor is assumed if stan-up mode was TEXTBW80 or
TEXTBW40.

Hercules Support You must install the Hercules driver MSHERC.COM before running your program. Type
MSHERC to load the driver. This can be done from an AUTOEXEC.BAT file.

Return Value

Compatibility

See Also

If you have both a Hercules monochrome card and a color video card, you should install
MSHERC.COM with the /H (/HALF) option. The /H option causes the driver to use one
instead of two graphics pages. This prevents the two video cards from attempting to use
the same memory. You do not have to use the /H option if you have only a Hercules card.
See your Hercules hardware manuals for more details of compatibility.

To use a mouse, you must follow special instructions for Hercules cards in Microsoft
Mouse Programmer's Reference Guide. (This is sold separately; it is not supplied with
either Microsoft C or the mouse package.)

The function returns the number of text rows if the function is successful. If an error is en­
countered (that is, the mode selected is not supported by the current hardware configura­
tion), the function returns O.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

In OS/2, only text video modes may he selected by _setvideomode.

_getvideoconflg, _ settextrows, _ setvideomoderows

Examp~ ___ ___

1* SVIDMODE.C: This program sets a video mode from a string given on the
* command line.
*/

683

#include <graph.h>
#include <stdlib.h>
#include <string.h>

short modes[] = { _TEXTBW40,
_TEXTC80,
_HRESBW,
_MRES16COLOR,
_ERESCOLOR,
_MRES256COLOR,

} ;

_TEXTC40,
_MRES4COLOR,
_TEXTMONO,
_HRES16COLOR,
_VRES2COLOR,
_ORESCOLOR

_TEXTBW80,
_MRESNOCOLOR,
_HERCMONO,
_ERESNOCOLOR,
_VRES16COLOR,

char *names[] = {"TEXTBW40", "TEXTC40", "TEXTBW80" ,
"TEXTC80", "MRES4COLOR", "MRESNOCOLOR",
"HRESBW", "TEXTMONO" , "HERCMONO",
"MRES16COLOR", "HRES16COLOR", "ERESNOCOLOR",
"ERESCOLOR", "VRES2COLOR", "VRES16COLOR",
"MRES256COLOR","ORESCOLOR"

} ;

void errore char *msg);

void maine int argc, char *argv[]
{

short i, num = sizeof(modes) / sizeof(short);
struct videoconfig vc;

if (a rgc < 2)
errore "No argument given");

/* If matching name found, change to corresponding mode. */
for (i = 0; i < n urn; i ++)
{

if(!strcmpi(argv[l], names[i]))
{

_setvideomode(modes[i]);
_outtext("New mode is: ");
_outtext(names[i]);
exit(0);

errore "Invalid mode string");

void errore char *msg
{

_outtext(msg);
ex it (1);

_setvideomode

_setvideomoderows 684

Description

Remarks

Return Value

Compatibll/Iy

See Also

Sets the video mode and number of text rows for text modes.

#include <graph.h>

short _far _setvideomoderows(short mode, short rows);

mode

rows

Desired mode

Number of text rows

The _setvideomoderows function selects a screen mode for a particular hardware/display
combination. The manifest constants for the screen mode are given in the reference pages
for_ setvideomode. The _ setvideomoderows function also specifies the number of text
rows to be used in a text mode. If the constant _MAXTEXTROWS is specified for the r~ws
argument, the function will choose the maximum number of rows available. In text modes,
this is 50 rows on VGA, 43 on EGA, and 25 on others. In graphics modes that support 30
or 60 rows, _MAXTEXTROWS specifies 60 rows.

The setvideomoderows function returns the numbers of rows set. The function returns 0 if
an error occurred (e.g., if the mode is not supported).

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

In OS/2, only text video modes may be selected by _ setvideomoderows.

_getvideoconfig, _settextrows, _setvideomode

Exampre __ ___

1* SVMROWS.C *1

#include <stdlib.h>
#include <conio.h>
#include <graph.h>

void main()
{

struct videoconfig config;

685

/* Set 43-line graphics mode if available. */
if(!_setvideomoderows(_ERESCOLOR, 43))
(

_outtext("EGA or VGA required");
exit(1);

_getvideoconfig(&config);

_setvideon7oderows

/* Set logical origin to center gnd draw a rectangle. */
_setlogorg(config.numxpixels / 2 - I, config.numypixels / 2 - 1);
_rectangle(_GBORDER, -80, -50, 80, 50);

getch();
_setvideomode(_DEFAULTMODE);

_setvieworg 686

Description Moves the view-coordinate origin to the specified physical point.

Remarks

Return Value

Compatibility

See Also

#include <graph.h>

struct xycoord _far _setvieworg(short x, short y);

x,y New origin point

The _ setvieworg function moves the view-coordinate origin (0, 0) to the physical point
(x, y). All other view-coordinate points move the same direction and distance.

The xycoord structure, defined in GRAPH.H, contains the following elements:

Element

short xcoord

short ycoord

Description

x coordinate

y coordinate

C 5. 1 Difference This function replaces the _setlogorg function.

The function returns the physical coordinates of the previous view origin in an xycoord
structure, defined in GRAPH.H.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getphyscoord, _getviewcoord, _getwindowcoord, _setcliprgn, _setviewport

Exampw __ ___

/* SVORG.C: This program sets the view orlgln to the center of
* the screen, then draws a rectangle using the new origin.
*/

#include <stdlib.h>
#include <conio.h>
#include <graph.h>

void main()
{

struct videoconfig config;

687

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE)

exit(1);
_getvideoconfig(&config);

1* Set view origin to the center of the screen. *1
_setvieworg(config.numxpixels I 2, config.numypixels I 2);
_rectangle(_GBORDER, -80, -50, 80, 50);

getch() ;
_setvideomode(_DEFAULTMODE);

_setvieworg

_setviewport

Description Creates a viewport.

#include <graph.h>

void _far _setviewport(short xl, short yl, short x2, short y2);

xl,yl

x2,y2

Upper-left comer of viewport

Lower-right corner of viewport

688

Remarks The _ setviewport function redefines the graphics viewport. The _setviewport fu.nction
defines a clipping region in exactly the same manner as _setcliprgn, and then sets the
view-coordinate origin to the upper-left comer of the region. The physical points (xl, yl)
and (x2, y2) are the diagonally opposed comers of the rectangular clipping region. Any
window transformation done with the _setwindow function applies only to the viewport
and not to the entire screen.

Return Value None.

Compatibility o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

See Also _setcliprgn, _setvieworg, _setwindow

Exampw __ ___

1* SVIEWPRT.C: This program sets a viewport and then draws a rectangle
* around it and an ellipse in it.
*1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main()
{

1* Find a valid graphics mode. *1
i f(!_setvi deomode(_MAXRESMODE)

ex it (1);

_setviewport(100, 100, 200, 200);
_rectangle(_GBORDER, 0, 0, 100, 100);
_ellipse(_GFILLINTERIOR, 10, 10, 90, 90);

689 _selviewport

getch() ;
_setvideomode(_DEFAULTMODE);

_selvisualpage 690

Description

Remarks

Return Value

Compatibility

See Also

Example

Sets the visual page.

#include <graph.h>

short _far _setvisualpage(short page);

page Visual page number

For hardware configurations that have an EGA or a VGA and enough memory to support
multiple-screen pages, the _setvisualpage function selects the current visual page. The
page argument specifies the current visual page. The default page number is O.

The function returns the number of the previous visual page. If the function fails, it returns
a negative value.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getactivepage, _getvisualpage, _ setactivepage, _ setvideomode

See the example for _ setactivepage.

691

Description

Remarks

Return Value

Compatibility

See Also

_setwindow

Defines a graphics window.

#include <graph.h>

short _far _setwindow(shortjinvert, double wxl, double wyl, double wx2,
double wy2);

jinvert

wxl, wyl

wx2, wy2

Invert flag

Upper-left comer of window

Lower-right comer of window

The _ setwindow function defines a window bounded by the specified coordinates. The
arguments (wxl, wyl) specify the upper-left comer of the window, and the arguments
(wx2, wy2) specify the lower-right comer of the window.

TheJinvert argument specifies the direction of the ~oordinates. IfJinvert is TRUE, the
y axis increases from the screen bottom to the screen top (Cartesian coordinates). If
jinvert is FALSE, the y axis increases from the screen top to the screen bottom (screen
coordinates). .

Any window transformation done with the _ setwindow function applies only to the view­
port and not to the entire screen.

If wxl equals wx2 or wyl equals wy2, the function will fail.

Note that this function does not affect the output of presentation-graphics text (e.g., labels,
axis marks, etc.). It also does not affect the output of the font display routine _ outgtext.

The function returns a nonzero value if successful. If the function fails (e.g., if it is not in a
graphics mode), it returns O.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_ setviewport

Exampw __ __

1* SWINDOW.C: This program illustrates translation between window,
* view, and physical coordinates. Functions used include:
* _setwindow _getwindowcoord
* _getphyscoord _getviewcoord_wxy
*1

_setwindow

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

enum boolean (FALSE, TRUE };
enum display (MOVE, DRAW, ERASE };

void main()
(

struct xycoord view, phys;
struct _wxycoord aldwin, newwin;
struct videoconfig vc;
double xunit, yunit, xinc, yinc;
short color, key, fintersect = FALSE, fdisplay = TRUE;

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE)

exit(1);
_getvideoconfig(&vc);

1* Set a window using real numbers. *1
_setwindow(FALSE, -125.0, -100.0, 125.0, 100.0);

1* Calculate the size of one pixel in window coordinates.
* Then get the current window coordinates and color.
*1

oldwin = _getwindowcoord(1, 1);
newwin = _getwindowcoord(2, 2);
xunit = xinc = newwin.wx - oldwin.wx;
yunit = yinc = newwin.wy - oldwin.wy;
newwin = oldwin = _getcurrentposition_w();
color = _getcolor();

while(1)
(

1* Set flag according to whether current pixel ;s on, then
* turn pixel on.
*1

if(_getpixel_w(oldwin.wx, oldwin.wy) color)
fintersect = TRUE;

else
fintersect = FALSE;

_setcolor(color);
_setpixel_w(oldwin.wx, oldwin.wy);

692

693

1* Get and test key. *1
key = getch();
switch(key)
(

case 27: 1* ESC Quit *1
_setvideomode(_DEFAULTMODE);
ex it (0);

case 32: 1* SPACE Move no color *1
fdisplay = MOVE;
continue;

case 0: 1* Extended code - get next *1
key = getch();
switch(key)
(

case 72: 1* UP -y *1
newwin.wy -= yinc;
break;

case 77: 1* RIGHT +x *1
newwin.wx += xinc;
break;

case 80: 1* DOWN +y *1
newwin.wy += yinc;
break;

case 75: 1* LEFT -x *1
newwin.wx xinc;
break;

case 82: 1* INS Draw white *1
fdisplay = DRAW;
continue;

case 83: 1* DEL Draw black *1
fdisplay = ERASE;
continue:

break;

1* Translate window coordinates to view, view to physical.
* Then check physical to make sure we're on screen. Update screen
* and position if we are. Ignore if not.
*1

view = _getviewcoord_wxy(&newwin);
phys = _getphyscoord(view.xcoord, view.ycoord);
if((phys.xcoord)= 0) && (phys.xcoord < vc.numxpixels) &&

(phys.ycoord)= 0) && (phys.ycoord < vc.numypixels))

_setwindow

_setwindow

1* If display on, draw to new position, else move to new. *1
if(fdisplay 1= MOVE)
(

if(fdisplay -- ERASE
_setcolor(");

_lineto_w(newwin.wx, newwin.wy);

else
(

_setcolor(");
_moveto_w(newwin.wx, newwin.wy);

1* If there was no intersect, erase old pixel. *1
if(1 fi ntersect)

_setpixel_w(oldwin.wx, oldwin.wy);

oldwin = newwin;
}

else
newwin = oldwin;

694

695

Description

Remarks

Return Value

Compatibility

See Also

Example

_setwritemode

Sets the current logical mode for line drawing.

#include <graph.h>

short _far _setwritemode(short action);

action Interaction with existing screen image

The _setwritemode function sets the current logical write mode, which is used when draw­
ing lines with the Jineto and _rectangle functions.

The action argument defines the write mode. The possible values are _ GAND, _ GOR,
_ GPRESET, _ GPSET, and _ GXOR. See the description of the -putimage function for
more details on these manifest constants.

The _ setwritemode function returns the previous write mode, or -1 if an error occurs.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getwritemode, _grstatus, _lineto functions, -putimage functions, _rectangle
functions, _ setcolor, _ setlinestyle

See the example for _getwritemode.

signal

Description

Remarks

Sets interrupt signal handling.

#include <signal.h>

void (*signal(int sig, void(*Junc)(int sig [, int subcode]))) (int sig);

sig

Junc

subcode

Signal value

Function to be executed

Optional subcode to the signal number

696

The signal function allows a process to choose one of several ways to handle an interrupt
signal from the operating system.

The sig argument must be one of the manifest constants described in Table R.II and de­
fined in SIGNAL.H.

Table R.II Signals and Responses

Value Modes Meaning Default Action

SIGABRT Real, Abnonnal tennination Tenninates the calling program
protected with exit code 3

SIGBREAK Protected CfRL+BREAK signal Tenninates the calling program
with exit code 3

SIGFPE Real, Floating-point error Tenninates the calling program
protected with exit code 3

SIGILL Real, Illegal instruction Tenninates the calling program
protected with exit code 3

SIGINT Real, CfRL+C signal Tenninates the calling program
protected with exit code 3

SIGSEGV Real, Illegal storage access Tenninates the calling program
protected with exit code 3

SIGTERM Real, Tennination request Tenninates the calling program
protected with exit code 3

SIGUSRI Protected OS/2 process flag A Signal is ignored

SIGUSR2 Protected OS/2 process flag B Signal is ignored

SIGUSR3 Protected OS/2 process flag C Signal is ignored

SIGUSRl, SIGUSR2, and SIGUSR3 are user-defined signals which can be sent by means of
DosFlagProcess. For details, see Microsoft Operating Systeml2 Programmer's Reference.

697 signal

Note that SIGILL, SIGSEGV, and SIGTERM are not generated under DOS and SIGSEGV
is not generated under OS/2. They are included for ANSI compatibility. Thus, you may set
signal handlers for these signals via signal, and you may also explicitly generate these sig­
nals by calling raise.

Note also that signal settings are not preserved in child processes created by calls to exec
or spawn. The signal settings are reset to the default in the child process.

The action taken when the interrupt signal is received depends on the value of/unc. The
JUlle argument must be either a function address or one of the manifest constants defined in
SIGNAL.H and listed below:

Value Meaning

Acknowledges receipt of a signal (OS/2 only). This constant
is valid only if a user-defined signal handler is installed. Once
a process receives a given signal, the operating system does
not send any more signals of this type until it receives a
SIG_ACK acknowledgment from the process. The operating
system does not queue up signals of a given type; therefore, if
more than one signal of a given type accumulates before the
process returns a SIG_ACK value, only the most recent signal
is sent to the process after the SIG_ACK value is received by
the operating system. This option has no effect on which han­
dler is installed for a given signal. The manifest constant
SIG_ACK is not supported for SIGFPE signals.

Uses system-default response. The system-default response
for all signals except SIGUSRl, SIGUSR2, and SIGUSR3 is to
abort the calling program. The calling process is terminated
with exit code 3, and control returns to DOS or OS/2. If the
calling program uses stream I/O, buffers created by the run­
time library are not flushed, but buffers created by the operat­
ing system are flushed. The default response for SIGUSRl,
SIGUSR2, and SIGUSR3 is to ignore the signal.

Ignores interrupt signal (OS/2 only). This constant is equiv­
alent to SIG_IGN, except that any process that tries to send
this signal receives an error. A process may use the raise func­
tion to send a signal to itself. A different process may send a
signal by means of the function DosFlagProcess (if the signal
is SIGUSRl, SIGUSR2, or SIGUSR3) or by means of
DosKiIIProcess (if the signal is SIGTERM).

Ignores interrupt signal. This value should never be given for
SIGFPE, since the floating-point state of the process is left
undefined.

signal

Function address Installs the specified function as the handler for the given
signal.

698

For all signals except SIGFPE and SIGUSRX, the function is
passed the sig argument SIGINT and executed.

For SIGFPE signals, the function is passed two arguments;
namely SIGFPE and the floating-point error code identifying
the type of exception that occurred.

For SIGUSRl, SIGUSR2, and SIGUSR3, the function is passed
two arguments: the signal number and the argument furnished
by the DosFlagProeess function.

ForSIGFPE, the function pointed to by June is passed two arguments, SIGFPE and an
integer errorsubcode, FPE _xxx; then the function is executed. (See the include file
FLOAT.H for definitions of the FPE_xxx subcodes.) The value of June is not reset upon re­
ceiving the signal. To recover from floating-point exceptions, use setjmp in conjunction
with longjmp. (See the example under _fpreset.) If the function returns, the calling
process resumes execution with the floating-point state of the process left undefined.

If the function returns, the calling process resumes execution immediately following the
point at which it received the interrupt signal. This is true regardless of the type of signal
or operating mode.

Before the specified function is executed under DOS versions 3.x or earlier, the value
of June is set to SIG_DFL. The next interrupt signal is treated as described above for
SIG_DFL, unless an intervening call to signal specifies otherwise. This allows the program
to reset signals in the called function.

Under OS/2, the signal handler is not reset to the system-default response. Instead, no sig­
nals of a given type are received by a process until the process sends a SIG_ACK value to
the operating system. The program can restore the system-default response from the han­
dler by first sending SIG_DFL and then sending SIG_ACK to the operating system.

Since signal-handler routines are normally called asynchronously when an interrupt oc­
curs, it is possible that your signal-handler function will get control when a C run-time
operation is incomplete and in an unknown state. Certain restrictions therefore apply to the
C functions that can be used in your signal-handler routine:

1. Do not issue low-level or standard input and output routines (e.g., printf, read, write,
and fread).

2. Do not call heap routines or any routine that uses the heap routines (e.g., malloe,
strdup, putenv).

3. Do not use any C function that generates a system call (e.g., getewd, time).

699 signal

4. Do not use the longjmp function unless the interrupt is caused by a floating-point ex­
ception (Le., sig is SIGFPE). In this case, the program should first reinitialize the
floating-point package by means of a call to _fpreset.

5. Do not use any overlay routines.

Return Value The signal function returns the previous value of June associated with the given signal. For
example, if the previous value of June was SIG_IGN, the return value will be SIG_IGN.
The one exception to this rule is SIG_ACK, which returns the address of the currently in­
stalled handler.

A return value of -1 indicates an error, and errno is set to EINV AL. The possible error
causes are an invalid sig value, an invalidJune value (that is, a value that is less than
SIG_ACK but not defined), or aJune value of SIG_ACK used when no handler is currently
installed.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also abort, exec functions, exit, _exit, _fpreset, spawn functions

Exampw ___ ___

1* SIGNAL.C illustrates setting up signal interrupt routines. Functions
* illustrated include signal and raise.
*
* Since CliO functions are not safe inside signal routines, the code
* uses conditionals to use system-level DOS and OS/2 services. Another
* option is to set global flags and do any 1/0 operations outside the
* signal handler. To compile the OS/2 version, define the symbol OS2.
*1

#include <stdio.h>
#include <conio.h>
#include <signal.h>
#include <process.h>
#include <stdlib.h>
#if defined(OS2)

#define INCL_NOCOMMON
#define INCL_NOPM
#define INCL_VIO
#define INCL_KBD
#include <os2.h>
#include <string.h>

#else
#include <dos.h>
#include <bios.h>

#endif

signal

void ctrlchandler(void);
void safeout(char *str);
int safein(void);

1* Prototypes *1

void main()
(

int ch;

1* Modify CTRL+C behavior. *1
if(signal(SIGINT. ctrlchandler) == SIG_ERR)
(

fprintf(stderr. "Couldn't set SIGINT\n");
abort() ;

1* Input loop illustrates results. *1
do
(

ch = getch();
i f(ch == 0)
(

ch = getch();
if(ch == 46) 1* Treat ALT+C like CTRL+C *1

raise(SIGINT);
else

printf("Extended code: %X\n". ch);

else
printf("ASCII code: %X\n". ch);

while(ch != 27); 1* ESC code *1

1* Handles SIGINT (CTRL+C) interrupt. *1
void ctrlchandler()
(

int c;
char str[] = " ";

1* Disallow CTRL+C during handler. *1
s;gnal(SIGINT. SIG_IGN);

safeout("User break - abort processing? ");
.c = safein();
str[0] = c; ,
safeout(str);
safeout("\r\n");
i f ((c == 'y') I I (c == 'Y'))

abort();
else

700

701

/* The CTRL+C interrupt must be reset to our handler since
* by default it is reset to the system handler.
*/

signal(SIGINT, ctrlchandler);

/* Outputs a string using system level calls. */
void safeout(char *str)
(
#if defined(OS2)

VioWrtTTY(str, strlen(str), 0);
#else

union REGS inregs, outregs;

inregs.h.ah = 0x0e;
while(*str)
(

)
#endif
)

inregs.h.al = *str++;
int86(0x10, &inregs, &outregs);

/* Inputs a character using system level calls. */
int safein()
(

#if defined(OS2)
KBDKEYINFO kki;

KbdCharln(&kki, IO_WAIT, 0);
return kki .chChar;

fie 1 s e
return _bios_keybrd(_KEYBRD_READ) & 0xff;

flendi f
)

Oulpul

ASCII code: 74
ASCII code: 68
ASCII code: 65
I\C
User break - abort processing? n
ASCII code: 62
ASCII code: IB

signal

sin Functions 702

Description

Remarks

Return Value

Compatibility

See Also

Calculate sines and hyperbolic sines.

#include <math.h>

double sin(double x);

double sinh(double x);

long double sinl(long double x);

long double sinhl(long double x);

x Angle in radians

The sin and sinh functions find the sine and hyperbolic sine of x, respectively. The sinl
and sinhl functions are the 80-bit counterparts and use an 80-bit, lO-byte coprocessor form
of arguments and return values. See the reference page on the long double functions for
more details on this data type.

The sin functions return the sine of x. If x is large, a partial loss of significance in the result
may occur, and sin generates a PLOSS error. If x is so large that significance is completely
lost, the sin function prints a TLOSS message to stderr and returns O. In both cases, errno
is set to ERANGE.

The sinh function returns the hyperbolic sine of x. If the result is too large, sinh sets errno
to ERANGE and returns ±HUGE_ VAL.

sin, sinh

• ANSI • DOS • OS/2 • UNIX • XENIX

sinl, sinhl

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

acos functions, asin functions, atan functions, cos functions, tan functions

Exampw __ __

1* SINCOS.C: This program displays the sine, hyperbolic sine, cosine,
* and hyperbolic cosine of pi I 2.
*1

703

#include <math.h>
#include <stdio.h>

void main()
(

double pi = 3.1415926535;
double x, Y;

x = pi / 2;
y = sin(x);
printf("sin(%f) = %f\n", x, y);
y = sinh(x);
printf("sinh(%f) = %f\n",x, y);
y = cos(x);
printf("cos(%f) = %f\n", x, y);
y = cosh(x);
printf("cosh(%f) = %f\n",x, y);

Output

sin(1.570796) = 1.000000
sinh(1.570796) = 2.301299
cos(1.570796) = 0.000000
cosh(1.570796) = 2.509178

sin Functions

sopen

Description

Remarks

Opens a file for file sharing.

#include <fcntl.h>

#include <sys\types.h>

#include <sys\stat.h>

#include <share.h>

#include <io.h>

704

Required only for function declarations

int sopen(char *filename, int oflag, int shflag [, int pmode]);

filename

oflag

shflag

pmode

File name

Type of operations allowed

Type of sharing allowed

Permission setting

The sop en function opens the file specified by filename and prepares the file for sub­
sequent shared reading or writing, as defined by oflag and shflag. The integer expression
oflag is formed by combining one or more of the following manifest constants, defined in
the file FCNTL.H. When two or more constants are used to form the argument oflag, the
constants are combined with the OR operator (I).

Constant

o APPEND

O_EXCL

Meaning

Repositions the file pointer to the end of the file before every
write operation.

Opens file in binary (untranslated) mode. (See fopen for a de­
scription of binary mode.)

Creates and opens a new file. This has no effect if the file
specified by filename exists.

Returns an error value if the file specified by filename exists.
This applies only when used with O_CREAT.

Opens file for reading only. If this flag is given, neither the
o _RDWR flag nor the 0_ WRONLY flag can be given.

Opens file for both reading and writing. If this flag is given,
neither 0 _RDONLY nor 0_ WRONLY can be given.

705 sop en

,
Opens file in text (translated) mode. (See fopen for a descrip-
tion of text mode.)

Opens and truncates an existing file to 0 bytes. The file must
have write permission; the contents of the file are destroyed.

Opens file for writing only. If this flag is given, neither
o _RDONLY nor 0 _RDWR can be given.

The argument shflag is a constant expression consisting of one of the following manifest
constants, defined in SHARE.H. If SHARE. COM (or SHARE.EXE for some versions of
DOS) is not installed, DOS ignores the sharing mode. (See your system documentation for
detailed information about sharing modes.)

Constant

SH_DENYRW

SH_DENYWR

SH_DENYRD

SH_DENYNO

Meaning

Sets compatibility mode (not available in OS/2). This is the
sharing mode used in the open function in DOS.

Denies read and write access to file.

Denies write access to file.

Denies read access to file.

Permits read and write access. This is the sharing mode used
in the open function in OS/2.

The sop en function should be used only under OS/2 and DOS versions 3.0 and later.
Under earlier versions of DOS, the shflag argument is ignored.

The pmode argument is required only when 0_ CREAT is specified. If the file does not
exist, pmode specifies the file's permission settings, which are set when the new file is
closed for the first time. Otherwise, the pmode argument is ignored. The pmode argument
is an integer expression that contains one or both of the manifest constants S_IWRITE and
S IREAD, defined in SYS\sTAT.H. When both constants are given, they are combined
with the OR operator (I). The meaning of the pmode argument is as follows:

Value

S_IWRITE

S_IREAD

S _ IREAD I S _IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read-only. Under DOS and OS/2, all files are
readable; it is not possible to give write-only permission. Thus, the modes S_IWRITE and
S_IREAD I S_IWRITE are equivalent.

sop en

Return Value

Compatibility

See Also

Example

706

Note that under DOS versions 3.x with SHARE installed, a problem occurs when opening
a new file with sopen under the following sets of conditions:

• With oflag set to 0_ CREAT I 0 _RDONLY or 0_ CREAT I WRONLY; pmode set to
S_IREAD, and shflag set to SH_COMPAT .

• With oflag set to any combination that includes O_CREAT I O_RDWR,pmode set to
S_IREAD, and shflag set to anything other than SH_COMPAT.

In either case, the operating system will prematurely close the file during system calls
made within sopen, or the system will generate a sharing violation (INT 24H). To avoid
the problem, open the file withpmode set to S_IWRITE. After closing the file, call chmod
and change the mode back to S_IREAD. Another solution is to open the file withpmode
set to S_IREAD, oflag set to O_CREAT I O_RDWR, and shflag set to SH_COMPAT.

The sopen function applies the current file-permission mask to pmode before setting the
permissions (see umask).

The sopen function returns a file handle for the opened file. A return value of -1 indicates
an error, and errno is set to one of the following values:

Value

EACCES

EEXIST

EINVAL

EMFILE

ENOENT

Meaning

Given path name is a directory; or the file is read-only but an
open for writing was attempted; or a sharing violation oc­
curred (the file's sharing mode does not allow the specified
operations; OS/2 and DOS versions 3.0 and later only).

The O_CREAT and O_EXCL flags are specified, but the
named file already exists.

An invalid oflag or shflag argument was given.

No more file handles available (too many open files).

File or path name not found.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

close, creat, fopen, _ fsopen, open, umask

See the example for locking.

707

Description

Remarks

spawn Functions

Create and execute a new child process.

#include <stdio.h>

#include <process.h>

int spawnl(int mode, char *cmdname, char *argO, char *argl, ••• char *argn, NULL);

int spawnle(int mode, char *cmdllame, char *argO, char *argl, ••• char *argll, NULL,
char **ellvp);

int spawnlp(int mode, char *cmdname, char *argO, char *argl, ••• char *argll, NULL);

int spawnlpe(int mode, char *cmdname, char *argO, char *argl, ••• char *argll, NULL,
char **envp);

int spawnv(iqt mode, char *cmdname, char **argv);

int spawnve(int mode, char *cmdname, char **argv, char **envp);

int spawnvp(int mode, char *cmdname, char **argv);

int spawnvpe(intmode, char *cmdname, char **argv, char **envp);

mode

cmdname

argO, ... argn

argv

ellvp

Execution mode for parent process

Path name of file to be executed

List of pointers to arguments

Array of pointers to arguments

Array of pointers to ~nvironment settings

The spawn family of functions creates and executes a new child process. Enough memory
must be available for loading and executing the child process. The mode argument deter­
mines the action taken by the parent process before and during spawn. The following
values for mode are defined in PROCESS.H:

Value Meaning

Continues to execute the parent process; child process is run
in the background with no access to the console or keyboard.
Calls to wait and cwait against the child process will fail.
This is an asynchronous detached spawn and is valid only in
o,'S/2 protected mode.

spawn Functions 708

Continues to execute parent process concurrently with child
process (asynchronous spawn, valid only in protected mode).

Continues to execute parent process and ignores wait and
cwait calls against child process (asynchronous spawn, valid
only in protected mode).

Overlays parent process with child, destroying the parent
(same effect as exec calls).

Suspends parent process until execution of child process is
complete (synchronous spawn).

The cmdname argument specifies the file which will be executed as the child process, and
can specify a full path (from the root), a partial path (from the current working directory),
or just a file name. If cmdname does not have a file-name extension or does not end with a
period (.), the spawn function first tries the .COM extension, then the .EXE extension, and
finally the .BAT extension (or, in OS/2 protected mode, the .CMD extension). This ability
to spawn batch files is a new feature in Microsoft C version 6.0.

If cmdname has an extension, only that extension is used. If cmdname ends with a period,
the spawn calls search for cmdname with no extension. The spawnlp, spawnlpe,
spawnvp, and spawnvpe routines search for cmdname (using the same procedures) in the
directories specified by the PATH environment variable.

If cmdname contains a drive specifier or any slashes (i.e., if it is a relative path name), the
spawn call searches only for the specified file and no path searching is done.

Arguments for the Child Process

Arguments are passed to the child process by giving one or more pointers to character
strings as arguments in the spawn call. These character strings form the argument list for
the child process. The combined length of the strings forming the argument list for the
child process must not exceed 128 bytes in real mode. The terminating null character (,\0')
for each string is not included in the count, but space characters (automatically inserted to
separate arguments) are included.

The argument pointers may be passed as separate arguments (spawnl, spawnle, spawnlp,
and spawnlpe) or as an array of pointers (spawnv, spawnve, spawnvp, and spawnvpe).
At least one argument, argO or argv[O], must be passed to the child process. By conven­
tion, this argument is the name of the program as it might be typed on the command line
by the user. (A different value will not produce an error.) In real mode, the argv[O] value is
supplied by the operating system and is the fully qualified path name of the executing pro­
gram. In protected mode, it is usually the program name as it would be typed on the com­
mand line.

709 spawn Functions

The spawnl, spawnle, spawnlp, and spawnlpe calls are typically used in cases where the
number of arguments is known in advance. The argO argument is usually a pointer to
cmdname. The arguments argJ through argn are pointers to the character strings forming
the new argument list. Following argn, there must be a NULL pointer to mark the end of
the argument list.

The spawnv, spawnve, spawnvp, and spawnvpe calls are useful when the number of ar­
guments to the child process is variable. Pointers to the arguments are passed as an array,
argv. The argument argv[O] is usually a pointer to a path name in real mode or to the pro­
gram name in protected mode, and argv[l] through argv[n] are pointers to the character
strings forming the new argument list. The argument argv[n+ 1] must be a NULL pointer to
mark the end of the argument list.

Environment of the Child Process

Files that are open when a spawn call is made remain open in the child process. In the
spawnl, spawnlp, spawnv, and spawnvp calls, the child process inherits the environment
of the parent. The spawn Ie, spawnlpe, spawnve, and spawnvpe calls allow the user to
alter the environment for the child process by passing a list of environment settings
through the envp argument. The argument envp is an array of character pointers, each ele­
ment of which (except for the final element) points to a null-terminated string defining an
environment variable. Such a string usually has the form

NAME=value

where NAME is the name of an environment variable and value is the string value to which
that variable is set. (Note that value is not enclosed in double quotation marks.) The final
element of the envp array should be NULL. When envp itself is NULL, the child process in­
herits the environment settings of the parent process.

The spawn functions can pass the child process all information about open flIes, including'
the translation mode, through the C_FILE_INFO entry in the environment that is passed in
real mode CC_FILE_INFO in protected mode).

The C start-up code normally processes this entry and then deletes it from the environ­
ment. However, if a spawn function spawns a' non-C process (such as CMD.EXE), this
entry remains in the environment. Printing the environment shows graphics characters in
the definition string for this entry, since the environment information is passed in binary
form in real mode. It should not have any other effect on normal operations. In protected
mode, the environment information is passed in text form and therefore contains no
graphics characters.

You must explicitly flush (using mush or flushall) or close any stream prior to the spawn
function call.

spawn Functions 710

Return Value

Starting with Microsoft eversion 6.0, you can control whether or not the open file infor­
mation of a process will be passed to its child processes. The external variable _fileinfo
(declared in STDLIB.H) controls the passing ofC_FILE_INFO infonnation. If _fileinfo is
0, the C_FILE_INFO infonnation is not passed to the child processes. If _fileinfo is not 0,
C_FILE_INFO is passed to child processes. .

By default, _fileinfo is ° and thus the C_FILE_INFO infonnation is not passed to child
processes. There are two ways to modify the default value of _fileinfo:

• Link the supplied object file FILEINFO.OBJ into your program. Use the /NOE option
to avoid multiple symbol definitions.

• Set the _fileinfo variable to a nonzero value directly within your C program.

The return value from a synchronous spawn (P _WAIT specified for mode) is the exit sta­
tus of the child process.

The return value from an asynchronous spawn (P _NOW AlT or P _NOW AlTO specified for
mode) is the process ID. To obtain the exit code for a process spawned with P _NOWAIT,
you must call the wait or cwait function and specify the process ID. The exit code cannot
be obtained for a process spawned with P _NOWAITO. .

The exit status is ° if the process tenninated nonnally. The exit status can be set to a non­
zero value if the child process specifically calls the exit routine with a nonzero argument.
If the child process did not explicitly set a positive exit status, a positive exit status indi­
cates an abnonnal exit with an abort or an interrupt. A return value of -1 indicates an
error (the child process is not started). In this case,errno is set to one of the following
values:

Value

E2BIG

EINVAL

ENOENT

ENOEXEC

ENOMEM

Meaning

In DOS, the argument list exceeds 128 bytes, or the space
required for the environment infonnation exceeds 32K. In
OS/2, the argument list and the space required for environ­
ment infonnation combined exceed 32K.

The mode argument is invalid.

The file or path name is not found.

The specified file is not executable or has an invalid
executable-file fonnat.

Not enough memory is available to execute the child process.

Note that signal settings are not preserved in child processes created by calls to spawn
routines. The signal settings are reset to the default in the child process.

711 spawn Functions

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

The spawn functions, with P _OVERLAY mode, will not work in OS/2 DOS­
compatibility mode in programs which are bound with FAPI for dual-mode execution.

Programs linked as DOS mode .EXE files will work, and protected-mode programs will
work. The restriction applies only to bound programs in real mode.

In order to ensure proper overlay initialization and termination, do not use the setjmp or
longjmp functions to enter or leave an overlay routine.

See Also abort, atexit, exec functions, exit, _exit, onexit, system

Exampw __ ___

1* SPAWN.C: This program accepts a number in the range 1 - 8 from the
* command line. Based on the number it receives, it executes one of the
* eight different procedures that spawn the process named child. For
* some of these procedures, the CHILD.EXE file must be in the
* same directory; for others, it only has to be in the same path.
*1

#include <stdio.h>
#include <process.h>

char *my_env[] =
(

) ;

"THIS=environment will be",
"PASSED=to child.exe by the",
"SPAWNLE=and",
"SPAWNLPE=and",
"SPAWNVE=and",
"SPAWNVPE=functions" ,
NULL

void main(int argc, char *argv[])
(

char *args[4];
int result;

1* Set up parameters to be sent: */
args[0] "child";
args[l] = "spawn??";
args[2] = "two";
args[3] = NULL;
switch (argv[1][0]) 1* Based on first letter of argument *1
(

case '1':

spawn Functions

}

spawnl(P_WAIT. argv[2]' argv[2]' "spawnl". "two". NULL);
break;

case '2':
spawnle(P_WAIT. argv[2], argv[2], "spawnle". "two".

break;
case '3':

NULL. my_env);

spawnlp(P_WAIT. argv[2J. argv[2J. "spawnlp". "two". NULL);
break;

case '4':
spawnlpe(P_WAIT. argv[2J. argv[2J. "spawnlpe". "two".

NULL. my_env);
break;

case '5':
spawnv(P_OVERLAY. argv[2J. args);
break;

case '6':
spawnve(P_OVERLAY. argv[2J. args. my_env);
brea k;

case '7':
spawnvp(P_OVERLAY. argv[2J. args);
brea k;

case '8':
spawnvpe(P_OVERLAY. argv[2J. args. my_env);
brea k;

default :
printf("SYNTAX: SPAWN <1-8> <childprogram>\n");
exit(1);

printf("\n\nReturned from SPAWNI\n");

712

713

Description

Remarks

Return Value

Compatibility

_spiitpath

Breaks a path name into components.

#include <stdlib.h>

void _splitpath(char *path, char *drive, char *dir, char *fname, char *ext);

path Full path name

drive Drive letter

dir Directory path

fname File name

ext File extension

The _ splitpath routine breaks a full path name into its four components. The path argu­
ment should point to a buffer containing the complete path name. The maximum size nec­
essary for each buffer is specified by the manifest constants _MAX_DRIVE, _MAX_DIR,
_MAX_FNAME, and _MAX_EXT, defined in STDLIB.H. The other arguments point to the
buffers used to store the path-name elements:

Buffer

drive

dir

fname

ext

Description

Contains the drive letter followed by a colon (:) if a drive is
specified in path.

Contains the path of subdirectories, if any, including the trail­
ing slash. Forward slashes (/), backslashes (\), or both may
be present in path.

Contains the base file name without any extensions.

Contains the file-name extension, if any, including the leading
period (.).

The return parameters will contain empty strings for any path-name components not found
in path.

None.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_splitpath 714

See Also _full path, _makepath

Exampm __ __

1* MAKEPATH.C *1
#include <stdlib.h>
#include <stdio.h>

void main()
{

char path_buffer[_MAX_PATH];
char drive[_MAX_DRIVE];
char dir[_MAX_DIR];
char fname[_MAX_FNAME];
char ext[_MAX_EXT];

_makepath(path_buffer, "c", "\\c60\\clibref\\", "makepath", "c");
printf("Path created with _makepath: %s\n\n", path_buffer);
_splitpath(path_buffer, drive, dir, fname, ext);
printf("Path extracted with _splitpath:\n");
printf(" Drive: %s\n", drive);
printf(" Dir: %s\n", dir);
printf(" Filename: %s\n", fname);
printf(" Ext: %s\n", ext);

Output

Path created with _makepath: c:\c60\clibref\makepath.c

Path extracted with _splitpath:
Drive: c:
Dir: \c60\clibref\
Filename: makepath
Ext: .c

715

Description

Remarks

Return Value

Compatibility

See Also

Writes fonnatted data to a string.

#include <stdio.h>

int sprintf(char *buffer, const char *format [, argument]] ...);

buffer

format

argument

Storage location for output

Fonnat-control string

Optional arguments

sprint!

The sprintf function fonnats and stores a series of characters and values in buffer. Each
argument (if any) is converted and output according to the corresponding fonnat specifica­
tion in the format. The fonnat consists of ordinary characters and has the same fonn and
function as the format argument for the printf function. (See printf for a description of the
fonnat and arguments.) A null character is appended to the end of the characters written,
but is not counted in the return value.

The sprintf function returns the number of characters stored in buffer, not counting the
tenninating null character.

• ANSI • DOS • OS/2 • UNIX • XENIX

fprintf, printf, sscanf

Exampw __ __

/* SPRINTF.C: This program uses sprintf to format various data and
'* place them in the string named buffer.
*/

#include <stdio.h>

void main()
{

char buffer[200], s[]
i nt i = 35, j;
float fp = 1.7320534;

"computer", c '1 I ;

sprint!

1* Forma t and print various data: *1
j spri nt f(buffer, "\tString:
j += spri nt f(buffer + j, "\tCharacter:
j += sprintf(buffer + j, "\tInteger:
j += sprintf(buffer + j, "\tReal:

printf("Output:\n%s\ncharacter count

Oulpul

Output:
String: computer
Character: 1
Integer: 35
Rea 1 : 1.732053

character count 71

716

%s\n", s) ;
%c\n", c) ;
%d\n", i) ;
%f\n", fp) ;

%d\n", buffer, j);

717 sqrt, sqrtl

Description Calculates the square root.

#include <math.h>

double sqrt(double x);

long double sqrtl(long double x);

x Nonnegative floating-point value

Remarks The sqrt functions calculate the square root of x. The sqrtl function is the 80-bit counter­
part and uses an 80-bit, lO-byte coprocessor form of arguments and return values.

Return Value

Compatibility

See Also

The sqrt functions return the square-root result. If x is negative, the function prints a
DOMAIN error message to stderr, sets errno to ED OM, and returns O.

Error handling can be modified by using the matherr or _ matherrl routine.

• ANSI • DOS • OS/2 • UNIX • XENIX

exp, log, matherr, pow

Exampw __ __

1* SORT.C: This program calculates a square root. *1
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

void main()
(

double question = 45.35, answer;

answer = sqrt(question);
if(errno == EDOM)

printf("Domain error\n");
else

printf("The square root of %.2f is %.2f\n", question, answer);

Output

The square root of 45.35 is 6.73

sTand 718

Description Sets a random starting point.

#include <stdlih.h> Required only for function declarations

void srand(unsigned int seed);

seed Seed for random-number generation

Remarks The srand function sets the starting point for generating a series of pseudorandom in­
tegers. To reinitialize the generator, use I as the seed argument. Any other value for seed
sets the generator to a random starting point.

Return Value

Compatibility

The rand function is used to retrieve the pseudorandom numbers that are generated. Call­
ing rand before any call to srand will generate the same sequence as calling srand with
seed passed as 1.

None.

• ANSI • DOS • OS/2 • UNIX • XENIX

See Also rand

Exampw __ __

1* RAND.C: This program seeds the random number generator with the
* time, then displays 20 random integers.
*1

#include <stdlib.h>
#include <stdio.h>
#in~lude <time.h>

void main()
(

int i;

1* Seed the random number generator with current time so that
* the numbers will be different' every time we run.
*1

srand((unsigned)time(NULL));

719

1* Display 10 numbers. *1
for(i = 0; i < 10; i++)

printf(" %6d\n", rand());

Oulpul

19471
16395
8268

15582
6489

28356
27042

5276
23070
10930

srand

sscanf

Description

Remarks

Return Value

Compatibility

See Also

Reads fonnatted data from a string.

#include <stdio.h>

int sscanf(const char *buffer, const char *format [, argument]] •••);

buffer

format

argument

Stored data

Fonnat-control string

Optional arguments

720

The sscanf function reads data from buffer into the locations given by each argument.
Every argument must be a pointer to a variable with a type that corresponds to a type speci­
fier informat. The fonnat controls the interpretation of the input fields and has the same
fonn and function as the format argument for the scanf function; see scanf for a complete
description offormat.

The sscanf function returns the number of fields that were successfully converted and as­
signed. The return value does not include fields that were read but not assigned.

The return value is EOF for an attempt to read at end-of-string. A return value of 0 means
that no fields were assigned.

• ANSI • DOS • OS/2 • UNIX • XENIX

fscanf, scanf, sprintf

Exampw __ __

1* SSCANF.C: This program uses sscanf to read data items from
* a string named tokenstring, then displays them.
*1

#include <stdio.h>

void main()
(

char tokenstring[]
char s[81];
cha r c;
i nt i :
float fp:

"15 12 14 ... ";

721

/* Input various data from tokenstring: */
sscanf(tokenstring, "%s", s);
sscanf(tokenstring, "%c", &c);
sscanf(tokenstri ng, "%d", &i);
sscanf(tokenstring, "%f", &fp);

/* Output the data
printf("String
printf("Character
printf("Integer:
printf("Real:

Output

String = 15
Character = 1
Integer: 15
Real: 15.000000

read */
%s\n", s);
%c\n", c);
%d\n", i);

= %f\n", fp);

sscanf

stackavail 722

Description Gets the size of the stack available.

#include <maIloc.h> Required only for function declarations

size_t stackavaiI(void);

Remarks The stackavail function returns the approximate size (in bytes) of the stack space available
for dynamic memory allocation with alloca.

Return Value The stackavail function returns the size in bytes as an unsigned integer value.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

Exampw __ __

1* ACLOC~~C: This program checks the stack space available before
* and after using the alloca function to allocate space on the stack.
*1

#include <malloc.h>
#include <stdio.h>

void main()
{

char *buffer;

printf("Bytes available on stack: %u\n", stackavail());

1* Allocate memory for string. *1
buffer = alloca(120 * sizeof(char));
printf("Enter a string: ");
gets(buffer);
printf("You entered: %s\n", buffer);

printf("Bytes available on stack: %u\n", stackavail());

Output

Bytes available on stack: 2028
Enter a string: How much stack space will this string take?
You entered: How much stack space will this string take?
Bytes available on stack: 1902

723

Description

Remarks

stat

Gets status infonnation on a file.

#include <sys\stat.h>

#include <sys\types.h>

int stat(char *patllllal1le, struct stat *buffer);

patlmal1le

buffer

Path name of existing file

Pointer to structure that receives results

The stat function obtains infonnation about the file or directory specified by patlmame
and stores it in the structure pointed to by buffer. The stat structure, defined in the file
SYs\sT A T.H, includes the following fields:

Field

st atime

st ctime

st_mode

st nlink

st rdev

Value

Time of last modification of file (same as st_mtime and
st_ctime).

Time of last modification of file (same as st_atime and
st_mtime).

Drive number of the disk containing the file (same as
st_rdev). Real mode only.

Bit mask for file-mode infonnation. The S IFDIR bit is set if
pathname specifies a directory; the S_IFREG bit is set if
patllllal1le specifies an ordinary file. User read/write bits are
set according to the file's pennission mode; user execute bits
are set according to the file-name extension.

Time of last modification of file (same as st_atime and
st_ctime).

Always 1.

Drive number of the disk containing the file (same as st_dev).
Real mode only.

Size of the file in bytes.

Note that if pathnal1le refers to a device, the size and time fields in the stat structure are
not meaningful.

stat 724

Return Value The stat function returns the value 0 if the file-status infonnation is obtained. A return
value of -1 indicates an error; also, errno is set to ENOENT, indicating that the file name
or path name could not be found.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also access, fstat

Exampre __ __

1* STAT.C: This program uses the stat function to report information
* about the file named STAT.C.
*1

#include <time.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>

void main()
{

struct stat buf;
i nt fh, result;
char buffer[] - "A line to output";

1* Get data associated with "stat.c": *1
result stat("stat.c", &buf);

1* Check if statistics are valid: *1
if(result !- 0)

perror("Problem getting information");
else
{

1* Output some of the statistics: *1
printf("File size %ld\n", buf.st_size);
printf("Drive %c:\n", buf.st_dev + 'A');
printf("Time modified: Is", ctime(&buf.st_atime));

Output

File size 761
Drive C:
Time modified Wed Jun 14 12:20:08 1989

725 _status87

Description Gets the floating-point status word.

#include <f1oat.h>

unsigned int _status87(void);

Remarks The _statusS7 function gets the floating-point status word. The status word is a com­
bination of the 8087/80287/80387 status word and other conditions detected by the
8087/80287/80387 exception handler, such as floating-point stack overflow and underflow.

Return Value

Compatibility

See Also

The bits in the value returned indicate the floating-point status. See the FLOAT.H include
file for a complete definition of the bits returned by _status87.

Note that many of the math library functions modify the 8087/80287 status word, with un­
predictable results. Return values from _ clearS7 and _ status87 become more reliable as
fewer floating-point operations are performed between known states of the floating-point
status word.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

_ clearS7, _ controlS7

Exampw __ __

/* STATUS87.C: This program creates various floating-point errors and
* then uses _status87 to display messages indicating these problems.
*/

#include <stdio.h)
#include <float.h)

void main()
(

double a = le-40, b;
float x, y;

printf("Status = %.4x - clear\n",_status87());

/* Assignment into y is inexact & underflows: */
y = a;
printf("Status = %.4x - inexact, underflow\n", _status87());

/* y is denormal: */
b = y;
printf("Status = %.4x - inexact underflow, denormal\n", _status87());

_s'atus87

1* Clear user 8087: *1
_cl ear87():

Output

Status - 0000 - clear
Status - 0030 - inexact, underflow
Status - 0032 - inexact underflow, denormal

726

727

Description

Remarks

Return Value

Compatibility

See Also

streat, _fstreat

Append a string.

#include <string.h> Required only for function declarations

ehar *streat(ehar *stringl, eonst ehar *string2);

ehar _far * _far _fstreat(ehar _far *stringl, eonst ehar _far *string2);

stringl

strillg2

Destination string

Source string

The streat and _fstreat functions append string2 to stringl, tenninate the resulting string
with a null character, and return a pointer to the concatenated string (stringl).

The streat and _fstreat functions operate on null-tenninated strings. The string arguments
to these functions are expected to contain a null character ('\0') marking the end of the
string. No overflow checking is performed when strings are copied or appended.

The _fstreat function is a model-independent (large-model) fonn of the streat function.
The behavior and return value of fstreat are identical to those of the model-dependent
function streat, with the exception that the arguments and return values are far pointers.

The return values for these functions are described above.

streat

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstreat

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strneat, strnemp, strnepy, strniemp, strrehr, strspn

Exampm __ __

/* STRCPY.C: This program uses strcpy and strcat to build a phrase. */

#include <string.h>
#include <stdio.h)

streat, _fstreat

void main()
(

char string[80];

strcpy(string, "Hello world from"):
strcat(string, "strcpy "):
strcat(string, "and"):
strcat(string, "strcat!"):
printf("String ~ %s\n", string);

Output

String - Hello world from strcpy and strcat!

728

729

Description

Remarks

Return Value

Compatibility

See Also

Find a character in a string.

#include <string.h> Required only for function declarations

char *strchr(const char *string, int c);

char _far * _far _fstrchr(const char _far *string, int c);

string

c

Source string

Character to be located

strehr, _fstrehr

The strchr and _ fst'rchr functions return a pointer to the first occurrence of c in string.
The character c may be the null character ('\0'); the terminating null character of string is
included in the search. The function returns NULL if the character is not found.

The strchr and _fstrchr functions operate on null-terminated strings. The string argu­
ments to these functions are expected to contain a null character ('\0') marking the end of
the string.

The _fstrchr function is a model-independent (large-model) form of the strchr function.
The behavior and return value of _fstrchr are identical to those of the model-dependent
function strchr, with the exception that the arguments and return values are far.

The return values for these functions are described above.

strchr

• ANSI • DOS • OS/2 • UNIX • XENIX

fstrchr

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strcspn, strncat, strncmp, strncpy, strnicmp, strpbrk, strrchr, strspn, strstr

Exampw __ ___

1* STRCHR.C: This program illustrates searching for a character with
* strchr (search forward) or strrchr (search backward).
*/

#include <string.h>
#include <stdio.h>

strehr, _fstrehr

int ch = 'r';
char string[] = "The quick brown dog jumps over the lazy fox";
char fmtl[] 1 2 3 4· 5":
char fmt2[] ~ "12345678901234567890123456789012345678901234567890":

void maine)
(

char *pdest:
int result:

printf("String to be searched: \n\t\t%s\n", string):
printf("\t\t%s\n\t\t%s\n\n", fmt1, fmt2):
printf("Search char:\t%c\n", ch):

/* Search forward. */
pdest = strchr(string, ch);
result - pdest - string + I:
if(pdest != NULL)

printf("Result:\tfirst %c found at position %d\n\n", ch, result):
else

printf("Result:\t%c not found\n");

/* Search backward. */
pdest = strrchr(string, ch);
result = pdest - string + 1;
if(pdest != NULL)

printf("Result:\tlast %c found at position %d\n\n", ch, result);
else

printf("Result:\t%c not found\n");

Output

String to be searched:
The quick brown dog jumps over the lazy fox

1 2 3 4 5
12345678901234567890123456789012345678901234567890

Search char: r
Result: first r found at position 12

Result: last r found at position 30

730

731

Description

Remarks

Return Value

Compatibility

strcmp, _fstrcmp

Compare strings.

#include <string.h> Required only for function declarations

int strcmp(const char *stringl, const char *string2);

int _far _fstrcmp(const char _far *stringl, const char _far *string2);

stringl

string2

String to compare

String to compare

The strcmp and _fstrcmp functions compare stringl and string2lexicographically and re­
turn a value indicating their relationship, as follows:

Value

<0

=0

>0

Meaning

stringlless than string2

stringl identical to string2

stringl greater than string2

The strcmp and _fstrcmp functions operate on null-terminated strings. The string argu­
ments to these functions are expected to contain a null character (,\0') marking the end of
the string.

The _fstrcmp function is a model-independent (large-model) form of the strcmp function.
The behavior and return value of _fstrcmp are identical to those of the model-dependent
function strcmp, with the exception that the arguments are far pointers.

The strcmpi and stricmp functions are case-insensitive versions of strcmp.

The return values for these functions are described above.

strcmp

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstrcmp

o ANSI • DOS • OS/2 0 UNIX • XENIX

strcmp, _fstrcmp 732

See Also memcmp, memicmp, strncat, strncmp, strncpy, strnicmp, strrchr, strspn

Exampre __ ___

1* STRCMP.C *1
#include <string.h)
#include <stdio.h)

char stringl[]
char string2[]

"The quick brown dog jumps over the lazy fox";
"The.QUICK brown dog jumps over the lazy fox";

void main()
(

char tmp[20];
int result;

1* Case sensitive *1
printf("Compare strings:\n\t%s\n\t%s\n\n", stringl, string2);
result = strcmp(stringl, string2);
if(result) 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp, "less than");
else

strcpy(tmp, "equal to");
printf("\tstrcmp: .String 1 is %s string 2\n", tmp);

1* Case insensitive (could use equivalent stricmp) *1
result = strcmpi(stringl, string2);
if(result) 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp, "less than");
else

strcpy(tmp, "equal. to");
printf("\tstrcmpi: String 1 is %s string 2\n", tmp);

Output

Compare strings:
The quick brown dog jumps over the lazy fox
The QUICK brown dog jumps over the lazy fox

strcmp: String 1 is greater than string 2
strcmpi: String 1 is equal to string 2

733

Description

Remarks

Return Value

Compatibility

See Also

Compares strings using locale-specific infonnation.

#include <string.h> Required only for function declarations

int strcoll(const char *stringl, const char *string2);

stringl

string2

String to compare

String to compare

slreoll

The strcoll function compares stringl and string2lexicographically and returns a value in­
dicating their relationship, as follows:

Value

<0

=0

>0

Meaning

stringlless than string2

stringl identical to string2

stringl greater than string2

The strcoll function operates on null-tenninated strings. The string arguments to these
functions are expected to contain a null character ('\0') marking the end of the string.

The strcoll function differs from strcmp in that it uses locale-specific infonnation to pro­
vide locale-specific collating sequences.

The return value for this function is described above.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

localeconv, setlocale, strcmp, strncmp, strxfrm

strcpy, _fstrcpy 734

Description

Remarks

Return Value

Compatibility

See Also

Copy a string.

#include <string.h> Required only for function declarations

char *strcpy(char *stringl, const char *string2);

char _far * _far _fstrcpy(char _far *stringl, const char _far *string2);

stringl

string2

Destination string

Source string

The strcpy function copies string2, including the tenninating null character, to the loca­
tion specified by stringl, and returns stringl.

The strcpy and _fstrcpy functions operate on null-tenninated strings. The string argu­
ments to these functions are expected to contain a null character ('\0') marking the end of
the string. No overflow checking is perfonned when strings are copied or appended.

The _fstrcpy function is a model-independent (large-model) fonn of the strcpy function.
The behavior and return value of _fstrcpy are identical to those of the model-dependent
function strcpy, with the exception that the arguments and return values are far pointers.

The return values for these functions are described above.

strcpy

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstrcpy

o ANSI • DOS • 05/2 0 UNIX 0 XENIX

strcat, strcmp, strncat, strncmp, strncpy, strnicmp, strrchr, strspn

Exampm ___ __

/* STRCPV.C: This program uses strcpy and strcat to build a phrase. */

#include <string.h>
#include <stdio.h>

735

void maine)
(

char string[80];

strcpy(string, "Hello world from");
strcat(string, "strcpy ");
strcat(string, "and");
strcat(string, "strcat!");
printf("String = %s\n", string);

Outpilt

String = Hello world from strcpy and strcat!

strcpy, _Istrcpy

strcspn, _fstrcspn 736

Description

Remarks

Return Value

Compatibility

See Also

Find a substring in a string.

#include <string.h> Required only for function declarations

size_t strcspn(const char *stringl, const char *string2);

size_t _far _fstrcspn(const char _far *stringl, const char _far *string2);

stringl

string2

Source string

Character set

The strcspn functions return the index of the first character in string 1 belonging to the set
of characters specified by string2. This value is equivalent to the length of the initial sub­
string of stringl consisting entirely of characters not in string2. Tenninating null charac­
ters are not considered in the search. If stringl begins with a character from string2,
strcspn returns O.

The strcspn and _fstrcspn functions operate on null-tenninated strings. The string argu­
ments to these functions are expected to contain a null character (,\0') marking the end of
the string.

The _ fstrcspn function is a model-independent (large-model) fonn of the strcspn func­
tion. The behavior and return value of _fstrcspn are identical to those of the model­
dependent function strcspn, with the exception that the arguments and return values
are far.

The return values for these functions are described above.

strcspn

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstrcspn

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strncat, strncmp, strncpy, strnicmp, strrchr, strspn

Exampre __ __

1* STRCSPN.C *1
#include <string.h>
#include <stdio.h>

737

void maine)
(

char string[] a "xyzabc";
int pos;

pos - strcspn(string, "abc");

strcspn, _istrcspn

printf("First a, b or c in %s is at character %d\n", string, pos);

Output

First a, b or c in xyzabc is at character 3

_strdate

Description

Remarks

Copies a date to a buffer.

#include <time.h>

char * _strdate(char *datestr);

datestr Current date

The _strdate function copies the date to the buffer pointed to by datestr, formatted

mm/dd/yy

738

where mm is two digits representing the month, dd is two digits representing the day of
the' month, and y y is the last two digits of the year. For example, the string

12/05/88

represents December 5, 1988.

The buffer must be at least nine bytes long.

Return Value The _ strdate function returns a pointer to the resulting text string datestr.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also asctime, ctime, gmtime, locaitime, mktime, time, tzset

Exampre __ __

/* STRTIME.C */
#include <time.h)
#include <stdio.h)

void main()
(

char dbuffer [9];
char tbuffer [9];

_strdate(dbuffer);
printf("The current date is %s \n", dbuffer);
_strtime(tbuffer);
printf("The current time is %s \n", tbuffer);

739

Output

The current date is 06/20/89
The current time is 09:33:13

_strdate

strdup Functions 740

Description

Remarks

Return Value

Compatibility

Duplicate strings.

#include <string.h> Required only for function declarations

char *strdup(const char *string);

char _far * _far _fstrdup(const char _far *string);

char _near * _far _nstrdup(const char _far *string);

string Source string

The strdup function allocates storage space (with a call to malIoc) for a copy of string and
returns a pointer to the storage space containing the copied string. The function returns
NULL if storage cannot be allocated.

The _fstrdup and _ nstrdup functions provide complete control over the heap used for
string duplication. The strdup function returns a pointer to a copy of the string argument.
The space for the string is allocated from the heap specified by the memory model in use.
In large-data models (that is, compact-, large-, and huge-model programs), strdup allo­
cates space from the far heap. In small-data models (tiny-, small-, and medium-model pro­
grams), strdup allocates space from the near heap.

The strdup, _fstrdup, and _nstrdup functions operate on null-terminated strings. The
string arguments to these functions are expected to contain a null character (,\0') marking
the end of the string.

The _fstrdup function returns a far pointer to a copy of the string allocated in far memory
(the far heap). As with the other model-independent functions, the syntax and semantics of
these functions correspond to those of strdup except for the sizes of the arguments and re­
turn values. The _ nstrdup function returns a near pointer to a copy of the string allocated
in the near heap (in the default data segment).

The return values for these functions are described above.

strdup, _fstrdup, _nstrdup

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

741 strdup Functions

See Also strcat, strcmp, strncat, strncmp, strncpy, strnicmp, strrchr, strspn

Exampm __ ------__________________ __

1* STRDUP.C *1
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>

void maine)
(

char buffer[] = "This is the buffer text";
char *newstring;

printf("Original: %s\n", buffer);
newstring = strdup(buffer);
printf("Copy: %s\n", newstring);

Output

Original: This is the buffer text
Copy: This is the buffer text

strerror, _strerror 742

Description

Remarks

Gets a system error message (strerror) or prints a user-supplied error message Lstrerror).

#include <string.h> Required only for function declarations

char *strerror(int errnum);

char * _strerror(char *string);

errnum Error number

string User-supplied message

The strerror function maps errnum to an error-message string, returning a pointer to the
string. The function itself does not actually print the message; for that, you need to call an
output function such as printf.

If string is passed as NULL, _ strerror returns a pointer to a string containing the system
error message for the last library call that produced an error. The error-message string is
terminated by the newline character ('\n').

If string is not equal to NULL, then _strerror returns a pointer to a string containing (in
order) your string message, a colon, a space, the system error message for the last library
call producing an error, and a newline character. Your string message can be a maximum
of 94 bytes long.

Unlike perror, _strerror alone does not print any messages. To print the message re­
turned by _strerror to stderr, your program will need an fprintfstatement, as shown in
the following lines:

if «access("datafile",2» == -1)
fprintf(_strerror(NULL»;

The actual error number for _ strerror is stored in the variable errno, which should be de­
clared at the external level. The system error messages are accessed through the variable
sys _ errlist, which is an array of messages ordered by error number. The _ strerror func­
tion accesses the appropriate error message by using the errno value as an index to the
variable sys _ err list. The value of the variable sys _ nerr is defined as the maximum num-
ber of elements in the sys _ errlist array. .

To produce accurate results, _ strerror should be called immediately after a library routine
returns with an error. Otherwise, the errno value may be overwritten by subsequent calls.

Note that the strerror function under Microsoft eversion 5.0 is identical to the version
4.0 strerror function. The name was altered to permit the inclusion in Microsoft eversion
5.0 of the ANSI-conforming strerror function. The _strerror function is not part of the
ANSI definition but is instead a Microsoft extension to it; it should not be used where
portability is desired. For ANSI compatibility, use strerror instead.

743

Return Value

Compatibility

See Also

Example

strerror, _strerror

The strerror function returns a pointer to the error-message string. The string can be over­
written by subsequent calls to strerror.

The _ strerror function returns no value.

strerror

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

strerror

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

clearerr,ferror,perror

See the example for perror.

slrflime

Description

Remarks

Fonnats a time string.

#include <time.h> Required only for function declarations

size_t strftime(char *string, size_t maxsize, const char *format,
const struct tm *timeptr);

string

maxsize

format

timeptr

Output string

Maximum length of string

Fonnat control string

tm data structure

744

The strftime function formats the tm time value in timeptr according to the supplied
format argument and stores the result in the buffer string. At most, maxsize characters are
placed in the string.

The format argument consists of one or more codes; as in printf, the fOffilatting codes are
preceded by a % sign. Characters that do not begin with a % sign are copied unchanged to
string. The LC_TIME category of the current locale affects the output fonnatting of
strftime.

The fonnatting codes for strftime are listed below:

Format

%a

%A

%b

%B

%c

%d

%H

%1

%j

%m

%M

Description

Abbreviated weekday name

Full weekday name

Abbreviated month name

Full month name

Date and time representation appropriate for the locale

Day of the month as a decimal number (01 - 31)

Hour in 24-hour fOffilat (00 - 23)

Hour in 12-hour fOffilat (01 - 12)

Day of the year as a decimal number (001 - 366)

Month as a decimal number (01- 12)

Minute as a decimal number (00 - 59)

745

Return Value

Compatibility

See Also

Example

%p

%S

%U

%w

%W

%x

%X

%y

%Y

%z

%%

sir/lime

Current locale's AM/PM indicator for a 12-hour clock

Second as a decimal number (00 - 61)

Week of the year as a decimal number; Sunday is taken as the
first day of the week (00 - 53)

Weekday as a decimal number (0 - 6; Sunday is 0)

Week of the year as a decimal number; Monday is taken as
the first day of the week (00 - 53)

Date representation for current locale

Time representation for current locale

Year without the century as a decimal number (00 - 99)

Year with the century as a decimal number

Time zone name or abbreviation; no characters if time zone is
unknown

Percent sign

The strftime function returns the number of characters placed in string if the total number
of resulting characters, including the tenninating null, is not more than maxsize.

Otherwise, strftime returns 0, and the contents of the string are indetenninate.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

localeconv, setlocale, strxfrm

See the example for perror.

stricmp, _fstricmp 746

Description

Remarks

Return Value

Compatibility

Compare strings without regard to case.

#include <string.h> Required only for function declarations

int stricmp(const char * string l, const char * string2);

int _far _fstricmp(const char _far *stringl, const char _far *string2);

stringl

string2

String to compare

String to compare

The stricmp and _fstricmp functions compare stringl and string2 lexicographically and
return a value indicating their relationship, as follows:

Value

<0

=0

>0

Meaning

stringlless than string2

string1 identical to string2

stringl greater than string2

The stricmp and _fstricmp functions operate on null-terminated strings. The string argu­
ments to these functions are expected to contain a null character (,\0') marking the end of
the string.

The _fstricmp function is a model-independent (large-model) form of the stricmp func­
tion. The behavior and return value of _fstricmp are identical to those of the model­
dependent function stricmp, with the exception that the arguments are far pointers.

The strcmp function is a case-sensitive version of stricmp.

The return values for these functions are described above.

stricmp

o ANSI • DOS • OS/2 • UNIX • XENIX

_fstricmp

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

747

See Also

Example

stricmp, _fstricmp

memcmp, memicmp, strcat, strcpy, strncat, strncmp, strncpy, strnicmp, strrchr,
strset," strspn

See the example for strcmp.

sIr/en, _Islr/en 748

Description Get the length of a string.

#include <string.h> Required only for function declarations

size_t strlen(const char *string);

size_t _fstrlen(const char _far *string);

string Null-terminated string

Remarks The strlen and _fstrlen functions return the length in bytes of string, not including the ter­
minating null character ('\0').

Return Value

Compatibility

The _fstrlen function is a model-independent (large-model) form ofthe strlen function.
The behavior and return value of _fstrlen are identical to those of the model-dependent
function strlen, with the exception that the argument is a far pointer.

These functions return the string length. There is no error return.

strlen

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstrlen

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

Exampw __ ___

1* STRLEN.C */
#include <string.h>
#include <stdio.h>
#include <conio.h>·
#include <dos.h>

749

void main()
(

char buffer[61] = "How long am I?";
int len;

len = strlen(buffer);
printf("'%S' is %d characters long\n", buffer, len);

Output

'How long am I?' is 14 characters long

sir/en, _Islr/en

strlwr, _fslrlwr

Description

Remarks

Convert a string to lowercase.

#include <string.h> Required only for function declarations

char *strlwr(char *string);

char _far * _far _fstrlwr(char _far *string);

string String to be converted

The strlwr and _fstrlwr functions convert any uppercase letters in the given ou11-
terminated string to lowercase. Other characters are not affected.

750

The fstrlwr function is a model-independent (large-model) forin of the strlwr function.
The behavior and return value of _fstrlwr are identical to those of the model-dependent
function strlwr, with the exception that the argument and return values are far pointers.

Return Value These functions return a pointer to the converted string. There is no error return.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also strupr

Exampre ___ ___

1* STRLWR.C: This program uses strlwr and strupr to create
* uppercase and lowercase copies of a mixed-case string.
*1

#include <string.h>
#include <stdio.h>

void main()
{

char string[100] = "The String to End All Strings!";
char *copyl, *copy2;

copyl = strlwr(strdup(string)) ;
copy2 = strupr(strdup(string)) ;
printf("Mixed: %s\n", string) ;
printf("Lower: %s\n", copyl) ;
printf("Upper: %s\n", copy2) ;

751

Output

Mixed: The String to End All Strings!
Lower: the string to end all strings!
Upper: THE STRING TO END ALL STRINGS!

slrlwr, _fslrlwr

strncat, _fstrncat 752

Description

Remarks

Return Value

Compatibility

See Also

Appends characters of a string.

#include <string.h> Required only for function declarations

char *strncat(char *stringl, const char *string2, size_t count);

char _far * _far _fstrncat(char _far *stringl, const char _far *string2,
size_t count);

stringl

string2

count

Destination string

Source string

Number of characters appended

The strncat and _fstrncat functions append, at most, the first count characters of string2
to stringl, terminate the resulting string with a null character ('\0'), and return a pointer to
the concatenated string (stringl). If count is greater than the length of string2, the length of
string2 is used in place of count.

The _fstrncat function is a model-independent (large-model) form of the strncat function.
The behavior and return value of _fstrncat are identical to those of the model-dependent
function strncat, with the exception that all the pointer arguments and return values are far
pointers.

The return values for these functions are described above.

strncat

• ANSI • DOS • OS/2 •. UNIX • XENIX

_fstrncat

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strcat, strcmp, strcpy, strncmp, strncpy, strnicmp, strrchr, strset, strspn

Exampw __ ___

/* STRNCAT.C */
#include (string.h>
#include (stdio.h>

753

void main()
(

char string[80] = "This is the initial string!";
char suffix[] = " extra text to add to the string ... ";

1* Combine strings with no more than 19 characters of suffix: *1
printf("Before: %s\n", string);
strncat(string, suffix, 19);
printf("After: %s\n", string);

Output

Before: This is the initial string!
After: This is the initial string! extra text to add

strncat, _fstrncat

strncmp, _fstrncmp 754

Description

Remarks

Return Value

Compatibility

See Also

Compare characters of two strings.

#include <string.h> Required only for function declarations

int strncmp(const char *stringi, const char *string2, size_t count);

int _far _fstrncmp(const char _far *stringi, const char _far *string2, size_t count);

stringi

string2

count

String to compare

String to compare

Number of characters compared

The strncmp and _fstrncmp functions lexicographically compare, at most, the first count
characters of stringi and string2 and return a value indicating the relationship between the
substrings, as listed below:

Value

<0

=0

>0

Meaning

stringiless than string2

stringi equivalent to string2

string i greater than string2

The strnicmp function is a case-insensitive version of strncmp.

The _fstrncmp function is a model-independent (large-model) fonn of the strncmp func­
tion. The behavior and return value of _fstrncmp are identical to those of the model­
dependent function strncmp, with the exception that all the arguments and return values
are far.

The return values for these functions are described above.

strncmp

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstrncmp

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strcat, strcmp, strcpy, strncat, strncpy, strrchr, strset, strspn

755 strncmp, _fstrncmp
I' Exampw __ __

1* STRNCMP.C *1
#include <string.h>
#include <stdio.h>

char stringl[]
char string2[]

void main()
(

char tmp[20];
int result;

"The quick brown dog jumps over the lazy fox";
"The QUICK brown fox jumps over the lazy dog";

printf("Compare strings:\n\t\t%s\n\t\t%s\n\n", stringl, string2);

printf("Function:\tstrncmp (first 10 characters only)\n");
result = strncmp(stringl, string2 , 10);
if(result> 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp, "less than");
el se

strcpy(tmp, "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n", tmp);

printf("Function:\tstrnicmp (first 10 characters only)\n");
result m strnicmp(stringl, string2, 10);
if(result> 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp, "less than");
else

strcpy(tmp, "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n", tmp);

Output

Compare strings:

Function:
Result:

Function:
Result:

The quick brown dog jumps over the lazy fox
The QUICK brown fox jumps over the lazy dog

strncmp (first 10 characters only)
String 1 is greater than string 2

strnicmp (first 10 characters only)
String 1 is equal to string 2

strncpy, _fstrncpy 756

Description

Remarks

Return Value

Compatibility

See Also

Copy characters of one string to another.

#include <string.h> Required only for function declarations

char *strncpy(char *stringl, const char *string2, size_t count);

char _far * _far _fstrncpy(char _far *stringl, const char _far *string2,
size_t count);

stringl

string2

count

Destination string

Source string

Number of characters copied

The strncpy and _fstrncpy functions copy count characters of string2 to stringl and re­
turn stringl. If count is less than the length of string2, a null character (,\0') is not ap­
pended automatically to the copied string. If count is greater than the length of string2, the
stringl result is padded with null characters ('\0') up to length count.

Note that the behavior of strncpy and _ fstrncpy is undefined if the address ranges of the
source and destination strings overlap.

The _fstrncpy function is a model-independent (large-model) form of the strncpy func­
tion. The behavior and return value of _fstrncpy are identical to those of the model­
dependent function strncpy, with the exception that all the arguments and return values
are far.

The return values for these functions are described above.

strncpy

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstrncpy

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strcat, strcmp, strcpy, strncat, strncmp, strnicmp, strrchr, strset, strspn

•

757 strncpy, _fstrncpy

Exampm __ __

1* STRNCPV.C *1
#include <string.h)
#include <stdio.h)

void maine)
(

char string[100] a "Cats are nice usually";

printf("Before: %s\n", string);
strncpy(string, "Dogs", 4);
strncpy(string + 9, "mean", 4);
printf("After: . %s\n", string);

Output

Before: Cats are nice usually
After: Dogs are mean usually

slrnicmp, _fslrnicmp 758

Description

Remarks

Return Value

Compatibility

See Also

Example

Compare characters of two strings without regard to case.

#include <string.h> Required only for function declarations

int strnicmp(const char *stringl, const char *string2, size_t count);

int _far _fstrnicmp(const char _far *stringl, const char _far *string2,
. size_t count);

stringl

string2

count

String to compare

String to compare

Number of characters compared

The strnicmp and _fstrnicmp functions lexicographically compare (without regard to
case), at most, the first count characters of stringl and string2 and return a value indicating
the relationship between the substrings, as listed below:

Value

<0

=0

>0

Meaning

stringlless than string2

stringl equivalent to string2

stringl greater than string2

The strncmp function is a case-sensitive version of strnicmp.

The _fstrnicmp function is a model-independent (large-model) form of the strnicmp func­
tion. The behavior and return value of _fstrnicmp are identical to those of the model­
dependent function strnicmp, with the exception that all the arguments and return values
are far.

The return values for these functions are described above.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strcat, strcmp, strcpy, strncat, strncpy, strrchr, strset, strspn

See the example for strncmp.

759

Description

Remarks

Return Value

Compatibility

See Also

slfnsel, _fslrnsel

Initialize characters of a string to a given character.

#include <string.h> Required only for function declarations

char *strnset(char *string, int c, size_t count);

char _far * _far _fstrnset(char _far *string, int c, size_t count);

string

c

count

String to be initialized

Character setting

Number of characters set

The strnset and _fstrnset functions set, at most, the first count characters of string to the
character c and return a pointer to the altered string. If count is greater than the length of
string, the length of string is used in place of count.

The _fstrnset function is a model-independent (large-model) form of the strnset function.
The behavior and return value of _ fstrnset are identical to those of the model-dependent
function strnset, with the exception that all the arguments and return values are far.

The return values for these functions are described above.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strcat, strcmp, strcpy, strset

Exampre __ __

1* STRNSET.C *1
#include <string.h>
#include <stdio.h>

void main()
(

char string[15] = "This is a test":

1* Set not more than 4 characters of string to be *'s */
printf("Before: %s\n", string):
strnset(string, '*',4);
printf("After: %s\n", string):

strnset, _fstrnset

Output

Before: This is a test
After: **** is a test

760

761

Description

Remarks

Return Value

Compatibility

See Also

strpbrk, _fstrpbrk

Scan strings for characters in specified character sets.

#include <string.h> Required only for function declarations

char *strpbrk(const char *stringl, const char *string2);

char _far * _far _fstrpbrk(const char _far *stringl, const char _far *string2);

stringl

string2

Source string

Character set

The strpbrk function finds the first occurrence in stringl of any character from string2.
The tenninating null character ('\0') is not included in the search.

The _fstrpbrk function is a model-independent (large-model) fonn' of the strpbrk func­
tion. The behavior and return value of _fstrpbrk are identical to those of the model­
dependent function strpbrk, with the exception that all the arguments and return values
are far.

These functions return a pointer to the first occurrence of any character from string2 in
stringl. A NULL return value indicates that the two string arguments have no characters in
common.

strpbrk

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstrpbrk

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strchr, strrchr

Exampre __ ~ ___ ___

/* STRPBRK.C */
#include <string.h>
#include <stdio.h>

void main()
{

char string[100] = "The 3 men and 2 boys ate 5 p;gs\n";
char *result;

strpbrk, _istrpbrk 762

/* Return pointer to first 'a' or 'b' in "string" */
printf("1: %s\n", string);
result = strpbrk(string, "0123456789");
printf("2: %s\n", result++);
resul t = strpbrk(resul t, "0123456789");
printf("3: %s\n", result++); .
result = strpbrk(result, "0123456789");
printf("4: %s\n", result);

Output

1 : The 3 men and 2 boys ate 5 pigs

2: 3 men and 2 boys ate 5 pigs

3: 2 boys ate 5 pigs

4: 5 pigs

763

Description

Remarks

Return Value

Compatibility

See Also

strrchr, _fstrrchr

Scan a string for the last occurrence of a character.

#include <string.h> Required only for function declarations

char *strrchr(const char *string, int c);

char _far * _far _fstrrchr(const char _far *string, int c);

string,

c

Searched string

Character to be located

The strrchr function finds the last occurrence of the character c in string. The string's ter­
minating null character (,\0') is included in the search. (Use strchr to find the first occur­
rence of c in string.)

The _fstrrchr function is a model-independent (large-model) form of the strrchr func­
tion. The behavior and return value of fstrrchr are identical to those of the model­
dependent function strrchr, with the exception that all the pointer arguments and return
values are far pointers.

These functions return a pointer to the last occurrence of the character in the string. A
NULL pointer is returned if the given character is not found.

strrchr

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstrrchr

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strchr, strcspn, strncat, strncmp, strncpy, strnicmp, strpbrk, strspn

Exampm ___ ___

1* STRCHR.C: This program illustrates searching for a character with
* strchr (search forward) or strrchr (search backward).
*1

#include <string.h>
#include <stdio.h>

strrchr, _fstrrchr

int ch ... 'r';
char string[] = "The quick brown dog jumps over the lazy fox";
char fmt1[] = 1 2 3 4 5";
char fmt2[]'" "12345678901234567890123456789012345678901234567890";

void maine)
(

char *pdest;
int result;

printf{ nString to be searched: \n\t\t%s\n", string);
printf{ "\t\t%s\n\t\t%s\n\n", fmt1, fmt2);
printf{ "Search char:\t%c\n", ch);

1* Search forward. *1
pdest ... strchr{ string, ch);
result ... pdest - string + 1;
if{ pdest != NULL)

printf("Result:\tfirst %c found at position %d\n\n", ch, result);
else

printf{ "Result:\t%c not found\n");

1* Search backward. *1
pdest = strrchr{ string, ch);
result ... pdest - string + 1;
if{ pdest != NULL)

printf{ "Result:\tlast %c found at position %d\n\n", ch, result);
else

printf{ "Result:\t%t not found\n");

Output

String to be searched:
The quick brown dog jumps over the lazy fox

1 2 3 4 5
12345678901234567890123456789012345678901234567890

Search char: r
Result: first r found at position 12

Result: last r found at position 30

764

765 strrev, _fstrrev

Description Reverses characters of a string.

#include <string.h> Required only for function declarations

char *strrev(char *string);

char _far * _far _fstrrev(char _far *string);

string String to be reversed

Remarks The strrev function reverses the order of the characters in string. The tenninating null
character ('\0') remains in place.

Return Value

Compatibility

See Also

The _fstrrev function is a model-independent (large-model) fonn of the strrev function.
The behavior and return value of _fstrrev are identical to those of the model-dependent
function strrev, with the exception that the argument and return value are far pointers.

These functions return a pointer to the altered string. There is no error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strcpy, strset

Exampre ___ ___

1* STRREV.C: This program checks an input string to see whether it is a
* palindrome: that is, whether it reads the same forward and backward.
*1

#include <string.h)
#include <stdio.h)

void main()
(

char string[100]:
int result:

printf("Input a string and I will tell you if it is a palindrome:\n"):
gets(string):

strrev, _fslrrev

1* Reverse string and compare (ignore case): *1
result = strcmpi(string, strrev(strdup(string)));
if(result == 0)

printf("The string \"%s\" is a palindrome\n\n", string);
else

printf("The string \"%s\" is not a palindrome\n\n", string);

Output

Input a string and I will tell you if it is a palindrome:
Able was I ere I saw Elba
The string "Able was I ere I saw Elba" is a palindrome

766

767

Description

Remarks

Return Value

Compatibility

See Also

Set characters of a string to a character.

#include <string.h> Required only for function declarations

char *strset(char *string, int c);

char _far * _far _fstrset(char _far *string, int c);

string·

c

String to be set

Character setting

strset, _Istrset

The strset function sets all of the characters of string to c, except the terminating null
character (,\0').

The _fstrset function is a model-independent (large-model) form of the strset function.
The behavior and return value of _fstrset are identical to those of the model-dependent
function strset, with the exception that the pointer arguments and return value are far
pointers.

These functions return a pointer to the altered string. There is no error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

memset, strcat, strcmp, strcpy, strnset

Examp~ __ ___

/* STRSET.C */
#include (string.h)
#include (stdio.h)

void main()
(

char string[] = "Fill the string with something";

printf("Before: %s\n", string);
strset(string, '*');
printf("After: %s\n", string);

strset, _fstrset

Output

Before: Fill the string with something
After: ******************************

768

769

Description

Remarks

Return Value

Compatibility

See Also

strspn, _fstrspn

Find the first substring.

#include <string.h> Required only for function declarations

size_t strspn(const char *string1, const char *string2);

size_t _far _fstrspn(const char _far *string1, const char _far *string2);

string1

string2

Searched string

Character set

The strspn function returns the index of the first character in string 1 that does not belong
to the set of characters specified by string2. This value is equivalent to the length of the ini­
tial substring of string1 that consists entirely of characters from string2. The null character
('\0') tenninating string2 is not considered in the matching process. If string1 begins with
a character not in string2, strspn returns O.

The _fstrspn function is a model-independent (large-model) fonn of the strspn function.
The behavior and return value of _fstrspn are identical to those of the model-dependent
function strspn, with the exception that the arguments are far pointers.

These functions return an integer value specifying the length of the segment in string 1 con­
sisting entirely of characters in string2.

strspn

• ANSI • DOS • OS/2 • UNIX • XENIX

_fstrspn

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strcspn, strncat, strncmp, strncpy, strnicmp, strrchr

Exampw __ ___

/* STRSPN.C: This program uses strspn to determine the length of
* the segment in the string "cabbage" consisting of a's, b's, and c's.
* In other words, it finds the first non-abc letter.
*/

#include <string.h>
#include <stdio.h>

strspn, _fstrspn

void main()
{

char string[] = "cabbage":
int result;

result = strspn(string, "abc"):
printf("The portion of '%s' containing only a, b, or c n

"is %d bytes long\n", string, result);

Output

The portion of 'cabbage' containing only a, b, or c is 5 bytes long

770

771

Description

Remarks

Return Value

Compatibility

See Also

slrslr, _Islrslr

Find a substring.

#include <string.h> Required only for function declarations

char *strstr(const char *stringl, const char *string2);

char _far * _far _fstrstr(const char _far *stringl, const char _far *string2);

stringl

string2

Searched string

String to search for

The strstr function returns a pointer to the first occurrence of string2 in stringl.

The _fstrstr function is a model-independent (large-model) fonn of the strstr function.
The behavior and return value of _fstrstr are identical to those of the model-dependent
function strstr, with the exception that the arguments and return value are far pointers.

These functions return either a pointer to the first occurrence of string2 in stringl, or
NULL if they do not find the string.

strstr

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

_fstrstr

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strcspn, strncat, strncmp, strncpy, strnicmp, strpbrk, strrchr, strspn

Exampre __ ___

1* STRSTR.C *1
#include <string.h>
#include <stdio.h>

char str[] = "lazy";
char string[] = "The quick brown dog jumps over the lazy fox";
c h a r fmt l[] = 1 2 3 4 5" ;
char fmt2[] = "12345678901234567890123456789012345678901234567890";

strstr, _fstrstr

void main()
(

char *pdest;
int result;

printf("String to be searched:\n\t%s\n", string);
printf("\t%s\n\t%s\n\n", fmt1, fmt2);

pdest ~ strstr(string, str);
result ~ pdest ~ string + 1;
if(pdest 1= NULL)

printf("%s found at position %d\n\n", str, result);
else

printf("%s not found\n", str);

Output

String to be searched:
The quick brown dog jumps over the lazy fox

1 2 3 4 5
12345678901234567890123456789012345678901234567890

lazy found at position 36

772

773 _strtime

Description

Remarks

Return Value

Compatibility

See Also

Copies the time to a buffer.

#include <time.h>

char lie _strtime(char • tim est,.);

tim est,. Time string

The _ strtime function copies the current time into the buffer pointed to by timestr. The
time is formatted

hh:mm:ss

where h h is two digits representing the hour in 24-hour notation, mm is two digits repre­
senting the minutes past the hour, and s s is two digits representing seconds. For ex­
ample, the string

18:23:44

represents 23 minutes and 44 seconds past 6:00 PM.

The buffer must be at least nine bytes long.

The _strtime function returns a pointer to the resulting text string timestr.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

asctime, ctime, gmtime, local time, mktime, time, tzset

Exampw __ __

1* STRTIME.C *1
#include <time.h>
#include <stdio.h>

void main()
{

char dbuffer [9];
char tbuffer [9];

. '.('

_strtime

_strdate(dbuffer);
printf("The current date is %s \n". dbuffer);
_strtime(tbuffer);
printf("The current time is %s, \n". tbuffer);

Output

The current date is 06/20/89
The current time i$ 09:33:13

774

775

Description

Remarks

strtod, strtol, _strtold, strtoul

Convert strings to a double-precision (strtod, _strtold), long-integer (strtol), or unsigned
long-integer (strtoul) value.

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

long strtol(const char *nptr, char **endptr, int base);

long double _strtold(const char *nptr, char **endptr);

unsigned long strtoul(const char *nptr, char **endptr, int base);

nptr

endptr

base

String to convert

End of scan

Number base to use

The strtod, _strtold, strtol, and strtoul functions convert a character string to a double­
precision value, a long-double value, a long-integer value, or an unsigned long-integer
value, respectively. The input string is a sequence of characters that can be interpreted as a
numerical value of the specified type. If the strtod or _ strtold function appears in a
compact-, large-, or huge-model program, nptr can be a maximum of 100 characters.

These functions stop reading the string at the first character they cannot recognize as part
of a number. This may be the null character (,\0') at the end of the string. With strtol or
strtoul, this terminating character can also be the first numeric character greater than or
equal to base. If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion could be performed (no valid
digits were found or an invalid base was specified), the value of nptr is stored at the loca­
tion pointed to by endptr.

The strtod and _ strtold functions expect nptr to point to a string with the following form:

[whites pace] [sign] [digits] [.digits] [{d I Die I E} [sign]digits]

The first character that does not fit this form stops the scan.

The strtol function expects nptr to point to a string with the following form:

[whites pace] [sign] [0] [{ x I X }] [digits]

The strtoul function expects nptr to point to a string having this form:

[whitespace] [{ + I -}] [0] [{ x I X }] [digits]

slrtod, slrtol, _slrtold, slrtoul 776

Return Value

Compatibility

See Also

If base is between 2 and 36, then it is used as the base of the number. If base is 0, the ini­
tial characters of the string pointed to by nptr are used to determine the base. If the first
character is 0 and the second character is not 'x' or 'X', then the string is interpreted as an
octal integer; otherwise, it is interpreted as a decimal number. If the first character is '0'
and the second character is 'x' or 'X', then the string is interpreted as a hexadecimal in­
teger. If the first character is '1' through '9', then the string is interpreted as a decimal in­
teger. The letters 'a' through 'z' (or' A' through 'Z') are assigned the values 10 through
35; only letters whose assigned values are less than base are permitted.

The strtoul function allows a plus (+) or minus (-) sign prefix; a leading minus sign indi­
cates that the return value is negateCl.

The strtod and _ strtold functions return the value of the floating-point number, except
when the representation would cause an overflow, in which case it returns ±HUGE_ VAL.
The functions return 0 if no conversion could be performed or an underflow occurred.

The strtoI function returns the value represented in the string, except when the repre­
sentation would cause an overflow, in which case it returns LONG MAX or LONG MIN.
The function returns 0 if no conversion could be performed. - -

The strtoul function returns the converted value, if any. If no conversion can be per­
formed, the function returns O. The function returns ULONG_MAX on overflow. In all four
functions, errno is set to ERANGE if overflow or underflow occurs.

strtod, strtol, _ strtoId

• ANSI • DOS • OS/2 • UNIX • XENIX

strtouI

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

atof, atoI

Exampre __ __

1* STRTOD.C: This program uses strtod to convert a string to a
* double-precision value; strtol to convert a string to long
* integer values; and strtoul to convert a string to unsigned
* long-integer values.
*1

#include <stdlib.h>
#in~lude <stdio.h>

777

void maine)
(

char *string, *stopstring;
double x;
long 1 ;
int base;
unsigned long ul;

string = "3.1415926This stopped it";
x = strtod(string, &stopstring);
printf("string = %s\n", string);
printf(" strtod = %f\n", x);
printf(" Stopped scan at: %s\n\n", stopstring);

string = "-10110134932This stopped it";
1 = strtol(string, &stopstring, 10);
printf("string = %s\n", string);
printf(" strtol = %ld\n", 1);
printf(" Stopped scan at: %s\n\n", stopstring);

string = "10110134932"; .
printf("string = %s\n", string);
1* Convert string using base 2, 4, and 8: *1
fore base = 2; base <= 8; base *= 2)
(

1* Convert the string: *1

strtod, strtol, _strtold, strtoul

ul = strtoul(string, &stopstring, base);
printf(" strtol = %ld (base %d)\n", ul, base);
printf(" Stopped scan at: %s\n", stopstring);

Output

string = 3.1415926This stopped it
strtod = 3.141593
Stopped scan at: This stopped it

string = -10110134932This stopped it
strtol = -2147483647
Stopped scan at: This stopped it

string = 10110134932
strtol = 45 (base 2)
Stopped scan at: 34932
strtol = 4423 (base 4)
Stopped scan at: 4932
strtol = 2134108 (base 8)
Stopped scan at: 932

strtok, _fstrtok 778

Description

Remarks

Return Value

Compatibility

Find the next token in a string.

#include <string.h> Required only for function declarations

char *strtok(char *string], const char *string2);

char _far * _far _fstrtok(char _far *string], const char _far *string2);

string]

string2

String containing token(s)

Set of delimiter characters

The strtok function reads string] as a series of zero or more tokens and string2 as the set
of characters serving as delimiters of the tokens in string]. The tokens in string] may be
separated by one or more of the delimiters from string2.

The tokens can be broken out of string] by a series of calls to strtok. In the first call to
strtok for string], strtok searches for the first token in string], skipping leading
delimiters. A pointer to the first token is returned. To read the next token from string], call
strtok with a NULL value for the string] argument. The NULL string] argument causes
strtok to search for the next token in the previous token string. The set of delimiters may
vary from call to call, so string2 can take any value.

The _fstrtok function is a model-independent (large-model) form of the strtok function.
The behavior and return value of _fstrtok are identical to those of the model-dependent
function strtok, with the exception that the arguments and return value are far pointers.

Note that calls to these functions will modify string], since each time strtok is called it in­
serts a null character (,\0') after the token in string].

The first time strtok is called, it returns a pointer to the first token in string]. In later calls
with the same token string, strtok returns a pointer to the next token in the string. A
NULL pointer is returned when there are no more tokens. All tokens are null-terminated.

strtok

• ANSI • DOS • OS/2 • UNIX • XENIX

fstrtok

D ANSI • DOS • OS/2 D UNIX D XENIX

779 strtok, _fstrtok

See Also strcspn, strspn

Exampre __ __

1* STRTOK.C: In this program, a loop uses strtok to print all the tokens
* (separated by commas or blanks) in the string named "string".
*1

#include <string.h)
#include <stdio.h)

char string[] = "A string\tof "tokens\nand some more tokens";
char seps[] ",\t\n";
char *token;

void maine)
(

printf("%s\n\nTokens:\n", string);

1* Establish string and get the first token: *1
token = strtok(string, seps);
while(token 1= NULL)
(

Output

1* While there are tokens in "string" *1
printf(" %s\n", token);
1* Get next token: *1
token = strtok(NULL, seps);

A string of "tokens
and some more tokens

Tokens:
A
string
of
tokens
and
some
more
tokens

slrupr, _'slrupr 780

Description Convert a string to uppercase.

#include <string.h> Required only for function declarations

cha~ *strupr(char *string);

char _far * _far _fstrupr(char _far *string);

string String to be capitalized

Remarks These functions convert any lowercase letters in the string to uppercase. Other characters
are not affected.

Return Value

Compatibility

See Also

The _fstrupr function is a model-independent (large-model) form of the strupr function.
The behavior and return value of _fstrupr are identical to those of the model-dependent
function strupr, with the exception that the argument and return value are far pointers.

These functions return a pointer to the converted string. There is no error return.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

strlwr

Exampre ___ ___

1* STRLWR.C: This program uses strlwr and strupr to create
* uppercase and lowercase copies of a mixed-case string.
*1

#include <string.h>
#include <stdio.h>

void main()
(

char string[l00] = "The String to End All Strings!";
char *copyl, *copy2;

copyl = strlwr(strdup(string)) ;
copy2 = strupr(strdup(string)) ;
pri ntf("Mixed: %s\n", string) ;
printf(II Lower: %s\n", copyl) ;
pri ntf("Upper: %s\n", copy2) ;

781

Output

Mixed: The String to End All Stringsl
Lower: the string to end ~ll strings!
Upper: THE STRING TO END ALL STRINGS!

strupr, _Istrupr

strxfrm

Description

Remarks

Return Value

Compatibility

See Also

TransfOlms a string based on locale-specific information.

#include <string.h> Required only for function declarations

size_t strxfrm(char *stringl, const char *string2, size_t count);

stringl

string2

count

String to which transformed version of string2 is returned

String to transfonn·

Maximum number of characters to be placed in stringl

The strxfrm function transforms the string pointed to by string2 into a new form that is
stored in stringl. No more than count characters (including the null character) are trans­
formed and placed into the resulting string.

The transformation is made using the information in the locale-specific LC_COLLATE
macro.

782

After the transformation, a call to strcmp with the two transformed strings will yield iden­
tical results to a call to strcoll applied to the original two strings.

The value of the following expression is the size of the array needed to hold the transfor­
mation of the source string:

1 + strxfrm(NULL,'string, 0)

Currently, the C libraries support the "C" locale only; thus strxfrm is equivalent to the
following:

strncpy(_stringl, _string2, _count);
return(strlen(_string2));

The strxfrm function returns the length of the transformed string, not counting the termi­
nating null character. If the return value is greater than or equal to count, the contents of
stringl are unpredictable.

• ANSI • DOS • OS/2 0 UNIX 0 XENIX

localeconv, setlocale, strncmp

783

Description Swaps bytes.

#include <stdlib.h> Required only for function declarations

void swab(char *src, char *dest, int Il);

src

dest

n

Data to be copied and swapped

Storage location for swapped data

Number of bytes to be copied and swapped

swab

Remarks The swab function copies n bytes from src, swaps each pair of adjacent bytes, and stores
the result at dest. The integer n should be an even number to allow for swapping. The
swab function is typically used to prepare binary data for transfer to a machine that uses a
different byte order.

Return Value None.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

Exampre __ __

1* SWAB.C *1
#include <stdlib~h>
#include <stdio.h>

char from[] = "BADCFEHGJILKNMPORQTSVUXWZY";
char to[] = " •••••••••••••••••••••••••• ";

void maine)
{

printf("Before:\t%s\n\t%s\n\n", from, to);
swab (from, to, s i zeof(from));
printf("After:\t%s\n\t%s\n\n", from, to);

Output

Before: BADCFEHGJILKNMPORQTSVUXWZY

After: BADCFEHGJILKNMPORQTSVUXWZY
ABCDEFGHIJKLMNOPQRSTUVWXYZ

system

Description

Remarks

Return Value

Executes a command.

#include <process.h>

#include <stdlih.h>

Required only for function declarations

Use STDLIB.H for ANSI compatibility

784

int system(const char *command);

command Command to be executed

The system function passes command to the command interpreter, which executes the
string as an operating-system command. The system function refers to the COMSPEC and
PATH environment variables that locate the command-interpreter file (the file named
COMMAND. COM in DOS or CMD.EXE in OS/2). If command is a pointer to an empty
string, the function simply checks to see whether or not the command interpreter exists.

If command is NULL and the command interpreter is found, the function returns a nonzero
value. If the command interpreter is not found, it returns the value 0 and sets errno to
ENOENT. If command is not NULL, the system function returns the value 0 if the com­
mand interpreter is successfully started. Under OS/2, the system function returns the exit
status from the command interpreter.

A return value of -1 indicates an error, and errno is set to one of the following values:

Value

E2BIG

ENOENT

ENOEXEC

ENOMEM

Meaning

In DOS, the argument list exceeds 128 bytes, or the space re­
quired for the environment information exceeds 32K. In OS/2,
the combined argument list and space required for environ­
ment information exceed 32K.

The command interpreter cannot be found.

The command-interpreter file has an invalid format and is not
executable.

Not enough memory is available to execute the command; or
the available memory has been corrupted; or an invalid block
exists, indicating that the process making the call was not allo­
cated properly.

785 system

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also exec functions, exit, _exit, spawn functions

Exampw __ __

1* SYSTEM.C: This program uses system to TYPE its source file. *1

#include <process.h)

void main()
{

system("type system.c");

Output

1* SYSTEM.C: This program uses system to TYPE its source file. *1

#include <process.h)

void main()
{

system("type system.c");

tan Functions 786

Description

Remarks

Return Value

Compatibility

Calculate the tangent (tan and tanl) and hyperbolic tangent (tanh and tanhl).

#include <math.h>

double tan(double x);

double tanh(double x);

long double tanl(long double x);

long double tanhl(long double x);

x Angle in radians

The tan functions return the tangent or hyperbolic tangent of their arguments. The list
below describes the differences between the various tangent functions:

Function

tan

tanh

tanl

tanhl

Description

Calculates tangent of x

Calculates hyperbolic tangent of x

Calculates tangent of x (80-bit version)

Calculates hyperbolic tangent of x (80-bit version)

The tan I and tanhl functions are the 80-bit counterparts and use an 80-bit, IO-byte co­
processor fonn of arguments and return values. See the reference page on the long double
functions for more details on this data type.

The tan function returns the tangent of x. If x is large, a partial loss of significance in the
result may occur; in this case, tan sets errno to ERANGE and generates a PLOSS error. If
x is so large that significance is totally lost, tan prints a TLOSS error message to stderr,
sets errno to ERANGE, and returns O.

There is no error return for tanh.

tan, tanh

• ANSI • DOS • OS/2 • UNIX • XENIX

tanl, tanhl

o ANSI • DOS .• OS/2 0 UNIX 0 XENIX

787 tan Functions

See Also acos functions, asin functions, atan functions, cos functions, sin functions

Exampm __ __

1* TAN.C: This program displays the tangent of pi I 4 and the hyperbolic
* tangent of the result.
*1

#include <math.h>
#include <stdio.h>

void main()
{

double pi - 3.1415926535;
double x, y;

x = tan (pi I 4);
y ~ tanh(x);
printf("tan(%f) ~ %f\n", x, y);
printf("tanh(%f) = %f\n", y, x);

Output

tan(1.000000) ~ 0.761594
tanh(0.761594) = 1.000000

788

. De~crip,tlon' Gets the position of the file pointer.

#include <io.h> Required only for function declarations

long tell(int handle);

handle Handle referring to open file

Remarks The tell function gets the current position of the file pointer (if any) associated with the
handle argument. The position is expressed as the number of bytes from the beginning of
the file.

Return Value A return value of -lL indicates an error, and errno is set to EBADF to indicate an invalid
file-handle argument. On devices incapable of seeking, the return value is undefine<;l.

Compatibility . o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also ftell,lseek

Exampre __ __

/* TELL.C: This program uses tell to tell the file pointer position
* after a file read.
*/

lIinclude <io.h>
lIinclude <stdio.h>
lIinclude <fcntl.h>

void main()
(

int fh;
long position;
char buffer[500];

if((fh ... open("tell.c", O_RDONLY » 1= -1)
(

i f(,read (fh, buffer, 500) > 0
printf("Current file position is: %d\n", tell(fh));

789 tell

close(fh);

Output

Current file position is: 425

tempnam, tmpnam 790

Description

Remarks

Create temporary file names.

#include <stdio.h>

char *tempnam(char *dir, char *prefix);

char *tmpnam(char *string);

string

dir

prefix

Pointer to temporary name

Target directory to be used if TMP not defined

File-name prefix

The tmpnam function generates a temporary file name that can be used to open a tem­
porary file without overwriting an existing file. This name is stored in string. If string is
NULL, then tmpnam leaves the result in an internal static buffer. Thus, any subsequent
calls destroy this value. If string is not NULL, it is assumed to point to an array of at least
L_tmpnam bytes (the value ofL_tmpnam is defined in STDIO.H). The function will
generate unique file names for up to TMP _MAX calls.

The character string that tmpnam creates consists of the path prefix, defined by the entry
P _tmpdir in the file STDIO.H, f~llowed by a sequence consisting of the digit characters
'0' through '9'; the numerical value of this string can range from I to 65,535. Changing
the definitions ofL_tmpnam or P _tmpdir in STDIO.H does not change the operation of
tmpnam.

The tempnam function allows the program to create a temporary file name for use in
another directory. This file name will be different from that of any existing file. The
prefix argument is the prefix to the file name. The tempnam function uses malloc to allo­
cate space for the file name; the program is responsible for freeing this space when it is no
longer needed. The tempnam function looks for the file with the given name in the follow­
ing directories, listed in order of precedence:

Directory Used

Directory specified by TMP

dir argument to tempnam

P_tmpdir in STDIO.H

Current working directory

Conditions

TMP environment variable is set, and
directory specified by TMP exists.

TMP environment variable is not set, or
directory specified by TMP does not exist.

The dir argument is NULL, or dir is name
of nonexistent directory.

P _ tmpdir does not exist.

791 tempnam, tmpnam

. If the search through the locations listed above fails, tempnam returns the value NULL.

Return Value The tmpnam and tempnam functions both return a pointer to the name generated, unless
it is impossible to create this name or the name is not unique. If the name cannot be
created or if a file with that name already exists, tmpnam and tempnam return the value
NULL.

Compatibility tmpnam

• ANSI • DOS • OS/2 • UNIX • XENIX

tempnam

o ANSI • DOS • OS/2 • UNIX • XENIX

See Also tmpfile

Exampre ______________ ~ __ ___

1* TEMPNAM.C: This program uses tmpnam ~o create a unique file name in
* the current working directory, then uses tempnam to create a unique
* file name with a prefix of stq.
*1

#include <stdio.h>

void main()
(

char *namel, *name2;

1* Create a temporary file name for the current working directory: *1
i f((namel = tmpnam(NULL)) 1= NULL)

printf("Is is safe to use as a temporar~ file.\n", namel);
else

printf("Cannot create a unique file name\n");

1* Create a temporary file name in temporary directory with the
* prefix "stq". The actual destination directory may vary depending
* on the state of the TMP environment variable and the global variable
* P_tmpdir.
*1

if((name2 = tempnam("c:\\tmp", "stq")) 1= NULL)
printf("Is is safe to use as a temporary file.\n", name2);

else
printf("Cannot create a unique file name\n");

tempnam, tmpnam

Output

\2 is safe to use as a temporary file.
C:\TMP\stq2 is safe to use as a temporary file.

792

793 time

Description Gets the system time.

#include <time.h> Required only for function declarations

timer Storage location for time

Remarks The time function returns the number of seconds elapsed since 00:00:00 Greenwich mean
time (GMT), January 1, 1970, according to the system clock. The system time is adjusted
according to the timezone system variable, which is explained in the tzset reference
section.

Return Value

Compatibility

See Also

The return value is stored in the location given by timer. This parameter may be NULL, in
which case the return value is not stored.

The time function returns the time in elapsed seconds. There is no error return.

• ANSI • DOS • OS/2 • UNIX • XENIX

asctime, ftime, gmtime, Iocaltime, tzset, utime

Exampre __ ___

1* CTIME.C: This program gets the current time in time_t form, then uses
* ctime to display the time in string form.
*1

#include <time.h>
#include <stdio.h>

void maine)
(

time(<ime);
printf("The time is %s\n", ctime(<ime));

Output

The time is Thu Jun 15 16:08:18 1989

tmpfile

Description

Remarks

Creates a temporary file.

#include <stdio.h>

FILE *tmpfile(void);

The tmpfile function creates a temporary file and returns a pointer to that stream. If the
file cannot be opened, tmpfile returns a NULL pointer.

794

This temporary file is automatically deleted when the file is closed, when the program ter­
minates normally, or when rmtmp is called, assuming that the current working directory
does not change. The temporary file is opened in w+b (binary read/write) mode.

Return Value If successful, the tmpfile function returns a stream pointer. Otherwise, it returns a NULL
pointer.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also rmtmp, tempnam, tmpnam

Exampre __ __

/* TMPFILE.C: This program uses tmpfile to create a temporary file,
* then deletes this file with rmtmp.
*/

#include <stdio.h>

void maine)
(

FILE *stream;
char tempstring[] "String to be written";
i nt i;

/* Create temporary files. */
fore i = 1; i <= 10; i++)
[

if((stream = tmpfile(»== NULL)
perror("Could not open new temporary file\n");

else
printf("Temporary file %d was created\n", i);

/* Remove temporary files. */

795 Imp/ile

printf("%d temporary files deleted\n", rmtmp());

Output

Temporary fil e 1 was created
Temporary fil e 2 was created
Temporary fil e 3 was created
Temporary fil e 4 was created
Temporary file 5 was created
Temporary fil e 6 was created
Temporary fil e 7 was created
Temporary fil e 8 was created
Temporary fil e 9 was created
Temporary file 10 was created
10 temporary files deleted

toascii, t%wer, toupper Functions 796

Description

Remarks

Convert characters.

#include <ctype.h>

int toascii(int c);

int tolower(int c);

int _tolower(int c);

int toupper(int c);

int _toupper(int c);

c Character to be converted

The toascii, tolower, _tolower, toupper, and _toupper routines convert a single charac­
ter, as described below:

Function

toascii

tolower

_tolower

toupper

_toupper

Description

Converts c to ASCII character

Converts c to lowercase if appropriate

Converts c to lowercase

Converts c to uppercase if appropriate

Converts c to uppercase

The toascii routine sets all but the low-order 7 bits of c to 0, so that the converted value
represents a character in the ASCII character set. If c already represents an ASCII charac­
ter, c is unchanged.

The tolower and _tolower routines convert c to lowercase if c represents an uppercase let­
ter. Otherwise, c is unchanged. The _tolower routine is a version of to lower to be used
only when c is known to be uppercase. The result of _ tolower is undefined if c is not an
uppercase letter.

The toupper and _toupper routines convert c to uppercase if c represents a lowercase let­
ter. Otherwise, c is unchanged. The toupper routine is a version of toupper to be used
only whenc is known to be lowercase. The result of _toupper is undefined if c is not a
lowercase letter.

797

Return Value

Compatibility

See Also

toascii, t%wer, toupper Functions

Note that these routines are implemented both as functions and as macros. To confonn
with the ANSI specification, the tolower and toupper routines are also implemented as
functions. The function versions can be used by removing the macro definitions through
#Undef directives or by not including CTYPE.H. Function declarations of tolower and
toupper are given in STDLIB.H.

If the -Za compile option is used, the macro form of toupper or tolower is not used be­
cause it evaluates its argument more than once. Since the arguments are evaluated more
than once, arguments with side effects would produce potentially bad results.

The toascii, tolower, _tolower, toopper, and _toupper routines return the converted char­
acter c. There is no error return.

toascii, _tolower, _toupper

o ANSI • DOS • OS/2 • UNIX • XENIX

tolower, toupper

• ANSI • DOS • OS/2 • UNIX • XENIX

is functions

Exampre ___ ~--------

1* TOUPPER.C: This program uses toupper and tolower to analyze all
* characters between 0x0 and 0x7F. It also appl~es _toupper and _tolower
* to any code in this range for which these functions make sense.
*1

#include <conio.h>
#include <ctype.h>
#include <string.h>

char msg[] = "Some of THESE letters are Capitals\r\n";
char *p;

voi d rna in ()
(

cputs(msg);

toascii, t%wer, toupper Functions

/* Reverse case of message. */
for(p = msg; p < msg + strlen(msg); p++)
(

Output

if(islower(*p))
putch(_toupper(*p);

else if(isupper(*p)
putch(_tolower(*p);

else
putch(*p);

Some of THESE letters are Capitals
sOME OF these LETTERS ARE cAPITALS

798

799

Description

Remarks

Izsel

Sets time environment variables.

#include <time.h>

void tzset(void);

int daylight;
long timezone;
char *tzname[2]

Required only for function declarations

Global variables set by function

The tzset function uses the current setting of the environment variable TZ to assign values
to three global variables: daylight, timezone, and tzname. These variables are used by the
ftime and localtime functions to make corrections from Greenwich mean time (GMT) to
local time, and by time to compute GMT from system time.

The value of the environment variable TZ must be a three-letter time-zone name, such as
PST, followed by an optionally signed number giving the difference in hours between
GMT and local time. The number may be followed by a three-letter daylight-saving-time
(DST) zone, such as PDT. For example, "PST8PDT" represents a valid TZ value for the
Pacific time zone. If DST is never in effect, as is the case in certain states and localities,
TZ should be set without a DST zone.

If the TZ value is not currently set, the default is PST8PDT, which corresponds to the
Pacific time zone.

Based on the TZ environment variable value, the following values are assigned to the vari­
ables daylight, timezone, and tzname when tzset is called:

Variable

daylight

timezone

tzname[O]

tzname[1]

Value

Nonzero value if a daylight-saving-time zone is specified in
the TZ setting; othelWise, 0

Difference in seconds between GMT and local time

String value of the three-letter time-zone name from the TZ
setting

String value of the daylight-saving-time zone, or an empty
string if the daylight-saving-time zone is omitted from the TZ
setting

The default for daylight is 1; for timezone, 28,800; for tzname[O], PST; and for
tzname[l], PDT. This corresponds to "PST8PDT."

If the DST zone is omitted from the TZ settings, the daylight variable will be 0 and the
ftime, gmtime, and localtime functions will return 0 for their DST flags.

tzset 800

Return Value None.

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also asctime, ftime, gmtime, Iocaltime, time

Exampm __ ___

1* TZSET.C: This program first sets up the time zone by placing the variable
* named TZ-EST5 in the environment table. It then uses tzset to set the
* global variables named daylight, timezone, and tzname.
*1

#include <time.h)
#include <stdlib.h)
#include <stdio.h)

void main()
(

if(putenv("TZ=EST5EDT") == -1)
. (

printf("Unable to set TZ\n");
ex;t(1);

else
(

Output

tzset();
printf("daylight = %d\n", daylight);
printf("timezone = %ld\n", timezone);
printf("tzname[0] = %s\n", tzname[0]);

daylight - 1
timezone =- 18000
tzname[0] ... EST

801

Description Converts an unsigned long integer to a string.

#include <stdlib.h> Required only for function declarations

char *ultoa(unsigned long value, char *string, int radix);

value

string

radix

Number to be converted

String result

Base of value

ultoa

Remarks The ultoa function converts value to a null-terminated character string and stores the result
(up to 33 bytes) in string. No overflow checking is performed. The radix argument speci­
fies the base of value; it must be in the range 2-36.

Return Value The ultoa function returns a pointer to string. There is no error return.

Compatibility o ANSI • DOS • 05/2 0 UNIX 0 XENIX

See Also itoa, Itoa

Exampw ___ ____

1* ITOA.C: This program converts integers of various sizes to strings
* in various radixes.
*1

#include <stdlib.h>
#include <stdio.h>

void maine)
{

char buffer[20];
int i = 3445;
long 1 = -344115L;
unsigned long ul = 1234567890UL;

itoa(i , buffer, 10) ;
printf("String of integer %d (radix
itoa(i , buffer, 16) ;
printf("String of integer %d (radix
itoa(i , buffer, 2) ;
printf("String of integer %d (radix

10) : %s\n" , i, buffer) ;

16) : 0x%s\n", i , buffer) ;

2) : %s\n", i , buffer) ;

ulloa

1toa(1, buffer, 16);
pri ntf("Stri ng of long i nt %1 d (radi x 16): 0x%s \n", 1, buffer);

u1toa(u1, buffer, 16);
printf("String of unsigned long %lu (radix 16): 0x%s\n", u1, buffer);

Output

String of integer 3445 (radix 10): 3445
String of integer 3445 (radix 16): 0xd75
String of integer 3445 (radix 2): 110101110101
String of long int -344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

802

803

Description

Remarks

Return Value

Compatibility

Sets the default file-pennission mask.

#include <sys\types.h>

#include <sys\stat.h>

#include <io.h>

infumask(int pmode);

pmode

Required only for function declarations

Default pennission setting

umask

The umask function sets the file-pennission mask of the current process to the mode
specified by pmode. The file-pennission mask is used to modify the permission setting of
new files created by creat, open, or sopen. If a bit in the mask is I, the corresponding bit
in'the file's requested pennission value is set to 0 (disallowed). If a bit in the mask is 0, the
corresponding bit is left unchanged. The permission setting for a new file is not set until
the file is closed for the first time.

The argument pmode is a constant expression containing one or both of the manifest con­
stants S_IREAD and S_IWRITE, defined in SYS'STAT.H. When both constants are given,
they are joined with the bitwise-OR operator (I). The meaning of the pmode argument is
as follows:

Value Meaning

Reading not allowed (file is write-only)

Writing not allowed (file is read-only)

For example, if the write bit is set in the mask, any new files will be read-only.

Note that under DOS and OS/2, all files are readable-it is not possible to give write-only
permission. Therefore, setting the read bit with umask has no effect on the file's modes.

The umask function returns the previous value of pmode. There is no error return.

o ANSI • DOS • OS/2 • UNIX • XENIX

umask 804

See Also chmod, creat, mkdir, open

Exampm __ __

1* UMASK.C: This program uses umask to set the file-permission mask so
* that all future files will be created as read-only files. It also
* displays the old mask.
*/

#include <sys\types.h>
#include <sys\stat.h>
#incltlde <io.h>
#include <stdio.h>

void maine)
(

int oldmask;

1* Create read-only files: *1
oldmask - umask(S_IWRITE);
printf("Oldmask = 0x%.4x\n", oldmask);

Output

Oldmask = 0x0000

805

Description

Remarks

Return Value

Compatibility

See Also

Pushes a character back onto the stream.

#include <stdio.h>

int ungetc(int c, FILE *stream);

c

stream

Character to be pushed

Pointer to FILE structure

ungele

The ungetc function pushes the character c back onto stream and clears the end-of-file in­
dicator. The stream must be open for reading. A subsequent read operation on the stream
starts with c. An attempt to push EOF onto the stream using ungetc is ignored. The
ungetc function returns an error value if nothing has yet been read from stream or if c can­
not be pushed back.

Characters placed on the stream by ungetc may be erased if mush, fseek, fsetpos, or
rewind is called before the character is read from the stream. The file-position indicator
will have the same value it had before the characters were pushed back. On a successful
ungetc call against a text stream, the file-position indicator is unspecified until all the
pushed-back characters are read or discarded. On each successful ungetc call against a bi­
nary stream, the file-position indicator is stepped down; if its value was 0 before a call, the
value is undefined after the call.

Results are unpredictable if the ungetc function is called twice without a read operation be­
tween the two calls. After a call to the fscanf function, a call to ungetc may fail unless
another read operation (such as the'getc function) has been performed. This is because the
fscanffunction itself calls the ungetc function.

The ungetc function returns the character argument c. The return value EOF indicates a
failure to push back the specified character.

• ANSI • DOS • OS/2 • UNIX • XENIX

getc, getchar, putc, putchar

Exampre __ _____

1* UNGETC.C: This program first converts a character representation of an
* unsigned integer to an integer. If the program encounters a character
* that is not a digit, the program uses ungetc to replace it in the stream.
*1

ungelc

#include (stdio.h)
#include (ctype.h)

void maine)
(

int ch;
int result ... 0;

p r i n t f ("E n t era n i n t eg e r : ");

1* Read in and convert number: *1
while(«ch ... getchar(» 1= EOF) &&

result ... result * 10 + ch - '0';
if(ch 1= EOF)

ungetc(ch, stdin);
printf("Number = %d\nNext character

result, getchar());

Output

Enter an integer: 521a
Number = 521
Next character in stream = 'a'

isdigit(ch))
1* Use digit. *1

1* Put non-digit back. *1
in stream = '%c'\n",

806

807 ungetch

Description Pushes back the last character read from the console.

#include <conio.h> Required only for function declarations

int ungetch(int c);

c Character to be pushed

Remarks The ungetch function pushes the character c back to the console, causing c to be the next
character read by getch or getche. The ungetch function fails if it is called more than once
before the next read. The c argument may not be EOF.

Return Value

Compatibility

See Also

The ungetch function returns the character c if it is successful. A return value of EOF indi­
cates an error.

o ANSI • DOS • OS/2 0 UNIX 0 XENIX

cscanf, getch, getche

Exampw __ _____

1* UNGETCH.C: In this program, a white-space delimited token is read
* from the keyboard. When the program encounters a delimiter,
* it uses ungetch to replace the character in the keyboard buffer.
*1

#include <conio.h>
#include <ctype.h>
#include <stdio.h>

void main()
{

char buffer[100];
int count = 0;
int ch;

ungetch

ch = getche();
while(isspace(ch)

ch ;., getche();
while(count < 99)
(

}

if(isspace(ch
break;

buffer[count++] ch;
ch = getche();

1* Skip preceding white space. *1

1* Gather token. *1

1* End of token. *1

ungetch(ch); 1* Put back delimiter. *1
buffer[count] = '\0'; 1* Null terminate the token. *1
printf("\ntoken = %s\n", buffer);

Output

White
token = White

808

809

Descripllon

Remarks

Deletes a file.

#include <io.h>

#include <stdio.h>

Required only for function declarations

Use either IO.H or STDIO.H

int unlink(const char *filename);

filename Name of file to remove

The unlink function deletes the file specified by filename.

unlink

Return Value If successful, unlink returns 0; otherwise, it returns -1 and sets errno to one of the follow­
ing constants:

Value

EACCES

ENOENT

Meaning

. Path name specifies a read-only file

File or path name not found, or path name specified a directory

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also close, remove

Exampw __ __

/* UNLINK.C: This program uses unlink t~ delete UNLINK.OBJ. */

#include <stdio.h>

void main()
(

if(unlink("unlink.obj") == -1)
perror("Could not delete 'UNLINK.OBJ'");

else
printf("Deleted 'UNLINK.OBJ'\n");

Output

Deleted 'UNLINK.OBJ'

_unregisterfonts 810

Description

Remarks

Return Value

Compatibility

See Also

Example

Frees memory used by fonts.

#include <graph.h>

void _far _ unregisterfonts(void);

The _ unregisterfonts function frees memory previously allocated and used by the
_ registerfonts function. The _ unregisterfonts function removes the header information
for all fonts and unloads the currently selected font data from memory.

Any attempt to use the _ setfont or _ outgtext function after calling _ unregisterfonts re­
sults in an error.

None.

o ANSI • DOS 0 OS/2 0 UNIX 0 XENIX

_getfontinfo, ~etgtextextent, _ outgtext, _registerfonts, _setfont

See the example for _ outgtext.

811

Description

Remarks

Return Value

Compatibility

See Also

Sets the file modification time.

#include <sys\types.h>

#include <sys\utime.h>

int utime(char *filename, struct utimbuf *times);

filename

times

File name

Pointer to stored time values

utime

The utime function sets the modification time for the file specified by filename. The
process must have write access to the file; otherwise, the time cannot be changed.

Although the utimbuf structure contains a field for access time, only the modification time
is set under DOS and OS/2. If times is a NULL pointer, the modification time is set to the
current time. Otherwise, times must point to a structure of type utimbuf, defined in
SYs\UTIME.H. The modification time is set from the modtime field in this structure.

The utime function returns the value 0 if the file-modification time was changed. A return
value of -1 indicates an error, and errno is set to one of the following values:

Value

EACCES

EINVAL

EMFILE

ENOENT

Meaning

Path name specifies directory or read-only file

Invalid argument; the times argument is invalid

Too many open files (the file must be opened to change its
modification time)

File or path name not found

o ANSI • DOS • OS/2 • UNIX • XENIX

asctime, ctime, fstat, ftime, gmtime, localtime, stat, time

Exampre __ ~ ____________ __

/* UTIME.C: This program uses utime to set the file-modification time to
* the current time.
*/

utime

#include <stdio.h>
#include <stdlib.h>
#include <sys\types.h>
#include <sys\utime.h>

void maine)
(

1* Show file time before and after. *1
system("dir utime.c");
if(utime("utime.c", NULL) == -1)

perror("utime failed\n");
else

printf("File time modified\n");
system("dir utime.c");

Output

The volume label in drive C is OS2.
Directory of C:\LIBREF

UTIME C 397 6-20-89 2:11p
1 File(s) 12974080 bytes free

File time modified

The volume label in drive C is OS2.
Directory of C:\LIBREF

UTIME C 397 6-20-89 2:12p
1 File(s) 12974080 bytes free

812

813

Description

Remarks

Access variable-argument lists.

#include <stdarg.h>

#include <varargs.h>

#include· <stdio.h>

Required for ANSI compatibility

Required for UNIX V compatibility

type va_arg(va_list argylr, type);

void va_end(va_list argylr);

void va_start(va_list argylr); UNIX version

void va_start(vaJist argylr, prev yaram); ANSI

argylr

prevyaram

type

Pointer to list of arguments

Parameter preceding first optional argument (ANSI only)

Type of argument to be retrieved

The va _ arg, va_end, and va_start macros provide a portable way to access the arguments
to ,a function when the function takes a variable number of arguments. Two versions of the
macros are available: the macros defined in STDARG.H conform to the proposed ANSI C
standard, and the macros defined in V ARARGS.H are compatible with the UNIX System
V definition~ The macros are listed below:

Macro

va alist

va_end

va list

va start

Description

Name of parameter to called function (UNIX version only)

Macro to retrieve current argument

Declaration of va_alist (UNIX version only)

Macro to reset argylr

The typedef for the pointer to list of arguments

Macro to set argylr to beginning of list of optional argu­
ments (UNIX version only)

Both versions of the macros assume that the function takes a fixed number of required ar­
guments, followed by a variable number of optional arguments. The required arguments
are declared as ordinary parameters to the function and can be accessed through the param­
eter names. The optional arguments are accessed through the macros in STDARG.H or
V ARARGS.H, which set a pointer to the first optional argument in the argument list,

retrieve arguments from the list, and reset the pointer when argument processing is
completed.

The proposed ANSI C standard macros, defined in STDARG.H, are used as follows:

814

1. All required arguments to the function are declared as parameters in the usual way. The
va del macro is not used with the STDARG.H macros.

2. The va_start macro sets argytr to the first optional argument in the list of arguments
passed to the function. The argument argytr must have va_list type. The argument
prey yaram is the name of the required parameter immediately preceding the first
optional argument in the argument list. If pre v yaram is declared with the register
storage class, the macro's behavior is undefined. The va_start macro must be used
before va _ arg is used for the first time.

3. The va_arg macro does the following:

• Retrieves a value of type from the location given by argytr

'. Increments argytr to point to the next argument in the list, using the size of type to
determine where the next argument starts

The va _ arg macro can be used any number of times within the function to retrieve ar­
guments from the list.

4. After all arguments have been retrieved, va_end resets the pointer to NULL.

The UNIX System V macros, defined in V ARARGS.H, operate in a slightly different man­
ner, as follows:

1. Any required arguments to the function can be declared as parameters in the usual way.

2. The last (or only) parameter to the function represents the list of optional arguments.
This parameter must be named va_a list (not to be confused with vaJist, which is de­
fined as the type of va_a list).

3. The va_del macro appears after the function definition and before the opening left
brace of the. function. This macro is defined as a complete declaration of the va;.,. alist
parameter, including the terminating semicolon; therefore, no semicolon should follow
va del.

4. Within the function, the va_start macro sets argytr to the beginning of the list of op­
tional arguments passed to the function. The va_start macro must be used before
va_arg is used for the first time. The argument argytr must have va_list type.

5. The va_arg macro does the following:

• Retrieves a value of type from the location given by argytr

• Increments argytr to point to the next argument in the list, using the size of type to
determine where the next argument starts

815

The va _ arg macro can be used any number of times within the function to retrieve the
arguments from the list.

6. After all arguments have been retrieved, va_end resets the pointer to NULL.

Return Value The va_arg macro returns the current argument; va_start and va_end do not return values.

Compatibility • ANSI • DOS • OS/2 • UNIX • XENIX

See Also vfprintf, vprintf, vsprintf

Exampw __ ___

1* VA.C: The program below illustrates passing a variable number of arguments
* using the following macros:
* va_start va_arg va_end
* va_list va_decl (UNIX only)
*1

#include <stdio.h>
#define ANSI
#ifdef ANSI
#include <stdarg.h>
int average(int first,
#else
#include <varargs.h>
int average(va_list);
#endif

void maine)
(

1* Comment out for UNIX version
1* ANSI compatible version

...);

1* UNIX compatible version

1* Call with 3 integers (-1 is used as terminator). *1
printf("Average is: %d\n", average(2, 3, 4, -1));

1* Call with 4 integers. *1
printf("Average is: %d\n", average(5, 7, 9, 11, -1));

1* Call with just -1 terminator. *1
printf("Average is: %d\n", average(-1));

1* Returns the average of a variable list of integers. */
#ifdef ANSI 1* ANSI compatible version *1
int average(int first, ...)
(

int count = 0, sum = 0, i = first;
va_list marker;

*1
*1

*1

)

va_start(marker, first); 1* Initialize variable argu~ents. *1
while(i != -1)
(

)

sum += i;
count++;
i = va_arg(marker, int);

ya_end(marker); 1* Reset variable arguments. *1
return(sum? (sum 1 count) : 0);

#else 1* UNIX compatible version must use old-style definition. *1
int average(va_alist)
va_del
(

int i, count, sum;
va_list marker;

va_start(marker); 1* Initialize variable arguments. *1
fore sum - count - 0; (i - va_arg(marker, int» !- -1; count++)

sum +- i;
va_end(marker); 1* Reset variable arguments. *1
return(sum? (sum I count) 0);

)
#endif

Output

Average
Average
Average

is: 3
is: 8
is: 0

817

Description

Remarks

Return Value

Compatibility

vfprintf, vprintf, vsprintf

Write fonnatted output using a pointer to a list of arguments.

#include <stdio.h>

#include <varargs.h>

#include <stdarg.h>

Required for compatibility with UNIX System V

Required for compatibility with the ANSI C standard

int vfprintf(FILE *stream, const char *format, vaJist argptr);

int vprintf(const char *format, vaJist argptr);

int vsprintf(char *buffer, const char *format, vaJist argptr);

stream

format

argptr

buffer

Pointer to FILE structure

Fonnat control

Pointer to list of arguments

Storage location for output

The vfprintf, vprintf, and vsprintf functions fonnat data and output data to the file
specified by stream, to standard output, and to the memory pointed to by buffer, respective­
ly. These functions are similar to their counterparts fprintf, printf, and sprintf, but each
accepts a pointer to a list of arguments instead of an argument list.

Theformat argument has the same fonn and function as theformat argument for the printf
function; see printffor a description offormat.

The argptr parameter has type vaJist, which is defined in the include files VARARGS.H
and STDARG.H. The argptr parameter points to a list of arguments that are converted and
output according to the corresponding fonnat specifications in the fonnat.

The return value for vprintf and vsprintf is the number of characters written, not counting
the tenninating null character. If successful, the vfprintf return value is the number of
characters written. If an output error occurs, it is a negative value.

• ANSI • DOS • OS/2 • UNIX • XENIX

vfprintf, vprintf, vsprintf 818

See Also fprintf, printf, sprintf, va_arg, va_end, va_start

Exampre __ __

1* VPRINTF.C shows how to use vprintf functions to write new versions
* of printf. The vsprintf function is used in the example.
*1

#include <stdio.h>
#include <graph.h>
#include <string.h>
#include <stdarg.h>
#include <malloc.h>

int wprintf(short row, short col, short clr, long bclr, char *fmt, ...);

void main()
(

short fgd = 0;
long bgd = 0L;

_clearscreen(_GCLEARSCREEN);
_outtext("Color text example:\n\n");

1* Loop through 8 background colors. *1
for(bgd = 0L; bgd < 8; bgd++)
(

wprintf((int)bgd + 3,1,7, bgd, "Back: %d Fore:", bgd);

1* Loop through 16 foreground colors. *1
for(fgd = 0; fgd < 16; fgd++)

wprintf(-1, -1, fgd, -1L, " %2d ", fgd);

1* Full-screen window version of printf that takes row, column, textcolor,
* and background color as its first arguments, followed by normal printf
* format strings (except that \t is not handled). You can specify -1 for
* any of the first arguments to use the current value. The function returns
* the number of characters printed, or a negative number for errors.
*1

int wprintf(short row, short col, short clr, long bclr, char *fmt, ...
{

struct rccoord tmppos;
short ret, size;
va_list marker;
char *buffer;

819 vlprintl, vprintl, vsprintl

1* It's probably safe to use a buffer length of 512 bytes or five times
* the length of the format string.
*1

size ~ strlen(fmt);
size = (size) 512) ? 512 : size * 5;
if((buffer = (char *)malloc(size » =~ NULL)

return -1;

1* Set text position. *1
tmppos = _gettextposition();
if(row < 1)

row - tmppos.row;
if (col < 1)

col - tmppos.col;
_settextposition(row, col);

1* Set foreground and background colors. *1
i f(cl r)= 0)

_settextcolor(clr);
if(bclr)= 0)

_setbkcolor(bclr);

1* Write text to a string and output the string. *1
va_start(marker, fmt);
ret = vsprintf(buffer, fmt, marker);
va_end(marker);
_outtext(buffer);
free(buffer);
return ret;

wait

Description

Remarks

820

Suspends the calling process.

#include <process.h>

int wait(int *termstat);

termstat Tennination-status word and return code for tenninated child
process

The wait function suspends the calling process until any of the caller's immediate child
processes tenninate. If all of the caller's children have tenninated before it calls the wait
function, the function returns immediately.

If not NULL, termstat points to a buffer containing a tennination-status word and return
code for the child process. The status word indicates whether or not the child process
ended norinally by calling the OS/2 DosExit function. Supply NULL if you do not need
the child's tennination-status word.

If the child process did tenninate nonnally, the low-order and high-order bytes of the
tennination-status word are as follows:

Byte

Low order

High order

Contents

o
Low-order byte of the result code passed by the child process
to DosExit. The DosExit function is called if the child
process called exit or _exit, if it returned from main, or if it
reached the end of main. The low-order byte of the result
code is either the low-order byte of the argument to _exit or
exit, the low-order byte of the return value from main, or a
random value if the child process reached the end of main.

Note that the OS/2 DosExit function allows programs to return a 16-bit result code. How­
ever, the wait and cwait functions will return only the low-order byte of that result code.

821· wait

If the child process terminated for any other reason, the high-order and low-order bytes of
the termination-status word are as follows:

Byte Contents

Low order Tennination code from DosWait:

Code Meaning

1 Hard-error abort

2 Trap operation

3 SIGTERM signal not
intercepted

High order 0

Return Value If wait returns after normal termination ofa child process, it returns the child's process ID.

If wait returns after abnormal termination of a child process, it returns the number -1 and
sets errno to EINTR.

Compatibility

See Also

Otherwise, wait returns -1 immediately and sets errno to ECHILD, indicating that no
child processes exist for the calling process.

o ANSI 0 DOS • OS/2 • UNIX • XENIX

cwait, exit, _exit

Exampre __ ___

1* WAIT.C: This program launches several child processes and waits for
* the first to finish.
*1

#define INCL_NOPM
#define INCL_NOCOMMON
#define INCL_DOSPROCESS
#include <os2.h> 1* DosSleep *1
#include <process.h> 1* wait *1
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

wait

/* Macro to get a random integer within a specified range */
#define getrandom(min, max) ((rand() % (int)(((max) + 1) - (min») + (min»

struct CHILD
{

int pid;
char name[10];

child[4] ... { (0, "Ann""), (0, "Beth"), (0, "Carl"), (0, "Dave"));

void maine int argc, char *argv[]
{

int termstat, pid, c, tmp;

srand((unsigned)time(NULL)); /* Seed randomizer */
/* If no arguments, this is the parent. */
if (a rgc == 1)
(

/* Spawn children in random order with a random delay. */
tmp m getrandom(0, 3);
fore c - tmp; c < tmp + 4; c++)

child[c % 4].pid = spawnl(P_NOWAIT, argv[0], argv[0],
child[c % 4].name; NULL);

/* Wait for the first children. Only get 10 of first. */
printf("Who's first?\n");
pid ... waite &termstat);
fore c = 0; c < 3; c++)

waite &termstat);

/* Check IDs to see who was first. */
fore c = 0; c < 4; c++)

if(pid == child[c].pid
printf("%s was first\n\n", child[c].name);

/* If there are arguments, this must be a child. */
else
{

/* Delay for random time. */
srand((unsigned)time(NULL) * argv[I][0]);
DosSleep(getrandom(1, 5) * 1000L);
printf("Hi, dad. It's %s.\n", argv[l]);

" 822

823

Output

Who's first?
Hi, dad. It's Carl.
Hi, dad. It's Ann.
Hi, dad. It's Beth.
Hi, dad. It's Dave.
Carl was first

wait

_wrapon 824

Description Controls word wrap.

#include <graph.h>

short .Jar_ wrapon(short option);

option Wrap condition

Remarks The _wrapon function controls whether text output with the _outtext function wraps to a
new line or is simply clipped when the text output reaches the edge of the defined text win­
dow. The option argument can be one of the following manifest constants:

Constant

_GWRAPOFF

_GWRAPON

Meaning

Truncates lines at window border

Wraps lines at window border

Note that this function does not affect the output of presentation-graphics routines or font
routines.

Return Value The function returns the previous value of option. There is no error return.

Compatibility o ANSI • DOS • OS/2 0 UNIX 0 XENIX

See Also _ outtext, settextwindow

Exampw __ ___

1* WRAPON.C *1

#include <conio.h>
#include <graph.h>

void maine)
(

_wrapon(_GWRAPON);
while(!kbhit())

_outtext("Wrap on! ");
getch();
_outtext("\n\n");

_wrapon(_GWRAPOFF);
while(!kbhit())

825 _wrapon

_outtext("Wrap off! ");
getch();
_outtext("\n\n");

Output

Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap
on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on!

Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wr
ap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap a
n! Wrap on! Wrap on!

Wrap off! Wrap off! Wrap off! Wrap off! Wrap off! Wrap off! Wrap off! Wrap

write

Description

Remarks

Return Value

Writes data to a file.

#include <io.h> Required only for function declarations

int write(int handle, void *buffer, unsigned int count);

handle

buffer

count

Handle referring to open file

Data to be written

Number of bytes

826

The write function writes count bytes from buffer into the file associated with handle. The
write operation begins at the current position of the file pointer (if any) associated with the
given file. If the file is open for appending, the operation begins at the current end of the
file. After the write operation, the file pointer is increased by the number of bytes actually
written.

The write function returns the number of bytes actually written. The return value may be
positive but less than count (for example, when write runs out of disk space before count
bytes are written). .

A return value of -1 indicates an error. In this case, errno is set to one of the following
values:

Value

EBADF

ENOS PC

Meaning

Invalid file handle or file not opened for writing

No space left on device

If you are writing more than 32K (the maximum size for type iot) to a file, the return value
should be of type unsigned int. (See the example that follows.) However, the maximum
number of bytes that can be written to a file at one time is 65,534, since 65,535 (or
OxFFFF) is indistinguishable from -1 and would return an error.

If the file is opened in text mode, each line-feed character is replaced with a carriage­
return-line-feed pair in the output. The replacement does not affect the return value.

When writing to files opened in text mode, the write function treats a CTRL+Z character as
the logical end-of-file. When writing to a device, write treats a CTRL+Z character in the
buffer as an output terminator.

827 write

Compatibility o ANSI • DOS • OS/2 • UNIX • XENIX

See Also fwrite, open, read

Exampm __ __

1* WRITE.C: This program opens a file for output and uses write to
* write some bytes to the file.
*1

/linclude <io.h>
/linclude <stdio.h>
#include <stdlib.h>
/linclude <fcntl.h>
/linclude <sys\types.h>
/linclude <sys\stat.h>

char buffer[] = "This is a test of 'write' function";

void main()
(

int fh;
unsigned byteswritten;

if((fh = open("write.o", O_RDWR I O_CREAT, S_IREAD I S_IWRITE » 1= -1
(

Output

if((byteswritten = write(fh, buffer, sizeof(buffer) » == -1)
perror("Write failed");

else
printf("Wrote %u bytes to file\n", byteswritten);

close(fh);

Wrote 35 bytes to file

Index
A
abort, 51, 76
abs, 78
Absolute value

abs, 78
cabs, 134
cabsl, 134
fabs,263
fabsl,263
labs, 441

access, 24, 80
Access mode, 269, 295, 315, 326
acos,46,82
acosl, 46, 82
alloca,48,84
Allocation. See Memory allocation
_amblksiz variable, 63
Appending

constants, 523, 704
streams, 295, 315, 326

_arc, _arc_w, _arc_wxy
description, 86
use, 30

Arccosine function, 82
Arcsine function, 90
Arctangent function, 94
Arguments

singularity, 480
type checking, vi
variable-length number, 62, 817

asctime, 60, 88
asin, 46, 90
asinl, 46,90
assert, 92
Assertions, 92
atan, atan2, 46, 94
atanl, atan21, 46, 94
atexit, 51, 96
atof, aloi, atol, _atold, 22, 98
Attributes, 29

B
_bcalloc, 136
bdos, 57, 10 I
_begin thread, 103
Bessel functions

described, 48, 107

jO,j I ,jn, 107
.J0l,.J 1l,.Jnl, 107
yO,y I,yn, 107
_yOl,-y ll,-ynl, 107

_bexpand,260
_bfree, 310
_bfreeseg, 110
_bheapadd,406
_bheapchk, 409
_bheapmin, 411
_bheapseg, 112
_bheapset,412
_bheapwalk,415
Binary

format, conversion to IEEE
double precision, 181

int
reading, 389
writing, 597

mode
_fmode,66
fdopen,269
fopen,296
freopen, 315-316
_fsopen, 327
open,523
setmode, 664
sopen, 704
vs. text mode, 35

search, 132,447,466
BINMODE.OBJ,66
_bios_disk, 57, 115
_bios_equiplist, 57, 119
_bios_keybrd,57, 121
_bios_memsize, 57, 124
_bios_printer, 57, 125
_bios_seria1com, 57, 127
_bios_timeofday, 57, 130
_bmalloc, 476
_bmsize, 519
Bold type, use of, ix
Brackets, double, use of, ix
_brealloc, 607
bsearch,55, 132
Buffer manipulation

_fmemccpy, 487
_fmemchr, 489
_fmemcmp, 491
_fmemcpy, 494

829

830 Microsoft C Run-Time Library Reference

Buffer manipulation (continued)
_fmemicmp, 497
_fmemmove, 501
_fmemset, 504
memccpy, 487
memchr,489
memcmp,491
memcpy, 494
memicmp, 497
memmove, 501
memset, 504

Buffering
described,37
preopened streams, 40
using, 40

Buffers
assigning, 648
comparing, 491, 497
copying, 487, 494
nushing, 276, 292
searching, 489
setting characters, 504

BUFSIZ constant, 37
BYfe order, swapping, 783

c
cabs,46,134
cabsl,46, 134
calloc, 48, 136
Carry nag

bdos,101
int86,426
int86x, 428
intdos, 430
intdosx, 432

Case in file names, 9
ceil,46,138
Ceiling function, 138
ceill, 46, ·138
_cexit, _c_exit, 140
cgets, 44, 141
_chain_intr, 57, 60, 143
Character classification and conversion functions

include files, 22
isalnum, 21,434
iscntrl,434
isdigit, 434
isgraph, 434
islower, 21, 434
isprint, 21, 434
ispunct, 21, 434

isspace, 21, 434
isupper,21
isxdigit, 21,434
toascii, 21, 796
tolower, _tolower, 21, 796
toupper, _to upper, 21, 796

Characters
converting. See Character classification and

conversion functions
device, 437
reading

fgetc, fgetchar, 278
from console, 348
from port, 425 .
getc, getchar, 346
read function, 605

ungetting, 805, 807
writing

fputc, fputchar, 305
putc, putchar, 589
to console, 591
to port, 532
write function, 826

chdir, 23, 1'45
_chdrive, 147
Child process

cwait
signal settings, 707
termination-status word, 177, 707, 820

exec, 251
noating-point state of parent, 300
spawn, 707
wait, 820

chmod,24,149
chsize, 24, 151
_c1ear87, 46, 153
c1earerr, 37, 155
_c1earscreen, 29, 157
Clipping regions, 650
clock, 60, 159
clock_t type, 68
close, 42, 161
Comparison

max macro, 484
min macro, 506

Compatibility mode, 704
complex type, 68
CONIO.H,44
Console, ungetting characters from, 807
_controI87,46, 163

Conversion
characters. See Character classification and conversion

functions
data. See Data conversion
floating-point numbers

IEEE double to MS binary double, 181
to integers and fractions, 513
to strings, 243, 267, 340

integers to strings, 438
long integers to strings, 471,801
strings to

floating-point values, 98
lowercase, 750
uppercase, 780

time. See Time, conversion
cos,cosh,46,166
Cosine, 166
cosl, coshl, 46
cprintf, 8, 44, 168
cputs, 44, 170
creat, 42, 171
cscanf, 8, 44, 173
ctime, 60, 175
CTYPE.H routines, 22, 434
cwait, 177

o
Data conversion

See also Conversion
atof, atoi, atol, _atold, 22, 98
ecvt, 22, 243
fcvt, 22, 267
gcvt, 22, 340
include files, 22
itoa, 22, 438
Itoa, 22, 471
strtod, strtol, strtoul, 22, 775
ultoa, 23, 801

Data items
reading, 308
writing, 338

Date routines. See Time, routines
Daylight variable, 64, 799
Default translation mode

child process, used in, 707
_fmode,66
_fopen, 296
_fsopen, 327
O_TEXT,523
setmode, 664
sopen, 704

dieeetomsbin, dmsbintoieee, 46, 181
difftime, 61, 182
DIRECT.H,23
Directories

creating, 507
deleting, 624
getting current, 354, 356
renaming, 620

Directory control
chdir,23
chmod,149
getcwd, 23, 354
~etdcwd, 356
include files, 23
mkdir, 23, 507
remove, 619
rmdir,23
unlink, 809

_disable, 57, 60, 184
diskfree_t structure, 69
diskinfo_t structure, 69
_displaycursor, 185
div, 187
div _t type, 69
Division

div, 187
Idiv,445

Document conventions, ix
DOMAIN,480

Index 831

DOS commands, execution within programs, 784
DOS error codes, 65
DOS interface routines

bdos, 57, 10 1
_bios_disk, 115
_bios_equiplist, 119
_bios_keybrd, 121
_bios_memsize, 124
_bios_printer, 125
_bios_timeofday, 130
_chain_intr, 143
_disable, 184
_dos_allocmem, 189
_dos_close, 191
_dos_creat, _dos_creatnew, 193
_dos_findnext, 195

. _dos_freemem, 198
_dos_getdate, 200
_dos_getdiskfree, 202
_dos~etdrive, 204
_dos~etfileattr, 206
_dos~etftime, 208
_dos~ettime, 211

832 Microsoft C Run-Time Library Reference

DOS interface routines (continlled)
_dos~etvect, 213
_dos_keep,214
_dos_open, 216
_dos_read, 219
_dos_setblock, 221
_dos_setdate, 223
_dos_setdrive, 225
_dos_setfileattr, 227
_dos_setftime, 229
_dos_settime, 232
_dos_setvect, 234
_dos_write, 237
dosexterr, 239
_enable, 59, 247
FP_OFF,59
harderr, _hardresume, _hardretn, 59
include files, 57
int86, 59, 426
int86x~ 428
intdos, 59, 430
intdosx, 432
segread, 59,640
and uses (list), 57

DOS interrupts, invoking, 426, 428
DOS system calls

_bios_serialcom, 127
error handling, 239
invoking, 101, 430, 432

DOS version number, detection, 67
DOS.H,57
_dos_allocmem, 57, 189
_dos_close, 57, 191
_dos_creat, 57, 193
_dos_creatnew, 58, 193
dosdate_t structure, dostime_t structure, 69
_dosermovariable, 65
DOSERROR type, 69, 239
dosexterr, 59, 239
_dos_findtirst, 58, 195
_dos_tindnext, 58, 195
_dos_freemem, 58, 198
_dos~etdate, 58, 200
_dos~etdiskfree, 58, 202
_dos~etdrive, 58, 204
_dos_getfileattr, 58, 206
_dos_getftime, 58, 208
_dos_gettime, 58,211
_dos_getvect, 58, 213
_dos_keep, 58, 214
_dos_open, 58,216
_dos_read, 58, 219

_dos_setblock, 58, 221
_dos_setdate, 58, 223
_dos_setdrive, 58, 225
_dos_setfileattr, 58, 227
_dos_setftime, 58, 229
_dos_settime, 59, 232
_dos_setvect, 59, 234
_dos_write, 59, 237
Drive routines

_chdrive, 147
_getdrive, 359

dup,dup2,42,241
Dynamic allocation. See Memory allocation

E
E2BIG,66
EACCES,66
EBADF, 66, 826
ecvt, 22, 243
EDEADLOCK,66
EDOM,66
EEXIST,66
EINVAL,66
_ellipse, _ellipse_ w ,_ellipse_ wxy, 30, 245
Ellipses, x
EMFILE,66
_enable, 59, 247
End-of-file

indicators, 155
low-level I/O, 249
stream I/O

clearing, 155,622
described, 272

_endthread, 248
ENOENT,66
ENOEXEC,66
ENOMEM,66
ENOSPC, 66, 826
environ variable, 67-68, 360, 592
Environment variables

described, 68
getenv, 360
putenv, 592

eof,42,249
EOF constant, 37
ERANGE,66
ermo variable

and perror, strerror, 13
described,65
error numbers, 538, 742

ermo variable (continlled)
graphics, routines, 13
I/O routines, 13, 43
math routines, 13

Error handling
DOS error codes, 65
DOS system calls, 239
logic errors, 92
perror, 13, 538
strerror, _strerror, 13, 742

Error indicator
described, 41, 155
ferror, 274
return value, 13

Error messages, user supplied, 538, 742
Euclidean distance, 421
exception type, 69,480
EXDEV,66
exec family, 8, 52, 251
exit, _exit, 52, 256
Exiting processes, 256
exp,46,258
_expand,48,260
expl, 46, 258
Exponential functions

F

exp,258
expl,258
frexp, 318
frexpl,318
Idexp,443
Idexpl,443
log, log I 0, 459
logl, log 101, 459
pow, 578
powl,578
sqrt, 717
sqrtl,717

, fabs, 46, 263
fabsl, 46, 263
Far pointers, 298
_fcalloc, 136
fclose, fcloseall, 37, 265
fcvt, 22, 267
fdopen, 37, 269
feof, 37,272
ferror, 37, 274
_fexpand, 260
fflush, 37, 276
_ffree, 48, 310

fgetc, fgetchar, 37, 278
fgetpos, 37, 280
fgets, 37, 282
_fheapchk,48,409
_fheapmin, 411
_fheapset, 49, 412
_fheapwalk, 49, 415
fieeetomsbin, fmsbintoieee, 47
FILE

pointer, 37
structure, 37
type, 69

File handles
duplication, 241
functions, 42
predefined, 43
stream, 287

File handling
access, 24, 80
chmod,24
chsize, 24, 151
filelength, 24, 285
fstat, 24, 329
include files, 23
isatty, 23, 437
locking, 23,456
mktemp, 23, 509
remove, 23
rename, 24, 620
setmode, 24, 664
stat, 24, 723
umask, 24, 803
unlink,24

Index 833

File permission mask. See Permission setting
File pointers

defined,41
positioning

fgetpos, 280
fseek,322
fsetpos, 324
ftell,332
Iseek,468
read and write operations, 43
rewind,622
tell,788

File status information, 329, 723
filelength, 24, 285
fileno, 37,287
Files

changing size, 151
closing,43,161
creating, 171,523, 704

834 Microsoft C Run-Time Library Reference

Files (continued)
deleting, 619, 809
detennining length, 285
locking, 456
modifying names, 509
names, 8
obtaining status, 329, 723
opening

creat, 171
input and ouput, 42
open,523
sopen, 704

reading characters, 605
renaming, 620
setting modification time, 811
writing characters, 826

find_t structure, 69
Floating point

control word, 163
errors, 300
math package

_clear87, 153
_controI87, 163
_fpreset, 300
reinitialization, 300
_status87, 725

numbers, conversion to strings, 243, 267, 340
routines, 15
status word, 153, 725

_floodfill,_floodfill_ w, 30, 288
floor, 47, 290
floor·l, 47,290
flushall, 37, 292
Flushing buffers, 276,292
_fmalloc, 49, 476
_fmemccpy, 20, 487
_fmemchr, 20, 489
_fmemcmp, 491
_fmemcpy, 20, 494
_fmemicmp, 20, 497
_fmemmove, 20, 50 I
_fmemset, 20, 504
fmod, 47, 293
_fmode variable, 66
fmodl, 47,293
_fmsize, 49, 519
Fonts

bit-mapped, 656
functions (list), 32

fopen, 37, 295

Fonnatted I/O
eprintf, 168
cscanf,173
fprintf, 303
fscanf,320
printf,580
scanf,630
sprintf,715
sscanf,720
vfprintf, vprintf, vsprintf, 817

FP _OFF, FP _SEG, 59, 298
fpos_t type, 69
_fpreset, 47, 300
fprintf, 8, 38, 303
fpute, fputehar, 38, 305
fputs, 38, 307
fread, 38, 308
_frealloc, 607
free, 48, 310
_freect, 48, 313
freopen, 38, 315
frexp, 47,318
frexpl, 47,318
fseanf, 8, 38, 320

. fseek, 38, 322
fsetpos, 38, 324
_fsopen, 38, 326
fstat, 24, 329
_fstrcat, 727
_fstrehr, 729
_fstrcmp, 731
_fstrepy, 734
_fstrcspn, 736
_fstrdup, 740
_fstricmp, 746
_fstrlen, 748
_fstrlwr, 750
_fstmcat, 752
_fstmcmp, 754
jstmcpy, 756
_fstmicmp, 758
_fstmset, 759
_fstrpbrk, 761
_fstrrehr, 763
_fstrrev, 765
_fstrset, 767
_fstrspn, 769
_fstrstr, 771

_fstrtok, 778
_fstrupr, 780
ftell,38,332
ftime, 61, 334
_full path, 336
Functions

declarations, 7-9
vs. macros, 10-12

fwrite, 38, 338

G
gcvt, 22, 340
~etactivepage, 342
~etarcinfo, 344
~etbkcolor, 29, 345
getc, getchar, 38,346
getch, getche, 44, 348
~etcolor, 29,350
~etcurrentposition, ~etcurrentposition_w, 30, 352
getcwd, 23, 354
~etdcwd, 356
~etdrive, 359
getenv, 360
_getfillmask, 29, 362
~etfontinfo, 364
~etgtextextent, 365
~etgtextvector, 366
~etimage, ~etimage_ w, ~etimage_ wxy, 32, 367
~etlinestyle, 29, 370
~etphyscoord,27,372

. getpid, 52, 373
~etpixel, ~etpixel_w, 30, 374
gets, 38, 376
~ettextcolor, 31, 377
~ettextcursor, 378
~ettextposition, 31, 379
~ettextwindow, 381
~etvideoconfig, 27, 382
~etviewcoord, ~etviewcoord_ w,

~etviewcoord_ wxy, 27, 386
~etvisualpage, 388
getw, 38, 389
~etwindowcoord, 26, 391
~etwritemode, 392
Global variables

accessing, 63
_amblksiz, 63
daylight, 64, 799
_dosermo, 65
environ, 67, 360, 592

Global variables (continued)
ermo

described, 65
perror, 538
strerror, 742

_fmode,66
_osmajor,67
_osminor,67
_psp,68
sys_errlist

described, 65
perror, 538
strerror, 742

sys_nerr,65,538,742
timezone, 64, 799
tzname, 64, 799

gmtime, 61, 394
Goto, nonlocal, 463, 660
Graphics

attributes, 29
color selection, 29, 647
configuration, 26, 680, 690
coordinates, 26, 650, 686, 688
font functions (list), 32
image transfer, 31
low-level palettes, 28
output, 245,449, 517, 610
parameters, 652, 654, 661

Index 835

presentation graphics, 33-34, 540, 544, 546, 550
text output, 30
text support

~ettextwindow, 381
_scrolltextwindow, 635
_settextrows, 675
_settextwindow, 677
_setvideomoderows, 684
_setwindow, 691
_wrapon, 824

Greenwich mean time, 394
~rstatus, 396

H
halloc,48,400
Handle. See File handles
_harderr, 59
_hardresume, 59
_hardretn, 59
Header files. See Include files
Heap consistency check

_bheapchk, 409
_bheapmin, 411

836 Microsoft C Run-Time Library Reference

Heap consistency check (collfilllled)
_fheapchk,_heapchk,_nheapchk,409
_fheapmin, _heapmin, _nheapmin, 411

_heapadd,406
_heapchk, 409
_heapmin, 411
_heapset, 412
_heapwalk, 415
hfree, 49, 419
_huge data items, 16-17
Hyperbolic

cosine, 166
sine, 702
tangent, 786

hypot, 47, 421
Hypotenuse, 421
hypotl, 47, 421

I
IEEE format, converting double-precision to Microsoft

binary, 181
_imagesize, _imagesize_ w, _imagesize_ wxy, 32,423
#include directive, 6
Include files

buffer manipulation routines, 20
character classification, conversion, 22
console and port I/O, 44
Contents, 5, 7
data conversion, 22
directory control, 23
DOS interface routines, 57
file handling, 23
low-level I/O, 42
math routines, 46
memory allocation, 48
naming conventions, vi
process control, 51
processor calls, 61
reasons for using, 6
searching and sorting, 55
stream 1/0,36
string manipulation, 55
time routines, 61

inp, inpw, 44-45,425
int86, 59, 426
int86x, 59,428
intdos, 59,430
intdosx, 59,432
Integers

conversion to strings, 438
long, conversion to strings, 471, 801

Interrupt signals, 696
Interrupts. See DOS interrupts, invoking
I/O

See also Formatted I/O
buffered, 37
console and port

cgets,44, 141
cprintf, 44, 168
cputs, 170
cscanf, 44, 173
described, 35
getch, getche, 44, 348
include files, 44
inp, inpw, 44, 425
kbhit, 44, 440
outp, outpw, 44, 532
putch, 44, 591
ungetch, 44, 807

low-level
close, 42, 161
creat, 42, 171
described, 35
dup,dup2,42,241
eof, 42,249
error handling, 43
include files, 42
Iseek, 42, 468
open,42,523
read, 42, 605
sopen,42,704
tell, 42, 788

. write, 42, 826
stream, 35-36

10.H,23,42
isalnum, isdigit, isgraph, 21, 434
isalpha, isascii, iscntrl, 434
isatty, 24, 437
is digit, 434
is lower, isupper, isxdigit, 21,434
isprint, 21, 434
ispunct, 21, 434
isspace, 21, 434
Italic letters, use of, ix
itoa, 22, 438

J
jO,jl,jn,107
-.i0l, -.i 11, -.inl, 107
jmp_buf type, 69

K
kbhit, 44, 440
Keystroke, testing, 440

L
labs, 441
Idexpl, 47, 443
Idiv,445
Idiv _t type, 69
lfind, 55,447
Library (.LIB) files

contents, 5
default,6
GRAPHICS.LIB, 6
use, 6

Library routines, calling, 5
Lines

reading, 282, 376
writing, 596

_lineto, 30, 449
_lineto_w, 30, 449
Local time corrections, 64, 454, 799
localeconv, 451
Localization

localeconv, 451
setlocale, 662

localtime, 61,454
locking, 24, 456
log, log 10, 459
Logarithmic functions, 47,459
logl, log 1 01, 459
long double functions, 461
Long integers, conversion to strings, 471
longjmp, 463
Low-level graphics

See also individllal junction names
color selection, 28-29
configuration, 26
coordinates, 26
font functions. See Fonts
image transfer, 31
output

_arc, _arc_ w, _arc_ wxy, 30, 86
_ellipse, _ellipse_w, _ellipse_wxy, 30, 245
~etarcinfo, 344
~etwritemode, 392
~rstatus, 396
_lineto, _lineto_ w, 30, 449
_pie, _pie_ w, _pie_ wxy, 30, 567
_polygon, _polygon_w, _polygon_wxy, 574

Low-level graphics (continued)
output (contillued)

Index 837

_rectangle, _rectangle_ w, _rectangle_ wxy,
30,610

_setwritemode, 695
palettes, 28
parameters, 30
physical coordinates, 26
text support (list), 30
view coordinates, 26
window coordinates, 26

_lrotl,465
_lrotr, 465
Isearch, 55,466
Iseek, 42, 468
ltoa, 22,471

M
_makepath,473
Macros, 10-12
malloc, 49, 476
MALLOC.H,48
Mask. See Permission setting
MATH.H, 22,46
matherr

described, 480
use, 47

_matherrl, 480
max,484
_memavl, 49, 485
memccpy, 20,487
memchr, 20,489
memcmp, 20, 491
memcpy, 20, 494
memicmp, 20,497
_memmax, 49, 499
memmove, 20, 501
Memory allocation

_amblksiz,63
available memory, determination, 313
_bcalloc, 136
_bfree, 310
_bfreeseg, 110
_bheapadd,406
_bheapchk, 409
_bheapmin, 411
_bheapseg, 112
_bheapset, 412
_bheapwalk,415
_bmalloc, 476
_bmsize, 519

838 Microsoft C Run-Time Library Reference

Memory allocation (contillucd)
_brealloc, 607
calloc, 136
_expand,260
_fcalloc, 136
_ffree, 310
_tlleapchk, 409
_tbeapmin, 41 I
_tlleapset, 412
_tbeapwalk, 415
_fmalloc, 476
_fmsize, 519
_frealloc, 607
free, 310
_freect, 313
halloc,400
_heapadd,406
_heapchk, 409
_heapmin, 41 I
_heapset, 412
_heapwalk, 415
hfree, 419
malloc, 476
_memavl, 485
_memmax, 499
_msize, 519
_ncalloc, 136
_nfree, 310
_nheapchk, 409
_nheapmin, 41 I
_nheapset, 412
_nheapwalk,415
_nmalloc, 476
_nmsize, 519
_nrealloc, 607
realloc, 607
routines and uses (list), 48
stackavail,722

MEMORY.H,20
memset, 20, 504
Microsoft Windows, 25
min, 506
mkdir, 23, 507
mktemp, 24, 509
mktime, 61, 511
Model-independent memory routines, 20
modf, 47,513
modfl, 47, 513
Modification time, 811
Monofont, use of, x
movedata, 515
~moveto, 30, 517

_moveto_w, 30, 517
MS C 4.0, differences, puts, 596
_msize, 49, 519

N
_ncalloc, 136
NDEBUG,92
_nexpand,260
_nfree, 48, 310
_nheapchk,48,409
_nheapmin, 41 I
_nheapset, 49,412
_nheapwalk, 49, 415
_nmalloc, 49, 476
_nmsize, 49, 519
Nonlocal goto, 463, 660
_nrealloc, 607
_nstrdup, 740
Null poin~er, 37

o
Object (.OBJ) files, 6
0_BINARY,66
otlag. See Open flag
onexit, 52, 521
open, 8,42,523
Open flag, 523, 704
Operating system, 14
Optional items, ix
_os major variable, 67
_osminor variable, 67
_outgtext, 32, 527
_outmem, 530
outp, outpw, 44-45, 532
Output. See I/O
_outtext, 31,5,35
OVERFLOW, 480
Overlapping moves, 494
Overlay, of parent process, 707

p
Palettes, low-level, 28
Parameters, variable-length number, 62, 817
Parent process

cwait,177
described, 251
overlay and suspension, 707
wait, 820

Path names, 9

_pelose, 537
Permission setting

access, 80
changing, 149
described, 171
mask,803
open,523
sopen, 704
umask,803

perror, 13,538
_pg_unalyzechurt, 34, 540
_p~analyzechartms, 34, 540
_pg_unalyzepie, 34, 543
_pg_analyzescatter, 34, 544
_pg_unalyzescattenns, 34, 544
_pg_chart, 33, 546
_pg_chartms, 33, 546
_pg_chartpie, 33, 549
_pg_chartscatter, 33, 550
_pg_chartscatterms, 33, 550
_pg_defuultchart, 33,552
_pg~etchardef, 34, 554
_pg~etpalette, 34, 555
_pg~etstyleset, 34, 558
_pg_hlabelchart, 34, 559
_pg_initchart, 33, 560
_pg_resetpalette, 34, 561
_pg_resetstyleset, 34, 562
_pg_setchardef, 34, 563
_pg_setpalette, 34, 564
_pg_setstyleset, 34, 565
pg vlabelchart, 34, 566
_pie. _pie_w. _pie_wxy. 30, 567
_pipe, 570
Pipes

_pelose, 537
_pipe, 570
_popen.576

PLOSS,480
Pointers, long. 298
_polygon. _polygon_w, _polygon_wxy, 574
_popen.576
Port [/0. See [/0. console and port
pow, 47, 578
Predefined

handles, 43
stream pointers, 39
types. See Standard types

printf, 38, 580
Printing. See Write operations

Process control
abort, 51, 76
atexit, 51, 96
_cexit, _c_exit, 140
cwait, 177
exec family, 52
exit. _exit. 52, 256
getpid, 52, 373
inelude files, 51
onexit, 52, 521
raise, 52, 60 I
signal, 52, 696
spawn family. 53
system, 53, 784
wait, 820

Process ID, 373
PROCESS.H,51
Processor calls, include tiles, 61
Program segment prefix (PSP). 68
Pseudorandom integers, 603, 718
_psp,68
putc, putchar, 38, 589
putch, 44, 591
putenv, 592
_putimage, _putimage_w, 32, 594
puts, 38
putw, 38, 597

a
qsort, 55, 599
Quick sort algorithm, 599
Quotation marks, use of, x

R
raise, 52, 60 I
rand,603
Random access

fgetpos, 280
fseek,322
fsetpos, 324
ftell,332
Iseek,468
rewind,622
tell,788

Random number generator, 603, 718
read, 42, 605
Read access. See Permission setting

Index 839

840 Microsoft C Run-Time Library Reference

Read operations
binary int value, 389
characters

from file, 605
from stdin, 278, 346
from stream, 278, 346
from console, 141, 173,348,440

fonnatted
cscanf,173
fscanf,320
scanf,630
sscanf,720

line
from stdin, 376
from stream, 282

from port, 425
realloc, 49, 607
Reallocation

_brealloc, 607
_expand,260
_frealloc, 607
_nrealloc, 607
realloc, 49, 607

_rectangle, _rectangle_ w, _rectangle_ wxy, 30, 610
Redirection, 40, 43-44, 315
_registerfonts, 32, 612
REGS type, 70
Remainder function, 293
_remapallpalette, 28, 613
_remappalette, 28, 613
remove, 24, 619
rename, 24, 620
Reversing strings, 765
rewind, 38, 622
nndir, 23, 624
nntmp, 38, 626
_rotl,628
_rotr, 628

s
scanf, 8, 38, 630
Scanning. See Read operations
_scrolltextwindow, 635
SEARCH.H,55
_searchenv, 638
Searching and sorting

bsearch,55, 132
include files, 55
lfind,447
Ifind, lsearch, 55

Searching and sorting (continued)
lsearch, 466
qsort, 55, 599

seed,718
Segment registers, 640
segread, 59, 640
_selectpalette, 28, 642
_setactivepage, 26, 645
_setbkcolor, 29, 647
setbuf, 38,40, 648
_setcliprgn, 650
_setcolor, 29, 652
_setfillmask, 29, 654
_setfont, 32, 656
_setgtextvector, 659
setjmp, 660
_setlinestyle, 29, 661
setlocale, 662
setmode, 24, 664
_setpixel, _setpixel_w, 29, 666
_settextcolor, 31, 668
_settextcursor, 671
_settextposition, 673
_settextrows, 675
_settextwindow, 31, 677
setvbuf, 38,40
_setvideomode, 26, 680
_setvideomoderows, 684
_setvieworg, 27, 686
_setviewport, 27, 688
_setvisualpage, 26, 690
_setwindow, 27, 691
_setwritemode, 695
signal

described, 53, 696
raise, 601

SIGNAL.H,51
sin, sinh, 47, 702
Sine, 702
SING,480
sinl, sinhl, 47, 702
size_t type, 70
Small capital letters, use of, x
sopen, 8,42,704
Sorting. See Searching and sorting
spawn family

argument-type-checking limitations, 8, 707
described, 707
use, 53

_splitpath,713
sprintf, 8, 715
sqrt, 47, 717

sqrtl, 47, 717
Square-root function, 717
srand,718
SREGS type, 70
sscanf

described, 720
type checking, 8
use, 38

Stack checking, 12
Stack environment

restoring, 463
saving, 660

stackavail, 49, 722
Standard auxiliary. See stdaux, stderr, stdin
Standard error. See stdaux, stderr, stdin
Standard input. See stdaux, stderr, stdin
Standard output. See stdout, stdpm
Standard print. See stdout, stdpm
Standard types

clock_t,68
complex, 68
diskfree_t, 69
diskinfo_t, 69
div_t,69
dosdate_t, 69
DOS ERROR, 69, 239
dostime_t, 69
exception, 69, 480
FILE,69
find_t,69
fpos_t,69
jmp_buf,69
Idiv_t,69
listed,68
REGS, 70
size_t,70
SREGS, 70
stat, 723
time_t, 70, 182
timeb, 70, 334
tm, 70, 394
utimbuf, 70, 811
va_list, 70

stat routine
described,723
use, 24

stat type
described,70
fstat, 329

_status87, 725

stdaux, stderr, stdin
buffering, 40
described,40
file handle, 43
translation mode, changing, 664

STDIO.H,36
stdout, stdpm

buffering, 40
described, 40
file handle, 43
translation mode, changing, 664

strcat, 55, 727
strchr, 55, 729
strcmp, 55, 731
strcoll, 733
strcpy, 55, 734
strcspn, 55, 736
_strdate, 61, 738
strdup, 55, 740
Stream I/O

See also I/O, console and port
buffering, 40
c1earerr, 155
described, 35
error handling, 41
fc1ose, fc1oseall, 265
fdopen, 269
feol',272
ferror, 274
fflush,276
fgetc, fgetchar, 278
fgetpos, 280
fgets, 282
fileno, 287
flushall,292
fopen, 295
fprintf, 303
fputc, fputchar, 305
l'puts, 307, 596
fread,308
freopen, 315
fscanf,320
fseek,322
fsetpos, 324
_fsopen, 326
ftell,332
fwrite, 338
getc, getchar, 346
gets, 376
getw, 389
printf,580
pulC, putchar, 589

Index 841

842 Microsoft C Run-Time Library Reference

Stream I/O (continued)
putw, 597
rewind,622
routines and uses (list), 37
scanf,630
setbuf,648
sprintf,715
sscanf,720
tempnam, tmpnam, 38
ungetc, 805
vfprintf, vprintf, vsprintf, 817

Stream pointer, 37
Streams

appending, 295,315,326
buffering, 648
clearing errors, 155
closing, 41, 265
file handles for, 287
file pointer position

fseek,322
fsetpos, 324
ftell,332
fgetpos, 280
rewind,622

formatted I/O
printf,580
scanf,630
sprintf,715
sscanf,720
stream, 303, 320
vprintf, 817

opening,39,269,295,326
reading

binary int value, 389
characters, 278, 346
data items, 308
lines, 282, 376

reopening, 315
rewinding, 622
stdaux, stderr, stdin, 40
stdout, stdpm, 40
translation mode. See Binary, mode
ungetting characters, 805
writing

binary int value, 597
characters, 305, 589
data items, 338
lines, 596
strings, 307

strerror, 13,55, 742

_strerror, 742
strftime, 744
stricmp, 55, 746
String manipulation

_fstrcat, 727
_fstrchr, 729
_fstrcmp, 731
_fstrcpy, 734
_fstrcspn, 736
_fstrdup, 740
_fstricmp, 746
_fstrlwr, 750
_fstmcat, 752
_fstmcmp, 754
_fstmcpy, 756
_fstmicmp, 758
_fstmset, 759
_fstrpbrk, 761
_fstrrchr, 763
_fstrrev, 765
_fstrset, 767
_fstrspn, 769
_fstrstr, 771
_fstrtok, 778
_fstrupr, 780
_nstrdup, 740
routines and uses (list), 55
strcat, 727
strchr, 729
strcmp, 731
strcoll, 733, 744
strcpy, 734
strcspn, 736
strdup, 740
stricmp, 746
strlwr, 750
stmcat, 752
stmcmp, 754
stmcpy, 756
stmicmp, 758
stmset, 759
strpbrk,761
strrchr, 763
strrev, 765
strset, 767
strspn, 769
strstr, 771
strtok,778
strupr, 780
strxfrm, 782

STRING.H,55

Strings
comparing, 731, 733, 744, 746, 754, 758
concatenating, 752
converting

to floating-point values, 98
to lowercase, 750
to uppercase, 780

copying, 734, 740, 756
initializing, 759, 767
reading from console, 141
reversing, 765
searching

_fstrchr, 729
_fstrcspn, 736
_fstrpbrk, 761
_fstrrchr, 763
_fstrspn, 769
_fstrstr, 771
_fstrtok, 778
strchr, 729
strcspn, 736
strpbrk,761
strrchr, 763
strspn, 769
strstr, 771
strtok,778

writing
to console, 168, 170
to stream, 307

strlen,56
strlwr, 56, 750
stmcat, 56, 752
stmcmp, 56, 754
stmcpy. 56,756
stmicmp, 56,758
stmset, 56, 759
strpbrk, 56, 761
strrchr, 56, 763
strrev, 56, 765
strset, 56~ 767
strspn, 56, 769
strstr, 56. 771
_strtime, 61, 773
strtod, 22, 775
strtok, 56, 778
strtol, 23, 775
_strtold, 23, 775
strtoul, 23, 775
strupr, 56, 780
strxfrm. 782
swab,783
SYs\sTAT.H,23

SYS\TIMEB.H,61
SYS\TYPES, 61
SYs\UTIME.H,61
sys_errlist

described,65
system error messages, 538, 742

sys_nerr, 65, 538, 742
system, 53, 784
System calls. See DOS system calls
System time. See Time

T
tan, tanh, 47, 786
Tangent, 786
tanl, tanhl, 47, 786
tell, 42, 788
tempnam, tmpnam, 38, 790
Terminal capabilities, 437
Text mode

vs. binary, 35
described, 66, 523
setmode, 664
sopen, 704
stream I/O, 269, 296, 315,327

Threads
_beginthread, 103
DosExit, 248
_endthread, 248
termination, 248

Time
conversion

long integer to string, 175
long integer to structure, 454
structure to string. 88

functions, 61
global variables, setting, 799
local time, correcting, 454
obtaining, 334, 793
routines

asctime,88
clock,159
ctime, 175
difftime, 182
ftime, 334
gmtime, 394
(list),60
localtime, 454
mktime, 511
time, 793
tzset, 799
utime, 811

Index 843

844 Microsoft C Run-Time Library Reference

Time (continued)
time differences, computing, 182

time function, 793
TIME.H,61
time_t type, 70, 182
timeb type, 70, 334
timezone variable, 64, 799
TLOSS, 480
tm type, 70, 394
tmpfile,39
tmpnam, 790
toascii, 21, 796
Tokens, finding in strings, 778
_tolower, _toupper, 21, 796
tolower, toupper, 21,796
_toupper, 796
Trigonometric functions

acos,82
acosl,82
asin,90
asinl,90
atan, atan2, 94
atanl, atan21, 94
cos, cosh, 166
hypot, 421
hypotl,421
sin, sinh, 702
sinl, sinhl, 702
tan, tanh, 786
tanl, tanhl, 786

Type checking
function declarations, 7-8
include files, 7
variable arguments, 8

TZ environment variable
default value, 64
localtime,454
tzset, 799

tzname variable, 64, 799
tzset, 799

u
ultoa, 23,801
umask, 24, 803
UNDERFLOW, 481
UNIX, 9
ungetc, 39, 805
ungetch, 44, 807
Universal Coordinated Time, 61
unlink,24,809
_unregisterfonts, 32, 810

Uppercase, use of, ix
utimbuf type, 70, 811
utime, 811

v
va_arg, va_end, va_start, 62
va_list type, 70
Version number (DOS), 67
vfprintf, vprintf, vsprintf, 39, 817

w
wait, 820
Word. See Binary, int
_ wrapon, 31, 824
w'rite, 42, 826
Write access. See Permission setting
Write operations

x

binary int value to stream, 597
character

to console, 168
to file, 826
to stdout, 305, 589
to stream, 305, 589, 805

to console, 169, 170,591
data items from stream, 338
formatted

cprintf, 168
printf,580
sprintf, 715
stream 1/0,303
vprintf, 817

line to stream, 596
to port, 532
string to stream, 307

XENIX,9

y
yO, yl, yn, 107
_yOl, -yU, -ynl, 107

OTHER TITLES FROM MICROSOFT PRESS

MICROSOFT®C RUN-TIME LIBRARY: PROGRAMMER'S
QUICK REFERENCE
Kris Jamsa

This handy reference provides instant access to concise information on more than 250 com­
monly used functions and macros in the Run-Time Library for Microsoft C and Microsoft
QuickC. Each entry includes complete syntax, a brief description, details on parameters,
notes and comments, and usually a working example.
272 pages, softcover 4% x 8 $7.95 ISBN 1-55615-227-2

ADVANCED MS-DOS® PROGRAMMING, 2nd ed.
The Microsoft® Guide for Assembly Language and C Programmers
Ray Duncan

"ADVANCED MS-DOS exemplifies how a highly technical book can be both informative and
readable." BYTE

The preeminent source of MS-DOS information for assembly language and C program­
mers - now completely updated with data and programming advice covering ROM BIOS
for the IBM PC, PC/AT, PS/2, and related peripherals (including disk drives, video adapters,
and pointing devices); MS-DOS through version 4; "well-behaved" vs "hardware­
dependent" applications; version 4 of the Lotus/Intel/Microsoft Expanded Memory Specifi­
cation; and compatibility considerations for OS/2. Duncan, a DOS authority and noted
columnist, explores key programming topics, including character devices, mass storage,
memory allocation and management, and process management. In addition, a healthy assort­
ment of updated assembly language and C listings ranges from code fragments to complete
utilities. The examples, from programming samples to full-length utilities, are instructive
and extremely useful. All were developed using Microsoft Macro Assembler version 5.1 and
Microsoft C Compiler version 5.1. And the reference section, detailing each MS-DOS
function and interrupt, is virtually a book within a book. ADVANCED MS-DOS PRO­
GRAMMING-your key to fast, efficient, robust programs.
688 pages, softcover 7% x 9'14 $24.95 ISBN 1-55615-157-8

THE MS-DOS® ENCYCLOPEDIA
Foreword by Bill Gates
Ray Duncan, General Editor

"The encyclopedia ... sums up the expert opinion on everything under the DOS sun in a
cohesive, well-indexed and organized form." PC Week

If you're a serious MS-DOS programmer, this is the ultimate reference for writing, main­
taining, and upgrading well-behaved, efficient, reliable, and robust MS-DOS programs.
THE MS-DOS ENCYCLOPEDIA is an unmatched sourcebook for version-specific techni­
cal data, including annotations of more than 100 system function calls-each accompanied
by C-callable assembly language routines. It presents version-specific descriptions and
usage information on each of the 90 user commands - the most comprehensive ever assem­
bled. Articles cover debugging, TSRs, install able device drivers, applications development
for upward compatibility, and much more. THE MS-DOS ENCYCLOPEDIA contains
hundreds of hands-on examples, thousands of lines of code, and an index to commands and
topics. Covers MS-DOS through version 3.2, with a special section on version 3.3.
1600 pages, softcover 73/s x 10 $69.95 ISBN 1-55615-174-8

MICROSOFT® MOUSE PROGRAMMER'S REFERENCE
Microsoft Press and the Hardware Division of Microsoft Corporation

The MICROSOFT MOUSE PROGRAMMER'S REFERENCE-from the hardware ex­
perts at Microsoft-is a complete guide to providing mouse support in all your MS-DOS
programs. Both an essential reference to the mouse programming interface and a handbook
for writing functional mouse menus, this one-of-a-kind guide includes ready-to-run Mouse
Menu programs, a complete reference to the mouse function calls, specifics on writing
mouse programs for IBM EGA modes, and the Microsoft InPort technical specifications.
Two S.2S-inch companion disks contain sample mouse menus, MOUSE.LIB and EGA.LIB,
and programs in interpreted BASIC, QuickBASIC, Microsoft QuickC, Microsoft C, Pascal,
Microsoft Macro Assembler, and FORTRAN.
336 pages, softcover with two 5.25-inch disks 73/s x 914 $29.95 ISBN 1-55615-191-8

THE NEW PETER NORTON PROGRAMMER'S GUIDE TO THE
IBM® PC & PS/2®
The Ultimate Reference Guide to the Entire Family of IBM Personal Computers
Peter Norton and Richard Wilton'

"Any serious PC programmer will want this book on his shelf" PC Magazine

A must-have classic on mastering the inner workings of IBM microcomputers. Sharpen your
programming skills and learn to create simple, clean, effective programs with this success­
ful combination of astute programming advice, proven techniques, and solid technical data.
Norton and Wilton include updated material on the 80286 and 80386 microprocessors; the
enhanced keyboard, interr.upts, device drivers, and video programming; the new VGA and
MCGA; DOS basics, interrupts, and functions (through version 4); the new PS/2 ROM
BIOS; programming in C, Microsoft QuickBASIC, and Turbo Pascal; and more. Accept no
substitutes - this is the book to have.
528 pages, softcover 73/s x 9'14 $22.95 ISBN 1-55615-131-4

THE PROGRAMMEWS PC SOURCEBOOK
Reference Tables for IBM® PCs and Compatibles, PS/2® Machines, and DOS
Thorn Hogan

"Invaluable one-stop sourcebook to hardware and software information for IBM PCs and
PS/2 machines. Complete in coverage-a programmer's trove." Computer Book Review

At last! A reference book to save you the frustration of searching high and low for key pieces
of technical data. Here is all the information culled from hundreds of sources and integrated
into convenient, accessible charts, tables, and listings. The first place to turn for immediate,
accurate information about your computer and its operating system, THE PROGRAM­
MER'S PC SOURCEBOOK covers MS-DOS through version 3.3 and IBM personal com­
puters (and compatibles), including th~ PS/2 series. Among the charts in'cluded are DOS
commands and utilities, interrupts, mouse information, EMS support, BIOS calls and sup­
porting services, memory layout, RAM parameters, keyboards, the IBM extended character
set, and more.
560 pages, softcover 8ih x 11 $24.95 ISBN 1-55615-118-7

PROGRAMMER'S GUIDE TO PC & PS/2® VIDEO SYSTEMS
Maximum Video Performance from the EGAT

; VGA, HGC, and MCGA
Richard Wilton

"Few books can claim the distinction of being complete; this one comes as close as any
I've seen." BYTE

EGA. VGA. HGC. MCGA. No matter what your hardware configuration, here is all the
information you'll need to create fast, professional, even stunning video graphics on IBM
PCs, PS/2s, and compatibles. The· first part of the book provides an introduction and a
detailed explanation of how the PC video display system works. The heart of the book
includes video-programming techniques accompanied by more than 100 invaluable source
code examples. And whatever graphic output you want-text, circles, region fill, alphanu­
meric character sets, bit blocks, animation - you'll produce it faster and more effectively
with Wilton's book at your side. PROGRAMMER'S GUIDE TO PC & PS/2 VIDEO
SYSTEMS is a one-of-a-:-kind resource for every serious programmer.
544 pages, softcover 7% x 9'14 $24.95 ISBN 1-55615-103-9

ADVANCED OS/2 PROGRAMMING
The Microsoft® Guide to the OS/2 Kernel for Assembly Language and
C Programmers
Ray Duncan

"This indispensable guide to the inner workings 0/ the OS/2 kernel is the most important book
on the subject to date I haven't seen a book /' d recommend more than ADVANCED OS/2
PROGRAMMING." BYTE magazine

From the OS/2 Programmer's Library, here is the most complete and accurate source of
information on the features and structure of OS/2. With insight and economy, Duncan ex­
plains the OS/2 services for controlling the user interface, programming mass storage, and
exploiting advanced features such as multitasking and interprocess communication. Ad­
vanced chapters discuss writing f.ilters, device drivers, monitors, and dynamic link libraries.
Program examples are provided in both assembly language and C. ADVANCED OS/2
PROGRAMMING contains a complete, example-packed reference section on the more than
250 OS/2 1.1 kernel functions, with complete information on their calling arguments, return
values, and special uses. ADVANCED OS/2 PROGRAMMING will transform high-level
MS-DOS programmers into capable OS/2 programmers.
800 pages, so/tcover 73/8 x 9'14 $24.95 ISBN 1-55615-045-8

PROGRAMMING THE OS/2 PRESENTATION MANAGER
The Microsoft® Guide to Writing Applications for the OS/2 Graphical
Windowing Environment
Charles Petzold

This is the first full discussion of the features and operation of the OS/2 1.1 Presentation
Manager- the primary application environment under OS/2. It is designed to get the
OS/2 application programmer-one with a background in Windows or with strong C
experience - through the Presentation Manager system of windows, messages, and function
calls. Charles Petzold includes scores of valuable Presentation Manager programs and
utilities written in C and covers these key topics: managing window-handling input and
output; working with the keyboard, mouse, and timer; controlling child windows; using
bitmaps, icons, pointers, and strings; accessing menus; using keyboard accelerators; working
with dialog boxes; understanding dynamic linking; and using multithread programming
techniques. Endorsed by the Microsoft Systems Software group, this book is unparalleled
for its clarity, detail, and comprehensiveness and should be added to any OS/2 programmer's
library.
864 pages, so/tcover 7% x 9'14 $29.95 ISBN 1-55615-170-5

Microsoft Press books are available wherever fine books are sold, or credit card orders can be
placed by calling 1-800-MSPRESS.

MicrosoffC
Run.:fime Library Reference
Covers version 6

The Microsoft C Run-Time Library, available with Microsoft C,
is a set of more than 500 functions and macros that offer
extraordinary power to the C programmer. The functions cover
everything from presentation graphics and low-level system
calls for the DOS programmer to multiple-thread support for the
OS/2 programmer. These functions are essential when you
manage input and output, allocate storage, and handle process
control. They simplify scores of common programming tasks,
save hours of development time, and provide ready access to
operating system functions.

The MICROSOFT C RUN-TIME LIBRARY REFERENCE is
an up-to-date complement to Microsoft C's online reference, the
Microsoft C Advisor. It provides a superb introduction to using
the run-time library, its variables, and its types. A useful section
identifies functions by category so that you can quickly find a
library routine even if you don't know its name.

The core of the book provides detailed information on each
function in the run-time library-syntax; example programs;
the include file, prototypes, arguments, and return values; cross­
references to related functions; and notes on compatibility with
ANSI, DOS, OS/2, UNIX~ and XENIX~

The MICROSOFT C RUN-TIME LIBRARY REFERENCE is
an essential reference to the industry-standard C library.

ISBN 1-55615-225-6

U.S.A.
U.K.
Austral.

$22.95
£19.95
$34.95

(recommended)

90000

9 781556 152252

