

$2.50

MICROPROGRAMMING
HANDBOOK

Second Edition

Microdata
TM

Microdata Corporation
644 East Young Street
Santa Ana, Californ ia

TM Trademark of Microdata Corporation

Copyright 1971 by
M icrodata Corporation

644 E. Young St.
Santa Ana, California

Reissued 14 April 1972

PRINTED IN U.S.A.

PART I

MICROPROGRAMMED COMPUTER PRIMER

PART II

APPLICATION OF THE
MICROPROGRAMMED COMPUTERS

PART III

MICRO 800 USERS MANUAL

PART IV

MICRO 1600 REFERENCE MANUAL

PART V

SYSTEM DESIGN PROCEDURES USING
MICROPROGRAMMING

PART VI

PRODUCT CATALOG

FOREWORD

This is the second edition of a handbook written and published by
Microdata Corporation, which introduces the computer user to micropro­
gramming and its advantages in computing and control applications. The
book provides detailed instructions to the system designer for the most
economical and efficient use of microprogramming technology ..

Microprogrammable architecture permits development and production of a
single system of compatible hardware which can be program-tailored to a
wide range of requirements.

Microdata recognized and put to use the microprogramming concept at an
early date. The company's MICRO 800 series of computers was introduced
early in 1969, and the MICRO 1600 family more recently. The MICRO
1600 family builds on MICRO 800 technology, offering significant
performance improvements at a lower cost.

This publication is offered as an aid to users and potential. users of
computers who intend to' avail themselves of microprogramming. Com­
ments and additions by readers who wish to help expand the growing body
of knowledge in this field are encouraged and solicited by Microdata.

TABLE OF CONTENTS

Introduction.

PART I MICROPROGRAMMED COMPUTER PRIMER 3

Introduction. 4

Organization of the Microprogrammed Computer 4

The Fixed I nstruction Computer 4

Memory. . . . 4
Arithmetic Unit 4
Input/Output . 5
Control Unit. . 5

The Microprogrammed Computer. 6

Memory.6
Arithmetic Unit 7
Input/Output . 7
Control Unit. . 7
Control Memory. 7

Cost and Performance Advantages of the
Microprogrammed Computer 8

Comparison of a M icroprogrammable Computer to a
General Purpose Fixed Instruction Computer. 9

I nstruction Repertoire . 9

I nstruction Speeds. 10

Glossary. 13

PART II APPLICATION OF THE MICROPROGRAMMED
COMPUTER. 47

Introduction.

Classes of AppHcation .

General Purpose Computers
Special Purpose Computers
Emulator Computer
Language Processors

iii

48

48

48
51
57
57

Application Examples. 59

Automatic Test System . ','59
Floating Point Processor (Special Purpose) . 60
Fast Fourier Transform Processor (Special Purpose) . 60
Multilane Parking Facility Computer 61
Data Communications Applications, Special

Purpose Concentrator 62
Numerical Control of Vertical Machining Center. 63
Vibration Analyzer (Special purpose) . . 64
Interface for Campus Central Processor,

Satellite Computers. . . . ," 64

PART III MICRO 800 USERS MANUAL. ;

Chapter 1. System Design Features

General Characteristics.
System Organization .
Registers and File ..
Core Memory.
Control Memory . . .
Arithmetic Functions
Status and Condition Flags.
Command Timing

Chapter 2. Microcommand Repertoire

Command Formats
Terms and Symbols Used in the Command

Descriptions ~
Microcommands-Formats, Descriptions and

Examples,.

Load T
Load M
Load N
Load U
Load Zero Control
Load SeVen Control .
Jump
Load File ..
Add to File.
T est If ·Zero· ~
Test If Not Zero
Compare
Control.
Add ...
Subtract.
Read Memory, Write Memory.
Copy
OR•
Exclusive OR
AND .. .
Shift .. .
Execute.

iv

"

67

69

70
70
71
73
73
74
78
79

80

80

82

82

83
83
84
84
85
86
87
89
90
91
92
94
94

101
104
106
110
112
114
116
118
121

CPU Microcommand Repertoire. 128

Chapter 3. Input/Output 131

General Description . 131
Byte I/O Bus. 131

I nternal Status Interrupt 133
Bus Lines . . 133
Input Lines. 133
Output Lines 135
Serial Interface 137
Direct Memory Access 137
Typical Byte I/O Interface 137

Examples of I/O Microprogramming. 140

Chapter 4. Central Processor Options. 143

Real-Time Clock. 143
Power-Fail/Automatic Restart. 143

Chapter 5. Operator Controls. 144

Consoles 144
Displays 145
Switches .. , 145
Operating Procedures - System Console. 146

Chapter 6. Programming Systems for MICRO 800
Firmware Development. . 153

. AP800 Cross Assembler . 153
MAP800 Cross Assembler 153
Symbolic Language . . . 153
Machine Commands . . . 155
Operand Field Expressions. 155
M icrocommands 156
Alphabetic List of Commands 157
Assembler Instructions. 157
Assembly Listing and Diode Map. . 158
Format for AP800 . . . 158
Error Flags. 159
Diode Map for AP800 159
Sample Listing 159
Operation Program Card Deck From AP800 . . 163
Simulator Operating System (SOS) and

Simulator Program (SIM800). : 163

Introduction 163
Instruction for Use . . . 164
Operators 166
Program Tape Format . 169
Appendixes 170

Alterable Read-Only Memory Operating System
(AROS). 173

Introduction . . .'. . 173
I nstructions for Use. . 173

v

Operators
Program Tape Format.
Summary of AROS Operators ..
Program Checkout and Debugging

Chapter 7. Techniques and Examples.

Techniques for Efficient Microprogramming.

1. Generation of delays for memory accesses,
U Register Applications and input/output

2. Double Functions on a Single Command .
3. Uses, Setting and Testing Link
4. Uses of the U Register
5. Setting and Using Condition flags ..
6. Use of Loops vs Straight Lin-e Programm ing.
7: Small General Purpose Subroutines.
8. Use of shift Right 4 Command
9, Use of File Register for Flags, Counters, and

Reference Data
10. Organization of Op Codes, File Register

numbers, and Core Memory Addresses to
minimize Commands

11. Saving of Diodes by Selection of Files and
Instructions

12. Saving Jump Instructions when Branching
13. Reducing two Branches to one by Multi-

Function Commands .
14. Interlacing vs. Cascading of Subroutines
15. Use of Inhibit File Write
16. Moving Data from a File to a Register.

Microprogramming Examples

1. Multiply Two Positive Numbers
2. Subroutine Jumps
3. Time Delay Routine
4. Data I nput from 4 External Registers.
5. Load 8 successive File Registers from 8

.175
176
177
178

188

188

189
190
190
190
191
192
193
193

193

193

193
194

195
196,
196
196

196

198
· 201
.203
.206

successive cote locations 208
6. - 16 Bit Add (Core to File) 210
7. Input a 32 Bit Word from an External Device

to Core Memory 211
8. 16 Bit Right Shift with End Around Carry

with the Shift Count in File Register S ..
9. A ORed with B to A

10. Update 10 BCD Digit Display from Core.
11. Clear a Block of Core Memory
12a. Read 8 consecutive Core locations into 8

consecutive File Registers .. -..... .
12b. Write 8 consecutive Files into 8 consecutive

Core locations
13a. Output from 8 Files to 8 Shift Registers .
13b. File to Register; with Hardware Rotation

of Bit Pattern

vi

· 214
· 215
· 215

218

220

221
223

226

14. Input from 8 Shift Registers to 8 Files in
MICRO 800
I nput Block of Data to Core from A to D
Converter
Conversion of 3 Digit BCD plus sign into
Binary

15.

16.

17.
18.
19.
20.

Binary to BCD Conversion
General Purpose Multiple File Shift Routine
Hexadecimal to ASCII Conversion Routine.
General Purpose Code Conversion by Table
Translation

21.
22.

Binary Multiply (16 Bits)
Generate Cydic Code for One 8 Bit Data
Byte

23. Generate ASCII Parity

Chapter 8. MICRO 810 Firmware Manual

MICRO 810 Functions
File Register Assignments
I nformation Formats
Operand Addressing Modes
MICRO 810 Instructions

I nterru pts
Concurrent 1/0
Serial I nputlOutput Instructions
Byte I nputlOutput Instructions
Top Level Flow Chart ...

MICRO 810 Assembly Listings

Function Flow Examples of a MICRO 810
Instruction

PART IV MICRO 1600 REFERENCE MANUAL .

Chapter 1. MICRO 1600 Design Features

General Characteristics

Chapter 2. System Description

Registers ,
Data Flow
Register a Flags and I nternal Status
Control
Memory
Power Fail - Auto Restart

Chapter 3. Microcommand Repertoire

Command Formats

vii

-

..

.228

· 231

· 235
237
242
247

252
.255

· 259
· 261

262

262
264
266
267
271

273
273
273
274
275

300

300

309

310

311

312

312
315
316
317
318
319

321

321

Chapter 4. Control Panel Operation

System Console
Displays
Switches
Register ,Display and Entry

Chapter 5. Micro Assembler Program

Source Language
Statement Format
Operand Field Expressions
Machine Commands

Class One .
Class Two .
Class Three
Class Four
Class Five .

Assembler Instructions
Assembly Listing
Error Flags
Program Tape Format
Sample Listing
Microcommands (Class Order)

Chapter 6. Input/Output

General Description .
Byte I/O Bus . r •••

Examples of I/O Microprogramming

Chapter 7. Physical Characteristics and System Power .

Mechanical Configurations
System Power

Appendix A. Microcommand Reference Table

PART V SYSTEM DESIGN PROCEDURES USING
MICROPROGRAMMING

352

352
353
353
355

357

357
358
359
360
360
361
361
361
361
362
362
363
364
365
368

371

361
371

. ,377

384

384
384

392

395

Introduction 397

Outline of System Definition Procedures 397

1. System Functional Definition 399
2. System Configuration Definition .. 400
3. Detailed System Performance Specifications 400
4. I nterface Performance Specifications 401
5. Program Specifications 401
6. Tradeoffs 402
7. Hardware Specs, , ... 404
8. Software or Firmware Program Specifications 404
9. Detailed Program Functions An'alysis

Definitions and Programming 405

Microprogramming Aids ,405

:viii

PART VI PRODUCT CATALOG 407

MICRO 400 Computer 408

MICRO 800 Computer 412

MICRO 810 Computer 413

MICRO 820 Computer 414

MICRO 800 Series Computer System Elements
and Options 415

MICRO 1600 Computer 419

MICRO 1600/21 Computer 421

MICRO 1600 Computer Series System Elements
and Options 423

Firmware Training System 428

Microprogramming System 431

ix

INTRODUCTION

Microprogramming techniques are the secret of the demonstrable
advantages of Microdata's advanced microprogrammable computers over
fixed-instruction min icomputers.

The major difference between Microdata's products and conventional
minicomputers is the incorporation of microprogrammed control mem­
ories as a major adjunct to the usual basic elements of any computer­
control unit, main memory, arithmetic/logic unit and input/output.

Microprogrammed control memories provide ease of programming using a
wide choice of languages.

Microprogramming also means higher speed and more efficient use of the
main memory of the computer.

In many cases, the usable storage of the main memory is increased because
the programs· used in conventional minicomputers to perform certain
operational instructions are stored in the control memory, thus freeing
storage capacity in the main memory for the purpose it was
intended-problem-solving.

Inherently, microprogramming gives the user the flexibility to tailor the
computer to his specific needs, no matter how complex or simple, and he
can change the' system at will, swiftly and economically. In addition to
telling the computer what to do, microprogramming makes it possible to
tell the computer how to do it.

The result is high performance at minimum cost, high memory efficiency
and the availability of a wide variety of languages from which to choose. In
short, Microdata has reached a pinnacle in the only meaningful measure­
ment of computer performance-the ability to solve specific problems
accurately and efficiently in terms of time and therefore cost to the user.

Microprogrammed computers also have ripped away many barriers to
broader application of minicomputers. The way is clear for use of
Microdata's products in business and scientific applications because of the
ease and flexibility of programming techniques.

A number of factors have cC!ntributed to .these fldvances by Microdata
Corporation, including modern facilities geared to volume production,
exploitation of the most advanced techniques and concepts available, and
the field-proven reliability of more than 1000 microdata computers.

All of these elements are available to and benefit the user of Microdata's
products.

1

PART I - .

MICROPROGRAMMED COMPUTER PRIMER

INTRODUCTION

December 1945, ENIAC, the first electronic high-speed stored program
general purpose computer was completed_ Six years later Professor M.V.
Wilkes of Cambridge University coined the word microprogramming to
describe computer instructions that carry out numerous information trans­
fers in a single execution cycle. Cost-performance improvements as a
result of 25 years of advancement in computer technologies have been
almost overwhelming. In 1965 it became practical and possible to build
computers with control units driven by microprograms. The concept was
not exploited on a widespread basis until recently. In large and medium
scale computers microprogramming provides the capability to emulate
other computers, and to maintain upward/downward compatibility over a
\/vide range of models within a computer series.

The small or so called minicomputer incorporating microprogramming now
exploits the advances in semiconductor and memory technologies with
microprogramming far beyond the larger model computers. Full advantage
of new low cost memories are realized only by users of small micro­
programmed computers. The spectrum of applications between the special
purpose computer, where the entire program is implemented in a micro­
program, to the general purpose computer implemented by microprogram
can be selected by the user to achieve a meaningful price/performance
ratio for the application.

ORGANIZATION OF THE MICROPROGRAMMED COMPUTER

The organization of the microprogrammed computer can best be described
after we first review the organization of its predecessor, the fixed instruc­
tion stored program general purpose computer.

The Fixed InstructionComputer

In simple terms the fixed instruction stored program computer is built
around a storage and retrieval scheme, typically a magnetic core-memory.
The structure and information paths of a computer are represented in the
simplified block diagram (Figure 1).

As defined in most textbooks, the five elements comprising a digital com­
puter are: memory, arithmetic unit, input, output and control unit.

Memory: Modern' computer memories are implemented using high speed
semiconductors or magnetic core memory systems. These memories are
high-speed random access devices of which information, usually in a binary
form, is written or read from any addressed section of the memory.

Arithmetic Unit: In many instances is referred to as the arithmetic and
logic unit (ALU). As the name implies it performs the arithmetic opera­
tions on data transferred within the computer, the memory, the input and
the output.

4

Input/Output: Communication with a wide variety of devices in the
language of the operator are made possible by transfer channels referred to
as the input and output sections of a computer. Devices connected to the
input/output of a computer referred to as computer peripherals include
elementary switches and indicator lamps, typewriters, magnetic or paper
tape units, line printers, analog converters, cathode ray tube displays (TV
type devices), card readers and punches, communication lines, etc.

CONTROL
UNIT

MEMORY

ARITHMETIC
UNIT

Figure 1. Simplified Block Diagram
Fixed I nstruction Stored Program General Purpose Computer

In addition to man communication type devices the input/output of a
computer may be connected to intermediate storage devices for mass
memory requirements. Such mass memory devices include but are not
limited to magnetic disc storage systems, magnetic drums, and a larger
scale computer memory.

Control Unit: The control unit may be referred to as the "brain" portion
of any computer' because it coordinates all units of the computer in timed
logical sequence. The control unit of a small fixed instruction computer
receives sequences of instructions from memory. These sequences, called
programs, reside in the memory and are referred to as "software." The
control unit is closely synchronized to the memorycycle speed and execu­
tion time of each fixed instruction is usually a multiple of the memory
speed.

5

The Microprogrammed Computer

Four of the elements of the microprogrammed computer are nearlyidenti­
cal to the fixed instruction computer. The significant difference is in the
control unit ("Brain"). The basic control sequences of a microprogrammed
computer originate in a separate "control memory," usually a read-only
memory (ROM) which operates at speeds many times faster than the main
memory section of the computer. Thus the simplified block diagram (Fig­
ure 2) of the microprogrammed computer has one more element than the
fixed instruction computer.

CONTROL
MEMORY

CONTROL
UNIT

ARITHMETIC
UNIT

Figure 2. Simplified Block Diagram
Microprogrammed Computer

Memory: The random access mai n memory of the microprogrammed com­
puter differs little from the fixed instruction computer. It is implemented
with magnetic core or semiconductor systems in similar sizes and speeds
to the fixed instruction computer. The basic difference is the timing and
control of the memory system. The control unit of the microprogrammed
computer is clocked to a significantly higher speed separate memory sys­
tem. Hence, the main memory speed is essentially independent of the
processor speed and is operated in a manner similar to an input/output
d!,!vice.

6

Arithmetic Unit: The arithmetic and logic unit in a microprogrammed
computer operates on fixed data lengths, typically 8 bits. The speed of the
unit is 10 to 50 times faster than fixed instruction computer arithmetic
units operating on smaller portions of arithmetic problems at each step.
Microcommands are much more intimately related to the computer archi­
tecture and to bit patterns. This allows high versatility in problem solution
and minimizes the restrictions usually encountered at the software level.

Input/Output: Microprogrammed computers provide extremely fast ele­
mentary I/O capabilities. Data paths are fixed length, typically 8 bits, and
the I/O control functions are simple elements sequenced by high speed
control memory firmware. This permits special I/O systems to be designed
for the users' requirements. The microprogrammed computer offers all of
the I/O capabilities found in fixed instruction computers coupled with the
unique advantage of providing only the capabilities needed, and the versa­
tility to be changed when required.

Control Unit: The control unit of the microprogrammed computer is
simple and straigl,ltforward. It operates and controls all elements of the
computer system including two levels of memory. Because it is more basic
than the control units in fixed instruction computers it provides capability
to solve problems in an added 'dimension. The control unit is program­
mable, not fixed. Programs operating upon the control unit are called
microprograms, and' are referred to as firmware. These programs are as
easy to write and implement as is software in the fixed instruction
computer.

If we refer to the control unit of any computer as the "Brain," then the
microprogrammed computer control unit could be referred to as a brain
ingredient, which we can readily adi.ust to suit our needs.

Control Memory: The control memory is the element that most dramati­
cally distinguishes the microprogrammed computer. The control memory
contains the stored sequence of control functions that dictate end user
architecture of the microprogrammed computer. These stored sequences
are called "microprograms" or "firmware" corresponding to fixed instruc­
tion computer sequences called "programs" or "software."

The control memory has been called many other names including, read­
only store (ROS), read-only memory (ROM) and control store. Termi­
nology relating to the control memory of microprogrammed comp1Jters is
most complex because of many misnomers coined by computer and semi­
conductor manufacturers. Present terminology that relates to the mechani­
zation of control memory are:

ROM: Read-Only Memory: Any memory system in which the bit patterns
of each word are fixed,and unalterable. '

In application, few ROM's can be modified after manufacture. Those
ROM's that can, may be called modifiable. To make any change reql,lires
a hardware modification such as adding or deleting diodes in a diode
matrix ROM or rerouting of wires in a core ROM.

7

BROM: Bipolar Read Only Memory: Large scale integration (LSI) bipolar
devices are used for volume manufacture.·Original setup masking is expen­
sive. Cost for manufactured elements is low.

PROM: Programmable Read Only Memory: A semiconductor diode array
is programmed by fusing or burning out diode junctions. Cost for setup is
minimal. Manufacturing cost is moderate to high. The PROM is usually
used for final shake down of a system prior to investing in the BROM

. setup.

AROM: Alterable Read Only Memory: A true misnomer. The AROM is
actually a read-write memory that. is used for initial checkout of firmware.
The firmware is typically loaded into the AROM via a paper tape input
device. Onc.e loaded the AROM operates the control unit as does any
ROM control memory. The advantage of the AROM is programming
within a few minutes rather than a manufacturing process. Cost is high;
however, the devices are used indefinitely for checkout and analysis .of
numerous firmware implementations.

COST AND PERFORMANCE ADVANTAGES OF THE MICROPRO­
GRAMMED COMPUTER

Fixed instruction minicomputers are basically application sensitive. Even
with numerous models to choose from only a few offer good price per­
formance for any specific application. Even more important to note is the
fact that if a specific fixed instruction computer offers the best price per-

. formance for a given application at one level of complexity it may offer
less relative value as the complexity changes.

Typically, to increase the performance of the fixed instruction computer
the main memory (usually.core memory) is increased in size.

In the final analysis, the performance of any computer is measured by its
ability to solve a specific problem within a given period of time.

For most project managers the selection of a minicomputer is a traumatic
experience. They are exposed to numerous technical concepts, specifications
and a variety of salesmen and skilled technicians from companies with one
goal-to sell him their solution to his technical problem. If a thorough
up-to-date evaluation were performed with all minicomputer manufacturers·
the evaluation could cost him more than the project implementation. The
prime criteria for selection of the appropriate minicomputer is time and
cost of implementation over the entire project life. In this light, the
microprogrammed minicomputer offers an answer to this enigma. The
user selects the cost/performance lines between three elements; hardware,
firmware, and software for his specific application .

.one of the primary purposes of this "Microprogramming Handbook", is
to educate and illustrate for the user the capabilities of specific product
lines and to assist in these cost/performarice trade-off selections.

The following comparison chart illustrates five capability levels comparing
one of the more popular fixed instruction minicomputers, referred to as
brand X, and a microprogrammable minicomputer, the MICRO 1600. Each
level represents computer problem solving capability with corresponding
notation on price, memory use and relative speed (micro vs. fixed). Within

8

any capability level, numerous trade-ofts between control memory size and
core memory size can be established for the MICRO 1600.

For example, level number 4 shown in the comparison chart represents
a computer capability for a time-sharing system employing high-level
interpretive language and executive programs. I mplementation of floating
point arithmetic and executive subroutines in firmware thus expands
the ROM from 768 w'ords to 8,192 words. As a result, the MICRO 1600
cost is reduced approximately 15 percent and execution time is improved
by a factor of approximately 20.

This comparison clearly illustrates that as the size of the control memory
increases advantages result in price and relative speed, In addition, pro·
gramming costs and implementation time can be significantly reduced
once the users' needs are established in firmware. Now, with the avail·
ability of supporting systems from Microdata, firmware development is in
the same dimension in price and turn·around time normally associated
with fixed instruction computers, The result: computer users can benefit
from microprogramming along with the computer manufacturer.

Microprogrammed Computer Fixed Instruction
(MICRO 1600) Computer (Brand X)

Core Control Core
Memory Memory System Relative System Memory

Level Size Size Price Speed Price Size

1. 8K X8 512 X 16 $5,910 1 :2 $6,250 4K X 16 4K X8 1024 X 16 $5,420 2: 1

2. 16K X 8 512 X 16 $8,610 1 :2
$8,950 8K X 16 12K X 8 2048 X 16 $7,690 5: 1

3. 32K X 8 512 X 16 $14,010 1 :2 $14,350 16K X 16 24K X 8 1024 X 16 $11,470 10: 1

, 4. 48K X 8 768 X 16 $.19,770 2:3 $19,750 24K X 16 24K X 8 8192 X 16 $16,750 15: 1

5. 65K X 8 1024 X 16 $25,170 1: 1 $27,000 32K X 16 32K X 8 12K X 16 $22,250 20:1

COMPARISON OF A MICROPROGRAMMABLE COMPUTER TO A
GENERAL PURPOSE FIXED INSTRUCTION COMPUTER

I n the general purpose fixed instruction computer, the instructions are
stored in core memory along with data. Both instructions and data can be
altered by the program. In a microprogrammable computer, the instruc·
tions are stored in a read only memory along with permanent (or con­
stant) data. Only variable data, pointer, and flags are stored in core
memory.

Instruction Repertoire

I n the general purpose fixed instruction computer there is usually a
limited instruction repertoire with variations of instruction, and memory
reference instructions having limited addressing modes.

9

In the microprogrammable computer there is usually a smaller number of
instructions which are more cOl'!1pact and specialized than the fixed
instructional computer. Memory addressing and I/O functions usually are
built up by assembling a group of micro instructions. The micro instruc­
tions are closely related to the internal architecture and I/O structure of
the basic computer.

Instruction Speeds

Microprogrammable computers are faster than fixed instruction computers
for the followihg reasons:

1. Instruction execution times are from 5 to 30 times faster in a micro­
programmed computer.

2. File registers can be used for data storage, and pointers, where core is
required in a fixed instruction computer, thus program execution time
can be sped up by avoiding memory access cycles.

3. Subroutines are closely tailored to specific requirements and data word
lenghts, thus improving computer efficiency and speed.

4. Input/output routines can be simplified for the application to increase
I/O speed.

5. Special time-consuming algorithms (math, logic, etc.), which are not
available in the general purpose processor can be easily incorporated
into a microprogrammed processor. '

Additional comparisons between a general purpose processor and a micro­
programmable processor are included in Table 1.

Table 1. Comparison' of Microprogrammed Computer to
General Purpose Software Programmed Computer

Function

Arithmetic and logic
operations

Shift Operations

Conditional Skips

Jumps/Return Jumps

Memory Accesses

Memory Addressing

I/O

Interrupts

Concurrent I/O

DMA

. Indexing

Program

Execution Time

General Purpose

• memory reference/
register reference

• conditions automatically
set

• usually 12 or 16 bits

• specific registers are used

• execution time 2-10
microseconds

• multiple bits at a time

• left/right

• limited types of shift

• usually 16 bits

• specific registers only

• forward/reverse

• to multiply locations

• fixed registers used
and tested

• program conditions tested

• programmable locations

• return jump, automatic
address set up

• referred to as part of
Memory Reference
Instruction

• address in instruction

• 16K to 65K Bytes core
memory

• control-fixed

• inStruction designates
destination and source

• automatic hardware
function .

• optional, referred to as
direct multiplex channel
or 3 cycle data break

Microprogrammed
MICRO 1600

• register reference

• conditions set when
enabled

.8 bits

• general pu rpose fi Ie
registers

• 200 nanoseconds

• 'single bit at a time

• left/right

• unlimited types of shift

.8 bits

• any file registers

.• forward

• to one location

• any file register can be
tested

• basic conditions tested

• programmable locations

• set up return jump
address with microcode

• set up memory address
registers, initiate transfer
in microcode

• address in any file register

• 65K Bytes core memory

• control variable, ROM;
256 x 16 expandable to
16,386 x 16

• data transfer and timing
controlled by microcode

• microcode test, and
handling

• implemented directly in
microcode

• external memory access • external memory access

• specific register(s) assigned • index in any file register

• software • firmware

• microseconds • nanoseconds

11

12

GLOSSARY

A

ACCESS, IMMEDIATE - Ability to obtain data from or place data in a storage de­
vice, or register directly without serial delay, usually in a relatively short time.

ACCESS, PARALLEL - Obtaining data from or placing data into storage where
time required is dependent on simultaneous transfer of all elements of a word
from a given location.

ACCESS, RANDOM - (1) Obtaining data from or placing data into storage where
time required is independent of location of information most recently ob­
tained or stored; (2) device in which random access, as defined in defintiion 1,

. can be achieved without time penalty.

ACCESS, SERIAL - Obtaining data from or placing data into storage where time
required is dependent on necessity for waiting while nondesired storage loca-
tio~s are processed. .

ACCUMULATOR - (1) Register and associated equipment in arithmetic unit of
. computer in which arithmetical and logical operations are performed; (2) unit

in a digital computer where numbers are accumulated. Often the accumulator
stores one operand and on receipt of any second operand, it forms and stores
result.

ACCURACY - Degree of exactness of an approximation or measurement. Accuracy
normally denotes absolute quality of computed results; precision refers to the
amount of detail used in representing those results.

ADDER - Device which forms, as output, the sum of two or more nuinbers pre­
sented as inputs. Often no data retention feature is included; the output signal
remains only as long as the input signals are present.

ADDRESS - (1) Identification, represented by a name, label, or number, for regis­
ters or location in storage. Addresses are also a part of an instruction word
along with commands, tags, and other symbols; (2) part of an instruction
which specifies an operand.

ADDRESS, ABSOLUTE - Address which indicates exact storage location wl)ere the
referenced operand is to be found or stored in the actual machine code
address numbering system.

ADDRESS, BASE - (1) Number which appears as an address in a computer instruc­
tion, but which serves as base, index, initial or starting point for subsequent
addresses to be modified; (2) number used in symbolic coding in conjunction
with relative address.

ADDRESS, 01 RECT - Address which indicates the location where referenced
operand is to be found or stored with no reference to index register or B-Bo.x.

ADDRESS, EFFECTIVE - (1) Modified address; (2) address actually considered to
be used in particular execution of computer instruction.

ADDRESS, IMMEDIATE - Instruction address in ~hich address part of instruction
is operand.

ADDRESS, INDEXED - Address that is to be modified or has been modified by
. index . register or similar device.

ADDRESS, I NDI RECT - Address in computer instruction which indicates location
of address of referenced operanq.

ADDRESS PART - Part of. instruction word that defines address of reg.ister or
location.

13

ADDRESS, RELATIVE - Address to which base address must be added to find
machine address.

ADDRESS, SYMBOLIC - Label, alphabetic or alphameric, used to specify storage
location in context of a particular program. Programs are often first written
using a symbolic address in some convenient code, which are translated into
absolute addresses by assembly program.

ADDRESS, VARIABLE - See address, indexed.

ADP - Automatic Data Processing.

ALGEBRA, BOOLEAN - Process of reasoning or deductive system of theorems
using symbolic logic, and dealing, with classes, propositions, or on-off circuit
elements. It employs symbols to represent operators such as AND, OR, NOT,
EXCEPT, IF ... THEN, etc., to permit mathematical calculation. (Named for
George Boole, English mathematician [1815-18641).

ALGOL - ALGOrithmic Language. See language, algorithmic.

ALGORITHMIC - Constructive calculating process usually assumed to lead to solu­
tion of problem in finite number of steps.

ALLOCATION, STORAGE - Process of reserving blocks of storage to specified
blocks of information.

ALPHAMERIC - Contraction of alphanumeric and alphabetic-numeric. Characters
which include letters of the alphabet, numerals, and other sucy symbols as
punctuationor mathematical symbols. '

ALU - Arithmetic and Logical Unit.

ANALOG - Representation of numerical quantities by means of physical variables:
translation, rotation, voltage, or resistance. Contrasted with digital. '

ANALYSIS, NUMERICAL - Study of methods of obtaining useful quantitative
solutions to mathematical problems, regardless of whether an analytic solution
exists, and study of errors and bounds on errors in obtaining such solutions.

ANALYSIS, SYSTEMS - Examination of an activity, procedure, method, technique,
or business to determine what must be accomplished and how necessary opera­
tions may best be accomplished.

ANAL YST- Person skilled in definition and development of techniques for solving~
problems; especially those techniques for solutions on computer_ '

ANALYZE R - Computer:routine to analyze program written for the same or a dif­
ferent computer. Computer (usually analog) designed and used primarily for
solving many types of different equations.

APPLICATION - System or problem to which a computer is applied. Reference is
often made to an application as being either computational type, wherein
arithmetic computations predominate, or data processing type, wherein data
handling operations predominate.

~
ARGUMENT - (1) Independent variable: in looking up quantity in a table, number

or any numbers which identify location of desired value; or in mathematical
function, variable which 'when certain value is substituted for it, value of
function is determined; (2) operand in an operation on one or more variables.

ARITHMETIC, FLOATING POINT - Calculation which automatically, accounts for
location of radix point. Usually accomplished by handling number as signed
mantissa times radix raised to an integral exponent.

ARITHMETIC SECTION - See unit, arithmetic.

AROM- Electrically Alterable Read Only Memory.

14

ASSEMBLE - (1) To integrate subroutines that are supplied, selected, or generated
into main routine, by means of preset parameters, by adapting, or changing
relative and symbolic addresses to absolute form, or by placing them in storage;
(2) to operate, or perform functions of an assembler.

ASSEMBLER - Computer program which operates on symbolic input data to pro­
duce machine instructions by carrying out such functions as: translation of
symbolic operation codes into computer operating instructions; assigning
locations in storage for successive instructions; or computation of absolute
addresses from symbolic addresses. An assembler generally translates input
symbolic codes into machine instructions item for item, and produces as out­
put the same number of instructions or constants which were defined in the
input symbolic codes.

ASYNCHRONOUS - Lack of time coincidence in set of repeated events where the
term is applied to computer to indicate that execution of one operation is
dependent on a signal that previous operation is completed.

ATLAS - Abbreviated Test Language for Avionics Systems.

AUTOMA TI ON - (1) I mplementation of processes by automatic means; (2) theory,
art, or technique of making a process more automatic; (3) investigation,
design, development, application of methods of rendering processes automatic,
self-moving, or self-controlling.

B

BASIC - Beginner's All-purpose Symbolic Instruction Codes. A simple, easy to
learn, machine independent, conversational computer language.

BAU D - (1) Unit of signalling speed equal to number of code elements per second;
(2) unit of signalling speed equal to twice the number of Morse code dots
continuously sent' per second.

BINARY - Characteristic, property, or condition in which there are but two possible
alternatives: binary number system using 2 as its base and using only digits
zero and one.

BIT - (1) Abbreviation of binary digit; (2) single character in binary number; (3)
single pulse in group of pulses; (4) unit of information capacity of a storage
device. Capacity in bits is the logarithm to the base two of the number of
possible states of the device.

BIT, PARITY - Check bit that indicates whether total number of binary "1" digits
in a character or word (excluding parity bit} is odd or even. If a "1" parity bit
indicates an odd number of "1" digits, then a "0" bit indicates an even num­
ber. If total number of "1" bits, including parity bit, is always even, system is
called an even parity system. In an odd parity system, total number of "1"
bits, including parity bit, is always odd.

BLOCK - (1) Group of computer words considered as a unit by virtue of their being
stored in successive storage locations; (2) set of locations or tape positions in
which a block of words is stored or recorded; (3) circuit assemblage which
functions as a unit: circuit building block of standard design, and logic block
in sequential circuit.

BOOTSTRAP - Technique for loading first instructions of a routine into storage;
then using these instructions to bring in the rest of the routine; usually involves
either entering of a few instructions manually or use of a special console "key.

BRANCH - Selection of one, two, or more possible paths in flow of control based on
some criterion. Instructions which mechanize this concept are sometimes
called branch instructions, but the terms transfer of control and jump are
more widely used.

BRANCHPOI NT - Point in a routine where one of two or more choices is selected
under control of routine.

15

BREAKPOINT - Point in computer program at which conditional interruption, to
permit visual check, printing out, or other !lnalysis. Breakpoints are usually
used in debugging operations.

BROM - Bipolar Read Only Memory.

BUFFER - (1) Internal portion of data processi!lg system serving as intermediary
storage between two storage or data handling systems with different access
times or formats; usually to connect an input or output device with main or
internal high-speed storage; (2) logical OR circuit; (3) an isolating component
designed to eliminate reaction of a dri)len ~ircuit on circuits driving it: buffer
amplifier; (4) diode.

BUS - (1) Circuit over which data or power is transmitted, often one which acts as a
common connection among a number of locations; (2) communications path
between two switching points.

BYTE - (1) Generic term to indicate measurable portion of consecutive binary
digits: an 8-bit or 6-bit byte; (2)· group of binary digits usually operated upon
as a unit.

C

CAPACITY, CHANNEL - (1) Maximum number of binary digits or elementary dig­
its to other bases which can be handled in a particular channel per unit time;
(2) maximum possible information transmission rate through channel at speci­
fied error rate. Channel capacity may be measured in bits per second or bauds.

CAPACITY, STORAGE - Number of elementary pieces of data that can be con­
tained in storage device. Frequently defined in terms of characters in a particu­
lar code or words of fixed size.

CARD, PUNCH - Heavy stiff paper of constant size and shape, suitable for punching
in a pattern that has meaning and that can be handled mechanically. Punched
holes are sensed electrically by wire brushes, mechanically by metal fingers,
or photoelectrically by photocells.

CARRY - (1) Signal, or expression, produced as result of arithmetic operation on
one digit place of two or more numbers expressed in positional notation·and
transferred to next higher place for processing there; (2) signal or expression
as defined above which arises in adding, when the sum of two digits in the
same digit place equals or exceeds base of the number system in use. If a carry­
into-a-digit place will result in a carry-out of the same digit place, and if the
normal'!!dding circuit is bypassed when generating this new carry, it is called
a high speed carry, or "standing on nines" carry. If the normal adding circuit
is used in such a case, the carry is called a cascaded carry. If a carry resulting
from the addition of carries is not allowed to propagate (when forming the
partial product in one step of a multiplication process). process· is called a
partial carry. If it is allowed to propagate, the process is called a complete
carry. If a carry generated in the most significant digit place is sent directly to
least significant place (when adding two negative numbers using nine comple­
ments) that carry is called an end-around carry; (3) signal or expression in
direct subtraction, as defined in (1) above which arises when the difference
between the digits is less than zero. Such a carry is frequently called a borrow;
(4) action of forwarding a carry; (5) command directing a carry to be forwarded .

. CELL - (1) Storage for one unit of information, usually one character or one word;
(2) location specified by whole or part of address and possessed of the faculty
of store. Specific terms such as column, f~eld, location, and block are pre-
ferable when appropriate. .

CHAD - Small piece of paper tape or punch card removed when punching a hole to
represent information.

CHADLESS - Type of punching of paper tape in which each chad is left fastened by
about a quarter of the circumference of the hole, at the leading edge. This

16

mode of punching is useful where it is undesirable to destroy information
written or printed on punched tape or it is undesirable to produce chads.
Chadless punched paper tape must be sensed by mechanical fingers, for the
presence of chad in the tape would interfere with reliable electrical or photo­
electric reading of the paper tape.

CHAIN - (1) Any series of items linked together; (2) routine consisting of segments
which are run through computer in tandem, only one being within computer
at anyone time and each using output from previous program as its input.

CHANNEL - (1) Path along which information, particularly a series of digits or
characters, may flow; (2) one or more parallel tracks treated as a unit; (3) in a
circulating storage, a channel is one recirculating path containing fixed number
of words stored serially by word; (4) path for electrical communication; (5)
band of frequencies used for communication.

CHARACTER - (1) One symbol of a set of elementary symbols such as those corre­
sponding to typewriter keys. Symbols usually include decimal digits 0 through
9, letters A through Z, punctuation marks, operation symbols, and any other
single symbols which computer may read, store, or write; (2) electrical, mag­
netic, or mechanical profile used to represent character in a computer, and its
various storage and peripheral devices. Character may be represented by a group
of other elementary marks, such as bits or pulses.

CHARACTER, BINARY CODED - One element of a notation system representing
alphameric character such as deciminal digits, alphabetic letters, and punctua­
tion marks by predetermined configuration of consecutive binary digits.

CHARACTE R, ILLEGAL - Character or combination of bits which is not accepted
as a valid representation by the machine design or by a specific routine. Illegal
characters are commonly detected and used as an indication of machine
malfunction.

CHARACTER, REDUNDANT -; Character specifically added to a group of charac­
ters to ensure conformity with certain rules which can be used to detect com­
puter malfunction.

CHART, FLOW - Graphic representation of the major steps of work in process.
Illustrative symbols may represent documents, machines, or actions taken
during process. The area of concentration is on where or who does what rather
than how it is to be done.

CHART, LOGICAL FLOW - Detailed solution of work order in terms of the logic,
or built-in operations and characteristics, of a specific machine. Concise sym­
bolic notation is used to represent information and describe input, output,
arithmetic, and logical operations involved. Chart indicates types of operations
by use of a standard set of block symbols. Coding process normally follows the
logical flow chart.

CHECK - Process of partial or complete testing of the c;orrectness of machine
. operations, the existence of certain prescribed conditions within the com­

puter, or the correctness of the results produced by a program. A check of any
of these conditions may be made automatically by the equipment or may be
programmed.

CHECK, PARITY - Summation check in which binary digits, in character or word,
are 'added, modulo 2, and the sum checked against a single, previously com­
puted parity digit: a check which tests whether number of ones in a word is
odd. or even.

CHECK-5UM - Check in which groups' of digits are summed, usually without regard
for overflow, and that sum checked against a previously computed sum to
verify that no digits have been changed since the last summation.

CHECK, VALIDITY - Check based on known limits or on given information or
computer results: a calendar month will not be numbered greater than 12; a
week does not have more than 168 hours.

17

CI RCU I T - (1) System of conductors and related electrical elements through wh ich
electrical current flows; (2) communications link between two or more points.

CLEAR - To erase the contents of storage device by replacing the contents with
blanks, or zeros.

CLOCK, REAL TIME - Clock which indicates passage of actual time, in contrast
to a fictitious time set up by the computer program, such as elapsed time in
the flight of a missile, wherein a aO-second trajectory is computed in 200
actual milliseconds, or a 0 .. 1 second interval is integrated in 100 actual
microseconds.

COBOL - Common Business Oriented Language.

CODE - (1) System of symbols for meaningful communication; (2) system of
symbols for representing data or instructions in a computer or tabulating
machine; (3) to translate program for the solution of a problem on a given
computer into a sequence of machine language or pseudo instructions and
addresses acceptable to that computer; (4) machine language program.

CODE, BINARY - (1) Coding system in which encoding of any data is done through
use of bits, 0 or 1; (2) a code for the ten decimal digits, 0 through 9, in which
each is represented by its binary, radix 2, equivalent: straight binary.

CODE, COMPUTER - (1) System of combinations of binary digits used by a given
computer; (2) repertoire of instructions.

CODE, ERROR CORRECTING - Er.ror-detecting code in which forbidden pulse
combination produced by gain or loss of a bit indicates which bit is wrong.

CODE, ERROR DETECTING - Code in which errors produce forbidden combina­
tions. A single error-detecting code produces a forbidden combination if a
digit gains or loses a single bit. A double error-detecting code produces a for­
bidden combination if digit gains or loses either one or two bits.

CODE, INSTRUCTION - List of symbols, names, and definitions of instructions
which are intelligible to a given computer or computing system.

CODE, MICRO - (1) System of coding making use of suboperations not ordinarily
accessible in programming: coding that makes use of parts of multiplicati"on
or division operations; (2) list of small program steps. Combinations of these
steps, performed automatically in a prescribed sequence from a macro­
operation (multiply, divide, and square root).

CODE, STRAIGHT LINE - Repetition of sequence of instructions, with or without
address modification, by explicitly writing instructions for each repetition.
Generally straight line coding will require less execution' time and more space
than equivalent loop coding. If number of repetitions is large, this type of
coding is tedious unless a generator is used. Feasibility of straight line coding
is limited by required space and difficulty of coding a variable number of
repetitions.

CODE, SYMBOLIC - Code which expresses programs in source language: by refer­
ring to storage locations and machine operations by symbolic names and
addresses which are independent of their hardware determined names and
addresses. .

CODING - Ordered list in computer code or pseudo code, of successive computer
instructions representing successive computer operations for solving a specific

. problem.

COLLATE - To merge two or more ordered sets of data or cards to produce one or
more ordered sets that still reflect the original ordering relations. The collation
process is the merging of two sequences of cards, each ordered on some mutual
key, into a single sequence ordered on the same key. .

18

COLUMN - (1) Character or digit position in a positional information format, partic­
ularly one in which characters appear in rows, and rows are placed one above
another: the rightmost column in a five decimal place table, or in a list of data;
(2) character or digit position in a physical device, such as punch card or a
register, corresponding to a position in a written table or list: the rightmost
place in a register; or the third column in an eighty column punch card.

COMMAN D - (1) Electronic pulse, signal, or set of signals to start, stop, or continue
some operation. It is incorrect to use command as a synonym for instruction;
(2) portion of an instruction word which specifies operation to be performed.

COMMENT - Expression which explains or identifies a particular step in a routine,
but which has no effect on the operation of the computer in performing
instructions for the rqutine.

COMPARE - To examine representation. of a quantity to discover its relationship to
zero, or to examine two quantities usually for the purposes of discovering
identity or relative magnitude.

COMPATIBILITY, EQUIPMENT - Characteristic of computers by which one com­
puter may accept and process data prepared by another computer without
conversion or code modification.

COMP I LE - To produce a machine language routine from a routine written in
source language by selecting appropriate subroutines from a subroutine
library, as directed by the instructions or other symbols of the original
routine, supplying the linkage which combines the subroutines into a work­
able routine and translating the subroutines and linkage into machine language.
The compiled routine is then ready to be loaded into storage and run: the
compiler does not usually run the routine it produces.

COMPILER - Computer program more powerful than an assembler. In addition to
its translating function which is generally the same process as that used in an
assembler, it is able to replace items of input with series of instructions (sub­
routines). Thus, where an assembler translates item for item, and produces as
output the same number of instructions or constants which were put into it,
a compiler will do more. Program which results from compiling is a translated
and expanded version of the original.

COMPLEMENT - (1) Quantity expressed to the base N, which is derived from a
given quantity by a particular rule; frequently used to represent the negative
of the given quantity; (2) a complement on N, obtained by subtracting each
digit of the given quantity from N-l, adding unity to the least significant
digit, and performing all resultant carrys: the twos complement of binary
11010 is 00110; the tens complement of decimal 456 is 544; (3) a comple­
ment of N-l, obtained by subtracting each digit of the given quantity from
N-l: the ones complement of binary 11010 is 00101; the nines complement
of decimal 456 is 543.

COMPUTER - Device capable of accepting information, applying prescribed pro­
cesses to that· information, and supplying the results of these processes. It
usually consists of input and output devices, storage, arithmetic, and logical

·units, and a control unit.

COMPUTE R, ANALOG - Computer which represents variables by physical analogies.
Any computer which solves problems by translating physical conditions such
as flow, temperature, pressure, angular position, or voltage into related
mechanical or electrical quantities and uses mechanical or electrical equiva­
lent circuits as an analog for the physical phenomenon being investigated.
Computer which generally uses an analog for each variable and produces
analogs as output. Thus an analog computer measures continuously whereas
a digital computer counts discretely.

COMPUTER, DIGITAL - Computer which processes information represented by
combinations of discrete or discontinuous data as compared with an analog
computer for continuous data. A device for performing sequences of arith­
metic and logical operations, not only on data but its own program. A stored

19

program digital computer capable of performing sequences of internally
stored instructions, as opposed to such calculators as card-programmed calcu­
lators, on which the sequence is impressed manually.

COMPUTER, FIXED PROGRAM - Computer in which the sequence of instructions
are permanently stored or wired, and performs automatically. Not subject to
change either by the computer or the programmer except by rewiring or
changing the storage input.

COMPUTER, GENERAL PURPOSE - Computer designed to solve a large variety
of problems: a stored program computer which may be adapted to any of a
very large class of appl ications.

COMPUTER, SOLID STATE - Computer built primarily from solid state electronic
circuit elements.

COMPUTER, SPECIAL PURPOSE - Computer designed to solve a specific class or
narrow range of problems.

COMPUTER, STORED PROGRAM - Computer capable of performing sequences of,
internally stored instructions, usually capable of modifying those instructions
as directed by the instructions.

COMPUTER, WIRED PROGRAM - Computer in which instructions that specify
the operations are specified by the placement and interconnection of wires.

, Wires are usually held by a removable control panel, allowing flexibility of
operation, but the term is also applied to permanently wired machines which
are then called fixed program computers.

CONDITIONAL TRANSFER OF CONTROL - Computer instruction which when
reached in' a program will cause the computer either to continue with the next
instruction in the original sequence or to transfer control to another stated
instruction, depending on a condition regarding some property of numbers
which has then been determined. '

CONFIGURATION - Group of machines which are interconnected and are pro­
grammed to operate as a system.

CONJUNCTION - Logical operation which makes use of the AND operator or logi­
cal product.

CONSOLE - Portion of the computer which may be used to control the machine
manually, correct' errors, determine the status of machine circu its, registers
and counters, determine contents of storage, and manually revise storage
con~M~ ,

CONSTANT(S) - Quantities or messages present in the machine and available as data
for the program and which usually are not subject to change.

CONTENT(S) - Data contained. in any storage medium. Quite prevalently, the
symbol () is used to indicate the contents of: (M) indicates the contents of
the storage location whose address is M; or (T2) may indicate the contents of
the tape on input-output unit two.

CONTROL - (1) Part of a digital computer or processor which determines the
execution and interpretation of instructions in proper sequence, including
decoding of each instruction and application of the proper signals to the
arithmetic unit and other registers in accordance with the decoded informa­
tion; (2) one or more of the components in any mechanism responsible for
interpreting and carrying out manually-initiated directions. Sometimes it is
called manual control; (3) in some business applications, a mathematical
check; (4) in programming, instructions which determine conditional jumps
are often referred to as control instructions; time sequence of execution of
instructions is called the flow of control.

CONTROL, MANUAL - Direction of a computer by means of manually operated
switches.

20

CONTROL, MASTER - Application-oriented routine usually applied to the highest
level of a subroutine hierarchy. -

CONTROL, NUMERICAL - Descriptive of systems in which digital computers are
used for the control of operations, particularly of automatic machines wherein
the operation control is applied at discrete points in the operation or process.

CONTROL, PROGRAM - Descriptive of system in which a computer is used to
direct an operation or process and automatically hold or make changes in the
operation or process on the basis of a prescribed sequence of events.

CONVERSION - (1) Process of changing information from one form of representa­
tion to another, ~uch as from the language of one type of machine to that of
another or from tape to print; (2) process of changing from one data pro­
cessing method to another, or from one type of equipment to another: con­
version from punch card equipment to magnetic tape equipment.

CONVERSION, BINARY TO DECIMAL - Process of converting a number written
to base of two to the equivalent number written to base of ten.

CONVERSION, DECIMAL TO BINARY - Process of converting a number written
to base of ten, or decimal, into the equivalent number written to base of two,
or binary.

CONVERT - (1) To change numerical information from one number base to
another; (2) to transfer information from one recorded medium to another.

CONVE RTER - Device which converts representation of information, or which
permits changing the method for data processing from one form to ano.ther: a
unit which accepts information from punch cards and records the information
on magnetic tape, possibly including editing facilities.

COPY - To 'reproduce information in a new location, replacing whatever was
previously stored there, usually leaving information unchanged at the original
location.

COPY, HARD - A printed copy of machine output: printed' reports, listings, docu­
ments, summaries.

COUNTER - Device, register, or location in storage for storing numbers or number
representations which permits these numbers to be increased or decreased by
the value of another number, or to be changed or reset to zer.o or to' an arbi-
trary value. -

COUNTER, PROGRAM - Register which holds the identification of the instruction
word to be executed next in time sequence, following present operation.
Register often a counter which is incremented to the address of the next
sequential storage. location, unless transfer or other special instruction is
specified by the program. .

CPU - Central Processing Unit. ,
CROSS ASSEMBLER - A symbolic language translator that operates on one type of

computer to produce machine code for another type of computer.

CROSSTALK - (1) Unwanted signals in a channel which originate from one or
more other channels in the same communication system; (2) signals electri­
cally coupled from another circuit, usually undesirably, but sometimes useful.

CYBERNETICS - Technology involved in the comparative study of the control and
intracommunication of information-handling machines and nervous systems
of animals and man to understand and improve communication.

CYCLE - (1) Same as loop (1); (2) a nonarithmetic shift in which digits dropped off
at one end of a word are returned at the other end in circular fashion: cycle·
left and cycle right; (3) to repeat a set of operations indefinitely or until a

21

stated condition is met. The set of operations may be subject to variation on
each repetition, as by address changes obtained by programmed computation
or by use of devices such as an index register; (4) occurrence, phenomena, or
interval of space or time that recurs regularly and in the same sequence: the
interval required for completion of one operation in a repetitive sequence of
operations.

CYCLE, STORAGE - (1) Periodic sequence of events occurring when information is
transferred to or from the storage device of a computer; (2) storing, sensing,
and regeneration form parts of storage sequence.

D

DA TA - General term denoting any or all facts, numbers, letters, and symbols, or
facts that refer to or describe an object, idea, condition, situation, or other
factors. Connotes basic elements of information which can be processed or
produced by a computer. Sometimes data is considered to be expressible only
in numerical form, but information is not so limited.

DA TA, RAW - Data which has not been processed. Such data mayor may not be
in machine-sensible form.

DATA-REDUCTION - Process of transforming masses of raw data, usually gathered
by automatic recording equipment, into useful, condensed, or simplified
intelligence.

DATA-REDUCTION, ON-LINE - Processing of information as rapidly as the infor­
mation is received by the computing system or as rapidly as it is generated by
the source.

DECADE - Group or assembly of ten units: a counter which counts to ten in one
column or a resistor box which inserts resistance q,uantities in multiples of
powers of 10.

DECIMAL, BINARY CODED - Decimal notation in which the individual decimal
digits are represented by a pattern of ones and zeros: in the 8-4-2c 1 coded
decimal notation, the number twelve is represented as 0001 0020 for 1 and 2,
respectively, whereas in pure or straight binary notation it is represented as
1100.

DECISION - Computer operation to determine if a certain relationship exists
between words in storage or registers, and taking alternative courses ,of
action, affected by conditional jumps or equivalent techniques. The process
consists of making comparisons by use of arithmetic to determine the relation­
ship of two terms (numeric, alphabetic or a combination of both): equal,
greater than, or less than.

DECISION, LOGICAL - Choice or ability to choose between alternatives. Basically
this amounts to an ability to answer yes or no with respect to certain funda­
mental questions involving equality and relative magnitude: in an inventory
application, it is necessary to determ ine whether or not there has been an
issue or a given stock item.

DECODE - (1) To apply a code to reverse some previous encoding; (2) to determine
meaning of individual characters or groups of characters in a message; (3) to
determine the meaning of an instruction from the set of pulses which describes
the instruction, command, or operation to be performed.

,DECODER - (1) Device which determines the meaning of a set of signals and
initiates a computer operation based thereon; (2) matrix of switching elements
which selects one or more output channels according to the combination of
input signals present.

DECREMENT - (1) Quantity by which a variable is decreased; (2) specific part of an
instruction word in some binary computers - a set of digits.

22

DEFINITION - (1) Resolution and sharpness of an image, or the extent to which an
image is brought into sharp relief; (2) degree with which a communication
system reproduces sound images or messages.

DELAY - (1) Time after the close of a reporting period before information pertain­
ing to that period becomes available. Delay may also cover the time to process
data and to report; (2) retardation of the flow of information in a channel for
a finite period of time.

DELIMITER - A character which limits a string of characters, and therefore cannot
be a member of the string.

DENSITY, CHARACTER - Number of characters stored per unit of length: on some
magnetic tape drives, 800 or 1600 bits can be stored serially, linearly, and
axially per inch.

DENSITY, PACKING - Number of units of useful information contained within a
given linear dimension, usually expressed in units per inch: the number of
binary digit magnetic pulses or number of characters stored on tape or drum
per linear inch on a single track by a single head.

DESIGN, LOGICAL - (1) Planning of a data processing system before detailed
entineering design; (2) synthesizing of a network of logical elements to per­
form a specified function; (3) result of (1) and (21. frequently called the logic
of a computer or of a data processing system.

DEVICE, INPUT - Mechanical unit designed to bring data to be processed into a
computer: a card reader, a tape reader, or a keyboard.

DEVICE, OUTPUT - The part of a machine which translates the electrical impulses
representing data processed by the machine into permanent results such as
printed forms, punched cards, and magnetic writing on tape.

01 AGRAM - (1) Schematic representation of a sequence of subroutines designed to
solve a problem; (2) coarser and less symbolic representation than a flow
chart, frequently including descriptions in words; (3) schematic or logical
drawing showing the electrical circuit or logical arrangements .within a
component.

DIAGRAM, BLOCK - (1) Graphic representation of the hardware in a computer
system. A block diagram indicates the paths along which information and
control flows between the various parts of a computer system, not to be
confused with the term flow chart; (2) coarser and less symbolic representa-.
tion than a flow chart.

DICTIONARY - List of code names used in a routine or system; their intended
meaning in that routine or system.

DIGIT - Sign or symbol used to convey a specific quantity of information either by
itself or with other numbers of its set; 2, 3, 4, and 5 are digits; the base or
radix must be specified and each digit's value assigned.

DIGITAL - Pertaining to utilization of discrete integral numbers in a given base to
represent all the quantities that occur in a problem or calculation. It is
possible to express in digital form all information stored, ·transferred, or pro­
cessed by a dual state condition: on-off, open-closed, and true-false.

01 RECTORY - File containing the layout for each field of the described record.
A directory describes the layout of a record within a file.

DISK, MAGNETIC - Storage device on which information is recorded on the
magnetizable surface of a rotating disk. A magnetic disk storage system is an
array of such devices, with associated reading and writing 'heads which are
mou nted on movabl e arms. .

DUMP, STORAGE - Listing of contents of a storage device, or parts of it.

23

DUPLEX - Twin, pair, or two-in-one situation: channel providing simultaneous
transmission in both directions or a second set of equipment to be used in
event of failure of the primary or either device.

E

EDP - Electronic Data Processing.

ENCODE - (1) To apply a code, frequently one consisting of binary numbers, to
represent individual characters or groups of characters in a message; (2) to
substitute letters, numbers, or characters for other numbers, letters, or charac­
ters, usually to intentionally hide the meaning of the message except to cer­
tain individuals who know the enciphering scheme.

ENCODER - Device capable of translating from one method of expression to
another method of expression; translating a message into a series of binary
digits.

END OF FI LE - Termination or point of completion of a quantity of data.

ENTRY - (1) Statement in a programming system. In general, each entry is usually
written on one line of a coding form and punched on one card; some systems
permit a single entry to overflow several cards; (2) item of a list.

EQU,IPMENT, OFF-LINE - Peripheral equipment or devices not in direct communi­
cation with the central processing unit of a computer.

EQU IPMENT, ON-LINE ~ System and peripheral equipment or devices in which the
operation of such equipment is under control of the central processing unit,
in which information reflecting current activity is introduced into the data
processing system as soon as it occurs, directly in-line with the main flow of
transaction processing. .

EQUIPMENT, PERIPHERAL - Auxiliary machines which may be placed under
central computer control: card readers, card punches, magnetic tape feeds,
and high-speed printers. Peripheral equipment may be used on-line or off-line
depending upon computer design and job requirements.

ERROR - (1) General term referring to any deviation of a computed or a measured
quantity from the theoretically correct or true value; (2) part of the error due
to a particular identifiable cause: a truncation error, or a rounding error. I n a
restricted sense, that deviation due to unavoidable random disturbances, or to
the use of finite approximations to what is defined by an infinite series; (3)
amount by which the computed or measured quantity differs from the
theoretically correct or true value.

ERROR, ABSOLUTE - Magnitude of the error disregarding the algebraic sign or (if
a vectorial error) disregarding its direction.

ERROR, INHERITED - Error in initial values, especially the error inherited from
previous steps in the step-by-step integration. This error could also be the
error introduced by the inability to make exact measurements of physical
quantities_

ERROR, ROUNDING - Error resulting from rounding off a quantity by deleting the
less significant digits and applying some rule of correction to the part retained:
0.2751 can be rounded to 0.275 with a rounding error of .0001.

ERROR, TRUNCATION - Error resulting from the use of only a finite number of
terms of an infinite series, or from approximation of operations in the
infinitesimal calculus by operations in calculus of finite differences. Frequently.
convenient to define truncation error, by exclusion, as any error generated in
computation not due to rounding, initial conditions, or mistakes. A truncation
error would thus be that deviation of a computed quantity from the theoreti­
cally correct value that would be present even in the hypothetical situation in
which no mistakes were made, all given data were exact, no inherited error,
and infinitely many digits retained in all calculations.

24

EXECUTE - To interpret a machine instruction and perform the indicated opera­
tion(s) on the operand(s).

EXIT - A way of momentarily interrupting or leaving a repeated cycle of opera­
tions in a program.

EXPRESSION - Any symbol or group of symbols representing a variable, or group
of variables, possibly combined by symbols representing operators to a set of
definitions and rules.

F

FETCH - To obtain data from storage.

FIELD - Assigned area in a record to be marked with information.

FIELD, CONTROL - A constant location where information for control purposes
is placed; e.g., in a set of punch cards, if columns 79 and 80 contain various
codes which control whether or not certain operations will be performed on
any particular card, then columns 79 and 80 constitute a control field.

FILE - Organized information directed toward some purpose; mayor may not be
sequenced according to a key contained in each record.

FLAG - (1) Bit of information attached to a character or word indicating boundary
of a field; (2) indicator used to tell some later part of a program that some
condition occurred earlier; (3) indicator used to identify the members of
several intermixed sets.

FORTRAN - FORmula TRANslator. Programming language designed for problems
which can be expressed in algebraic notation allowing for exponentiation up
to three subscripts. The FORTRAN compiler is a routine for a given machine
which accepts a program written in FORTRAN source language and produces
a machine language routine object program. FORTRAN II added considerably
to the power of the original language by giving it the ability to define and use
almost unlimited hierarchies of subroutines, all sharing a common storage
region if desired. Later improvements have added the use of Boolean expres­
sions, and some capabilities for inserting symbolic machine language sequences
within a source program.

G

GAP - (1) Space or time interval used as an automatic sentinel to indicate the end of
a word, record, or file of data on a tape: a word gap at the end of a word, a
record or item gap at the end of a group of words, a file gap at the end of a
group of records or items; (2) absence of information for a specified length of
time or space on a recording medium, contrasted with marks and sentinels
which are the presence of specific information to achieve a similar purpose.
Marks are used primarily internally in variable word length machines. Sentinels
achieve similar purposes either internally or externally, but sentinels are pro­
grammed, not inherent in the hardware; (3) space between the reading or re­
cording head and the recording medium, such as tape, drum, or disk.

GAP, RECORD - Interval of space or time associated with a record to indicate or
signal the end of the record.

GATE, AND - Signal circuit with two or more input wires in which the output wire
gives a signal only if all input wires receive coincident signals.

GATE, OR - Electrical gate or mechanical device which implements the logical OR
. operator. An output signal occurs whenever there are one or more inputs on a

multi-channel input. An OR gate performs the function of the logical "in­
clusiveOR Operator."

25

GENERATE - To produce or prepare a specific term in accordance with a specific
and defined rule or program.

GENERATOR, PROGRAM - Program which permits a computer to write other
programs automatically. Two types: 1. the character controlled generator,
which operates like a compiler in that it takes entries from a library tape, but
unlike a simple compiler in that it examines control characters associated with
each entry, and alters instructions found in the library according to the direc­
tions contained in control characters. 2. Pure generator is a program that
writes another program. When associated with an assembler, a pure generator
is usually a program section called into storage by the assembler from a
library tape, which then writes one or more entries in another program. Most
assemblers are also compilers and generators. The entire system is usually re­
fernid to as an assembly system.

GENERATOR, RANDOM NUMBER - Machine routine or hardware designed to
produce a random number or series of random numbers to specified limi­
tations.

GENE RATOR, REPORT - Technique for producing complete data processing re­
ports giving only description of the desired content and format of output re­
ports, and certain information concerning the input file.

H

HANDLING, DATA - Same as processing, data (2).
, -

HARDWARE - The physical equipment or devices forming a computer and periph­
eral equipment.

HEAD - Device which reads, records, or erases information in a storage medium,
usually a small electromagnet used to read, write or erase information on a
magnetic drum or tape or the set of perforating or reading fingers and block
assembly for punching or reading holes in paper tape or cards.

HOLLERITH '- System of encoding alphanumeric information onto cards, synony­
mous with punch cards.

HOUSEKEEPING - Administrative or overhead operations necessary to maintain
control of a situation: involves setting up of constants and variables to be
used in the program.

HYSTE RESIS - (1) Lagging in the response of a unit of a system behind an increase -
or a decrease in the strength of a signal; (2) phenomenom demonstrated by
materials which make their behavior a function of the history of their
environment.

IMAGE - Exact duplicate array of information or data stored in (or in transit to) a
different medium.

IMAGE, CARD - Representation in storage of the holes punched in a card, so that
the holes are represented by one binary digit and the unpunched spaces are
represented by the other binary digit.

INDEX - Symbol or a number identifying a particular quantity in an array of simi·
lar quantities: X5 is the fifth item in an array of X's.

INDICATORS - Devices registering conditions such as high or equal conditions re­
sulting from a computation. Sequence of operations within a procedure may
be varied according to the position of an indicator.

INPUT ~ (1) Information or data transferred or to be transferred from an external
'storage medium into internal storage of the computer; (2) describing the
routines which direct input as defined in (1) or the d~ices from which such
info'rmation is available to the computer; (3) device or collective set of de­
vices,necessary for input as defined in (1).

26

INPUT-OUTPUT - General term for the equipment used to communicate with a
computer and the data involved in the communication.

INQUIRY - Technique whereby the interrogation of computer storage may be
initiated at a keyboard.

I NSTRUCTI ON - (1) Set of characters which defines an operation together with
one or more addresses, or no address, and which, as a unit, causes the com­
puter to perform the operation on the indicated quantities. "Instruction" is
preferable to the terms "command" and "order"; "command" is reserved for
a specifi!= portion of the instruction word: the part which specifies the opera­
tion which is to be performed. Order is reserved for the ordering of the charac­
ters, implying sequence, or the order of the interpolation, or the order of the
differential equation; (2) the operation or command to be executed by a
computer, together with associated addresses, tags and indices.

INSTRUCTION, MACRO - (1) Instruction consisting of a sequence of micro in­
structions inserted into the object routine for performing a specific operation;
(2) more powerful instructions which combine several operations in one
instruction.

INSTRUCTION, MI CRO - Small, single, short, add, shift or delete type of command.

INSTRUCTION, SYMBOLIC - Instruction in assembly language directly translatable
into a machine code.

INTELLIGENCE, ARTIFICIAL - Study of computer techniques to supplement
human capabilities. As man has invented and used tools to increase his
physical powers, he now is beginning to use artificial intelligence to increase
his mental powers. In a more restricted sense, the study of techniques for
more effective use of digital computers by improved programming techniques.

INTERFACE - Common boundary between automatic data processing systems or
parts of a single system.

INTERLACE - To assign successive storage locations: on a magnetic drum, usually
to reduce access time ..

INTERPRETER - (1) Punch card machine which will take a punch card with no
printing on it, read the information in the punched holes, and print a transla­
tion in characters in specified rows and columns; (2) executive routine which
as' computation progresses translates a stored program expressed in machine­
like pseudo code into machine code and performs indicated operations, by
subroutines, as translated. An interpreter is essentially a closed subroutine
which operates successively on an indefinitely long sequence of program
parameters, the pseudo instructions, and operands. It may usually be entered
as a closed subroutine and left by a pseudo-code exit instruction.

INTERRUPT - To temporarily disrupt the normal operation of a routine by a
special signal from the computer. Normal .operation can normally be resumed
from that point later.

ITEM - (1) Set of one or more fields containing related information; (2) unit of
correlated information relating to a single person or object; (3) contents of a
single message. . ,

ITERATIVE - Procedure or process which repeatedly executes a series of opera­
tions until some condition is satisfied. Can be implemented by a loop in
routine.

J

JAM, CARD - A pile-up.of cards in a machine.

27

K

KEY - (1) A group of characters which identifies or is part of a record or item; any
entry in a record or item can be used as a key for collating or sorting; (2)
marked lever manually operated for copying a character: a typewriter, paper
tape perforator, card punch, manual keyboard, digitizer or manual word
generator; (3) lever or switch on a computer console for manually altering
computer action.

KEYPUNCH - (1) A special device to record information in cards or tape by punch­
ing holes in the cards or tape to represent letters, digits, and special characters;
(2) to operate a device for punching holes in cards or tape.

L

LABEL - Symbols used to identify or describe an item, record, message, or file.
It may be the same as the address in storage.

LANGUAGE - System for representing and communicating information or data
between people, or between people and machines. A system consists of a
carefully defineq set of characters and rules for combining them into larger
units, such as words or expressions, and rules for word arrangement or usage
to achieve specific meanings.

LANGUAGE, ALGORITHMIC - Arithmetic language by which numerical pro­
cedures may be precisely presented to a computer 'in a standard form.
Language is intended as a means of directly presenting any ,numerical pro­
cedure to any suitable computer for which a compiler exists, and also to
communicate numerical procedures among individuals. The language itself re­
sults from international cooperation to obtain a standardized algorithmic
language.

LANGUAGE, COMMON MACHINE - Machine-sensible information representation
common to a related group of data processing machines.

LANGUAGE, COMMON BUSINESS ORIENTED - Specific language by which busi­
ness data pr.ocessing procedures may be precisely described in a standard
form, intended not only to present any business program to any suitable com­
puter for which a compiler exists, but as a means 6f communicating such
procedures among individuals.

LANGUAGE, INTERNATIONAL ALGEBRAIC - Forerunner of ALGOL.

LANGUAGE, MACHINE - (1) Language designed for interpretation and use by a
machine without translation; (2) system for expressing information which is
intelligible to a specific machine (a computer or class of computers). Such a
language may include instructions which define and direct machine opera­
tions, and information to be recorded by or acted upon by these machine
operations; (3) set of instructions expressed in the number system basic to a
computer, together with symbolic operation codes with absolute addresses,
relative addresses, or symbolic addresses.

LANGUAGE" OBJECT - Language which is output of an automatic coding routine.
Usually object language and machine language are the same, but a series of
steps in an automatic coding system may involve object language of one'step
serving as a source language for the next step.

LANGUAGE, PROBLEM ORIENTED - (1) Language designed for convenience of
program specification in a general problem area rather than for easy con­
version to machine instruction code. (Components of such language may bear
little resemblance to machine instructions.); (2) machine-independent language
where one need only state the problem, not the how of solution.

LANGUAG!=, PROGRAM - Language used by prograrnmers to write computer
routines.

LANGUAGE, SOURCE - Original form in which a program is prepared before
machine processing.

28

LENGTH, RECORD - Number of characters necessary to contain all the informa­
tion in a record.

LENGTH, WORD - Number of characters in a machine word. In a given computer,
the number may be constant or variable.

LIBRARY - Collection of information available to a computer, usually on magnetic
tapes.

LIBRARY, ROUTINE - Collection of standard, proven routines and subroutines by
which problems may be solved.

LIBRARY, SUBROUTINE - Standard and proven subroutines kept on file for use
at any time.

LINE, ACOUSTIC DELAY - Delay line using a medium providing acoustic delay as
mercury or quartz delay lines.

LIST, ASSEMBLY - Printed list, the byproduct of an assembly procedure. It lists
in logical instruction sequence details of a routine showing the coded and
symbolic notation next to the actual notations established by the assembly
procedure. Highly useful in the debugging of a routine.

LIST, PUSH DOWN - List of items where the last item entered is the first item of
the list, and the relative position of the other items is "pushed back" by one
item.

LIST, PUSH UP - List of items where each item is entered at the end of the list, and
the other items maintain their same relative position in the list.

LOAD - (1) To put data into a register or storage; (2) to put a magnetic tape onto a
tape drive, or to put cards into a card reader.

LOAD-AND-GO - Automatic coding procedure which compiles the program,
creating machine language, and proceeds to execute the created program.
Such procedures are usually part of a monitor.

LOCATION - Storage position in the main internal storage which stores one com­
puter word and which is usually identified by an address.

LOGIC - (1) Science dealing with criteria or formal principles of reasoning and
thought; (2) systematic scheme which defines the interactions of signals in the
design of an automatic data processing system; (3) principles and application
of truth tables and interconnection between logical elements required for
arithmetic computation in an automatic data processing system.

LOGIC, SYMBOLIC - (1) Study of formal logic and mathematics by special written
language which avoids the ambiguity and inadequacy of ordinary language;
(2) mathematical concepts, techniques, and languages as llsed in'(1), whatever
their particular application or context.

LOOK UP TABLES - See table.

LOOP - (1) Self-contained series of instructions in which the last instruction can
modify and repeat itself until a terminal condition is reached. Productive in­
structions in the loop generally manipulate the operands, while bookkeeping
instructions modify the productive instructions, cO,unt the number of repeti­
tions. A loop may contain any number of conditions for termination. The
equivalent can be achieved by the technique of straight line coding, whereby
the repetition of productive and bookkeeping operations is accomplished by
explicitly writing the instructions for each repetition; (2) communications
circuit between two private subscribers or between subscriber and local switch­
ing center.

LOW-OR DE R - Pertaining to the weight or significance assigned to the digits of a
number: in the number 123456, the lower order digit is six. The three low-
order bits of a binary word are another example. '

LPM - Lines Per Minute.

29

M

MAINTENANCE, FI LE - Periodic file modification to incorporate changes occurring
during a given period.

MAINTENANCE, PREVENTIVE - Maintenance of a computer system to keep
equipment in operating condition and prevent failures during productive runs.

MAINTENANCE, REMEDIAL - Maintenance performed by contractor ,following
equipment failure: performed as required, on an unscheduled basis.

MALFUNCTION - Failure in the operation of the hardware of a computer.

MASKING - (1) Process of extracting a nonword group or a field of characters from
a word or string of words; (2) process of setting internal program controls to
prevent transfers that otherwise would occur upon setting of internal machine
latches.

MATRIX - (1) Array of quantities in a prescribed form. In mathematics, usually
capable of being subject to mathematical operation by an operator or another
matrix; (2) arra\? of coupled circuit elements: diodes, wires, magnetic cores,
and relays, capable of performing a specific function such as conversion from
one numerical system to another. The elements are usually arranged in rows
and columns. A matrix is a particular type of encoder or decoder.

MESSAGE - (1) Group of words, variable in length, transported as a unit; (2) trans­
ported item of information.

MICROCOMMAND - A word obtained from the control store that exercises ele­
mentary control over the various system elements within a basic machine
cycle.

MICROPROGRAM - (1) Program of analytic instructions which the programmer
constructs from the basic subcommands of a digital computer; (2) sequence of
pseudo commands translated by hardware into machine subcommands; (3)
means of building various analytic instructions as needed from the sub­
command structure of a computer; (4) plan for obtaining maximum utilization
of the abilities of a digital computer by efficient use of the subcommands of
the machine.

MISTAKE - Human failing: faulty arithmetic, use of incorrect formula, or incorrect
instructions: sometimes called gross errors to distinguish from rounding and
truncation errors. Computers malfunction and humans make mistakes. Com­
puters do not make mistakes and humans do not malfunction, in this sense.

MIT - Master Instruction Tape. See tape, master instruction.

MNEMONIC - Pertaining to the assisting of human memory: a mnemonic term,
usually an abbreviation, that is easy to remember (mpy for multiply and acc

- for accumulator). .

MODIFY - (1) To alter a portion of an instruction to make its interpretation and
execution other than normal. Modification mayor may not permanently
change the instruction or affect only the current execution. Most frequent
modification is that of the effective address through use of index registers;
(2) to alter a subroutine according to a defined paramet~r.

MODULE - (1) Interchangeable plug-in item containing components; (2) an in­
cremental block of storage or other building block for expanding the com­
puter capacity.

MONITOR - To supervise and verify the correct operation of a program during its
execution, usually by a diagnostic routine used from time to time to answer
questions about the program.

MONITOR ROUTINE - See routine, executive.

30

MULTIPLEX - The process of transferring data from several storage devices opera­
ting at relatively low transfer rates to one storage device operating at a high
transfer rate so that the high-speed device is not obliged to wait for the low­
speed devices.

MULTIPROGRAMMING - Technique for handling numerous routines or programs
simultaneously by an interweaving process.

N

NANOSECOND - One-thousandth of a millionth of a second; 10-9 seconds.

NOISE - Meaningless extra bits or words which must be ignored or removEld from
the data when the data are used.

NORMALIZE - (1) To adjust the exponent and fraction of a floating point quantity
so that the fraction lies in the prescribed normal standard range; (2) to reduce
a set of symbols or numbers to a normal or standard form.

NOTATION - (1) Act, process, or method of representing facts or quantities by a
system or set of marks, signs, figures, or characters; (2) system of such symbols
or abbreviations used to express technical facts or quantities; as mathematical
notations; (3) annotation; note.

NOTATION, SYMBOLIC - Method of representing a storage location by· one or
more figures.

NUMBER - (1) The, or a total, aggregate, or amount of units; (2) a figure or word,
or a group of figures or words, representing graphically an arithmetical sum; a
numeral, as the number 45; (3) numeral by which a thing is designated in a
series, as a pulse number; (4) single member of a series designated by consecu­
tive numerals, as a part number; (5) character, or a group of characters, unique­
ly identifying or describing an article, process, condition, document, or class;
(6) to count, enumerate; (7) to distinguish by a number.

NUMBER, BINARY - A number, usually consisting of more than one figure, repre­
senting a sum, in which the individual quantity represented by each figure is
based on a radix of two. The figures used are 0 and 1.

NUMBER, DECIMAL - A number, usually of more than one figure, representing a
sum, in which the quantity represented by each figure is based on the radix of
ten. The figures are 0, 1,2, 3, 4, 5,6, 7,8, and 9.

NUMBER, HEXADECIMAL - Number, usually of more than one figure, repre­
senting a sum in which the quantity represented by each figure is based on a
radix of sixteen.

NUMBER, SYMBOLIC - Numeral, used in writing routines, for referring to a specific
storage location; such numerals are converted to actual-storage addresses in the
final assembling of the program.

o
OCTAL - Pertaining to eight; usually a number system of base or radix eight: in

octal notation, octal 214 is 2 times 64, plus 1 times 8, plus 4 times 1, and
equals decimal 140. Octal 214 in binary-coded-octal is represented as 010,
001, 100; octal 214, as a straight binary number is written 10001100. Note
that binary coded octal and straight binary differ only in the use of commas;
in the example shown, the initial zero in the straight binary is dropped.

OFF-LINE...., Descriptive of a. system and peripheral equipment or devices in which
the operation of peripheral equipment is not under the control of the central
processing unit. .

ON-LINE - Descriptive of a system and of peripheral equipment or devices in which
the operation of such equipment is under control of the central processing

31

unit, arid in which information reflecting current activity is introduced into
the data processing system as soon as it occurs. Thus, directly in-line with the
main flow of transaction processing.

OPEN-ENDED - Ouality by which addition of new terms, subject headings, or
classifications does not disturb the preexisting system.

OPERAND - Ouantity entering or arising ,in an instruction. An operand may be an
argument, a result, a parameter, or an indication of the location of the next
instruction, as opposed to the operation code or symbol itself. It may be the
address portion of an instruction.

OPERATION, HOUSEKEEPING - General term for the operation'performed for a
machine run before actual processing begins. Examples of housekeeping opera­
tions are establishing controlling marks, setting up auxiliary storage units,
reading in first record for processing, initial izing, setup verification operations,
and file identification.

OPERATION, PARALLEL - The performance of several actions, usually of a similar
nature, simultaneously through provision of individual similar or identical de­
vices for each such action. Particularly flow or processing of information.
Parallel operation is performed to save time over serial operation. Parallel
operation usually requires more equipment.

OPERATION, REAL TIME - Use of computer as an element of a processing system
in which times of occurrence of data transmission are controlled by other
portions of the system, or by physical events outside the system, and cannot,
be modified for convenience in computer programming. Such an operation
either proceeds at the same speed as the events being simulated or at a suffi­
cient speed to analyze or control simu Itaneous external events.

OPERATION, SEOUENTIAL - Performance of actions one after the other in time.
The actions referred to are of a large scale as opposed to the smaller scale
operations referred to by the term serial operation. For an example of
sequential operation consider Ax(BxC). The two multiplications indicated
follow each other sequentially. However, the processing of the individual
digits in each mu Itiplication may be either parallel or serial.

OPE RATION, SERIAL - Flow of information through a computer in time sequence
using only one digit, word, line or channel at a time.

OPE RATOR - (1) A mathematical symbol which represents a mathematical process
to be performed on an associated operand; (2) the portion of an instruction
which tells the machine what to do; (3) a machine operator.

OPERATOR, AND - (1) Logical operator which has the property that if Pis a state­
ment and 0 is a statement, then P AND 0 is true if both statements are true,
false if either is false or both are false. Truth is normally expressed by the
value 1, falsity by O. The AND operator is often represented by a centered dot
(P·O), by no sign (PO), by an inverted "u" or logical product symbol (P (10),
or by the letter "X" or multiplication symbol (PxO). Note that the letters
AND are capitalized to differentiate between the logical operator AND,the
conjunction; (2) the logical operation which makes use of the AND operator
or logical product.

OPERATOR, EXCLUSIVE OR - A logical operator which has tfie property that if
P and 0 are two statements, then the statement P*O, where the * is the
Exclusive OR operator, is true if either P or 0, but not both are true, and
false if P and 0 are both false or both true, according to the following table,
wherein the figure 1 signifies a binary digit or truth.

P 0 P*O

0 0 0 (even)
0 1 1 (odd)
1 0 1 (odd)
1 1 0 (even)

32

The Exclusive OR is the same as the Inclusive OR, except that the case with
both inputs true yields no output: P*Q is true if P or Q are true, but not
both. Primarily used in compare operations.

OPERATOR, INCLUSIVE OR - Logical operator which has the property that P or
Q is true, if P or Q or both is true; when the term OR is used alone, as in OR­
gate, the inclusive OR is usually implied.

OPE RA TOR, OR - Logical operator which has the property such that if P or Q are
two statements, then the statement P or Q is true or false varies according to
the following possible combinations:

P Q P or Q

False True True
True False True
True True True
False False False

OR DE R - (1) Defined successive arrangement of elements or events. Losing favor as
a synonym for instructions, due to ambiguity; (2) to sequence or arrange in a
series; (3) weight or significance assigned to a digit position in a number.

ORIGIN - The absolute storage address in relative coding to which addresses in a
region are referenced.

OUTPUT - (1) I nformation transferred from internal storage of a computer to
secondary or external storage, or to any device outside of the computer; (2)
routines which direct (1); (3) device or collective set of devices necessary for
(1); (4) to transfer from internal storage on to external media.

OVERFLOW - (1) The condition which arises when the result of an arithmetic
operation exceeds the capacity of the storage space allotted in a digital com­
puter; (2) digit arising from this condition if a mechanical or programmed
indicator is included (otherwise digit may be lost.

OVER LA Y - Technique for bringing routines into high-speed storage from some
other form of storage during processing, so that several routines will occupy
the same storage locations at different'times. Overlay is used when the total
storage requirements for instructions exceed the available main storage.

OVERPUNCH - To add holes in a card column that already contain one or more
holes.

p

PANEL, CONTROL - (1) Interconnection device, usually removable, which employs
removable wires to control the operation of computing equipment. Used on
punch card machines to carry out functions controlled by the user. On com­
puters it is used primarily to control input and output functions; (2) device or
component of some data processing machines that' permits the expression of
instructions in a semifixed computer program by the insertion of pins, plugs,
or wires into sockets, or hubs in the device, in a pattern to represent instruc­
tions, thus making electrical interconnections which may be sensed by the
data processing machine.

PARALLEL - (1) To handle simultaneously in separate facilities; (2) to operate on
two or more parts of a word or item simultaneously.

PARAMETER - (1) Quantity in a subroutine Whose value specifies or partly speci­
fies the process to be performed. It may be given different values when the
subroutine is used in different main routines or in different parts of one main
routine, but which ustlally remains unchanged throughout anyone such use;
(2) quantity used in a generator to specify machine configuration, designate
subroutines to be included, or otherwise to describe the desired routine to be
generated; (3) constant or a variable in mathematics, which remains constant

33

during some calculation; (4) definable characteristic of an item, device, or
system.

PASS - Complete cycle of reading, processing and writing: a machine run.

PATCH - (1) Section of coding inserted' into a routine to correct a mistake or alter
the routine, often not inserted into the actual sequence of the routine being
corrected, but placed somewhere else, with an exit to the patch and a return
to the routine provided; (2) to insert corrected coding.

PERIOD, PERFORMANCE - Period of 30 consecutive calendar days during which
. a newly installed computer is being tested for acceptance by the U.S. Govern­

ment. Such a period does not include equipment time used for data purifica­
tion, file conversion, and similar preparatory operations or those hours of
operation rescheduled as a result of equipment failure.

PI NG-PONG - Programming technique of using two magnetic tape units for multiple
reel files and switching automatically between the two units until the com­
plete file is processed.

PLOTTER - Visual display or board in which a dependent variable is graphed by an
automatically controlled marker as a function of one or more variables.

POINTER, BI NARY - Radix pointer in a binary number system: the dot that marks
the position between the integral and fractional, or units and halves in a binary
number.

POINT, LOAD - Preset point at which magnetic tape is initially positioned under
the read-write head to start reading or writing.

POINT, RADIX - Dot delineating the integer digits from the fractional digits of a
number; specifically, the dot that delineates the digital position, involving the
zero exponent of the radix from the digital position involving the minus-one
exponent of the radix. The radix point is often identified by the name of the
system (binary point, octal point, or decimal point). In the writing of any
number in any system, if no dot is included, the radix point is assumed to
follow the rightmost digit.

PRE-EDIT - To edit the input data previous to the computation.

PRECISION - (1) Degree of exactness with which a quantity is stated; (2) degree
of discrimination or amount of detail: a 3 decimal digit quantity discriminates
among 1000 possible quantities. A resu It may have more precision than it has
accuracy: the true value of pi to 6 significant digits is 3.14159; the value
3.14162 is precise to 6 figures, given to 6 figures, but is accurate only to about
5.

PRIMITIVE - Primitive usually pertains to the lowest level of a machine instruction
or lowest unit of language translation.

PROBLEM, BENCHMARK - Routine used to determine the speed performance'of a
computer. One method is to use one-tenth of the time required to perform
nine complete additions and one complete multiplication. A complete addition
or a complete multiplication time includes the time required to procure two
operands from storage, perform the operation and store the result, and the
time required to select and execute the required number of instructions.

PROCESS- General term covering such terms as assemble, compile, generate, inter­
pret, and compute.

PROCESS, ITERATIVE - A process for calculating a desired result by means of a
repeating cycle of operations, which comes closer and closer to the desired re­
sult; e.g., the arithmetical square root of N may be approximated by.an itera­
tive process using additions, subtractions, and divisions·only.

PROCESSING, AUTOMATIC DATA - Processing performed by a system of elec­
tronic or electrical machines so interconnected and interacting as to reduce to

34

a minimum the need for human assistance or intervention. Synonymous with
(ADP) and related to (system, automatic data processing).

PROCESSI NG, BATCH - Technique by which terms to be processed must be coded
and collected into groups before processing.

PROCESSING, DATA - (1) Preparation of source media which contain data or
basic elements of information, and the handl ing of such data according to
precise rules or procedures to accomplish such operations as classifying, sort­
ing, calculating, summarizing, and recording; (2) production of records and
reports .

.. PROCESSING, ELECTRONIC DATA - Data processing performed largely by elec­
tronic equipment.

PROCESSING, INFORMATION - A less restrictive term than data processing,
encompassing the complete scientific and business operations performed by a
computer.

PROCESSING, PARALLEL - The operation of a computer so that programs for
more than one run are stored simultaneously in its storage, and executed
concurrently.

PROCESSING, REAL TIME - Processing of information or data in a sufficiently
rapid manner so that the results of the processing are available in time to
influence the process being monitored or controlled.

PROCESSOR - (1) Generic term which includes assembly, compiling, and generation;
(2) shorter term for automatic data processor or arithmetic unit.

PROGRAM - (1) Complete plan for the solution of a problem, more specifically the
complete sequence of machine instructions and routines necessary to solve a
problem; (2) to plan the procedures for solving a problem. This involves the
analysis of the problem, preparation of a flow diagram, preparing details, test­
ing, and developing subroutines, allocation of storage locations, specification
of input and output formats, and incorporation of a computer run into a
complete data processing system.

PROGRAM, CONTROL - Sequence of instructions which prescribes the steps to be
taken by a computer system or any other device.

PROGRAM, GENERAL - Program expressed in computer code designed to solve a
class of problems, or specializing on a specific problem when appropriate
parametric values are supplied.

PROGRAM, OBJECT - Program which is the output of an automatic coding sys­
tem. Often the object program is a machine language program ready for execu­
tion, but it may_. well be in an intermediate language. Contrasted with (pro­
gram, source).

PROGRAM, SOURCE - Computer program written in a language qesigned for ease
of expression of a class of problems or procedures, by humans: symbolic or
algebraic. A generator, assembler, translator, or compiler routine is used to
perform the mechanics of translatin·g the source program into an object pro­
gram in machine language. See program, object, above.

PROGRAMMING, INTERPRETIVE - Writing of programs in pseudo machine
language, which is precisely converted by the computer into actual machine
language instructions before being performed by the computer.

PROGRAMMING, MICRO - Technique of using a special set of instructions for an
automatic computer that consists only of basic elemental operations which the
programmer may combine into higher level instructions, which he may then
program using the higher level instructions only: if a computer has only basic
instructions for adding, subtracting, and multiplying, the instruction for
dividing would be defined by microprogramming.

35

PROGRAMMING, SYMBOLIC - Use of arbitrary symbols to represent addresses in
order to facilitate programming.

PROM - Programmable Read Only Memory. Integrated circuit array that is manu­
factured with a pattern of all logical zeros or ones and has a specific pattern
written into it by a special hardware programmer.

PSEUDO-OPERATION - An operation which is not part of the computer's opera­
tion repertoire as realized by hardware; hence an extension of the set of
machine operations.

PSEUDO-RANDOM - Property of satisfying one or more of the standard criteria for
statistical randomness but being produced by a definite calculation process.

PUNCH, CAR D - Machine which punches cards in designated locations to store data
which can be conveyed to other machines or devices by reading or sensing the
holes.

R

RADIX - Quantity of characters for use in each of the digital positions of a number­
ing system. In the more common numbering systems the characters are some
or all of the Arabic numerals:

System Name

Binary
Octal
Decimal

Character

(0,1)
(0,1,2,3,4,5,6,7)
(0,1,2,3,4,5,6,7,8,9)

Radix

2
8
10

Unless otherwise indicated, the radix of any number is assumed to be 10. For
positive identification of aTadix 10 number, the radix is written in parentheses
as a subscript to the expressed number: 126(1 0). The radix of any nondecimal
number is expressed in similar fashion: 11 (2) and 5(8). Synonymous with
base.

RANDOM ACCESS - See access, random.

RATE, BIT - Rate at which binary digits, or pulses representing them, pass a given
point on a communications line or channeL

RATE, CLOCK - Time rate at which pulses are emitted from the clock. The clock
rate determines the rate at which logical or arithmetic gating is performed with
a synchronous computer.

RATE, ERROR - Total amount of information in error, due to the transmission
media, divided by the total amount of information received.

RATE, SAMPLING - Rate at which measurements of physical quantities are made:
if it is desired to calculate the velocity of a missile and its pOSition is measured
each millisecond, then t.he sampling rate is 1,000 measurements per second.

RATIO, SIGNAL-TO-NOISE - Ratio of the amount of signals conveying informa­
tion to the amount of signals not conveying information.

READ - (1) To sense information contained in some source; (2) the sensing of
information contained in some source.

READ-IN - To sense information contained in some source and transmit this
information to an internal storage.

READ, NONDESTRUCTIVE - Reading of the information in a register without
changing that information.

READ-OUT - To sense information contained in some internal storage and transmit
this information to a storage external to the computer.

36

READ, CARD - (1) Mechanism that senses information punched into cards; (2) in­
put device consisting of a mechanical punch card reader and related electronic
circuitry which transcribes data from punch cards to working storage or
magnetic tape_

READER, CHARACTER - Specialized device which can convert data represented
in one of the type fonts or scripts read by human beings directly into machine
language. Such a reader may operate optically, or if the characters are printed
in magnetic ink, the device may operate magnetically or optically.

READER, HIGH-SPEED - Reading device capable of being conriected to a computer
to operate online without seriously holding up the computer. A card reader
reading more than 250 cards per minute would be called a high-speed reader.
A reader which reads punched paper tape at a rate greater than 50 characters
per second could also be called a high-speed reader.

READER, MAGNETIC TAPE - Device capable of sensing information recorded on
a magnetic tape in the form oJ a series of magnetized spots.

READER, PAPER TAPE - Device capable of sensing information punched on a
. paper tape in the form of a series of holes.

RECORD, UNIT - (1) Separate record that is similar in form and content to other
records; (2) sometimes a piece of nontape auxiliary equipment (card reader,
printer or console typewriter).

REGISTER - Hardware device used to store bits or characters. A register is usually
constructed of elements such as transistors or tubes and usually contains
approximately one word of information. Common programming usage de­
mands that a regIster have the ability to operate upon information and not
merely store information; hardware usage does not make the distinction.

REGISTER, INDEX - A register which contains a quantity which may be used to
modify addresses. B-register.

REGISTER, SHI FT - Register in which the characters may be shifted one or more
positions to the right or left. I n a right shift, the rightmost characters are lost.
I n a left shift, the leftmost characters are lost.

RELIABILITY - (1) A measure of the ability to function without failure; (2) the
amount of credence placed in a result. .

RERUN - To repeat all or part of a program on a computer.

RESTART - To go back to a specific planned point in a routine, usually in the case
of machine malfunction, for the purpose of rerunning the portion of the
routine in which the error occurred. The length of time between restart points
in a given routine should be a function of the mean free-error time of the
machine itself.

RESTORE - To return an index register, a variable address, or other computer word
to its initial or preselected value.

RETRIEVAL, INFORMATION":'" Recovering of desired information or data from a
collection of graphic records.

RETURN - Mechanism providing for a return in the usual sense, in particular. a set
of instructions at the end of a subroutine which permit control to return to
the proper point in the main routine.

ROUND - Deletion of the least significant digit(s) with or without modifications to
reduce bias.

ROUTI NE - Set of coded instructions arranged in proper sequence to direct the com­
puter to perform a desired operation or sequence of operations, or· a sub­
division of a program consisting of two or more instructions' that are func­
tionally related (a program). See subroutine and program.

37

ROUTINE, DIAGNOSTIC - Routine used to locate a malfunction in a computer, or
to aid in locating mistakes in a computer pr.ogram. Thus, any routine specifi­
cally designed to aid in debugging or trouble shooting.

ROUTINE, EXECUTIVE - Routine which controls loading and relocation of
routines and in some cases makes use of instructions which are unknown to
the general programmer. Effectively, an executive routine is part of the
machine itself.

ROUTINE, FLOATING POINT - Set of subroutines which cause a computer to
execute floating point arithmetic. These routines may be used to simulate
floating point operations on.a computer with no built-in floating point hard­
ware.

ROUTINE, HOUSEKEEPING - Initial instructions in a program which are executed
only one time: clear storage.

ROUTINE, INTERPRETIVE - Routine that decodes and executes instructions
written as pseudocodes, contrasted with a compiler which decodes the
pseudocodes into a machine language routine to be executed ata ·Iater time.
The essential characteristic of an interpretive routine is that a particular pseudo
code operation must be decoded each time it is executed.

RUN - Performance of one program on a computer, thus the performance of one
routine, or several routines linked so that they form an automatic operating
unit, during which manual manipulations by the computer operator are
minimal.

s

SCALE - A range of values frequently dictated by the computer word-length or
routine at hand.

SCAN - To examine every reference or every entry in a file routinely as a part of a
retrieval scheme; occasionally, to collate.

SCREEN - (1) Surface in an electrostatic cathode ray storage tube where electro­
static charges are stored, and by means of which information is displayed or
stored temporarily; (2) to make preliminary selection from a set of entities,
selection criteria being based on a given set of rules or conditions.

SEARCH - To examine a series of items for any that have a desired property or
properties.

SEARCH, BINARY - Search in which the series of items is divided into two parts,
one of which is rejected, and the process repeated on the unrejected part until
the item with the desired property is found. This process usually depends
upon the presence of a known sequence in the series.

SEGMENT - (1) To divide a routine in parts, each consisting of an integral number
of subroutines, and each part capable of being completely stored in the inter­
nal storage and containing the necessary instructions to jump to other seg­
ments; (2) that portion of a routine too long to fit into internal storage
which is short enough to be stored entirely in the internal storage. Such a
segment contains the coding necessary to call in other segments automati­
cally. Routines which exceed internal storage capacity may be automatically
divided into segments by a compiler.

SE LECT - (1) To take the alternative A if the report on a condition is of one state,
and alternative B if the report on the con'dition is of another state; (2) to
choose a needed subroutine from a file of subroutines.

SE LECTOR - Device which interrogates a condition and initiates one of several
alternate operations.

SENSE - (1) To examine, particularly relative to a criterion; (2) to determine the
present arrangement of some element of hardware, especially a manually-set
switch; (3) to read pu nched holes or other marks.

38

SENSING, MARK - Technique for detecting special pencil marks entered in special
places on a punch card and automatically translating the marks into punched
hole. .

SEQUENCE - (1) To put a set of symbols into an arbitrarily defined order: to select
A if A is greater than or equal to B, or select B if A is less than B; (2) arbitrarily
defined order of a set of symbols: an orderly progression of items of informa­
tion or of operations in accordance with some rule.

SEQUENCE, CALLING - Instructions used for linking a closed subroutine with a
main routine: standard linkage and a list of the parameters.

SEQUENCE, CONTROL - Normal order of selection of instructions for execution.
In some computers one of the addresses in each instruction specifies the con­
trol sequence. In most computers, the sequence is consecutive except where a
transfer occurs.

SEQUENCE, RANDOM NUMBER - Unpredictable array of numbers produced by
change, and satisfying one or more of the tests for randomness.

SERIAL - (1) Handling of one after the other in a single facility, such as transfer or
store in a digit-by-digit time sequence, or to process a sequence of instructions
one at a time (sequentially); (2) time sequence transmission of, storage of, or
logical operations on the parts of a word, with the same facilities for successive
parts. Related to operation, serial and contrasted with parallel (2).

SERIAL-PARALLEL - (1) Combination of serial and parallel (serial by character,
parallel by bits comprising the characters; (2) descriptive of a device which
converts a serial input into a parallel output.

SET - (1) To place a storage device in a prescribed state; (2) to place a binary cell in
the one state; (3) a collection of elements having some feature in common or
which bear a certain relation to one another: all even numbers, geometrical

. figures, terms in a series, a group of irrational numbers, all positive even
integers less than 100 may be· a set or a subset.

SET, CHARACTER - Agreed set of representations (characters) from which selec­
tions are made to denote and distinguish data. Each character differs from all
others, and the total number of characters in a given set is fixed: a set may
include the numerals 0 to 9, the letters A to Z, punctuation marks and a blank
or space. Clarified by alphabet.

SHIFT - To move the characters of a unit of information columnwise right or left.
For a number, this is equivalent to multiplying or dividing by a power of the
base of notation. See below.

SHIFT, ARITHMETIC - To multiply or divide a quantity by a power of the number
base: if binary 1101, which represents decimal 13, is -arithmetically shifted
twice to the left, the result is 110100, which represents 52, which is also
obtained by multiplying 13 by 2 twice; on the other hand, if the decimal 13
were to be shifted to the left twice, the result would be the same as mUltiply­
ing byl 0 twice, or 1300.

SHIFT, CYCLIC - Shift in which the digits dropped-off at one end of a word are
returned at the other in a circular fashion: if register holds eight digits,
23456789, the result of a cyclic shift two columns to the left would be to
change the contents of the register to 45678923.

SIMULATION - (1) The representation of physical systems and phenomena by com­
puters, models or other equipment: an imitative type of data processing in
which an automatic computer is used as a model of some entity; a chemical
process. I nformation enters the computer to represent the factors entering the
real process, the computer produces information that represents the results of
the process, and the processing done by the computer represents the process
itself; (2) in computer programming, the technique of setting up a routine for
one computer to make it operate as nearly as possible like some other com­
puter.

39

SIMULATOR - (1) Computer or· model representing a system or phenomenon
which mirrors or maps the effects of various changes i.n the original, enabling
the original to be studied, analyzed, and understood by means of the behavior
of the model; (2) a program or routine corresponding to a mathematical
model Or representing a physical model; (3) a routine executed by one com­
puter bu"t which imitates the operations of another computer.

SOFTWARE - The totality of programs and routines used to extend the capabilities
of computers, such as compilers, assemblers, narrators, routines, and sub­
routines. Contrasted with hardware.

SORT - To arrange items of information according to rules dependent upon a key
or field contained in the . items or records: to digital-sort is to sort first the
keys on the least significant digit, and to resort on each higher order digit
until the items are sorted on the most significant digit.

SORT, MERGE - To produce a single sequence of items, ordered according to some
rule, from two or more previously unordered sequences, without changing the
items in size, structure, or total number. More than one pass may be required
for a complete sort, but items are selected during each pass on the basis of
the enti re key.

STORAGE - (1) The term preferred to memory; (2) pertaining to a device in which
data can be stored and from. which it can be obtained at a later time. The
means of storing data may be chemical, electrical or mechanical; (3). a device
consisting of electronic, electrostatic, electrical, hardware or other elements
into which data may be entered, and from which data may be obtained as
desired; (4) the erasable storage in any given computer. See memory.

STORAGE, BUFFER - (1) Synchronizing element between two different forms of
storage, usually between internal and external; (2) input device in which
information is assembled from external or secondary storage and stored ready
for transfer to internal storage; (3) output device into which information is
copied from internal storage and held for transfer to secondary or external
storage. Computation continues while transfers between buffer storage and
secondary or internal storage or vice versa take place; (4) device which stores
information temporarily during data transfers. See buffer.

STORAGE, DISK - Storage of data on the surface of magnetic disks. See disk,
magnetic and storage, magnetic disk.

STORAGE, MAGNETIC CORE - Storage device in which binary data are represented
by the direction of magnetization in each unit of an array of magnetic material,
usually· in the shape of o-rings, but also in other forms such as wraps on
·bobbins. Synonymous with core storage.

STORAGE, MAGNETIC DISK - Storage system consisting of magnetically coated
disks, on the surface of which information is stored in the form of magnetic
spots arranged to represent binary data. These data are arranged in circular
tracks around the disks and are accessible to reading and writing heads pn an
arm which can be moved mechanically to the desired disk and then to the
desired track on that disk. Data from a given track are read or written
sequentially as the disk rotates. See storage, disk.

STORAGE, PARALLE L - Storage of data in which all bits, characters, or words are
essentially equally available in space, without time being one of the factors.
When words are in parallel, the storage is said to be parallel by words; when
characters within words, or binary digits within words or characters, are dealt
with simultaneously, not one afier the other, the storage is parallel by charac­
ters, or parallel by bit.

STORAGE, PROGRAM - Portion of the internal storage reserved for the storage of
programs, routines, and subroutines. In many systems protection devices are
used to prevent inadvertent alteration of the contents of the program storage.
Contrasted with storage, temporary. .

40

STORAGE, TEMPORARY - Portion of the internal storage reserved for the data
upon which operations are being performed. Synonymous with working space
and storage; contrasted with storage, program.

STORE - (1) To transfer an element of information to a device from which the
unaltered information can be obtained at a later time; (2) to retain data in a
device from which it can be obtained at a later time.

SUBPROGRAM - Part of a larger program which can be converted into machine
language independently. See microprogram.

SUBROUTINE - (1) Set of instructions necessary to direct the computer to carry
out a well defined mathematical or logical operation; (2) subunit of a routine.
A subroutine is often written in relative or symbolic coding even when the
routine to which it belongs is not; (3) portion of a routine that causes a com­
puter to carry out a well-defined mathematical or logical operation; (4) routine
arranged so that control may be transferred to it from a master routine and so
that, at the conclusion of the subroutine, control reverts to the master routine
(usually called closed subroutine); (5) single routine may simultaneously be
both a subroutine with respect to another routine and a master routine with
respect to a third. Control is usually transferred to a single subroutine from
more than one place in the master routine; the reason for using the sub­
routine is to avoid having to repeat the same sequence of instructions in
different places in the master routine. See routine.

SUBROUTINE, CLOSED - Subroutine not stored in the main path of the routine.
Such a subroutine is entered by a jump operation; provision is made to return
control to the main routine at the end of the operation. The instructions re­
lated to the entry and reentry function constitute a linkage.

SUBROUTINE, STATIC - A subroutine which involves no parameters other than
the addresses of the operands.

SUBSET - (1) A set contained within a set; (2) a subscriber apparatus in a communi­
cations network.

SUBTRAHEND - The number or quantity which is subtracted from another num­
ber, called the minuend, giving a result usually called the difference, or Some­
times called the remainder.

SUM, LOGICAL - A result, similar to an arithmetic sum, obtained in the process of
ordinary addition, except that the rules are such that a result of one is obtained
when either one or both input variables is· a one, and an output of zero is
obtained when the input variables are both zero. The logical sum is the name
given the result produced by the inclusive or operator.

SYMBOL, LOGICAL - Sign used as an operator to denote the particular operation
to be performed on the associated variables.

SYNTAX - The rules governing sentence structure in a language, or statement
structure in a language such as that of a compiler.

SYSTEM - Assembly of procedures, processes, methods, routines, or techniques
united by" regulated interaction to form an organized whole.

SYSTEM, INFORMATION - Network of all communication methods within an
organization. Information may be derived from many sources other than a
data processing unit: telephone, personal contact, or by studying an operation.

SYSTEM,INFORMATION RETRIEVAL - System for locating and selecting, on
demand, certain documents or other graphic records relevant to a given infor­
mation requirement from a file. Examples of information retrieval systems are
classification, indexing, and machine searching systems.

SYSTEM, NUMBER - (1) Systematic method for representing numerical quantities
in which any quantity is represented as the sequence of coefficients of the

41

successive powers of a particular base with an appropriate point. Each
succeeding coefficient from right to left is associated with and usually mu Iti­
plies the next higher power of the base. The first coefficient to the left of the
point is associated with the zero power of the base. For example in decimal
notation 371.426 represents (3x1 02)+(7x101)+(1 x1 00)+(4x1 0-1)+(2x1 0-2)
+(6x10-3); (2) following are names of the number systems with bases 2
through 20: 2, binary; 3, ternary; 4, quaternary; 5, quinary; 6, senary; 7,
septenary; 3, octal, or octonary; 9, novenary; 10, decimal; 11, undecimal; 12,
duodecimal; 13, terdenary; 14, quaterdenary; 15, quindenary; 16, sexadecimal,
or hexadecimal; 17, septendecimal; 18, octodenary; 19, novemdenary; 20,
vicenary. 32, duosexadecimal, or duotricinary; and 60, sexagenary. The
Binary, Octal, Decimal, and Sexadecimal systems are widely used in com­
puters.

SYSTEM, OPERATING - Integrated collection of service routines for supervising
the sequencing of programs by a computer. Operating systems may perform
debugging, input-output, accounting, compilation, and storage assignment
tasks.

T

TABLE - Collection of data in a form suitable for ready reference, frequently as
stored in sequenced machine locations or written in the form of an array of
rows and columns for easy entry and in which an intersection of labeled rows
and columns serves to locate a specific piece of data or information.

TABLE, FU NCTLON - (1) Two or more sets of information so arranged that an entry
in one set selects one or more entries in the remaining sets; (2) a dictionary;
(3) a device constructed of hardware, or a subroutine, which can .either decode
multiple inputs into a single output or encode a single input into multiple
outputs; (4) a tabulation of the values of a function for a set of values of the
variable.

TABLE LOOK UP (TLU) - Obtaining a function value corresponding to an argu­
ment, stated or implied, from a table of function values stored in the com­
puter. Also, the operation of obtaining a value from a table.

TABLE, TRUTH - Representation of a switching function, or truth function, in
which every possible configuration of argument values 0, 1, or true-false is
listed, and beside each is given the associated function value 0-1 or true-false.
The number of configurations is 2N, where N is the number of arguments,
unless the function is incompletely specified: don't care conditions. An exam­
ple of a truth table for the AN D-function and the OR-function (inclusive) is:

VARIABLE
A B

° ° ° 1
1 ° 1 1

AND
AB
o
o
o
1

OR
A+B
o
1
1
1

TAG - Unit of information whose composition differs from that of other members
of the set so that it can be used as a marker or label. A tag bit is an instruction
word that is also called a sentinel.

TAPE, MAGNETIC - Tape or ribbon of any material impregnated or coated with
magnetic or other material on which information may be placed in the form
of magnetically polarized spots.

TAPE, PAPER - Strip of paper capable of storing or recording information. Storage
may be in the form of punched holes, partially punched holes, carbonization
or chemical change of impregnated material, or imprinting. Some paper tapes,
such as punched paper tapes, are capable of being read by the input device o'f a
computer or a transmitting device by sensing the pattern of holes which
represent coded information. '

42

TAPE, PU NCH - Tape, usually paper, upon wh ich data may be stored in the form of
punched holes. Hole locations are arranged in columns across the width of the
tape. There are usually 5 to 8 positions (channels) per column, with data
represented by a binary coded decimal system. All holes in a column are
sensed simultaneously in a manner similar to that for punch cards.

TIME, ACCESS - (1) Time it takes a computer to locate data or an instruction word
in its storage section and transfer it to its arithmetic unit where the required
computations are performed; (2) time required to transfer information which
has been operated on from the arithmetic unit to the location in storage
where the information is to be stored.

TIME, EXECUTION - The portion of an instruction cycle during which the actual
work is performed or operation executed: the time required to decode and
perform an instruction. See below.

TIME, INSTRUCTION "- Portion of an instruction cycle during which the control
unit is analyzing the instruction and setting up to perform the indicated
operation. Same as time, execution.

TIME, LATENCY - (1) Time lag between completion of instruction staticizing and
the initiation of the movement of data from its storage location; (2) rotational
delay time from a disc file or a drum file.

TIME-SHARI NG - Use of a device for two or more purposes during the same overall
time, accomplished by interspersing component actions in time.

TIME, SWITCHING - (1) Time interval between the reference-time, or time at which
the leading edge of switching or driving pulse occurs, and the last instant at
which the instantaneous voltage response .of a magnetic cell reaches a stated
fraction of its. peak value; (2) time interval between the reference time and the
first instant at which the instantaneous integrated voltage response reaches a
stated fraction of its peak value.

TIME, TURN-AROUND"": Time required to reverse the direction of transmission in
a communication channel.

TRACE - Interpretive diagnostic technique which provides an analysis of each exe­
cuted instruction and writes it on an output device as each instruction is
executed.

TRACK - Path along which information is recorded on a storage device: the track
on a drum or tape.

TRANSFER - (1) Conveyance of control from one mode to another by means of
instructions or signals; (2) conveyance of data from one place to another; (3)
instruction for transfer; (4) to copy, exchange, read, record, store, transmit,
transport, or write data; (5) instruction which provides the ability to break
the normal sequential flow of control.

TRANSFER OPERATION - See operation, transfer.

TRAP - (1) Special form of a conditional breakpoint activated by the hardware
itself, by conditions imposed by the operating system, or by a combination of
the two. Traps are an outgrowth of Switch-controlled halts or jumps. Internal
triggers or traps often exist in a computer. Since these are usually set only by
unexpected or unpredictable occurrences and since the execution time and
number of instructions for testing them can be burdensome, these triggers
usually cause an automatic transfer of control, or jump to a known location,
to record in other standard locations the location from which the transfer
occurred and the cause of the transfer. Some trapping features can also be
enabled or inhibited under program control: an overflow trap; (2) routine to
determine indirectly the setting of internal triggers in the computer.

TROUBLE-SHOOT - To seek the cause of a malfunction or erroneous program
behavior to remove the malfunction.

43

TRUNCATE - To drop digits of a number of terms of a series, lessening precision:
the number 3.14159265 is truncated to five figures in 3.1415, whereas one
may round off to 3.1416.

U

UNDERFLOW - (1) Condition which arises when a machine computation yields a­
result which is smaller than the smallest possible quantity which the machine
is capable of storing; (2) a condition in which the exponent plus the excess
becomes negative in a floating point arithmetic operation.

UNIT - Portion or subassembly of a computer which constitutes the means of
accomplishing some inclusive operation or function.

UNIT, ARITHMETIC - Portion of the hardware of a computer in which arithmetic
and logical operations are performed. The arithmetic unit generally consists of
an accumulator, specraf registers for the storage of operands and results,
supplemented by shifting and sequencing circuitry for implementing multipli­
cation, division, and other desired operations.

UNIT, ASSEMBLY - (1) Device which performs the function- of associating and
joining several parts or piecing together a program; (2) a portion of a program
c::apable of being assembled into a larger whole program.

UNIT, CONTROL - Computer segment which directs the sequence of operations,
interprets the coded instructions, and initiates the proper commands to the
computer circuits preparatory to execution.

UNIT, PAPER TAPE - Mechanism which handles punched paper tape and usually
consists of a paper tape transport, sensing. and recordinQ. or perforating heads
ana associated electrical and electronic equipments.

UNIT, HEAD PUNCH - Input-output unit of a computing system which punches
computed- results into cards, reads input information into the system, and
segregates output cards. The read-punch unit generally consists of a card feed,
a read station, a punch station,another read station, and output card stackers.

UNIT, TAPE - Device consisting of a tape transport, controls, a set of reels and a
length of tape capable of recording and reading information on and from the
tape, at the request of the computer urider the influence of a program.

UPDATE - (1) To put into a master file the changes required by current information
or transactions; (2) to modify an instruction so·that the address numbers are
increased by a stated a~ount each time the instruction is performed.

v
VALIDITY - Correctness: especially degree of closeness by which iterated results

approach the correct result.

VALIDITY CHECK - See check, validity.

VARIABLE - (1) Quantity which can assume any of the numbers of-some set of
numbers; (2) condition, transaction. or event which changes or may be
changed as a result of processing additional data through the system.

VECTOR - Quantity having magnitude and direction, in contrast with a scalar which
has quantity only.

VERIFIER - Device on which a record can be compared or tested for identity
character-by-character with a retranscription or copy as it is being prepared.

VERI FY - To check a transcribing operation by a compare operation. It usually
applies to transcriptions which can be read mechanically or electrically.

VOCABULARY - List of operating codes or instructions available to the programmer
for writing the program for a given problem for a specific computer. .

44

VOCABULARY, SOPHISTICATED - Advanced and elaborate set of instructions.
Some computers can perform only the more common mathematical calcula­
tions such as addition, multiplication, and subtraction. A sophisticated
vocabulary computer can go beyond this and perform such operations as
linearize. extract square root, and select highest number.

W

WORD - Ordered set of characters which occupies one storage location and is treated
by the computer circuits as a unit and transferred as such. OrdinarilY a word
is treated by the control unit as an instruction, and by the arithmetic unit as a
quantity. Word lengths may be fixed or variable.

WORD, CONTROL - Word, usually the first or last of a record, or-first or last word
of a block, which carries indicative information for the following words,
records, or blocks.

WORD, DATA - Word which may be primarily regarded as part of the information
manipulated by a program. A data word may be used to modify a program
instruction or be arithmetically combined with other data words.

WORD, INFORMATION - Ordered set of characters bearing at least one meaning
and handled by a computer as a unit, including separating and spacing, which
may be contrasted with instruction words. See word, machine.

WORD-LENGTH, VARIABLE - Having the property that a machine word may have
a variable number of characters, applicable either to a single entry whose
information content may be changed from time to time, or to a group of
functionally similar entries whose corresponding components are of different
lengths.

WORD, MACHINE - A unit of information of a standard number _of characters
which a machine regularly handles in each transfer: a machine may regularly
handle numbers or instruction in units of 36 binary digits; this is then the
machine word. See word, information.

WRITE - (1) To transfer information, usually from main storage, to an output·
device; (2) to record data in a register, location, or other storage device.

z
ZE RO - N_umeral normally denoting lack of magnitude. I n many computers there

are distinct representations for plus and minus zero.

ZONE - (1) Portion of internal storage allocated for a particular function or purpose;
(2) three top positions of 12, 11 and 0 on certain punch cards. In these posi­
tions, a second punch can be inserted so that with punches in the remaining
positions - 1 to 9 - alphabetic characters may be represented.

ZONE, NEUTRAL - Area in space or an interval of-time in which a state of being
other than the implementing state exists: a range of values in which no control
action occurs or a brief, period between words when certain switching action
takes place. Similar to dead band.

45

PART II

APPLICATION OF THE
MICROPROGRAMMED COMPUTERS

INTRODUCTION

There are fou r classes of appl ications wh ich are establ ished for Micro·
programmed computers. Each class contains several sub classes which are
implemented by control unit programming (firmware) variation.

Any class, augmentation of, or variation of, represents a computer archi·
tecture different from one another each offering specific advantages to
the intended end application.

General Purpose Computers

• General Purpose Computers With Standard I nstruction Set.
• General Purpose Computers With Added Special Instructions.
• General Purpose Computers With Background for Special Data Pro·

cessing or I nput/OutputFunctions.
• General Purpose Computer With Addition of Special Microprogram

Which is Entered and Exits From the Software Program, and Remains
Active for a Relatively Long Period of Time.

Special Purpose Computers

• Special I nstruction Set.
• Direct Application Microprogram.
• Direct Sequence of Subroutines.
• Interlaced Microprogram I nstructions and/or Subroutines With Partial

Processing.
• Subroutine Branching According to System States.

Emulator Computer

• Duplication or Approaching Equal Functional Capability With a Pre·
existing Fixed Instruction Stored Program General Purpose Computer.

• Duplication or Approaching Equal Functional Capability With a Pre­
existing Special Purpose Computer.

Language Processor

• Direct Execution of High Level Language Statements.
• Partial Execution of High Level Language Statements.

With such a large selection of organizations to choose from, use of a
microprogrammable computer provides a very useful method for arriving
at the most cost·effective processing or control system, including develop·
ment, hardware, programming and operating costs.

CLASSES OF APPLICATION

General Purpose Computers

• General Purpose Computer with Standard Instruction Set.

In this class of computers the microprogram is designed to fetch instruc·
tions from core memory and to execute them by microprogram sub·
routines. Once started the microprogram continues to loop back on
itself, looking for and executing instructions until it sees a halt instruc·
tion, or gets into an input mode, and waits for a character. The instruc·

48

tions share the core memory with data and flags. The coding of the in­
structions in core bears no particular relationship in format to the micro­
commands.

The general flow of firmware functions for the General Purpose Computer
is shown in Figure 4.

All operations, including arithmetic, logical, control, shift, branching,
jumps, input/output, and register transfer are programmed into micro­
program subroutines.

An example of General Purpose firmware is described in detail in Part IV
"MICRO 810 Firmware Manual".

• General Purpose Computer with added special instructions.

Firmware for a general purpose computer will contain several unused
operation codes which can be used for additional instructions. The simplest

ACKNOWLEDGE
AN

INTERRUPT
ADDRESS

SPARE
ROUTINE
ADDRESS

y

SUB­
ROUTiNE

A

INSTRUCTION
FETCH

FETCH, PREPARE
OPERAND
ADDRESS

JUMP TO·
INSTRUCTION

ROUTINE.

SUB­
ROUTINE

B

N

Figure 4. Firmware Function Flow

49

RETURN TO
INSTRUCTION
FETCH

SUB­
ROUTINE

N

way to add instructions is to make use of a spare operation code which
can easily be converted to a jump instruction to enter a new firmware
routine. The new instruction can be either a memory reference Or non
memory reference instruction. Multiple instructions can be added by using
sub-operation codes. Typical instructions which may be added are as

'follows:

Floating Point Arithmetic.
BCD Arithmetic.
Data Block Manipulation Routines.
Error Code Generation and Checking.
Push Down Stacks and Related Functions.
Special I nput/Output Routines for' Greater Speed, I ncreased Func­
tional Complexity, or Simplified Interfaces.
Curve Fitting Routines and Interpolation.
Square, Square Root, and Other Related Functions.
Table Search.
Character Test and Manipulation.
Communications Ha'ndshaking.
Filtering and Spectrum Analysis Operations.
Pattern Manipulation and Recognition Fl;Inctions.

The capacity to add instructions of these types tremendously increases
throughput capability and processing power of any General Purpose
computer.

The procedure for adding instructions is to define the instruction algorithm,
flow chart, and microcode, then to do a timing analysis of the routine to
see if it is equal to or less than the maximum permissible'interrupt time.
If not, the routine must be subdivided to do only a portion of the opera­
tion each time it is entered, or to allow testing of interrupts at scheduled
times during the routine .

• General Purpose Computer with Background Microprogram.

Microprograms can b_e added to the general purpose computer which run
continuously, or on command, and perform some function independent of
the software, or indirectly related to the software. These programs are
periodically entered as interrupt routines although they don't divert the
software program like a normal interrupt does. One example of this is the
concurrent input/output routine 'of the MICRO 810. This firmware trans­
fers a block of data between interface devices and core memory. The con­
current input/output operation is set up and initiated by software, but
proceeds independent of the software until the complete block of data has
been transferred. Another example is the communications multiplexing
function of the MICRO 820 Series computers. This firmware handles up
to 32 low speed asynchronous communications lines with character
assembly and disassembly performed by firmware. A character queue, and
status flags are maintained by the multiplexing firmware to provide a link
to the software program. The multiplexer firmware is controlled by the
software by means of programmable rates and configurations, enable and
disable functions, buffer assignments, and setting or resetting of control
flags. Once set up, however, the multiplexer firmware proceeds independ­
ently of any specific instructions from the software program. Sampling
rates are timed by hardware rate generators.

50

Other typical background microprograms which fit into this category are
as follows:

Analog Data Channel Scanning and I nput, or Analog Time Series
Sampling.
Matrix Manipulations.
Mapping Functions.
Coordinate Conversions.
Output of Memory Map to Large-Scale Lamp Display.
Statistical Functions, Such as Determining Average, Standard Devia·
tion, and Trends of Large Blocks of Data.
Continuous Data String Manipplations and Code Conversions.

• General Purpose Computer with Special Microprogram.

Oc<;:asionally there is a requirement for high processing rate (requiring
dedicated uninterrupted microprogramming) combined with software flex·
ibility. This combination may be achieved by placing a general purpose
instruction set, and a special microprogram instruction set in the same
computer. The general purpose or software instruction set is used for
relatively slow functions, such as system initial ization, monitoring console
parameters, updating displays, determination of system states; implement·
ing of relatively slow but complex system control functions, and message
preparation.

The microprogram routine is used for high-speed and/or complex data
input/output, computation, and control functions. The general procedure
for this type computer system is to perform all software functions neces·
sary to set up the microprogram for some segment of its entire job, and
then turn complete program control over to the special microprogram until
the segment is complete. At this time the special microprogram returns
control to the software program. A typical application for this approach
is machine tool control. The machine control function involves position
sampling, polynomial curve fitting, system control computations, control
outputs, tim ing, status monitoring, and other functions depending on the
machine function complexity. Use of microprogramming provides for
large increases in processing rate which are necessary to maintain precise
control, with complex curves, at specified mach ina- rates.

The software sets up the curves and process rates for a machine processing
segment. These cu rves and rates are interpolated by the microprogram.

Other examples besides machine tool control are as follows:

Sampling a large block of high speed data which occurs in a burst.
Spectrum analysis or filtering with frequency parameters set up by
software program.
Contour plotter.controller.

Special Purpose Computers

• Special Instruction Set

For many applications a standard software instruction set, such as the
MICRO 820 may be more sophisticated than needed. Such features as
multiple addressing modes, variable word length, concurrent I/O, etc.,

51

may not be needed. In this case it is possible and desirable to create a
special instruction set which will increase throughput rates, make better
use of core memory, and provide an instruction set tailored to a ~pecific
need. The general organization for this firmware is the same as for the
MICRO 820 firmware. However, functions may be deleted or modified,
such as testing for interrupts, operand addressing, etc.

Typical applications for a special purpose software instruction set are as
follows:

Compiler or Interpreter.
Special Communications Processor.
Automatic Tester.
Sequence Controller.
Business Processor.
Batch Terminal.
Inventory System.
Data collection/reduction system.

• Direct Application Microprogram.

In this case, the application program is completely written at the firmware
level. This type of program is suitable for dedicated applications, where
the processing is relatively simple, but very high processing rates are re­
quired, a permanent program is desired, or simplified interface hardware
is used, which requires microprogramming for the interface control and
data transfer sequences.

Direct application microprograms may occur in one of many different
general structures. Three of these wh ich will be described are as follows:

Direct Sequence of Instructions and/or Subroutines.
Interlaced Subroutines with Processing Status Flags and Partial Pro­
cessing During Each Entry to a Routine.
Branching to Subroutines Dependent on System States.

Each of these will be discussed briefly in the following paragraphs.

I n many applications a combination of any two or all three of these
methods may be used.

Direct Sequence of Instructions and/or Subroutines.

This approach is the simplest, and potentially the fastest, if it fits the
application. The flow diagram for this approach is shown in Figure 5.

The sequence of instruction execution is always the same. The loop may
be free running for very simple applications, or it may be initialized by a
real time clock where time precision is required.

A typical example of this organization is a dedicated communication line
processor where the computer samples and updates a large number of full
duplex, serial, asynchronous data lines. The firmware does sampling, char­
acter assembly and disassembly, and loads a buffer when a character is
assembled. The data is then transferred to another device. A program such
as this must be able to handle maximum line load conditions without loss
of data. Some of the functions, such as loading the buffer could be spread
out over a full character time to smooth out the work load, but then. the

52

COLD START

A

B

C

N

Figure 5. Subroutines.or Instructions

program would become more complex, and would become category 2.
Statistical averaging shows that the possibility of all lines being active, and
in both bit and character sync, is extremely remote. A system like this
could handle a line rate timesline quantity product which has a theoretical
peak instantaneous load of at least 130% of the processing time available
and not lose nearly as much data due to processing time limitations as due
to random line errors, because the probability of an instantaneous load
-approaching even 100% is very remote. .

Other examples of the direct sequence approach are as follows:

Low Speed Sequence Controller.
Dedicated Synchronous Data Line Concentrator.
Dedicated Device Controller.
High-Speed Status Monitor.
On-Line Performance Monitor.
Auxiliary High-Speed Processor.

Interlaced Microprogram Subroutines with Processing Status Flags and
Partial Processing during each entry to a Routine.

Many direct application microprograms involve a number of slow-speed
peripheral devices which could be serviced by the microprogram on a part­
time basis, or handle data formatted to cause load peaking. Each time a

53

device, or data value is looked at by the microprogram some different
phase of the process may occur, or many times no processing is required
at all. The phase may depend on the previous phase, or on the time inter­
val, or a status flag. The microprogram for this class of organization has
an execution, or main loop routine which goes from one routine to the
next, in sequence and tests status flags to see if the subroutine is to be
entered and what processing is required. The general flow is in Figure 6
and the expansion of one functional step is in Figure 7.

I n Figure 6 each circle represents a subroutine status, retrieval, test,
entry, update and storage function. The boxes represent the routines
which are entered from the main loop.

MAIN
LOOP·

Figure 6. General Flow for Interlaced Subroutines

As can be seen from Figure 7. processing time must be expended to fetch,
test, and store flags, pointer, and data, and this reduces the overall pro­
cessing capacity. However, this approach allows time spreading of the
work load which in most cases makes up for the loss in average processing
capacity by a large increase in peak load capacity. The two improvements
to interlacing are increased peak load capacity and increased overall
throughput capacity.

For example, to process a string of serial characters, load peaking comes
when a character has been assembled, and when a block has been assem­
bled. I n each case there is a time gap until the next character is assembled.
Therefore, the work load can be spread out over a number of bit sample
times. It can be partitioned according to line number to simplify sub­
routine organization. When a message block has been assembied, there is
even more time until the next block is assembled, so that the time for
character checking, buffer moving, etc., can sometimes be spread out
over an entire message block. Another requirement might be a code con­
version on an assembled character. This could be broken down into sub­
routines with only a portion being executed at each time interval.

54

UPDATE SYSTEM
-FLAG POINTERS

FETCH SUBROUTINE
FLAGS POINTERS.
AND DATA

TEST PROGRAM STATUS FLAGS -

RESTORE SUBROUTINE
FLAGS AND POINTERS

ENTER SUBROUTINE
AND PERFORM
PARTIAL PROCESSING

Figure 7. Expansion of One Functional Element of Interlaced
Routine Flow Chart

A typical situation which must be handled by interlacing to achieve high
throughput is as follows:

In Figure 8 is a block diagram of a microprogrammed peripheral controller.

CORE MEMORY

COMPUTER ROM

A B c

Figure 8. Peripheral Controller Block Diagram

55

The three devices must run concurrently to achieve maximum throughput.
Each of the devices has operations which can be broken up into sub­
operations as shown in Figure 9.

SUBOPERATION

A I II I I
B I I IIIII~-
c II I I. I I I

Figure 9. Simplified Processing Profiles

Device B could start as soon as device A has completed some of the sub­
operations. Therefore the sub-operations are interlaced. If the devices are
asynchronous,and the correspondence between sub-operations is not on a
one-to-one basis, the subroutine status tests may at times indicate no pro­
cessing for one cycle of the microprogram.

Typ.ical applications for interlaced subroutines are as follows:

Batch Processing Term inals.
On-Line Inventory and Audit Systems.
Process Controllers.
General Purpose Communications Terminals.
Monitoring Systems.

Subroutine Branching According to System States.

In some programs branching into subroutines may be a function of the
state of a peripheral device or time, or the settings on a control panel. In
many of these cases it is not necessary to fetch the status, data or flags of
each subroutine in sequence to see if it is to be processed.

For example in a particular machine control application, the processing
functions depend on machine temperature, RPM, etc.

For many of these parameters, a truth table may be prepared, which indi­
cates the next program state as a function of the previous and present
system states. Then the executive routine tests the states, and determines
which subroutines to execute next. Typical examples where this method
of microprogramming applies are as follows:

Power Plant Control.
Petroleum System Control.
Chemical Processing Plant.
Interactive Systems.
Numerical Machine Tool Control.
Medical and Laboratory I nstrumentation Control.

56

Emulator Computer

In the truest sense all applications of the microprogrammed computer can
be considered emulation. However, as defined here, the emulator computer
is the microprogrammed computer with its firmware allowing functional
duplication of another computer. Direct emulation of a preexisting general
purpose or special purpose computer is practical only if an advantage reo
suits. Usually a cost advantage is realized if the preexisting computer is
several yers old. I n many cases a speed advantage will result.

Many parameters need be considered to determ ine feasibil ity and efficiency
of a microprogrammed computer emulating.any specific general purpose
or special purpose computer. Essentially these parameters are:

Complexity and Number of Logical Elements.
Word Size and Number of Hardware Registers.
Maximum Main Memory (Core) Size and Word Length.
Execution Time Required Per Operation.
Input/Output Requ irements.

Detai.led knowledge of both the preexisting computer and the micro­
programmed computer is needed to properly evaluate the feasibility and
fit of emulation.

language Processors

The instruction set configuration of a special purpose computer which is
to be programmed at the assembler language level is usually a "hostile"
environment to the implementation of compiler level languages. The
microprogrammed processor permits the configuration of a minicomputer
architecture which is efficient in a compiler language environment. In
essence, the utilization of an assembler may be minimized and the com·
piler statements are in effect interpreted more directly.

For purpose of illustration the implementation of a BASIC compiler in
the MICRO 820 computer will be discussed. The MICRO 820 has a general
purpose instruction repertoire with conventional assembler and utility
software. A single·user BASIC has been developed for the MICRO 820
computer. This BASIC compiler is written in the MICRO 820 assembler
language. The early version of the BASIC was installed in the MICRO 820,
occupying approximately 7,500 bytes of core memory. A subsequent
version of the MICRO 820 architecture is being augmented with special
firmware routines such as floating point and other firmware routines. By
doubling the micro memory from 768 words to 1,536 words of micro·
commands, the storage requirement of the compiler in core memory is
reduced approximately 66 percent, or from 7,500 bytes to 2,500 bytes.
As a result, greater working storage is available for the user and the com­
pile time for the processor is sharply decreased.

This improvement in processor efficiency becomes more significant as the
system is extended to perform time share BASIC. An important capability
in the implementation of time share BASIC is an operating system which
permits the computer to look like a single machine to multiple users.
Microdata's time·sharing operating system (M ICROshare) initially resides
in approximately 4,096 bytes of core memory. Through microprogram·
ming the performance of MICROshare can be sharply increased by con-

57

verting various features of M ICROshare from software (1 fJsec per 8-bit
instruction) into firmware (200 ns per 16-bit instruction)_ When a time­
sharinll system is under control of a high-performance 'operating system,
it provides for the efficient transfer and execution of programs and files in
mass storage (disc memory). System response time is sharply increased;
core usage is significantly minimizec!.

The MICRO 1600 is designed to accommodate all the functions of the
MICRO 800 product line. This includes direct function processors, special
purpose computers which mayor may not require architectural augmenta­
tion and compiler language processors. The MICRO 1600 provides a new
dimension in the minicomputer field as a compiler language processor.
Large arrays of micromemories can be conveniently implemented. The
control memory in the MICRO 1600 can be aQdressed up to 16K X 16.
It permits the effective implementation of higher level languages such as
BASIC, COBOL, FORTRAN, SNOBOL, ATLAS or equivalent.

58

APPLICATION EXAMPLES

Automatic Test System

MICRO 811 computers are used to control all functions contained in auto­
matic facil ities for routine testing and detailed trouble-shooting of printed
circuit boards (Figure 10).

The MICRO 811, intended primarily for testing boards used in the MICRO
800 computer, generates stimulus functions and measures corresponding
responses of any circuit boards which are digital in nature. Memory boards
which are primarily analog are handled on a special tester.

Components of the automatic test system are the MICRO 811 computer
with 8K memory, instruction repertoire and input/output line driver and
receiver. The card test unit includes stimulus, response and control boards,
power supply, 480-pin patch board receiver, 10 test charact~rs and inter­
face cable.

Software includes a M icrodata board test control program, board test tape
generator, board test tape, control board and data board . Other options
are available for special-purpose uses.

Figure 10. Automatic Tes,t System

59

· Floating Point Processor (Special Purpose)

An ideal use of the MICRO 800 computer is as a floating point processor,
since the machine is an extremely high performance processor with the
facility for creating specialized instruction sets at the micro step level.

The machine can be mechanized by microprogramming, thus achieving
floating point operations at high processing and throughput rates.

As a floating point processor, the MICRO 800 operates on variable word
length floating point data. These word lengths may be specified - and
changed at any time - to be 8-128-bit fraction plus 8 bits for sign and
exponent. Floating point operations use four operating accumulator regis­
ters, each 136 bits long, which can be maintained either in core memory or
in a special high-speed scratch pad memory. - "

Data is transferred between accumulator registers and file registers at a
high rate of speed by using the microprogram. Maintaining the accumu­
lators in core memory results in low hardware cost, but processing speed
is somewhat slower than if the slightly more costly high-speed scratchpad
memory is used.

The floating point, processor can be integrated into a system in a variety of
configurations, each of which has a slightly different equipment require­
ment, a different mode of operation, requires a different microprogram
and yields a different-throughput rate.

These configurations are: a peripheral processor to an existing computer;
a separate, complete, self-contained floating point computer; a dual pro­
cessor, sharing memory with a standard processor or computer, or a com­
bined floating point processor and general purpose integer processor such
as the MICRO 810.

Fast Fourier Transform Processor (Special Purpose)

MICRO 800 computers are being used to perform spectral analyses of
electrical signals using the computational technique known as fast Fourier
transform.

Using specially designed fast Fourier transform read-only memories, the
MICRO 800and other components of the system sample and digitize input
signals at uniformly spaced time intervals, performs the spectral analysis
and processes the results to construct outputs of a specified form.

The output is displayed on one of three devices - an oscilloscope, slow
X-Y plotter or fast X-Yo plotter. The displays -are driven by'two 8-bit
digital-to-analog converters in a number of modes, including small-interval
stairstep, recurrent and ~ingle-cycle.

Several functions are'displayed, including input signal frame, power spec­
trum, log power spectrum, amplitude spectrum and phase spectrum.

The system features a special resolution of one part in 200 over the signal
input bandwidth and an amplitude error of less than loo,{,.

The MICRO 800 computers used in the system are configured with a 4096-
word core memory, real time clock, power fail protect, I/O expander with
32 inputs and 32,outputs, and ADC-DAC unit with power supply.

60

Multilane Parking Facility Computer

Multilane parking facilities associated with large modern buildings are
relatively complex and are now being automated with va~ious technologies.

The microprogrammed computer provides a significant reduction in the
amount of interface hardware, and provides for the permanence of fixed
hardwired control systems. Microprogramming provides this capability in
all fu nctions:

Fee Calculation.
Customer 1.0. Card Validation.
Audit Calculations and Printouts.
Automobile Counts by Lane.
Lane and Area Count Totalizations.
Violation Detections.
Fee Display Update.
Real Time Clock.
Input Customer 1.0. Data.

To keep the interfaces simple, all data including treadle pulses, 1.0. card
information, local data entry and loop detector pulses enter the computer
in bit serial form. Display data is on a common bus, with select lines to

. control distribution.

All data assembly, accumulation, evaluation, storage, retrieval, and control
functions are done within the processor, eliminating the requirement for
special external hardware to do counting, data assembly, detection logic,
and arithmetic functions.

In Figure 1 is a general block diagram showing the types of data going in
and out of the processor.

The ticket machines, treadles, loops, and fee displays are in remote loca­
tions from the computer and the printer, keyboard, etc., are nearby. The
data from the ticket machines consists of contact closures detecting the
presence of a ticket, or indicating output, and taking of a ticket. The
ticket machine reader inputs serial data which is organized similar to a
serial teletype message. This information consists of entry and exit time,
or customer 1.0.

In the lanes are loop detectors and treadles. Loop detectors input contact
closures when they are crossed. The treadle detectors input a series of
closures to indicate direction of travel. .

For generation of time of day clock, external time ot day pulses are used
instead of the internal computer clock to maintain time synchronism with
the local power company.

Fee display is output in digit serial BCD form accompanied by display
select codes, to minimize the number of wires to the display units.

For this example, which represents a medium size parking facility, the local
keyboard, printer, and punch is a teletype.

All of the items shown are mounted in the basic computer cabinet.

A system of .this type will handle 10-20 lanes with typical numbers of
devices such as 25 treadles, 50 loops, and 10 ticket machines .

. 61

In a program like this the core memory is used to store data tables, flags,
input and output maps, partially processed data, messages, clock, fee
totals, lane totals, and area totals. No program is stored in core because
the entire program is in firmware.

Data Communications Application, Special Purpose Concentrator

The MICRO 800 computer with a dedicated microprogram used. as a con­
centrator connects a large number of local data terminals to a small group
of dedicated trunk line modems on a time share basis. All data messages
handled have fixed formats.

The data concentrator is designed to function as a complete data and con­
trol interface, performing the following functions:

Data Source Scanning and Queueing.
Modem Poll Monitor and Response.

REAL
TIME
CLOCK
OPTION

4 CHANNEL
FULL DUPLEX
TRUNK MODEM
INTERFACE

1 K SCRATCH PAD
MEMORY

8 CHANNEL
DATA
TERMINAL
INTERFACE

,
I
I

READ
ONLY
MEMORY

1... ____________ ..

8CHANNEL .
DATA
TERMINAL
INTERFACE

TO TRUNK
MODEMS

TO DATA TERMINALS
(UP TO 120 TERMINALS)

Figure 11. Concentrator Block Diagram

Data Routing Control.
Control Character Examining al1d Processing.
Header Identification and Stripping.
Hand Shaking With Trunk Modems.
Data Transfer.
Supervisory Data Processing.
Canned Status Message Generation.
Addition of Header Information.
Parity and Block Character Check.
Character Bit Stripping and Adding.

62

All of these operations are performed with a maximum throughput delay
of 3 characters.

The interfaces to the data terminals and trunk modems is in bit serial
form, thus simplifying the interface hardware,

The concentrator operates on the 2400 baud synchronous data with the
trunk modems and simultaneously provides data clocks to the terminals.

A block diagram of the concentrator is shown in Figure 11. There are two
interface types, the trunk modem interface and the data terminal interface.
The scratch pad memory is used to store pointers, transfer instructions,
flags, request queues, and as a data buffer. All programming is in the read
only memory.

Within the MICRO 800, the arithmetic/logic unit is used for character
recognition, character shifting, conditional branching, parity and block
character checking, bit stripping, I-D to address conversion, queueing
preparation and evaluation, code conversion, and other miscellaneous
character processing fu nctions.

The MICRO 800 file registers are used for storage of data immediately
after it is read in from one of the modules or before reading it out; for
storage of status, and control words, for storage of indices, for storage of
outputs from the arithmetic unit, and as operational registers for the
arithmetic, logic and control functions performed by the MICRO 800.

The firmware instructions are organized in sequences similar to core
memory programs with the capability to execute nested subroutines, con­
ditional branching, and various arithmetic control and logic functions
necessary to efficiently perform identical functions on multiple data paths
with asynchronous timing between paths.

The real time clock option is used to generate an internal timing interrupt
at approximately 2500 cps. which controls all bit and character processing
cycles within the concentrator. The 2500 cps. rate ensures that no data bit
changes at 2400 cps. will be missed by the system.

Numerical Control of Vertical Machining Center

A MICRO 800 computer is being used as the complete numerical control
system for a vertical machining center utilizing some innovative machine
tool programming techniques.

Consisting of a vertical mill, an automatic tool changer and a digital con­
trol system with its associated panels, the mill is completely hydraulic
with options for high accuracy laser positioning feedback.

The MICRO 800 positions the table, saddle and spindle (X, Y and Z axis)
and controls the direction and speed of rotation of the spindle. The
microprogramming feature of the MICRO 800 is used to perform the feed­
back control of the position and velocity of the axis.

Both linear and circular contouring are provided with a positioning
accuracy of 200 micro-inches and velocity of the tool with respect to the
workpiece of 0.01 to 200 inches per minute.

The MICRO 800 also controls an automatic tool changer containing 20
tools. All motions are initiated and confirmed by the computer to achieve
the necessary sequences.

63

Machining operations are speCified through choice of a manual or tape
" preparation panel.

The manual panel permits moving the mill in a very simple manner and
also provides for entry of tool dimensions used for offset and length
compensation. -

The tape preparation panel permits programming the machine operations
in a sort of "graphical APT" manner. Canned sequences such as drill,
bore, tap, mill, etc., are specified along with all pertinent data without
regard to tool dimensions. Workpiece dimensions are specified in absolute,
relative or trigonometric form. Contours also are specified.

When the computer has validated the requested operation, it assumes con­
trol of the machining ·and can initiate, abort, terminate, test, accept or
reject through the tape paneL. If accepted by the operator, the operation is
preserved on magnetic tape for later use.

After completion of the first workpiece, additional 'copies are made by
merely replaying the cassette magnetic tape with the MICRO 800 control
system in the automatic mode. The cassette can be removed .from the con-
troller for future use. .

Vibration Analyzer (Special Purpose)

The MICRO 800 computer is being used as the heart of a vibration analysis
system operating with six channels of frequency shifters and filters, a
high-speed multiplexer and analog-to-digital converter, a specially designed
control panel and 13 other digital-to-analog converters.

Input to the system is from vibration sensors or other noise sources for
which power spectral density plots are desired. Frequency range for
analysis is 4 Hz to 6 KHz. Output data, both linear and decibel, is plotted
on up to 12 X-V plotters, and analysis of all six channels is done con­
currently.

Using customized firmware, the MICRO 800 computer operates the panel, .
controls frequency shifting thro.ugh a voltage controlled oscillator, per­
forms data averaging and maintains system timing.

In addition, the computer calculates both linear and logarithmic (decibels)
power spectra, controls the X-V recorders and can measure the period of
an external signal and convert it to frequency (4 Hz to 8. KHz) with an
accuracy of 0.1% of indicated frequency over the entire range.

Interface for Campus Central Processor, Satellite Computers

MICRO 800 computers are in use at a major university as the key ingred­
ients of remote terminals interfacing satellite computers at various campus
locations· to a large-scale central computer (F igu re 12). . ,

These "smart terminals" - versatile displays ranging from elegant to
not so elegant. - provide straightforward interfacing to other ·com­
puters which handle specific kinds of communications.

64

Use of the MICRO 800 in this application has eliminated the need for a
large amount of specialized hardware at remote sites, and provides an
abundance of flexible programming capability through the use of micro­
programmed firmware.

With its 220 nanosecond microcommand time and the ability to put input/
output and interface functions into firmware provides a far greater
throughput rate than is possible with core memory.

A safety factor is provided, too. Storage is fixed in the read-only control
memory, insuring that no one, no matter how inexperienced can modify
or destroy programs. Storage can be modified according to need by simply
exchanging boards.

The MICRO 800 also gives the university a "do-it-yourself" computer
capability. Computer center engineers can economicaliy tailor the per­
formance characteristics of the computer in firmware to suit the specific
needs of each terminal location.

Eventually, the university plans to interface all existing campus computers
to its large-scale central processor.

The MICRO 800 represents a general solution to the university's vast
number of applications because of its flexibility. Among these applications
are interactive display systems and automated systems, which, without the
MICRO 800, would have required two completely different sets of hard­
ware.

Figure 12. Campus Interface System

65

PART III

MICRO 800 USERS MANUAL

!_.
,

68

CHAPTER 1

SYSTEM DESIGN FEATURES

MICRO 800 is a byte-oriented microprogrammed computer designed for
dedicated applications. The functional, mechanical and electrical design of
the computer provides a set of functional elements which can be tailored
to specific application requirements. The MICRO 800 is a basic set of
hardware which, with modification, can be expanded to a series of
machines.

The design concepts embodied in the MICRO 800 provide a unique combi­
nation of features unavailable in other computer systems. These include:

Microprogramming

The MICRO 800 incorporates a set of commands which exert powerful
micro-control over the machine's data manipulation paths and control.
Command sequences which form microprograms are stored in a read-only
storage. The MICRO 800 can be programmed to emulate instructions of
general or sp.ecial purpose computers or to perform specific applications.

Speed

The machine features a 1.1 microsecond core memory cycle time and a
220 nanosecond command execution time. This speed permits rapid emula­
tion of macro instructions and can be used to minimize interface hardware
by applying the speed of the machine to interface functions.

Modularity

The modular electrical and mechanical design has all the flexibility needed
to apply the MICRO 800 to a wide range of applications. The modular
design of the core memory read-only storage, processor options, and
input/output elements permits expansion of the system as required. The
compact 8'lt..-inch-high enclosure has a number of spare circuit board slots
and ample power for system and peripheral interfaces even when the
processor is fully expanded.

Low Cost

The MICRO 800 uses TTL monolithic integrated circuits, including a large
number of the medium scale integration type for savings in parts and
assembly time. The use of a read-only memory for control further reduces
the number of circuits that might otherwise be required to provide similar
functional capability. Packaging and powering of the MICRO 800 is
designed for significant cost savings.

Software

Programs for the MICRO 800 include an assembler wrhten in FORTRAN
for use on large-scale computers, utility programs for generating the read­
only memory maps, processor and memory diagnostics, and a simulator
program for checking our microprograms. See Chapter 6, "Programming
Systems."

69

GENERAL CHARACTERISTICS

The advanced features and operating characteristics include:

• Memory addressing to 32K.
• 1024,4096 or 8192 byte memory modules.
• 32,768 bytes of memory in basic 8%·inch-high cabinet.
• 1.1 microsecond memory speed (full cycle).
• 8 or 9 bit memory bytes for efficient character handling.
• Direct memory access (DMA) option.
• 16 general-purpose eight-bit file registers.
• Up to. 1024 words of read only storage in 256 word modules with

optional expansion capability to 2048 words. .
• 220 nanosecond microcommand execution time.
• 15 basic commands.
• Three versions of control consoles.
• TTL integrated circuitry.
• Operating temperature range OOC to 50oC.
• Dimensions: 8% in«hes high, 19 inches wide, 23 inches deep.
• Power: 115/230 vac, 50-60 cycle.
• Four versions of read only memory.

SYSTEM ORGANIZATION

The MICRO 800 is a bus organized machine built around a file of 16 pro­
grammable registers and employing microprogrammed control. The. basic
elements of the machine are shown in the block diagram of Figure 13.

The machine executes 15 basic commands with many variations. All com­
mands are 16 bits in length and are in one of three formats. MICRO 800
programs, which are known as microprograms, are placed in a read-only
memory and thereafter become a part of the machine's hardware. The
program can be changed by replacing the printed circu it boards containing
the read-only memory. The commands read out of the read-onlymemory
control all aspects of the operation of the basic machine and are executed
in a single machine clock cycle.

The eight-bit arithmetic/logic unit performs all manipulation of data, in­
cluding: addition, subtraction, logical AND, logical OR, logic·al exclusive
OR, and one-bit left and right shifts. The output of the logic network is
the A-bus which is the input to the files and other machine registers. All
byte data movement is performed over this bus. The output of the file· is
one of the inputs to the· arithmetic/logic unit; the other is the B bus. Inputs·
to this bus are determined by the command, its options, and the I/O mode.
Bus inputs are the true output of the T register, the complement output of
the T register, the input bus and the eight-bit literal contained in some

. comm·ands.

The memory data and address busses communicate .between the core
memory modules, the processor and the DMA. Either the processor or the
DMA may operate with the memory, with the DMA having top priority.

70

RBUS

8 BIT LITERALS FROM ROM

Figure 13. MICRO 800 Block Diagram

The registers, file, arithmetic/logic unit and bussing are organized onto two
identical "data" printed circuit boards-a four·bit slice of the machine on
each board. All command decoding, control, clock generation and memory
timing are located on a single "control" board. Each 256 words of diode
read-only storage requires a single board and the core memory a pair of
boards. The fusable diode, and bipolar ROM's contain up to 2048 instruc­
tions on one board.

REGISTERS AND FILE

There are eight registers and 16 file registers, each of which has a specific
use in the processor, while the file is used for general storage and flags.

T Register

The eight-bit T register serves as the operand register for most of the
operate class commands, and as a buffer register for output and memory
operations. Both the true and complement output of the T register can be
gated to the B-bus as an operand. When both the contents of T and its
complement are selected as operands, the effective operand is all 1-bits; if
neither is selected the operand is all O-bits. The T register can be loaded

71

from cor.e memory on a read instruction, dii"ectly from read-only memory
using a load T instruction or from a file register by designating T as the
destination register of an operate class command. All programmed outputs
including both control and data bytes go out via the T register.

M Register
The eigl'\t-bit M register contains the seven high order bits of the processor
memory address. This register is gated onto the memory address bus at all
times except when a DMA operation is in process. The M register can be
loaded directly from ROM using a load M command, or can be loaded by ,
designating M as the destination register of an operate class command. The
M register is cleared on a load N command.

N Register
The eight-bit N register contains the eight low order bits of the processor
memory address. This register is gated onto the memory address bus at all
times except when a DMA memory operation is in process. The N register
can be loaded directly from ROM using a load N command, or by being
designated as the destination register of an operate class command.

L Register
The 10-bit L register is the machine's program counter and contains the
read;only storage address of the next command to be executed, unless
altered by a jump command. The eight low order bits of the L register are
a counter which is incremented by oneat each clock time when the pro­
cessor is running unless there is a command execution delay imposed. L is
loaded by a load L command, or as a destination register of an operate "
class command. '

U Register
The eight-bit U register is used to modify the output of the read-only
storage. For commands with D's in the four high order bits of 1's in bit 15
and the three low order bits, the contents of the U register is inclusive­
ORed with the eight high order bits of the read-only memory output as it
is gated into the R register. This allows for dynamic modification and
changing of operation codes and file register designators. U is loaded by a
load U command or as a destination register of an operate class command.

R Register
The 16-bit register holds the present command being executed. Its output
is decoded and controls the operation of the processor at each clock time.;

LINK Register
The one-bit LINK register holds the adder's high order carry from add, :
subtract, ,and compare commands and the shifted off end bit from the::
shift command. '

I/O Control Register

This three-bit register generates the control signals for the I/O bus. Seven "
separate control signals can be developed by decoding of the register out-,~
puts. It is loaded and cleared by a control command, placing the timing ot,;

, .
72

I/O control signals under command control. There are three output modes
and four input modes. The high order bit of the register is the input flag ..
When this bit is a 1-bit the input bus is substituted for the T register when
it is selected and the input bus is the source of data when executing an.
external I/O control command.

File Registers

The file consists of 16 eight-bit operational registers. All commands except
the load register with OP code (1) specify a file register to be operated on
or'to provide an operand or both. All file registers are functionally identi­
cal except for file register 0 which contains eight flags, and cannot be used
for general storage. The flags of file register 0 are given in Table 2.

BIT

o
1
2
3
4
5
6
7

CORE MEMORY

Table 2. File Register 0 Flags

FLAG

- Overflow Result Condition
Negative Result Condition
Zero Result Condition
Concurrent I/O Request Line
I nternal I nterru pt

- I/O Reply Line
- Serial Teletype
- External I nterrupt Line

The magnetic core memory is organized into pluggable modules of 4096 or
8192 bytes. The memory is addressed at the byte level and each byte con­
tains 8 or 9 bits. The ninth bit is devoted to the memory parity bit
option. Memory may be expanded up to four modules (32,768 bytes)
within the basic 8%-inch cabinet.

The memory is operated in read/write and full/half cycle operations. The
full-cycle memory timing is five 220 ns clock cycles (1.1 microseconds);
the hatf-cycle timing in the system is three clock cycles (660 ns). For a
read operation, the accessed data is placed in the T register two' clock cycles
after the start of the memory operation. Full cycle regeneration of the
data in the memory does not require the use of the T register and T may
be. modified by the microprogram before completion of the restore part of
the cycle.

The four memory modules plug into the memory address and data busses
which run vertically on the back-plane. A spare board slot wired for access
options which can include a DMA I/O' channel' and a spet;ial DMA
peripheral controller.

CONTROL MEMORY

The read-only memory provides the storage for commands and constants
,of the microprogram. Its output is gated into the R register where it con­
trols the operation of the machine at the next clock time.

73

The read-only memory is organized into modules of 256 words contained
on a single printed circuit board. Each of the four possible read-only
memory boards receives an address from the L register via the read only
memory address bus, and the selected board gates its addressed contents
onto the read-only memory data bus where it is entered into the R register.

The memory is constructed of diodes with a diode being placed at the
proper coordinates for l-bits in the commands. The commands are de­
signed to use a-bits as the normal case to reduce the number of diodes on
the board; on the average, about one-third o~ the total bits contain l's.

The read-only memory is always accessed for the next command while the
current command is being executed. This lookahead achieves faster com­
mand execution time. When the sequence of command execution is altered
by a jump or skip, an additional cycle must be taken to perform an access
before the next command is executed. When the machine is halted, the L
register contains the address of the first command to be 'executed when
operation is started.

ARITHMETIC FUNCTIONS

The M leRG 800 uses a 2's complement binary number system. The
registers and memory cells are 8 bits in length. For convenience of pro­
gramming, entering data, printing out, and preparing punched paper tape,
the 8 bits are organized into two hexadecimal digits. The hexadecimal
digits, with their decimal and binary equivalents, are as follows:

Decimal Hexadecimal

a a
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E
15 F

Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1'111 .

Throughout this document
hexadecimal numbers are
identified with single
quotes:

'33'
'AA'

For additional functions, the two numbers are added directly with the
carry out of the most significant bit going to LIN K, and overflow setting
the overflow bit, if designated in the command. .

For subtraction, one number is converted to a 2's complement and added
to the other.

74

For single byte operations, with a 2's complement number system, the
range of numbers is as follows:

Binary Hexadecimal Decimal

01111111 '7F'
.. _-------------
00000001 '01'
00000000 '00'

11111111 'FF'
11111110 "FE"

10000000 '80'

t
Sign bit

Examples of Arithmetic Functions:

Addition: A + B = C

Example
#1

Example
#2

Decimal

3
+5
8"

Decimal

65
+82
147
t

Beyond normal
range of + 127

+127
--.-----
+ 1

0

1
2

-128

Hexadecimal

'03'
'05'

'008' Link = 0
• Overflow = 0
Link

Hexadecimal

POSITIVE

NEGATIVE

Binary

00000011
00000101

000001000

t .
Lmk

Binary

01000001
01010010

'41'
+'52'
'093' Link = 0 010010011

t
Link

Overflow = 1 t L
Link Sign be­

comes
negative

On example #2 the overflow occurred because the range of positive num­
bers was exceeded. LINK was 0 because the carryout of the add was 0
even though overflow occurred.

Example Decimal Hexadecimal Binary
#3 2's Complement (2's Complement)

- 93 'A3' 10100011
+(-105) +'97' +10010111

-198 '13A' 100111010

+ Lin~ t Overflow Link = 1
occurs because Overflow = 1 Effective 8 bit
-198 exceeds result is a
the maximum positive number.
negative
number.

75

Example
#4

Example
#5

Decimal

45
+(-62)
--:-:r=r

t
No overt.low,
within number
range.

Decimal

77
+(-27)
+50

No overflow
within number
range. '

Link = 1
No overflow

Hexadecimal
2's Complement

'20'
+'C2'
'OEF' Link = 0

Binary
(2's Complement)

00101101
11000010

011101111
t. Overflow = 0 t Link Link

Hexadecimal
2's Complement

'40'
+'E5'

+'132'
t
Link = 1

Binary
(2's Complement)

01001101
+11100101
100110010

t
Link = 1

In general, arithmetic overflow occurs whenever the number range (+127
to -128) of the M IC RO 800 is exceeded on an arithmetic operation. As
can be seen in the examples, the link bit may be set even though an over·
flow did not occur. This is the result of using a 2's complement number
system.

To mechanize overflow detection in the MICRO 800 use is made of the
fact that when there is an overflow, the carry into the most significant bit
does not equal the carry out of the most significant bit. This can be shown
as follows:

Overflow Examples:

Decimal

127
+ 1

128
t

Overflow
because the
positive range
was exceeded.

Hexadecimal

'7F'
'01'

'080'

76

Binary

01111111
00000001

010000000

t
The carry into bit 7 = 1

The carry out of bit 7=0

Therefore overflow
occurred.

Link = 0

Decimal

126
+ 1

127

t
No overflow
because positive
range not
exceeded.

Decimal

-93
+(-105)

-198

Overflow

Decimal

77
-27
+50

No overflow

Decimal

93
+105
198

Overflow

Hexadecimal

'7E'
'01'

'07F'

Hexadecimal

'A3'
+'97'
'13A'

t
Link

Hexadecimal

'40'
+'E5'

+'132'

t
Link

Hexadecimal

'50'
+ 69
OC6

Binary

01111110
00000001

001111111

i6 carry in
o carry out

Carry into bit 7 = carry out.
ofbit7.
Therefore no overflow.

Binary

10100011
+10010111
100111010

narry into bit 7 = 0
Carry out of bit 7 = 1
Therefore overflow

occurred.

Binary

01001101
11100101

100110010

ttrry into bit 7 = 1
Carry out of bit 7 = 1
Therefore no overflow.

Binary

01010010
01101001

011000110
~,
01

Carry in does not = carry
out. Therefore overflow
occurred.

For 2's ·complement. the number is first converted to l's complement.
then 1 is added.

Example - 2's complement of '35'

.-- '35' hex = 00110101 binary
2's compo 11001010 ones complement

L...:.........·CB· hex= 11001011 ones complement +1

77.

STATUS AND CONDITION FLAGS

Internal Status

Eight internal status bits are provided to designate a particu lar internal
interrupt condition. When any of the internal status bits are a 1-bit, the
internal interrupt flag (bit 4) in file register 0 is also a 1-bit. This flag is
tested by the microprogram to detect the presence of the internal inter­
rupt condition. The internal status bits are entered via the A-bus into the
selected file register by a control command, at which time the status bits
are cleared. The eight internal status bits have the assignments given in
Table 3.

BIT

o
1
2
3
4
5
6
7

Table 3. I nternal Status Bits

INTERNAL STATUS

Console Interrupt
DMA Termination
Real-Time Clock Interrupt
(Spare)
Memory Parity Error Interrupt
(Spare)
Console Halt Switch
Power Fail/Restart Interrupt

All the internal status bits except the console interrupt and halt are
associated with processor options and may be reassigned for special
applications.

Condition Flags

The overflow, negative and zero conditions resulting from an operation
involving the arithmetic/logic unit may be stored in file register 0 (see
Table 3). The condition flags are updated for command 7 and for com­
mands 8,9, B - F if bit 4 is a 1-bit. These condition flags can be tested by
the microprogram for implementing various conditional operations. Defini­
tion of the condition flags is as follows:

Overflow - The Overflow condition flag stores the arithmetic overflow
condition during an add, subtract or copy command. The overflow condi­

, tion flag stores the shifted off end bit during a shift command. Arithmetic
overflow occurs, when the result exceeds the range of the computer's 8-bit
registers.

Negative - The Negative condition flag stores the high order bit of the
result on the A-bus, since the 2's complement number system uses the
most significant bit as the sign bit.

Zero - The zero condition flag stores the zero test condition of the result
on the A-bus. When the link control (bit 7) of the operate commands is a
1-bit, the zero condition flag may not be set to indicate a zero result unless
it is already set; it may be reset to indicate a non-zero result. This provides

78

a linked zero test over multiple bytes of a variable byte operation. For a
detailed description of linked zero test, refer to the description of the Add
command.

COMMAND TIMING

Each command is executed in a single clock cycle time, although execu­
tion may be delayed because of core memory or read-only memory opera­
tions. The system clock rate is 4.55 mHz, and the clock cycle 220 nano­
seconds.

Memory Busy Delays

If the memory is busy (because of processor or DMA operation) at the
time a read or write memory command or a command which will modify
the M or N registers is to be executed, execution is delayed until the
memory operation is completed. These commands are executed on the
last clock of the memory half or full cycle. If a DMA request is pending at
the time a read or write memory command is to be executed, execution
is delayed to give the DMA memory priority.

Memory Data Delays

Operate class commands. whic~ select the contents of either the T register
or its complement during the first two cycles of a processor memory read
operation are executed during the third cycle of the read operation. Th is
allows time for the accessed byte to be placed in the T register.

The memory delays are explained in more detail in the description of the
memory command.

Read-Only Memory Delays

An extra cycle is required for command execution because of the look­
ahead nature of the read-only memory for the following conditions:

• Jump command.
• Test If zero command when a skip occurs.
• Test If not zero command when a skip occurs.
• Compare command when a skip occurs.
• Operate class commands which have the L register designated.

79

CHAPTER 2

MICROCOMMAND REPERTOIRE

This section contains descriptions of all MICRO 800 commands. With each
description is a diagram showing the format of the command and its opera·
tion code, given in hexadecimal. Above each diagram is the command's
mnemonic code and the name of the command. Under each diagram is a
description of the command, followed by a,list of the registers and indi-'
cators that can be affected by the command. The timing of each command
is one clock cycle (220 ns) unless the L register is designated as the desti­
nation of the result, in which case the command execution time is two
cycles.

COMMAND FORMATS

There are three basic command formats. Each command is 16 bits in
length and is contained in a single read-only memory location.

The formats are literal commands, operate commands and execute
commands.

Literal Commands

The literal class commands have the following format:

I OP fir Literal I
1514131211 10 9 8 7 6 5 4 3 2 1 0

In this format the operation code occupies the four high order bits. Bits
11-8 contain either a file register designator (f) or a register or control
group designator (r). Bits 7-0 contain an eight-bit literal which is trans­
ferred as an operand to the B-bus.

Operate Commands

The operate class commands have the following format:

OP f

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

In this format the operation code occupies the four high ord,er bits. Bits
11-8 contain a file register designator (f) which specifies one of the 16 file
registers to be used in command execution. Bits 7-4 contain control
option bits (c) which are unique to the specific command. When bit 3 is

. one, the result of an operate class command is inhibited from being placed
in the designated file register. Symbolically, this is specified to the pro­
gram assembler by appending an * to the command mnemonk The
register designator (r) in bits 2-0 specifies a processor register destination
to receive the re'sult of the operation.

80

Since there is only one file register selected at a time, the only file register
that can receive the result of a particular operate command is the same
file register selected for the operand. The register's identifier is added as a
second character of the command mnemonic. The register codes (Table 4)
are:

Table 4. Register Designators for Operate Commands

Designator Mnemonic Register

none
T T Register
M M Register
N N Register

o
1
2
3
4
5
6
7

L L Register-addresses: OOO-OFF and 200-2FF
K L Register·addresses: 100-1 FF and 300-3FF
U U Register
S U Register ORed into command (except for

Control command) .

Execute Command

The execute command causes the contents of the U register to be ORed
with the eight high order bits of the· command to form an effective
command. This operation is also performed when r=7 for the operate
class commands. The execute command has zero·bits in the four high order
bits. The remainder of the command has the format required for the
effective command to be executed.

Formats for Execute Commands

o f

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o ~ L~~ I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Literal Commands

If U contains Operate
command OP code.

If U contains Literal
command OP code.

The literal commands, listed by OP code are as follows:

OP Code

1
2
3
4
5
6

Command

Load Register
Load File
Add to File
Test Zero
Test Not Zero
Compare

81

The literal commands are used to load constants into various MICRO 800
registers, to test for bit configurations and data values in file registers, and
to load or add constants to file registers. Eight 'of the 16 bits are used as
command, and the other 8 are available as data.

Operate Commands

The operate commands, listed by OP code are as follows:

OP Code

7
8
9
~
B
C
D
E
F

Command

Control
Add
Subtract
MemorY)
Copy
OR
EXCLUSIVE OR
AND
SHIFT

The operate commands are used to control the flow of data in or out and
through the MICRO 800 computer, and to perform the arithmetic and
logic functions in the computer.

With this powerful command set it is possible to implement aU of the data
handling and control functions of a larger computer.

TERMS AND SYMBOLS USED IN THE COMMAND DESCRIPTIONS

'AA'
X'AA'

Contents of file 1.
Contents of file 1 to T register.
Indeterminate'value or function.
Hexadecimal number in flow chart.
Hexadecimal constant in assembly language statement.

Affected Register States

For each command certain registers are modified. These are described in
examples as affected registers.

/\ LOGICAL AND
V LOGICAL OR
¥ LOGICAL EXCLUSIVE OR

GQL Effective Address of L register as used in examples. (Because of
'024' the lookahead feature of the MICRO 800, the actual L address is

one higher than indicated in the examples.)

MICROCOMMANDS..,...FORMATS, DESCRIPTIONS, AND EXAMPLES

The formats of the examples for each command have been selected to
facilitate explanation of that particular command. Because of the differ­
ences in characteristics and utilization of the various commands, and
associated data patterns, the example formats are different for each
command category.

82

LT LOADT

I 11/19 Literal I
1514131211 10 9 8 7 6 5 4 3 2 1 0

The contents of the eight-bit literal field are placed in the T register. The
cond ition flags and LI N K reg ister are not affected.

This command is used to provide constant data values, bit patterns for
comparison tests, masks, and input/output control codes, which are most
conveniently used in the T Register.

The T register is also modified by designation as destination register in
operate commands.

Example: Load T with hexadecimal value 'AA'

Machine Assembly Flow Chart
L Code Language Notation

'024' 'llAA' LT X'AA' 'AA'-T

Affected Register States:

Register Before After

L '024' '025'
T 'AA'

. Command Execution Time - 220 nanoseconds.

LM LOAD M

12 Literal I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the eight-bit literal field are placed in the M register. The
condition flags and LINK register are not affected.

This command is used to set the M register for accessing dedicated core
locations. The M register is also modified by designation as destination
register in operate commands.

Example: Load M with page address hexadecimal value '55'

L

'134'

Machine
Code

'1255'

Assembly
Language

LM X'55'

83

Flow Chart
Notation

'55'-M

Affected Register States:

Register

L
M

Before

'134'

After

'135'
'55'

Command Execution Time - 220 nanoseconds.

LN LOADN

I 19 ' 'I Literal I
151413121110 9 8 7 6 5 4.3 2 1 0

The contents of the eight-bit literal field are placed in the N register and
the M register is cleared. The condition flags and LINK register are not
affected.

This command is used to set the N register for accessing dedicated core
locations. If the location is in page 0 of core ('OOOO'-'OOFF') only this
command is required'to set both the M and N registers, since M is auto-.,
matically cleared. If M is not to be page 0, then N must first be set, follow­
ed by M.

Example: Load N with address hexadecimal value "F" and set M = '00'

Machine
·.L Code

'235' '13FF'

Affected Register States:

Register

L
M
N

Assembly
Language

LN X'FF'

Before

'235'

Flow Chart
Notation

'FF'-N
'OO',-M

After

'236'
'FF'
'00'

Command Execution Time: 220 nanoseconds.

LU LOAD U

I 16 Literal I
151413121110 9 8 7 6 5 4 3 2 1 0

84

This command is used to place specific command codes into the U register,
which is used in conjunction with general function EXECUTE class com­
mands. The U register can also be modified by being designated as the
destination register in an operate command. The differences in utilization
of these two approaches for modifying the U register are described in a
later paragraph which discusses U register applications.

Whenever the U register is modified it is necessary to place at least one
command between the modifying command and a command which uses
the U register as an input. Otherwise an undefined value of U may be used.

Example: Load U with hexadecimal value '84'

Machine Assembly Flow Chart
L Code Language Notation

'155' '1684' LU X'84' '84'-U

Affected Register States:

Register Before After

L '155' '156'
U '84'

LZ LOAD ZERO CONTROL

10 Literal I
1514131211 10 9 8 7 6 5 4 3 2 1 0

When this command is executed, a pulse called CGOX of approximately
200 nanoseconds width is generated. CGOX is available on the I/O and
option board connectors of the MICRO 800. During CGOX, the literal
value is on the A-bus, which is available to the option board. An 8 bit con­
trol latch can be set on the option board by this command and used for
any purpose, such as enabling counters, interrupts, or control lines.

On I/O boards, a literal value must be first placed in T, and then strobed
out with CGOX. CGOX can be used without the literal to initiate special
I/O sequences.

Example: Set bits 1 and 2 of special control latGh on option board using
Load Zero Control.

Bit pattern 00000110"":' '06'

Machine Assembly Flow Chart
L Code Language Notation

'055' '1006' LZ X'06' '06'-Z

85

Affected Register States:

Register

L
Special

LS LOAD SEVEN CONTROL

17

Before

'055'

Literal

15 14 13 12 11 10 9 8 7 6' 5 4 3 2 1 0

After

'056
'06'

The eight bits of the literal perform control functions as described below.

1700 - No operation.

1701 - Enable serial teletype. The serial teletype input is gated into bit 6
of file register O. The serial TTY value is available all the time.

1704 - Disable external interrupts: Recognition of external interrupts is
inhibited.

1708 - Enable external interrupts: Recognition of external interrupts is
enabled.

Note: Commands 1704 and 1708 are meaningful only when the option
board has been installed in the MICRO 800, and a modification has been
made to the computer backplane. These commands set and reset an inter­
rupt input enable latch on the option board. Without the option board the
external interrupt line is alway~enabled.

1710 - Disable real time clock: The real-time clock and interrupt art;!
disabled.

1720 - Enable real time clock: The real-time clock and interrupt are
enabled. -

Note: These commands are meaningful only when the option board con­
taining the real time clock is installed. When the clock is enabled it is pre­
set to its wired value. Each time the real time clock cycles, it sets internal
status bit 2, which remains set until sampled by the microprogram.

1740 - Spare.

1780 - Halt: The processor is halted.

When the processor halts, all clocks stop, except for clock 6, and the L
register remains at the next value after the halt command. Depressing the
run switch will start the program' at the next instruction after the halt
command.

Command Execution Time - 220 nanoseconds.

86

Non-conflicting commands can be executed simultaneously. For example,
enable external interrupts can be combined with enable real time clock.
The bits of the literal parts of the commands are ORed to produce the
hexadecimal code.

Example:

Enable Interrupts
Enable Real Time Clock
Composite Command

JP JUMP

14/15/1C/1D

Machine
Code

1708
1720
1728

Literal

Literal
Bits

0000
0010
0010

1000
0000
1000

15141312 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the eight-bit literal are placed in the eight low order bits
of the L register; the content of bit 8 is placed in L8 and the content of
bit 11 is placed in L9. The location of the next command to be executed
is at the address specified by the new contents of the L register. The execu­
tion time of the command is two cycles. The jump operation codes for
the four 256-word pages in read-only memory are as follows:

14 - Jump to locations OOO-OFF (page 0)
15 - Jump to locations 100-1FF (page 1)
1C - Jump to locations 200-2FF (page 2)
10 - Jump to locations 300-3FF (page 3)

In order to fully explain this command, a detailed description of the L
register follows:

L REGISTER ORGANIZATION

9 8 7 o

8 bits

Bits 0 to 7 act somewhat like a counter in that they are incremented like a
counter after each command execution except conditional skips, jumps, or
operate commands containing L or K as a destination. If the L count is at
XFF, and the next command causes L to be incremented, the L count will
go to XOO, with no indication of a carry. If a command causes L to skip,
L will go from XFF to X01.

-To change pages, it is necessary to change bit 8 or 9. Bit 9can be changed
only with a jump (literal to L) command. With the jump command, any
part of L can be reached.

Bit 8 can be changed with either a jump command or by designating the L
register as the destination register in an operate command .

. As shown in Table 4, a destination designator of 4 or 5 affects the L regis­
ter. The designator 4 causes bit 8 to reset, and 5 causes bit 8 to set. In the
assembly language mnemonics, a, 4 is labeled L, and a 5 is labeled K.

The various methods of changing L are shown in the following read-only
map outline.

Variations of L Register·
I

1 I
. I I
1·-rl
I 1
I 1

-'-1-,---1 I .
JUMP1 L I

Dest·1
I 1

Page 3

Page 2

Page 1

Page 0

I Increment L
-Tor Skip

1

Page

o

o

o o

L Register

Address
Within Page

I

Since L is always addressing the next command to be executed, any con­
dition, such as a skip, jump, or L destination results in a clock cycle skip
because the "next" command must be discarded for a new "next"
command.

Examples:

L
Machine

Code

1) Jump to. page 0 location '33'

Assembly
Language

'021' '1433' JP X'033'

2) Jump to page 2 location '46'

'150' '1C46' JP X'246'

3) Jump to page 3 location '31'

'230' '1D31' JP X'331'

L Register States:

Example

1
2
3

Before

'021'
'150'
'230'

Command Execution Time - 440 nanoseconds .

. 88

Flow Chart
Notation

'033'--L
Sometimes just shown
as a line from one block
to another in flow chart.

After

'033' .
'246'
'331'

LF- LOAD FILE

2 f Literal

151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the eight-bit literal field are placed in the file register
designated by f. File register 0 cannot be loaded by this command. The
condition flags and LI N K register are not affected.

This command is used for. initializing or clearing file registers. It is also
used for setting relative and absolute jump addresses into files. It can also
be used as part of a table look-up routine. Another application is for
setting indirect return addresses into files.

A brief description of a table look-up technique follows:

The table look-up function can be implemented using a combination of
load file, jump, and operate class (L destin-ation) commands.

A table of values is stored in the ROM which are accessed by jumping to a
selected command using an operate class command with an L destihation.
The selected command is a load file command. After the load file com­
mand there must be a jump command to get back to the program routine.

Flow:
Table

L Load File Inst.
'024'

..
'2355'

'025' Inst.
'B024'

'026' Jump
Inst. ..
'1426'

If, because of a large table, it is necessary to conserve memory locations in
the ROM, a number of load file commands could be grouped with each
jump command. This will temporarily tie up as many files as load file
commands.

Example of load file command:

Load file 3 with '55'

L

'025'

Machine
Code

'2355'

Affected Register States:

Register

L
file 3

Assembly
Language

LF 3, X'55'

Before

'025'

89

Flow Chart
Notation

'55'

After

'026'
'55'

f3

AF ADD TO FI LE

I 3 f I Literal I
15141312111098 7 6 5 4 3 2 1 0

The contents of the eight-bit literal field are added to the contents of the
file register designated by f and the sum replaces the original contents of
the file register. Subtraction is performed by placing the 2's complement
of the number in the literal field. The condition flags and LINK register
are not affected. File 0 may not be selected by this command.

This command is used whenever it is desired to add a number other than 1
Un which case the operate class add is used) to a file register. Specific
cases are where a file is used for a pointer or to update the U register and
change!\ of 2 or greater are required. Another use is to clear out higher
order bits from a register. This command can also be used to set a flag bit
in a file without resetting the other flag bits.

Examples:

1) All '2A' to file 3 which contains '31'
2) Subtract '03' from file 5 which contains '54'
3) Set flag bit 6 in file 9 which has flag bit 1 set

Example
Number L

1) '015'
2) '105'
3) '250'

. Machine
Code

Assembly
Language

'332A' AF 3,X'2A'
'35FD' G) AF 5 X'FD'
'3940' <2>. AF 9'X'40'

Flow Chart
Notation

(f3)+'2A'--f3
(f5)-'03' --f5
(f9)+'40'--fA

, CD 2's complement of '03'
~ Hexadecimal equivalent of bit 6 = 1

Affected Register States:

Example
Number Register 8efore After

1) L '015' '016'
file 3 '31' '58'

2) L '105' '106'
file 5 '54' '51'

3) L '250' '251'
file 9 '02' '42'

Execution Time ~ 220 nanoseconds.

90

TZ TEST IF ZERO

4 Literal I
15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

If, for all the 1-bits of the literal field, the corresponding bits of the file
register designated by fare O-bits, the next command is skipped. The con­
dition flags, LINK register and the file register are not affected. If the skip
is taken, the timing of the command is two clock cycles.

This is a conditional branch type of command designed to test for tre
following conditions or functions existing in the referenced file register:
negative or positive number, odd or even number, interrupt or internal
status bits, sense switch bits, condition flags set or not set, teletype input
bit set or not set. Since all of the selected bits must be 0, this is a logical
AND type function. If a test bit is 0, the corresponding bit in the file does
not affect the skip.

B it Pattern !;xamples:

File Register 10001000 No Skip Test Zero Literal 00111000

File Register 11100111 Skip Test Zero Literal 00011000

File Register 10110000 Skip T est Zero Literal 01001010

File Register 00010000 No Skip Test Zero Literal 00010000

Since all bits tested must be 0, this command is good for testing for the
occurrence of any of a number of possibilities, such as testing for the
presence of any of 3 interrupt flags.

The conditional skip can be used for branching, or for simply skipping
one instruction for certain conditions. For branching, the skip is followed
by a jump command.

Example of Branch:

Test Zero file 3 bit 1 bit 1 == interrupt

Skip the
Jump to Jump to Interrupt routine
Interrupt

Y Next Instruction if no Interrupt

91

A three-way branch can be implemented with two test and skip commands
and two jump commands.

Example:

BRANCH 1 BRANCH 2 BRANCH 3

Example: Skip if bit; 3,4, and 7 are not set in file O.

L

'ODE'

Machine
Code Mnemonic

Flow Chart
Notation

'4098' TZ FO,X'98'

Affected Register States:

Register Before After

Case 1 L 'ODE' '010'
FO '43' '43'

Case 2 L 'ODE' 'OOF'
FO '80' '80'

Command Execution Time - 220 nanoseconds - No Skip.
- 440 nanoseconds with Skip.

This timing applies to test not zero, and compare, as well.

TN TEST I F NOT ZERO

5 I f Literal I
1514131211 10 9 8 7' 6 5 4 3 2 1 0

92

y
NoSkip

Skip

No Skip

If, for any bit of .the literal field which is a 1·bit, the corresponding bit of
the file reg.ister designated by f is also a 1·bit, the next command is
skipped. The condition flags, LINK register and file register are not affect·
ed. If the skip is taken the timing of the command is two clock cycles.

This command differs from the test zero command in two ways. First it
skips on 1's instead of O's, and it skips on any 1 as opposed to all O's on
the test zero instruction.

If both tests (zero and not zero) were reduced to one bit comparisons, the
only variation would be that one command produces the opposite result
of the other. The choice would then be if a jump was wanted if the· tested
bit was 1, or O.

If mUltiple bits are tested, the test not zero is the MAX TERM, and test
zero is the MIN TERM logic equivalent.

Bit Pattern Examples for test not zero:

File Register 01101100 Skip Test Not Zero Literal 00110001

File Register 01000001 No Skip Test Not Zero Literal 00011010

File Register 01100110 Skip Test Not Zero Literal 01101000

File Register 11100111 NoSkip Test Not Zero Literal 00010000

Example: Skip if bit 0 in file 1 = 1

L

'01C'

Machine
Code

'5101'

Affected Register States:

Register

Case 1 L
F1

Case 2 L
F1

Mnemonic

TN 1,X'01'

Before

'01C'
'01'

'01C'
'SO'

Flow Chart
Notation

N
NoSkip

After

'01E' Skip '01' .

'01D' No Skip 'SO'

Command Execution Time - 220 nanoseconds - No Skip.
440 nanoseconds - Skip .

.93

CP COMPARE

I 6 f I Literal)

1~14~n1110 9 8 7 6 5 432 1 0

If the sum of the contents of the file register designated by f and the con·
tents of the eight·bit literal is greater than 28.1, the next command is
skipped. The condition flags, and file register are not affected. If the skip
is taken the timing of the command is two clock cycles. The LINK stores
the carry out of the adder. File 0 may not be selected by this com'Tland.

This command is used for looping control, and for data value testing. It is
also used to test OP codes in instructions for selection of a particular class
of OP codes, such as memory reference, having OP code (MICRO 810)
greater than 5, for example. To test if the content of a file register exceeds
a selecte,d number, the l's complement is placed -in the literal part of the
compare command.

Example: Skip if (fl) > '5F'

L

'014'

Machine
Code

'61AO'

Affected Register States:

Register

Case 1 L
Fl

Case 2 L
Fl

Mnemonic

CP l,X'AO'

Before

'014'
'52'

'014'
'66'

Flow Chart
Notation

After

'016' NoSkip '52'

'015' Skip
'66'

Command Execution Time - 220, nanoseconds - No Skip.
440 nanoseconds - Skip.

K CONTROL

7 f

151413121110 9 8.7 6 5 4 3 2 1 0

94

This command is used to control special data flow operations, and input/
output functions. The prime functions are as follows:

• Enter sense switches from panel to selected file register.
• Shift selected file right 4 bit places.
• Enter internal status to selected file register.
• Set and clear the 3 input/output control flip flops (IOXX).

A secondary function for some of the prime functions is that data can
simultaneously be moved from a file, or the input bus ANDed with the
selected file, to a register. File 0 may be selected by the shift right 4
function only. These functions will be explained in detail in the following
paragraphs. This command unconditionally updates the arithmetic condi­
tion flags in file O.

The prime functions of this command are determined by the value of the
c field as follows:

c Operation

o No Operation

Enter Sense Switches:

2 - Shift File Right 4:

3 Unused

4 Enter Internal Status:

5 Unused

6 Unused

Explanation

The status of the four console sense
switches are placed in the four high
order bits of the file register designated
by f. The four low order bits are set to
'-bits. The status can also be placed in
the designated destination register.

The four high order bits of the .file
register designated by f are placed in
four low order bits of the file register.
The four high bits are set to '-bits.
The result can also be transferred to
the designated destination register.

The eight internal status bits are placed
in the file register designated by f, and
the designated destination register. The
internal interrupt flag in file 0 is reset
by this command, along with the con­
sole interrupt, real time clock, memory
parity, and power fail/restart. Console
step is reset upon release of the con­
sole switch and spare bits are con­
trolled accordi!lg to their individual
implementation in hardware.

95

7 - Enter Console Switches: The contents of the eight low order
console command switches are ANDed
with eight low order bits of the next
command. File register 0 and destina­
tion register 0 must be selected to pre­
vent any modification of the file or
register during the execution of the
Control command. The command
physically preceding this operation
must not cause a read-only memory
delay.

8 - Clear I/O Mode: The I/O Control register is cleared.
Data from the designated file or the
input bus ANDed with the designated
file can be transferred to the desig­
nated file register and register (r).

9-F - Set I/O Mode: The I/O Control register is loaded with
the three low order bits of c placing it
in one of seVen I/O bus or serial tele­
type modes. These modes are described
in Section 4. Data from the designated
file or the input bus ANDed with the
designated file can be transferred to a
designated file register and register (r).

Affected: F, I/O Control, Condition Flags, r

For all values of c, except 0, 3, 5, 6, or 7, source data is placed in the
designated file, if bit 3 = 0 and in the designated destination register.
Destination r = 7 is undefined for this command. In other words, the U
register is not used_

Examples:

C = 1 Enter sense switches into file 1

L

'005'

Machine
Code

'7110'

Mnemonic

K 1,1

Affected Register Status:

Case 1

Case 2

Register Before

L '005'
file 1
Sense SW (Binary) 1001
File 0 (Bits 2-0)

L '005'
file 1
Sense SW (Binary) 0010
File 0 (Bits 2-0)

96

Flow Chart
Notation

(SSW) f 1

After

'006'
'9F'

1001
010

'006'
'2F'

0010
000

C=2 Shift file 1 right 4

Machine Flow Chart
L Code Mnemonic Notation

'012' '7120' K 1,2 F1 SR4 -- F1

Affected Register States:

Register Before After

L '012' '013'
file 1 'EO' 'FE'
file 0 (Bits 2-0) 010

C=4 Enter internal status to file 1

Machine Flow Chart
L Code Mnemonic Notation

'1E3' '7140' K 1,4 Status-f1

Affected Register Status:

Register Before After

L '1E3' '1E4'
file 1 '45'
Status '45' '40'
file 0 (B its 2-0) 000

Note: Sense switch 4 can be tested by testing negative condition flag
after entering SSW to file O.

C = 7 Enter console switches

This requires two commands, the first being the enter console switches,
followed by a load file, if the switch settings are to go into a file; a load
register if switch settings are to go into a register, or an operate command
if switches are to modify the command. A load file operation will be used
for the example. The load file literal must be FF to duplicate the switch
settings into the file.

Example: Enter console switches into f5.

Machine Flow Chart
L Code Mnemonic Notation

'112' '7070' K 0,7 f5/\CSW-f5
'113' '25FF' LF 5, X'FF.'

Affected Register Status:

Register Before After

L '112' '114'
file 5 'A5'
ConsoleSW 'A5' 'A5'
file 0 (Bit 2-0) 010

This command cannot be executed via the front panel because it requires a
dynamic situation, and two separate functions entered on the front panel.

97

C =8-F I nput/Output control

When c equals 8-F, the operations are associated with external input/
output, and the three low order bits of c are placed in the I/O Control
register. On the same operation, data can be moved from the designated.
file register or the input bus ANDed with the designated file register as
determined by t~e current contents of the I/O Control register, to the
designated file or destination register. The data source is specified as
follows: -

1/0 Control Register Mode Source

Designated file register. 0-3
4-7 'Input bus ANDed with designated file register.

The values 4-7 correspond to the 103X control flip flop. This flip flop
must be set in order to transfer data from the input bit to the computer
internal registers. Other than this restriction, the three I/O control register
bi~s can be used in any manner desired at the microprogramming level of
the MICRO 800 and as long as standard I/O interface modules are not used.

For purposes of standardization of common interface modules, and
implementation of standard I/O software instructions, a convention for'
I/O codes has been adopted as shown inTable 5.

Table 5. MICRO 810/820 Standard I/O Control Codes

c Field I/O 10XX
(Hex) Mode 3 2 1, Control Activity

I I.
None 8 0 0 10.0

9 1 01011 Control Output (COXX/)
{output A 2 0111 0 Data Output (DOXX/)

8 3 01 11 1 'Space Serial Teletype Codes

C 4 1 10.0 Con,u".nt Aoknowledg. {CACKII{
D 5 1 101 1 I/O Acknowledge (lACK/) Input
E 6 1 I 110 Data Input (DIXX/) Codes
F 7 1 1 1 I 1 Spare . I I

Note that the I/O mode is directly represented as the 3 least significant
bits of the c field.

Standard Output Functions:

The two output codes COXX, DOXX represent a two-byte output se­
quence, where the first byte is for control, and the second byte is for
data. A device select control byte is first put in the T register (which is
also the output bus) and then COXX is set and reset. Then a data value is
placed in T and DOXX is set and reset.

Standard Input Functions:

COXX- and DIXX control codes are used for data input routines. A device
select control byte is first placed in T, and. COXX is set and reset. Then
DIXX is set, data is input while DIXX is set and then DIXX is reset.

98

While DIXX is set,data can be entered two different ways:

1) Operate commands involving T get the input bus instead of T as long
as I03X is set. These commands are ADD, OR, COPY, EXCLUSIVE
OR, AND. Any of these can be used to input data while DIXX is set as
long as T complement is not selected.

2) The control command with the c field = 8-F causes the input bus to be
ANDed with the selected file register as long as I03X is set. This method
allows inputting.on the same command that resets DIXX (providing
the selected file has first been set to 'FF').

I/O Examples:

1) Generate following output wave form:

OUTPUT -.-J OEVICE SELECT

BUS

coxx---~
coxx

U OATA

DOXX--------------------------~

. CLOCK 2 3 4 5 6 7 8

99

DOXX

9 10 11

1/0 CONTROL
MACHINE
CODES

'7090'

'1000'

. '7080'

JUMP CAUSES 2
CLOCK DELAY

'70AO'

'1000'

'7080'

2) Input data according to following wave form:

OUTPUT~
BUS

COXX ___ --I

DEVICE SELECT

COXX

INPUT ------------~
BUS

DIXX ----------------'

DATA READY L
L DIXX ,

INPUT
DATA
SAMPLE

--------------------~~

CLOCK __ ~_~ __ _L __ ~ ____ ~ __ J_ __ _L __ ~~ __ L_ __ ~_~

I/O CONTROL
MACHINE
CODES

'1090'

'1000'

'7080'

Jump to next
inst, 2 clock delay

70EO'

Jump to next
inst. 2 clock delay

Operate class
command

7080' .

For a very simple interface having only 3 data registers to set, a single
byte sequence will suffice for outputting data.

100

3) Output a byte to interface Latch No.2, where only 3 interface latches
exist in the system, using the simple interface technique mentioned
above.

FLOW CHART:

OUTPUT DATA BYTE-T

SET I/O MODE = 2

RESET I/O MODE

I/O CONTROL
MACH I NE CODES

'70AO'

'7080'

On an input cycle it is necessary to wait at least one clock cycle after
generating DIXX to input data. The I/O controls are set in time at the
completion of the control command. An input on the next clock would
attempt to transfer data before the interface unit has the correct response
data ready for input.

c field = B which is I/O mode 3 is used to set the serial teletype mode to
SPACE, which ties up the I/O channel.

c field = D which is I/O mode 5 is used to acknowledge interrupts.

A ADD

'---- Inhibit File Write

The selected operand is added to the contents of the file register designated
by f. The sum is placed in the file register (f), if * is a O-bit, and in the
register designated by r. The state of the carry out of the high order bit of
the adder is placed in LINK. File 0 may not be selected by this command.
The c field controls selection of the operand, incrementing the result and
modification of the condition flags as follows:

101

c-bits
7 654

x x x

x 1 x· x

x x 1 x

x x x 1

Link Control: The content of LINK is added to the Sum.
The zero condition flag can be reset but cannot be set,
providing a linked zero test over- multiple bytes. A linked
zero over mUltiple bytes functions as follows: Assume a
2-byte add is to be performed. Two file registers contain a
16-bit number to be added to another 16-bit number in
core memory. The add is performed one byte at a -time,
with the LI N K used for carry into the second add. On the
first byte addition the condition flags are modified. If the
result of the first byte addition is not zero, then of course
the entire addition results in a non-zero condition, so that
th~ zero condition flag should not be set on the second
byte add even if its result is zero. On the other hand, if the
first add produces a zero condition, the second may not,
therefore the zero condition flag should be resettable on
the seccmd byte add.

The add function can be used to move data from a file to
another register by not selecting any input in the c field.

Add One: One is added to the sum.

Select T: The contents of the T register or the input bus
are selected as the operand. If the T register is not selected,
the operand is zero.

Modifying Condition Flags: The condition flags are updated
according to the result.

Eight different examples have been selected to illustrate various c states,
data values, and destination registers. Since the L register advances 1
unless it is the destination, its state will not be shoVlin in the affected
register state chart. File 1 will be used in all examples.

The various functions selected for each example are shown in Tables 6, 7,
8 and 9.

Table 6.

The general form of the examples is -

Add the contents of file 1 to one or more of the following:

Link, 1, T

Destination register choices are

T, F1, or N

Link is always updated.

Condition flags are updated on selected examples.

102

Table 7.

Add command uses file 1 for all examples.
Table of functions selected for each example.

c Field

Hexa·
Modify decimal

Add Add Select Condo Code for
Example Link 1 T Flags c Field

1. Add (file 1) to 0 0 1 1 3
(T). put resu It in
T and f 1• and up-
date condition
flags.

2. Add (file 1) to 0 0 1 1 3
(T). put result in
T. update condi-
tion flags;

3. Add (file 1) to 0 0 1 1 3
T. put result in N.
update condition
,flags.

4. Add (file 1) to 0 1 1 0 6
T. +1. put result
in f1 and N ..

5. Add (file 1) to 1 0 0 0 8
(LINK), put
result in f 1 .

6. Add one to f1 0 1 0 1 5
and put result
inf1• update C.

7. Add (fl) to T 1 0 1 0 A
and (L NK).
Put result in f 1.

8 .. Add (file 1) to 0 1 1 0 6
(T) plus 1. Put
result in T. f 1.

Destination

Selected Hexa·
Register Binary decimal
Symbol Code Code

T. f1 0001 1

T 1001 9

N 1011 B

N. f1 0011 3

f 1 0000 0

f 1 0000 0

T. f1 0000 0

T. f1 0001 1

The coding for the ~ Addition examples is shown below.

Table 8.

Machine Assembly
Code Language Flow Chart

Example (Hex) Mnemonics Notation

1 8131 AT 1. T,C.- (f1) + (T)-T. f1. C
2 8139 AT* 1, T,C (fJ) + (T)-T. C
3 8138 AN* 1, T,C (f1) + (T)·-N. C
4 8163 AN 1, I{ T (f1) + (T) +1-N, f1
5 8180 A 1. L (f1) + (L)-f1
6 8150 A - 1, I, C (t,) + 1-f1
7 81AO A 1, L, T (f1) +T + (L)-f1
8 8161 AT 1,1, T (f1) + (T) + 1-T, f1

103

NOTE: If both Link and 1 are selected as inputs, they are ORed instead
of added, thus the effective input is 1 regardless of the value of L. '

Command Execution Time - 220 nanoseconds.

Table 9. Affected Register State Chart

Conditions
Example File T Link N Zero Neg Ovflow

1 Before '65' '9B' ----- ----- -.. ---

After 00 00 1 ----- 1 0 0

2 Before '65' '15' ----- ----- . -----

After '65' 'lA' 0 -.. --_. 0 0 0

3 Before '65' '65' ----- ----- -----
After '65' '65' 0 'CA 0 1 1

4 Before '65' '00' -.. --- ----- --_ .. -
After '66' '00' 0 '66' -----

5 Before '00' - 1 ----- _-
After '01' ----- 0 ---... - -----

6 Before 'FF' ----- ----- ----- -----

After '00' ----- 1 ----- 1 0 0

7 Before '00' '00' 1 .. _--- -----
After '01' '00' 0 ----- -----

8 Before '01' '01' ----- ----- -----
After '03' '03' 0 ----- -----

S SUBTRACT

'----Inhibit File Write

The complement of the selected operand plus one is added to the contents
of the file register designated by f. The difference is placed in the file
register (f) if * is a O-bit, and in the register designated by r. The result is a
2's complement subtraction. The state of the carry out of the high order
bit of the adder is placed in LINK. File 0 may not be selected by this
command. The c field controls selection of the operand, incrementing the
result, and modification of the condition flags as follows:

104

c-bits
7 654

x x x

x 1 x x

x x 1 x

x x x 1

Affected:

Operation

Link control: The content of LINK is added to the sum.
Selection of the LINK inhibits the automatic addition of _
one. The zero condition flag cannot be set, providing a link­
ed zero test over multiple bytes. Refer to the add descrip­
tion for details on linked zero test.

lnhibit add one: If link control is not selected, one is auto­
matically added to the result to produce a 2's complement
subtraction. This control bit inhibits this addition, provid­
ing a l's complement subtraction.

Select T: This complement of the contents of the T register
are selected as the operand to the adder. If not selected, the
operand consists of a 1-bit in each bit position.

Modify Condition Flags: The condition flags are updated
according to the result.

F, LINK, Condition Flags, r

If the input bus is enabled (l03X), this command will yield an unpredict­
able result because the complement of the input bus is not available.

Examples:

1. Subtract zero from file 1.

Machine Code

'9100'

Affected register states:

Register

Link
file 1

Mnemonic

S

Before After

'00' '00'

Even though 0 is subtracted from 0, since 2's complement adding is
used there is a carry of 1 all through the adder to the Link.

2. Subtract T, 1 from file 1
Destination T Update condition flags

Machine
Code

'9179'

Mnemonic

ST* 1,D,T,C

105

Flow Chart
Notation

Affected register states:

Register Before

'31'
'31'

After

'31'
'FF'-2's comple­

ment for-l
a

a 1 a
! t ,

Zero Neg Overflow

Command execution time - 220 nanoseconds_

R READ MEMORY W WRITE MEMORY

A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The primary .function of this command is to initiate a core memory cycle
in which one byte is transferred between the T register and core memory.
The address in core is determined by the contents of the M and N registers.
File a may not be selected by this command. .

The lower two bits of the c field determine, whether the memory operation
is read or write and whether the operation is a fu II or half cycle ..

The c-bits control the type of memory operation as follows:

c-bits
7 654

x x 1 x

x·x x 1

Memory Access Operation

Half Cycle: If this bit is a l-bit, a half cycle memory opera­
tion is performed; otherwise a full cycle operation is selected.

Write: If this bit is·a l-bit, a write memory operation is per­
formed; otherwise a read operation is selected.

A full cycle takes 5 clock times.

A half cycle takes 3 clock times.

A full cycle read leaves the data in core unchanged.

A full cycle write causes the old data to be, cleared so the new value is
unaffected by the old.

A half cycle read leaves all ones in the core location.

A half cycle write ANDS the data to be written with the data already in
core.

, 106

If a half cycle write into a particular memory cell was preceded by a half
cycle read, the data value gets stored without modification since it is
ANDed with all 1's, left from the previous half cycle read.

A secondary function of this command is to simultaneously move data
between registers while initiating the memory cycle.

The contents of the file register designated by f is unaltered, incremented,
or decremented as controlled by the c field. The result is placed in the file
register (f) if * is a O·bit, and in the register designated by r. At the same
time, a read (R) or write (W) memory operation is initiated as controlled
by bit 4. If the operation is a memory read, the T register is cleared and
the accessed data is set into the T register after two clock cycle times.
Data to be written into memory must be placed in the T register during or
before the write memory command, if the operation is a half cycle write,
and by the first clock cycle time after the write memory command on a
full cycle write. The condition flags and LIN K are not affected. Execution
of the memory command is delayed if the memory is in a busy condition
from a previous R or W command or'DMA operation.

The bits of the c field control the transfer of data from the file register as
follows:

c-bits
7 6 5 4 Operation

o 0 x x Transfer: The contents of the file register are transferred
unaltered.

o 1 x x Decrement: The contents of the file register minus one are
routed as specified. If the M register is selected as the desti­
nation and the content of LIN K is a 1-bit, the contents of
the file register are transferred without being decremented.
This provides a decrement with link control when M is the
destination.

1 0 x x Add Link: The content of LINK is added to the contents of
the file register, and the sum is transferred as specified. ,

1 1 x x ,I ncrement: The contents of the file register plus one are
transferred as specified.

This data transfer feature permits setting up one of the registers directly
involved w:th the memory access (M, N, or T) at the same time the
memory cycle is initiated. There are some timing restrictions pertaining to
modification of M, N, or T registers during a memory cycle. Some of the
functions have logic interlocks to prevent errors, and some do not. These
restrictions must be carefully considered with respect to data errors, and
unexpected program time delays. The restrictions are as follows:

1) Attempting to change M, or N while a memory cycle is in progress
stops the computer clock .until the memory cycle is over. No data
errors result. Either M or N can be changed by the command initiating
the memory cycle without causing delay.

107

2) Accessing T during a read cycle causes the clock to stop until the new
data value from core is correctly in T. This causes delay but no data
error.

3) Changing T during a write cycle will not cause delay but it may cause
a data error. .

The memory access restrictions are specifically defined in the following
chart:

Full Cycle Full Cycle
Read Write

Delay from changing' Upt04 Upt04
M and N clocks ·clocks

Delay due to T access Upto 2 0
clocks

Data in T available 3rd clock
(on Read) after

memory
command

T must be loaded by 1st clock
(on Write) after

memory
cvcle
command

T must stay loaded 4 clocks
until (on Write) after

memory
command

Timing Diagram for Memory Accesses:

i
2ND MEMORY

COMMAND
CLOCK r I· CLOCK

M&NMUST
BE SETON
OR BEFORE
THIS CLOCK

1ST
CLOCK
AFTER
MEMORY
INST.

T Must BE T MUST BE
SET ON OR SET ON OR
BEFORE BEFORE
THIS CLOCK THIS CLOCK
ON A WRITE ON A WRITE·
HALF CYCLE I FULL CYCLE I
COMMAND • COMMAND I

AFTER
MEMORY
INST.

1
1 3RD
I CLOCK

AFTER
I MEMORY
J INST. .

'I DATAIS
I AVAILABLE
liNTON

THIS CLOCK
1 AFTERA

READ
I· COMMAND.

108

Half Cycle Half Cycle
Read Write

Upt02 Upto 2
clocks clocks ,

Up·to 2 0
clocks clocks

2nd clock
after
memory
command·

i
4TH
CLOCK
AFTER
MEMORY
INST.

Memory
Cycle
Command

2 clocks
after
memory
command

t
5TH
CLOCK

M,NANDT
CAN BE
CHANGED ON
THIS CLOCK

1 WITHOUT
DELAY OR

1 ERROR.

.1
I
1

o
to

Examples:

Example

1) Full cycle w.rite
(file 1) + 1-N, fl

2) Half cycle read
(file 2) .. M, f2

3) Half cycle write
(file 2) + (Link)_M, f2

4) Full cycle write
(file 3) • T, f3

5) Half cycle read
(fl) -l_N
followed
(f3) + (T)--T, f3

6) Half cycle write followed
by loading T
(f3)-T,f3

7) Full cycle read, decrement
(file 1) and transfer to M
(fl) -l-M,fl

Machine
Code

f d
i e

0 I s
p e c t Mnemonics

A 1 D 3 WN 1, I

A 2 2 2 RM 2,H

A 2 B 2 WM 2,L,H

A 3 1 1 WT 3

I nhibit file write " .. A 1 6 B RN* 1, D, H
8 3 2 1 AT 3,T

A 0 3 0 W O,H
8 3 0 1 AT 3

A 1 4 2 RM 1, D

I
c

I c Field Binary Field I
Functions and Codes for Hex.

Memory Commands Code General Description

Increment Full cycle D Full cycle write memory is initiated
write and N register is updated as well as

1 1 0 1 fl·
Transfer Half cycle 2 Half cycle read memory is initiated

read while M register is updated directly
0 0 1 0 from f2.

Add Link Half cycle B Half cycle write memory is initiated
write while file 2 and M are updated by

1 0 1 1 adding (LINK).
Transfer Full cycle 1 Full cycle write memory is initiated,

write T is updated from f3 on the same
0 0 0 1 command.

Decrement Half cycle Half cycle read memory is initiated,
read followed by T register access on the

0 1 1 0 6 next instruction. This will cause a
- - - - - program delay until the third clock.

Transf~r Half cycle Half cycle write memory is initiated,
write followed by loading T on next

0 0 1 1 3 instruction. No time delay occurs,
- - - - - but data written into memory may

be incorrect.
Decrement Full cycle A full cycle read is initiated. (fl) is

read decremented and transferred to M.
0 1 0 0 4 If (L1 N K) = 1 the contents of the

file are transferred without being
decremented.

C COpy

B f c H r I
151413121110 9 8 7 6 5 4 3 2 1 0

The selected operand is placed in the file register designated by f, if * is a
O-bit, and in the register designated by r. The LINK is not affected. The c
field controls selection of the operand, incrementing the operand, and
modification of condition flags as follows:

c-bits
7 654

1 x x x

x 1 x x

x x 1 x

x x x 1

Affected:

Operation

Link Control: The content of LINK is added to the sum.
The zero condition flag can be reset but cannot be set, pro­
viding a linked zero test over multiple bytes.

Add One: One is added to the sum.

Select·T: The contents of the T register or Input bus are
selected as the operand. If the T register is not selected, the
operand is zero.

Modify condition flags: The condition flags are updated
according to the result.

F, Condition Flags, r

This command is used to transfer T to a selected file register, with the
option of incrementing or adding LINK while transferring. It is also used
for inputting data, because when the input control flip flop (l03X) is set
during an input mode, operate commands selecting T get the input bus
instead.

The command can be used to test the condition of T by selecting to as the
file register (which is unaffected) and setting the modify condition flag in
the c field.

The command can also be used to clear one file and another .selected
register by not selecting any input in the c field.

Command Execution Time - 220 nanoseconds.

~

~

File register 1 is used for all examples except setting condition flag example.

Examples of Copy Command:

Machine
Code c field for Copy Commands
f d
i e Mod.

0 I s Add Select Condo Hex.
Examples p e c t Link 1 T Flags Code

(T)-fl B 1 2 0 0 0 1 0 2

(T) + 1-fl,N B 1 6 3 0 1 1 0 6

IT) + (LlNK)- fl B 1 A 0 1 0 1 0 A

O-fl,N B 1 0 3 0 0 0 0 ' 0

(T)-fO,C B 1 3 0 0 0 1 1 3

Set Condition Flags

Set DIXX 7 0 E 0

Delay 1 0 0 0

(T)-fl,T B 1 2 1 0 0 1 0 2

Reset DIXX 7 0 8 0

Destination for
Copy Commands

Selected Binary Hex.
Registers Code Code Mnemonics General Discussion

fl 0000 0 C 1, T (T) is transferred,
unaltered to file 1.

fl' N 0011 3 CN 1,I,T (T) is incremented and
transferred to fi Ie 1,
and to the N register.

fl 0000 0 C 1,T,L (T) is added to (LINK)
and transferred to fl.

fl' N 0011 3 CN 1 File 1 and N registers
are cleared because no
input is selected.

fO 0000 0 C O,T,C Condition flags are set
accord ing to the state
of (T). File 0 can't be
loaded by this instruc-
tion so is unchanged.

K O,X'E' The input flip flop is
set by the DIXX

LZ X'OO' command, so the copy
T command transfers

fl,T 0001 1 CT 1,T the I nput bus to file 1
and to T.

K 0,8
- ----

o OR

c f c H r I
15 1413 12 11 10 9 8 7 6 5 4 3 2 1 0

The selected operand is logically inclusive-ORed on a bitcfor-bit basis with
the contents of the file register designated by f and the result is placed in
the file register, if * is a O-bit, and in the register designated by r .. The LINK
is not affected_ The c field controls selection of the operand and modifica-
tion of the condition flags as shown below: .

c-bits
765 4

1 x x x

x 1 x x

x x 1 x

x x x 1

Affected:

Operation

Link control: The zero condition flag can be reset but can­
not be set, providing a linked zero test over multiple bytes_
See the description of the add command for a detailed
description of linked zero test.

Select complement T: The complement of the contents of
the T register is selected as the operand. If the T register is
also selected, the effective operand contains a 1-bit in each
bit position.

Select T: The contents of the T register or input bus are
selected as the operand. If neither the T register nor the
complement of the T register is selected, the operand iszero.

Modify Condition Flags: The condition flags are updated
according to the result.

F, Con~ition Flags, r

If both complement T and-f are selected, the operand is all 1's. If the
input bit is enabled (l03X), complement T must not be selected.

This command is used for the general function of logical DRing as needed
in a microprogram. It also has the following specific applications: Setting
flag bits without disturbing other bits (with the OR function it doesn't
matter if the flag is already set since there is no carry); moving data from a
file to another register by not selecting any operand; setting all 1's in a file
register and/or one other selected register by selecting both T and T
complement as operands; combining two numbers into. one byte, such as
for assembling hexadecimal digits into multiple digit numbers after the
digits have been input to the computer as a string.

Bit pattern example of OR function:

file 1
T

Result

Binary

01101000
00110100

01111100
Command Execution Time - 220 nanoseconds.

112

Hexadecimal

'68'
'34'

'7C'

w

File register 1 is used for all examples.

Examples of OR command:

Machine
Code
f d
i e

Flow Chart 0 I s
Notation p e c t

(fl) V (T)-T C 1 2 9

(fl) V O-N, fl C 1 0 3

(fl) V (T)-fl C 1 2 0

(fl) V (T), (T)-N C 1 6 B

(fl) V (T) (T)--fl C 1 6 0

(fl) V (T)-Link, C C 1 B 8

c field for OR commands

Select Mod.
Compo Select Condo

Link T T Flags

0 0 1 0

0 0 0 0

0 0 1 0

0 1 1 0

0 1 1 0

1 0 1 1

--_ .. - '-----

Destination for
OR command results

Hex. Selected Binary Hex.
Code Registers Code Code Mnemonics General Discussion

2 T 1001 9 OT- 1, T OR (file 1) with (T),
inhibit file write put
result in T.

0 N, fl 0011 3 ON 1 Move (file 1) to N by
OR ing with 0 and
putting result in N.

2 fl 0000 0 0 1, T OR (file 1) with (T)
and put result in
file 1.

6 N 1011 B ON· l,T,F Set N = FF (all ones)
by.9Ring (fl) with
T, T and putting
result in N.

6 fl 0000 0 0 l,T,F Set fl = FF by
ORing h with T, f
and putting result
in fl.

B none 1000 8 0* l,T,L,C Perform conditional
test on (fl) V (T)
without changing f1
or T. Select L to'
perform linked zero
test with a previous
command.

X EXCLUSIVE OR

The selected operand is logically exciusive-ORed on a bit for bit basis with
the contents of the file register designated by f and the result is placed in
the file register, if * is a O-bit, and in the register designated by r _ The LI N K
is not affected_ The c field controls selection of the operand and modifica­
tion of the condition flags as shown below:

c-bits
7 654

1 x x x

x 1 x x

x x 1 x

x x x

Affected:

Operation

Link Control: The zero condition flags can be reset but
cannot be set, providing a linked zero test over multiple
bytes_ See the description of the Add command for a
detailed description of linked zero test.

Select Complement T: The complement of the contents of
the T register is selected as the operand. If the T register is
also selected, th~ effective operand contains a 1-bit in each
bit position. .

Select T: The contents of the T register or input bus are
selected as the operand. If neither the T register nor the
complement of the T register is selected, the operand is zero.

Modify Condition Flags: The condition flags are updated
according to the result.

F, Condition Flags, r .

If both T and'T are selected, this command produces the one's comple­
ment of the value in the file register. If the input bus is enabled (l03X),
complement T must not be selected.

This command is used for the following functions: general purpose ex­
clusive OR; 'data comparison; ones complementing; and flipping selected
bits such as controls and status flags. .

Bit pattern example of exclusive OR.

file 1
T

Result

·Binary

01101100
00011010

01110110

Command execution time - 220 nanoseconds.

114

Hexadecimal

'6C'
'1A'

'76'

· File register 1 is used for all examples.

Examples of Exclusive OR command:

Machine Destination for Exclusive
Code c field for OR comr(lands OR command results
f d

Example i e Select Mod.
Flow Chart a I s Camp. Select Condo Hex. Selected Binary Hex.
Notation p e c t Link T T Flags Code Registers Code Code Mnemonics General Discussion

(f1)¥ (T)-T D 1 2 9 0 0 1 0 2 T 1001 9 XT* 1, T Exclusive OR (file I

1) with (T) inhibit !

file write, put
result in T.

(f1) ¥ 0~N,f1 D 1 0 3 0 0 0 0 0 N, f1 0011 3 XN 1 Move (file 1) to N
by exclusive DRing
with 0 (same result
as OR), put result
in N.

U1
(f1)-¥ (T)-f1 D 1 2 0 0 0 1 0 2 f1 0000 0 X 1, T Exclusive OR (file

1) with (T) and put
result in file 1.

(f1) ¥ (T), (T)-T D 1 6 B 0 1 1 0 6 N 1001 9 XT* 1,T,F Produce ones com-
plement of (f1) and
place result in T.

f1 ¥ (T), (T) - f1 D 1 6 0 0 1 1 0 6 f1 0000 0 X 1,T,F Produce ones com-
plement of (f1) and
put it back into f1.

(f1)¥ (Tl-Link,C D 1 B 8 1 0 1 1 B none 1000 8 X" 1, T, Perform conditional
L,C test and linked zero

test on (f1) ¥ (T)
without changing
(f1) or (T).

--

N AND

The selected operand is logically ANDed on a bit-for-bit basis with the
contents of the file register designated by f and the result is placed in the
file register, if * is a O-bit, and in the register designated by r. The LINK is
not affected. The c field controls selection of the operand and modifica­
tion of the condition flags as $hown below:

c-bits
7 654

x X x

x 1 x x

x x 1 x

x x x 1

Affected:

Operation

Link control: The zero condition flag can be reset but
cannot be set, providing a linked zero test over multiple
bytes. See the description of the add command for a detail­
ed de;;cription of a linked zero test.

Select complement T: The complement of the contents of
the T register is selected as the operand. If the T register is
also selected, the effective operand contains a 1-bit in each
bit position.

Select T: The contents of the T register or Input bus are
selected as the operand. If neither the T register nor the
complement of the T register is selected, the operand is
.zero.

Modify condition flags: The condition flags are modified
by execution of the command. Updated according to the
result.

F, Condition Flags, r

If both T and l' are selected and And command moves the data, unchanged
from the selected file register to the designated destination register. Ifthe
input bus is enabled U03X), complement T must not be selected.

The and command is used for the following functions: General purpose
anding of files and T; resetting selected flag or status bits, without dis­
turbing other flags; and masking out parts of a byte.

116

File register 1 is used for all examples.

Examples of And Command:

, Machine Destination for
Code c field for And commands And command results

Example f d
i e Select Mod.

Flow Chart 0 I s Compo Select Condo Hex. Selected Binary Hex.
Notation p e c t Link T T Flags Code Registers Code Code Mnemonics General Discussion

(f1)/\ (T)·-f1 E 1 2 0 0 0 1 0 2 f1 0000 0 N 1,T (f1) is anded with (T). •
The result is put into i

f1·

(f1)/\0- N, f1 E 1 0 3 0 0 0 0 0 N, f1 0011 3 NN 1 (f1) is anded with O.
The result (which is 0) I

is put into N, and f1. I

(f1)/\ (T)-T E 1 2 9 0 0 1 0 2 T 1001 9 NT* 1,T (f1) is anded with (T).
The result is put in T and inhibited from f1 .

(f1) /\ (Tl. (T)- N E 1 6 B 0 1 1 0 6 N 1011 B NN* 1,T,F (il) is anded with (T),
(T) which is same as
anding with FF (all
ones). Result is put in
N and inhibited from
f1·

(f1) /\(T)-f1 E 1 4 0 0 1 0 0 4 f1 0000 0 N 1,F (f1) is anded with (T).
The result is put into
f1·

(f1)/\(T) -Link, C E 1 B 8 1 0 1 1 B none 1000 8 N 1,T, (f1) is anded with (T).
L,C The result is not put in

any register. Only the
condition flags are set.
Use of link results in
multi byte zero test.

Bit pattern examples of the and function.

Binary Hexadecimal

file 1 01101011 '6B'
T 10101101 'AD'

Result 00101001 '29'

file 1 01000010 '42
T 10111111 'BF'

Result 00~010 '02'

Reset a flag

file 1 10100101 'A5'
T 11010011 '03'

(Select T) (90101100) ('2C')
Result 00100100 ' '24'

file 1 10100101 'A5'
T,T 11111111 'FF'
Result 10100101 'A5'

Command Execution Time - 220 nanoseconds.

H SHIFT

The contents of the file register designated by f is shifted left or right one
bit position .and placed in the file register, if * is a O-bit, and in the register
designated by r. The high order or low order bit which is shifted off is
placed in LINK and in the overflow flag if the modify condition flag is
selected. The c field controls the direction of shift, entry of-an end bit,
and modification of the condition flags as follows:

c-bit
7 654

1 x x x

x 1 x x

Operation

Link control: The content of the LINK is inserted into the
vacated low order or high order bit position. The zero con­
dition flag can be reset but cannot be set, providing a linked
zero test over multiple bytes. See the description of the add
command for a detailed description of the linked zero test.

Insert 1: A 1-bit is unconditionally inserted into the
vacated low order or high order bit position; otherwise a
O-bit is inserted unless the contents of LINK is selected.

118

c-bit
7 654

x x x

x x x 1

Affected:

Operation

Shift right: if bit 5 is a 1-bit, the operation is a right sh ift;
otherwise a left shift is performed. '

Modify condition flags: The zero and negative flags are
updated according to the result. The content of the bit
shifted out is placed in the overflow flag.

F, LINK, Condition Flags, r

This command provides great flexibility for various shifting functions
mechanized by microprogramming. These are as follows:

• Left or right shifting;
• End around carry or no end around carry;
• Arithmetic or logical shifts;
• MUltiple byte shift register implementations in either file registers or

core memory;
• Pattern rotations by successive shifting of 8 files one bit at a time and

assembling into a 9th file;
• Set or reset link bit by shifting with no destination register.

Bit pattern examples of shift command. All examples are for shift (f1) and
put result back in f1.

file 1
Sequence file 1 Hexa- Condition

Instruction Number Binary Link decimal Flags

Shift Right before 01101001 0 '69' ---
after 00110100 1 '34' ---

Shift Left before 01101001 1 '69' ---.
after 11010010 0 'D2' ---

Shift
Right before 00111000 1 '38' ---
Enter after 10011100 0 '9C' ---
Link

Shift before 10001010 0 '8A'
Left ---
Enter 1 after 00010101 1 '15' ---

Shift Left -
Modify before 11001011 0 'CB' ---
Condition after 10010110 1 '96' 011
Flag

Shift Right
Modify before 00000001 0 '01' ---
Condition after 00000000 1 '00' 101
Flag

119

I\.)

o

Instruction codes for bit pattern examples of shift command.
These examples are the same except for additional Destination Registers.

Machine
Code c field

f d
i e Mod.

Flow Chart 0 I s Insert Insert Shift Condo
Example Notation p e c t Link 1 Right Flags

Shift right (fl)@R--f l,T F 1 2 1 0 0 1 0
result to
fl, T.

--

Shift left (fl)@L-Fl F 1 0 0 0 0 0 0
result to
fl·

Shift right (fl)@R+LK-f,.,N F 1 A 3 1 0 1 0
insert link
result to
fl' N.

Shift left
insert 1

(fl)@L+l--f l,M F 1 4 2 0 1 0 0

result to
fl, M.

Shift left (fl)@L'-:"'fl'C F 1 1 0 0 0 0 1
modify condo
flag. Result
to fl.

Shift right (fl)@R-Fl,C F 1 3 0 0 0 1 1
Modify cond
flag. Result
to fl.

Destination for
Shift Command results

Hex. Selected Binary Hex.
Code Registers Code Code Mnemonics General Discussion

2 fl,T 0001 1 HT l,R (fi Ie 1) is shifted right
one bit, link, or 1 are
not inserted. The result
is put in T and fl.

0 fl 0000 0 H 1 (file 1) is shifted left
one bit, link or 1 are
not inserted. The result
is put in fl.

A fl,N 0011 3 HN l,R,L (file 1) is shifted right
one bit, (Link) is
inserted in vacated left
hand bit. Result is put
in fl and N.

4 fl' M 0010 2 HM 1, I (file 1) is shifted left.
1 is inserted into the
vacated right hand bit.
Result is put in fl and
M.

1 fl 0000 0 H l,C (file 1) is shifted left.
The result is put into

-- file 1. Condition flags
are modified.

3 fl 0000 0 H l,R,C (file 1) is shifted right.
The result is put into
file 1. Condition flags
are modified.

E EXECUTE

o
151413121110 9 B 7 6 543 2 1 0

The eight-bit contents of the U register are ORed with the eight high order
bits of the execute command to form an effective command. This provides
a means of partially modifying the contents of a read only storage location.
The OR ing is performed before the output of the read only storage is gated
into the R register. The meaning of bits present in positions 0-11 is depend­
ent upon the desired effective operation code after the modification. Due
to the lookahead feature of the read-only memory, the new contents of the
U register are not available until after one machine cycle following the
transfer of data to it.

The execute command provides a means for program modification of a
command. This capability is used for many different functions, three of
which are as follows:

• I ndexing of file registers in a program loop.
• Having a general purpose instruction which may take on different

specific functions, such as Idad a register, add to the register, AND with
the register, etc., depending on program variables.

• Selection of alternate file registers depending on program variables.

Sometimes a combination of two of the above is used.

The U register can be set with the load U command, or by being designated
as the destination register of an operate class command, such as Add, Copy,
etc.

For file register indexing, a separate file register is designated as an index
register. It is loaded with an initial value, then incremented, with the result
being put in U each time through the loop, until the loop is exited.

Examples of execute commands:

,

U register

Execute
Command

Effective
Command

'84'

./"" This command is stored in ROM
'0021''''- ET 0,2

'8421'

I ncrementing the U register value leaves the command. the same, but
changes the file register number to 5. If this continued to file F, the next
increment would change the command to a subtract.

121

U Register

Execute
Command

Effective
Command

'F1' -_

../'" This command is stored in ROM
'0020'''- E 0,2

'F120' {Shift Right file 1
H 1,R

The meaning of the c field Of the lower two hexadecimal digits in the
execute command changes with the OP .code value in the U register.
Therefore the c field is left as a digit in the MNEMONIC for the execute
command. '

Commands can also be modified by the U register by using the operate
commands with a 7 in the destination register. This method is advantage­
ous if there are two variabte functions to be done in one loop, with one U
register setting. For example, a program may be indexing through a set of
files where it is necessary to add to a file, and shift the same file in the same
program loop. This could be mechanized as follows:_

(fF) + 1-U, fF

--- NOP

(fO) + (T)-fO' Destination = 7 (OR U with command)

(Fa) @ R-Fb, Destination = 7

The coding for this is:

another command

Machine
Code

'8F46'

'8027'

'F027'

AssumeU = '04' after the first command.

The effective commands following are:

- '8427'

'F427'

Mnemonic

AU F,I

AS 0, T Add to file 0

HS 0, R Shift file 0

Add to file 4

Shift file 4 right

This method of command modification has the limitation of no destination
register since the destination register code position is tied up seJecting U
as a modifier to the command. The execute command does not have this
restriction.

122

COMMAND REFERENCE TABLE

Mnemonic

Command Operation Code Comments

Load T LT 11/19 I Literal
I I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load M LM 12 I Literal I I I
15 14 13 12 11 10 9 8 7 6 5 432 1 0

Load N LN I 13 I Literal
I I

15 14 13 12 11 10 987 65432 1 0

Load U LU 16 I Literal
I I

15 14 13 12 '" 10 9 8 7 6 5 4 3 2 1 0

Load"Zero LZ 10 I Literal
I I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load Seven LS 17 I Literal I I I
15 14 13 12 11 10 987 6 5 4 3 2 1 0

7 0 0 NoOp

7 0 Enable Serial TTY

7 0 2 Reset Ta

F 0 2 SetTa

7 0 4 DiSable} External

7 0 8 Enable
Interrupts

7 0 Disable} Real Time

7 2 0 Enable Clock "

7 4 0 Load Protect Bit

7 8 0 Halt

123

Mnemonic

Command Opertion Code Comments

Jump JP 14 I Literal I OOO-OFF
I I

15 14 13 12 11 10 9 8 7 654321 0

15 I Literal I 100-1FF
I I

15 14 13 12 11 10 987 654321 0

1C I Literal 200-2FF
I I

15141312 11 10 9 8 7 6 5 4 3 2 1 0

10 I Literal 300-3FF
I I

15 14 13 12 11 10 987 6 5 4 3 2 1 0

Load File LF 2 I I Literal I I
15 14 13 12 11 10 9 8 7 65432 1 0

Add To File AF 3 I I Literal
I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Test Zero TZ 4 I I Literal
I

151413121110 9 8 7 6 5 4 3 2 1 0

Test Not Zero TN 5 I I Literal
I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Compare CP 6 I I Literal I I
15 14 13 12 11 10 9 8 7 654321 0

124

Mnemonic

Operand
Command Operation Code Comments Field

Control K 7' I I c
1*1

r I
1514131211 10 9 8 7 6 5 4 3 2 1 0

0 NoOp

Enter Sense SW

2 Shift Right 4

4 Enter Internal Status

7 Enter Console SW

8 Clear I/O

9 Set COXX (in MICRO 810/820)

A Set DOXX (in MICRO 810/820)

B Space Serial TTY

C Set CACK (in MICRO 810/820)

D Set lACK (in MICRO 810/820)

E Set DIXX (in MICRO 810/820)

F Spare

Add Ar* 8 I I c
1*1

r I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X x Link L

x 1 x x Add 1

x x 1 x Select T T

x x x Modify Condition Flags C

Subtract Sr' 9 I I C 1,1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x x x Link L

x 1 x x Decrement D

x x 1 x Select T T

x x x Modify Condition Flags C

125

Mnemonic

Operand
Command OperationCode Comments Field

Memory Wr* A I I c
1*1 Rr*

151413121110 9 8 7 6 5 4 3 2 1 0

X X x Link L

x , x x Decrement 0 , , x x Increment

x x , x Half Cycle Operation H

x x x Write Operation (supplied by OP Code)

Copy Cr* B I I c H r I
15 14 13 12 11 10 9 8 7 6 5 432 1 0

X X x Link L

x , x x Add 1

x x 1 x Select T T

x x x 1 Modify Condition Flags C

OR oro C I I c H I
15 14 13 12 11 10 9 8 7 6 5 432 1 0

X X x Link L

x 1 x x T F

x x 1 x T T

x x x 1 Modify Condition Flags C

I I H I Exclusive
0 f OR Xr* c

1614131211 109 8 7 6 5 4 3 2 1 0

1 x x x Link L

x , x x T F

x x 1 x T T

x x x 1 Modify Condition Flags C

126

Mnemonic

Command Operation Code Comments

AND
Nr· 15 14 ~3 1)11 10 9 J 7 6

C
5 J: 12 1 0

x x x Link

x 1 x x T

x x 1 x T

x x x Modify Condition Flags

Shift Hr· F I I c 1-1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x x x Link

x 1 x x InB11

x x 1 x Shift R

x x x 1 Modify Condition Flags

127

Operand
Field

L

F

T

C

L

R

C

CPU MICRO COMMAND REPERTOIRE
Code Mnemonic Name Operation

Literal OXXX E Execute OX is ORed with U Register
Class 10XX LZ Load Zero No Operation
Commands 11XX LT LoadT XX replaced contents of T

12XX LM Load M XX replaces contents of M
13XX LN . Load N XX replaces N & M is cleared
14XX JP Jump to page 0
15XX JP Jump to page 1
1CXX JP Jump to page 2
1DXX JP Jump to page 3
16XX LU Load U XX replaces contents of U
17XX LS Load Seven I nternal Controls
2fXX LF Load File (f) f = File number
3fXX AF Add to File f = File number
4fXX TZ Test if zero Skip on no bits match
5fXX TN Test if zero Skip on Any bits match
6fXX CP Compare Skip on f + XX 2B_1

Code Mnemonic . Name c Field (Binary)

Operate 7fC*r K Control 0000 No Operation
Class 0001 Enter Sense Switches
Commands 0010 Shift Right Four Bits

0100 Enter Internal Status
0111 Enter Console Switches
1000 'Clear I/O Mode
1001 Control Output
W10 Data Output
1011 Space Serial TTY
1100 Concurrent Acknowledge
1101 Interrupt Acknowledge
1110 Data Input
1111 Spare

BfC*r A Add 0001 Modify Flags
0010 File +T
0100 Sum + 1
1000 Sum + Link Bit

9fC*r S Subtract 0001 Mod ify Flags
0010 File + T complement
0100 Inhibit Increment
1000 Difference + Link

AfC*r R/S Read/Write OOXX Transfer
Memory 01 XX Decrement

10XX Add Link
11 XX Increment
XX1 X Half Cycle
XXX1 Write (Not Read)

BfC*r C Copy XXX1 Modify Flags
XX1 X Select T
X1 XX Select + 1
1 XXX Select Link

CfC*r 0 OR XXX1 Modify Flags
XX1 X Select T

If * =0, X1 XX Select T complement
result of 1 XXX LInked Zero Test
operation DfC*r X Exclusive OR Same as OR
is placed EfC*r N AND SameasOR
in file
(f). FfC*r H Shift XXX1 Modify Flags

XX1X Shift Right
X1XX Insert ONE
1XXX Insert link

128

CHAPTER 3

INPUT/OUTPUT

GENERAL DESCRIPTION

The CPU provides an extremely fast, elementary input/output capability.
The data paths and control functions are simple elements that are se·
quenced from the control memory with flexible disciplines. The fact that
the I/O element is very fast, 220 ns/step, microprograms (firmware) in the
control memory can implement facilities with a high degree of versatility
in timing, data paths and I/O capabilities such as priority interrupts, fully
buffered data channels, macro programmable transfers, and special purpose
communication multiplexer channels. This basic I/O element called the
"Byte I/O Bus" is described in the following paragraphs. In addition, the
direct memory occurs (DMA) and serial data interface are described.

BYTE I/O BUS

The byte I/O facility allows for data transfers over a party·line I/O bus
under microprogram control. This I/O facility consists of a byte input bus,
a byte output bus, and a three·bit I/O control register. .

The I/O control register is loaded by bits 6-4 of the control command.
The contents of the I/O control register define an I/O bus mode. The I/O
control register outputs may be decoded to form individual control
signals defining the type of transfer being performed on the byte 110 bus
and the state of the serial interface output. Of the eight possible states of
the I/O control register, one represents no activity on the bus, three are
output modes, and four are input modes. One of the output modes re­
moves the MARKing current from the serial interface output a SPACE to
be output.

The byte I/O control modes are given in Table 10.

Table 10. Byte 110 Control Modes

Control Command

I 7 I f I c 1*1 r
i5 M 13 12 ,11 10 9 • 7 6 5 • 3 2 1 0 Hex Mode Control Activity

o 0 0 0 0 No Operation
o 0 0 1 1 Enter Sense Switches
o 0 1 0 2 Shift "f" Right Four Places
o 1 0 0 4 Enter Internal Status
o 1 1 1 7 Enter Console Switches (0·7)

------,00'0- -- -- - - - 8 - -0- -CiearIiOMode-- - ---
OUTPUT 1 0 0 1 9 1 SPARE (*1
FUNCTIONS 1 0 1 0 I/O A 2 SPARE (*1

______ 1_0_1_1 __ CONTROL B 3 Space Serial Interface
1 1 0 0 C 4 SPARE (*1

INPUT 1 1 0 1 0 5 SPARE (*)
FUNCTIONS 1 1 1 0 E 6 SPARE (*)

1 1 11 F 7 SPARE

*These functions are used in the MICRO 810 and 820 1/0 systems.

129

When the c field equals hexadecimal 8-F, the operations are associated
with external input/output, and the three low order bits of c are placed in
the I/O control register.

This three-bit register generates the control signals for the I/O bus by a
decoding of the register outputs. It is loaded and cleared by a control
command and· therefore the timing of I/O control signals is under com­
mand control. There are three output modes and four input modes. The
high order bit of the register is the input flag. When this bit is a 1-bit the
input bus is substituted for the T register inputs, thus providing a source
of data when executing an external I/O control command. On the same
operation, data can be moved from the designated file register or the input
bus, as determined by the current contents of the I/O control register, to
the designated file or destination register. The data source is specified as
follows:

I/O Control Register Mode Source

103X 102X 101X

o 0 0= 0
o 0 1 = 1
o 1 0= 2
o 1 1 = 3

Designated File Register
. (Output Data or Controll

1 0 0= 4
1 0 1 = 5
1 1 0 = 6
1 1 1 = 7

Input Bus
(I nput Data or Controll

"(\//
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 f 'I c H

Mode Control Activity

o Clear I/O Mode:

1-7 Set I/O Mode:

Comments

The I/O control register is cleared. Data from
the designated file or· Input bus can be trans­
ferred to the designated file register and
register (R).·

The I/O Control register is loaded with the
three low order bits of c placing it in one of
seven I/O bus or seriaJ interface modes.
Th!!se modes are described above. Data from
the designated fi Ie or I nput bus can be trans­
ferred to a designated file register and regis­
ter (r).

NOTE: Once an I/O control register mode has been SET, an I/O clear
mode must be executed to change the I/O control register mode
of operation.

130

Internal Status - Interrupt

Eight internal status bits are provided to designate a particular internal
interrupt condition. When any of the internal status bits are a 1-bit. the
internal interrupt flag (bit 4) in the file register 0 is also a 1-bit. This flag
bit is tested by the microprogram to detect the presence of the internal
interrupt condition. The internal status bits are entered via the A bus into
the selected file register by a control command. The eight internal status
bits have the assignments given- as follows:

I nternal Status Bits

I nternal Status

Bit

o
1
2
3
4
5
6
7

Without Processor Option Bd

Console I nterru pt
SPARE (DMA)*
SPARE
SPARE
SPARE
SPARE
Console Halt Switch
SPARE

With Processor Option bd

Console Interrupt
SPARE (DMA)*
Real Time Clock Interrupt
SPARE
Memory Parity Error Interrupt
SPARE
Console Halt Switch
Power Fail/Restart interrupt

*Not available as SPARE if DMA is installed.

All the internal status bits except the console interrupt and halt are associ­
ated with processor options and may be reassigned for special applications.

Bus Lines

The byte I/O bus consists of

• input data lines
• input cOltrol lines
• output data lines
• output control lines

The electrical implementation of the input and output bus lines is shown
in Figure 14.

Input Lines

The data lines are an input to the B bus gating. The control lines are input
to bits of file register O. The input lines are ground TRUE signals which
are properly terminated at the processor. If the bus is carried out of the
basic enclosure it also must be terminated at the remote end. Each
peripheral device gates information onto the bus by means of open collec­
tor type 944 DTL drive circuits. Up to 15 drivers may be connected to
each line.

The logic level on the twisted pairs are:

One 0 Volts
Zero - +3 Volts

131

*Typical Byte I/O Control Modes
(MICRO 810/820)

Mode Control Activity

0
1
2
3
4
5
6
7

None
Control Output
Data Output
Space Serial Interface
Interrupt Acknowledge
Concurrent Acknowledge
Data Input
Spare -

DEVICE
CONTROLLER ---------,

1~N
9022
flf

PROCESSOR

+5

I
I

9
DEVICE
CONTROLLER

~M

ENABLE

ENABLE DATA

TRANSMITTERS

RECOMMENDED CONFIGURATION
NS TEN GATES
M~ FIFTEEN GATES

Figure 14. Bus Lines

132

Term

None
COXX/
DOXX/
SP1X/
lACK/
CACK/
DIXX/
SP3X/

Output Lines

The output data lines originate with the FALSE output of the T register.
The output control lines originate with the I/O control register. If all
peripheral devices on the bus are local to the enclosure, and the bus does
not leave the enclosure, then the bus is standard logic levels and no DTL
drivers and terminations are used. It may be necessary to repower the
signals. If the bus leaves the enclosure, an I/O control board is required to
provide type 944 DTL output drivers and decoding the control register.
The cable length can be up to 30 feet in length and must be terminated at
the remote end. Up to 15 receivers can be accommodated. The levels on
the twisted pairs are:

One 0 Volts
Zero - +3 Volts

Control Lines In Typical Use in the System

External Interrupt (EINT/): A peripheral device makes this line low to
request an interrupt of the macroprogram.
The microprogram must respond with an
I/O acknowledge (mode 5) * signal. This'line
is bit 7 of the file register 0 where a l-bit
indicates an external interrupt request.

I/O Reply (ERPY/):

I/O Request (ECIO/):

A peripheral device makes this line low in
response to an I/O operation when closed­
loop operation is required. This line is bit 5
of the file r~gister o.

A peripheral device makes this line low in
order to request a concurrent data transfer.
The microprogram must respond with an I/O
acknowledge (mode 5)* signal. This line is
bit 3 of the file register O.

File Register 0 Flags

Bit Flag

o . - Overflow Result Condition
1 - Negative Result Condition
2 - Zero Result Condition
3 - Concurrent I/O Request Line** or (SPARE)
4 - Internal Interrupt
5 - I/O Reply Line** or (SPARE)
6 - Serial Interface --
7 - External Interrupt Line** or (SPARE)

**If a standard CPU interface is not used, these Flags may be used as
SPARE bits.

133

101X
COXX

CONTROL OOXX
102X LINE .DIXX

RECEIVERS KIXX }.~ 103X 0000 -------- BYTE
0007 OUTPUTS

0000 ,_ {m. ODOI
OD02

BYTE OD03 FROM __
OD04

~EGISTER BIT 7'
DIGITAL
MULTI·
PLEXER

0005

0006 } .. , r 0007 FD05 F006 BYTE
INPUT INPUTS

~~TE ... _

INPUT FOOS FD06 DIGITAL
BUS 81T 7 8UNES MULTI·

PLEXER

.'XX ===:l CONNECT'ON~
FOOS F006 LATCH CONN

MRST-1 MASTER
~ oAXX

RESET
MRES

Figure 15. I/O Interface Block Diagram

Since the function code is only 3 bits instead of 4 it is effectively multi·
plied by 2 when put into the device and function code word.

Description of functional block diagram (Figure 15).

The control decoder receives the 10XX lines from the control line reo
ceivers and first decodes them into COXX, DOXX, and DIXX. These
three are ORed to produce KIXX which is used to set and reset function
and connect latches.

The device address decoder becomes active whenever the boards address
appears on the ODOO·OD04 lines. DAXX is active only when COXX is
active. Otherwise DAXX would become active every time the device
address appeared on the output data lines.

The function latches set or reset every time there is a KIXX pulse. The
output functions FNOX, etc., are not enabled unless CONN is active. The
functions are used to enable the output latch.

The connection latch is set when the board detects its device address and
COXX is active. It is reset on the trailing edge of thenext DIXX or DOXX
pulse.

The connection I.atch enables the functions and the input selection gate.

The input selection gates place the input data onto the input bus during
DIXX whenever the CONN latch has been set indicating that this board
has been addressed.

The output latches are updated to the values on the ODOX lines during
DOXX whenever the corresponding function code FNNX is active.

134

Serial Interface
The processor contains a serial interface capable of communicating with a
full duplex teletype. The input from the teletype appears as bit 6 of file
register 0 where a l·bit indicates that the teletype is transmitting a SPACE.
The output to the teletype normally transmits a 20 milliampere MARKing
current which can be keyed off to send a SPACE signal by placing the I/O
control register in mode 3. Character assembly and disassembly, including
all timing and synchronization, are performed by microprogramming.

The serial interface is standard. A teletype or CRT wired for 4-wire full
duplex 20 milliampere operation may be directly connected to the cable
provided with the machine. Other types of serial I/O devices also may use
this condition.

Direct Memory Access
The direct memory access (DMA) interface allows for direct connection
to the memory address, data and control busses. Within the machine en­
closure there is a circuit board slot which is reserved for the DMA. This
board may contain a channel to which.a number of peripheral devices are
connected, or a device controller which has direct memory access capabil­
ity. Generally the DMA system will be customized for special applications.

The maximum data transfer rate is 909,000 bytes per second. The DMA
I/O takes precedence over the processor for memory operations. The DMA
must supply its own address control.

Typical Byte I/O Interface
To illustrate byte I/O programming, a typical interface has been selected
which has minimum functions for transferring bytes in and out of the com­
puter. A more complex device, such as a tape controller, or card reader,
using the byte I/O function would contain logic similar to this for trans­
ferring control, status, and data between the controller and the MICRO
800. .

The byte I/O interface described contains the following· basic functions.

• Line receivers and drivers
• Device. address decoder
• Function latch and decoder
• Connection latch
• Input multiplexer
• I nput selection gates
• Output latches .
• Control decoder

For the following· examples assume that the device code is 00001. This
results in the following device and function codes:

Function Code Device and Function Code
Binary Hex Binary Hex
000 0 00000001 01
001 1 00100001 21
010 2 01000001 41
011 3 01100001 61

135

For summary purposes the logic terms used in the I/O interface example
(which are standard for MICRO 800 interfaces) are defined in Table 11.

Table 11. Definition of Terms in I/O Interface Block Diagram

COXX FUNCTION AND DEVICE CODE OUTPUT
CONTROL PULSE

DOXX DATA OUTPUT CONTROL PULSE

DIXX ' DATA INPUT CONTROL PULSE

KIXX INTERFACE CLOCK PULSE FORMED BY ORing
COXX, DOXX, and DIXX

DAXX DETECTED DEVICE ADDRESS ENABLED BY
COXX

0000-0007 OUTPUT DATA LINES RECEIVES FROM MICRO
800 T COMPLEMENT REGISTER

FNOX-FN7X LATCHED AND DECODED FUNCTIONS ENABLED
BY CONN.

FD05-FD06 LATCHED BUT UNDECODED FUNCTION BITS

CONN CONNECT LATCH INDICATING THAT THE I/O
BOARD HAS RECEIVED ITS DEVICE CODE
WITH COXX.

MRES MASTER RESET FROM. MICRO 800

101X-103X 3 BITS FROM CONTROL OUTPUT REGISTER

DIG MUX DIGITAL MULTIPLEXER

See Figure 16 for I/O signal source.

136

INPUTS

r 10011
. INPUT 10021

DATA 10031
SIGNALS 10041

10051
10061
10071

gg~JROL { EClfll

LINES ~~P~I
SERIAL TELETYPE TTIN
INPUT { OMAHI

OMA INPUT OMARI
CONTROL OMAWI

OMASI

r~' FRONT PANEL HLTPI
CONTROL INTPI
SWITCH STPPI
INPUTS MRSTI
FRONT PANEL OSXX
SELECT SWITCH { CPEN
INPUTS CPENI

FRONT PANEL { ES04I
SENSE SWITCH ESOSI
INPUTS ES061

ES071
.CRODI
CROll
CR021
CR031
CR04I
CROSI

FRONT PANEL CR061
COMMAND CR07/
SWITCH CROBI INPUTS CR091

CR101
CR111
CR121
CR131
CR141
CR151

} Jl0

} J12

." { }J12

Jll

J11

Jl0. 11. 12

} J11

J10-21 {
J2 Jl0
Jl0

12

J12{
J12

} Jl0
Jl0{

J12 {
} J12

Jl0{

J11 {
J12

OUTPUTS

!~i~~] "T" REGISTER DATA
T04XI OUTPUT LINES
TOSXI
T06XI
T07XI
TTYX SERIAL TTY OUTPUT

M02A1--~::-l
MOlAl --f<f.H
M04AI --~"
M05A1 --"*,H
M06A1 --lffiH
M07A1
NODAl
NOIAI
N02AI
N03AI
N04A1
NOSAl
N06A1
N07AI

Figure 16. CPU Input/Output Signals'

137

OMAH/} OMARI CONTROL OUTPUTS
OMASI TO THE CPU
OMAWI

EXAMPI,.ES OF I/O MICROPROGRAMMING

Example 1. For the first I nput/Output example the timing of events and
the microprogram routine are described for outputting a byte
from the MICRO 800 to latch 0 in the interface board with
device code 01.

Timing Diagram: Output a byte to latch register O.

I I I I
OUTPUT j I 'I
BYTE FUNCTION & \ J OUTPUT DATA I \
ODOX (8) I D~VICE CODE I ByTE I '----

-----4-: _1 coxx ~ : I
I I I I I
I I I ! DOXX t
I I I 1 tf'------

I I I I
______ ~I~! DAXX L~ ________________ TI ________ ;-______ _

I I 'I

___ ~f KIXX l } KIXX t----
I I I

! r CONN !
I "L FNOX I
I J I

1

t
I I I
: : OUTPUT LATCH 0 BITS l"------;-: -----,---

MICROPROGRAM I L I
FUNCTIONS I I LATCH 0 UPDATE TIME . , i I ~ I I

"

I I Reset COXX which '. I ~ .
: ~I deactivates DAXX t R t DOXX .

and KIXX and w~~~h deactivates
causes CONN and KIXX and resets
FNOX to set. CONN and FNCX

Load T with Set COXX which Set DOXX which
device address then causes DAXX causes KIXX to
and function and KIXX to
code for
latch register 0
on this board

become active on
the interface
board because the
board's device
code is on the
output data lines.

138

become active,
and strobes the
output data into
latch 0, because
FNOX is set.

Microprogram: For outputting a data byte from the MICRO 800 to
device 1, byte O.

Example 1.

FLOW CHART

DEVICE & FUNCTION
CODE-T
('01' -T)

3 CLOCK DELAY*
NOOP+
JMP TO NEXT COMM.

MACHINE CODE

L COMMAND

040

041

042
043

044

045

046

047
048

049

04A

1101

7090

1000
1444

7080

A1C3

70AO

1000
1449

7080

ASSEMBL Y LANGUAGE CODE

LT X'Ol'

K

LS
JP

K

RN

K

LS
JP

K

0,9

X'OO'
X'044'

0,8

1, 1

0, 10

X'OO'
X'49'

0,8

+- ANY INSTRUCTION WITH T AS
DESTINATION

*This is the standard delay in the MICRO 810 to generate an 880 ns
COXX and DOXX . .lt could be shorter if the interface is in the computer.
Housekeeping can be done on delay clocks.

139

Example 2. For the secon!:! input/output example, the timing of events
and the microprogram are described for inputting a byte from
input by!e 2 of device 01 to file register 1 and T.

, I 1 I
, ,I 1

OUTPUT ---1 FUNCTION & DEVICE

~~~~ (81 C~DE I: ; : 
J COXX i I I ,. 

~~I~---TI-rl------------
t DIXX : t~ _____ _ 

I I n INPUT DATA SAMPLE TIME 
---~-----!---T---""'" FUNCTION OF 

I I J I INTERFACE 
INPUT f INPU~ DP:TA VALU~ I 14- DEVICE 
DATA ----."r--' I' I I 
BYTE ___ -It DAXX 1 : : ' 

, I I I I ---11 KIXX }-f KIXX : }'-_____ _ 

___ --...,;.---.At I CONN : ~ _____ _ 

I I I 
__ ...... ___ .... ( FD06: ~_. _________ _ 

I I 
I I 
I I 
, L-- RESET DIXX 

I 
I 
L INPUT DATA FROM 

INPUT BUS TO f1 
ANDT. 

L SET DIXX WHICH ENABLES 
DATA TO THE INPUT BUS 

L RESET COXX WHICH 
DEACTIVATES DAXX 
AND KIXX 

L- SET COXX WHICH 
ACTIVATES DAXX 
AND KIXX 

140 



Microprogram for example 2 inputting a data byte from device 01, byte 2 
to f1 and T. 

FLOWCHART MACHINE CODE ASSEMBLY LANGUAGE CODE 

L COMMAND 

DEVICE & FUNCTION 
CODE TOT 060 1141 LT X'41' 
'41'-T 

061 7090 K 0,9 

3 CLOCK DELAY 
NOOP+ 062 1000 LZ X'OO' 
JMP TO NEXT COMM. 063 1464 JP X'64' 

064 7080 K 0,8 

065 70EO K 0, 14 

066 1467 JP X'67' 

INPUT DATA 
USING COPY T 
COMMAND 

067 B121 CT 1, T 

068 7080 K 0,8 

069 ANY INSTRUCTION CAN BE NEXT 

141 



Example 3. Special Input Function. 

To achieve minimum input time and still achieve one . clock 
delay after setting 01 XX use the following: 

K 0,14 Set OIXX 

LF K,X'FF' Set file 1 = all ones and generate 
1 clock delay 

K 1, 11 Reset OIXX and simultaneously 
'and' the, input bus with (file 1) 

Example 4. High speed multiple byte output to a special interface. Output 
bytes from files 1, 2, 3, and 4 to a 32 bit register on a special 
interface unit is an I/O connector. Use OOXX followed by a 
load zero command (CGOX). OOXX is used to distinguish 
from input command, followed by 4 file to T commands: 

K 0, 10 OOXX Set 

LZ X '~O' CGOX 

AT 

AT 2 
Transfer files to T 

AT 3 

AT 4 

K 0,8 Reset OOXX 

For this a very simple interface can be designed to transfer 32 bits of data 
from the MICRO 800 to an interface in only 1.54 microseconds. 

142 



CHAPTER 4 

CENTRAL PROCESSOR OPTIONS 

In addition to the option hardware, proper firmware must be provided to 
implement system action and response. This firmware may be designed 
specially for a given application. Standard firmware for each option 
described below is available. 

Real-Time Clock 

The real-time clock option provides an internal interrupt at a crystal­
controlled timing rate. This may be used at the macroprogramming level 
for a real-time clock. The timing is derived from the processor internal 
clock which is divided down by some integer number less than 213, as 
determined by optional strapping on the option board. 

When the- timing signal occurs, it provides an internal interrupt by setting 
condition flag bit 4 and bit 2 of the internal status byte. The timing signal 
internal interrupt may be disabled and enabled by commands 1710 and 
1720 respectively. The microprogram must detect the internal interrupt 
and take appropriate action. Special real-time clock interrupt' handling 
firmware is available. 

Power-Fail/Automatic Restart 

The power-fail and automatic restart option provides the following: 

1. An internal interrupt by setting condition flag bit 5 and bit 7 of the 
internal status byte upon detection of loss of primary power. 

2. A machine reset when the computer is halted after loss of primary 
power. 

3. A machine reset for 200 milliseconds after power is applied. 

4. Automatic switch to run mode after the power-on reset period. 

5. Power-restart interrupt immediately after automatic switch to run 
mode. 

A power-fail interrupt detected while the machine is in the run mode can 
be used to cause the machine registers to be stored and to bring the pro­
cessor to a halt. The automatic machine reset that follows the halt and the 
one following power-on prevents any spurious operations in the core 
memory. At power-on, the machine reset clears the L register causing the 
machine to start at read-only memory location O. The power-fail interrupt 
which occurs at this time can be detected and treated as a restart interrupt 
to cause a restoring of the machine registers. Standard power-fail/auto-
matic restart interrupt firmware is available. ' 

143 



CONSOLES 

CHAPTER 5 

OPERATOR CONTROLS 

Two control console options are available: system console and basic con­
sole. These consoles aiffer in their number of displays and controls. This 
range of consoles permits the user to tailor the cost to meet the control 
and display capability required for a particular application. The system 
console is shown in Figure 17. 

System Console 

The system console provides complete control and display facilities. It is 
primarily used for maintenance, system and firmware checkout. This con­
sole provides for display of the MICRO 800 registers in addition to the 
functions of the basic console. The features include: 

• Run and halt indicators 
• Display of A-bus 
• Display of M, N, and L registers 
• Display of output of read-only memory 
• Four sense switches 
• Six control switches, including run, step, interrupt, clock reset, and save 
• Manual command execution 
• Power on-off 

Basic Console 

The basic console prov ides minimal control capability and is designed for 
dedicated system application where operator control is not requ ired. The 
features include: 

• Run and halt indicators 

JlOWf."1 

• .. -~ ". ", .. t 

Figure 17. System Console 

144 



• Four sense switches 
• Six control switches, including run, step, interrupt, clock, reset and save 
• Power on-off 

DISPLAYS 

Run Lamp 
The run lamp is illuminated when the processor is running_ 

Halt Lamp 
The halt lamp is illuminated when the power is on and the process is not 
running. 

SWITCHES 

Display Selector 
These seven interlocked switches select the register or bus to be displayed 
on the system console. The displays which can be selected are: L register, 

I M register, N register, eight high order bits of the read-only memory out­
put, eight low order bits of the read-only memory and the A bus. When 
the machine is halted the output of the read-only memory is the same as 
the contents of the R register, and is the next command to be executed. 

Command 
These 16 alternate action switches are substituted for the read-only stor­
age on the system console when the SELECT switch is in the PANEL 
position. Depressing the CLOCK switch causes the command set on the 
switches to, be executed. The command may also be executed repeatedly 
by depressing the RUN switch. These switches are used to gate registers 
to the A bus display and for entering data into the file and registers. 

Select 
This alternate action switch selects the console panel command switches 
(PANEL) or the read only memory (ROM) as the command to be executed 
next. This switch is not available on the basic console. 

Sense 
The four alternate action sense switches are available on both consoles. 
The state of these switches may be transferred to a file register or machine 
register by the control command. These switches may be used to provide 
manual control of micro level and macro level programs. 

Run 
This mQmentary contact switch places the 'processor in the run mode 
causing it to execute microcommands. 

Step 
This momentary contact switch places the processor in the run mode and 

- as long as the switch is depressed causes an internal interrupt. The halt 
internal interrupt is bit 7 of the internal status. This switch is normally 
microprogrammed' to cause a processor halt. Since the, processor is forced 
to run when the switch is depressed, the machine can be microprogrammed 
to cause a single macro instruction to be executed. 

145 



Interrupt 

This momentary contact switch places the processor in the run mode and 
causes an internal interrupt. The console interrupt is bit 0 of the internal 
status. This switch is normally microprogrammed to cause a console 
interrupt. 

Clock 

This momentary contact switch causes the processor to execute a single 
microcommand. If the processor is running at the time the switch is de­
pressed, the processor will come to a forced halt following the current 
microcommand execution. 

Reset 
This momentary contact switch halts the processor and clears the L regis­
ter, I/O control register and other control flip flops. The reset is made 
available to I/O devices. Since the current microcommand execution will 
not be completed, the computer should not be stopped by this switch. 

Save 

This alternate action switch is the same as the RESET switch but can be 
set on providing a continuous reset. If this switch is on at the time the 
power is turned on or off the contents of the memory will not be lost or 
altered. 

OPERATING PROCEDURES - SYSTEM CONSOLE 

Execution of Commands from the front panel of the System Console 
Most microcommands can be executed from the front panel by using the 
command switches to simulate read only memory. These commands can be 
used to check-out most of the MICRO 800 logic, and also to gain familiar­
ity with the microcommand set. The following list of commands is a mini­
mum that should be tried out when first becoming acquainted with the 
MICRO 800. 

For the examples all command switch settings and displays are shown in 
hexadecimal. 

1. Loading and stepping theL register 

a. Load L 

1) Set CLOCK, RESET 

2) Set 'SELECT' to panel 

3) Select Ldisplay 

4) Set the following commands into the command switches, and 
press the CLOCK switch once for each 

Setting Switches Display 

14AA 
1455 
15FF 

. 1C11 
WEE 

146 

OAA 
055 
1FF 
211 
3EE 



b. Step L 

1) Set SE LECT to ROM 

2) Set RESET 

3) Select L display 

4) Each time the CLOCK switch is pressed, the L count should 
increment, skip, or jump. If no ROM board is plugged in, the L 

- count will step. 

2. Test M and N 

1) Set SELECT to PANEL 

2) Display to M or N 

3) Set the following command into the command swHches and press 
the clock switch once for each. 

1255 Load M 
13AA Load N 

Try other values and repeat. 

M =55 
N =AA, M = 0 

3. Test ROM and L register (with 810 firmware). 

1) Set SEL.ECT to ROM 

2) Set RESET 

3) Select L, or R2 or R 1 

4) . .!::" R2 

000 BF 
001 2B 
002 2A 
003 40 

R1 

02 
00 
00 
10 

} Repeatedly press 
the CLOCK 

After this, the L value depends on computer register states, 
because of conditional skips and jumps. 

4. Test the T register 

1) Set SELECT to PANEL 

2) Set DISPLAY to D (A bus) 

3) Set the following sequences 
press the CLOCK switch. 

11AA CLOCK 
B020 
1155 CLOCK 
B020 

Try other values and repeat. 

5. Test the File Registers 

a. Load and Read each File. 

1) Set SELECT to PANEL 

2) Set DISPLAY to D (A bus) 

147 

into the command 'switches and 

Load T 
Display T = AA with copy T 
Load T 
Display T ~ 55 with Copy T 



3) Set the following sequences into the command switches and press 
the CLOCK switch. 

21AA CLOCK Load file 1 with 'AA' 

ClOO OR 0 with file 1 (Display file 1) 

OBSERVE 'AA' 

Repeat with file numbers 2-F and different data patterns. 

b. Load all files first, and then read back. 

1) SELECT to PANEL 

2) DISPLAY to D (A bus) 

3) Set command switches to 2111, press CLOCK, change command· 
switches to 2222, press CLOCK. Repeat up to 2FFF. 

4) Display file 1 with 8100 or ClOO, and repeat for 8200, 8300, 
etc., to 8FOO. 

c. Test Add to File 

1) SELECT to PANEL 

2) DISPLAY to D 

3) Set command switches to 2100 (clear file 1), press CLOCK. 

4) Set command switches to 3101 (Add 1 to file 1). Display will be 
at 01 before CLOCK is pressed. Each time CLOCK is pressed, 
display will increment. 

5) Repeat for different file values and increment sizes (3102, etc.). 

6. Test various Arithmetic, Logic and'Shift Commands-

1) SELECT to PANEL 

2) DISPLAY to D 

a. ADD 

1101 

2101 

8120 

CLOCK 

CLOCK 

O1-T 

O1-fl 

(f1 )+(T)--fl Initial display=02 

Each time CLOCK is pressed display will increment. -

1101 CLOCK 01-T 

2101 

8121 

CLOCK O1-fl 

(f1)+(T)--t" T Initial.display=02 

Each time CLOCK is pressed display value will double. 

2100 CLOCK 

8140 (file l)+l--file 1 Display = 01 

Repeat with different initial values in fl and T. 

Change destination register to M and N and display these directly 
while repeating above tests. 

148 



b. SUBTRACT 

1101 

21FF 

···9120 

CLOCK 

CLOCK 

01--T 

FF-fl 

(fl)-(T)-fl Display = FE 

Each time CLOCK is pressed display value will decrement. 

Repeat for other values in fl and T. 

c. Logic Functions 

llAA CLOCK AA--T 

21CC CLOCK CC·-fl 

OR C120 C140 Display result of logic function 

EXOR D120 D140 

AND E120 E140 

Table of Values: 

c field = 2 OR EXOR AND 

T 10101010 10101010 10101010 
fl 11001100 11001100 11001100 

Display 11101110 01100110 10001000 

c field = 4 

f 01010101 01010101 01010101 
fl 11001100 11001100 11001100 

11011101 10011001 01000100 

d. Shift 

1) 2101 CLOCK O1--file 1 

Fl00 Display bit shifted left 1 

Each time CLOCK is pressed the bit will shift left one place. 

2) 2100 CLOCK OO-fl 

Fl00 CLOCK Clears link 

2101 CLOCK 01--f l 

F185 Display bit shifted left 1 

Repeated pressing of CLOCK will cause a left shift with end 
around carry. 

F120 

F140 

Causes Right Shift 

Causes Left Shift insert ones. 

149 



'. 

7. Load and Read Memory 

This requires setting M and N, loading T, and executing a write memory 
command to load. To read, set M and N, execute a read memory com­
mand, and a B020 to display T. Set SELECT on PANEL and display on 
D. - . 

Load core location 0210 with AA. 

1310 

1202 

llAA 

A010 

10-N,0--M 

02-M 

AA.-T 

Write memory 

Read core location 0010 

1310 10--N,0--M 

AOOO Read memory 

B020 Display T 

8. Enter Sense Switches 

Set SELECT to PANEL 

DISPLAY to D 

Set command switches to 7010, sense switch settings will appear on 
display as follows: 

Binary 

x X X X 

switch 
settings 

9. Shift hie right 4 

Set SELECT to PANEL 

DISPLAY to D 

1 1 1 

all l's 

21AO CLOCK 

7120 

Display = FA 

10. Test U Register 

AO-fl 

Shift right 4 

The lower 4 bits of the U register can easily be loaded and tested by 
observing its effect on a file display command. First load all files in 
sequence with the file number for a value. Then load U with a Cf value, 
followed by an execute command, with 0000 set on the command 
switches. This will cause the value of file f to be displayed. 

150 



1) Set SELECT to PANEL 

2) DISPLAY to D 

3) Load files 

2101 

2202 

CLOCK 

CLOCK 

(repeat for all files up to F) 

4) Load U 

16C1 CLOCK 

5) Set 0000 on command switches 

Display 01 from file 1 

6) Load U 

16C2 CLOCK 

7) Set 0000 on command switches 

Display 02 from file 2 

Repeat 6 and 7 for all files to F. 

C2-U 

11. Set and Display Condition F lags and Link 

The flags can be displayed by the command COOO (file 0 V O--tile'O). 
and the link can be displayed by 8080. Copy link-no destination, 
which displays the link 'as LS8 on the A bus. 

1) Set SELECT to PANEL 

2) DISPLAY to D 

3) Depress CLOCK for first two instructions only: 

Load File 2101 2100 

Add to file 8110 8100 

Display link 8080 Link = 0 8080 

Display flags COOO All flags = 0 COOO 

2180 Negative 217F 

8110 condo 8150 

8080 Link = 0 8080 

CODa Flag = 1 CODa 

21FF Zero condo 

8150 

8080 Link = 1 

COOO Flag = 1 

151 

zero condition 

Link = 0 

Flag = 1 

Overflow 

Link = 0 

Flag = 1 



Condition Flag Display (File zero) 

Overflow condition 
Negative condition 

Zero condition 

Explanation of Codes 

8110 Add 0 to file 1 Update Condition flags 
8150 Add 1 to file 1 Update Condition flags 
B080 Copy Link to no destination except A bus 
COOO OR file 0 with no operand 

12. External Internal Status 

This instruction will demonstrate sensing of the console STEP, and -
console interrupt inputs. 

1) Set SELECT to PANEL 

2) DIS,PLA Y to D 

Command switches 

7040 

6 o 
Display x x 

t f 
Console STEP Console 

Interrupt 

Press console STEP and interrupt switches, and observe changes 
in bits 0 and 6. 

152 



CHAPTER 6 

PROGRAMMING SYSTEMS FOR MICRO 800 
FIRMWARE DEVELOPMENT 

The programming systems for the MICRO 800 computer permits the user 
to develop special application firmware at a cost and turnaround time that 
is now comparable to software development in competitively priced fixed 
instruction computers. This chapter describes the a!;semblers, operating 
systems, simulator and use of the Alterable Read Only Memory system 
which are used as standard aids in microprogramming. In addition, pro­
cedures for checkout and debugging of microprograms are provided. 

AP800 CROSS ASSEMBLER 

AP800 is a symbolic assembly program for the MICRO 800 computer. 
The assembler provides for symbolic addressing and mnemonics for 
machine and assembler instructions. This program is written in FORTRAN 
IV and may be adapted to many computer systems. The MICRO 800 
source program is entered by punch cards and the output of the assembler 
includes an assembly listing, read only storage diode map, and an object 
program card deck. 

MAP800 CROSS ASSEMBLER 

MAP800 is a two pass symbolic assembly program which allows for assem­
bly of MICRO 800 microprograms on the MICRO 810 or MICRO 820 
computer. It is designed to operate using an ASR 33 Teletype with paper 
tape reader and punch. Output consists of an assembly listing and an object 
program paper tape for use by the MICRO 800 simulator program, 
SIM800. 

The assembly language includes the following features: 

Address Arithmetic - Decimal and hexadecimal numbers, symbolic 
addresses, and arithmetic expressions. 

Listing Control - The format of the listing may be controlled with com­
ment cards included. 

Diagnostics - Diagnostics for source program errors included in the output 
listing. 

Option Flags - Single letter flags to signify options to microcommands. 

SYMBOLIC LANGUAGE 

The source language is a sequence of symbolic .commands, called state­
ments. Each statement is written on a single line and may consist of from 
one to four entries: a name field, an operation field, an operand f!el~, and 

. a comments field . 

. Name Field 

the name field entry is always a symbol. The first character of a 
symbol is alphabetic or a period; subsequent characters may be 

153 



alphabetic, numeric, or a period. A name entry is usually optional. When 
an asterisk, *, appears as the first character the remainder of the line is 
considered as comment. The type of command determines the legal con· 
tent of the name field. 

Operation Field 

The operation field entry is a mnemonic operation code specifying the 
machine command or assembler instruction. The field begins with the 
first non blank character following the name field in paper tape or with 
column 8 in cards. All machine command mnemonics are two characters 
except those of the operate class where no destination register is desig· 
nated. The operate class commands have a basic single letter mnemonics. If 
the result of the operation is to be sent to a machine register then the 
register identifier character, r, is appended as the second character of the 
mnemonic. Register identifier characters are shown below. An asterisk,' *, 
is appended to the mnemonic if the result of the operation is not to be 
placed in the designated file register. Some of the mnemonics accepted by 
the assembler are commonly used forms of other commands. 

Register 
Designator Register 

o 
1 
2 
3 
4 
5 
6 
7 

Operand Field 

T 
M 
N 
L 
K 
U 
S 

None. 
T Register. 
M Register. 
N Register. 
L Register Addresses: OOO,·OFF and 200·2FF. 
L Register Addresses: 100·1FF and 300·3FF. 
U Register. 
U Register ORed in command 
(Except for K command). 

The operand field entries provide the file register designators, literals, and 
option bits'for the machine commands. The operand field may start any· 

'where following the operation field. When punched in cards, column 14 is 
the normal starting column. It is terminated by the first blank. One or 
more operands, separated by commas may be written, depending on the 
needs of the command. All entries in the operand field, except the single 
character option bit identifie~s for the operate class commands, are expres· 
sions. An expression is a symbol, decimal number, or hexadecimal number, 
or a combination of these terms made by + and - operators. 

The following single character option identifiers, designators and literals 
may appear in the operand field. 

L Link Control. 
I Add one or insert one on Shift. 
D Decrement one. 
T T register operand. 
F Complement of T register operand. 
H Half cycle memory operation (otherwise full cycle). 
R Right shift (otherwise left shift). 
C Set condition flags. 

154 



f File register designator (0-15) 
c - Option code (0-15) 
n - Literal (8, 9, or 10 bit) 

Comments Field 

Comments describing the information about the program may be inserted 
between the end of the operand field and column 72_ All characters, in­
cluding spaces, may be used inwriting a comment. If the listing is printed 
on a teletype, only the first 53 characters of the source I ine are printed. 

MACHINE COMMANDS 

Machine commands are expressed by a one or two character mnemonic 
code in the operation field. The required operands depend on the com­
mand type. The four syntax types are described below. Examples of the 
method of writing machine commands in the assembly language are shown 
in the sample listing in section 5. 

Load Register Commands (Command 1) 

All commands of this syntax type have two character mnemonics begin­
ning with L, except for the jump command. The second character is the 
register identifier character. The operand field of all commands of th is 
type except jump must contain a single operand which is an expression, 
whose value is less than 1024 and greater or equal to -256. It is ev'aluated 
modulo 256. The jump commands must contain an operand expression 
which has a positive value less than 1024. 

Literal-File Commands 

The commands of this syntax group (commands 2-6}. have two character 
mnemonics and require two operands. The first operand is an expression 
which designates a file register (f) and must be in the range 0-15. The 
second operand (n) is an expression which must be less than 1024 and 
greater than or equal to -256. It is evaluated modulo 256. 

Execute and Control Commands 

The commands of this syntax group have operation code mnemonics 
identical to those of the next group, and require two operands. The first 
operand is an expression which designates a file register (f) and must be in 
the range 0-15. The second operand (c) is an expression which designates. 
the option bits (7-4) and must be in the range 0-15. 

Operate Class Commands other than Execute and Control 

The commands of this syntax group have basic operation code mnemonics 
which are a single character. If the result of the operation is to be routed 
to a machine register the designator of that register is appended as a 
second character of the mnemonic. If the result is not to be placed in the 
designated file register, an * is appended to the mnemonic. 

OPERAND FIELD EXPRESSIONS 

Expressions in the operand field are made up of one or more terms which 
are connected by + and - arithmetic operators. No parenthetical expres­
sions are allowed. Each term of the expression represents a value. Values 

155 



MICROCOMMANDS 

Command Mnemonics Operand Field 

Load T LT n 
Load M LM n 
Load N LN n 
Load U LU n 
Load Zero Control LZ (L) n 
Load Seven Control LS n 
Jump JP n 
Load File LF f,n 
Add to File AF f,n 
Test If Zero TZ f,n 
Test If Not Zero TN f,n 
Compare CP f,n 
Execute Er* f,c 
Control Kr* f,c 
Add Ar* f,L,I,T,C 
Increment Ir* f,L,C 
Subtract Sr* f,L,D,T,C 
Decrement Dr* f,L,C 
Copy Cr* f,L,I,T,C 
Read Rr* f,L,I,D,H 
Write Wr* f,L,I,D,H 
Logical OR Or* f,L,F,T,C 
Move Mr* f,L,C 
Exclusive-OR Xr* f,L,F,T,C 
Logical AND Nr* f,L,F,T,C 
Shift Hr* f,L,I,R,C 

may be assigned by the assembler program (symbols), or there may be 
inherent in the term itself (constants). The range of values depends on the 
operand and the instruction. . 

Symbols 

A symbol is composed of one to three characters in MAP800, or one to six 
characters in AP800. The first character must be alphabetic or period; sub­
sequent characters may be. numeric, alphabetic, or period. Imbedded 
blanks are not allowed and the assembler stops scanning the symbol with 
the first character which is not alphanumeric or a period. All symbols, 
except the special symbol *', used in an operand field, must be defined 
by a single appearance in the name field of statement within the program. 

Special Symbol 

The special syrnbol* represents the momentary values of the assembler's 
location counter. It may be used as any other symbol in an expression but 
must never appear in the name field. . 

156 



ALPHABETIC LIST OF COMMANDS 

Command 

AND 
Add 
Add To File 
l;ompare 
Control 
Copy 
Exclusive-OR 
Execute 
Jump 
Load File 
Load T 
Load M 
Load N 
Load U 
Load Seven Control 
Load Zero Control 
OR 
Read 
Shift 
Subtract 
Test if Zero 
Test if Not Zero 
Write 

Constant~ 

Mnemonic 

N 
A 
AF 
CP 
K 
C 
X 
E 
JP 
LF 
LT 
LM 
LN 
LU 
LS 
LZ (L) 
o 
R 
H 
S 
TZ 
TN 
W 

Operatiqn Code 

Ef 
8f 
3f 
6f 
7f 
Bf 
Of 
o 
14,15,1C,1D 
2f 
11,19 
12 
13 
16 
17 
10 
Cf 
Af 
Ff 
9f 
4f 
5f 
Af 

Page 

116 
101 

90 
94 
94 

110 
114 
121 

87 
89 
83 
83 
84 
84 
86 
85 

112 
106 
118 
104 

91 
92 

106 

The values of the constant terms are not assigned by the assembler pro­
gram but are inherent in the terms. There are two types of constant terms: 
decimal and hexadecimal. 

a. Decimal Constant 

A decimal constant is an unsigned decimal number. The value must be 
less than 65,536. 

b. Hexadecimal Constant 

A hexadecimal constant is an unsigned hexadecimal number of up to 
four characters written as a sequence of hexadecimal digits. The digits 
are enclosed in single quotation marks and preceded by the letter X. 
Each hexadecimal digit represents a four-bit binary number. The char­
acters A through F are used to identify the hexadecimal integers 10 
through 15. ' . 

ASSEMBLER INSTRUCTIONS 

Seven assembler instructions are included for control of the assembly pro­
cess and the output listing. 

ORG - Set Location Counter 

The ORG assembler instruction alters the setting of the location counter. 
The name field entry, if any, will be assigned the value of the program 

157 



counter after it is altered. The. operand field of ORG must contain an 
expression whose value will be placed in the location counter. All symbols 
in the expression must have been previously defined when the instruction 
is first encountered. The next command which places object code in the 
program is forced to begin a new object card. 

EQU - Equate Symbol 
The EQU assembler instruction· is used to define a symbol by assigning to 
it the value of the operand field. Any symbols appearing in the expression 
must have been previously defined when the instruction is first encounter­
ed. A name field entry must be present. 

DC - Define Constant 
The DC assembler instruction is used to create any microcommand for 
which a symbolic representation does not exist. Each statement specified 
only one constant. The constant is written as an expression and is assem· 
bled as a 16·bit word in storage. 

END - End Assemhly 
The END assembler instruction terminates the assembly of a program and 
must be the last statement in a source program. 

The next three descriptions are available only in the AP800 version. 

IDENT - Program Identification 
The IDENT assembler instruction is used to identify the .start of a pro­
gram and to supply the program name which is located in the operand 
field. The IDENT must be the first statement in a source program. 

SPACE - Space Listing 
The SPACE assembler instruction causes one or more blank lines to be 
inserted into the listing. The name field is disregarded by the assembler. The 
operand field contains an expression specifying the number of blank lines. 
If the spacing is beyond the end of the current page, the listing begins at 
the top of the next page. 

EJECT - Start New Listing Page 
The EJECT instruction causes the next line of the listing to appear at the 
top of the next page. The name and operand fields are disregarded by the. 
assembler. 

ASSEMBLY LISTING AND DIODE MAP 

The output listing from the assembler contains the memory address, and 
contents of words in the object program. The source statement is printed 
side-by-side with the object code. 

FORMAT FOR AP8QO 
Printer Columns 

8 - 11 
15 - 17 
21·24 
31 - 110 

Contents 

Error flags 
Storage address' 
Storage contents 
Source statement 

158 



ERROR FLAGS 

A - Address Error 

This error occurs when an ·address expression in the operand field is in­
correctly written or the value is out of range for one of the operands. An 
error flag will occur for each operand in error or out of range. 

F - Flag Error 

This error occurs when an operate class command has an option flag in the 
operand field which is not allowed for the command or is unrecognizable. 

M - Multidefined Symbol Error 

This error occurs when the symbol in the name field has been previously 
defined by appearing in the name field of another instruction. 

N - Name Field Error 

Th is error occurs when the symbol in the name field starts with a character 
other than alphabetic or period, or contains a non alphanumeric or non 
period character. 

o - Operation Mnemonic Error 
This error occurs when the assembler does not recognize the contents of 
the operation field starting in column S. A zero value is assembled to allow 
patching. 

U - Undefined Symbol Error 

This error occurs when the symbol encountered in an expression of the 
operand field is not defined by an appearance in the name field. 

DIODE MAP FOR AP800 

The read only memory diode map is printed if a control card following the 
END card contains a 1, 2 or 3 in column 1. The digit specifies the number 
of diode maps to be printed. The diode map for each 256 word read only 
memory board is placed on three pages of the assembly listing. The format 
of the map is the same as the physical layout of the ROM board. An X on 
the map indicates a l-bit and that a diode is to be placed at the position of 
the X, while an 0 indicates a a-bit and no diode. 

Each of the 64 lines of the diode map for a board contains the diodes for 
four words. The address of the first word is printed at the left of the map. 
The four words are interleaved so that the same bit position in each of 
the four words are grouped together and printed as a cluster at four diode 
positions. The 16 bit positions are printed across the page and the sum of 
the number of diodes on the line is placed at the right of the map. 

SAMPLE LISTING 

I n order to illustrate assembly language programming, three examples are 
included in this manual (Figures lS, 19 and 20). The first is a set of unre­
lated commands assembled by APSOO showing how to write various 
commands. The second is a listing of a portion of the MieRa S1 a firmware 
assembled by MAPSOO. The third example is a sample coding sheet with a 
portion of a program on it. 

159 



L 
en COUNT Cl 
< DOD ... 
"- DOl 
a: D02 

~f 
D03 ,,-
Dns 

D06 
of U D07 
;:0 

100 w 
1:l I~I 

< 
U? 
103 

I'_ 
1.5 
1'6 
In7 
I •• 
I'. 
irA 

1(1~ 

I·C 
I'" 
I'E 
InF 
l1n 
III 
112 
III 
II< 
115 
116 
111 
118 
\1' 

1\' 
118 
I1C 
110 
liE 
l1F 
120 
121 
122 
123 
12-

20' 

3 •• 

COLUMNS . 
8 14 30' 

li5 0 ~ 
i= 2 ~ 

wO <0 <0 ;:00 
:E-I D:...J a:..J :E-I 
ct~ ~~ ~~ o~ 
ZlL. Ou.. Ou. (JLL. 

_ FIRST CARD OF MICRO 800 
ASSEMBLY PROGRAM ... I'OENT LMPLE - I 

~6'g~INE .. THIS ;.MPLE .... OG •• M 5HOOS H't TO O.ITE vaRIOUS COMM.NDS. 

•• LOAD REGISTER COMMANDS .... 
1112 
1204 
130H 
16U 
160A 
1780 

1408 
1400 

1502 
ICD2 
1002 
0000 

2AFF 
2200 
2.,·~ 
32(12 
4004 
5A·.'e 
65FE 

CAt)1 
8548 
C518 
S069 
ttS43 
8Al3 
Qlj4S 
822. 
8~_5 
81541 
05110 
001). 

10A~ 

START LT XIIU_ LOAD T - HEXADECIMAL LITERAL 

I L" 4 LUAD M • DECIMAL UTEA"L 
LN ALPHA.Z L\JAO M • EXPRESSION"LITERAL 
LU X ... UII LUAO U 

123.56 L'J XII.... SYMBOL IN NAME fiELD 1$ -ILLEGAL t LS 'OlD' LU'D SEVEN CONTROL - H,LT ASSEMBLER 
'~P~~·P J~O.M'~ JUMP IN P,GE lE~O LOCATION 

I ~:G :;: ~!:9~~S~:~~~~N~~STRUCTI0N _ PAGE ~OUNTER 
PAGEl JP _.2 JUMP IN PAGE 1 

~ JP PAGEZ.2 Jl'MP TO PaGE 2 
JP P,GEl'Z JU"'P 10 PAGE 3 
PP iZtZ OilER" flON MNEMONIC IS ILLEGAL 

•• FILE LlTEAll COMMANDS 

1 Lr lO,UFF' LUAO FILE • HEXADECIMAl. lITERaL 
If 2 [WADR IN OP[AaNIJ fIELU 
LF rENtZ LUiO FIL.E • UEtlMAL LITERAL 
A' l.2 AuO TO FILE 
U 0.. TEST l' ZERO 
TN TEN.Xllell T(ST If' NOT ZE~O 
CP 5.-2 CU"PA~E _ frII[GAHV[ OPERAND OK 

•• OPERATE COMMANDS wITH LEGAL OPTION FLAGS 
OpE~ E 2.5 EAECUfE 

K 5.8 CUNTRlll 
A 2.l.I.T.C AIJO .. LINK.INCH.I REG, CONO 'lAG 
I 2.l.( INCREMENT .. FUR", OF ADO 
5 2.l,O,T.C SVtUAACT - LINK,OEeR,T HEG.eONO FLAG 
o 2.l.(· Dt:CRE~ENT· FUAM OF SUBrAACT 
C 2.L.ltT,e CUpy 
A 2.l.0,H At,AO "'EMOAY .. lINK 
~ 2,L.I.O.H At,:AO "'E"'ORY .. L OH 1 OR 0, HALF 

2.L.ltD,M .-HUE HE MORT • L OA , OR D. HALF' 
2,I.,F,T.( Uti.. LIPrlK,eO MP , REG, TRUE T AEG, CONO 
2.l,C MuYE .. LIPrlK,CONU FLAIi 
2,l""'C EACLUSIVE-OH 
2.l".T,C A,..O 

H Z.l.I.A.C S"IFT ~ lINK.ONE.RIGHT,CONO FLAG 
.•• VARIATIONS OF OPEH.rE eOM"'AfllOS 

1 
HT TEN MUVE FILE REG 10 To , 
,,... 5 • PREYENTS MESUL T FROM GUING TO f'lLE "'* 5.C F ll.E 5 JS 'ESnU A"O COND FLAGS SET 
cr. o.T.I ,,41s COMMAND IhCMEMENTS TtiE T REG 
IN , ''''CAEME''' FILE REG 5 AND PLACE IN N REG 
AN TEN., FilE OESIGNATOR HAY BE ExPRESSION 
UNO II fiLE II MINUS ONE 15 PL'cED IN N .EG 
AI. Z. T JUMP I., PAGE 0 OR 2 
'" 2 JuHP IN P.GE I DR 3 
IT 5.X ILLEGAL fLAG' 
E 5.1. HI,) 'FLAGS ON EXECUTE OM CONTROL 

~. 

rAGE2 .. 
PAGEl 

EQU 10 
O~G X"ZOO" 
DC X"lOAKIi 
UAG '''JOOti 
JP OPER 
END 

U~G FOR PA6t 2 
COMMAND MADE AY CONSTANT 
OHG FOR PAOE 3 

~.ST CARD 

Figure 18. Sample Listing 

160 



we 
::;:....1 
<I:~ 
Zu.. 

:1 
I: 

I I 
MICRO 810 SYSTEM LISTINGS 

I I I IDENTIFIES PROGRAM TO 
IIOENTI H810- CROSS ASSEMBLER 

t-t t ~ I 
L I MACHINE I. HIC~U 8101 SYSTFH I 
COUNT I CODE 

000 
001 
002 
003 
00' 
005 
006 
007 
DO. 
009 
OOA 
OOR 
DOC 
000 
ODE 
our 
010 
011 
012 
OJ.3 
01< 
015 

O! 6 
017 
018 
019 
DlA 
018 
Ole 

10000 
0001 
DOA2 
0003 
o nn4 
OOO~ 
0006 
0007 
0008 
0009 
OUOA. 
OOOB 
DODe 
OOOU 
DonI:: 
DOOr 
DUO 1 
0000 

B[02 
2800 
2ADD 
4010 
1~r8 

7110 
4180 
1574 
uOO 
CU02 
AADJ 
1410 
BA43 
A632 
4098 
1503 
6120 
2Cla 
7129 
8C20 
61AO 
CC05 

8201 
410. 
142E 
8A'3 
All82. 
8833 
SU1 

I COMMENTS FIELD 
I·. ~ ~ rlL ALlO ~TION 
ira U'JII 0 ICONDITInN fLAG~ 
Jl IlOU IIN,TRuCTloNe'CISlfR 
I~~ I ~g~ I INDEX ~Er.ISHR 

IAl JEQU I ACCUMULAlOR 

I~~ I ~~~ I FXTEND(D ACCUHUlATuR 

18U I ,all I 
I~~ I ~~~ ~ I QPf RAND ADIlRt:SS 

IPl I fau 10 I PROGRAM COUNTER 

I~~ I ~~~ i~ I TEHPUHARY STORAGE 
IS2 I.ou 13 I 
IS3 1'011 l' I 

I~~ I ~~~ ;5 I~;~f~~~HA~~I::~~~~ ~~~G~~[j filE 
ISlll I EoU ,~U~L!lL-'!!.>J.C lOADfR 

THIS 
SECTION 
ASSIGNS 
SYMBOLS 
TOTHE 
FILE 
REGISTERS 

I· I URC I o .. ----_--t'~B~J1ARIl!!!:~.-1~ ______ _ 
I. I I THIS STATEMENT 

I;NI~EAPC~IoXT ~~STRUCTION t ClE • R OV/W .ND H 'i~~~~:"SSEMBLER 
I IF PU,X'OO' lJ:U.!!LJ' ASSEMBLY AT 

IRNIl 
IRN 15 
RNH 

I 

1~~:3 
IRN 12 

IF PL,x'no' I PAGED 
~~ :~;~'10' I mER.lIALLNjfHMPT ADDRESSDD. 

K 1,1 ~_ENTER SEt~SI:: ~~JTCHES 
12 I,X'BO' SWITCH 4 ON 
JP LOAD I YES. LOAD BOOT STRAP 
Lr OV,X'OO' 'ICUA~'-

:: ~~ 1 GET OP CODE 
JP RN~t6 DG"ORE INTERRUPTS 
~~ ~~A I upnAlE P --

1Z rO,X'9ij' I TEST rOR INH.R·RUPTS 

'RNI6 ~P :~~ 'm~I~~ ~~~~Esr 
I lor Sl,OTAB+16 I ~ASE ADDRESS OF TAHLE 

KT- 1,2 - ,SHIFT RIGHT "'._ ..... 

r~p - r~··! AO" I HEHORY REfE:RENCE 
I HK 1.51 LNO 

YESr GET PPERAND AUDRESS I 

I' OPEF~NO 

tAJ'-DR I ~~ 
I I JP 

I I ~= 
1 I CN 

[IN 
I 

APORESSING 
I Q~L __ _ 

I, x' 04' 
I ~PR' 

I :~'l 
I Ol, T,e 
I 1 a x.' 01' 

I 
I ~l~A: OU AND T 

INa 
iGe"iAiiDimSYViE ~ 

I SET CONO I T I ON CO~JiE 
I PAGE ZERO 

Figure 19. MICRO 810 System Listings 

161 



MICRO 800 SERIES SYMBOLIC CODING FORM 

PROGRAM NAME S Pr M PL.e I AUTHOR IPROJE~U.O 0 IOATE !rAGE CARD 
OF NUMBER .. 

NAME OPERATION OPERAND FIELD , COMMENTS .. 
1234567 M1t'~1213 ~ 15 16 17 18 192021 22 Zl 24 25 26 27 28 29 1 3D 31 32 33 34 35 36 31 33 3iJ 40 41 42 43 44 45 46 47 48 49 50 51 52$1 51 S5 56 57 58 59 60 61 52 63 64 &5 IJ& ff1 .. 81 70 71 12 7314,.,. .,."' .. w 

~ 
~ I .. ., ,lE,A I), ,111;"" ,I,ll,S '1',211 ,cm, D"" J 

-
w 

ruu,Q r:m OM cur"", ,0."/",, A",6, WI. 
z 
Z 

" cC' 
c .... 
CD 
I\) 

II II , ""'" P"'""XI',QQ' I , I C L.A,a. f'I I , .. 
.,F, ~ .... IItJIDO,' , a: 

" 
~ =1),' .,x,' ,III,' ~, AI " .... _ ........ _ Ii! 

~" If,r,;a. jV,I.J, 
# -

P k, Ii"I'J - ... . ,s, .... _ ... ,.., ~ 
s: .... ~ ~-Ix.I, •• 1 .l/IIlllT'~"1 t4. tIlJl .. 

m (") 
I\) ::0 

0 
00 

I' 
0 
0 

~A_l_Ll ~e,.ft. ~S, LrlJltrIJl a.""", .•. __ A. 
N 

RlIJr." L~..l....l QY rl.1 I •• ' c. .... A., tIIII tAil, .. 
lNZ5, Iwn It.,,· I r--

w 

I Iii I I I I I II .J 
z 
0 

CJ) 
CD :, I 

~ 

.... 
(ii' . ". L .. 
C/) 

I" i .... 
1. f-o 

a: 
I w 

N 

I .. 
i L.J...t-L-L...l....LLJ..~ .11 I II ,. , , I I I , , , I , I , I , I I I I I I I I 0 

.-1_ I ~ 

I· , ......., 
, I I ~~I 

~; I' I tIE 
FORM 9-133 



OPERATION PROGRAM CARD DECK FROM AP800 

The assembly program generates a deck of cards which contain the binary 
object code, if a control card following the END card contains a 0 in 
column 2. All information punched on the cards is in Hollerith code, with 
a single hexadecimal digit (four binary bits) punch in each column. This 
format allows easy visual reading of the cards after they are interpreted 
and permits rapid patching or generation of patches to the deck. Each 
card contains 16 program words. I f all 16 words are zero, the card is not 
punched. 

The cards have two fields as follows: 

Columns 1-4 - Load address. 
Columns 5·68 - Object code, four columns per word 

The format of the binary paper tape created by MAP800 is described 
under Simulator Operating System. -

SIMULATOR OPERATING SYSTEM (SOS) AND 
SIMULATOR PROGRAM (SIM800) 

INTRODUCTION 

The Simulator Operating System (SOS) is an on·line executive system for 
controlling the operations of the MICRO 800 simulator (SIM800) and 
incorporates teletype control of debug, console, and executive functions. 
The teletype is used rather than any console operations except for the 
console interrupt, which is used to cause control to return to SOS while 
the simulator is operating. SIM800 and SOS are always loaded into the 
MICRO 810 or 820 as a single program because all simulator operations 
are controlled by SOS. 

The following is a list of the features available to the user: 

Display and change the content of a simulated read only memory 
location. 

Display and change the content of a simulated core memory location. 

Two breakpoints for microprogram debugging. 

Display and change the content of a simulated MICRO 800 element. 

Display the content of all simulated MICRO 800 elements. 

Simulate execution of a microprogram. 

Load a formatted program tape into simulated read only memory. 

Load a formatted tape into simulated core memory. 

Punch the content of simulated read only memory into paper tape. 

Punch the content of simulated core memory into paper tape. 

163 



INSTRUCTIONS FOR USE 

This section provides instructions for using the SOS program. 

Loading the SOS and SIM800 by the bootstrap and basic loaders 

The SOS is loaded into memory via the basic paper tape loader. This basic 
loader is in the bootstrap format (1 data byte per frame of tape) and is 
spl iced onto the front of the SOS tape. The spl ice is made so that the last 
frame of the loader is followed immediately with the leader of the SOS 
tape. The microprogrammed bootstrap loader loads the basic loader and 
transfers control to it. Then the basic loader loads the SOS and, after a 
successful load, transfers control to the SOS. Following is a procedure for 
loading a formatted paper tape through the teletype via the bootstrap and 
basic loaders. 

1. Place the TTY in the off-line mode, place the reader control lever to 
the "free" position and enable the teletype reader. Type control and Q. 

2. Place the TTY in the on-line mode and insert the SOS tape in the reader 
with the first rub-out character at the read station.- Set the reader con­
trol lever in the stop (center) position. 

3. Set the front panel sense switches as follows: 

Sense switch 1: off for serial TTY interface, on for parallel TTY inter­
face. 

Sense switch 2: must be off. 

Sense switch 3: must be off. 

Sense switch 4: must be on. This selects the bootstrap loader whenever 
the run switch is selected and was preceded by a reset. 

4. Press the reset and the run switches and the system will wait for the 
teletype reader to be started. 

5. Press the TTY reader lever to the start position. When the basic loader 
is loaded and operating properly, the teletype page printer mechanism 
will chatter whenever a record separator passes the read station. This is 
caused by the issuance of reader off and reader on codes between 
records. 

If a checksum error is found, the message 'CE' is typed and the system will 
halt. Another attempt to properly load the record may be accomplished by 
backing up the tape to the previous record separator, placing the .reader 
control lever in the stop (center) position, and pressing the run switch on 
the front console. When the SOS is properly loaded, control will transfer 
to it, the teletype bell will ring, and an equal sign will be typed. 

Loading the SOS and SIM800 by the R Operator of TOS 

Unroll about 30 inches of the program tape to bypass the basic loader 
and locate the leader (any frame with channel 8 present) of the formatted 
tape. I nsert the tape into the reader with any part of the leader at the 
read station and set the reader control lever to center position. Typing an 
R will start the loading. A checksum is calculated for each record loaded 
and if it doesn't equal the checksum read with the record, the letters 'CE' 

164 



will be typed and control will return to the standard teletype operating 
system program (TOS). By backing up the tape to the previous separator 
and typing an R, another attempt may be made to load the tape. 

SOS Operators 
All operations which are performed by SOS are initiated by typing a single 
alphabetic character which designates one of 13 operators. These opera· 
tors are described in detail in Section 3 and are summarized in Appendix 
A. 
The SOS program is ready to accept an operator designator character at 
any time after ringing the bell and typing an equal sign. If a character 
other than a legal operator designator is typed, SOS will reject the charac­
ter, ring the bell, and type an equal sign again. 

NOTE: For the purposes of this manual, all references to the teletype 
carriage return are as shown; (CR). 

Hexadecimallnput/Output 
All data and addresses are displayed and entered in hexadecimal. The 16 
hexadecimal digits are: 0, 1,2,3,4,5,6,7,8,9, A, B, C, D, E and F. The 
hexadecimal values may not be signed. When enteriflg a two-digit memory 
cell value or a four·digit memory address, no spaces or other than hexa­
decimal characters may be in the digit string. SOS assumes that the hexa· 
decimal digit string is terminated when it receives the first non-hexadeci­
mal character; therefore, it will not act on an input until the digit string is 
terminated. If more than the required number of digits are entered, SOS 
will take the last two or four as required. Leading zero digits need not be 
typed. If the first non-hexadecimal character is not a space, comma, or 
carriage return (CR), the data or address value is ignored and the opera­
tion is terminated. However, before termination, all valid hexadecimal 
data or address values that 'were accepted are retained. When more than 
one address or data value is typed they may be separated by either a 
comma or a space. For clarity in this document only commas are shown. 
When an operator requires an address, it will ignore leading spaces, Le.: 

W ssss, eeee (CR) 

Console Interrupt 
The console interrupt is used to interrupt the simulation of a microprogram 
or to abort the 1,0, R, or W operator and return control to SOS. The user 
·should be careful if the simulator is inLerrupted because complete simula-

- tion of the current command may not be complete but the K,L register will 
be pointing to the next sequential location. 

If the console interrupt is activated when control is residing in SOS (wait­
ing for an operator), an exit is made to the resident TOS. When using the 
serial teletype interface, the exit is not taken until one character is typed 
on the keyboard to force completion ofthe IBS instruction. 

Halt and Error Returns 
If a microcommand halt (1780) is detected, control will return to SOS 
and an H followed by the content of the IS,L register plus one will be 
typed. 

165 



During the simulation of microprograms, various undefined microcom­
mands and system timing violations are checked for and if detected will 
cause an error return to SOS. The letter E and a three digit error number 
will be typed, followed by the content of the K,L register plus one, and 
control will return to SOS. A list of the error codes and their meaning are 
contained in Appendix B. 

OPERATORS 

Card Read: C 

The C operator causes SOS to load a program card deck into simulated 
ROS. The format of the cards must be as described in the AP800 Assembly 
Program manual. Loading is terminated and control is returned to SOS, 
when a card is read containing a blank in column 5. If ablank card is read, 
any character other than a hexadecimal character is read, or a card reader 
malfunction occurs; the message ER R will be typed and control will re­
turn to SOS. Loading may continue, by correcting the error condition, 
backing up one card, starting the reader, and typing a C. Since no informa­
tion goes through the reader when a blank card is read or when a pick 
failure occurs, it is not necessary to back up one card. 

Display: On 

The D operation causes the contents of the simulated system element n to 
be typed out followed by a dash. At this time the contents of the element 
may be changed by typing in one or two hexadecimal digits. When a 
comma or space is typed after the data or after the dash, the contents of 
the next element in sequence will be displayed. The various simulated 
system elements (n) and their meaning are listed below in sequence. If a 
(CR) is typed, or if a space or comma is typed after the contents of the 
panel switches (P) has been displayed, this operator is terminated. All 
examination must be completed on one line of type. 

List of values for "n", in order of their appearance: 

o FilesO through F 

9 
A 

F 

T T Register 
M M Register 
N N Register 
K (L Register Bits 9; 8) 
L L Register (Bit 7-0) 
U U Register 
Z Link fl ip-flop (1 bit) 
Q R Register (Bits 15-8) 
R R Register (Bits 7-0) 
S I nternal Status Register 
I Input bus 
o I/O Control Register (3 bits) 
P Panel command switches (7-0) 

166 



Display: D (CR) 

This mode of the D operator causes all of the simulator system elements to 
be typed out on two lines. A single space is provided between each element 
and there is a double space after every fourth element. Sixteen files are 
contained on line one with thirteen additional elements being displayed on 
line two in the following manner. 

D (CR) 

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
01 02 03 04 05 06 07 08 09 OA OB OC OD 

End of Tape: E 

The E operation punches an end of tape record consisting of a zero record 
size and an execution address of zero. This ensures that tapes punched by 
SOS will not contain a load and go address. Following the punching of 
this record, six inches of trailer will be punched automatically. 

Go To: G ssss, tttt, uuuu (CR) 

The G operation causes SOS to set trap operations for read only memory 
locations tttt and uuuu, and to start simulation at read only memory loca­
tion ssss. If a (CR) is typed after G, simulation starts at the location con­
tained in the K,L register. If a (CR) is typed after ssss, no traps are set, and 
if a (CR) is typed after tttt only one trap is set. All traps set are auto­
matically cleared when either one is reached or control is transferred to 
SOS, signalled by the ringing of the teletype bell and the printing of an 
equal sign. Upon return from a trap, a T, followed by the contents of the 
K,L registers, is typed out. At this time the command located at the trap 
location has not been executed. A trap at location zero is not permitted as 
this value is used by SOS to indicate that a trap has not been set. 

Input: I 

The I operator causes SOS to load a MICRO 800 program tape into simu­
lated read only memory in the same manner as the R operator loads a 
formatted tape into core memory. The tape may be created by the 0 oper­
ator of SOS or by the MAP800 assembler. 

Leader/Trailer: L 

The L operator will cause the paper tape punching device to punch six 
inches of tape containing channel eight punches only. 

Memory: M ssss, 

The M operator causes the contents of the simulated .memory location 
specified by ssss to be typed out followed by a dash. At this time the con­
tents of the memory location may be changed by typing in two hexadeci­
mal digits. When a space or comma is typed after the data or after the dash, 
the contents of the next sequential location is typed by SOS. A (CR) 
terminatesthis operator. The actual amount of simulated core memory will 
vary depending on the size of the actual memory and the amount of 
simulated read only memory desired. Standard configuration is 768words 
of read only memory and 256 bytes of core memory. 

167 



Output: 0 SSSS, eeee (CR) 

The 0 operator causes the contents of the simulated read only memory 
area starting with ssss and ending with eeee to be written on the standard 
output device in the same format as with the W operator. Each record will 
contain 6410 commands from read only memory except the last record 
which will contain a number of commands equal to the total number 
module 6410. Typing a (CR) following the second address will start the 
operation. 

Print ROM: P ssss, 
The P operator causes the simulated read only memory address specified 
by ssss to be typed out on a new line followed by the contents of that 
location. A dash is typed after the value to indicate that it may be changed 
by typing in one to four hexadecimal d'igits. When a space or comma is 
typed after the new data or after the dash, the next sequential read only 
storage address and its contents are typed by SOS on a new line. A (CR) 
terminates this operator. 

Read: R 

The R operator causes SOS to load a formatted tape into simulated core 
memory. Tliis operation can be configured for any standard input device, 
but normally the device will be the teletype paper tape reader. The tape 
must be inserted in the reader with the leader .(any frame with channel 8 
present) placed at the read station before the R is typed. When the loader 
encounters an end of tape record the loading process is terminated and 
controls are transferred to SOS. If an end of tape record is not read, load­
ing will continue until the computer is halted or until the console interrupt 
is activated. A checksum is calculated for each record loaded and if it 
doesn't equal the checksum read with the record, the letters 'CE' will be 
typed and control wi.! I return to SOS. By backing up the tape to the 
previous separator and typing an R, another attempt may be made to load 
the tape. . 

Time: T 
The T operator causes SOS to print the letters. I, M, and E, followed by a 
four digit hexadecimal number and a dash. This number represents the 
total number of machine cycles accumulated through simulation since 
the last reset or preset. The counter may be reset or preset by typing in 
one to four hexadecimal digits before typing a carriage return to terminate 
the operation. 

Write: W ssss, eeee (CR) 
The W operation causes the contents of the simulated memory area start­
ing with ssss and ending with eeee to be written on the standard output 
device, normally the teletype punch. Each record of the output will con~ 
tain 12810 data bytes except the last record which will contain a number 
of bytes equal to the total byte count module 12810. Typing a (CR) 
following the second address will start the operation. 

Zero Flags: Z 

The Z operation causes ~OS to reset flags used by the simulator for error 
detection and to simulate the functions performed by the reset switch on 

168 



the front panel. File zero will be cleared, all internal status bits will be 
cleared, and the K,L register, I/O control register, and the value of the 
input bus will be set to zero. This operator should be used before setting 
up parameters and starting a simulation sequence. 

PROGRAM TAPE FORMAT 

The binary paper tape format (Figure 21), can be generated by the two 
pass assembler, and by the output and write subroutines of SOS. This 
format allows for variable length records of up to 6410 sixteen-bit micro­
commands, or 12810 eight-bit bytes, a record load address, and a record 
checksum. Each record contains a count of the number of data bytes and 
the 15 bit address at which data is to be loaded. The record is loaded 
sequentially starting with this address. When there is a discontinuity in the 
loading addresses, a new record is started so that a load address may be 
specified. The last byte of each record is a checksum which is the summa­
tion of the byte count, load address, and data bytes formed onan eight-bit 
basis with overflow added into the least significant bit of the sum. 

A byte count of zero signifies an end of tape record and if present will be 
the last record read. The paper tape reader will be stopped and control is 
returned to SOS. 

CHANNELS 6-7 ~
CHANNEL8 

\ rc=~::::~: ,. 
LEAOER 

LEADER/TRAILER DR AREA OUTSIDE OF A RECORD 

NOT USED WITHIN A RECORD (RECORD MARK TO CHECKSUM) 

CONTROLS PRINT SUPPRESSION 

CONTAIN A HEXAOECIMAL DIGIT 

}-- SEPARATOR 

-- RECORD MARK (1 BLANK FRAMF' E RECORD SIZE (VALUE OF 03) 

LOAD ADDRESS (VALUE OF 016A) 

DATA BYTE (VALUE OF AB) 

!-- DATA BYTE (VALUE OF CD) 

!-- DATA BYTE (VALUE OF EF) t- CHECKSUM (VALUE OF D5) r- SEPARATOR 
__ RECORD MARK (1 BLANK FRAME) t RECORD SIZE (VALUE OF. ZERO) END OF TAPE 

EXECUTION ADDRESS (VALUE OF 016B) (IGNORED BY SOS) 

~ CHECKSUM (VALUE OF 6C) 

TRAILER 

Figure 21. Binary Paper Tape Format 

169 



APPENDIXES 

APPENDIX A 

SUMMARY OF SOS OPERATORS 

Underlined items are typed out by 50S: 

C 

01 !Qt, xx-nn (CR) 

o (CR) 

E 

G (CR) 

G 5555 (CR) 

G ssss, tttt (CR) 

G ssss, tttt, uuuu(CR) 

G, tttt (CR) 

G, tttt, uuuu (CR) 

L 

M ssss, xx-nn, xx- (CR). 

o ssss, tttt (CR) 

Read a program card deck into simulated 
ROM. 

Display content of File 1, leave File 1 un­
altered and display content of File 2, 
change the content to nn and terminate 
the operation. 

Display the. content of all simulated ele­
mer.lts. Line one contains the 16 files and 

.Iine two contains 13 additional elements. 

Write an end of tape record into for­
matted pap~r tape. 

Simulation starts at the location con­
tained in the K,L register. 

Simulation starts at location ssss. 

Simulation starts at location 5555, a trap 
is set for location tttt. 

Simulation starts at location ss_ss, traps are 
set for locations tttt and uuuu. 

Simulation starts at the location contain­
ed· in the K,L register, a trap is set for 
location tttt. 

Simulation starts at the location contain­
ed in the K,L register, traps are set for 
locations tttt and uuuu. 

I nput a formatted program tape to simu­
lated read only memory. After loading, 
control returns to 50S. 

Punch six inches of paper tape leader 
(channel 8 only). 

Display the contents of simulated mem­
ory location 5555 and change the contents 
to nn. Display the contents of location 
ssss+1, leave the location unaltered and 
terminate the operation. This operation 
must be completed on one line of type. 

Output the contents of simulated read 
only memory from locations ssss through 
tttt into formatted paper tape. 

170 



P ssss, 

R 

ssss XXXX-, 

~~nnnn(CR) 

TIME xxxx- a (CR) 

W ssss, tttt (CR) 

Z 

Print the content of simulated read only 
memory location ssss, leave the location 
unaltered and display the content of loca­
tion ssss+ 1. Change the content of ssss+ 1 
to nnnn and terminate the operation. 

Read a formatted paper tape into simu­
lated core memory. After loading, con­
trol returns to sas. 

Display the number of machine cycles 
. accumulated during simulation. Reset the 
time to zero and terminate the operation. 

Write the contents of simulated core loca­
tions ssss through tttt into formatted 
paper tape. 

Zero simulator error flags and reset the 
simulated MICRa 800 system. 

171 



APPENDIX B 

SIM800: ERROR MESSAGES 

#. Meaning 

001 U-Register timing - can't use U during first cycle following 
its setting. 

002· Console command switches - Command preceding 707X con­
trol command causes an ROM delay. 

003 Memory write full cycle - attempt to set T during second, 
third or fourth cycle following the memory command_ 

004 Memory read - T is set without being selected, during the 
first or second cycle following the memory command. 

005 Attempt to load literal with an undefined register destination 
of 8,9, A, 8, E, or F. Destination 9 is undefined because the 
memory spare bit option is not simulated. 

006 Attempt to load 'or add literal into file register zero. 

007 Attempt to use undefined C-bit combinations 3, 5, or 6 in a 
control command. 

008 Console command switches - file register zero not selected in 
707X control command. 

009 Address in M and N exceeds available simulated memory. 

m 0 Memory write half cycle - attempt to set T during firSt or 
second cycle following the memory command. 

011 Execute command found after U-register OR-ed into instruc­
tion. 

012 Undefined 8-bus operand - usually resulting from selection of 
complement T when the input bus (l03X) is em'lbled. 

172 



ALTERABLE READ-ONLY MEMORY OPERATING SYSTEM 
(AROS) 

INTRODUCTION 

The Alterable Read-Only Memory Operating System (AROS) is a program 
which permits on-line control, loading and dumping of firmware code 
using the teletypewriter and/or card reader. The program is used in con­
junction with Microdata's Alterable Read-Only Memory System (AROM). 
The Microprogramming System described in Part VI "Product Catalog" is a 
valuable tool for checkout of firmware systems. It is particularly useful in 
realtime firmware or I/O oriented applications that require precise timing 
to be analyzed which cannot be done with the simulator system. 

The features of the AROS program include the following: 

Loading of the AROM system (memory) with firmware code in the 
form of formatted punched cards or punched paper tapes. 

Display and/or change of operator designated AROM locations using 
the teletypewriter. 

Listing and/or dumping of AROM on teletypewriter and punched paper 
tape. 

INSTRUCTIONS FOR USE 

This section provides instructions for using the AROS program. 

Loading AROS by the bootstrap and basic loaders 

The AROS is loaded into memory via the basic paper tape loader. This 
basic loader is in the bootstrap format (1 data byte per frame of tape) and 
is spliced onto the front of the AROS tape. The splice is made so that the 
last frame of the loader is followed immediately with the leader of the 
AROS tape. The microprogrammed bootstrap loader loads the basic loader 
and transfers control to it. Then the basic loader loads the AROS and, 
after a successful load, transfers control.to the AROS. Following is a pro­
cedure for loading a formatted paper tape through the teletype via the 
bootstrap and basic loaders. 

1. Place the TTY in the off-line mode, place the reader control lever to 
the "free" position and enable the teletype reader. Type control and Q. 

2. Place the TTY in the on-line mode and insert the AROS tape in the 
reader with the first sub-out character at the read station. Set the 
reader control lever in the 'stop (center) position. 

3. Set the front panel sense switches as follows: 

Sense switch 1: off for serial TTY interface, on for parallel TTY inter­
face. 

Sense switch 2: must be off. 

Sense sWitch 3: must be off. 

Sense switch 4: must be on. This selects the bootstrap loader whenever 
the run switch is selected and was preceded by a reset. 

173 



4. Press the reset and the run switches and the system will wait for the 
teletype reader to be started. 

5. Press the TTY reader lever to the start position. When the basic loader 
is loaded and operating properly, the teletype page printer mechanism 
will chatter whenever a record separator passes the read station. This is 
caused by the issuance of reader off and reader on codes between 
records. 

If a checksum error is found, the message "CE" is typed and the system 
will halt. Another attempt to properly load the record may be accom­
plished by backing up the tape to the previousrecord separator,placing the 
reader control lever in the stop (center) position, and pressing the run 
switch on the front console. When the AROS is properly loaded, control 
will transfer to it, the teletype bell will ring, and an at sign (@) will be 
typed. 

Loading AROS by the R Operator of TOS . 
Unroll about 30 inches of the program tape to bypass the basic loader and 
locate the leader (any frame with channel 8 present) of the formatted 
tape. I nsert the tape into the reader with any part of the leader at the read 
station and set the reader control lever to center position. Typing an R will 
start the loading. A checksum is calculated for each record loaded and if it 
doesn't equal the checksum read with the record, the letters "CE" will be 
typed and control will return to TOS. By backing up the tape to the 
previous separator and typing an R, another attempt may be made to load 
the tape. 

AROS Operators 
All operations which are performed by AROS are initiated by typing a 
single alphabetic character which designates one of 10 operators. 

The AROS program is ready to accept an operator designator character at 
any time after ringing the bell and typing at sign (@). If a character other 
than a legal operator designator is typed, AROS will reject the character, 
ring the bell,and type an at sign (@) again. 

NOTE: For the purposes of this manual, all references to the teletype 
carriage return are shown as; (CR). 

Hexadecimal Input/Output 
All data and addresses are displayed and entered in hexadecimal. The 16 
hexadecimal digits are: 0, 1, 2,3,4,5,6, 7,8,9, A, B, C, D, E and F. The 
hexadecimal values may not be signed. When entering a four digit data 
value or a four digit memory address, no spaces or other than hexadecimal 
characters may be in the digit string. AROS assumes that the hexadecimal 
digit string is terminated when it receives the first non·hexadecimal charac· 
ter. Therefore, it will not act on an input until the digit string is termi· 
nated. If more than the required number of digits are entered, AROS will 
take the last four as required. 

Leading zero digits need not betyped. If the first non·hexadecimal charac· 
ter is not a sp.ace, comma, or carriage return (CR), the data or address 
value is ignored and the operation is terminated. However, before termi­
nation, all valid hexadecimal data or address values that were accepted 
are retained. When more than one address is typed they may be separated 

174 



by either a comma or a space. For clarity in this document only commas 
are shown. When an operator requires an address, it will ignore leading 
spaces, Le.: 

W ssss, eeee (CR) 

Console Interrupt 
The console interrupt may be used to terminate the D, R, V, and W opera­
tions, return control to AROS and type a carriage return, line feed, bell, 
and at sign (@). If the console interrupt is activated when control is resid­
ing in AROS (waiting for an operator), an exit is made to the resident 
TOS. When using the serial teletype interface, the exit is not taken until 
one character is typed on the keyboard to force completion of the I BS 
instruction. 

OPERATORS 

Card Read: C 
The C operator causes AROS to load a program card deck into reference 
ROS. The format of the cards must be as described in the AP800 Assem­
bly Program manual. Loading is terminated and control is returned to 
AROS, when a card is read containing a blank in column 5. If a blank card 
is read, any character other than a hexadecimal character is read, or a card 
reader malfunction occurs; the message ERR will be typed and control 
will return to AROS. Loading may continue, by correcting the error condi­
tion, backing up one card, starting the reader, and typing a C. Since no 
information goes through the reader when a blank card is read or when a 
pick failure occurs, it is not necessary to back up one card. 

Dump: D ssss, eeee (CR) 
The D operation causes the contents of AROM to be dumped on the tele­
type printer starting with the address ssss and ending with the address eeee. 
AROS types the four digit address at the left margin followed by eight 
16-bit words of AROM. This operation is terminated when the contents 
of the last AROM location has been typed, or the console interrupt is 
activated. Typing a (CR) after the second address will start the operation. 

End of Tape: E 
The E operation'punches an end of tape record consisting of a zero record 
size, a zero address, and a zero checksum followed by six inches of tape 
containing channel eight punches only. 

Leader: L 
The L operator will cause the punching device to punch six inches of tape 
containing channel eight punches only. 

Print Reference ROS: P ssss, 
The P operator causes the reference ROS address specified by ssss to be \ 
typed ouLon anew line followed by the contents of that location. A dash 
is typed after the value to indicate that it may be changed by typing in one 
to four hexadecimal digits. When a comma or space is typed, after the 
new data or after the dash, the next sequential reference ROS address and 
its contents are typed on a new line. A (CR) terminates the operation. 

175 



Read: R 
The R operator causes AROS to load a formatted tape into reference ROS. 
The tape must be inserted into the teletype reader with the leader (any 
frame with channel 8 present) placed at the read station before the R is 
typed. When the loader encounters an end of tape record, the loading pro­
cess is terminated and ,control is returned to AROS. If an end of tape 
record is not read, loading will continue until the reader is empty or until 
the console interrupt is activated. A checksum is calculated for each 
record loaded, and if it doesn't equal the checksum read with the record, 
the letters 'CE' will be typed and control will return to AROS. By backing 
up the tape to the previous separator and typing an R, another attempt 
may be made to load the tape. 

Transfer: T ssss, eeee (CR) 
The T operation causes a clock of reference ROS starting with location 
ssss and ending with location eeee to be transferred to the corresponding' 
locations in AROM. The operation is started by typing a (CR) following 
the second address and is terminated when the contents of the last loca­
tion specified is transferred. There is no verification or check of the data 
written made by this operator. 

Verify: V ssss, eeee (CR) 
The V operation causes a block of AROM starting with location ssss and 
ending with location eeee to be read and compared with the corresponding 
locations in reference ROS. All variances will be displayed along with 
their associated address. The operation is started by typing a (CR) follow­
ing the second address. Termination occurs when the last specified location 
is checked and a message is typed or the console interrupt is activated. 

Write: W ssss, eeee (CR) 
The W operation causes the contents of referenc~ ROS starting with loca­
tion ssss and ending with location eeee to be written on the standard out­
put device, normally the teletype punch. Each record of the output will 
contain 6410 16-bit words, except the last record, which will contain the 
number of words equal to the total word count modulo 6410. Typing a 
(CR) following the second address will start the operation. 

Zero: Z ssss, eeee (CRI 
The Z operator causes the reference ROS locations starting with ssss and 
ending with eeee to be set to zero. Typing a (CH) following the second 
address will start the operation. 

PROGRAM TAPE FORMAT 
The binary paper tape format (Figure 22) can be generated by the MAP800 
assembler, by the 0 operator of the simulator and by the W operator of 
AROS. This format allows for variable length records of up to 6410 16-bit 
words (punched as 128 bytes), a record load address (a!;ldress X 2), and a 
record checksum. Each record contains a byte count of the number of data 
bytes and the address at which loading is to start. The last byte of each 
record is a checksum which is the summation of the byte count, load 
address, and data bytes formed on an eight bit basis with overflow added 
into the least significant bit of the sum. 

176 



• • • • • · . ••••••••• ••••••••• •..•...•• 
. . . 

• · ... ... . ... . ... .. .... 
•••• • ..... 
•••••• •••• • ... . 

••••••••• ••••••••• ••••••••• 

• · ... ... .. · ... .... · .... • • • • • • • • • 

LEADER 

LEADERITRAILER OR AREA OUTSIDE OF A RECORD 

NOT USED WITHIN A RECORD IRE.CORD MARK TO CHECKSUM) 

CONTROLS PRINT SUPPRESSION 

CONTAIN A HEXADECIMAL DIGIT 

}--SEPARATOR 

-- RECORD MARK (1 BLANK FRAME) E RECORD SIZE (VALUE OF 03) 

LOAD ADDRESS (VALUE OF OlGA) 

DATA BYTE (VALUE OF AS) 

f-- DATA BYTE (VALUE OF CD) 

f-- DATA BYTE (VALUE OF EF) r- CHECKSUM (VALUE OF 05) r-- SEPARATOR 
__ RECORD MARK (1 BLANK FRAME) E RECORD SIZE (VALUE OF ZERO) END OF TAPE 

EXECUTION ADDRESS (VALUE OF 01GB) (IGNORED BY AROS) 

CHECKSUM (VALUE OF GC) 

TRAILER 

Figure 22. Binary Paper Tape Format 

SUMMARY OF AROS OPERATORS 

Underlined items are typed out by AROS: 

C 

D ssss, eeee (CR) 

E 

L' 

P ssss, 
~~, 
ssss~nnnn (CR) 

Read a program card deck into reference 
ROS. 

Dump the contents of AROM locations 
ssss through eeee onto the teletype print­
er. Each line will contain an address and 
up to eight 16-bit values. 

Write an end of tape record into format­
ted paper tape. 

Punch six inches of paper tape leader 
(channel 8 only). 

Print the content of reference ROS loca­
tion ssss, leave the location unaltered and 
display the content of location ssss+1. 
Change the content of ssss+1 to nnnn and 
terminate the operation. 

177 



R 

T ssss, eeee (CR) 

v ssss, eeee (CR) 
LOC ROM REF 
ssss xxxx yyyy 
verHyCornpieted 

W ssss, eeee (CR) 

Z ssss, eeee (CR) 

Read a formatted paper tape into refer­
ence ROS. After loading, control returns 
to AROS. 

Tr:ansfer the block of reference ROS from 
ssss to eeee to the correspbnding locations 
inAROM. 

Verify the block of AROM from ssss to 
eeee to the corresponding locations in 
reference ROS. An error is indicated at 
location ssss .. 

Write the contents of reference ROS loca­
tions ssss through eeee into formatted 
paper tape. 

Set the contents of reference ROS loca­
tions ssss through eeee to zero. 

PROGRAM CHECKOUT AND DEBUGGING 

After a program has been written and assembled, the program debugging 
phase begins. Depending on the size and complexity of the program, and 
the care used in preparing the program, this phase may be routine, requiring 
only a few hours, or it may require many days. • 

The simulator is very useful for debugging because commands can be 
easily modified to correct errors or to help in finding errors. This also 
applies to the Alterable Read Only Storage (AROS). 

Programs can also be checked and modified quite easily even if they have 
already been put in diode read only memory. 

This discussion of checkout and debugging is divided into foursections: 

General Checkout Procedures 
Checkout with Simulator 
Checkout with AROS 
Checkout with Diode Read Only Storage 

General Checkout Procedures 

There are a number of programming errors which might possibly occur, 
and are sometimes very difficult to detect. These are the kind that repre­
sent valid program commands as far as the assembler and simulator are con­
cerned, thus are not flagged as errors by these two programs. Being aware 
of the typical errors and their effect on a program helps considerably in 
locating them. 

Some of the error types can definitely cause anyone of the symptoms, and 
these should be checked out first. The procedures for detection and check­
out of error symptoms differ for use of the simulator, alterable read only, 
or diode board, and for that reason will be discussed separately. 

Simulator' 

The simulator is useful for checking internal programs for correct se­
quences, correctness of results of algorithms, math routines, etc. and for 

178 



input output sequences. Since the simulator does not run in real time, it 
is limited in its ability to test the entire program in normal operation. Also, 
since it is simulated, it is not possible to step through the program by 
means of the clock switch and observe the L count and ROS outputs. 
With the simulator, the ROS can be checked using the teletype, and all 
files, etc. can be set up using the teletype. Then breakpoints can be 
placed in the routines and the program can be started at convenient 
'points to test individual routines, or combinations of routines, after the 
breakpoint is reached. 

Some of the more common errors and error symptoms are listed in Table 
12. 

The reason why all of these are mentioned is that they become the base 
for establ ishment of a growing check list wh ich shou Id always be referred 
to during program checkout. As errors are found in different categories 
not on the I ist, they are added to the I ist. For certain phases of a checkout 
process, such as checking individual subroutines, obviously all of the error 
categories don't apply so only selected ones need to be considered. 

Many times hours and even days are wasted trying to track down an 
apparent error cause when a few minutes spent going through the check 
list would show that a few other items could cause the same symptom. 
The diagnostic effectiveness of the check list is increased by putting it in 
the form of a table which relates errors to symptoms, or symptoms to 
errors. For most cases this table is applicable to checkout with the simula­
tor, AROS, or diode board. 

One big advantage of firmware checkout over software checkout is that 
firmware errors don't cause the program to destroy itself, thus wiping out 
the error symptoms. 

The program error check list relating symptom to error takes on the form 
shown in the example of Table A. The X's indicate the most likely rela­
tions between program errors and symptoms, although under certain con­
ditions anyone of the symptoms might be caused by any of the program 
error types. The various files, registers and flags are tested to see if the 
routines operated correctly. Once error symptoms are detected, the pro­
gram errors can be tracked down by the relationships illustrated in Table A. 

I n Table A the general functions such as algorithms, flow charts, and trans­
fer of flow chart information to coding can introduce errors causing any 
of the I isted symptoms. Therefore, these parts require special checkout on 
paper before committing to read only storage. One method which proves 
quite successful in many cases is to define the algorithm and flow chart, 
and do the coding in MICRO 810, 811 or 820 software as close in format 
as possible to the firmware coding, and check out these routines first 
before committing to firmware. This works satisfactorily except for the 
real time limitation in high speed operations. 

Use of the Simulator to Check Subroutines 

Two simple subroutines have been selected to illustrate use of the simula­
tor for checkout. The first routine sets files 1-E to 'AN, and the second 
routine does a simple 8-bit positive number multiply. 

179 



The simulator operators to be used for these two examples are as follows: 

a. DN - Display files, registers, and flags. 

b. G ssss, tttt, uuuu (CR) - Execute a program starting at ssss, with traps 
at tttt, and uuuu. 

c. P ssss - Prints out and permits loading of ROS commands starting at 
location ssss. 

d. Z - Resets flags used by the simulator. 

e. D @ - Display all Files and Registers. 

Routine 1 - Set files 1-E to 'AA' 

The U register is used for file indexing. File F is used to contain, and up­
date the U register value. The machine code for this program is as follows: 

Example 1. Set files I-E=AA 

L 
Counter 
Address Command Operation 

U Reg. Code to File F. 
Update File F and U Reg. 
SetT=AA 

000 
001 
002 
003 

004 
005 
006 

2FBO 
8F46 
llAA 
0020 

6F42 
1401 
1780 

Execute Command 
(Effectively copy T) 
Compare for last file value 
Jump to repeat loop 
Halt* 

*For demo only, usually a jump or 
subroutine exit. 

Simulator Operations -

1. Z --to initialize the simulator. 

2. P 000, 
000 xxxx 
001 xxxx 
002 -xxxx 
003 xxxx 
004 xxxx 
005 xxx x 
006 xxxx 

T 
j \ 

2FBO, 
8F46, 
l1AA, 
0020, 
6F42, 
1401, 

@) 1780 
T 

This part is New commands are 
printed out typed in-followed by 
by simulator. comma until last command.-

3. G 000 @ execute program without traps. 

For correct operation program halts and prints out an H followed by 
0007 which is L register +1. 

180 



4. Use of D 1, followed by commas, will cause the teletype to print out the 
content of the files: 

Dl AA-, AA-, AA, etc. 

Typical errors and symptoms: 

1. 001 - 8F06 instead of 8F46 - File F not incremented. Program will 
never exit from loop to halt instruction. No files will be loaded with 
AA. 

2. 004 - 6F41 - File F incremented once too often. Program will loop 
one extra time, setting file F=AA, which will then cause additional 
loops storing T into memory at locations determined by M & N. Then 
program will repeat loading AA into files. Program will never exit loop. 

3. 005 - 1400 or 1402 - File F will either be reinitialized every time or 
non incremented, so loop will never be exited. 

Routine 2 - 8 bit positive number multiply. 

x * y--ZU, ZL 
file 2 = X 
file 3 = Y and ZL 
file 4 = Zu 
file 5 = Shift Count 

Machine Code 

L Counter 
Address Command 

000 2508 
001 C201 
002 2400 
003 4301 
004 8420 
005 F420 
006 F3AO 
007 9550 
008 5004 
009 1403 
OOA 1780 

Simulator 

Operation 

Shift count = 8 
Move X to T Register 
Clear Zu 
Test Y for odd/even 
Add T to TU 
Shift Zu 
Shift ZL 
Decrement Shift Count 
Zero Condition Test 
Jump to repeat loop 
Halt* 

*For demo only. 

1. Z - to initialize this simulator. 

2. P 000, 
000 xxxx 
001 xxx x 

2508, 
C201, 

Complete until entire program up to OOA 1780 is loaded. 

181 



3. 02, XX-02} example of 2 x 4 = 8 
03, xx-04 . x = 2 

y=4 
. ZL = 8, Zu = 0 

4. GOOD § Execute, with no traps. 

5. Results 

H OOB 

03,08, 

t 
ZL 

Halt location +1 

00 

t 
Zu 

Typical errors and symptoms: 

1. 008 - 4004 instead of 5004 

The requirement is to skip on zero shift count which would seem like 
Test Zero is correct. However, the zero condition flag is being tested. 
This must be =1 when shift cound is O. A 4004would cause program not 
to loop. 

, 
2. 007 - 9540 Condition flag not updated. 

Subroutine will never exit because zero condition flag will never be set. 

If flag had been set when routine was entered, exiting would occur on 
first pass. 

3. 006 - F320 Link not entered. 

With this error, the program would loop properly and exit to the halt, 
but the ZL value in file 3 would always be O. 

As larger and more complex subroutines and entire programs consisting of 
many subroutines are checked out, more of the error sources included in 
Table A must be considered. 

Many times, if a timing error for memory access or I/O is found, it can be 
corrected without addition of instructions requiring rel06ation by changing 
the order of instructions or changing a no-op to a jump to next instruction 
to increase a delay factor. 

Consider the following example: , 
1. Memory Write 

fN+ 1-fN,N 

! 
2. (fX)-T 

! 
Memory Write 
fN+1-fN,N 

182 



Assume that this is a programming error because the value in fX is not 
supposed to be stored until the 2nd memory write cycle shown. The 
routine could be changed to the following: 

J 

1. Memory Write 
fN+1-fN,N 

~ 
2. fN+1-fN, N 

~ 
Memory Write 
fX-T 3. 

t 
The same number of instructions are required, but instruction 2 which 
causes modification of N will cause a delay until the first memory cycle is 
complete, thus causing fIx) to go into memory on the 2nd cycle. Changes 
of this type are particularly important when the program being checked is 
in diode read only memory. 
Checkout of an applications microprogram can be facilitated by prepara· 
tion of simple programs for display of registers and core memory and 
placing these in the upper part of the read only memory. 
Also checkout of short firmware subroutines is facilitated by using a 
MICRO 810, 811, or 820 having an additional ROS which is electrically 
alterable by the program. Then the software programs can be used to test 
core memory and to display most of the file registers. 

Checking Subroutines with the Alterabl~ Read Only Storage 

An alterable read only storage (AROS) has the advantages of running in 
real time as well as ease of command modification. 

Programs can be checked out by manually clocking one step at a time while 
testing the L counter for proper looping, by preparing and testing one sub­
routine at a time using halt instructions to break up loops, and test partial 
routine functions. Real time I/O operations can be tested by looping on 
I/O subroutines, or looping on small groups of subroutines. When the 
individual routines havE! been checked, it becomes much easier to assemble 
and to test the entire program. 

Checkout of Programs in Diode Read Only Storage 

Programs in diode read only memory should first be manually clocked to 
see if the L counter follows the correct branching paths, and to check each 
command in read only storage. File registers are checked at various points 
in the routine by switching to front panel control and setting command 
switches to CfOO and display to D. To bypass loops, the L count is set to 
the next instruction after the loop. Those items in Table 12 causing all 
possible symptoms t6 occur should be checked first. This includes the 

183 



diode map, instruction op codes and functions to flow charts, to coding. 
When stepping through a program, I/O timing cannot be tested in real 
time, nor can omissions of U register modification delay be detected, 
therefore these tWo areas should be thoroughly checked on the flow charts 

" and coding sheets. 

To facilitate checkout with diode boards, temporary halt, or loop instruc­
tions can be put in the program, and easily changed after the subroutines 
have been checked out. 

Many times in the firmware development phases it is possible to correct . 
an error or omission by placing a jump instruction to an unused part of 
read only storage, programming the fix there, and jumping back to the 
first correct instruction after the error. These detours or patches can then' 
be eliminated in the firmware production phase after the firmware program 
has been checked out. 

184 



x 

x X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Table 12. Program Error Check List 

.. Programming Error 

Error Symptom 

! 
X X X X X X X X X Incorrect or Missing I/O Data 

XXXXXXXXX Incorrect Results but Correct 
Files Modified 

X 

XX 

X 

X 

X X X X X X I ncorrect Files Modified 

XXXXXXX 

XXXXXX 

XXXXXX 

X X XXXX 

X X XXXX 

Program Hangs up in a Loop 

Program Fails to Loop in a 
Subroutine 
Program Exits a Subroutine 
Loop too early or too late 
I ncorrect Core Memory 
Storage Locations 

Core Data/Flags Destroyed 

X X X X X X Incorrect Data/Flags Stored 

XXXXXX 

XXXXXX 

XXXXXXX 

X X XXXX 

XXXXXX 

XXXXXXX 

X X XXX X 

X X XXX X 

XXXXXX 

I ncorrect or No Return 
From Subroutine 
Program Never gets to 
Correct Subroutine 

Intermittent Program Errors 

Program Does Not Enter a Loop 
According to Expected Flags or Status 

Program Enters Loop when Conditions 
Say it Should Not 
I ncorrect or Lack of I/O 
Control Pulses 

Program Stays in One Page of ROS 

Program Follows Unexpected Mean­
ingless Path Through Routines 
Program Jumps to an 
Unused ROS Area 

XXXXXXXX Timing Errors 

185 



x x xxx 

xxx x x 

x X 

xxx X X X 

xxx 

X xxx 

X xx X 

X xx X 

X X 

X X X 

X X 

X X 

X XX 

X XX 

X X X X 

X 

X 

X X X 

X 

Table 12. I-'rogram Error Check List 
(Continued) 

• Programming Error 

Error Symptom 

I 
X Incorrect or Missing I/O Data 

x Incorrect Results but Correct 
Files Modified 

Incorrect Files Modified 

Program Hangs up in a Loop 

Program Fails to Loop in a 
Subroutine 
Program Exits a Subroutine 
Loo" too early or too late 
Incorrect Core Memory 
Storage Locations 

Core Data/Flags Destroyed 

X I ncorrect Data/Flags Stored 

I ncorrect or No Return 
From Subroutine 

Program Never gets to 
Correct Subroutine 

Intermittent Program Errors 

Program Does Not Enter a Loop 
According to Expected Flags or Status 
Program Enters Loop when Conditions 
Say it Should Not 
I ncorrect or Lack of I/O 
Control Pulses 

Program Stays in One Page of ROS 

Program Follows Unexpected Mean­
ingless Path Through Routines 
Program Jumps to an 
Unused ROS Area 

Timing Errors 

186 



X X 

Table 12. Program Error Check List 
(Continued) 

~ .. _----Programming Error 

Error Symptom 

I 
Incorrect or Missing I/O Data 

x X X X X Incorrect Results but Correct 
1-_--1I-+-+-+-+-+-_+-_+--+F:....:.;.:ile.:>. Modified 

X X X X 

X X X 

X X X 

X X 

XXX X 

XXXX X 

X X X 

X X X 

X X X x 

X X X 

X XX 

X X X 

x X 

X X 

X X 

'X X X X 

X X 

Incorrect Files Modified 

X Program Hangs up in a Loop 

Program Fails to Loop in a 
Su_brQlJtin!! 
Program Exits a Subroutine 
Loop too early or too late 
Incorrect Core Memory 
Storage Locations 

Core Data/Flags Destroyed 

Incorrect Data/Flags Stored 

Incorrect or No Return 
From Subroutin!! 
Program Never gets to 
Corre!;t Subrc:IUti ne 

Intermittent Program Errors 

X Program Does Not Enter a Loop 
According to Expected Flags or Status 
Program Enters Loop when Conditions 
Say it Should Not 
Incorrect or Lack of I/O 
Control Pulses 

Program Stavs in On!! Page of ROS . 

Program Follows Unexpected Mean­
ingless Path Through Routines 
Program Jumps to an 
Unused ROS Area 

Timing Errors 

187 



CHAPTER 7 

TECHNIQUES AND EXAMPLES 

TECHNIQUES FOR EFFICIENT MICROPROGRAMMING 
In many aspects microprogramming is similar to assembly language soft­
ware programming of small computers. There are basic arithmetic, logic, 
I/O, control, and memory functions. Programs .are organized with exec­
utives and ·subroutines. Jumps and return jumps can be made. The basic 
differences are as follows: . , 

• There are no variable addressing modes at the microcommand level. 
Memory accesses must be programmed on a step-by-step basis, with 
commands to set memory address, and to transfer data to and from T, 
whicn is the memory transfer register. 

• Execution of !=ommands is much faster than in a software machine. 

• I/O functions must be programmed on a step-by-step basis, including 
setting up device connect codes in T, and programming input and out­
put strobe pulses. 

• Return jumps must be set up by storing return addresses in a file 
register. 

• Arithmetic shift, control and logic functions are all register oriented, 
and are limited in scope, such as shift one bit position, add 8 bits, 8 bit 
logic, skip only one location, etc. 

• The command or instruction memory is semi-permanent read only 
'memory with a limited capacity, so that much care must be taken to 
conserve the number of commands or instructions in the program. 

• The commands or instructions are much more intimately related to the 
machine architecture, and to bit patterns, therefore some knowledge 
of logic Boolean algebra, and small computer organization is highly 
desirable, and is applied to the programs. 

• Interrupts are monitored by status sampling rather than. hardware 
interrupts as found in software programmed machines. 

• All commands or instructions are single word (16 bits) and relate to 
files, or register. 

• Commands are organized in such a manner as to make is possible 
sometimes to do more than one function on a command, and this is 
necessary many times to conserve commands. 

• The flexibility of programmable alteration commands is not as great as 
with software programs. A special register, called the U register, is 
necessary for thjs function. 

• There are two levels of high-speed storage - the file register and core 
memory. The files are general purpose at the microprogramming level., 

• There are special commands in microcode not normally found in soft­
ware commands, such as shift right 4, load zero, and literal to register, 
which simplify many functions. 

• There are certain timing constraints related to I/O, memory, skips, 
jumps, and U register applications, which must be taken into account 
when preparing microprograms. 

188 



Even with all of the above constraints, it is possible to have microprograms 
which are 10-50 times as fast as equivalent software programs and which 
require the same or fewer instructions than a software- program. 

In order to make full use of the power of microprogramming a large 
number of techniques are possible to reduce the number of instructions, 
and/or to reduce execution time. 

The following techniques are discussed in this next section: 

1. Generation of delays for memory accesses, U register applications, 
and input/output. 

2. Double functions on a single command. 

3. Uses, setting and testing of Link. 

4. Uses of U register. 

5. Setting and using of condition flags. 

6. Use of loops vs straight line programming. 

7. Small general purpose subroutines. 

8. Use of shift right 4 instruction (generated with and without U). 

9. Use of files for flags, counters, and reference data. 

10. Organization of Op codes, file, and core allocations to reduce 
instructions. 

11. Saving diodes by selection of instructions and files. 

12. Saving jump instructions when branching. 

13. Reducing two branches to one by multifunction commands, and 
commands which become effective No Ops in one branch. 

14. Interlacing vs cascading of routines. 

15. Uses of inhibit file write. 

16. Moving data from file to register. 

1. Generation of delays for memory accesses, U register applications 
and input/output. 

Each of these items requires a delay of 1 to 3 clock times after the com· 
mand. The desirable thing to do is some required function which provides 
the delay with no error. For example, on a memory write, T must not be 
written into for 4 clock times. On the 32-bit input example (#2) the write 
memory command is followed by reset DIXX, a skip test, and a jump. 
None of these affect T, so the entire memory delay is achieved with no 
loss of execution time. The memory time is then reduced from 1.1 !-Is to 
.22 !-Is. Also in this same example, the one clock delay after DIXX, prior 
to data input is achieved by advancing the byte address counter, thus 
avoiding a No Op. Most of the input and output delays can be generated 
by updating program counters, and addresses, etc. Microprogram Example 
No. 10 contains many of this type command. Microprogram Example No. 
12A shows an example of placing a memory aGcess command after up­
dating U to provide a delay without a No Op. 

189 



2. Double functions on a single command. 

The following double functions can be done, and should always be used 
when possible: 

a. Clear both a file and register with a copy 0 command. Similar 
techniques can be used to set both equal to 01, OR, FF. 

b. Update a file or register on a memory command. (This does not 
have to be a memory register.) 

c. Update a file, or register on an I/O control command. (Output 
moves only.) 

3. Uses, setting and testing Link. 

Link is used to indicate carry for an arithmetic function, or the shifted out 
bit on a shift function. It is used for multibyte arithmetic, shifting, or 
memory address incrementing. 

Link can be preset by shifting a file, with inhibit file write. If link is to be 
set specifically to 1'or 0, it may be accomplished by subtracting zero or 
adding zero to any selected file regardless of its contents. For sign exten­
sion on a shift, link is preset to whatever value is in the end bit of'the 
designated file. 

The state of link can be tested without disturbing a file by executing a 
shift right command with the following c field functions: inhibit file write, 
enter link, and update the condition flags. The link appears in the MSB 
which sets or resets the negative condition Hag. If the condition flags must 
be saved, then link can be entered into MSB or LSB of a file, and tested. 
Link can also be tested by entering into a file using the copy command as 
well as the shift command. 

If link is used in a routine, care must be taken to avoid setting or resetting 
it on a function before the time it is to be tested. 

4. Uses of the U register. 

The U register is used for file'indexing, and command modification. It is 
ORed with the upper 8 bits of the execute command or operate com­
mands (except control) which select destination register value 7 . Typical 
modifications are as follows: . 

a. Execute 0020 

The 2 in the c field selects T for add, subtract, logic functions, and 
copy. Therefore the 0020 can be used for mUlti-purpose command 
execution, by loading U with the desired Op code, and file register 
number. 

For moving, loading or clearing a group of files, the Op code will 
remain fixed, and only the file number will change. I n this case, the 
Op code for copy ('B') or move ('C') can be used with a 0 for the 
file number. . 

When U has been set, the new value does not become effective until 
the second clock. Sometimes two entirely different functions can be 
implemented using U. For example, if it is necessary to move the 

190 



upper 4 bits or alternately the lower 4 bits of a file to the T register, 
this can be done as follows: 

Move file 
4to T 

execute, C = 2 

Case one: move upper 4 (U) = 74 

Machine Code 

110F 

0021 

with c = 2 this becomes 7421 shift right 4---T 

Case two: Move lower 4 U = E4 

with C = 2 this becomes E421 
Andf4withT-T 

If a number of different functions are to be done to a register in one pass 
through a loop, the operate command with destination code 7 is used. This 
can not be used if a destination register is required. 

5. Setting and using condition flags. 

, The three condition flags are overflow, negative, zero. The condition flags 
remain unchanged unless the c field in an operate command is set for 
updating condition flags, or a control command is executed. The zero con­
dition flag is used to test for arithmetic zero conditions, and for end of a 
subroutine loop. Condition flags can be set without changing files. Some 
of the techniques areas follows: 

- a.1 fa + 0---C I by inhibiting file write, and adding 0, the 

condition flags for a file state can be set. 

b.1 T-fO,C I by copying T and inhibiting file write,the 

condition flags for a T state can be tested. 

c. enter sense switches to fO---C I Sense switch 4 can be used 

to set the negative condition flag without affecting any register. 

d.1 fA + T ---C setting C for normal add function. 

e. I Copy Link-C I Set negatitive, and zero condition flags. 

191 



6. Use of loops vs straight line programming 

The two main factors of consideration are execution time and number of 
commands. If the number of commands using a straight line approach is 
five or less, there are no command savings using a loop because four com­
mands are required to set up the loop as shown: 

STRAIGHT LINE 

The loop takes much longer than the straight line approach. A typical 
loop is shown in Example 7. In this routine there would be nine functional 
commands per input byte for a total of 36 for four bytes. Using a loop 
reduces the command count to 12 commands. The straight line approach 
takes 7.94 us instead of 10.56 us as in Example 7. Therefore if time were 
very critical it might be desirable to use the straight line approach. 

192 



7. Small general purpose subroutines. 

To reduce the total number of commands in a microprogram, subroutines 
can be used in a manner similar to software programs. 

To jump to a routine on the same page requires 2 or 3 instructions, one for 
the return address, one for the jump, and usually one to set a flag, pointer, 
etc., for the subroutine. Therefore if the subroutine requires only 4 or 5 
instructions it is not worth making as a standard. Ifthe routine, such as a 
general purpose I/O routine requires 10 or so instructions and is used more 
than once, then it is definitely of value to make the routine general 
purpose. 

8. Use of shift right 4 command. 

This command is used to transfer the upper four bits of a file to the lower 
four in the file and/or to a destination register. The upper four are reo 
placed with 1's, which mayor may not have to be cleared. To clear the l's, 
simply add '10' to the file after shifting. If the value is an Op code to be 
tested, the l's can be treated as a constant. If the result is to be subtracted 
from another value obtained by similar means, the l's will cancel. 

9. Use of file register for flags, counters, and reference data. 

File registers are used for routine control words as well as data. When it is 
necessary to conserve files, flags, etc., are sometimes stored in core between 
routines so that file register meanings may change during a microprogram. 
Also files can sometimes serve a dual function by judicious location of 
flags. In Example 19, there is a subroutine which must perform differently 
on alternate passes. On one pass there is an effective shift right 4 leaving 
1 's to be cleared. One file contains a flag to indicate which pass it is. This 
flag is also placed in bit position 4; therefore the file content can be added 
to the file containing 1 's to be cleared, thus serving a dual function. Also a 
file assigned to update U can be used as the loop program counter. 

10. Organization of Op codes, file register numbers, and core memory 
addresses to minimize commands. . 

Many times it is possible to use particular files to make their addresses 
correspond to memory addresses, such as in Example 12A. This will save 
both files and commands. Also locating a block of data in one page saves 
an instruction. Use of file F for an instruction which may be either a shift 
or add will minimize instructions, as shown in Example 19. 

11. Saving of diodes by selection of files and instructions. 

If possible files used very often should have numbers which have the least 
number of diodes. If there is a choice of TZ, TN, or using condition flags 
vs. testing the file directly, the method which requires the fewest diodes 
should be used, particularly if there are very many ROM's to be built 
using discrete diodes. 

193 



12. Saving jump instructions when branching. 

This example shows that if there are two branches, each having two or 
more commands, doing one of the branches first reduces the number of 
commands by two. . 

JUMP 

COMMAND2a 

6 INSTRUCTIONS 

8 INSTRUCTIONS 

194 



13. Reducing two branches to one by multi-function commands which 
become effective No Ops in one branch. 

Many times a function varies with program state, such as moving upper or 
lower half of a byte in BCD manipulations. Sometimes widely varying 
functions can be combined by organizing the routine for the worst case 
function, and having some of its steps become effective no ops for the 
simpler functions. 

This is illustrated in Example 19. 

o 

195 

The odd state is for moving 
the upper byte. The even for 
the lower byte. If odd, the 
pertinent state when entering 
'move' is 

fe2 = '70' 

With this stage the value in U 
becomes 7f 

/\ 
Control Selected file 

register 

This causes a shift R 4 at (j) 
with result to T, which nulli­
fies command @ 



If the state is even, the state of fe2, entering the move is EO. This causes 
U to become Ef which is the And function. This causes the contents of f to 
be Anded with (f) with result to T. In this case the 'OF' loaded in T causes 
selection of only the lower half of (f). The next instruction Q) 
fe1+T-T adds '10' to T if in the odd state, which clears the 1's resulting 
from the shift R. If in the even state, fe1 contains '00' so command Q) is 
an effective no OP. 

14. Interlacing vs. cascading of subroutines. 

What this means is entering a subroutine and remaining until an operation 
is complete, vs. doing parts of routines, and moving on to subsequent 
routines before finishing. Cascading results in the fewest instructions, but 
can drastically reduce throughput, if the routines are time paced by exter­
nal devices, such as card readers, serial teletypes, line printers, in which 
case the microprogram must wait for data to be supplied by the interface. 
For example, teletype lines should be monitored by the microprogram on 
a bit sample basis instead of assembling an entire character. More com­
mands are required to store and fetch pointers and status bits and to test 
for status, but the throughput improvements are worth the extra coding, 
and sometimes an absolute necessity. 

15. Use of inhibit file write. 

Inhibit file write is used for the following functions: 

a. Setting registers without changing the content of a file. 

b. Presetting Link using shift or arithmetic functions. 

c. Presetting the condition flags without changing the state of a file. 

16. Moving data from a file to a register. 

Normally data is moved from a file to a register using the OR function 
because it doesn't affect link. If the state of link is not needed, the move 
can be implemented using the Add 0 to file with a savings of one diode and 
always resetting Link. 

MICROPROGRAMMING EXAMPLES 

The following Microprogramming Examples illustrate basic microprogram­
ming techniques. Many routines, such as the 8-bit positive number multiply 
have been simplified from standard routines by omitting such capabilities 
as handling negative numbers as well as positive numbers. For a more de­
tailed description of typical subroutines, and an entire program, refer to 
Part IV-MICRO 810 firmware reference manual. 

Most of the routines do not contain the linkages to an executive program, 
such as setting return addresses, etc., because these vary with the type of 
executive in which the routine may be used. 

Some of the routines were selected only as examples to illustrate certain 
microprogramming techniques, and may not use the simplest possible 
algorithm. 

196 



The examples are done in flow _chart and assembly language coding, 
along with comments. For normal programming, the comments are not 
usually as detailed as these examples. Execution times are included to 
illustrate the high processing rates possible using microprogramming. 
Machine code is included for the first 15 examples. 

The names of the example subroutines are as follows: 

1. Multiply 2 Positive 8 Bit Numbers 

2. Subroutine Jumps 

3. Time Delay Routine 

4. I nput Data fron;' 4 External Registers 

5. Load 8 Successive File Registers from 8 Successive Core Locations 

6. - 16-bit Addition, Core to File Register 

7. -Input a 32-Bit Word From an External Device to Core Memory 

8. 16-Bit Right Shift with End Around Carry 

9. A ORed with B, Result to A 

10. Update a 10 BCD Digit Display From Core 

11. Clear a Block of Core Memory 

12. Read and Write Between 8 Files and 8 Consecutive Core Locations 

13. Output From 8 Files to 8 Shi-ft Registers 

14. Input From 8 Shift Registers to 8 Files. 

15. Input a Block of Data to Core From an A to D Converter 

16. BCD to Binary Conversion 

17. Binary to BCD Conversion 

18. General Purpose Multiple File Shift Routine 

19. Hexadecimal to ASCII Conversion Routine 

20. General Purpose Code Conversion by Table Lookup 

21. Binary Multiply (16 bits) 

22. Generate Cyclic Redundancy Code for one 8-Bit Data Byte 

23. Generate ASCII Parity 

197 



MICROPROGRAM EXAMPLE NO.1 

Multiply Two ~ositive Numbers 

Specific Considerations 

• Each number 8 bits maximum including sign. 
• Result to occupy two 8-bit file registers. 
• Numbers to be in file registers before multiply routine. 

General Approach 

Use Add and Shift Algorithm. 

File Register Assignments 

F2 = X 
F3 = Y. and Z Lower 
F4 Z Upper 
F5 = Loop Counter 

Data Flow 

FILE 2(X) 

T REGISTER 

TEST LSB TO SEE 
1FT CONTENTS 
SHOULD BE ADDED 

LINKED SHIFT 

198 

FILE 3 
V&Z 
LOWER 



NO 

SET PROGRAM 
COUNTER =8 

MOVE (F2) TO 
T REGISTER 

CLEAR F4 

ADD (T REG.) 
TO F4 

SHIFT (F4) 
RIGHT (SAVING 
LSB) 

SHIFT (F3) RIGHT, 
ENTERING LSB 
SHIFTED OUT FROM 
PREVIOUS STEP 

ADVANCE LOOP COUNTER 

LSB = Least 
significant Bit. 

YES 

Functional Flow Chart for Multiply 

199 



Program for Multiply routine: 

Machine Code Assembly Language 

L Command . Name Operation Operand Comments 

000 2508 LF ·5, X'08' Set Loop Ctr = 8 
001 C201 MT 2 Move X to T Reg. 
002 2400 LF 4,X'00' Clear ZU 
003 4301 r-ADD TZ 3, X'01' Y Bit 0 = 1 
004 8420 A 4, T Add X to Z 
005 F420 H 4,R Shift Zu 
006 F3AO H 3, L, R Shift ZL 
007 9550 D 5,C Decrement Ctr 
008 5004 TN 0, X'04' Loop Ctr = 0 
009 1403 JP ADD Jump Loop 
OOA 1780 LS X '80' Halt 

For Simulator: 

1. Load ROS: POOO, 2508, C201, etc. 

2. Data Values: Set file 2, f3 . 
D2, type in X 
D3; type in Y 

3. Execute: GOOOO CR 

4. Display results with D2, D3, D4. 

, BINARY DECIMAL VALUES 
BIT BY BIT X 89 
EXAMPLE OF Y = .1012 
MULTIPLY z - 9434 

Binary Values 
X 0 0 1 1 0 0 1 Initially Y. this ends 
Y 0 1 0 1 0 1 0 up as Z,., lower 

ADDO 0 0 0 0 0 0 0 0 '0 i 1 0 1 0 1 0' 
1. SHIFT 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 ~st significant 

ADDX 0 .1 o .1 1 0 O. 1 0 0 1 1 0 1 0 1 bit is tested each 
2. SHIFT 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 time to deter-

ADDO Q 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 mine if X should 
3. SHIFT 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 be added or not. 

ADDX 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 1 
4. SHIFT 0 0 1 1 0 1 1 1 1 0 1. 0 0 1 1 0 

ADDO 0 0 1 1 0 1 1 1 . 1 0 1 0 0 1 1 0 
5. SHIFT 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 

ADDX 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 
6. SHIFT 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 

ADDX 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 
7. SHIFT 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 

ADDO 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 
8. SHIFT 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 

I.. 
T -I 

FINAL .RESULT = 9434 

This program loops 8 times. 

Execution time =; 14.74 microseconds. 

200 



MICROPROGRAM EXAMPLE NO.2 

Subroutine Jumps 

Return jumps to subroutines can easily be implemented in microprograms. 
Two examples are shown below. One is for return jumps to programs on 
the same page, and the other is for return jumps to another page. A page 
is 256 locations. 

a. Return Jump to Routine on same page (or pair of pages). 

034F 2AOA LF V,10 

0350 2B52 1(LF W eVB 1 )----Loading .Return 
, Address In W 

0351 1061 (JP eVB4 )--JumPing 

0352 210F (eVB1) 2 LF OP, X 'OF' 

Jump 
Address 

0361 51FF .. ,;{eVB4) TN OP, X'FF' 

0362 eB05 4(MK w) .. Return Jumping. 

(eVB1) Return Jump Address 

To do a return jump to the same page (or pair of pages), the address of 
the next command after the jump command 3 is loaded into a tempo­
rary file register, called W in this example. 1 Then the jump is made 
to the first command of the subroutine 2. The return jump command 
4 moves the return address (stored in W for this example) into L or K. 
(K is simply L with the page bit set to 1.) This command causes L to 
jump to the programmed return jump location. 

b. General Return Jump 

To jump to any location in the read only memory requires an additional 
step besides that described in example a. It is necessary to have an 
additional return address for page identification. One way to mechanize 
a general scheme for return jumping to subroutine is to have a pointing 
command on each page and to use an indirect jumping technique. 

This is illustrated by the following read only memory map. The 
indirect jump location is at the same address on each page (FF for this 
example). 

Two files are assigned for return addresses, one contains the page, and 
the other the return address on the page. Both of these must be set 

201 



PAGE 0 

SETRP 
FILES SETRJ 

~ 
JUMPSBR 

ML RJ i+-F 

RP 
PAGE 1 

RJ 

FF MK RJ 

FF 

-

-.SBR 

FF 

PAGE 2 

ML RJ 

PAGE 3 

MU RP 

EXECUTE 

MK RJ 

• SUB" 
ROUTINE 

prior to making the jump. RP is the page pointer. If for "a number of 
commands there is no multiple re-entry points, or multiple nesting 
across page boundaries, RP can be set, and left set for a number of 
commands. 

The return jump to originating PAGE is accomplished using the execute 
command with the U register. Since the intermediate jump locations are 
all at XFF, it is only necessary to load U with the X (or page identifier) 
from RP. This is mechanized as follows: 

RP = file E 
RJ = file F -

015 2E14 
016 2F18 
017 1041 
018 
341 2104 

350 CEOl 
351 8000 
352 DOFF 

LF 
LF 
JP 

RP, X'14' 
RJ, X'18' 
SUB 

Page a for Jump Command 

Return Page to RP 
Return Address 

Next command after subroutine 
SUB LF 1, X'04' . Any command may be here 

MU RP 
A a 
ES* 0,15 

Set Page into U 
No Op delay, to use U 
Execute to interpret RP value 
as page jump command -

Execute command: 
a OFF 
1 4 
1 4 F F 

Execute 
in U Register 
effective command 

Jump to Page a location FF 

at Page a location FF 

OFF CF04 ML RJ 

This loads L with return address in RJ. 

202 



MICROPROGRAM EXAMPLE NO.3 

Time Delay Routine 

Nested loop program to generate a time delay, such as can be used to 
sample serial teletype data. 

Specific Considerations 

• Two nested loops, with file 1 assigned to inner loop and file 2 assigned 
to outer loop. 

• File 0, zero condition flag, is used to indicate zero count for both 
loops. 

Functional Flow Chart: 

SET INITIAL VALUE IN f2 

SET INITIAL VALUE IN f, 

203 



Program for Time Delay Routine: 

Machine Code Assembly Language 

L Command Name Operation Operand Comments 

000 22® LF 2 X"®' , Set outer loop 

001 21 <D -LP2 LF 1, X' <D' Set inner loop 

002 9150 LD 1, C Decrement inner 
loop file 1 Set C 

003 5004 TN 0,X'04' Zero count? 

004 1402 JP LP1 Jump inner loop 

005 9250 

006 5004 

007 1401 

(i) outer link count 
CD inner link count 

Calcu lation of delay: 

D 2,C Decrement outer 
loop file 2 Set C 

r-TN 0,X'04' Zero count 

JP LP2 Jump outer loop' 

L---.. 

The delay of this routine can be calculated by preparing a flow graph with 
the number of clock times for each branch ,in the graph. The graph for 
this routine is as follows: 

Flow Graph for Time Delay Routine: 

1 CLOCK LOAD FILE 1 

1 CLOCK LOAD FILE 2 

. 2 CLOCKS DECREMENT FILE 1 
TEST FOR ZERO CONDo (NO SKIP) 

3 CLOCKS TEST FOR ZERO CONDo (2nd CLOCK 
. FROM SKIP) 

DECREMENT FILE 2 
TEST FOR ZERO CONDo (NO SKIP) 

1 CLOCK 2nd CLOCK FOR SKIP 

204 



Number of clock times, C 8 + 8 (m - 1) + 4m (n - 1) 

4m (1 + n) 

where 
t = .22 C microseconds = .88m (1 + n) 

m = outer loop counts 
n = inner loop counts 

This equation is valid for 1 < m, n < 255. 

If m or n = 0, their effective value becomes 256. 

Examples of clock time calculations: 

m n C t (microseconds) 

1 1 8 1.76 
1 2 12 2.64 
2 1 16 3.52 
2 2 24 5.28 

Example of derivation of m and n: 

Calculate m and n for a time delay of 20 milliseconds = 20,000 micro­
seconds. 

Solution: 

.88m (1 + n) = 20,000 

pick m = 20,000 = 142 decimal '8E' hexadecimal 

then .88 x 142 (1 + n) = 20,000 

n = 20,000 _ 1 = 160-1 = 159 decimal 
.88x142 

205 

'9F' hex. 



MICROPROGRAM EXAMPLE NO.4 

Data I nput from 4 External Registers 

Input data from 4 registers (at device '08', '28', '48', '68') to core locations 
'0200', '0201', '0202', '0203'. 

Flow Chart: 

INITIALIZE CORE LOCATION ADDRESS 

INPUT WITH COPY T COMMAND 

STORE DATA AND INCREMENT 
N ADDRESS 

iNPUT DATA AND RESET DIXX 

ADD '20' TO RESISTER ADDRESS 

N 

206 

FILE A = BYTE ADDRESS 
FILE B = N ADDRESS 

HOLDING REGISTER 



Program for Input Date Byte Routine: 

Machine Code Assembly Languag~ 

L Command Name Operation Operand Comments 

000 2A08 LF 10, X'08' Set Register 
Address 

001 1202 LM X'02' Set M Address 
register = '02' 

002 2BFF LF 11, X'FF' Set N Address 
register = Int. 
Add. -1 

003 CAOl ADD MT 10 Register Address 
toT 

004 7090 K 0,9 Set COXX 

005 1000 LZ X'OO' No Op Delay* 

006 7080 K 0,8 Reset COXX 

007 70EO K 0, E Set DIXX 

008 21FF LF 1, X'FF' Set Data Mask 

009 ABD3 WN 11, I Update N, start a 
write 

OOA 7181 KT 1,8 Input to T, 
reset DIXX 

OOB 3A20 AF 10, X'20' Update register 
address 

OOC 6A80 CP 10, X'80' Skip if (fA) > 68 

ODD 1403 JP ADD Jump Loop 

ODE Next command 

*If LZ is used for a special interface, it may not be usable as a No Op. 

207 



MICROPROGRAM EXAMPLE NO. 5 

Load 8 successive file registers (f1-fS) from S successive core locations 
(0301-0308) 

Use the execute command for loading files. The U register will be loaded 
with a value which has a Copy T as an Op code. Use file 9 to contain and 
update U register values. File 9 will also act as a loop counter. Use file A 
to contain and update N address register value. 

Flow Chart: 

LOAD FILE 9 WITH INITIAL 
U REGISTER VALUE·1 

SET M ADDRESS REGISTER 
TO 03 

SET FILE A WITH INITIAL 
N ADDRESS·1 

(FILE 91 + 1 -U. FILE 9 

READ CORE MEMORY' 
(FILE AI + 1 ....,.;. N. FILE A 

EXECUTE COMMAND 
(COpy T TO FILE 
COMMAND IS IN. UI' 

N 

208 

WHEN AT LAST FILE. 
CONTENTS OF f9 = 88 



Program for Loading 8 Successive Files from Core: 

Machine Code Assembly Language 

L Command Name Operation Operand CommEmts 

000 29BO LF 9, X'BO' Initial U value -1 

001 1203 LM X'03' M address 

002 2AOO LF 10, X'OO' Initial N address-1 

003 8946 LP1 AU 9,1 Update file 9 and 
U register 

004 AAC3 RN 10, I Read memory and 
update N, and 
file 10 

005 0020 E 0,2 Copy T to file 
register 1 to 8 in 
sequence 

006 6948 CP 9, X'48' (f9) > B7 

007 1403 JP LP1 Jump Loop 

008 Next command 

Effective command at 005: 

Execute 0020 
U register B1 

Effective B120 Copy T to file 1 
command 

209 



MICROPROGRAM EXAMPLE NO.6 

16 Bit add (core to file) 

This routine adds the contents of files AU, AL to a 16 bit word in core 
memory at the address contained in OU, OL and places the result in AU, 
AL· 

File designations: 

Temp. register S = f1 

Data in files AU = f4, AL = f5 

Core memory address in Ou = f8, OL = f9 

Result in file AU = f4, AL = f5 

Memory Location: 

Data in DU and DL (successive bytes in core) 

The condition flags are set by this routine to indicate negative result, over­
flow, or linked zero test over multiple bytes. 

TOP LEVEL FLOW 

FETCH DU. DL 

This routine has 8 microcommands, and takes 2.86 microseconds* to 
execute. There is an effective 3 clock delay after the 1st memory com­
mand, due to changing N and selecting T, and a 2 clock delay after 2nd 
memory command due to selecting T. 

*Not including return jump. 

210 



DETAILED FLOW 
CHART 

MACHINE 'ASSEM8L Y LANGUAGE 
ADD. CODE NAME OPER OPERAND 

000 C802 ADD MM ,OU 

001 A903 RN OL 

002 8120 C S. T 

003 8943 IN OL 

004 A882 RM OU, L 

005 8530 A AL. T,C 

006 Cl0l MT S 

007 8480 A AU, T, L,.C 

MICROPROGRAM EXAMPLE NO.7 

COMMENTS 

Move upper address 
byte to M. 

Read upper data byte. 
move lower address 
byte to N (data goes 
to T). 

Save upper data byte 
in S. 

Move incremented 
lower address byte 
to M. 

Read lower data byte. 
Move upper address byte 
+ (Link) to M. Data goes 
to T. 

Add (T) to lower byte of 
A, set condition flags. 

Move lower data byte 
from S to T. 

Add upper data bytes + 
Link. Set condition flags. 
Linked 0 test. 

Input a 32 bit word from an external device to core memory. 

This routine causes the data in a 32-bit word to be partitioned into 4 bytes 
which are input to 4 consecutive core locations designated by Ou and 0L. 

File Designations: 

• Core memory address for data is in Ou = fa, OL = fg. 
Byte address is in FB = fB. 

Byte Addresses: 01,21,41,61. 

Memory Locations: 

4 successive bytes starting with the 1st location in OU, 0L. 

211 



TOP LEVEL FLOW CHART 

INITIALIZE BYTE ADDRESS FILE 

'N 

TRANSFER BYTE 
ADDRESSTOT 

INPUT A BYTE 
TOT 

STORE INPUT 
BYTE IN CORE 
MEMORY 

ADVANCE CORE 
MEMORY ADDRESS 
LOCATION 

EXIT 

In order to save microcommands some of the functions shown in the top 
level flow chart are dispersed and combined with other functions as shown 
in the detail{!d flow chart. 

The write memory command is deliberately placed before the data point 
command in the detailed flow chart to allow memory to start prior to 
changing T. . 

This routine has 12 microcommands and takes 10.56,..s to execute, which 
includes all I/() and memory access timing, but does not include return 
jump. 

212 



DETAILED FLOW 
CHART 

EXIT 

MACHINE 
ADD. CODE 

001 2B01 

002 CB01 

003 7903 

004 8940 

005 78B2 

006 70EO 

007 3B2O 

008 ABBO 

009 B021 

OOA 7080 

OOB 6B80 

OOC 1402 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND 

INP LF FB.x'01' 

NXT MT FB 

KN OL,9 

OL 

KM OU,B 

K O,E 

AF FB,X'20' 

W OU,L 

CT O,T 

K 0,8 

CP FB, X '80' 

JP NXT 

Exit 

COMMENTS 

Initialize byte 
address file. 

Move byte address 
toT. 

Set COXX and N 
address register. 

Delay and update 

OL 0 

Rewt COXX and set 
M address register 

SetDIXX. 

Delay and advance 
byte address. 

Store input byte 
and update OU@ 

.Input byte to T. 

Reset DIXX. 

Test for last byte. 
Jump back of more 
bytes to be input. 

o The state of Link from this command 
must be saved for updating OU. 

® Input (Link) from update of 0L. 

213 



MICROPROGRAM EXAMPLE NO.8 

16 bit right shift with end around carry with the shift count in file register S. 

File Designations: 

• Data to be shifted in files AU, AL 
• Shift count in file S. 

FLOWCHART 

PRESET LINK FROM FILE AL 

SHIFT RIGHT A ENTER LINK 

EXIT 

L 

c~ 
File S = f1 
AU =f4 
AL = f5 

L 

This subroutine has 6 commands. 
The execution time is 1.54 N* micro­
seconds, where n = number of bit 
positions shifted. 

*Not including return jump. 

DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 F520 SHS 

001 F4AO 

002 F5AO 

003 9150 

004 4004 

005 1400 

EXIT 

H* AL, R 

H AU,R,L 

H AL, R, L 

0 FS,C 

TN O,X'04' 

JP SHS 

Exit 

Link must be preset 
with LSB of AL. 

Shift right AU. 
Enter link. 

Shift right AL. 
Enter link. 

Decrement shift 
count. 

Skip when 0 con· 
d ition flag = 1 

Jump loop. 

The number of bytes shifted can be increased by adding one command 
per byte which is .22 ns/byte per loop additional time. 

214 



MICROPROGRAM EXAMPLE NO; 9 

A ORed with B to A Logic Symbol 

AVB---A 

In this routine the contents of AU and AL is logically ORed on a bit-by­
bit basis with the content of BU and BL. The result is placed in AU, AL. 

File Register Designations: 

Data Files AU = f4, AL = f5 

Files BU = f6, BL = ry 

DETAILED FLOW 
CHART 

MACHINE ASSEMBL Y LANGUAGE 
ADD. CODE NAME OPER OPERAND COMMENTS 

000 C701 OR MT BL MoveB -T 

001 C530 o AL, T, C OR AL with T 

002 C601 MT BU MoveBU - T 

003 C4BO o AU, T,C, L OR AU with T 

. The last operand includes L to provide, a linked zero test over multiple 
bytes. 

This routine has 4 commands and takes .88 microseconds, not including 
return jump. 

MICROPROGRAM EXAMPLE NO. 10 

Update 10 BCD· digit display from core. 

For this routine a 5-byte packed BCD image of the digital display is main­
tained at all times in core. This image is updated by other programs. 
Periodically this routine is utilized to transfer the image out to the display 
lamps. The routine uses the standard COXX, DOXX procedures, which 
output a device and function code, strobed by COXX, followed by a data 
value (in this case two packed BCD digits) strobed by DOXX. Two digits 
are updated by each output byte. 

215 
" 



Data Characteristics: 

• 2 digit packed SCD per byte in core in consecutive locations. 

• Data sequenced to display one.byte at a time, display logic automati­
cally sequences through latches. 

• Data sequencer enabled by 1st byte containing all l's, and disabled by 
last data byte. 

• Core location addresses in aU = f6, OL = f7. 

• Display output byte address·is i!", FS = fs. 

• Standard I/O logic is used which automatically disconnects after each 
byte is transferred. 

• Display byte count is in FC = fC. 

• Data from memory is temporarily held in FD = fD. 

TOP LEVEL FLOW CHART 

EXIT 

This routine has 14 commands and takes 13.42 microseconds to execute. 

216 



DETAILED FLOW MACHINE ASSEMBL Y LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 2C04 DSP LF FC, X'04' Initialize byte count. 

001 2DFF LF FD, X'FF' Set 1 st output byte 
= 'FF'. 

002 CBOl RPT MT FB Move byte address 
to T. 

003 7793 KN OL,9 Set COXX and N 
register. 

004 8740 OL Delay and update 
OL. 

005 7682 KM OU,8 Reset COXX, and 
set M register. 

006 CDOl MT FD Move output byte 
to T. 

007 70AO K 0, 10 Set DOXX. 

008 8680 A OU, L Delay and update OU. 

009 7080 K 0,8 Reset DOXX. 

OOA AC40 R FC,D Read memory and 
decrement byte 
count. 

OOB BD20 C FD,T Transfer output byte. 
just read from core 
to FD. 

DOC 4C03 TZ FC, X'03' Test for byte count 
=0. 

1402 JP RPT Jump loop. 

Exit 

217 



MICROPROGRAM EXAMPLE NO. 11 

Clear a block of core memory. 

This routine causes a selected block of core. memory to be set to all 
zeros. 

File Register Designations: 

Starting of current address Su = f8, SL = fg 

Ending address EU = fA, EL = fS 

Zero value in FZ = fl 

SET ZERO VALUE 
...... __ ..._-.....;.,J FOR T 

WRITE 
(CLEAR T) 

UPDATE 
SU,SL,M, N 

EXIT 

INITIAL MEMORY ADDRESSES 

UPDATE BLOCK ADDRESSES 

TEST FOR LAST ADDRESS 

On a write memory command, data in T is stored in the memory location 
set by M and N. 

This routine has 12 commands. It takes 3.52 microseconds to clear the 
first byte, plus 3.08 microseconds for each additional byte. Clearing a 
fixed length block in one page takes only 1.1 I-Is per additional byte. 

218 



DETAILED FLOW 
CHART 

EXIT 

MACHINE ASSEMBL Y LANGUAGE 
ADD. CODE NAME OPER OPERAND COMMENTS 

000 2100 CLR LF FZ, X'OO' Set zero value for T. 

001 C802 MM SU Initial value to M. 
002 C903 MN SL Initial value to N. 

003 Alll NXT WT FZ Write zero into core. 

004 8943 IN 

005 8882 AM 

006 C901 MT 

007 9B38 S* 

008 C801 MT 

009 9AB8 S* 

OOA 5004 TN 

OOB 1403 JP 

.219 

SL } 

SU,L . 

Increment 16 bit 
memory address. 

}{

Subtract 

EL, T,C SL from EL 

SL 

SU liSubtract 

EU, T,L,41SU from EU 

O,X'04' Last byte cleared. 

NXT Jump loop. 



MICROPROGRAM EXAMPLE NO. 12A 

Read 8 consecutive core locations into 8 consecutive file registers. 

This routine is used to move a block of data from core to the files. 

File Designations: 

Files 1-8 to receive data 
File E Memory address and file index. 

U register is used to index -through the files. 

Dedicated Core Locations: 

All on page 0, with N = 01, 02, 03, 04 ..... 08. 

TOP LEVEL FLOW CHART 

UPDATE FILE E & U REGISTER 

READ MEMORY 
(UPDATE N REGISTER) 

COPY T TO FILE DESIGNATED 
BY U REGISTER 

Y 

EXIT 

6 commands are required. Execution time is 14.08 ~s. 

220 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 BE02 LFR CM 14 Copy 0 to FE and M 
to clear both. 

001 SE46 NXT IU 14 Increment FE and 
put result in U and 
FE. 

002 AE03 RN 14 Read memory. 
Update N with (FE). 

003 8027 CS 0, T Copy T to file 
designated by (U). 

004 6EFS CP 14.x'FS' Test for last file. 

005 1401 JP NXT Jump loop. 

EXIT 

MICROPROGRAM EXAMPLE NO. 128 

Write 8 consecutive tiles into 8 consecutive core locations. 

This routine is similar to 7a except for use of a write command and a 
move to T command, which requires the execute command to have T as a 
destination. File U (tE) contains the Op code for a move, so it can't be 
used for the memory address if N = 01, 02, etc. 

7 commands are required. Execution time is 10.78 ,...S. 

221 



DETAILED FLOW. MACHINE ASSEMBL Y LANGUAGE 
CHART ADD. CODE NAME OPER. OPERAND 

000 2ECO STM LF FU;X 'CO' 

CLEARFN & M REGISTER 001 B802 CM FN 

FU +1-U, FU 002 8E46 NXT IU FU 

003 ABD3 WN FN,I 

004 0001 ET 0,0 

005 6E38 CP FU, X'38' 

EXIT 
006 1402 JP NXT 

222 



MICROPROGRAM EXAMPLE NO. 13A 

Output from 8 files to 8 shift registers. 

8a. File to register bit order the same. 

This routine provides the microprogramming for utilization of the 
minimum number of logic chips to get 64 lines out from the com­
puter. These lines can be used to drive displays, printers, etc. 

This routine is used where the order of bits shifted out is important 
or where the number of output shift registers is less than 8 so there 
is no symmetry. 

The next Example (8b) shows much simpler coding to interface 
with 8 shift registers without pattern rotation. 

File Allocations: 

Files 1-8 
File 9 
File E 
File F 

Data 
Shift assembly register 
File index register 
Shift count register 

Since this is a minimum hardware interface, the load zero com­
mand (CGOX) will be used to strobe the data directly out of T. 

DATA FLOW 

FILE REGISTERS 1-8 

h 
9 FILE 9 
f 
e -+l hgfedcba 

d 
c 
b 
a 

BITSa·h ARE 
STRIPPED OFF ONE 
ATATIMEAND 
SHIFTED INTO 
FILE 9 AND THENCE 
TO T. EACH TIME 
FILE 9 IS FILLED, 
CGOX STROBE IS 
GENERATED. 

COMPUTER INTERFACE 

J 
r-

OD 
r----.. 

--- .. 
T 

r 

-
SHIFT 
CLOCK 
CGOX' LRXX 

223 

8 BIT SERIAL IN 
PARALLEL OUT 
SHIFT REGISTERS 
1-8 

i I 
64 BITS OUT 

ONLV8+C HIPS 
FOR 

RFACE. 
REQUIRED 
THIS INTE 



TOP LEVEL FLOW CHART 

DECREMENT FILE 
INDEX. AND PUT 
RESULT IN U 

N 

SHI FT A BIT OUT 
OF FILE N 

DECREMENT SHIFT 
COUNT 

This routine has 12 commands. 

I t takes 107.36 microseconds to exe· 
cute this routine. 

This routine used in conjunction with 
routine 7 for loading core to files re­
quires 19 commands total. and 118.14 
microseconds to output 8 core loca­
tions to 8 output bytes with an 8-chip 
interface. 

224 



DETAILED FLOW MACHINE ASSEMBL V LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 2F08 SRO LF 

"'X'OO'} Set shift count and 
file index. 

001 2E09 SRl LF 14, X'09' 

002 9E46 SR2 DU 14 Decrement index_U 

003 8000 A 0 Simple No Op (Add 
to file 0) 

004 F027 HS O,R Shift right file 
selected by index 
LSB to link. 

SHIFT RIGHT 005 F9Al HT 9, R, L Shift file 9 right, 

FILE 9 ENTER LINK enter link, result to T. 

RESULT-T 

006 4EOE TZ 14, X'OE' Output byte 
assembled. 

007 1402 JP SR2 Jump back to byte 
assembly. 

008 1000 LZ X'OO' Generate 
CGOX·LRXX strobe. 

009 9F50 D 15,C Decrement shift 
count. 

5004 

[TN 
O,X'Q4' Shift count = O. 

OOB 1401 JP SRl Jump back to next 

Exit 
bit shift. 

225 



MICROPROGRAM EXAMPLE NO. 13B 

File to register; with hardware rotation of bit pattern. 

In most cases, such as for updating digital displays, etc., it doesn't matter 
if the pattern in the 8 file registers is "rotated" with respect to the 8 out­
put shift registers. In the example below, file 8 becomes disassembled into 
1 bit in each of the 8 output shift registers. By changing the connection of 
wires to the display, the effective rotation can be cancelled. By allowing 
for rotation, the microprogram becomes much simpler than the example 
in 8a. 

ROTATION: 

8 FILES 

'///////////// 

FILE8 

File Register Designations: 

output data 
file index 

TOP LEVEL FLOW CHART 

8 OUTPUT 
SHIFT REGISTERS 

~ 
;;: 

~-
~ 
I/;: 
I/j 

This routine requires 7 instructions, 
and takes 10.78 microseconds to 
execute. So there is a tremendous 
time savings over the 8a example 
which requires pattern rotation by 
the microprogram. 

226 



*In this routine FE and U are updated after the execute command to 
avoid an extra delay which is required after updating U. In this case the 
delay is accomplished by the test and jump instruction. 

227 



MICROPROGRAM EXAMPLE NO. 14 

Input from 8 shift registers to 8 files in MICRO 800. 

This routine is somewhat similar to routine 13B except that data is input. 
The shift registers in the interface are parallel in", serial out. 

Interface Block Diagram: 

PARALLEL 
ENTRY 
ENABLE 

SHIFT REGISTERS 

File Register Designations: 

SHIFT 
CLOCK 

I01X 

file 1 - file B data file registers 

file E file index 

228 

INPUT GATES 

ID LINES TO 
MICRO 800 

_ .. COMPUTER 

INPUT 
ENABLE 

I03X 



TOP LEVEL FLOW CHART 

ADVANCE FILE INDEX 
ANDU 

PARALLEL ENTRY ENABLE TO 
SHI FT REGISTERS. 

TO ALLOW TIME 
1---- FOR I03X TO SET. 

COPY T TO FI LE n, 
FI LE n SELECTED BY 
INDEX VALUE IN U 

EXIT 

This routine has 10 instructions ard takes 14.52 microseconds to execute. 

229 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
COMMENTS CHART ADD. CODE NAME OPER OPERAND 

000 2EOO IPT LF. 14,X'OO' I.nitialize index file. 

001 7090 K 0,9 

} Generate parallel 
entry enable strobe. 

002 7080 K 0,8 

003 8E46 NXT IU 14 Update file index 
andU. 

004 70CO K 0,12 Set input enable 
"flip flop. 

005 8000 A 0 Convenient No Op 
for time delay. 

006 B027 CS 0, T CopyT_fn 
indexed. 

007 7080 K 0,8 Reset input enable 
flipflop. 

ODS 6EF8 CP 14,X'FS' Are S files loaded. 

009 1403 JP NXT No, Jump loop. 

EXIT 

230 



· MICROPROGRAM EXAMPLE NO. 15 

Input block of data to core from A to 0 converter. 

This routine shows a method for inputting a series of 16-bit data words 
from an ADC. The sample rate is controlled by the read time clock option. 
The data words are placed in consecutive core locations. A software flag is 
set when the sample data block is complete. 

Block Diagram: 

16 BITS 

1----- COMPUTER - ADC INTERFACE COMPUTER 
UNIT 

t CONV. CO\PLETE I 
DIGITIZE COMMAND 

File Register Designations: 

Su = f4, SL = fS Starting (or current), address in data block. 

EU = fS, EL = f7 End address in data block. 

FF = fF Bit 0 software flag. 

FE = fE Input routine file index. 

DU = f2, DL = f3 Temporary files for input data. 

FS = f1 I nput status file. 

FB = fB Byte address file. 

'fF' and COXX = Digitize Command. 

The microprogram tests the input status byte for conversion complete· 
before inputting data. 

231 



TESTING FOR REAL TIME CLOCK 

EXIT1"'--~ 

EXIT24---I 

This routine has 40 commands in­
cluding the real time clock test. 

The execution time is approximate­
ly 26 microseconds per sample, in­
cluding time for conversion, and 
testing real time clock. 

The time delay from digitize com­
mand to conversion complete could 
be used for housekeeping if it can 
be worked in at that time in the 
program. This would result in an 
effective time reduction for this 
routine. 

A status byte and two data bytes 
are input and then status byte is 
tested. If conversion is not com­
plete, the two input bytes are dis­
carded, and another sample of data 
and status is taken. 

232 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS 

000 llFF ADC LT X'FF' Load T with digitize 
command function. 

001 7090 K 0,9 

} Digitize command 
002 70BO K O,B strobe. 

003 2EOO ENl LF FE, X'OO' Initialize file index.' 

004 2BEB LF FB,X'EB' Initialize byte address. 

005 BE46 EN2 IU FE Increment file index. 

006 3B20 AF FB, X'20' Advance byte address. 

007 CB01 MT FB Byte address to T. 

OOB 7090 K 0,9 COXXset. 

009 C402 MM SU Delay, and set M. 

OOA 7080 K 0,8 COXX reset. 

OOB 70EO K 0,14 DIXXset. 

OOC C503 MN SL Delay, and set N 

000 B027 CS O:T Input data byte. 

OOE 7080 K 0,8 DIXX reset. 

OOF 6EFD CP FE,X'FD' Next byte input. 

010 1405 JP EN2 More bytes to input. 

011 5101 TN FS, X'Ol' Conversion complete. 

012 1403 JP ENl Take another sample of 
status and data bytes. 

233 



DETAILED FLOW MACHINE ASSEMBLY LANGUAGE 
CHART ADD. CODE NAME OPER OPERAND COMMENTS' 

013 C201 MT DU Move most significant 
by1B to T for storage. 

014 A5DO W ~L,I Store most significant 
byte and increment SL. 

015 8482 AM SU,L Update SU, M. 

016 C301 MT DL Store least significant 
byte, update N. 

017 AS13 WN SL Store least significant 
byte, update N. 

018 8540 SL Increment SL. 

019 8482 AM SU,'L Update SU, M (M for 
access delay) 

01A COOl MT SL 

Compare SL, SU to EL, 01B 9738 S· EL, T,C EU to _ if input block 
is complete. This is a 

01C C401 MT SU linked zero test over 
multiple bytes. 

OlD 96B8 S* EU,T,C,L 

OlE 5004 TN O,X'04' Test zero condition 
flag for end of block. 

01F 1422 JP EXIT Continue to input and 
store data on next real 
time clock. 

020 3101 AF FF, X'01' Set block complete 
flag bit. 

Notice in this routine that after the two write commands, M is deliberately 
made the destination register of a command; to generate a delay prior to 
modifying T. 

234 



MICROPROGRAM EXAMPLE NO. 16 

Conversion of 3 digit BCD plus sign into Binary. 

Given 3 digits in the registers BU and BL. Binary result will be in AU and 
AL. 

B register 

other files used: 

I OS 
• y 

f4 = BU 

Op = file 1 
V = file A 
W = file B 

02 I I 
J • 

Digit value 
Power of 10 Binary 
Return Address 

01 DO I ,. J 

f5 = BL 

The basic· technique is to multiply each BCD digit by its power of 10 
expressed in binary, and to add each converted digital value in an 
accumulator. The top level flow is as follows: 

CENTER A 

SET UP BINARY 
MOVE LSDTOA EQUIVALENT FOR . . 

100'5 DIGIT 

SHI FT 10'5 DIGIT TO 
LSD POSITION AND 
USE AS INDEX TO 
MULTIPLY ROUTINE 

MUL TlPL Y 100'5 DIGIT 
BY BINARY VALUE AND 
ADD TO ACCUMULATOR 

MULTIPLY 10'5 DIGIT 
BY BCD VALUE. ADD 
TO ACCUMULATOR 

SET BINARY NUMBER 
FOR CORRECT SIGN 

cb 
, 

C EXIT) 

235 



BCD to Binary Program: 

Name Operation Operand Comments 

CB LF AL,X'OF' Set Mask for lower BCD Digit. 
MT BL Move Lower 2 Digits to T. 
N AL, T Mask, select lower Digit of AL. 
C AU Clear A upper. 
C OP, T Copy lower 2 digits from T to Op. 
K OP,2 Shift OP right 4, move 2nd digit to LSD. 
LT X'OF' Load Mask in T. 
N OP, T Mask out all but 2nd digit. 
LF V,10 Put Binary value for 10 in V. 
LF W, CB1 Load Return Address into W. 
JP CB4 Jump to Multiply Routine. 

CB1 LF OP,X'OF' Set Mask in Op for 100's digit. 
MT BU Move 100's digit to T. 
N OP, T Mask out all but 100's digit. 
LF V,100 Put Binary value for 100 in V. 
LF W, CB2 Load Return Address into W. 
JP CB4 Jump to Multiply Routine. 

CB2 TN BU,x'80' Test for Sign bit in B. 
JP CB3 Exit if Positive.Sign. 
X AL, T, F Ones Complement AL. 
I AL Add one for 2's complement. 
X AU, T, F Ones complement AU. 
A AU,L Add carry for 2's complement. 

CB3 MU RP Set up Page Jump. 
A 0 No OP after changing U. 
ES* 0, 16 Execute implements gen. Page Jump. 

TNJ 
MULTIPLY ROUTINE 

CB4 OP,x'FF' Test to see if Op has reached O. 
CMK MKW Return from Multiply Routine. 

MT MTV Move power of 10 binary to T. 
A AL, T Add power of 10 to accumulator. 
A AU, L Add carry to AU. 
D OP Decrement Op. 
JP CB4 Jump Loop until Multiply over. 

The multiply routine selected for this example (at CB4) is designed for 
minimum commands rather than minimum execute time. The multiply 

. routine execution time is dependent on the size of the digit being con· 
verted. 

The BCD digit is put into one register, and the power of 10 in another 
register. The BCD digit is decremented once each time the binary value 
for the power of 10 is added to the accumulator. When the digit is 
decremented to 0, the loop is exited. The average number of times 
through the loop per digit is 4. This is 35 clock times or about 7 micro· 
seconds. 

The total average conversion time for 3 digit BCD numbers to binary is 
about 22 microseconds. 

236 



MICROPROGRAM EXAMPLE NO. 17 

Binary to BCD Conversion. 

Convert a positive binary number with a value equal to or less than 999 
(decimal) into a 3-digit packed BCD integer. 

Conversion Algorithm: Binary number will be successively divided by 
powers of 10 (starting with 1 DO) with quotient equal to BCD value, and 
remainder to be divided by next lower power of 10. 

I nitial Binary Number 
-----'---- - Q1 R 1 

100 I 
1 ~O's digit 

File Register Assignments: 

1. Binary number is initially in AU and Al. 

AU 

I I I 
2 upper bits 

2. BCD result is in DU and Dl. 

DU 

I D2 I D1 

most significant 
digit 

middle 
digit 

Al 

8 lower bits 

Dl 

DO 

least significant 
digit 

3. AU, Al, BU, Bl, CU, Cl are u,sed for dividing registers as follows: 

a. A and B are an extended accumulator containing the dividend, C 
contains the divisor. 

b. After the divide, the quotient is in B, and the remainder is in A. 

c. Prior to the divide, the content of A is moved to B, and A is cleared. 

237-



4. The flow of data through the registers is as follows: 

a. B;n.'Y :umbegL--::;,-__ B __ ---.:...---I 
Binary'Number bop 

o 

B 

C. 100~L ____ C ___ ~ 

00 Bin.Num . 100 

d·1 AlB I . ~ A 

Remainder 1 

e. Remainder 1· in A::LJ: B 

Remainder 1 

f·1 A:}J;: B 
07 

9.10-1 c 

00 Remainder 1 10 

h·0 B 1+ ~ = L----,-I 

B 

Quotient 1 
02 

Remainder 2 Quotient 2 

DO 

in OL in OL 

238 



Binary to BCD conversion routine flow chart: 

ENTER 

TRANSFER A TO B 
CLEAR A 

MOVE 100'5 DIGIT 
IN BL TO DU 

10 DECIMAL-C 

TRANSFER A TO B 
CLEAR A 

TRANSFER 1'5 DIGIT 
IN AL TOOL 

SHIFT LEFT THE 10'5 
DIGIT (WHICH IS IN BL) 
AND COMBINE 10'5 DIGIT 
IN BLWITH DL 

EXIT 

This routine (including the two divides), takes 47 commands, and approxi­
mately 150 microseconds to execute. 

·239 



The divide routine used for this example is for positive binary integers 
only. It is implemented with a shift and subtract algorithm. 

DIVIDE FLOW CHART 

SET SHIFT COUNTER = 16 

SUBTRACT C (DIVISOR) FROM A 

N 

ADD C (DIVISOR) 
BACK TO A 

DECREMENT 
SHIFT 
COUNTER 

ADD 1 TO BL 

This divide algorithm yvill actually handle larger numbers than occurring 
in this example but is the simplest routine from a command count stand­
point. For numbers the size used in this example; the divide operation 
could be speeded up by shifting right 6 times before starting to subtract 
the divisor. 

240 



Assembly Language Program to 

Convert Positive Binary, .10 Bit Integer in A to 3 Digit Packed BCD Integer 
in D. 

Uses simplified Divide Routine. 

Name Operation Operand Comments 

CV LF CU,O Clear C upper. 

LF CL,100 1 OO's coefficient to CL. 

LF W,CV1 Set return address. 

JP CV3 Jump to divide set up routine. 

CVl MT BL 1 Move most significant digit to DU. 
C DU, T 

LF CL,10 lO's coefficient to CL. 

LF W,CV2 Set return address. 

JP CV3 Jump to divide set up routine. 

CV2 MT AL 
} Move least significant digit to DL. 

C DL, T 

H BL 

H BL } Shiftth' 10', digit I,ft on, digit 
H BL position. 

HT BL 

a DL, T Move middle digit to DL. 

MK Y Return. 

CV3 MT AL 

} Mo," (AI to B. 
C BL,T 

MT AU 

C BU,T 

C AL 
} Clear A. 

C AU 

LF RJ, CV4 Set return address. 

JP DV Jump to divide routine. 

CV4 MK W Return to binary to BCD. 

The calling sequence for this routine is LF 
JP 

Y,RET 
CV 

Divide routine is on the same page as conversion routine. 

241 



Assembly Language Program 
for Divide Routine 

Name Operation 

DV LF 

DV1 

Operand 

V;X'10' 

BL 

BU,!,. 

AL, L 

AU, L 

CL } AL, T,C 

CU 

AU, T, L, C 

Divide 
AB Quotient in B 
C Remainder in A 

Comments 

Set shift counter = 16 decimal. 

Subtract divisor. 

H, 

H 

H 

H 

MT 

S 

MT 

S 

TN 0,X'02' Test for Underflow. 

DV3 

DV2 

JP DV2 

MT 

A 

MT 

A 

D 

TZ 
JP 

MK 

JP 

~~, T,C }AddCtOA. 
CU 

AU, T, L,C 

V Decrement shift CTR. 

V,X'FF' 

DV1 

RJ 

BL 

DV3 

Test for zero count. 

Repeat loop. 

Return. 

Add 1 bit to BL. 

Jump to decrement shift counter. 

MICROPROGRAM EXAMPLE NO. 18 

General purpose multiple file shift routine. 

This routine provides a general purpose capability for shifting a group of 
contiguous file registers with a number of variations as indicated below. 

The following items are program variable: 

• Number of bytes 1-8, always starting with file 1. 
• Number of positions shifted 1 to 256. 
• Direction left or right. 

- • Enter one of following into ,vacated bit: 0, 1, LSB, MSB; which pro­
vides the capability for arithmetic or logic shifts with sign extension, 
end around carry, clearing, or setting to 1's. 

242 



RIGHT SHIFT 

MSB LSB 

For a right shift, entering MSB causes sign extension and LSB causes end 
around carry. . 

LEFT SHIFT: 

MSB LSB 

For a left shift, entering MSB causes end around carry, while LSB causes 
odd/even extension. 

File Register Designations: 

File 1-8 
File 9 

Shift registers as selected by the instruction. 
Byte count, and shift mode. 

, 4,', ' I 0 3 BITS. 3 BITS. 

BYTE COUNT SHIFT MODE 
(NUMBER OF FILE 
REGISTERS) 

Shift Enter into 
Mode Direction vacated bit 

000 L enter 0 
--001 L enter 1 
010 L enter LSB 
011 L enter MSB 
100 R· enter 0 
101 R enter 1 
110 R enter LSB 
111 R enter MSB 

File A Shift count 

File B File index (fUl 

243 



Presetting Link 

TOP LEVEL FLOW CHART 

ENTER 

PRESET LINK WITH, 
VALUE FOR ENTERING 
INTO VACATED BIT 

Link is preset by one of the following: 

1. Shifting right file 9 to preset link with a of 1. 
2. Shifting left file 1 to preset link with MSB. 
3. Shifting right the highest numbered file of the shift register to preset 

link with LSB. 

In all cases, inhibit file write is used to preserve the value in the file. 

For the actual right or left shift, the execute command is used, with the 
file register number in U .. 

The byte count in file 9 is shifted right 4 and placed in T and U at the 
beginning of the program. The all 1 's left in the upper 4 bits can be left 
there because'they conveniently form the Op code for shift. T is used to 
hold the maximum file register number for reference purposes. 

Since link is used extensively for holding shifted out bits for the next 
shift command, special care was taken in preparing the program to avoid 
commands other than the shift commands which affect link. 

This routine has 29 commands. 

The execution time is approximately 

[5.94 + 1.32 x (byte count)] x (bit count) microseconds 
For example 1 8 bytes, 4 bits 

Time = 66 microseconds 
For example 2 2 bytes, 1 bit 

Time = 8.58 microseconds, 

244 



DETAILED FLOW ASSEMBLY LANGUAGE 
CHART NAME OPER OPERAND COMMENTS 

SR4F9-T SR KT* 9,2 Set byte count in T. 

SR1 H* 9, R Preset link with 1 or O. 

KU* 9,2 Set byte count and 
shift instruction in U. 

TZ 9,X'02' Test for link to be pre-
set or constant. 

JP SR2 Jump to shift routine. 

H* Preset MSB 

TZ 9,X'01' MSBor LSB. 

JP SR2 Jump to shift routine. 

E* 0, R Preset LSB. 

SR2 TZ 9,X'04' Test for right or left 
shift. 

JP SR4 Jump to right shift. 

C 11, T Initialize file index. 

SR3 MU 11 File index to U. 

AF 11, X'FF' Decrement file index. 

E O,L Left shift, enter link, 
file index. 

® 

245 



DETAILED FLOW ASSEMBLY LANGUAGE 
CHART NAME OPEROPERAND COMMENTS 

® 

TZ 11,X'OF' All files shifted. 

JP SR3 Shift additional files. 

SR6 D 10,C Decrement shift count. 

TN O,X'Q4' Zero count zero. 

JP SR1 No. 

JP EXIT Done. 

EXIT 

@ 

SR4 LF 11,X'F1' Initialize file index. 

SR5 MU 11 File index to U. 

AF 11, X'01' Increment file index. 

X 11, T,C Test for FU = (T). 

E - O,R,L Right shift, enter 
link, file index. 

TN O,X'Q4' Test for last file. 

JP SR5 Shift more files. 

@ JP SR6 Shift count test. 

246 



MICROPROGRAM EXAMPLE NO. 19 

Hexadecimal to ASCII Conversion Routine. 

This routine converts an 8 bit binary number (which is also 2 hexadecimal 
digits) into two ASCII characters, and also generates an ASCII equivalent 
for a space. The 3 characters are assembled for sequencing to an output 
device for print out. 

Data Flow: 

ASCII codes 

1011 I 0101 I ~ 

~~A~IC=:!5=~I==========::~ 
Blank 

5 
A 

Typical print out sequence: 

A5 FO 03 C4 ..... 

Data values and flags are maintained and updated in dedicated locations 
in core memory. If new characters are ready for output before converted 
characters are printed out, any queueing will be provided by a different 
routine. This routine will provide a flag to indicate when it's ready to 
receive a new character, and sets a flag for output request. Output is done 
by another routine, which monitors the output request flag of this routine 
and resets it after outputting a character. 

Core Memory Requirements: 

File register 1 

2 
3 
4 
5 

Core 
0001 
0002 
0003 
0004 
0005 

Flags 
Binary word 
ASCII for blank 
ASCII for least significant digit 
ASCII for most significant digit and for output 

Next character to be transferred counter 
MSD 11 
LSD 10 
Blank 01 
None 00 

Zero count here and in bit 2 indicates ready for new character. 

Flag word: 

New word to output 
ASCII output ready 

247 

Next character to be trans­
ferred counter. 



TOP LEVEL FLOW CHART: 

Command Count 53. 

TEST LOWER 
3 BITS IN 
FILE 1 

CONVERT 1st HEX DIGIT 

CONVERT 2nd HEX DIGIT 

LOAD BLANK ASCII CHARACTER 

SET NEXT CHARACTER TO BE 
TRANSFERRED COUNTER=LSD 

ASCII COdes 
Hex ASCII 

0-9 - BO-B9 
. A-F - C1-C6 

Code conversions are done by 
adding BO if 0-9, and B7 if A-F. 

File assignments: 

f1 flags 

f2 Binary word 

f3 Blank 

f4 LSD 

f5 MSD and output byte 

fd LSD MSD Flag 

Execution time for conversion of character is approximately 20 micro­
seconds. 

A. Routines already described. 

1. Get flags and data words from core. 

This subroutine is the same as subroutine example 7a with the one 
modification to change the file count from 8 .to 5.6 commands 
required. 

248 



2. Restore flags and data words to core. 

This routine is similar to example 7b except that the .file count is 
changed from 8 to 5. 8 commands required. 

B. Detailed flow charts for remaining routines: 

y 

y 

N 

DETAILED FLOW 
CHART 

~---~A 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND COMMENTS 

DTA TN F1 X~B'} 
Test for data to be 
processed. 

JP END 

TN ",XW} Test for character to 
be transferred or to 
be converted. 

JP CHR 

TZ " X~'} Test for output flag 
cleared. 

JP END 

MT F3 Transfer BLANK. 

TZ F1, X'01' Test for LSB-BLANK. 

JP *+2 Bypass LSD. 

MT F4 Transfer LSD. 

JP DEC Decrement counter. 

249 



DETAILED FLOW 
CHART . 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND COMMENTS 

CHR LF FD, X'OO' Clear MSD-LSD flag. 

LU X'E2'. 

MSK LT X'OF' 

ET 0,2 

AT FD, T 

C 

LT X'OA' } 

FS, T,C S* 

X'BO' }. 

FS, T 

LT 

A 

LT X'OT 

TN 0,X'02' 

AT FS, T 

C F5, T 

TZ FD, X'lO' 

JP *+2 

C 

250 

Set U for And command. 

Mask for LSD. 

And with T or shift right 
4 depending on (U). 

Add (fd) to clear 1'5 
resulting from shift 
right 4. 

Move T tofS. 

Subtract OA to test for 
hex digit 0-9 or A-F. 

ASCII conversion value 
added to hex number 
for 0-9. 

Additional ASCII 
conversion for A-F. 

Test for value 0-9 or 
A-F. 

Add final conversion value. 

Copy T to f5. 

Test for least significant 
digit. 

Leave in f5 if MSD. 

Move to f4 if LSD. 



DETAILED FLOW 
CHART 

DETAILED FLOW 
CHART 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND COMMENTS 

TZ fu, X'10' Test bit 4 to indicate 
72'ys 'E2'. 

JP BLK Jump to load ASCII 
for blank. 

LU X'72' Set U for control 
command to do SR4. 

LF FD, X'lO' Set fd for MSD. 

JP MSK 

BLK LF F3, X'AO' ASCII for Blank. 

LT X'FC' } Set bits 0 and 1 in fl=O 
to clear next character 
to be transferred coum.. 

N Fl, T 

JP SET 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND COMMENTS 

DEC D Fl Decrement next character 
to be transferred counter. 

SET LT X'04' } Set ASCII output ready 

Fl, T 
flag. 

0 

END 

251 



MICROPROGRAM EXAMPLE NO. 20 

. General Purpose·Code Conversion by Table Translation. 

This routine will convert a string of characters from anyone of 64 charac· 
ters into any of 64 other characters (character capacity easily changed). 
The translation table which is in core memory can be loaded with any 
desired code. 

The general approach is to use the character as a displacement value and 
index into a table to obtain the corresponding character. This type of code 
conversion is useful where there is no simple mathematical relationship' 
between the two character sets (as with BCD to ASCII, for instance). ' 

Table organization in core: 

old code 

(6 bits) = C 

Table address = n 

n+1 

n+2 

, C + N = New Character n+ 62 

n+ 63 

File Assignments: 

LL 

LU 

TL 

TU 

CNT = 

FT 

Lower 8-bits of data list address. 

Upper 7-bits of data list address. 

Lower 8-bits of translation table address. 

·Upper'7-bits of translation table address. 

Number of characters in data list. 

Mask to limit the table to 64 entries. 

252 

new code 



READA 
CHARACTER 
FROM THE 
DATA LIST 

MASK THE 
CHARACTER TO 
REDUCE SIZE 
OF THE TABLE 

COMPUTE THE 
ADDRESS IN 
THE TRANSLATION 
TABLE 

READ THE 
CHARACTER FROM 
THE TRANSLATION 
TABLE 

PLACE THE NEW 
CHARACTER INTO 
THE DATA LIST 

This routine uses 13 commands, and takes 4.18 microseconds per charac­
ter for translation. 

253 



DETAILED FLOW ASSEMBL Y LANGUAGE 
CHART NAME OPER OPERAND COMMENTS 

TRN MN LL 

} Get a character from 
the data list. 

RM LU 

LF FT, X'3F' Set a mask for 64 
characters. 

NT FT,T Remove unwanted 
high order bits. 

AN* n, T 

} 
Add the value of the 
character with the base 
address of the table to 

RM* TU, L 
obtain the new character. 

D CNT,C Reduce character count. 

MN LL 

} Place the translated 
character back into 
the data list: 

WM LU 

LL 

} Move the data list 
pointer to the next 
character. 

A LU, L 

TN O,X'Q4' End of List. 

JP TRN No, get the next 
character. 

254 



MICROPROGRAM EXAMPLE NO. 21 

Binary Multiply (16 bits) 

This routine multiplies two 16 bit positive or negative numbers. The two 
byte operand in X is multiplied by the contents of A and ~he result is 
placed in the 32 bit A - B registers. The multiply is an integer type, and 
the 30 bit resultant magnitude occupies the 30 low order bits of A and B, 
and a double sign bit occupies the two high order bits. 

This example is the same as the routine used in the MICRO 810 firmware 
except for deletion of memory referencing, concurrent I/O servicing, and 
linking to the 810 program. 

The basic algorithm for this routine consists of testing the LSB of B, and 
adding X to A whenever. LSB of B = 1; then shifting the accumulation 
right one place, as well as shifting B right one place. Then the next LSB of 
B is tested. This is repeated until all parts of A have been tested. 

ADD- ---H :I-__ S_H_I F_T_--t_1 B (TEST LSB 

To simplify programming, A is first transferred to B, then A is cleared. 
The contents of A are not tested for sign until after it has first been 

. transferred to B. This is only for convenience of programming. If B is 
negative, both numbers are 2's complemented. If X is negative, the sign is 
maintained by sign extension, during shifting .. 

255 



TOP LEVEL FLOW: 

CONVERT BOTH 
BANDXTOZ's 
COMPLIMENT 

file registers 
AU, AL Multiplicand (1st) 
BU, BL Multiplicand (2nd) 
XU, XL Multiplier 
S2 Shift Count 

AU,AL 
BU,BL Product 

: CD Link is -set to provide for 
sign extension of the 
partial accumulation. 

® If there is overflow, link 
is already set to the 
correct sign value, which 
may not = MSB .of A. 

This routine has 32 commands, and takes the following approximate time: 
Max. 60 microseconds; Average 54 microseconds. 

256 



DETAILED FLOW ASSEMBL V LANGUAGE 
CHART NAME OPER OPERAND COMMENTS· 

MUL LF S2,X'10' Set shift count for 
16 bits. 

MT AL 

} C BL.T 
Move A register to 

MT AU B register. 

C BU.T 

TN BU. X'SO' Test MSB of BU for 
negative condition. 

JP ML3 Bypass complementing. 

X BL.T.F 
BL 

X BU.T.F 2's complement Band 
A BU. L X by exclusive ORing 

with all 1's using T. 
f as operand and 

X XL, T, F adding 1 to Band X. 

XL 

X XU, T,F 

A XU,L 

ML3 LF AL. X·OO· } Clear A after trans-

LF AU. X'OO· ferring A to B. 

257 



DETAILED FLOW 
CHART 

ASSEMBL V LANGUAGE 
NAME OPER OPERAND COMMfENTS 

ML1 TN BL, X'01' Test B for odd. 

JP ML2 Bypass addition func· 
tion if Beven. 

MT 

XL } A AL, T Add X to (A) and put 
result in A. Set condition 

MT XU flag .for overflow test. 

A AU, T,L,C . 

TN 0, X'01' Test for overflow. 

258 



MICROPROGRAM EXAMPLE NO. 22 

Generate Cyclic Code for one 8 bit data byte. 

This routine generates the CRC 16 cyclic redundancy code used in bi· 
synchronous communication. 

The byte operand in S1 is entered into the 16 bit cyclic code contained in 
the A register. The polynomial us.ed for generating the cyclic code is 
X16 + X15 + X2 + 1. . 

The general algorithm is to shift the 16 bit code in A, and to exclusive 
OR bits 15, 13, and 0 with the result of a comparison 'between the least 
significant bits of the cyclic code in A and the least significant bit of S 1 
shifted once for each comparison. . 

This is a microprogram rendition of the feedback shift registers which are 
used to implement polynomial divisions for generating cyclic codes. 

At the beginning of a character string, A should be cleared. 

For each 8 bit data byte the top level flow is as follows: 

EXIT 

This routine takes 15 commands and' 
takes the following approximate time: 

tmax. 
t avg. 

file registers 

AU,AL 
S1 
S2 
I 

30 microseconds 
28 microseconds 

CRC code 
Data byte 
Save Link 
Shift Counter 

This routine is the same as that used in 
the MICRO 820 except for the omission 
of memory referencing and linking to the 
main firmware. 

259 



DETAILED FLOW 
CHART 

ASSEMBLY LANGUAGE 
NAME OPER OPERAND 

LF I, X'OS' 

SSR H 

H 

H 

COMMENTS 

Set bit count .. 

. Shift right CRC w~rd. 
AU,R } 

H AL, L,R,C 

A S2, L Add link to saved LSB 
to compare. 

TN S2, X'01' Equal? 

JP NOL Bypass exclusive (j R 
function. 

LT X'AO' 

} E.d" .. OR ~. "''' X AU,T 
LT X'01' nomial function into A. 
X AL, T 

NOL D I,C Decrement bit counter. 

TN O,X'04' Last bit. 

JP SSR Repeat. 

260 



MICROPROGRAM EXAMPLE NO. 23 

Generate ASCII Parity. 

This routine will generate and attach an odd parity bit to bit 7 of a charac­
ter contained in file $2. It will also generate a block longitudinal parity 
LRC for this character, by exclusive DRing with an LRC being accumu­

.Iated in AL. This routine is the same as used in the 820 except for omission 
of memory referencing and linking with the main 820 firmware. Parity is 
generated by shifting and testing the bits in $1 and toggling a bit in $2 
for each bit = 1 is $1. 

DETAILED FLOW 
CHART 

ASSEMBL V LANGUAGE 
NAME OPER OPERAND COMMENTS 

PAR MT S1 Save character. 

261 

LF S2, X'SO' Set initial parity. 

H S1, R, C Shift out a bit. 

TZ 0, X'01' Test for bit ~ 1. 

AF S2, X'SO' Toggle parity bit. 

TN 0, X'04' Test for all bits 
shifted out. 

JP PAR + 1 Repeat. 

Attach odd parity. 

X AL, T Generate LRC. 



CHAPTER 8 

MICRO 810 FIRMWARE MANUAL 
The basic steps for development of a general purpose computer architec­
ture using a microprogrammed computer are as follows: 

1. Functional Definition 

• I nput/Output Characteristics. 
• Operating Registers Assignments (Accumulator, Index, Program 

Counter, etc.). 
• Word Length (Fixed and Variable). 
• Core Memory Addressing Modes for Jumps and Operand Fetching. 
• Instruction Repertoire. 
• Instruction and Data Formats (Number of Bytes, Sign Extension, Op 

Codes, etc.). 
• I nterrupt System (External/I nternal). 
• Desired I nstruction Execution Times. 
• Bootstrap Load Technique. 

2. Hardware Modification (if any). 

Modifications or additions may be required (particularly in the inter­
face) to achieve the desired specs. For example if a 16-bit I/O path were 
required in the emulator, an I/O expander would be required on the 
MICRO 800. For the MICRO 810 emulation, no hardware changes are 
required, since the byte I/O scheme is a direct mechanism of the 
MICRO 800 byte I/O channel. 

3. Analysis and Selection Algorithms. 

Definition of subroutines, organization of routine hierarchy and prepa­
ratifin of top level flow chart. 

4. Detailed derivation of each algorithm to be used. 

5. Preparation of detailed flow charts for each subroutine. 

6. Assembly language coding. 

7. Assembly of program, diode map generation, and checkout. 

To illustrate these steps, annotation flow charts and the assembly language 
program for the .*original version of the MICRO 810 except for compare, 
multiply, and divide instructions are included, along with a summary of 
the 810 processor characteristics which affect the firmware. 

The MICRO 810 is an example of an emulation. Its characteristics as re­
lated to the microprogram are described in the following paragraphs. The 
first step in development is to define the basic functions. 

MICRO 8io Functions 
Six operational registers: 

• Accumulator (A) - 16 bits. 
• Auxiliary accumulator (B) - 16 bits. 
• Index register (X) - 16 bits. 
• Program counter (P) - 15 bits. 
• Overflow (0) - 1 bit. . 
• Word length control (W) - 2 bits. 

262 



Semiconductor Read-Only Memory Expandable from 768 Words to 
2,048 Words. 

Diode Matrix 256-Word Read-Only Memory. 

263 



Extensive, powerful instruction set including 89 individual operations: 

., Multiply and divide (2). 
• Control (17). 
• Multi-bit arithmetic and logical shifts (12). 
• Conditional jumps (16). 
• Input/Output (8). 
• Inter-register (16). 
• Memory reference including jump, compare and variable word length 

operations - (18). 

Eight operand addressing modes including: 

• Direct to page 0 (first 256 bytes). 
• Direct relative to P (±128 bytes). 
• I ndirect to page 0 (first 256 bytes). 
• Indirect relative to P (±128 bytes). 
• Indexed (to 32,768 bytes). 
• I ndexed with bias (to 32,768 bytes). 
• Extended address (to 32,768 bytes). 
• Literal. 

Multi-precision 1, 2, 3, or 4 byte load, store, and arithmetic operations. 
Flexible I/O facilities including: 

• programmed transfers to/from A and B registers and memory to byte 
I/O. 

• concurrent buffered I/O. 
• serial I/O channel for local teletype. 

Expandable priority interrupt system 
Processor options which include: 

• real-time clock. 
• power-fail detect and automatic restart. 
• memory parity detect and interrupt. 

Built-in bootstrap loader in non-volatile read only store. 

*(Later MICRO 810 versions have modified interrupt, concurrent I/O and 
control firmware.) 

To provide all of this capabil ity only 710 micro instructions were requ ired. 
This leaves capability for addition of 314 additional microinstructions for 
special functions. 

FILE REGISTER ASSIGNMENTS 

The MICRO 810 contains six operational registers which are accessible to 
the programmer. These operational registers occupy nine of the 16 file 
registers of the basic MICRO 800 hardware; the remaining seven hardware! 
registers are not .accessible by the MICRO 810 instructionsalthoughi 
specially designed macros could make use of these at the micro-level. 

264 



A REGISTER (file registers 4 and 5) 

The 16-bit A register is the accumulator with which most operations are 
performed. The A register holds the upper portion of 24- or 32-bit data 
words and all of 8- and 16-bit data words. The A register may be shifted by 
itself or in conjunction with the 8 register. 

B REGISTER (file registers 6 and 7) 

The 16-bit B register is the auxiliary accumulator and is used mainly as an 
extension of the accumulator to hold the lower 16 bits of 24- and 32-bit 
data. The 8 register may be shifted by itself or in conjunction with the A 
register. 

X REGISTER (file registers 2 and 3) 

The 16-bit X register is an index register used in address modification. It 
can communicate directly with memory, be incremented, and compared 
with the A register. 

P REGISTER (file registers A and B) 

The 15-bitP register is the program counter which holds the address of 
next memory instruction to be executed. 

W REGISTER (bit 2 of file register F) 

The 2-bit W register holds the word length mode. It is loaded by a control 
instruction and sets the byte length of the operand for all variable word 
length instructions. 

o REGISTER (bits 1, 0 of file register F) 

The one-bit a register· holds the overflow flag. The overflow is set by 
arithmetic instructions when an overflow occurs, by execution of a control 
instruction, or by the compare instruction. It may be reset by execution 
of a control instruction or by a conditional jump instruction that tests for 
an overflow condition. 

Files 8, 9 are for the operand address. 

Files C, D, E are used for temporary storage. 

File a is for conditi~n flags. 

File 1 is the instruction register. 

The file register assignments are completely accomplished by micro­
programming. There are no internal wiring modifications to convert a 
MICRO 800 to a MICRO 810 other than the arrangement of matrix diodes 
on the read only memory boards. 

265 



INFORMATION FORMATS 

The basic element of information is an 8-bit byte in which the bit positions 
are numbered from 7 through 0, left to right. Both instructions and data 
occupy a variable number of bytes for maximum storage efficiency. A 
word is a 16-bit element of information consisting.of two bytes. The 
accumulator and index register both hold a 16-bit word. 

DATA FORMAT 

Data in the MICRO 810 is variable precision of 8, 16, 24,.or 32-bit length. 
Negative numbers are represented in 2's complement. 

8 Bits (1 'Byte) - Range: +27_1 to -27 

I Sign ~xtend l:t I 'Ma~nitude I _ I (unused) 

I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 987 6 5 4 3 2 1 0 

A Register 'B Register 

16 Bits (2 Bytes) - Range: +215_1 to _215 

Magnitude 

I I I I I 
, (unused) 

I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

B Register A Register 

24 Bits (3 Bytes) - Range: +223_1 to _223 

I Sign E1,xtend I :t I Magnitude 
. I I, I I I 

~14U121110 9 8 765 432 1 01514U1211 10 98 7 6 5 432 1 0 

A Register B Register 

32 Bits (4 Bytes) - Range: +231 _1 to -:231 

·I:t I Magnitude 

15 14 13 12111 10 9 8 17 6 5 4 13 2 1 0 115 14 13 12111 .10 ,9 8 I 7 6 5 4 13 2 1 0 

A Register B Register 

To have variable word length operations, the microprogram must test the 
instruction Op code, bit 3 to see if variable word length is specified. It 
must then test file register F, bit2 for which word length is set. Then the 
instruction is carried out by the microprogram according to the settings of 
these two bits. Testing and variable word length execution are done in the 
designated memory reference microprogram subroutin,e. 

ADDRESS WORD FORMAT FOR MEMORY, 
REFERENCE INSTRUCTIONS 

A 16-bit address word containing a 15-bit memory address and an index 
flag as shown below. The address may be a direct or indirect address as 
dictated by the instruction op~ration code. The value of the address Word 

266 .... 



is equal to the contents of bits 14-0 and is equal to the contents of bits 
14-0 plus the contents of the x register if bit 15 is a l-bit. 

y 

I 
15 14 13 12 11 10 9 8 7 

z 

6543210 

In the operand address subroutine, the address is determined by the micro­
program and placed into the operand address register. 

I NSTRUCTION FORMAT 

. I nstruction formats are one to five bytes, but in all cases the first contains 
an eight-bit operation code which defines the operation class, the sub­
operation code, and any modifiers. Succeeding byte(s) contain such infor­
mation as: 

Single byte absolute or relative address. 
Double byte address word. 
Single byte shift count. 
Single byte I/O function and device address. 
1, 2, 3, or 4 byte literal data. 

OPERAND ADDRESSING MODES 

The memory reference instructions defined in the following section each 
have eight possible modes of addressing an operand in memory. The num­
ber of bytes in the instruction format varies with the mode. The additional 
bytes of the instruction contain addresses, partial addresses, or data 
(I iterals). 

The basic memory reference instruction is one byte containing two fields 
as follows: 

I oPcode, I m 

7 6 5 4 3 2 1 0 

The 5-bit operation code defines the basic instructions; the 3-bit m field 
specifies the address mode. Additional bytes contain the address of an 
operand, an indirect address, a base address, or a literal depending on the 
addressing mode. The effective operand address is the memory location 
specified after all indirect and/or index modifications have been per­
formed. 

For variable word length instructions, such as Load A versus Load Vari­
able, bit 3 is used to indicate whether variable word length is to be used. 
The microprogram tests this bit. For fixed word length instructions, such 
as multiply/divide, bit 3 indicates the instruction type. 

267 



When an indirect address mode is Specified, the location of the indirect 
address word is the first byte ofa two-byte word having the format shown 

. below: 

v I z I 
15 14 13 12 11 10 9 

Indirect Address Word Format 

For indirect addressing, the microprogram fetches the first referenced 
word, which points it to the actual address word, to which may be added 
the contents of the index register. 

Bit 7 of the first byte (x) defines whether or not the indirect address word 
will be modified by the contents of the index register: 

If x = 0, the 15-bit number formed by y and z is the effective operand 
address. . 

If x = 1, the 15-bit number formed by y and z is a base address to which 
is added the contents of the X register. The result is the effective 
operand address. . 

The individual addressing modes and the memory reference instruction 
format. for that mode are defined below. The microprogram has a sub­
.routine called operand addressing which, examines the subsequent bytes 
of memory reference instructions, .and uses this information to deter­
mine the operand address. 

DIRECT ,PAGE 0 (m=O) 

v. 

7 6 5 432 1 0 7 

The effective operand address is given by"the contents o'f the second byte 
of the instruction (y) with seven high order zero bits appended. This mode 
provides direct addressing of operands in the first 256 memory locations. 

The microprogram clears the upper byte of the operand address register, 
and places byte y in the lower byte of the operand address register. 

DIRECT RELATIVE (m=1) 

I oPcode, I v 
4 13 2 1 0 7 6 5 4 3 2 1 o 7 6 5 

~ 

The effective operand address is given by the sum of the contents of the 
second byte (y) with its high order sign bit (bit 7) extended and the con­
tents of the P register. The contents of the P register. at the time the addi­
tion is performed is the address of the memory location following y. This 

268 



mode provides for addressing from 127 locations ahead to 128 locations 
behind the memorv location of the next instruction. 

The microprogram sets the P register to the next instruction location, adds 
the bVte in V to p and places the result in the operand address register. 

INDIREGT PAGE 0 (m=2) 

y 

•• 54321 0 

An indirect address word is specified bV the contents of the second bVte 
(V) of the instruction with seven h·igh order zero bits appended. The 2-bvte 
indirect address word addressed is located in the first 256 memory loca­
tions. The effective operand address is given bV the contents of the indirect 
address word if the index flag (bit 15) is a a-bit, or bV the sum of the con­
tents of the indirect address word and the X register if the index flag 
(bit 15) is a 1-bit. 

The microprogram fetches the two bvte address from page a designated 
bV bVte Y. It adds the contents of the index register (if bit 15=1), and 
places the result .in the operand address register. 

INDIRECT RELATIVE (m=3) 

1 0 

An indirect address word is specified bV the sum of the contents of the 
second bVte (V) with its high order bit (bit 7) extended and the contents 
of the P register. The contents of the P·register at the time the addition is 
performed is the address of the memorv location following V. The effec­
tive operand address is given bV the contents of indirect address word if 
the index flag (bit 15) is a a-bit or bV the sum of the contents of the in­
direct address word and the X register if the index flag (bit 15) is a 1-bit. 

The microprogram advances the P counter to the next instruction location, 
adds the content of bvte V, fetches the 2 bvte address from the resultant 
location, adds content of index (if bit 15=1) and places the result in the 
operand address register. 

INDEXED (m=4) 

I OPCOd; I 4 I 
7 6 5 432 1 0 

. The effective operand address is given bv the contents of the X register. 

The microprogram loads the conte[1t of X into the operand address 
register. 

269 



INDEXED WITH BIAS (m=5) 

I OPCOd~ I 5 I 
7 6 5 4 3 2 1 0 7 

Y 

I 
6 5 4 3 2 1 0 

The effective operand address is given by the sum of the contents of the 
X register and the contents of the second byte (y) of the instruction. 

The microprogram adds the content of X to byte Y, and places the result 
in the operand address register. 

EXTENDED ADDRESS (m=6) 

OP Code I 6 y 

o 7 6 5 4 3 2 1 o 7 65432,10 

A 16-bit address word is located in the second and third byte of the 
instruction. The effective operand address is given by the contents of the 
address word if the index flag bit in bit 15 is an O-bit, or by the sum of the 
contents of the address word and the X register if the index flag is a 1-bit. 

The microprogram takes bytes Y, and Z and adds the contents of index if 
bit X=1 and places the result in the operand address register. 

LITERAL (m=7) 

1-4 Byte Operand 

1 0 

The effective operand address is given by the contents of the P register. 
The operand is located in from 1-4 bytes following the first byte of the 
instruction, depending upon the operand precision. The P register is 
incremented for each operand byte accessed. The Jump and Retu'rn Jump 
memory referencing instructions do not have a literal mode. 

The microprogram places the contents of the P register into the operand 
address register. 

JUMP/RETURN JUMP INDIRECT EXTENDED ADDRESS (m=7) 

1 OP Code 17 H y I z 

7 6 5 4 13 2 1 ,0 7 6 5 4 '3 2 1 0 7 6 5 4'3 210 

A 16-bit direct address word is located in the second and third bytes of 
the instruction. This word addresses an indirect address word located at 

270 



the address given by the contents of the second and third bytes if bit 15 of 
the address word is a O-bit or by the sum of the contents of the second and 
third bytes and the X register if the index flag bit in bit 15 is a 1-bit. 

The effective jump address is given by the contents of the indirect address 
word if the index flag in bit 15 of the indirect address word is a O-bit, or 
by the sum of the contents of the indirect word and the X register if the 
index flag bit in bit 15 of the indirect address word is a 1-bit. 

The microprogram tests to see if mode = 7, and the command is a jump or 
return jump. If all of these conditions are so, the microprogram fetches 
the bytes Y, Z (with index if bit X=1) and places them in the operand 
address register. 

MICRO 810 INSTRUCTIONS 

OPERATION 
CODE MNEMONIC 

CONTROL (one byte) 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
00 
OE 
OF 
34 

HLT 
TRP 
ESW 
PMP 
DIN 
EIN 
DRT 
ERT 
ROl 
R02 
R03 
R04 
SOl 
S02 
S03 
S04 
NOP 

CONDITIONAL JUMP (2 bytes) 

10 XX 
11 XX 
12 XX 
13 XX 
14 XX 
15 XX 
16 XX 
17 XX 
18 XX 
19 XX 
lA XX 
1B XX 
lC XX 
10 XX 
lE XX 
lF XX 

JOV 
JAZ 
JBZ 
JXZ 
JAN 
JXN 
JAB 
JAX 
NOV 
NAZ 
NBZ 
NXZ 
NAN 
NXN 
NAB 
NAX 

Halt 
Trap 

INSTRUCTION NAME 

Enter Sense Switches 
Protect Memory Page 
Disable I nterrupt System 
Enable Interrupt System 
Disable Real Time Clock 
Enable Real Time Clock 
Reset Overflow and Set Word Length to 1 
Reset Overflow and Set Word Length to 2 
Reset Overflow and Set Word Length to 3 
Reset Overflow and Set Word Length to 4 
Set Overflow and Set Word Length to 1 
Set Overflow and Set Word Length to 2 
Set Overflow and Set Word Length to 3 
Set Overflow and Set Word Length to 4 
No Operation 

Jump if Overflow Set 
Jump if A Equal to Zero 
Jump if B Equal to Zero 
Jump if X Equal to Zero 
Jump if A Negative 
Jump if X Negative 
Jump if A Equals B 
Jump if A Equals X 
Jump if Overflow not Set 
Jump if A not Equal to Zero 
Jump if B not Equal to Zero 
Jump if X not Equal tQ. Zero 
Jump if A not Negative 
Jump if X not Negative 
Jump if A not Equal to B 
Jump if A not Equal to X 

Where: XX is a relative jump address (plus, or minus hex 7F from the first byte 
after the jump instruction. 

271 



OPERATION 
CODE MNEMONIC 

SHIFT (2 byte inStruction) 

20 XX 
21 XX 
22 XX 
24 XX 
25 XX 
26 XX 
28 XX 
29 XX 
2A·XX 
2C XX 
2D XX 
2E XX 

LLA 
LLB 
LLL 

"LRA 
LRB 
LRL 
ALA 
ALB 
ALL 
ARA 
ARB 
ARL 

Where: XX is shift count. 

INSTRUCTION NAME 

Logical Left A 
Logical Left B 
Logical Left Long 
Logical Right A 
Logical Right B 
Logical Right Long 
Arithmetic Left A 
Arithmetic Left B 
Arithmetic Left Long 
Arithmetic Right A 
Arithmetic Right I;J 
Arithmetic Right Long 

INPUT/OUTPUT (2 and 4 byte instruction) 

30 00 
31 XX 

'32 XX 
33 XX AAAA 
38 00 
39 XX 

. 3A XX 
3B XX AAAA 

IBS 
IBA 
IBB 
IBM 
OBS 
OBA 
OBB 
OBM 

Input Byte Serially 
Input Byte to A 
I nput Byte to B 
I nput Byte to Memory 
Output Byte Serially 
Output Byte from A 
Output Byte from B 
Output Byte from Memory 

Where: XX is a 3-bit function code and 5-bit device address. AAAA is a core 
memory address. 

REGISTER OPERATE (one byte) 

Group 1 
40 ORA OR B with A 
41 XRA Exclusive - OR B with A 
42 ORB OR A with B 
43 XRB Exclusive - OR A with B 
44 INX Increment X 
45 DCX Decrement X 
46 AWX Add Word Length to X 
47 SWX Subtract Word Length from X 

Group 2 
48 INA Increment A 
49 INB Increment B 
4A OCA One's Complement A . 

'4B OCB One's Complement B 
4C TAX Transfer A to X 
4D TBX Transfer B to X 
4E TXA Transfer X to A 
4F TXB Transfer X to B 

272 



OPERATION 
CODE MNEMONIC INSTRUCTION NAME 

MEMORY REFERENCE (1,2,3,4,5 byte) 

60 
68 
70 
78 
80 
88 
90 
98 

AO 
A8 
BO 
B8 
CO 
C8 
DO 
08 
EO 
E8 
FO 
F8 

INTERRUPTS 

JMP 
RTJ 
IWM 
DWM 
LOX 
STX 
MUL 
DIV 

ADA 
ADV 
SBA 
SBV 
CAP 
CPV 
ANA 
ANV 
LOA 
LDV 
STA 
STV 

Jump 
Return Jump 
Increment Word in Memory 
Decrement Word in Memory 
Load X 
Store X 
Multiply 
Divide 

Add to A 
Add Variable 
Subtract from A 

, Subtract Variable 
Compare A 
Compare VaTiable 
And 
And Variable 
Load A 
Load Variable 
Store A 
Store Variable 

The MICRO 810 hCjs firmware to process both external and internal 
interrupts. The firmware tests for interrupts, acknowledges them, and 
executes a return jump to the designated software routine for each 
interrupt channel. 

CONCURRENT I/O 

The concurrent I/O allows for block transfers between the external device 
on the Byte I/O bus and memory at a maximum rate of 20,000 bytes per 
second. The transfers are fully automatic, and once started proceed with­
out program intervention. Concurrent I/O takes priority over instruction 
execution and forces momentary sequence breaks during execution of long 
instructions such as multiply, divide and shifts to insure that concurrent 
I/O displays are not excessive. 

SERIAL INPUT/OUTPUT INSTRUCTIONS 

Two instructions are provided for bit serial transfers of data between the 
A register and a serial I/O device. In the MICRO 810, these instructions 
are standardly timed to transfer bits at the rate of 110 bits/second for 
interface with a serial teletype. However, the timing can be easily altered 
by a simple change of firmware to handle another type of serial device. 

IBS INPUT BYTE SERIALLY 

30 I Unused 

1 0 

273 

\ 



An eight-bit byte is assembled from the serial teletype interface and placed 
in the eight low order bits of the A register. The eight high order bits of A 
remain unchanged. The execution time of this instruction term inates when 
a complete teletype character has been received. The instruction must be 
accessed before the start of the teletype input for proper assembly of the 
character. Sampling of the teletype line and assembly of bits is done by a 
microprogram subroutine, which includes its own delay routine to time 
out the bits as shown below. 

OBS OUTPUT BYTE SERIAll.Y 

I unu~ 
21.07654 13210 

The eight low order bits of the A register are disassembled and output 
serially as a teletype character to the serial teletype interface. The eight 
low order bits of A will be set to one. The eight high order bits remain 
unchanged. The execution of this instruction terminates when a complete 
byte has been transmitted. . 

Affected: A 

BYTE INPUT/OUTPUT INSTRUCTIONS 

Byte programmed input/output operations provide transfers of data, con­
trol and status over the Byte I/O channel. This multiplex channel permits 
intermixed program and concurrent I/O transfers. More than one device on 
the bus may be operating in a concurrent block transfer mode at the same 
t.ime. A maximum of 32 devices may normally be addressed on the Byte 
I/O bus. 

The second byte of the instruction is a control byte which provides a 
three-bit device order and a five-bit device number as follows: The micro­
program causes the second byte to be placed on the output bus,.and gener­
ates a control output strobe called COXX. I n the output mode, the data 
is placed on the output bus and strobed out with DOXX. For input, data 
on the input bus is strobed in by DIXX. 

7 654 321 0 

Byte input/output is basically a two-phase operation. First the control 
byte is placed on the output bus before the actual transfer of data. All 
devices examine the transmitted device number. The device whose assigned 
number is the same as contained in the control word accepts the control 
byte and sets for a subsequent data byte transfer. The second phase con­
sists of the input or output of a single byte. When a device order does not 
require a data transfer, the second byte is disregarded by the device con-
troller. . 

274 



TOP LEVEL FLOW CHART 

The purpose of the top level flow chart is to define the microprogram 
subroutines, and their interrelationship. This flow chart shows all of 
the basic paths that the microprogram can follow as it goes through its 
repetitive looping operation. 

. . 
The top level flow chart can be divided into six major areas for discussion 
purposes. 

• Instruction fetching 
• Interrupt and Concurrent I/O Processing 
• Operand Addressing 
• Nonmemory Reference I nstruction Execution 
• Memory Reference Instruction Execution 
• Bootstrap Load 

Instruction Fetching 

MICRO 810 instructions, stored in core, contain from 1 to 5 bytes, 
depending on~··the instruction.' During the instruction fetch routine, only 
the first byte is fetched from core. This byte contains the basic OP. code of 
the instruction, which identifies whether the instruction is memory refer­
ence or not, and what the specific instruction is. 

First byte format. 

1-· OP Code 
· I 
7654321 

SubOP Code 
I 

6543210 

The Op code identifies the class of instruction for nonmemory reference 
instructions, and the type of instruction for memory references. * 

The sub Op code identifies the type instruction for nonmemory reference, 
and the address mode, and fixed versus variable word length for the 
memory reference instructions. 

The Op codes are organized so that all memory reference instructions have 
Op codes 6. The microprogram makes use of this fact when testing to see 
if the instruction is memory reference. 

During the instruction fetch subroutine, the Op code is tested for memory 
reference, and a jump table number is set up to jump into the subroutine 
corresponding to the Op code. 

Other th ings done during instruction fetch are testing for interrupt, and 
advancing the program counter. 

The instruction fetch routine contain~ a cold start portion which initializes 
the program' counter, tests for internal interrupts, and tests for bootstrap 
load. 

*On some of the memory reference instructions the sub Op code is also 
required to indicate type of instruction. 

275 



The instruction fetch routine has many different entry points, which are a 
function of the state of the P register as determined by the previous sub­

. routine that the microprogram executed. 

Interrupt Processing 

If there is an internal or external interrupt, the microprogram services it 
immediately. Servicing consists of acknowledging the interrupt, inputting 
the device address (if external), and jumping to the interrupt routine; or 
transferring a data byte if concurrent I/O. When this is done, the micro­
program returns to the instruction fetch cycle. At this time, the interrupt 
routine address will be in the program counter. 

Operand Addressing 

This microprogram subroutine prepares the absolute address of the oper­
and of a memory reference instruction, and places it in the operand address 
register. The address modes are identified in the sub Op code. Address 
information is contained in the 2nd and 3rd bytes of the instruction. 

The addressing modes are as follows: 

1. Direct Page a (1 st 256 bytes) 

The second byte is placed directly in the operand address register by 
the microprogram. 

2. Direct Relative 

The second byte is added to the P counter, and the result is placed in 
the operand address register. 

3. Indirect Page a (1st 256 bytes) 

The address indicated by the second byte is fetched from Page a and 
added with· the contents of the index register (if bit 15 is set), and 
placed in the operand address register~ If bit 15 is not set, the address 
is placed directly in the operand address register. 

4. Indirect Relative 

The second byte is added to the P counter. This address is used to 
fetch the indirect address, which is added to the content of the index 
register (if bit 15 is set), and placed in the operand address register. If 
bit 15 is not set, the indirect address is placed directly in the operand 
address register. 

5. Indexed 

The address in the index register is transferred to the operand address 
register. 

6. Indexed With Bias 

The 2nd byte is added to the index register and placed in the operand 
address register. 

276 



7. Extended Address (Absolute Address) 

The 2nd and 3rd bytes of the instruction are added to the index register 
(if bit 15 is set) and placed in the operand address register. If bit 15 is 
not set, the 2nd and 3rd bytes are placed directly in the operand address 
register. 

8. Literal 

The P counter is incremented and placed in the operand address 
register. 

Non-memory Reference Instruction 

The non-memory reference instructions consist of the following: 

• Conditional Jumps 
• Input/Output a byte of data (Parallel or Serial) 
• Control Operations 
• Register Shifts 
• Register Operations 

Since none of these involve an operand to be fetched from memory, the 
operand addressing function is bypassed by the microprogram. 

Memory Reference Instructions 

The memory reference instructions are grouped as follows: 

• Load, Add, And, Subtract 
• Store 
• Unconditional Jump 
• Return Jump 
• Increment or Decrement Word in Memory 
• Compare 
• Multiply, Divide 

The operand for each of these operations is fetched from the address 
location contained in the operand address register. 

Bootstrap Load 

This microprogram is entered from the cold start. part of the instruction 
fetch routine. It loads a program load routine which is on paper tape. 

Detailed Flow Charts· 

The next step after preparing the top level flow chart is to prepare the de· 
tailed flow charts for the individual subroutines. At this time it is neces· 
sary to have a detailed definition of the procedures, equations, and algor­
ithms to be executed in each subroutine. The basic microprogramming 
approaches must be identified, such as use of the U register, combining 
multiple functions into the same routine, a definition of microprogram 
jump and return jump procedures. 

277 



There is no set rule for the detail level of symbology to be used in micro­
program flow charts. The general considerations for detail level are as 
follows: 

1. Ease of identifying and defining procedures. 

2. Ability to communicate program organization and steps to others. 

3 .. Ease of coding program from flow charts. 

To provide a detailed description of the MICRO 810 firmware selected, 
detailed flow charts; comments, and functional grouping indications are 
included in the following pages, along with a table of symbol definitions 
to facilitate reading the charts. Microcode addresses are included on the 
flow charts to facilitate relating the steps in the flow chart to the instruc­
tions in the assembly listing. 

Glossary of Flow Chart Symbols for MICRO 810 Firmware 

A. File Registers 

Fo File 0 

File 1 

XL File 2. 
XU File3 

AL File4 
AU File 5 

BL File 6 
BU File 7 

OL File 8 
OU . File 9 

PL File A 
PU File B 

S1 FileC. 

S2 File D 
S3 File E 

OV!W File F 

F1 File 1 

Flag Register. 

Instruction Register (for first byte of instruc­
tion). 

Upper and Lower Bytes of I ndex Register. 

Upper and Lower Bytes of A Register. 

Upper and Lower Bytes of B Register. 

Upper and Lower Bytes of Operand Address 
Register. 

Upper and Lower Bytes of Program Counter 
Register. 

Temporary, Always Used for Subroutine Re­
turn Address. 

Temporary. 

Overflow and Word Length. 

Used for execute command reference Register 
for selecting odd file. This does not actually 
select file 1 because of the U register modifi­
cation. 

Designates a command sel.ecting· U register 
modification with File 0 reference, and modi­
fied by U register .. 

278 



B. Other Registers 

T T Register 

U U Register 

L L Register (also referred to as K in assembly language) 

m,M M Register Upper Memory Address Register 

n,N N Register Lower Memory Address Register 

L,LK Also defined as LINK 

C Update condition Flags. 

C. Miscellaneous Mnemonics 

SS4 

RN1 

OP 

D. Symbols for Constants 

1. Constants to go into U Register for Instruction Modification 

LDAL 

ANAL 

SBAL 

ADAL 

LDXL 

STAL 

STXL 

STBL 

Loading A using 'B4' op code which is COPY T to A. 

AND A using 'C4' op code which is AND to A. 

Subtract A using '94' op code which is Subtract from A. 

Add A using '84' op code which is ·ADD to A. 

Load X using 'B2' op code which is Copy T to X. 

Store A using 'A4' op code which is Memory op code. 

Store X using 'A2' op code which is Memory op code. 

Store Busing 'A6' which is memory op code. 

2. Jump Table Constants 

OTAB = '10' Main table jump reference to location 100. The 
'10' is used to clear the upper 4 ones in the op 
code which has been shifted right 4 places. 

JTBL = '4E' 

CTBL = '15' 

Jump base reference constant used in condi­
tional Jump routine, to go to the selected con­
ditional jump subroutine. 

Jump. base reference constant used in control 
routine for jumping to selected control func­
tion. 

279 



E. Miscellaneous Symbols 

SR4 Shift Right 4 

SS4 Sense Switch 4 

CTL Control Subroutine 

CJ Con.ditional Jump Subroutine 

SH . Shift Routine 

10 Input Output Routine 

REG Register Operate Routine 

SP Spare 

RN I Read Next Instruction 

JMP Jump 

RT J Return Jump 

INO 1 INOX Entry points to perform indexing 

AOOR, AORO Entry points in operand addressing routine 

OP Op Code 

SOF Set Overflow 

SET Set Mask 

OCK Test for Overflow set 

LOA Load A 

ANA And A 

SBA Subtract A 

AOA Add to A 

MRl Memory Reference Entry from LOX 

LOX Load X 

STA Store A 

IWM Increment Word in Memory 

M Address Mode (sometimesM Register) 

@ Shift 

V OR Logic Symbol 

/\ And Logic Symbol· 

V- Exclusive OR Logic Symbol 

280 



F. Microprogram Command Symbols 

'OO'--OV,m 

Pu-Pu,m 

PL-P1,n 
(READ) 

ISR4--T 

PL+1-PL, n 

W/\ T-T 

NOP 

JP*+1 

Uu-T 

(Write) 

N 

BL(F)T-BL 

CTBL-SI 

iJL-UL 

IVT, T-LK 

BL@+LK-- BL 

Load OV and m registers with '00' to clear 
them. 

Move content of Pu to m (back to Pu is 
immaterial but saves a diode). 

I nitiate a read memory cycle and also move con­
tent of PL to n Register. 

Shift right file 4 and put result in T. 

Increment (PL) and put result in nand PL. 

'AND' (W) with (T) a_nd put result in T. 

General Purpose Command. 
UL Selectable file by U register. 
F Selectable command by U register. 
T Operand, Up date condition flags. 

No Operation. 

Jump to next location(2 clock delay). 

Execute command with memory op code in U 
register, T destination and write bit set in C 
field. 

Execute command selecting B register, with 
variable op code in U register. T register 
operand. 

Shift file S1 right, enter 1 into vacated bit, 
place result in S1 and U. 

I ncrementing selected register with file address 
modified by content of U Register. 

Load file S1 with constant identified as CTBL. 

Complement selected file. 

Exclusive OR (I) with T and T thus comple­
menting (I). 

Shift (BL) left, enter (LINK). 

Shift selected file right, enter link. File desig­
nated by contents of U. 

Move (S1) to L (a jump command). 

Shift (I) left, result to T. 

281 



On the flow charts, the machine code address of each instruction is placed 
next to the box containing the instruction, as close as possible. Since jump 
instructions are not shown in the boxes, a dot is placed in the flow line 
having the jump and identified with the machine code address for the jump 

instruction. When the jump destination is indicated with ®---. the. 

machine code address of the jump destination is placed by the circle as 

follows' 1 F8 ~ 

The flow charts are shown in Figures 23 through 39. 

282 



---, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

----1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- I L------------------------~ME;:;;;;Y--------1 
II.EFERENC£ 

Figure 23. 810 Top Level Flow Chart 

283 



CLEAR OVERFLOW,I 
M REGISTER AND 
"COUNTER 

TEST FOR 
800TSTRM 
LCAO 

, , , , 

READ NEXT INSTRUCTION 

START FROM 
MASTER RE~ET 

I ~'i;'FT:T~H ';tRST 
BYTE OF NEXT 
INSTRUCTION 

TABLE OF 
RNI ENTRY POINTS 

I RN10 COLDS1ART 

I RN11 MANUAL ENTRY 

I ~~Z~tRONT 

I 012 

I 
I 013 

,'014 , 
015 

I , 01. , 
I , ONI , 
I 

SHIFT 

INPUT 
OUT1'1JT 

REGISTER 
OPERATE 

~ARE 
IGOES TO 
HALT IN 

AFTER JUMPS 
AND CONCURRENT 
I/O 

AFTER SKIP 
WITHIN A PAGE 

AFTER RETURN 
JUMP 

AFTER A BOOT 
STRAP LOAD 

FROM POWER 
FAlLIN 
PROGRESS 
ROUTINE OR 
FROM Nil 
o 1 .. 5 

NORMAL ENTRY 
POINT WHERE 
P COUNTER 
STEPS TO NEXT 
INSTRUCTION 

L __ ":1~~)--1 
GO DIRECTLY TO JUMP 
TABLE AT 100 FOR 
NON MEMORY REFERENCE 
INSTRUCTIONS 

Figure 24. Read Next Instruction 

284 



ADDRESSING 
FOR FIRST 
FOUR MODES 

GET 2ND BYTE FOR 
EXTENDED ADDRESS 
MODE 

02F 

TOTABLE 
JUMP 

OPERAND ADDRESSING 

I CLEAR UPPER HALL OF 
OPERAND ADDRESS 
REGISTER AND T. SO 
THAT RELATIVE 
ADDRESS CAN BE 
ADDED 

DIR PG 0 } EACH HAS 
DIR REL A 1 BYTE 
IND PG 0 ADDRESS 
INDREL WORD 

SET WORD 
LENGTHINT 

Figure 25. Operand Addressing 

285 

r--- ----, 
I 
I 

0&31 
..... .....,............ 1 

I 
_I 

I :: 1 
I 1 L. _______ J 

ADVANCE PCOUNTER 
FOR NEXT INSTRUCTION 
TO ADJUST FOR 
VARIABLE LENGTH 
LITERALS 



OPERANO ADDRESSING 

OlD r-----C~ 

ABSOLUTE 
ADDRESS 

I MOVE 2ND BYTE OF 

I INSTRUCTION TO 
LOWER BYTE OF 

I OPERAND ADDRESS 
REGISTER 

020 

027 I FETCH INDIRECT 

I ADDRESS 
028 L ____ ~~ ________ ~ 

Figure 26. Operand Addressing (Continued) 

286 

02C 

CALCULATE 
RELATIVE 
ADDRESS 



.TUREGISTl:R 
WITH INSTRUCTION 
OPCODI TO PERFORM 
DlSIGHATtD 
OfOERATIONIH 
MICRO 810 
INSTRUCTION Of' CODE 

FIXED 

51 

AL 

B" 

Be 

MEMORY REFERENCE 

L-________ :;I-________ ~JL------~~~~~~~ MR' 

TABLE OF 
TEMPORARY STORAGES 

WoO W-' W-' W-3 
SllIn 

5' 
5.,.. 

5' 
BYTE 

Exlend Extlnd LENGTH 
52 52 

53 53 

Figure 27_ Memory Reference 

287 

FETCH 1ST BVTE 
OF Of'ERAND 

TEST FOR SELECTION 
Of VARIABLE WD 
LENGTH IN OP CODE 

TEST FOR lOR 
3 BYT£S 

060 

seCOND BYTe IS 
STILL IN T AT 
THIS TIME 



SET I FOR 2 BVTES. 
THE 2ND TIME 

~~:~~~~~~~I~'r'" -'--.-_ ..... 
FIXED WORD LENGTH 
12 BVTESI. FOR 
ST)(, THE LOOP IS 
ENTERED ONL V ONCE. 

-HALF CYCLE READ' 
WRITES ARE 
CORRECT,IF DATA 
IS DEFINITELV GOING TO BE 
MODIFIED aEFORE 
RESTORING TO 
MEMORY' 

MEMORV REFERENCE 

L- _______ .....J 

ADVANCE OPIIIANQ 
ADDRESS RfGlntR 
FOR WORD LENGTH 
.. 3 OR 4 BVTES. 
2 BYTES HAVE 
ALREADYat:EN 
STORED IF WL .... 
AND ONE BYTE HAS 
ALREADY BEEN 
STORED IF WL-3. 

Figure 28. Memory Reference (Continued) 

288' 

:rs COMPLEMENT 
FOR DECREMENT 

-FETCH AND 
INCREMENT OR 
DECREMENT SELECTED 
OPERAND USING 
COMMANDS MODIFIED 
BV U,ANDSET 
CONDIT FLAG FOR 
OVERFLOW 



THIS PATH IS TAKEN 
FOR ALL MODES 
EXCEPT INOIRECT 
EXTENDEO ADDRESS 

DAD 

OC2 I 

I oco I L ______________ .J 

LOAD P WITH JUMP 
ADDRESS 

JUMP AND RETURN JUMP 

COMPLIMENT II), 
WHICH CONTAINS OP 
CODE, TO FACILITATE: 
TESTING FOR .. 

~~~1~9~~E,.S:~· 
EXTENDED ADDRESS

FETCH INDIRECT JUW
ADDRESS FOR
INDIRECT EXTENDED
ADDRESS MODE

TEST OP CODE I N I

ENTRY POINT FROM
INTERRUPT ROUTINE

STORe RETURN
ADDRESS AT
BEGINNING OF
SUBROUTINE

INCREMENT ADDRESS
aBO WD IN OPERAND
___ ADDRESS REGISTER TO

FIRST INSTRUCTION
TO BE ExeCUTED IN
SUBROUTINE

Figure 29. Jump and Return Jump

289

"T1
tE'
e
'" CD

w
9
:D

f\.l CD
co <C

0 en'
r+
CD

'" 0
"0
CD

'" !!l-
CD

GROUP 1
INSTRUCTIONS
OR, EX OR.
INX,OECX
ADDWOL TO X
SUB WOL FROM X

079

REGISTER OPERATE

r - -0£0---'

GROU' 2
INSTRUCTIONS
INA. INI, OCA. OCI.
TAX. TX"'. TIX, TX.

_I 5, -- u I WITH BASIC OP G I SET U REGISTER

1 CODE
L ______ J

FORMAT FDA REGISTER
OPERATE INSTRUCTIONS
7654321

IJIT[[tr~
. SUBeR

OP CODe - 4 ~ EXOA IN
. GROUP 1

INDEX CONTROL
IN GROUP 1

0" GROUP 1
1 a GROUP 2

"'T1
to
c:
""\
CD

W
N
CD

(")
0
::I
""\

Q.

JUMP TOSET
OVERFLOW ROUTINE
WORD LENGTH AND

~~R':i~~I~~I!:~~ET I
~~6~NED IN THE L ~_ J

i-­
I r--

I
FOR HALT SET P I
!~~~::s 1~1RS~~ON I
CLOCK I

I
I
I
I
I
I
I
I
I
I
I <::J I L ___ ~_..J

GROUP 2 OVERF LOW
a WORO LENGTH
CONTROL

CONTROL

SHIFT IIIlHT ONE
BIT, AND PLACE IN T
TO SET UP TABLE
JUMP DISPLACEMENT
ADO IN JUMP TABLE
REFERENCE. JUMP
TO SELECTED ROUTINE

Move SELECTED
PROTECT BITS TO
T AND INITIATE
COMMAND FOR
PROTECT BIT

GROUP 1
HL T, TRP, ESSW,
PMP, DINT, flNT
DRTC, ERTC

123

CONDITIONAL JUMPS

VALVE fUNCTION

o OVERflOW
1 ... ·ZERO
2 a·ZERO
3 X·ZERO
• ...NEG
15 INEG
Ci ... -1
7 ... ·x

Figure 32. Conditional Jumps

292

END AROUND CARRY

~III

173

SHIFT A OR B DEPENDING
ON COMMAND

II II I

SHIFT B LEFT
ON LONG S.HIFT

SHIFTS

SI RETURN
Ou Copy OF Of' CODE
OL SHIFT COUNT

I,.;;:;.;.;;;;;,;....:;;.;.:..J~ SET RETURN FOR

SET LINK WITH
A OR B REGISTER
MSB

Figure 33. Shifts

293

CONCURRENT 110 BECAUSE
SHI FT ROUTINE CAN IE
INTERRUPTED FOR
CONe -I/O

SHIFT A OR B DEPENDING
ON COMMAND

SHIFT B ON LONG
RIGHT SHIFT

SET SIZE OF
BOOTSTRAP LOAD
PROGRAM. IN THIS
PROGRAM SIZE. 256
BYTES, SO IS SET TO
'00' HEK.

'7.

TEST FOR SERIAL VS
PARAL LEL AND INPUT
USING EITHER SERIAL
TELETYPE INPUT
ROUTINE OR PARALLEL
TELETYPE INPUT
ROUTINE

BOOTSTRAP LOADER

... -_ _-..., SHIFT I RIGHT4AND
REMOVE HIGH ORDER
1 BITS BY ADDING (11.
THIS MAKES TESTING
FOR SERIAL 110 FLAG
STANDARD.

SET FOR STATUS 81T
I----~ OF PARALLEL ITY

TEST
STATUS BIT

INTERFACE

SET DEVICE &

1----4 ~~~;[L~~ ~~~::Y~~

, ..
•• e
184 ETC

INTERFACl

1S1 STORE A BYTE AND

1-,.-2----1 ~~~R~~~~~~~~UNTE R

,.­
TEST FOR LAST
BYTE LOADED

RETURN TO RNIS
WHICH BYPASSES
INTERRUPT TEST AND
INCREMENTING OF
PCOUNTER

Figure 34. Bootstrap Loader

294

MICROBIO
INPUT/OUTPUT OP CODE
FORMAT

4SITS 1 BIT 381lS
I j I~M I
... VALUES;:: INPUT· 0

OUTPUT· 1
1 -/4, REG
:2. B REG
3- MEMORY

INPUT TO A I
I

INPUT TO B I

L- ____ ~

INPUT ByTE
TO MEMORY

INPUT. OUTPUT

THE NOP CODE USES
THE SAME BASIC OP
CODE 13X! AS THE
1/1 ROUTINES

cox X
NOOP
JMP NEXT INST

_-I-~+ __ 2 CLOCK DELAY

COXX RESET

GET OUTPUT BYTe
FROM MEMORY

Figure 35. Input-Output

295

I 1 DELAY COUNT OL

Du BITCQUNT
52 EXIT FROM DELAYS
5, EXIT FROM SID

SAMPLE INPUT LINE TO TEST
FOR SPACE CONDITION. KEEP
SAMPLING UNTIL SPACE OCCURS
SIGNIFYING THE BEGINNING OF
A CHARACTER

Dt::LAY 1 AND
DELAY 2
ARE MECHANIZED BY THE SAME
DELAY ROUTINE HAVING 2
ENTRY, POINTS AS SHOWN ON
THE NEXT PAGE.

SET BIT
COUNT"' 9 I
FOR INPUT I

leA

LOOKING FOR START BIT.

SETS MSB IN AL REGISTER
REPRESENTING THE VALUE OF
THE TTY LINE WHEN SAMPLED
THE MSB IS PRESET TO 1 IN
THE DELAY ROUTINE, SO
ADDING 1 EFFECTIVELY
CLEANS THE BIT.

L ______ ...J

Figure 36. Serial Teletype

296

SERIAL TELEtv:t'E DELAYS

OLY1

SET OUTER
LOOP COUNT

SET INNER
LOOP COUNT

'CA

DECREMENT INNER
LOOP. SET COND
FLAGS.

NO

DECREMENT OUTER
LOOP COUNTER

OUTER LOOP
DONE

SHIFT COUNT
COMPLETE

"-__ -" 'C6

'9O'~1

110 CLEAR
(S2 - .. LI

'0'
'02

I) DELAY COUNTER

Oll

'C6

0u BIT COUNT
52 EXIT FROM DELAYS
51 EXIT FROM SIO

'C7

DELAY IS ACHIEveo
BY NeSTED LOOP

'CO

.eF

S1 -----.. L

DECREMENT SHIFT
COUNT AND SHIFT
IN A BIT TO A

CLf Aft 110 BIT AND
RETURN TO SAMPLING
110 CLEAR IS USED
FOR OUTPUTTING
SERIAL DATA

RETURN TO BOOTSTRAP
LOAD. OR RNI VIA
tNPUTfQUTPUT ROUTINE

Figure 37. Serial Teietype Delays

297

INTERNAL INTERRUPT
TEST IN COLD START

RTC SOFTWARE INTERRUPT

2DE

UPDATE RTC
COUNTER REGISTER

EXT INTERRUPT POINTERS
IN PAGE 1

IDE

·~...L.-·""''-D~EJ
I

~=''it:::::! 1D~ LOAD INTERRUPT POINTER IN

r ! ~~8:'~1Cro~=:RUPT

ANY OF INTERRUPTS
IN THE VERTICAL LINE

Figure 38. Interrupts

298

lEO

lEl'
I

.J

SET POWER FORE FLAG
IN OV GET PWH' FAIL
POINTER

INCREMENT DATA ADDRESS
CLEAR 110 CONTROL CODES

FETCH AND ADJUST CURRENT
UPPER ADDRESS

CONCURRENT INPUTIOUTPUT

ENTRY POINT FROM NORMAL INTERINSTRUCTION
CONCURRENT liD TEST SUBROUTINE

SET INDI RECT RETURN TO GO BACK
TO RNI SUBROUTINE

I SHIFT DEVICE ADDRESS LEFT TO
MULTIPLY BY TWO AND GET CURRENT

.... _ _-, 110 CORE MEMORY

~""'r"~

'"""------;-g~:.:WEU~~~~ENT
L:i!~:'=~:J I AND END UPPERS ______________ J

STORE CURRENT LOWER
GET CURRENT UPPER

Figure 39. Concurrent Input/Output

299

MICRO 810 ASSEMBLY LISTINGS

The assembly language program with machine code and comments is in­
cluded for reference from the flow charts. To illustrate the flow of micro
commands for 810 operations, the dotted line flow is for a load A register
direct relative address mode instruction.

Load A Direct Relative Address Mode

For this example, the op code in MICRO 810 machine language is:

0200 E1
0201 18

The E signifies load,

The 1 in binary is 0001
I I

Fixed Word Length Direct Relative

The 18 specifies a relative address 18 hex from the P cou nt of the next
instruction, which is·0202 + 18 = 021A.

In the RNI loop the op code, E1 is fetched and tested for memory refer­
ence. E 5 means memory reference. Therefore the operand address
mode is entered. The 1 says direct relative, so the relative address 18 is
fetched from core and added to 0202 and the result, 021A, is placed in the
operand address register.

Then the microcommand jumps, via the jump table at 100,to the memory
reference routine, entering at LOA. The 1 in the Op code signifies fixed
word length (two bytes) so two bytes are fetched from core, starting at
the location in the operand address register (021A) and placed in the A
register; Then the microprogram returns to RNI to advance the P counter
and fetch the next instruction.

The sequence of both of these examples can be seen by following 'the solid
or dotted flow lines on the listing.

FUNCTION FLOW EXAMPLES OF A MICRO 810 INSTRUCTION

Load A direct relative

Machine Code of MICRO 810 Instruction Stored in Memory:

01FF 34 No op
0200 E1 Load A Dir. ReI.
0201 18 ReI. Address

300

The instruction is located at P=0200 in core memory. For the example it
is assumed that the previous instruction was a no Op, and there were no
interrupts, or concurrent I/O requests. Therefore, the read next instruc­
tion routine will be entered at RNI.

The MICRO 810 instruction bit configuration is as follows:

E

1110 0 001

1
"Load" Fixed Mode 1
Op Word Direct
Code Length Relative

The relative address '18' is a positive displacement. This instruction will
cause a 16-bit number located at. 021 A to be loaded into the A register
(files 4 and 5).

The basic functions (omitting tests and skips) for implementation of this
instruction within the MICRO 800 are shown in the following ~Iow chart:

Enter • RNI

• Get instruction Op code (E1) from memory,
• Calculate and save Op code Jump Address.
• Jump to operand addressing routine.

!
OPERAND ADDRESSING

• Get address byte.

• Calculate effective address (021 A) of operand.
• Save in operand address register (files 8 & 9).

• Jump to Op code jump table.

t --

OP CODE JUMP TABLE

• Jump to "Load A" part of memory
reference routine.

• MEMQRY REFERENCE ROUTINE

• Set U register for copy T to file 4.

• Read data byte #1 from memory
(Loc 021A) using address calculated in
operand addressi ng routine.

• Read data byte 2 from memory (Loc 021 B).

• Transfer data to A register (f4, f5).

• Return to RNI

The sequence of micro instructions is traced out in the following coding
which was lifted from the MICRO 810 Firmware reference manual.

301

lDENT MI10

.ICIO ItO SYSTEM

· FILE ALlOCnlON
onD Fe EOU a CONDITION FLACS
0001 I EQU 1 INSTRUCT.JON REGISTER
OaD2 XL EOU 2 INDEX REGISTER
0001 xu EOU 3
000" AL "OU • AC;:CUMULATOR
000' AU EOU 5
0006 BL EOU. 6 eXTENDED ACCU"ULATOR
0007 BU EOU 7

, oooe OL EOU I OPERAND ADDRESS
000' OU EOU • aaDA PL EOU 1. PROGRAK COUNTER
OODB pu EOU 11
DO DC 51 EOU 11 TEMPORARY STOR~GE
0000 52 EOU 13
OOOE sa EOU 10
OOOf' OV EOU 11 OVEAFLOW AND WORD LENGTH
0001 Fl EOU 1 USED WITH EXECUTE rOR ODD F'tlE
0000 IIZE EOU a SIZE Of' BASIC LOADER · ooa BOARD 1 · · READ NEXT INSTRUcTUIN
ar02 RHID CM Dv CLEAR OV, .. AND M-IIEGISTERS
21D0 LF' PU,X'DO' CLEAR P caUNTER UPPER
2AGO LF PL,JI"DO' CLEAR P COUNTER LOWER
4810 TZ ro,x'u' I NTERNAt INTERRUPT
15FI JP INTI YES, JUMP TO INTERRUPT ROUTINE
7110 K 1.1 ENTER SENSE SW ITCHES
'110 TZ I.X'ID' SWITCH" ON
15'" JP LOAD YES. LOAD BOQT STRAP PROGRAM
2FOO RNU LF Ov,M'DO' CLEAR ov,w REGISTER

~ CBa. ONI5 MM pli MOVE P UPPER TO " REGISTER
A.A03 .NI4 "N PL . GET OP CODE erlRST efTe or INSTRUCTION'

LOAD A 1410 JP ANU IGNORE ItfTERRUPTS (fOR SOHE INSTRUCTJnNSJ
DIRECT IU3 RNI IN PL UPDATE P ltV '"eREMENTING IT

Rl!LA!\!IV8 ABII RNI3 "M PU,l rETcH INSTRUCT ION BYTE
.0'0 IINt2 TZ rD,I'te' TEST FOR INTERRUPTS
UD3 JP INT SERVICE REQUEST IY JUMP TO tNT. ROUTINE
BUD RNI6 C I. T SUE OP CODE STILL INT ArTER FETCH
ICU LF I(,O"B.U lASE UDh16 TO CLEAR ONES r", SHIFTED OP
712' "To I •• SWIFT RIGMT 4
,cza • Si.T ADD BASE ADDRESS TO SHIF'TED OP
611.0 CP lil'U- "E"DRY REf"eRENCE Ir OP .GT. 5F
ccn MK Sl NO, GO DIRECTLY TO JUMP TAILE · ,"EI, GET DPERAND ADDRESS · · O'EIAND ADD_ElSING
8981 ADOR CT ou CLEAR au AND T
4104 TZ 1.1'''' " .LT •• (fIRST 4 ADDRESSING MODES)
142E JP AoR4 "0, MODE .GT I 4
81043 IN PL GET ADDRESS BYTE FOR PAGE ZERO OR RELATIVE
ABI2 R. PU,L
8U3 CN OL,T,C lET CONDITION CODE FOR SlGN OF DISPLACEMENT

lC 5101 TN 1.'('01' hGE ZERO ADDRESS MOOF
OlD 1424 JP ADR2 YES. JUMP TO INDIRECT TEST
Ole SA69 ATo -PL,I.T ADD RELATIVE VALUE
01F B823 CN Ol,T TltANsrER JlEL'" 1 VE VALUE TO OL AND N
020 "002 Tl ftt,K'1I2' DISPLACE"ENT NEGATiVe (C SET AT DlBJ
021 142C JP ADRS YES, JUMP TO NEG. DISPLACEMENT CAl CULAT10~
022 IBI9 ATo Pu.L "DO CARRy rOR PAGe HOUNDARy
023 8920 IDRl C OU,T TRANSFEl' IIESUL T To au
2' 5102 10112 TN I.X'02' INDIRECT ADDRESS MODE
2' ceo' .K 51 NO. EXIT TO JUMP TABLE

02. U02 RM OU READ UPPER BYTE OF INDIRECT AnORESS
027 8840 I OL ADVANCE PGINnR TO LOWER RYTE
a •• 8912 AM DU.L
02' B920 C Ou.T GET UPPER ADDRESS 8YTF CREAD AT 026)
02' 1803 RN OL READ LOWER BYTE OF INOIRECT ADDRESS
02B 1439 JP INOt GO CHECK r:OR POST INDEXING
02e 98" ADR3 STo PU.L BORROW FROM UPPER ADDRESS
·02D. 1423 JP ADRl GO TO INDIRECT ADDRESS ROUTINE
02E 5103 ADR4 TN I ;X'GS' M .EO. 4 INDEX HODE
a2F 1442 JP A"R7 YES. GO TO IN['EX FUNCTION
030 8A43 INDX IN PL ADVINCE P COUNTF.R
031 10882 RM . PU,L GET 2ND BYTE OF I NSTRUCT I Q~ F~QM CORt:
03' 5102 TN I.X'02' M .EO. 5 INDEXED wtT~ RUS
03:'-; 1442 JP AbR7 YES
03' 4101 Tl 1.X'Ol' M .EQ. 6 eXTENDED ID['IRESS
03' 1444 JP LIT NO
030 B920 AD'" C ou,T GET UPPER ADDRESS B't'TE (Run AT 031)
037 110"3 IN PL ADVANCE P COUNTER
038 A8I2 RM PU,L GET ;SliD BnE FROM CORE
03. 8823 INDl CN Ol,T TRANSFER SRD BYTE TO t'JL
03A 5980 TN OU •• 'flO' INDEXED UIT U ,EQ. 11
a3B cen H" si NO. EXIT
03e 3980 or OU.X'IO' REHOVF BIT BY CARRY OUT I LEAVING A lERO n. C2G1 ADA6 .T XL ADD X TO ADDRESS FOR INDEXING
03e 8823 AN Ol,T HOVE X INTO OPERAND A"DRESS REGtsTER
03' CJ01 MT .U
0.0 BUD A DU,L,T
0., ceo, MK 51 EXIT TO JUMP TARLE
a .. BUD 100117 C Ol,T GET BIAS rT .fQ. tI. N~EN M .EO, .fII,
0" 143D' JP ADAI
0.' 6190 LIT CP I.X',O' JMP.RTJoIRM. OR OIJM (TEST NON LtTERAL ~HIDJ::)
a •• 1436 JP ADR' yes
0 •• CAOl HT PL LITERAL "DDf .47 R823 CN OL,T } Move P TO opeO'.D
0'. ceDl HT Pu AnDRUS RFGISTER
0 •• B920 C OU,T
0.' 6160 CP I,X'60' FIXED WORD LENGTH INSTRUCTlON
0'. 1453 JP ADA' yes
o.e 1}108 TN I ~X'08' VARIABLE WORD LF~GTH MonE
04D 1"'3 JP ADR9 yes

302

.. E 1103 LT .'03' SET MASK TO SELECT WORD LENGTH

.4' EF29 .To OV,l WORD LENGTH TO , REGISTFR ••• 8A20 ADAI • PL,T ADJUST P rOR NEn INSTRUCTION .. , 8UO • PU,L .5' ceo, "" SI EX I T TO JUttP TABLE ." 1:1.01 AD"9 LT)"01' 1 To T rOR ADDING 1 TO P
0" 14!50 JP .laRa WITH F'lJCED WOAD LFNGT~ TYPE

. ME"""Y .EF'EIIENCE
.55 1684 LD. LU X'8c' SET u WIT~ LOAD CCQPY, OP CODE
.,6 u,c JP H01 GO TO READ OPERANDS
05' 16E4 'N. LU x'u' SeT U WITH LOGICAL AND DP CODE .,e 14'C JP H01 GO TO READ OPERANDS ... 1694 sa. LU Xl94' sn U WITH SUBTRACT OP CODE .,. 14!5C JP H01 GO TO READ OPERANDS .,. 16114 '0' LU X'U' SET U WlTlo4 ADD OP COcE
,C 4902 HA1 AH OU AEAD eYTe FROM HEHORy ,. '108 T. 1 •• '0" VARlAnLE WORD LENGTH
'E 1461 JP HR' NO. CFIXED LENGTH OPE~ANDSI

0" ,r01 TN OV,X'II1' W .EQ 0 OR 1 12 BYTES MAXIMUM)
06. 1464 JP H03 YES
061 BC20 HA2 C St,T GET "'-I OPERAND
06' 8843 IN OL ADVANCE OPERAND ADORESS AND
063 01.982 AH OU,L READ NEXT BYTr: FROM HEHORY •• eooo HA3 • Fo RESET L.INK rOR COPy (LOAD' FUNCTION
065 "0. TN I.X'OI' VARIABLE WORD LENGTH
066 1480 JP HR. NO

D 067 'Fo, TN OV,X'OZ' W .LT. 2 C2 BYTeS MAXIMUM)
068 147E JP H", YES
06' Btl20 C 52.1 GET AN OPERAND
0 .. 8843 IN OL } FFTCH "'0 ,NO ,RO
068 1982 AH DU,L OR JRn ANfl 4TH
O.C BUD C 93,' GET AN DPF.RAND OPERAtoiDS r'lEPEND I Nli
06n 8843 IN OL ON WORD LENGTH
O.E 1982 AH OU.L .. ' uao A Fo RESET LINK FOR COPy (LOAD) FU"'CTION
.70 0620 E BL,2 OPERATE ON RL. (FUNCTION IN UJ
.71 CEDl HT 53 HOVE OPERAND TO T
072 n7AO E BU,IO OPERATE ON eu crUNcTI'lN IN II,
07' CDOl H1 U MOVE OPERAND TO T
07' 0080 E rtl,l1 OPERATE ON AL

lr
'rol HA' TN ov,X'Oi' W .Ee. 0 OR 2 (1 OR 2 BYTES)
1482 JP HR' YES ." ceDI HA, HT SI MOVE OPfRAND TO T

78 oIBO E F"l,l1 OPERATE ON AU OR xu (FUNCTION IN II)
.7. !S001 OC' TN fG,X'GI' OVERfLOW SET

"""URN 0" HOC JP RNI N.
TO RNI .7. 1104 SET LT X'04' SET MASK

07C Cf20 SOF 0 OV,T SET Btl IN OV
.70 140C JP ANI

1=.7E
0030 HA7 E fo,3 OPERATE ON AL (fUNCTION IN U)

D aU 1475 JP H"
O.n 0020 HA. E Fo.2 OPERATE ON AL. OR)l'L ,FUNCTION IN U)
081 1477 JP HO,

E 082 250G ·HR9 LF AU,X'na' CLEAR AU } SIGN EXH:NSION ••• 4480 TZ AL,X'80' RESULT POSITive fOR VAR I A~LE .. - C560 0 A!,I.T,r F'F TO AU Wt'IRD LENGTH TYPE .. - 1479 JP O.K
0 •• 16B2 LOX LU xl82' SET U W IT~ LOAC X C Copy) np CI'1DE
•• 7 510B TN 1,)(loIP STORE

••• 145C JP H., NO, GO READ OPERA.NUS
0.' 161.2 LU x 10\2' SET U wlT~ STrIRE x OP CODE
.BA 2100 ST4 LF I,X'oo' CLEAR 1 FnR STORE OPERATION

••• H8D JP STt GO STORE OPERAf.jDS
O.C 16-'4 SfA LU X'A4' SET U WITH STeIRE A OP COOF. 0." C902 ST1 HH OU
O.E 510B T' I.X'08' VARIABLE ••• 1492 JP sn NO ••• 5FDl T • OV,X'Gl' I<! .EQ. 0 OR 2
091 1495 JP ST' YES
.O? 0111 ST. .T Fi.l STORf;. UPPFR BYTe IJSINIj EXFCUTE WITH lJ MOD. 0'3 B843 IN OL INCREliENT OPERAND ADDI~ESS RfG'STE~ TO 2!IJ1l ••• 8982 ,H DUlL OPERAND BYTE ... 0011 ST3 ET fO,l STORE LOWER i:!ne: ••• 5108 TN I.X'OB' VAR)ARLE
.97 HOC JP ANI •• ••• 5'02 TN OV,X'tl2' W .Eg. 0 O~ 1 ••• 14Ge JP RNI YES ••• 16U LU)I'A6' SET U WITW STnRF FI OP CODF. ••• 8843 IN OL INCRI:~ENT OPERANu AflDRESS RFGISH.R
091': 8980 • OU.L .'0 148A

IWH
JP ST4 GO srnRF n RE:GlIiTt::R

0'[1600 LU)1'00' CLEAR U
0" ceeo 0 S,.T.r SET FO~ DFCREHENT ••• 5108 TN 1·,X'D8' TEST rOA INCREMfNT .AI BD46 CU 52t1 seT FnR l~CREfoIE"lT ••• 8849 IN. OL
0" A9U AH_ OU.L.H HALF READ OPE.RAND TO T REr.I!Hr:R .. - 8[:29 .To 52.T .1 ON -1 FOR INCREMENT OR DfCREt-!ENT ... AC77 WS Sl.0,H WRITE AND DECR S2 IF o\N INCR!::I1E"lT WAS UONr
0 •• C803 HN OL
0" "922 RH OU.H H"LF REAU UPPF.R BYTE TO T ••• 8&91 " S2,L,T,C ADD CARRy TO UPPER BYTE A~D S~T CONn. F"lG • ••• AG30 W FO,H- HALF '~RITF .U 1479 JP OCK CHECK FOR OVERFLOW .. JUMP AND RETURN JUMP ••• DUO JHP . X I,T.F COMPLEMENT INSTRUCTlO" RErotSTER
O.C 4107 TZ 1,)1'07' 11 .Ee. 7 EXHNDEfJ Ho''1(RECT
•• n 1495 JP JH1 NO
.Ae U02 AH Ou READ UPPER RYTE OF INnlRECT AODRESS ." 8840 1 OL INCRE"4ENT OPERAND ••• 8982 ,M OU,L ADDRESS RFGI STER .. ' R920 C OU,T GET HIGH ~YTE WHICH Ie: IN T ••• U03 A • OL READ LOWER RYlE OF 1NI'11REeT AnORE!;S ••• 2CU L' Si. PTR3 SET INDIRECT RETURN
0.' 1439 JP INOI CHECK fOR POST INOEXJ~IG

303

, .. 410a J,. TZ 1.)('08 ' RETUR"j JUf'4P

'.' HSF JP J'2 NO
OS7 8HO I PL ADJUST P F'QI(~EXT INSTRlICTION
OS. 8981 "JP AT PU,L ArtER RTJ INSTRUCTION
D.' A,912 ., OU STORE PU __ } STORE PAO,"AM COU'''" , .. 88043 IN OL AT r!l~ST TWO LOCATlrlN5
OS" A,992 .' CU,L STORE FL or ROUTINE CALLEU 8Y
oar. CAOl HT PL RTJ. TRP, OR INTeRRUPT
OSD 8840 I OL seT OPERANO ADDRESS TO
OBE 8982 " CU,L rIRST INSTRur.T1Q"I IN
'Br egOt J'2 HT OU CALL-ED SUBROUTINE AND
OCO 9922 C, PU,T PLACE THE VALUE INTO THE
DC' caOl ,T OL PROGIUM couNTeR TO BEGIN
DC' BUD C PL,T ExECuTION OF THE SUBROUTINE
OC3 iotO" JP RNJ.4 RETUR~ TO R~I . REG ISlER DPeR" TF.

DC' BCOl AE' CT si CLEAR T AND 52
DC' rC66 HU sL-I,1t LOAD U WITH AnD OF conE (aD)
DC. 4108 TZ 1.X'08' GROUP1
OC7 HOE JP R!!GS NO
DCB - 4101 TZ I.X'01' SUB OR XOR INSTRUCTIONS
'Co 1610 LU)('iO' YES
DC' 4104 TZ I.X'04' INDEX CONTROL INSTRUCTION
DC. 1408 JP REG2 YES
OCC 4102 TZ I .X' 02' A REG DESTINATION INSTRUCTJOt\l
ocn UD3 JP RI!Gl NO
OcE C601 ,T BL e OR ... TO A, USING U REG. MOD
OCr C~27 OS Al, T oR
ODD C701 .T .U S XOR A TO A, USING U REG. 1'100
'D1 C527 oS AU, T
OD' UOC JP ANI
OD3 C~Ol REt)1 HT 'L A OR 8 TO B. USINn U !:leG. MOD
OD' C&27 oS el,T oR
DD' C'D1 ,T AU A XOR B TO Of USING U REG. ~OD
OD. C727 OS -SU,T
OD7 HDC JP RNI
008 04102 REG2 TZ 1.X I 02' NORD LENGTH CONTROL.
OD' 1103 LT XI03' YES. SET ~ASI(FOR WORD lENGTH atTs
DO' EF29 NTo ov.T WITH AND COMMA NO
008 8267 AS XL.I, T AOD OR SUI TRACT WORD LENGTH. INCREMENT
'DC 8397 AS XU,L,e OR DECREMENT)(CDEPENDING ON U REGISTER)
000 U79 JP Del(CHECK rOR OVE"tLOW
ODE ~101 REG3 TZ ie;~~~, 9 REGISTER TO 9E MOVED OR MODIF'IED
ODr 3C02 Af VES
,ED CC06 "U 51 SET U wtTW BUle OP CODE
DE' 4104 TZ J;X t 04' INTER REGIST&R TRANSFERS
DE' UEa JP Rio, YES
OE3 4102 TZ I,X'OI COMPLEMENT A OR B REGISTER
DE' 14E8 JP RI04 YES
DE. DUD E A~,. ADO 1 Tn INCREMENT A OR B
DE. 0590 E AU., ADD CARfIIY Te UPPER ByTE'
OE7 U79 ' JP OCK CHECK FOR OVERFLOW
OE8 n467 II:EII4 XS AL,T," l'S COMPLEMENT A OR e REGlSTER
DE' n'67 XS AU.T.'
DE' UOC JP ANI
OE8 411:12 REOS TZ l'~ X' oi' x REOISTEIII SOURCE F'OR TRANSFER
DEC 14'2 J. iI!:!G6 yes
OED 0401 iT AL A 0" • TO T
DEE 9220 C XI.,T T TO X } TA'NsrEA , DR B TO •
OEr D50l ET ,u A 0111 " TO T DEPENDING ON U AEGUTER
oro 8320 C XU.T T TO)(
Of1 14t1C J. RNI
or> e201 REG. "T XL X TO T
.,3 8427 CS A~,T T TO A OR B } TA,NS'EA • To A oA • ,fA e;'Ol MT XU X TO T D.EPENnING ON U ReGlSTFR

'" 11527 CS AU,T T TO A OR a
0 .. 140C JP RNI . RIGHT 'Hl,ra
Or? 4908 SA TZ OU,IIOI' LOGICAL Sill I"
Of. rlOF' HS. fi NO, SET L.INK wITW SION

'F' F'1A7 HS Fill,lII RIGHT 1 } SHIrt RIGNT SILECTED
OrA 'OA7 H' ro.,",,!! RIGHT 1 REGISTER IA OR B}
Of8 "02 T. CU,)PGZ' L.ONG SHIrT
OfC 156" JP s •• ,,0
Of 0 FHD H BU,l,R RIGHT 1 } SI'orr RIGHT
Of. F'UO H Bl.L..~ RI GHT 1 B REGlSTER
Ofr 15604 JP S". REPEAl SHIftS

0·. ... BOARD 2

.00 1510
OP CODE JUH' T AAlE

CUB JP CTL CONTROL
10. 1'31 JP CJ CONDITIONAL JUMPS
10' 155A JP sw SHIrts
1,3 151!6 JP In INPUT/OUTPUT
10' 14C4 JP A.G REG ISTER OPERATE
10' lCOO JP SP, SPARE INSTRUCTION OP CODe
10. HAS JP JMP JUMP "NO RETURN JUMP
107 149E JP I.' INCREMENT AND DECRE~EJ,jT MEMORy
10. 1486 JP L'X LOAD AND STORE)C

100 leOl JP HUL.. HULT 1 PL. 't' /0 l" t DE ." H58 JP 'DA ADO

"" 1~59 JP SBA SUBTRACT

~i:g
le02 JP CPA. COMPARE
1~!57 JP AN. ,"0

10E 1455 JP Ln, l.OAn A
c 10F' HBC JP STA STORE A

CONTROL-
un ~108 CTL TZ 1. X'OI' TEST F'OR GROUP 1 OR 2
11. 1520 JP •• 2 OVERFLOW AND WORD LENGTIoI EXIT

"' FID9 HTo I SET UP JUMP HBlE VAI.IlE
113 2C15 Lr si, CT8l ADD wlT'" RASE ADDRESS
11' aC25 AK . S1, T TABLE JUMP.

"' aHO CTfll I PL Io4AL. T f I NCREtlH!T P cOU~TER)

304

"" 152. JP HLT JHP TO NAL. T ROUTINE
117 lSE4 JP TRP TRAP INSTRUCTION (SAl1f 1S CONSOLE INT. I

"' 1485 PTR3 JP JM, INO FROM AoDR TO JUMP (NOT PART OF' CONTqOI.J

"' 7510 K AU.l ENTER SENSE SWITCNES

"' HOC JP RN1
11" C402 HM AL PROTECT MEMORy PAGE

"' 1527 JP PMP
HD 1704 LS)CID4' DISABLE INTERIlUPT SYSTEM
11E 1524 JP Eel
Hf 1708 LS X'D8' ENA9LF INTERRUPT SySHH
'20 1524 JP Ee'
'21 1710 LS X'10 1 DISABLE REAL TIME CLOCK
122 1524 JP Eel
'23 1720 LS)('20' ENABLE REAL TIME CLOCK

'" 8"'3 ECl ,. Pl SET P TO NEXT INSTRUCTION ADDRESS
125 AB82 "M PU.L AND fElCH INSTRUCTION BYTE
'2" 1410 JP Rt"Il6 BY PASS INTERRUPT CHECK
127 C70l PMP HT au SELECTED PROTECT R I T5 TO T
'28 1HQ LS l(l4Q' seT PROTECT STATUS
'2' HOC JP RN1
12' 8S8a HLT , PU,L ADD CARRY TO ADJUST P UPPER rOR NeXT INSTR,
12. 1780 HLTl LS XI8D' STOP CLOCK
12' 1409 JP RNI5
12n uro GP' LT)lIro' SeT MASK (TO SAVE UPPFR HALF' OF' O'OW)
'2E H2o • Dv,l CLEAR OV/w STATUS
12f C101 .T 1 PUT OV/W SETTING HHQ T
130 1417C JP SOF GO !it:T NEW STA 1 us FOR 1J\l1:.l

· CONDIT I ONAL. JUMPS
131 1107 eJ LT X'07' MASK rOR roOND IT 1 ON
132 E129 NTo I,T REMOVE=- OP CODE
133 2C4e Lf 51,JTBL. BASE TABL.E ADnRESS
13' 1602 LU X'02' SET rCR x REGISTEP
'35 ftl:6Q e 52,1,T seT TO SEL.ECT A, OR 8 0"4 ZERO TEST
13' 8C25 AK S1, T DO A T ABLE JUMP
137 5F04 JO TN OV,X'fl4' OVERrL.OW TEST
'38 n40 JP CJ3 NO
13" 1104 IT X' 04' OVERrL.OW RESET ~ IT TO T
13' Of20 X Ov,T PESET OVE~Fl.OW Ry TOGr,L.I~G
13B 153F JP CJ2
1JI': C017 J3 .S FO.C TEST L.OW 8YTE } TFST A OR B WITH
'3D C197 .S F'i.L.C TEST HIGH 8YTE L. I NKEO ZE:RO TFST
13E 4004 'Jl TZ flh)(lfl4' RESUL. T ZERO ," DUD eJ. x I.T.F' YES. FLIP TEST BIT RY COMPL.F.HF.NT
140 1!iA43 'J3 IN Pl GET DISPLACEHENT WHICLi IS 2ND
141 AB82 R" PU,L. BYTE OF INST~UCT ION
142 5108 TN I.X'Oft' CONDIT.lON I'Ier
143 HOC JP RN1 NO ,.. 8A6J A. Pl,1,T ADD 01 SPL.ACEHENT
145 B030 C ra,T .e L.OOK AT T
14' 5002 TN Fa,)I' n2' T NEGATIVE ,47 1400 JP RNIJ NO
148 A1342 R. PU.D ADJUST PAGE IF' BOUNDARY CROSSED
14" 140E JP RNI2

'" 1:117 J5 .S Ft.e L.OOK AT All OR xu FOR SIGN TFST
14R 4002 TZ Fa,X'D2' NEGATIVE
14C 153F JP eJ2 yes
14D 1540 JP CJ3 - NO

· COND I T I aNAL JUHP TABLE
14e 1!537 Jrgl ' JP JO ovERFLOW
14' lODO L X'DC' NOP
15D rDD6 HU S. SET. FOR A OR B
'51 153C JP J,
152 16D4 LU XI 04' SET fOR A
153 154A JP J5 ,,, 1606 LU)1106' SET FOR a
'55 C4Q1 J7 .T 'l
156 D03F XS. rO.T ,C COMPARE LOWER } TFsr roo A,a DR ,,'
'57 C501 .T A" _ DEPENDI"'G ON U REG.
158 D1BF XS. FI.L,T.C COHPARE UPPER .. " 15lE JP 'J' TEST RESULT or COHPARISON

· SHIF'TS ,5' C1Dl SM HT 1 SAVE OP CODE IN OPER,,"4D
159 B920 e OU,T ADDRESS REGISTER
15C ~C66 L' Si ,!H2 SET ADDR rCR CONCURRE\lT 1/0 TEST
15D 8A43 IN PL GET SHIrl COUNT UND IHTE IN INSTRUCTION I'"
15E AU2 RM PU,L
15f 1604 LU -)1104' SET U rOR SIoIIFTlNG A REGISTER
160 4901 TZ OU,X'OI' TEST FOR A OR B SWirl
'61 1606 LU X'D" SET U FOR SHlrTHIG B REGISTER
162 BUD C Ol,T HOVE SHIFT COtJNT TO OL.
163 DUD X OL,T,' A~D COMPlEHENT IT FOR LOOP CONTROL.
16' 4008 SH' TZ FO,X'08' CONCURRENT 110 REOUe:ST
165 lCH JP elO YES (SER\lICF CONC 110 DURING SHlrTl
1" 8840 SH' 1 Ol AOD 1 TO COUNT A~n RESET LI Nt<
167 5880 T. aL,x'80' CDU"IT NEGATIVe:
168 HOC JP -RNI NO
16. 4904 TZ 01I.X'04' LEFT 'iHJrT
16' 1'4F'7 JP S. NO, J'IMP TO RIGHT SIHF'T ROUTlI.:E
16B 5908 TN Ou,x'n8' L.OGICAl SHirr
16< F'Ur HS. f"i YES, !'fT L.INI(WITH L.OI.,I ORDER RIT
16D !59D2 TN r"',X'02' L.ONG ~HIFT

16E 1571 JP Sl' NO
16f F68D H . ElL.,L lEFT t 5 S" 1fT • LFFT fOR
17' neD H BU,l LErT t L. ... Nt; SHIFT
171 F087 SLl NS F'tI,L LErT 1 Stlln A. OR B L.EH,
,,2 - F187 HS Ft,l LEFT 1 D~Pe:ND I NG ON II
,,3 1564 JP SHi RF.PEAT SHIFTS · · BOOTSTRAP LOADER
17' 7120 LOAD K l,2 SHIFT RIGIotT (RIGHT JUSTIfy QP CODFI
175 3108 Ar 1.IP08' REMove BITS 9Y CAUSIN!"i CARRY IlN UPPER SITs

". I 2AOO Lf Pl.SIlE SET LIlADER SI1E .EO. ?S6
177 5101 L.ODl TN 1,)I'Ot ' SERIAL MoOE
,,8 1!57F JP lODl YES
", 1120 lon, LT X ' 2D' SET fnR STATUS IN

305

'" 2C1C Lr 51,LOD2 seT RFTUR~J
17R 158D JP fUN GET SlArUS
17C 5402 LOD2 TN AL,X'ft2' CHAiRACTER RFADV ". 1579 JP LCDS NO
17F 1100 LT XtDO' SET rOR on ... tN
17' 2esl LOn3 Lr 51,LOD" SET RETURN
taO 1588 JP INA GET DATA
tal C401 loD4 MT AL SET UAU IN T
,.? AA5J NN PL.D STORE BYTE ,., 4AF'F" TZ PL,){lF'P DONE LOAniNG
18' 1577 JP LDDl NO
lBS 1409 Jp. ANJlJ ,ES

I NPUT -OUTPUT
180 4104 l~ Tl I.X'C4 ' Nnp
187 t40C JP "., 'ES
lBP 8A4J IN 'L GET DEYIC~ AODRESS WHICH IS
lB' "882 "M PU,L SECOND BYTE or I NSTRuCT I ON
18A 2CA3 Lr StolOK5 RETUR~ TO ~Nl

18" 5103 INA TN 1.'''03' , SERIAL MOl'E
18C 1584 JP SID 'ES
lBn 7090 rUN " fI!,9 CONTROL OIlT
,.F lana L X'OD' NOP } CO"" CD"T.DL
18' 1590 J' 101 STROBF. ,., ·'080 101 . " ro,e CLEAR ,., 4U8 TZ I.X'OB' INPUT

'" 15"4 J' OUT NO
193 70EO " Fn,!" DATA IN , .. t595 J' 102 } DIXX INPUT
I.S BD21 102 CT n.T GET DATA STROBE:
,,0 7Q80 " ro.s CLEAR
,,7 5102 TN I.X'02' H .EQ. 1 } P::ST rOR INPUT TO A .. ' 15"'0 JP In' 'ES O~ INPUT TO If

'" 5U1t TN t .X'Dt' H .EO. 2 OR INPUT TO MFMORY
,.A 15A2 JP 10'
UP 2C9D Lr SbIO:! ,.e l~:!O J' I,.D)(GET STDR, 'DDPESS } srT .nDP rOR INPUT TO
,.0 A912 10. WM DU Mr,;110~Y M.1l STORF =-IYTE:
UE CeOl HT S2 STORE BVTr:
ur HOC J, RNI
UO 9.20 10. C Al,T PUT BYTE IN ~
Ul ccn IoU M" Sl
U? 9620 10' C Bl,T PUT BYTE IN •
U, l"'OC 101C5 JP RNI
U. 5102 OUT TN_ I.X'02' 11 .EQ. 1 } TFST rop OUTP'" I RO'4
U' 15AD JP 107 ,ES A, q. OR IoIEf10~V

uo 5101 TN I.X'01' '--.H-......frJ. 2
U7 UB2 JP 10iD 'ES
UB 2CU Lr Si.I06

ADDRESS} r'TCH DU'·PUT U' 1.430 JP INDX GET OUTPUT
lU A9D2 10' RM oil BvTF. F'ROH MF.I1I)RY
UR 2C9F' Lr Si,IO l SF.T RF.TURN
ur. UAE JP IDe
UD C"U 107 NT AL II. TO T
UE 70U 101 K nt,10 OUTPUT
ur 1000 L x'OO' NDP } DOXX DUTPIIT
18' UBI JP 109 STROBf
181 7C85 10' KK Si,' CLEAR .AND ExiT
18? CUl 1010 HT BL II TO T
18' l".,E JP ,It"

,:' SERIAL TELETYPE
11' 290. SID Lr OU,)I'U t SET BIT cnUNT
185 410a Tl I.X'08' _ INPUT
180 UC'" JP SDUT NO
187 ""0 0 OU ADJUST 91 T COUNT rOR I""PUT SAHPLI NG
188 1701 SlDl LS X'01' ENARLF. SERUL TTY (IN"UT A SA"IPLE)
18' '0"'0 TN Fit,x'_O' SURT BIT
lB' UBe JP SlOt NO. REPEAT SAMPLE
18B 2t"" Lr I.X'o4I' SET DELAY COU~JT (220 ~'S J
lIC 20BE Lr u,Slor SH DELAY RETURN
110 UC7 J. DlY!
lBE 1701 SHU LS X'01' ENABL.f SER I Al TTY
18r 4040 ~ TZ re,X'40' SPACE
lCO 3480 .. Al.)I'IO' YES, "EHOVE BlT
lCl UCI JP Oln GO, OF.LAy
lC2 rOIlO .,00 • S!,L GET 1.INK RIT
lC' 5001 TN S2.\II'O~' CURRENT BIT. A ZERO
1C' 70BO SDUT " rO,H YES. SPACE
1C' 2DC2 Lr S2.S100 SET DFL.A V RETURN-
lC> 2190 DL'i2 LF I.X'911' SET DE1.AY COUNT (220 "'S)
lCY 2846 DL"l Lr Ol.)('46'
'C8 9150 DLi 0 Ol,t: REDUCE lO,"' COUNTER
lC' !JOO" TN rll.)I'04' COUNTER ZFRO
lCA uea J. DLl NO
lCB "'0 0 I.C REDUCF. UPPER COVNTER
lCC !J004 TN rrhX'04' COUNTER ZERO
lCD nC1 JP OLYI NO
lCE "or TN OU,x'lIr' Bn COUNTfR, ZERO
lCr ceo, H" Si "ES, EXtT-'
100 9940 0 DU REDUCE BIT COUNTER
101 r460 H ALd." SHIrT LOW 9IT TO LINK
10' 1ce5 "K 52.e CLEAR AND eXIT (HARK. . INTERRUPTS
lD3 .. rea INT Tl nv.x'eo' POWER FA IL IN PROr.RESC;
10' 1410 J' RNI6 'ES
'os "010 Tl ro.x'to' INTER""A1.
100 1'E3 J' INTO ,ES
107 "008 Tl "n,X'1'I8' CONCURRENT 110
108 lCU J' CI01 YES
10' 7000 EXT " fa,n ACKNOWlE Dr.E

• } I'A. I.,..RUPT 10' 2800 Lr Ol,X'ItO' CLEAR Ol
lOB 1201 LM X'Ot' SEr rnR PAGE , ACKNOW1.FD~E

,DC RC20 C Si.T GET AI10Rf5S STRflyF
lDn 7080 " f n.8 CLEAR
lDE ACol INTI RN s.
lOr 8920 C OU,T GET UPPfR A[lUPE.SS

306

'E' .. te3 " . Ss,)
'E' 11123 •• Ol, T GET L('IwER "DDJa.55 A~D HeSF.T LINK

lE'- 1481 JP oJP DO ,. ~ETunN JUHP

'EJ 7140 INTO • I.- GF.T IlITEH"Al STATuS
,E_ 8802 TRP CM 'L CLEAR OL 'N['I M

'E' 4101 INn TZ I.X'01' CONSOLE: III!TERPUPT OR "up
'E' 2C80 .. si ,X'I"O' VES
'E7 4102 TZ T .X'02' SPARE

'E' 2C62 L' 51. X'''2' YES

'E' 4104 TZ I.X'04' REAL Tpte CLOCK

'E' 2COO L' St.'I(ICO' vFS
'E. 4108 TZ 1."08' toIF.HORY PR('1.TFCT
,EC 2C88 L' Si.X'R8' vES
'EO 4110 TZ 1.11"11'1' HEHMY PARITY

'EE 2CIIA L' 51,X"U' VfS
'Er ·4120 TZ I.X'2"' HF.110RV Rll"lf·mAAy .. , :?C8C L' 5, ,X'IIC' VfS ," 4180 TZ t .X'80' P:'JWfR rAil.
.. 2 1C03 JP ,",WRr VES
1F"~ 4140 TZ 1.11"4'" CONSOLE H,f,LT

'" 1528 JP HL T1 vES ," 4C8Q TZ 51.)('''0' Rf.AL TlI1E CLOCI(

'" 15ne JP "JTt NO

'" 1C06 JP I~H ,.. 7140 JNT2 • I.- Gr;T 1~'TER~rAL ~T ATUS ... 5180 TN I.X'81,. POWER HESTAI1T

". 1'E" JP TRP .0

". leu JP I-.!T5

I~DIREcT POINTeRS
,re 1C38 PTR4 JP tl02 I~DIRrCT rROM clO OR TO Tn r.P'2
,.0 1C7E PUt JP HIILl I~DIRfC:T rRDf1 CTO TD 'lULlIPLY ,,, 1C98 PT R2 JP DTV~ I"IDIRI7CT F'ROf1 CTO TO rolv!re

ORG '12 SOARI) J · · SECONDARY OP CODE TUlE
20' 1760 SP. LS X'SO' SPcCI'l (ERROR lo4.ll1)
20t 1C62 HUl. JP Hill f1ULTU'lY'''IVlnE
202 1C.0 CPA, JP CPA COI1PAQE: · · INTERRUPT opTIONS fPWFURESTART ANf'I RTrl

20J .rao PW." ... eV,I'IO' IEl "LAG rOR IIIOW.I FAIL
20_ zceE L' S{,I'IE'
20' 1,oE JP I~U
20' 2C84 INT4 L' 51,1'14' SET COUNTER ADDRESS
201 ACE3 R. Si,I,N GEl LONER HALF OF' COUNTER
208 1179 ATe OL,I,T.C ADD 1 ANO SET CONI) CODE
20' AUO W ra.N PUT BACK
20' ACla A •• S~ •. D.H GET UPPER HALF OF COUNTER
20B IOU CT FO.L.T,C ADD CARRy AND sn COND CODE
20C Acro W Si.l.H PUT BACIC
200 4004 TZ fO.I'D4· COUNTER ZERO
20E UDE JP INT! YES. GO TO SERVICE ROUTINE
20' lC38 JP CIDZ NO. GO RE-FETCH INSTRUCTION
U' 2100 IN" L' OL,I'DO' CLEAR Ol
211 2C'a L' 51.1"0' SET ADDRESS
212 U'E JP INTi ·
213 2CrC

• CONCURRINT INPUT-OUtPUT
CIOl LF' S!"U .. INDIRF.CT RETUIIN ADDRESS rROH

CONCURRENT 110. ENTERED
rROM NORMAL INTERRUPTICONC)/0 · TEST ROUTINE

21_ 70Da CIO • rli,n ACKNOWLEDGE REQUEST
215 1000 L ItDO' Nop } CoNCUR·ENT
U' 1200 LM X'oj" SET FOR P.&OE lERD 110 ACICNOWLEDGf!
U7 1120 C I;T GET ADDRESS STROgE
218 - 7080 • "G,I CLEAR
U' r150 H I;I.C ADJUST ANn REMOVE 110 nAG BY SIHF'TtNG
U' un RN I
218 BUD C 5:I.T GET CURRENT ADORESS LOWER
UC Al048 RN. 1.0
U' B022 CM FII.T GET CURRENT ADDRESS UPPER
UE '0111 TN F'I,.X'Ol' INPUT (TEST OVERrLOw COND, FL.AG.I
U' 1C3B JP cio. vES
22' AEllJi RN 53 READ 'OUTPUT BVTE FROM MEMORY
22' B02a C FII,T WAlT rOR 'OAYA (DELAYI
222 7GAO • Fa,n ouTPUT
223 lC24 JP CIO' DELAY } DoXX STROBE 'OR
22- 8E"0 CIOJ I IS AOJUST CURRENT LOWER C'ONCURRENT 'OUTPUT
22' 7080 • FO •• CLEAR
22' 1200 L" X'OO' seT FOR PAGE ZERO (COHC 110 POINTeR)
227 AUB RN. I.D.H GET CURRENT ADDRESS UPPER
22' BDAI CT FII.l,T ADJUST CADD CARRY)
22' AlrO w 1.I,H PUT BACIC
22' AlCB RN. 1;1 GET E'-IDING LOWER
22" 9EJ8 S· S3,T.C COMPARE LOW SVTES
22C u'Ji WN I.' SToRE CURRENT LOWER
220 CEII1 "T SS
22e A14B ON. 1.0 GeT CURRENT UPPER
22' BE20 C 53.T
230 A1C3 RN 1.1 SET ENDING UPPER
231 9EBO S S3.L,T,C COMPARE HIGH BYTES
232 4006 TZ FD.X'It6' RESULT ,LT. 0 CllNICED ZERO TEST I
23. 15 At JP 104A GET TO SECOND PAGE TO EXIT
23_ r120 H f;R ADJUST DEviCE ADD"ESS
23' "161 HT l.r.R PUT J N FUNCT I ON CODE } END 0' "LOCK
236 U09 L' 1'.1'09' OUTPUT FROM I A' COMM.&ND DISCONNr:Ct
237 1580 JP rON DISCONNECT DEVICE
238 CUJi Cla2 "N PL GET" CUR-RENT INS"TRU·cTJON
239 A802 OM Pli
23' 140E JP ONI2
23B 70EO CI04 • F'ii.14 IN'UT nc 1000 L 1-110' NOP } CONCU.AENT D. fA n. .En WN si ITORE INPUT DUA I NPUT STROBE
23E B021 CT ".T GET INPUT anE zs, 1C24 JP clas

307

PART IV

MICRO 1600 REFERENCE MANUAL·

CHAPTER 1

MICRO 1600 DESIGN FEATURES

The MICRO 1600 is a microprogrammable digital computer with the
capability to satisfy a broad range of application requirements through the
use of both expandable high-speed control memory and magnetic core
main memory.

The high-speed control memory continuously sequences preprogrammed
microcommands which generate control and timing signals to perform all
control operations and data manipulations in the computer.

Using application programming at the micro level, the MICRO 1600 can be
used directly as a hard-wired controller., When the 1600 emulates the
operation of a general purpose computer which executes software
instructions stored in core memory, macroinstructions are fetched and
interpreted by the microprogram with corresponding operations carried
out by execution of microprogrammed routines in the control memory.

Basic macroinstruction sets are available which are significantly more·
powerful than conventional minicomputers. Individual users can add to or
modify the basic macroinstruction set and basic input/output structure by.
a simple addition or change of firmware in the control memory to increase
the flexibility and utility of the machine.

Control memory can be implemented in bipolar read-only memory
(BROMl. programmable read-only memory (PROM) or alterable read-only
memory (AROM) devices. BROM is low cost and is appropriate for volume
production of field-proven firmware. PROM permits microprograms to be
installed at the factory or in the field with fast turn-around time and low
initial set-up costs. It is intended for use in low production volume. AROM
permits dynamic microprogramming and/or the debugging of firmware in a
real-time environment before implementation into the more permanent·
BROM and PROM control memories.

There are 30 general-purpose file registers which are implemented with
MSI/LSI semiconductor devices. Under program control, these registers are
typically assigned functions such as I/O buffer registers, accumulators,
index registers, and program counters.

The internal data paths and I/O are byte-oriented with eight-bit word
lengths. Under control of microcommands; effective word lengths are
variable.

Owing to its inherent flexibility, the MICRO 1600 can be applied as a
direct function processor, general-purpose computer, special-purpose
computer, emulator or language processor.

The MICRO 1600's control memory can be expanded to 16,384 16-bit
words. This will permit implementation of languages such· as BASIC,
COBOL, FORTRAN, or equivalent complex firmware requirements. Direct
language implementation will eliminate intermediate compile operations
and results in an interpretive processor or a compile-and-go capability with
performance exceeding conventional minicomputers.

310

Packaging variations permit operations ranging from a stripped-down
low-cost minicomputer with three printed circuit boards and a card cage to
a "super" computer with multiprocessor capability.

GENERAL CHARACTERISTICS

Advanced features and operating characteristics include:

• 65,536 bytes of memory in basic enclosure -
• 4096 and 8192 byte core memory modules
• 1 microsecond main core memory speed (full cycle)
• Dual processors with common main memory

• Macro processors
Standard macro processors, the 1600/10, 1600/20 and 1600/21
are available. These permit users to apply the machine using
conventional software programming while providing advanced
system featu res.

• Alterable read-only memory
Alterable read-only memory permits firmware programmers to
operate new microprograms in a true on-line environment.

• Supporting standard software including special firmware develop-
ment packages. .

AP1600 - Micro language cross-assembler written in FORTRAN

MAP1600 - Micro language assembler written for use on the
MICRO 1600/20 and 1600/21 computers.

SIM1600 - MICRO 1600 simulator written for use on the
MICRO 1600/20 and 1600/21 computers.

ICM1600 - Integrated circuit memory MAP generator permits
direct conversion of AP/MAP1600 outputs to control memory bit
patterns.

ROM Diagnostics - Pluggable standard CPU diagnostics in
read-only memory.

AROS1600 - Alterable read-only memory operating system for
control of AROM used for firmware checkout and debug.

• Direct memory access (DMA)
• 30 general purpose eight-bit file registers plus eight-bit status register
• Up to 16,384 words of read-only memory in 256-word modules
• 200-nanosecond microcommand execution time
• Real-time clock (optional)
• Standard automatic shutdown in event of power failure and

automatic startup when power returns

• Operating temperature range 0 to 500 C
• Dimensions: 10-1/2 inches high, 19 inches wide, 20 inches deep
• Power: 115/230 VAC, 47-63 Hz, 350 watts
• Optional 16-level stack for recursive firmware

311

CHAPTER 2

SYSTEM DESCRIPTION

The MICRO 1600 is an eight-bit computer employing microprogram
control. The computer incorporates eight-bit registers and data paths,
executing with every clock pulse a 16-bit microcommand stored in a
high-speed semiconductor control memory. The major elements of the·
system are shown in Figure 1.

This chapter describes the registers, data flow, memory and control. The
microcommands are described in Chapter 3 and the input/output in
Chapter 4.

REGISTERS

All registers except the file registers have specific functions in the machine.
The file registers are used by the programmer for general purpose use.
Description of the processor's registers follow.

Micro 1600
Block Diagram

Gene •• 1 PurPose
File Registers
(30"!)

Flag
Reg,ste'18} -~ ".,.

Yo",",,', . I-~~~:l,. 1 ~,~,,,,,:,, t-~ ~,i;" ROO"'" 'I

I co"'m'~.mo~' I ~1 UR"",,,
. (16) _ (8)

'L __________________ ~:~--
* I Comm,"",'"

• Control
R Fhglsler "---___________ -j (16)

Figure 1. MICRO 1600 Block Diagram

312

,

T Register

The eight-bit T Register serves as an operand register for most operate
commands and a buffer register for data being written into the memory
and output on the byte I/O bus. The contents of the T Register are
transferred to the MD or OD Registers on memory write or output
respectively, thus freeing the T Register for other uses. Memory read
operations cause the accessed data to be placed in the T Register
400 nanoseco"nds after the memory read is initiated.

M Register

The eight-bit M Register holds the 8 high-order bits of the processor's
16-bit memory address.

N Register

The eight-bit N Register holds the 8 low-order bits of the processor's 16-bit
memory address.

U Register

The eight-bit U Register is used to modify the 8 high-order bits of the
control memory output. The contents of the U Register are ORed with the
Control Memory output on the R-Bus as it is gated into the R Register for
those commands which have zeros in bits 15-12 or zeros in bits 2-0 and a 1
in bit 15. The U Register permits efficient use of control memory by
allowing a common routine to be used for different operations, when the
operations differ by only a few commands.

File Registers

Two files of 16 registers each provide storage for internal fl<!gs, and user's
data. Typical assignments include program counters, accumulators, index
registers, temporary buffers, etc. The primary or secondary file is selected
by command and the primary file is selected after reset or power-on.

Only registers 1-15 are available to the user. Register 0 is common to both
files and contains flags as described later. This register cannot be written
into but can be used as a source of data. Readout of register 0 does not
alter its contents.

Link Register

The two-bit Ll NK Register holds the carryout of the high-order bit
position of the adder for Add, Increment, Subtract, Decrement and"
Compare commands and the shifted off end bit for Shift commands. The
ML link bit is selected and/or set when the M or N Registers have been
selected as a destination, otherwise the AL link bit is used ..

Ie Register

The three-bit IC Register is the I/O Control Register which specifies the
I/O bus control signal to be enabled. The output of this register is decoded
within 1./0 device controllers into three output control signals and four
input control signals. The register is loaded" and cleared by micro­
commands, therefore the timing of control signals on the bus is up to the
microprogram. When the IC Register contains a value of 4-7 one of the

313

input modes is specified and the I nput bus is substituted for the T Register
on any commands which select T or the complement of the T.

L Register

The 12·bit L Register holds the address of the ,next control word in
sequence and provides for direct addressing of 4096 words of control
memory. The register is incremented by one as each instruction is executed
unless it is loaded by a new value which will effect a jump in the sequence.
There are no restrictions in incrementing the L Register. The register can
be loaded by a Jump command which alters the 10 low·order bits, a Jump
Extended command which alters all 12 bits, a Return command which
alters all 12 bits, or by specifying the L Register as the destination which
alters the 9 low·order bits.

When the extended control memory option is included in the machine a
Bank Select Register allows addressing to 16K. I n this case the 2
high·order bits are set by the Bank Select command. A third bit is
available, in the basic architecture, for future expansion to 32K words.

L Save Register

The 12·bit L Save Register saves the incremented contents of the
L, Register when a Jump Extended command is executed, unless this has
been inhibited by prior execution of an Inhibit L Save command.
Execution of a Return command, causes the contents of the L Save
Register to be transferred back to the L Register. In this manner the
L Save Register acts as a linkage register allowing one level of subroutine.

When the L Save stack option is included in the machine the L Save
Register is replaced by an L Save Stack of 16 12-bit registers which
perform the same function. Selection of the current stack register is under
command control.

R Register

The 16-bit R Register holds the microcommand currently being executed.
The input to the R Register is from the R-Bus which is normally the.
output of the control memory, but may also be the console switches.

MO Register

This eight-bit register is a buffer which holds data being written into
memory. It is not directly accessible totheprogrammer, but automatically
copies the contents of the T Register 350 nanoseconds after the write
operation is initiated. This frees the T Register for other uses.

00 Register

This eight-bit register is a buffer which holds data being output on the
Byte I/O Bus. It is not directly accessible to the programmer, but
automatically copies the contents of the T Register when the Ie Register is
set to a non-zero value. This frees the T Register for other uses. '

314

DATA FLOW

Arithmetic/Logic Unit

The arithmetic/logic unit (ALU) is the heart of the processor's data flow;
All transfers and manipulation of data are done through this unit. The
operations that it performs include: add, subtract, AND, OR,
exclusive-OR, transfer and shifting. The two inputs to the ALU are the
selected file register and the operand placed on the B Bus.

A and B Buses

The output of the ALU is placed on the A Bus where it can be routed to
all the processor's registers. Other inputs to the A Bus are the internal
status byte, the four sense sWitches on the front panel and a selected file
register shifted four bits to the right. The information on the A Bus is
routed to a register implied by the operation code of the command, or
optionally to the selected file register and a designated register.

The B Bus is the second input to the ALU. Sources of data on the B Bus
are the literal in the eight low-order bits of the command and the true or
complement of the contents of the T Register or the data on the Input
Bus. The Input Bus is substituted for the T Register as a selected soutce
when the I/O control IC Register is in an input mode. After a switchable
delay after placing the I/O control in an input mode, data from an I/O unit
will be available on the I nput Bus.

Arithmetic and Memory Link Bits

Two link bits are provided in a register commonly referred to as LINK.
These bits store the carry out of the high-order bit position of the ALU on
arithmetic and compare commands, and the shifted off end bit in shift
commands. The Memory Link (M L) is used when the M or N Registers are
selected as the destination register; otherwise the Arithmetic Link (AL) is
used. The two link bits permit intermixed memory address and data
arithmetic operations.

T Register

The T Register is a transient working register used to hold operands for the
ALU, receive data from memory, write data to memory and output data to
external units. The T Register is backed up by the MD and OD Registers
which buffer data being written in memory and output respectively. The
purpose of these two buffers is to free the T Register for pther operations
during the relatively lengthly write and output operations. The T Register,
and· sometimes its complement constitute selectable operands on the
B Bus. If the T Register is not selected in those commands which have that
option the operand on the B Bus will be zero. If both the true and
complement of the contents of the T Register are selected, the operand is
all 1's. Data read from memory is set into the T Register two clock
intervals after the read is initiated. Commands which select T Register as
the source of operand during the first two clocks of the read operation are
delayed until the third clock.

315

REGISTER 0 FLAGS AND INTERNAL STATUS

Register 0 Flags
Register 0 which ~is cornnion to both the primary and secondary files
contains a set of flags which reflect the result of a previous operation and
external conditions which require frequent testing. The flags in bits 0-2 are
the result condition flags and are updated when the C modifier (bit 4) of
the operate instructions isa one. A description of the Register 0 flags
follows:

o - Overflow Condition:· The overflow condition flag stores the
overflow condition of an Add, Increment, Subtract, Decrement,
or Copy command. Arithmetic overflow occurs when carry out of
the high-order bit of the adder differs from the carry into it. The
over-flow also stores the shifted off end bit of shift commands.

Negative Condition: The negative condition flag stores the
high-order bit of the result. When overflow occurs this flag will be
the complement of the true sign. '

2 - Zero Condition: The zero condition flag stores the zero condition
of the result. The zero test can be linked over multiple byte
operations under control of the L modifier (bit 7) of operate
instructions. When this bit is 1, the zero condition flag may not
be set to indicate the zero condition of the current byte, but may
only be reset to indicate a non-zero result. For this flag to
indicate zero over multiple bytes it must be set by a zero result on
the first operation which will have the L modifier zero and not be
reset by non-zero conditions on succeeding bytes which will have
the L modifier a one.

3 I/O Request: The I/O request flag is turned on by one or more
external I/O units requesting an I/O operation. .

4 Internal Interrupt: The internal interrupt flag is turned on when
an internal interrupt condition is present. The internal interrupt is
identified in the internal status (Table 1).

Bit

o

2

3

4

5

6

7

Table 1. Internal Status

Status Meaning

Panel Interrupt

DMA Termination

Real Time Clock Interrupt

Spare

Spare

Spare

Panel Step Switch

Power' fail (Restart Interrupt)

316

5 - I/O Reply: The I/O.replyflag is,turned on by the external I/O
unit currently communicating with the processor. This flag is
normally not used in MICRO 1600 I/O units.

6 - Serial TTY or Stack Overflow: The serial teletype input flag
indicates the state of the serial teletype input. A zero indicates
that the input is in a MARK state. This flag is used for
MICRO 800 compatibility. The stack overflow flag is turned on
when the L Save Stack has overflowed.

7 - External Interrupt: The external interrupt flag is turned on by
one or more external I/O units requesting an interrupt. This flag
must result in a command which reads the address of the
interrupt vector and resets the request.

Internal Status

The internal status reflects the state of the internal interrupts. When any of
these functions is requesting an interrupt, bit 4 of the register 0 flag is
turned on. Most of the internal interrupt status signals are turned off when
the status is read. The status can be read by an Enter Internal Status
command. The assignment of the internal status bits is as shown in
Table 1.

CONTROL

The sequential control of the processor is obtained from a microprogram
stored in a 16-bit control memory. Each word accessed from the control
memory is placed in the R Register where it directly controls selection of
operands, ALU function, register enables and the determination of the
next control memory location. In effect the contents of control memory
control the action of the processor at each clock. Because the Micro 1600
is a microprogrammed type of computer there is a minimal amount of
command decoding and each' command is executed in a single clock
period, unless there is a delay imposed by the memory.

Control Memory

The control memory is a 16-bit high-speed memory implemented with
semiconductor read-only memory (ROM) devices, or read-write memory
providing an alterable control memory (ACM). The standard MICRO 1600
can be expanded to 4096 words of control memory. Control memory can
be added in 256 word pages. An option allows expansion to 32,768 words
of control. The ~ontrol memory can be randomly accessed with an access
time, including logic delays of less than 200 nanoseconds.

The execution of commands and the accessing of the control memory are
overlapped. While one command is in the R Register being executed the
next command in sequence is being accessed and the L Register has been
incremented to the address of the command being accessed. When the
normal sequence is altered by a jump a delay of 200 nanoseconds takes
place to allow reading of the first com,!,and at the start of a new sequence.

317

Two types of ROM devices are used for control memory. The first has the
ones and zeros pattern of the microprogram built into the device by a
special ·masking used in the manufacturing process. These devices are used
for standard Microdata firmware. The other type is a similar ROM device,
but can be programmed after device manufacturing by selectively burning
out fuses corresponding to the bits of the desired program. This type of
device is commonly called a programmable read-only memory (PROM) and
costs considerably more than the t;nasked ROM. Each board of control
memory can accommodate up to 2048 words in 256-word increments.

The ACM provides for a dynamically alterable control memory. This type
of memory is very useful when debugging firmware. The memory initially
is treated as an external unit on the I/O bus whim it is loaded and then
treated· as an extension of the control memory in the processor. ACM
modules may contain up to 1024 words. Use of ACM modules in the
system require additional cooling and +5-volt power supply current. Each
256 words of ACM requires approximately 2.0 ampere.

L Save Stack and Extended Addressing Option

The L Save Register can be expanded to 16 15-bit L Save Registers by
means of a stack option permitting multilevel subroutines. When this
option is included the L.: Save Register in the processor is disabled. Along
with this feature is a 2-bit Bank Select Register permitting the full 16,386
words of control memory to be addressed. The 2-bits of the Bank Select
Register are controlled by the Bank Select command which must be
followed by a Jump Extended. Associated with the L Save Stack registers
is a 4-bit stack pointer wh ich points to the next available stack register.
Incrementing and decrementing of this pointer is done by command. It is
reset to register zero on power-up and with the panel reset switch. This
stack and extended addressing option is included with a 2048-word control
memory module. Only one stack may be used in a system.

Timing

The processor is controlled by a 10 MHz crystal oscillator which is divided
by two to produce a 5 MHz clock. This frequency may be reduced if
desired. However, all timing will be delayed including timing delays which
may be coded in the program.

MEMORY

Memory Interface

The memory modules receive their address over a set of 16 address lines on
the printed circuit backplane. This address is derived from the M and
N Registers of the processor or the Direct Memory Access (DMA) option.
A set of eight data lines on the backplane provides for transfer of data
between the memory and processor or be~ween the memory and DMA.
Data read from the memory under control of the processor is transferred
to the processor's T Register which is cleared one clock time after the start·
of the memory read operation. Data to be written into the memory is
placed on the data lines by the processor's MD Register which receiv!ls its
input from the T Register.

318

Memory Modu les

The standard memory is a 4096 or 8192-byte core memory module built
on a single printed circuit board. The memories make use of lithium cores
for operation over a wide temperature range. The memories may be
operated in either a full or half cycle mode. Full cycle operation provides
for a read-restore or clear-write type of operation with the program
initiating only one operation. The half cycle operation allows the read and
write operations to be programmed separately. This is normally used to
effect a read-modify-write type of operation. After performing a half cycle
read the addressed location is left in an all ones state. ~

Memory Addressing

Addressing is available to a maximum of 65,536 bytes. Normally the
high-order address line is disabled and forced to zero limiting addressing to
32,768 bytes. This is done because standard Microdata macro computer
configurations use the high-order bit of address words for indexing control,
leaving only 15 bits for address. Full 16 bits of address may be used for

_ special applications. Core memory modules of different sizes may be
intermixed within a system. However, only one 4096-byte module can be
used in conjunction with one or more 8192-byte modules.

Memory Timing

The memory cycle time is 1.0 microseconds with an access time of 400
nanoseconds until data is in the T Register. The half cycle time is 600
nanoseconds with an access time of 400 nanoseconds. Execution of
commands which specify that the M or N Register are to receive data is
delayed if the memory is busy. These commands are executed on the last
clock of the cycle, i.e., the fifth clock on a full cycle operation and the
third clock on a half cycle operation. Operate commands which select the
contents of the T Register are not executed at the first or second clock
following the initiation of a read operation. This allows the accessed data
to be placed in the T Register before the command is executed. Two
exceptions to this imposed delay occur when either an OR, Exclusiye OR,
or AND command selects both the T Register and its complement or when
a command selects either the T Register or its complement with the input
buss enabled. For these operations the command will execute in one
machine cycle and the memory data will be -loaded into the T Register as
previously specified.

Direct Memory Access (DMA)

A Direct Memory· Access (DMA) channel allows external devices to
directly communicate with memory at data transfer rates up to 1 million
bytes! second.

POWER FAIL - AUTO RESTART

Standard with the MICRO 1600 is a feature which provides for detection
of loss of AC power and an orderly startup when power is turned on. Both
power fail and restart are indicated by a 1 in bit 7 of the internal status,
which in turn turns on the Internal Interrupt flag of file register O.

319

Power Fail

The standard power supplies are equippedwith circuitry for detecting low
AC line voltage. When low AC line is detected the Internal Status bit 7 is
turned on. The microprogram must periodically test for internal interrupts.
After the low line is detected the power supply will hold all voltages within
operating range for a minimum of one millisecond. After sensing the power
fail interrupt the microprogram should save all volatile registers containing
valid data in core memory and bring the processor to a halt. When the
processor halts a reset is applied tp the system to provide for an orderly
loss of power. . ..

Restart

When power is applied a reset is applied to the system until the power
supply voltages stabilize at their operating values. This reset initializes the
system, sets the L Register to zero, sets internal status bit 7 and prevents
accidental operation of the core memory. The microprogram can
distinguish the restart from the power fail by testing internal status bit 7
soon after starting execution when the reset is removed. This test should
not be used later when there is a chance that the status bit will reflect
power fail.

320

CHAPTER 3

MICROCOMMAND REPERTOIRE

This chapter contains a description of all MICRO 1600 microcommands.
With each description is a diagram showing the format of the command
and its operation code given in hexadecimal. Above the diagram is the
command's mnemonic and the name of the command. Under each diagram
is a description -of the command, followed by a list of the registers and
indicators that can be affected by the command. The timing of each
command is 200 nanoseconds except as noted, or if memory timing delays
described in Chapter 2 are encountered.

COMMAND FORMATS

There are five basic command formats. Each command is 16 bits in length
and is stored in a single control memory location.

Literal Commands

The literal classes of commands have the following formats:

OP Literal

1514131211 10 9 8 7 6 5 4 3 2 1 0

The operation code occupies the four high-order bits. Bits 11-8 contain
the file register designator. Bits 7-0 contain an eight-bit literal which is
transferred as an operand.

OP Literal

151413121110 9 8 7 6 5 4 3 2 1 0

The operation code occupies the eight high-order bits. Bits 7-0 contain an
eight-bit literal which is transferred as an operand.

OP Literal

1514131211 10 9 8 7 6 5 4 3 2 1 0

The operation code occupies the four high-order bits. Bits 11-0 contain a
12-bit literal which is transferred as a control memory address. (This
format is used for Jump Extended only.)

321

Operate Commands

The operate class of commands have the following format:

OP f

1514131211109876543210

The operation code occupies the four high-order bits. Bits 11·8 contain the
file register designator (f). Bits 7·4 contain the controi (C)'field designator.

C-Field Bit Position

1000
0001
0010
0100
0100
0100

C-Field Designators

Designator

L
C
T

.F
I
D

Definition

Link control/Add Link
Modify Condo Codes
Select T
Select T Complement
Add 1/1 ncrement
Decrement

Bit 3 is file inhibit. When bit 3 is set to· a one the resultant operation of the
command is inhibited from being transferred to the designated file.
Symbolically, this is specified to the assembler programs by appending an
* to the command mnemonic. The destination register (r) is specified in
the three low-order bits, 2-0. When the designator is Lor K the command
requires 400 nanoseconds to execute.

r Field Destination Register Designators

Bit Configuration

000
001
010
all
100
101
110
111

Generic Commands

Designator

T
M
N
L
K
U
S

Register Designated

None
T Register
M Register
N Register
L Register (adds 200 nanoseconds)
K Register (adds 200 nanoseconds)
U Register
U Register ORed into upper
8 bits of commands with
OP codes 8 through F.

The generic class of commands have the following Formats:

OP

151413121110 9 8 7 6 5 4 3 2 1 0

The operation code occupies all 16 bits of the microcommand.

322

JE JUMP EXTENDED

o Address

15141312111098765.43210

The contents of the 12-bit address field are placed in the L Register. If an
inhibit L Register Save command has not been executed· since the last
Jump Extended; the following operation will also take place.' The old
contents of the L Register are stored in the L Save Register, or when the L
Save Stack option is present, the L Register is stored in the 12 low-order
bits of the current stack level, and the contents of the control memory
bank Select Register is stored in the upper three bits of the current stack
level. A Jump Extended command requires 400.nanoseconds to execute.

This command permits jumping anywhere within 4096 words of control
memory in the basic machine. When the L Save Stack and extended
control memory option is included, this command controls jumping
anywhere within the current selected 4096-word bank of control memory.
To jump from one bank of control memory to another, a Bank Select
command (BSL) is executed followed by a Jump Extended command to
the desired location in the selected 4096-word bank of control memory.

The Jump' Extended command is assigned an operation code of 0 and is a
special form of the Execute command which OR's the contents of the
U Register into the eight high-order bits of the command. I n order to
obtain an operation code of 0 in the R Register, the four high-order bits of
the U Register must be set to zero. If desired the "four low-order bits of the
U Register may be used to set bits 8-11 of the L Register; otherwise they
should also be set to zero.

LZ LOAD ZERO CONTROL

10 Literal

1514131211109 8 7 6 54 3 2 1 0

The load zero control command's eight-bit literal field is used to specify
combined operations of the load zero group of generic instructions. If the
literal field is 00 no operation (NOP) occurs. When multiple bits are
specified, the designated control functions will execute.

This single command in a "vertical" sequence of microprogramming,
contains "horizontal" microprogramming characteristics with the ability to
perform multiple operations in a single 200 nanosecond clock interval.

323

Load Zero Literal Field

Bit Configuration Code Mnemonic - Operation

0000 0000 00 NOP No Operation
0000 0001 01 ECR Enable Communication Rate

Generators
0000. 0010 02. OCR Disable Communication Rate

Generators
0000 0100 04 ICR - Inpl,lt Communication Rate

Generators
0000 1000 08 Unassigned
0001 0000 10 Unassigned
0010 0000 20 RTN - Return
0100 0000 40 SPF - Select Primary Files
1000 0000 80 SSF - Select Secondary Files

Example: LZ 62 combines the three operations - OCR (disable rates),
RTN (return) and SPF (SELECT primary files).

Note: If two commands with opposite functions are executed the existing
state is changed to the opposite. Example: LZ 03 defines both enable and
disable communication rate generators. When this command is executed
the status of the communication rate generator control is complemented.
If it was on, it is turned off. If it was off, it is turned on .

. NOP NO OPERATION

1000

151413121110 9 8 7 6 5 4 3 2 1 0

This command performs no operation and can be used to insert a delay of
200 nanoseconds.

ECRENABLE COMMUNiCATION RATE GENERATORS

1001 I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The optional communication rate generators are enabled. These four
hardware strappable time interval counters may be used for input bit·
sampling and output bit updating by microprograms performing serial to
parallel and parallel to serial conversions.

324

OCR DISABLE COMMUNICATION RATE GENERATORS

1002

1514131211 10 9 B 7 6 5 4 3 2 1 0

The optional communication rate generators are disabled.

ICR INPUT COMMUNICATION RATE GENERATORS

1004

1514131211109 8 7 6 5 4 3 2 1 0

If the communication rate generators are enabled, and one or more rate is
requesting service; bit 5 of the internal status byte will be set to a one and
file zero, bit 3 will be set to a 1 indicating the presence of ·an internal
interrupt.

This command allows the four communication rate generator flags to be
'read and reset by following it immediately with an Enter I nternal Status
(EIS) command. Bits 5-2 of this status byte will contain the current state
'of the four rate generators, and bits 7, 6, 1, and a should be ignored. The
state of the internal status byte is not affected by th is two command
sequence.

RTN RETURN

1020

1514131211 10 9 8 7 6 5 4 3 2 1 0

The contents of the L Save Register are placed in the L Register or when
the L Save Stack option is present, the low-order 12 bits of the current
stack level are placed in the L Register and the high-order three bits of the
current stack level are placed in the control memory bank select register.
Execution requires 600 nanoseconds and the Inhibit L Save mode is
cleared, if set, causing further Jump Extended commands to save the
current contents of the L Register.

SPF SELECT PRIMARY FILE

1040

1514131211109 B 7 6 5 43210

This command causes the primary file of registers to be selected for further
file register operations. The primary file is also selected after a power on or
by pressing master reset on the front panel.

325

RSP RETURN AND SELECT PRIMARY FILE

1060

1514131211109876543210

This command combines the functions of Return (RTN), and Select
Primary File (SPF), and executes in 600 nanoseconds.

SSF SELECT SECONDARY FILE

1080

1514131211109876543210

This command causes the secondary file of registers to be selected for
further file register operations. This set will remain selected until execution
of a Select Primary File command, or the occurrence of a master reset.

RSS RETURN AND SELECT SECO,NDARY FILE

10AO

151413121110 9 8 7 6 5 4 3 2 1, 0

This command combines the functions of Return (RTN), and Select
Secondary File (SSF), and,executes in '600 nanoseconds.

The following commands provide for loading eight-bit literals into
registers.

LT LOADT

11 Literal

151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the eight-bit literal field are placed in the T Register. The
condition flags and LI NK are not affected.

LM ,LOADM"

12 Literal

151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the eight-bit literal field are placed in the M Register at a
time when the memory is not busy. The condition flags and LINK are not
affected. '

326

LN LOAD N

13 Literal

1514131211 10 9 8 7 6 5 4 3 2 1 0

The contents of the eight-bit literal field are placed in the N Register and
the M Register is cleared at a time when the memory is not busy_The
condition flags and LINK are not affected_

JP JUMP

14/15/1C/1D Address

1514131211109876543210

The contents of the eight-bit address field are placed in the eight low-order
bits of the L Register, bits 8 and 11 of the command are placed in bits 8
and 9 of the L Register respectively_ Bits 10 through 12 of the L Register
and the optional control memory bank select register remain unchanged.

, The location of the next command is the address specified by the new
contents of the L Register. These jump commands provide for jumping
within a four-page block of 1024 words whose starting address is zero
modulo 1024. The assembler program selects the proper command code
from the address which must be in the 1024-word block cpntaining the
c9mmand. The command executes in 400 nanoseconds. '

LU LOAD U

16 Literal

1514131211109876,543210

The contents of the eight-bit literal field are placed in the U Register. The
condition flags and LINK are not aHected. Due to look-a-head access
method of the control memory, the new contents of the U Register are not
available for command modification during the machine cycle immediately
following the Load U command.

327

LS LOAD SEVEN CONTROL

17 Literal

1514131211109876543210

The individual bits of the literal field control independent functions. Any
number of bits in the literal field may be one's. A number of the control
functions are given mnemonics and are described later in this section. The
function of each bit is as follows:

Bit
Position

o
1
2
3
4
5
6
7

, Function

(unassigned and unavailable)
(unassigned and unavailable)
Disable External Interrupts
Enable External Interrupts
Disable Real Time Clock
Enable Real Time Clock
(unassigned and unavailable)
H~lIt Processor

DEI DISABLE EXTERNAL INTERRUPTS

1704

151413121110 9 8 7 6 5 4 3 2 1 0

This command causes the external interrupt system to be disabled"
Interrupts are not lost when the interrupt system is disabled, but cannot be
recognized by the processor.

EEl ENABLE EXTERNAL INTERRUPTS

1708

1514131211 10 9 8 7 6 54 3 2 1 0

The external interrupt system is enabled allowing the processor to
recogn ize external interrupts.

DRT DISABLE REAL-TIME CLOCK

1710

151413121110 9 8 7 6 5 4 3 2 1 0

The real-time clock and interrupt are disabled.

328

'1

ERT ENABLE REAL-TIME CLOCK

I 1720

151413121110 9 8 7 6 5 4 3 2 1 0

The real·time clock and interrupt are.enabled. The first interrupt will occur
after a full interrupt interval.

HLT HALT

1780

151413121110 9 8 7 6 5 4 3 2 1 0

The processor is halted stopping all microcommand execution. However,
the Direct Memory Access channel, if activated, will continue its operation
until completion.

LE LOAD EIGHT CONTROL

18 Literal

151413121110 9 8 7 6 5 4 3 2 1 0

This command is not implemented in the standard MICRO 1600. It can be
defined for special user applications employing techniques similar to those
used in Load Zero Control Group and Load Seven Control Group.

RL T RETURN AND LOAD T

19 Literal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This command combines the functions of Return (RTN), and Load T (L T)
and executes in 600 nanoseconds. .

MLC MODIFY LOWER COMMAND

1AOO

151413121110 9 8 '7 6 5 4 3 2 1 0

This command causes the contents of the Output Data Buffer to' be
ANDed with 8 low·order bits of the. next command accessed from the
control memory. If the IC Register is set to 0, the contents of the Output

329

Data Buffer will be the same as the T Register. If the IC Register is not set
to 0, the Output Data Buffer will contain the value that was in the T
Register at the time the I C Register was set non-zero.

ILS INHIBIT L SAVE

1800

1514131211109876543210

This command inhibits the saving of the L Register in the L Save Register
or the Bank Select Register and the L Register in the cu-frent level of the L
Save stack until execution of a Return command.

ISP INCREMENT STACK POINTER (optional)

1801

1514131211 10 9 8 7 6 5 4 3 2 1 0

The contents of the four-bit stack pointer register are incremented by one
to select the next level in the stack for saving the contents of the L
Register during the next Jump Extended. If the modified contents of the
register are greater than 15, bit 6 in file 0 will be set; otherwise it will be
reset,

DSP DECREMENT STACK POINTER (optional)

1802 I
151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the four-bit stack pointer register are decremented by one
to select the previous level in the stack for a return operation. If the
modified contents of the register are less than zero, bit 6 in file 0 will be
set; otherwise it will be reset.

330

CSP CLEAR STACK POINTER (optional)

1804

1514131211109876543210

The contents of the four bit stack pointer register are set to zero.

BSL BANK SELECT (optional)

1808

151413121110 9 8 7 6 5 4 3 2 1 0

The bank select register is set to zero selecting the first 4096-word bank of
control memory. The actual selection of the new bank takes place when
the next Jump Extended command is executed. As s~'own below,
variations of this command are used to select up to four individual banks.

BSL 0 1808 Select bank 0 (0-409'5)

8SL 1 1809 Select bank 1 (4096-8191)

8SL 2 180A Select bank 2 (8192-12,287)

8SL 3 1808 Select bank 3 (12,288-16,383)

SSP SELECT STACK POINTER (optional)

1890

1514131211 10 9 8 7 6 5 4 3 2 1 0

This command causes loading and reading of the four-bit Stack Pointer
Register. Execution of this command with the IC Register cleared causes
the contents of the four low-order bits of the T Register to be placed in
the stack pointer. Execution of this command following a stack input
command places the contents of the stack pointer on the four low-order
bits of the input bus.

331

SSU SELECT STACK UPPER (optional)

I 1BAO

1514,131211109876543210

This command causes loading and reading of the upper seven bits of the
selected L Save Stack register. Execution of this command with the IC
Register cleared causes the contents of the T Register to be placed in the
upper seven bits of the current L Save Stack level. Execution of the
command following a stack input command places the contents of the
upper seven bits of the current L Save Stack level on the input bus.

~SL SELECT STACK LOWER (optional)

1BCO

1514131211109.876543210

This command causes loading and reading of the lower eight bits of the
selected L Save Stack register. Execution of this command with the Ie
Register cleared causes the contents of the T Register to be placed in the
lower eight bits of the current L Save Stack level. Execution of the
command following a stack input command places the contents of the
lower eight bits of the current L Save Stack Level on the input bus.

LF LOAD FI LE REGISTER

2 f Literal

151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the eight-bit literal field are placed in the file register
designated 'by f. Since file (egister 0 is not used for general storage, it is not·
to be loaded by this command. The condition flags and LINK are not
affected.

AF ADD TO FILE REGISTER

I 3 Literal

151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the eight-bit literal field are added to the contents of the
file register designated by f. Since file register 0 is not used for general
storage, it is not altered by this command. Two's complement subtraction
may be performed by placing' the two's complement of the operand in the
literal field. The condition flags and LINK are not affected.

332

The following three test commands provide for arithmetic comparison and
logical testing of bits. When the compare or test condition is met the next

. command in sequence is treated as a no operation, and there is a delay of
200 nanoseconds before executing the next command.

TZ TEST IF ZERO

4 f I Literal

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

If, for all the one bits of the literal field, the corresponding bits of the file
register designated by f are zero, the next command is not executed. This
command performs the logical product of the literal and the contents of
the file register and tests for zero result. The condition flags, LINK and
designated file register are not affected.

TN TEST I F NOT ZERO

5 f Literal

1514131211109876543210

If, for anyone bit in the literal field, the corresponding bit of the file
register designated by f is also a one, the next command is not executed.
This command performs a logical product of the literal and the contents of
file register and tests for not zero. The condition flags, LINK and
designated file register are not affected.

CP COMPARE

[6 f Literal

1514131211109876543210

If the sum of the contents of the literal field and the file register
designated by f is greater than 255, the next command is not executed.
The condition flags and designated file register are not affected. The LINK
stores the carry out of the adder. This means that if the skip is not taken,
the content of LI N K will be a 0, or if the skip is taken, the content of
LI N K will be set to a 1.

333

All forms of command seven unconditionally update the arithmetic
condition codes in file 0, but do not affect the LINK. A destination of
seven is undefined for these commands. In other words, the U Register
may not be used to modify the command. All permissible variations of the
basic command seven are explained. Unlisted c field values, (bits 7-4), are
not assigned assembler mnemonics and will not be executed by the
simulator.

The following four commands provide special data flow operations.

ESS ENTER SENSE SWITCHES

71 f 1 H
151413121110987654321 0

The status of the four console sense switches, with four low-order one bits
appended, are placed in the file register designated by f; if * is zero, and in
the register designated by r. The status of a switch is a one, when the
switch is set.

SRF SHIFT RIGHT FOUR

7 f

1514131211 10 9 8 7 6 5 4 3 2 1 0

The four high-order bits of the file register designated by f are placed in
the four low-order bits of that file, if * is zero, and in four low-order bits
of the register designated by r. The four high order bits of the result are set
to ones.

EIS ENTER INTERNAL STATUS

7

1514131211109876543210

The eight internal status bits are placed in the file register designated by f,
if * is zero, and in the register designated by r. The internal interrupt flag
in file 0 is reset by this command, along with the console .interrupt, real
time clock, and power fail/restart status bits. Console step is reset upon
release of the console switch and spare bits are controlled according to
their individual implementation in hardware.

334

ECS ENTER CONSOLE SWITCHES

7070

'4131211109876543210

The contents of the eight low-order console command switches are ANDed
with the eight low-order bits of the next command_ The value of a switch
is a one, when the switch is set_ If the switch is either not set, or, as in the
case of a basic panel, not there, its value is a zero_ File register 0 and
destination register 0 must be selected because data movement is not
permitted:

The command could be used to implement eight additional sense switches_
This is done by following the Enter Console Switches command with a
Load Register or Load File command that has a literal value of all ones.

335

The next eight command descriptions explain control of the input/output
buss for standard Microdata peripheral controller:s. If a system is to contain
only special controllers, these signals could bel assignee! any desired
function subject to the following rule. Whenever the value in the I/O
,Control Register (lC), is set to four, five, six, or seven, the input bU'ss is
enabled in the CPU. This means that the input buss will be substituted for
the T Register by any command that selects the T Register or its
complement.

CIO CLEAR I/O

7 f

1514131211109876543210

- A value of 0 is placed in the I/O Control Register (lC), which removes all
control signals from the I/O buss. This places the buss in the no activity
mode. All standard Microdata peripheral controllers requ ire the K Register
to return to the zero state after each non-zero setting. When the current
contents of the IC Register is 0, 1,2, or 3, the file register designated by f
is moved to the register designated by r. When the current contents of the
IC Register is 4, 5, 6, or 7, the contents of the input buss are ANDed with
the file register designated by f. The result is placed in the, file register, if *
is zero, and in the register designated by r.

COX CONTROL OUTPUT

7 f

1514131211109876543210

A value of 1 is placed in the ,IC Register which enables the control output
signal until removed by a Clear I/O command. The contents of the file
register designated by f are moved to the register designated by r.

DOX DATA OUTPUT

7 f A H r I
1514131211 i 10 9 8 7 6 543210

A value of 2, is placed. in the I C Register which enables the data output
signal until removed by a Clear I/O command. The contents of the file
register deSIgnated by f are moved to the register designated by r.

336

SOX SPARE OUTPUT

7 f

151413121110 9 8 7 6 5 4 3 2 1 0

A value of 3 is placed in the IC Register which enables the spare output
signal until removed by a Clear I/O command. This command also removes
the MAR King current from the serial I/O channel causing a SPACEing
condition. The contents of the file register designated by f are moved to
the register designated by r.

CAK CONCURRENT ACKNOWLEDGE

7 f c H r I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A value of 4 is placed in the IC Register which enables the concurrent
acknowledge signal until removed by a Clear I/O command. Upon removal
of this signal, the requesting controller will reset the concurrent request
flag bit in file O. The contents of the file register designated by f are moved
to the register designated by r.

IAK INTERRUPT ACKNOWLEDGE

7 f

151413121110987654321 0

A value of 5 is placed in the IC Register which enables the interrupt
acknowledge signal until removed by a Clear I/O command. Upon removal
of this signal, the requesting controller will reset the external interrupt
request flag bit in file O. The contents of the file register designated by f
are moved to the register designated by r.

DIX DATA INPUT

7 f E H r
1514131211109876543210

A value of 6 is placed in the IC Register which enables the data input signal
until removed by a Clear I/O command. The contents of the file register
designated by f are moved to the register designated by r.

337

SIX STACK INPUT

f

1514131211 10 9 8 7 6 5 4 3 2 1 0

A value of 7 is placed in the IC Register which enables the stack input
signal until removed by a Clear I/O command. If the L Save stack is not in
the machine, this signal may be used as a spare input.

338

The following commands operate on a specified file register. In addition
some other operation such as input or memory control may take place.
Some commands in this section are adaptations of others. For example,
the Increment command is a form of the Add command. These
adaptations are provided with their own mnemonics because of their
frequent use and to simplify programming.

ADD ADD

8 f

1514131211109876543210

The su m of the contents of the file register designated by f and the
selected operand is formed. The sum is placed in the file register if * is zero
and in the register designated by r. The state of the carry out of the
high-order bit position of the adder is placed in LINK. The five Modifier
bits perform the following control:

L - Link Control: The content of LINK is added to the sum. When
this flag is a one the zero condition flag can be reset but not
set. This allows for propagation of the zero test over multiple
byte operations, the first of which would have this bit off.

I - Increment: One is added to the sum.

T - Select T: The contents of the T Register or the input bus is
selected as the B-bus operand. If this bit is off the operand is
zero.

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The result is not placed in the file register.

INC INCREMENT

8 f

15141312111098 76 543 2 1 0

This command is a form of the Add command. The contents of the file
register designated by f are incremented and the result is placed in the file
register if * is zero and in the register designated by r. The state of the
carry out of the high-order bit position of the adder is placed in Ll NK. The
two modifier bits perform the following control:

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The result is not placed in the file register.

339

SBT SUBTRACT (Two's complement)

1514131211 10 9 8 7 6 5 4 3 2 1 0

The two's complement difference of the contents of the file register
designated by f and the selected operand is formed. The difference is
placed in the file register if * is zero and in the register designated by r.
The state of the carry out of the high-order bit position of the adder is
placed in LI N K. The four modifier bits perform the following control:

L - Link Control: The content of LINK is added to the one's
complement difference. When this flag is a one the zero
condition flag can be reset but not set. This allows for

, propagation of the zero test over multiple byte operations,
the first of which would have this bit off.

T - Select T: The contents of the T Register or the Input Bus is
selected as the B Bus operand. If this bit is off the operand is
zero.

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The result is not placed in the file register.

SBO SUBTRACT (One's complement)

I 9

1514131211 10 9 8 7 6 5 4 3 2 1 0

The one's complement differenc'e of the contents of the me register
designated by f- and the selected operand is formed. The difference is
placed in the file register if * is zero and in the register designated by r.
The state of the carry out of the high-order bit position of the adder is
placed in LI N K. The four modifier bits perform the following control:

L - Link' Control: The content of LINK is added to the difference.
When th is flag is one the zero condition flag can be reset but
not set. This allows for propagation of the zero test over
multiple byte operations, the first of which would have this
bit off.

T ~ Select T: The contents of the T Register or the Input Bus is
selected as the B Bus operand. If this bit is off the operand is
zero;

i
C - Condition Flag Update: The condition flags are updated according

to the result of the current operation.

* - File Write Inhibit: The result is not placed in the File register.

340

DEC DECREMENT

151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the file register designated by f is decremented by one and
the result is placed in the file register if * is zero and in the register
designated by r. The state of the carry out of the high-order bit position of
the adder is placed in LINK. The two modifier bits perform the following
control:

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The result is not placed in the file register.

RMF READ MEMORY, FULL CYCLE

A f I m H1~lr I
151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the file register designated by f in unaltered, incremented
or decremented form as determined by m, is placed in the file register if *
is zero and in the register designated by r. The condition flags and LINK
are not affected. Subsequently a full cycle memory read is initiated at the
location specified by the contents of the M and N Registers. Command
execution is delayed if the memory is busy when the command is accessed.
The T register is set to zero and the accessed data is placed into it 400
nanoseconds after the command is executed. The addressed memory
location is left unaltered.
The contents of the file register are modified as follows:

m
No flag 00 - The contents of the selected file register are transferred

unaltered to the specified destination register.

o 01 - Decremented: The contents of the file register minus 1
. are routed as specified unless the M register is specified

to receive the result. When the M register is selected the
contents of the file register, minus 1, plus the content of
LI N K are routed.

L 10 - Add Link: The content of LINK is added to the contents
of the file register and the sum is routed as specified.

11 - Increment: The contents of the file register is
incremented by 1 and the result is routed as specified.

341

RMH READ MEMORY, HALF CYCLE

A f

1514131211109876543210

The contents of the file register designated by f in unaltered, incremented
or decremented form as determined by m, is placed in the file register if *
is zero .and in the register designated by r. The condition flags and LINK
are not affected. Subsequently a half cycle memory read is initiated at the
location specified by the contents of the M and N Registers. Command
execution is delayed if the memory is busy when the command is accessed.
The T register is set to zero and the accessed data is placed into it 400
nanoseconds after the command is executed. The memory location is left
in an all one's condition.

The contents of the file register are modified as follows:

!!:!
No flag 00 - The contents of the selected file register are transferred

unaltered to the specified destination register.

D 01 - Decremented: The contents of the file register minus 1
are routed as specified unless the M Register is specified
to receive the result. When the M Register is selected the
contents of the file register, minus 1, plus the content of
LINK are routed. .

L 10 - Add Link: The content of LINK is added to the contents
of the file register and the sum is routed as specified.

11 - I ncrement: The contents of the file register is
incremented by one and the resu It is routed as specified.

342

WMF WRITE MEMORY, FULL CYCLE

I A

1514131211 10 9 8 7 6 5 4 3 2 1 0

The contents of the file register designated by f in unaltered, incremented
or decremented form as determined by m is placed in the file register if * is
zero and in the register designated by r. The condition flags anq LINK are
not affected. Subsequently a full cycle memory write operation is initiated
at the location specified by the contents of the M and N Registers.
Command execution is delayed if the memory is busy when the command
is accessed.

The data to be written must be in the T Register at the time the command
is executed, or must be entered into the T Register with the next
command. The T Register may be used for other uses with the second
command after the WMF.

The contents of the file register are modified as follows:

m

No flag 00 - The contents of the selected file register are transferred
unaltered to the specified destination register.

D 01 - Decremented: The contents of the file register minus 1
are routed as specified unless the M Register is specified
to receive the result. When the M Register is selected the
contents of the file register, minus 1, plus the content of
LINK are routed.

L 10 - Add link: The content of LINK is added to the contents
of the file register and the sum is routed as specified.

11 - I ncrement: The contents of the file register is
incremented by one and the'result is routed as specified.

343,

WMH WRITE MEMORY, HALF CYCLE

1514131211 10 9 8 7 6 5 4 3 2 1 0

The contents of the file register designated by f in unaltered, incremented
or decremented form as determined by m is placed in the file register if * is
zero and in the register designated by r. The condition flags and LINK are
not affected. Subsequently a half cycle memory write operation is initiated
at the location specified by the contents of the M and N Registers.
Command execution is delayed if the memory is busy when the command
is accessed. The data to be written must be in the T Register' when the
command is executed. The contents of the addressed memory location
must be all one bits for a proper write to take place, because there will be
an ANDing of the original contents of the memory location- and the
contents of the T Register. The T Register may be used for other purposes
with the first command after WMH.

The contents of the file register are modified as follows:

ill
No flag 00 - The, contents of the selected file register are transferred

unaltered to the specified destination register.

D 01 - Decremented: The contents of the file register minus 1
- are routed as specified unless the M Register is specified

to receive the result. When the M Register is selected the
contents of the file register, minus 1, plus the content of
LINK are routed.

L 10 - Add Link: The content of LINK is added to the contents
<:>f the file register and the sum is routed as specified.

11 - Increment: The contents of the file register are
incremented by.one and the result is routed as specified.

344

Cpy COpy

1514131211 10 9 8 7 6 5 4 3 2 1 0

The selected operand is placed in the file register designated by f'if * is
zero and in the register designated by r. The LINK is not affected. The 5
modifier bits perform the following control:

L - Link Control: The content of LINK is added to the operand.
When this bit is a one the zero condition flag can be reset but
not set. This allows for propagation of the zero test over
multiple byte operations, the first of which w6'uld have this
bit off.

I - Increment: One is added to the operand.

T - Select T: The contents of the T Register or the input bus is
selected as the B Bus operarid. If this bit is zero the operand is
zero.

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation ..

* - File Write Inhibit: The result is not placed in the file register.

ZOF ZERO FILE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A value of zero is placed in the file register designated by f if * is zero and
in the register designated by r. The LINK is not affected. The two modifier
bits perform the following control:

C - Condition Flag Update: The condition flags are updated according
to the zero data.

* - File Write Inhibit: The zero is not placed in the file register.

345

POF PLUS ONE TO FILE

151413121110 9 8 7 6 5 4 3 2 1 0

A value of plus one is placed in the file register designated by f if * is zero
and in the register designated by r. The LI N K is not affected. The two
modifier bits prefer the following control:

C - Condition Flag Update: The condition flags are cleared.

* - File Write Inhibit: The plus one is not placed in the file register.

LOR LOGICAL OR

1514131211109876543210

The logical inclusive-OR of the contents of the file register designated by f.
and the selected operand is placed in the file register if * is zero and the
register designated by r. The LINK is not affected. The five modifier bits
perform the following control:

L - Link Control: When this bit is a one the zero condition flag can be
reset but not set. This allows for propagation of the zero test
over multiple byte operations, the first of which would have
this bit off.

F - Select T Complement: The one's complement of the contents of
the T Register or input bus are selected as the B Bus operand.
If the T Register is also selected the effective operand
contains all one's.

T - Select T: The contents of the T Register or the Input Bus is
selected as the B Bus operand. If both the T and F bits are off
the selected operand is zero. '

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The result is not placed in the file register.

346

MOV MOVE

151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the file register designated by f are moved to the register
designated by r. The LINK is not affected. The three modifier bits perform
the following control:

L - Link Control: When this bit is a one the zero condition flag can be
reset but not set. This allows for propagation of the zero test
over multiply byte operations, the first of which would have
this bit off.

C - Condition Flag Update: The condition flags are updated according
to the contents of the file register.

* - File Write Inhibit: The result is not placed in the file register ..

XOR EXCLUSIVE-OR

D f ILHTlcH r I
1514131211109876543210

The exclusive-O R of the contents of the file register designated by f and
the selected operand is placed in the file register if * is zero and in the
register· designated by r. The LI N K is not affected. The five modifier bits
perform the following control:

L - Link Control: When this bit is a one the zero condition flag can be
reset but not set. This allows for propagation of the zero test
over multiple byte operations, the first of which would have
this bit off.

F - Select T Complement: The one's complement of the contents of
the T Register or Input Bus are selected as the B Bus operand.
If the T Register is also selected the effective operand
contains all one's.

T - Select T: The contents of the T Register or the Input Bus is
selected as the B Bus operand. If both the T and F bits are off
the selected operand is zero.

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The result is not placed in the file register.

347

AND AND

E f

1514131211 10 9 8 7 6 5 4 3 2 1 0

The logical product (AND) of the contents of the file register designated
by f and the selected operand is placed ·in the file register if * is zero and in
the register designated by r. The LINK is not affected. The five modifier
bits perform the following control:

L - Link Control: When this bit is a one the zero condition flag can be
reset but not set. This allows for propagation of the zero test
over multiple byte operations, the first of which would have
this bit off.

F - Select T Complement: The one's complement of the contents of
the T Register or Input Bus are selected as the B Bus operand.
If the T Register is also selected the effective {)perand
contains all one's.

T - Select T: The contents of the T Register or the Input Bus is
selected as the B Bus operand. If both the T and F bits are off
the selected operand is zero.

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The result is not placed in the file register.

SFL SHIFT LEFT

F

1514 131211 10 9 8 7 6 5 4 3 2 1 0

The contents of the file register designated by f are shifted one bit position
to the left and placed in the file register if * is zero and the register
designated by r. The high-order bit which is shifted out is placed in LINK.
A zero or the content of LINK is shifted into the vacated bit position as
determined by the L modifier bit. The three modifier bits perform the
following controls:

L - Link Control: LINK content is shifted into low-order bit of result.
When this bit is a one the zero condition flag can be reset but
not set. This allows for propagation of zero. test over multiple
byte operations, the first of which would have this bit off.

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The shifted register contents are not placed in
the file register.

348

SLI SHIFT LEFT AND INSERT

15141312111() 9876543210

The contents of the file register designated by f are shifted 1 bit position
to the left and placed in the file register if * is zero and the register
designated by r. The high-order bit which is shifted out is placed in LINK.
A one is inserted in the vacated low-order bit position. The two modifier
bits perform the following control:

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The shifted register contents are not placed in
the file register. .

SFR SHI FT RIGHT

I F

151413121110987654:3 2 10

,The contents of the file register designated by f are shifted one bit position
to the right and placed in the file register if * is zero and the register
designated by r. A zero or the content of LINK is shifted into the vacated
bit position as determined by the L modifier bit. The low-order bit which
is shifted out is placed in LINK. The three modifier bits perform the
following control:

L - Link Control: LINK content is shifted into low-order bit of result.
When this bit is a one the zero condition flag can be reset but
not set. This allows for propagation of zero test over multiple
byte operations, the first of which would have this bit off.

C - Condition Flag Update: The condition flags are updated according
to the result of the current operation.

* - File Write Inhibit: The shifted register contents are not placed in
the file register.

349

SRI SHIFT RIGHT AND INSERT

1'514131211109876543210

The contents of the file register designated by f are shifted 1 bit position
to the right and placed in the file register if * is zero and the register
designated by r. A one is inserted into the vacated high-order bit position.
The low-order bit which is shifted out is placed in LINK. The two modifier
bits perform the following control:

C - Condition Flag Update: The condition flags are updated according
to the result .of the current operation.

* - File Write Inhibit: The shifted register contents are not placed in
the file register.

350

The two Execute commands are special commands which cause the eight
high-order bits of the U Register to be ORed with the eight high-order bits
of control memory output. The OR ing is performed before the command
is gated into the R register. The actual command executed is a
combination. of the bits in the U Register and those read out of control
memory. The Execute command is designated by zero in the four
high-order bits of the command in control memory. An effective command
with zeros in these bits is a Jump Extended. The 12 remaining bits of the
Execute command can be coded as needed. The same effect as the Execute
command can be obtained by coding destination register 7 on operate
commands.

The Execute command is used for command modifications generally to
save.on the number of commands needed in a program. Three uses of this
feature are:

• Indexing of file registers in a loop.
• Selection of alternate file register depending on program variables.
• Performing different functions such as load, add, subtract etc. in a

common string of coding.

An example is shown below. The X'81' contents of the U Register merge
with the execute command in control memory to form an Add to file
register 5.

U Register
Control Memory
Effective Command

'81'
'0420'
'8520'

EOT EXECUTE, OPERATE TYPE

o I fo I c H r I
1514131211109876543210

The eight-bit contents of the U Register are ORed with the eight
high-order bits of the command to form an effective command which is
then executed. The f, C, *, and r fields are used as described for the desired
effective command. In coding the c-field bits any modifier may be used.

EL T EXECUTE, LITERAL TYPE

0, f Literal

1514131211 10 9 8 7 6 5 4 3 2 1 i)

The eight-bit contents of the U Register are ORed with the eight
high-order bits of the command to form an effective command which is
then executed. The f and Literal fields are used as described for the desired
effective command.

351

CHAPTER 4

CONTROL PANEL OPERATION

The MICRO 1600 system console control panel (Figure 2) provides for
control of the running of the processor, display of register contents and
execution of commands. The panel is very useful in debugging micro­
programs and can also be used for macro level machine control and
software debugging. The control panel can be replaced by a minimum basic
console con~rol panel which eliminates the display and manual command
execution.
All console panels are pluggable and fully interchangeable without
modification of the computer.

SYSTEM CONSOLE

The system console provides control plus a selectable display of all
hardware registers in -the machine including the fiies. It is designed for
maintenance operations and for installations where system development
and firmware checkout is being performed.

I::~JC~'~~II~'~~~II~'D'~~I i G
8

COMMAND SWITCHES
0

RU", $Te:~ INT CLOCK R£S£T "ANEL . , , ,
.:"9 1000001 IQ] 100001 I RUN I HALT ILDCK IPANELI
0"

I I I

Figure 2. MICRO 1600 System Console

DISPLAYS

Data Display
The 16-bit data indicators (16 lamps on console) display the 8-bit A Bus,
Memory Address, 16-bit Control Memory Output, or 12-bit Control
Memory Address as selected by the Display Selector switches.

352

Run

The RUN indicator is on when the processor is running.

Halt

The HALT indicator is on when the power is applied and the processor is
not running.

Lock

The LOCK indicator is on when the panel is disabled.

Panel

The PANEL indicator is on when the command switches are enabled and
substituting for the control memory.

Scan

The SCAN indicator is on when in the SCAN mode. This takes place with
the PANEL switch off and command switch 14 is on.

Address Stop

The ADST indicator is on when command switch 15 is in the down
position indicating that the C - Address stop operation is enabled.

SWITCHES

Display Selector

The four interlocked switches located in the upper right hand corner select
one of the four displays as follows:

D - Data: This 8-bit display is the processor's A Bus. The data on the
A bus when the processor is halted and in the panel enable
mode depends on the setting of the command switches.

M Memory Address: This 16-bit display is of the memory address
lines. This is normally the contents of the M and N registers.

L Control Memory Address: This 12 display is the contents of the
L Register.

C Control Memory: This 16-bit display is of the output of the
control memory. When the processor is halted the R Register
contains the same data.

Command Switches

These 16 locking switches are substituted for the control memory when
the PANEL switch is in the down position. When the processor is halted
the switch setting is constantly clocked into the R Register and depressing
the CLOCK switch causes the command set in the switches to be executed.
The command may also be executed repeatedly by depressing the RUN
switch. These switches are used to gate registers onto the A Bus for display
and for entering data into registers.

353

Panel Switch

This locking switch selects the source of commands. When in the normal
up position the control memory is used and when in the down position the
16 command' switches on the panel are substituted for' the control
memory.

Sense Switches

The four locking sense switches are available on the control panel. These
switches may be read by an Enter Sense Switch command.

Run

This momentary contact switch places the processor in the run mode
causing it to execute microcommands.

Step

This momentary contact switch places the processor in the run mode and
as long as the switch is depressed causes an internal interrupt. The halt
internal interrupt is bit 7 of the internal status. This switch is normally
microprogrammed to cause a processor halt. Since the processor is forced
to run when the switch is depressed, the machine can be microprogrammed
to cause a single macro instruction to be executed.

Interrupt

This momentary contact switch places the processor in theruri mode and
causes an internal interrupt. The console interrupt .is bit a of the internal
status. This switch is normally microprogrammed to cause a console
interrupt.

Clock

This momentary contact switch causes the processor to execute a single
microcommand. If the processor is running at the time the switch is
depressed, the processor will come to a forced halt following the current
microcommand execution. .

Reset

This momentary contact switch halts the processor and clears the L
register, I/O control register and other control flip-flops. The reset is made
available to I/O devices. Since the current microcommand execution will
not be completed, the computer should not be stopped by this switch.

On-Oft-Lock

A three-position key lock switch applies power and disables the panel. The
key can be removed in any position. In the OFF position AC power is
turned off. In the ON position power is applied and the panel is active. In
the LOCK position power remains on, but the panel switches are not active
except for the sen.se switches.

Control Memory Scan

When the PANEL switch is off and command switch 14 is depressed the ,
354

processor is in a control memory scan mode and the SCAN indicator is
turned on. This mode allows advancing the LRegister without executing a
command by depressing the CLOCK switch. In this manner the operator
can sequentially step through control memory addresses and view its
contents on the data display indicators.

L-Address Stop

The processor can be stopped at a particular control memory L-address.
Command switch 15 enables the L-address stop mode. The AST indicator
is lighted as long as commal1d switch 15 is actuated.

The twelve command switches (11 through 0) are set to the L-address at
wh ich a stop is desired and command switch 15 is depressed to enable the
address stop. When the contents of the L-register are the same as the
address set into the command switches, the address stop sequence is
activated. The processor will halt at an L-address depending upon the
following conditions:

• Selected L-address location contains micro command not requiring
skips or jumps and the program executes this command, the
prpcessor halts at selected L-address plus one.

• Selected L-address location contains a skip type micro command
(TZ, TN, CP) and micro program executes this command, the
processo"r halts at selected L-address plus one when skip is not taken
and will halt at selected L-address plus two when skip is taken.

• Selected L-address location contains a jump type micro command
and the program executes this command, the processor halts at
L-address specified by the address field of this command, or in case
of return jump type, by contents of the L-Save register.

However, when the micro command preceding the jump type
command is a skip type and the skip is taken, that is, jump type
command is not executed; the processor halts at selected L-address
plus one.

• Selected L-address location contains Execute or Modify Lower
Command (MLC) type micro command and micro program
executes this command, the processor halts at selected L-address
plus one without executing this command.

• When selected L-address specifies location of micro command
following an Execute or MLC command, this command is
modified and executed. The processor then halts at L-address
location which is dependent upon effective command derived
from modification.
L-address stop will not operate if the selected L-address stop
location is the starting address location of the micro program
(from which the processor is set to run mode from the halt mode)
or if the micro program does not jump back to this address.

Address Sync

A sync jack is mounted on the rear of the front panel for maintenance
purposes. A positive pulse of 200 nanosecond duration is obtained when
the contents of the L Register are the same as the address set into
command switches 14-0.

355

REGISTER DISPLAY AND ENTRY

Display

The processor registers can be displayed directly by selecting the proper
display selector or indirectly by use of commands set into the command
switches to cause the register to be gated to the A Bus where it can be
displayed by selecting '0'.

The R, U, MD and OD Registers cannot be displayed, but the R Register
will hold the same information as on the R Bus when the processor is
halted. The M, Nand L Registers can be displayed by selecting them with
the display selector.

The file registers, T Register and LINK can be displayed indirectly by
setting t~e commands shown below into the command switches and
selecting the data display (A Bus).

Enter

Register

Selected File Register X

T Register

LINK (AL)

LINK (ML)

Command Setting

CXOO

B020

B080

B082

Information can be entered into a register by executing a command from
the panel. This requires turning on the PANEL switch, setting the
command into the command switches and pressing the CLOCK switch. In
addition control functions such as interrupt enable or file select can be
performed by executing the appropriate command. The commands for
placing the literal 'zz' in a register are shown below:

Register Command

T 11ZZ

IV! 12ZZ

N 13ZZ

U 16ZZ

File Register X 2XZZ

L / OZZZ (U Register must
be cleared)

356

CHAPTER 5

MICRO ASSEMBLER PROGRAM

The Micro Assembly Program, MAP1600, is a two-pass symbolic program
which assembles MICRO 1600 microprograms on MICRO 820, 821,
1600/20 or 1600/21 computers with 8K bytes of core memory. The basic
assembler is designed for use on ASR33 teletype with paper tape reader
and punch. Other versions of the program permit use of a high-speed paper
tape reader and punch, a card reader, or a line printer.

Output from the assembler consists of an assembly listing and a binary
program tape. This program tape is used as the input to the Micro 1600
simulator, SIM1600, for static environmental checkout and, if necessary,
as input into the electrically alterable read only memory system,
AROS1600, for system checkout in a dynamic environment. When a final,
debugged, version of the microprogram is assembled, the program tape is
the input to a utility program, ICM1600, that generates the memory maps
necessary for manufacturing of either bipolar integrated circuits or field
programmable read-only memories.

The M~P1600 assembly language includes the following features:

Address Arithmetic - Decimal and hexadecimal numbers, symbolic
addresses, and arithmetic expressions.

\

Listing Control - The format of the listing is automatically controlled
and comment statements may be included.

Diagnostics - Diagnostics for source statement errors are included in
the output listing.

SOURCE LANGUAGE

The source language is a sequence of symbolic commands called
Statements, which are punched on paper tape or cards. Each statement
may consist of from one to four entries: a name field, an operation field,
an operand field, and a comments field. The maximum length of a
statement is 72 characters.

Source program paper tapes that are prepared off-line on a teletype may be
in a free form format. This means they may have one or more spaces
between fields. All paper tape statements must be terminated by a carriage
return, line feed, and two rub-out characters. If the first character of a
statement is a left arrow +-, it is treated as an end of tape indicator and the
assembler will halt to permit another tape to be inserted before continuing.
This allows large programs to be separated into several smaller tapes to .
make editing easier. Source program tapes also may be prepared using the
Tape Editor; the tapes will be in a compressed format that removes strings.
of blank characters.

357

STATEMENT FORMAT

Name Field

The name field entry is a symbol composed of from one to six characters
starting with character position 1 and terminating with the first blank.
Only the first three characters are retained, therefore, they must be
unique. The first character· of a symbol is alphabetic or a period;
subsequent characters may be alphabetic, numeric or a period. A 'name
entry is usually optional and the type of command determines the legal
content of the name field. The symbol takes on the current value of the
assembler's location counter unless assigned another value by an assembler
instruction. When an asterisk (*) appears in character position 1, the
remainder of the line is considered as comment and is not processed by the
assembler except to place it on the listing.

Operation Field

The operation field entry consists of a two or three-character mnemonic
operation code specifing the machine command or assembler instruction.
Class one commands may use a special symbol (*) suffixed to the
mnemonic which 'indicates that updating of the source file is to be
inhibited. All other commands are followed by blanks. The field begins
with the first non blank character following the name field in paper tape or
with column 8 in cards, and is a minimum of 4 characters in length. Two
or three character commands are considered to have a blank as the third
and fourth character of the mnemonic.

Operand Field

The operand field entries identify and describe registers of data to be acted
upon by a command. One or more operands may be written, depending on
the needs of the command. No blanks may appear within the operand
field. In the classes of commands requiring source file operands, a comma
is required to separate the source file operand from any following operand
entries. The operand field may start anywhere between 'the first and third
characters following the operation field. When punched in cards,
column 14 is the normal column. It is terminated by the first blank.

C-Field Designators

C-Field· designators are only allowed in Class One commands. These
C-Field designators must be preceded by a source file operand and/or a
comma separator, and must proceed any destination register designator.
Only specific C-Field designators are allowed and the operation field
regulates their use. C-Field designators may be separated by commas for
clarity, if desired.

.358

Following are the legal C-Field designators:

Designator

C
T
F
I

D
L

Definition

Modify Condition Codes
Select T Register
Select T Complement
Add One/Increment
for Read/Write Memory
Decrement
Link Control/Add Link

Destination Register Designators

Bit Value

0001
0010
0100
0100
1100
0100
1000

The destination register designators are ·only allowed in Class One
Commands. If specified, it may follow either the C-Field designators, or
the source file operand if no C-Field designators are specified. The
destination register is enclosed by parenthesis.

Following is a list of the legal destination register designators enclosed by
parenthesis:

Designator

(T)
(M)
(N)
(L)
(K)
(U)
(5)

Inhibit Source File Update

T register
M register
N register
L register (even address pages)·
L register (odd address pages)
U register
Or U with command (op codes 8 to F only)

This indicator is only allowed by Class One commands. The indicator is an
asterisk (*) following the three character operation field. When punched
on cards, this indicator is located in column 11.

Comments Field

Comments describing the information about the program may be inserted
between the end of the operand field and column 72. All characters,
including spaces, may be uSed in writing a comment. If the listing is
printed on a teletype, only the first 53 characters of the source line are
printed.

OPERAND FIELD EXPRESSIONS

Source File and literal Expressions

Expressions in the operand field are made up of one or more terms which
are connected by + and - arithmetic operators. No parenthetical expres­
sions ·are allowed. Each term of the expression represents a value. Values
may be assigned by the assembler program (symbols). or they may be
inherent in the term itself (constants). The range of values depends on the
.operand and the command.

359

Symbols

A symbol is composed of one to six characters, but only the first three are
recognized, and therefore must be unique. The first character must be
alphabetic or a period; subsequent characters may be numeric, alphabetic,
or a period. I mbedded blanks are not allowed and the assembler stops
scanning the symbol with the first character which is not alphanumeric or
a period. A" symbols, except the special sYmbol (*) used in an operand
field, must be defined by a single appearance in the name field of
statement within the program.

Special Symbol

The special symbol (*) represents the momentary value of the assembler's
location counter. It may be used as any other symbol in an expression but
must never appear in the mime field.

Constants

The values of the constant terms are not assigned by the assembler
program but are inherent in the terms. There are two types of constant
terms: decimal and hexadecimal.

a. Decimal Constant

A decimal constant is an unsigned decimal number. The value must
be less than 65,536.

·b .. Hexadecimal Constants

A hexadecimal constant is an unsigned hexadecimal number of upto
four characters written as a sequence of hexadecimal digits. The
digits are enclosed in single quotation marks and preceded by the
letter X. Each hexadecimal digit represents a four-bit binary number.
The characters A through F are used to identify the hexadecimal
integers 10 through 15.

MACHINE COMMANDS

Machine commands occupy one word (16 bits) of read-only memory.
These commands are divided into five classes or formats. A" classes a"owa
name, operation, and comments field, while the operand field contents is
defined by class.

The five classes are defined as follows:

CLASS ONE

The Operation Field may contain the Source File update inhibit designator
(*). The operand field consists of: .

1. Source file Expressio'n (f)

2. C-Field designators .if allowed by the particular operation code. (c)

3. Destination register designator. (r)

The Operand field' must contain a Source file expression first and it must
be separated from the remaining operand field by a comma. Either or both

360

the C-Field designators and Destination register designator are then
specified if desired.

OP f c

15 14 1i 12 11 10 9 8 7 6 5 4

CLASS TWO

The operand field consists of:

1. Source file Expression (fl

2. Literal expression

t 321 0
Source File
Inhibit

The source file expression must be followed by a comma if a literal
expression follows. If no literal expression is specified it is assumed to be
zero. Only an 8-bit literal value is expressed in the object code.

OP Literal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

CLASS THREE

The operand field consists of a literal expression. Only an 8-bit literal value
is expressed in the object code.

OP Literal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

CLASS FOUR

The generic class of commands occupy all 16 bits of the microcommand
format.

OP

15 14 13 12 11 10 9 8 7 6 5 43 2 0

CLASS FIVE

The operand field is a literal expression of which the low-order 12-bit value
is expressed in the object code.

OP Literal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

The only Class Five Op Code mnemonic is JE.

361

ASSEMBLER INSTRUCTIONS

Five assembler instructions are included for control of the assembly
process and the output listing.

ORG - Set Location Counter

The ORG assembler instruction alters the setting of the location counter.
The name field entry, if any, will be assigned the value of the program
counter after it is altered. The operand field of ORG must contain an
expression whose value will be placed in the location counter. All symbols
in the expression must have been previously defined when the instruction
is first encountered. The next comma which places object code in the
program is forced to begin a new object record.

EQU - Equate Symbol

The EQU assembler instruction is used to define a symbol by assigning to
it the value of the operand field expression. Any symbols appearing in the
expression must have been previously defined when the instruction is first
encountered. A name field entry must be present.

DC - Define Constant

The DC assembler instruction is used to generate any 16-bit value in order
to create a command that is not symbolically recognized by the assembler.
The operand field may. contain any. expression.

EJE :.... Page Eject

The EJE assembler instruction is only recognized in Pass 2. When
encountered, it ejects the assembler listing to the next page and prints the
page heading. Two or more consecutive EJE statements yield only one top
of form operation.

END - End Assembly

The END assembler instruction terminates the assembly of a program and
must be the last statement in a source program. Any operand field entry is
ignored.

ASSEMBLY LISTING

A listing generated during the second pass of the assembly supplies a
side-by-side representation of source statements, generated object code,
control memory address of the command, and diagnostic messages. The
format locates the various items at fixed positions across the printed page
to produce a columnar organization. Print positions for listing are shown
below.

362

Printer Columns

1 - 4
6 - 15

17 - 18
20- 25
27 - 29
30
33-72

FORMAT

Contents

Memory address of assembled command.
Hexadecimal digits of one word of object code.
Diagnostic message identifiers.
Name field of source statement.
Operation code of source statement.
Source File update inhibit designator.
Operand field and comment section.

Sou rce paper tapes that are pu nched in the free form' or com pressed
format will be listed in above fixed form format.

ERROR FLAGS

Diagnostic messages are indicated by single character identifiers appearing
in colu mns 17 or 18. I f more than two errors are detected for a single
source statement, only the last two encountered will be listed. The
diagnostic symbols are as follows:

A - Address Error

This error occurs when an address expression in the operand field is
incorrectly written or the value is out of range for one of the operands. An
error flag will occur for each operand in error or out of range.

C - C-Field Error

This error occurs when an illegal C-Field designator is encountered with
class onecom'mands.

D - Destination Register Error

This error occurs when an illegal Destination register designator is
encountered with class one commands.

F - Name Table Full

This error occurs when the name table is full. The name or operand in this
statement was not entered into the table.

M - Multidefined Symbol Error

This error occurs when the symbol in the name field has been previously
defined by appearing in the name field of another instruction. During pass
1, this error references the statements with name field errors, while
operand field occurrences of the multidefined names are indicated on pass
2.

N - Name Field Error

This error flag occurs when the symbol in the name field starts with a
character other than alphabetic or period or contains a non-alphanumeric
or non-period character.

363

o - Operation Mnemonic Error

This error occurs when the assembler does not recognize the contents of
the operation field. A 16·bit zero value is assembled to allow patching.

R - Range Error

This error occurs when the expression in the operand field of a JP
operation is beyond the current 1 K blockof read·only memory.

S - Source File Error

This error occurs when the value of a Source file expression exceeds 15.

U - Undefined Symbol Error

This error occurs when the symbol encountered in an expression of the
operand field is not defined by an appearance in the name field.

PROGRAM TAPE FORMAT

The binary paper tape format generated by the assembler is shown in
Figure 3. This format allows for variable length records of up to 6410
16·bit microcommands. Each record contains a count of the number of
data bytes in the record, (2 bytes per command), the 15·bit address where
loading is to start, and a checksum byte. The last byte of each record is the
checksum. It is the summation of the byte count, load address, and data
bytes formed on a signed eight bit basis with any overflow added into the
least significant bit of the sum.

364

The END assembler instruction causes an end of tape record to be
attached. This record contains a byte count, load address, and checksum of
all zeros.

,CHANNELS

Ii CHANNELS 6~7

! I ~ CHANNEL 5 1, I CHANNELS 1-4

LEADER

LEADER/TRAILER OR AREA
OUTSIDE OF A RECORD

NOT USED WITHIN A RECORD
(RECORD MARK TO CHECKSUM)

CONTROLS PRINT SUPPRESSION
CONTAIN A HEXADECIMAL DIGIT

}-c- SEPARATOR
__ RECORD MARK (1 BLANK FRAME) j RECORD SIZE (VALUE OF 03)

- LOAD ADDRESS (VALUE OF 016A)

~ DATA BYTE (VALUE" OF AB)

f-- DATA BYTE (VALUE OF CD)
f-- DATA BYTE (VALUE OF EF)
~ CHECKSUM (VALUE OF 05)

rSEPARATOR
_ RECORD MARK (1 BLANK FRAME) t RECORD SIZE (VALUE OF ZERO) END OF TAPE

EXECUTION ADDRESS (VALUE OF 0000)

~ CHECKSUM (VALUE OF 00) "

TRAILER

Figure 3. Binary Paper Tape Format

SAMPLE LISTING

The two sample listings show the format of a listing and provides examples
of how to write each command type, literals, constants, and assembler
instructions. Nine types qf error conditions are also illustrated.

Upon completion of Pass 1, all undefined symbols will be printed. For the
programmers information, a list of all unused symbols will also be printed.

365

~'GE ~01

s
0 M~

~ 1
~ MLT
C
C
0
A

• A
U~DEFI~ED
OUT '
~G

NF

LF
.HO
LF
T~
ADD
I~C
~DV

LF
LF
LF
~A~ES

16r10'
AM,!
6.2
0.2
5,F
6.T
'7. (X)
3
4,
NF.

U~U3~D NA~ES •••••

PAGE 3~1

~H~ 20e.
~3~1 ~~~0 MLT
na2 0000 .~~

a~a3 2602 \
3~a' 3101
0U5 5002 "LT
~H6 ~5a0 c
U!, 864~ C
a!38 C700 0
~a09 1400 R
aaeA 230e A
aua 24a0 A
anc 250O V
0J00 2000 UA
aUE 0000

~a00 1026
~Ul 'UP
aU2 70Ae
Ual 8281
au. 8350

I',\SS

PASS 2

FILE ~uMaEq ,GT. IS
UNDEFIN~D M~EMO~IC

ILLEGAL ~"IE
MULTIPLE DEFINED ~A~E
ILLEGAL FOR ADD
ILLEGAL FO~ INCR!~ENT
ILLEGAL DESTINATION qEG
MISSING LITERAL
MUSING LITERAL
UNO. FILE, ~I3SING LIT,

EXAPPLE OF ALL ASSE~BLER ER~OR
DIAGNOSTICS EXCEPT NAME TAel,.! FULL

LF I6,U0 FILE NU~BER ,GT, 15
JE OUT UNDEFINED SY~SOL
WHO A~,I UNDEFINED MNEMONIC
LF 6,2 ILLEGAL NA~E
AF 7,MLT MULTI~L~ DEFINED NAME
TN 0,2 MULTI~LE DEFINED ~AME
ADD 5., ILLEGAL FOR ADO
INC 6,T ILLEGAL FOR I~eR!MENT
MOV 7,(X) ILLEGAL DESTINATION ~IG
JP X"00' OUTSIDE CURRENT IK ~QROS
LF 3 ~JSSI~G LlT!RA~
L.F •• MISSI"IG LITE~A~
L.F 5,~G V~DE'IN[D LITERAL
LF NF, UNO, FIL.E, MISSING LIT ,
£~D

EXAMPLE OF HOW TO CODE VARfOU8 MICROCOMMAhDS
CLASS 1 'OR~AT

[OT 0,T, (V) COULD BE A CO'Y T TO U
SRF' I dT) S~lFT RIaHT • TO ,T
DOX 0 DATA OUT'UT 110 SIGNAL
ADD 2,IT,(T) FILE 2+1+T TO FILf t, T
INC 3,C FI~E 3+\ ~ITH tOND COCE

366

~aa5 g42~ seT 4.T fl~E 4-T TO FIL.E 4
0006 g543 OEC 5. IN) FI~E 5-1 Tn FILE 5. ~
~aa7 ASH RMF S. O. (M) FILE 6-1+L.INK. fULL RE40
0208 A122 ~~H 7. I"l FILE 7 TO M. ~A~F ~EAO
aup ue3 "MF 8.0, (N) fl~E 8-1 TO N FUL.L .RITE
3aaA 4931 WMH 9, (T l FI~E 9 TO T. H4LF WRITE
J00B eu~ CPY I0.LT TtLINK TO FILE 10
auc BB~I ZOf II,en ZERO TO FI!.E 11 4ND T
30ao 8C43 PDF POF 12, (N) PLUS 1 TO FI!.E 12 4NO N
aaaE C040 L.OR IJ,F OR FIL.E 13 ~IT~ T COM~
a00F CE06 MOV 14. (U) MOVE FILE 14 TO U
~~10 OF3a XOR. 15,T,~ IF FILE 1~'T. RESULT 0
0011 E120 AND I, T FI!.E 1 AN~EO "ITH T
a012 F280 sn 2,L SHIFT L.EFT. INSERT LINK
aap F340 SLI 3 S~IFT LEFT. INSERT A 1
0314 F420 SFR 4 SHIFT RIGHT. INS~RT A 0
eal5 F570 SRI 5.C !.SB S4V!O IN OVtRFL.O.

CL.ASS 2 FORMAT
aal6 0618 ELT 6.24 COULD BE LOAD FILE 6
0a17 2700 L.F 7.POF ADDRESS OF POF COMMAND
aal8 3806 AF A.e ADD 6 TO FILE 8
0U g 4001 TZ ~,XI~ll S~IP If OVEHFLOW COND
001A 5A~! TN TEN.! S~IP IF FILE I~ IS ODD
~HB 6810 CP II. -240 SKIP IF ~I~E 11 ,GT, 239

CLASS 3 FnR~AT
001C lUI L.T 1 1 TO
a010 1202 L.~ 2 2 TO M
a~1E IJ~3 ioN 3] TO N. CLE~R "
301' 142C JP ,xv JU~P WITHIN 1024 .ORDS
~~20 16A8 L.U X'A~' Hn '4B' TO U
n21 1728 L.S X"28 ' ENABLE RTC AND EXT, I NT •
~a2< 19A0 RLT)(IA~I HEX 'A0' TO T 4ND RETUR~
0U] 180A 8SL 2 SELECT]RD BANK Of 4396

CLASS 4 FORMAT
~02. 1000 NOP USED fOR 200NS D!LAY
a02~ 1020 RTN RTN RETURN FROM L.4ST J! SAVE
3nO 1040 SPF SE!.ECT PRIMARY 'ILES
0327 1060 RSP RETURN. SELECT P~I~'RY
0028 1080 SSF SEL!CT SECONDARY FILES
0~29 10A0 RSS RETURN, BE!.ECT SECONDARY
032A 1780 ~LT HALTS CPU. BUT NOT OMA
032 B 1400 ~LC 00 AND!D ON NEXT COM~AND
002C 1801 ". XY ISP MOVE STAC~ TO NEXT L.EVEL.
Ja2D 7070 ECS PANEL. SwITCHES ANDED

CLASS ~ FORMAT
032E 0700 JE OR~ JUMP AND SAVE FOR RETURN

ASSEMBLER INSTRUCT IONS
0lU ORG ORG X'700'

300A TEN !QU 10 SYMBOL.IC NAME ~OR A FILE
3l~0 0000 DC 0 fiLLER fOR UNUIEO RO~
V01 0000 END

367

MICROCOMMANDS (CLASS ORDER)

Class 1 - Mnemonic/File Inhibit - File Name, C-FieldDesign
(Destination Reg. Design)

COMMAND MNEMONIC

EXECUTE, OPERATE TYPE EOT* .

ENTER SENSE SWITCHES ESS*

SHIFT FILE RIGHT 4 SRF*

ENTER1NTERNALSTATUS EIS*

CLEAR I/O MODE CIO*

CONTROL OUTPUT COX*

DATA OUTPUT DOX*

SPARE OUTPUT SOX*

CONCURRENT ACKNOWLEDGE CAK*

INTERRUPT ACKNOWLEDGE IAK*

DATA INPUT DIX*

STACK/SPARE INPUT SIX*

ADD FILE ADD*

INCREMENT FILE INC*

SUBTRACT FILE, TWOS COMPLEMENT SBT*

SUBTRACT FILE, ONES.COMPLEMENT SBO*

DECREMENT FILE DEC*

READ MEMORY, FULL CYCLE RMF*

READ MEMORY, HALF CYCLE RMH*

WRITE MEMORY, FULL CYCLE WMF*

WRITE MEMORY, HALF CYCLE WMH*

COpy CPy*

ZER.o FILE/REG. ZOF*

+1 TO FILE/REG. POF*

LOGICAL OR WITH FILE LOR*

MOVE FILE MOV*

EXCLUSIVE OR WITH FILE XOR*

AND WITH FILE AND*

SHIFT FILE LEFT SFL*

SHIFT FILE LEFT AND INSERT· SLI*

SHIFT FILE RIGHT SFR*

SHIFT FILE RIGHT AND INSERT SRI*

368

OPERAND
FIELD

f,LCTIFD(r)

f,(r)

f,(r)

f,(r)

f,(r)

f,(r)

f,(r)

f,(r)

f,(r)

f,(r)

f,(r)

f,(r)

f,LlTC(r)

f,C(r)

f,L TC(r)

f,L TC(r)

f,C(r)

f,LlD(r}

f,LJD(r)

f,LlD(r)

f,LlD(r)

f,LITC(r)

f,C(r)

f,C(r)

f,LFTC(r)

f,LC(r)

f,LFTC(r)

f,LFTC(r)

f,LC(r)

f,C(r)

f,LC(r)

f,C(r)

Class 2 - Mnemonic - File Name, Literal

COMMAND

EXECUTE, LITERAL TYPE

LOAD FI LE WITH LITERAL

ADD FILE WITH LITERAL

TEST IF ZERO

TEST NOT ZERO

COMPARE FILE

Class 3 - Mnemonic - Literal

COMMAND

LOAD ZERO CONTROL

LOADT

LOAD M

LOAD N

JUMP IN 1K

LOAD U

LOAD SEVEN CONTROL

LOAD EIGHT CONTROL

RETURN, LOAD T

BANK SELECT

Class 4 - Mnemonic Only -' No Operand Field

MNEMONIC

ELT

LF

AF

TZ

TN

CP

MNEMONIC

LZ

LT

LM

LN

JP

LU

LS

LE

RLT

BSL

COMMAND MNEMONIC

NO OPERATION NOP

ENABLE COMM. RATES ECR

DISABLE COMM. RATES OCR

INPUT COMM. RATES ICR

RETURN RTN

SELECT PRIMARY FILE SPF

RETURN, SELECT PRIMARY FILE RSP

SELECT SECONDARY FI LE SSF

RETURN, SELECT SECONDARY FILE RSS

DISABLE EXTERNAL INTERRUPTS DEI

ENABLE EXTERNAL INTERRUPTS EEl

369

OPERAND
FIELD

f,n

f,n

f,n
f,n

f,n

f,n

8 BIT
OPERAND

n

n

n

n

n

n

n

n

n

n

COMMAND MNEMONIC

DISABLE R.T. CLOCK DRT

ENABLE R.T. CLOCK ERT

HALT HLT

MODIFY LOWER COMMAND MLC

INHIBIT L SAVE ILS

INCREMENT STACK POINTER ISP

DECREMENT STACK POINTER DSP

CLEAR STACK POINTER CSP

SELECT STACK POINTER SSP

SELECT STACK UPPER SSU

SELECT STACK LOWER SSL

ENTER CONSOLE SWITCHES ECS

Class 5 - Mnemonic - Literal

OPERAND
FIELD
(12 BIT

COMMAND MNEMONIC LITERAL)

JUMP EXTENDED JE n

Assembler Instructions - Mnemonic - Operand Field

OPERAND
COMMAND MNEMONIC FIELD

ORIGIN ORG n

DEFINE CONSTANT DC n

**EOUATE EOU n

EJECT EJE

END END

** The EOU statement must contain a name field, all other statements may
contain a name field.

*

f

(r)

n

L,C,T,F,I,D

File update inhibit

File Expression

Destination Register Designator

Literal Expression

C-F ield Designators

370

CHAPTER 6

INPUT/OUTPUT

GENERAL DESCRIPTION

The CPU provides an extremely fast elementary input/output capability.
The data paths and control functions are simple elements that are
sequenced from the control memory with flexible disciplines. The fact that
the control memory is very fast, 200 ns/step, means that microprograms
(firmware) in the control memory can implement facilities with a high
degree of versatility in timing, data paths and I/O capabilities such as
priority interrupts, fully buffered data channels, macroprogrammable
transfers, and special purpose communication multiplexer channels. This
basic I/O element called the "Byte I/O Bus" is described in the following'
paragraphs. In addition, the direct memory occurs (DMA) and serial data
interface are described.

BYTE I/O BUS

The byte I/O facility allows for data transfers over a party-line I/O bus
under microprogram control. This I/O facility consists of a byte input bus,
a byte output bus, and a three-bit I/O control register.

The contents of the I/O control register define an I/O bus mode. The I/O
control register outputs may be decoded to form individual control signals
defining the type of transfer being performed on the byte I/O bus and the
state of the serial interface output. Of the eight possible states of the I/O
control register, one represents no activity on the bus, three are output
modes, and four are input modes. One of th'e output modes removes the
MARKing current from the serial interface to output a SPACE to the serial
data interface.

The I/O control register is loaded by the control command, an operate­
type· command with an operation code of 7. When the c field of this
instruction equals hexadecimal 8-F, the operations are associated with
external input/output, and the three low order bits of c are placed in the
I/O control register. The control functions of this instruction are shown in
Table 2. '

371

Table 2. Byte I/O Control Modes

Control Command

Hex Mode Control Activity

o 0 0 0 0 No Operation
o 0 0 1 1 Enter Sense Switches
o 0 1 0 2 Shift "f" Right Four Places
o 1 0 0 .4 Enter I nternal Status
o 1 1 1 7 Enter Console Switches (0-7)

NO ACTIVITY- -, 0 0 -0- - - - - - - - Ii - -0- -Clear Tlfj Mode - - - - - -
OUTPUT 1 0 0 1 9 1 SPARE (*)
FUNCTIONS 1 0 1 0 I/O A 2 SPARE (*)

______ 1_0_1_1 __ CONTROL B 3 SpaceSeriallnterface
1 1 0 0 C 4 SPARE (*)

INPUT 1 1 0 1 0 5 SPARE (*)
FUNCTIONS 1 1 1 0 E 6 SPARE (*)

1 1 1 1 F 7 SPARE

*These functions are used in the MICRO 1600/10 and 1600/20 I/O systems.

To summarize the I/O control modes set by the control command:

Mode Control Activity

o Clear I/O Mode:

1-7 Set I/O Mode:

Comments

The I/O control register is cleared. Data from
the designated file or Input bus can be
transferred to the designated file register and
register (r).

The I/O Control register is loaded with the
three low order bits of c placing it in one of
seven ,I/O bus or serial' interface modes.
These modes are described above. Data from
the designated file or Input bus can be
transferred to a designated file register and
register (r).

NOTE: Once an I/O control register mode has been SET, an I/O clear
mode must be executed to change the I/O control register mode
of operation.

The three output modes and four input modes are distinguished by the
high order bit of the I/O control register, which is referred to as the input
flag. During execution of some of the operate-type commands, (including
the control command) the source of data is the input bus if this input flag
is a 1-bit, and the T register otherwise.

Bus Lines

The byte I/O bus consists of

• input data lines
• input control lines
• output data lines
• output control lines

372

The electrical implementation of the input and output bus lines is shown
in Figure 4.

---------,
I
I

DEVICE
CONTROLLER

1~N
O~--~~--__ ---------.--~~----~---------

9308
LATCH

TRANSMITTER

+5

I
I
I
I ,

PROCESSOR I ________ .J

ENABLE

9
DEVICE BACKPLANE
CONTROLLER OF COMPUTE R

~7URE

ENABLE

ENABLE

DATA

TRANSMITTERS

RECOMMENDED CONFIGURATION
NS TEN GATES
M~ FIFTEEN GATES

Figure 4. Bus Lines

Input Lines

The input data lines are inputs to the B bus gating. The input control lines
are inputs to bits of file register O. The input lines are ground TRUE signals
which are properly terminated at the processor. If the bus is carried out of
the basic enclosure it also must be terminated at the remote end. Each
peripheral device gates information onto the bus by means of open
collector type 944 DTL drive circuits. Up to 15 drivers may be connected
to each line.

373

The logic level on the twisted pairs are:

One - 0 Volts
Zero - +3 Volts

There are three .input control lines. They are used in standard 1600/10 arid
1600/20 systems for the following purposes:

Typical Input Control Line Definitions
(1600/10 and 1600/20)

Control Lines In Use in the System

External Interrupt (EINT/): A peripheral device makes this line low to
request an interrupt of the macroprogram.
The microprogram must respond with an
interrupt acknowledge (mode 5) signal. This
line is bit 7 of the file register 0 where a
1-bit indicates an external interrupt request.

I/O R~ply (ERPY/):

I/O Request (ECIOI):

A peripheral device makes this line low in
response to an I/O operation when
closed-loop operation is required. This line is
bit 5 of the file register O.

A peripheral device makes this line low in
order to request a concurrent data transfer.
The microprogram must respond with an
concurrent acknowledge (mode 4) signal.
This line is bit 3 of the file register O.

The file register 0 bits are defined as follows:

File Register 0 Flags

Bit Flag

o - Overflow result Condition

- Negative Result Condition

2 - Zero Result Condition

3 - Concurrent I/O Request Line* or (SPARE)

4 - Internal Interrupt

5 - I/O Reply Line* or (SPARE)

6 - Serial Interface

7 - External Interrupt Line* or (SPARE)

*If a standard 1600/10 or 1600/20 CPU interface is not used, these flags
may be used as SPARE bits.

·374

Output Lines

The output data lines originate with the FALSE output of the Output
Data register. The output control lines originate with the I/O control
register. If all peripheral devices on the bus are local to the enclosure, and
the bus does not leave the enclosure, then the bus is standard logic levels
and no DTL drivers and terminations are used. It may be necessary to
repower the signals, if the bus leaves the enclosure. An I/O control board is
required in this case to provide output drivers and to decode the control
register. The cable length can be up to 30 feet in length, must use twisted
pairs and must be terminated at the remote end. Up to 15 receivers can be
accommodated. The levels on the twisted pairs are:

One - 0 Volts
Zero - +3 Volts

The I/O control. register is decoded with in standard 1600/10 and 1600/20
device interface controllers to provide seven control terms:

Mode

0

1

2

3

4

5

6

7

Typical Byte I/O Control Modes
(1600/10 and 1600/20)

Control Activity

None *

Control Output

Data Output

Space Serial Interface

Concurrent Acknowledge

Interrupt Acknowledge

Data Input

Spare*

*These terms are used by the L-Save Stack option ..

Typical Byte I/O Interface

Term

None

COXX/

DOXX/

SP1X/

CACK/

IACK/

DIXX/

SP2X/

To illustrate byte I/O programming, a typical interface has been selected
which has minimum functions for transferring bytes in and out of the
computer. A more complex device, such as a tape controller, or card
reader, using the byte I/O function would contain logic similar to this for
transferring control, status, and data between the controller and the
MICRO 1600.

The byte I/O interface described contains the following basic functions.

• Line receivers and drivers
• Device address decoder
• Function latch and decoder
• Connection latch
• I nput multiplexer

375

• I nput selection gates
• Output latches
• Control decoder

These items are shown in block diagram form in Figure 5.

100X
coxx

CONTROL DOXX
I02X LINE alxx

RECEIVERS .. KIXX } .,,' I03X 0000 -------- BYTE

0007 OUTPUTS

""'~ {'''' BYTE
FROM __
OUTPUT
DATA
R1GiSTEI, BIT 7 DIGITAL

MULTI-
FNOX PLEXER

0005

0006

}"" r 0001 FDOS FODS BYTE

INPUT
INPUTS

~6TE 4-

INPUT FOOS FODG DIGITAL
BUS BIT 7 6 LINES

MULTI·
PLEXER

KIXX ===:I CONNECTION~
FODS FOOS LATCH. CONN

MRST--1
MASTER

r- DAXX

RESET
MRES

Figure 5. I/O I nterface Block Diagram

For summary purposes the logic terms used in the I/O interface example
(which are standard for MICRO 1600 interfaces) are defined in Table 3.

Table 3. Definition of Terms in I/O Interface Block Diagram

COXX

DOXX

DIXX

KIXX

DAXX

FUNCTION AND DEVICE CODE OUTPUT
CONTROL PULSE

DATA OUTPUT CONTROL PULSE

DATA INPUT CONTROL PULSE

INTERFACE CLOCK PULSE FORMED BY ORing
COXX, DOXX, AND DIXX

DETECTED DEVICE ADDRESS ENABLED BY
COXX

376

Table 3. Definition of Terms in I/O Interface Block Diagram (Cant)

ODOO·OD07 OUTPUT DATA LINES (COMPLEMENT OUTPUTS
OF 1600 OUTPUT DATA FROM MICRO REGISTER)

FNOX·FN7X LATCHED AND DECODED FUNCTIONS ENABLED
BY CONN

FD05·FD06 LATCHED BUT UNDECODED FUNCTION BITS

CONN CONNECT LATCH INDICATING THAT THE I/O
BOARD HAS RECEIVED ITS DEVICE CODE
WITH COXX

MRES MASTER RESET FROM MICRO 1600

'101X·103X 3 BITS FROM OUTPUT CONTROL REGISTER

DIG MUX DIGITAL MULTIPLEXER

Description of Functional Block Diagram (Figure 5)

The control decoder receives the 10nX lines from the control line receivers
and first decodes them into COXX, DOXX, and DI xx. These three are
ORed to produce KIXX which is used to set and reset function and
connect latches.

The device address decoder becomes active whenever the board's address
appears on the ODOO·OD04 lines. DAXX is active only when COXX is
active. Otherwise DAXX would become active every time the device
address appeared on the output data lines.

The function latches set or reset every time there is a KIXX pulse. The
output functions FNOX, etc., are not enabled unless CONN is active. The
functions are used to enable the output latch.

The connection latch is set when the board detects its device address and
COXXis active. It is reset on the trailing edge of the next DIXX or DOXX
pulse.

The connection latch enables the functions and the input selection gate.

The input selection gates place the input data onto the input bus during
DIXX whenever the CONN latch has been set indicating that this board has
been addressed.

The output latches are updated to the values on the ODOX lines during
DOXX whenever the corresponding function code FNNX is active.

EXAMPLES OF I/O MICROPROGRAMMING

For the following examples assume that the device code is binary 00001.
I n the standard 1600/10 and 1600/20 the function code sent to a device

377

interface controller is combined with the device interface's address to form
a two-character (hex) device and function code. This results in the
following device and function codes:

Functio-n Code Device and Function Code

Binary

000
001
010
all

Hex

a
1
2
3

Binary

000 a 0001
00100001
010 a 0001
all 00001

Hex

01
21
41
61

Example 1. For the first I nput/Output example the timing of events and
the microprogram routine are described for outputting a byte
from the MICRO 1600 to latch 0 in the interface board with
device code 01.

Timing Diagram:

I I I- I
OUTPUT ~ 1 - I I
BYTE J FUNCTION & OUTPUT DATA I 1.'-__ _
ODOX (8) I D~VICE CODE I ByTE ,-

____ -+:_1 coxx ~: :
I 1 1 1
1 I! DOXX 1
1 1 1 r-----

: f DAXX i I I :
---~~, ,~rl-+I--------rl--------

1 ~ ~ i ___ -'--'J KIXX f..--+.-J KIXX ~ ___ _

I I I I I
:1 f~II~:------~l

CONN 1 I ~, ----
I- I

become active on
the interface
board because the
board's device
code is on the
output data lines.

Reset COXX which
deactivates DAXX
and KIXX and
causes CONN and
FNOX to set.

378

LATCH 0
UPDATE TIME

Set DOXX which
causes KIXX to
becom!! active,
and strobes the

- output data into
latch 0, because
FNOX is set.

Microprogram:

Example 1.

FLOW CHART MACHINE CODE ASSEMBLY LANGUAGE CO DE

• L COMMAND

DEVICE & FUNCTION
CODE - T AND OD 040 1101 LT X'01'
'01' - TANDOD

• I -&ETCOXX I 041 7090 COX 0

• 3 CLOCK DELAY* 042 1000 NOP
NOOP+ 043 1444 JP X'044'
JMP TO NEXT COMM.

1
IRESETCOXX 044 7080 CIO 0

+
SET OUTPUT DATA 045 1155 LT X'55'
'55' - T AND OD

~
L SET OOXX J 046 70AO DOX 0

~
3 CLOCK DELAY* 047 1000 NOP

048 1449 JP X'49'

~
IRESET Doxxi 049 7080 CIO 0

~
NEXT COMMAND 04A ---

+- ANY COMMAND CAN BE NEXT

t

*This is the standard delay in the MICRO 1600/10 or 1600/20 to generate
an 800 ns COXX and DOXX. It could be shorter if the interface is in the
main computer chassis. Housekeeping can be done on delay clocks.

379

Example 2. For the second input/output example, the timing of events
. and the microprogram are described for inputting a byte from

input byte 2 of device 01 to file register 1 and T.

Timing Diagram:

I I I
I I 11 OUTPUT ---1 FUNCTION & DEVICE I

BYTE CODE I I . I
ODOX (8) Y I I I

1 coxx 1 I I I
~~I----~I~'------~----

t DIXX l i __ -'--__ _
I I

f"'\ I, INPUT DATA SAMPLE TIME ---.-----+--,----) ~ .
I FUNCTION OF

,---..... -1-1 =----------!I~·I:----"'"'\l INTERFACE
INPUT J INPUT,D~TAVALU~ ,.- DEVICE
DATA ---........... I
BYTE I I I I

___ -ott DAXX 1: : :
I I I I I

__ --t1.......,.,K~IX:":':X~....,}__f KIXX : }'-__________ __

----1,.-----"[I CONN : i-------
I I I

____ ~ ___ ~fr~~F~D~06~:~}----------
I
I
I
I
I
I

I
I
I
L....-RESET DIXX

L INPUT DATA FROM
INPUT BUS TO f1
ANDT.

L SET DIXX WHICH ENABLES
DATA TO THE INPUT BUS

L RESET COX X WHICH
DEACTIVATES DAXX
AND KIXX

L..... SET CO~X WHICH
ACTIVATES DAXX .
AND KIXX

380

Microprogram:

FLOW CHART MACHINE CODE ASSEMBL Y LANGUAGE CODE

L COMMAND

DEVICE & FUNCTION
CODE TO T AND OD 060 1141 LT X'41'
'41'_ T AND OD

061 7090 COX 0

3 CLOCK DELAY
NO OP + 062 1000 NOP

JMP TO NEXT COMM. 063 1464 JP X'64'

064 7080 CIO 0

065 70EO DIX 0

066 1467 JP X'67'

INPUT DATA
USING COpy T 067 B121 CPY 1,T,(T)
COMMAND

068 7080 CIO 0

069 ANY COMMAND CAN BE"NEXT

381

Example 3. Special Input Function

To achieve minimum input time and still achieve one clock
delay after setting DIXX use the following:

DIX

LF

CIO

Serial Interface

o
1, X'FF'

Set DIXX

Set file 1 = all ones and generate
1 clock delay

Reset DIXX and simultaneously
'and' the input bus with (file 1)

The processor contains a serial interface capable o.f communicating with a
full duplex teletype. The input from the teletype appears as bit 6 of file
register 0 where a 1-bit indicates that the teletype is transmitting a SPACE.
The output to the teletype normally transmits a 20 milliampere MARKing
current which can be keyed off to send a SPACE signal by placing the I/O
control register in mode 3. Character assembly and disassembly, including
all timing and synchronization, are performed by microprogramming.

The serial interface is standard. A teletype or CRT wired for 4-wire full
duplex 20 milliampere operation may be directly connected to the cable
provided with the machine. Other types of serial I/O devices also may use
this condition ..

Direct Memory Access

The direct memory access (DMA) interface allows for direct connection to
the memory address, data and control busses. The DMA may be installed
in any slot within the machine enclosure. This board may contain a
channel to which a number of peripheral devices are connected, or a device
controller which has direct memory access capability. Generally the DMA
system will be customized for special applications .

. The maximum data transfer rate is 1 million bytes per second. The DMA
I/O takes precedence over the processor for memory operations. The DMA
must supply its own address control.

Computer Backplane Pin Definitions

The backplane pin connections for the Byte I/O bus, serial data interface
and DMA are shown in Figure 6. Connectors J2 and J3 are used for the
CPU. Connectors J4-J13 are available for use by memory modules, ROM
modules, and device interface controllers. (In an extended backplane
option, connectors J4-J 17 are available for these purposes.)

382

INPUT
DATA
SIGNALS

INPUT
CONTROL
LINES

SERIAL TELETYPE
INPUT

OMA INPUT
CONTROL

FRONT PANEL
CONTROL
SWITCH
INPUTS

FRONT PANEL
SELECT SWITCH

INPUTS FROM
FRONT PANEL
SENSE SWITCH
INPUTS

FRONT PANEL
COMMAND
SWITCH INPUTS
OR TIEDTO
ROM INPUT
LINES

SCAN CONTROL

INPUTS OUTPUTS
r::-------,

)

CPU

[

IDOOI
IDOll
;D021

ID031

ID04I
ID05

1006
1007

{

ECIC)I
EINTI

IRPYI

SELti

PRINI

632
A60

662
A62
A32

659
A61

660
642
A38

B50

B52
BS,

J2·13

J2~13

} J~13
} JJ.13

TTIN

(

DMAHI
DMARI

DMAW'
OMAS:

~ 1 ::.,3 J~I'
A~
~
~}J2
~ ~" ~" {

RUNFI

STPFI

INTF!

CLKF'
MRST'

CPEN, @ J2·13

{ :: !:~ '}J2
ES06 845 •

~~~.RSOO :~ ) , CR01·ASOI A19 

CR02·RS02 A23 

CR03·RS03 A27 J2.13 

CR04·RS04 B17 J2.13 

CROS·RS05 B21 

CR06·RS06 B25 
C'R07·RS07 B29 

CR08·RS08 B36 
CR09·RS09 A37 
CR 10·RS 1 0 A42 

CRlI·RSlI A43 

CRI2·RSI2 A51 

CRI3·RSI3 A47 
CRI4·RSI4 A48 

CR1S·RS1S ,AS9 
SCANI A63 

J2·13 

J2 

B39 

~ 
I A26 ress 

637 
Al0 

B26 
A56 
IFRONT 
PANELI 

A41 

631 

'A31 

661 
A06 
822 

t"'A57 
t----

~ 
A3S 

B43 

B2B 
A36 

B30 

B~ 
B27 

Bl' 
All 
A12 

B13 
B07 

BIB 

B09 
B47 

BSI 

B53 

855 
ASO 
A53 

A54 

A1S 

A09 

A44 

AS6 
A45 

00011 

OD01/ 
00031 OUTPUT DATA REGISTER 

ODOO/) 

OD04I OUTPUT LI NES 

OD05' 
OD061 

OD071 

TTYX 

CSTPJ 

101XI } 
102XI 
103XI 

CPHI 
CPH2 1 

MBSY 

} 

SERIAL TTY OUTPUT 

110 CONTROL 
~EG OUTPUT' 

SYSTEM 
CLOCKS 

MDOO 
MDOI 

MD02 
MD03 

MD04 
MOOS 
MOO6 
MD07 

MOOAI 

M01A' 
M02AI 
M03AI 
M04AI 

MOSAI 
M06AI 

M07AI 

NOOAI 

N01AI 
N02AI 

N03AI 
N04AI 

NOSAl 

N06AI 

N07AI 

I BIDIRECTIONAL 
MEMORY DATA 
LINES TO DMA 

BIDIRECTIONAL 
MEMORY ADDRESS 
LINES TO DMA 

DMARi} DMAWI CONTROL SIGNALS 
FROM DMA 

DMASI 

Figure 6. CPU Input/Output Signals 

383 



CHAPTER 7 

PHYSICAL CHARACTERISTICS AND SYSTEM POWER 

MECHANICAL CONFIGURATIONS 

Enclosures 

A variety of enclosures is available to cover a range of requirements for 
both OEM and end users. 

The basic OEM package provides a simple card cage which may be 
rack-mounted. Optional rails are available for 24 through 30-inch deep 
cabinets. The user may install rear-mounted fans 'or may use vertical 
convection cooling as desired. 

A rack-mounted package is available which provides wrap-around 
enclosures with controlled air flow. This package can be specified to go 
into 24 through 30-inch deep cabinets. 

A distinctive, attractive table-top enclosure is available when appearance is 
a consideration. When the back panel is removed from this version, power 
is automatically turned off. In addition, a variety of 63-inch high 
custom-styled cabinets are available. 

Rack-mounted and table-top enclosures are shown in Figures 7, 8, 9 and' 
10. 

Universal Backplanes 

The printed'circuit backplanes provide simple point-to-point strapping of 
all connector pins. 

Two versions are available. The first contains 13 connector slots and an 
integral power supply. 

To make larger system configurations possible, a second version contains 
17 connector slots and a remote power supply. 

Specifications and characteristics of various packaging options are shown 
in Table 4.' 

All MICRO 1600 printed circuit boards are equipped with handles which 
make possible convenient card extraction, insertion and lockdown. All 
cards are fully accessible from the rear and may be easily extended for 
trouble-shooting operations. Convenient flat cables are used for connection 
to I/O devices, with cable routing and strain relief facilities built-into the 
rack-mounted and table-top enclosures. 

SYSTEM POWER 

Power supplies of the MICRO 1600 are available both integrally or as a 
remote system and furnish power to all basic and optional component 
subsystems plugged into printed circuit connectors in the computer 
enclosures. 

384 



Figure 7. OEM Card Caoe 

Figu" 8. OE., C"d Cage With Co
nt

"" Pane' 

385 



Figure 9. Rack-Mounted Enclosure With CoolinQ 

Figure 10. Table Top Enclosure With Internal Power Supply and 
Cooling. (UL Approval Pending) 

386 



Table 4. MICRO 1600 System Specifications 

Specifications 

PHYSICAL! 
ENVIRONMENTAL 

Packaging 

Dimensions 

Power Voltages 

Environment 

CIRCUITS 

Type 

Internal Logic 
, Levels 

I/O Logic Levels 

Characteristics 

Three packages available: 

1. OEM Package - basic rack mountable 
card cage containing all mechanical 
and electrical facilities except for 
wrap-around and side panels. 

2. Systems Package - Adds wrap-around 
enclosure to OEM package for controlled 
air flow via plenum chambers (side 
and rear panel exhaust/intake with 
the computer cabinet. 

3. Table-Top Package - Adds side panels 
and pedestals to system package 
for attractive, convenient desk-top 
installations. 

Standard rack mount, 10.5 inch panel 
height, 20 inch depth. The enclosure 
provides 13 or 17 connectors which may 
be used to mount CPU, core and control 
memory, DMA, and I/O modules. Two 
slots are dedicated to the CPU. 

115/230VAC, ±10%, 47-63 Hz, 350 
watts 

0-500 C (ambient); 10 to 90% relative 
humidity without condensation. 

Integrated LSI, MSI, and SSI circuit 
design throughout; TTL internal and 
DTL input/output drivers. 

FALSE = Ov; TRUE = +5v (nominal) 

FALSE = +3v; TRUE = Ov (nominal) 

387 



Power is distributed in 'the system via etched conductors on the printed 
circuit backplane in the integral system. A power distribution printed 
circuit module for remote power supply operation also is available. 

The power supply is designed with ample spare capacity to power most 
system configurations which use MSI and LSI circuit moduleS'. User­
designed modules may also draw power from the supply if current ratings 
are not exceeded. 

The integral power supply physically mounts in the MICRO 1600 
enclosures along the lefthand side (from rear) by sliding into standard card 
guide assembly (see Figures 11 and 12). A direct plug-in to the backplane 
via a standard printed circuit connector supplies dc voltages directly to the 
circuit boards via etched conductors. 

The remote power supply is operated by means of an extension cable. It 
requires no cooling over its rated range of operating temperature. 

Summary specifications for both power supplies are given in Table 5. 
Detailed specifications are available. in Microdata Specification 
No. CS 20001003. 

Power Configuration 

Peak current consumption for the subsystem components are given in 
Table 6. A typical system configuration of the MICRO 1600/20 requires 
the following +5V current: 

Subsystem 

CPU 
System Console 
768-word bipolar ROM 
4096/8192-byte core memory 

Total 

Current 

5.0 amp 
0.9 amp 
1.5 amp 
0.9 amp 

8.3 amp 
These current requirements use only three of the available 12 integral 
power supply card slots. The total +5V capacity is 20 amps, leaving 
13.5 amps available for expansion. This is an average of 1.5 amps per 
connector, which is sufficient to handle a reasonable mix of interface 
boards and other modules. 

For example, assume a fully expanded configuration such as the following: 

Subsystem Card Slots +5V Current 

Basic system 3 8.6 
Additional 8192-byte core 1 0.7 
Mag. Tape controller 2 2.2 
Byte I/O controller 1 1.5 
Card reader controller 1 0.8 
I/O bus and parallel TTY 1 1.3 
DMA 2 1.8 
Modem interface 1 1.2 

Total 12 18.1 

388 



Figure 11 . Rear View of Typical MICRO 1600 Card Cage Configuration 
Showing Integral Power Supply 

Figure 12. Integral Power Supply of the MICRO 1600 

389 



In an extreme case, the system power supply may be unable to handle 
total current equipments of all modules which could be installed in the 
available space. I n such cases, the user should consult Microdata for the 
best alternative. Particular care should be used where very large amounts of 
control memory are to be used since the current is relatively high for these 
devices, and additional system cooling and increased power may be 
needed. 

Table 5. Power Supply Specifications 

Specification 

Type 

AC Input 

DC Outputs 
(regulated) 

Overload/ 
Overvoltage 

Power Fail Detect 

Line Filtering 

Components 

Size 

Remote (Rack 
Mounted) 

Weight 

Temperature Range 

Characteristics 

Series regulator de power supply, 3 
regulated outputs, designed for integral 
or remote operation with Micro 1600 
computer. 

115/230 VRMS ±10%, 47-63 Hz, single 
phase; 105 VAC tap also provided. 

1. +12VDC, 1.5A, ±5%, adjustable 

2. +5VDC, 20A, +0.5V adjustable 

3. -16.75VDC, 3.5A, ±2% adjustable 

1. Overvoltage: 7VDC limit on +5VDC 
output 

2. Overload: current limiting with 
automatic recovery 

Power fail indicator drops 2ms before 
loss of de regu lation; automatic return 
after ac returns. 

Input line filter for ac line transient 
protection integral to supply. 

Hermetically sealed semiconductors and 
ceramic integrated circuits used through­
out. 

4.8" X 8.6" X 16.3" 

8-3/4" X 19" X 10.5" 

251bs. (approximate) 

0-50°C 

390 



Table 6. MICRO 1600 Power Configuration 

Subsystem +5v +12v -16.75v 

CPU, Data Board, Control Board 5.0 0 0 
System Control Panel 1.2 1.2 0 

Bipolar Read-Only Memory 0.5 0 0 
(BROM), 256 Words 

Programmable Read-Only Memory 0.5 0 0 
(PROM), 256 Words 

Alterable Read~Only Memory 7.5 0 0 
(AROM), 1024 Words* 

First Unit, 4096 or 8192-Byte 0.9 0 1.7 
Core Memory Module 

Additional 4096 or 8192-Byte 0.5 0 0.1 
Core Memory Modules 

4 Channel TTY, 20 ma Out 1.5 0 0 

4 Channel TTY, 60 ma Out 2.6 0 0 

32X32 I/O Expander 2.4 0 0 

Mag Tape Controller 1.7 0 0 

I/O Bus and Parallel TTY 1.3 0.1 0.1 

Priority Interrupt 1.1 0 0 

Byte I/O Controller ** 1.5 0 0 

Card Reader Controller 0.8 0 0 

8-Way Async Modem 0.7 0.6 0.4 

DMA Selector,Channel 1.6 0 0 

* Use of separate power distribution for AROM is optional. 
* * Used for paper tape reader/punch, line printers, cassette I/O. 

391 



APPENDIX A. MICROCOMMAND REFERENCE 
TABLE (NUMERICAL ORDER) 

OBJECT 
BASE COMMAND MNEMONIC CLASS PAGE 

0000 EXECUTE, LITERAL TYPE ELT 2 351 

0000 EXECUTE,OPERATETYPE EOT 351 

0000 JUMP EXTENDED JE 5 323 

1000 LOAD ZERO CONTROL LZ 3 323 

1000 NO OPERATION NOP 4 324 

1001 ENABLE COMM. RATES ECR 4 324 

1002 DISABLE COMM. RATES OCR 4 325 

1004 INPUT COMM. RATES ICR 4 325 

1020 RETURN RTN 4 325 

1040 SELECT PRIMARY FILE SPF 4 325 

1060 RETURN, SELECT PRIMARY FILE RSP 4 326 

1080 SELECT SECONDARY FILE SSF 4 326 

10AO RETURN, SELECT SECONDARY FILE RSS 4 326 

1100 LOADT LT 3 326 

1200 LOADM LM 3 326 

1300 LOAD N LN 3 327 

1400 JUMP IN 1 K JP 3' 327 

1600 LOAD U LU 3 327 

1700 LOAD SEVEN CONTROL LS 3 328 

1704 DISABLE EXTERNAL INTERRUPTS DEI 4 328 

1708 ENABLE EXTERNAL INTERRUPTS EEl 4 ' 328 

1710 DISABLE R.T. CLOCK DRT 4 328 

1720 ENABLE R.T. CLOCK ERT 4 329 

1780 HALT HLT 4 329 

1800 LOAD EIGHT CONTROL LE 3 329 

1900 RETURN, LOAD T RLT 3 329 

1AOO MODIFY LOWER COMMAND MLC 4 329 

1BOO INHIBIT L SAVE ILS 4 330 

1 B01 INCREMENT STACK POINTER ISP 4 330 

1B02 DECREMENT STACK POINTER DSP 4 330 

1B04 CLEAR STACK POINTER CSP 4 331 

1 B08 BANK SELECT BSL. 3 331 

1 B90 SELECT STACK POINTER SSP 4 331 

1BAO SELECT STACK UPPER SSU 4 332 

1BCO SELECT STACK LOWER SSL 4 332 

392 



OBJECT 
BASE COMMAND MNEMONIC CLASS PAGE 

2000 LOAD FILE WITH LITERAL LF 2 332 

3000 ADD FILE WITH LITERAL AF 2 332 

4000 TEST IF ZERO TZ 2 333 

5000 TEST NOT ZERO TN 2 333 

6000 COMPARE FILE CP 2 333 

7010 ENTER SENSE SWITCHES ESS* 334 

7020 SHIFT FILE RIGHT 4 SRF* 334 

7040 ENTER INTERNAL STATUS EIS* 334 

7070 ENTER CONSOLE SWITCHES ECS 4 335 

7080 CLEAR I/O MODE CIO* 336 

7090 CONTROL OUTPUT COX* 336 

70AO DATA OUTPUT DOX* 336 

70BO SPARE OUTPUT SOX* 337 

70CO CONCURRENT ACKNOWLEDGE CAK* 337 

70DO INTERRUPT ACKNOWLEDGE IAK* 337 

70EO DATA INPUT DIX* 337 

70FO STACK/SPARE INPUT SIX* , 338 

8000 ADD FILE ADD* 339 

8040 INCREMENT FILE INC* 339 

9000 SUBTRACT FILE, TWOS COMPLEMENT SBT* 340 

9040 SUBTRACT FILE, ONES COMPLEMENT SBO* 340 

9040 DECREMENT FILE DEC* 341 

AOOO READ MEMORY, FULL CYCLE RMF* 341 

A020 READ MEMORY, HALF CYCLE RMH* 342 

A010 WRITE MEMORY, FULL CYCLE WMF* 343 

A030 WRITE MEMORY, HALF CYCLE WMH* 344 

BOOO COPY CPY* 345 

BOOO ZERO FILE/REG. ZOF* 345 

B040 +1 TO FILE/REG. POF* 346 

COOO LOGICAL OR WITH FILE LOR* 346 

COOO MOVE FILE MOV* 347 

DOOO EXCLUSIVE OR WITH FILE XOR* 347 

EOOO AND WITH FILE AND* 348 

FOOO SHIFT FILE LEFT SFL* 348 

F040 SHIFT FILE LEFT AND INSERT SLI* 349 

F020 SHIFT FILE RIGHT SFR* 349 

'F060 SHIFT FILE RIGHT AND INSERT SRI* 350 

393 





PART V 

SYSTEM DESIGN PROCEDURES USING 
MICROPROGRAMMING· 



396 



INTRODUCTION 

Computer system design is greatly simplified by adherence to a basic 
sequence of activities. Each step is essential to the overall success. It is 
necessary to thoroughly simplify subsequent steps and to reduce the 
amount of revision to previous steps. Many of the procedures listed below 
appear to be removed from the computer considerations because they deal 
with the system as a whole. However, it turns out that to obtain full 
advantage of the cost savings and system enhancement capabilities of a 
microprogrammable processor it is absolutely necessary to start consider­
ing the computer characteristics right at the beginning during the 
preliminary system functional definition phase. 

Outline of System Definition Procedures 

1. System Functional Definition: 

Operations 
Inputs and Outputs 
Control Functions 
Basic Functional Units/Tasks 

2. System Configuration Definitions: 

System Block Diagram 
Basic Data Flow Definition 
Subunit Functional Definitions 

3. Detailed System Performance Specification: 

Data Rates 
Accuracies 
Data Processing Functions 
Data Formats 
Number of Channels 
Characteristics of Peripheral Devices 

4. I nterface Specifications: 

Number of Lines 
Data Rates 
Interface Procedu res 
Status Lines 
Control Lines 
Control Codes 
Device Addresses 

5. Program Specifications: 

Processing Functions· 
Data Rates 
Data Characteristics 
General Subroutine Definition 
Mathematical Function Definition 
Nonmathematical Process Definition 
I nput and Output Data Content and Formats 

397 



6. Tradeoff Analysis: 

Software 
Firmware 
Hardware 

7. Processor and Interface Hardware Specifications: 

Architecture 
Number of Lines 

8. Software/Firmware Program Specifications. 

9. Detailed Program Functions, Analysis and Definition: 

Top Level flow of System Program 
Algorithm Selection and Definition 
Memory Allocations 
Interface Address and Functions Assignments 
Subroutine Hierarchy Definition 
Determination of Data Tables, Pointers, etc. 
Coding, Assembly 
Preparation of Diode Map 
Prepare Read Only Memory 
Prepare Software Programs (if any~ 
System Checkout 

These steps are considered only in their relation .to the programming re­
quirements. There are many other steps related to hardware design and 
component selection that are not covered here. 

To illustrate the preceding points a generalized example of a computer 
system has been selected. This system would typically be used in a moni­
tor and control system. It has the following functions: 

Multichannel Analog .1 nput 

Dual Chanrlel DAC Output 

High Speed Paper Tape Reader for Entering Programs Locally 

Communications Channel for Remote Status Reports 

High Speed Printer for Local Status and Data Printout 

Status Switch Closure Monitor 

Control Relay Output 

Operating Mode Control and Status Display Panel 

Core Memory for Data and Storage Instruction 

Real Time Clock and Power Fail Detect Option 

Computer 

Read Only Memory 

398 



1. System Functional Definition 

In this section the following functions are defined for the example 
system: 

a. Operational characteristics of system to be controlled: 

Block Diagrams 
Graphs 
Transfer Functions for Control equations 
Timing Diagrams for Response Time 
Sequence Diagrams for Control Algorithms 

b. Function of each Analog Input Channel: 

Range 
Rates 
Accuracy 
Relation of Data to System Operation 
Signal Profile 

c. Function of each Analog Control Channel: 

Range 
Rates 
Accuracy 
Signal Profile 
Effect of Data on System Operation 

d. Definition of Status Switches: 

Functions 
Rates to be Monitored 
Meaning 

e. Control Relay Functional Definition 

Latch VS. Non Latch 
Effect of Each Relay on System Operation 

. f. Communications Requirements 

Message Characteristics 
Data Rates 
Hand Shaking Procedure 
Formats 

g. Panel Control and Display Functions: 

Number and Meaning of Control Switches 
Quaritity, Type and Meaning of Status Displays 

h. Printer 

Message Formats 
Printout rate 
Message Line Size 

399 



2. System Configuration Definition 

The System Block Diagram for the controllet is as shown in Figure 40 
with basic data flow indicated on the block diagram as well as subunit 
functional definitions. 

3. Detailed System Performance Specifications 

Typical factors which affect the programming are as follows: 

• ADC Conversion Accuracy (Number of Bits) 
• ADC Sample Rate, and Conversion Time 
• DAC Update Rate 
• Code Conversions 
• Scaling Requirements 
• Curve Fitting Characteristics 
• Transfer Function Calculations 
• Averaging 
• Communication Link Requirements 

Rates 
Formats 
Controllers 
Handshaking 
Pollil1g Procedures 

• Printout Message Requirements 
• Processing Variations Relative to Status and Control Panel Inputs 
• Control Point Output Requirements 
• Initialization of Cold Start Requirements 

CHANNEL 

STATUS SWITCH CLOSURE 

RELAY CONTROLS 

DATA 

CO"NVERSION 
CO~MAND 

I/O INTERFACES 

REAL TIME CLOCK 
POWER FAIL DETECT 

Figure 40. System Example Block Diagram 

400 

READ 
ONLY 
MEMORY 



4. Interface Performance Specifications 

'After the peripheral hardware has been selected and defined in detail, 
the specifications for the interface to the computer can be defined. 
This consists of identifying data, status, and control lines from each 
peripheral device. Line groupings for each category are established, so 
they can be most efficiently organized to match the byte I/O charac­
teristics of the computer control and data transfer. Timing and sequence 
requirements for each interface are also defined. This information is 
used to help determine the degree of hardware vs. microprogramming 
to be used for the interface. 

5. Program Specifications 

The program specs define all processing functions. They include a,list 
of all functional subroutines, data processing rates, organization of the 
executive routine, tables or lists of input and output data categories, 
and definition of the mathematical, logical, and algorithmic processes 
to take place, and the order in which these processes occur. ' 

A typical list of routines might be as follows: 
, 

• Application Routines 
• Cold Start 
• Main Loop 
• Determine Next Processing State 
• Output Analog Control Parameters to DAC's 
• Linear Interpolation 
• Calculate Basic Control Parameters 
• Sample Console Settings \ 
• Sample Analog Parameters and Convert to System Units 
• Compute System RPM 
• Update System Status Display 
• Process Interrupts 
• Communications Routine 
• Status Message Printout Routine 
• Paper Tape Reader I nput Routine 
• Code Conversion Routine 
• System Status Monitor Routine 
• Relay Control Update Routine 
• Utility Routines (If Microprogram Is Used) 
• Multiply 
• Store X 
• Load X 
• Divide 
• BCD to binary 
• Binary to BCD 
• Shift Left N bits 
• Shift Right N bits 
• Square Root 
• Input/Output 
• Printout 
• Integrate 
• Data Average 

.401 



lhe general organization of these routines is defined at this stage of 
analysis, along with an estimate Clnd definition of core memory re­
qu irements for flags, buffers, partially processed data, console and 
status switch memory maps, and system status information. 

Also, the processing time for the various routines are estimated and 
defined along with an estimate of micro instruction requirements. 

6. Tradeoffs 

Before the detailed hardware and program specifications are tied down 
. it is necessary to conduct a tradeoff analysis to assure that the cost! 

performance requirements for the system are being met. Here the 
tradeoff is related to application of hardware, firmware, and software 
to the various internal and interface functions of the computer. The 
areas of cost reduction to be considered. are as follows: 

• Interface Hardware Complexity 
• New hardware Design Requirements 
• Microprogram Size 
• Core Memory Requirements 
• Complexity of Peripheral Devices 
• Availability of Existing Programs 
• Program Development Times 

A large number of factors must be -included in the tradeoff analysis. 
The most important ones related to program development are listed 
below: 

• Overall data throughput requirements including peak and average 
data loads. 

.• Variability of program functions, including operating modes, data 
formats, status combinations, processing states, number of I/O 

. channels, operating ranges, etC .. 

• Permanence of program structure, once defined, and need to avoid 
having to load program on site.' 

• Speed and complexity of peripheral devices and processing functions. 

• Existing standard interfaces, and the extent of microprogramming 
required for these interfaces: 

• Number of systems to be developed and available development time 
(affecting nonrecurring costs ratio, and development staffing re­
quirements). 

• Special processing requirements with high speed or complexity in 
the fields of arithmetic, logic data manipulation, character assembly, 
control functions, hand shaking, etc. 

• Overall program size. 

402 



• Existing standard firmware and software routines which are appli­
cable to the system_ 

• Operating complexity, maintenance and training requirements. 

• System reliability, including failure rates, and equipment redun­
dancy requirements, which may dictate the requirement for self con­
tained hardware functions. 

The result of the tradeoff study will be the following: 

• Use of sophisticated interfaces not requiring firmware, or use of 
extremely simple interfaces which do require firmware. (Tradeoff 
factors: Read only memory capacity for interface functions, speed 
of data transfer, interface control sequences, available process time_) 

• Use of software p'rogram for entire operation. 

• Use of software program with special I/O or processing routines 
added to microprogram. 

• Development of special instruction set for the application. 

• Combined use of special firmware, special hardware interfaces, and 
special hardware processing functions such as hardware multiply/ 
divide. 

Typical functions which may be completely or partially done by two or 
three of the following: Software, firmware or hardware, depending on 
data processing rates, hardware complexity, system throughput re­
quirements, read only memory capacity, thus must have tradeoff 
analysis applied for selection. 

• Serial data character assembly/disassembly 
• Card reader control and data transfer 
• Binary to BCD or ASCii conversion 
• BCD to binary Conversion 
• Multiply or divide 
• Digital filtering 
• Magnetic tape controller functions 
• High-speed line printer control 
• ADC control and data input 
• Message Switching 
• Remote monitor functions 
• Synchronous modem control 
• I mage scanning 
• Disc controller 
• Error detection, and code generation 
• Table lookup 
• Communications line polling/handshaking 
• Console parameter input/scaling 

403 



Tradeoff Examples: 

Example 1 

Firmware can be used to interface with a card reader having minimum 
readout electronics. However if the firmware must monitor the high­
speed stroke pulses from the card reader to synchronize with the 
reader data lines, the firmware becomes too tied down to service other 
peripherals. Therefore the card reader interface should have some 
character synch. even with firmware if multiple peripheral devices 
must operate simultaneously. 

Example 2 

Display lamps could be scanned by firmware to avoid using latches to 
hold display parameters. In a system of any size this will tie up the 
computer considerably, and· the cost of the firmware may be as much 
as the latches. 

Example 3 

Firmware can be used to control a disk without using DMA except for 
character shifting for transfer to and from the track. However if there 
is a requirement to simultaneously interface with the disk and another 
peripheral device, even firmware may not be fast enough. 

7. Hardware Specs 

The hardware specs of interest here are for the interfaces and special 
processing functions and relate to the programming requirements. They 
include the following: . 

• Definition of standard interfaces, including complete identification 
of data input and output channels, control line functions, status 
lines, device and function codes, and timing requirements for 
dynamic data or control lines. . ' 

• Definition of special interfaces including all of the factors for 
standard interfaces plus special control sequences and special data 
input/output sequences which must be microprogrammed. These 
definitions must be in terms of the standard control and byte trans­
fer functions of the computer. 

• Definition of special processing hardware units, such as hardware 
multiply/divide, buffers, fast fourier processor .. digital filter, etc. 
Again, the basic interest for this document is the programming re­
quired to transfer data and initiate the special processor operation. 

8. Software or Firmware Program Specifications 

These include a detailed functional description of all subroutines, execu­
tive routine, data, control, status words, memory requirements, data 
tables, flags, pointers, etc. 

404 



9. Detailed Program Functions AnalysIs Definitions and Programming 

The general steps to be followed in the programming phase should be 
adhered to simplify the entire task and to assure the best program 
results. 

• Top level flow chart 

• Detailed algorithm definition 

• Memory allocations (data, flags, pointers, etc.) 

• I nterface address and function tabulation 

• Definition of subroutine, hierarchy (looping, branching, nesting). 

• Preparation of tables and formats for data, status, flags, pointers, 
scale factors, address pointers. -

• Top level flow charts for subroutines. 

• File register assignments. 

• Detail subroutine subcharts. 

• Coding, assembly, checkout, etc. 

These steps are illustrated in the emulator example which follows and 
in the microprogram subroutine examples in the microprogrammers 
manual. 

The last step consists of converting the flow chart functions into 
routines that are ready for implementation in hardware to yeild the 
system firmware. These steps include translating the M IC RO 800 in­
structions selected for each routing into the mnemonic or machine 
language code, loading them into an operating system, and eliminating 
any errors that may have been made dUring the previous steps. Micro­
data Corporation furnishes a software program (Simulator Operating 
System) for use on one of the 800 series computers which simulates 
the user's microprogram and provides operator control for debugging 
and evaluation procedures. The completed program is printed in the 
forrn of a diode map to simplify the placement of diodes on the read 
only memory circuit boards which contain the complete microprogram. 

Microprogramming Aids 

The software aids for m icroprogramm in§, furnished by M icrodata 
Corporation are briefly described in Figure 41. Several methods are 
available to convert the microprogram source statements to the final 
diode map for hardware implementation. These methods incorporate 
different programs according to the processing equ ipment available to 
the user. For instance, the MAP800 program is used with a MICRO 811 
computer to enter source statements .and assemble the listings. The 
AP800 program is used on a large-scale computer to produce im 
object program. Variations in methods also permit selection of media 
for recording and communicating the program information including 
punched cards, paper tape, printed documents, etc. 

405 



MICROPROGRAM GENERATION 

Figure 41. Microprogramming Generation 

The final step in the process is the implementation of the m icropro­
gram by loading the signal diodes on the ROM circuit boards. This 
process consists of inserting diodes in the board at locations designated 
by the diode map and corresponding to the logical l's in the machine 
language code. The absence of a diode indicates a logical O. When the 
complete microprogram has been implemented in diodes on the ROM 
boards, the "new" computer is assembled by inserting these boards into 
the standard MICRO 800 enclosure which houses the hardware compo­
nents furnished by Microdata Corporation. 

406 



PART VI 

PRODUCT CATALOG 



MICRO 400 COMPUTER 

The MICRO 400 is a low-cost, high-performance, general -purpose compu­
ter designed to fill the gap between conventional minicomputers and 
special purpose digital hardware. Applications heretofore denied the use of 
a computer because of high cost can now realize the advantages of a fully 
programmable processor. With powerful computing ability, a wide range of 
peripherals and complete support software, the MICRO 400 is truly a 
systems processor, while its totally modular construction and ease of 
system integration make it the perfect computer for OEM applications. 

Through the use of MSI circuitry and printed circuit packaging techniques, 
the entire processing unit is contained on a single circuit board, as is the 
core memory (up to 4096 bytes). All system components are intercon­
nected using a unique MICRObus concept consisting of a single flat cable 
instead of expensive wired backplanes. This single cable "daisychains" to 
all system components for simplicity and economy of system expansion. 

The modular design of the MICRO 400 means added economy for the 
OEM user. The central processor, memory modules, peripheral interfaces 

408 



MICRO 400 COMPUTER 

The MICRO 400 is a low-cost, high-performance, general-purpose compu­
ter designed to fill the gap between conventional minicomputers and 
special purpose digital hardware. Applications heretofore denied the use of 
a computer because of high cost can now realize the advantages of a fully 
programmable processor. With powerful computing ability, a wide range of 
peripherals and complete support software, the MICRO 400 is truly a 
systems processor, while its totally modular construction and ease of 
system integration make it the perfect computer for OEM applications. 

Through the use of MSI circuitry and printed circuit packaging techniques, 
the entire processing unit is contained on a single circuit board, as is the 
core memory (up to 4096 bytes). All system components are intercon­
nected using a unique MICRObus concept consisting of a single flat cable 
instead of expensive wired backplanes. This single cable "daisychains" to 
all system components for simplicity and economy of system expansion. 

The modular design of the MICRO 400 means added economy for the 
OEM user. The central processor, memory modules, peripheral interfaces 

408 



and control console can be purchased separately on an as-required basis. 
Thus, the customer may buy only what is actually needed for his specific 
application. 

The net result of these packaging/price/performance breakthroughs is a 
general purpose, programmable computer at a price which allows use of 
the MICRO 400 as a digital controller or true systems computer, available 
in a form tailored to the needs of the OEM customer. 

SPECIFICATIONS SUMMARY 

The MICRO 400 in a general purpose digital computer designed for 
controller, control system, data collection, communications, data terminal 
and stand alone applications. 

Memory 

Magnetic core, 8-bit word length, 1.6 microseconds full cycle, 400 
nanoseconds access. Expandable from 1024 to 65,536 bytes. Each 
memory module contains data and address registers and 1 K or 4K bytes of 
core memory. 

Byte Length 

8 bits. 

Addressing 

Direct to 4096 bytes 
I ndexed to 65,536 bytes 
Base register addressing to 65,536 bytes (optional). 

Instructions 

118 standard instructions, 49 optional: 

Type 

Load/Store 
Arithmetic/Logical 
Memory Modify/Skip 
Register Transfer 
Jump/Jump Mark 
Skip 
Control 
Input/Output 
Load/Store Indexed 
Index Register Control 
Base Register Control (optional) 

409 

Execution Time 
(cycles) 

3 
1 

3-4 
1 

2-4 
2-3 

1 
2 
3 
2 
2 



Operational Registers 

P Register 
I Register 
D Register 
X Register 
MA Register 
MD Register 

program counter, 12 bits 
instruction register, 8 bits 
holding, 8 bits 
index, 16 bits 
memory address, 12 bits 
memory data, 8 bits 

(MA and MD registers 
memory block.) 

are contained within each 1024- or 4096-byte 

Accumulators 

A 
B 

Register 
Register 

Input/Output 

Programmed Data Transfer: 

accumulator and input/output, 8 bits 
accumulator and input/output, 8 bits 

Single byte to/from both accumulators 
External control functionS, 8 per device 
External sense functions, 8 per device 

Automatic Data Transfer (optional): 
Direct Memory Access at 625,000 bytes per second 

Priority Interrupt: ' 
One level, standard 
Eight levels, optional 

Control Panel 

Twelve display indicators and data entry switches for all operational 
registers except I, D and X. 
Four control indicators (LINK, OVERFLOW, STEP, and RUN) 
Two sense switches 
Five control switches (INITIALIZE, STEP, RUN, EXECUTE and 
ON/OFF) 

Note: The MICRO 400 will operate without the control panel which, if 
used can be installed up to 2 feet from the processor and is 
designed for mounting in the OEM user's equipment. 

Dimensions 

CPU 
Memory 
Power Supply 
Enclosure 

One PC board 12.5" x 18" 
One PC board 12.5" x 18" 
19" deep x 3.5" wide x 3.25" high 
3.5" high x 17.5" wide x 21" deep 

410 



Weight 

Complete MICRO 400 with power supply, console, 8192 words memory: 
23 pounds 

MICRO 400 without power supply: 10 pounds 

Power 

Requirements 

Dissipation 

Enclosure 

2 amps, 105 VAC to 125 VAC, 47 to 63 Hz, single 
phase (other frequencies available on special order) 
170 watts (typical) 

The basic MICRO 400 enclosure houses the complete computer: CPU 
board, up to 8192 words of memory, TTY or modem controller, 
automatic bootstrap loader, MICRObus, base register index module, power 
fail/restart, priority interrupts, I/O bus, power supply, and operators 
console. Matching expansion enclosures available for additional memory 
and I/O controllers. 

Installation 

Desk or tabletop mountable 
Brackets suppled for mounting in standard 19-inch rack 

Environmental 

Operating Temperature 

Storage Temperature 

Relative Humidity 

o°C to 50°C 
(32°F to 122°F) 
_40° C to +80° C 
(-40°F to +176°F) 
o to 90 percent, no condensation 

411 



MICRO 800 COMPUTER 

The MICRO 800 is a high-speed microprogrammed computer whose flexi­
bility, functional modularity and system-oriented packaging make it ideally 
suited for dedicated volume applications. 

The MICRO 800's flex ibility permits the computer system to be expanded 
or reduced to the exact configuration needed for any application. For 
example, the computer can be used without a core memory as an inexpen­
sive controller or data concentrator. When memory is required for storage 
of variable parameters, tables or data, high-speed core memory may be 
added to the system. 

The MICRO 800 also can be microprogrammed to emulate other general 
or special-purpose computers enabl ing the software of these machines to 
be compatible with the MICRO 800. In such a case, additional interface 
hardware can be furnished to provide plug·to-plug compatibility with 
other computers. 

In addition to low unit cost, the MICRO 800 system also can reduce over· 
all system cost. The high-speed execution of firmware routines allows the 
processor logic to be time-shared to minimize input/output interface 
hardware. 

t:c1 i TX:r ... ' ...... 

StLl,:,;r UOOF. POWE.R 

_ ""~ "" .<'»' "".,.- -

- ---
, -:~, :-.~" I t:C 1 

II ., 

412 



Microprogramming also provides exceptionally high performance with an 
unusually small amount of internal hardware. The basic computer consists 
of two identical data boards, each of which is a 4·bit slice of the com­
puter's data paths and registers, and a single control board which provides 
command decoding and timing. . 

Main frame options including memory parity, power fail/automatic restart, 
real-time clock and input/output interfaces are implemented on card 
modules which plug into the basic MICRO 800 enclosure. 

With its 1.1 microsecond core memory cycle time and 220 nanosecond 
command execution time, the MICRO 800 is the fastest machine in its 
class. Core memory is expandable from 0 to 32,768-bytes in 4,096 byte 
or 8192 byte increments. A 1,024 byte core memory also is available for 
small, inexpensive systems. Weight is 75 pounds. 

MICRO 810 COMPUTER 

The MICRO 810 is a general purpose computer which is a micropro­
grammed adaptation of the MICRO 800. Microprogrammed subroutines, 
configured in the read only memory, interpret macro instructions of pro­
grams stored iri the core memory. 

A powerful macro level computer, the MICRO 810 also retains all the 
modular and functional advantages of the MICRO 800. 

The MICRO 810 has available considerably larger programs than most 
machines in its class, combined with ease of programming and program­
ming flexibility. Some of the advantages of the MICRO 800 can be ob­
tained by adding problem-oriented instructions or firmware subroutines 
to the MICRO 810. Multiply/divide instructions are standard. 

The MICRO 810 features 1.1 microsecond cycle time and 220 nanosecond 
execution time in the ROM. Core memory is field-expandable to 32,768 
Bytes (8, 9 or 10 bits). Extra memory bits may be used for memory parity 
and special applications. A 1024-byte by 9-bit core memory also is avail­
able. Weight is 75 pounds. 

413 



MICRO 820 COMPUTER 

The MICRO 820 is a high-speed microprogrammed general-purpose 
computer that provides a -comprehensive instruction repertoire and a 
powerful input/output facility. System architecture is byte oriented. This 
allows variable precision operations and character manipulation to be 
highly efficient in both speed and memory utilization. 

The MICRO 820 system is gesigned to accommodate additional standard 
and special firmware inexpensively, thereby permitting the user to specify 
augmented capabilities such as multiply/divide instructions, BCD arith­
metic, floating point arithmetic, trigonometric and transcendental func­
tions, and fully buffered communication multiplexers. 

STANDARD FEATURES 

Variable precision operations 

Character/string man ipu lation 

Stack processing 

Memory addressing to 32,768 bytes 
4096 and 8192 byte plug-in memory modules 
32,768 bytes of memory in basic enclosure 
1.1 microsecond memory cycle time 

Six operational registers 
Accumulator (A) 16 bits 
Auxiliary accumulator (B) 16 bits 
Index register (X) 16 bits. 
Program counter (P) 15 bits 
Overflow (0) 1 bit 
Word length contr<;>1 (W) 2 bits 

Comprehensive instruction set including 102 basic operations 
Control (16) 
Multi-bit arithmetic and logical shifts (12) 
Conditional jumps (17) 
Input/Output (6) 
Inter-register (19) --
Stack control (8) 
Character/string manipulation (4) 
Memory reference including jump, compare and variable word length 
operations (20) 

Eight operand addressing modes 
Direct to page 0 (first-256 bytes) 
Direct relative to P (± 128 bytes) 
I ndirect to page 0 (first 256 bytes) 
I ndirect relative to P (± 128 bytes) 
Indexed (to 32,768 bytes) 
Indexed with bias (to 32,768 bytes) 
Extended address (to 32,768 bytes) 
Literal 

414 



Multi-precision 1,2,3 or 4 byte load, store and arithmetic operations 

Flexible I/O facilities 
Programmed transfers to/from A register, B register and memory 
Concurrent buffered I/O 
Direct memory access 

Expandable priority interrupt system 

Processor options 
Real-time clock 
Power-fail detect and automatic restart 

Built-in bootstrap loader in non-volatile read-only memory 

Standard supplied software 
Loaders 
Teletype debug and operating system 
Two pass assembler 
Text editor 
Diagnostics 

Optional Software Available 
"Basic" programming language 
Executive program 
File management program 
Data management program 

TTL integrated circuitry 

Power: 115/230 vac, 47-63 cycle, 380 watts 

Environment: 0-50°C 

Dimensions: 8% inches high, 19 inches wide, 23 inches deep 

MICRO 800 SERIES COMPUTER SYSTEM 
ELEMENTS AND OPTIONS 

Magnetic Core Memory 

Item 

8218 
8208 
8288 

Description 

1,024 Byte (8 bit) core memory module. (P/N10001040) 
4,096 Byte (8 bit) core memory module. (P/N 1000588) 
8,192 Byte (8 bit) core memory module. (P/N1000925) 

Central Processor Options 

Item 

8413 

8421 

Description 

Power Fail/Auto-Restart, and Real Time Clock 
(P /N 0594004) 

Communications Multiplexer (firmware) Power Fail/ Auto­
Restart, Reat Time Clock, and Communications Rate Gen­
erators. (P /N 1 0001038) 

415 



General Purpose and Utility Interfaces 

Item 

8920 

8722 

8703 

8704 

8705 

8710 

Description 

Teletype Controller and Interface, employs serial/parallel 
conversion and buffering, transfers are programmed control. 
(P/N0813002) 

General Purpose Wire-Wrap Board including 64 each 16-pin 
sockets and 6 each 24-pin sockets, occupies one Input/Output 
slot. (P/N1000755) 

Priority I nterrupt Board; provides eight levels of priority 
interrupt expansion with individual arm/disarm and request 
storage. (P/N1000781) 

Direct Memory Access (DMA)-Selector channel, block or 
multiple buffer modes, includes end of transfer interrupt, will 
accommodate up to four devices. (P/N1000833) 

General Purpose I/O Interface-provides 32 input and 32 
output. lines under program control: can be used for inter­
facing incremental tape drives, MUX-ADC's, DAC's and other 
low speed peripheral devices. (P/N0637001) 

General Purpose Byte I/O System, provides independent 
I nput/Output controllers each with 8-bit data transfers in the 
programmed, concurrent I/O or interrupt modes. Is used as 
interface for paper tape reader and punch, buffered line 
printer, and character oriented devices. (P/N 1 0001 033) 

Communications Interfaces 

Item Description 

8800 Full Duplex Synchronous Modem Interface, provides dual 
independent control for the transmission and receiving ele­
ments of synchronous modems operating up to 9600 baud. 
Each control element includes programmed, concurrent I/O, 
and interrupt data transfer modes. The unit will accommodate 
programmed sync patterns 5, 6, 7, or 8-bit character size, and 
standard baud rates to 9600. I nterface signals are E IA 
Standard RS-232~C. (P/N 1 000825) 

8801-1 Synchronous Modem Interface with Auto-Call/Answer unit 
provides full duplex operation in the programmed transfer 
mode or half full duplex operating in the concurrent I/O mode 
with 201 Series modems or other synchronous modems up to 
9600 baud with EIA Standards RS-232-C levels. (P/N1000858) 

8803-1 Eight Channel Low Speed Modem Interface-provides eight 
full duplex RS-232-B interfaces. (P/N0437001) 

8803-2 Sixteen Channel Low-Speed Modem Interface-provides six-
. teen full duplex RS-232-B interfaces. (P/N0437002) 

8803-3 Eight Channel Low-Speed Modem I nterface-provides eight 
full duplex RS-232-B interfaces and modem control interfaces. 
(P /N 0437 003) 

416 



8804-1 

8804-2 

8805 

8806 

8807 

Eight channel teletype control-provides eight full duplex 
20ma teletype interfaces. (P/N0496001) 

Sixteen channel teletype control-provides sixteen full duplex 
20ma teletype interfaces. (P/N0496002) 

Four Channel Communications Interface and character buf­
fered Controller, provides simultaneous operation of four full 
duplex asynchronous lines with four independent controllers. 
Each controller is programmable for eight combinations of 
baud rate from 75 to 2400 and character lengths from 7.5 to 
10 bits. EIA Standard RS-232-C or teletype 20ma current loop 
can be selected. (P/N1000991) 

Eight Channel Communications Interface and character buf­
fered Controller provides simultaneous operation of 8 full 
duplex asynchronous lines. Eight combinations of baud rate 
from 75 to 2400 and character lengths from 7.5 to 10 bits can 
be selected, will apply to all 8 lines. EIA Standard RS-232-C or 
Teletype 20ma current loop can be selected. (P/N1000994) 

Automatic Call Unit Interface and Controller, provides control 
functions for either four Bell Model 801 Automatic Call Units 
or one 16-channel single port unit with EIA Standard 
RS-232-C Interface Levels. (P/N 1 000829) 

Peripheral Device Interfaces 

Item 

8941 

8942 

8955 

8956 

8960 

8960-7 

Description 

Line Printer. 80 column, 64 character set, 150 LPM. Cables 
and output controller included. 

Line Printer. 132 column, 64 character set, 250 LPM. Cables 
and output controller included. 

Disc System including: disc drive with moving head removable 
cartridge, 2.4 million bytes, 75ms average random access, 200 
KC byte transfer rate, 63" computer cabinet, cables, DMA 
selector channel and I/O controller. Requires two assembly 
slots in the computer. 

Disc System including: disc drive with moving head, one fixed 
plus one removable cartridge, 4.9 million bytes, 95ms average 
random access, 200 KC byte transfer rate, 63" computer 
cabinet, cables, DMA selector channel and I/O controller. 
Requires two assembly slots in the computer. 

Magnetic Tape System consisting of I/O controller which will 
accommodate up to four magnetic tape transports, cables, one 
transport; 7" reel, 12.5 IPS, 9 track, 800 BPI, read-write dual 
gap head, transfer rate is 10,000 bytes/see via concurrent I/O 
channel. 

Same as 8960 above, transport is 7 track. 

417 



8961 

8961-7 

2820 

2820-7 

2821 

2821-9 

8971 

8984 

Magnetic Tape System consisting of I/O controller which will 
accommodate up to four magnetic tape transports, cables, one 
transport; 7" reel, 25 IPS, 9 track, 800 BPI, read-write dual 
gap head, transfer rate is 20,000 bytes/sec via concurrent I/O 
channel. 

Same as 8961 above, transport is 7 track. 

Magnetic Tape Transport, 7" reel, 12.5 IPS, 9 track, 800 BPI, 
read-write dual gap head. (P/N A20002820) 

Magnetic Tape Transport, 7" reel, 12.5 IPS, 7 track, 800 BPI, 
read-write dual gap head. (P/N A20002820-1) 

Magnetic Tape Transport, 7" reel, 25 IPS, 9 track, 800 BPI, 
read-write dual gap head. (P/N A20002821) 

Magnetic Tape Transport, 7" reel, 25 IPS, 7 track, 800 BPI, 
read-write dual gap head. (P/N A20002821-1) 

Card Reader, Cable and Input Controller. 300 CPM, 80 column 
cards, 1,000 card hopper, 1,000 card stacker. Controller 
occupies one computer assembly slot. 

Paper Tape System consisting of: 300 CPS fanfold 8-channel 
paper reader, 75 CPS fanfold 8-channel paper tape punch, 
cables, and I/O controller. Unit is rack mountable 10.5" space, 
I/O interface occupies one computer assembly slot. 

418 



MICRO 1600 COMPUTER 

Newest and most advanced of Microdata Corporation's families of com­
puters is the MICRO 1600, a companion product line to the MICRO 800 
which provides significant performance improvements in both speed and 
function. 

Both the 1600 and 800 are functionally compatible, enabling established 
MICRO 800 users to use the 1600 directly without redevelopment of 
firmware, software or system peripherals or interfaces. 

However, new and revised firmware can achieve significant performance 
improvements at both the micro and macro levels of programming. 

The MICRO 1600 is an economical machine with unequalled flexibility 
which can be tailored to fit almost any application. Modular design of 
core memory, processor, microprogram control memory and input/output 
modules provides easy, economical expansion of all functional areas of the 
computer. 

Extra space and power in the basic enclosure perm its growth from a m ini­
mum to a fully expanded configuration without the need for special or 
expansion enclosures. User-designed interfaces can be installed in the com­
puter cabinet. 

The widest range of hardware, firmware and software options in the· 
industry is available to augment i:he MICRO 1600. 

Improved features of the MICRO 1600 are higher speed, processor options 
which are part of the CPU, additional general-purpose registers, control 
memory expansion to 16,384 words, core memory expansion to 65,000 
words, dual processor capabil ity, memory data buffer, data output buffer, 
memory address link bit and expanded control panel facilities. This is 
accomplished through maximum use of the most advanced MSI and LSI 
technology. 

Control memory cycle time is.1 microsecond, 200 nanosecond command 
execution rate. 

419 



·. / 
. , 

420 



MICRO 1600/21 COMPUTER 

The MICRO 1600/21 offers economy, high speed, microprogrammed 
architecture and flexibility through which the user can tailor the machine 
to his specific requirements. 

Featuring a comprehensive instruction repertoire and efficient input/ 
output, the MICRO 1600/21' s system architecture is byte-oriented, 
resulting in highly variable precision operations and character 
manipulation. 

Efficient utilization of core memory and high throughput are achieved by 
the use of a large repertoire of macro instructions. High-speed read-only 
control memories reduce the number of CPU circuits which otherwise 
would be needed for the MICRO 1600/21's instructions. The system uses 
TTL monolithic integrated circuits, including a large number of medium 
and large-scale integration types. 

Modular design of core memory, read-only memory, processor options and 
input/output elements permits inexpensive system expansion within the 
compact basic enclosure. 

STANDARD FEATURES 

Variable precision operations 

Character/string manipulation 

Stack processing 

Memory addressing to 32,768 bytes 
4096 and 8192 byte plug-in memory modules 
32,768 bytes of memory in basic enclosure 
1.0 microsecond memory cycle time 

Six operational registers 
Accumulator (A) - 16 bits 
Auxiliary accumulator (8) - 16 bits 
Index register (X) - 16 bits 
Program counter (P) - 15 bits 
Overflow (0) - 1 bit 
Word length control (W) - 2 bits 

Extensive, powerful instruction set including 107 different operations: 
Control (16) 
Multi-bit arithmetic and logical shifts (12) 
Conditional jumps (17) 
Input/Output (6) 
Inter-register (19) 
Stack control (8) 
Character string manipulation (5) 
Multiply/divide (2) 
Decimal arithmetic (add and subtract instructions) (2) 
Memory reference including jump, compare and variable word length 
operations (20) 

421 



Eight operand addressing modes, including: 
Direct to page 0 (first 256 bytes) 
Direct relative to P (±128 bytes) 
Indirect to page 0 (first 256 bytes) 
I ndirect relative to P (±128 bytes) 
Indexed (to 32,768 bytes) 
Indexed with bias (to 32,768 bytes) 
Literal 

Multi-precision 1,2,3 or 4-byte load, store and arithmetic operations 

Flexible I/O facilities including: . 
Programmed transfers to/from A register; B register and memory 
Concurrent buffered I/O 
Direct memory access 

Expandable priority interrupt system 

Standard power fail detect automatic restart and interrupt 

Optional Real-time clock 

Built-in bootstrap loader in nonvolatile read-only memory . 

Standard software, including: 
Loaders 
Teletype debug and operating system 
Two-pass assembler 
Text editor 
Diagnostics 

Power: 115/230 vac ±10%, 47-63 Hz, Average Configuration less than 400 
watts 

Environment: 0-50 C 

Dimensions: Table-top configuration, 10% inches high, 19 inches wide, 20 
inches deep 

422 



Packaging 

Item 

2001 

2002 

2003 

2004 

MICRO 1600 COMPUTER SERIES SYSTEM 
ELEMENTS AND OPTIONS 

Description 

Rack mountable enclosure for: 
24 inch Cabinet (PIN A20002001) 
26 inch Cabinet (PIN A20002001-1) 
28 inch Cabinet (PIN A20002001-2) 
30 inch Cabinet (PIN A20002001-3) 

Table top enclosure (PIN A20002002) 

Rack Mounting Hardware for nonenclosed Card Cage for: 
24 inch Cabinet (PIN A20002003) 
26 inch Cabinet (PIN A20002003-1) 
28 inch Cabinet (PIN A20002003-2) 
30 inch Cabinet (PIN A20002003-3) 

Computer Cabinet, 63" Vertical Height X 19" wide X 24" 
deep; full length rear door, desk height work surface front, 
and 300 CFM blower. 

Control Panels 

Item Description 

2101 Basic panel with run-halt indicators, four sense switches, six 
control switches, power switch. (PIN A2002101) 

2102 System Panel, includes Run-Halt Indicators, four Sense 
Switches, six Control Switches, Power Switch, Register 
Display, and 16-bit Switch Register. (PIN A200021 02) 

Magnetic Core Memory 

Item Description 

2204 4096 Byte (8 Bit) Core Memory Module (PIN A20002204) 

2208 8192 Byte (8 Bit) Core Memory Module (PIN A20002208). 

423 



Control Memories 

Item Description 

2310-nnnn Programmed read only memory (PROM) with customer. 
supplied .firmware. 

2320-nnnn Bipolar read only memory (BROM) with customer supplied 
firmware. 

Customer supplied firmware to be submitted to Microdata 
in the form of card deck output, AP1600, or paper tape 
output, MAP1600, assembly programs. PROM and BROM 
may be intermixed both within systems and on single P.C. 
board assemblies. 

2330-1 Firmware Setl11, 512 words BROM (bipolar read only 
memory) (PIN A20002330-1) 

2330-2 Firmware Setll0, 768 words BROM (Bipolar Read Only 
Memory) (PIN A20002330-2) 

2331-1 Firmware Set/20, 768 words BROM (Bipolar Read Only 
Memory) (PIN A20002331-1) 

2331-2 Firmware Setl21, 1024 words BROM (Bipolar Read Only 
Memory) (PIN A20002331-2) 

2380-1 Alterable Read Only Memory (AROM), 512 words. (PIN 
A20002380-1 ) 

2380-2 Alterable Read Only Memory (AROM), 1024 words (PIN 
A2000238U-2) 

2381 Alterable ROM control pa'nel and cooling unit (PIN 
A20002381-2) 

2382 Alterable ROM power supply provides power for two 2380 
AROM modules. 

Central' Processor Options 

Item Description 

2401 Real time clock (PIN A20002401) 

General Purpose and Utility Interfaces 

Item 

2500 

2501 

.2502 

Description 

General purpose wire wrap board accommodates up to 135 
units of 14 or 16 pin IC sockets or 24 units of 24 pin IC 
sockets. Requires 2 assembly slots. (PIN 1000 1058) 

General purpose 1/0 wire wrap board including 64 each 16 
pin sockets and six each 24 pin sockets; occupies one 1/0 
slot. (PIN A20002501) 

1/0 cable (10 feet) and connector. (PIN A20002502) 

424 



2510 Byte I/O Controller provides independent input controller 
and output controller each with eight-bit data transfers 
operating in the programmed concurrent I/O or interrupt 
modes. (P/N A20002510) 

2511 Full word I/O interface provides 32 input lines and 32 
output lines; data transfers are under program control. (P/N 
A20002511) 

2512 Priority Interrupt Board provides eight levels of priority 
interrupt with individual arm/disarm. (P/N A20002512) 

2513 Selector channel operates via direct memory access (DMA); 
will accommodate up to four I/O devices. (P/N 
A20002513) 

Communications Interfaces 

Item 

2600 

2601 

2610 

2611 

2612 

2620 

2630 

Description 

Full duplex synchronous modem interface and control 
operating in programmed, concurrent I/O and· interrupt 
data transfer modes, accommodates standard rates up to 
9600 baud, EIA Standard RS-232-C. (P/N A20002600) 

Synchronous modem interface with auto-call/answer unit 
operating full duplex in the programmed transfer mode or 
half-full duplex in the concurrent I/O mode. Accommo­
dates standard rates up to 9600 baud, EIA Standard 
RS-232-C levels. (P/N A20002601) 

Asynchronous communications controller and interface. 
Transfers are programmed, concurrent I/O or interrupt or 
input character ready. Standard rates from 110 to 9600 
baud and EIA standard RS-232-C or 20ma current loop 
interface are to be specified at time of order. (P/N 
A20002610) 

Four-channel commu nications interface and controller pro­
vides simultaneous operation of four full duplex asyn­
chronous lines. Each channel is programmable at rate from 
75 to 2400 baud. EIA standard RS-232-C or teletype 20ma 
current loop can be selected. (P/N A20002611) 

Eight-channel communications interface and controller pro~ 
vides simultaneous operation of eight full duplex asyn­
chronous lines. Standard rates from 75 to 2400 baud can be 
selected - will apply to all eight lines. EIA standard 
RS-232-C or teletype 20ma current loop can be selected. 
(P/N A20002612) 

Modem/communications control provides 16 discrete inputs 
and 16 discrete outputs, E IA standard RS-232-C interface. 
(P/N 0437002) 

Automatic call unit controller provides control functions 
for four Bell Model 801 automatic call units, EIA standard 
RS-232-C interface levels. (P/N 10002630) 

425 



Peripheral Systems 

Item 

2710 

2720 

2731 

2732 

2810 

2810-7 

2811 

2811-7 

2820 

2820-7 

2821 

2821-7 

2851 

Description 

Paper tape system consisting of: 300 CPS fanfold 8-channel 
paper reader, 75 CPS fanfold 8-channel paper tape punch, 
cables, and I/O controller. Unit is rack mountable 10.5" 
space, I/O interface occupies one computer assembly slot. 
(P/N A20002710) 

Card reader, cable and input controller. 300 CPM, 80 
column cards, 1000 card hopper, 1000 card stacker. 
Controller occupies one computer assembly slot. (P /N 
A20002720) 

Line printer, 80 column, 64 character set, 150 LPM. Cables 
and output controller included. (P/N A20002731) 

Line printer. .132 Column, 64 character set, 250 LPM. 
Cables and output controller included. (P/N A20002730) 

Magnetic tape system consisting of I/O controller which will 
accommodate up to four magnetic tape transports, cables, 
one transport; 7 inch reel, 12.5 IPS, nine track, 800 BPI, 
read-write dual gap head, transfer rate is 10,000 bytes/sec 
via concurrent I/O channel. (P/N A20002810) 

Same as 2810 above, transport' is 7 track. (P/N 
A2000281 0-7) 

Magnetic tape system consisting of I/O controller which will 
accommodate up to four magnetic tape transports, cables, 
one transport; 7 inch reel, 25 IPS, nine track, 800 BPI, 
read-write dual gap head, transfer rate is 20,000 bytes/sec 
via concurrent I/O channel. (P/N A20002811) 

Same as 2811 above, transport is seven track. (P/N 
A20002811-7) 

Magnetic tape transport, 7 inch reel, 12.5 I PS, nine track, 
800 BPI, read-write dual gap head. (P/N A20002820) 

Magnetic tape transport, 7 inch reel, 12.5 I PS, seven track, 
800 BPI, read-write dual gap head. (P/N A20002820-1) 

Magnetic tape transport, 7 inch reel, 25 IPS, nine track, 800 
BPI, read-write dual gap head. (P/N A20002821) 

Magnetic tape transport, 7 inch reel, 25 IPS, seven track, 
800 BPI, read-write dual gap head. (P/N A20002821-1) 

Disc system, including disc drive with moving head re­
movable cartridge, 2.4 million bytes, 75 ms average random 
access, 200 KC byte transfer rate, 63 inch computer 
cabinet, cables, DMA selector channel and I/O controller. 
Require two assembly slots in the computer. (P/N 
A20002851) 



2852 Disc system, including disc drive with moving head, one 
fixed plus one removable cartridge, 4.9 million bytes, 95 ms 
average random access, 200 KC byte transfer rate, 63 inch 
computer cabinet, cables, DMA selector channel and I/O 
controller. Requires two assembly slots in the computer. 
(P/N A20002852) 

Standard Software Packages 

Item Description 

AP1621 Cross assembler written in FORTRAN for operation on 
numerous large·scale computers. 

MAP1621 Machine language symbolic .assemblers for use on MICRO 
1600/21 computer. 

TOS1621 Teletype operating system. 

TED 1621 Tape editor. 

Diagnostics CPU, memory and peripheral interface diagnostics for 
MICRO 1600/21 computer. 

427 



FIRMWARE TRAINING SYSTEM 

The Jirmware trainer is a valuable tool for classroom teaching of micro­
programming techniques. Small firmware routines can be quickly set up 
and checked out with the aid of the comprehension switch panel layout 
and the built-in visual display. Firmware alterations and corrections are 
made quickly and efficiently, permitting the student to concentrate on 
the problem rather than the hardware. 

The system consists of a MICRO 800 computer with a utility read-only 
memory, a switch matrix read-only memory, a 4096 byte magnetic core 
memory, a TTY/display controller and an I/O display panel. 

The MICRO 800 computer includes a special interface wired to a panel 
with 512 switches. Each switch connects a diode to the computer to 

.,designate a logical 1 for binary values of the microprogram command 
sequence. A maximum of 32 commands may be used at one time on the 
panel. 

As an aid in demonstration and training activities, the preprogrammed 
utility ROM is included to facilitate input/output functions without ex­
pending instructions on the ROM switch panel. Six utility routines are 
included to permit display and recording of data obtained during execution 
of microprograms. 

A 3D-page operations manual and 50 copies .of the microprogramming 
handbook are included with the firmware trainer system. Price for the 
system is $1 0,000. 

428 



429 



430 



MICROPROGRAMMING SYSTEM 

Microdata's Microprogramming System is designed for users who wish to 
develop firmware for either the MICRO 800 or MICRO 1600 computers. 

The system includes a Model 1600/21 general-purpose computer with 
8192 bytes of core memory; a 1024-word alterable read-only memory; an 
alterable read-only memory control unit, and an ASR teleprinter interface. 
The system is available on a short-term rental basis to customers requiring 
its use for short periods of time. 

The basic system provides adequate power and cooling for significant 
memory expansion without modifying the system, and will accommodate 
up to 32,768 bytes of main core memory, an additional 1024 words of 
alterable ROM and up to 4096 words of fixed ROM. I n addition, several 
I/O interfacE: boards can be included which can add a dynamic dimension 
to the system_ 

CONTROLS 

Three control switches are used to operate the Microprogramming System. 
They are the Link Control Switch, Manual Operate switch and Control 
Mode switch. Each has two operational positions. 

The Link Control switch operates at the combined or separate setting. In 
MICRO 800 applications, arithmetic and addressing functions are 
combined in one link bit, making necessary use of the cOlllbined setting. 
The combined setting must also be used in the MICRO 1600/21 to operate 
the load/verify mode. 

The separate setting is used for MICRO 1600 operation, since this 
computer has two separate link bits - one for arithmetic and one for 
addressing. 

The Manual Operate switch can be set for load/verify or execute. When the 
switch is set in the load/verify position, the AROM is connected as an I/O 
device to the MICRO 1600/21. 

The Control Mode switch can be positioned at manual or program settings. 
When the switch is in the manual mode setting, it enables the Manual 
Operate switch, at which time either load/verify or execute modes can be 
selected. When the Control Mode switch is in the program position, 
commands in the computer under program control automatically select the 
load/verify or execute mode. 

OPERATIONAL MODES 

The AROM section of the system is operated in two basic modes - as an 
I/O device in the load verify mode or as integral control memory in the 
execute mode. Starting addresses of AROM modules can be strapped to 
"0000" for new computer architecture developments starting from scratch 
or the address can be set to the next sequential address from existing fixed 
control memory which is to be supplemented. An example of 
supplementary firmware development would be the addition of high-level 

431 



mathematical instructions to the MICRO 1600/21 instruction set or the 
addition of an application-oriented high-speed data channel. 

When used in application as a dynamically changeable extension of fixed 
ROM architecture or as a completely independent new architecture the 
AROM load verify or execute modes are set by I/O commands. Typical 
operation of load AROM from disc and Change control to AROM is 
implemented initially by a software program in the fixed ROM. Control 
change back to fixed ROM programs depends on specific application 
requirements or system hardware reset. . 

LoadlVerify Operations 

The I/O section of the Microprogramming System interfaces to the byte 
I/O channel of the computer and obeys all the rules for a MICRO 1600/21 
I/O device. The unit is designed to handle programmed I/O transfers only 
(Le., concurrent and interrupt modes are not provided). Thus, if 
MICRO 1600/21 firmware is provided in the fixed read-only memory of 
the system, then load/verify operations involving the AROM are handled 
using normal MICRO 1600/21 byte I/O instructions. 

Addressing 

When operating as control memory in the execute mode, the AROM 
memory section receives addresses from the L counter (microprogram 
location) and places the contents of that location on the R bus 
(microcommand bus). The absolute address of the first word on the board 
may be selected to be anywhere between 0000-204810 at increments of 
256 words (Le., 0, 256, 512, etc.). The unit is pre-etched to have its 
starting location at 0.· However, by changing appropriate jumper 
connections, the starting address may be set as described. AII- memory 
locations on a single AROM module are contiguous. 

Control Memory Operation 

The unit interfaces to the timing and control circuits of the MICRO 1600 
via the L counter and R bus. The L counter supplies a 12-bit address 
specifying the location of a microcommand word to be read from control 
memory. The microcommand read from memory is placed on the R bus 
for execution by the CPU control. The upper three bits of the L counter 
input are strappable, permitting the first word in the random access 
memory to be addressed at any increment of 25610 up to 204810. When 
the unit is not being addressed by the L counter, there is no output to the 
R bus. 

Circuitry is provided to recognize when the AROM is being accessed for a 
control word, and- an I/O inhibit signal is generated to prevent any I/O 
operation from taking place via the byte I/O bus. Therefore, the 
microcommands contained in the AROM cannot be used to access the 
AROM via the byte I/O bus (.i.e., the program in AROM cannot access 
itself); thus, all I/O operations affecting the AROM must be contained in 
another control memory module. 

432 



Control memory operations of the AROM are completely transparent to 
the system. There is no functional difference between microprogram 
control operations and those of another form of control memory. 

The I/O instructions recognized by the AROM are as follows: 

Instruction 

OBA 0,31 
IBA 0,31 
OBA 1,31 
I BA 1,31 
OBA 2,31 
OBA 3,31 
OBA 4,31 * 
OBA 5,31 * 

Operation 

Transfer upper data byte (Bits 8-15) to AROM. 
Transfer upper data byte (Bits 8-15) from AROM. 
Transfer lower data byte (Bits 0-7) to AROM. 
Transfer lower data byte (Bits 0-7) from AROM. 
Load upper AROM address byte (Bits 8-10) 
Load lower AROM address byte (Bits 0-7) 
Load Verify, enable AROM I/O; Disable R Bus. 
Execute, enable R Bus; Disable AROM I/O. 

*If the system is operating in the manual mode, these commands cannot 
be executed by the computer. The position in which load/verify and 
execute switches are placed forces the functions indicated. 

Alterable Read-Only Operating System 

The unit is also supplied with an operating program called AROS 
(Alterable Read-Only Operating System). 

AROS is combined with a comprehensive firmware development and 
software package. 

Included in this package are: 

MAP 1600 and MAP 800 micro language assemblers. 
SIM1600 or SIM800 for micro simulation. 
ICM1600 or ICM800 integrated circuit memory MAP generators which 
supply control memory bit patterns for implementing fixed integrated 
circuit ROM's. 

433 





Microdata 
Microdata Corpo rat ion 
644 East Young Street 
Santa Ana, Cal ifornia 92705 
(7 14) 540-6730 TWX 9 10-595-1764 

I'rinted in U.S.A . 30M 4/72 


	00000
	00001
	00002
	00003
	00004
	00005
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	xBack

