MAY 1981

82S102 (O.C.)/82S103 (T.S.)

DESCRIPTION

The 82S102 and 82S103 are Bipolar programmable AND/NAND gate array, containing 9 gates sharing 16 common inputs. On-chip input buffers enable the user to individually program for each gate either the True (I_m), Complement ($\overline{I_m}$), or Don't Care (X) logic state of each input. In addition, the polarity of each gate output is individually programmable to implement either AND or NAND logic functions.

Alternately, if desired, OR/NOR logic functions can also be realized by programming for each gate the complement of its input variables, and output (DeMorgan theorem).

Both devices are field-programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.

The 82S102 and 82S103 include chipenable control for output strobing and inhibit. They feature either open collector or tri-state outputs for ease of expansion of input variables and application in busorganized systems.

Both devices are available in the commercial and military temperature ranges. For the commercial range (0° C to $+75^{\circ}$ C) specify N82S102/103, F or N, and for the military range (-55° C to +125° C) specify S82S102/103, F, G, I, and R.

FEATURES

- Field programmable (Ni-Cr link)
- 16 input variables
- 9 output functions
- Chip enable input
- I/O propagation delay: N82S102/103: 35ns max S82S102/103: 50ns max
- Power dissipation: 600mW typ
 Input loading:
- N82S102/103: -100μA max S82S102/103: -150μA max • Output options:
- 82S102: Open collector 82S103: Tri-state
- Output disable function: 82S102: Hi 82S103: Hi-Z
- Fully TTL compatible

APPLICATIONS

- Random logic
- Address decoders
- Code detectors
- Peripheral selectors
- Fault monitors
- Machine state decoders

INTEGRATED FUSE LOGIC SERIES 28

PIN CONFIGURATION

LOGIC FUNCTION

Typical Output Functions @ $\overline{CE} = 0$:

At L = Open: $F_0 = (I_0 \bullet I_1 \bullet I_2 \bullet \dots \bullet Im)$ At L = Closed:

$$F_0 = (I_0 + I_1 + I_2 + \dots + I_m)$$

m = 0, 1, 2, 15

NOTES

For each of the 9 outputs, either the function Fp (active high) or \overline{Fp} (active low) is available but not both. The required function polarity is programmed via link (L).

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	AMETER RATING				
Vcc	Supply voltage	+7	Vdc			
VIN	Input voltage	+5.5	Vdc			
	Output voltage		Vdc			
Vон	High (82S102)	+5.5				
Vo	Off-state (82S103)	+5.5				
lin	Input current	±30	mA			
Ιουτ	Output current	+100	mA			
	Temperature range		°C			
TA	Operating					
	N82S102/103	0 to +75				
	S82S102/103	-55 to +125				
TSTG	Storage	-65 to +150				

82S102 (O.C.)/82S103 (T.S.)

INTEGRATED FUSE LOGIC SERIES 28

JUNE 1981

FPGA LOGIC DIAGRAM

82\$102 (O.C.)/82\$103 (T.S.)

INTEGRATED FUSE LOGIC **SERIES 28**

DC ELECTRICAL CHARACTERISTICS N82S102/103: $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$ S82S102/103: $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, $4.5V \le V_{CC} \le 5.5V$

	DADAMETEDI	TEST CONDITIONS	N	325102/1	103	SE			
	PARAMETER	TEST CONDITIONS	Min	Typ ²	Max	Min	Typ2	Max	
Vı∟ Vıн	Input voltage Low ¹ High ¹	V _{CC} = Min V _{CC} = Max	2.0		0.85	2.0		0.8	V
Vic	Clamp ^{1,3}	$V_{CC} = Min, I_{IN} = -18mA$		-0.8	-1.2	1	-0.8	-1.2	
Vol Voн	Output voltage Low ^{1,4} High (82S103) ^{1,5}	V _{CC} = Min I _{OL} = 9.6mA I _{OH} = -2mA	2.4	0.35	0.45	2.4	0.35	0.50	V
իլ հո	Input current Low High	V _{IN} = 0.45V V _{IN} = 5.5V		-10 <1	-100 25		-10 <1	-150 50	μΑ
Iolk Io(off) Ios	Output current Leakage (82S102)6 Hi-Z state (82S103)6 Short circuit (82S103)3,7	$V_{CC} = Max$ $V_{OUT} = 5.5V$ $V_{OUT} = 5.5V$ $V_{OUT} = 0.45V$ $V_{OUT} = 0V$	-20	1 1 -1	40 40 -40 -70	-15	1 1 -1	60 60 -60 -85	μΑ μΑ mA
Icc	V _{CC} supply current ⁸	V _{CC} = Max		120	170		120	180	mA
Cin Cout	Capacitance Input Output ⁶	$V_{CC} = 5.0V$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V$		8 15			8 15		pF

AC ELECTRICAL CHARACTERISTICS $R_1 = 470\Omega, R_2 = 1k\Omega, C_L = 30pF$

N82S102/103: $0^{\circ}C \le T_{A} \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

S82S102/103: $-55^{\circ}C \le T_{A} \le +125^{\circ}C, 4.5V \le V_{CC} \le 5.5V$

PARAMETER				N	325102/1	03	S			
		10	FROM	Min	Typ2	Max	Min	Typ ² Max		
TIA TCE	Progagation delay TIA Input Output TCE Chip enable Output		Input Chip enable		20 15	35 30		20 15	55 45	ns
Disable time T _{CD} Chip disable		Output	Chip enable		15	30		15	45	ns

NOTES

All typical values are at V_{CC} = 5V, T_A = 25°C. 2.

3. Test each output one at a time.

4. Measured with a programmed logic condition for which the output under test is at a low logic level.

Output sink current is supplied through a resistor to Vcc.

5. Measured with V_{IL} applied to \overline{CE} and a logic high at the output.

6. Measured with VIH applied to CE.

7. Duration of short circuit should not exceed 1 second.

8. Icc is measured with the chip enable input grounded, all other inputs at 4.5V and the outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

^{1.} All voltage values are with respect to network ground terminal.

OUTPUT POLARITY PROGRAM-VERIFY SEQUENCE (TYPICAL)

INPUT MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

VIRGIN DEVICE

The 82S102/103 are shipped in an unprogrammed state, characterized by:

- 1. All internal Ni-Cr links are intact.
- Each gate contains both true and complement values of every input variable Im (logic Null state).
- 3. The polarity of each output is set to active low ($\overline{F_P}$ function).
- 4. All outputs are at a high logic level.

RECOMMENDED PROGRAMMING PROCEDURE

To program each of 9 Boolean logic functions of 16 True, Complement, or Don't Care input variables follow the program/verify procedures for the Input Matrix and Output Polarity outlined below. To maximize recovery from programming errors, leave all links of unused gates intact.

SET-UP

Terminate all device outputs with a 10K Ω resistor to +5V.

Output Polarity

PROGRAM ACTIVE HIGH (Fp FUNCTION)

Program output polarity before programming inputs (for convenience). Program one output at a time. (L) links of unused outputs are not required to be fused.

- 1 . Set GND (pin 14) to 0V, and V_{CC} (pin 28) to V_{CCV}.
- 2. Disable all device outputs by setting CE (pin 19) to VIH.
- 3. Disable all input variables by applying V_{IX} to inputs I₀ through I₁₅.
- A.Raise V_{CC} (pin 28) from V_{CCV} to V_{CCP}.
- B After t_D delay, force output to be programmed to V_{OPF}.
- C.After t_D delay, pulse the \overline{CE} input from V_{IH} to V_{IX} for a period t_p.
- D.After to delay, remove VOPF voltage source from output being programmed.
- E . After t_D delay, return V_{CC} (pin 28) to V_{CCV} , and verify.
- F. Repeat steps A through E for any other output.

VERIFY OUTPUT POLARITY

- 1 . Set GND (pin 14) to 0V, and V_{CC} (pin 28) to $V_{CCV}.$
- 2. Disable all input variables by applying V_{IX} to inputs I_0 through $I_{15}. \label{eq:VIX}$
- A.After t_D delay, set the \overline{CE} input to V_{IL}.
- B. Verify output polarity by sensing the logic state of outputs F_0 through F_8 . All outputs at a low logic level are programmed active low (F_p function), while all outputs at a high logic level are programmed active high (F_p function).

82S102 (O.C.)/82S103 (T.S.)

INTEGRATED FUSE LOGIC SERIES 28

Input Matrix PROGRAM INPUT VARIABLE

Program one input at a time for one gate at a time. Input variable links of unused gates are not required to be fused. However, unused input variables must be programmed at Don't Care for all used gates.

- 1. Set GND (pin 14) to 0V, and V_{CC} (pin 28) to $V_{CCV}.$
- 2. Disable all device outputs by setting \overline{CE} (pin 19) to V_{IH}.
- Disable all input variables by applying V_{IX} to inputs I₀ through I₁₅.
- A-1.If a gate contains nether I_0 nor $\overline{I_0}$ (input is a Don't Care), fuse both links by executing both steps A-2 and A-3, before continuing with step C.
- A-2.If a gate contains I₀, set to fuse link by lowering the input voltage at I₀ from V_{IX} to V_{IL}. Execute step B.
- A-3.If a gate contains $\overline{I_0}$, set to fuse link by lowering the input voltage at I₀ from V_{IX} to V_{IL}. Execute step B.
- B-1.After t_D delay, raise V_{CC} from V_{CCV} to V_{CCP}.
- B-2.After t_D delay, force output of gate to be programmed to V_{OPF}.
- B-3.After t_D delay, pulse the \overline{CE} input from V_{IH} to V_{IL} for a period t_p.
- B-4.After to delay, remove VOPF voltage source from output of gate being programmed.
- B-5.After t_D delay, return V_{CC} (pin 28) to V_{CCV} , and verify.
- C. Disable programmed input by returning I₀ to V_{IX}.
- D. Repeat steps A through C for all other input variables.
- E. Repeat steps A through D for all other gates to be programmed.
- F. Remove VIX from all input variables.

VERIFY INPUT VARIABLE

Unambiguous verification of the logic state programmed for the inputs of each gate requires prior knowledge of its programmed output polarity. Therefore, the output polarity verify procedure must precede input variable verify.

- 1 . Set GND (pin 14) to 0V, and V_{CC} (pin 28) to $V_{CCV}.$
- Enable all outputs by setting CE (pin 19) to V_{IL}.
- Disable all input variables by applying V_{IX} to inputs I₀ through I₁₅.
- A .Interrogate input variable I_0 as follows: Lower the input voltage to I_0 from V_{IX} to V_{IL}, and sense the logic state of outputs F₀₋₈.

Raise the input voltage to I_0 from V_{IL} to V_{IH} and sense the logic state of outputs $F_{0-8}.$

82S102 (O.C.)/82S103 (T.S.)

INTEGRATED FUSE LOGIC SERIES 28

The state of I_0 contained in each gate is determined in accordance with the given truth table. Note that 2 tests are required to uniquely determine the state of the input variable contained in each gate.

- B.Disable verified input by returning I_0 to V_{IX} .
- C.Repeat steps A and B for all other input variables.
- D.Remove V_{IX} from all input variables.

10	Fp	Fp	INPUT VARIABLE STATE
0	1 0	0 1	Īō
0	0	1	IO
1	1	0	
0	1	0	Don't care
1	1	0	
0	0	1	(10), (10)
1	0	1	

PROGRAMMING SYSTEMS SPECIFICATIONS1 T_A = 25°C

				LINUT		
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
VCCP	V _{CC} supply Program ²	ICCP = 550mA, min	8.25	8.5	8.75	v
Vccv	Verify	Transient of steady state	4.75	5.0	5.25	
Ісср	Icc limit (program)	$V_{CCP} = +8.5 \pm .25V,$	550		1,000	mA
VOPF	Forced output voltage3 (program)	I ransient or steady state $I_{OP} = 300 \pm 25 \text{mA},$ Transient or steady state	16.0	17.0	18.0	v
IOPF	Output current (program)	$V_{OP} = +17 \pm 1V$, Transient or steady state	275	300	325	mA
ViH ViL	Input voltage High Low		2.4 0	0.4	5.5 0.8	V
Iн IL	Input current High Low	V _{IH} = +5.5V V _{IL} = 0V			50 -500	μΑ
Vix Iix1 Iix2	CE program enable level Input variables current CE input current	$V_{IX} = +10V$ $V_{IX} = +10V$	9.5	10	10.5 10.0 10.0	V mA mA
TR tp to TPR TPR TPR+TPS FL VS	Output pulse rise time CE programming pulse width Pulse sequence delay Programming time Programming duty cycle Fusing attempts per link Verify threshold ⁴	10% to 90%	10 0.3 10 1.4	0.4 0.6 1.5	50 0.5 100 2 1.6	μs ms μs ms % cycle V

NOTES

 These are specifications which a Programming System must satisfy in order to be qualified by Signetics

2. Bypass V_{CC} to GND with a 0.01μ F capacitor to reduce voltage spikes.

3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The

recommended supply is a constant current source clamped at the specified voltage limit. 4. Vs is the sensing threshold of a gate output voltage for a programmed link. It normally constitutes the

reference voltage applied to a comparator circuit to verify a successful fusing attempt.

82\$102 (O.C.)/82\$103 (T.S.)

INTEGRATED FUSE LOGIC SERIES 28

LOGIC PROGRAMMING

TYPICAL GATE

The FPGA can be programmed by means of Logic programming equipment.

With Logic programming, the AND/EX-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.

In this table, the logic state or action of variables I and F associated with each gate G_n is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

EX-OR ARRAY - (F)

"AND" ARRAY - (I)

NOTES

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates G_n .

2. Any gate Gn will be unconditionally inhibited if any one of its (I) link pairs is left intact.

82\$102 (O.C.)/82\$103 (T.S.)

INTEGRATED FUSE LOGIC SERIES 28

FPGA PROGRAM TABLE (Logic)

cus								_ THIS PORTION TO BE COMPLETED BY SIGNETICS										
								_ CF (XXXX)										
SIGN	SIGNETICS DEVICE #							_ CUSTOMER SYMBOLIZED PART #										
TOT	TOTAL NUMBER OF PARTS								_ DATE RECEIVED									
PRO	PROGRAM TABLE #								_ COMMENTS									
F ₀ (18)		-	=	=								<u> </u>					···	
F ₁ (17)				.						A.					<u></u>			
F ₂ (16)				=												········		
F ₃ (15)				=		<u>. </u>		1111.000		A								
F ₄ (13)				=														
F ₅ (12)	۰			=						.	·							
F ₆ (11)				=			· · · · ·		11-14-14-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1					····-				
F ₇ (10)																		
F ₈ (9) _				_		- - .												
GA	ATE							IN	INPUT VARIABLE									
		I ₁₅	114	I ₁₃	I ₁₂	l ₁₁	I ₁₀	19	1 ₈	I ₇	l ₆	I ₅	۱₄	l ₃	l ₂	I ₁	lo	
Fo	0	15	14	13	12		10	9	8	, , , , , , , , , , , , , , , , , , , ,	6	5	4	3	2	1	a	
F,	16	31			20	22	26	26		22			20	19	10	17	16	
F ₂																		
F.	32	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	
	48	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	46	
4	64	79	78	77	76	75	74	73	72	71	. 70		68			65	64	
F ₅	80	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81		
F ₆	96	111	110	109	108	107	106	105	104	103	102	101	100	99	98	97		
F,	112	127	126	125	124	123	122	121	120	119	118	117	116	115	. 114	113	112	
F ₈	128	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	126	
P	PIN	2	2	2	2	2	2	2	2	1	2	3	. 4	5	6	7	8	
N	10.	0	1	2	3	4	5	6	7									
ABLE	ABRE																	
ARI	۸A																	
>																		
Activo	-Hich-																	
Action	Active—High=H Action—Low=L Im=H Im=L Don't Care=-																	

NOTES

1. The number in each cell in the table denotes its address for programmers with a decimal address display.