
COMMON ASSEMBLY
LANGUAGE MACRO/32
PROCESSOR
(CAL MACRO/32)
LIBRARY UTILITY
Reference Manual

os /32 Version 6.0 or higher

48-057 FOO ROO

Concurrenlifffff!J
Computer Corporation

The information contained in this document is subject to
change without notice. Concurrent Computer Corporation has
taken efforts to remove errors from this document, however,
Concurrent Computer Corporation's only liability regarding
errors that may still exist is to correct said errors upon their
being made known to Concurrent Computer Corporation.

The software described in this document is furnished under a
license, and it can be used or copied only in a manner
permitted by that license. Any copy of the described software
must include all copyright notices, trademarks, or other
legends or credits of Concurrent Computer Corporation
and/or its suppliers. Title to and ownership of the described
software and any copies thereof shall remain in Concurrent
Computer Corporation and/or its suppliers.

The licensed program described herein may contain certain
encryptions or other devices which may prevent or detect
unauthorized use of the Licensed Software. Temporary use
permitted by the terms of the License Agreement may require
assistance from Concurrent Computer Corporation.

Concurrent Computer Corporation assumes no responsibility
for the use or reliability of this software if used on equipment
that is not supplied by Concurrent Computer Corporation.

it] 1979, 1986 Concurrent Computer Corporation - All Rights Reserved

Concurrent Computer Corporation, 2 Crescent Place

Oceanport, New Jersey 07757

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 CAL MACRO/32 PROCESSOR

1 • 1

1 .3

1.4

INTRODUCTION

CAL MACRO/32 PRCCESSCR REQUIREMENTS
Configuration Cption
Relationship to Other Products

CAL MACRO/32 PROCESSOR COMPONENTS

SUMMARY OF CAL MACRO/32 PROCESSOR FEATURES

2 PREPARATION OF A MACRC tEFINITION

vii

1-1

1-1
1-1
1-1

1-2

1-2

2.1 INTRODUCTION 2-1

2.2 MACRO INSTRUCTIONS 2-1

2.3 MACRO DEFINITIONS 2-2
2.3.1 Macro Definition Fields 2-2

2.4 SPECIAL SYMBOLS 2-4
2.4.1 Variable Symbols 2-4
2.4.1.1 Local, Global, and Batch Global Variable

Symbols 2-5
2.4.1.2 Defining Variable Symbols 2-5
2.4.2 Concatenation Symbols 2-6
2.4.3 Sequence Symbols 2-6

2.5 MACRO DEFINITION CONTENTS 2-7
2.5.1 Macro Header and Trailer Statements 2-8
2.5.2 Macro Instruction Prototype Statements 2-8
2.5.2.1 Positional Macro Instruction Prototype

Statements 2-8
2.5.2.2 Keyword Macro Instruction Prototype

Statements 2-9

48-057 FOO ROO i

CHAPTERS (Continued)

2.5.2.3

2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5

2.6.5.1

Mixed Mode Macro Instruction Prototype
Sta temen ts

MODEL STATEMENTS
Name Field
Operatiol1 Field
Operand Field
Comments Field
Using Symbolic Parameters in Model
Statements
Concatenation Rules

3 WRITING MACRO INSTRUCTIONS

3.2
3.2.1
3.2.2
3.2.3

3.3
3.3.1
3.3.2
3.3.3

3.4
3.4.1
3.4.2

INTRODUCTION

RULES FOR WRITING MACRO INSTRUCTIONS
Macro Instruction Name Field
Macro Instruction Operation Field
Macro Instruction Operand Field

MACRO INSTRUCTION OPERANDS
Continuation of Macro Instructions
Omitted Operands
Sublists

INNER/OUTER MACRO INSTRUCTIONS
Levels of Macro Instructions
Macro Instructions in Conditional Assembly

4 CONDITIONAL EXPANSION OF MACRO DEFINITIONS

4.2

4.2.1

4.2.2

4.2.4
4.2.5

4.3
4.3.1
4.3.1.1
4.3.2
4.3.2.1

INTRODUC'IfION
;

GLOBAL, aATCH GLOBAL, AND LOCAL SET VARIABLE
SYMBOL DECLABA!ICN STATEMENTS
Global SnT Variable Symbol Declaration
(GBLx) S'tiatement
Batch Global SET Variable Symbol
Declarat~on (BGBLx) Statement
Local SEt Variable Symbol Declaration
(LCLx) Statement
Declaring SET Variable Symbols
Declarinq SET Variables as Arrays

SET VARI~BLE SYMBOL (SETx) STATEMENTS
SET AritHmetic Variable (SETA) Statement
Using SETA Variable Symbol
SET Char~cteI Variable (SETC) Statement
Substring Notation

2-10

2-11
2-12
2-12
2-13
2-13

2-13
2-14

3-1

3-1
3-1
3-1
3-1

3-3
3-4
3-5
3-6

3-7
3-8
3-9

4-1

4-1

4-2

4-3

4-4
4-4
4-5

4-6
4-8
4-9
4-10
4-10

ii 48-057 FOO ROO

CHAPTERS (Continued)

4.3.2.2 Using SETC Variable Symbols 4-11
4.3.3 SET Binary Variable (SETB) Statement 4-14
4.3.3.1 Using SETB Variable Symbols 4-15

4.4 ATTRIBUTES 4-16
4.4.1 Type Attribute (T') 4-17
4.4.2 Count Attribute (K') 4-17
4.4.3 Number Attribute (N') 4-17

4.5 CONDITIONAL ANt UNCONDITIONAL
BRANCH INSTRUCTIONS 4-19

4.5.1 Conditional Branch (AIF) Instruction 4-19
4.5.2 Unconditional Branch (AGO) Instruction 4-20
4.5.3 Computed AGO and AIF Statements 4-20

4.6 CONDITIONAL INSTRUCTION LOOP COUNTER
(ACTR) INSTRUCTION 4-23

4.7 NO OPERATION (ANCP) INSTRUCTION 4-24

4.8 MACRO DEFINITION EXIT (MEXIT) INSTRUCTION 4-27

4.9 REQUEST FOR MESSAGE (MNOTE) INSTRUCTION 4-29

4.10
4.10.1
4.10.2
4.10.3
4.10.4
4.10.5

4.11

4.12

SYSTEM VARIABLE SYMBOLS
%SYSLIST Symbol
70SYSINDX Symbol
%SYSMAC Symbol
"SYSTIME Symbol
70SYSDATE Symbol

AREAD STATEMENT

SUBSTRING NOTATION IN MODEL STATEMENTS

5 ADDITIONAL CAL MACRO/32 FEATURES

5.1
5. 1. 1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9
5.1.10

INTRODUCTION
As Is (ASIS) Instruction
Macro Call (MCALL) Instruction
Macro Copy (MCOPY) Statement
Macro Definitions (MDEFS) Instruction
Macro Libraries (MLIBS) Instruction
Macro Listing {MLIST) Instruction
Pause (MPAUS) Instruction
Macro Trace (MTRAC) Instruction
No Libraries (NOLIB) Instruction
No Trace (NTRAC) Instruction

48-057 FOO ROO

4-31
4-32
4-34
4-36
4-38
4-38

4-39

4-40

5-1
5-2
5-3
5-4
5-6
5-7
5-8
5-9
5-10
5-11
5-12

iii

CHAPTERS (Continued)

6 OPERATION OF THE ciAL MACRO/32 PROCESSOR

6.1
6. 1. 1
6.1.2

6.2

6.3

6.4

6.5

I NT ROD U C TT 0 N
Bevice Assignments
Memory Requirements

CPERATIOI OF THE MACRO PROCESSOR
I

UNDER OS/>32

I 10 ERRO~S

START OP1UONS

CAL MACRQ/32 PROCESSOR TERMINATION

7 MACRO LIBRARY UTI~ITY PROGRAM

iv

7.1

7.2
7.2.1
7.2.2
7.2.3

7.3

7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7. 4. 12
7.4.13
7.4.14

7.5

7.6

I NTRODUC'I11 ON

MACRO LI~RARY
Header R~cord
Index Re~ords
Macro De~initions

COMMAND FORMAT

MACRO LIaRARY UTILITY COMMANDS
BF Command
DELETE CQmmand
DIRECTOR~ Command
END Comma,nd
ESTABLIS~ Command
FF Command
GET Command
INCLUDE Command
LIST Com "'and
PAUSE Command
RW Command
SAVE Com~and
WFM Commqnd
Comments:

OPERATIO~ WITH A MACRO LIBRARY ON
MAGNETIC!TAPE

OPERATIO, OF A MACRO LIBRARY UTILI~Y
UNDER OS/32

6-1
6-1
6-1

6-2

6-3

6-4

6-4

7-1

7-1
7-2
7-2
7-3

7-3

7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-14
7-15
7-16
7-17
7-19
7-20

7-21

7-21

48-057 FOO ROO

APPENDIXES

A COMMAND SUMMARY

B INSTRUCTION STATEMENT SUMMARY

C EXAMPLES OF MACRO EXPANSION

D CAL MACRO/32 PROCESSOR ERROR MESSAGES

FIGURES

2-1 Fields Used for Writing Macro Instructions 2-3

GLOSSARY Glossary-1

INDEX Ind-1

48-0~7 Faa ROO v

PREFACE

This manual describes the Perkin-Elmer Common Assembly Language
(CAL) Macro/32 Processor, Program Number 03-339, arid its use in
defining macro instructions for frequently used sequences of
assembler code, for creating a macro library, and for expanding
macro instructions during the assembly process.

Chapter 1 introduces the CAL Macro/32 Processor and explains
processor requirements, processor components, and summarizes
macro processor features. Chapter 2 details macro instructions,
macro definitions, special symbols, macro definition contents,
and model statements. Chapter 3 explains how to write a macro
instruction, macro instruction operands, and inner and outer
macro instructions. Chapter 4 is an in-dePth discussion of the
conditional expansion of macro definitions. Additional CAL
Macro/32 features are presented in Chapter 5, and the operation
of the macro processor is discussed in Chapter 6. Chapter 7
details each macro library utility command.

Appendix A is a command summary of the CAL Macro/32 Processor
utility commands. Appendix B contains the macro instructions and
statements. Appendix C contains examples of macro expansion, and
Appendix D presents the CAL Macro/32 Processor error messages.
The CAL Macro/32 Processor now supports batch global set variable
symbols, passes MLIBS and MCOPY from start options to all
programs in the batch, and generates an END statement without
terminating macro expansion if it is within the scope of an ASI5
statement.

This manual replaces 529-408 and discusses revision R02.1 of the
CAL Macro/32 Processor and the Macro Processor Utility. This
revision applies to the OS/32 R06 software release and higher.

These manuals provide information related to the use of the
various programs in the CAL Macro/32 Processor:

PUBLICATION
MANUAL TITLE NUMBER

OS/32 System Macro Library Reference Manual 48-006

OS/32 Library Loader Reference Manual 48-020

OS/32 Operator Reference Manual 48-030

48-057 Faa ROO vii

Common Assembly Languagel32 (CAL/32)
Reference Manual

32-Bit Systems User Documentation Summary

For further information
32-bit manuals, see
Summary.

viii

on
the

the contents of all
32-bit Systems User

48-050

50-003

Perkin-Elmer
Documentation

48-057 FOO ROO

CHAPTER 1
CAL MACRO/32 PROCESSOR

1.1 INTRODUCTION

The Perkin-Elmer CAL Macro/32 Processor provides the user of CAL
with a tool to standardize and efficiently generate programs.
This ability is provided by the system macro library and any user
designated special purpose libraries. Frequently used assembler
code sequences are defined once and then appended to a macro
library by a macro definition. By inserting a single source
statement that the processor recognizes and expands, these code
sequences are made available to all system users.

1.2 CAL MACRO/32 PROCESSOR REQUIRE~EHTS

The CAL Macro Processor requires:

• Any Perkin-Elmer 32-bit ~rocessor

• Main memory of 26kb above that memory required for the
operating system and macro system table

• OS/32

• Source input, source out~ut, and listing devices

1.2.1 Configuration Option

The CAL Macro Processor can use any Perkin-Elmer peripheral
device that the operating system supports, if the program can run
on the device and is capable of ASCII data transfer.

1.2.2 Relationship to Other Products

The CAL Macro Processor produces an expanded source stream that
must be assembled with CAL <03-066R05 or higher).

48-057 FOO ROO 1-1

1.3 CAL MACRO/32 PR~C~SSOR COMPONENTS

The CAL Macro Processo~ package consists of:

• CAL Macro Library Utility Object, 03-340M

• CAL Mac r 0 P ro c e s so ri 0 b j e c t , 0 3 - 3 39M

• OS/32 System Macro Library, 07-217

• CAL Macro/32 Procesror and Macro Library Utility Reference
Manual

• OS/32 System Macro Library Reference Manual

1.4 SUMMARY OF CAL MAtRO/32 PROCESSOR FEATURES

The CAL Macro Processor offers these features:

• Positional, keywordi, or mixed mode macro prototype statements

• Nested macro instructions

• Condi tional macro! ex~ansion
conditional statemerits

independent of assembler

• Symbolic parameters that can vary the operation codes expanded
to the assembler source stream

• A macro call (MCALL) instruction that allows the most used
macro definitions to be called into memory at the start of
mac r 0 pro c e s s 0 r e x;e cut ion, t h u s dec rea sin g the n u m b e r 0 f
library accesses ne!cessa ry during the processor pass

• A macro trace (MTRAC) facility that allows the user to test a
macro instruction expansion without going through the full
assembly process

• User designation of macro libraries and t~e order in which
they should be searched

• A system macro library of standard macro definitions

• A macro library utility program that builds and maintains the
macro libraries. : Special features allow adding and deleting
macro definitions, 'generating a library table of contents, and
copying macro defi~itions from existing macro libraries.

1-2 48-057 FOO ROO

The power of the macro language is shown in its ability to:

• pass parameters
characters in
parameters that
"housekeeping"
performed in a

to a macro and concatenate the parameter to
the macro to form new labels, operations, and
allow the user to write macros for many
functions that normally would have to be

program~ and

• define symbols local to the macro, assign values to those
symbols, and make complex tests on the values of those symbols
or on parameters passed to the macro.

48-057 FOO ROO 1-3

CHAPTER 2
PREPARATION OF A MACRO DEFINITION

2.1 INTRODUCTION

The following sections discuss what a macro instruction is, its
interaction with the Common Assembly Language (CAL) Macro/32
Processor, and the preparation of a macro definition.

2.2 MACRO INSTRUCTIONS

A macro instruction is a single instruction that expands to a
series of instructions. A macro instruction is written like an
assembler instruction; but the output, when processed by the CAL
Macro Processor Program, is in assembly language.

The rules for the syntax of a macro instruction are:

• Columns 1 through 8 contain a symbol or blanks.

• Columns 10 through 17 contain the macro name.

• At least one blank space must be on either side of the macro
name.

• One blank space separates the label field from the macro call,
and one blank space separates the macro call from the
parameter.

• A comma must be specified to show
parameters.

omitted

• Keyword parameters can be written in any order.

positional

• Subparameters are enclcsed in parentheses and can only be
positional.

The output of a macro instruction can be:

• machine instructions,

• another macro instruction,

• assembler instructions, or

• a combination of machine and assembler instructions.

48-057 FOO ROO 2-1

Thi s outpu t process iis the macro expansion. The assembler
processes the output as if the user had written the expanded
coding in detail. Macros are a valuable coding tool--they enable
the user to avoid writing many system required details~ thus,
reducing the chance of errors. The user can use the standard
Perkin-Elmer macros in the system macro library or write his own
macros and store them in a user library.

2.3 MACRO DEFINITIONS

A macro definition isa series of user-written instructions in
the macro language. Tihe definition of a macro can include:

• machine instructions such as ADD, SUBTRACT, LOAD, or STORE;

• assembler instructions such as DS or DC;

• macro language instructions such as AIF, AGO, or SETA; or

• another macro instr.uction, which would be an inner macro.

The macro definition allows the user to assign a macro
instruction to be qsed in the operation field of the macro
instruction syntax. ~ macro instruction retrieves and processes
the definition.

If the macro definition has no errors, processing the macro
definition call results in generating zero or more assembler
source statements tha~ become part of the assembler source stream
and appear in the ass~mbler source stream immediately after the
macro instruction. T~e assembler source statements the processor
produces are referred to as generated (or expanded) statements.
The macro expansion pr:ocess involves the processor analyzing the
macro instruction and definition, and generating assembler source
statements.

2.3.1 Macro Definition Fields

A macro definition min~mallY consists of these fields:

• The name field begins in column 1.
omitted, column 1 m~st be blank.

,

If the name field is

• The operation field: must start in column 10. If concatenation
is not used, the ma~imum length of the operation field is
eight characters. If concatenation is used, the operation
field can exceed, eight characters. Whether or not
concatenation is used, the operation field of a generated
statement must cont~in from one to five characters. If the
generated statement is a macro instruction, the operation
field can contain a maximum of eight characters.

2-2 48-057 FOO ROO

• The operand field follows the operation field, separated by at
least one blank. The operand field can extend as far as
column 71 on a single statement line and can be continued in
another line by inserting a nonblank character in column 72
(the continuation field). A gener~ted CAL statement, however,
cannot contain an operand field extending beyond a single
statement line. Continuation can be invoked only from the
operand field.

• The comment field follows the operand field, separated by at
least one blank column.· This field contains user commen ts.

• The continuation field follows the comments field. In a
keyword or mixed mode prototype statement, each operand can
appear on a single line if it is followed by a comma, and a
nonblank character appears in the continuation field.

• The identification/sequence field occupies columns 73 through
80. The user has the option of identifying and maintaining
the sequence of the source field.

Figure 2-1 illustrates the fields used for writing
instructions.

2618

STATEMENT

NAME OPERATION OPERAND COMMENTS

8 10 14 16 34 36

~l--+--1f-1--i--+-l I--I-t--t--fH f--+-+-+-+-++-++-+-+-+-+-+-f--+--+-+--fH f--1-+-+-+-+-+-+-+-+-+--+--1-+++ - -- -- -- --
~l--+--1f-1--i--+-l I--I-t--t--fH I-t-+-+-+-+-+-++++++--H--H-+--t--i I-t-+-+-+-+-+++++++--H+-+-+-I--H--+-- +- -- ---f- - ---- ,--­
I-+-I-+-I-H--i--i I-+-f-+-l--i I-t-+-+-+-+-+++++++--H-f--+-+--f--i t-I-+-t-+--t-t-+-+-++++-+-+-+--+-+-+--t--I'--t--I--I-r-+ -t-- c--- --

macro

IDENTIFICATION
SEQUENCE

72 73 80

1-+-+-+-+-+-+-+-+-+-++++-+-+-+ +--+-+-I--!---I- f-- -- ++-+-+-+-+-+-+--+--1---1 f--~~H--ff--I

• THE OPERAND FIELD CAN EXTEND AS FAR AS COLUMN 71 ON A SINGLE STATEMENT LINE,
•• CONTINUATION FIELD

-I-- f- --+- f--f-- - -+--1- --

Fioure 2-1 Fields Used for Writino Macro Instructions

I-+-t-+-+-+-+ r-
- -

~8-057 FaD ROO 2-3

2.4 SPECIAL SYMBOLS

The followinQ symbols have special meanings to the CAL Macro
Processor:

SYMBOL MEANING

A percent sign identifies variable symbols
used within the macro definition.

A colon is a concatenation symbol; or, if it
is found in column 1 followed by an asterisk
in culumn 2, it identifies comments internal
to the macro definition.

An ampersand identifies sequence symbols used
in a mac~o definition.

For each of these symbols except the ampersand (&), if two
symbols are input, only one symbol is output.

2.4.1 Variable Symbols

Macro language allows the user to define variable symbols, assign
values to variable symbols, and test the values of variable
symbols. The macro processor uses variable symbols as symbolic
parameters, system symbols, and set symbols. It uses variable
symbols like the assembler uses symbolic names. Variable symbols
can be used in arithmetic expressions, binary or Boolean
expressions, or character expressions. These guidelines apply to
variable symbols:

• The first character in a variable symbol must be a percent
sign (70).

• The second character in a variable symbol must be a letter.

• The remaining zero to six characters can be letters or digits.

• Characters 2, 3, and 4 must not form the word SYS because
these letters define system variables.

Valid examples of variable symbols are:

2-4

%REG
%INDEX

%ABEA
%LABLE

%LOC
"NAME

~LOC1
%LIST

%A123

48-057 FOO ROO

2.4.1.1 Local, Global, and Batch Global Variable Symbols

Variable symbols can be local, global, or batch global.
Parameters are always local. If a variable symbol is batch
global, the value assigned to it in one program can be used in
another program in the same batch. The macro processor
initializes batch global variables when they are encountered
first in the batch. The ma~ro processor does not initialize
subsequent definitions of batch global variables in that batch.
If a variable symbol is global, the value assigned in one macro
can then be used in another macro. The macro processor
initializes global variables when they are first encountered in
a program. The processor does not reinitialize subsequent
definitions of global variables in that program. Local variables
are initialized each time they are defined. They must be defined
before they can be used, and their values do not carry from one
macro definition to another.

New values can be reassigned to local, global, and batch global
variable symbols by these macro language instructions:

INSTRUCTION

SETA

SETB

SETC

MEANING

Assign arithmetic value.

Assign binary or Boolean value of 0 (false) or
1 (true).

Assign character value.

Section 4.3 details these SET variable symbol statements.

2.4.1.2 Defining Variable Symbols

A variable symbol is defined explicitly in the body of the macro
definition. It is assigned a value, which can be changed, in the
macro body. These macro language statements define and
initialize variable symbols:

STATEMENT MEANING

LCLA Local arithmetic; initial value 0

LCLB Local binary 'or Boolean; initial value 0

LCLC Local character; initial value null ••

GBLA Global arithmetic; initial value 0

GBLB Global binary or Boolean; initial value 0

GBLC Global character; initial value null ••

48-057 FOO ROO 2-5

STATEMENT MEANING

BGBLA Batch global arithmetic; initial value 0

BGBLB Value batch ~lobal binary or Boolean; initi I
value 0

BGBLC Batch global character; initial value null

Sections 4.2.1 and 4.2.2 detail these
local, global, and batch global
SET variable symbol declaration statements.

2.4.2 Concatenation Symbols

Variable symbols can be concatenated on the left or right with
any other characters to form a new string. This concatenation
can occur in the la~el, operation, or operand fields. The
ability to concatenate is advantageous because the macro
expansion can be different in different calls.

When concatenating to the right of a variable symbol, a colon
indicates the concatenation. The colon is optional except when
the next character is:

• alphanumeric,

• a colon, or

• a left parenthesis [(].

Valid examples of concatenation symbols are:

ABCr.SYM %SYM:(R4) %SYM:ABC

2.4.3 Sequence Symbols

Sequence symbols are used to branch within a macro. They can
appear in a statement name field to vary the statement processing
sequence. These guidelines apply to sequence symbols:

• The first character must be an ampersand (&).

• The second character must be a letter.

• The remaining zero to six characters can be letters or digits.

• Sequence symbols can appear in the name field of any statement
not containing a symbol except a prototype statement, an ACTR,
BGBLA, BGBLB, BGBLC, GBLA, GBLB, GBLC, LCLA, LCLB, LCLC, or
MACRO instruction.

2-6 48-057 FOO ROO

Valid examples of sequence symbols are:

&DONE
&NEXT

&END
&AGAIN

&MORE
&LOOKUP

2.5 MACRO DEFINITION CONTENTS

&A123

The contents of a macro definition are written in this sequence:

1. A macro header, indicated by the word MACRO, is written in
column 10.

A prototype statement, the
called, is written next.
or parameters, they must
statement.

method by which the macro is
If a macro call is to have a label

be defined in the prototype

3. The macro definition body can contain optional model
statements, which are assembler instructions. The macro body
can also contain any macro inst~uctions. In general, macro
instructions declare variables and assign values to
variables, contain unconditional branches, and conditional
branches. Examples are:

Local variable (LCLx), global variable (GBLx), and batch
global variable (BGBLx) declaration statements

HEXIT, MNOTE, SETx, AIF, and AGO instructions

4. A macro definition is terminated with the macro trailer,
MEND.

This example illustrates a macro definition:

NAME OPERATION OPERAND

MACRO
~NAME MOVE %FROM,%TO
%NAME ST 1,HOLD

L 1,%FROM
ST 1,%TO
L 1,HOLD
MEND

LEGEND FOR TYPE COLUMN

1 = macro header
2 = macro prototype
3 = model statement
4 = macro trailer

48-057 FOO ROO

TYPE

1
2
3
3
3
3
4

2-7

I

Macro definitions cani be placed in the source stream or in
special libraries. iIf they are defined in the source proqram,
they must be written before any calls to the macro. If a macro
is defined in a library, the appropriate logical unit must be
assiqned to define th~ macro library and a qiven MLlBS statement.
See Section 5.1.5.

2.5.1 Macro Header and Trailer Statements

The macro header, which indicates the
definition, must be the first statement.
written in this format:

beqinninq of a macro
The MACRO statement is

NAME OPERATION

optional MACRO

OPERAND

version number and
date, or any other
optional description

COLUMN 72

blank

The macro trailer, which indicates the end of a macro definition,
must be the last stat~ment in the definition. The MEND statement
is written in this foimat:

i

NAME OPERATIqN CPERAND COLUMN 72

a sequence MEND blank blank
symbol or
blank

2.5.2 Macro Instruction Prototype Statements

The macro is called b~ the macro prototype statement. If the
macro call is to ~ave any labels or parameters, they must be
defined in the protqtype statement. The parameters can be
positional, keyword, qr mixed mode.

The prototype statement s~ecifies the mnemonic operation code and
qeneral format to be ~sed when writinq any macro instructions
referring to this ~efinition. This statement must immediately
follow the macro header, MACRO.

2.5.2.1 Positional M~cro Instruction Prototype State.ents

A positional macro [instruction prototype statement contains
positional parameter$ that must be specified in the defined
order. The positiona~ prctctype statement is written in this
format: I

2-8 48-057 FOO ROO

The
the

NAME

a symbolic
parameter
or blank

symbolic
name

instruction.

OPERATION

a 1- to 8-
character mnemonic
operation code

paramete rs used in the
field and oJ;erands

macro
of the

A symbolic parameter is
consisting of a percent sign followed
letters or numbers, the first of which must

OPERAND

zero or more
symbolic parameters
separated by commas

definition represent
corresponding macro

a variable symbol
by from one to seven
be a letter.

A macro instruction must use the mnemonic operation code to refer
to this macro definition. If two macro definitions use the same
mnemonic operation code, the first definition the macro processor
encounters is expanded; the second definition is flagged with an
error message. If a macro definition uses the same mnemonic
operation code as a valid assembler or machine instruction, the
macro processor treats it as a macro instruction. To override
the macro instruction and obtain the machine instruction, use the
ASIS statement. See Section 5.1.1.

A positional prototype statement can ~e continued if the operand
field extends beyond column 71. Section 3.3.1 explains
continuation rules. This example illustrates a positional macro
instruction prototype statement:

NAME OPERATION OPERAND

%N AME MOVE %FROM,%TO

2.5.2.2 Keyword Macro Instruction Prototype Statements

In a keyword prototype statement, any symbolic parameter in the
operand field of the J;rctotype statement can have a standard
value assigned to it. If a symbolic parameter is omitted when
the macro instruction is written, the macro processor substitutes
the standard value. This sUbstitution allows the user to omit
symbolic parameters whose values are not to be changed when
writing a keyword prototype statement. The operands in a macro
instruction that reference a macro definition with a keyword
prototype statement can be written in any sequence. A keyword
prototype statement can be continued to the next statement.
Section 3.3.1 explains the rules for continuation. The keyword
prototype statement is written in this format:

48-057 FOO ROO 2-9

NAME OPERATION OP EB AND

any symbolic
parameter or
blank

a1- to 8-
ch'aracte I:

I

mnJemonic

one or more operands
separated by commas
and consisting of a
symbolic parameter,
immediately followed
by an equal sign
followed (optionally)
by a standard value.

opiera tion
code

With the exception of~ variable symbols, whatever can be used as
an operand in a macro instruction can be used as a standard
value. Following is an example of a macro using a keyword
prototype macro state.ent:

NAME

%SYM
%SYM

A
A

OPERATION

MACRO
MOVE
ST
L
ST
L
MEND
MOVE
ST
L
ST
L i

i

OPERAND

~FROM=,7.TC=,r.HOLD=HOLD1,%R=1
%R,%HOLD
7.R,%FROM
%R,%TO
%R,%HOLD

FROM=SOURCE,R=5,TO=DEST
5,HOLD1
S,SOURCE
S,DEST
5,HOLD1

LEGEND FOR TYPE CbLUMN

1 = macro header
2 = macro prototype
3 = model statement
4 = macro trailer;
S = macro instruction
6 = genera ted statement

TYPE

1
2
3
3
3
3
4
5
6
6
5
6

2.S.2.3 Mixed Mode R~cro Instruction Prototype Statements

Macro instructions ca~ be defined with positional and keyword
parameters. When a; macro is called, the positional parameter
must be specified fir~t in the defined order. The positional
parameters are foll~wed by keyword parameters in any order.
Omitted positional patameters must be indicated by a comma,
except when all trailing positional parameters are omitted. The
mixed mode prototype statement is written in this format:

2-10 48-057 FOO ROO

NAME

any symbolic
parameter or
blank

OPEEAIICN

a 1- to 8-
character
mnemonic
code

OPERAND

one or more positional
parameters followed by
one or more keyword
parameters (see Section
2.5.2.2)

The following is an example of a 'mixed mode prototype statement:

NAME OPERATION OPERAND

roSYM EX4 %P1,%P2,70P3,%K1=,%K2=

•
•

The following is a macro instruction with the second positional
parameter omitted. It is coded as:

EX4 ABC,,3,K1=ALPHA

The following is a macro instruction with the second and third
positional parameters omitted. It is coded as:

EX4 ABC,K2=BETA

A mixed mode instruction can be continued to the next statement.
Section 3.3.1 explains continuation rules.

2.6 BODEl STATEMENTS

The CAL Macro Processor expands the desired source statements
from model statements. Any number of model statements can appear
within a given macro definition. Model statements consist of
four fields:

• Name

• Operation

• Operand

• Comments

These fields correspond to the same fields in the expanded source
statement. The CAL Macro Processor does not check the expanded
source statements for the correct assembler syntax.

48-057 Faa ROO 2-11

2.6.1 Name Field

The name field, which begins in column 1, can be blank or it can
contain a:

• name,

• variable symbol, or

• sequence symbol.

It can also contain a name concatenated with a variable symbol or
a variable symbol concatenated with one or more other variable
symbols.

2.6.2 Operation Field

At least one blank character separates the operation field from
the name field. It can contain:

• a machine instruction,

• an assembler instruction,

• a macro instruction, or

• a variable symbol.

It can also contain a name concatenated with a variable symbol or
a variable symbol concatenated with one or more other variable
symbols.

Variable symbols cannot be used to generate more than one field
at a time, macro protdtypes, or these instructions:

ACTR END MCALL MTRAC
AGe GBLA MCOPY NDEFS
AIF GBLB MDEFS NOLIB
ANOP GBLC MEND NTRAC
ASIS LCLA HEXIT SETA
BGBLA LCLB MLIBS SETB
BGBLB LCLC MNOTE SETC
BGBLC MACRO MPAUS

2-12 48-057 FOO ROO

2.6.3 Operand Field

At least one blank characte~.separates the operand field from the
ope~ation field. It can contain:

• names,

• variable symbols, or

• constants.

It can also contain names concatenated
variable symbols concatenated with
symbols.

2.6.4 Comments Field

with other symbols or
one or more other variable

At least one blank characte~ separates the comments field from
the operand field. This field cannot extend beyond column 71 of
a model statement. The comments field can contain any
combination of characte~s and it is passed to the expanded
statement exactly as it appears in the model statement. Variable
symbols in a comment field have the value substituted. Example:

NAME OPERATION OPERAND COMMENTS

field field field field

2.6.5 Using Symbolic Parameters in Model Statements

A symbolic
assigned a
parameter
body. It
parameter

parameter is defined in the prototype statement and is
value when the a~gument calls the macro. A symbolic
cannot have its value changed in the macro definition

is always local to the macro definition; the same
name can be in several macros.

By varying values given to symbolic parameters, the user can vary
the statements generated for each macro instruction. If a
symbolic parameter appears in a model statement, it must have
been defined in the name or operand field of the prototype
statement or an expansion error occurs. The following example
demonstrates how the macro instruction operands that invoked the
definition replace the symbolic parameters of the model
statement:

48-057 FOO ROO 2-13

NAME OPERATION OPERAND TYPE

MACRO 1
~NAME MOVt 7oFROM,70TO 2
%NAME ST 1,HOLD 3

L 1,%FROM 3
ST 1,7.TO 3
L 1,HOLD
MEND 4

SYMBCL MOVE HERE,l'HERE 5

SYMBOL ST 1,HOLD 6
L 1 , H ER E 6
ST 1,THERE 6
L 1,HOLD 6

LEGEND FOR TYPE COLUMN

1 = macro heaqer
2 = macro prototype
3 = model sta 1iement
4 = macro trai!ler
5 = macro ins~ruction
6 = genera ted :sta tement

2.6.5.1 Concatenation Hulas

A symbolic parameter ~n a model statement is concatenated with
other symbolic parameters or variable symbols immediately
preceding or succeeding the symbolic parameter. An example is:

ST%SUFF 4,~DEST~~UFF

ST%SUFF means concatenate ST with %SUFF to form STH (when %SUFF
is 'H'). ~DEST%SUFF means concatenate %DEST with %SUFF.

NOTE

The conca~enation is implicit here.

If a symbolic parameter is to be concatenated with a letter,
number, or left pa~enthesis, the symbolic parameter must be
immediatelY followed by a colon. In this case, the characters
corresponding to the symbolic parameter replace the symbolic
parameter and colon. Carefully distinguish between array
references or sub1ist notation and concatenation with a left
parenthesis in a model statement:

2-14 48-057 FOO ROO

ST 1,~TO: (1)

means concatenate %TO with (to from THERE(1).

ST 1,%TO(1)

is the first element of the array %TO.

For a single colon to appear in a statement, use two
colons. The following example illustrates the
concatenating symbolic parameters:

NAME

%NAME
%NAME

SYMBOL

SYMBOL

LEGEND FOR

1 = macro
2 = macro
3 = model
4 = macro
5 = macro

OPERATION

MACRO
MOVE
ST%TY
L~TY

ST%TY
L%TY
MEND

MOVE

STH
LH
STH
LH

TYPE COLUMN

header
prototype
statement
trailer
instructicn

6 = genera ted statement

48-057 FOa ROO

OPERAND

%TY,%FROM,%TO,%X1
1,HOLD
1,%FROM:A
1,%TO:(%X1)
1,HOLD

H,HERE,THERE,13

1,HOLD
1,HEREA
1 , TH ER E (13)
1,HOLD

consecutive
rules for

TYPE

1
2
3
3
3
3
4

5

6
6
6
6

2-15

CHAPTER 3
WRITING MACRO INSTRUCTIONS

3.1 INTRODUCTION

A macro instruction is an instruction used to declare variables,
and to assign values to variables, unconditional branches, and
conditional branches. The following sections detail rules for
writing macro instructicns, types of macro instructions, inner
and outer macro instructions, and levels of macro instructions.

3.2 RULES FOR WRITING MACRO INSTRUCTIONS

The following sections explain the rules for writing macro
instructions.

3.2.1 Macro Instruction Name Field

A name, if used in the macro instruction name
appear in a generated statement unless a
parameter appears in both the name fields
statement and expanded model statement.

3.2.2 Macro Instruction Operation Field

field, does not
specific symbolic

of the prototype

The operation field contains a mnemonic operation code. This
code must be the same prototype statement code contained in a
macro definition. This macro definition appears in a macro
library, or it previously appeared in the source stream. The
macro processor uses the applicable macro definition to determine
the statements to be expanded to the assembler source stream. If
a macro definition in the processor source stream and a macro
definition in a macro library have the same mnemonic operation
code, the definition in the source stream is processed.

3.2.3 Macro Instruction Operand Field

Any combination of characters can be used as a macro instruction
operand if these rules are followed:

• A quoted string is a character sequence enclosed in paired
apostrophes. The paired apostrophes are the first and last
apostrophes in a quoted string. The first even numbered
apostrophe, not immediately preceding another apostrophe, must

48-057 Faa ROO 3-1

terminate a quoted string. If an
character in a quoted string,
consecutive apostrophes.

For example:

apostrophe is used as a
it must be expressed as two

In the quoted string, 'ABCDEF', the apostrophes preceding
the A and following the F are paired apostrophes.

In the quoted string, 'DON"T', the apostophes preceding
the D and foi1owing the T are paired apostrophes. The
apostrophes between the Nand T generate a single
apostro~he as a part cf the string.

• Paired parentheses consist of a left and following right
parentheses without any other intervening parentheses. If
~aired parentheses are nested, identify each pair; then, find
the left parenthe~is and the following right parenthesis with
no other intervening parenthesis. The maximum pairs of
parentheses that c~n be nested is 15. When considering paired
parentheses, ignore a single parenthesis enclosed in paired
apostrophes.

For example:

In the expressiqn, (A-B), the parentheses preceding the A
and following the B are paired.

In the expressiqn, «A·B)-C), the leftmost and rightmost
parentheses are paired; the innermost parentheses are also
paired.

• A percent sign (10) iidentifies a symbolic parameter unless it
appears between paired apostrophes. Use two consecutive
percent signs to e~sure that a single percent sign appears in
a statement.

• A comma (,) indica~es the end of an operand, unless it is
placed between pair'ed apo strophes.

• A blank indicates t~e end of the operand field, unless it is
placed between pai~ed apostrophes.

• A colon (:) indicates concatenation, unless it appears
between paired apQstrophes. Use two consecutive colons to
ensure that a singl~ colon appears in a statement.

3-2 48-057 FOa ROO

" i

3.3 MACRO INSTRUCTION OPERANDS

A macro instruction invokes a given macro definition. Macro
instructions take three forms: positional, keyword, or mixed
mode. These three forms correspond to the three forms of
prototype statements. See Section 2.5.2. The macro instruction
statement format is:

NAME

symbol or
blank

OPERATION

a mnemonic
operation

OPERAND

positional: zero or
operands separated
commas

more
by

keyword: one or more
operands separated by
commas and consisting of
a keyword, immediately
followed by an equal sign,
followed (optionally) by a
value
mixed mode: positional
operands followed by
keyword operands

• Positional Macro Instructions

In a macro instruction containing positional operands, the
placement of the symbolic parameters in the operand field
of the prototype statement determines the placement of
operands.

• Keyword Macro Instructions

•

A keyword operand is the portion of a symbolic parameter
that does not include the percent sign. Anything that can
be used as an operand value in a positional macro
instruction can be used as a value in a keyword macro
instruction. Each keyword operand in a macro instruction
must consist of a keyword immediately followed by an equal
sign (=), followed (optionally) by a value.

Operands in a keyword macro instruction can be written in
any order or can be omitted. If a keyword operand is
omitted, its delimiting comma can also be omitted.

Mixed Mode Macro Instructions

In a mixed mode macro instruction, all positional operands
must be placed before any keyword operands.

48-057 FOO ROO 3-3

Example:

NAME

symbol or
blank

OPERAtION

MOVE

OPERAND COLUMN 72

A,B,LEN=80 blank

In this example, A an1 B are positional operands, and LEN=80 is
a keyword operand.

Apply these general r~les to the operand field of a positional,
keyword, or mixed mod¢ macro instruction:

• A comma must follow each operand, ~ut a comma does not follow
the last o~erand.

• A sinq1e comma, followed immediately by another
indicates that an operand does not exist.

comma,

• If a continuation character (Section 3.3.1) is not present,
use at least one blank space to indicate the end of the
operand field.

• Use a comma to indicate omitted positional operands.
!

3.3.1 Continuation o~ Macro Instructions
i

Macro instruction sta~ements can be continued if the operand
field extends beyon~ celumn 71. To continue macro instruction
statements:

• Column 72 must contain a nonblank character.

• Each operand can a~pear on a separate line.

• A comma must follow each operand except the last.

The following example illustrates continuation of a macro
I

instruction containind keyword operands:

3-4

NAME

symbol or
blank

OPERATION

MOVE

OPERAND

FROM=HERE,
TO=THERE,
BYTES=80

COLUMN 72

x
X

48-057 FOa ROO

The following example illustrates continuation of a
instruction containing mixed mode operands:

macro

NAME OPERATION OPERAND COLUMN 72

symbol MOVE A,
B,LEN=80

x

The guidelines for continuation lines, omitted positional and
keyword operands, and operand sublists apply to mixed mode
operations as they apply to positional and keyword operands,
respectively.

3.3.2 Omitted Operands

These guidelines apply to omitted positional operands:

• If an operand is omitted from a ~ositional macro instruction,
the comma must be present. This comma represents the comma
that would have separated it from the next value.

• If the symbolic parameter corresponding to an omitted
positional operand is referenced in an expanded model
statement, a null character value replaces the symbolic
parameter in the expanded statement.

• If the last operand is omitted, the comma separating the last
operand from the previcus operand can be omitted.

These guidelines apply to omitted keyword operands:

• If the prototype statement assigned a standard value to a
symbolic parameter and the macro instruction does not contain
the corresponding keyword, the standard value replaces the
symbolic parameter.

• If the prototype statement did not assign a standa~d value to
a symbolic parameter and the macro instruction does not
contain the corresponding keywordi a null character value
replaces the symbolic ~arameter.

• If a symbolic parameter appears in the operand field of the
~rototype statement and the macro instruction contains the
corresponding keyword, the value assigned to the keyword
replaces the symbolic parameter.

48-057 FOO ROO 3-5

3.3.3 Sublists

A sublist consists o~ one or more operands separated by commas
and enclosed in ,paired parentheses. The entire sublist,
including the parent~eses, is one macro instruction operand.

• Positional Macro Operand Sublists:

3-6

If %SP is a symbolic parameter in a prototype statement and
the corresponding operand in a macro instruction is a
sublist, then:

~SP(n)

is used to!reference the nth operand of the
where n, which can be a decimal integer
arithmetic expression that resolves a decimal
is greater 'than or equal to 1.

sublist;
or any

integer,

If the nth ope~and of the sub1ist is omitted, then %SP(n)
refers to a nU41 character value.

If the sub1ist notation is used, but the operand in the
macro instruction is not a sublist, then %SP(1) refers to

I the operand an~ any other sublist notation references a
null characterJ

When using sub~ist notation, the left parenthesis must
immediately f~llow the last character of the symbolic
parameter. Th~ following example illustrates the use of
operand sublis~s:

i

48-057 FOO ROO

Example:

NAME OPERATION

MACRO
%SYMBOL CLEAR
%SYMBOL LIS

ST
ST
ST
MEND

CLRAREA1 CLEAR

CLRAREA1 LIS
ST
ST
ST

LEGEND FOR TYPE COLUMN

1 = macro header
2 = prototype statement
3 = model statement
4 = macro trailer
5 = macro instruction
6 = generated statement

OPERAND

%R1,%FIELD,%X2
%R1,"0
%R1,%FIELD(1):(%X2)
%R1,%FIELD(2):(%X2)
%R1,%FIELD(3):(%X2)

6,(FLD,FLDA,FLDB),13

6,0
6,FLD(13)
6,FLDA(13)
6,FLDB(13)

3.4 INNER/OUTER MACRO INSTRUCTIONS

TYPE

1
2
3
3
3
3
4

5

6
6
6
6

When mnemonic operation code for a given macro definition appears
as the operation field of a model statement in another macro
definition, the model statement (see Section 2.6) is an inner
macro instruction and the macro instruction referring to the
containing definition is an outer macro definition. The macro
definition that corresponds to an inner macro instruction
generates the statements that replace the inner macro
instructions. Recursion is permitted, and recursive macros
expand properly.

The corresponding values of the outer macro instructions replace
the symbolic parameters used in an inner macro instruction.

An inner macro instruction cannot reference a single member of an
outer macro instruction sublist unless the inner macro
instruction references the operand containing the entire sublist
and the macro definition corresponding to the inner macro
instruction contains a reference to the sublist member.

48-057 FOO ROO 3-7

Keyword, positional, or mixed mode instructions can be used as
model statements in, keyword, positional, or mixed mode macro
definitions. The following illustrates the use of inner macro
instructions:

STORE is an outer macto.

ADD is an inner macro.

NAME

SSYM

OPERATION

MACRO
ADD
L
A
A
MEND

MACRO
STORE
ADD
LR
ST
ST
MEND

OPERAND

~REG,%FLD
~REG,%FLD(1):(13)

~REG,~FLD(2):(13)

~ REG, ~FL D (3) : (13)

~R1,7.FIELD,1oR1A,%FIELDA
~R 1A,1.FIELDA
~R1,%R1A
7.P.1,%FIELD(1)
"R1,%FIELD(2)

TYPE

1
2
3
3
3
4

1
2
3
3
3
3

STORE 6,(F1,F2),7,('FA1,FA2,FA3) 5

L
A
A
LR
ST
ST

7,FA1(13)
7,FA2(13)
7,FA3(13)
6,7
6,F1
6,F2

LEGEND FOR TYPE C¢LUMN

1 = macro header
2 = prototype statement
3 = model stateme~t
4 = macro trailer:
5 = macro instruction
6 = oenera ted statement

3.4.1 Levels of "acr~ Instructions

6
6
6
6
6
6

A macro definition cotrespondino to an outer macro instruction
can contain any nu~ber of inner macro instructions. The outer
macro instruction is a first level macro instruction. Each of
the inner macro instructions is a second level macro instruction.
A macro contained within the macro definition corresponding to a
second level macro instruction is a third level macro
instruction, etc.

3-8 48-057 FOO ROO

The number of macro instruction levels that can be
on the definition's complexity and the amount
memory.

3.4.2 Macro Instructions in Conditional Assembly

used depends
of available

CAL conditional assembly, such as IFZ, IFNZ, cannot be evaluated
at macro processing time since the values of EQUs are not known
to the macro processor. Hence, any macros within conditional
code will always be expanded, regardless of whether CAL will
actually generate the expanded code. Normally, this would be no
problem since CAL would not assemble the expanded code if the
conditional failed. However, certain macros; e.g., PURE, IMPUR,
also set CAL macro global flags that are used by other macros.
These flags are set regardless of whether CAL assembles the
statements in the assembly.

It is advisable not to use IFZ or IFNZ to generate such macros as
PURE or IMPUR.

Example:

FLAG EQU
IFNZ
PURE
ENDC

o
FLAG

In the previous example, CAL will not generate the PURE
statement; however CAL macro will set a global flag within the
PURE macro, thus affecting other macros. An example of an
alternate approach to code such a macro is:

Example:

%FLAG

&PURE

MACRO
SETFLAG
GBLB
SETB
MEND
MACRO
ISPURE
GBLB
SETFLAG
AIF
MEXIT
PURE
MEND

%FLAG
o

%FLAG

(70FLAG) &PURE

In the previous example, a call to ISPURE with %FLAG set to a
will not generate the PURE statement. A call to ISPURE with
%FLAG set to 1 will generate the PURE statement.

48-057 Faa ROO 3-9

CHAPTER 4
CONDITIONAL EXPANSION OF MACRO DEFINITIONS

4.1 INTRODUCTION

The following sections detail the conditional expansion of a
macro definition. Global, batch global, and local SET variable
symbol declaration staterr,ents, the SET variable symbol
statements, attributes, sequences symbols, and system variable
symbols are discussed.

4.2 GLOBAL, BATCH GLOBAL, AND LOCAL SET VARIABLE SYMBOL
DECLARATION STATEMENTS

Variable symbols, known as SET variable symbols, must be declared
before they can be used. Variable symbols can be declared as:

• local to a given macro definition,

• global to all macro definitions in a program, or

• (batch) global to all macro definitions in all programs in the
batch

as they are invoked in a given macro processor pass. These
symbols are declared by way of the global SET variable symbol
(GBLx), batch global SET variable symbol (BGBLx), or local SET
variable symbol (LCLx) declaration statements. Only a SETx
instruction can change the SET variable symbol value. Section
2.4.1.1 gives additional information on local, global, and batch
global variable symbols.

48-057 Faa ROO 4-1

GBLx

4.2.1 Global SET Var~able Symbol Declaration (GBLx) Statement

The GBLx symbols communicate values between macro definitions or
different uses of the! same macro definition in a program. A GBLx
symbol must be declar~d as global each time it is used in a macro
definition. GBLA,: GBlB, and GBLC statements reference
arithmetic, binary, ard character variables, respectively, and
assign values to them~ The initial values of the GBLA, GBlB, and
GBle variable symbo~s are 0, 0, and null character values,
respectively. The in~tial value is only assigned when a macro
definition, which contains a particular global SET variable
symbol, is first invo~ed. Subsequent GBlx instructions have no
effect on the value a~signed to a GBlx symbol. The format of the
GBLx statement is: '

NAME OPf:RATION

blank GBlA, $8lB, or GBLC
!

4-2

OPERAND

one or more variable
symbols used as
global SET variable
symbols, separated
by commas

48-057 FOO ROO

I BGBLx I

4.2.2 Batch Global SET Variable Symbol Declaration (BGBLx)
Statement

The BGBLx symbols communicate vaiues between programs in the
batch. Within a program, BGBLx symbols perform the same function
as GBLx symbols. A BGBlx symbol is initialized at the first
declaration of that symbol in the batch. The initial values of
the BGBLA, BGBLB, and BGBIC variable symbols are 0, 0, and null
character values, respectively. The value assigned to the BGBLx
symbol is available to all successive programs in which it is
declared as a BGBLx symbol. The format of the BGBLx statement
is:

NAME

blank

48-057 FOO ROO

OPERATION

BGBLA, BGBIB,
or BGBLC

one or
symbols
global
symbols,
commas.

OPERAND

more variable
used as batch

SET variable
separated by

4-3

LCLx
..,..----.. -----

4.2.3 Local SET Vari~ble Symbol Decl~ration (LCLx) State.ent

The LCLx symbols communicate valu~s within the same usage of a
particular macro definition. A local SET variable symbol is only
declared in the macrol definition that it is used in. It is reset
to its ini tia I valuei each time tha t mac ro defini tion is invoked.
The initial values of! LCLx symbols are the same as those for
global SET variable! symbols (0, 0, and null character values).
The format of the LCLoc instruction is:

NAME

blank LCLA,

OPEtRATICN

LC~B' or

i

!

LCLC

OPERAND

one or more
symbols used
SET variable
separated by

variable
as local

symbols,
commas

4.2.4 Declaring SET ~ariable Symbols
I

The following rules apply to declaring SET variable symbols:

i
i
t

• If the same SET va~iable symbol is declared local in more than
one macro definiti9n, it becomes a different symbol for each
definition 'in which it is used.

• If the same SET va~iable symbol is declared global or batch
global in one or'more macro definitions and local in others,
it is one symbol wherever it is declared global or batch
global and a diffe~ent symbol wherever it is declared local.

•
i

If the same SET vatiable symbol is declared
one or more macro: definitions and global in
symbol wherever itiiS declared batch global
symbol wherever it[is declared global.

batch global in
others, it is one
and a different

All batch global, glo~al, or local declarations must immediately
follow the macro ptototype statement or other BGBLx, GBLx, or
LCLx statements.

4-4 48-057 FOO ROO

4.2.5 Declar1ng SET Variables as Arrays

A batch global, global, or local SET variable can be declared as
an array. The format is:

NAME

blank

OPERATION

BGBLA, BGBLB,
BGELC, GBLA,
GBLB, GBLC,
LeLA, LCLB,
or LCLe

OPERAND

variable symbol followed
by ~n integer ~nclosed in
parentheses

The integer is the highest subscript; the lowest subscript is o.
The number of elements is one greater than the integer dimension.

Example:

NAME CPERATICN OPERAND

blank GBLA %AR1(9)

This statement declares a global arithmetic set variable %AR1 as
an array of 10(=9+1) elements.

Ten elements of %AR1 are %AR1(O),%AR1(1), ••• ,%AR1(9).

48-057 Faa ROO 4-5

SETx

4.3 SET VARIABLE SYMBOL (SETx) STATEMENTS

The SETx statements alter the values of the variable symbols that
the BGBLx, GBLx, or LCLx declaration statements declared as SET
variable symbols. These SET statements assign arithmetic,
character, and binary or Boclean values to SETA, SETe, and SETB
variables, respectively.

Arithmetic expressions can be a single term or an arithmetic
combination of terms. The arithmetic operators used in combining
terms are:

• addition (+),

• subtraction (-),

• multiplication (*), and

• division (I).

An arithmetic express~on cannot contain two operators or two
terms in succession, nor can it begin with the multiplication or
division operators. This procedure evaluates arithmetic
expressions:

• Each term is given its numerical value.

• The arithmetic ope~ations are performed from left to right.
Unary plus or minus is evaluated first.

• Multiplication and division are performed before addition and
subtraction.

• Parentheses can be used to redefine the order of evaluation.

•

4-6

Parenthesized seqciences can be nested to a limit of 15 levels
of parentheses. Parentheses required for sublist and
substring notatio~ count toward this limit of 15. The
parenthesized portions or an arithmetic expression are
evaluated first. If there is more than one level of
parentheses, the inner-most level is evaluated first.

In division only, the integer portion
retained; for example: 91/25 yields
exceeds the maximum range of values, it
expansion error.

of
3.
is

the quotient is
If an expression
flagged as an

48-057 FOO ROO

Section 4.3.1 details the relationship of arithmetic expressions
to SETA statements.

These guidelines apply to character expressions:

• The maximum number of characters that can be assigned to a
SETC symbol is eight.

• A character expression ccnsists of a type attribute or any
combination of up to 255 characters, enclosed in apostrophes.

• More than one character expression can be concatenated into a
single character expression by placing a colon between the
terminating apostrophe of the first expression and the leading
apostrophe of the next one. Use two apostrophes to represent
an apostrophe that is a ~art of a character string.

• By specifying a specific character string, smaller substrings
can be extracted from larger strings.

Section 4.3.2 details the relationship of character expressions
to a SETC statement.

Binary or Boolean variables have the value of a (false) or 1
(true). A binary variable can be assigned a value by evaluating
a relational expression enclosed in parentheses. The value of
the relational expression is either true or false.

A binary variable can also be assigned a value as a result of
logical comparisons. Both operands must be the same type; for
example, both must be character expressions. Logical expressions
can be formed by using the operations AND, OR, NOT. The
expression is evaluated from left to right; AND is evaluated
before OR.

Section 4.3.3 details binary or Boolean values assigned to a SETB
statement.

48-057 Faa ROO 4-7

SETA

4.3.1 SET Arithmetic Variable (SETA) Statement

The SETA instruction ~ssigns an arithmetic value to a SETA symbol
or array element. It$ format is: .

!

NAME

a SETA
symbol or
array
element

OPERATION
!

SETA

OPERAND

an arithmetic expression

The arithmetic exprission is evaluated as a signed 32-bit
arithmetic value lin the range of -2,147,483,648 to
+2,147,483,647. The value is assigned to the SETA variable
symbol in the name fitld. The expression can consist of one term
or an arithmetic c~mbination of terms. The terms that can be
used are:

• signed integer con~tants,

• variable symbols,

• count attributes, and'
!

• number attributes. ;

4-8 48-057 FOO ROO

4.3.1.1 UsinQ SETA Variable Symbol

When using a SETA variable symbol, its assigned arithmetic value
is substituted for the SETA symbol when the symbol is used in an
arithmetic expression. If the SETA symbol is not used in an
arithmetic expression, the arithmetic value is converted to a
signed integer with leading zeros removed. If the value is zero,
it is converted to a single zero., A SETA variable symbol (with
a positive value) can be used with a symbolic parameter to refer
to an operand in asublist or array vehicle. This example
illustrates the use of SETA variable symbols:

NAME OPERATION OPERAND TYPE

MACRO 1
MVBYT %TO=,%FROM=,%REG=13 2
lelA %AlOC (2)1 3

%AlOC(1) SETA 1 4
%AlOC(2) SETA %AlCC(1)+%AlOC(1) 4

lB %REG,%FROM%ALOC(1) 5
STB %REG,%TO%AlOC(2) 5
MEND 6

MVBYT FROM=HERE,TO=THERE 7

lB 13,HERE1 8
STB 13, TH ER E2 8

LEGEND FOR TYPE COLUMN

1 = macro header
2 = macro prototype
3 = local declaration
4 = SETx instruction
5 = model statement
6 = macro trailer
7 = macro instruction
8 = genera ted statement

48-057 FOO ROO 4-9

SETC

4.3.2 SET Character V~riable (SETC) Statement

The SET Cst ate men t a s s:i g n sac h a r act e r val u e to a S ET C va ria b 1 e
symbol. The format of: the SETC statement is:

NAME OPER~TICN

a SETC symbol SE~C
or array element

OPERAND

one operand consisting of a
type attribute, character
expression, substring notation,
or a concatenation of substring
notations and character
expressions

If a SETA symbol appea~s in the operand of a SETC statement, the
resulting unsigned character represents the decimal value, with
leading zeros removed. If a SETB sym~ol appears, the result is
the characte~ a o~ 1.

Variable symbols can be concatenated with other characters in a
SETC operand. Use two percent signs to represent a single
percent sign that is not ~art of a variable symbol.

The maximum number of characters that can be assigned to a SETC
symbol is 8.

4.3.2.1 Substring Rotation

Substring notation allows assigning a part of a character value
to a SETC variable symbol indicating in the operand field of a
SETx statement:

• the character value or an expression
character value, and

representing the

• the part of the character value to be assigned to the SETe
variable symbol.

The combination of the previous items, referred to as substring
notation, consists of a character expression, immediately
followed by two arithm~tic expressions separated by a comma and
enclosed in parenthese~. The two arithmetic expressions indicate
the beginning and ending characters in the substring. Positive

4-10 48-057 FOa ROO

values refer to the beginning of the string; negative values
refer to the end of the string. This example illustrates the use
of substring notation:

NAME

%CLOC1
%CLOC2
%CLOC3

OPERATION

SETC
SETC
SETC

OPERAND

'BASEADDR'
'%CLOC1'(1,4)
'%CLOC1'(5,-1)

In the previous example, the character value, 'BASEADDR' is
assigned to the SETC variable, %CLOC1. The character values
'BASE' and 'ADDR' are assigned to the SETC variables %CLOC2 and
YoCLOC3 respectively.

If a substring requests mere characters than are contained in the
character string, only the characters in the string are assigned.
The maximum size of a substring is 255 characters. The maximum
size of the expression the character value is developed from is
255 characters.

Character variables
scanning arguments
special characters.

and
for

substring notation are valuable in
occurrences of quotes, parentheses, or

4.3.2.2 Using SETC Variable Symbols

The character value assigned to a SETC symbol is substituted for
the SETC symbol when it is used in the name, operation, or
operand field of a statement.

Character expressions can be concatenated with substring
notations in the operand field of a SETC instruction. If a
substring notation follows a character expression, the two can be
concatenated by placing a colon between the terminating
apostrophe of the character expression and the opening apostrophe
of the substring notation. If a substring notation precedes a
character expression or another substring notation, the colon is
not necessary for concatenation.

If a SETC variable symbol is used in the operand field of a SETA
instruction, the character value of the SETC symbol must be one
or more decimal digits; or, it is flagged as an expansion error.
This example illustrates the use of the SETC variable statements:

48-057 Faa ROO 4-11

NAME OPERATIO N! OPERAND TYPE

MACRO SAVE REGISTERS 1
SAVE %R EG 2
LCLA ~ALOC 3
LCLC %REGS,~REGS1,~REGS2 3

'~ALOC SETA ~REG 4
%REGS SETC 'R ' : ' %A La C ' c:

oj

~~ALOC SETA ~ALOC+1 4
~;R EGS SETC '''REGS': 'R': '%ALOC' 5
':ALOC SETA %ALOC+1 4
~DREGS SETC '70REGS':' R':' ~ALOC' 5
"'ALOC SETA %ALOC+1 4
~.REGS SETC '%REGS':' R': '%ALOC' 5
% REGS 1 SETC '~REGS'(1,2) 4
%R EGS 2 SETC '1oREGS' (2,2) 5

ST %REGS1,HOLD~REGS2 6
1uREGS1 SETC '%REGS'(3,4) 5
1.R EGS 2 SETe '%REGS1'(2,2) 5

ST %REGS1,HOLD%REGS2 6
%REGS1 SETe '%REGS'(S,6) 5
%REGS2 SETC '7.REGS1'(2,2) 5

ST %REGS1,HOLD~REGS2 6
~REGS 1 SETC '%REGS'C7,8) 5
%REGS2 SETC '%REGS1'(2,2} 5

ST %REGS1,HOLD~REGS2 6
MEND 7

SAVE 2 8

ST R2,HOLD2 9
ST R3,HOLD3 9
ST R4,HOLD4 9
ST R5,HOLD5 9

LEGEND FOR TYPE COLUMN

1 = macro header
2 = macro prototype
3 = local declara:t ion
4 = SETA statement
5 = SETC statement
6 = model statemept
7 = macro trailer
8 = macro instruction
9 = generated statement

4-12 48-057 FOO ROO

The previous example defines the macro 'SAVE'. When the macro
SAVE is invoked, it generates assembly code to save four
registers beginning with the register designated in the operand
field of the macro instruction.

The macro instruction 'SAVE2' generates assembly code to save
registers 2 through 5 in the memory locations designated HOLD2
through HOLDS. This operation is accomplished by first building
a character local variable coritaining 'R2R3R4R5' and using
concatenation and substring notation to expand the proper values
to the generated assembly code.

To build the assembly instruction, 'ST R2,HOLD2', this procedure
is used:

1. The character string 'R2R3R4RS' is built in %REGS.

2. The statement "%REGS1 SETC '%REGS'(1,2)" extracts the first
two characters (or 'R2') from %REGS and places them in
%REGS1.

3. The statement "%REGS2 SETC '%REGS1'(2,2)" extracts the second
character (or '2') from %REGS1 and places it in %REGS2.

4. In the model statement "ST %REGS1,HOLD%REGS2", R2 is
sUbstituted for %REG1 and 2 is substituted for %REGS2 and
concatenated with HOLD to form HOLD2. The resulting
statement is "ST R2,HCLt2".

48-057 FOO ROO 4-13

SETB

4.3.3 SET Binary Var~able (SETB) Statement
i

The SETB statement as~igns the value true (binary 1) or false
The format of the SETB (binary 0) to a SETB variable symbol.

instruction is:' .

NAME

a SETB
symbol or
array element

OPERATION
!

OPERAND

a 0 or 1 or logical
expression enclosed in
parentheses

A logical expressio~
combination of terms.

consists of one term or a
The terms that can be used are:

logical

•
•
•

arithmetic relatioqs,

character relations, and

SETB variable symbils.

I
i

The logical operators iused in combining the terms are OR, AND,
I

and NCT. I

A logical operator mu~t always separate a logical expression that
contains two consecut~ve terms. The expression can contain two
successive operators 9nlY if the first operator is OR or AND, and
the second o~erator ~s NOT. A logical expression can begin with
the operator NOT; but,l it cannot begin with OR or AND. A logical
expression is evaluat~d to determine if it is true or false; the
SETB variable symbol ~s then assigned the value of 1 or O.

An arithmetic relatio~ consists of two arithmetic expressions
enclosed in parenth~ses, connected by a relational operator. A
character relation co~sists of two ch~racter values enclosed in
apostrophes connecte~ by a relational operator. The six
relational operators ~re:

• EQ is equal.

• GE is greater than or equal.

• GT is greater than .i
I

;

• LE is less than or :equal.

• LT is less than.

• NE is not equal.

4-14 48-057 Faa ROO

At least one blank must precede and succeed the relational and
logical operators.

Any arithmetic expression permitted in the operand field of a
SETA instruction can be used in the operand field of a SETB
instruction as a part of an arithmetic relation.

Any expression permitted in the operand field of a SETC
instruction can be used as a character value in the operand field
of a SETB instruction. In resolving a SETB expression using
character relations, two character values are considered equal
only when they are of equal length and contain the same
characters; for example: '20' is less than '020'. When two
character values are of unequal length, the shorter value is
always less then the longer one~ that is: 'Z' is less than 'AA'.

Logical expressions are evaluated as follows:

• Each term is evaluated and given its logical value.

• Each parenthesized expression is evaluated and given its
logical value.

• The computed result of the entire operand (1 for true, 0 for
false) is the value assigned to the SETB variable symbol.

The logical expression in the operand field of a SETB instruction
can be parenthesized. Parenthesized sequences of terms can be
nested to a limit of 15 levels of parentheses. The parenthesized
portions of a logical expression are evaluated first. If there
is more than one level of parentheses, the innermost level is
evaluated first.

4.3.3.1 Using SETB Variable Symbols

The logical value assigned to a SETB variable symbol replaces the
SETE symbol in the operand field of a conditional instruction or
another SETB instruction. If a SETB symbol appears in the
operand field of a SETA instruction or in arithmetic relations in
the operand fields of conditional or SETB instructions, the
logical values 0 and 1 are converted to the arithmetic values +0
and +1. If a SETB symbol appears in the operand field of a SETC
instruction or in a character relation in the operand field of a
conditional or SETB instruction, the logical values 0 and 1 are
converted to the character values 0 and 1. This example
illustrates the use of the SETB instructions:

48-057 FOO ROO 4-15

NAME

~Bl01

"Al01
%Cl01

lEGEND FOR

1 = macro
2 = macro
3 = local
4 = SETB
5 = SETA
6 = SETC
7 = model
8 = macro
9 = macro

OPERATICN

TYPE

MAC$O
MOVE
lelA
lCL!
LCLe
SET~
SETA
SET¢
1
ST !

MEN~

MOVE

L
ST

HOVt

L
ST

COiUMN

header
prototYl1>e
declaration

s ta temen t
statement
statemen~
sta temeI).t
trailer:
instruc~ion

10 = genera ted statement

4.4 ATTRIBUTES

OPERAND

%FROM,%TO
%AL01
%BL01
r.CL01
C'%FROM' NE '%TO')
%BL01+1
'A 'C%AL01,%AL01)
13,%FROM%CL01
13,~TO

HERE,HERE

13,HERE
13,THERE

H ERE, THERE

13,HEREA
13,HERE

TYPE

1
2
3
3
3
4
5
6
7
7
8

9

10
10

9

10
10

Attributes can be assigned to macro instruction operands. These
attributes can be re~erenced only in conditional instructions or
expressions. Each of :the three attributes has an associated
notation:

4-16

ATTRIBUTE.

type
count
number

NCTATION

T'
K'
N '

48-057 FOO ROO

If an inner macro instruction operand is a symbolic parameter,
the operand attributes are the same as those of the corresponding
outer macro instruction operand. A symbol appearing as an inner
macro instruction operand is not assigned the same attributes as
the same symbol appearing as an outer macro instruction operand.
Section 3.4 details inner and outer macro instructions.

If a macro instruction operand is a sublist, the attributes of
the sublist or each element in the sublist can be referenced.
Section 3.3.3 details sublists.

4.4.1 Type Attribute (T')

The type attributes of the macro instruction operand are:

• The letter A represents an alphanumeric operand.

• The letter N represents a numeric operand.
is recognized as numeric.)

(A signed integer

• The letter U represents a null operand.

The type attribute can be used wherever a character expression
could be used; but, the tYPe attribute must occur alone (that is,
not concatenated with anything), and it must not be enclosed in
quotes.

4.4.2 Count Attribute (K')

The count attribute value is the number of characters in a macro
instruction field. It includes all characters in the operand
except the delimiting commas. The count attribute of an omitted
operand is zero. The count attribute can be referred to:

• in the operand field of a SETA instruction, or

• in arithmetic relations in the operand fields of SETB, or
conditional instructions in a macro definition.

4.4.3 lumbe~ Attribute (N')

The number attribute is a value equal to the number of operands
in an operand sublist. The number is equal to one plus the
number of delimiting commas within the sublist. If the macro
instruction operand is not written in sublist notation, the

48-057 FOO ROO 4-17

number attribute is one. If the oper~nd is omitted, the number
attribute is zero. T~e number attribute can be referred to:

• in the operand fie~d of a SETA instruction, or

• in arithmetic rela~ions in the operand fields of SETB or
conditional instru~tions in a macro definition.

This example illustrates attributes:

Given this macro ~rototJPe and instruction:
;

MOVE % REG, ~ FRO M ,.i70 TO, % H C L D

MOVE 1 3 , HER E, (T HiE R E 1 , THE R E 2)

Tt~REG = N Kit ~R EG = 2 Nt "REG = 1
T'%FROM = A K!' %FR OM = 4 N'~FROM = 1
T'%TO = A K,' %TO = 15 N'%TO = 2
T'''HOLD = U Ki' :Y.HOL C = a N'''HOLD = 0

4-18 48-057 Faa ROO

AIF

4.5 CONDITIONAL AND UNCONDITIONAL BRANCH INSTRUCTIONS

The conditional and unconditional
conditionally and unconditionally alter
processing sequence.

branch instructions
the macro definition

4.5.1 Conditional Branch (AIF) Instruction

The AIF instruction conditicnally alters the macro definition
statement processing sequence. Its format is:

NAME

a sequence
symbol or
blank

OPERATION

AIF

OPERAND

logical expression enclosed
in parentheses, immediately
followed by a sequence
symbol

Any expression used in a SETB instruction operand field can be
used in an AIF instruction operand field. The expression is
evaluated to determine if it is true or false. If the expression
is true, the statement that the sequence symbol in the operand
field named is the next statement processed. If the expression
is false, the next sequential statement is processed. Section
4.7 gives examples of the AIF instruction. Section 2.4.3 details
sequence symbols.

48-057 FOO ROO 4-19

AGO

4.5.2 Unconditional Branch (AGO) Instruction

The AGO instruction u~conditionally alters the macro definition
statement processing ~equence. I~s format is:

NAME

a sequence
symbol or
blank

OPERATION

AGe

OPERAND

a sequence symbol

The statement the seqpence symbol names in the operand field is
the next statement prbcessed.

;

The sequence symbol i~ an AGO or AIF instruction operand field
must appear in a ~tatement name field in the same macro
definition as the AGOI or AIF instruction; or, it causes an
expansion error. SF, ction 4.7 gives examples of using the AGO
instruction.

i

4.5.3 Computed AGO ahd AIF Statements
t

I
I

An AGO or AIF statemeht o~erand is extended to include a:
I
;

• character variable~

• array element, or

• ~arameter.

The value of the character variable, array element, or parameter
must be a valid sequehce number.

4-20 48-057 Faa ROO

Example:

LCLC %C
XC SET '&SEQSYM'
&AGAIN ANOP

AGO %C

•
•

&SEQSYM ANOP
%C SETC '&SEQ2'

AGO &AGAIN
&SEQ2 ANOP

The character value %C is redefined to &SEQ2. The second time
the AGO is executed, a branch to &SEQ2 is executed:

MACRO
EX2 %P
AGO %P

•
•

&ABC ANOP
•
•

&DEF ANOP
MEND

•
•
•

EX2 &ABC

takes a branch to &ABC, while:

EX2 &DEF

takes a branch to &DEF.

48-057 FOO ROO 4-21

The ampersand must be: included in the macro call parameter. To
avoid the ampersand lin the macro call, use a strinq variable and
concatenate the amperlsand in the macro definition. Many of the
system macros use thl$ technique for codes:

rue

e.SRO

e.SRW

4-22

MACRO
EX3
LCLC
SETC
AGO

•

•
ANOP

•

ANOP
•
•
•

EX3
EX3

"~F=
~C

'e.':'%AP'
~C

AP=SRO
AP=SRW

48-057 FOO ROO

ACTR

4.6 CONDITIONAL INSTRUCTION LOOP COUNTER (ACTR) INSTRUCTION

The maximum count of AIF and AGO branches that can be executed in
a macro definition is 32767. The ACTR instruction assigns a
count other than 32767 as the maximum number of AIF and AGO
branches executed within a macro definition. The format of the
ACTR instruction is:

NAME OPERATION

blank ACTR

OPERAND

any expression that can appear
in the operand field of a SETA
instruction

The ACTR instruction can only appear immediately after global and
local declaration statements. This instruction causes a counter
to be set to the value in the operand field. The counter is
checked for zero or negative value; if the counter is not zero or
negative, it is decremented by ~ne each time an AIF or AGO branch
is executed. If the count is zero before decrementing, the
entire nest of macro definitions is terminated and the next
source statement is processed. An ACTR statement in a macro
definition affects only the definition in which it appears.

When a macro definition calls an inner macro definition, the
current value of the branch count is saved and a new count of
32767 is set up for the inner macro definition (unless the inner
macro contains an ACTa instruction). When processing in the
inner definition is completed and a return is made to the higher
definition, the saved count is restored.

48-057 FDa ROO 4-23

ANOP

4.7 NO OPERATION (ANOP) INSTRUCTION
I

When the sequence symbol in an AIF or AGO instruction must
reference a stateme~t already containing a symbol (other than a
sequence symbol) in t~e name field, the ANOP instruction is used.
The format of the ANOP instruction is:

NAME

a sequence
symbol

OFERATION

ANOP

OPERAND

blank

The ANOP instruction is placed before the statement that the
branch is to be made, to and the sequence symbol is placed in the
ANOP instruction name: field. This placement has the same effect
as branching to th~ statement immediately following the ANOP
instruction. The following example shows the use of conditional

[

instructions:

4-24 48-057 Faa ROO

NAME

&NULL

%ALOC
&ZERO

%ALOC1

&NOTALL
%ALOC1
&CKSIZE
&SETNAME
%REGS

%ALOC1

%ALOC

&END

LEGEND FOR

1 = macro
2 = macro
3 = local

OPERATION

MACRO
SAVE
LCLA
LCLC
AIF

AIF

AIF

AIF
AIF

ANOP
AIF
SETA
ANOP
AIF
SETA
AGO
ANOP
SETA
AIF
ANOP
SETC
ST
SETA
AIF
SETA
AGO
ANOP
MEND

TYPE COLUMN

header
prototype
dec lara tion

4 = conditional branch
5 = no operation
6 = SETA instruction
7 = conditional

OPERAND

~REG,%HOWMANY
%ALOC,%ALCC1
%REGS
((T ' %R E G N E • N .) AND
(l'%REG NE 'U'»&END
«T'%HOWMANY NE 'N') AND
(T'70HOWMANY NE'U'»&END
(NOT «%BEG GE 0) AND
(7cREG LE 15»)&END
(T'%HOWMANY EQ 'U')&NULL
(NOT «%HOWMANY GE 1) AND
(~HOWMANY LE 16»)&END

(T'%REG EO 'U')&ZERO
%REG

(T'%HOWMANY EQ 'N')&NOTALL
16-%ALOC
&CKSIZE

%HOWM~.NY

(%ALOC+%ALOC1 GT 16)&END

, R ' : '%A LOC,
%BEGS,HCLt%ALOC
%ALOC1-1
(~ALOC1 EQ 0) &END
%ALOC+1
&SETNAME

8 = unconditional branch
9 = model statement

10 = macro trailer

48-057 FOO ROO

TYPE

1
2
3
3
4

4

4
4

4
5
4
6
5
7
6
8
5
6
4
5
6
9
6
4
6
8
5

10

4-25

The previous example defines the macro SAVE. This macro
generates assembler code to save a number of registers

I

(designated by ~HOWMANY in the prototype statement) beginning
with the register designated by 7oREG. If the argument used in
place of %REG is omitted in the macro instruction, RO is assumed
to be the beginning, register. If the argument used in place of
%HOWMANY is omitted in the macro instruction, it is assumed that
all registers begin~ing with 7.REG are to be saved. These
examples show some possible expan~ions of the SAVE macro:

NAME OPERATION OP ERAN D TYPE

SJ\ VE 10,4 1

ST R10,HOLD10 2
ST R11,HOLD11 2
ST R12,HOLD12 2
ST R13,HOLD13 2

, SAVE 13 1

ST R13,HOLD13 2
ST R14,HOLD14 2
ST R15,HOLD15 2

, SAVE ,2 1
ST RO,HOLDO 2
ST R1,HCLD1 2

LEGEND FOR TYPE COLUMN

1 = macro instruction
2 = generated statement

4-26 48-057 FOO ROO

KEXIT

4.8 MACRO DEFINITION EXIT (MEXIT) INSTRUCTION

The MEXIT instruction terminates the current macro definition
expansion. Its format is:

NAME

a sequence
symbol or
blank

OPERATION

MEXIT

OPERAND

not used

If a MEXIT instruction is processed in a macro definition for an
outer macro instruction, the next statement in the source is
processed next. If a MEXIT instruction is processed in a macro
definition for an inner macro instruction, the next statement
after the inner macro instruction in the macro definition is
processed next. Section 3.4 details inner and outer macro
instructions. This example illustrates the use of the MEXIT
instruction:

NAME

%SYM

&OK
%SYM

LEGEND FOR

1 = macro
2 = macro

OPERATION

M.~CR 0
MOVE
AIF
MEXIT
ANOP
ST
L
ST
L
MEND

TYPE COLUMN

header
prototype

3 = conditional branch
4 = macro exit
5 = no operation
6 = model statement
7 = macro trailer

48-057 FOO ROO

OPERAND

r.FROM,70TO,r.REG,%HOLD
(T'r.REG EO 'N')&OK

%REG,%HOLD
%REG,%FROM
%REG,%TO
%REG,%HOLD

TYPE

1
2
3
4
5
6
6
6
6
7

4-27

In the previous example, a numeric argument must represent the
symbolic parameter PoREG when the macro instruction is written.
To assure this representation, the %REG type attribute is
compared to 'N'. If it is not 'N', the MEXIT instruction is
executed, resulting in the termination of any further macro
expansion.

4-28 48-057 FOQ ROO

MNOTE

4.9 REQUEST FOR MESSAGE (MNOTE) INSTRUCTION

The MNOTE instruction generates a macro message. Its format is:

NAME

a sequence
symbol or
blank

OPERATION

MNOTE

OPERAND

an optional integer expression
followed by a comma, followed
by any combination of characters
enclosed in apostrophes

The characters between the apostrophes are printed on the source
listing when the MNOTE instruction is processed. If a symbolic
parameter appears between the apostrophes, its value replaces it
when the message is printed.

Use two apostrophes to represent a single apostrophe to be
printed as part of the message in the source listing. Use two
percent signs to represent a single percent sign to be printed as
part of the message in the source listing. Use two colon signs
(::) to represent a single colon sign to be printed as part of
the message in the source listing. MNOTE statements can have a
maximum of two continuation statements.

The optional integer expression is the end of task code returned
when the macro processor terminates. The default value for this
integer expression is o. The highest value that any executed
MNOTE statement specifies is the value returned. This example
illustrates using the MNOTE instruction:

48-057 FOO ROO 4-29

NAME CPERATI;CN CPERAND TYPE

MACRO 1
MOVE '%FROM,%TO,%REG,%HOLD 2
AIF ('I'r.REG NE 'N')&E2 3
AIF (T'%HOLD EO 'U')&E1 3
ST %REG,%HOLD 4
L %BEG,7cFROM 4
ST %REG,%TO 4
L %REG,%HOLD 4
MEXIT 5

&E1 MNOTE 8,'SAVE AREA NOT DEFINED' 6
MEXIT 5

&E2 MNOTE 4,'REGISTER NOT NUMERIC' 6
MEND 7
MOVE FROM,TO,REG,HOLD 8

* MNOTE 'REGISTER NOT NUMERIC' 9
MOVE HERE,THERE,4 8

* MNOTE 'SAVE AREA NOT DEFINED' 9

The end of task code is 8.

LEGEND FOR TYPE COLUMN

1 = macro header
2 = prototype ~tatement
3 = conditional branch
4 = model stat~ment
5 = macro exit:
6 = macro note
7 = macro trailer
8 = macro insttuction
9 = generated sitatement

4-30 48-057 FOO ROO

4.10 SYSTEM VARIABLE SYMBOLS

The macro processor automatically assigns
variable symbols. These system variable
variable symbols. The five variable symbols:

• %SYSLIST

• %SYSINDX

• %SYSMAC

• %SYSTIME

• %SYSDATE

values
symbols

to
are

system
local

can be used in the name, operation, or operand fields of
statements in macro definitions. System variable symbols cannot
be defined as symbolic parameters or SET symbols. Although these
system symbols are the only system symbols defined at this time,
do not use any variable symbol that starts with %SYS because of
future expansion.

48-057 FOO ROO 4-31

I %SYSLIST I

4.10.1 "SYSLIST Symbol

r.SYSLIST provides an alternative
referring to posi:tional macro
r.SYSLIST and symbol~c ~arameters
positional macro definition.

to symbolic parameters
instruction operands.

can be used in the

for
Both
same

r.SYSLIST (n) refers to the nth positional macro operand. If the
nth operand is a su~list, then ~SYSLIST (n,m) refers to the mth
operand in the sublis:t. Any arithmetic expression allowed in a
SETA instruction oper~nd field can represent nand m.

If the value of n is zero, then %SYSLIST (n) is assigned the
value specified in the mac~o instruction name field, unless that
value is a sequence symbol.

The type and count at~ributes of %SYSLIST(n) and %SYSLIST(n,m)
and the number of a~tributes of %SYSLIST(n) and %SYSLIST can be
used in conditional i~structions. N'~SYSLIST refers to the total

i

positional operands; in a macro instruction statement.
N'r.SYSLIST(n) refers, to the number of operands in a sublist. If
the nth operand is null, n is zero. If the nth operand is not a
sublist, N' is one. The following example illustrates the use of
r.SYSLIST:

4-32 48-057 FOO ROO

NAME OPERATION OPERAND

MACRO
%SYM MOVE %FRCM,%TO,%REG,%HOLD

LCLA %AL1
%AL1 SETA 1
tC1610 AIF ('%SYSLIST(%AL1)' EQ ")&.ERR
%AL 1 SETA ~AL1+1

AIF (%AL1 LE 4) &.CKNUL
AGO &OK

&ERR MNOTE 'PARAMETER%AL1 MISSING'
MEXIT

&'OK ANOP
STA %REG,%HOLD
LOA %REG,%FROM
STA 7oREG,%TO
LOA %REG, %HOL D
MEND

MOV 1 MOVE HERE,THERE,13

* MNOTE ' PARA METE'R 4

LEGEND FOR TYPE COLUMN

1 = macro header
2 = macro prototy~e
3 = local declaration
4 = conditional branch
5 = SETA
6 = unconditional branch
7 = macro note
8 = macro exit
9 = no operation

10 = model statement
11 = macro trailer
12 = generated statement

MISSING'

TYPE

1
2
3

4
5
4
6
7
8
9

10
1 1
10
10
1 1

12

12

The use of %SYSLIST in the previous example avoids having to
write a separate conditional branch instruction to check each
argument for a null conditicn.

48-057 FOO ROO 4-33

I ~SYSINDX I

4.10.2 XSYSINDX Symb~l
i

The value of the ~SYS[NDX variable symbol can be concatenated
with other characters to crea~e uniQue names for statements
generated from the sa~e model statement. %SYSINDX is assigned
the numerical value! for the first macro instruction that the
macro processor proce~ses. It is incremented by one for each
subsequent macro instruction processed, whether inner or outer.

If ~SYSINDX is used! in a model statement, SETC, or MNOTE
instruction or in ~ character relation in a SETB or AIF
instruction, the valu~ sutstituted for ~SYSINDX is the number of
the macro instruction; being processed. If %SYSINDX appears in an
arithmetic expression, the value used for %SYSINDX is an
arithmetic value. Throughout one use of a macro definition, the
%SYSINDX value is constant, independent of any inner macro

. instruction in tha~ definition. The following example
illustrates the use of %SYSINDX:

4-34 48-057 FOO ROO

NAME OPERATICN OPERAND TYPE

MACRO 1
%SYM MOVE %FROM,%TO 2
%SYM STA 13,HCLD%SYSINDX 3

LDA 13,%FROM
STA 13,%TO 3
LDA 13,%!fOLD%SYSINDX 3
B HOLD%SYSINDX+ADC 3

HOLD%SYSINDX DAC 0 3
MEND 4

MOV1 MOVE ASLOT,BSLOT 5

MOV1 STA 13,HOLDOOO1 6
LDA 13,ASLOT 6
STA 13,BSLCT 6
LDA 13,HOLDOOO1 6
B HOLDOOO1+ADC

HOLDOOO1 DAC 0 6

MOV2 MOVE XSLOT,YSLOT 5
MOV2 STA 13,HOLDOOO2 6

LDA 13,XSLOT 6
STA 13,YSLCT 5
LDA 13,HOLtOOO2 6
B HOLD002+ADC

HOLDOOO2 DAC 0 6

LEGEND FOR TYPE COLUMN

1 = macro header
2 = macro prototype
3 = model statement
4 = macro trailer
5 = macro instruction
6 = genera ted statement

In the previous example, the variable symbol %SYSINDX is
concatenated with the letters HOLD to form a unique label each
time the macro is invoked.

48-057 FOO ROO 4-35

I ~SISMAC

4.10.3 ~SYSMAC Symbol
i

The system variable 70lSYSMAC differs from the system variable
~SYSINDX because the Lnner macro'calls change their value. Upon
returning from an in~er macro call, %SYSINDX returns to its
original value; whi!le, %SYSMAC remains at the incremented value
because of the inner lmacro. An example of this useful feature
is: INNER generated: a label using 70SYSMAC which was referred to
in CUTER by using %SY~MAC. This example shows the relationship
between %SYSINDX and ~SYSMAC:

4-36

NAME OP~RATION

MACRO
INNER
IMPUR

HOLD%SYSINDX DAS
PORE
MEND

MACRO
~SYM MPVE

INNER
%SYM STA

LEGEND FOR

1 = macro
2 = macro
3 = model
4 = macro
5 = inner

TYPE

LbA
STA
LDA
MEND

~OLUMN

header
protot:ype
statemfnt
trailet
macro <tall

OPERAND

1

%FROM,70TO

13,HOLD%SYSMAC
13,~FROM

13,%TO
13,HOLD%SYSMAC

TYPE

1
2
3
3
3
4

1
2
5
3
3
3
3
4

48-057 FOO ROO

%SYSINDX ~SYSMAe NAME OPERATION OPERAND

1 1 MOVE A,B
2 2 INNER
2 2 IMPUR
2 2 HOLtOC02 PAS 1
2 2 PURE
1 2 STA 13,HOLDOO02
1 2 LDA 13,A
1 2 STA 13,B
1 2 LDA 13,HOLDOO02
3 3 MOVE e,D
4 4 INNER
4 4 IMPUR
4 4 HOLDOO04 DAS 1
4 4 PURE
3 4 STA 13,HOLDOO04
3 4 LDA 13,C
3 4 STA 13,D
3 4 LDA 13,HOLDOOO4

NOTE

Af ter the inner call, %SYSMAC retains its
va lue.

48-057 FOO ROO 4-37

I ~SISTIME I
I ~SYSDATE I -- ... ----~----

4.10.4 %SISTIME Symbpl

%SYSTIME is an eight fharacter string system variable whose value
is the time of 'day that the macro processor was invoked. System
generation determinesi the ferm.

4.10.5 ~SYSDATE Symbol

%SYSDATE is an eight ~haracter string system variable whose value
represents the date that the macro processor was invoked. System
generation determines the form.

4-38 48-057 FOO ROO

AREAD

4.11 AREAD STATEMEIT

The syntax for the AREAD statement is:

%SYMBOL AHEAD

where:

%SYMBOL is a character
enough to contain the
characters) •

variable or array
character string

variable large
(a minimum of 80

When a macro containing an AHEAD is called, the next source line
is read into the character variable. The string handling
capability of the macro processor can be used to process the
line. The following macro demonstrates this capability:

%C

&BYTE

CR
+

ABC
+

%C(9) 80 characters
READ NEXT-LINE AFTER CALL

MACRO
REED
LCle
AREAD
AIF
DB
MEXIT
ANOF

('%C' (1,2) EQ 'CR')&BYTE check for character
X'OO' NOT CR

DB X'OD'
MEND

REFt

DB X'OD'
REED

DB X'OO'

48-057 FOO ROO 4-39

4.12 SUBSTRING NOTATION IN MODEL STATEMENTS

Substring notation is allcwed in mode~ statements. The following
macro demonstrates tfuis capability:

where:

4-40

MACRO
EXAMPLE
LeLe

%TYPE SETC
Al F
B*TYPE<2,2)C
MEXIT

&TRUE B%TYPE<1,1)C

+

+

MEND

Ela AMPLE
B~C
EX AMPLE
BEC

NOTE

?oP
%TYPE
• T F'
('';P' EQ 'T')&TRUE
ALPHA

BETA

1
ALPHA
F
BETA

Because of possible ambiguities in
interpre~ation, substring notation in a
model statement always applies only to
the immediately preceding symbolic
variable! or parameter not enclosed in
quotes.

48-057 FOa ROO

CHAPTER 5
ADDITIONAL CAL KACRO/32 FEATURES

5.1 INTRODUCTION

The operation codes of the features discussed in this section are
macro processor pseudo operation codes. Because they are macro
processor pseudo operation codes, the processor recognizes and
acts on them so they are not passed to the assembler source
stream.

48-057 FOO ROO 5-1

I ASIS

5.1.1 As Is CASIS) Instruction

The ASIS instruction tells the macro processor not to treat the
next line or linesi as macros even thouqh these lines miqht be
macros. This feature' is useful when a macro is used to redefine
a CAL operation code. The format of the ASIS instruction is:

NAME OPERAT[ON
!

i
sequence ASIS i

symbol
or blank

OPERAND

blank, decimal integer, BEGIN,
or END

Blank indicates the next statement only. Decimal integer means
the next n statements. BEGIN means until an ASIS END is
encountered. END ind~cates termination of ASIS BEGIN.

The END statement doe~ not cause termination of a macro expansion
if it appears within an ASIS statement.

The following instructions cannot occur in the scope of ASIS:

ACTR BGBLC tCLC MEXIT NOLIB
AGO GBLA MACRO MLIBS NTRAC
AIF GBLB ~CALI MNOTE SETA
ANOP GBLC MCOPY MPAUSE SETB
BGBLA LClA $DEFS MTRAC SETC
BGBLB LCLB mEND NDEFS

5-2 48-057 Faa ROO

I MCALL I

5.1.2 Macro Call (MCALL) Instruction

The MCALL instruction permits the cited macros to be called as
they appear in the library rather than as they appear in the
processor source stream. This method avoids time-consuming
rewinds in a magnetic tape search or multiple disc access in a
disc search. The format of the MCALL instruction is:

NAME OPERATION OPERAND

blank MCALL MACRO,MACRO, ••• ,MACRO

A particular order does nct have to be specified in the MCALL
instruction; the specified macro definitions are fetched from the
library in the order that they are found. If a macro definition
cited in the MCALL instruction is not found in any library, the
request for that definition is ignored. All libraries named in
the MLIBS instruction are searched for the cited macro
definitions. The MCALL instruction statement cannot occur within
a macro definition.

48-057 FOO ROO 5-3

I HCOPY I

5.1.3 Macro Copy (KCOPY) Statement
I

The HCOPY statement ~nab1es source text to be copied from a
specified logical unit (lu) or file descriptor at any point in a
macro definition or drogram. The copied source text can be any
arbitrary text, such :as a:

• set of global variables used in several macros,

• complete macro de~inition·or a set of macro definitions,

• part of a macro d~finiticn,

• set of equates, or

• subroutine.

i

Copying starts at a ~pecified point or at the beginning of the
file. Copying terminiates when:

• a /* in columns 1 and 2 is encountered,

• an END sta temen t iis enco un tered, or

• an end of file (EO~) is reached.

An END statement, if used as a terminator for MCOPY, will also
terminate macro expansion.

The syntax of the MCOPY statement is:

ignored [label] [,lu number]
[,file descriptor]

where:

5-4

If a label is not; specified, the file is not rewound and
everything is copied until a 1* in columns 1 and 2 or an EOF
is reached. .

If a label is spe¢ified, search the file from its present
position until a label of the following form is found:

**LABEL

48-057 FOO ROO

If an EOF is encountered, the file is first rewound and
searched once more for the label. If found, copying starts
from the next statement until the next terminator is
encountered.

If the file is omitted, copying is performed from the current
file, where the current file is initially lu 7. It can be
changed with a START option, or the file or 1u from the most
recent preceding MCOPY statement at the same level.

HCCPY statements can be nested up to 16 levels, provided
sufficient logical units are available. For example: an HCOPY
can copy a macro definition containing an MeOPY statement to copy
global variables. The first MCOPY statement copies the initial
part of th~ macro definition until tbe nested MCOPY statement is
encountered. Then, the first MCOPY statement resumes. While the
inner MeOPY statement is co~ying, two logical units are open.

Operands of HeOPY passed to the macro processor through the HCOPY
start options are passed to each program in the batch.

48-057 FOO ROO 5-5

I KDEFS I

5.1.4 Macro Definitions (MtEFS) Instruction

The MDEFS instruction controls which macro statements are sent to
the CAL file. Its format is:

NAME OPERATION

blank MDEFS

OPERANDS

one or more codes
separated by commas

The optional letter N preceding the code means to suppress
sending the statement; whereas, the code enables sending. The
codes and their meanibgs are:

CODE

(N)DEFS
(N)INNER
(N)OUTER
ALL
NONE

[

MEANING

(NQ) macro definitions _
(N$) inner macro calls
(N¢) outer macro calls
send all of the above
semd none of the above

Example:

5-6

MDEFS NI,ND

suppresses macro definitions and inner
to CAL. MDEFS can be specified as
specified as a START option, the
effect. MtEFS caqnot occur in a macro
6.2 details START! options.

MINIMUM
ABBREVIATION

D ND
I NI
o NO
ALL
NONE

macro calls to be sent
a START option. If
MDEFS statement has no
definition. Section

48-057 FOO ROO

I MLIBS I

5.1.5 Macro Libraries (MlIES) Instruction

The MLIBS instruction designates the file descciptor or decimal
1u numbers where the macro libraries, necessary for a given macro
processor source stream, reside. The format of the MLIBS
instruction is:

NAME OPERATION

blank MLIBS

OPERAND

one or more file
descriptors or 1u
numbers separated
by commas

If any macro libraries (including the system macro library) are
used, this statement must appear as a START option or in the
macro processor source stream prior to invoking any macros
residing on a library. The operand field must contain at least
one argument. The libraries are searched in the order that their
file descriptor or lu numbers appear in the START option or MLIBS
instruction. The absence of a START option or MLIBS instruction
in a processor source stream indicates to the processor that all
required macro definitions for that source stream exist as part
of the source stream. The maximum number of file descriptors or
logical units that can be actively designated as libraries at any
one time is 15. The MLIBS instruction statement cannot occur
within a macro definition. See Section 6.2 for START options.

The files and logical units ~assed to the macro processor through
the MLIBS start options are passed to each program in the batch.

48-057 FOa ROO 5-7

f MLIST I

5.1.6 Macro Listinq (MLIST) Instruction

The MLIST instruction controls which macro statements are sent to
the list device. Its format is:

NAME OPERATION

blank MLIST

OPERAND

one or more codes
separated by commas

The optional letter N preceding the code means to suppress
sending the statements; whereas, the code enables sending the
statement. The codes and their meanings are:

CODE

(N) DEFS
(N) INNER
(N) OUTER
(N) CAL
(N) GENCAL
(N) MNOTE
ALL
NONE

MEANING

(NO) macro definitions
(NO) inner macro calls
(NO) outer macro calls
(NO) CAL code
(NO) generated code
(NQ) MNO'IE
se~d all
send NONE

MINIMUM
ABBREVIATIONS

D ND
I NI
0 NO
C NC
G NG
M NM
ALL
NONE

Examt:le:

5-8

MLIST ND,NI

suppresses macro definitions and
to the list devic$. MIIST can
option. If it is specified
statement has no ~ffect. MLIST
definition. .

inner macro calls to be sent
be specified as a START

as a START option, the MLIST
cannot occur in a macro

48-057 Faa ROO

I MPAUS I

5.1.7 Pause (KPAUS) Instruction

The MPAUS instruction permits the user to pause the macro
processor. The pause can occur anywhere in the input stream;
but, it cannot occur between a macro statement and a following
macro prototype. An examtle of the MPAUS instruction is:

NAME OPERATION OPERAND

blank MPAUS blank

48-057 Faa ROO 5-9

I MTRAC I

5.1.8 Macro Trace (MTRAC) Instruction

The diagnostic instruction, MTRAC, determines the effective
conditional branche$ and the SET variable symbols values within
the macro logic. The format of the MTRAC instruction is:

NAME OPERATION OPERAND

blank MTBAC blank

The MTRAC instruction can occur anywhere in the source stream.
It causes the mac~o trace feature to be enabled for all
subsequent macro instructions processed. Each time a macro is
invoked, a map of its Expansion, detailing the path of the
conditional branches 'and the values of the SET variable symbols,
is written to the designated trace output device (lu 3). If the
MTRAC statement occurs within a macro definition, the trace
feature is enabled ~very time the correspondinq macro is invoked
and remains enabled until a no trace (NTRAC) statement is
encountered in a macro definition expansion or in the source
stream.

5-10 48-057 FOO ROO

I NOLIB I

5.1.9 No Libraries (NOLIB) Instruction

The NOLIB instruction suppresses searching all or some macro
libraries previously designated by the MLIBS statement. The lu
numbers of the libraries that searching is to be suppressed for
are contained in the NOLIB statement operand field. If the
operand field is blank, all library searching is suppressed. The
format of the NOLIB instruction is:

NAME OPERATION

blank NOLIB

OPERAND

one or more file descriptors
or lu numbers separated by
commas

The NOLIB instruction is useful in these situations:

• If memory size is such that all macro definitions invoked in
a given processor source stream can be made memory resident at
the same time:

•

the MCALL instruction brings all the macro definitions into
memory prior to their use; then,

the NOLIB instruction is invoked with a blank operand
field, causing all library searches to be suppressed.

If erroneous operation cedes are present in source statements,
the NOLIB instruction ~r€vents unnecessary library searches.

If memory size is
definitions necessary
memory resident:

not sufficient to allow all macro
for a given processor pass to be made

the MCALL instruction brings as many macro
possible into memory~ (ideally, these
frequently used macro definitions)~ then,

definitions as
include the most

the NOLIB instruction is invoked to suppress searching the
libraries from which the memory-resident macro definitions
were extracted.

This technique minimizes the necessary processing time for
library searches in a limited memory environment. The NOLIB
instruction statement cannot occur within a macro definition.

48-057 FOa ROO 5-11

I NTRAC I

5.1.10 No Trace (NT~AC) Instruction

The NTRAC instructiob causes the macro trace feature to be
disabled. If NTRAC bccurs in a macro definition, the macro trace
feature is disabled ~ach time that macro is invoked.

NA ME CPERATICN OPERAND

blank NTRAC blank

5-12 48-057 FOO ROO

CHAPTER 6
OPERATION OF THE CAL MACRO/32 PROCESSOR

6.1 INTRODUCTION

This chapter demonstrates the operation of the CAL Macro/32
Processor (MACRO) and OS/32.

The CAL Macro Processor is available as a 32-bit object program.

6.1.1 Device Assignments

The CAL Macro Processor uses these device assignments:

AS LU 1
AS LU 2
AS LU 3

Source input
Expanded source output
Listing, trace output, and error messages
(see Appendix D)

Any other available logical unit (lu) can be used for libraries.

6.1.2 Memory Requirements

The macro processor requires approximately 26kb of memory over
and above what the operating system uses and the macro processor
itself requires for any table space. The macro processor
requires table space for stcring:

• programmer macros,

• library macros defined by an MCALL statement,

• global symbols, and

• any parameters associated with the macro instruction currently
being processed.

Thus, the amount of table space required depends on the program
being processed.

48-057 FOO ROO 6-1

6.2 OPERATION OF THE MACRO PROCESSOR UNDER OS/32

Prior to using the m~cro ~rocessor, it must be established as a
user task with OS/32 Link. Refer to the OS/32 Operator Reference
Manual and the OS/32' Link Reference Manual.

Once the macro proce$sor is established, it is loaded by OS/32
with the command: !

LOAD taskid,fd

where:

taskid is the name assigned to the macro processor task
partition.

fd is the file descri~tor or devioe mnemonic containing the
established macrO processor.

The macro processor task is made the currently selected task for
making device assignments, starting with the command:

TASK taskid

Assign all logical units that the macro processor is to use:

LU COMMAND DEVICE

source input ,AS 1,SOURCE.MAC disc
list output iAS 3,PR: printer
source output iAS 2,SCURCE.CAL disc

macro library* AS 7,MAG1: magnet.ic

*The macro libraiy is not a required assignment;
when used, it can be assigned to any available
LU number.

tape

Issue the operating system START command to execute the macro
processor:

START

The macro processor then executes. When the entire source
program has been prQcessed, the macro processor issues an SVC 3,
end of task code a to the operating system if no errors are

6-2 48-057 FOO ROO

detected. The following end of task codes may be returned by the
macro processor:

o
2
4
254:

No errors
Errors in macro expansion
Invalid start option
Insufficient memory

Any other return code is due to an MNOTE statement in the listing
which set the return code.

6.3 I/O ERRORS

When the macro processor detect5 an I/O error during its
operation, it prints this message on the system console:

I/O ERROR xxdd

where:

xx is a 2-digit hexadecimal value representing the device
status.

dd is the device number causing the error.

The possible values of xx are:

DEVICE
STATUS
CODE MEANING

CO illegal function
AO device unavailable
90 end of medium
88 end of file
84 unrecoverable error
82 parity/recoverable error
81 unassigned lu

Examples:

9085
A004
C062

end of medium on magnetic tape
card reader offline
READ attempted from the line printer

Refer to the appropriate operating system manual for details
on the status of each device.

48-057 FOO ROO 6-3

6.4 START OPTIONS

START options are provided for these functions:

FUNCTION

MLIST
MDEFS
MLIBS

MCOPY
NTRAC
BATCH

START OPTION

(option, option, ••• option)
(option, optlon, ••• option)
(fd or Iu number)
the order specifies the search order
fd or Iu number
globally turns off all trace facilities
batch mode

When invalid start options are specified, a message indicating
which option is in ertor is logged to the user console. The task
is terminated with an end of task code 4.

Examples:

START
START
START

,MLIBS=(8,9,10)
,MCOPY=7,B,NTRAC
,NTRAC,MLIST=(NONE,GEN)

6.5 CAL MACROl32 PRO¢ESSCR TERMINATION

The CAL Macro Processor goes to end of task under the following
conditions:

6-4

An END statement is encountered outside the scope of ASIS,
and BATCH is not specified in the start option or in line.

An end of file ~s encountered following an END statement
which is in the scope of ASIS, and BATCH is not specified
in the start option or in line.

A BEND statement is encountered.

An end of file is encountered following an END statement
(which is generated or in the scope of ASIS), and BATCH is
specified in the start option or in line.

48-057 FOO ROO

CHAPTER 7
MACRO LIBRARY UTILITY PROGRAM

7.1 INTRODUCTION

The Perkin-Elmer Macro Library Utility Program (03-340) provides
the capabilities for establishing and maintaining the system
macro library and/or any user designated macro libraries. It
can:

• create a new library (ESTABLISH command),

• maintain an existing library (GET command),

• include new macro definitions into a
command),

library (INCLUDE

• delete macro definitions from a library (DELETE command),

• list macro definitions from a libr~ry to a device file (LIST
command),

• print the directory (names of the macros) of a library to a
device or file (DIRECTORY command),

• save an updated library to a permanent file (SAVE command),

• facilitate magnetic tape positioning (FF, BF,
commands), and

• accept comment statements (*).

7.2 MACRO LIBRARY

RW,

A macro library is a 256-byte record file with this format:

• Header record

• Index records

• Macro definitions

48-057 FOO ROO

WFM

7-1

7.2.1 Header Record

The header record, the first record in any macro library,
contains information on the last date the library was mOdified,
the size of the libra~y, the type of medium, and user comments.

The header record has this format:

BYTES

1-8

9

10

11-12

13-80

81-256

DESCRIPTION

date library was last modified

me~ium code "D" (disc) "M" (magnetic tape
or itape casset te)

bla;nk

last record of the current library

co~ments or blanks

blainks

The ESTABLISH command creates the header record or the GET
com man d ret r i eve sit f:r 0 man ex i s tin g 1 i bra r y •

7.2.2 Index Records

Index records follow the header record. Index records locate
macro definitions wit~in a library. The number of index records
depends on the number ~f macro definitions in the library. The
macro library util~ty adjusts the number of records as
definitions are INCLUDI~d or DELETEd. Each index record contains
from 0 to 21 entries., The last entry is marked with an internal
end-of-block mark. The format of each entry is:

BYTES

1-8

9-10

11-12

7-2

DESCRI PTION

macro name - the one to eight character
mne~onic name used when the macro is
invoked.

zero

rel~tive record number of the
definitions

macro

48-057 FOO ROO

7.2.3 Macro Definitions

Each macro definition starts on a 256-byte record boundary. The
definition records are packed into a variable number of variable
length logical records (81 bytes maximum). A carriage return
(CR) designates the end of a logical record. To facilitate
packing, single blanks re~lace the logical records having leading
and trailing blanks. No logical record is split between two
physical records. The records aie ASCII.

7.3 COMMAND FORMAT

Each macro library utility command has this format:

command arg1,arg2, ••• argn

The command verb begins in the first nonblank space of a line and
specifies the operation to be performed. The arguments modify
the command. The command verb can be specified as the entire
verb or any sequence of leading characters making the verb
unique.

Example:

DE

DEL

DELE

DELET

DELETE

All of these verb forms can be accepted for DELETE.
form DEM is not accepted for DELETE.

The verb

The arguments are separated from the command by at least one
blank and from each other by commas or blanks. To obtain the
default value if a required argument is omitted, the comma must
be included. An end-of-record indicator or 80 bytes, whichever
comes first, terminates the command line.

If multiple lines are needed for a command, the last nonb1ank
character of the line to be continued must be a comma. The
arguments continue on the next nonblank character of subsequent
lines.

48-057 Faa ROO 7-3

Example:

command arg1,arq2,
argi, ••• ,arqj,
argk, ••• ,argn

7.4 MACRO LIBRARY UTILITY COMMANDS

The standard format for the user-specified file descriptor (fd)
is:

[{
VOln :}]
dey: [filename]

voln: or dev: is a disc volume or device name from one to
four characters long.

filename

.ext

P
G
S

is a filename from 1 to 8 characters long.

is the extension name and is from one to three
characters long preceded by a period.

are single alphabetic characters representing
the file class. They are:

P private file
G 9t"OUl; file
S system file

The following sections detail each macro library utility command.

7-4 48-057 FOO ROO

BF

7.4.1 BF Command

The BF command backspaces a magnetic tape device. The device is
assigned. The number of specifi~d filemarks are repositioned and
closed.

Format:

BF file descriptor, [decimal number]

file
descriptor

decimal
number

is the file descriptor of the device to be
backspaced.

is the number of filemarks to be backspaced.
If the number of filemarks to be backspaced is
not specified, the default is 1.

Programming Considerations:

Ensure that fi1emarks
backspace a magnetic
filemark.

Error Messages:

are on the
tape that

tape. Do not
does not have

attempt to
a beginning

NO FILE
DESCRIPTCR
SPECIFIED

Indicates that the file
device to be backspaced

descriptor of the
was not specified.

48-057 FOO ROO 7-5

DELETE

7.4.2 DELETE Command

The DELETE command deletes macro definitions from a macro
library.

Format:

DELETE macro, •••

Parameters:

macro is the one to eight character name of the
macro.

Programming Considerations:

The requested macros are deleted from the macro library. An
updated library taskid'.001 is assigned; the message:

UPDATED TEMPORARY LIBRARY YOL:taskid.001 NOW AVAILABLE

appears. This library can be further modified. When all
modifications have been com~leted, use the SAVE command.

Error Messages:

7-6

NO LIBRARY
PRESENT

MACRONAME
NOT FOUND

Indicates that a macro library is not present.
Use the ESTABLISH or GET commands.

Indicates that the macroname was not found.

48-057 FO.O ROO

I DIRECTORY I

7.4.3 DIRECTORY Command

The DIRECTORY command writes the names of all macros in the
library to an output device.

Format:

DIRECTORY [file descriptor]

Parameters:

file
descriptor

is the file or device where the names of all
macros are written. If the file or device is
not specified, the default is the system
console.

ProQramminQ Considerations:

The date the library was last modified and the comments from the
header are also written. The index blocks are searched for macro
names. If the file descriptor does not exist, it is allocated
and assigned. If the file descriptor does exist, the directory
is written to the end-of-file. The file is closed at the end of
the DIRECTORY command.

48-057 FOa ROO 7-7

END

7.4.4 END Command

The END command normally terminates the macro library utility.

Format:

END

Programming Considerat~ons:

If the temporary library task-id.001 was not saved,
information message: !

REMINDERI SAVE YO$R CURRENT LIBRARY

this

is issued. A second END command deletes that file and goes to
end of task. If chang~s were not made to a library, a normal end
of task is taken.

7-8 48-057 Faa ROO

I ESTABLISH I
--.. ~- ... -.. ---

7.4.5 ESTABLISH Command

The ESTABLISH command creates a new macro library.

Format:

ESTABLISH file descri~tor ,comments

Parameters:

file
descriptor

is the filename or device of the new macro
11 brary.

comments represents UP to 63 characters
comments.

Programming Considerations:

of

If the temporary library task-id.001 was not saved,
information message:

REMINDERI SAVE YOUR CURRENT LIBRARY

user

this

is issued once. A second ESTABLISH, GET, or END command is
performed. If changes to a previous library were not made, a new
library is created and the ~revious unchanged library is closed.

Error Messaqes:

INSUFFICIENT
MEMORY FeR
THIS LIBRARY

48-057' FOO ROO

Not enough memory space exists for this
library.

7-9

FF

7.4.6 FF Command

The FF command spaces a magnetic tape forward to a fi1emark.

Format:

FF file descriptor [,decimal number]

Parameters:

file
descriptor

decimal
number

is the device to be repositioned.

is the number of fi1emarks. If the number
of fi1emarks is not specified, the default is
one.

Programming Considerations:

The device is assigned, repositioned (the number of filemarks),
and closed.

Error I§essages:

7-10

NO FILE
DESCRIPTOR
SPECIFIEt

A file descriptor was not specified.

48-057 FOO ROO

GET

7.4.7 GET Command

The GET command obtains an existing macro library for updating.

Format:

GET file descriptor

Parameters:

file
descriptor

is the existing macro library.

Programming Considerations:

If the temporary library task-id.001 is present, the information
message:

REMINDER! SAVE YOUR CURRENT LIBRARY

is issued once. A second GET, ESTABLISH, or END command is
performed. If changes were not made to a previous library, the
new library is obtained and the previous unchanged library is
closed.

Error Messages:

NO FILE
DESCRIPTOR
SPECIFIED

A file descriptor was not specified.

LU 1 file descriptor DOES NOT EXIST--CANNOT ASSIGN

RECCRD LENGTH NOT 256. NOT A MACRO LIBRARY.

INSUFFICIENT
MEMORY FOR
THIS LIBRARY

48-057 FOO ROO

Not enough memory space for this library.

7-11

INCLUDE

7.4.8 INCLUDE Command

The INCLUDE command includes new macro definitions into a
library.

Format:

INCLUDE fi Ie desc ri ptcr [, macro] [, macro] •••

Parameters:

file
descriptor

macro

is the s~urce filename.

is the one to ei9ht character macro name. If
the character macro name is not specified, the
default is all macros on the source file.

Programming Considerations:

The macro(s) specified Call if none specified) are included in
the current macro library. The old library is closed and the
updated temporary libtary task-id.001 is assigned as the current
library; and, the messages:

XXX MACROS INCLUDED FROM file descriptor
UPDATED TEMPORARY LIBRARY VOL:task-id.001 NOW AVAILABLE

are issued. This library must be saved to become permanent.
Macro definitions to be included in a library must be reasonably
debugged and syntactically correct. A minimum of errot checking
is performed on the macro statements. An invalid CAL statement
could cause problems and should be avoided. Any file that CAL
Macro can process with NO ERRORS can be used safely as input to
the macro library uti~ity. Macros should be tested with CAL
Macro before they are placed in a library.

A single blank replaces leading and trailing blanks to conserve
library space and provide for a faster running of CAL Macro.
Macro definitions with sequence numbers, while accepted, should
be used since blank compression cannot be perfoimed.

7-12 48-057 FOO ROO

Error Messages:

NO FILE DESCRIPTOR SPECIFIEt

DUPLICATE MACRO macroname

ILLEGAL MACRO NAME name

The macro already exists in
library.

The macro prototype statement
invalid.

the

is

The following statements inside a macro definition cause an
error:

MACRO STATEMENT ENCOUNTERED AT LINE XXX - Macro

MENt STATEMENT ENCOUNTERED AT LINE XX~ - Mend

BEND STATEMENT ENCOUNTEREt AT LINE XXX - Bend

END STATEMENT ENCOUNTERED AT LINE XXX - End

EOF ENCOUNTERED IN A MACRO DEFINITION

The assumption is that there is a missing MACRO or MEND
statement. If any of these messages occur, check the library
carefully to find which macros have actually been included.
Also, column 72 of the statement preceding the MEND must be
blank. A statement that extends past column 72 causes the MEND
statement to be treated as a continuation. However, an END
statement in the range of an ASIS statement does not cause the
e~rcr, nor does it terminate the INCLUDE command.

48-057 FOO ROO 7-13

LIST

7.4.9 LIST Command

The LIST command writ~s macro definitions to an outPut device.

Format:

LIST [file descriPtor] [,macro], •••

Parameters:

file
descri ptor

macro

the file or
definitions are
deVice is not
system console.

device where the macro
written. If a file or a
specified, the default is the

names cf the macros to be written. If the
naMes are not specified, the default is all
macros in the library.

Programming Considerations:

Macro definitions are written to the output device in the order
that the LIST command specifies. If the file does not exit, it
is allocated and assigned. If the file does exit, the macro
definitions are written to the end of the file. The file is
closed at the end of the LIST command and one of these messaQes
is written:

n MACROS LISTED TO file descriptor

or

n MACROS LISTED Td NEW FILE file descriptor

Error Messagesl

NO LIBRARY PRESENT

name MACRO NOT FOUND

no macro library is present (use the
GET or ESTABLISH commands).

a macro was not in the library

THIS LIBRARY CONT All NS the library ha s to be rebuilt
INVALID MACROS

7-14 48-057 FOO ROO

PAUSE

7.4.10 PAUSE Command

The pause command pauses the macro library utility.

Forma t:

PAUSE

48-057 FOO ROO 7-15

RW

7.4.11 RW Command

This command rewinds a magnetic t~pe. The device is assigned and
closed.

Format:

RW file descriptor

Parameters:

file
descriptor

Error Messages:

is the device name of the magnetic tape to
be rewound.

NO FILE DESCRIPTOR SPECIFIED

7-16 48-057 FOO ROO

SAVE

7.4.12 SAVE Command

The SAVE command saves the tempor~ry updated macro library to a
permanent file or device.

Format:

{

file descriPtor}
SAVE

*

Parameters:

file
descriptor

is the name of a new file.

* is the same file descriptor used in the last
GET or SAVE command.

Programming Considerations:

The SAVE file descriptor causes a new file descriptor to be
allocated and assigned. If the file alreadY exists, this message
appears:

file descriptor EXISTS. DELETE AND REALLOCATE?

Expected responses are:

YES or NO

Any other response issues the message:

PLEASE ANSWER YES OR NO

A NO response does nothing more and invites the next command. A
YES response first deletes the old library. If the old library
was a private disc file, the temporary library task-id.001 is
then renamed to the old library. If a rename is not possible

48-057 FOO ROO 7-17

(different disc, magn~tic tape), then the temporary library
task-id.001 is copied ~o the new file or device. In either case,
the new library is ass~gned as the current library.

If SAVE * is issued,! this action occurs without the prompt
message. SAVE * shoUld not be issued for a file that cannot be
renamed or allocated (~ystem or group file or magnetic tape).

,
I

If the SAVE is successful, the message:
I

UPDATED LIBRARY file descriptor NOW AVAILABLE is written.

Error Messages:

NO FILE DESCRIPTOR SPECIFIED

7-18 48-057 FOO ROO

7.4.13 WFM Command

The WFM command writes a filemark to a magnetic tape.

FORMAT:

WFM file descriptor

Parameters:

file
descriptor

is the device to write a filemark.

Programming Considerations:

WFM

The device is assigned; a filemark is written; and the device is
closed. No further repositioning occurs. The magnetic tape is
then positioned after the filemark.

Error Messages:

NO FILE DESCRIPTOR SPECIFIED

48-057 FOO ROO 7-19

*

7.4.14 Comments

Any character string starting with an asterisk (*) in column 1 is
treated as a comment.

Format:

* any string of characters

7-20 48-057 FOO ROO

7.5 OPERATION WITH A MACRO LIBRARY ON MAGNETIC TAPE

The positioning and automatic repositioning of a magnetic tape by
the macro library utility are important if the library resides on
magnetic tape. This list shows positioning before and after each
command:

COMMAND

GET

COpy

INCLUDE

DELETE

SAVE

DIRECTORY

BEFORE

Beginning of header
record

Beginning of first
macro or library

Beginning of first
macro or library

Beginning of first
macro or library

Assumption
(see other commands)

No change

AFTER

Beginning of first macro
or library (first record
after index records)

Same

Past filemark at end of
library

Past file mark at end of
library

Beginning of first macro
new library (same as
GET) beginning and ending
file marks automatically
written

No change

7.6 OPERATION OF A MACRO LIBRARY UTILITY UNDER OS/32

Before the macro library utility can be used, it must be
established as a user task with OS/32 Link. See the OS/32
Operator Reference Manual and the OS/32 Link Reference Manual.

An EXPAND factor should be included in Link. To process the
command, 256 bytes are needed and an additional 256 bytes are
needed for every 21 macros in a library.

Example:

EXPAND 6 is sufficient to process 100 macros.

Once the macro library utility is established, it is loaded by
the operating system with the command:

LOAD taskid,fd

48-057 FOO ROO 7-21

where:

taskid

fd

is the name assigned to the macro library
u ti,li ty partition.

is ;the file
containing
utility.

descriPtor or device
the established macro

mnemonic
library

The macro library utility task is made the currently selected
task with the command:

TASK taskid

Device assignments do not have to be made. However, if a device
other than CON: is to be used for command input and message
output, the input and output can be assigned to LU 5 and LU 6,
respectively.

The macro library utility is executed with th~ command:

START

If the files taskid.001, taskid.002, or taskid.003 exist, they
must be renamed or deleted. These files are used as scratch
files for the macro library utility.

7-22 48-057 FOO ROO

APPENDIX A
CO~MAND SUMMARY

BF file desc~iptor, [decimal number]

backspaces a magnetic tape to a filemark.

DELETE macro, •••

deletes macro definitions from a macro library.

DIRECTORY [file descriPto~]

writes the names of all macros in the library to an output
device.

END

normally terminates the macro library.

ESTABLISH file descriptor ,comments

creates a new macro lib~ary

FF file desc~iptor [,decimal number]

forward spaces a magnetic tape to a filemark.

GET file descriptor

obtains an existing macro library for updating.

INCLUDE file descriptor -[,macro] [,macro] •••

includes new definitions into a library

LIST [file descriptor] [,macro], •••

writes macro definitions to an output device

148-057 FOO ROO A-1

PAUSE

pauses the Macro library Utility

RW file descriptor

rewinds a magnetic tape

{

file descriPtor}
SAVE

*
saves the temporarY updated macro library to a permanent file
or device

WFM file descriptor

writes a filemark to a magnetic t~pe

A-2 48-057 FOO ROO

NAME

symbol

symbol

sequence
symbol

symbol

sequence
symbol

sequence
symbol

48-057 FOO ROO

APPENDIX B
INSTRUCTION STATEMENT SUMMARY

OPERATICN

AIF

ACTR

AGO

ANOP

ASIS

BGBLA, BGBLE,
BGBLC

GBLA, GBLB,
GBLC

LCLA" LCLB,
LCLC

MACRO

MEND

MCALL

MDEFS

MEXIT

OPERAND

Logical expression enclosed
in parentheses immediately
followed by a sequence symbol

Any expression that can appear
in the operand field of a SETA
instruction

A sequence symbol

Blank

Blank, decimal integer,
BEGIN, or END

One or more variable symbols
used as batch global SET
variable symbols, separated by
commas

One or more variable symbols
used as global set variable
symbols, separated by commas

One or more variable symbols
used as local SET variable
symbols, separated by commas

Version number and date or any
other optional description.
Column 72 is blank.

MACRO,MACRO, ••• ,MACRO

One or more codes separated by
commas

B-1

B-2

NAME OPE~ATICN OPERAND

sequence
symbol

SETA
symbol or
array
element

SETB
symbol or
array
element

SETC
symbol or
array
element

MLIBS

MLIST

MNOTE

MPAUS

MTRAC

NOLIB

NTRAC

SETA

SETB

SETC

One or more file descriPtors
or lu numbers separated by
commas

One or more codes separated
by' commas

An oPtional integer expression
followed hy a quoted message
string separated by a comma

One or more file descriptors
or lu numbers separated by
commas

An arithmetic expression

0, 1, or logical expression
enclosed in parentheses

One operand consisting of a
type attribute, character
expression, substring nota­
tion or concatenation, or sub­
string notations and character
expressions

48-057 FOO ROO

APPENDIX C
EXAMPLES OF MAtRO EXPANSION

Example 1: Expansion of the Macro Instruction COMPR

The following example shews the expansion of the macro
instruction, COMPR. COMPR compares two byte-oriented fields
(%FLD1 and %FLD2) of equal length (%SIZE) for a normal condition
(%PEQ.NE) of equal or nonequal. If the normal condition is not
met, a branch is taken to an error routine (%ERRTN).

The expansion of the COMPR macro instruction is subject to this
restriction:

The operand replacing the symbolic parameter %EQ.NE must not
be 'EQ' or 'NE'.

If this restriction
sup~ressed and the
source stream.

is not met,
appropriate

further macro expansion is
error message is passed to the

MACRO
"NAME COHPR

GBLB
AIF
STH
AIF
BAL
AGO

&E001 ANOP
BAL

&SETARGS ANOP
DAC
DAC
DAC
DAC
AIF
AIF
AIF
B
AGO

&SHORT ANOP
B

&CMPNE ANOP
dldldlCMPNE AIS

AGO

48-057 FOO ROO

"FLD1,%FLD2,"SIZE,"EO.NE,"ERRTN
"BG01,"BG02
«'''EO.NE' NE 'EO') AND ('''EQ.NE' NE 'NE'»&ERR1
11,dldldlRHOLD SAVE REGS 11 THRU 15
('~EQ.NE' EO 'EO')&E001
12,dldldlCMPNE GO CHECK FOR NOT EOUAL.
&SETARGS

12,dldldlCMPEO GO CHECK FOR EOUAL.

A("FLD1) BASE ADDRESS OF FIELD 1.
AC"FLD2) BASE ADDRESS OF FIELD 2.
"SIZE FIELD SIZE FOR COMPARE.
A("ERRTN) ADDRESS OF ERROR ROUTINE.
('''EO.NE' EO 'EO')&E002
("BG01 EO 1)&GETOUT
(XBG02 EO 1)&SHORT
6*ADC+dldldlRHOLD BYPASS COMPARE SUBROUTINE
&CMPNE

alalalNE001+4

12,ADC-2
&SUBR

BYPASS COMPARE SUBROUTINE

ASSURE CORRECT ALIGNMENT OF

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

C-1

&EQ02

&SHORT1

&CMPEQ
cilcilcilCMPEQ
&SUBR

"NAME

%NAME:A

"NAME:B

cilci)ci)NE001
"BG01

cilcilci)RHOLD

&EQ03

"NAME:B

ci)cilcilEQ001
XBG02

cilci)ci)RHOLD

&ERR 1

&GETOUT

CMPREQ1

C-2

ANOP
AIF
AIF
B
AGO
ANOP
B
ANOP
AIS
ANOP
NAI
LDA
LDA
LDA
LDA
AHI
STA
LB
CLB

BNE
AIS
AIS
SIS
BNZ

AIF
LM

B
LDA

B
SETB
AIF
DAS
MEXIT
ANOP
LDA

LM

B
SETB
AIF
DAS
I1EXIT
ANOP
MNOTE
MEXIT
ANOP
MEND

COMPR
STM
BAL

("BG02 EO 1)&GETOUT
("BG01 EO 1)&SHORT1
6*ADC+alci)ci)RHOLD
&CMPEQ

cilcilci)EQ001+4

12,ADC-2

12,-ADC
15,0(12)
14,ADC(12)
13,2*ADC(12)
11,3*ADC(12)
12,4*ADC
12,5*ADC+ci)ci)cilRHCLD
12,0(15)
12,0(14)

"NAME:B
15,1
14,1
13,1
"NAME

BYPASS COMPARE SUBROUTINE.

BYPASS COMPARE SUBROUTINE.

ASSURE CORRECT ALIGNMENT OF

~DDRESS OF ARGUMENT LIST.
R15=ADDR OF 1ST FIELD.
R14=ADDR OF 2ND FIELD.
R13=FIELD SIZE.
R11=ADDR OF ERROR ROUTINE.
POINT R12 TO RETURN ADDR.
SAVE RETURN ADDR.
R12=BYTE FROM FIELD 1.
COMPARE WITH SAME BYTE
IN FI ELD 2.
GET OUT IF THEY'RE NOT EQUAL.
BUMP ADDR OF FIELD 1.
BUMP ADDR OF FIELD 2.
DECREMENT FIELD SIZE.
CHECK REXT BYTE IF
FIELD SIZE> 0

('''EQ.NE' EO 'EQ')&EQ03
12,ADC+~ci)cilRHOLD FIELDS ARE =,

o (11)
11,5*ADC+ci)ci)ci)RHOLD

"NAME:A
1
("BG02 EO 1)&GETOUT
6

11,5*ADC+cilcilcilRHCLD

12,ADC+~ci)ci)RHOLt

o (11)
1
("BG01 EQ 1)&GETOUT
6

'INVALID COMPARE TYPE'

FLDA,FLDB,26,EO,ERROR1

RESTORE REGS & ERROR
EXIT.
FIELDS ARE NOT =,
R11 - NORMAL RETURN
GO RESTORE REGS AND GET OUT

REGISTER & RETURN SAVE AREA

FIELDS ARE =,
R11 = NORMAL RETURN
RESTORE REGS (ALSO HERE
IF FLDS NOT =)
EXIT.

REGISTER & RETURN SAVE AREA

11,ci)ci)ci)RHOLD SAVE REGS 11 THRU 15.
12,ci)ci)ci)CHPEQ GO CHECK FOR EQUAL.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48

49
50

51
52

53
54
55
56
57
58
59

60

61
62
63
64
65
66
67
68
69
70
71

72

48-057 FOO ROO

Q)Q)Q)CMPEQ

CMPR EQ 1

CMPR EQ 1B
Q)Q)Q)EQ001
Q)Q)Q)RHOLD
CMPRENE1

Q)Q)Q)CMPNE

CMPRNE1

CMPR NE1A

CMPRNE1B
Q)Q)Q)NE001
CMPREQ2

DAC
DAC
DAC
DAC
B
AIS
NAI
LDA
LDA
LDA
LDA
AHI
STA
LB
CLB
BNE
AIS
AIS
SIS
BNZ
LDA
LM
B
DAS
COMPR
STM
BAL
DAC
DAC
DAC
DAC
B
AIS
NAI
LDA
LDA
LDA
LDA
AHI
STA
LB
CLB
BNE
AIS
AIS
SIS
BNZ
LM
B
LDA
B
COMPR
STM
BAL
DAC
DAC

48-057 FOO ROO

A(FLDA)
A(FLDB)
26
A(ERROR1)
6*ADC+Q)Q)Q)RHOLD
12,ADC-2
12,-ADC
15,0(12)
14,ADC(12)
13,2*ADC(12)
11,3*ADC(12)
12,4*ADC
12,5*ADC+Q)Q)Q)RHCLD
12,0(15)
12,0(14)
CMPREQ1B
15, 1
14,1
13,1
CMPREQ1
11,5*ADC+Q)Q)Q)RHOLD
12,ADC+Q)Q)Q)RHOLD
o (11)
6
AFLD,BFLD,91,NE,ERR01
11,Q)Q)Q)RHOLD
12,Q)Q)Q)CMPNE
A(AFLD)
A(BFLD)
91
A(ERR01)
Q)Q)Q)NE001+4
12,ADC-2
12,-ADC
15,0(12)
14,ADC(12)
13,2*ADC(12)
11,3*ADC(12)
12,4*ADC
12,5*ADC+Q)Q)Q)RHOLD
12,0(15)
12,0(14)
CMPRNE1B
15,1
14,1
13,1
CMPRNE1
12,ADC+Q)Q)Q)RHCLD
0(11)
11,5*ADC+Q)Q)@RHOLD
CMPRNE1A
F1,F2,13,EQ,ERROR2
11,Q)Q)@RHOLD
12,Q)Q)Q)CMPEQ
A(F1)
A(F2)

BASE ADDRESS OF FIELD 1.
BASE ADDRESS OF FIELD 2.
FIELD SIZE FOR COMPARE.
ADDRESS OF ERROR ROUTINE.
BYPASS COMPARE SUBROUTINE.
ASSURE CORRECT ALIGNMENT OF
ADDRESS OF ARGUMENT LIST.
R15=ADDR OF 1ST FIELD.
R14=ADDR OF 2ND FIELD.
R13=FIELD SIZE.
R11=ADDR OF ERROR ROUTINE
POINT R12 TO RETURN ADDR.
SAVE RETURN ADDR.
R12=BYTE FROM FIELD 1.
COMPARE WITH SAME BYTE IN FIELD 2.
GET OUT IF THEY'RE NOT EQUAL.
BUMP ADDR OF FIELD 1.
BUMP ADDR OF FIELD 2.
tECREMENT FIELD SIZE.
CHECK NEXT BYTE IF FIELD SIZE > O.
FIELDS ARE =, R11 = NORMAL RETURN.
RESTORE REGS (ALSO HERE IF FLDS NOT =).
EXIT.
REGISTER & RETURN SAVE AREA.

SAVE REGS 11 THRU 15. 73
GO CHEC~ FOR NOT EQUAL.
BASE ADDRESS OF FIELD 1.
BASE ADDRESS OF FIELD 2.
FIELD SIZE FOR COMPARE.
ADDRESS OF ERROR ROUTINE.
BYPASS COMPARE SUBROUTINE.
ASSURE CORRECT ALIGNMENT OF
ADDRESS OF ARGUMENT LIST.
R15=ADDR OF 1ST FIELD.
R14=ADDR OF 2ND FIELD.
R13=FIELD SIZE.
R11=ADDR OF ERROR ROUTINE.
POINT R12 TO RETURN ADDR.
SAVE RETURN ADDR.
R12=BYTE FROM FIELD 1.
COMPARE WITH SAME BYTE IN FIELD 2.
GET OUT IF THEY'RE NOT EQUAL.
BUMP ADDR OF FIELD 1.
BUMP ADDR OF FIELD 2.
DECREMENT FIELD SIZE.
CHECK NEXT BYTE IF FIELD SIZE o.
FIELDS ARE =, RESTORE REGS AND ERROR.
EXIT.
FIELDS ARE NOT =, R11 = NORMAL RETURN.
GO RESTORE REGS & GET OUT.

SAVE REGS 11 THRU 15.
GO CHECK FOR EQUAL.
BASE ADDRESS OF FIELD 1.
BASE ADDRESS OF FIELD 2.

C-3

74

DAC 13 FIELD SIZE FOR COMPARE.
DAC A(ERROR2) ADDRESS OF ERROR ROUTINE.

CMPR N E2 COMPR FLD1,FLD~,52,NE,ERR02 75
STM 11,GlGlGlRHOLD SAV,E REGS 11 THRU 15.
BAL 12,GlGlGlCM?NE GO CHECK FOR NOT EQUAL.
DAC ACFLD1) BASE ADDRESS OF FIELD 1.
DAC A(FLD2) BASE ADDRESS OF FIELD 2.
DAC 52 FIELD SIZE FOR COMPARE.
DAC ACERR02) ADDRESS OF ERROR ROUTINE.

COMPARE COMPR FIELDA,FIELDB,39,LT,ERR03 76
* MNOTE 'INVALID' COMPARE TYPE'

SUMMARY:

When the first equal compare (EQ) is made, the subroutine
'@@@CMPEQ' is expanded. When the first request for a nonequal
compare (NE) is made, the subroutine '@@Q)CMPNE'. is expanded. All
subsequent uses of the COMPR macro instruction in the same source
stream result in the expansion of a BAL to the applicable
subroutine, followed by an argument list. When the macro
instruction CCMPR is first invoked (for an equal or a nonequal
compare), a register storage area identified by the label
'@@@RHOLD' is defined.' Registers 11 through 15 are used in
executing the subroutines; but, registers 12 through 15 are
restored before exitin9. The original contents of register 11
are available to the user in location @@@RHOLD.

ANALYSIS:

• Statements 1 through 71 constitute the macro definition.

• Statements 72 through 76 show 5 possible calls of the macro.

• Statement 72 represents the initial call of the COMPR macro
instruction in the current source stream and the initial use
of the EQ operand in a COMPR instruction in this source
stream. This rep~esentation of the statement results in the
full expansion of the @@@CMPEQ subroutine and the register
storage area '@@iRHOLD' appended to the '@@@RHOLD' subroutine.

When the
'%BG02' is
subroutine.

@@@CMPEQ subroutine is completed, the bi~ary global
set to true, indicating the presence of the

• Statement 73 represents the initial use of the NE operand in
a COMPR instruction in this source stream, which results in
the full expansion of the @@CMPNE subroutine. The text of
~BG02 in statement 56 causes the definition of the register
storage area to be $up~ressed and further macro expansion to
be terminated. When the expansion of the @@@CMPNE subroutine
is completed, the ~~BG01' binary global is set to true,
indicating the subroutine.

C-4 48-057 FOO ROO

• Statement 14 represents a subsequent use of the EQ operand and
results in the expansion of a BAL to @@@CMPEQ followed by the
applicable argument list.

• Statement 75 represents a subsequent use of the NE operand and
results in the expansion of a BAL to @@@CMPNE followed by the
applicable argument list.

• Statement 76 shows the results of an invalid compare type.

Example 2: Expansion of the Macro Instruction PRIME:

The following example illustrates the expansion of the macro
instruction PRIME. PRIME generates a table of prime numbers
%LENGTH long, beginning with the prime numbers %PRIME1.

%AL1
%AL2
&LOOP1

%AL2

&GETREST

%AL3

&LOCP2
%AL1
%AL2
&LOOP3

%AL2

&ER 1

&ER2

DAC 13
DAC 17
DAC 19
DAC 23
DAC 29

MACRO
PRIME
LCLA
AIF
AIF
SETA
SETA
AIF
AIF
SETA
AGO
ANOP
DAC
SETA
AIF
MEXIT
ANOP
SETA
SETA
AIF
AIF
SETA
AGO
ANOP
MNOTE
MEXIT
ANOP
MNOTE
MEND
PRIME

%PRI ME 1 , %L ENGTH
~AL1,%AL2,%AL3
('%LENGTH' LT '1')&ER2
('%PRIME1' LT ' 2 •) &ER 1
%PRIME1
%AL1/2
{%AL2 EQ 1)&GETREST
(%AL1/%AL2*A.L2 EQ %AL1)&ER1
%AL2-1
&LOOP1

%AL1
%AL3+1
(%AL3 LT %LENGTH)&LOOP2

%AL1+1
%AL1/2
(XAL2 EQ 1)&GETREST
(YeAL1/%AL2*%AL2 EO %AL1)&LOOP2
%AL2-1
&LOOP3

'%PRIME1 NOT A PRIME NUMBER'

• LENGTH LT 1 '

13,5

PRIME 55,20
*MNOTE '55 NOT A PRIME NUMBER'

48-051 FOO ROO

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

C-5

SUMMARY:

If the operand replactng the symbolic par·ameter %PRIME1 is not a
prime number or ifi %LENGTH is less than 1, macro expansion is
suppressed and an err~r message is passed to the source stream.

ANALYSIS:

• Statements 1 through 29 constitute the macro definition.

• Statements 30 and 31 show two possible expansions of the macro
instruction.

• Statement 30 reque$ts a table of prime numbers, 5 address­
length constants ~ong, beginning with the number 13. Because
13 is a prime number, the expansion of the macro instruction
takes place.

• Statement 31 reqUests a table of prime numbers, 20
address-length co.stants long, beginning with the number 55.
Because 55 is not a prime number, the macro expansion is
suppressed and theierrcr message results.

C-6 48-057 FDa ROO

ERReR CODE

1

2

3

4

5

6

7

48-057 FOO ROO

APPENDIX D
CAL MACRO/32 PROCESSOR ERROR MESSAGES

MEANING

STRING TOO LONG

ILLEGAL CHARACTER

UNEXPANDABLE MACRO

OPCODE NOT ALLOWED
TO BE GENERATED

INVALID OPCODE

ILLEGAL OPCODE

UNDEFINED VARIABLE
SYMBOL

EXPLANATION

The length of a string
literal in a macro
definition exceeds 255
characters.

An illegal character was
encountered in the input
stream and was changed to
a • # • •

A macro invocation was
encountered which cannot be
expanded because of errors
in the definition.

An operation code allowed
only in a source statement
was obtained through
substitution of a value for
a variable symbol.

The length of an operation
code exceeds eight
characters or the operation
code is missing or not
followed by a blank.

An operation code allowed
only in a macro definition
was encountered' in open
code.

A variable symbol, not
declared in a BGBLx, GBLx,
or LCLx statement or in a
macro prototype, was
encountered in a SETx, AIF,
or model statement.

D-1

ERROR CODE

8

9

10

11

12

13

14

15

D-2

M E,ANING

UNDEFINED SEQUENCE
SYMBOL :

UNDEFINED KEYWORD
PARAMETER

MULTIPLY DEFINED
MACRO NAME

MULTIPLt DEFINED
SETx SykBOL

MULTIPLY DEFINED
SEQUENCf SYMBOL

MULTIPLY DEFINED
PARAMETER

ILLEGAL;PARAMETER
SEQUENC~

ILLEGAL:OPCOCE
I

EXPLANATION

A sequence symbol was
declared in the operand
field of an AIF or AGO
statement, but does not
occur in the name field of
any statement in the macro
definition.

A keyword was encountered
in a macro instruction
operand that does not
correspond to any keyword
in the macro prototype.

A macro definition of the
same name was encountered
previously, or a macro was
invoked before it was
defined.

A SETx variable symbol was
defined more than once in
an LCLx, BGBLx, or GLBx
statement, or it has the
same name as a parameter or
system variable.

A sequence symbol
same name occurs
same name field
previous statement.

of the
in the

of a

A symbol parameter in a
macro prototype occurs more
than once or has the same
name as a system variable.

A keyword parameter
precedes a positional
parameter in a macro
prototype or instruction.

A BGBLx, GBLx, or LCLx
SEQUENCE statement does not
precede all executable
statements in a macro
definition, or an ACTR
statement does not
immediately follow the
declaration statements.

48-057 FOO ROO

ERReR CODE

16

17

18

19

20

21

22

23

24

25

48-057 FOO ROO

MEANING

ILLEGAL VARIABLE
SYMBOL

ILLEGAL SEQUENCE
SYMBOL

ILLEGAL DECLARATION

ILLEGAL MACRO
NAME

MISMATCHED SETx
TYPE

MISSING SETx
SYMBOL

MISSING SEQUENCE
SYMBOL

ILLEGAL NAME FIELD

NON-BLANK NAME FIELD

MISSING OPERAND

EXPLAN~TION

A variable symbol is longer
than seven characters or
has a first character that
is not alphabetic.

A sequence symbol is longer
than seven characters or
has a first character that
is not alphabetic.

The syntax of a BGBLx,
GBLx, or LCLx statement is
incorrect. Either an
operand is not a variable
symbol or a comma is
missing.

The length of a macro name
exceeds eight characters or
corresponds to a reserved
opcode, or the syntax of
the operand field of an
MC~LL statement is
incorrect.

The types of the SETx
variable statements and the
variable symbol in the name
field of that operation do
not match.

The name field of a SETx
statement is blank or does
not contain a variable
symbol.

A sequence symbol is
missing in the name field
of an ANOP statement or in
the operand field of a AGO
or AIF statement.

The statement name field in
a macro definition contains
a token forbidden in that
position.

Self-explanatory.

Self-explanatory.

D-3

ERROR CODE

26

27

28

29

30

31

32

33

34

35

36

37

D-4

MtANING
i
i

ILLEGA~ ARITHMETIC
EXPRESSION

ILLEGAl. BOOLEAN
EXPRES~ION

ILLEGATI CHARACTER
EXPRES~ION

EXPRESSION STACK
OVERFLdw

INVALIQ ATTRIBUTE
FUNCTIdN

i
i

ILLEGA~ ATTRIBUTE
FUNCTION

TYPE F~NCTION NOT
ALONE

ILLEGAL! SUBLIST
NOTATIOiN

MISMATCHED
PAR ENT HiES ES

MISMATC~ED QUOTES

MISSING: COMMA

ILLEGAL, QUCTE

EXPLA NATION

The syntax of OP, an
arithmetic expression,
cannot be parsed.

The syntax
expression
parsed.

The syntax
expression
parsed.

of a
cannot

Boolean
be

of a character
cannot be

An arithmetic, Boolean,
binary, or character
expression was encountered
that exceeds 15 levels of
parentheses with two
operations pending at each
level.

The operand of an attribute
function is not a symbolic
parameter.

A type attribute function
occurs in an arithmetic
expression.

A type attribute . function
is not the only element in
a character expression.

The syntax of a sublist
notation is incorrect.

The parentheses in a macro
instruction, or prototype,
or character expression do
not balance.

The quotes in a macro
instruction or prototype,
or in a character
expression or model
statement do not balance.

A comma is missing.

An illegal quote was
encountered in the name
field or operation field of
a model statement.

48-057 FOO ROO

ERReR CODE

38

39

40

41

42

43

44

45

46

47

48

48-057 FOO ROO

MEANING

ILLEGAL SYMBOL

UNRECOGNIZABLE
SYMBOL

BATCH IN ILLE·GAL
POSITION

END BEFORE MEND

BEND BEFORE MEND

ILLEGAL BEND

ILLEGAL SUBSTRING
EVALUATION

ILLEGAL SUBLIST
EVALUATION

ARITHMETIC OVERFLOW

ACTR OVERFLOW

ATTEMPT TO DIVIDE
BY ZERO

EXPLANATION

A model statement contains
an illegal character not
enclosed in quotes.

An expression contains an
illegal character.

A batch pseudo-op was
encountered that is not the
first statement of the
program.

An end pseudo-op was
macro encountered in

definition.
a

A bend pseudo-op was
encountered in a macro
definition.

A bend pseudo-op was
encountered but no
preceding batch pseudo-op
occurred.

In substring notation, the
value of the second
expression is less than the
value of the first
expression.

An expression in
notation evaluates
negative number.

sublist
to a

An arithmetic expression
evaluates to a number
outside the range +2, 147,
483, 647.

The arithmetic expression
in an ACTR statement
evaluates to a number
greater than 32,767.

Self-explanatory.

D-5

ERROR CODE

49

50

51

52

53

54

55

56

57

58

59

60

D-6

MEANING

ILLEGAL ARITHMETIC
OPERATION

ILLEGAL LOGICAL
UNIT

ILLEGAL LABEL

ACTR RUNOUT

DICTIONARY SPACE
FULL

UNRECOGNIZABlE
LINE

TOO MANY SIMECLS

BUFFER OVERFLOW

ILLEGAI SUBSCRIPT

MISSING SUBSCRIPT

ILLEGAL ARRAY
EXPRESSION

DIMENSION OF ARRAYS
TOO LARGE, INCREASE
MEMORY·

EXPLANATION

An operand of an arithmetic
operation is a SETe
variable statement or
symbolic parameter whose
value contains other than
an optional sign followed
by numerics.

The operand of an MLIBS or
NOLIB statement is not
numeric or an attempt was
made to assign an LU that
was previously assigned or
not present.

The label in the operand
field of an HCOPY statement
is blank or contains an
illegal character.

Loop counter runout.

Insufficient memory space
was allocated for the macro
processor's dynamic tables.

A line
in the
nei ther
nor a
but has
code.

was encountered
input that is

blank nor a comment
continuation card,
a missing operation

A symbol table overflow.

A macro statement is over
256 bytes.

A subscript is not
arithmetic.

Self-explanatory.

Self-explanatory.

Increase memory.

48-057 FOO ROO

ERROR CODE

61

62

6.3

64

65

66

67

68

69

48-057 FOO ROO

MEANING

ILLEGAL TYPE FOR AIF
OR AGO

DIFFERENT TYPE
DECLARATIONS FOR
GLOBAL VARIABLE

SUBSCRIPT OU'I OF
RANGE

EXPLANATION

The variable symbol is not
a type character.

A global variable name was
declared twice with
different types.

Out of range subscript was
detected.

NONEXISTENT SEQUENCE Self-explanatory.
SYMBOL FOR COMPUTED
AIF OR AGO; INVALID
CODE FOR SYSTEM MACRO

MORE THAN 16 MACRO Self explanatory.
LIBRARIES

MORE THAN 16 NESTED Self explanatory.
MCOPY STATEMENTS

ILLEGAL OPTION FOR Self explanatory.
MLIST OR MCEFS

MACRO COMMENT A statement with :* in
columns 1 and 2 is outside
the macro definition.

ASIS ERROR The statement is not
allowed in the range of
ASIS.

D-7

GLOSSARY

batch global set variable (EGBLx) symbol

The BGBLx symbol communicates values between macro
definitions or between different usages for the same macro
definitions in different programs. It must be declared as
batch global each time it is used in a macro definition.

conditional branch (AIF) instruction

The AIF instruction alters the macro definition statement
processing sequence.

conditional instruction loo~ counter (ACTR) instruction

The ACTR instruction assigns a count other than 32767 as the
maximum number of AIF and AGO branches executed within a
macro definition.

conditional instructions

Conditional instructions are instructions that can vary a
macro instruction at each invocation.

count attribute

The count attribute is the number of all characters in a
macro instruction field. It includes all characters in the
operand plus apostrophes; but, it does not include delimiting
commas.

generated statements (expanded statements)

Generated statements are the assembler
processor processes.

global SET variable (GBLx) symbol

statements the

The GBLx symbol communicates values between macro definitions
or between different usages for the same macro definition in
a program. It must be declared as global each time it is
used in a macro definition.

48-057 FOO ROO Glossary-1

header record

A header record is the first record in any macro library. It
contains: the last date the library was modified, the
library size, the medium type, and user comments.

index records

Index records are records used to locate macro definitions
within a library:. Each index record contains from 0 to 21
entries.

inner macro instruction

When the mnemonic operation code for a given macro definition
appears as the operation field of a model statement in
another macro definition, the model statement is an inner
macro instruction.'

keyword

A keyword is the portion of a symbolic parameter that does
not include the pe~cent sign.

keyword macro instruction

A keyword macro instruction is a specific type of macro
instruction in which each operand must consist of a keyword
immediately follo~ed ty an equal sign (=), followed
(optionally) by a value.

local SET variable (LClx) symbols

The LCLx symbols communicate values within the same usage of
a particular macro definition. It is only declared in the
macro definition that it is used in and it is reset to its
initial value each time that macro definition is invoked.

macro call (MCALL) instruction

The MCALL instruction permits the cited macros to be called
as they appear in the library rather than as they appear in
the processor source stream.

A macro definition is a series of user written statements in
the macro language. The language enables the user to assign
a mnemonic operation code to the definition. This mnemonic
operation code caUses the definition to be invoked. A macro
definition minimally consists of: a name, operation,

Glossary-2 48-057 FOO ROO

operand, comments, continuation, and identification/sequence
field used for writing macro instructions.

macro definition header (MACRO)

A macro definition header indicates the beginning of a macro
definition. It must be the first statement.

macro definition trailer (MEND)

A macro definition trailer indicates the end of a macro
definition. It must be the last statement in the definition.

macro definitions (MDEFS) instruction

The MDEFS instruction controls which macro statements are
sent to the CAL file.

macro instruction

A macro instruction is a single instruction
a series of instructions. It invokes and
macro definition. The instruction can
keyword, or mixed operand, corresponding
of macro prototype statements.

macro instruction prototy~e statement

that expands to
processes a given

be positional,
to the three forms

A macro instruction prototype statement specifies the
mnemonic operation code and general format to be used when
writing any macro instructions referring to this definition.

macro library

A macro library is a 256-byte record file containing: a
header record, index records, and macro definitions.

macro libraries (MLIBS) instruction

The MLIBS instruction designates the file descriptor or
decimal LU numbers whe~e the macro libraries, necessary in a
given macro processor source stream, reside.

macro trace (MTRAC) instruction

The MTRAC instruction, a diagnostic instruction, determines
the effective conditional branches and the SET variable
symbols values within the macro logic.

48-057 FOO ROO Glossary-3

MCOPY statement

The MCOPY statement enables source text to be cop~ed from a
specified lU or file descriptor at any point in a macro
definition or program.

MEXIT instruction

The HEXIT instruct~on terminates the current macro definition
expansion.

mixed mode macro instructions

Mixed mode macro instructions are a specific type of macro
instruction in which all positional operands must be placed
before any keyword' operands.

mnemonic operation code

A mnemonic operat~on code is a user-assigned code that
enables the macro definition to be invoked.

model statements

Model statements are statements from which the
Processor expands the desired source statements.
fields of a model statement are: name, operation,
and comments.

no libraries (NOlIB) instruction

CAL Macro
The four
operand,

The NOlIB instruction suppresses searching all or some macro
libraries previously designated by the MlIBS statement.

no operation (ANOP) instruction

The ANOP instructiQn is used when the sequence symbol in an
AIF or AGO insttuction must reference a statement already
containing a symb~l (ether than a sequence symbol) in the
name field.

no trace (NTRAC) instruction

The NTRAC instruction causes the macro trace feature to he
disabled.

Glossary-4 48-057 FOO ROO

number attribute

A number attribute is a value equal to the number of operands
in an operand sublist. The number is equal to one plus the
number of delimiting commas appearing within the sublist.

outer macro instruction

When the mnemonic operation code for a given macro definition
appears as the operaticn field of a model statement in
another macro definition, the macro instruction referring to
the containing definition is an outer macro definition.

pause (MPAUS) statement

The MPAUS statement permits the user to pause the macro
processor.

positional macro instructions

Positional macro instructions are a specific type of macro
instruction in which placement of the symbolic parameters in
the operand field of the macro prototype statement determines
placement of operands.

The MNOTE instruction generates a macro message.

sequence symbols

Sequence symbols are symbols that can appear in a statement
name field to vary the statement processing sequence.

SET arithmetic variable (SETA) instruction

The SETA instruction assigns an arithmetic value to a SETA
symbol or array element.

SET binary variable (SETB) instruction

The SETB instruction assigns the value true (binary 1) or
false (binary 0> to a SETB variable symbol.

SET character variable (SETe) statement

The SETC statement assigns a character value to a SETC
variable symbol.

48-057 FOO ROO Glossary-5

SET variable statemen~ (SETx) instruction

The SETx instruct~on alters the variable symbols value that
the BGBLx, GBLx,i or LCLx declaration statements declared as
SET va ria b 1 e s y m b q Is.

sublist

A sublist is one ~r mere operands separated by commas and
enclosed in pa.ired parentheses. The entire sublist,
including the pare~theses, is one macro instruction operand.

substring notation

Substring nota tion: allows a part of a character value to be
assigned to a SETe variable symbol indicating in the operand
field of a SETx instruction the character value or an
expression representing the character value to be assigned to
the SETe variable ~ymbol.

symbolic parameters

A symbolic parameter is a variable consisting of a percent
sign (%) followed by from one to seven letters or numbers,
the first of which! must be a character. These parameters,
used in the macro definition, represent the name field and
operands of the co~respending macro instruction.

type attributes

Type attributes ar~ attributes of a macro instruction operand
that can be used whenever a character expression could be
used; but the ty~e attribute must occur alone (that is, not
concatenated with anything) and it must not be enclosed in
quotes.

unconditional branch (AGO) instruction

The AGO instructi9n alters the sequence in which macro
definition statemehts are processed.

r.SYSDATE macro variabl~ symbol

The %SYSDATE symbol is
variable whose v~lue
processor was invoked.

Glossary-6

an eight
represents

character
the date

string system
tha t the mac ro

48-057 Faa ROO

YoSYSINDX macro system variable symbol

The ~SYSINDX is a system variable. whose values can be
concatenated with other characters to create unique names for
statements generated from the same model statement.

%SYSLIST macro system variable symbol

The %SYSLIST is a system variable
alternative to symbolic parameters
positional macro instruction operands.
symbolic parameters can be used in the
definition.

%SYSMAC macro system variable symbol

that provides an
for referencing to

Both 70SYSLIST and
same positional macro

%SYSMAC is a system variable that
variable %SYSINDX because the
macro calls.

differs from the system
value changes due to inner

%SYSTIME macro system variable symbol

%SYSTIME is an eight character string system variable whose
value is that time of day that the macro processor was
invoked.

48-057 FOa ROO Glossary-7

A B

Additional CAL Macro/32
Features

as is (ASIS) instruction
macro call (MCALL) in­
struc tion

macro copy (MCOPY) state­
ment

macro definitions (MDEFS)
instruction

macro libraries (MLIBS)
instruction

macro listing (MLIST) in­
struction

macro trace (MTRAC) in­
struction

no libraries (NOLIB) in­
struction

no trace (NTRAC) instruc­
tion

pause (MPAUSE) instruction

CDEFGH

CAL Macro/32 Processor
components
configuration oPtion
operation of
relationship to other prod­
ucts

requirements
summary of features

CAL Macro/32 processor fea­
tures, summary

CAL Macro/32 processor I/O
errors

CAL Macro/32 processor opera-
tion

device assignments
I/O errors
memory requirements
processor termination
start options
under OS/32

CAL Macro/32 processor opera·
tion under OS/32

CAL Macro/32 processor start
options

CAL Macro/32 processor termin­
ation

Commands
BF
comments
DELETE
DIRECTORY
END

48-057 FOO ROO

5-1
5-2

5- 3

5-4

5-6

5-7

5-8

5-10

5-11

5-12
5-9

1-1
1-2
1-1
6-1

1-1
1-1
1-2

1-2

6-3

6"1
6-1
6-3
6-1
6-4
6-4
6-2

6-2

6-4

6-4
7-4
7-5
7-20
'7-6
7-7
7-8

INDEX

ESTABL ISH
FF
GET
INCLUDE
LIST
PAUSE
RW
SAVE
WFM

Conditional expansion of macro
definitions

attributes
conditional and uncondition­
al branch instructions

g~obal, batch global, and
local SET variable symbol
declaration statements

set variable symbol state-
ments

Conditional instruction loop
counter (ACTR) instruction

AREAD statement
macro definition exit

(MEXIT) instruction
no operation (ANOP) in­
struction

request for message (MNOTE)
instruction

substring notation in model
sta tements

system variable symbols

I J K L

Inner/outer macro instructions
levels of macro instruc­
tions

macro instructions in con­
ditional assembly

" N
Macro definitions,

conditional expansion of
fields

Macro definition contents,
keyword macro instruction
prototype statements

macro header and trailer
sta tements

macro instruction prototype
statements

mixed mode macro instruction
prototype statements

positional macro instruction
prototYPe statements

7-9
7-10
7-11
7-12
7-14
7-15
7-16
7-17
7-19

4-1
4-16

4-19

4-1

4-6

4-23
4-39

4-27

4-24

4-29

4-40
4- 31

3-7

3-8

3-9

4-1
2-2

2-9

2-8

2-8

2-10

2-8

Macro 1efinition, preparation
macro definition contents
macro definitions
macro instructions
model statements
special symbols

Macro instruction operands
continuation of macro in­
structions

omitted operands
sublists

Macro library
head er record
index records
macro definitions

Macro library utility program
command format
macro library
macro library utility com­

mands
operation of a macro li­
brary utility under OS/32

operation with a macro li­
brary on magnetic tape

Model statements,
comments field
concatention rules
name field
operand field
opera tion field
using symbolic parameters
in model statements

o P Q

Operation of a macro library
utility under OS/32

Ind-2

2-1
2-7
2-2
2-1
2-11
2-4
3-3

3- 4
3- 5
3-6
7-1
7-2
7- 2
7-3
7-1
7- 3
7-1

7-4

7-21

7-21

2-13
2-14
2-12
2-13
2-12

2-13

7-21

Operation with a macro library
on magnetic tape

R

Rules for writing macro in­
structions,

macro instruction name
field

macro instruction operand
field

macro instruction operation
field

STU V

Special symbols,
concatenation symbols
defining variable symbols
local, global, and batch
variable symbols

sequence symbols
va riab le symbols

w X Y Z

Writing macro instructions
inner/outer macro instruc­
tions

macro instruction operands
rules for

7- 21

3-1

3-1

3-1

2-6
2- 5

2-5
2-6
2-4

3-1

3-7
3-3
3-1

48-057 FOO R(}(}

CmKurren!if!ff!J
Computer Corporation

PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our users are an integral source
of information for improving future fevisions. Please use this postage paid form to send us comments,
corrections, suggestions, etc.

1. Publication number _____________________________ _

2. Title of publication ____________________________ _

3. Describe, providing page numbers, any technical errors you found. Attach additional sheet if
necessary. ______________________________________ ___

4. Was the publication easy to understand? If no, why not? _______________ _

6. What additions or deletions would you suggest? _______________________ _

7. Other comments: _______________________________ _

From _____________________ ___ Date ____________________ ___

PositionlTitl/ _________________________________ _

Company ______________________________________ _

Address __ __

9409

FOLD FOLD

I
I
I
I
I
I
I
I
I
I
I
I

----------~-----------------~

111111

I

BUSINE~S REPL V MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

ATTN:

POSTAGE WILL BE PAID BY ~DDRESSEE

Concurrent Computer dorporation
2 Crescent Place
Oceanport, NJ 07757

TECHNICAL SYSTEMS PUBLICATIONS DEPT.
!

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FOL~-------~--------------FOL~l

STAPLE STAPLE
9411

