COMMON ASSEMBLY
LANGUAGE MACRO/32
PROCESSOR

(CAL MACRO/32)
LIBRARY UTILITY

Reference Manual

0S/32 Version 6.0 or higher

48-057 F00 ROO

Cbncunen@

Computer Corporation

The information contained in this document is subject to
change without notice. Concurrent Computer Corporation has
taken efforts to remove errors from this document, however,
Concurrent Computer Corporation’s only liability regarding
errors that may still exist is to correct said errors upon their
being made known to Concurrent Computer Corporation.

The software described in this document is furnished under a
license, and it can be used or copied only in a manner
permitted by that license. Any copy of the described software
must include all copyright notices, trademarks, or other
legends or credits of Concurrent Computer Corporation
and/or its suppliers. Title to and ownership of the described
software and any copies thereof shall remain in Concurrent
Computer Corporation and/or its suppliers.

The licensed program described herein may contain certain
encryptions or other devices which may prevent or detect
unauthorized use of the Licensed Software. Temporary use
permitted by the terms of the License Agreement may require
assistance from Concurrent Computer Corporation.

Concurrent Computer Corporation assumes no responsibility

for the use or reliability of this software if used on equipment
that is not supplied by Concurrent Computer Corporation.

© 1979, 1986 Concurrent Computer Corporation — All Rights Reserved
Concurrent Com puter Corporation, 2 Crescent Place
Oceanport, New Jersey 07757

Printed in the United States of America

TABLE OF CONTENTS

PREFACE ' vii

CHAPTERS

1

CAL MACRO/32 PROCESSOR

1.1

INTRODUCTION

CAL MACRO/32 PRCCESSCR REQUIREMENTS
Configuration Cption

Relationship to Other Products

CAL MACRO/32 PROCESSCR CCMPONENTS

SUMMARY OF CAL MACRO/32 PROCESSOR FEATURES

PREPARATION OF A MACRC LEFINITION

2.1

2.2

2.3
2.3.1
2.4
2,441
2.40101
2.4.1.2
2.4,2
2.4.3
2.5
2.5.1
2.5.2
2.5.2'1
2.5.2.2

INTRODUCTION
MACRO INSTRUCTIONS

MACRO DEFINITIONS
Macro Definiticn Fields

SPECIAL SYMBOLS

Variable Symbols

Local, Global, and Batch Global Variable
Symbols

Defining Variable Symbols

Concatenation Symbols

Sequence Symbols

MACRO DEFINITION CONTENTS

Macro Header and Trailer Statements
Macro Instruction Prototype Statements
Positional Macro Instruction Prototype
Statements

Keyword Macro Instruction Prototype
Statements

48-057 F0O0 ROO

NN 38
1 1
PN

NN
[} 11
= = NN

PNy
o N

NN
|
0 0

N
1 |
(e 2]

N
1
O

CHAPTERS (Continued)

ii

2.5.2¢3 Mixed Mode Macro Instruction Prototype

Statements 2-10
2.6 MODEL STATEMENTS 2-11
2e6¢1 Name Field 2-12
2.6.2 Cperation Field 2=12
2.6.3 Operand Field 2-13
2.6414 Comments Field 2-13
2.6.5 Using Symbolic Parameters in Model

Statements 2-13
2.6.5.1 Concatendtion Rules 2=-14

WRITING MACRO INSTRUCTIONS

3.1 INTRODUCTION 3-1
3.2 RULES FOR WRITING MACRO INSTRUCTIONS 3-1
3.2.1 Macro Instruction Name Field 3-1
3.2.2 Macro Instruction Operation Field 3-1
34263 Macro Instructicn Operand Field 3-1
3.3 MACRO INSTRUCTION OPERANDS 3-3
3631 Continuation of Macro Instructions 3-u
3.3.2 Omitted Operands 3-5
3.3.3 Sublists 3-6
3.4 INNER/OUTER MACRO INSTRUCTIONS 3-7
3.4.1 Levels of Macrc Instructions 3-8
3.4.2 Macro Instructions in Conditional Assembly 3-9
CONDITIONAL EXPANSION OF MACRO DEFINITIONS
4.1 INTRODUCTION 41
4.2 GLOBAL, BATCH GLOBAL, AND LOCAL SET VARIABLE

SYMBOL DECLARKATICN STATEMENTS 4-1
be2.1 Global SET Variable Symbol Declaration

(GBLx) Statement 4=-2
4.2.2 Batch Glgbal SET Variable Symbol

Declaration (BGBLx) Statement 4-3
4.2.3 Local SET Variable Symbol Declaration

(LCLx) Statement -y
4.,2.4 Declaring SET Variable Symbols 4-4
4,2.5 Declarinq SET Variables as Arrays 4-5
4.3 SET VARI&BLE SYMBOL (SETx) STATEMENTS 4-6
4e3.1 SET Arithmetic Variable (SETA) Statement 4-8
4.3.1.1 Using SETA Variable Symbol 4-9
4.3.2 SET Character Variable (SETC) Statement 4-10
4,3.2.1 Substring Notation 4-10

48-057 F00 ROO

CHAPTERS (Continued)

4s342.2 Using SETC Variable Symbols 4-11
4,3.3 SET Binary Variable (SETB) Statement 4-14
4.3.3.1 Using SETB Variable Symbols 4-15
4.4 ATTRIBUTES 4-16
G4ela1 Type Attribute (T') 4-17
4ol,2 Count Attribute (K°*) 4-17
4.4.3 Number Attribute (N') 4-17
4.5 CONDITIONAL ANLC UNCONDITIONAL

BRANCH INSTRUCTIONS 4-19
4.5.1 Conditional Branch (AIF) Instruction 4-19
4.5.2 Unconditional Branch (AGO) Instruction 4-20
4.5.3 Computed AGO and AIF Statements 4-20
4.6 CONDITIONAL INSTRUCTION LOOP COUNTER

(ACTR) INSTRUCTION 4-23
4,7 NO OPERATION (ANCP) INSTRUCTION 4-24
4.8 MACRO DEFINITICON EXIT (MEXIT) INSTRUCTION 4-27
4.9 REQUEST FOR MESSAGE (MNOTE) INSTRUCTION 4-29
4.10 SYSTEM VARIABLE SYMBOLS 4-31
4.10.1 %SYSLIST Symbol 4-32
he10.2 %SYSINDX Symbol 4-34
4,10.3 %SYSMAC Symbol 4-36
4.10.4 ASYSTIME Symkol 4-38
L.10.5 %SYSDATE Symbol 4-38
4.11 AREAD STATEMENT 4-39
4.12 V SUBSTRING NOTATION IN MODEL STATEMENTS 4-40

5 ADDITIONAL CAL MACRO/32 FEATURES

5.1 INTRODUCTION 5-1
Bete1 As Is (ASIS) Instruction 5-2
56162 Macro Call (MCALL) Instruction 5-3
5¢1.3 Macro Copy (MCOPY) Statement 5-4
514 Macro Definitions (MDEFS) Instruction 5-6
5¢1.5 Macro Libraries (MLIBS) Instruction 5=-7
5¢1.6 Macro Listing (MLIST) Instruction 5-8
50147 Pause (MPAUS) Instruction 5-9
5.1.8 Macro Trace (MTRAC) Instruction 5-10
5¢1.9 No Libraries (NOLIB) Instruction 5-11
5.1.10 No Trace (NTRAC) Instruction 5-12

48-057 FOO ROO iii

CHAPTERS (Continued)

iv

OPERATION OF THE CAL MACRO/32 PROCESSOR

AN
e o o

1
1.1
1.2

INTRODUCTION
Levice Assignments
Memory Regquirerents

CPERATION OF THE MACRO PROCESSOR
UNDER 0S/32

I/0 ERRORS
START OPﬁIONS

CAL MACRO/32 PROCESSOR TERMINATION

MACRO LIBRARY UTILITY PROGRAM

Te1

N9
¢ o o o
NN
e o o
WK -

~
.
w

- el AW AV W

E— — R g = < S 3 I 0 i R~ i ~ g
EFWN-=sO

~ NN NNNNNNNNNNSaS

.
;)

7.6

INTRODUCTION

MACRO LIBRARY
Header Record
Index Records
Macro Definitions

COMMAND FORMAT

MACRGC LIBRARY UTILITY COMMANDS
BF Command

DELETE Command

DIRECTORY Command

END Command

 ESTABLISH Command

FF Command

GET Command
INCLUDE Command
LIST Command
PAUSE Command
RW Command

SAVE Command
WFM Command
Comments |

OPERATION WITH A MACRO LIBRARY ON
MAGNETIC |TAPE

CPERATIO& OF A MACRO LIBRARY UTILITY

UNDER 0S/32

~
1
-

NN
|
W=

~
]
w

]
PO Y S G G A Vo 3 » IR e N 8 I

1
-y
O

NN N NNNNNNNNNNNY
|

~

) !
N N
- o

~
!

N

-a

48-057 FOO ROO

APPENDIXES

A COMMAND SUMMARY
B INSTRUCTION STATEMENT SUMMARY
C EXAMPLES OF MACRO EXPANSION

D CAL MACRO/32 PROCESSOR ERROR MESSAGES

FIGURES

2-1 Fields Used for Writing Macro Instructions 2-3
GLOSSARY Glossary-1
INDEX Ind-1

48-0£7 FOO ROO

PREFACE

This manual describes the Perkin-Elmer Common Assembly Language
(CAL) Macro/32 Processor, Program Number 03-339, and its use in
defining macro instructions for freguently used sequences of
assembler code, for creating a macro library, and for expanding
macro instructions during the assembly process.

Chapter 1 introduces the CAL Macro/32 Processor and explains
processor requirements, bprocessor components, and summarizes
macro processor features. Chapter 2 details macro instructions,
macro definitions, special symbols, macro definition contents,
and model statements. Chapter 3 explains how to write a macro
instruction, macro instruction operands, and inner and outer
macro instructions. Chapter 4 is an in-deprth discussion of the
conditional expansion of macro definitions. Additional CAL
Macro/32 features are presented in Chapter 5, and the operation
of the macro ©bprocessor is discussed in Chapter 6. Chapter 7
details each macro library utility command.

Bppendix A is a command summary of the CAL Macro/32 Processor
utility commands. Appendix B contains the macro instructions and
statements. Appendix C contains examples of macro expansion, and
Appendix D presents the CAL Macro/32 Processor error messagese.
The CAL Macro/32 Processor now supports batch global set variable
symbols, passes MLIBS and MCOPY from start options to all
programs in the batch, and generates an END statement without
terminating macro expansion if it is within the scope of an ASIS
statement.

This manual replaces S29-408 and discusses revision R02.1 of the
CAL Macro/32 Processor and the Macro Processor Utility. This
revision applies to the 0S/32 R06 software release and higher.

These manuals provide information related +to the use of the
various programs in the CAL Macro/32 Processor:

PUBLICATION
MANUAL TITLE NUMBER
0S/32 System Macro Library Reference Manual 48-006
0S/32 Library loader Reference Manual 48-020
0S/32 Operator Reference Manual 48-030

48-057 FOO ROO vii

Common Assembly Language/32 (CAL/32)
Reference Manual | 48-050

32-Bit Systems User Documentation Summary 50-003

For further informatioéon on the contents of all Perkin-Elmer
32-bit manuals, see the 32-bit Systems User Documentation
Summary.

viii 48-057 F0O0 ROO

CHAPTER 1
CAL MACRO/32 PROCESSOR

1«1 INTRODUCTION

The Perkin-Elmer CAL Macro/32 Processor provides the user of CAL
with a +tool to standardize and efficiently generate programs.
This ability is provided by the system macro library and any user
designated special purpose libraries. Frequently used assembler
code sequences are defined once and then appended to a macro
library by a macro definition. By inserting a single source
statement that the processor recognizes and expands, these code
sequences are made available to all system users.

1.2 CAL MACRO/32 PROCESSOR REQUIREMENTS

The CAL Macro Processor regquires:

@ Any Perkin-Elmer 32-bit rrocessor

® Main memory of 26kb above that memory required <for the
operating system and macro system table

e (S/32

® Source input, source outrut, and listing devices

1.2.1 Configuration Option

The CAL Macro Processor can use any Perkin-Elmer peripheral
device that the operating system supports, if the program can run
on the device and is capable of ASCII data transfer.

1.2.2 Relationship to Other Products

The CAL Macro Processor produces an expanded source stream that
must be assembled with CAL (03-066R05 or higher).

48-057 F0O ROO 1-1

1.3

The

1.4

The

1-2

CAL MACRO/32 PROCESSOR COMPONENTS

CAL Macro Processo; package consists of:

CAL Macro library Uiility Object, 03-3u40M
CAL Macro Processor, Object, 03-339H
0S/32 System Macro Library, 07-217

CAL Macro/32 Proces§or and Macro Library Utility Reference
Manual '

0S/32 System Macro Library Reference Manual

SUMMARY OF CAL MA?RO/32 PROCESSOR FEATURES

CAL Macro Processor offers these features:

Positional, keyword, or mixed mode macro prototype statements
Nested macro instructions

Conditional macroj exrpansion independent of assembler
conditional statements

Symbolic parameters that can vary the operation codes expanded
to the assembler source strean

A macro call (MCALL) instruction that allows the most used
macro definitions to be <called into memory at the start of
macro processor execution, thus decreasing the number of
library accesses necessary during the processor pass

A macro trace (MTRAC) facility that allows the user to test a
macro instruction expansion without going through the full
assembly process

User designation of macro libraries and the order in which
they should be searched

A system macro library of standard macro definitions
A macro library utility program that builds and maintains the
macro libraries. |, Special features allow adding and deleting

macro definitions, generating a library table of contents, and
copying macro definitions from existing macro libraries.

48-057 F00 KOO

The power of the macro language is shown in its ability to:

@ pass parameters to a macro and concatenate the parameter to
characters in the macro to form new labels, operations, and
rarameters that allow the wuser to write macros for many
"housekeeping" functions that normally would have to be
performed in a program; and

e define symbols local to the macro, assign values to those

symbols, and make complex tests on the values of those symbols
or on parameters passed to the macro.

48-057 FO00 ROO 1-3

CHAPTER 2
PREPARATICN OF A MACRO DEFINITION

2«1 INTRODUCTION

The following sections discuss what a macro instruction is, 1its
interaction with the Common Assembly Language (CAL) Macro/32
Processor, and the preparation of a macro definition.

2.2 MACRO INSTRUCTIONS

A macro instruction is a single instruction that expands to a
series of instructions. 1A macro instruction is written like an
assembler instruction; but the output, when processed by the CAL

Macro Processor Program, is in assembly language.

The rules for the syntax of a macro instruction are:

® Columns 1 through 8 contain a symbal or blanks.
® Columns 10 through 17 contain the macro name.

e At least one blank space must be on either side of the macro
namee.

® One blank space separates the label field from the macro call,
and one blank space separates the macro call from the
parameter.

e A comma must be specified to show omitted positional
rarameterse.

® Keyword parameters can be written in any order.

e Subparameters are enclcsed in parentheses and can only be
positional.

The output of a macro instruction can be:

e machine instructions,

e another macro instruction,

® assembler instructions, or

¢ a combination of machine and assembler instructions.

48-057 F¥00 ROO 2-1

This output process is the macro expansion. The assembler
processes the output as if the user had written the expanded
coding in detail. Macros are a valuable coding tool--they enable
the user to avoid writing many system required details; thus,
reducing the <chance of errors. The user can use the standard
Perkin-Elmer macros in the system macro library or write his own
macros and store them in a user librarye.

2.3 MACRO DEFINITIONS

A macro definition is a series of user-written instructions in
the macro language. The definition of a macro can include:

e machine instructions such as ADD, SUBTRACT, LOAD, or STORE;
@ assembler instructions such as DS or DC;
® macro language instructions such as AIF, AGO, or SETA; or

e another macro instruction, which would be an inner macro.

The macro definition allows the wuser to assign a macro
instruction to be wused in the operation field of the macro
instruction syntax. A macro instruction retrieves and processes
the definition.

If the macro definition has no errors, processing the macro
definition «call results in generating zero or more assembler
source statements that become part of the assembler source strean
and appear in the assembler source stream immediately after the
macro instruction. The assembler source statements the processor
produces are referred to as generated (or expanded) statements.
The macro expansion priocess involves the processor analyzing the
macro instruction and definition, and generating assembler source
statements.

2.3.1 Macro Definition Fields

A macro definition minimally consists of these fields:

@ The name field begins in column 1. If the name field is
omitted, column 1 must be blank.

e The operation field must start in column 10. If concatenation
is not used, the maximum length of the operation field is
eight characters. If concatenation is used, the operation
field can exceed ; eight characters. Whether or not
concatenation 1is wused, the operation field of a generated
statement must contain from one to five <characters. If the
generated statement is a macro instruction, the operation
field can contain a maximum of eight characters.

2=2 48-057 FOO ROO

@ The operand field follows the operation field, separated by at
least one blank. The operand field can extend as far as
column 71 on a single statement line and can be continued in
another line by inserting a nonblank character in column 72
(the continuation field). A generated CAL statement, however,
cannot contain an operand field extending beyond a single
statement line. Continuation can be invoked only from the
operand field.

® The comment field follows the operand field, separated by at
least one blank column. This field contains user comments.

® The continuation field follows the comments field. In a
keyword or mixed mode prototype statement, each operand can
apprear on a single line if it is followed by a <comma, and a
nonblank character appears in the continuation field.

® The identification/sequence field occupies columns 73 through

80. The user has the option of identifying and maintaining
the sequence of the source field.

Figure 2-1 illustrates the fields used for writing macro
instructions.

2618

STATEMENT IDENTIFICATION

NAME OPERATION OPERAND . COMMENTS 14 SEQUENGCE
1 8] |10 14} [i6 34 |36 72173 80]

14

* THE OPERAND FIELD CAN EXTEND AS FAR AS COLUMN 71 ON A SINGLE STATEMENT LINE.
** CONTINUATION FIELD

Figure 2-1 Fields Used for Writing Macro Instructions

48-057 FOO ROO ‘ 2-3

2.4 SPECIAL SYMBOLS
The following symbols have special meanings to the CAL Macro
Processor:

SYMBOL MEANING

% A percent sign 4identifies variable symbols
use¢ within the macro definition.

A colon is a concatenation symbol; or, if it
is found in column 1 followed by an asterisk
in column 2, it identifies comments internal
to the macro definition.

& An ampersand identifies sequence symbols used
in a macro definition.

For each of these symbols except the ampersand (&), if two
symbols are input, only one symbol is output.

2.4.1 Variable Symbols

Macro language allows the user to define variable symbols, assign
values to variable symbols, and test the values of variable
symbols. The macro processor uses variable symbols as symbolic
parameters, system symbols, and set symbols. It uses variable
symbols like the assembler uses symbolic names. Variable symbols
can be used in arithmetic expressions, binary or Boolean
expressions, or character expressions. These guidelines apply to
variable symbols:

o The first character in a variable symbol must be a percent
sign (%).

e The second character in a variable symbol must be a letter.

e The remaining zero to six characters can be letters or digits.

® Characters 2, 3, and 4 must not form the word SYS because
these letters define system variables.

Valid examples of variable symbols are:

%REG %ZAREA %ZL0C AL0C1 %A123
ZINCEX ZLABLE ZNAME ZLIST

2-y ug-057 F0O0 ROO

2.4.1.1 Local, Global, and Batch Global Variable Symbols

Variable symbols can be local, global, or batch global.
Parameters are always local. If a variable symbol is batch
global, the value assigned to it in one program can be used in
another program in the same batch. The macro processor
initializes batch global variables when they are encountered
first in the Dbatch. The macro processor does not initialize
subsequent definitions of batch global variables in that batch.
If a variable symbol is global, the value assigned in one macro

can then be wused in another macro. The macro processor
initializes global variables when they are first encountered in
a bprograme. The processor does not reinitialize subsequent

definitions of global variables in that program. Local variables
are initialized each time they are defined. They must be defined
before they can be used, and their values do not carry from one
macro definition to another.

New values can be reassigned to local, global, and batch global
variable symbols by these macro language instructions:

INSTRUCTION MEANING
SETA Assign arithmetic value.
SETB Assign binary or Boolean value of 0 (false) or
1 (true).
SETC Assign character value.

Section 4.3 details these SET variable symbol statements.

2.4.1.2 Defining Variable Symbols

A variable symbol is defined explicitly in the body of the macro
definition. It is assigned a value, which can be changed, in the
macro body. These macro language statements define and
initialize variable symbols:

STATEMENT MEANING

LCLA Local arithmetic; initial value O

LCLB Local binary or Boolean; initial value O
LCLC Local character; initial value null *°*
GBLA Giobal arithmetic; initial value O

GBLB Global binary or Boolean; initial value O
GBLC Global character; initial value null '’

48-057 FOO ROO 2-5

STATEMENT MEANING

BGBLA Batch global arithmetic; initial value 0

BGRBLB Value batch global binary or Boolean; initi 1
value 0

BGBLC Ba tch glqbal character; initial value null °*

Sections U4.2.1 and 4.2.2 detail these

local, global, and batch glotal

SET variable symbol declaration statements.

2.4.2 Concatenation Symbols

Variable symbols can be ccncatenated on the left or right with
any other characters to form a new string. This concatenation
can occur in the label, operation, or operand fields. The
ability to concatenate is advantageous because the macro
expansion can be different in different calls.

When concatenating to the right of a variable symbol, a colon
indicates the <concatenation. The colon is optional except when
the next character is:

e alphanumeric,

® a colon, or

® a left parenthesis [(].

Valid examples of concatenation symbols are:

ABC%SYM ASYM:(RY) ASYM:ABC

2.4.3 Sequence Symbols

Sequence symbols are used to branch within a macro. They can

appear in a statement name field to vary the statement processing

sequence. These guidelines apply to sequence symbols:

@ The first character must be an ampersand (&).

e The second character must be a letter.

® The remaining zero to six characters can be letters or digits.

® Sequence symbols can appear in the name field of any statement
not containing a symbol except a prototype statement, an ACTR,

BGBLA, BGBLB, BGBLC, GBLA, GBLB, GBLC, LCLA, LCLR, LCLC, or
MACRO instructione.

2-6 48-057 FOO0 ROO

Valid examples of seguence symbols are:

&DONE &END &MORE &A123
ENEXT &EAGAIN &LOOKUP

2.5 MACRO DEFINITION CONTENTS

The contents of a macro definition are written in

1« A macro header, indicated by the word MACRO,
column 10.

2« A prototype statement, the method by which
called, is written next. If a macro call is
or parameters, they must be defined 1in
statement.

3. The macro definition body <c¢can contain
statements, which are assembler instructions.

this sequence:

is written in

the macro is
to have a label
the prototype

optional model

The macro body

can also contain any macro instructions. In general, macro
instructions declare variables and assign values to

variables, contain wunconditional branches,
branches., Examples are:

and conditional

- local variable (LCLx), global variable (GBLx), and batch
global variable (BGBLx) declaration statements '

- MEXIT, MNOTE, SETx, AIF, and AGO instructions

4. A macro definition is terminated with the
MEND.

This example illustrates a macro definition:

NAME OPEFRATION OPERAND
MACRO
%ZNAME MOVE %ZFROM,ZTO
%NAME ST 1,HOLD
L 1,%FROM
ST 1,%2T0
L 1,HOLD
MEND

LEGEND FOR TYPE COLUMN

macro header
macro prototype
model statement
macro trailer

S W=
wunn

48-057 FOO ROO

macro trailer,

TYPE

FWWWwWwN =

. |
Macro definitions can: be placed in the source stream or in

special 1libraries. If they are defined in the source progranm,
they must be written before any calls to the macro. If a macro
is defined in a 1library, the appropriate logical unit must be
assigned to define the macro library and a given MLIBS statement.
See Section 5.1.5.

2.5.1 Macro Header aﬁd Trailer Statements

i
The macro header, wh;ch indicates the beginning of a macro
definition, must be phe first statement. The MACRO statement is
written in this format:

NAME OPERATION CPERAND COLUMN 72

optional MACRO: version number and blank
date, or any other
optional description

.The macro trailer, which indicates the end of a macro definition,
must be the last statement in the definition. The MEND statement
is written in this foimat:

NAME OPERATIQN CPERAND COLUMN 72
a sequence MEND? blank blank
symbol or ;
blank

2.5.2 Macro Instruction Proctotype Statements

The macro is called bj the macro prototype statement. If the
macro call is to have any labels or parameters, they must be
defined in the protdatype statement. The ©parameters «can be

positional, keyword, dr mixed mode.

The prototype statement srecifies the mnemonic operation code and
general format to be used when writing any macro instructions
referring to this definition. This statement must immediately
follow the macro header, MACRO.

2.5.2.1 Positional Hicro Instruction Prototype Statements

A positional macro éinstruction prototype statement contains
positional parameters that must be specified in the defined
order. The positionaﬁ prctctype statement is written in this
format:

2-8 48-057 F0O ROO

NAME OPERATION OPERAND

a symbolic a 1- to 8- zZero or more
parameter character mnemonic symbolic parameters
or blank operation code separated by commas

The symbolic parameters used in the macro definition represent
the name field and orerands of the corresponding macro
instruction. A symbolic parameter is a variable symbol
consisting of a percent sign followed by from one to seven
letters or numbers, the first of which must be a letter.

A macro instruction must use the mnemonic operation code to refer
to this macro definition. If two macro definitions use the same
mnemonic operation code, the first definition the macro processor
encounters 1is expanded; the second definition is flagged with an
error message. If a macro definition wuses the same mnemonic
operation code as a valid assembler or machine instruction, the
macro processor treats it as a macro instruction. To override
the macro instruction and obtain the machine instruction, use the
ASIS statement. See Section 5.1.1.

A positional prototype statement can be continued if the operand
field extends beyond column 71. Section 3.3.1 explains
continuation rules. This example illustrates a positional macro
instruction prototype statement:

NAME OPERATION OPERAND

ANAME MOVE ZFROM,ZTO

2.5.2.2 Keyword Macro Instruction Prototype Statements

In a keyword prototype statement, any symbolic parameter in the
orerand field of +the rroctotype statement can have a standard
value assigned to it. If a symbolic parameter is omitted when
the macro instruction is written, the macro processor substitutes
the standard value. This substitution allows the user to omit
symbolic parameters whose values are not to be <changed when
writing a keyword prototype statement. The operands in a macro
instruction that reference a macro definition with a keyword
prototype statement <c¢an be written in any sequence. A keyword
prototype statement can be continued to +the next statement.
Section 3.3.1 explains the rules for continuation. The keyword
prototype statement is written in this format:

48-057 FOO ROO 2-9

NAME - OPERATION OPERAND

any symbolic a 1- tc 8- one Or more operands

parameter or character separated by commas
blank mnemonic and consisting of a
operation symbolic parameter,
code immediately followed

by an equal sign
followed (optionally)
by a standard value.

With the exception of variable symbols, whatever can be used as
an operand in a macro instruction can be used as a standard
value. Following is an example of a macro wusing a keyword
prototype macro statement:

NAME OPERATION OPERAND TYPE
MACRO 1
%ZSYM MOVE %FROM=,%TC=,%HOLD=HOLD1,%R=1 2
%ASYH ST 1 %R, %HOLD 3
L | %R, %FROM 3
ST | %R, %TO 3
L | %R, AHOLD 3
MEND | Y
A MOVE FROM=SOURCE,R=5, TO=DEST 5
A ST ‘ 5,HOLD1 6
L , 5,SOURCE 6
ST | 5,DEST 5
L | 5,HOLD1 6

|
LEGEND FOR TYPE COLUMN

macro header

macro prototype
model statement
macro trailer,
macro instruction
generated statement

N EWN

2.5¢2.3 Mixed Mode Macro Instruction Prototype Statements

Macro instructions can be defined with positional and keyword
parameterse. When a macrc 1is called, the positional parameter
must be specified first in the defined order. The positional
parameters are followed by keyword parameters in any order.
Omitted positional patameters must be indicated by a comma,
except when all trailing positional parameters are omitted. The
mixed mode prototype statement is written in this format:

2-10 48-057 FOO ROO

NAME OPEFATICN

any symbolic a 1- to 8-

parameter or character

blank mnemonic
code

OPERAND

one Or more positional
parameters followed by
one or more keyword
parameters (see Section
2.5.2.2)

The following is an example of a mixed mode prototype statement:

NAME o?p

ERATION

%ZSYM EX4

OPERAND

%P1,%P2,%P3,%K1=,%K2=

The following is a macro instruction with the second positional

parameter omitted. It 1

EXu ABC,,3,K1=1

s coded as:

LPHA

The following is a macro instruction with the second and third

positional parameters omitteq.

EX4 ABC,K2=BETA

It is coded as:

A mixed mode instruction can be continued to the next statement.
Section 3.3.1 explains continuation rules.

2.6 MODEL STATEMENTS

The CAL Macro Processor expands

from model statements.
within a given macro
four fields:

e Name

e COperation

® Operand

e Comments

the

desired source statements

Any number of model statements can appear

definitione.

Model statements consist of

These fields correspond to the same fields in the expanded source
statemente. The CAL Macro Processor does not check the expanded
source statements for the ccrrect assembler syntax.

48-057 FO0O ROO

2.6.1 Name Field

The name field, which begins in column 1, can be blank or it can
contain a:

® nanme,

e variable symbol, or

® csequence symbol.

It can also contain a name concatenated with a variable symbol or
a variable symbol concatenated with one or more other variable
symbols.

2.6.2 Operation Field

Rt least one blank character separates the operation field from
the name field. It can contain:

@ a machine instruction,

@ an assembler instruction,

® a macro instruction, or

® a variable symbol.

It can also contain a name concatenated with a variable symbol or
a variable symbol concatenated with one or more other variable
symbols.

Variable symbols cannot be used to generate more than one field
at a time, macro protdtypes, or these instructions:

ACTR END MCALL MTRAC
AGC GBLA MCOPY NLEFS
AIF GBLB MDEFS NOLIB
ANOP GBLC MEND NTRAC
ASIS LCLA MEXIT SETA
BGBLA LCLB MLIBS SETB
BGBLB LCLC MNOTE SETC
BGBLC MACRO MPAUS

2-12 48-057 F0O0 ROO

2.6.3 Operand Field

At least one blank character separates the operand field from the
operation field. It can contain:

® names,
e variable symbols, or

® constantse.

It can also contain names concatenated with other symbols or
variable symbols concatenated with one or more other variable
symbols.

2.6.4 Comments Field

At least one blank character separates the comments field fron
the operand field. This field cannot extend beyond column 71 of
a model statement. The comments field can contain any
combination of characters and it is passed to the expanded
statement exactly as it appears in the model statement. Variable
symbols in a comment field have the value substituted. Example:

NAME OPERATION OPERAND COMMENTS

field field field field

2.6.5 Using Symbolic Parameters in Model Statements

A symbolic parameter is defined in the prototype statement and is
assigned a value when the argument calls the macro. A symbolic
parameter cannot have its value changed in the macro definition
body. It is always local to the macro definition; the same
parameter name canh be in several macros.

By varying values given to symbolic parameters, the user can vary
the statements generated for each macro instruction. If a
symbolic parameter appears in a model statement, it must have
been defined in the name or operand field of the prototype
statement or an expansion error occurs. The following example
demonstrates how the macro instruction oprerands that invoked the
definition replace the symbolic parameters of +the model
statement:

48-057 FOO ROO 2-13

NAME OPERATION OCPERAND TYPE

MACRO 1
ZNAME MOVE %FROM,%TO 2
%NAME ST 1,HOLD 3
L 1,%FROM 3
ST 1,%T0 3
L 1,HOLD
MEND | 4
SYMBCL MOVE HERE, THERE 5
SYMBOL ST 1,HOLD 6
L 1,HERE 6
ST 1, THERE 6
L 1,HOLD 6

LEGEND FOR TYPE COLUMNMN

macro header

macro prototype
model statement
macro trailer

macro instruction
generated statement

AN LEWN
o n

2.6.5.1 Concatenation Rules

A symbolic parameter in a model statement is concatenated with
other symbolic parameters or variable symbols immediately
preceding or succeediqg the symbolic parameter. An example is:

ST%SUFF 4 ,%DEST%SUFF

ST%SUFF means concatenate ST with %ZSUFF to form STH (when %SUFF
is '"H'). Z%DEST%SUFF means concatenate %DEST with %SUFF.

NOTE

The concatenation is implicit here.

If a symbolic parameter is to be <concatenated with a 1letter,
number, or left parenthesis, the symbolic parameter must be
immediately followed by a colon. In this case, the characters
corresponding to the symbolic parameter replace the symbolic
parameter and colon. Carefully distinguish between array
references or sublist notation and concatenation with a left
parenthesis in a model statement:

14 ' 48-057 FOO ROO

N
1

ST 1,%T0: (1)

means concatenate %TO with (to from THERE(1).

ST 1,%T0C1)

is the first element of the array %TO.

For a single colon to appear in a statement, use two consecutive
colonse. The following example illustrates the rules for
concatenating symbolic parameters:

NAME OPERATION OPERAND TYPE
MACRO 1
ZNAME MOVE %TY,%“FROM,%TO,%X1 2
ZNAME STZTY 1,HCLD 3
LZTY 1,%ZFROM:A 3
ST%TY 1,%T0: (%X1) 3
I%ZTY 1,HCLD 3
MEND u
SYMBOL MOVE H,HERE,THERE, 13 5
SYMBOL STH 1,HOLD 6
LH 1,HERE& 6
STH 1, THERE(13) 6
LH 1,HOLD 6

LEGEND FOR TYPE COLUMN

macro header

macro prototype
model statement
macro trailer

macro instructicn
generated statement

A EFEFWN -
LB I L | 1 I |

48-057 FOO ROO 2-15

CHAPTER 3
WRITING MACRO INSTRUCTIONS

3.1 INTRODUCTION

A macro instruction is an instruction used to declare variables,
and to assign values tc¢ variables, unconditional branches, and
conditional branches. The following sections detail rules for
writing macro instructicns, types of macro instructions, inner
and outer macro instructions, and levels of macro instructions.

3.2 RULES FOR WRITING MACRO INSTRUCTIONS

The following sections explain the rules for writing macro
instructions.

3¢2.1 Macro Instruction Name Field

A name, if used in the macro instruction name field, does not
appear in a generated statement unless a specific symbolic
parameter appears in both the name fields of the prototype
statement and expanded model statement.

3.2.2 Macro Instruction Operation Field

The operation field contains a mnemonic operation code. This
code must be the same prototype statement code contained in a
macro definition. This macro definition appears in a macro
library, or it ©previously appeared in the source stream. The
macro processor uses the aprlicable macro definition to determine
the statements to be expanded to the assembler source stream. If
a macro definition in the processor socurce stream and a macro
definition in a macro library have the same mnemonic operation
code, the definition in the source stream is processed.

3423 Macro Instruction Operand Field

Any combination of characters can be used as a macro instruction
operand if these rules are fcocllowed:

® A quoted string is a character sequence enclosed in paired
apostrophes. The paired apostraphes are the first and last
apostrophes in a gquoted string. The first even numbered
apostrophe, not immediately preceding another apostrophe, nmust

48-057 F0OO ROO 3-1

terminate a quoted:string. If an apostrophe is wused as a
character in a quoted string, it must be expressed as two
consecutive apostroéphes.

For example:

- In the quoted string, °'ABCDEF', the apostrophes preceding
the A and following the F are paired apostrophes.

- In the quoted string, °*DON''T‘’, the apostophes preceding
the D and following the T are paired apostrophes. The
apostrophes between the N and T generate a single
apostrorhe as a part cf the string.

Paired parentheses consist of a 1left and following right
parentheses without any other intervening parentheses. If
raired parentheses are nested, identify each pair; then, £find
the 1left parenthesis and the following right parenthesis with
no other intervening parenthesise. The maximum pairs of
rarentheses that can be nested is 15. When considering paired
parentheses, ignore a single parenthesis enclosed in paired
apostrophes. ‘

For example:

- In the expressidn, (A-B), the parentheses preceding the R
and following the B are paired.

= In the expression, ((A-B)-C), the 1leftmost and rightmost
parentheses are paired; the innermost parentheses are also
paired. ‘

A percent sign (%)iidentifies a symbolic parameter unless it
appears between paired apostrophes. Use two consecutive
percent signs to enlsure that a single percent sign appears in
a statement.

A comma (,) indicages the end of an operand, unless it is
placed between paired apostrophese. '

A blank indicates the end of the operand field, unless it is
placed between paired apostrophes.

A colon (:) indicates concatenation, unless it appears

between paired apostrorhes. Use two consecutive colons to
ensure that a single colon appears in a statement.

48-057 FOO0 ROO

3.3 MACRO INSTRUCTION OPERANDS

A macro instruction invokes a given macro definition. Macro
instructions take three forms: positional, keyword, or mixed
mode. These three forms correspond to the three forms of
prototype statements. See Section 2.5.2. The macro instruction
statement format is:

NAME OPFRATION OPERAND

symbol or a mnemonic positional: zero or more

blank operation operands separated by
commas
keyword: one or more
operands separated by
commas and consisting of
a keyword, immediately

followed by an equal sign,
followed (optionally) by a

value
mixed mode: positional
operands followed by

keyword operands

® Positional Macro Instructions

- In a macro instruction containing positional operands, the
placement of +the symbolic parameters in the operand field
of the prototype statement determines the ©placement of
operands.

® Keyword Macro Instructions

- A keyword operand is the portion of a symbolic parameter
that does not include the percent sign. Anything that can
be wused as an operand value in a positional macro
instruction can be wused as a value in a keyword macro
instruction. Fach keyword operand in a macro instruction
must consist of a keyword immediately followed by an equal
sign (=), followed (optionally) by a value.

- Operands in a keyword macro instruction can be written in
any order or can e omitted. If a keyword operand is
omitted, its delimiting comma can also be omitted.

® Mixed Mode Macro Instructions

- In a mixed mode macro instruction, all positional operands
must be placed before any keyword operands.

48-057 F0O0O ROO 3-3

Example:

NAME OPERA?ION OPERAND COLUMN 72
symbol or MOVE A,B,LEN=80 blank
blank

In this example, A an§ B are positional operands, and LEN=80 is
a keyword operande. ‘

Apply these general rules to the operand field of a positional,
keyword, or mixed mode macro instruction:
@ A comma must follow each operand, but a comma does not follow

the last crerand.

e A single comma, followed 4immediately by another comma,
indicates that an operand does not exist.

@ If a continuation character (Section 3.3.1) 1is not present,
use at least one blank space to 1indicate the end of the
operand field.

e Use a comma to indicate omitted positional operands.

3.3.1 Continuation of Macro Instructions

Macro instruction staﬂements can be continued if the operand
field extends beyond cclumn 71. To continue macro instruction
statements:

e Column 72 must contain a nonblank character.

e FEach operand can appear on a separate line.

e A comma must follow each operand except the last.

The following examp;e illustrates continuation of a macro
instruction containing keyword operands:

NAME OBERATION OPERAND COLUMN 72
symbol or ~ MOVE FROM=HERE, X
blank , TO=THERE, X

‘ BYTES=80

3-4 48-057 FOO ROO

The

following example illustrates continuation of a macro

instruction containing mixed mode operands:

The
key
ope
res

3.3

The

NAME OPERATION OPERAND COLUMN 72
symbol MOVE A, X
B,LEN=80

guidelines for continuation lines, omitted positional and
word operands, and operand sublists apply to mixed mode
rations as they apply toc positional and keyword operands,
pectively.

«2 Omitted Operands

se guidelines apply to omitted positional operands:

If an operand is omitted from a positional macro instruction,
the comma must be present. This comma represents the comnma
that would have separated it from the next value.

IJf +the synmbolic ©parameter corresponding to an omitted

positional operand is referenced 1in an expanded model
statement, a null character value replaces the symbolic

parameter in the expanded statement.

The

8-

If the last operand is omitted, the comma separating the last
operand from the previcus operand can be omitted.

se guidelines apply to omitted keyword operands:

If the prototype statement assigned a standard value to a
symbolic parameter and the macro instruction does not contain
the corresponding keyword, the standard value replaces the
symbolic parameter,

If the prototype statement did not assign a standard value to
a symbolic parameter and the macro instruction does not
contain the corresponding keyword, a null character value
replaces the symbolic rarameter.

If a symbolic parameter appears in the operand field of the
prototype statement and the macro instruction contains the
corresponding keyword, the value assigned to the keyword
replaces the symbolic parameter.

057 FO0O ROO 3-5

3.3.3

Sublists

A sublist consists of one or more operands separated by commas

and

enclosed in 'paired parentheses. The entire sublist,

including the parentheses, is one macro instruction operand.

Positional Macro Qperand Sublists:

- If 7%ZSP is a sy@bolic rarameter in a prototype statement and

the corresponding operand in a macro instruction is a
sublist, then:

%ZSP(n)

is used to reference the nth operand of the sublist;
where n, 'which <can be a decimal integer or any
arithmetic ;expression that resolves a decimal integer,
is greater than or equal to 1.

If the nth opeﬁand of the sublist is omitted, then %SP(n)
refers to a nu#l character value.

If the sublist notaticn is used, but the operand in the
macro instrucqion is not a sublist, then %SP(1) refers to
the operand and any other sublist notation references a
null character.

When using sublist notation, the 1left parenthesis must
immediately fqllow the 1last character of the symbolic
parameter. Thq following example illustrates the use of
operand sublisﬁs:

48-057 FOO ROO

Example:

NAME OPERATICN OPERAND TYPE
MACRO 1
%ZSYMBOL CLEAR %R1,%ZFIELD,%X2 2
ZSYMBOL LIS %R1,0 3
ST %R1,AFIELD(1):(%X2) 3
ST %R1,%FIELD(2):(%X2) 3
ST %R1,ZFIELD(3):(%X2) 3
MEND 4
CLRAREA1 CLEAR 6,(FLD,FLDA,FLDB),13 5
CLRAREA1 LIS 6,0 6
ST 6,FLD(13) 6
ST 6,FLDA(13) 6
ST 6,FLDB(13) 6

LEGEND FOR TYPE COLUMN

macro header
prototype statement
model statement
macro trailer

macro instruction
generated statement

AT E WN -

3.4 INNER/OUTER MACRO INSTRUCTIONS

When mnemonic operation code for a given macro definition appears
as the operation field of a model statement in another macro
definition, the model statement (see Section 2.6) is an inner
macro instruction and the macro instruction referring to the
containing definition is an outer macro definition. The macro

definition that correspcnds to an inner macro instruction
generates the statements that replace the inner macro
instructions. Recursion is permitted, and recursive macros

expand properlye.

The corresponding values of the outer macro instructions replace
the symbolic parameters used in an inner macro instruction.

An inner macro instruction cannot reference a single member of an
outer macro instruction sublist unless the inner macro
instruction references the operand containing the entire sublist
and the macro definition corresponding to the inner macro
instruction contains a reference to the sublist member.

48-057 FOO ROO 3-7

Keyword, positional, or mixed mode instructions can be used as
model statements in keyword, positional, or mixed mode macro
definitions. The following illustrates the use of inner macro
instructions: f

STORE is an outer macro.

ADD is an inner macro.

NAME OPERATION OPERAND TYPE
MACRO 1

$SYM ADD %REG,%FLLC 2
L %REG,%FLD(1):(13) 3
A %REG,%FLD(2):(13) 3
A %ZREG,%FLD(3):(13) 3
MEND 4
MACRO 1
STORE %R1,%FIELD,%R1A,%FIELDA 2
ADD %R1A,%FIELDA 3
LR %R1,%R1A 3
ST : %R1,%FIELD(1) 3
ST ; %R1,%FIELD(2) 3
MEND -
STORE 6,(F1,F2),7,(FA1,FA2,FA3) 5
L 7,FR1(13) 6
A 7,FA2(13) 6
A 7,FA3(13) 6
LR 6,7 6
ST 6,F1 6
ST 6,F2 6

LEGEND FGR TYPE CCLUMN

macro header
prototype statement
model statement
macro trailer:
macro instruction
generated statement

(T T T | [B |

ML WN

3.4.1 Levels of Hacré Instructions

A macro definition corresponding to an outer macro instruction
can contain any number of inner macro instructions. The outer
macro instruction is d4 first level macro instruction. Each of
the inner macro instructions is a second level macro instruction.
A macro contained within the macro definition corresponding to a
second 1level macro ‘instruction is a third level macro
instruction, etc.

3-8 48-057 FOO ROO

The number of macro instruction levels that can be used depends
on the definition's complexity and the amount of available
MEemory.

3.4.2 Macro Instructions in Conditional Assembly

CAL conditional assembly, such as IFZ, IFNZ, cannot be evaluated
at macro processing time since the values of EQUs are not known
to the macro processor. Hence, any macros within conditional
code will always be expanded, regardless of whether CAL will
actually generate the expanded code. Normally, this would be no
problem since CAL would not assemble the expvanded code if the
conditional failed. However, certain macros; e.g., PURE, IMPUR,
also set CAL macro global flags that are used by other macrose.
These flags are set regardless of whether CAL assembles the
statements in the assembly.

It is advisable not to use IFZ or IFNZ to generate such macros as
PURE or IMPUR.

Example:
FLAG EQU 0
IFNZ FLAG
PURE
ENDC

In the previous example, CAL will not generate the PURE
statement; however CAL macro will set a global flag within the
PURE macro, thus affecting other macrose. An example of an
alternate approach to code such a macro is:

Example:

MACRO
SETFLAG
GBLB ZFLAG
ZFLAG SETB 0
MEND
MACRO
ISPURE
GBLB ZFLAG
SETFLAG
AIF (%FLAG) &PURE
MEXIT
&PURE PURE
MEND

In the previous example, a call to ISPURE with %FLAG set to 0
will not generate the PURE statement. A call to ISPURE with
%“FLAG set to 1 will generate the PURE statement.

48-057 FOO ROO 3-9

CHAPTER 4
CONDITIONAL EXPANSION OF MACRO DEFINITIONS

4.1 INTRODUCTION

The following sections detail the conditional expansion of a
macro definition. Global, batch global, and local SET variable
symbol declaration statenments, the SET variable symbol
statements, attributes, sequences symbols, and system variable
symbols are discussed.

4.2 GLOBAL, BATCH GLOBAL, AND LOCAL SET VARIABLE SYMBOL
DECLARATION STATEMENTS

Variable symbols, known as SET variable symbols, must be declared
before they can be used. Variable symbols can be declared as:

e local to a given macro definition,
e global to all macro definitions in a program, or

° ‘(batch) global to all macro definitions in all programs in the
batch

as they are invoked in a given macro processor pass. These
symbols are declared by way of the global SET variable symbol
(GBLx), batch global SET variable symbol (BGBLx), or local SET
variable symbol (LCLx) declaration statements. Only a SETx
instruction can change the SET variable symbol value. Section
2.4.1¢1 gives additional information on local, global, and batch
global variable symbols.

48-0£7 FOO ROO 4-1

4.2.1 Global SET Var;able Symbol Declaration (GBLx) Statement

The GBLx symbols communicate values between macro definitions or
different uses of the same macro definition in a program. A GBLx
symbol must be declarbd as global each time it is used in a macro
definition. GBLA, , GBLB, and GBLC statements reference
arithmetic, binary, and character variables, respectively, and
assign values to them. The initial values of the GBLA, GBLB, and
GBLC variable symbols are 0, 0, and null character values,
respectively. The injitial value is only assigned when a macro
definition, which contains a particular global SET variable
symbol, is first invoked. Subsequent GBLx instructions have no
effect on the value assigned to a GBLx symbol. The format of the
GBLx statement is:

NAME OPERATION OPERAND

blank GBLA, GBLB, or GBLC one or more variable
| symbols used as

! global SET variable

symbols, separated

i by commas

-2 : 48-057 FOO ROO

4,2.2 Batch Global SET Variable Symbol Declaration (BGBLx)
Statement

The BGBLx symbols communicate values between programs in the
batch. Within a program, BGBLx symbols perform the same function
as GBLx symbols. A BGBLx symbol is initialized at the first
declaration of that symbol in the batch. The initial values of
the BGBLA, BGBLB, and BGBIC variable symbols are 0, 0, and null
character values, respectively. The value assigned to the BGBLx
symbol 1is available to all successive programs in which it is
declared as a BGBLx symbol. The format of the BGBLx statement
is:

NAME OPERATION OPERAND
blank BGBLA, BGBIB, one or more variable
or BGBLC symbols used as batch
global SET variable
symbols, separated by
commas.

48-057 F0OO ROO ' 4-3

4.2.3 Local SET Varimble Symbol Declaration (LCLx) Statement

The LCLx symbols communicate values within the same wusage of a
particular macro definition. A local SET variable symbol is only
declared in the macro definition that it is used in. It is reset
to its initial value| each time that macro definition is invoked.
The initial values of| LCLx symbols are the same as those for
global SET variable, symbols (0, 0O, and null character values).
The format of the LCLx instruction is:

NAME OPEBATICN OPERAND

blank LCLA, LCLB, or LCLC one Or more variable
symbols used as local
SET variable symbols,

separated by commas

4.2.4 Declaring SET Variable Symbols
The following rules apply to declaring SET variable symbols:
@ If the same SET variable symbol is declared local in more than

one macro definition, it becomes a different symbol for each
definition 'in which it is used.

e If the same SET variable symbol is declared global or batch
global in one or more macro definitions and local in others,
it is one symbol wherever it is declared global or batch
global and a different symbol wherever it is declared local.

@ TIf the same SET variable symbol is declared batch global in
one or more macro:definitions and global in others, it is one
symbol wherever it ;is declared batch global and a different
symbol wherever it|is declared global.

A1l batch global, glopal, or local declarations must immediately
follow the macro prototyre statement or other BGBLx, GBLx, or
LCLx statements.

4-4 48-057 F0O0 ROO

4.2.5 Declaring SET Variables as Arrays

A batch global, global, or local SET variable can be declared as
an arraye. The format is:

NAME OPERATION OPERAND

blank BGBLA, BGBLB, variable symbol followed
BGBELC, GBLA, by an integer enclosed in
GBLB, GBLC, parentheses
LCLA, LCLB,
or LCLC

The integer is the highest subscript; the lowest subscript is 0.
The number of elements is one greater than the integer dimension.

Example:
NAME CPERATICN OPERAND
blank GBLA %AR1(9)

This statement declares a global arithmetic set variable %AR1 as
an array of 10(=9+1) elements.

Ten elements of %AR1 are %AR1(0),%AR1(1),ee.,%AR1(9).

48-057 F00 ROO ' 4-5

-y ap - on @ -

| SETx |

4.3 SET VARIABLE SYMBOL (SETx) STATEMENTS

The SETx statements alter the values of the variable symbols that
the BGBLx, GBLx, or LCLx declaration statements declared as SET
variable symbols. These SET statements assign arithmetic,
character, and binary:.or Boclean values to SETA, SETC, and SETB
variables, respectively.

Rrithmetic expressions can be a single term or an arithmetic
combination of terms. The arithmetic operators used in combining
terms are:

e addition (+),

e subtraction (=),

e multiplication (*), and

e division (/).

An arithmetic expression cannot contain two operators or two
terms 1in succession, nor can it begin with the multiplication or
division operators. | This procedure evaluates arithmetic
expressions:

® Each term is given its numerical value.

e The arithmetic operaticns are performed from left to right.
Unary plus or minus is evaluated first.

@ Multiplication and division are performed before addition and
subtraction.

e Parentheses can be used to redefine the order of evaluation.
Parenthesized sequences can be nested to a limit of 15 levels

of parentheses, ‘Parentheses required for sublist and
substring notation count toward this 1limit of 15. The
parenthesized portions or an arithmetic expression are
evaluated first. If there is more than one 1level of

parentheses, the inner-mcst level is evaluated first.

e In division only, the 1integer portion of +the quotient is
retained; for example: 91/25 vyields 3. If an expression
exceeds the maximum range of values, it 1is flagged as an
expansion error.

4-6 48-057 FO00 ROO

Section 4.3.1 details the relationship of arithmetic expressions
to SETA statements. '

These guidelines apply to character expressions:

@ The maximum number of characters that can be assigned to a
SETC symbol is eight.

@ A character expression ccnsists of a type attribute or any
combination of up to 255 characters, enclosed in apostrophes.

e More than one character expression can be concatenated into a
single character expression by placing a colon between the
terminating apostrophe of the first expression and the leading
apostrophe of the next one. Use two apostrophes to represent
an apostrophe that is a rpart of a character stringe.

@ By specifying a specific character string, smaller substrings
can be extracted from larger strings.

Section 4.3.2 details the relationship of <character expressions
to a SETC statemente.

Binary or Boolean variables have the value of 0 (false) or 1
(true). A binary variable can be assigned a value by evaluating
a relational expression enclosed in parentheses. The value of
the relational expression is either true or false.

A binary variable can also be assigned a value as a result of
logical comparisons. Both operands must be the same type; for
example, both must be character expressions. Logical expressions
can be formed by using the operations AND, OR, NOT. The
expression 1is evaluated from left to right; AND is evaluated
before OR.

Section 4.3.3 details binary or Boolean values assigned to a SETB
statement.

48-057 FOO0O ROO 4-7

4.3.1 SET Arithmetic§Variable (SETA) Statement

The SETA instruction éssigns an arithmetic value to a SETA symbol
or array element. Its format is:

NAME OPERATION OPERAND

a SETA "SETA an arithmetic expression
symbol or :

array

element

The arithmetic expressicn 1is evaluated as a signed 32-bit
arithmetic value Tin the range of -2,147,483,6u8 to
+2,147,483,647. The value is assigned to the SETA variable
symbol in the name field. The expression can consist of one ternm
or an arithmetic combination of terms. The terms that can be
used are: ?

® =signed integer conftants,
e variable symbols,
e count attributes, and

e number attributes.

4-8 48-057 FOO ROO

4.,3.1.1 Using SETA Variable Symbol

When using a SETA variable symbol, its assigned arithmetic value
is substituted for the SETA symbol when the symbol is used in an
arithmetic expression. If the SETA symbol is not wused in an
arithmetic expression, the arithmetic value is converted to a
signed integer with leading zeros removed. If the value is zero,
it is converted to a single zero. A SETA variable symbol (with
a positive value) can be used with a symbolic parameter to refer
to an operand in a sublist or array vehicle. This example
illustrates the use of SETA variable symbols:

NAME OPERATION OPERAND TYPE
MACRO 1
MVBYT %T0=,%FROM=,ZREG=13 2
LCLA #ALOC(2Y) 3
%ZALOC(1) SETA 1 4
%ALOC(2) SETA ZALCC(1)+%ALOC(1) 4y
LB %REG,ZFROMZALOC(1) 5
STB ZREG,%ZTO%ALOC(2) 5
MEND 6
MVBYT FROM=HERE,TO=THERE 7
LB 13,HERE1 8
STB 13, THERE2 8

LEGEND FOR TYPE COLUMN

macro header

macro prototype
local declaraticn
SETx instruction
model statement
macro trailer

macro instruction
generated statement

OO WN -
{1 T T 1 | I { S T I 1

48-057 FOO ROO 4-9

#4.3.2 SET Character Variable (SETC) Statement

The SETC statement assﬁgns a character value to a SETC variable
symbol. The format of the SETC statement is:

NAME OPERATICN | OPERAND

a SETC symbol SETC one operand consisting of a
or array element : type attribute, character

expression, substring notation,
or a concatenation of substring
notations and character
expressions

If a SETA symbol appears in the operand of a SETC statement, the
resulting unsigned <character represents the decimal value, with
leading zeros removed. If a SETB symbol appears, the result is
the character 0 or 1.

Variable symbols can be concatenated with other characters in a
SETC operand. Use two percent signs to represent a single
percent sign that is not part of a variable symbol.

The maximum number of characters that can be assigned to a SETC
symbol is 8.

4.3.2.1 Substring Notation

Substring notation allows assigning a part of a character value
to a SETC variable symbol indicating in the operand field of a
SETx statement:

e the character value or an expression representing the
character value, and '

e the part of the character value to be assigned to the SETC
variable symbole.

The combination of the previous items, referred to as substring
notation, consists of a character expression, immediately
followed by two arithmetic expressions separated by a comma and
enclosed in parentheses. The two arithmetic expressions indicate
the beginning and ending characters in the substring. Positive

4-10 48-057 F0O ROO

values refer to the beginning of the string; negative values
refer to the end of the string. This example illustrates the use
of substring notation:

NAME OPERATION OPERAND
%CL0OC1 SETC *BASEADDR®
%CLOC2 SETC 'ZCLOC1'(1,4)
%CLOC3 SETC ' *%ZCLOC1'(5,-1)
In the previous exanmple, the character value, *BASEADDR' is

assigned to the SETC variable, %CLOC1. The character values
*BASE' and 'ADDR' are assigned to the SETC variables %CLOC2 and
%CLOC3 respectively.

If a substring requests mcre characters than are contained in the
character string, only the characters in the string are assigned.
The maximum size of a substring is 255 characters. The maximumnm
size of the expression the character value is developed from is
255 characters.

Character variables and <substring notation are valuable in
scanning arguments for occurrences of quotes, parentheses, or
special characters.

4.3.2.2 Using SETC Variable Symbols

The character value assigned to a SETC symbol is substituted for
the SETC symbol when it 1is wused in the name, operation, or
operand field of a statement.

Character expressions can be concatenated with substring
notations in the operand field of a SETC instruction. If a
substring notation follows a character expression, the two can be
concatenated by ©placing a colon between the terminating
apostrophe of the character expression and the opening apostrophe
of the substring notation. If a substring notation precedes a
character expression or another substring notation, the colon is
not necessary for concatenation.

If a SETC variable symbol is used in the operand field of a SETA
instruction, the character value of the SETC symbol must be one
or more decimal digits; or, it is flagged as an expansion error.
This example illustrates the use of the SETC variable statements:

48-057 FO0O ROO 4-11

4-12

NAME OPERATION OPERAND
MACRO SAVE REGISTERS
SAVE %REG
LCLA %A LOC
LCLC %REGS,%REGS1,%REGS2
%ALOC SETA ' %REG
%REGS SETC _ *R*':*%ALOC'
%ALOC SETA ; ZALOC+1
%REGS SETC | *%ZREGS':'R":'%ALOC'
ZALOC SETA ZALOC+1
%REGS SETC *%ZREGS':'R*':'%ALOC"
%ALOC SETA %ALOC+1
%REGS SETC _ *ZREGS':'R*: ' %ALOC"'
%REGS 1 SETC *%REGS* (1,2)
%REGS 2 SETC *%REGS* (2,2)
ST %REGS1,HOLD%AREGS2
%REGS 1 SETC : '*%REGS*(3,4)
%“REGS2 SETC *ZREGS1'(2,2)
ST %REGS1,HOLD%REGS?2
%REGS1 SETC | *%REGS' (5,6)
%REGS 2 SETC ' *%REGS1°(2,2)
ST o %REGS1,HOLD%REGS?2
%REGS 1 SETC *ZREGS*(7,8)
%REGS?2 SETC *%REGS1'(2,2)
ST - %REGS1,HOLD%ZREGS?2
MEND |
SAVE ' 2
ST ! R2,HOLD2
ST : R3,HOLD3
ST 1 R4,HOLDY

ST R5,HOLDE

LEGEND FOR TYPE COLUMN

macro header

macroc prototype
local declaration
SETA statement

SETC statement
model statement
macro trailer’
macro instruction
generated statement

COJOOUMEHEWN =
mwn o winnn

TYPE

SN~NoumuooaououoauvinnonEnesnFeEFfFwwNh-a

oo

O WY 'O WO

48-057 FO0O ROO

The previous example defines the macro 'SAVE'. When the macro
SAVE 1is invoked, it generates assembly code to save four
registers beginning with the register designated in the operand
field of the macro instruction.

The macro instruction 'SAVE2' generates assembly code to save
registers 2 through 5 in the memory locations designated HOLD2
through HOLD5. This operation is accomplished by first building
a character local variable containing *'R2R3R4RS5' and using
concatenation and substring notation to expand the proper values
to the generated assembly ccde.

To build the assembly instruction, ‘ST R2,HOLD2', this procedure
is used:

1« The character string °*R2R3RUR5' is built in Z%REGS.

2. The statement "%ZREGS1 SETC '%REGS*(1,2)" extracts the first
two characters (or ‘'R2') from %REGS and places them in
AREGS1.

3. The statement "%REGS2 SETC *%REGS1'(2,2)" extracts the second
character (or °'2') frem %REGS1 and places it in Z%REGS2.

4, In the model statement "ST Z%REGS1,HOLD%REGS2", R2 is
substituted for %REG1 and 2 is substituted for %REGS2 and
concatenated with HOLD to form HOLD2,. The resulting
statement is "ST R2,HCLLC2".

48-057 FOO ROO 4-13

4.3.3 SET Binary Variable (SETB) Statement

The SETB statement as%igns the value true (binary 1) or false
(binary 0) to a SETB variable symbol. The format of the SETB
instruction is:

NANE OPERATION OPERAND
a SETB SE?B a 0 or 1 or logical
symbol or ; expression enclosed in
array element ; parentheses
A logical expressio& consists of one term or a logical

combination of terms. The terms that can be used are:
i
|

@ arithmetic relatiods,

@ character relationg, and
e SETB variable symb@ls.
|
i
The logical operators used in combining the terms are OR, AND,
and NCT.

A logical operator must always separate a logical expression that
contains two consecutive terms. The expression can contain two
successive operators only if the first operator is OR or AND, and
the second operator is NOT. A logical expression can begin with
the operator NOT; but, it cannot begin with OR or AND. A logical
expression is evaluated to determine if it is true or false; the
SETB variable symbol is then assigned the value of 1 or O.

An arithmetic relation consists of two arithmetic expressions
enclosed 1in parentheses, connected by a relational operator. A
character relation consists of two character values enclosed in
apostrophes connected by a relational operator. The six
relational operators are: ‘

e EQ is equal.

@ GE is greater than Pr equal.
® GT is greater than.

e LE is less than or ?qual.

e LT is less than.

e NE is not equal.

4-14 | 48-057 FO00O ROO

At least one blank must precede and succeed the relational and
logical operators.

Any arithmetic expression permitted in the operand field of a
SETA instruction can be used in the operand field of a SETB
instruction as a part of an arithmetic relation.

Any expression permitted in the operand field of a SETC
instruction can be used as a character value in the operand field
of a SETB instruction. In resolving a SETB expression using
character relations, two character values are considered equal
only when they are of =equal 1length and contain the same

characters; for example: *20* is 1less than ‘020°. When two
character values are of unegual length, the shorter value is
always less then the longer one; that is: '*7Z' is less than °'AA°'.

Logical expressions are evaluated as follows:

e EFEach term is evaluated and given its logical value.

@ Fach parenthesized expression is evaluated and given its
logical value.

e The computed result of the entire operand (1 for true, 0 for
false) is the value assigned to the SETB variable symbol.

The logical expression in the operand field of a SETB instruction
can be parenthesized. Parenthesized sequences of terms can be
nested to a limit of 15 levels of parentheses. The parenthesized
portions of a logical expression are evaluated first. If there
is more than one level of parentheses, the innermost level 1is
evaluated first.

$4,3.3.1 Using SETB Variable Symbols

The logical value assigned to a SETB variable symbol replaces the
SETE symbol in the operand field of a conditional instruction or
another SETB instruction. If a SETB symbol appears in the
operand field of a SETA instruction or in arithmetic relations in
the operand fields of conditional or SETB instructions, the
logical values 0 and 1 are converted to the arithmetic values +0
and +1. If a SETB symbol appears in the operand field of a SETC
instruction or in a character relation in the operand field of a
conditional or SETB instruction, the logical values 0 and 1 are
converted to the <character values 0 and 1. This example
illustrates the use of the SETB instructions:

48-057 FOO ROO 4-15

NAME OPERATICN OPERAND TYPE

MACRO

1
MOVE %FROM,%TO 2
LCLA ZALO1 3
LCLB 4BLO1 3
LCLC 4CLO1 3
%BLO1 SETB ~ ('%ZFROM* NE *ZTO"') 4y
%RALO1 SETA %BLO1+1 5
%CLO1 SETC *A ' (%ALO1,%ALO1) 6
L 13,#FRONZCLO1 7
ST 13,%2T0 7
MEND 8
MOVE HERE,HERE 9
L 13,HERE 10
ST 13,THERE 10
MOVE HERE, THERE 9
L 13,HEREA 10
ST 13,HERE 10
LEGEND FOR TYPE COiUHN
1 = macro header j
2 = macro prototype
3 = local declaration
4 = SETB statement
5 = SETA statement
6 = SETC statement
7 = model statement
8 = macro trailer:
9 = macro instruction
10 = generated statement
4.4 ATTRIBUTES
Attributes can be assigned to macro instruction operands. These

attributes can be reﬁerenced only in conditional instructions or
expressions. Each of the +three attributes has an associated
notation:

ATTRIBUTE . NCTATION

type ; T
count K?*

number N'

4-16 48-057 F0OO0 ROO

If an inner macro instruction operand is a symbolic parameter,
the operand attributes are the same as those of the corresponding
outer macro instruction cperand. A symbol appearing as an inner
macro instruction operand is not assigned the same attributes as
the =same symbol appearing as an outer macro instruction operandg.
Section 3.4 details inner and outer macro instructions.

If a macro instruction operand is a sublist, the attributes of
the sublist or each element in the sublist can be referenced.
Section 3.3.3 details sublists.

4.4.,1 Type Attribute (T*)

The type attributes of the macro instruction operand are:

@ The letter A represents an alphanumeric operand.

@ The letter N represents a numeric operande. (A signed integer
is recognized as numeric.)

e The letter U represents a null operand.

The type attribute can be used wherever a character expression
could be used; but, the type attribute must occur alone (that is,
not concatenated with anything), and it must not be enclosed in
guotese.

4e4.2 Count Attribute (X')

The count attribute value is the number of characters in a macro

instruction field. It includes all characters in the operand

except the delimiting commas. The count attribute of an omitted

operand is zero. The count attribute can be referred to:

@ in the operand field of a SETA instruction, or

® in arithmetic relations in the operand fields of SETB, or
conditional instructions in a macre definition.

4.,4.,3 Number Attribute (N*)

The number attribute is a value equal to the number of operands

in an operand sublist. The number is equal to one plus the

number of delimiting commas within the sublist. If +the macro
instruction operand is not written in sublist notation, the

48-057 FOO ROO 4-17

number attribute is one. If the operand is omitted, the number

attribute is zero.

The number attribute can be referred to:

e in the operand field of a SETA instruction, or

® in arithmetic relations in the operand fields of SETB or
conditional instructions in a macro definition.

This example illustrates attributes:

Given this macro prototyre and instruction:

MCVE %ZREG, AFROM,%TC,%ZHCLD

MOVE 13,HERE, (THERE1, THERE2)

T*ZREG
T*ZFROHM
T*%ZTO
T'%HOLD

(=i

K*ZREG = 2 N*%ZREG =1
K'%FROM = 4 N*ZFROM = 1
K*%TO = 15 N*'ZTO = 2
K*ZHOCLE = 0 N*ZHOLD =0

48-057 FOO ROO

4.5 CONDITIONAL AND UNCONDITIONAL BRANCH INSTRUCTIONS
The conditional and unconditional branch instructions

conditionally and wunconditionally alter the macro definition
processing sequence.

4.5.1 Conditional Branch (AIF) Instruction
The AIF instruction conditicnally alters the macro definition

statement processing sequence. Its format is:

NAME OPERATION OPERAND

a sequence AIF logical expression enclosed

symbol or in parentheses, immediately

blank followed by a seqguence
symbol

Any expression used in a SETB instruction operand field c¢an be
used in an BAIF instruction operand field. The expression is
evaluated to determine if it is true or false. If the expression
is true, the statement that the sequence symbol in the operand
field named is the next statement processed. If the expression
is false, the next sequential statement 1is processed. Section
4.7 gives examples of the AIF instruction. Section 2.4.3 details
sequence symbols.

48-057 FOO ROO 4-19

4.5.2 Unconditional Branch (AGO) Instruction

The AGO instruction ubconditionally alters the macro definition
statement processing sequence. Its format is:

NAME OPERATION OPERAND

a sequence ; AGC a sequence symbol
symbol or '
blank

The statement the sequence symbol names in the operand field is
the next statement processed.

The sequence symbol in an AGO or AIF instruction operand field
must appear in a statement name field 1in the same macro
definition as the AGO| or AIF instruction; or, it causes an
expansion error. Section U4.7 gives examples of using the AGO
instruction.

4.,5.3 Computed AGO and RIF Statements

An AGO or AIF statement orerand is extended to include a:

e character variable,
® array element, or

® rarameter.

The value of the character variable, array element, or parameter
must be a valid segquehce number.

4-20 48-057 FO00O ROO

Example:

LCLC %C
%“C SET '&SEQSYN
&AGAIN ANOP
AGO %C
E§SEQSYM ANOP
%C SETC '6£SEQ2!
AGO GAGAIN
6§SEQ2 ANOP
The character value %C is redefined to &SEQ2. The second time
the AGQO is executed, a branch to &SEQ2 is executed:
MACRO
EX2 %P
AGO %P
&ABC ANOP
&DEF ANOP
MEND
EX2 &ARC
takes a branch to &ABC, while:
EX2 &DEF
takes a branch to &DEF.
48-057 FO0O ROO 4-21

The ampersand must be included in the macro call parameter. To
avoid the ampersand |in the macro call, use a string variable and
concatenate the amper/sand in the macro definition. Many of the
system macros use this technique for codes:

MACRO
FX3 %AE=
LCLC %C

%C SETC Vgt GAD"
AGO | %C

&SRO ANOP

&SR ANOP
EX3 | AP=SRO
EX3 AP=SRW

4-22 4L8-057 FO0O ROO

4.6 CONDITIONAL INSTRUCTION LOOP COUNTER (ACTR) INSTRUCTION

The maximum count of AIF and AGO branches that can be executed in
a macro definition is 32767. The ACTR instruction assigns a
count other than 32767 as +the maximum number of AIF and AGO
branches executed within a macro definition. The format of the
ACTR instruction is:

NAME OPERATION OPERAND

blank ACTR any expression that can appear
in the operand field of a SETA
instruction

The ACTR instruction can only appear immediately after global and
local declaration statements. This instruction causes a counter
to be set +to the wvalue in the operand field. The counter is
checked for zero or negative value; i1f the counter is not zero or
negative, it is decremented by »ne each time an AIF or AGO branch
is executed. If the count 1is =zero before decrementing, the
entire nest of macro definitions is terminated and the next
source statement is processed. An ACTR statement in a macro
definition affects only the definition in which it appears.

When a macro definition calls an inner macro definition, the
current value of the branch count is saved and a new count of
32767 is set up for the inner macro definition (unless the inner
macro contains an ACTR instruction). When processing in the
inner definition is completed and a return is made to the higher
definition, the saved count is restored.

48-057 FOO ROO 4

23

- w o . - - -

4.7 NO OPERATION (ANOP) INSTRUCTION

When the sequence symbol in an AIF or AGO instruction must
reference a statement already containing a symbol (other than a
sequence symbol) in the name field, the ANOP instruction is used.
The format of the ANOP instruction is:

NAME _ OFERATION OPERAND
a seqguence ANOP blank
symbol

The ANOP instruction is placed before +the statement that the
branch 1is to be made to and the segquence symbol is placed in the
ANOP instruction namegfield. This placement has the same effect
as branching to the statement immediately following the ANOP
instruction. The following example shows the use of conditional

instructions:

4-24 48-057 F0O0 ROO

NAME OPERATION OPERAND TYPE

MACRO 1
SAVE %REG,ZHOWMANY 2
LCLA %ZALOC,7%ALCC1 3
LCLC ZREGS 3
AIF ((T*ZREG NE 'N') AND 4
(T*ZREG NE 'U'))&END
RIF ((T*%HOWMANY NE *'N*') AND
(T*%ZHOWMANY NE'U'))&END 4
ATF (NOT ((%ZREG GE 0) AND
(%#REG LE 15)))&END 4
AIF (T*%HOWMANY EQ 'U*)&NULL 4
AIF (NOT ((%ZHOWMANY GE 1) AND
(%HOWMANY LE 16)))&END 4
ENULL ANOP 5
ATF (I*'%REG EQ *U*)EZERO 4
ZARLGCC SETA 4REG 6
&ZERO ANOP 5
AIF (T*'ZHOWMANY EQ °*N*')E&NOTALL 7
ZALOC1 SETA 16-%AL0OC 6
AGO &CKSIZE 8
&ENOTALL ANOP 5
ZALOCA SETA ZHOWMANY 6
&ECKSIZE AIF (%ZALOC+Z%ZALOC1 GT 16)&END 4
ESETNAME ANOP 5
%#REGS SETC 'R':"%ALOC' 6
ST %ZREGS,HCLLC%ALOC 9
%ALOC1 SETA ZALOC1-1 6
AIF (%ZALOC1 EQ 0) &END 4
ZALOC SETA %ALOC+1 6
AGO &SETNAME 8
&END ANOP 5
MEND 10

LEGEND FOR TYPE COLUMN

macro header

macro prototype
local declaration
conditional branch
no operation

SETA instruction
conditional
unconditional branch
model statement
macro trailer

oo

OWOIAMNEWN

-—

48-057 E0O0 ROO 4

The previous example defines the macro SAVE. This macro
generates assembler code to save a number of registers
(designated by Z%HOWMANY in the prototype statement) beginning
with the register designated by %ZREG. If the argument used in
place of ZREG is omitted in the macro instruction, RO is assumed
to be the beginning register. 1If the argument used in place of
%ZHOWMANY is omitted in the macro instruction, it is assumed that
all registers beginning with 7%REG are to be saved. These
examples show some possible expansions of the SAVE macro:

NANE OPERATION OPERAND TYPE
 SAVE 10,4 1
ST R10,HOLD10 2

ST R11,HOLD11 2
ST R12,HOLD12 2
ST R13,HOLD13 2
SAVE 13 1
ST R13,HOLD13 2
ST R14,HOLD14 2
ST R15,HOLD15 2
SAVE ,?2 1
ST RO,HOLDO 2
ST R1,HCLD1 2

LEGEND FOR TYPE COLUMN

—

= macro instruction
= generated statement

4-26 48-057 FOO ROO

4.8 MACRO DEFINITION EXIT (MEXIT) INSTRUCTION

The MEXIT instruction terminates. the current macro definition
expansion. Its format is:

NAME OPERATION OPERAND
a sedquence MEXIT | not used
symbol or

blank

If a MEXIT instruction is processed in a macro definition for an
outer macro instruction, the next statement in the source is
processed next. If a MEXIT instruction is processed in a macro
definition for an inner macro instruction, the next statement
after the inner macro instruction in the macro definition is
processed nexte Section 3.4 details inner and outer macro
instructions. This example illustrates the use of the MEXIT
instruction:

NAME OPERATION OPERAND TYPE
MACRO 1
ZSYM MOVE %ZFROM, %T0,ZREG,ZHOLD 2
AIF (T*%ZREG EQ 'N')&0K 3
MEXIT 4
60K ANOP 5
ZSYM ST %REG,%ZHOLD 6
L ZREG,ZFROM 6
ST ZREG,%TO 6
L ZREG,7ZHOLD 6
MEND 7

LEGEND FOR TYPE COLUMN

macro header

macro prototype
conditional branch
macro exit

no operation

model statement
macro trailer

NoOoUTE W -
fonononon N

48-057 FOO ROO 4~-27

In the previous example, a numeric argument must represent the
symbolic parameter %REG when the macro instruction is written.
To assure this representation, the %REG type attribute is
compared to °‘N°‘'. If it is not 'N*', the MEXIT instruction is
executed, resulting in the termination of any further macro
expansion.

28 48-057 F0O ROO

=
[}

4.9 REQUEST FOR MESSAGE (MNOTE) INSTRUCTION

The MNOTE instruction generates a macro message. Its format is:

NAME OPERATION OPERAND
a sequence MNOTE an optional integer expression
symbol or followed by a comma, followed
blank by any combination of characters

enclosed in apostrophes

The characters between the apostrophes are printed on the source
listing when the MNOTE instruction is processed. If a symbolic
parameter appears between the apostrophes, its value replaces it
when the message is printed.

Use two apostrophes to represent a single apostrophe to be
printed as part of the message in the source listing. Use two
percent signs to represent a single percent sign to be printed as
part of the message in the source listing. Use two <colon signs
(s to rerresent a single colon sign to be printed as part of
the message in the source listing. MNOTE statements can have a
maximum of two continuation statements.

The optional integer expression is the end of task code returned
when the macro processor terminates. The default value for this
integer expression is 0. The highest value that any executed
MNOTE statement specifies is the value returned. This example
illustrates using the MNOTE instruction:

48-057 F0OO ROO

£
[

29

NAME

&E1

&E2

CPERATICN

MACRO
MOVE
AIF
AIF

ST

L

ST

L
MEXIT
MNOTE
MEXIT
MNOTE
MEND
MOVE
MNOTE
MOVE
MNOTE |

CFERAND

%#FROM,%TO,%REG,%ZHOLD

(I'%REG NE *N')EE2
(T*%HOLD EQ 'U')EE1
%REG, %HOLD

%REG, ZFROY

%REG, 4T 0
%REG,%HOLLD

8,"SAVE AREA NOT DEFINED®
4,'REGISTER NOT NUMERIC®
FROM,TO,REG,HOLD
*REGISTER NOT NUMERIC®

HERE,THERE, 4
*SAVE AREA NOT DEFINED'

The end of task code is 8.

LEGEND FOR TYPE COLUMN

WO NV WN
| I [[O L | I [

macro header

prototype Qtatement
conditional branch

model statement

macro exit
macro note
macro trailer

macro instruction
generated Statement

TYPE

CO OO AN ELEEETWWN -

48-057 FOO ROO

4.10 SYSTEM VARIABLE SYMBOIS

The macro processor automatically assigns values to systenm
variable symbols. These system variable symbols are local
variable symbols. The five variable symbols:

e %SYSLIST

® Z%SYSINDX

e ZSYSMAC

e ZSYSTIME

e %SYSDATE

can be used in the name, operation, or operand fields of
statements in macro definitions. System variable symbols cannot
be defined as symbolic parameters or SET symbols. Although these
system symbols are the only system symbols defined at this time,

do not use any variable symbol that starts with %SYS because of
future expansion.

48-057 F0OO ROO 4-31

| %SYSLIST |

4.10.1 ZSYSLIST Symbol

ZSYSLIST provides an alternative to symbolic parameters for
referring to positional macro instruction ©operands. Both
%SYSLIST and symbolic rarameters can be used in the same
positional macro definition.

%SYSLIST (n) refers to the nth positional macro operand. If the
nth operand is a sublist, then %SYSLIST (n,m) refers to the mth
operand in the sublisit. Any arithmetic expression allowed in a
SETA instruction operand field can represent n and m.

If the value of n is zero, then %SYSLIST (n) 4is assigned the
value specified in the macro instruction name field, unless that
value is a sequence symbol.

The type and count attributes of Z%SYSLIST(n) and Z%SYSLIST(n,m)
and the number of a#trihutes of %ZSYSLIST(n) and Z%ZSYSLIST can be
used in conditional instructions. N°'ZASYSLIST refercs to the total
positional operands, in a macro instruction statement.
N*%SYSLIST(n) refers to the number of operands in a sublist. If
the nth operand is null, n is zero. If the nth operand is not a
sublist, N' is one. The following example illustrates the use of
%SYSLIST:

4-32 48-057 FO00O ROO

NAME OPERATION OPERAND
MACRO
ASYM MOVE %FRCHM,%TO0,%REG,%HOLD
LCLA %AL1
%AL1 SETA 1
tC1610 AIF ('"%SYSLIST(%AL1)* EQ °*')E&ERR
%AL1 SETA ZAL1+1
AIF (%AL1 LE 4) &CKNUL
AGO 60K
&ERR MNOTE 'PARAMETERZAL1 MISSING'
MEXIT
&£0K ANOP
STA #REG,ZHOLD
LDA %REG,ZFROM
STA %ZREG, %TO
LDA %REG, ZHOLD
MEND
MOV 1 MOVE HERE,THERE, 13
* MNOTE *PARAMETER 4 MISSING®
LEGEND FOR TYPE COLUMN
1 = macro header
2 = macro prototyre
3 = local declaraticn
4 = conditional branch
5 = SETA
6 = unconditional branch
7 = macro note
8 = macro exit
9 = no operation
10 = model statement
11 = macro trailer
12 = generated statement

The use of %SYSLIST in the
write a separate

conditional

TYPE

wWwN =

P ST QI WY
DA 0O Qa0 EFEFOVE

12

12

previous example avoids having to

argument for a null conditicn.

ug-057 FOO ROO

branch instruction to check each

| %SYSINDX |

4.10.2 %SYSINDX Symb@1

The value of the %SYSINDX variable symbol <can be <concatenated
with other <characters to <create unigue names for statements
generated from the same mcdel statement. ZSYSINDX 1is assigned
the numerical valuel for the first macro instruction that the
MacCro processor procelsses. It is incremented by one for each
subsequent macro instruction processed, whether inner or outer.

If %SYSINDX 4is used' in a model statement, SETC, or MNOTE
instruction or in & character relation in a SETB or AIF
instruction, the value sutstituted for %ZSYSINDX is the number of
the macro instruction being processed. If %ZSYSINDX appears in an
arithmetic expression, the value used for ZSYSINDX is an
arithmetic value. Throughout one use of a macro definition, the
%SYSINDX value is constant, independent of any inner macro
_instruction in that definition. The following example
illustrates the use of %SYSINDX:

34 48-057 FOO ROO

=
I

NAME OPERATICN OPERAND

MACRO
%ASYM MOVE #FROM,ZTO
%“SYM STA 13,HOLD%ZSYSINDX

LDA 13,%FROM

STA 13,%T0

LDA 13,%HOLDZSYSINDX

B HOLDZSYSINDX+ADC
HOLDZSYSINDX DAC 0

. MEND

MOoV1 MOVE ASLOT,BSLOT
MOV STA 13,HOLD0001

LDR 13,ASLOT

STA 13,BSLCT

LDA 13,H0LL0001

B HOLDOOO1+ADC
HOLDOO0O1 DAC 0
MOov2 MOVE XSLOT,YSLOT
MOV2 STA 13,HOLD00O2

LDA 13,XSLOT

STA 13,YSLCT

LDA 13,H0LL0002

B HOLDOO2+ADC
HOLDO00O2 DAC 0

LEGEND FOR TYPE COLUMN

macro
macro
model
macro
macro

AN EFEWN A
[E I T I N T R 1 I}

header
prototype
statement
trailer
instruction

generated statement

In the previous example, the variable symbol
concatenated with the 1letters HOLD to form a unique label each
time the macro is invoked. '

48-057 F0O0 ROO

TYPE

(e} Ao OO [§,] Fwwww wWwN -

o, W, Mo e, WE) |

ZSYSINDX

is

— — gt S—— — — S— —

4.10.3 ZSYSMAC Symbol

The system variable ﬂSYSMAC differs from the system variable
ASYSINDX Dbecause the inner macro calls change their value. Upon
returning from an inner macro call, %SYSINDX returns to its
original value; while, %SYSMAC remains at the incremented value
because of the inner macrc. An example of this wuseful feature
is: INNER generated a label using %ZSYSMAC which was referred to
in CUTER by using %SYSMAC. This example shows the relationship
between %SYSINDX and %SYSMAC:

NAME OPERATION OPERAND TYPE
MACRO 1
INNER 2
IMPUR 3
HOLD%SYSINDX DAS 1 3
PURE 3
MEND 4
MACRO 1
ASYM MOVE %FROM,ATO 2
INNER 5
ASYM STA 13,HOLD%SYSMAC 3
LDA 13,%FROM 3
STA 13,%T0 3
LDA 13,HOLD%SYSMAC 3
MEND 4

LEGEND FOR TYPE COLUMN

macro header’
macro prototype
model statement
macro trailez
inner macro c¢all

NEWN
[T L | O I

36 i 48-057 F0O ROO

=
I

%ZSYSINDX ZSYSMAC

WWWW EFEFERFW=AaaNDNDNMNa
ErREREFosrrFowbdbdbOoNDODNODDON

After the inner call,

valuee.

48-057 FOO ROO

NAME

HOLLO0CO02

HOLDOOOU

OPERATION

MOV E
INNER
IMPUR
PAS
PURE
STA
LDA
STA
LDA
MOVE
INNER
IMPUR
DAS
PURE
STA
LDA
STA
LDA

NOTE

OPERAND

A,B

1

13,HOLD0O002
13,A

13,B
13,HOLDO0O2
c,D

1

13,H0LDOOO4
13,C
13,D
13,H0LDOOOUY

%SYSMAC retains its

37

| %SYSTIME | ;
| %SYSDATE | |

—------f‘—
4.10.4 %SYSTIME Symbol
%ZSYSTIME is an eight %haracter stting system variable whose value

is the time of 'day that the macro processor was invoked. Systenm
generation determines the fcrm.

4.10.5 %SYSLCATE Symbol

ZSYSDATE is an eight bharacter string system variable whose value
represents the date that the macro processor was invoked. Systen
generation determines the form.

38 ! 48-057 F0OO ROO

&=
1

4,11 AREAD STATEMENT

The syntax for the AREAD statement is:
%SYMBOL AREAD
where:

%SYMBOL is a character variable or array variable 1large
enough to «contain the character string (a minimum of 80
characters).

When a macro containing an AREAD is called, the next source 1line
is read into the character variable. The string handling
capability of the macro processor can be used to process the
line. The following macro demonstrates this capability:

MACRO
REED
LCLC %C(9) 80 characters
%C AREAD READ NEXT-LINE AFTER CALL
AIF (*%C*(1,2) EQ *CR*)&BYTE check for character |
LB X'00" NOT CR
MEXIT
EBYTE ANQE
LB X'0OD*
MEND

REEL

+ DB X'OD*
REED

+ DB X'00"

48-057 FO0O ROO 4

39

4.12 SUBSTRING NOTATION IN MODEL STATEMENTS

Substring notation is allcwed in model statements. The following
macro demonstrates this capability:

MACRO
EXAMPLE %P
LCLC 2TYPE
%2TYPE SETC ‘TF*
AIF (*%ZP* EQ *'T')ETRUE
BETYPE<2,2>C ALPHA
MEXIT
ETRUE BZTYPE<1,1>C BETA
MEND
where:
EXAMPLE T
+ BTC ALPHA
EXAMPLE F
+ BEC BETA
NOTE
Because of possible ambiguities in

interpretation, substring notation in a
model statement always applies only to

the immediately preceding symbolic
variable . or parameter not enclosed in
guotes.

4-40 48-057 FO0O ROO

CHAPTER 5
ADDITIONAL CAL MACRO/32 FEATURES

5.1 INTRODUCTION

The operation codes of the features discussed in this section are
macro processor pseudo operation codes. Because they are macro
processor pseudo operation codes, the processor recognizes and

acts on them so they are not passed to the assembler source
streame.

48-057 FOO ROO 5-1

5¢1¢1 As Is (ASIS) Instruction

The ASIS instruction tells the macro processor not to treat the
next line or 1lines| as macros even though these lines might be
macros. This feature is useful when a macro is used to redefine
a CAL operation code. The format of the ASIS instruction is:

NAME OPERAT@ON OPERAND

|
sequence ASIS, blank, decimal integer, BEGIN,
symbol ; or ENT
or blank

Blank indicates the néxt statement only. Decimal integer means

.the next n statements. BEGIN means wuntil an ASIS END is

encountered. END indjicates termination of ASIS BEGIN.

The END statement doegs not cause termination of a macro expansion
if it appears within an ASIS statement.

The following instructions cannot occur in the scope of ASIS:

ACTR BGBLC CLC MEXIT NOLIB
AGO GBLA MACRO MLIBS NTRAC
AIF GBLB MCALL MNOTE SETA

ANOP GBLC MCOPY MPAUSE SETB

BGBLA LCLA MDEFS MTRAC SETC

BGBLB LCLB MEND NDEFS

5-2 48-057 FOO ROO

5¢1.2 Macro Call (MCALL) Instruction

The MCALL instruction permits the cited macros to be <called as
they appear in +the 1library rather than as they appear in the
processor source streanm. This method avoids time-consuming
rewinds in a magnetic tape search or multiple disc access in a
disc search. The format of the MCALL instruction is:

NAME OPERATION OPERAND

blank MCALL MACRO,MACRO,+..,MACRO

A particular order does nct have to be specified in the MCALL
instruction; the specified macro definitions are fetched from the
. library in the order that they are found. If a macro definition
cited in the MCALL instruction is not found in any 1library, the
request for that definition is ignored. All libraries named in
the MLIBS instruction are searched for the cited macro
definitions. The MCALL instruction statement cannot occur within
a macro definition.

48-057 F0O ROO 5-3

5.1

The

specified 1logical u

mac
arb

Cop
fil

An

«3 Macro Copy (H¢OPY) Statement

MCOPY statement 3nab1es source text to be copied from a
it (lu) or file descriptor at any point in a
ro definition or program. The copied source text can be any
itrary text, such ias a:
set of global varﬁables used in several macros,
complete macro deﬁinition'or a set of macro definitions,
part of a macro definiticn,

set of equates, oﬁ

subroutine.

ving starts at a specified point or at the beginning of the
e. Copying terminates when:
a /* in columns 1 and 2 is encountered,

an END statement ib encountered, or

an end of file (EOF) is reached.

END statement, if hsed as a terminator for MCOPY, will also

terminate macro expansion.

The

whe

syntax of the MCOPY statement is:

ignored MCOPY; {label] {,1u number]
i {,file descriptor]’

re:

If a label is not:specified, the file 1s not rewound and
everything 1is copied until a /* in columns 1 and 2 or an EOF
is reached. ‘

If a label is specified, search the file from its present
position until a label cf the following form is found:

**LABEL

48-057 FOO ROO

If an EOF is encountered, the file is first rewound and
searched once more for the label. If found, copying starts
from the next statement until the next terminator is
encountered.

If the file is omitted, copying is performed from the current
file, where the current file is initially 1lu 7. It can Dbe
.changed with a START option, or the file or lu from the most
recent preceding MCOPY statement at the same level.

MCOPY statements <can be nested up to 16 1levels, provided
sufficient logical wunits are available. For example: an MCOPY
can copy a macro definition containing an MCOPY statement to copy
global variables. The first MCOPY statement copies the initial
part of the macro definition until the nested MCOPY statement is
encountered. Then, the first MCOPY statement resumes. While the
inner MCOPY statement is corying, two logical units are open.

Operands of MCOPY passed to the macro processor through the MCOPY
start options are passed to each program in the batch.

48-057 FOO ROO 5-5

5.1.4 Macro Definitiéns (MLCEFS) Instruction

The MDEFS instruction controls which macro statements are sent to
the CAL file. Its format is:

NAME OPERATION OPERANDS
blank MDEFS one or more codes

separated by commas

The optional letter N preceding the code means to suppress
sending the statement; whereas, the code enables sending. The
codes and their meanings are:

MINIMUM

CODE ? MEANING ABBREVIATION
(N)DEFS (NO) macro definitions . D ND
(N)INNER (NO) inner macro calls I NI
(N)OUTER (NO) outer macro calls 0 NO

ALL send all of the above ALL

NONE send none of the above NONE

Example:

MDEFS NI,ND

suppresses macro definitions and inner macro calls to be sent
to CAL. MDEFS can be specified as a START option. If
specified as a START option, the MDEFS statement has no
effect. MLCEFS cannot occur in a macro definition. Section
6.2 details START 'options.

5-6 48-057 FOO ROO

5.1.5 Macro Libraries (MLIBS) Instruction

The MLIBS instruction designates the file descriptor or decimal
lu numbers where the macrc libraries, necessary for a given macro
processor source stream, reside. The format of the MLIBS
instruction is:

NAME OPERATION OPERAND

blank MLIBS one or more file
descriptors or 1lu
numbers separated
by commas

If any macro libraries (including the system macro 1library) are
used, this statement must apprear as a START option or in the
macro processor source stream prior +to invoking any macros
residing on a library. The operand field must contain at least
one argument. The libraries are searched in the order that their
file descriptor or lu numbers appear in the START option or MLIBS
instruction. The absence of a START option or MLIBS instruction
in a processor source stream indicates to the processor that all
required macro definitions for that saource stream exist as part
of the source stream. The maximum number of file descriptors or
logical units that can be actively designated as libraries at any
one time is 15. The MLIBS instruction statement cannot occur
within a macro definition. See Section 6.2 for START options.

The files and logical units passed to the macro processor through
the MLIBS start options are passed to each program in the batch.

48-057 FO00 ROO 5-7

| MLIST |

5.1.6 Macro listing (MLIST) Instruction

The MLIST instruction controls which macro statements are sent to
the list device. Its format is:

NAME OPERATICN OPERAND

blank MLIST ohe or more codes
separated by commas

The optional letter N preceding the code means to suppress
sending the statements; whereas, the code enables sending the
statement. The codes and their meanings are:

. MINIMUM
CCDE MEANING ABBREVIATIONS
(N) DEFS (NO) macro definitions D ND
(N) INNER (NO) inner macro calls I NI
(N) OQUTER (NO) outer macro calls 0 NO
(N) CAL (NO) CAL code _ C NC
(N) GENCAL (NO) generated code G NG
(N) MNOTE (NO) MNOTE M NN
ALL send all ’ ALL
NONE send NONE NONE

Examrle:

MLIST ND,NI

suppresses macro definitions and inner macro calls to be sent
to the 1list device. MIIST can be specified as a START
optione. If it 4is specified as a START option, the MLIST
statement has no effect. MLIST cannot occur in a macro
definition. ’

48-057 FOO ROO

5¢1.7 Pause (MPAUS) Instruction

The MPAUS instruction permits the wuser to pause the macro
pProcessor. The pause <can occur anywhere in the input stream;
but, it cannot occur between a macro statement and a following
macro prototype. An examrple of the MPAUS instruction is:

NAME OPERATION OPERAND

blank MPRUS blank

48-057 F00 ROO 5-9

| MTRAC |

5.1.8 Macro Trace (MTRAC) Instruction

The diagnostic instruction, MTRAC, determines the effective
conditional branches and the SET variable symbols values within
the macro logic. The format of the MTRAC instruction is:

NAME OPERATION OPERAND

blank MTRAC blank

The MTRAC instruction can occur anywhere in the source streanm.
It causes the macro trace feature to be enabled for all
subsequent macro instructions processed. Each time a macro is
invoked, a map of its expansion, detailing the path of the
conditional branches and the values of the SET variable symbols,
is written to the désignated trace output device (lu 3). If the
MTRAC statement occurs within a macro definition, the trace
feature 1is enabled every time the corresponding macro is invoked
and remains enabled wuntil a no trace (NTRAC) statement is
encountered in a macro definition expansion or in the source
stream.

5-10 48-057 FOO ROO

51.9 No Libraries (NOLIB) Instruction

The NOLIB instruction suppresses searching all or some macro
libraries previously designated by the MLIBS statement. The 1lu
numbers of the libraries that searching is to be suppressed for
are contained in the NOLIB statement operand field. If the
overand field is blank, all library searching is suppressed. The
format of the NOLIB instruction is:

NAME OPERATION OPERAND

blank NOLIB one or more file descriptors
or lu numbers separated by
commas

The NOLIB instruction is useful in these situations:

@ If memory size is such that all macro definitions invoked in
a given processor source stream can be made memory resident at
the same time:

- the MCALL instructicn brings all the macro definitions into
memory prior to their use; then,

- the NOLIB instructicn is invoked with a blank operand
field, causing all library searches to be suppressed.

If erroneous operation ccdes are present in source statements,
the NOLIB instruction prevents unnecessary library searches.

® If memory size is not sufficient +to allow all macro
definitions necessary for a given processor pass to be made
‘memory resident:

- the MCALL instructiocn brings as many macro definitions as
possible into memory; (ideally, these include the most
frequently used macro definitions); then,

- the NOLIB instructicn is invoked to suppress searching the
libraries from which the memory-resident macro definitions
vere extracted.

This technique minimizes the necessary processing time for
library searches 1in a limited memory environment. The NOLIB
instruction statement cannot occur within a macro definition.

48-057 FOO ROO 5-11

- o .-

| NTRAC |

5.1.10 No Trace (NT?AC) Instruction

The NTRAC instruction causes the macro trace feature to be
disabled. If NTRAC bccurs in a macro definition, the macro trace
feature is disabled each time that macro is invoked.

NAME - CPERATICN CPERAND

blank ' NTRAC blank

5-12 48-057 FOO0 ROO

CHAPTER 6
OPERATION OF THE CAL MACRO/32 PROCESSOR

6.1 INTRODUCTION

This chapter demonstrates the operation of the CAL Macro/32
Processor (MACRO) and 0S/32.

The CAL Macro Processor is available as a 32-bit object program.

6.1.1 Device Assignments

The CAL Macro Processor uses these device assignments:

AS LU 1 Source input
AS LU 2 Expanded source output
AS LU 3 Listing, trace outprut, and error messages

(see Appendix D)

Any other available logical unit (lu) can be used for libraries.

6.1.2 Memory Requirements
The macro processor requires approximately 26kb of memory over
and above what the operating system uses and the macro processor

itself requires for any table space. The macro processor
requires table space for stcring:

® programmer macros,
e library macros defined by an MCALL statement,

e global symbols, and

® any parameters associated with the macro instruction currently

being processed.

Thus, the amount of table space required depends on the progran
being processed.

48-057 F00 ROO 6-1

6.2 OPERATION OF THE MACRO PROCESSOR UNDER 0S/32

Prior to using the macro rrocessor, it must be established as a
user task with 0S/32 Link. Refer to the 0S/32 Operator Reference
Manual and the 0S/32 Link Reference Manual.

Once the macro processor is established, it is loaded by 0S/32
with the command: i

LOAD taskid,fd

where:

taskid is the name assigned to the macro processor task
partition.

fd is the file descrirtoer or device mnemonic containing the

established macr¢ processor.

The macro processor task is made the currently selected task for
making device assignments, starting with the command:

TASK taskid

Assign all logical uﬂits that the macro processor is to use:

LU ‘ COMMAND DEVICE
source input 'AS 1,SCURCE.MAC disc
list output 'AS 3,PR: printer
source output |AS 2,SCURCE.CAL disc
macro library* 'AS 7,MAG1: magnetic tape

*The macro library is not a required assignment;
when used, it can be assigned to any available
LU number.

Issue the operating system START command to execute the macro
processor:

START

The macro processor then executes. When +the &entire source
program has been prdcessed, the macro processor issues an SVC 3,
end of task code 0 to the operating system if no errors are

6-2 48-057 FOO ROO

detected. The following end of task codes may be returned by the
macro processor:

0 No errors

2 Errors in macro expansion
4 : Invalid start option

254: Insufficient memory

Any other return code is due to an MNOTE statement in the listing
which set the return code.
6.3 I/0 ERRORS
When the macro processcr detects an I/0 error during its
operation, it prints this message on the system console:
I/0 ERROR xxdd
where:
xx is a 2-digit hexadecimal value representing the device
status.
dd is the device number causing the error.

The possible values of xX are:

CEVICE
STATUS
CODE MEANING
Cco illegal functicn
AQ device unavailable
90 end of mediunm
88 end of file
84 unrecoverable error
82 parity/recoverable error
81 unassigned 1lu

Examples:

9085 end of medium on magnetic tape
AOOUL card reader offline
c062 READ attempted from the line printer

Refer to the appropriate operating system manual for details
on the status of each device.

48-0&57 FO0O0 ROO 6-3

6.4 START OPTIOKNS

START options are provided for these functions:

FUNCTION

MLIST
MDEFS
MLIBS

MCOPY
NTRAC
BATCH

When invalid
which option

START OPTION

(option, option,...option)

(option, option,...option)

(fd or 1lu number)

the order specifies the search order

fd or lu number

globally turns off all trace facilities
batch mode

start options are specified, a message indicating
is in ertor is logged to the user console. The task

is terminated with an end of task code 4,

~ Examples:

START
START
START

+MLIBS=(8,9,10)
+MCOPY=7,B,NTRAC
+NTRAC, MLIST=(NONE,GEN)

6.5 CAL MACRO/32 PROCESSCR TERMINATION

The CAL Macro Processor goes to end of task under the following

conditions:

-~ An END

statement is encountered outside the scope of ASIS,

and BATCH is not specified in the start option or in 1line.

- An end
which
in the

- A BEND

- An end
(which

of file is encountered following an END statement
is in the scope of ASIS, and BATCH is not specified
start option or in line.

statement is encountered.

of file is encountered following an END statement
is generated or in the scope of ASIS), and BATCH is

specified in the start option or in line.

48-057 F00 ROO

CHAPTER 7
MACRO LIBRARY UTILITY PROGRAM

7.1 INTRODUCTION

The Perkin-Elmer Macro Library Utility Program (03-340) provides
the capabilities for establishing and maintaining the system
macro library and/or any user designated macro 1libraries. It
can:

® create a new library (ESTABLISH command),

@ nmaintain an existing library (GET command),

® include new macro definitions into a library (INCLUDE
command),

® delete macro definitions from a library (DELETE command),

@ 1list macro definitions from a library to a device file (LIST
command),

® print the directory (names of the macros) of a 1library to a
device or file (DIRECTCRY command),

® save an updated library to a permanent file (SAVE command),

e facilitate magnetic tape positioning (FF, BF, RW, WEFM
commands), and

e accept comment statements (*).

7.2 MACRO LIBRARY

A macro library is a 256-tyte record file with this format:

® Header record
e Index records

® Macro definitions

48-057 F¥00 ROO 7-1

7.2.1 Header Record
The header record, the first record in any macro 1library,

contains information on the last date the library was modified,
the size of the librarny, the type of medium, and user comments.

The header record has this format:

BYTES DESCRIPTION
1-8 date library was last modified
9 meiium code "D" (disc) "M" (magnetic tape

or itape cassette)

10 blan

11-12 1a$t record of the current library
13-80 comments or blanks

B1-256 blanks

The ESTABLISH command | creates the header record or the GET
command retrieves it from an existing library.

7.2.2 Index Records

Index records follow the header record. Index records locate
macro definitions within a library. The number of index records
depends on the number of macro definitions in the 1library. The
macro library utility adjusts the number of records as

definitions are INCLUDEd cr DELETEd. Each index record contains
from O to 21 entries. The last entry is marked with an internal
end-of-block mark. The format of each entry is:

BYTES DESCRIPTION

1-8 macro name - the one to eight character
mnemonic name used when the macro is
invoked.

9-10 zerb

11-12 relétive record number of the macro
definitions

7-2 48-057 FO00O ROO

7.2.3 Macro Definitions

Each macro definition starts on a 256-byte record boundary. The
definition records are packed into a variable number of variable
length logical records (81 bytes maximum). A carriage return
(CR) designates the end of a logical recorde To facilitate
packing, single blanks rerlace the logical records having leading
and trailing blanks. No logical record is split between two
physical records. The records are ASCII.

7.3 COMMAND FORMAT

Each macro library utility command has this format:
command argl,arg2,...argn

The command verb begins in the first nonblank space of a line and
specifies the operation to be performed. The arguments modify
the command. The command verb can be specified as the entire
verb or any sequence of leading characters making the verb
unigue.

Examrple:

DE

DEL

DELE

DELET

DELETE
All of these verb forms can be accepted for DELETE. The verb
form DEM is not accepted for DELETE.
The arguments are separated from the command by at least one
blank and from each other by commas or blanks. To obtain the
default value if a required argument is omitted, the comma must
be included. An end-of-record indicator or 80 bytes, whichever
comes first, terminates the command line.
If multiple lines are needed for a command, the last nonblank
character of the 1line +to be continued must be a comma. The

arguments continue on the next nonblank character of subsequent
lines.

48-057 FOO ROO 7-3

Example:

command argl,arg2,

argi,...,argj,
argk,e.e,argn

7.4 MACRO LIBRARY UTILITY COMMANDS

The standard format for the user—-specified file descriptor (fd)

is:

(i [

voln: or

filename

Xt

nawo

dev:

is a disc volume or device name from one to
four characters longe.

is a filename from 1 to 8 characters long.

is the extension name and is from one to three
characters long preceded by a period.

are single alphabetic characters representing
the file class. They are:

P private file
G grour file
S system file

The following sections detail each macro library utility command.

7-4

48-057 FOO ROO

7.4.1 BF Command

The BF command backspaces a magnetic tape device. The device is
assigned. The number of specified filemarks are repositioned and
closed.

Format:
BF file descriptor, [decimal number]

Parameters:

file is the file descriptor of the device to be
descriptor backspaced.

decimal is the number of filemarks to be backspaced.
number If the number of filemarks to be backspaced is

not specified, the default is 1.

Programming Considerations:

Ensure that filemarks are on the tape. Do not attempt to
backspace a magnetic +tape that daes not have a beginning
filemark.

Error Messages:

NO FILE Indicates that the file descriptor of the
DESCRIPTCR device to be backspaced was not specified.
SPECIFIED '

48-057 F00 ROO 7-5

- s o W wa wn - wn - -

7.4.2 DELETE Command

The DELETE command deletes macro definitions from a
library.
Format:
DELETE macCro,eee.
Parameters:
macro is the one to eight character name of
MacCroOe
Programming Considerations:
The reguested macros are deleted from the macro 1library.
updated library taskid.001 is assigned; the message:

UPDATED TEMPORARY LIBRARY VOL:taskid.001 NOW AVAILABLE
appears. This 1library can be further modified. When
modifications have been comrleted, use the SAVE command.
Error Messages:

NO LIBRARY Indicates that a macro library is not pre

PRESENT Use the ESTABLISH or GET commands.

MACRONAME Indicates that the macroname was not foun

NOT FOUND

macro

the

An

all

sent.

d.

7-6 48-057 FO0O ROO

7.4.3 DIRECTORY Command

The DIRECTCRY command writes

the
library to an output device.

names of

Format:
DIRECTORY [file descriptor]
Parameters:

file
descriptor

is the file or device
macros are written.
not specified, the
console.

W
If
de

Programming Considerations:

The date the library was last modified and
header are also written. The index blocks
namese. If the file descriptor does not
and assigned. If the file descriptor does
is written to the end-of-file. The file i
the DIRECTORY command.

48-057 FOO ROO

all macros in the

here the names of all
the file or device is
fault is the systenm

the comments from the
are searched for macro

exist, it is allocated
exist, the directory
s closed at the end of

7.4.4 END Command

The END command normally terminates the macro
Format:

END
Programming Considerat%ons:

If the temporary 1library task-id.001 was
information message: §

REMINDER! SAVE YO@R CURRENT LIBRARY

library utility.

not

saved, this

is issued. A second END command deletes that file and goes to
end of task. If changes were not made to a library, a normal end

of task is taken.

48-057 FOO ROO

- o wn an wn om on s o wn

| ESTABLISH |

-—— e s en Wy - - .

7.4.5 ESTABLISH Command

The ESTABLISH command creates a new macro library.

Format:

ESTABLISH file descrirtor ,comments

Parameters:

file is the filename or device of the new macro
descriptor library.
comments represents up to 63 characters of user

comments.

Programming Considerations:

If the temporary 1library task-id.o001 was not saved, this
information message:

REMINDER! SAVE YOUR CURRENT LIBRARY

is issued once. A second ESTABLISH, GET, or END command is
performed. If changes to a previocus library were not made, a new
library is created and the rrevious unchanged library is closed.

Error Messages:

INSUFFICIENT Not enough memory space exists for this
MEMORY FCR library.
THIS LIBRARY

48-057 F00 ROO 7-9

7.4.6 FF Command

The FF command spaces a magnetic tape forward to a filemark.
Format:
FF file descriptor [,decimal number]

Parameters:

file is the device to be repositioned.
descriptor

decimal is the number of filemarks. If the number
number of filemarks is not specified, the default is
one.

Programming Considerations:

The device is assigned, repcsitioned (the number of filemarks),
and closed.

Error Messages:

NO FILE A file descriptor was not specified.

DESCRIPTOR
SPECIFIEL

48-057 FO0O ROO

7.4.7 GET Command

The GET command obtains an existing macro library for updating.
Format:

GET file descriptor
Parameters:

file is the existing macro library.
descriptor

Programming Considerations:

If the temporary library task-id.001 is present, the information
message:

REMINDER! SAVE YOUR CURRENT LIBRARY

is issued once. A second GET, ESTABLISH, or END command is
performed. If changes were not made to a previous library, the
new library is obtained and the previous unchanged 1library is
closed.

Error Messages:

NO FILE A file descriptor was not specified.
DESCRIPTOR
SPECIFIED

LU 1 file descriptor DOES NOT EXIST--CANNOT ASSIGN
RECCRD LENGTH NOT 256. NOT A MACRO LIBRARY.
INSUFFICIENT Not enough memory space for this 1library.

MEMORY FCR
THIS LIBRARY

48-057 FO0O0 ROO 7-11

7.4.8 INCLUDE Command

The INCLUDE command includes new macro definitions into a
library.

Format:

INCLUDE file descriptcr [,macro][,macro]...

Parameters:

file is the scource filename.
descriptor
macro is the one to eight character macro nanme. If

the character macro name is not specified, the
default is all macros on the source file.

Programming Considerations:

The macro(s) specified (all if none specified) are included in
the current macro 1library. The old library is closed and the
updated temporary library task-id.001 is assigned as the current
library; and, the messages:

XXX MACROS INCLUDED FROFK file descriptor
UPDATED TEMPORARY LIBRARY VOL:task-id.001 NOW AVAILABLE

are issued. This library must be saved to become permanent.
Macro definitions to be included in a library must be reasonably
debugged and syntactically correct. A minimum of error checking
is performed on the macro statements. An invalid CAL statement
could cause problems and should be avoided. Any file +that CAL
Macro can process with NO ERRORS can be used safely as input to
the macro library utility. Macros should be tested with CAL
Macro before they are placed in a library.

A single blank replaces leading and trailing blanks to conserve
library space and provide for a faster running of CAL Macro.
Macro definitions with sequence numbers, while accepted, should
be used since blank compression cannot be performed.

7-12 48-057 FOO ROO

Error Messages:

NO FILE DESCRIPTOR SPECIFIEL

DUPLICATE MACRO macroname The macro already exists in the
librarye.

ILLEGAL MACRO NAME name The macre prototype statement is
invalid.

The following statements inside a macro definition cause an
error: ,

MACRC STATEMENT ENCOUNTERED AT LINE XXX - Macro
MENLC STATEMENT ENCOUNTERED AT LINE XXX - Mend
BEND STATEMENT ENCOUNTEREL AT LINE XXX - Bend
END STATEMENT ENCOUNTERED AT LINE XXX - End

EOF ENCOUNTERED IN A MACRC CEFINITION

The assumption is that there is a missing MACRO or MEND
statement. If any of these messages occur, check the library
carefully to find which macros have actually been included.
Also, column 72 of +the =statement preceding the MEND must be
blank. A statement that extends past column 72 causes the MEND
statement to be treated as a continuation. However, an END
statement in the range of an ASIS statement does not cause the
errcr, nor does it terminate the INCLUDE command.

48-057 FOO ROO 7-13

7.4.9 LIST Command

The LIST command writes macro definitions to an output device.
Format:

LIST [file descriptor][,macro],...

Parameters:
file the file or device where the macro
descriptor definitions are written. If a file or a
de?ice is not specified, the default is the
system ccnsole.
macro names ¢f the macros to be written. If the

names are not specified, the default is all
macros in the library.

Programming Considerations:

Macro definitions are written to the output device in the order
that the LIST command specifies. 1If the file does not exit, it
is allocated and assigned. If the file does exit, the macro
definitions are written to the end of the file. The file is
closed at the end of the LIST command and one of these messages
is written:

n MACROS LISTED TO file descriptor
or
|
n MACROS LISTED TO NEW FILE file descriptor
Error Messages:

NO LIBRARY PRESENT no macro library is present (use the
GET or ESTABLISH commands).

name MACRC NOT FOUND a macro was not in the library

THIS LIBRARY CONTAINS the library has to be rebuilt
INVALID MACROS

~
[}

14 48-057 FO0O0 ROO

7.4.10 PAUSE Command

The pause command pauses the macro library utilitye.
Format:

PAUSE

48-057 F0O ROO

7.4.11 RW Command
This command rewinds a magnetic tape. The device is assigned and
closed.
Format:
RW file descriptor

Parameters:

file is the device name of the magnetic tape to
descriptor be rewound.

Error Messages:

NC FILE DESCRIPTOR SPECIFIED

7-16 48-057 F00 ROO

7.4.12 SAVE Command
The SAVE command saves the temporary updated macro library to a

permanent file or device.

Format:

file descriptor
SAVE

*

Parameters:

file is the name of a new file.
descriptor
* is the same file descriptor used in the last

GET or SAVE commande.
Programming Considerations:

The SAVE file descriptor causes a new file descriptor to be
allocated and assigned. If the file already exists, this message
appears:

file descriptor EXISTS. DELETE AND REALLOCATE?
Expected responses are:

YES or NO
Any other response issues the message:

PLEASE ANSWER YES OR NO

A NO response does nothing more and invites the next commande. A
YES response first deletes the ©ld library. If the o0ld library
was a private disc file, the temporary 1library task-id.001 is
then renamed to the o0ld library. If a rename is not possible

48-057 F0O0 ROO 7-17

(different disc, magnétic tape), then +the temporary 1library
task-id.001 is copied to the new file or device. 1In either case,
the new library is assigned as the current library.

If SAVE * is issued, this action o©ccurs without the prompt
message. SAVE * should not be issued for a file that cannot be
rernamed or allocated (system or group file or magnetic tape).

If the SAVE is successful, the message:

UPDATED LIBRARY file descriptor NOW AVAILABLE is written.

Exrcr Messages:

NO FILE CESCRIPTOR SPECIFIED

7-18 48-057 FOO ROO

7.4.13 WFM Command

The WFM command writes a filemark to a magnetic tape.

FORMAT:

WEM file descriptor

Parameters:

file is the device to write a filemark.
descriptor

Programming Considerations:

The device is assigned; a filemark is written; and the device is
closed. No further repositioning occurs. The magnetic tape is
then positioned after the filemark.

Error Messages:

NO FILE DESCRIPTOR SPECIFIED

48-057 FO00O ROO 7

19

- am - - - o o=

7.4.14 Comments
Any character string starting with an asterisk (*) in column 1 is

treated as a comment.

Format:

* any string of characters

48-057 FOO ROO

7.5 OPERATION WITH A MACRO LIBRARY ON MAGNETIC TAPE

The positioning and automatic repositioning of a magnetic tape by
the macro library utility are important if the library resides on
magnetic tape. This list shows positioning before and after each
command:

COMMAND BEFORE ' AFTER
GET Beginning of header Beginning of first macro
record or library (first record

after index records)

COPY Beginning of first Same
macro or 1likrary

INCLUDE Reginning of first Past filemark at end of
macro or 1library library

DELETE Beginning of first Past filemark at end of
macro or library library

SAVE Assumption Beginning of first macro
(see other commands) new library (same as

GET) beginning and ending
file marks automatically
written

DIRECTORY No change No change

7.6 OPERATION OF A MACRO LIBRARY UTILITY UNDER 0S/32

Before the macro library utility can be used, it must be
established as a wuser task with 0S/32 Link. See the 0S/32
Operator Reference Manual and the 0S/32 Link Reference Manual.

An EXPAND factor should be included in Link. To process the

command, 256 bytes are needed and an additional 256 bytes are
needed for every 21 macros in a library.

Example:

EXPAND 6 is sufficient tc process 100 macros.

Once the macro library utility is established, it is 1loaded by
the operating system with the command:

LOAD taskid,fd

48-057 FOO0 ROO 7-21

where:

taskid is_the name assigned +to the macro 1library
utility partition.

fd is ‘the file descriptor or device mnemonic
containing the established macro 1library
utilitye.

The macro library utility task is made the currently selected
task with the command:

TASK taskid

Device assignments do not have to be made. However, if a device
other than CON: is to be used for command input and message
output, the input and output can be assigned to LU 5 and LU 6,
resrectively.

The macro library utility is executed with the command:

START

If the files taskid.001, taskid.002, or taskid.003 exist, they
must be renamed or deleted. These files are used as scratch
files for the macro library utility.

9-22 48-057 FOO ROO

APPENDIX A
COMMAND SUMMARY

BF file descriptor,[decimal number]

backspaces a magnetic tape to a filemark.

DELETE macroO,e.ee.

deletes macro definitions from a macro library.

DIRECTORY [file descriptor]

writes the names of all macros in the library to an
device.

END

normally terminates the macro library.

ESTARBRLISH file descriptor ,comments

creates a new macro library

FF file descriptor [,decimal number]

forward spaces a magnetic tape to a filemarke.

GET file descriptor

obtains an existing macro library for updating.

INCLUDE file descriptor {,macro][,macro]...

includes new definitions into a library

LIST [file descriptor][,macro],...

writes macro definiticns to an output device

48-0E7 F0O0 ROO

output

PAUSE

pauses the Macro Library Utility

RW file descriptor

rewinds a magnetic tare

file descriptor
SAVE

*

saves the temporary updated macro library to a permanent file
or device

WFM file descriptor

writes a filemark to a magnetic tape

A-2 48-057 F0O ROO

OPERATICN

APPENDIX B
INSTRUCTIGCN STATEMENT SUMMARY

OPERAND

- s Tn - - G G .. . - T Ge - S G G R W N EE S en G G M - G G S E A W e G S WS e W G e e e

symbol

symbol

sequence
symbol

symbol

sequence
symbol

sequence
symbol

48-057 F00 ROO

ACTR

AGO

ANOP

ASIS

BGBIA,
BGBLC

GBLA,
GBLC

LCLA,
LCLC

MACRO

MEND

MCALL

MDEFS

MEXIT

BGBLE,

GBLB,

LCLB,

Logical expression enclosed
in parentheses immediately
followed by a sequence symbol

Any expression that can appear
in the operand field of a SETA
instruction

A sequence symbol

Blank

Blank, decimal integer,
BEGIN, or END

One or more variable symbols
used as batch global SET
variable symbols, separated by
commas

One or more variable symbols
used as global set variable
symbols, separated by commas

One or more variable symbols
used as local SET variable
symbols, separated by commas

Version number and date or any

other optional description.
Column 72 is blank.

MACRO, MACRO,+.., MACRO

One or more codes separated by
commas

. — — —— —— S T S p——— Y =G — - vt — — —— — — i ——— ——— — — — —_ e c— —— — — — —— —— — —— S, ottmny S

sequence
symbol

SETA
symbol or
array
element

SETB
symbol or
array
element

SETC
symbol or
array
element

OPERATICN

MLIST

MNOTE
MPAUS
MTRAC

NCLIB

NTRAC

SETA

SETB

SETC

OPERAND

One or more file descriptors
or 1lu numbers separated by
commas

One or more codes separated
by commas

An optional integer expression
followed by a quoted message
string separated by a commna

One or more file descriptors
or lu numbers separated by
commas

An arithmetic expression

0, 1, or logical expression
enclosed in parentheses

One operand consisting of a
type attribute, character
expression, substring nota-
tion or concatenation, or sub-
string notations and character
expressions

48-057 FO00 ROO

APPENDIX C
EXAMPLES OF MACRO EXPANSION

Example 1: Expansion of the Macro Instruction COMPR

The following example =<shcws the expansion of the macro
instruction, COMPR. COMPR compares two byte-oriented fields
(%FLD1 and %FLD2) of equal length (%ZSIZE) for a normal condition
(%ZPEQ.NE) of equal or nonequal. If the normal condition is not
met, a branch is taken to an error routine (%ZERRTN).

The expansion of the COMPR macro instruction is subject to this
restriction:

The operand replacing the symbolic parameter %EQ.NE must not
be 'EQ' or *'NE°'.

If this restriction is not met, further macro expansion 1is
suprressed and the appropriate error message 1s passed to the
source streanm.

MACRO 1
ANAME COMPR AFLD1,%AFLD2,XSIZE,%EQ.NE,XERRTN 2
GBLB ABG01,%BG02 3
AIF ((*ZEQ.NE*' NE °*EQ') AND (*'ZXEQ.NE*' NE °'NE'))EERR1 4
STH 11,222RHOLD SAVE REGS 11 THRU 15 5
AIF ('ZEQ.NE* EQ 'EQ')E&EQO01 6
BAL 12,9329CHMPNE GO CHECK FOR NOT EQUAL. 7
AGO ESETARGS 8
€EQO1 ANOP 9
BAL 12,22aCHPEQ GO CHECK FOR EQUAL. 10
&SETARGS ANOP 11
DAC A(RFLD1) BASE ADDRESS OF FIELD 1. 12
DAC A(XFLD2) BASE ADDRESS OF FIELD 2. 13
DAC ASIZE FIELD SIZE FOR COMPARE. 14
DAC A (ZERRTN) ADDRESS OF ERROR ROUTINE. 15
AIF (*XEQ.NE* EQ 'EQ')EEQO2 16
AIF (%BGO1 EQ 1)EGETOUT 17
AIF (%BG02 EQ 1)E&SHORT 18
B 6*ADC+22adRHOLD BYPASS COMPARE SUBROUTINE 19
AGO &CMPNE 20
&SHORT ANOP 21
B 22dNEQCO1+4 BYPASS COMPARE SUBROUTINE 22
ECMPNE ANOP 23
@dddCMPNE AIS 12,ADC-2 ASSURE CORRECT ALIGNMENT OF 24
AGO &SUBR 25

48-057 F00 ROO C-1

&EQO02

&SHORT1
&CMPEQ

22aCMPEQ
£SUBR

ANAME

ZNAME:A

ANAME:B

2dNEQO1
%BGO1

d2dRHOLD

6§EQO3

%ANAME:B

a2aEQ001
%BG02

AdddRHOLD

&ERR1

EGETOUT

CMPREQ1

ANOP
AIF
AIF

AGO
ANOP

ANOP
AIS
ANOP
NAI
LCA
LDA
LDA
LDA
AHI
STA
LB
CLB

BNE
RIS
AIS
SIS
BNZ

AIF
LM

LDA

SETB
AIF
DAS
MEXIT
ANOP
LDA

LM

B
SETB
AIF
DAS
MEXIT
ANOP
MNOTE
MEXIT
ANOP
MEND

COMPR
STHM
BAL

26
(ABG02 EQ 1)&GETOUT 27
(%BGO1 EQ 1)&SHORT1 . 28
6*ADC+22dRHOLD BYPASS COMPARE SUBROUTINE. 29
&CHMPEQ 30
31
233EQ001+4 BYPASS COMPARE SUBROUTINE. 32
33
12,ADC-2 ASSURE CORRECT ALIGNMENT OF 34
35
12,-ADC ADDRESS OF ARGUMENT LIST. 36
15,0(12) R15=ADDR OF 1ST FIELD. 37
14,ADC(12) R14=ADDR OF 2ND FIELD. 38
13,2*ADC(12) R13=FIELD SIZE. 39
11,3*ADC(12) R11=ADDR OF ERROR ROUTINE. 40
12,4*ADC POINT R12 TO RETURN ADDR. 41
12,5*ADC+22aRHCLD SAVE RETURN ADDR. 42
12,0(015) R12=BYTE FROM FIELD 1. 43
12,0(14) COMPARE WITH SAME BYTE
IN FIELD 2. 4y
ANAME:B GET OUT IF THEY'RE NOT EQUAL. 45
15,1 BUMP ADDR OF FIELD 1. 46
14,1 BUMP ADDR CF FIELD 2. 47
13,1 CECREMENT FIELD SIZE. » 48
ANAME CHECK NEXT BYTE IF
FIELD SIZE > 0 49
('XEQ.NE®* EQ 'EQ')EEQO3 50
12,ADC+22dRHOLL FIELDS ARE =,
RESTORE REGS & ERROR 51
0(11) EXIT. 52
11,5*ADC+a32aRHOLD FIELDS ARE NOT =,
R11 - NORMAL RETURN 53
ANAME:R GO RESTORE REGS AND GET OUT 54
1 55
(%BG0O2 EQ 1)E&GETOUT 56
6 REGISTER & RETURN SAVE AREA 57
58
59
11,5*ADC+222dRHCLD FIELDS ARE =,
R11 = NORMAL RETURN 60
12,ADC+9@@RHOLL RESTORE REGS (ALSO HERE
IF FLDS NOT =) 61
0¢11) EXIT. 62
1 ' 63
(%BGO1 EQ 1)EGETOUT 64
6 REGISTER & RETURN SAVE AREA 65
66
67
*INVALID COMPARE TYPE' 68
69
70
71
FLDA,FLDB,26,EQ,ERROR1 72

11,222RHOLD
12,232CNPEQ

SAVE REGS 11 THRU 15.
GO CHECK FOR EQUAL.

48-057 FOO ROO

Jd23aCMPEQ

CMPREQ1

CMPREQ1B
22d2EQ001
?daRHOLD
CMPRENE1

adaCMPNE

CMPRNE1

CMPRNE1R

CMPRNE1B
2ddNEOQO1
CMPREQ2

48-057 F0O ROO

DAC
DAC
DAC
DAC

AIS
NAI
LDA
LDA
LDA
LDA
AHI
STA

CLB
BNE
RIS
RIS
SIS
BNZ
LDA
LM

DAS
COMPR
STH
BAL
CAC
DAC
DAC
DAC

AIS
NAIX
LDA
LDA
LDA
LDA
AHI
STA

CLB.
BNE
AIS
AIS
SIS
BNZ

LDA

B
COMPR
STH
BAL
DAC
DAC

A(FLDR)

A(FLDB)

26

A(ERROR1)
6*ADC+22a@RHOLD
12,ADC-2
12,-ADC
15,0(12)
14,ADC(12)
13,2*ADC(12)
11,3*ADC(12)
12,4*ADC
12,5*ADC+22aRHCLD
12,0015)
12,0014)
CMPREQ1B

15,1

14,1

13,1

CMPREQ1
11,5*ADC+22aRHCLD
12,ADC+222RHOLL
0(11)

6

AFLD,BFLD,91,NE,ERRO1

11,22aRHOLD
12,22aCMPNE
A(AFLD)

A(BFLD)

91

A(ERRO1)
22aNE001+4
12,ADC-2
12,-ADC
15,0(12)
14,ADC(12)
13,2*ADC(12)
11,3*ADC(12)
12, 4*ADC
12,5*ADC+22aRHOLD
12,0(15)
12,0(14)
CMPRNE1B

15,1

14,1

13,1

CHMPRNE1

12, ADC+@@dRHCLE
0(11)
11,5*ADC+2@aRHOLD
CMPRNE1A
F1,F2,13,EQ, ERROR2
11,222RHOLD
12,223CMPEQ
A(F1)

A(F2)

BASE ADDRESS OF FIELD
BASE ADDRESS OF FIELD

Te
2.

FIELD SIZE FOR COMPARE.

ADDRESS OF ERROR ROUTI

NE.

BYPASS COMPARE SUBROUTINE.

ASSURE CORRECT ALIGNMENT OF

ADDRESS OF ARGUMENT LIST.

R15=ADDR OF 1ST FIELD.
R14=ADDR OF 2ND FIELD.
R13=FIELD SIZE.

R11=ADDR OF ERROR ROUTINE
POINT R12 TO RETURN ADDR.

SAVE RETURN ADDR.
R12=BYTE FROM FIELD 1.

COMPARE WITH SAME BYTE IN FIELD 2.

GET OUT IF THEY'RE NOT EQUAL.

BUMP ADDR OF FIELD 1.
BUMP ADDR OF FIELD 2.
CECREMENT FIELD SIZE.

CHECK NEXT BYTE IF FIELD SIZE > 0.
FIELDS ARE =, R11 = NORMAL RETURN.
RESTORE REGS (ALSO HERE IF FLDS NOT

EXIT.

REGISTER & RETURN SAVE AREA.

SAVE REGS 11 THRU 15.

GO CHECKX FCR NOT EQUAL.

BASE ADDRESS OF FIELD
BASE ADDRESS OF FIELD

1.
2.

FIELD SIZE FCR COMPARE.
ADDRESS OF ERROR ROUTINE.
BYPASS COMPARE SUBROUTINE.

ASSURE CORRECT ALIGNMENT OF

ADDRESS OF ARGUMENT LIST.

R15=ADDR OF 1ST FIELD.
R14=ADDR OF 2ND FIELD.
R13=FIELD SIZE.

R14=ADDR OF ERROR ROUTINE.
POINT R12 TO RETURN ADDR.

SAVE RETURN ADDR.
R12=BYTE FROM FIELD 1.

COMPARE WITH SAME BYTE IN FIELD 2.

GET OUT IF THEY'RE NOT EQUAL.

BUMP ADDR OF FIELD 1.
BUMP ADDR OF FIELD 2.
DECREMENT FIELD SIZE.

CHECK NEXT BYTE IF FIELD SIZE 0.
REGS AND ERROR.

FIELDS ARE =, RESTORE
EXIT.

FIELDS ARE NOT =, RM1
GO RESTORE REGS & GET

SAVE REGS 11 THRU 15.
GO CHECK FOR EQUAL.

BASE ADDRESS OF FIELD
BASE ADDRESS OF FIELD

= NORMAL RETURN.

OUT.

73

74

DAC 13 ' FIELD SIZE FOR COMPARE.

DAC A(ERROR2) ADDRESS OF ERROR ROUTINE.
CMPRNE2 COMPR FLD1,FLD2,52,NE,ERR02 ‘ 75
STH 11,22dRHOLD SAVE REGS 11 THRU 15.
BAL 12,233CHPNE GO CHECK FOR NOT EQUAL.
DAC A(FLD1) BASE ADDRESS OF FIELD 1.
DAC A(FLD2) BASE ADDRESS OF FIELD 2.
DAC 52 FIELD SIZE FOR COMPARE.
DAC A(ERRO2) ADDRESS OF ERROR ROUTINE.
COMPARE COMPR FIELDA,FIELDB, 39,LT,ERRO3 76
* MNOTE *INVALID COMPARE TYPE®*

SUMMARY:

When the first equal compare (EQ) is made, the subroutine
'20adCMPEQ" is expanded. When the first request for a nonequal
compare (NE) is made, the subroutine ‘'22aCMPNE' is expanded. All
subsequent uses of the. COMPR macro instruction in the same source
stream result in the expansion of a BAL to the applicable
subroutine, followed by an argument 1list. When the macro
instruction CCMPR is first invoked (for an equal or a nonequal
compare), a Tregister storage area identified by the 1label
'9ddRHOLD' is defined. Registers 11 through 15 are wused 1in
executing the subroutines; but, registers 12 through 15 are
restored before exiting. The original contents of register 11
are available to the user in location @22RHOLD.

ANALYSIS:
e Statements 1 through 71 constitute the macro definition.
e Statements 72 through 76 show 5 possible calls of the macro.

e Statement 72 represents the initial call of the COMPR macro
instruction in the current source stream and the initial use
of the EQ operand in a COMPR instruction in this source
stream. This representation of the statement results in the
full expansion of the 32daCMPEQ subroutine and the register
storage area '2d@aRHOLD®' appended to the '@dadRHOLD' subroutine.

When the @d22CMPEQ subroutine is completed, the binary global
'%ZBG02*' is set to true, indicating the ©presence of the
subroutine.

e Statement 73 represents the initial use of the NE operand in
a COMPR instruction in this source stream, which results in
the full expansion of the 22CMPNE subroutine. The text of
%BG02 in statement 56 causes the definition of the register
storage area to be suprressed and further macro expansion to
be terminated. When the expansion of the 222CMPNE subroutine
is completed, the '7%BG01' binary global is set to true,
indicating the subroutine.

C-y 48-057 FOO ROO

® Statement 74 represents a subsequent use of the EQ operand and
results in the expansion of a BAL to 2daCMPEQ followed by the
applicable argument list. :

® Statement 75 represents a subsequent use of the NE operand and
results in the expansion of a BAL to 2d2CMPNE followed by the
applicable argument list.

e Statement 76 shows the results of an invalid compare type.

Example 2: Expansion of the Macro Instruction PRIME:

The following example illustrates the expansion of the macro
instruction PRIME. PRIME generates a table of prime numbers
%LENGTH long, beginning with the prime numbers Z%PRIME1.

MACRO 1
PRIME %ZPRIME1,ZLENGTH 2
LCLA %AL1,%AL2,7AL3 3
AIF (*ZLENGTH® LT '1°')&ER2 4
AIF (*%PRIME1* LT '2°')&ER1 5
%AL1 SETA %PRIME1 6
%AL2 SETA %AL1/2 7
€LO0OP1 ATF (%ZAL2 EQ 1)&GETREST 8
AIF (ZAL1/%AL2*AL2 EQ %AL1)&ER1 9
%ZAL2 SETA ZAL2-1 10
AGO £LOOPR1 11
&GETREST ANOP 12
LAC %AL1 13
%AL3 SETA %AL3+1 : 14
AIF (ZAL3 LT ZLENGTH)&LOOP2 15
MEXIT 16
&1L0CP2 ANOP 17
%ALA SETA ZAL1+1 18
%AL2 SETA %AL1/2 19
&LOOP3 AIF (%RL2 EQ 1)&GETREST 20
AIF (%4AL1/%AL2*%AL2 EQ %AL1)&LOOP2 21
%AL2 SETA %RL2-1 22
AGO &LOOE3 23
&ER1 ANOP 24
MNOTE *ZPRIME1 NOT A PRIME NUMBER® ' 25
MEXIT 26
&ER2 ANOP 27
MNOTE * LENGTH LT 1° 28
MEND 29
ERIME 13,5 30
DAC 13
DAC 17
DAC 19
DAC 23
DAC 29

PRIME 55,20 31
*MNOTE '55 NOT AR PRIME NUMBER' :

48-057 FOO ROO C-5

SUMMARY:

If

the operand replacing the symbolic parameter %PRIME1 is not a

prime number or if, ZLENGTH is less than 1, macro expansion is
suppressed and an error message is passed to the source strean.

ANA

LYSIS:
Statements 1 throuﬁh 29 constitute the macro definition.

Statements 30 and 31 show two possible expansidns of the macro
instruction.

Statement 30 requests a table of prime numbers, 5 address-
length constants long, beginning with the number 13. Because
13 is a prime number, the expansion of the macro instruction
takes place. t

Statement 31 requests a table of prime numbers, 20
address-length constants long, beginning with the number 55.
Because 55 is not & prime number, the macro expansion is
suppressed and the errcr message results.

48-057 FOO0 ROO

APPENDIX D

CAL MACRO/32 PROCESSOR ERROR MESSAGES

ERRCR COLE MEANING
1 STRING TOO LONG
2 ILLEGAL CHARACTER
3 UNEXPANDABLE'MACRO
4 OPCODE NOT ALLOWED

TO BE GENERATED

5 INVALID OPCOLE

6 ILLEGAL OPCOTE

7 UNDEFINED VARIABLE
SYMBOL

48-057 FOO ROO

EXPLANATION

The length of a string

literal in a macro
definition exceeds 255
characters.

An 1illegal character was
encountered in the input
stream and was changed to
a '#.o

A macro invocation was
encountered which cannot be
expanded because of errors
in the definition.

An operation code allowed
only in a source statement
was obtained through
substitution of a value for
a variable symbol.

The length of an operation
code exceeds eight
characters or the operation
code 1is missing or not
followed by a blank.

An operation code allowed
only in a macro definition
was encountered in open
code.

A variable symbol, not
declared in a BGBLx, GBLx,
or LCLx statement or in a
macro prototype, vas
encountered in a SETx, AIF,
or model statement.

ERROR CODE

10

11

12

13

14

15

MEANING

UNDEFINED SEQUENCE
SYMBOL |

UNDEFINED KEYWORD
PARAMETER

|

MULTIPLY DEFINED
MACRO NAME

MULTIPLY DEFINED
SETx SYNBOL

MULTIPLY DEFINED
SEQUENCE SYNBOL

MULTIPLY DEFINED
PARANETER

ILLEGAL PARAMETER
SEQUENCE

ILLEGAL OPCOTE

EXPLANATION
A sequence symbol was
declared 1in the operand

field of an AIF or AGO
statement, but does not
occur in the name field of
any statement in the macro
definition.

A keyword was encountered
in a macro instruction
operand that does not
correspond to any keyword
in the macro prototype.

A macro definition of the
same name was encountered
previously, oOr a macro was
invoked before it was
defined.

A SETx variable symbol was
defined more than once in
an LCLx, BGBLx, or GLBx
statement, or it has the
same name as a parameter or
system variable.

A sequence symbol of the
Same name occurs in the
same name field of a
previous statement.

A symbol parameter in a
macro prototype occurs more
than once or has the sanme
name as a system variable.

A keyword parameter
precedes a positional
parameter in a macro

prototype or instruction.

A BGBLx, GBLx, or LCLx
SEQUENCE statement does not

precede all executable
statements in a macro
definition, or an ACTR
statement does not
immediately follow the

declaration statements.

48-057 FOO ROO

ERRCR CODE

16

17

18

19

20

21

22

23

24

25

48-057 FOO ROO

MEANING

ILLEGAL VARIABLE
SYMBOL

ILLEGAL SECUENCE
SYMBOL

ILLEGAL DECLARATION

ILLEGAL MACRO
NAME

MISMATCHED SETx
TYPE

MISSING SETx
SYMBOL

MISSING SEQUENCE

SYMBOL

ILLEGAL NAME FIELD

NON-BLANK NAME FIELD

MISSING OPERAND

EXPLANATION

A variable symbol is longer
than seven characters or
has a first character that
is not alphabetic.

A sequence symbol is longer
than seven characters or
has a first character that
is not alphabetic.

The syntax of a BGBLx,
GBLx, or LCLx statement is

incorrect. Either an
operand 1is not a variable
symbol or a comma is
missinge.

The length of a macro nane
exceeds eight characters or
corresponds to a reserved
opcode, or the syntax of
the operand field of an
MCALL statement is
incorrect.

The types of the SETx
variable statements and the
variable symbol in the name
field of that operation do
not match.

The name field of a SETx
statement is blank or does

not contain a variable
symbol.
A sequence symbol is

missing in the name field
of an ANOP statement or in
the operand field of a AGO
or AIF statement.

The statement name field in
a macro definition contains
a token forbidden in that
position.

Self-explanatorye.

Self~-explanatory.

ERROR CODE

26

27

28

29

30

31

32

33

34

35

36

37

MEANING
|

ILLEGAL ARITHMETIC
EXPRESSION

ILLEGAL BOCLEAN
EXPRESSION

ILLEGAT CHARACTER
EXPRES$ION

EXPRESSION STACK
OVERFLOW

INVALID ATTRIBUTE
FUNCTION

ILLEGAL ATTRIBUTE
FUNCTION

TYPE FUNCTION NOT
ALONE |

ILLEGAL SUBLIST
NOTATION

MISMATCHED
PARENTHESES

MISMATCHED QUOTES

MISSING COMMA

|

ILLEGAL| QUCTE

EXPLANATION

The syntax of 0P, an
arithmetic expression,
cannot be parsed.

The syntax of a Boolean
expression cannot be
parsed.

The syntax of a character

expression cannot be
parsed.

An arithmetic, Boolean,
binary, or character

expression was encountered
that exceeds 15 1levels of
parentheses with two
operations pending at each
level.

The operand of an attribute
function is not a symbolic
parameter.

R type attribute function
occurs 1in an arithmetic
expression.

A type attribute function
is not the only element in
a character expression.

The syntax of a sublist
notation is incorrect.

The parentheses in a macro
instruction, or prototype,
or character expression do
not balance.

The gquotes in a macro
instruction or prototype,
or in a character
expression or model
statement do not balance.

A comma is missing.
An illegal gquote wvas
encountered in the name

field or operation field of
a model statement.

48-057 F0OO ROO

ERRCR COPE

38

39

40

41

42

u3

by

45

46

47

us

48-057 F0O0 ROO

MEANING

ILLEGAL SYMBCL

UNRECOGNIZABLE

SYMBOL

BATCH IN ILLEGAL

POSITION

END BEFORE MEND

BEND BEFORE MEND

ILLEGAL BEND

ILLEGAL SUBSTRING
EVALUATION

ILLEGAL SUBLIST
EVALUATION

ARITHMETIC OVERFLOW

ACTR OVERFLOW

ATTEMPT TO DIVIDE
BY ZERO

EXPLANARTION
A model statement contains
an illegal character not

enclosed in quotes.

An expression contains an
illegal character.

A batch pseudo-op was
encountered that is not the
first statement of the
programe.

An end pseudo-op was
encountered in a macro
definition.

A bend pseudo-op wvas
encountered in a macro
definition.

A bend pseudo-op was
encountered but no
preceding batch pseudo-op

occurred.

In substring notation, the
value of the second
expression is less than the

value of ' the first
expression.

An expression in sublist
notation evaluates to a
negative number.

An arithmetic expression
evaluates to a number
outside the range +2, 147,
ug3, 647. ‘

The arithmetic expression
in an ACTR statement
evaluates to a number

greater than 32,767.

Self-explanatory.

ERROR CODE

49

50

51

52

53

5u

55

56

57

58

59

60

MEANING

ILLEGAL ARITHMETIC
OPERATION

ILLEGAL LOGICAL
UNIT

ILLEGAL LABEL

ACTR RUNOUT
DICTIONARY SPACE
FULL

UNRECOGNIZABILE
LINE

TOO MANY SYMECLS

BUFFER OVERFLOW
ILLEGAY SUBSCRIPT
MISSING SUBSCRIPT

ILLEGAL ARBRAY
EXPRESSION

DIMENSION OF ARRAYS
TOO LARGE, INCREASE

MEMORY -

EXPLANATION

An operand of an arithmetic
operation is a SETC
variable statement or
symbolic ©parameter whose
value contains other than
an optional sign followed
by numerics.

The operand of an MLIBS or
NOLIB statement is not
numeric or an attempt was
made to assign an LU that
was previously assigned or
not presente.

The label in the operand
field of an MCOPY statement
is blank or contains an
illegal character,

Loop counter runout.
Insufficient memory space
was allocated for the macro
processor's dynamic tables.
A line was encountered
in the input that is
neither blank nor a comment
nor a continuation card,
but has a missing operation
code.

A symbol table overflow.

A macro statement 1is over
256 bytes.

A subscript is not
arithmetice.

Self-explanatory.

Self-explanatorye.

Increase memory.

48-057 FOO ROO

ERROR CODE

61

62

63

64U

65

66

67

68

69

48-057 F0O0 ROO

MEANING

ILLEGAL TYFE FOR AIF
OR AGO

DIFFERENT TYPE
DECLARATIONS FOR
GLOBAL VARIARLE

SUBSCRIPT QOUT OF
RANGE

NONEXISTENT SEQUENCE
SYMBOL FOR CCMPUTED
AIF OR AGO; INVALID

CODE FOR SYSTEM MACRO

MORE THAN 16 MACRO
LIBRARIES

MORE THAN 16 NESTED
MCOPY STATEMENTS

ILLEGAL OPTION FOR
MLIST OR MLEES

MACRO COMMENT

ASIS ERROR

EXPLANATION

The variable symbol 1is not

a type character.

A global variable name was
declared twice with
different types.

Out of range subscript
detected.

was

Self-explanatorye.

Self explanatorye.

Self explanatory.

Self explanatory.

A statement with ¢ * in
columns 1 and 2 is outside
the macro definition.

The statement is not
allowed in the range of
ASIS.

D=7

GLOSSARY

batch global set variable (EGBLx) symbol

The BGBLx symbol communicates values between macro
definitions or between different usages for the same macro
definitions in different programs. It must be declared as
batch global each time it is used in a macro definition.

conditional branch (AIF) instruction

The AIF instruction alters the macro definition statement
processing sequence.

conditional instruction loor counter (ACTR) instruction

The ACTR instruction assigns a count other than 32767 as the
maximum number of AIF and AGO branches executed within a
macro definition.

conditional instructions

Conditional instructions are instructions that can vary a
macro instruction at each invocation.

count attribute

The count attribute is the number of all characters in a
macro instruction field. It includes all characters in the
operand plus apostrophes; but, it does not include delimiting
commas.

0

generated statements (expanded statements)
Generated statements are the assembler statements the
processor processes.

global SET variable (GBLx) symbol
The GBLx symbol communicates values between macro definitions
or between different usages for the same macro definition in

a program. It must be declared as global each time it is
used in a macro definition.

48-057 F0OO ROO Glossary-1

header record

A header record is the first record in any macro library. It
contains: the last date the 1library was modified, the
library size, the medium type, and user comments.

index records

Index records are records used to locate macro definitions
within a 1library. Each index record contains from 0 to 21
entries. ‘

inner macro instruction

When the mnemonic operation code for a given macro definition
appears as the operation field of a model statement in
another macro definition, the model statement is an inner
macroc instruction.

keyword

A keyword is the portion of a symbolic parameter +that does
not include the percent sign.

keyword macro instruction

R keyword macro instruction 1is a specific type of macro
instruction in which each operand must consist of a keyword
immediately followed Ly an equal sign (=), followed
(optionally) by a value.

local SET variable (LCLx) symbols

The LCLx symbols communicate values within the same usage of
a particular macro definition. It is only declared in the
macro definition that it is used in and it is reset to its
initial value each time that macro definition is invoked.

macro call (MCALL) instruction

The MCALL instruction permits the cited macros to be <called
as they appear in the library rather than as they appear in
the processor source strean.

A macro definition is a series of user written statements in
the macro language. The language enables the user to assign
a mnemonic operation code to the definition. This mnemonic
operation code causes the definition to be invoked. A macro
definition minimally consists of: a name, operation,

Glossary-2 48-057 F00 ROO

operand, comments, continuation, and identification/sequence
field used for writing macro instructionse.

macro definition header (MACRO)
A macro definition header indicates the beginning of a macro
definition. It must be the first statement.

macro definition trailer (MEND)
A macro definition trailer indicates the end of a macro
definition. It must ke the last statement in the definition.

macro definitions (MDEFS) instruction
The MDEFS instruction controls which macro statements are
sent to the CAL file.

macro instruction
A macro instruction is a single instruction that expands to
a series of instructions. It invokes and processes a given
macro definition. The instruction «can be positional,
keyword, or mixed operand, corresponding to the three forms
of macro prototype statementse.

macro instruction prototyre statement
A macro instruction prototype statement specifies the
mnemonic operation code and general format to be used when
writing any macro instructions referring to this definition.

macro library
A macro library is a 256-byte record file containing: a
header record, index records, and macro definitions.

macro libraries (MLIBS) instruction
The MLIBS instruction designates the file descriptor or
decimal LU numbers where the macro libraries, necessary in a
given macro processor source stream, reside.

macro trace (MTRAC) instruction
The MTRAC instruction, a diagnostic instruction, determines

the effective conditional branches and the SET variable
symbols values within the macro logic.

48-057 FO0O0 ROO Glossary-3

MCOPY statement
The MCOPY statement enables source text to be copied from a
specified LU or file descriptor at any point in a macro
definition or program.

MEXIT instruction
The MEXIT instruction terminates the current macro definition
expansion.

mixed mode macro instructions
Mixed mode macro instructions are a specific type of macro
instruction in which all positional operands must be placed
before any keyword operands.

mhemonic operation code
A mnemonic operation code is a user-assigned code that
enables the macro definition to be invoked.

model statements
Model statements are statements from which the CAL Macro
Processor expands the desired source statements. The four
fields of a model statement are: name, operation, operand,
and commentse.

no libraries (NOLIB) instruction
The NOLIB instruction suppresses searching all or some macro
libraries previously designated by the MLIBS statement.

no operation (ANOP) instruction
The ANOP instructi@n is used when the sequence symbol in an
AIF or AGO instruction must reference a statement already
containing a symbol (cther than a sequence symbol) in the
name field.

no trace (NTRAC) instruction

The NTRAC instruction causes the macro trace feature to be
disabled. :

Glossary-u 48-057 FO0O ROO

number attribute
A number attribute is a value equal to the number of operands
in an operand sublist. The number is eqgqual to one plus the
number of delimiting commas appearing within the sublist.

outer macro instruction
Phen the mnemonic operation code for a given macro definition
appears as the operaticn field of a model statement in
another macro definition, the macro instruction referring to
the containing definiticon is an outer macro definition.

pause (MPAUS) statement
The MPAUS statement permits the user to pause the macro
pProcessore.

positional macro instructions
Positional macro instructions are a specific type of macro.
instruction in which placement of the symbolic parameters in

the operand field of the macro prototype statement determines
placement of operands.

The MNOTE instruction generates a macro message.

sequence symbols
Sequence symbols are symbols that can appear in a statement
name field to vary the statement processing sequence.

SET arithmetic variable (SETA) instruction
The SETA instruction assigns an arithmetic value to a SETA
symbol or array element.

SET binary variable (SETB) instruction
The SETB instruction assigns the value true (binary 1) or
false (binary 0) to a SETB variable symbol.

SET character variable (SETC) statement

The SETC statement assigns a character value to a SETC
variable symbol.

48-057 FOO ROO Glossary-5

SET variable statemenf (SETx) instruction
The SETx instruct;on alters the variable symbols value that
the BGBLx, GBLx, or LCLx declaration statements declared as
SET variable symb@ls.

sublist

A sublist is one or mcre operands separated by commas and
enclosed in pajired parentheses. The entire sublist,
including the parentheses, is one macro instruction operand.

substring notation

Substring notation allows a part of a character value to be
assigned to a SETC variable symbol indicating in the operand
field of a SETx instruction the «character value or an
expression representing the character value to be assigned to
the SETC variable symbol.

symbolic parameters

A symbolic parameter is a variable consisting of a percent
sign (%) followed ty from one to seven letters or numbers,
the first of which! must be a character. These parameters,
used 1in the macro definition, represent the name field and
operands of the correspcnding macro instruction.

type attributes
Type attributes arg attributes of a macro instruction operand
that can be used wpenever a character expression could be
used; but the type attribute must occur alone (that is, not
concatenated with anything) and it must not be enclosed in
quotes.

unconditional branch (AGO) instruction
The AGO instruction alters the sequence in which macro
definition statements are processed.

%SYSDATE macro variable symlbol
The %SYSDATE symbol is an eight character string systen

variable whose v@lue represents the date that the macro
processor was invoked.

Glossary-6 48-057 FO0O ROO

ASYSINDX macro system variable symbol

The %ZSYSINDX is a system variable whose values <can be
concatenated with other characters to create unigqgue names for
statements generated from the same model statement.

%ZSYSLIST macro system variable symbol

The %SYSLIST 4is a system variable that provides an
alternative to symbolic parameters for referencing to
positional macro instruction operands. Both ZSYSLIST and
symbolic parameters can be used in the same positional macro
definition.

ZSYSMAC macro system variable symbol

%SYSMAC is a system variable that differs from the systenm
variable %SYSINDX because the value <changes due to inner
macrc callse.

ASYSTIME macro system variable symbol

ASYSTIME is an eight character string system variable whose
value 1is that time <¢f day that the macro processor was
invoked.

48-057 FOO ROO Glossary-7

INDEX

processor termination
start options
under 0S/32

CRL Macro/32 processor opera=

Macro definitions,
conditional expansion of

6=1
6-1
6-3
memory requirements 6-1
6-U4
6-4 4-1
6-2 fields 2=-2

AB | ESTABLISH 7-9
| FF 7-10
Additional CAL Macro/32 ' GET 7-11
Features 5=1 {%CLUDE 7-12
as is (ASIS) instruction 5-2 I ?T 7-14
macro call (MCALL) in- : | ﬁAJSE 7-15
struction 5-3 | S:V“ ;':g
macro copy (MCOPY) state- ' 5 -
WFNM 7-19
ment 5-14 £ .
macro definitions (MDEFS) | Cond%t%onal expansion of macro
instruction 5-6 | deft:;;izzzs z'ls
m O s : B a -
2g;triézggiles (HLIBS) 5-17 I conditional and uncondition-
macro listing (MLIST) in- ' al branch instructions 4-19
struction 5-8 ' global, batch global, and
macro trace (MTRAC) in- | local SET variable symbol
struction 5-10 I declaration statements 4-1
no libraries (NOLIB) in- | set variable symbol state-
struction ' 5-11 ments . ' 4-6
no trace (NTRAC) instruc- | Conditional instruction loop
tion 5-12 | counter (ACTR) instruction 4-23
. : AREAD statement 4-39
MPAUSE -9
pause () instruction 5 : macro definition exit
(MEXIT) instruction 4=-27
CDEFGH | no operation (ANOP) in-
| struction 4-24
CAL Macro/32 Processor 1-1 | request for message (MNOTE)
components 1-2 instruction : 4-29
configuration option 1-1 ' substring notation in model
operation of 6-1 | statements 4-40
relationship to other prod- | system variable symbols 4-31
ucts) 1-1 |
requirements 1-1 ' IJKL
summary of features 1-2 '
CAL Macro/32 processor fea- ' Inner/outer macro instructions 3-7
tures, summary 1-2 levels of macro instruc-
CAL Macro/32 processor I/0 | tions 3-8
SLrors 6-3] macro instructions in con-
Ct; Macro/32 processor opera- | ditional assembly 3-9
ion -)
device assignments - |
1/0 errors - | MN
|
; ' N
tion under 0S/32 6-2 | Macro definition contents,
CAL Macro/32 processor start ' keyword macro instruction
options 6-4 prototype statements 2-9
CAL Macro/32 processor termin- | macro header and trailer
ation 6-4 | statements 2-8
Commands 7-4 macro instruction prototype

BF 7-5 : statements 2-8

comments 7-20 mixed mode macro instruction

DELETE 7-6 | prototype statements 2-10

DIRECTORY 7-7 | positional macro instruction

END 7-8 | prototype statements 2-8

48-057 F0OO ROO Ind-1

Macro definition, preparation
macro definition contents
macro definitions
macro instructions
model statements
special symbols

Macro instruction operands
continuation of macro in-

structions
omitted operands
sublists

Macro library
header record
index records
macro definitions

¥acro library utility program
command format
macro library
macro library utility com=

mands
operation of a macro 1li-
brary utility under 0S/32
operation with a macro 1li-
brary on magnetic tape

Model statements,
comments field

concatention rules

name field

operand field

operation field

using symbolic parameters
in model statements

0PQ

Operation of a macro library
utility under 0S/32

Ind-2

WD N
[] 1t
WE aaNd-=

NNNNNNJdwWwww
]
2 W WO &

—— —— - —— — —— — — . T S——— — —— — —— o— — — — —— — — —— — T — — ——— — —— —— — — ——— S — ———— — —— ——— — —— — i — — ——— —— —

Operation with a macro library
on magnetic tape

R

Rules for writing macro in-
structions,
macro instruction name
field
macro instruction operand
field
macro instruction operation
field

STUV

Special symbols,
concatenation symbols
defining variable symbols
local, global, and batch

variable symbols
sequence symbols
variable symbols

WXYZ

Writing macro instructions
inner/outer macro instruc-
tions
macro instruction operands
rules for

48-057 FOO ROO

7-21

NN
1
[,)]

!\Jf\l)t\)
e, W6,

wh.uw
-

Concunen@

uter Corporation
PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our users are an integral source
of information for improving future tevisions. Please use this postage paid form to send us comments,
corrections, suggestions, etc.

1. Publication number

2. Title of publication

3. Describe, providing page numbers, any technical errors you found. Attach additional sheet if
necessary. '

4. Was the publication easy to understand? If no, why not?

5. Were illustrations adequate?

6. What additions or deletions would you suggest?

7. Other comments:

From Date

Position/Title’

Company

Address

9409

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

Concurrent Computer dorporation
2 Crescent Place 1
Oceanport, NJ 07757

ATTN: :
TECHNICAL SYSTEMS PUBLICATIONS DEPT.

STAPLE

NO POSTAGE
NECESSARY
1F MAILED
IN THE
UNITED STATES

STAPLE

941!

