COMMON
ASSEMBLY
LANGUAGE/32
(CAL/32)

Reference Manual

0S/32 version 8.2 or higher

Con unea@

Computer Corporation

The information in this document is subject to change without notice
and should not be construed as a commitment by Concurrent
Computer Corporation. Concurrent Computer Corporation assumes
no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license,
and it can be used or copied only in a manner permitted by that
license. Any copy of the described software must include any
copyright notice, trademarks, or other legends or credits of
Concurrent Computer Corporation and/or its suppliers. Title to and
ownership of the described software and any copies thereof shall
remain in Concurrent Computer Corporation and/or its suppliers.

The licensed program described herein may contain certain
encryptions or other devices which may prevent or detect
unauthorized use of the Licensed Software. Temporary use
permitted by the terms of the License Agreement may require
assistance from Concurrent Computer Corporation.

Concurrent Computer Corporation assumes no responsibility for the

use or reliability of the software on equipment that is not supplied by
Concurrent Computer Corporation.

© 1979, 1981, 1983, 1984, 1985, 1986
Concurrent Computer Corporation — All Rights Reserved

Concurrent Computer Corporation, 2 Crescent Place
Oceanport, New Jersey 07757

Printed in the United States of America

NOTICE

THIS MANUAL CONTAINS REFERENCES TO THE
EXTENDED MEMORY AND THE MULTIPROCESSOR
VERSION OF THE 3280 SYSTEM WHICH WERE NOT
AVAILABLE FOR THE 0S/32 8.2 SOFTWARE RELEASE.

FOR FURTHER INFORMATION OR ASSISTANCE
CONCERNING THESE PRODUCTS, PLEASE CONTACT
YOUR LOCAL CONCURRENT COMPUTER CORPORATION
SALES REPRESENTATIVE.

TABLE OF CONTENTS
PREFACE

CHAPTERS

1 BASIC CONCEPTS

1.1 INTRODUCTION

1.2 THE PROCESSING UNIT

1.2.1 Temporary Storage (Registers)

1.2.2 Program Status Word (PSW)

1.2.3 Input/Output (I/0) Interface

1.2.3.1 Main Memory

1.2.4 Software Relocation

1.2.5 Hardware Relocation

1.3 INSTRUCTION FORMATS (16-BIT)

1.3.1 Register~to-Register (RR) Instructions

1.3.2 Register and Indexed Storage (RX)

Instructions

3.3 Register and Immediate (RI) Instructions
3.4 Short Form (SF) Instructions

INSTRUCTION FORMATS (32-BIT)
Register—-to-Register (RR) Instructions
Register and Indexed Storage One (RX1)
Instructions

Register and Indexed Storage Two (RX2)
Instructions

Register and Indexed Storage Three (RX3)
Instructions

Register and Immediate One (RI1) Instructions
Register and Immediate Two (RI2) Instructions
Short Form (SF) Instructions

Register and Indexed Storage/Register

and Indexed Storage (RXRX) Instructions

N el = I = T Sr
[]

K O A Y O N R)
*

[o LNl WS, | > w N =

1.5 VARIATIONS ON INSTRUCTION FORMATS
1.5.1 Conditional Branch Instructions
1.5.2 Branch and Link Instructions
1.5.3 Other Variations

48-050 FO0 RO3

vii

=
1 LI I I T !
O O o 0o Y OUTUIUI W =

= T O Tya b e
=
o

CHAPTERS (Continued)

2

ii

SYMBOLIC REPRESENTATION

2.1

2,2

NN
e o o
www
« o
N =

INTRODUCTION
SYMBOLS AND EXPRESSIONS
SYMBOLS AND THEIR VALUES

Implicit Symbols
Global Symbols

THE SOURCE PROGRAM

3.1

w
L]
N

ww W

L] . -
> wWww

[] L]

N =

(¥
.

LWWWWwWwwWwww
L] L] L] L] L] - L]
Lo
L] . L] L] L] L] L]
WWWWWN

e o o o
B W N

w
L]
w

www
- L] L]
(SO, NS]
L] . L]
W=

WWwww
. L] . L]
AT O O
. L L]
=

L] L]

L]
[N

WWwWwwwwww
« o o o o o o
[e We) We)We We, We)
* e ¢ o & o o
NN
« o o o o

AW - w

INTRODUCTION
COMMENT STATEMENTS

INSTRUCTION STATEMENTS
Fixed Format Source Programming
Free Format Source Programming

COMMON ASSEMBLY LANGUAGE/32 (CAL/32)
INSTRUCTION REPRESENTATION

Name Field

Operation Field

Operand Field

Register-to-Register (RR) Instructions

Register and Indexed Storage (RX) Instructions

Register and Immediate (RI) Instructions
Register and Indexed Storage/Register and
Indexed Storage (RXRX) Instructions

COMMON ASSEMBLY LANGUAGE/32 (CAL/32)
MACHINE INSTRUCTIONS

Usual Branch Mnemonics for the 3280 System
CAL/32 Machine Instructions for 3280 System
Instructions for the Input/Output

Processor (IOP)

ASSEMBLER INSTRUCTIONS

Symbol Definition Instructions

Equate (EQU) Instruction

External, Entry, Weak External, Weak
Entry and Data Entry (EXTRN, ENTRY,
WXTRN, WNTRY and DNTRY) Instructions
Include (INCLD) Instruction

Data Definition Instructions

Define Storage (DS, DSH and DSF) Instruction
Define Constant (DC and DCF) Instruction
Hexadecimal Constants

Integer Constants

Address Constants

N N
! |
= =

NN N
1
nww

wWwww w w
i
wWN N aad =

w WWWWwWwWwww
|
o o~NOANUT B>

3-27
3-29
3-30

3-30
3-30

48-050 FO0O RO3

o e @
03N

L] L] L] * L] *

e & o o e @ & o 6 ° ° 2 & 0 o O & o & © & ¢ & & o

L] L]] . L . L] L] L] L] L] L] L] - L[] L] L] L] '] * L] L] * L]

Ll el e HHOOSOAUH WD AU WD -

e o o o o
AW HO

[} =)} (=) (o) W) (o) AN OO [+) (=) [<)} [eal o) We) We) We) (o)W) We We W) We) We We e W We We W We We We We) We) We) We We We We We W Y

L L] L]] L]

| ol e o O WO oo oo o ~ ~ NNNNa NNNNNNNNNNgNadoa oo oo UuidwNoN

L] L] L] L] .

w WWwWwwww WLWWWWWLWLWLWWLWWLWWLWWLWWLWWWWLWWWLWWWWWW

*
[
~

3.6.7.18
3.6.
3.6.8.1
30 L .2
3' . .3
3. [

3. * .1
3. L] .2
3. L] 0
3.6.10.1
3.6.10.2
3.6.10.3
3.6.11

CHAPTERS (Continued)

Floating Point Constants

Character Constants

Decimal String Constants

Define Byte (DB) Instruction
Define List (DLIST) Instruction
Define Command (DCMD) Instruction
Location Counter (LOC) Instructions
Pure (PURE) Instruction :
Impure (IMPUR) Instruction

Origin (ORG) Instruction

Absolute (ABS) Instruction

Align (ALIGN) Instruction
Conditional No Operation (CNOP) Instruction
Assembler Control Instructions
Target (TARGT) Instruction

End (END) Instruction

Copy Library (CLIB) Instruction
Copy (COPY) Instruction

File Copy (FCOPY) Instruction
Lower-Case (LCASE) Instruction

No Lower~Case (NLCASE) Instruction
Pause (PAUSE) Instruction

Squeeze (SQUEZ and NOSQZ) Instructions

Squeeze Related (ERSQZ and NORX3) Instructions

Sequence Checking (SQCHK and NOSEQ)
Instructions

Scratch (SCRAT) Instruction

Pass Pause (PPAUS) Instruction

Message (MSG) Instruction

Batch Assembly (BATCH and BEND) Instructions
Unreferenced Externals (UREX and NUREX)
Instructions

Assembly Performance (HPM and NHPM)
Instructions

16-Bit Object Code (CAL and NOCAL)
Instructions

Conditional Assembly Instructions

Compound Conditional (IFx, ELSE and ENDC)
Instructions

Simple If (IF) Instruction

Do (DO) Instruction

Instructions for Data Structures

Structure Definition (COMN, STRUC and ENDS)
Instructions

Structure Initialization (BDATA and BORG)
Instructions ;

Listing Control Instructions

Listing Identification (PROG and TITLE)
Instructions

Format Control (LCNT,
WIDTH) Instructions
Content Control Instructions

Auxiliary Processing Unit (APU) and NAPU
Options

EJECT, SPACE and

48-050 FOO0 RO3

3-46

iii

CHAPTERS (Continued)

3.7 ASSEMBLY LISTING 3-81
4 COMMON MODE PROGRAMMING
4,1 INTRODUCTION 4-1
4.2 ADDRESS OPERATION INSTRUCTIONS 4-1
4.3 COMMON MODE IMMEDIATE OPERATIONS 4-3
4.4 COMMON MODE ASSEMBLER INSTRUCTIONS 4-3
4.4.1 Data Definition Instructions 4-4
4.4.1.1 Define Address Length Constant (DAC)
Instruction 4-4
4.4.1.2 Define Address Length Storage (DAS)
Instruction 4-4
4.4.2 Assembler Control (CAL and NOCAL) Instructions 4-5
4.5 MIXED MODE COMPUTATIONS 4-5
4.6 GLOBAL SYMBOLS 4-6
4.7 SPECIAL INSTRUCTIONS 4-8
5 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) OPERATING
INSTRUCTIONS
5.1 INTRODUCTION 5-1
5.2 OPERATING INSTRUCTIONS FOR ESTABLISHING
COMMON ASSEMBLY LANGUAGE/32 (CAL/32) AS A
TASK 5-1
5.3 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) START
OPTIONS 5-3
5.3.1 High Performance Method (HPM) Assembly 5-7
5.3.2 Assigning Logical Units 5-9
5.3.3 Starting Common Assembly Language/32 (CAL/32)
Using Command Substitutions (CSS) 5-11
5.3.4 Common Assembly Language/32 (CAL/32) Assembler
End of Task (EOT) Codes 5-13
APPENDIXES
A COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES A-1
B OBJECT CODE FORMAT B-1

iv

48-050 FOO RO3

FIGURES

1-1 Configuration of a Typical Uniprocessing System 1-2
1-2 Configuration of a Typical Multiprocessing System 1-2
1-3 RR Format (16-Bit) 1-7
1-4 RX Format (16-Bit) 1-7
1-5 RI Format (16-Bit) 1-8
1-6 SF Format (16-Bit) 1-8
1-7 RR Format (32-Bit) 1-9
1-8 RX1 Format (32-Bit) 1-1
1-9 RX2 Format (32-Bit) 1-1
1-10 RX3 Format (32-Bit) 1-11
1-11 RI1 Format (32-Bit}) ' 1-12
1-12 RI2 Format (32-Bit)- 1-13
1-13 SF Format (32-Bit) 1-13
1-14 RXRX Format (32-Bit) 1-14
3-1 Comment Statement Column Positioning 3-2
3-2 Source Program Sequence Identification 3-2
3-3 Instruction Statement Positioning (Fixed Format) 3-3

TABLES
3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND

MNEMONICS 3-12
3-2 CAL/32 MACHINE INSTRUCTIONS AND MNEMONICS FOR

THE 3200MPS FAMILY OF PROCESSORS 3-20
3-3 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND

MNEMONICS FOR THE SERIES 3211 PROCESSORS 3-21
3-4 EXTENDED BRANCH MNEMONICS 3-23
3-5 USUAL EXTENDED BRANCH MNEMONICS FOR THE

3280 SYSTEM 3-25
3-6 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND

MNEMONICS FOR 3280 SYSTEM 3-27
3=-7 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND

MNEMONICS FOR IOPS 3-29
3-8 CONSTANT TYPES 3-40
4-1 COMMON MODE ADDRESS OPERATIONS 4-1
5-1 MEMORY REQUIREMENTS FOR HPM 5-1
5-2 HPM MEMORY UTILIZATION 5-8
5-3 ASSEMBLY PERFORMANCE IMPROVEMENT USING HPM 5-8
5-4 CAL/32 LOGICAL UNITS 5-9
B-1 32-BIT LOADER ITEM DEFINITIONS B-2
B-2 16-BIT LOADER ITEM DEFINITIONS B-4
INDEX IND-1

48-050 FOO RO3

PREFACE

This manual describes the Common Assembly Language/32 (CAL/32).
Chapter 1 is an introduction to the basic concepts of the
assembler, central processing unit (CPU) and main memory. Also
described are the instruction formats for 16~ and 32-bit
machines, as well as variations in the formats. Chapter 2
introduces assembly language symbolic representation and
describes symbolic values. Chapter 3 defines the source program
and contains a 1list of machine instructions, mnemonics and
detailed descriptions of assembler instructions. Common mode
programming and common mode operations are explained in Chapter
4. CAL/32 operating instructions are listed in Chapter 5.

Appendix A contains CAL/32 error codes. Appendix B describes the
16~ and 32-bit object code formats.

The F00 R03 version of this manual includes descriptions of new
machine instructions for use with the 3280 System.

Included in this release of 0S/32 is a new START option that
assembles user created source programs over sixty percent faster
than the standard method of assembly. A description of the high
performance method (HPM) of assembly is found in Chapter 5.
Included in this section is a description concerning optimization
of the CAL/32 assembler.,

The 3200MPS Family of Processors features identified throughout
the manual are applicable to the 3200MPS Family of Processors
only. This manual is intended for wuse with the 0S/32 R08.2
software release and higher.

48-050 FO00 RO3 vii

CHAPTER 1
BASIC CONCEPTS

1.1 INTRODUCTION

Like all assemblers, Common Assembly Language/32 (CAL/32)
simplifies the direct control of the processor by providing the
programmer with a way of representing actual machine operations
in an easily understood symbolic form., Assemblers translate
symbolic representations of machine instructions into binary form
to be executed by the processor. CAL/32 also includes such
features as relocation, segmentation, complex data definitions
and expression analysis. CAL/32 can run on any 32-bit processor
and produce machine code for any 32-bit processor.

Because assembly language programming is so <close to actual
machine operations, it 1is essential that the assembly language
programmer have a good understanding of system architecture.
This chapter contains introductory architectural descriptions for
uniprocessing systems and multiprocessing systems. See the
appropriate Processor User Manual or Instruction Set Reference
Manual for more detailed information.

1.2 THE PROCESSOR

The main components of a processor are the central processing
unit (CPU) and main memory. All processors, whether in a
uniprocessing or a multiprocessing system, are stored-program,
multiregister machines.

There are three iterations of the processor:

e A standard processor for a uniprocessing system. Figure 1-1
depicts the configuration of a typical uniprocessing system.

e A CPU in a multiprocessing system.

e Up to nine auxiliary or input/output processing units (APUs or

IOPs) in a multiprocessing system. Figure 1-2 depicts the
configuration of a typical multiprocessing system.

48-050 FO0O RO3 1-1

0501

MEMORY

|

4 MEMORY BUS 0
' |
| seLeH

&

4 MUX BUS b
| |

CONSOLE . TERMINAL

Figure 1-1 Configuration of a Typical Uniprocessing System
050-2
MEMORY
A MEMORY BUS A
CHANNEL CHANNEL
ADAPTER ADAPTER
£ X sus | BASE l APU 10P APU
M
uxBus | " & omasus A
CON- DMA BUS
‘ SOLE , b 0

= &

C CLOCK)

Figure 1-2 Configuration of a Typical Multiprocessing System

1-2 48-050 FOO RO3

In addition to the standard tasks performed by the operating
system in a uniprocessing system, the operating system in a
multiprocessing system

e controls all APUs,

e nmonitors all activity in the multiprocessing system,

e services all APU exceptions,

e dispatches application tasks created for existing CPUs or the
CPU in the 3200MPS Family of Processors, and

e dispatches tasks to the APUs and IOPs for execution in the
3200MPS Family of Processors.

The function of an APU is to execute tasks concurrently with the
CPU and other APUs. The function of the IOP is to handle all
input/output (I/0) devices configured under it, thereby relieving
the CPU of I/O overhead.

1.2.1 Temporary Storage (Registers)

All processors have some amount of temporary storage that can be
used as accumulators or index registers. There are three types
of temporary storage:

@ General-purpose registers

@ Single precision floating point registers (SPFPR)

® Double precision floating point registers (DPFPR)

All processors have at least one set of 16 generalépurpose

registers. In the 1l6-bit processors, each general-purpose
register holds 16 bits; in the 32-bit processors, each holds 32
bits, General-purpose registers can be used for integer

arithmetic, address arithmetic, logical operations and character
operations. Floating point registers are used only for floating
point arithmetic operations. Processors with floating point
registers have either eight single precision registers, or eight
single precision registers and eight double precision registers.
The single precision registers hold 32 bits. The double
precision registers hold 64 bits.

For a multiprocessing system, there are up to ten sets of
registers; one for each of the nine APUs that can be part of the
system, plus a set in the CPU; (i.e., ten machines each having 16
general register sets, eight SPFPR and eight DPFPRs).

48-050 FO00 RO3 1-3

1.2.2 Program Status Word (PSW)

The PSW defines the current state of a processing unit. The
uniprocessing system has one current PSW. Since the 3200MPS
Family of Processors consists of multiple processors, there is
one current PSW for each processor. The PSW consists of three
major parts:

® Status descriptor
® Condition code (CC)

e Location counter (LOC)

Individual bits and bit fields within the status descriptor
portion of the PSW define the current state of interrupts and
various hardware features of the processor. By setting or
resetting bits within the status descriptor, the programmer can
enable or disable such interrupts as I/O, arithmetic fault and
machine malfunction. On those processors with multiple sets of
general-purpose registers, a field in the status descriptor
defines which set is currently in use., Programmers writing user
level programs, as opposed to operating system or stand-alone
programs, cannot directly access the status descriptor. 1In this
case, the operating system maintains control of interrupts and
registers.

The CC provides a means of controlling program flow, based on the
results of instruction execution. As certain instructions are
executed, the value in the CC changes to indicate the nature of
the result. For example, if an operation produces a zero result,
the CC may be changed to a zero value., With branch instructions,
the programmer can test the value in the CC and branch or not,
depending on that value. Not all instruction executions affect
the CC, See the appropriate processor reference manual for more
details.

The LOC controls the order of instruction execution. Normally,
the processor executes instructions sequentially and uses the LOC
to keep track of where the instructions are in main memory, then
fetches the instruction from the memory location specified by the
address contained in the LOC. It increments the LOC by the
length of the instruction, executes the instruction and fetches
the next instruction. Branch instructions, when executed, change
the contents of the LOC and, thereby, affect the branch.

In 32-bit machines, the PSW contains 64 bits; the least
significant 24 bits are reserved for the LOC. In 1l6-bit
machines, the PSW contains 32 bits; the least significant 16 bits
are reserved for the LOC,

1-4 48-050 FO0O RO3

1.2.3 Input/Output (I/0) Interface

The execution of certain machine instructions allows the
programmer to control external devices and to cause the transfer
of data between external devices and main memory or registers.
The actual programming of I/O operations is very much dependent
upon the hardware of both the processor and the peripherals. I/0
instructions are restricted to operating systems and stand-alone
programs, User programs can communicate with I/O devices through
facilities provided by the operating system.

1.2.3.1 Main Memory

To the assembly language programmer, main memory appears as a
block of contiguous storage 1locations. The smallest unit of
memory the programmer can access is the byte (eight bits). The
programmer can also access halfwords (two bytes), fullwords (four
bytes) and doublewords (eight bytes). Each byte in memory is
accessed by a unique address. Memory addresses start with zero
and are incremented by one for each succeeding byte. Memory
addresses in the 32-bit processors always consist of 24 bits. 1In
the 16-bit processors, memory addresses consist of 16 bits. When
accessing bytes, any memory address within the 1limits of the
particular hardware configquration is considered valid. Halfwords
must be accessed with halfword addresses. Fullwords must be
accessed with addresses that are multiples of four, Doublewords
must be accessed with addresses that are multiples of eight.

1.2.4 Software Relocation

Programs written in CAL/32 can be absolute or relocatable. An
absolute program is one whose origin (starting location) is
specified at assembly time as being at a fixed halfword 1location
in memory. Subsequent addresses within the program, whether
referring to instructions or data, are fixed at assembly time.
For execution, absolute programs must always be loaded into
memory at the location specified as the origin. This type of
programming is wuseful in stand-alone applications and some
operating system situations. A user program written with
absolute addresses 1is relocatable, but the addresses that are
used refer to their absolute values relative to task address 0.
It is the actual location of this task, 0, which is relocatable.

Relocatable programs can be loaded for execution beginning at any
halfword location in memory. The origin of a relocatable program
is assumed to be relocatable zero. The CAL/32 output for this
type of program specifies all addresses in the program as
relative displacements from the origin. At link time, the
linkage editor resolves all addresses within the program by
adding a relocation value (the actual memory address for the
start of the program) to the relative addresses supplied by
CAL/32. Relocation applies only to addresses within the program.
Relocatable programs can contain absolute data.

48-050 F00 RO3 1-5

1.2.5 Hardware Relocation

Some processors and their operating systems support hardware
relocation and segmentation. Programs prepared for these systems
start out as relocatable. A linkage editor processes the
relocatable output from CAL/32 to link in any needed subprograms.
The output of this process is an absolute program that, because
of the relocating hardware, can be loaded beginning at any memory
address that is a multiple of 256 for memory access controller
(MAC) machines or 2,048 for memory address translator (MAT)
machines. At run-time, the relocating hardware adds the required
relocation value to all addresses supplied by the program. This
relocating hardware also provides for program segmentation, where
the program is divided into pieces that can be 1loaded into
noncontiguous blocks of memory.

CAL/32 supports segmentation by allowing the programmer to divide
the program into pure and impure segments. The pure segment of
a program consists of machine instructions and constant data and
cannot be modified at run-time. (The operating system and the
hardware prevent modification.) The impure segment consists of
the data base which can be modified at run-time, Programs
prepared as pure and impure segments can be shared (executed
concurrently) by several users. Only one copy of the pure
segment resides in memory during execution while there is one
copy of the impure segment for each user.

1.3 INSTRUCTION FORMATS (16-BIT)

The 16-bit processors have four types of machine instructions:
register-to-register (RR), register and indexed storage (RX),
register and immediate (RI) and short form (SF). The following
abbreviations illustrate the instruction formats:

oP Operation

R1 First operand register

R2 Second operand register

N A 4-bit immediate value

X2 Second operand index register

A2 Second operand direct address

I2 Second operand immediate value

Most instructions require two operands, the first of which is
contained in a register. The result wusually replaces the
contents of the first operand register. Exceptions to these
rules are noted in Section 1.5.

1.3.1 Register-to-Register (RR) Instructions
RR instructions cause operations to take place between operands

contained in registers. RR instructions are 16 bits long, as
shown in Figure 1-3.

1-6 48-050 FO00 RO3

050-3

OP | R1|R2

BITS: O 78 112 15

Figure 1-3 RR Format (16-Bit)

The first eight bits of the instruction define the operation.
The next four bits identify the first operand register. The
final four bits identify the second operand register. 1In most RR
instructions, the specified operation takes place between the
contents of the first operand register and the contents of the
second operand register, The result of the operation replaces
the contents of the first operand register.

1.3.2 Register and Indexed Storage (RX) Instructions
RX instructions cause an operation to take place between a first
operand, contained in a register, and a second operand, located

in main memory. These instructions require 32 bits, as shown in
Figure 1-4,

050-4

oP R1 | X2 A2

BITS: O 78 1112 15 16 31

Figure 1-4 RX Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register and the next four bits
identify an optional index register, The remaining 16 bits
specify an address in main memory. The operation takes place
between the contents of the first operand register and the
contents of the memory location specified. The actual address of
the second operand is determined by adding the contents of the
index register to the contents of the address field. If the
index field of the instruction contains zero, no indexing takes
place. In most cases, the result of the operation replaces the
contents of the first operand register. :

48-050 FOO0 RO3 1-7

1.3.3 Register and Immediate (RI) Instructions

RI instructions cause operations to take place between the
contents of a register and the contents of an immediate field
embedded in the instruction itself. They are 32 bits 1long, as
shown in Figure 1-5.

050-5

oP R1 | X2 12

BITS: O 78 112 15 16 31

Figure 1-5 RI Format (32-Bit)

The first eight bits specify the operation; the next four bits
identify the first operand register; the next four bits identify
an optional index register; the final 16 bits are the immediate
value. The first operand is the contents of the first operand
register. The second operand is obtained by adding the contents
of the index register to the contents of the immediate field. If
the index field contains zero, no addition takes place. The
result of the operation usually replaces the contents of the
first operand register.

1.3.4 Short Form (SF) Instructions
SPF instructions are variations on the RI instructions in which

the second operand is small enough to be expressed in four bits.
SF instructions require 16 bits, as shown in Figure 1-6.

050-6

oP R1| N

BITS: 0 78 1112 15

Figure 1-6 SF Format (16-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register and the 4-bit immediate
field. The next four bits contain the immediate value.
Operations take place between the contents of the first operand
register and the 4-bit immediate operand. The result of the
operation usually replaces the contents of the first operand
register.

1-8 48-050 F0O0 RO3

1.4 INSTRUCTION FORMATS (32-BIT)

The 32-bit processors recognize seven different types of
instructions. They are: RR, three variations on RX, two
variations on RI, and SF. The following abbreviations are used
to illustrate instruction formats:

(0)24 Operation

Rl First operand register

R2 Second operand register

N A 4-bit immediate value

X2 Second operand single index register
D2 Second operand displacement

FX2 Second operand first. index register
SX2 Second operand second index register

A2 Second operand direct address
I2 Second operand immediate value
Ll Length of first operand string
L2 Length of second operand string

Most instructions require two operands. The first is the
contents of a register, The result of the operation usually
replaces the contents of the first operand register. Exceptions
to these rules are noted in Section 1.5.

1.4.1 Register-to-Register (RR) Instructions

The format and function of these instructions are the same as for
the 16-bit processors. They cause operations to take place
between operands contained in registers and they require 16 bits.
These instructions are shown in Figure 1-7,.

050-7

oP R1 | R2

BITS: O 78 112 15

Figure 1-7 RR Format (32-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register and the 1last four bits
identify the second operand register. The processor performs the
indicated operation between the contents of the first operand
register and the contents of the second operand register. In
most RR instructions, the result replaces the contents of the
first operand register.

48-050 FO0O0 RO3 1-9

l1.4.2 Register and Indexed Storage One (RX1l) Instructions

RX1 instructions define an operation between the contents of a
register and the contents of a main memory location. They
require 32 bits, as shown in Figure 1-8.

050-8

oP R1 | X2 {00 A2

BITS: O 78 112 15161718 31

Figure 1-8 RX1 Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register and the next four bits
identify the optional index register. The next two bits, 16 and
17, must be zeros. The next 14 bits constitute a direct program
address in a range from 0 to 16,383,

The address of the second operand is obtained by adding the
contents of the index register to the contents of the 14-bit
address field. If the index register field contains zero, this
addition does not take place and the contents of the address
field are used as the address. The operation takes place between
the contents of the first operand register and the contents of
the specified memory location. The result usually replaces the
contents of the first operand register.

1.4.3 Register and Indexed Storage Two (RX2) Instructions

RX2 instructions define operations between the contents of a
register and the contents of a location in main memory. RX2
instructions are like the RX1 instructions; they require 32 bits.
They differ from the RX1l instructions in the method of
calculating the second operand address. See Figure 1-9.

050-9

oP R1 | X2 |1 D2

BITS: O 78 112 151617 31

Figure 1-9 RX2 Format (32-Bit)

1-10 48-050 FO00 RO3

The first eight bits define the operation; the next four bits
identify the first operand register and the next four bits
identify the optional index register. The next bit, 16, must be
a one, The remaining 15 bits are treated as a signed integer in
two's complement notation. Bit 17 is the sign bit which, if one,
indicates a negative quantity, and if zero, indicates a positive
quantity.

The address of the second operand is obtained in two steps.

1. The signed integer, with sign bit extended to produce a
32-bit integer, is added to the contents of the index
register.

2. This intermediate result is added to the value in the
incremented LOC. The result is truncated to 24 bits,

If the index register field is zero, the first addition does not
take place. The indicated operation takes place between the
contents of the first operand register and the contents of the
specified memory location. The result usually replaces the
contents of the first operand register.

1.4.4 Register and Indexed Storage Three (RX3) Instructions
RX3 instructions are analogous to the RX instructions in the
16-bit processors. They call for operations between the contents

of a register and the contents of an indexed memory location and
require 48 bits., See Figure 1-10.

050-10

¢z (
R]
opP R1 [Fx2 |o1|o[o sx2| A2
BITS: O 78 11 12 151617181920 23 24 v 47

Figure 1-10 RX3 Format (32-Bit)

The first eight bits specify the operation; the next four bits
identify the first operand register and the next four bits
identify the optional first index register. Bit 16 must be zero.
Bit 17 must be one. Bits 18 and 19 must be zero. The next four
bits identify the optional second index register., The final 24
bits contain a direct memory address.

48-050 FOO RO3 1-11

The address of the second operand is obtained by adding the
contents of the first index register to the contents of the
second index register. This intermediate result is then added to
the contents of the direct address field, and the final result is
truncated to 24 bits,

If either of the index register fields contains zero, that level
of indexing does not take place. If both are zero, no indexing
takes place. In most RX3 instructions, the operation takes place
between the contents of the first operand register and the
contents of the specified memory location. The result usually
replaces the contents of the first operand register.

1.4.5 Register and Immediate One (RIl) Instructions

RI1 instructions are similar to the RI instructions in the 16-bit
processors. They specify operations that take place between the
contents of a register and the contents of a field that is part
of the instruction. They require 32 bits, as shown in Figure
1-11.

050=11

op R1 | X2 12

BITS: O 78 1112 15 16 31

Figure 1-11 RI1 Format (32-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register and the next four bits
identify an index register, The final 16 bits are the immediate
value. The second operand is obtained by extending the contents
of the immediate field to 32 bits, by propagating the sign bit
and then adding this quantity to the contents of the index
register. If the index register field is zero, no addition takes
place and the extended immediate value is the second operand.
The operation takes place between the contents of the first
operand register and the immediate value. The result usually
replaces the contents of the first operand register.

1.4.6 Register and Immediate Two (RI2) Instructions
RI2 instructions are similar to the RI1 instructions except that

the immediate field contains a 32-bit value and the instruction
itself requires 48 bits. See Figure 1-12.

1-12 48-050 F0O0 RO3

050-12
{4

oP R1 | X2 12

d L
n B

BITS: O 78 1112 1516 47

Figure 1-12 RI2 Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits identify
the optional index register. The final 32 bits are the immediate
value, The second operand is obtained by adding the contents of
the 1index register to the contents of the immediate field. 1If
the index register field is zero, no addition takes place and the
immediate value is the second operand. The operation takes place
between the contents of the first operand register and the
immediate value. The result usually replaces the contents of the
first operand register.

l.4.7 Short Form (SF) Instructions

SF instructions are similar to the SF instructions in the 1l6-bit
processors. They specify operations between the contents of a
register and the contents of an immediate field whose value |is
small enough to be expressed in four bits., These instructions
require 16 bits, as shown in Figure 1-13.

050-13

oP R1 N

BITS: O 78 1112 15

Figure 1-13 SF Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits are the
immediate field. The operation then takes place between this
value and the contents of the first operand register. The result
usually replaces the contents of the first operand register.

48-050 FO0O0 RO3 1-13

1.4.8 Register and Indexed Storage/Register and Indexed Storage
(RXRX) Instructions

RXRX instructions resemble a pair of adjacent RX instructions,
but represent one cohesive string-processing instruction. An
RXRX instruction is comprised of two instruction members. Each
member can be any one of the RX1l, RX2 or RX3 machine formats,
independent of the other member's format. For example, the first
instruction member might be of the RX1l format and the second
instruction member might be of the RX3 format, yielding a 10-byte
RXRX instruction. Thus, an RXRX instruction length might range
from 8, 10 or 12 bytes,

The first eight bits of the first instruction member, OP, specify
the operation class. The particular RXRX operation is specified
by the contents of the operation-modifier (OP-MOD) field in the
first eight bits of the second instruction member. OP-MOD is
actually generated by the assembler according to the specific
RXRX operation mnemonic and the R1/Ll or R2/L2 fields programmed
by the user in source code. See Figure 1-14.

050-14

P FIRST MEMBER o SECOND MEMBER -
- 4TO6BYTES i 4TO6BYTES
0 78 1112 L, 3147 0 78 11 12 N 31/47
OPN1 7 . OPMOD opnz 77
- LL
37 7
R1 x2 lo|o D ! F R2 !
op Y U
AR j—mL|Llc| “n | ALz |FXx2 |0t00]sX2 A
x2 |1 D2 2 c
2 ¢ ! I L
0 12-15 16 17 30123 7 12-15 16-1920—23 24 _ 7 47
_ RX1/RX2 SAMPLE MEMBER C RX3 SAMPLE MEMBER .
- 8,10, 12 BYTES

Figure 1-14 RXRX Format (32-Bit)

The next four bits in the first instruction member, R1l/Ll,
identify either Rl, the string's length-specifying register or
L1, the string's actual 1length. The user specifies to the
assembler whether the value in the R1/Ll field is a register or
an immediate value.

1-14 48-050 FOO RO3

The R1/Ll1 field is assumed to be a register unless an equal sign
(=) precedes the Ll source expression. In machine format, the
IL1 field is set when the =Ll source field specifies an immediate
value as length. The IL2 field in machine format is reset when
the Rl field is used to specify a register that contains the
string's length. When the length 1is an immediate value, its
value may range from 0 through 15. When the length is in a
register, the register may contain a length that ranges from 0
through exponent 224 -1. A length of 0 indicates a null string.

The remaining bits, 12 through 31 or 12 through 47, of the first
instruction member, OPNl, contain the address/location of the
lowest addressable byte of a string or its storage location. The
field, OPN1l, is then similar to the indexed address portion of an
RX1, RX2 or RX3 machine format.

The first eight bits of the second instruction member, OP-MOD,
are an operation-modifier field containing OPNl's length
indicator, IL1l, in bit 0; OPN2's length indicator, IL2, in bit 1;
a special circumstances bit, C, in bit 2, and in bits 3 through
7, FUNC, the specific function code of the general operation
class, OP. As described above, IL1 and IL2 are determined by the
assembler. The special circumstances bit, C, and function code,
FUNC, are determined by = the assembler from the
operation-mnemonic, The C bit is used by some RXRX instructions
to indicate that the result of the operation will be forced
positive,

The next four bits, bits 8 through 11, of the second instruction
member, R2/L2, identify either R2, this string's
length-specifying register or L2, the string's actual 1length.
Again, the wuser specifies in source format to the assembler
whether the value in the R2/L2 field is a register or an
immediate value. The R2/L2 source format field is assumed to be
a register unless an equal sign (=) precedes the L2 source
expression, In machine format, IL2 is set when the =L2 field is
used to specify an immediate value. IL2 is reset when R2 is used
to specify a register. When the length is an immediate value,
expressed as =L2, its value may range from 0 through 15. When
the length is in a register, its value may range from 0 through
exponent 22¢ -1, A zero length indicates a null string.

The remaining bits, 12 through 31 or 12 through 47, of the second
instruction member, OPN2, contain the address/location of the
lowest addressable byte of a second member's string. Both OPN1
and OPN2 are similar in format to the indexed address portion of
an RX1l, RX2 or RX3 machine format. The particular format of
either OPN1l or OPN2 is selectively generated by the assembler,
independently, according to the user source program.

In RX1 machine format, bits 16 and 17 are zero. Bits 12 through
15 identify the index register, X2, the contents of which are
added to the absolute 14-bit value, D, to formulate the string's
address.

48-050 FOO0 RO3 1-15

In RX2 machine format, bit 16 is set. Bits 12 through 15
identify the index register, X2, the contents of which are added
to the 15-bit displacement value, D2, to formulate the string's
address.

In RX3 machine format, bits 16 through 19 are 0100 binary. Bits
12 through 15 identify the first index register, FX2 and bits 20
through 23 identify the second index register, SX2. The contents
of both are added to the 24-bit address value, A, to formulate
the string's address.

NOTES

1. When the first member's OPN1
represents the string's address in
RX2 format, the displacement value,
D2, is relative to the end address of
the first instruction member, not to
the end of the full RXRX instruction.

2. When the second member's OPN2
represents the string's address in
RX2 format, the displacement value is
relative to the end of the second
instruction member, which is also the
end of the full RXRX instruction.

1.5 VARIATIONS ON INSTRUCTION FORMATS

Not all instructions follow the preceeding instruction formats.
Instructions may also have the following formats:

e Fields are redefined

e Instructions require two operands

e Instructions do not change the first operand

e Instructions change the second operand

® Instructions change neither operand

1.5.1 Conditional Branch Instructions

Conditional branch instructions use formats that resemble RR, RX
and SF instructions. However, the interpretation of the fields
differs from the standard, as does the actual operation. In all
conditional branch instructions, the first operand identification
is interpreted as a mask that is ANDed with the condition code.
If the result of this test indicates that the branch is to be
taken, then the second operand address is the location to which
the processor must go to obtain the next instruction.

1-16 48-050 FOO RO3

In the RR instructions, the second operand register contains the
branch address. In the RX instructions, the branch address is
obtained by one of the standard methods for obtaining second
operand addresses, In the SF instructions, the immediate field
is interpreted as a halfword displacement, either forward or
backward, from the current LOC. The branch address is obtained
by adding or subtracting this quantity from the current LOC.

1.5.2 Branch and Link Instructions

These instructions facilitate branching to and returning from
subroutines. They use formats similar to RR and RX where the
first operand register is the link register. Before the branch
is taken, the address of the next memory location following the
branch instruction is placed in this register. In the RR
instructions, the branch location is the contents of the second
operand register, 1In the RX instruction, the branch address is
obtained by one of the usual methods for obtaining second operand
addresses,

1.5.3 Other Variations

Some instructions change the second operand rather than the
first, Most notable among these are the store instructions and
the instructions that add the contents of a register to the
contents of a memory location.

Test instructions and compare instructions change neither
operand. The indicated operation takes place between the two
operands, but neither is changed. The result of the operation is
indicated by the condition code.

Certain other instructions, such as Load PSW and Simulate
Interrupt, do not always require a first operand. 1In addition,
all of the I/0O instructions do not follow the general rules. For
detailed information on how these instructions work, see the
appropriate Processor Reference Manual.

48-050 FO0O RO3 1-17

CHAPTER 2
SYMBOLIC REPRESENTATION

2.1 INTRODUCTION

When writing assembly language ' programs, the programmer uses
meaningful symbols to represent the binary language interpreted
by both Common Assembly Language/32 (CAL/32) and the processor.
Symbols consist of printable ASCII characters, either singly or
in combination. CAL/32 recognizes the complete set of printable
ASCII characters. However, depending on the context, there can
be restrictions on the use of the complete set. See Chapter 3
for further details.

2.2 SYMBOLS AND EXPRESSIONS

Symbols represent addresses, register identifiers, absolute
values, operation identifiers and constants. Examples of symbols
are:

A
LOOP
BXLE
PART1
REG5
16

Symbols can be combined to form expressions. The arithmetic
operators: add, subtract, multiply and divide are represented in
CAL/32 by the symbols: +, -, * and /. They combine with other
symbols to form arithmetic expressions. Examples of these
arithmetic expressions are:

A+B
LAST-FIRST*TWO
A-16

Blanks and parentheses are not permitted within an expression.
For example, the following sequence would not be interpreted by
CAL/32 as an expression.

A-B* (C + D)

48-050 FO0O0 RO3 2-1

Depending on the context, CAL/32 might misinterpret the stbols,
generate incorrect code and fail to detect the error. Where
CAL/32 can recognize the error, it generates an error message.

The evaluation of expressions takes place from left to right with
no rules of precedence. Thus, CAL/32 evaluates the expression:

LAST-FIRST*TWO

by subtracting the value of FIRST from the value of LAST, and
multiplying this result by the value of TWO.

Logical expressions consist of symbols joined by the 1logical
operators AND and inclusive OR. They are represented in CAL/32
by the symbols & and !. Examples of logical expressions are:

X&Y!1A
CHAR&NULL

Logical expressions are evaluated from 1left to right with no
rules of precedence. Blanks and parentheses are not permitted in
logical expressions.

Mixed expressions are formed by combining logical and arithmetic
operators. For example:

A-BITWO

CAL/32 evaluates this expression by first subtracting the value
of B from the value of A and then ORing the result with the value
of TWO. Mixed expressicns are 1like arithmetic and logical
expressions in that blanks and parentheses are not allowed and
the method of evaluation is from left to right with no rules of
precedence.

Symbols represent either absolute or relocatable quantities. At
assembly time, relocatable quantities have a value equal to their
displacement from some fixed point within the program, usually
but not necessarily, the origin or starting location. At load
time, the relocatable quantity is replaced by an absolute
quantity whose value is calculated by adding the relocation value
to the relocatable quantity. Absolute quantities are Kknown to
the assembler at assembly time and are not changed at load time.

The operations: multiply, divide, AND and OR are permitted only

between absolute data. The plus and minus operators can be used
on mixed data. The results of such operations are:

2-2 48-050 F0O RO3

OPERATION RESULT

Absolute + Absolute Absolute
Absolute - Absolute Absolute
Relocatable + Relocatable Invalid
Relocatable - Relocatable Absolute
Relocatable + Absolute Relocatable
Relocatable - Absolute Relocatable
Absolute + Relocatable Relocatable
Absolute -~ Relocatable Invalid

2.3 SYMBOLS AND THEIR VALUES

By definition, certain symbols used in CAL/32 programming have
implicit wvalues; that is, the value of the symbol is determined
by the way in which it is expressed and used. Examples of this
kind of symbol are the decimal, hexadecimal and character symbols
used as operands in instructions. There are also global symbols
in CAL/32. These symbols have preset values that cannot be
redefined by the programmer. The programmer can define the value
of a symbol explicitly by wusing the equate statement., This
section covers the use of implicit and global symbols. Chapter
3 covers the explicit use and definition of symbols.

2.3.1 Implicit Symbols

When used in the correct context, a string of decimal digits is
automatically assigned the actual value of the number represented
by the string. For example, the expression:

A+14

has a value that the assembler determines by adding the quantity
14 to the value A, which must be defined by some other means.

CAL/32 also recognizes the implicit value of special character
strings the programmer uses to represent decimal, hexadecimal and
character values, These strings are made up of a single letter
that indicates the particular type, followed by a group of
characters enclosed in apostrophes that represents the value.
The code characters are:

CODE
CHARACTER TYPE
H Halfword decimal
F Fullword decimal
X Halfword hexadecimal
Y Fullword hexadecimal
C Character

48-050 FOO RO3 2-3

Decimal numbers consist of an optional sign (+ or -) followed by
decimal digits representing the actual value. Commas are not
allowed in the representation. Halfword decimal values can be
represented by one to five decimal digits, with a range from
-32,768 to +32,767. Fullword values can be represented by one to
ten decimal digits, with a range from -2,147,483,648 to
+2,147,483,647., CAL/32 converts these decimal numbers into two's
complement binary integers. Examples of decimal symbols, with
their internal representation expressed in hexadecimal notation,
are:

SYMBOL VALUE
H'125" 007D
H'32765" 7FFD
H'+32765" 7FFD
H'-15" FFF1l
F'123123" 0001 EOF3
F'1? 0000 0001
Fr-2" FFFF FFFE

Hexadecimal symbols consist of the X or Y type code followed by
a string of hexadecimal digits enclosed in apostrophes. Halfword
symbols can use from one to four digits. Fullword symbols can
use from one to eight digits., Leading zeros are not required and
the value is right justified. Examples of hexadecimal symbols
are:

SYMBOL VALUE

X'F' 000F
X'D4E' OD4E
Y'030' 0000 0030
Y'A? 0000 000A
Y'o' 0000 0000

Character symbols consist of one to four ASCII characters
enclosed in apostrophes and preceded by the type code C.
Characters are right justified, with zero £ill. Depending on the
context, either a halfword or a fullword results. Examples of
character symbols are:

SYMBOL VALUE VALUE
(HALFWORD) (FULLWORD)
Cr*! 002A b0ooo 002A
crizt 3132 0000 3132
C'AB' 4142 0000 4142
Cc'1234! 3334 3132 3334

2-4 48-050 F0O0 RO3

In the last example, where a halfword value was generated, only
the right-most two characters were used. Where the context
dictates a halfword and a longer string is used, a truncation
error results. One final type of implicit assignment occurs in
the use of symbols as statement identifiers., Where a symbol is
used in the name field of a statement, it is automatically
assigned a value equal to the value of the current 1location
counter (LOC). This type of assignment is covered in Chapter 4.

2.3.2 Global Symbols

Six symbols recognized by CAL/32 have predetermined values. They
are:

ADC
LADC
PURETOP
IMPTOP
ABSTOP
*

The use of these symbols is somewhat restricted and they cannot
be redefined by the programmer.

In programs written for 32-bit processors, the address 1length
constant (ADC) always has a value of 4, the length of an address
constant in bytes. (In 32-bit processors, addresses must be
contained in fullwords, even though the actual address is only 24
bits in length.) In programs for which CAL/32 is to generate
l6-bit code, the ADC has the value of 2. 1In programs written for
32-bit processors, the 1log (base 2) of the address 1length
constant (LADC) always has a value of 2, 1In programs for 16-bit
processors, the LADC always has a value of 1, Both of these
symbols, the ADC and the LADC, are used most frequently in common
mode programming. See Chapter 4.

The symbols PURETOP, IMPTOP, and ABSTOP have values equal to:

PURETOP The next available location in the pure segment
IMPTOP The next available location in the impure segment
ABSTOP The next available location in the absolute segment

Because these values change during assembly, the symbols must be
used carefully. They can be used as second operand identifiers
in machine instructions and as operands in assembler instructions
where they are treated as address values. They cannot be used in
assembler instructions that control the LOC.

48-050 FO0O RO3 2-5

The asterisk symbol (*), used as an operand rather than an
operator in an expression, always has a value equal to the value
of the current LOC, Throughout the assembly process, CAL/32
maintains a LOC analogous to the hardware LOC contained in the
central processing unit (CPU). Depending on the organization of
the program, this LOC can contain any one of several values. For
32-bit programs, the LOC may point to the current location in the
absolute segment, the pure segment or the impure segment. For
l16-bit assemblies, the LOC may point to the current absolute
location or the current relocatable location.

NOTE

While processing within block data
programs, common block definitions or
structure definitions, LOC has an
absolute nonrelocatable value. This
value is equivalent to the offset from
the beginning of the block, common or
structure definition to the current
location,

2-6 48-050 FO0O RO3

CHAPTER 3
THE SOURCE PROGRAM

3.1 INTRODUCTION

The source program consists of a set of assembly language
statements that perform the following functions:

® Specify the operations to be performed by the processor
e Define the constants and storage areas for the program

e Control the assembly process to produce the desired output

Source statements for Common Assembly Language/32 (CAL/32) are of
two types: comment statements and instruction statements.
Comment statements provide documentation of assembly
instructions. This aids in the readibility of the program, which
is essential when debugging or enhancing the source code.
Instruction statements are divided into machine instructions and
assembler instructions, Each statement consists of an
80-character record, in which symbols and expressions identify
the statement, and where necessary, indicate the operation and
locate the operands.

3.2 COMMENT STATEMENTS

Comment statements can appear anywhere in the source program.
They allow the programmer to include easy-to-read documentation
in the source program listing. They produce no object code. The
assembler does not process comment statements except to check for
proper sequencing and scan for invalid characters,

Comment statements must always start with an asterisk (*) in the
first character position. Positions 2 through 71 can contain any
printable ASCII character, including 1lower-case alphabetic
characters. Blanks are considered to be "printable" characters.
If a nonprintable character turns up in a comment statement,
CAL/32 replaces it with a pound sign (#). Figure 3-1 illustrates
comment statement syntax.

48-050 FO0O0 RO3 3-1

050-16 LABEL OPERATION OPERAND COMMENTS
1) 10 14 16 7

*THIS IS A COMMENT STATEMENT
*IT 18 DENOTED BY THE ASTERISK () IN COLUMN 1
*IT MAY APPEAR ANYWHERE WITHIN THE SOURCE PROGRAM

Figure 3-1 Comment Statement Column Positioning

Positions 72 through 80 are ignored by CAL/32; however, positions
73 through 80 <can, at the programmer's option, be used for
sequence identification. The sequence field can contain any
printable ASCII character other than lower-case alphabetic
characters, Where sequence checking is requested, each
successive sequence identifier must be greater, in the ASCII
collating sequence, than the previous identifier. Figure 3-2
illustrates the use of sequence identification within a user
created source program.

050-17 SEQUENCE
73 %0
GET00001

GET00002
QGET00008

Figure 3-2 Source Program Sequence Identification

3.3 INSTRUCTION STATEMENTS

Instruction statements can be written in fixed format or in free
format. For either format, there are five distinct fields in
each statement and limitations on the length of certain fields.
The five fields are as follows:

e Name field

® Operation field

e Operand field

e Comment field

e Sequence field

3.3.1 Fixed Format Source Programming

Fixed format requires that the instruction and comment statements
be positioned within specific columns when coding a CAL/32
program,

3-2 48-050 F0O0 RO3

CHARACTER POSITIONS DEFINITION

1 through 8 Name field

10 through 14 Operation field
16 through n Operand field
n+2 through 71 Comment field

73 through 80 Sequence field

Positions 9 and 15 must always contain blank characters. The
operand field and the comment field are variable in length, and
the first blank character after position 16 serves as a delimiter
between the operand field and the comment field. Because of the
way the output 1listing is tabulated, the comment field cannot
contain more than 37 characters. If more than 37 characters
appear, only the first 37 are printed on the output listing.
Figure 3-3 illustrates instruction statement positioning using
the fixed format method.

050-18

LABEL OPERATION OPERAND COMMENTS
1 8 10 14 16 71
ADD1 DC TABLE ADDRESS OF TABLE

Figure 3-3 Instruction Statement Positioning (Fixed Format)

3.3.2 Free Format Source Programming

CAL/32 does not require source statements to be written in fixed
format. It accepts free format source programs, in which blank
characters serve as delimiters. 1If, for example, the name field
is not used, a blank character in the first position indicates
that the next nonblank character is the start of the operation
field. Similarly, if the operation field requires fewer than
five characters, the first blank character following the
operation code indicates that the next nonblank character is the
first character of the operand field. As in the fixed format
statement, the first blank character following the operand field
indicates the end of that field and the beginning of the comment
field. There are two restrictions on the use of free format:

1. Comment length is limited to 37 characters, including blanks.

2. The sequence field must start in position 73,

48-050 F0O RO3 3-3

The second restriction 1is because CAL/32 cannot distinguish
between a blank character as part of a comment and a blank
character intended to separate the comment from the sequence
field.

If there are no nonblank characters in positions 1 through 20,
CAL/32 assumes that the statement is a comment and lists it as
such with a warning note. If more than 15 blanks separate the
name field from the operation field, CAL/32 assumes that the
operation field is not present. Similarly, if more than 15
blanks separate the operation field from the operand field,
CAL/32 assumes that the operand field is not present. In both
cases, CAL/32 generates an error message.

3.4 COMMON ASSEMBLY LANGUAGE (CAL/32) INSTRUCTION REPRESENTATION

When writing CAL/32 instruction statements, the programmer uses
symbolic representation in the name field, the operation field
and the operand field., The following sections describe the use
of symbols and expressions in these fields.

3.4.1 Name Field

Where a symbol appears in the name field, it represents the value
of the current 1location counter (LOC) for that particular
instruction. This allows the programmer to refer to specific
locations symbolically, without having to know the actual value
of the LOC. The following five restrictions apply to the
formation of names:

1. The first character of a name must be an upper-case or
lower-case alphabetic character or one of the following
special characters:

e commercial at sign (@)
e dot (.)
e dollar sign (S)
® underscore (_)
NOTE
Lower-case letters are converted
internally to upper-case except in string

constants and when the NLCASE directive
is in effect,

3-4 48-050 FOO0 RO3

2., The remaining characters can be made up of any combination of
valid first characters, plus the numeric characters 0 through
9.

3. The name must consist of one to eight characters.

4. The name must start in the first character position of the
source record.

5. Embedded blanks are not permitted.

Examples of valid names are:

LABEL
LOOP1
.SIN
@GOoTOo
$SGETS

Examples of incorrect names are:

1LOOP First character is numeric
LOOPCOUNTER More than eight characters
AB?2C Question mark is illegal

As a general rule, a given symbolic string can appear only once
in the program where it defines a location. That is, the same
symbol may not appear in the name field of more than one
instruction. The exception to this is the Equate instruction.
This is covered in the section on assembler instructions.

3.4.2 Operation Field

The use of symbols in the operation field is severely restricted.
Only previously defined symbols can appear in this field. The
symbols that appear in the operation field are called mnemonics;
they represent operations to be performed by the processor at
run-time, or operations to be performed by the assembler. CAL/32
recognizes mnemonics that represent all machine operations for
all processors. It also recognizes a large set of assembler
mnemonics that allows the programmer to control the assembly
process.

Mnemonics can consist of no more than five characters. They are
formed in the same way as names and use the same character set.
CAL/32 permits users to define mnemonics. This process is
described in the section that deals with the Equate instruction.
Specific mnemonics that define machine operations and assembler
operations are described later in this chapter. Examples of
operation mnemonics are:

48-050 FO0O RO3 3-5

MNEMONIC TYPE MEANING

AR Machine Add register

S Machine Subtract

CLI Machine Compare logical immediate
ORG Assembler Set location counter

3.4.3 Operand Field

CAL/32 permits the use of both symbols and expressions in the
operand field of instructions. Symbols used in the operand field
can be implicitly defined or «can be explicitly defined. The
rules for forming operands for assembler instructions vary from
instruction to instruction, and each is described individually
later in this chapter.

Most machine instructions require two operands while some require
only one. Where two operands are required, the first |is
separated from the second by a comma. Following are the general
rules for forming operands for machine instructions.

3.4.3.1 Register-to-Register (RR) Instructions

Both the first and the second operand must be represented by
symbols or expressions with values between 0 and 15 inclusive,
If the value is greater than 15 or less than 0, the assembler
sets it to 0 and generates an error message. For example, if the
symbols 1 and 2 appear in the operand field of the Add Register
instruction:

CAL/32 generates the machine code to add the contents of register
2 to the contents of register 1 and store the result in register
1. The use of 1 and 2 here is an example of how decimal numbers
have an implicit value when used in the proper context. Another
example:

AR X'1',X'2"

shows how hexadecimal symbols can be used as register
identifiers. This is an exception to the previously stated rule
that hexadecimal symbols generate halfword or fullword values.
Where used as register identifiers, decimal, hexadecimal and
character symbols cause the assembler to generate 4-bit values,

Expressions can be used in identifying registers, as in:

AR A+B,C'A'-X"'40"'

3-6 48-050 FO0O RO3

where CAL/32 evaluates the expressions and uses the results as
the register identifiers. This 1s not a universally useful
feature of the language, although it has some applications 1in
common mode programming.

A more useful way to identify registers is to use explicitly

defined symbols. Suppose the symbols SUM and INC are defined to
have values of 1 and 2, respectively. Then the instruction:

AR SUM, INC
has the same effect as:
AR 1,2

3.4.3.2 Register and Indexed Storage (RX) Instructions

If the first operand is required, it must be a wvalid register
identifier as described for RR instructions. The second operand,
separated from the first by a comma, can be

e a symbol,

® an expression, or

e a symbol or an expression followed by an index register

identifier enclosed in parentheses,

Where indexing is used, identification of the registers follows
the same rules as those for specifying first or second operand
registers. 1In double-indexed instructions, the first and second
index identifiers are separated by a comma. An example of how
(RX) instructions are written is:

S 1,A

where the first operand is the contents of general register 1,
and the second operand is the value at location A in memory.
Another example:

S SUM, TABLE (PTR)

48-050 F00 RO3 3-7

shows how single indexing is expressed. 1In this case, the first
operand is the value contained in the register identified by the
symbol SUM, and the second operand is the value at memory
location table plus the contents of the index register PTR.
Another example:

S SUM, LAST-FIRST(BASE, PTR)

shows the use of double indexing along with the wuse of an
expression in the operand field. A final example:

S SUM, 0 (ADDR)

illustrates where an address of a second operand is contained in

the index register. Here, there must be a symbol in the address

field even if it is equal to zero..

3.4.3.3 Register and Immediate (RI) Instructions

The first operand must be specified by a wvalid register

identifier. The second operand can be

e a symbol,

® an expression, or

e a symbol or an expression followed by an index register
identifier enclosed in parentheses,

Example:

CLI STRNG,C'ABCD'

causes the character string ABCD, represented internally as the
fullword character value 4142 4344, to be compared with the
contents of the register identified by the symbol STRNG. In
another example:

CLI ADDR,LAST-FIRST(FTR)

the expression LAST-FIRST is evaluated by CAL/32 at assembly
time, At run-time this value is added to the contents of the
index register before the comparison takes place. In another
example:

3-8 48-050 FOO RO3

CLI ADDR,Y'2000'(PTR)

the fullword, hexadecimal quantity 0000 2000,

contents of the index register,

is added to the
The result is then compared with

the contents of the register identified by the symbol ADDR.

3.4.3.4 Register and Indexed Storage/Register and Indexed
Storage (RXRX) Instructions

The RXRX instructions have four basic source operand fields, each

of which is separated from the
operand field can be

e a valid register identifier,
defined absolute value in the

® an equal sign (=) preceding a
defined absolute value in the

The second source operand field,

other

by a comma. The first

symbol, or expression with a
range 0 to 15; or

symbol or an expression with a
range 0 to 15.

separated from the first by a

comma, can be

e a symbol or an expression;

® a symbol or an expression, optionally followed by an index
register identifier enclosed in parentheses; or

®¢ a symbol or an expression, optionally followed by a pair of
index register identifiers, separated by a comma, with the

pair enclosed in parentheses,

The third source operand field, separated from the

comma, can be

e a valid register identifier,
defined absolute value in the

e an equal sign (=) preceding a
defined absolute value in the

The fourth source operand field,
comma, can be

e a symbol or an expression;

second by a

symbol, or expression with a
range 0 to 15; or

symbol or an expression with a
range 0 to 15.

separated from the third by a

e a symbol or an expression, optionally followed by an index
register identifier enclosed in parentheses; or

48-050 FO0O RO3

3-9

e a symbol or an expression, optionally followed by a pair of
index register identifiers, separated by a comma, with the
pair enclosed in parentheses.

Examples of how these instructions are written are:
MOVE =LENGTH2,HERE,=LENGTH1, THERE

which moves the string of length, LENGTH1, at location THERE to
the location HERE up to the number of bytes indicated by LENGTH2.
If LENGTH1 is less than LENGTH2, this instruction pads the extra
bytes with the right-justified character in general register
Z€ero.,

In the preceding example, the first operand field is the
immediate value of symbol LENGTH2. The equal sign that specifies
LENGTH2's value is an immediate value and not a register
identifier. The second operand field is the storage address at
location HERE, The third operand field is the immediate value of
symbol LENGTH1 (its immediacy is again indicated by the equal
sign). The fourth operand field is the string at location THERE,
Another example is:

MOVEP R7,PRINTOUT(LINE,COL2) ,R8,MESSAGE (CLASSX, ERRINDX)

which moves the string of the 1length specified in general
register R8, found at the memory location computed by summing the
address value of MESSAGE with the contents of both index
registers CLASSX and ERRINDX. The string is moved to a storage
location whose address value is computed by summing the address
value of PRINTOUT plus the contents of both index registers, LINE
and COL2., The number of bytes to be filled is the 1length
specified 1in general register R7. If the length in R8 is less
than that in R7, the MOVEP instruction, by definition, pads the
extra bytes with the default character, a space.

In the preceding example, the first operand field is the register
identifier, R7; the second operand field is the storage address
at location PRINTOUT, as double indexed by the register
identifiers, LINE and COL2; the third operand field is the
register identifier, R8; and the fourth operand field is the
string's location MESSAGE, as double indexed by the register
identifiers, CLASSX and ERRINDX. Another example is:

PMV =8 ,DECSUMS (SALESID) ,5, TOTALS(ORDERX)

which packs and moves the unpacked decimal data digit string
whose 1length is indicated in general register 5. Note that the
5 means a general register because no equal sign precedes it.

3-10 48-050 FO00 RO3

The unpacked decimal data digit string is found at the memory
location computed by summing the address value of TOTALS with the
contents of the single index register identifier ORDERX. For
details on how this conversion takes place, refer to the
instruction definitions in "the appropriate processor manuals.
Generally, the unpacked decimal data is converted to packed
decimal data up to the number of digits that may occupy the
reserved byte length, indicated by the =8 expression. In this
case, eight bytes are reserved, providing storage for 15 decimal
packed digits and a position for the sign-indicator. The PMV
instruction, by definition, has various safequards for illegal
digit cases and overflow, and provides leading zeros as needed,
when the number of positions available for either the unpacked
digits and the packed digits is of unequal length, The memory
location to which the converted digit data is moved is computed
by summing the address value of DECSUMS with the contents of the
single index register SALESID,

In the preceding example, the first operand field is the
immediate value =8, Note that the equal sign specifies that 8 is
an immediate value and not a register identifier. The second
operand field is the address location DECSUMS as singly indexed
by the register identifier, SALESID. The third operand field is
the register identifier 5; and the fourth operand field is the
address 1location TOTALS, as indexed by the single index register
identifier ORDERX.

3.5 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) MACHINE INSTRUCTIONS
Table 3-1 lists the mnemonics for CAL/32 machine instructions.
Where there is no entry in the format column, that instruction is
not available for that particular line of processors.
NOTE
Some machine instructions are illegal on
the auxiliary processing unit (APU) in

the 3200MPS Family of Processors and are
so noted in Table 3-1.

48-050 F0O0 RO3 3-11

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS

——— T — — . - —— . T S G S S G S G U S SN g S S G G SO S She G G S S G G5 G Ghe Go S G G G BT Boe S SR Ser Gom Gom G e S

I | 32-BIT | 16-BIT |

|

| INSTRUCTION | MNEMONIC | FORMAT | FORMAT :
' EE o L o e a F i o

| Add | A] RX | RX*]
| Add DP floating point | AD | RX] RX]
| Add DP floating point | | | |
| register | ADR | RR] RR |
| Add to bottom of list | ABL] RX] RX]
| Add to bottom of list | | | |
| flagged | ABLF | | RX** :
| I I I

Add with carry halfword	ACH		RX
Add with carry halfword			
register	ACHR [RR	
Acknowledge interrupt	ACK		RX
Acknowledge interrupt			
register	ACKR		RR l
Add floating point	AE	RX	RX
Add floating point			
register	AER	RR	RR
Add halfword	AH	RX	RX
Add halfword immediate	AHI	RI1	RI
Add halfword to memory	AHM	RX	RX
Add halfword register	AHR	RR*	RR
Acknowledge interrupt	AI		RX*
Add immediate	AI	RI2	RI*
Acknowledge interrupt]			
register	AIR		RR
Add immediate short	AIS	SF	SF
Autoload	AL# { RX% } RX :		

| Add to memory | AM | RX | RX: |
| Add register | AR | RR | RR |
| Add to top of list | ATL | RX | RX]
Add to top of 1list flagged	ATLF		RX
Branch and link	BAL	RX	RX
Branch and link register	BALR	RR	RR
Branch to control storage	BDCS	RX	RI I
Branch on equal status			
high speed	BESHS		RX**
Branch on false condition		I l	
backward short	BFBS	SF	SF

3-12 48-050 FO0 RO3

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

L T e N e e e e L e e et

| | 32-BIT | 16-BIT |
INSTRUCTION | MNEMONIC | FORMAT | FORMAT |

|
| |
| Branch on false condition | BFC | RX | RX |
| Branch on false condition | | | |
| register | BFCR | RR | RR I
| Branch on false condition | | | |
| forward short | BFFS | SF | SF |
| Branch on not equal status | |]]
| high speed | BNSHS | | RX** |
| Branch on true condition | | | |
’ backward short : BTBS | SF | SF]
Branch on true condition	BTC	RX	RX
Branch on true condition			
register	BTCR	RR	RR
Branch on true condition			
forward short	BTFS	SF	SF]
Branch on index high	BXH	RX	RX
Branch on index low or			
equal	BXLE	RX	RX
Compare	C	RX	RX*
Complement bit	CBT	RX	
Compare DP floating point	CD	RX	RX
Compare DP floating point	I	I	
register	CDR	RR	RR
Compare floating point	CE	RX I RX	
Compare floating point			
register	CER	RR] RR]	
Compare halfword	CH	RX	RX
Compare halfword immediate	CHI	RI1	RI
Compare halfword register	CHR	RR¥	RR
Convert to halfword value			I
register	CHVR	RR	I
Compare immediate	CI	RI2	RI*
Compare logical	CL	RX	RX*
Compare logical byte	CLB	RX	RX
Compare logical halfword	CLH	RX	RX]
Compare logical halfword			
immediate } CLHI : RI1	RI }		
I			
Compare logical halfword			
register	CLHR	RR*	RR

48-050 FOO0 RO3 3-13

TABLE 3-1 SUMMARY OF‘CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

. S - — " G- G G B4 = S G g~ P G G G o G G S e S o e S e S - S e S G S S Gy 0% e G SR S G S S -

| INSTRUCTION

Compare logical immediate
Compare logical register
Compare register

Cyclic redundancy check
modulo 12

Cyclic redundancy check
modulo 16

Decrement counter high
speed

Divide

Divide DP floating point
Divide DP floating point
register

|

I

|

l

|

|

I

I

I

|

I

|

|

|

|

| Divide floating point

| Divide floating point

| register

| Divide halfword

| Divide halfword register
| Divide register

| Enter control storage

| Exchange program status

| register

| Exchange byte register

| Exchange halfword register
| Float DP register

| Float register

| Fix DP register

| Fix register

| Generate interprocess

| interrupt

| Load

| Load address

} Load byte

|
|
I
I

Load byte high speed
Load byte high speed
indirect

Load byte register

3-14

| MNEMONIC

CRC16
DCHS
DD
DDR
DE

DER
DH
DHR
DR
ECS

EPSR
EXBR
EXHR
FLDR
FLR

FXDR
FXR

GIPI

LA
LB

LBHS

LBHSI
LBR

32-BIT

| FORMAT

- i e T W - —. S S B S me W Gmy Sme e EEr S ma @-y ey S ST M SR e S ST Eee Gam ETS Gt me S G g wun e @ Srd dmm S Sve SvH omi ST Sme She Sen Sme Gev o= S e
I_——-——-__—__—u—_—__—mu_—z—_:——~~__“—u_—___muuumm—_m-_____I

RX

RX
RX

RR
RX

RR
RX
RR*
RR
RI1

RR
RR
RR
RR
RR
RR
RR

RX
RX
RX

RR

| 16-BIT |
| FORMAT |

RX*%*

RX*%*
RX*
RX

RR
RX

I |
I I
I |
| I
I |
I |
I I
I I
I |
| I
I I
I I
I I
l |
I I
I |
! I
| RR |
| RX |
| RR |
| RR* |
| SF I
I [
| I
| I
I I
I I
| |
| |
| I
I I
I |
I |
I I
I I
I |
I |
I I
I I
| |

RR
RR

RR
RR
RR
RR

RR**
RX*
RI*
RX
RI**

RX**
RR

48-050 F00 RO3

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

- o T M, . S B i o, $O G M G, B G G B Gt G U G v P G U s AR Sem S s (Sek i G SRR GRS By T Gma W G Gna e . . G . — - -

| | | 32-BIT | 16-BIT

} INSTRUCTION | MNEMONIC | FORMAT | FORMAT

| Load complement short | LCS | SF | SF

| Load DP floating point | LD | RX | RX

| Load DP floating point | | |

| register | LDR | RR | RR

| Load floating point | LE | RX | RX

| Load floating point] | |

! register | LER | RR | RR
l I |

| Load halfword | LH | RX | RX

| Load halfword immediate | LHI | RIl | RI

| Load halfword logical | LHL | RX | RX*

} Load halfword register | LHR } RR* : RR
|

| Load immediate | LI | RI2 | RI*

| Load immediate short | LIS | SF | SF

| Load multiple] LM] RX | RX

| Load multiple DP floating .| | |

| point] LMD | RX | RX

| Load multiple floating | | |

| point | LME] RX | RX

| Load program status | LPS | | RX

| Load program status | | |

| register | LPSR | | RR

| Load program status word | LPSW | RX | RX

| Load program status word | LPSWR | RR |

| register | | |

| Load real address | LRA | RX |

| Load register | LR | RR | RR*

| Load unnormalized floating | LU | RX+ |

| point | I |

| Load unnormalized floating | | |

| point register | LUR | RR+ |

| Load unnormalized DP | | |

| floating point A | RX+ |

| Load unnormalized DP | | |

| floating point register | LWR | RR+ |

| Multiply | M | RX | RX*

| Multiply DP floating point | MD | RX | RX

| Multiply DP floating point | | |

| register | MDR | RR | RR

| Multiply floating point | ME | RX | RX

| Multiply floating point | | |

| register | MER] RR] RR

| Multiply halfword | MH | RX | RX

| Multiply halfword register | MHR | RR¥ | RR

| Multiply halfword unsigned | MHU | | RX

| Multiply halfword unsigned | | |

| register | MHUR | | RR

48-050 FOO0 RO3

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

——— e iy Gon - Gh B B S S A T Ge G G NS W GeS e SN ARG @R GEL GEm SR RN T GEn e ST SRR G GNE G G SES WA G BHL G GG G SN DN S G S GU0 e e G GE S e

I | 32-BIT | 16-BIT |
INSTRUCTION | MNEMONIC | FORMAT | FORMAT |

Move and process byte

|

|

I

	I		
string register	MPBSR	RR%%	
Multiply register	MR	RR	RR*
AND	N	RX	RX* I
AND halfword	NH	RX	RX
AND halfword immediate { NHI : RI1 : RI			
AND immediate	NI	RI2	RI*
AND halfword register	NHR	RR*	RR
AND register	NR	RR	RR*
OR	O	RX	RX*
Output command } oC } RX } RX }			

| Output command register | OCR | RR | RR |
| OR halfword | OH | RX | RX |
| OR halfword immediate | OHI | RI1 | RI I
| OR halfword to memory | OHM | | RX** |
} OR halfword register | OHR { RR* : RR :

|

OR immediate	O1	RI2	RI¥*
OR register	OR] RR	RR*	
Process byte	PB	RX%	
Process byte register	PBR	RR%	
Read block	RB	RX%$%	RX
Remove from bottom of list	RBL	RX	RX
Remove from bottom of list			
£lagged	RBLF		RX**
Read block register	RBR	RR%%	RR
Reset bit	RBT	RX	
Read data	RD	RX	RX i
Read DCS	RDCS	RR	RR i
Read data high speed	RDHS		RX**
Read data high speed			
register	RDRHS		RR¥**
Read data register	RDR	RR	RR I
Read halfword	RH	RX	RX
Read halfword register	RHR	RR	RR }
I | | |

| Rotate left logical | RLL | RI1 | RI |
| Rotate left logical short | RLLS | | SF** |

3-16 48-050 FOO RO3

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

4 G - . = e G- P e S W Ge G i Gaa Gra SFE S Ghe Gaa STE DS Ehe S e Gwu G G O G @ G G e BN 5N G S S M0e e @R GWU GAe Gen GUF @en S S e B B

| | 32-BIT | 16~BIT
INSTRUCTION - | MNEMONIC | FORMAT | FORMAT

e G S S @ Ere Ema @ S Sat S % G STY STS v e S STS S STH S S Svn She S SN Suv Sam Sam S SIT S S0 Gus S Sme o Sun Swv S v Srh S Sin S S Smy Sm W Sv mme S e -
3+t 3ttt 23 3 33 3 2322232 2L 322 2 233 23 2 223 2 2 2 S 3 2 2 2 23 P 2

Read process data high

|

|

|

| | | |

| speed | RPDHS | | RX*%*

l Replace PSW { RPSW { | RR**
I

| Rotate right logical | RRL | RI1 | RI

| Rotate right logical short | RRLS | | SF**

| Remove from top of list | RTL | RX] RX

| Remove from top of list | | |

| £lagged | RTLF | | RX**

: Subtract : S { RX { RX*

| Store byte high speed | | |

| indirect | SBHSI | | RI**

| Set bit | SBT | RX]

| Subtract with carry | | |

| halfword | SCH | | RX

| Subtract with carry | | I

| halfword register | SCHR | | RR

| Simulate channel program | ScCp | RX%]

l I l |

| Subtract DP floating point | SD | RX | RX

| Subtract DP floating point | | |

| register | SDR | RR | RR

| Subtract floating point | SE | RX | RX

| Subtract floating point | | |

| register | SER | RR | RR

I Set program mask : SETM = : RX

| Set program mask register | SETMR | | RR

| Subtract halfword | SH | RX | RX

| Subtract halfword immediate| SHI | RI1 | RI

| Subtract halfword from | | |

| memory | SHM | | RX**

| Subtract halfword register | SHR | RR¥* | RR

| Subtract immediate | SI | RI2 | RI*

| Simulate interrupt | SINT | RI1 | RI

| Subtract immediate short | SIS = SF } SF

| |

| shift left arithmetic | SLA | RI1 | RI

48-050 FO0O0 RO3

— — —— ——— —— — — — — — — — — — —— — — —— — — — — —— — —— — — —— — — —— —— ——

3-18

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS

AND MNEMONICS (Continued)

. S S . G . G G T G e Vo U S G e G B G G e G e S S G B G S G " G ey G, G e G Gae S G G A G e G W gt GEO Ghe S e S Eve S

32-BIT

| FORMAT

RR
RI1

RI1
RI1
RI1
SF
SF
RX
RR
RX
RX
RR
RX
RX

RX
RX

RX

INSTRUCTION | MNEMONIC
Shift left halfword | |
arithmetic | SLHA |
Shift left halfword I |
logical | SLHL |
Shift left logical | SLL I
shift left halfword | |
logical short | SLHLS |
Shift left logical short | SLLS |
Store PSW | SPSW {
|
Subtract register | SR]
Shift right arithmetic | SRA I
Shift right halfword | |
arithmetic | SRHA |
Shift right halfword | |
logical | SRHL]
Shift right logical | SRL :
|
Shift right halfword | |
logical short | SRHLS I
Shift right logical short : SRLS :
Sense status | ss |
Sense status register | SSR I
Store } ST :
Store byte | STB |
Store byte high speed | STBHS |
Store byte register | STBR |
Store DP floating point | STD |
Store floating point | STE :
: I
Store halfword | STH |
Store multiple | STM |
Store multiple DP floating | |
point | STMD |
Store multiple floating | |
point | STME]

RX

| 16=-BIT
| FORMAT

RI
SF
RR**

RR¥*
RI

RI

RI
RI

SF
SF

RX
RR
RX*

RX
RX**
RR
RX
RX

RX
RX

RX

—— — — — — —— ————— —— — —— —— t—— — —— — — — — —— — ——— —— — —————— St it

RX

48-050 FOO RO3

*

* %

%%

48-050

TABLE 3-1 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

— - T G - . S G G S GUR G Gee G B @ S G ST e Gl ee S Gme Gum Sh6 S GE GEN GRe v Ghk G BES Gma GRS g GUS Gam WRA GEN M = e P

|

] INSTRUCTION | MNEMONIC | FORMAT | FORMAT |
‘===========================:=============================|
Supervisor call	svC	RX	RX
Test bit	TBT] RX		
Test halfword immediate	THI	RI1	RI
Test immediate	TI	RI2	RI*
Translate	TLATE	RX	RX**
Test and set	TS	RX	
Unchain	UNC		RR**
Write block	WB] RX%%	RX	
Write block register	WBR	RR%¥%	RR
Write data	WD	RX	RX
Write DCS	WDCS	RR] RR {	
		I	

Write data register	WDR	RR	RR
Write data high speed	WDHS		RX**
Write data high speed			
register	WDRHS]	RR**	
Wreite halfword	WH	RX I RX	
} Write halfword register { WHR } RR { RR }			
Write processed data high			
speed	- WPDHS		RX**
Exclusive OR I X	RX	RX*	
Exclusive OR halfword] XH	RX	RX	
Exclusive OR halfword		!	
immediate	XHI	RI1	RI
Exclusive OR halfword			
register	XHR	RR* } RR I	

Exclusive OR to memory] XHM		RX**	
Exclusive OR immediate	XI	RI2	RI*
Exclusive OR register	XR	RR	RR*

e S s G G — o S " B2 @ S G S S EM e G (B S S S S ey S S S GA G G Gy GRS B e Gl e GSS M G S . Y e G See S - -

The indicated mnemonic operation code is generated,
and the listing is flagged with a question mark to
indicate a potential error.

Model 50 instruction set.

These instructions are illegal on the APU of the
3200MPS Family of Processors

Not applicable for 3200MPS Family of Processors,

FOO RO3 3-19

+ The indicated instruction pertains to the Model 3203 and
3205 Processors, and 3280 Systems only. When any of these
instructions 1is encountered during assembly, a pound sign
(#) is placed in the first column of the 1listing. A
single DCMD is placed in the object code. The text of the
DCMD is:

%MODULE xxxx CONTAINS NON-NORMALIZING LOADS
Where:
XXXX is the name of the module.

The no processor specific warning (NPWRN) instruction can be used
to suppress the warning and the DCMD output that is generated for
these instructions.

There are three machine instructions for the APU of the 3200MPS
Family of Processors. They are summarized in Table 3-2. See the
appropriate instruction set reference manual for an explanation
of these new machine instructions.

TABLE 3-2 CAL/32 MACHINE INSTRUCTIONS AND MNEMONICS
FOR THE 3200MPS FAMILY OF PROCESSORS

| | | 32-BIT |
| INSTRUCTION | MNEMONIC | FORMAT |
|TGemerate Sigmai 1 esm 1w |
: Read real-time counter : RRTC : RR }
} Reschedule : RSCH* } SF }

—— —— — . S T S T G s G S Y G G G} G TS EML G2 S G Sy G - S S W P S G- - = Gne Ste = — S G

* This instruction is not supported by the IOP
for the 3230MPS or 3260MPS,

0S/32 R08.2 and higher will simulate these instructions on other
processors.

The semantics of the privileged system function (PSF) are
modified for the APU of the 3200MPS Family of Processors. Table
3-3 lists the mnemonics of machine instructions and mnemonics for
the Series 3200 Processors. The 16-bit format is not applicable.

3-20 48-050 FOO RO3

If these instructions are encountered and the APU option has

been specified, the 1line

placed in the object code.

containing the
flagged on the listing with a pound sign (#).

The text of the DCMD is:

****MODULE xxxx CONTAINS APU INSTRUCTIONS

Where:

XXXX

is the name of the module,

not

instruction will be
A single DCMD is

The NPWRN instruction can be used to suppress the warning and the
DCMD output that is generated for instructions not available on
all processors.

TABLE 3-3

— — T Gae SE e G W CEm GRS EES @R FER G SR N IR GHe GEU S GRS G GEU A GER G GRS GRS GUT GRE I AR G GI GIL GUS SRS NG SIS G GHR GER SR SON SR G SRR SN GOR GUR EER GEN gue

| I | 32-BIT
: INSTRUCTIONS | MNEMONIC | FORMAT
| Breakpoint | BRK | RR

| Compare alphanumeric (RO=pad) | CPAN | RXRX#
| Compare alphanumeric and default | |

| pad | CPANP | RXRX#
| Load interruptible state | ISRST* | RX

= Save interruptible state } ISSV* { RX

| Load complement SP register | LCER] RR

| Load complement DP register | LCDR | RR

| Load DP register from SP memory | LDE | RX

| Load DP register from SP register | LDER | RR

| Load DP register from general | |

} register pair = LDGR } RR

| Load process state | LDPS* | RX

| Load SP register from DP memory | LED | RX

| Load SP register from DP register | LEDR | RR

| Load SP register from general | |

| register | LEGR | RR

| Load general register pair from | |

| DP register | LGDR | RR

48-050 FO0O

SUMMARY OF CAL/32

MACHINE INSTRUCTIONS

AND MNEMONICS FOR SERIES 3200 PROCESSORS

RO3

A — — — —— — — — — — — — — — — — — — N S— —— " — —

TABLE 3-3 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS FOR SERIES 3200 PROCESSORS

(Continued)
| 32-BIT |
INSTRUCTIONS | MNEMONIC | FORMAT |
Load general register from SP
register LGER RR
Load packed decimal string as
binary LPB RX#
Load positive DP register LPDR RR
Load positive SP register LPER RR
Load process segment table
descriptor LPSTD* RX
Load shared segment table
descriptor LSSTD* RX
MOVE RXRX#
Move and pad default pad MOVEP RXRX#

I
|
|
|
l
|
|
I
I
I
|
|
I
| Move and pad (RO=pad)
I
|
|
|
|
I
I
I
I
I
|
|
I

— s — —— — — —— — — — — — ——— — — — — — — —— C— — —

| |
| |
| |
| I
| |
| I
| |
I |
| |
I |
.
Move translated until ! MVTU } RXRX#
| |
| |
| |
| I
| |
| I
| |
| |
| |
| |

Pack and move PMV RXRX#
Pack and move absolute PMVA RXRX#
Read error logger REL* RX1
Reset memory voltage failure RMVFE* RX1+
Store DP register in SP memory STDE RX
Store binary as packed decimal

string STPB RX#
Store process state STPS* RX
Unpack and move UMV RXRX#
Unpack and move absolute UMVA RXRX#
Store byte with no ECC XSTB* RX

. — —— " —= s SPr e S LA mm G ST e e M S e G G e S W B TSPV e e G W ST - S WA BSS G S S G - - —

* PSF modified for APU.

+ No register or other operands allowed in source
format.

These instructions are not supported by the IOP of a
3200MPS Family of Processors.

In addition to the set of mnemonics listed in Tables 3-1 through
3-3, CAL/32 recognizes a complete set of extended branch
mnemonics., These instructions allow the programmer to «call for
conditional branch instructions without having to state
explicitly the condition code (CC) mask. Table 3-4 1lists these
instructions,.

3-22 48-050 FOO RO3

TABLE 3-4 EXTENDED BRANCH MNEMONICS

S s G S G G . 04 A T B B R BT W G G W GV S G S G S S G G fn G NS M G N S S Gm S

T T T o o o O T e T T o o oo 5 I S e St mre mis S e = e e e S e mw e v oo e e e A e e e =
o S i S 3 S Bt - 2

|

|

| Branch on carry | BC

| Branch on carry register | BCR
| Branch on carry short | BCS
| I

| Branch on no carry | BNC
| Branch on no carry register | BNCR
| Branch on no carry short | BNCS
I |

| Branch on equal | BE

| Branch on equal register | BER
| Branch on equal short | BES
I |

| Branch on not equal | BNE
| Branch on not equal register | BNER
| Branch on not equal short | BNES
| |

| Branch on low | BL

| Branch on low register | BLR
| Branch on low short | BLS
I I

| Branch on not low | BNL
| Branch on not low register | BNLR
| Branch on not low short | BNLS
| |

| Branch on minus | BM

| Branch on minus register | BMR
| Branch on minus short | BMS
I |

| Branch on not minus | BNM
| Branch on not minus register | BNMR
| Branch on not minus short | BNMS
| I

| Branch on plus | BP

| Branch on plus register | BPR
| Branch on plus short | BPS
| I

| Branch on not plus | BNP
| Branch on not plus register | BNPR
| Branch on not plus short | BNPS
I |

| Branch on overflow | BO

| Branch on overflow register | BOR
| Branch on overflow short | BOS
| |

| Branch on no overflow | BNO
| Branch on no overflow register | BNOR
| Branch on no overflow short | BNOS

48-050 FOO RO3

TABLE 3-4 EXTENDED BRANCH MNEMONICS

{Continued)
] INSTRUCTION | MNEMONIC |
| Branch on zero] BZ]
| Branch on zero register] BZR |
| Branch on zero short | BZS |
| | |
| Branch on not zero] BNZ]
| Branch on not zero register | BNZR |
| Branch on not zero short] BNZS]
| | |
| Branch unconditional | B]
Branch unconditional register	BR
Branch unconditional short	BS
No operation	NOP
No operation register	NOPR

The extended branch instructions are essentially single operand
instructions where the first operand (mask) value is included in
the operation mnemonic. The programmer supplies only the operand
or branch location. For short branches, the programmer does not
have to specify the forward or backward direction. CAL/32
determines the direction of the branch and generates the
appropriate machine code. For example:

LOOP1 L STRNG, TABLE (PTR) LOAD STRING FROM TABLE
CLR STRNG, INPUT COMPARE WITH INPUT
BES END EQUIVALENT FOUND
AIS PTR,4 NOT FOUND INCREMENT PTR
BNZS LOOP1 GET NEXT STRING
LIS STRNG, 0 NOT FOUND END OF TABLE
END ST STRNG, RETURN RETURN VALUE

In this program, CAL/32 determines the locations of LOOPl1 and END
and generates the required forward and backward branch
instructions.

Two more CAL/32 instructions that do not have direct machine
equivalents are:

INSTRUCTION MNEMONIC

Branch on true condition short BTCS
Branch on false condition short BFCS

3-24 48-050 FOO RO3

With these instructions, the programmer must specify the mask
value and the branch location. CAL/32 determines the direction,
forward or backward, and the appropriate machine operation is
generated.

3.5.1 Usual Branch Mnemonics for the 3280 System

The Usual Extended Branch Mnemonics instructions supported by the
3280 System extend the defined set of Extended Branch Mnemonics
and provide a Usual Branch instruction for each member of the
Extended Branch Mnemonics set. These instructions operate in a
way that 1is similar to the Extended Branch Mnemonics, but will
allow the user to indicate to the processor that the branch is
usually taken. This allows the pipeline mechanism to prefetch
the correct succeeding instruction more frequently, reducing
delays. Table 3-5 lists these instructions,

TABLE 3-5 USUAL EXTENDED BRANCH MNEMONICS
FOR THE 3280 SYSTEM

G G Gy B " G - G G . PSS GEE Gpe. SR G S G o GG S P S Wow G S G GEL GeN N G S S e S G S S e Mo S E—e G

| INSTRUCTION | MNEMONIC |
! E 1 3ttt 33 1 + 3 43433422 F 3 F- 333 422323 5%+ 5 F 4 F I
Usual branch on carry	UBC
Usual branch on carry register	UBCR
Usual branch on carry short	UBCS
Usual branch on no carry	UBNC I
Usual branch on no carry	UBNCR
register	
Usual branch on no carry short	UBNCS
	I
Usual branch on equal	UBE
Usual branch on equal short	UBES
I	
Usual branch on not equal	UBNE
Usual branch on not equal	UBNER
register	
Usual branch on not equal short	UBNES
I	
Usual branch on low	UBL
Usual branch on low register	UBLR
Usual branch on low short { UBLS	
Usual branch on not low	UBNL
Usual branch on not low	UBNLR
register	
Usual branch on not low short	UBNLS
I	
Usual branch on minus	UBM
Usual branch on minus register	UBMR
Usual branch on minus short	UBMS

48-050 FO0O RO3 3-25

3-26

INSTRUCTION | MNEMONIC |
Usual branch on not minus | UBNM |
Usual branch on not minus | |
register | UBNMR |
Usual branch on not minus short { UBNMS =
Usual branch on plus | UBP |
Usual branch on plus register | UBPR |
Usual branch on plus short { UBPS :
Usual branch on not plus | UBNP |
Usual branch on not plus I |
register | UBNPR |
Usual branch on not plus short ‘ UBNPS :
Usual branch on overflow | UBO |
Usual branch on overflow | |
register | UBOR |
Usual branch on overflow short { UBOS :
Usual branch on no overflow | UBNO |
Usual branch on no overflow I |
register | UBNOR |
Usual branch on no overflow | |
short | UBNOS |
Usual branch on zero | UBZ |
Usual branch on zero register | UBZR I
Usual branch on zero short : UBZS {
Usual branch on not zero | UBNZ |
Usual branch on not zero | |
register | UBNZR |
Usual branch on not zero short ; UBNZS :
Usual branch unconditional | UB |
Usual branch unconditional | I
register | UBR |
Usual branch unconditional short | UBS |

—— ——— S—— —— — — — — —— —— —— — ———— — S— — — — — — — —— ——— — — — — — — ———

TABLE 3-5 USUAL EXTENDED BRANCH MNEMONICS
FOR THE 3280 SYSTEM (Continued)

————— — . Sy e A S A (G S o S W G G S G S S W W o G 0 Bl B W

—— — O . T 4o G S G Gae S S G SR We S Gey e e e Smn S G S SEn S M B G e Sav e G Gum GG Gy e S e

48-050 F0O0 RO3

3.5.2 CAL/32 Machine Instructions for 3280 System

In addition to the sets of instructions listed in the preceding
tables, the 3280 System recognizes a set of new instructions
which is listed in Table 3-6. See the 3280 System Instruction
Set Reference Manual for a detailed explanation of these new
instructions,

TABLE 3-6 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS FOR 3280 SYSTEMS

- o P g S T S . G B W G e e S e T G5 G Mha Gwm Bmd e S A SR G GEL G4 GEm G G G STE GET Ses Gmm en SV Gee G Gex W S W S S G ———

| | | 32-BIT |
| INSTRUCTIONS | MNEMONIC | FORMAT |
l=======:================================:==============I
| Branch and synchronize ‘ BSYNC } RXl,RX2=
| RX3

Branch on count down	BCD	RX3
Branch on count down backward		
short _	BCDBS	SF
Control/Diagnostic System read	RCDSR	RR
Control/Diagnostic System write	WCDSR	RR
Data base management system		
checksum	CKSUM] RR	
Disable extended real addressing	XMOFF	RR I
Enable extended real addressing] XMON	RR]	
Fill string	FILSC	RXRX
Fill vector with fullword	FILVG	RXRX
Fill vector with doubleword	FILVW	RXRX
Floating point arctangent	ATNER	RR
Floating point double precision		
arctangent	ATNDR] RR]	
Floating point cosine	COSER	RR
Floating point double precision		
cosine	COSDR	RR
Floating point exponential	EXPER	RR
Floating point double precision	I	
exponential	EXPDR] RR	
Floating point to a floating I I l		
point power	EXXER	RR
Floating point to a double		
precision floating point power	EXXDR	RR]
Floating point logarithm base 10	L10ER	RR
Floating point double precision		
logarithm base 10	L1ODR	RR
Floating point natural logorithm	LOGER	RR
Floating point double precision		
natural logorithm	LOGDR	RR
Ploating point sine	SINER	RR
Floating point double precision]		
sine	SINDR	RR]
; Floating point sine and cosine { SNCER : RR }

Floating point double precision

48-050 FO0O0 RO3 3-27

— et et

TABLE 3-6 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS
AND MNEMONICS FOR 3280 SYSTEMS (Continued)

——————— T " G- " e GWS S S— W Gae Gt WA G B GRS HER W M S S G5 UV SEe S GE fue G SEm G Swm Sem M G San S0 Sim e SSn Sar S0 She B e = G S = =S

sine and cosine

square root
Get user register
Load real address

Load test control
Load unnormalized

Load unnormalized
Load unnormalized

Load unnormalized
register
Move string

Move vector
Put user register

System bus read
System bus write

register
backward short

forward short

register

backward short

forward short

When any of the 3280
assembly, a pound sign (#) will be printed in the first column of
DCMD will

Floating point square root
Floating point double precision

block

register
register

double precision

double precision

Send processor message
Start real-time clock
Store fullword, no ECC

Store test control register

Usual branch on false condition
Usual branch on false condition
Usual branch on false condition
Usual branch on false condition
Usual branch on true condition

Usual branch on true condition
Usual branch on true condition

Usual branch on true condition

System commands

the line if a listing is requested and

placed in the object code.

3-28

LWR

MOVS
MOVV
PUR

GIPS
SRTC
XSTF

STCR
RSR
WSR
UBFC
UBFCR
UBFBS

UBFFS
UBTC

are encountered during

single

The text of the DCMD is:

o e s . B o T WY W s e Sm— . S e Gy Suw GES Eee Ewe Sue G WS e S e e T S G- Sur Sar S G e e e S GRL MR S M Gas S SN See St S dew e Sue e Sk S
3+ttt 4ttt t St 1t i3 2 s 2 3 i3 3 s 42 4 43+ S+ 3 F S 2 2 2+ S 222 44T 5 FF

RXRX,

RR
RXRX
RXRX
RX
RR
RR

RX1,RX2

RX3
RX
RR
RR
RXRX,
RX3

RR
SF

SF
RXRX,
RX3

RR

—— ey S . et i . — — — — — — —— — — — — — — o et et Sl S O — — —— T— — — — — — — — — ——" —— —

48-050 FOO0 RO3

**%% MODULE xxxx CONTAINS 3280 SYSTEM INSTRUCTIONS
Where:
XXXX represents the name of the program.

The no processor specific warning (NPWRN) instruction can be used
to suppress the warning and the DCMD output that is generated for
instructions not available on all processors.

3.5.3 Instructions for the Input/Output Processor (IOP)

There are machine instructions to be used only on an IOP for the
3230MPS and 3260MPS. Table 3-7 provides a summary of these
instructions and the applicable format. See the appropriate
Instruction Set Reference Manual for a detailed explanation of
these machine instructions.

TABLE 3-7 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS
FOR 1IOPs

g S G . G G . SO e Gae B G W G VD e Gwe Eee Y ENC G e G e G G G S . . -

| | | 32-BIT |
{ INSTRUCTIONS | MNEMONIC | FORMAT !
CPU attention	ATCPU	RR
Exit	XIT	RR
Load APB	LAAPB	RR
Load ISP	LAISP]l RR	
Load wait time	LDWT	RR
Post interrupt	PINT	RR
Reset lock	RLOCK] RR	
Set lock] SLOCK] RX		

——— — .t W e e v = - S Sme Go= e Gme e S S B SO G e G T S W — -

When an IOP instruction is encountered, the line containing the
instruction on the listing is flagged with a pound sign (#). A
single DCMD is placed in the object code. The text of the DCMD
is:

%%* MODULE xxxx CONTAINS I/O PROCESSOR INSTRUCTIONS

48-050 FOO0 RO3 3-29

—— — — —

Where:
XXXX is the name of the module.

The NPWRN instruction can be used to suppress the warning and the
DCMD output that is generated for instructions not available on
all processors.

3.6 ASSEMBLER INSTRUCTIONS

Assembler instructions control the assembly process. Although
they may resemble machine instructions in form, they do not
generate any machine executable code. They are used to define
symbols, reserve storage, generate data constants and control the
final output.

3.6.1 Symbol Definition Instructions

Symbol definition instructions allow the programmer to assign
values to symbols and set up communication paths between
separately assembled programs. The latter operation facilitates
the wuse of subroutines because they can be written and assembled
separately from the main program. At load time, a linking loader
uses information supplied by CAL/32 to resolve addresses between
main programs and subroutines to set up the correct linkage.
3.6.1.1 Equate (EQU) Instruction

This is one of the most commonly used assembler instructions. It
assigns values to symbols and it has the form:

NAME OPERATION OPERAND

A symbolic name EQU An expression

Examples of EQU instructions are:

LOOP EQU LOOP1

TOP EQU END-6 4
DELTA EQU BOTTOM-TOP
HERE EQU *

START EQU X'10FE'
SUM EQU 1

PTR EQU 2

3-30 48-050 FOO RO3

EQU instructions can appear anywhere in the program. CAL/32
requires that each EQU instruction have a symbol in the name
field and treats the absence of this symbol as an error. The
value assigned to a symbol by an EQU instruction is absolute or
relocatable, depending on the type of expression in the operand
field.

If the operand of an EQU statement contains a forward reference,
CAL/32 will perform any additional passes required to define all
symbols. CAL/32 does not reserve storage for symbols defined by
an EQU instruction. Wherever it encounters the symbol in the
program, CAL/32 replaces the symbol with the value defined in the
EQU instruction. For example:

STRNG EQU 1

PTR EQU 2

INPUT EQU 3

LOOP1 L STRNG, TABLE (PTR) LOAD STRING FROM TABLE
CLR STRNG, INPUT COMPARE WITH INPUT

In this case, CAL/32 generates the code to load register 1 with
four bytes located at the address specified by TABLE, indexed by
register 2, The next instruction causes CAL/32 to generate the
code to compare the four bytes in register 1 with the contents of
register 3. The use of the EQU instruction here allows the
programmer to assign meaningful names to the registers that hold
the character strings, and index into the table. It also
provides a simple way to redefine the values assigned to these
symbols. By changing the EQU instructions and reassembling, it
is possible to change the values assigned to the symbols without
extensive editing to change each individual statement where these
registers are used.

It is also possible, although not recommended, to redefine a
symbol within a program. For example:

LOOP1 EQU *

LOOP1 EQU *

When the symbol LOOPl is encountered in the first EQU
instruction, CAL/32 assigns it the value of the LOC. Subsequent
references to LOOPl receive this value. Following the second EQU
instruction, the value of LOOPl is changed to the value of the
new LOC. Because such redefinitions might not be intentional,
CAL/32 issues a warning message wherever a symbol is redefined by
an EQU instruction. (In the example, the programmer might have
intended to write LOOP2 instead of LOOPl in the second EQU
instruction.)

48-050 F00 RO3 3-31

The user must guard against circular LOC dependency, as shown in
the following example:

A EQU *
DS 1
DS B-A

B EQU *
END

CAL/32 will flag an "M00l xxxTOP" error where xxx is PURE, 1IMP,
or ABS, depending upon the current LOC.

As stated earlier, CAL/32 permits the user to define operation
mnemonics within the program. To do this, the user defines the
new mnemonic in an EQU instruction in which the new operation
mnemonic is in the name field and the operand field contains a
hexadecimal constant of the form X'nnxy'. Here, nn is the
machine language operation code, and x and y are descriptors that
tell CAL/32 how to handle the new mnemonic. The values of x and
y inform CAL/32 of the instruction format. The values are
defined as follows:

x=0, y=28 RR or SF format
x =0, yv=2 RX or RI format
x =0, y=4 RI1 format
x=0,y=1 RI2 format

To define extended branch mnemonics, x gets a value equal to the
Rl field (mask) and y gets one of the following values:

3 RX format
C RR format
D SF format

y
y
y

For example, in the instruction:

BTC 15,ADDR

the branch on true condition mnemonic and the mask field 15 can
be combined into an extended branch instruction as follows:

BTCF EQU X'42F3!

in which BTCF is the new mnemonic; 42 is the machine code for the
branch on true condition instruction; F is the mask value (15);
and 3 specifies RX format. Once this new mnemonic is defined,
the programmer can write:

3-32 48-050 F0O0 RO3

BTCF ADDR
instead of:
BTC 15, ADDR

The new mnemonic definition remains in effect only for the
program in which it is defined. The new mnemonic must be
different from all other mnemonics recognized by CAL/32.

There are three things to remember in using equate statements:

1. The name field must always contain a valid symbol.

2. The operand field must always contain a defined symbol or
expression.

3. The symbol that appears in the name field of an Equate
instruction must not appear in the name field of any other
instruction, except another Equate instruction.

If any of these rules are violated, CAL/32 generates an
appropriate error message.

3.6.1.2 External, Entry, Weak External, Weak Entry and Data
Entry (EXTRN, ENTRY, WXTRN, WNTRY and DNTRY)
Instructions

These instructions are 1listed together since they perform
corresponding functions to establish links between main programs
and subroutines, and between programs with a common data base.
These instruction forms are:

NAME OPERATION OPERAND
Not used EXTRN One or more symbols
(illegal) separated by commas
Not used ENTRY One or more symbols
(illegal) separated by commas
Not used WXTRN One or more symbols
(illegal) separated by commas
Not used WNTRY One or more symbols
(illegal) separated by commas
Not used DNTRY One or more symbols
(illegal) separated by commas

48-050 FO0O RO3 3-33

The EXTRN instruction identifies symbols referenced by the
program but defined outside the program. The ENTRY instruction
identifies symbols defined within the program and referenced
externally. (They can be referenced internally as well.) '

0S/32 supports a 24-bit addressing mode and a 32 bit value mode.
EXTRN and ENTRY instructions are designed for addresses rather
than values and may only hold a 24-bit address. Using these
instructions for 32-bit values produces unexpected results.

For example, consider two programs: one calculates the sine and
cosine o¢of an angle, the other uses the sine and cosine. The
first is a general-purpose program that could be used by many

other programs. The ENTRY and EXTRN instructions make this
possible without having to assemble the sine and cosine program
every time it 1is needed, The sine and cosine program would

contain an ENTRY instruction and entry points such as:

ENTRY SIN,COS
SIN . EQU *

CcOoS EQU *

The symbols SIN and COS appear as operands in the ENTRY
instruction and as names in the EQU instructions. When CAL/32
assembles this program, CAL/32 informs the 1linking 1loader that
the 1locations identified by the names SIN and COS are entry
points into the program.

The program that uses sine and cosine would contain an external
statement and branch instructions such as:

EXTRN SIN,COS

BAL LINK,SIN

BAL LINK, COS

3-34 48-050 F0O0 RO3

At assembly time, CAL/32 generates object data to inform the
linkage editor that the symbols SIN and COS are externally
defined. At link time, the linkage editor uses this information,
along with the information generated by the Entry instruction in
the other program, to provide the necessary linkage.

NOTE

See the 08/32 Link Reference Manual for
information on 1linking multiple object
modules.

The WXTRN instruction is essentially equivalent to the EXTRN
instruction, However WXTRN symbols are subject to the following
exception processing by Link:

@ An error condition does not arise if the symbol is not
resolved. A warning message, n UNDEFINED WEAK EXTERNAL
SYMBOL(s), is output if any weak external symbols remain
unresolved after the image is built. '

@ Object libraries are not searched in order to satisfy a weak
external.

o If a module containing an entry point referenced by a WXTRN
symbol is included, then the entry point will be used to
satisfy WXTRN references to it in the normal way.

The WNTRY instruction is essentially equivalent to the ENTRY
instruction. However, WNTRY symbols are subject to the following
exception processing by Link.

® Weak entry points are not examined when searching an object
library. Therefore, a program module containing a weak entry
point is not included to satisfy an external reference.

e If a program module containing a weak entry point is included
from a module, the weak entry point will be used to satisfy
external references in the normal way.

The DNTRY instruction is essentially equivalent to the ENTRY
instruction. Rather than providing access to executable code
being referenced by another module, DNTRY provides access to
labeled data areas. When building overlaid modules, one overlay
may require access to a data area identified in another overlay.
The DNTRY instruction is wused to identify these labeled data
areas in overlay modules. This instruction identifies a symbol
defined local to the program containing the DNTRY instruction.

48-050 F0O0 RO3 3-35

To help protect references to data in higher 1level nodes, Link
automatically loads the entire path of overlays starting at the
overlay containing data and ending with the overlay making the
reference to a data entry point (DNTRY). A reference to a
program section positioned in a higher 1level node, via the
POSITION command, 1is treated the same way. A reference to data
or a program section in the root does not <cause a path of
overlays to be loaded.

If a DNTRY is referenced in a lower level node, an SVC5 manual

overlay load might be required to ensure that the overlay is in

memory at the time of the reference.

Restrictions on the use of external and entry instructions are:

e The operand field of an external instruction must not contain
an expression, such as SIN+4.

e Expressions involving externally defined symbols must be of
the form:

- External symbol + absolute’ expression

- External symbol - absolute expression
BAL R15,SIN+4
is a legal use of an externally defined symbol,
e Externally defined symbols cannot be used internally as

instruction identifiers.

e Any symbol identified as an entry must appear internally in
the name of an instruction.

e Symbols identified as entries cannot be redefined by multiple
equate instructions.

3.6.1.3 Include (INCLD) Instruction

This information provides Link with a mechanism to guarantee the

inclusion of object modules without other linkage references to
it., It has the form:

NAME OPERATION OPERAND
Not used INCLD One or more symbols
(illegal) separated by commas

3-36 48-050 FOO RO3

The INCLD is used in the same fashion as the EXTRN to 1linking
references. However, this instruction is used to nominate
program modules rather than external symbols.

NOTE

CAL/32 generates the same object as in
the past, provided none of the following
instructions are used: external with
offset, DCMD, DNTRY, WNTRY, WXTRN or
INCLD, The assembly of any of these
instructions produces an object that TET
will reject. Link is required to process
modules containing this extended object.
These instructions are only valid in a
Target 32 assembly and have no effect on
l6-bit object generation.

3.6.2 Data Definition Instructions

The following instructions allow the programmer to reserve areas
of memory to be used at run-time. Some of these instructions
allow the programmer to specify values with which these areas can
be initialized at load time. Other data definition instructions
provide easy access to complex data structures.

3.6.2.1 Define Storage (DS, DSH and DSF) Instruction

This instruction causes CAL/32 to reserve a block of storage
within the program without initializing the reserved locations to
any value. It has the form:

NAME OPERATION OPERAND
A symbol DS A previously defined absolute
(optional) expression
A symbol DSH A previously defined absolute
(optional) expression
A symbol DSF A previously defined absolute
(optional) expression

The DS mnemonic causes CAL/32 to reserve the specified block of
storage starting from the value of the current LOC.
In the DSH form, CAL/32 first aligns the LOC on a hal fword
boundary and then reserves the storage. In the DSF form, CAL/32
first aligns the LOC on a fullword boundary. Examples of the
define storage instruction are:

48-050 FOO RO3 | 3-37

BUF1 bs 100
BUF2 DSH 125
BUF3 DSF 16

In the first example, CAL/32 reserves 100 bytes of storage by
simply adding 100 to the LOC. 1In the second example, CAL/32
reserves 125 halfwords (250 bytes) of storage. CAL/32 does this
by aligning the LOC on a halfword boundary, if it is not already
properly aligned, and then adding 250 to it. In the third
example, CAL/32 ensures that the LOC is aligned on a fullword
boundary and then adds 64 (the byte equivalent of 16 fullwords)
to it.

Define storagé instructions are commonly used to reserve storage
areas for transient data. Examples of this are I/0 buffers and
register save areas. For example:

ENTRY RSAVE
EXTRN SIN, COS

LINK EQU 15
BAL LINK,SIN
RSAVE DSF 16

shows how a main program might set up a register save area within
itself. The code for the called program might look like:

ENTRY SIN,COS

EXTRN RSAVE
RO EQU 0
SIN EQU *

STM RO, RSAVE

where the subroutine stores the general registers in the
externally defined area, RSAVE, When using define storage
instructions remember that:

3-38 48-050 FOO RO3

e The DSH and DSF forms of the instruction ensure halfword and
fullword alignment,

e The define storage instructions do not initialize memory to
any particular value.

e Only one operand is allowed in a define storage instruction,
and it must be a defined, absolute symbol or expression.

3.6.2.2 Define Constant (DC and DCF) Instruction

The define constant instruction allows the programmer to reserve
areas of memory and at the same time specify the initial value to
be 1loaded into them. The define constant instruction has two
forms:

NAME OPERATION OPERAND
A symbol DC One or more operands
(optional) separated by commas
A symbol DCF One or more operands
(optional) separated by commas

The DC mnemonic ensures that the first of the operands is aligned
on a halfword boundary. The DCF mnemonic ensures that the first
of the operands is aligned on a fullword boundary. Operands of
different types can be used in the same define constant
instruction. However, where alignment is a concern, the
programmer must be careful in mixing operands of different types.
Types of operands are described below.

A single character code indicates the type of constant. This
character code is not always required, and the exceptions are
noted as they occur. The assembler determines from the character
code how it is to interpret the constant and translate it into
the proper object format. Table 3-8 lists the character codes
recognized by CAL/32, their meanings, and the types of constants
generated.

48-050 F00 RO3 3-39

TABLE 3-8 CONSTANT TYPES

——— T T - S G- — " S G G S S (4 e PES GER G GhS SRS GRS SN SRS S GOn GeN N G SN G S G I GRS Gmm G GEM GRS S Gu= G EEY G G S

string integer of binary en-
coded 4-bit decimal
digits in a string of
variable byte length.
Fixed point sign-coded
integer of 7-bit ASCII
encoded decimal digits
(8~bits per digit) in a
string of variable byte
length.

——— i " ™ o . G S G GWS W GML G G G W W S G (P GE G WS G WU R GER G G GEY SN ST GRS G G SR S G TR G GnA S S G W G e S S R,

Unpacked decimal
string

! CODE | MEANING | MACHINE FORMAT }
X Hexadecimal 16-bit binary |
Y Hexadecimal 32-bit binary |
H Integer 16-bit signed binary |
F Integer 32-bit signed binary |
A Address 32-bit value of address |
Z Address 16-bit value of address |
T Address One half of 16-bit address |
E Single precision 32-bit floating point |

floating point format i
D Double precision 64-bit floating point |
floating point format :
C
character (7-bit ASCII) I
P Packed decimal Fixed point sign-coded ;
I
l
I
|
|
|
|
|
I

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
: Character : An 8-bit code per
I |
| |
| |
| |
| |
| |
| |
| |
l |
| |
| I

3.6.2.3 Hexadecimal Constants

A hexadecimal constant consists of one or more hexadecimal
digits, 0 through 9 and A through F, enclosed in apostrophes and
preceded by the type code X or Y. Where the X type 1is used,
CAL/32 reserves two bytes of storage and generates the loader
information that will cause those two bytes to be initialized at
load time with the binary representation of the hexadecimal
number. The Y type causes four bytes to be reserved and
initialized. Examples of hexadecimal constants are:

CONSTANT VALUE
DC X'1234" 1234
DC Y'1234° 0000 1234
DCF X'20' 0020
DCF Y'0064' 0000 0064

DC X'1234ABC! 4ABC

3-40 48-050 F0O RO3

The first example shows a halfword hexadecimal constant which,
because of the DC operation code, is aligned on a halfword
boundary. The second example shows a fullword hexadecimal
constant. In this case, fullword alignment is not guaranteed.
The third example shows a halfword constant aligned on a fullword
boundary. The fourth example shows how to force fullword
alignment for a fullword constant. The last example shows what
happens when too many digits are given. CAL/32 truncates the
constant to the least significant digits and generates an error
messagde. The maximum number of digits for an X type constant is
four., The maximum number for a Y type constant is eight.

NOTE

Where fewer than the maximum number of
digits are given, CAL/32 right-justifies
the value 1in the location and fills in
the missing digits with zeros.

Two special mnemonics facilitate the building of hexadecimal
tables by eliminating the need to specify the X or Y type code.
They have the form: :

NAME OPERATION OPERAND
A symbol DCX One or more operands
(optional) separated by commas
A symbol DCY One or more operands
(optional) separated by commas

Operands for these instructions consist of one to four
hexadecimal digits for the DCX instruction and one to eight
hexadecimal digits for the DCY instruction. Examples of these
constants are:

DCX 1,0,14AE,20,4040
DCY 1,2FFFE,64,80000000

The DCX instruction generates five halfword constants:

0001
0000
14AF
0020
4040

48-050 FOO RO3 3-41

The DCY instruction generates four fullword constants:

0000 0001
0002 FFFE
0000 0064
8000 0000

Before generating the constants, CAL/32 ensures that they are
properly aligned with halfword constants aligned on halfword
boundaries and fullword constants aligned on fullword boundaries.

3.6.2.4 Integer Constants

Integer constants can be either halfword or fullword. Halfword
constants are expressed by the character code H followed by a
string of from one to five decimal digits enclosed in
apostrophes. Fullword constants are expressed by the character
code F followed by a string of from one to ten decimal digits
enclosed in apostrophes. The range of halfword constants is from
<215 to 215 - 1, The range of fullword constants is from -231 to
231 = 1, The range of halfword and fullword constants is shown
below. The decimal strings used in these constants must not
include commas or blanks. A sign, + or -, can precede the
string.

- —— T 0 G G- S G G U T A TR TTP Y™ WY B GRS Gew Wme S G G T S S

| MINIMUM VALUE | MAXIMUM VALUE |

— G G " S G S S G G GUR WS GNR G GRn Gve GER GUR W G Gmm G G S e G WY IR S G S SN G SIS SR G @

The internal representation of integer constants is two's
complement binary. 1In this notation, positive numbers and =zero
have their true binary form. For example, a halfword integer
with a wvalue of 25 1is represented internally (hexadecimal
notation) as 19.

Negative numbers are expressed in accordance with the formula:

value = 2" - x

3-42 48-050 FO00 RO3

where n is the number of bits used to express the value, and x is
the absolute value of the number. For example, to represent
minus, 10 in a halfword constant:

n 16 (104)
X 10 (A1)
Value = 1000046 - Ate = FFF616

Examples of integer constants are:

CONSTANT VALUE

DC H'32767"' 7FFF
DC H'-32768" 8000
DC F'1! 0000 0001
DC H'-2" FFFE -
DCF F'25° 0000 0019

The H and F codes themselves do not guarantee correct alignment.
To ensure that a fullword integer is aligned on a fullword
boundary, the programmer should use the DCF instruction.

CAL/32 does not require that integer constants be defined with
the character codes and decimal strings enclosed in apostrophes.
A simple decimal string can be used., For example:

DC 1
DC =7

The 1length of the integer constants generated by these
instructions depends on the processor on which the program is to
run., For 32-bit processors such instructions generate fullword
constants, such as:

CONSTANT VALUE
DC 1 0000 0001
DCF -7 FFFF FFF9

For 16-bit processors, these instructions generate halfword
constants, such as: '

CONSTANT VALUE
DC 1 0001
DC =7 FFF9

48-050 FO00 RO3 3-43

It is possible to force a fullword alignment by using the DCF
mnemonic with a simple decimal string. The use of a DCF
instruction affects only the alignment of the first of the
integer constants; the 1length of the constant is determined
solely by the processor on which the program is to be run. Thus,
when using these instructions with operands which are simple
decimal strings, it 1is not possible to generate a halfword
constant for a 32-bit processor.

3.6.2.5 Address Constants

Address constants consist of a single character type code
followed by a symbol or an expression enclosed in parentheses.
The three types of address constants are A, Z and T. Type A
constants generate fullword address constants in programs
intended to be run on 32-bit processors; they generate halfword
address constants in programs intended to be run on 1l6-bit
processors. Types Z and T address constants always generate
halfword values. Examples of address constants are:

DC A (LOOP+2)

DC A(TABLE)

DC A (TOP-BOTTOM)
DC Z (IOVECTOR)
DC T (ALPHATAB)

For 32-bit processors, the first three examples cause CAL/32 to
reserve a fullword of storage, initialized at 1load time to
contain the wvalue of the expression or symbol enclosed 1in
parentheses., This value can be absolute or relocatable,
depending on the nature of the expression. The address quantity
is right-justified in the 1least significant 24 bits of the
fullword, and the most significant eight bits are forced to zero.
However, it is possible to use the most significant bits for some
purpose. They might be used as flag bits as in the example:

PARAM DS 4

ADDR DC A(PARAM+-Y'A0000000"')
EXTRN SIN

LINK EQU 15

ADREG EQU 14

STE RO, PARAM
L ADREG, ADDR
BAL LINK,SIN

3-44 48-050 FOO RO3

At the time of the branch and 1link instruction, register 14
contains the address of the 1location PARAM in the least
significant 24 bits. The most significant eight bits contain the
value X'A0O', The subroutine can use the address portion and the
flag portion independently, as:

SIN EQU *
£E R4 ,0 (ADREG) GET PARAMETER
TI ADREG,Y'A0000000" TEST FLAGS

The Z type address constants generate halfword values. They can
be used 1in programs for 32-bit processors if the programmer is
certain that the actual address cannot exceed 65,535, the maximum
unsigned value that can be expressed in a halfword.

The T type address constants are used as entries in translation
tables. These instructions cause CAL/32 to reserve a halfword of
storage initialized with one half of the actual address, right
justified. The most significant bit is =zero. These constants
are intended for use with the translation tables associated with
the Translate instruction and with the auto driver channel.

Address constants can be written without the type <code and
parentheses, as in:

TABLE DS 16

BUFF1 DS 64

ADD1 DC TABLE ADDRESS OF TABLE

ADD2 DC BUFF1 ADDRESS OF BUFFER ONE

Where this convention is used, the size of the generated constant
depends on the processor for which the program is written. For
32-bit assemblies, CAL/32 generates fullword constants. For
16-bit assemblies, CAL/32 generates halfword constants. The
programmer can force halfword constants to be generated by using
the mnemonic DCZ, as:

48-050 FO0O0 RO3 3-45

DCZ TABLE, BUFF1

which causes a series of halfword address constants to be
generated.

3.6.2.6 PFloating Point Constants

The source form for floating point constants consists of a
decimal number enclosed in apostrophes and preceded by the letter
E for single precision, or the letter D for double precision.
The decimal number consists of:

e an optional plus sign or minus sign,
e one or more decimal digits that may include a decimal point,

e an optional E character followed by an optional plus sign or
minus sign, followed by one or two decimal digits denoting a
power of 10.

Single precision floating point constants require a fullword of
storage. Double precision floating point constants require a
doubleword of storage. Internally, floating point constants are
represented in excess 64 notation. 1In this kind of notation,
each floating point number consists of a sign, an exponent and a
fraction. The first bit of the number is the sign bit. If this
bit is a 1, the number is negative; if it is a 0, the number is
positive. The next seven bits represent the exponent, expressed
in excess 64 notation. This field can contain any value between
0 and 127 inclusive. The remaining bits, 24 for single precision
and 56 for double precision, represent the fraction with an
implied radix point before the first bit.

The true value of the floating point number is obtained by
multiplying the fraction by 16 raised to the power indicated by
the exponent field. In excess 64 notation, this power is
determined by subtracting 64 from the value in the exponent
field. In this way, values equal to or greater than 64 produce
a 0 or positive power. Raising 16 to this power and then

multiplying by the fraction produces values between
.0625 and 7.2 x 107°. Exponent field values that are less than 64
produce a negative power and values between

.06249,.. and 5.4 x 1077, Floating point 0 is represented by a
fullword or a doubleword of zeros.

See the appropriate Processor User Manual for more detailed
information.

3-46 48-050 FOO RO3

Examples of floating point constants are:

CONSTANT INTERNAL "REPRESENTATION
DC E'1! 4110 0000

DC E'0.0! 0000 0000

DC E'7.2E74' 7F19 7817

DC D'10.5" 41A8 0000 0000 0000
DC D'5,.4E-79"' 0010 01Dl 33A9 49F6

DC D'7.2E+75" 7FFE BOE3 AD97 8760

In the internal representation of floating point constants, the
fractional part can consist of from one to six hexadecimal digits
for single precision, and up to 14 hexadecimal digits for double
precision. If the decimal number exceeds this degree of
accuracy, the magnitude of the number is preserved but the
precision is lost. 1In performing the conversion from decimal to
internal floating point, CAL/32 carries guard digits to ensure
six hexadecimal digit accuracy for single precision and 14
hexadecimal digit accuracy for double precision. The programmer
must ensure proper alignment.,

3.6.2.7 Character Constants

Character constants consist .of the single letter code C followed
by a string of ASCII characters enclosed in apostrophes. All
characters are translated into 7-bit ASCII, in which the most
significant bit 1is always 0. Examples of character constants
are:

DC C'NAME'
DC C'APOSTROPHE = '' !

The second example shows how an apostrophe is included in a
character constant, Between enclosing apostrophes, a double
apostrophe is treated as a single character. The maximum number
of characters that can be defined in a single character constant
is 64. If the number of characters in a constant is odd, CAL/32
appends a blank character at the end to maintain halfword
alignment.

3.6.2.8 Decimal String Constants

The source format for decimal string constants consists of a
decimal number enclosed in apostrophes and preceded by the letter
P for packed decimal string constants, or by the letter U for
unpacked decimal string constants. The decimal number is an
integer and consists of an optional plus sign or minus sign,
followed by 1 to 31 decimal digits.

48-050 F0O RO3 3-47

The machine internal representation of the packed decimal string
constant is a fixed point, sign-coded integer, where each digit
occupies four bits and each byte holds two digits. That is, each
decimal digit, 0 through 9, is binary encoded in a 4-bit
hexadecimal digit. As the number of decimal digits varies from
1 to 31, the length in bytes of the decimal string varies from 1
to 16 bytes. The last hexadecimal digit contains a 4-bit code
for sign; a hexadecimal C for plus or a hexadecimal D for minus.

The integer representation is right-justified within the variable
length string, so the least significant digit of the decimal
number occupies the hexadecimal digit just preceding the sign
code., Each digit is thus consecutively packed, with the most
significant digit (zero or nonzero) in bit positions 0 through 3
of the left-most byte of the string. See the examples that
follow for the differences in internal representation, when the
packed decimal string constant is defined by either the Define
Constant (DC) instruction or the Define Byte (DB) instruction.

The machine internal representation of the unpacked decimal
string constant is a fixed point, sign-coded integer, where each
zoned digit occupies a byte. That 1is, each decimal digit, O
through 9, 1is encoded in 7-bit ASCII with the left-most bit 0
providing an 8-bit byte with the 1left hexadecimal digit
containing a zone code of 3 and the right hexadecimal digit
containing the binary encoded decimal digit. As the number of
decimal digits varies from 1 to 31, the length in bytes of the
decimal string varies from 1 to 31 bytes., The integer
representation is right-justified within the variable length
string. The right-most byte contains the least significant digit
in its right-most hexadecimal digit and the sign code in its
left-most hexadecimal digit. The sign code is a 4-bit code,
described above with a hexadecimal C for plus and a hexadecimal
D for minus. FEach digit is thus consecutively coded into bytes,
with the most significant digit (zoned zero or =zoned nonzero).
See the following examples for the differences in internal
representation, when the unpacked decimal string constant is
defined by either the DC instruction or the DB instruction.

The address of the string is the address of the left-most byte
containing the most significant digit (zero or nonzero). The
address generated for either the packed decimal string constant
or the unpacked decimal string constant is that associated with
the label of the source statements and the current LOC.

3-48 48-050 FOO RO3

Examples of the packed decimal string (PDS) constants are:

INTERNAL

REPRESENTATION
SOURCE FORMAT (HEXADECIMAL)
DB P'l’ 1C
DB P'+50" - , 050C
DB P'-879' : ’ 879D
DB P'+1234' . 0123 4cC
DB P'-12345" | 1234 5D

DB p'1234567890123456789012345%78901' 1234 5678 9012 3456
o ! 7890 1234 5678 901C

DC P'l! ; 001C
DC P'+50" ' 050C
CD P'-879' 879D
DC P'+1234' 0001 234C
DC P'12345' 0012 345C

DC P'1234567890123456789012345678901' 1234 5678 9012 3456
7890 1234 5678 901C

Note that as string-processing instructions are intended to
operate at the 1lowest addressable 1level, on byte-addressable
locations, these constants are most efficiently generated by the
DB instructions described in the define byte instruction section.
If the DC instruction is used, an extra byte of leading zeros is
generated when the number of digits is a multiple of 4 or is an
odd number of digits not divisible by 3. Examples of unpacked
decimal string (zoned) constants are:

INTERNAL

REPRESENTATION
SOURCE FORMAT (HEXADECIMAL)
DB U'l' Cl
DB U'+50' 35C0
DB U'-879' 3837 D9
DB U'+1234' 3132 33C4
DB U'l2345"' 3132 3334 C5

DB U'1234567890123456789012345678901"' 3132 3334 3536 3738
3930 3132 3334 3536
3738 3930 3132 3334
3536 3738 3930 C1

DC u'l 30C1

DC U'+50' 35C0

DC U'-879! 3038 37D9

DC U'+1234' 3132 33C4

DC U'-12345" 3031 3233 34D5

DC U'1234567890123456789012345678901"' 3031 3233 3435 3637
3839 3031 3233 3435
3637 3839 3031 3233
3435 3637 3839 30C1

48-050 F0O0 RO3 3-49

As string-processing instructions require programmed length
attributes, familiarization with the internal storage
requirements for both packed decimal string and unpacked decimal
string constants is advisable. In the previous examples, the
relationship of number of digits to byte length is as follows:

CONSTANT DEFINED BY | BYTE LENGTH
Packed DB (integer of n/2) + 1
Packed DC 2*(integer of n/4) + 2
Unpacked DB n

Unpacked DC n, for n even

n+ 1, for n odd

where n is the number of decimal digits in the source formats of
the decimal constants.
3.6.3 Define Byte (DB) Instruction

This instruction defines consecutive 8-bit bytes of data. It has
the form:

NAME OPERATION OPERAND
A symbol DB One or more operands
(optional) separated by commas

The symbol used in the name £field of the DB instruction is
assigned the wvalue of the current LOC., There is no automatic
alignment. The programmer must ensure proper alignment where the
symbolic name of a DB instruction is wused as an operand
identifier in an instruction requiring its operand to be located
on a halfword, fullword or doubleword boundary.

The operand field can contain one or more operands, separated by
commas., There can be an even or an odd number of operands. The
operands can be any symbol or expression value. For any operand
other than character or decimal string expressions, the least
significant eight bits of the operand value are used to generate
one byte of data. Examples of the DB instructions are:

DB X'F7°

DB 128

DB -1

DB C'A'

DB C'ABCDEFG'

3-50 48-050 F0O0 RO3

As seen in the examples, the operand of a DB instruction can be
a signed integer. 1In this case, the integer can have any value
between -128 and +127, inclusive.

A special form of the DB instruction:
DB *

forces alignment of the LOC to a halfword boundary. If, when
this instruction is encountered, the LOC contains an odd value,
one byte of zero value is generated, and the LOC is made even.
If the LOC is already even, this instruction has no effect.

3.6.4 Define List (DLIST) Instruction

This instruction provides a simple means for defining circular
lists used by the machine instructions:

e Add to top of list

e Add to bottom of list

e Remove from top of list

e Remove from bottom of list

The Define List instruction has the form:

NAME OPERATION OPERAND
A symbol DLIST A previously defined absolute
(optional) expression

The absolute expression in the operand field specifies the number
of slots in the list. For 32-bit assemblies, CAL/32 reserves
four halfwords of storage for 1list pointers, followed by the
specified number of fullwords (slots). The first halfword 1list
pointer is initialized with a value equal to the number of slots
in the list. The remaining three pointers are initialized to
zero, For 16-bit assemblies, CAL/32 reserves four bytes of
storage for list pointers, followed by the specified number of
halfwords. The first byte pointer 1is initialized to a value
equal to the number of slots in the 1list. The remaining byte
pointers are initialized to zero. An example of the DLIST
instruction is:

LIST1 DLIST 100

48-050 FOO RO3 3-51

In a 32-bit assembly, this has the same effect as:
LIST1 DCF X'64',X'0',X'0',X'0"
DS 400

The DLIST instruction forces alignment to a fullword boundary in
32-bit assemblies. It forces alignment to a halfword boundary
for 16-bit assemblies,

3.6.5 Define Command (DCMD) Instruction

This instruction causes the string within the set of apostrophes
to be passed directly to the object code.

NAME OPERATION OPERAND
A symbol DCMD C'command string’
(optional)

The operand of the DCMD instruction is subject to the same
syntactic rules as any other character string. CAL/32 performs
no syntax checking on the command string.

CAL/32 will generate the same object as in the past, provided the
DCMD instruction is not used. The assembly of this instruction
will produce an object that TET will reject. Link is required to
process modules containing this extended object. The DCMD
instruction is valid only in a Target 32 assembly and has no
effect on the 16-bit object generation.

3.6.6 Location Counter (LOC) Instructions

The following instructions allow the programmer to select the
current LOC and set its value. For 32-bit assemblies, CAL/32
maintains three LOCs: pure, impure, and absolute. For 16-bit
assemblies, it maintains two LOCs: relocatable and absolute. At
any given time, only one LOC can be in use, With these
instructions, the programmer can control the program segmentation
and relocation.

3.6.6,1 Pure (PURE) Instruction

This instruction causes all subsequent machine instructions to be
assembled as part of the pure segment. It has the form:

NAME OPERATION OPERAND
A symbol PURE None
(optional) (ignored)

3-52 48-050 FO0O0 RO3

The current LOC is saved and the new LOC is set to point to the
next halfword boundary beyond the most recently used location in
the pure segment, If a PURE instruction occurs in a relocatable
16-bit program, it has no effect. If it occurs in an absolute
16-bit program, it causes a switch to the relocatable LOC.

3.6.6.,2 Impure (IMPUR) Instructipn

This instruction causes all subsequent instructions to be
assembled as part of the impure segment. It has the form:

NAME OPERATION OPERAND
A symbol IMPUR None (ignored)
(optional)

The current LOC is saved and the new halfword boundary is set
beyond the most recently used impure address. In 16-bit
assemblies, this instruction has no effect if the program is
already 1in relocatable mode. If it is in absolute mode, the LOC
is switched to relocatable.

NOTE

Unless otherwise specified by the
programmer, impure mode is assumed.

3.6.6.3 Origin (ORG) Instruction

This instruction selects a LOC and sets it to a defined value.
It has the form:

NAME OPERATION OPERAND
A symbol ORG A previously defined symbol
(optional) or expression

The operand of the origin instruction determines which LOC is
selected and the value it is given. If the value of the operand
is pure relocatable, impure relocatable or absolute, the
corresponding LOC is selected and set to the operand value. If
the operand contains a forward reference, CAL/32 performs any
additional passes required to define all symbols.

48-050 FO0O RO3 3-53

The user must guard against circular LOC dependency, as in the
following example:

ORG A

LIS 4,4
A EQU B

LIS 4,4
B EQU *

END

CAL/32 will flag an "M00l xxxTOP" error, where xxx is PURE, IMP,
or ABS depending on the current LOC,

NOTE

If no ORG instruction appears at the
beginning of a program, CAL/32 assumes it
to be relocatable starting at relocatable
zero, For 32-bit programs it also
assumes the impure segment.

3.6.6.4 Absolute (ABS) Instruction

This instruction causes the LOC to be put in the absolute mode,
It has the form:

NAME OPERATION OPERAND
A symbol ABS None (ignored)
(optional)

The current LOC is saved and the new LOC is set to point to the
next halfword boundary beyond the most recently used absolute
location. If the absolute LOC was not previously used, it is set
to zero.

3.6.6.5 Align (ALIGN) Instruction

This instruction conditionally aligns the current LOC to the next
highest value that is divisible by the specified operand. It has
the form: '

NAME OPERATION OPERAND
A symbol ALIGN A symbol or
(optional) expression

3-54 48-050 FOO RO3

The value contained in the operand field determines the type of
alignment. Symbols used in the operand field must be previously
defined. The value in the operand field must be absolute and
equal to either 2, 4, 8, 16, etc., (power of 2), If the operand
value is 2, CAL/32 adjusts the LOC to ensure that it contains a
halfword address. CAL/32 forces fullword alignment if the
operand value is 4 and doubleword alignment if the value is 8.

If at the time of this instruction the LOC
is already properly aligned, CAL/32 does not change it. If it
is not properly aligned, CAL/32 increments it by the minimum
amount necessary to force proper alignment. A symbol, if used in
the name field, receives the value of the LOC after the alignment
is performed.

NOTE

If the value of the operand is not
absolute, or if it 1is not —correctly

defined, CAL/32 forces fullword
alignment, and generates an error
message.

3.6.6.6 Conditional No Operation (CNOP) Instruction

This instruction is similar to the ALIGN instruction in that it
conditionally aligns the LOC to a power of 2. It has the form:

NAME OPERATION OPERAND
A symbol CNOP A symbol or
(optional) expression

The CNOP differs from the ALIGN instruction in that instead of
merely incrementing the LOC, it actually inserts no operation
instructions into the program stream. The value of the operand
must be absolute and equal to a power of 2, Symbols used in the
operand field must have been previously defined. 1If at the time
this instruction is encountered, the LOC is on an odd boundary,
CAL/32 increments it by one to make it even, inserts the required
number of CNOP instructions to force alignment and generates an
error message. This instruction has no effect if the LOC is
already properly aligned. A symbol, if used in the name field,
receives the value of the LOC associated with the first CNOP
instruction generated.

48-050 FO0O RO3 A 3-55

3.6.7 Assembler Control Instructions

These instructions allow the programmer to control the assembly
process itself, identify the type of processor on which the
program is to be run, temporarily halt the assembly operation,
and request a limited amount of optimization.

3.6.7.1 Target (TARGT) Instruction

This instruction identifies the type of processor on which the
program is to be run. It has the form:

NAME OPERATION = OPERAND
A symbol TARGT A symbol or
(optional) expression

The value of the operand expression must be either 16 or 32,
absolute. Symbols used in the operand field must be previously
defined. If the operand value is 16, CAL/32 generates object
code for 1l6-bit processors. If the value is 32, it generates
object code for 32-bit processors. If the value 1is anything
else, CAL/32 generates a warning message and generates code for
the same type of processor on which it is running., If there is
no TARGT instruction in the program, CAL/32 assumes the target
machine to be the same as the machine on which the assembly is
running.

NOTE
The TARGT instruction must precede any
PURE or IMPUR instructions or any
instruction that generates machine code.
3.6.7.2 End (END) Instruction

This instruction indicates the end of the source input. It has
the form:

NAME OPERATION OPERAND
A symbol END A symbol or
(optional) expression (optional)

3-56 48-050 FO0O RO3

Because of its function, this statement must be the 1last
instruction in the source input file. The optional operand, if
used, identifies the starting 1location of the program. For
example:

MAIN EQU *

LAST END MAIN

The END instruction, with the operand MAIN, causes CAL/32 to
output information identifying the location MAIN as the starting
location of the program. The loader and the operating system use
this information to ensure that the program starts at the
requested location. If there is no operand, the END instruction
merely terminates the assembly process without outputting any
loader information. The END instruction is required in all
CAL/32 programs,

3.6.7.3 Copy Library (CLIB) Instruction
This instruction allows the user to specify or change library
files from within a program. It has the form:

CLIB vol:filename.ext

Each CLIB statement logically concatenates the new 1library file
(operand of CLIB) to any existing 1library file. If the new
library file cannot be assigned, CAL/32 will log an error message
and pause, :

3.6.7.4 Copy (COPY) Instruction
This instruction allows the programmer to insert source code from

library files into the source code received from the regular
source input file, It has the form:

NAME OPERATION OPERAND
A symbol COPY A symbol[,vol:fname.ext]
(optional) (required)

48-050 FO0O0 RO3 3-57

CAL/32 assumes that the library file was assigned to logical unit
7 (lu7) (see Appendix A). CAL/32 also assumes that the file is
made up of 80-character records. It searches through the logical
file, 1looking only at the first ten characters of each record
until it finds a file label of the form:

RECORD POSITION CONTENTS
1 and 2 * %
3 through 10 A valid symbolic name of

from 1 to 8 characters

in which the symbolic name exactly matches the symbol in the
operand field, If the search is unsuccessful, CAL/32 logs the
message:

COPY ERROR: XXXXXXXX

in which xxxxxxxx is replaced by the name of the file being
sought, This might happen in the <case of incorrect file
assignment. The operator can change the assignment and resume
the assembly process from the location of the COPY instruction.
The COPY instruction allows only one operand. The programmer
must provide one COPY instruction for each file to be copied into
the source stream.

If the optional second operand is supplied, CAL/32 will assign
and search only that physical file and ignore any files logically
attached by CLIB. If the file cannot be assigned, CAL/32 will
log an error message and pause.

The copy process terminates when an END statement is encountered
in the file, or when a record with either /* or /& in the first
two character positions is encountered. Where an END instruction
is encountered in the copy file, it does not mean the end of the
source file but only the end of the copy file. At this point,
CAL/32 resumes reading from the source input file. COPY
instructions may not appear in files which are themselves being
included in a source program by means of a COPY instruction.

3.6.7.5 File Copy (FCOPY) Instruction
The assembler instruction, FCOPY, allows the user to copy an

entire library file. It has the form:

FCOPY vol:filename.ext

3-58 48-050 FO0O0 RO3

When FCOPY is in effect, a /* starting in column 1 or an END in
the opcode field will be skipped, and copying will continue until
an end of file is reached. 1If the file cannot be assigned,
CAL/32 will log an error message and pause.

3.6.7.6 Lower-Case (LCASE) Instruction
This instruction allows the prdgrammer to prevent the conversion

of 1lower-case characters to their upper-case equivalents. This
instruction applies to symbols only.

NAME OPERATION OPERAND
A symbol LCASE None (ignored)
(optional)

This option can be invoked as an instream operation or as a START
option (see Section 5.2). When encountered, this instruction
prevents the conversion of 1lower-case characters to their
upper—-case equivalents. If this option is invoked as a START
option, all instream occurrences are ignored.

3.6.7.7 No Lower-Case (NLCASE) Instruction

This instruction allows the programmer to enable the conversion
of lower-case characters to their upper-case equivalents. This
is the default instruction,

NAME OPERATION OPERAND
A symbol NLCASE None (ignored)
(optional)

This option can be invoked as an instream operation or as a START
option (see Section 5.2). When encountered, this instruction
enables the conversion of lower-case characters to their
upper—-case equivalents, This instruction applies to symbols
only. If this option is invoked as a START option, all instream
occurrences are ignored,

3.6.7.8 Pause (PAUSE) Instruction

This instruction allows the programmer to halt the assembly
process. It has the form:

NAME OPERATION OPERAND
A symbol PAUSE None (ignored)
(optional)

48-050 F0O0 RO3 3-59

The PAUSE instruction temporarily halts the assembly process.
When the assembler encounters a PAUSE instruction, the assembler
requests the operating system under which it is running to
suspend execution. The system notifies the operator. The
operator can resume execution of the assembler at the instruction
immediately following the PAUSE instruction by using the
operating system command CONTINUE. For example, the PAUSE
instruction can be used by the operator to reassign a copy file,
such as:

COPY REGEQUS COPY REGISTER EQUATES
PAUSE
COPY COMBLKS COPY COMMON BLOCKS

3.6.7.9 Squeeze (SQUEZ and NOSQZ) Instructions
This instruction puts CAL/32 into squeeze or no-squeeze mode in

which it performs a limited amount of space optimization. It has
the form:

NAME OPERATION OPERAND
A symbol SQUEZ A symbol or expression
(optional) (optional)
A symbol NOSQZ Not used
(optional) (ignored)

The no-squeeze instruction (NOSQZ) has the effect of turning off
the optimization processes initiated by a previous SQUEZ
instruction. Optimization can be restarted by a subsequent
squeeze statement, NOSQZ overrides a squeeze start option.

When in optimization mode (SQUEZ), CAL/32 makes multiple passes
over the source input. During each pass, it attempts to reduce
long instructions (48 and 32 bits) to shorter forms (32 and 16
bits). The value of the operand expressions sets the maximum
number of passes. If CAL/32 can complete the optimization in
fewer passes, it stops the optimization process and completes the
assembly.

The value of the operand expression must be an absolute number
between 1 and 99. Any symbols used in the expression must have
been previously defined. If the operand value is 0, or if there
is no operand, CAL/32 assumes a maximum of nine passes.

3-60 48-050 F00 RO3

NOTE

If there are user-induced errors in the
source stream (illegal mnemonics or
undefined symbols), CAL/32 terminates the
squeeze operation and goes on to produce
the final assembler output. Some
instructions in this output may have been
squeezed, depending on where in the
process the errors were discovered.

CAL/32 performs three types of space optimization:

1. Changes RX3 instructions to RX2 or RX1

2., Changes operation codes to allow the use of an equivalent,
but shorter, instruction

3. Eliminates unconditional branch instructions to the next
halfword location

An example of the first type of optimization 1is the forward
reference instruction. In this instruction, the operand is
defined in the program at some point beyond the instruction to
which it refers.

Example:
A R1,VALUE
VALUE DCF F'125°

When CAL/32 processes the ADD instruction, it cannot tell if the
location of the second operand, identified by the symbol VALUE,
is within the range of either an RX1l or RX2 instruction. It has
to assume that an RX3 instruction 1is necessary. By making
additional passes over the source input after all addresses have
been resolved, CAL/32 has the needed information to determine if
the reference to VALUE is within the range of either an RXl or an
RX2 instruction and make the substitution.

48-050 FO00O RO3 3-61

An example of the second type of optimization is:
LI R3,-1

In the optimization mode, CAL/32 reduces this instruction to:
LCS R3,1

which reduces the length of the instruction from 48 bits to 16
bits, without changing the effect. Depending on the processor,
the substituted instruction might be faster or slower than the
original instruction.

NOTE

CAL/32 changes an operation code only in
the object output. The original
instruction remains in the 1listing,
flagged with an asterisk.

The third type of optimization does not occur in normal
programming, but it does sometimes appear in compiler-generated
CAL/32. For example:

ST R1, SAVE
B CONTINUE
CONTINUE L R1, TEMP

In this case, CAL/32 simply eliminates the unnecessary branch
instruction, although the branch instruction does appear in the
assembly listing, flagged with an asterisk.

More than one SQUEZ instruction can appear in the program, The
first SQUEZ instruction sets the number of additional passes.
Subsequent SQUEZ instructions put CAL/32 back into optimization
mode after a NOSQZ instruction took it out of the optimization
mode. Operands may appear in the subsequent SQUEZ instructions,
but they are ignored.

3-62 48-050 FOO0 RO3

Because CAL/32 looks at only one instruction at a time, and
because its global data is limited to the symbol table, squeezing
might introduce errors into the program. This is most likely to
happen when data and instructions are mixed.

Example:
éTC 8,LO0OP1
LOOP1 éQU *
BFC 0, LOOP2
DS 26
ALIGN 4
CONST DC F'256"
LOOP2 EQU *

If on one pass, CONST is already aligned on a fullword boundary,
the branch to LOOP2 can be converted to a short format branch.
A subsequent pass may allow the branch to LOOPl to be shortened.
When this happens, CONST is no longer on a fullword boundary, and
CAL/32 adds two to the LOC to align it properly. This forces
LOOP2 out of the range of a short branch instruction. CAL/32
will recover from this situation by changing the branch
instruction back to its original format and marking it internally
as unsqueezable,

3.6.7.10 Squeeze Related (ERSQZ and NORX3) Instructions
There are two additional instructions that can be used to control

squeezing and optimization of the source input file. They have
the form:

NAME OPERATION OPERAND
A symbol ERSQ?Z Not used
(optional) (ignored)
A symbol NORX3 Not used
(optional) (ignored)

48-050 F00 RO3 3-63

The Error Squeeze instruction, (ERSQZ) can be used with the SQUEZ
instruction. It forces CAL/32 to continue squeezing even after
assembly errors are detected.

The No RX3 instruction (NORX3) provides a simpler form of
optimization during a normal 2-pass assembly. Once this
instruction is encountered, CAL/32 forces RX instructions to the
RX1 or RX2 format., RX3 instruction formats are still generated
if double indexing is specified, or if the instruction references
an element of a common block or an externally defined symbol.
This instruction can be safely used in programs that are smaller
than 16kb. It must not be used in segmented (pure and impure),
programs.,

3.6.7.11 Sequence Checking (SQCHK and NOSEQ) Instructions

The Sequence Checking instructions enable and disable the
sequence checking of source. They have the form:

NAME OPERATION OPERAND
A symbol SQCHK Not used
(optional) (ignored)
A symbol NOSEQ Not used
(optional) (ignored)

The Sequence Check instruction (SQCHK) causes CAL/32 to compare
each source statement sequence number with the number of the
preceding statement. Each successive number must be greater in
the ASCII collating sequence than the preceding one. CAL/32's
initial sequence value is equal to eight spaces, so that numbers
can be right-justified in the field without leading zeros. If a
source statement contains a value equal to or less than the
preceding statement, CAL/32 denerates an error message. The
sequence fields of statements included in the program by a COPY
instruction are not checked.

The No Sequence Check instruction (NOSEQ) disables the sequence
checking process. The sequence field of this instruction is
checked, if sequence checking was in effect at the time, The
default mode of CAL/32 is NOSEQ.

3.6.7.12 Scratch (SCRAT) Instruction

This instruction causes CAL/32 to copy the source input file to
a scratch device during pass one. It has the form:

NAME OPERATION OPERAND
A symbol SCRAT Not used
(optional) (ignored)

3-64 48-050 F0O0 RO3

Subsequent passes over the source input file are read from the
scratch device., Since no statement preceding the SCRAT
instruction can be copied, the SCRAT instruction should be the
first statement in the program.

3.6.7.13 Pass Pause (PPAUS) Instruction

This instruction causes CAL/32 to issue a pause request to the
operating system at the end of each pass. It has the form:

NAME OPERATION OPERAND
A symbol PPAUS Not used
(ignored) (ignored)

The purpose of the PPAUS instruction is to allow the operator to
reset the source input file to the beginning for the next pass.
This is useful in situations where no scratch file is available,
and the source input file is not rewindable.

NOTE

Where neither the SCRAT instruction nor
the PPAUS instruction is used, CAL/32
issues a rewind command to the source
input lu at the end of each pass.

3.6.7.14 Message (MSG) Instruction
This instruction allows the programmer to log a message to the

system console or a multi-terminal monitor (MTM) terminal. It
has the form: '

NAME OPERATION OPERAND
A symbol MSG Text
(optional)

The operand field contains the text of the message. All
characters following the operation field, up to and including
position 71, are sent to the system console as a message. This
instruction can appear anywhere in the program, and the message
is logged on every pass.

3.6.7.15 Batch Assembly (BATCH and BEND) Instructions

These instructions provide a means for assembling more than one
complete program in a batch stream., They have the form:

48-050 F0O0 RO3 3-65

NAME OPERATION OPERAND

None BATCH Not used
(illegal) (ignored)
None BEND Not used
(illegal) (ignored)

The Batch instruction (BATCH) initiates the batch stream. It has
the effect of redefining the END instruction so CAL/32 does not
terminate itself at the end of the required number of passes.
Rather, CAL/32 terminates the assembly of that particular
program, reinitializes itself, and starts reading the next
program from the source input file. The BATCH instruction must
be the first statement in the stream of programs. If it is used,
CAL/32 assumes that there is a scratch device. Options specified
in the operating system START command remain in effect for the
entire batch assembly (see Appendix A).

The Batch End instruction (BEND) terminates the batch assembly.
It must appear immediately following the END instruction in the
last program of the stream. The BEND instruction tells CAL/32 to
go to end of task when final assembly is completed. The end of
task code returned is equal to the highest code generated during
the batch assemblies. CAL/32 will also terminate a batch
assembly normally if end of file or end of medium status is
detected when attempting to read the first statement after the
END of an assembly.

3.6.7.16 Unreferenced Externals (UREX and NUREX) Instructions
These instructions permit or suppress the output of object code

for unreferenced externals. - The default state is UREX. They
have the form:

NAME OPERATION OPERAND
Not used UREX Not used
(ignored) (ignored)
Not used NUREX Not used
(ignored) (ignored)

3.6.7.17 Assembly Performance (HPM and NHPM) Instructions

These instructions enable or disable the high performance method
of source program assembly.

3-66 48-050 FO0O RO3

NAME OPERATION OPERAND

Not used HPM Not used
(ignored) (ignored)
Not used NHPM Not used
(ignored) (ignored)

The HPM assembly process is automatically invoked by CAL/32 as
the default setting. However, if insufficient memory workspace
has been allocated when CAL/32 is loaded and memory is exhausted,
assembly halts and recommences assembly from the beginning of the
source file using the standard method of assembly. For further
information concerning the HPM assembly process and memory
workspace allocation, see Section 5.3.1.

3.6.7.18 16-Bit Object Code (CAL and NOCAL) Instructions

These instructions allow the assembly of a source program on a
32-bit machine into either 16- or 32-bit format. NOCAL produces
32-bit format while CAL produces 1l6-bit format,. NOCAL 1is the
default setting invoked by CAL/32 during assembly.

NAME OPERATION OPERAND
Not used CAL Not used
(ignored) (ignored)
Not used NOCAL Not used
(ignored) (ignored)

CAL/32 may not run as a system task on a 16-bit machine, however,
16-bit object code may be produced using the CAL instruction
during assembly of the source code,

3.6.8 Conditional Assembly Instructions

These instructions allow the programmer to include code sequences
in the program that may or may not be assembled, depending on
some condition. By simply reassembling the program and
redefining the conditions, a single program can be made to serve
more than one purpose.

3.6.8.1 Compound Conditional (IFx, ELSE and ENDC) Instructions

There are three instructions in this set., They have the form:

48-050 FO0O RO3 3-67

NAME OPERATION OPERAND

A symbol IFx A symbol or

(optional) expression

A symbol ELSE A symbol or

(optional) expression
(ignored)

A symbol ENDC A symbol or

(optional) expression
(ignored)

The compound conditional instructions are used to provide
complete conditional assembly capability. A symbol used in the
name field of an IF instruction is defined if the condition
described by the instruction is true. A symbol used in the name
field of an ELSE instruction is defined if the corresponding IF
condition 1is false. Symbols used in the name fields of end
condition instructions are always defined.

In the first instruction, the compound IF instruction, X
represents the actual condition. Following 1is a list of the
various mnemonics for these instructions:

MNEMONIC MEANING MNEMONIC MEANING
IFZ If zero IFNM If nonminus
IFNZ If nonzero IFE If even
IFP If plus IFO If odd
IFNP If nonplus IFU If undefined
IFM If minus IFD If defined

CAL/32 tests the value of the operand when processing compound IF
instructions. If the operand meets the condition specified by
the operation, the instrxuctions immediately following the IF
instruction (until the corresponding ELSE or ENDC instruction)
are assembled. If the operand does not meet the specified
condition, the instructions immediately following the IF
instruction are not assembled.

The ELSE instruction reverses the state of the assembler as set
by a previous compound IF statement. If the assembler was not
assembling code because a previous IF statement turned off the
assembly process, the appearance of an ELSE instruction would
cause the assembler to resume assembling, starting with the
instruction immediately following the ELSE instruction. If the
assembler was assembling code because a previous IF condition was
met, the appearance of the ELSE instruction would prevent the
instructions immediately following the ELSE instruction (until
the corresponding ENDC instruction) from being assembled. An
ELSE instruction 1is not required to appear in a block of
conditionally assembled code.

3-68 48-050 FOO RO3

The third instruction of this set 1is the End Condition
instruction (ENDC) which terminates the ©presently active
condition. Normal assembly process resumes with the next
instruction. Any compound IF instruction used in the program
must have a corresponding ENDC instruction. If the end of the
source file 1is reached before an existing condition terminates,
CAL/32 terminates the condition, generates an error message, and
resumes normal assembly on the next pass. If the operand of the
IFx contains a forward reference, CAL/32 will perform any
additional passes required to define all symbols. As an example
of conditional assembly, consider a subroutine that can receive
its parameters in either of two ways: first, the parameters are
located by referencing a list of addresses immediately following
the branch and link instruction in the main program; second, the
address of the actual parameter list is contained in register 14.
The subroutine could handle both of these situations with
conditional assembly, shown in the following example:

Example:

IFZ CALL1

SUB LH R1,0(RF) GET FIRST PARAMETER ADDRESS
LH R1,0(R1) GET FIRST PARAMETER
LH R2,2 (RF) GET SECOND PARAMETER ADDRESS
LH R2,0(R2) GET SECOND PARAMETER
AIS RF,4 ADJUST RETURN ADDRESS
ELSE -LIST NOT IN LINE

SUB LH R1,0 (RE) GET FIRST PARAMETER
LH R2,2(RE) GET SECOND PARAMETER
ENDC

RETURN BR RF RETURN TO CALLER

If, at assembly time, the wvalue of CALLl is Zero, the
instructions between the IF instruction and the ELSE instruction
are assembled and the instructions between the ELSE instruction
and ENDC instruction are not assembled. If the value of CALLl is
other than zero, only the instructions between the ELSE
instruction and the ENDC instruction are assembled.

48-050 FO0O0 RO3 3-69

Another example of conditional assembly shows how conditions can
be nested:

IFNP LGTH CONDITION #1
ERROR EQU 1 LGTH IS NOT POSITIVE
ELSE CONDITION #1
IFZ SRC-DST CONDITION #2
ERROR EQU2 SRC IS EQUAL TO DST
ELSE CONDITION #2
LHI R1,LGTH
IFP SRC-DST CONDITION #3

LHI R2,SRC
LHI R3,DST
ELSE CONDITION #3
LHI R2,DST
LHI R3,SRC

ENDC END CONDITION #3
ENDC END CONDITION #2
ENDC END CONDITION #1

This set of nested conditionals depends on the values of three
symbols: LGTH, SRC and DST. If LGTH is negative or zero, only
the statement:

ERROR EQU 1 LGTH IS NOT POSITIVE

is assembled. If LGTH is positive, and SRC is equal to DST, only
the second statement:

ERROR EQU 2 SRC IS EQUAL TO DST

is assembled. If LGTH is positive, and SRC is greater than DST,
the following instructions:

LHI Rl ,LGTH
LHI R2,SRC
LHI R3,DSC

-

are assembled. If LGTH is positive, and SRC is 1less than DST,
the following instructions are assembled:

3-70 48-050 F0O0 RO3

LHI R1,LGTH
LHI R2,DST
LHI R3,SRC

The user must be careful, when using a forward reference in the
operand field of the IFU instruction, to avoid the following type
of code:

IFU
B EQU
ENDC
A EQU
IFNZ
DS
ENDC
B EQU
END

© W oo

CAL/32 will flag this code with an "M0O0l xxxTOP" error where xxx
is PURE, IMP or ABS, depending upon the LOC used.

NOTE

A condition once set by an IF instruction
remains in effect until the corresponding
ENDC instruction 1is encountered. Thus,
as in the next to the last example, when
the first condition was met, the first
statement was assembled. The ELSE
instruction reversed this state, and no
subsequent code was assembled.

3.6.8.2 Simple If (IF) Instruction

This instruction is retained in CAL/32 to maintain compatibility
with previous assemblers. It has the form:

NAME OPERATION OPERAND
A symbol IF A symbol or
(optional) expression

48-050 FOO RO3 3-71

What CAL/32 does on encountering an IF instruction depends on the
value of the operand. If the operand has a nonzero value, CAL/32
assembles all statements following the IF instruction, until the
end of the source file is reached, or until another IF
instruction is encountered in which the operand value is zero.
At this point, CAL/32 stops assembling the source input until the
END instruction, or another IF instruction with a nonzero operand
value, 1is encountered. If the operand contains a forward
reference, CAL/32 will perform any additional passes required to
define all symbols.

NOTE
Do not wuse simple IF instructions and
compound IF instructions 1in the same
program,., Simple IF instructions must not
be used in nested conditionals.

3.6.8.3 Do (DO) Instruction

This instruction provides a form of conditional and multiple
assembly capability. It has the form:

NAME OPERATION OPERAND
A symbol DO A previously defined absolute symbol
(optional) or expression

The DO instruction causes the statement immediately following it
to be assembled as many times as specified by the value of the
operand. The value of the operand must be between 0 and 32,767.
If the value of the operand is 0, the next instruction is
skipped. If the operand contains a forward reference, CAL/32
will perform any additional passes required to define all
symbols.

The user must guard against circular LOC dependency, as in the
following example:

A EQU *
DO B-A
DS 2

B EQU *
END

CAL/32 will flag an "M00l =xxxXTOP" error, where xxx is PURE, IMP,
or ABS, depending upon the current LOC,

3-72 48-050 F0O0 RO3

3.6.9 Instructions for Data Structures

These instructions allow the programmer to define complex data
structures. Some of these instructions allow the programmer to
define and initialize data blocks compatible with FORTRAN common.

3.6.9.1 Structure Definition (?OMN, STRUC and ENDS) Instructions

Structure definition instructions are used to define data
structures. They have the form:

NAME OPERATION OPERAND
A symbol COMN Not used
(optional) (ignored)
A symbol STRUC Not used
(optional) (ignored)
A symbol ENDS Not used
(optional) (ignored)

The Common instruction (COMN) defines FORTRAN-compatible common
blocks. The Structure instruction (STRUC) defines other types of
data structures. The End Structure instruction (ENDS) terminates
both common definitions and data definitions,

The symbol in the name field of a COMN or STRUC statement
contains the absolute value of the length of the structure or
common block. The symbol specified with the ENDS instruction is
associated with the current value of the offset counter.

A symbol 1is always required in the name field of a COMN
instruction. To define FORTRAN compatible blank common, a
special symbol consisting of two slashes (//) must appear in the
first two positions of the name field. The remaining positions
must be blank. If the name field is blank, CAL/32 will assume
(//) was intended for a FORTRAN blank common.

The scope of the common block consists of all the storage
definitions between the COMN instruction itself and the next ENDS
statement, Only define storage, origin, and equate instructions
are permitted between a COMN and its corresponding ENDS
instruction. The define storage instructions included within the
common block definition do not actually reserve storage; they
define offsets within the common block. Origin statements can be
used to modify the offset counter. The equate instructions can
be used to define symbols relative to elements in the common
block. Common blocks cannot be nested within other common blocks
or within other structure definitions.

The following is an example of the definition of FORTRAN
compatible common blocks:

48-050 FOO RO3 3-73

C FORTRAN PROGRAM
INTEGER*2 I,J,K,KK,K2,L
COMMON A(10), I, J(3,20)
COMMON/COMONE/B(30), K(4), KK
COMMON/COMTWO/X%,Y,%,K2,L(24)

The CAL/32 code to define these common blocks is:

// COMN DEFINE BLANK COMMON
A DS 40 TEN FLOATING POINT NUMBERS
I DS 2 ONE TWO-BYTE INTEGER
J DS 120 SIXTY TWO-BYTE INTEGERS
ENDS END OF BLANK COMMON DEFINITION
COMONE COMN DEFINE COMMON BLOCK COMONE
B DS 120 THIRTY FLOATING POINT NUMBERS
K DS 8 - FOUR TWO-BYTE INTEGERS
KK DS 2 ONE TWO-BYTE INTEGER
ENDS END COMMON BLOCK COMONE
COMTWO COMN DEFINE COMMON BLOCK COMTWO
X DS 4 ONE FLOATING POINT NUMBER
Y DS 4 ONE FLOATING POINT NUMBER
Z DS 4 ONE FLOATING POINT NUMBER
K2 DS 2 ONE TWO-BYTE INTEGER
L DS 48 TWENTY FOUR TWO-BYTE INTEGERS
ENDS

Common block definitions must precede any statements that
reference the common block. Referencing a common element plus a
displacement is permitted in the operand of a machine
instruction, in a define constant instruction, or in a block data
origin instruction defined below.

STRUC is used to define general-purpose data structures, The
scope of this data structure consists of all the storage
definitions between the structure instruction and its
corresponding ENDS instruction. Only define storage, origin and
equate instructions can be used in a structure definition. The
define storage instructions do not actually reserve storage; they
define offsets within the data structure. Origin statements can
be used to modify the value of the offset counter. Equate
statements can be used to define names relative to elements in
the data structure. Data structures cannot be nested within
other data structure definitions or within common block
definitions. Within the scope of a STRUC or COMN definition, the
value of the LOC is absolute and nonrelocatable. The LOC value
is equivalent to the offset from the origin of the STRUC or COMN
definition to the current location.

To define a linked list structure, each node of which contains a
2-byte forward pointer, a 2-byte backward pointer and a set of
values such as four bytes, one byte, one byte and six bytes, the
programmer might write:

3-74 48-050 FOO0 RO3

NODE STRUC

FWD DS 2 DEFINE FORWARD POINTER

BAK DS 2 DEFINE BACKWARD POINTER

VALA DS 4 DEFINE FOUR-BYTE VALUE

VALB DS 1 DEFINE ONE-BYTE VALUE

VALC DS 1 DEFINE ONE-BYTE VALUE

VALD DS 6 DEFINE SIX-BYTE VALUE
ENDS

The effect of this definition is the same as:

NODE EQU 16
FWD EQU 0
BAK EQU 2
VALA EQU 4
VALB EQU 8
VALC EQU 9
VALD EQU 10

Once NODE is defined, it can be used as follows:

LHI R5, POOL " GET ADDRESS OF POOL

LB RO, VALB (R5) GET VALUE B OF FIRST NODE

LH R5,FWD (R5) GET POINTER TO NEXT NODE
POOL DS 100*NODE

Data structure definitions must precede any references to their
elements in RX3 format instructions, unless the NORX3 instruction
or the SQUEZ instructicon was used.

3.6.9.2 Structure Initialization (BDATA and BORG) Instructions
Structure initialization instructions define FORTRAN compatible

block data subprograms that consist of labeled common blocks.
They have the form:

48-050 FOO RO3 3-75

NAME OPERATION OPERAND

A symbol BDATA Not used (ignored)
(optional)

A symbol BORG Common block and element
(optional) names, or offset

The Block Data instruction (BDATA) must precede any statements
that generate data, and the block data subprogram must not
contain any executable code. The common blocks to be initialized
must be defined at the beginning of the block data subprogram.
Once they are defined, the Block Origin instruction (BORG) is
used to initialize the data elements of the common blocks. The
operand of the block origin instruction consists of the common
block name followed immediately by the element name or its
displacement enclosed in parentheses, Only one operand is
allowed. Within the scope of the BDATA definition, the value of
the LOC 1is an absolute, nonrelocatable value. The LOC value is
offset from the origin to the current 1location. The BORG
statement sets the LOC to the value specified by the operand
field. The following is an example of a block data subprogram.

BDATA
*
* COMMON BLOCK DEFINITION
*
BLK COMN
A DS 4
B DS 40
Y DS 20
7 DS 4
ENDS
*
* INITIALIZE ELEMENTS A, B+8, AND %
*
BORG BLK(A) REFERENCE BY NAME
DC E'10"
BORG BLK(64) REFERENCE BY DISPLACEMENT
DC E'20"
BORG BLK (B+8) REFERENCE BY NAME AND
DISPLACEMENT
DC E'30"
END

This program initializes A to a floating point value of 10; Z to
a floating point value of 20; and the third fullword of B to a
floating point value of 30,

3-76 48-050 FOO0 RO3

3.6.10 Listing Control Instructions

These instructions allow the programmer to exercise some control
over the format and the content of the source listing produced by
CAL/32 on the final pass of the assembly.

3.6.10.1 Listing Identification (PROG and TITLE) Instructions
These instructions are used to force CAL/32 to print header

information at the top of each page of the source listing. They
have the form:

NAME OPERATION OPERAND
A symbol PROG Text
(optional) :
A symbol TITLE Text
(optional)

The Program instruction (PROG) specifies the primary heading for
each page of the listing., 1In addition, it causes the symbol in
the name field to be placed at the beginning of the object file
for program identification. On 16-bit assemblies, only the first
six characters of the name field are put in the object file.

All characters in the operand field (a maximum of 56), up to and
including position 71, are printed in the primary header line of
each page of the listing., If more than one PROG instruction 1is
encountered in a module, the last PROG instruction will override
all previous ones.

The Title instruction (TITLE) is a way to specify subheadings
that can be changed within the program. The text contained in
the operand field, up to and including position 71, is printed on
the line immediately below the heading produced by the PROG
instruction. As many TITLE instructions as required can appear
in the source input file. Bach time a TITLE instruction 1is
encountered, CAL/32 starts a new 1listing page with the new
subheading when the next printable statement is processed.
Subsequent pages contain this same subheading, until another
TITLE instruction appears. If two or more TITLE instructions
occur together 1in sequence, only the 1last TITLE instruction
affects the subheading content since a new page is printed only
when a printable statement is encountered. TITLE instructions
themselves are not printed although they are included in the
statement count.

3.6.10.2 Format Control (LCNT, EJECT, SPACE and WIDTH)
Instructions

These instructions allow the programmer to control the format of
the listing. They have the form:

48-050 F00 RO3 3-77

NAME OPERATION OPERAND

A symbol LCNT A symbol or
(optional) expression
A symbol EJECT A symbol or
(optional) expression
A symbol SPACE A symbol or
(optional) expression
A symbol WIDTH A symbol or
(optional) expression

The operand field of the Line Count instruction (LCNT) specifies
the number of 1lines to be printed on each page of the listing.
The operand value must be an absolute number no greater than 99
and no less than 10. The default value of the line count is 58.

Whenever the Eject instruction (EJECT) appears, it overrides the
specified or default line count, and causes CAL/32 to start a new
page when the next printable statement is processed. The new
page starts with whatever headings are in use. This statement is
included in the statement count, but it is not printed. If one
or more EJECT instructions occur together in sequence, only one
page is advanced since the actual advance occurs only when a
printable instruction is encountered. EJECT instructions
themselves are not printed although they are included in the
statement count.

The operand field of the Space instruction (SPACE) specifies the
number of 1lines to be skipped in the listing. The value of the
operand must be absolute. If the number of lines to be skipped
exceeds the number of 1lines remaining on the page, this
instruction has the same effect as an EJECT instruction and is
included in the statement count, but not printed.

The operand field of the Width instruction (WIDTH) specifies the
number of columns to be printed across the page. The value of
the operand field must be an absolute number, not greater than
132 and not less than 64. The default value is 132.

3.6.10.3 Content Control Instructions

The content control instructions control the content of the
listing. They have the form:

3-78 48-050 FO0O0 RO3

NAME OPERATION OPERAND
A symbol NLIST Not used
(optional) (ignored)
A symbol LIST Not used
(optional) (ignored)
A symbol LSTC Not used
(optional) (ignored)
A symbol NLSTC Not used
(optional) (ignored)
A symbol ERLST Not used
(optional) (ignored)
A symbol LSTM Not used
(optional) (ignored)
A symbol NLSTM Not used
(optional) (ignored)
A symbol FREZE Not used
(optional) (ignored)
A symbol NFREZ Not used
(optional) (ignored)
A symbol CROSS Not used
(optional) (ignored)
A symbol NCROS Not used
(optional) (ignored)
A symbol LSTUR Not used
(optional) (ignored)
A symbol NLSTU Not used
(optional) (ignored)
A symbol WARN Not used
(optional) (ignored)
A symbol NWARN Not used
(optional) (ignored)
A symbol NPWRN Not used
(optional) (ignored)
A symbol PWRN Not used
(optional) (ignored)

The No List instruction (NLIST) suppresses listing of the

program. Only those statements that contain errors are printed.
The NLIST option does not suppress MNOTE messages. MNOTE
messages are printed under all circumstances.

reverses this situation, and all
The assembler default is to print

The List instruction (LIST)
source statements are printed.
all source statements,

permits printing of
This is the normal

The List Conditionals instruction (LSTC)
unassembled conditional assembly statements.
default mode of the assembler.

The No List Conditionals instruction (NLSTC) suppresses printing
of unassembled conditional statements.
48-050 FOO RO3 3-79

The Error List instruction (ERLST) causes CAL/32 to print all
assembly errors by type, along with the number of each statement
on which the error occurred, immediately after symbol table
listing. The default does not print this list.

The List Macro instruction (LSTM) permits printing of all macro
expansions that are part of the source input file. The macro
instruction, the expanded source code, and the generated object
code are printed. A plus character (+) precedes each statement
number in the expanded source to identify those statements as
part of a macro. This is the normal mode of the assembler.

The No List Macro instruction (NLSTM) suppresses printing of
macro expansions. Only the macro statement itself is printed.
The NLSTM option does not suppress MNOTE messages. MNOTE
messages will be printed under all circumstances.

The Freeze instruction (FREZE) halts incrementing of the
statement counter when a copy £file or macro expansion are
included in the source input file. All statements in the copy
file or macro expansion receive the same statement number as that
of the COPY instruction. This is the normal mode of the
assembler,

The No Freeze instruction (NFREZ) increments the statement
counter for every statement encountered in the source input.

The Cross Reference instruction (CROSS) uses CAL/32 to generate
and print a cross reference listing of all the symbols used in
the program. Each symbol is listed in alphabetical order, along
with identification of the statements in which it is referenced.
The statement in which it is defined is flagged with an asterisk.
This is the normal mode of the assembler.

The No Cross instruction (NCROS) prevents the generation of a
cross reference listing.

The List Unreferenced Symbols instruction (LSTUR) causes
unreferenced symbols to be listed in the symbol list. This is
the normal mode of the assembler.

The No List Unreferenced Symbols instruction (NLSTU) suppresses
the listing of unreferenced symbols in the symbol list.

The Warning instruction (WARN) allows CAL/32 to flag warnings in
the 1listing and tally the number of warnings encountered. This
is the normal mode of the assembler.

The No Warning instruction (NWARN) suppresses both the warnings
and the warning count from the listing.

The No Processor Specific Warning instruction (NPWRN) suppresses

the warning and the DCMD output generated for instructions not
available on all processors.

3-80 48-050 F00 RO3

The Processor Specific Warning instruction (PWRN) enables the
warning and DCMD output upon encountering instructions not
available on all processors. This is the default condition.

3.6.11 Auxiliary Processing Unit (APU) and NAPU Options

The APU and NAPU start options and the APU and NAPU pseudo
instructions turn the APU option on or off. The APU and NAPU
start options override the corresponding APU and NAPU pseudo
instructions. If more than one APU or NAPU option appears in a
START option, the latest option takes precedence. The default
for this option is off.

If SVC, WCS or non-APU instructions are encountered when the APU
option is on, their occurrences are flagged in the listing by the
carat character (") as CAL warnings which have no affect on the
end of task code. When the APU option is in effect for each
program containing SVC, WCS or non-APU instructions, CAL/32
automatically generates and inserts one or more DCMD commands
into the object code. The text of these DCMD commands is:

***%%* MODULE xxxx CONTAINS SVC INSTRUCTIONS
*%%% MODULE xxxx CONTAINS WCS INSTRUCTIONS
*%%% MODULE xxxx CONTAINS INSTRUCTIONS ILLEGAL FOR APU

Where:
XXXX represents the name of the program.

3.7 ASSEMBLY LISTING

The assembly listing consists of two sections: the source and
object program statements and the symbol cross-reference table.
The format for printing the source and object program statements
is basically the same for either 16-bit assemblies or 32-bit
assemblies. The only difference is in the number of characters
printed for the LOC and the object data.

e In 1l6-bit assemblies, only four hexadecimal digits are printed
for the LOC and a maximum of eight hexadecimal digits for the
data. The 1letter R 1is appended to the LOC value if the
relocatable LOC is being used.

e In 32-bit assemblies, six hexadecimal digits are printed for
the LOC and a maximum of 12 hexadecimal digits for the object
data. In addition, the actual second operand address of RX2
and SF instructions is printed next to the object data. This
address is preceded by an equal sign (=). The 1letter I 1is
appended to the LOC if the impure LOC is being used. The
letter P is appended to the LOC if the pure LOC is being used.

48-050 FOO RO3 3-81

e In both 16- and 32-bit assemblies, the letter F is appended to
the data field to indicate that the statement references an
externally defined symbol, a symbol in a common block or an
undefined symbol.

The statement number is a decimal number between 1 and 99,999.
Each source statement read by the assembler is assigned a
unique statement number, beginning with 1, except for source
statements from a copy file or macro expansion with the FREZE
instruction. The first column of the listing can contain any
of the following characters:

CHARACTER MEANING
! The name field of this instruction contains a
symbol that was redefined by an EQUATE
instruction.
? A machine instruction not available on the

target machine was used; an operand that was
improper existed and was substituted, or

a machine dependent instruction was used 1in
assembling a common but could be assembled, or

an assembler instruction was wused with an
operand that was improper but could be
assembled, or

a SCRAT card was encountered as other than the
first statement or when batch mode 1is in
effect, or

an EXTRN/ENTRY symbol is 1longer than six
characters for target 16, or

a DS instruction was encountered in a pure
section.

* A machine instruction was shortened or
modified by squeezing.

* The APU option is in effect, and the
instruction on this line is a Supervisor Call
(SVC) instruction, a Writable Control Store
(WCS) instruction, or an instruction illegal
for an APU,

The instruction used 1is not wvalid on all
processors.

The following information is printed at the beginning of the
cross reference listing:

3-82 48-050 FOO0 RO3

e Start options in the START command.

® The number of errors detected by the macro processor if the
program assembled was generated by the macro processor.

® Number of CAL/32 errors and the page number of the last error

e Number of CAL/32 warnings and the page number of the last
warning

® Number of passes
® Message indicating the use of symbol table paging to disk

® Message indicating abnormal termination of squeezing because
of squeeze-induced errors

® Message indicating the amount of required table space

Following this, each symbol used in the program is 1listed in
alphabetical order along with its value. If a cross reference
was requested, the statement number of each statement containing
a reference to the symbol is printed following the value. The
statement number in which the symbol is defined is printed with
an asterisk (*) following. Associated with each symbol is a flag
used to indicate one of the following:

FLAG MEANING

)2} Properly defined local symbol
M Multiply defined symbol

U Undefined symbol

< Entry symbol

<U Undefined entry

> Externally defined symbol

>M Multiply defined external

*% Unreferenced external

The flag is printed in the first column of the 1line containing
the symbol.

If an error is detected in a source statement, the following
message is printed immediately after the error statement:

* % Annn * %

A indicates the general type of error, and nnn 1is a decimal
number that further identifies the error. Appendix A contains a
complete list of CAL/32 error codes.

48-050 FOO RO3 3-83

CHAPTER 4
COMMON MODE PROGRAMMING

4,1 INTRODUCTION

A useful feature of Common Assembly Language/32 (CAL/32) is
common mode programming where a single source file can be used to
produce object <code for either 16~ or 32-bit processcrs. In
creating a common mode source file, the programmer must be aware

of certain restrictions and safeguards and, in some cases, must
use special operation mnemonics that can be translated into
either 16- or 32-bit operations.

4.2 ADDRESS OPERATION INSTRUCTIONS

Addresses for 16-bit processors occupy 16 bits, a halfword. For

the 32-bit processors, addresses occupy the least significant 24
bits of a fullword. 1In normal mode, CAL/32 makes no distinction
between operations on address quantities and operations on other
data types. However, when writing in common mode, the programmer

must use special operation mnemonics for address operations so

CAL/32 can translate them into the correct target machine code.
Table 4-1 lists these instructions, their mnemonics and the
target machine translations.
TABLE 4-1 COMMON MODE ADDRESS OPERATIONS
| | | 32-BIT | 16-BIT |
| | | TRANS- | TRANS- |
] INSTRUCTION | MNEMONIC | LATION | LATION |
I N S T S T N T T T T T T T S T T T T N S T N NSNS ET = l
| Add address | AA | A | AH I
Add address immediate	AAI	Al	AHI
Add address RR	AAR	AR	AHR
Add address to memory	AAM	AM	AHM
Compare address	CA	C	CH
== e e e I			
Compare address immediate	CAI	CI	CHI I
Compare address RR	CAR	CR	CHR]
Compare logical address	CLA	CL	CLH
Compare logical address	I		
immediate	CLAI	CLI	CLHI
Compare logical address RR	CLAR	CLR	CLHR
Immediate	CLAT	CLI	CLHI
48-050 F0O0 RO3 4-1

TABLE 4-1 COMMON MODE ADDRESS OPERATIONS (Continued)

—— G4 ST Pl G S e . G e S G G S e S S B WD SV S hn GRS Gen G R G GS G G G M G SR G G WA W S S S S Gun e Gon TSN e G @er e G SSS Gee W Wes Sun e

I | | 32-BIT | 16=BIT |
| | | TRANS- | TRANS- |
| I

INSTRUCTION | MNEMONIC | LATION | LATION
'=====m=======z==========uz=====:===========m=====:==========:|
Load address LDA L LH
L.oad address immediate LDAI LA LHI

| | l |
| | | |
Load address RR | LDAR | LR | LHR |
| | | |
| I | |

AND address NA N NH

AND address immediate NAI NI NHI
| = o e o e e e !
AND address RR	NAR	NR	NHR
OR address	OA	O	OH
OR address immediate	OAI	oI] OHI	
OR address RR	OAR	OR	.OHR
Subtract address	SA	S	SH
O !

Subtract address immediate SAI ST SHI

Subtract address RR SAR SR SHR

molE

Shift left address arithmetic | SLAA | SLA | SLHA
I | |
| I |

Shift left address logical SLAL SLL SLHL
Shift right address arithmetic SRAA SRA SRHA

| e e e e e |
Shift right address logical SRAL SRL SRHL
Store address STA ST STH

| | |
| | I
Test address immediate | TAT | TI | THI
| | |
| | I

Exclusive OR address XA X XH
Exclusive OR address immediate XAT XTI XHI

| = e e e e e e |
Exclusive OR address RR XAR XR XHR
Multiply address MA M MH

Divide address
Divide address RR

— . S e G — T ———_ S) S S S G B - WY G S G Gy G G A RN G e Gme Go S G SRS e SN G e e A v G e o —

I I I

| I I
Multiply address RR | MAR | MR | MHR

I I |

I | I

CAL/32 translates these instructions into halfword or fullword
instructions, depending on the target machine. For example:

LDA R1,ADD1
AA R1,DISP

ADD1 DC A (TABLE)
DISP DC 2

4-2 48-050 FOO0 RO3

When CAL/32 assembles these instructions for 16-bit execution, it
produces object code that would normally correspond to:

LH R1,ADD1
AH R1,DISP

For 32-bit programs, CAL/32 produces code that would correspond
to:

R1,ADD1
R1,DISP

SHle o o

Translation is at the object code 1level; CAL/32 prints the
original common mode code on the listing.

4.3 COMMON MODE IMMEDIATE OPERATIONS

CAL/32 provides a common mode immediate operation for the 1load
immediate LDI instruction. Depending on the target machine, the
LDI is translated into a fullword-referencing LI instruction for
the 32-bit machine, or a halfword-referencing LHI instruction for
the 16~bit machine, as follows:

COMMON 32-BIT 16-BIT
INSTRUCTION MNEMONIC TRANSLATION TRANSLATION
Load Immediate LDI LI LHI

4.4 COMMON MODE ASSEMBLER INSTRUCTIONS

In addition to all of the regular assembler instructions
described in Chapter 3, CAL/32 recognizes four assembler
instructions primarily for use in common mode programming, Two
of these are data definition type instructions; the other two are
assembler control type instructions.

48-050 FOO RO3 4-3

4.4.1 Data Definition Instructions

The common mode data definition instructions are: Define Address

Length Constant and Define Address Length Storage. They have the
form: -

NAME OPERATION OPERAND
A symbol DAC One or more operands
(optional) separated by commas
A symbol DAS A symbol or expression
(optional)

4.4.1.1 Define Address Length Constant (DAC) Instruction

The DAC constant instruction is equivalent to the Define Constant
instruction. It is used in common mode programming to reserve
storage to be 1initialized with address length constants. For
32-bit assemblies, the constants are fullwords aligned on
fullword boundaries. For 1l6-bit assemblies, the constants are
halfwords aligned on halfword boundaries.

4.4.1.2 Define Address Length Storage (DAS) Instruction

The DAS instruction is equivalent to the Define Storage
instruction, In 32-bit assemblies, the instruction reserves the
specified amount of fullwords aligned on a fullword boundary. 1In
16-bit assemblies, it reserves the specified amount of halfwords
aligned on a halfword boundary Examples of the use of these
instructions are:

.

DAC A (TABLE)
DAS 16

When assembled for 32-bit execution, the DAC instruction
generates a fullword containing the address of TABLE. The DAS
instruction reserves 16 fullwords of storage. When assembled for
l16-bit execution, these instructions cause CAL/32 to generate a
halfword containing the address of TABLE, along with a storage
area of 16 halfwords.

4-4 ' 48-050 FO0O0 RO3

NOTE
DAS instructions cah be used in common
block and structure definitions.
4.4.,2 Assembler Control (CAL and NOCAL) Instructions

Two special assembler instructions control error checking. Their
form is:

NAME OPERATION OPERAND
A symbol CAL Not used
(optional) (ignored)
A symbol NOCAL Not used
(optional) (ignored)

The first of these instructions, CAL, establishes the common mode
and enables common mode error checking. In this mode, any
machine~dependent instruction causes a nonfatal error and a
warning flag is printed on the assembly listing.

The NOCAL instruction disables the common mode and its error
checking mechanisms until the next CAL instruction 1is
encountered., This is the assembler default mode in which an
operation code mnemonic, not valid for the targeted processor but
for which there is a valid equivalent, is assembled using the
valid equivalent. A question mark (?) is then printed in the
left hand margin of the listing.

4.5 MIXED MODE COMPUTATIONS

On 32-bit processors, mixed mode computations, such as adding a
halfword quantity to an address length quantity contained in a
register, can be performed. In general, any halfword arithmetic
or logical operation can be performed on address length
quantities contained in registers. The exceptions are: shifts,
multiply and divide. The halfword forms of these instructions
should never be used with address 1length quantities. Instead,
use the special address operation instructions.

48-050 F00 RO3 4-5

4.6 GLOBAL SYMBOLS

The global symbols, ADC and LADC, are used primarily in common
mode programming. In 32-bit assemblies, ADC has a value of four,
the 1length in bytes of an address length constant. LADC has a
value of two, the log (base 2) of the address length. 1In 1l6-bit
assemblies, ADC has a value of two and LADC has a value of one.
Illustrated are these symbol uses in which a main program calls
a subroutine and passes parameters to the subroutine in a list of
addresses immediately following the branch and link instruction:

BAL RF, SUB
DAC A (PARM1) ,A(PARM2) ,A(PARM3)
RETURN EQU *

The subroutine picks up the parameters and calculates the return
address as follows:

SUB AIS RF, LADC ADJUST RF FOR
NAI RF,-ADC ALIGNMENT
LDA R1,0 (RF) ADDRESS OF FIRST PARAMETER
LDA R2,ADC (RF) ADDRESS OF SECOND PARAMETER
LDA R3 ,2*ADC (RF) ADDRESS OF THIRD PARAMETER
SUBEND B 3*ADC (RF) RETURN TO CALLER

The Add Immediate Short instruction and the And Address Immediate
instruction are needed in the subroutine because alignment of
address constants 1in 32-bit assemblies can cause a halfword of
filler to be inserted between the branch and link instruction and
the first address constant. In this case, the address in
register 15 is the address of this halfword, and these
instructions increment the address in register 15 to make it
point to the first address constant. 1If no filler is required,
because the first constant is naturally aligned on a fullword
boundary, register 15 points to the first constant and these two
instructions have no effect.

4-6 48-050 FOO0 RO3

Another use of LADC is in shift instructions where a byte pointer
must be converted into an address pointer, as:

LB R1, INDEX GET BYTE POINTER

SLAL R1,LADC CONVERT TO ADDRESS POINTER
LDA R2,TABLE(R1) GET ADDRESS FROM TABLE

BR R2

In 16-bit assemblies, LADC has a value of one and the Shift Left
Logical instruction has the effect of doubling the value of the
byte pointer, converting it into a halfword pointer. In 32-bit
assemblies, LADC has a value of two, and the Shift instruction
has the effect of quadrupling the value of the byte pointer,
converting it into a fullword pointer.

The LADC symbol can also be used where machine dependent code
must be written within a common mode program. For example:

IFNZ LADC-1 IF NOT ZERO USE 32 BIT CODE
L RF,A LOAD FULLWORD IN RF

A RF,B ADD FULLWORD B

ST RF, A STORE IN A

ELSE LADC-1 IS ZERO USE 16 BIT
LM RE,A LOAD FULLWORD IN RE AND RF
AH RF, B+2 ADD LOW ORDER B

ACH RE, B ADD HIGH ORDER B

STM RE, A STORE IN A

ENDC

shows how fullword addition, requiring double registers in 16-bit
assemblies and single registers in 32-bit assemblies, can be
handled in a common mode program.

48-050 F0O0 RO3 4-7

4.7 SPECIAL INSTRUCTIONS

By definition, the instructions Load Multiple, Store Multiple,
and Load PSW, operate on address length data. This is why there
are no address operation mnemonics for these instructions. Where
these instructions are used in common mode programming, the data
on which they operate must be defined by the Define Address
Length Constant (DAC) and the Define Address Length Storage (DAS)
instructions. For example:

LPSW NEWPSW

START STM RO, SAVE
LM RO, PARAM

NEWPSW DAC STATUS, A(START)
RSAVE DAS 16
PARAM DAC CON1,CON2Z,...

List processing instructions operate on address length quantities
within the list. There is some incompatibility between the 16-
and the 32-bit versions of these instructions. The 16-bit list
instructions require byte pointers at the head of the list. The
32-bit list instructions require halfword pointers. List
instructions can be used in common mode programming as 1long as
the number of slots in the list does not exceed 255.

4-8 48-050 F00 RO3

Lists always should be defined with the Define List instruction.
Use byte instructions where it is necessary to refer to the list
pointers in the program. Define displacement into the 1list
pointer fields in terms of the LADC symbol. For example:

SLOTS EQU LADC~-1 NUMBER OF SLOTS
USED EQU 2*LADC-1 NUMBER USED
CTOP EQU 3*LADC~-1 CURRENT TOP
NBOT EQU 4*LADC-1 NEXT BOTTOM

LB R1,LIST+CTOP

LIST DLIST 32

In this example, the Load Byte instruction is used along with the
value of CTOP to access the current top pointer in the list.

48-050 FO00 RO3 4-9

, CHAPTER 5
COMMON ASSEMBLY LANGUAGE/32
(CAL/32) OPERATING INSTRUCTIONS

5.1 INTRODUCTION

The CAL/32 assembler is wutilized to assemble a user-created
source file, thus producing a machine language object file. The
object code, once successfully assembled and 1linked, may be
executed by the user.

CAL/32 is loaded and started directly from a user terminal with
various START options available. The START options permit a user
to tailor the assembled output in the desired manner. This
chapter directs the user through the assembler process, including
the assignment of logical wunits; allocating memory workspace;
specifying START options; and the creation of a command
substitution system (CSS) to load and start CAL/32. Also
included in this chapter 1is a section designed to direct the
syitem administrator on how to establish CAL/32 as a task under
0s/32.

5.2 OPERATING INSTRUCTIONS FOR ESTABLISHING COMMON ASSEMBLY
LANGUAGE/32 (CAL/32) AS A TASK

If CAL/32 has not been established as a task under 0S/32, the
relocatable object code supplied for CAL/32 must be linked as an
operating system task. This procedure may only be performed from
a system console. The following command sequence 1is a typical
process for establishing CAL/32 as a task using 0S/32 LINK:

LO .BG,LINK

T .BG

ST

>ES TA

>OP WORK=(X30000,XE0000) ,SYS=X7FFFFF, SEG, ROL
>IN CAL32

>BU CAL32

>END

CAL/32 is segmented into pure and impure code for shared use with
operating systems that support this capability. To establish
CAL/32 as a nonsharable task, remove the SEG option from the
above command sequence,

48-050 F0O0 RO3 5-1

When assembly 1is completed, CAL/32 terminates through the
operating system, which logs this message:

END OF TASK n

Where:

n specifies the end of task code.

An EOT code other than 0 or 1, indicates that CAL/32 was not
successfully linked and did not produce a usable task image. See
the 0S/32 Link Reference Manual for further details concerning
linking object modules to produce task images under 0S/32.

5-2 48-050 F00 RO3

5.3 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) START OPTIONS

When operating under 0S8/32, CAL/32 accepts certain control
options as arguments of the START command. The start options
override assembler instructions and cause a carat (") to appear

in the first 1line of the listing. Any combination of spaces
and/or commas can separate or follow the options specification:

Format:

s

[ERLIST] [ERsQZ]

[(LCASE H
| | NLCASE

[LCNT= 10-99] [{

NLSTU
H H [NpIsc] [WFIX] [NORXT] [NORX3]

oo [
=

APU turns on auxiliary processing unit (APU)
warnings.

[prAUSE] [

Options:

NAPU turns off APU warnings. This is the default
setting for this option.

48-050 FOO RO3 5-3

BATCH

CAL

NOCAL

CROSS

NCROS

DEL

NDEL

ERLST

ERSQZ

FREZE

NFREZ

HPM

NHPM

LCASE

initiates a batch stream to allow the assembly
of more than one program. See Section
3.6.7.15 for further details.

assembles a source program to run on a 16-bit
machine,

assembles a source program to run on a 32-bit
machine. This is the default setting.

generates a cross reference 1listing of all
symbols used in a source program.

prevents the generation of a cross reference
listing.

deletes and reallocates object and 1listing
files as required during CAL/32 assembly.
This option deletes and reallocates 1logical
unit 2 (1u2) and 1lu3 (both previously
unassigned), and assigns them to £fd.0BJ and
fd.LST, respectively.

returns an 8100 error if £4.0BJ and £d4.LST
have not been allocated and assigned to 1lu2
and lu3, respectively. This is the default
setting.

prints all assembly errors by type and the
statement number where the error was
encountered.

controls squeezing and optimization of the
source file by continuing the squeeze process
after assembly errors are detected.

halts the incrementation of the statement
counter when a copy file or macro expansion is
included in the source file. This is the
default setting.

increments the statement counter for each
statement encountered in the source file.

enables the high performance method of
assembly. This is the default setting. See
Section 5.3.1 for further details concerning
HPM assembly.

disables the high performance method of
assembly and assembles the source program
using the standard method.

prevents the conversion of lower-case
characters to their upper-case equivalents.

48-050 FO00 RO3

NLCASE

LCNT

LIST

NLIST
LSTC
NLSTC

LSTM

NLSTM
LSTUR
NLSTU

NDISC

NFIX

NORX3

NORXT

PPAUS

PWRN

NPWRN

48-050 F00 RO3

enables the conversion of lower-case
characters to their upper-case equivalents.

specifies the number of lines to be printed on
each page of the listing. The number of lines
printed per page may be no less than 10 and no
more than 99.

prints all source program statements to the
program listings. This is the default
sequence,

suppresses the listing of all source program
statements.

permits the listing of unassembled conditional
assembly statments.

suppresses the listing of unassembled
conditional assembly statements.

permits the listing of all macro expansions
contained in the source program. This is the
normal mode of the CAL/32 assembler.

suppresses the listing of all macro expansions
contained in the source program.

lists wunreferenced symbols in the symbol
table. This is the default setting.

suppresses the listing of unreferenced symbols
in the symbol table.

disables symbol table paging to disk.

prevents CAL/32 from making extra passes to
correct squeeze induced errors.

provides a simple optimization during a normal
two-pass assembly. CAL/32 forces RX
instructions to either RX1 or RX2 format.

is an alias for NORX3.

issues a pause request to the operating system
at the end of each pass.

enables the warning and DCMD output generated
for instructions not available on all
processors. This is the default setting.

disables the warning and DCMD output generated

for instructions not available on all
processors.

5-5

SCRAT copies the source file to a scratch device
during the first pass. Subsequent passes of
the source file are read from the scratch

device,

SQCHK compares each source statement sequence number
with the number of the preceding statement.

NOSEQ disables the source statement sequence number
checking process.

SQUEZ performs a limited amount of space
optimization of the source file during
assembly.

NOSQZ disables the optimization processes of the
SQUEZ option.

TARGT identifies the processor type on which the
program is to be run, If the value 16 is
targeted, CAL/32 generates object code <for a
l16-bit processor. If the wvalue 32 is

targeted, CAL/32 generates object code for a
32-bit processor.

UREX outputs object code for unreferenced
externals. This is the default setting.

NUREX suppresses the output of object code for
unreferenced externals.

WARN flags warnings in the listing and outputs the
warning messages and the total number of
warnings encountered during assembly. This is
the default setting.

NWARN suppresses both warning messages and the
warning count from the listing.

WIDTH specifies the number of columns to be printed
across the page.

Functional Details:

A typical start command for a CAL/32 assembly with start options
is:

ST ,DEL, SQUEZ=99,NCROS

When CAL/32 encounters conflicting start options such as CROSS
and NCROS, it will regard the last option encountered as the
intended option. This allows the user to redefine the default
start options wvia CSS. See Section 5.3.2 for further details
pertaining to the redefinition of CAL/32 START options within a
CsS.

5-6 48-050 FO0 RO3

5.3.1 High Performance Method (HPM) Assembly

CAL/32 is equipped with a START option that assembles a source
program faster than the standard method of assembly. The HPM
option is automatically invoked by CAL/32 as a default setting.
See Section 5.3 for START option command conventions. If
insufficient memory space is allocated, CAL/32 halts the assembly
process using the HPM option and restarts assembly using the
standard method. The following message is displayed to the
terminal if insufficient memory is allocated for the HPM option:

Table space exceeded - defaulting to the standard method.

The HPM option may be disabled prior to source program assembly
by specifying the NHPM option in the START command. This
prevents CAL/32 from invoking the HPM option. This option is
desirable for installations with insufficient memory overhead to
assemble using the HPM option or for the assembly of programs
that consistently exceed memory allocation.

CAL/32 reports the minimum memory expansion workspace necessary
to assemble a source program using the HPM option. This feature
is beneficial to maximize memory allocation for future assembly
of the same source program., If too much memory is allocated upon
initial assembly, future allocation of memory may be tailored to
efficiently assemble the source program and maximize system
resources. The formula needed to determine the amount of memory
space required to assemble a source program using HPM is depicted
in Table 5-1.

TABLE 5-1 MEMORY REQUIREMENTS FOR HPM

. G ———— " Sy — — S T T - —— —— ——— —— . —— — " — o " T - — ————— Y W W T - - —— - —— —— -

| ASSEMBLY | PROGRAM ASSEMBLY | ADDITIONAL MEMORY |
| METHOD | (GENERATING SYMBOL TABLE) | FOR CROSS-REFERENCE }
' LIttt 131t 1 it 1t 2ttt t ¢t ¢t Tttt + F 1+ 3+ 1 3 t §+ F 3+t + 3t ¢t 1 1+t 1 1t 3 1 3 + -t 3t 3 1 3 1t 3 & 301

| Standard | 28 bytes/symbol | 2 512-byte buffers for symbols |
| I | 1 256-byte buffer for bit map }
| | |

| Faster | 44 bytes/symbol | 8 bytes/symbol (at most 2 |
I I I I

bits/symbol for bit map)

o . . e S W — —— (G - — . SO P Bt T G — A T " - T . S = G 5O S S S G G S M G N . S S - S — ——— S — —— - - -

In order for CAL/32 to successfully utilize the HPM option,
sufficient memory overhead is required. Table 5-2 shows the
increased memory requirements necessary for HPM,

48-050 FOO0 RO3 5-7

TABLE 5-2 HPM MEMORY UTILIZATION

| NUMBER OF SYMBOLS | NUMBER OF BYTES USED | NUMBER OF BYTES USED | $INCREASE

|

| IN A PROGRAM | IN STANDARD METHOD | IN FASTER METHOD | OF MEMORY !
I s S s S S S R R I R A I IS RN E ISR EER IS ESS
| 500 | 12,768 | 26,250 | 78 |
| 1000 | 28,768 | 52,250 | 82 |
I 2000 | 56,768 | 104,500 | 84]
i 3000 | 84,768 | 156,750 | 85 I
| 5000 | 140,768 | 261,250 | 86 |
| 10,000 | 280,768 | 522,500 | 86 |
20,000 | 420,768 | 783,750 | 86 |

e S - — - - " — - - S " S e P e e I e S S i e o S O e g S e s e S iy U S e iy e S e G S

CAL/32 processor time for the standard and faster modes of
assembly are relatively equal; however, the HPM option
considerably reduces input/output (I/0) time during assembly.
Table 5-3 shows CAL/32 assembly performance improvement for the
high performance method as compared to the standard method of
assembly. The source programs utilized for this comparison
varied in source statement content to best test the HPM option.
The amount of performance improvement is dependent upon the
number of symbols utilized in the source program and number of
times each symbol is referenced.

TABLE 5-3 ASSEMBLY PERFORMANCE IMPROVEMENT USING HPM

|
| = | ELAPSED TIME | ELAPSED TIME | % REDUCTION

I

[
| # OF LINES | # OF SYMBOLS | STANDARD METHOD | FASTER METHOD | IN TIME |
I EE PPt P L E P e S L PR P P e e P S I T e T Pty P T l
21	250 I 0:35	0:11	68
1023	181	1:05	1:04] 0
4386	643 I 5:24	3:49] 29	
7023	2200	11:00	3:44
12487	3606	15:20 I 7:20	52 I
18568	2683	21:31] 8:35 I 60 I	

NOTE

To maximize CAL/32 performance efficiency
when expanding using MACRO/32, a record
length of 800 should be specified for the
.CAL file.

5-8 48-050 FQO0 RO3

5.3.2 Assigning Logical Units

The CAL/32 assembler requires a minimum of one lu and up to a
maximum of 11 logical units for operation, depending on the
options selected and the features invoked by the source program.
All of these logical units can be assigned by the user. However,
if an 1lu is needed and not assigned, CAL/32 will allocate
temporary system files for logical units
4, 5, 6, 8, 9, 11, 12 and 13. CAL/32 will delete and reallocate
permanent files for logical units 2 and 3, provided they were not
previously assigned and the DEL start option was specified.

The files used for scratch, cross—-reference, paging, forward
equates, parameter control block (PCB) directory PCB name
directory and error summarywill be allocated by CAL/32 as
temporary operating system files if they are needed and were not
previously assigned by the user. The 1logical units used are
shown in Table 5-4.

TABLE 5-4 CAL/32 LOGICAL UNITS

—— — o —— . o T G S GO e S U - —— T S " WO, o S Fha LG G S s = (e Gy S G B Ge G G S G G G A ST e She G GPm G S . e - ——

| | LOGICAL | ALLOCATED | REQUIRED |
LU | USE | RECORD | BY CAL/32 | FOR |

—— . a2 T s mrn S S g e MW W Wme et S met aam mm SR S M ek mws Eis Sy Som S DUl MO M g SmS SNS M s S S e S s U SmU Mo UTR & GER Srv Sme SLY M Sme Sue SNn SED mms S S S Smm mwe
R R N T N S I S N T T R N N S S N N N T D N N S S T N S S N T N e S S R SR EEs

| Source input device. |
| The source input to be |
| assembled is read from |
| this device on pass |
| one. This device is re- |
| wound prior to each |
| subsequent pass unless |
| BATCH is specified and |
| the source input is not |
| on a random access |
| device, or scratch |
| (SCRAT) or pass pause |

| (PPAUS) is specified. |

| |

| | 108 T=16
| | 126 T=32
| |
| I
I |
| |
I |
| |
I |
| |

If DEL
specified

Binary output device.
Assembled object pro-
gram is written to this
device on the last
pass.

If DEL
specified

Assembly listing output
device. Assembly list-
ing is written to this
device on the last pass.

— ——— ——— — — — — — — —— — ——— — —— — —— T——— —— — — —
—— — — — —— — — — ——— — ——— —— —— —— — —— — —

48-050 F00 RO3 5-9

TABLE 5-4 CAL/32 LOGICAL UNITS (Continued)

——— s — ———— — — — - —— . O " — T T O G T Stn D Ghv S G GWN G e e e S M . G G GRS G e WA G G GEY e i NG Eee G Gre S 08 -

ALLOCATED | REQUIRED
| BY CAL/32 | FOR

LU

4

5-10

USE

Source scratch device.
The source input is
copied to this device
during pass one. The
source 1input is read
from this device on all
subsequent passes.

Symbol cross-reference
scratch device. Cross—
reference information
is built on this device
during the last pass. A
device assigned to this
lu must support random
access.

Symbol table paging
device. Symbol table
information is paged to
this device during all
passes. A device
assigned to this 1lu
must support random
access.

Source 1library input
device, Source inform-
ation to be included in
the main assembly is
read from this device
on each pass unless

SCRAT or BATCH was:
specified. Then the
library is searched and

read on pass one only.

Forward equate scratch
device. This lu can be
used if forward refer-
enced equates exist in
the source input. This
device must support
random access.

LOGICAL
RECORD

80

256

512

80

256

Yes

Yes

Yes

- No

Yes

T s T T T T S T T S s T N S s T T T T TSNS ES TR I S

SCRAT
BATCH

CROSS

Insuffi-
cient
memory

COPY

Forward
equates

— — — — ——— ——— — —— — — — — — — ——— —. O—— — — — — — — — —— — — — —— —— — —— — — —

48-030 FO0 RO3

TABLE 5-4 CAL/32 LOGICAL UNITS (Continued)

— — G -~ G . G - - Grd . R ax WS A S S T G G G P SRR G0 G E SN S G G G G U N G R G M GG G G B U GOS G G GEM S G G s B Gne G- -

| | | LOGICAL | ALLOCATED | REQUIRED
| LU | USE | RECORD | BY CAL/32 | FOR

| Error tabulation device. |
| Error messages and |
| their associated 1line |
| numbers are written in |
| binary to this device |
| during the 1last pass |
| and written to 1lu3 |
| after completion of the |
| assembly and symbol |
: table listing. I
11 | Copy file information |
| directory. This device |
| must support random |
: access. }
12 | Parameter control block |
| (PCB) file directory |
| scratch device. This |
| device must support |
| random access. |
| I
13 | PCB name directory |

| scratch device. This |

| device must support |

| random access. |

— i - — ——— S S G . P W s SN G SUS So? BAS GV ST Mim i G W G GRS NN EN¢ GUs GUR GEN N Ghy GGt GIE GrA Gmv S0n Gmn N G0N S G NP S GNR Gee GIh GE G e S G- VS et GRS S

5.3.3 Starting Common Assembly Language (CAL/32) Using Command
Command Substitution System (CSS)

CAL/32 may be tailored for each installation's needs with the use
of a simple CSS., The following sample €SS, named CAL.CSS for
illustrative purposes, 1loads CAL/32; allocates desired memory
workspace; assigns the source file to 1lul; and starts the
assembly process with the desired START options.

Example:

LO CAL32,@2

AS 1,@1.CAL

ST ,NCROS DEL @3 @4
SEXIT

48-050 F0O0 RO3 5-11

—— s s

The first statement in CAL.CSS loads CAL/32 with the @2 variable
accepting the memory workspace allocation for the current session
of CAL/32 assembly. The value of @2 is specified during CSS
execution and is substituted within the CSS when the variables
are expanded. (Variable substitution is discussed later in this
section,)

The second statement assigns the source file to 1lul and places
the extension .CAL at the end of the source file being assembled.
The source file 1is represented by the CSS variable @1, This
sample CSS makes it unnecessary to enter in the source file with
the CAL/32 extension identifier. The .CAL extension is added to
the source filename automatically when the variable @1 is
expanded.

The third statement starts CAL/32 with the START options: NCROS
and DEL. The @3 and @4 variables allow the user to do one of two
things. The user has the option of either specifying two
different START options or altering the START options already
specified.

The SEXIT ends CSS execution and returns control to the command
processor,

CAL.CSS is excuted in the following manner:

CAL SOURCE,300,CROSS, SQUEZ

Where:

CAL ~is the CSS5 call to commence execution of
CAL/32.

SOURCE is the name of the source file to be
assembled, minus the .CAL extension.

300 is the allocated memory workspace in kB
desired for CAL/32 execution. = This value
varies 1in accordance with source program
memory requirements.

CROSS alters the NCROS option of the START command,
thus producing a cross reference of the source
file assembled.

SQUEZ performs a limited amount of space
optimization of the source file during
assembly.

In the above CSS call, variable substitution is used to allow
flexibility during execution. CSS variable substitution is
represented in the CSS call statement as follows:

5-12 48-050 FO0 RO3

CAL @l,@2,@3,@4

All CSS variables are expanded -at the time of execution and
replace the corresponding @n value in CAL.CSS

Successful execution of CAL.CSS does not require that all
variables be specified in the CSS call statement. For instance,
CAL.CSS may be executed without memory workspace specified.

Example:
CAL SOURCE, ,CROSS, NHPM

In the above example, the @2 CSS variable is not specified,
therefore, expanding only the @1, @3 and @4 variables in CAL.CSS.

CAL.CSS is only one example of the use of CSS calls to simplify
the use of CAL/32. For more information pertaining to CSS
programming, refer to the Multi-Terminal Monitor (MTM) Reference
Manual.

5.3.4 CAL/32 Assembler End of Task (EOT) Codes

When an assembly terminates, an EOF code 1is passed to the
operating system in the operand field of the Supervisor Call 3
(SvC3) instruction. The meanings of the possible end of task
codes are: '

END OF
TASK CODE MEANING

0 Assembly complete without errors.

1 Illegal option passed with the START command.
Assembly is aborted after logging the illegal
options to the console, The user should
retry.

2 One or more errors detected during the
assembly. This end of task code is also used
if errors are detected in one or more programs
of a batch assembly.

3 Misplaced BEND.

4 Symbol table overflow.

5 A cross-reference option problem. Try to

reassemble or use the NCROSS option to turn
off the CROSS option.

48-050 FOO RO3 5-13

A001

AQ02

A003

BOO1l

B002

Co01

D001

E001

F001
F002

F003

F004

APPENDIX A

COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES

the address

the address

the operand

alignment

alignment

common mode

data structure

END placement

missing operand

register
specification

invalid source
field

invalid symbol

48-050 FOO RO3

The address is out of range for the
specified instruction format.

The address is out of range for an
RX2 instruction. ‘

The operand of a previously Squeezed
instruction was changed making the
Squeezed instruction invalid.

The address of the operand is on an
incorrect boundary for the
instruction specified.

An odd address used in a T constant
location counter (LOC) was not even
when the instruction was specified.

An opcode that is not part of the
common mode set is used in a common
mode assembly.

An illegal statement appears in a
STRUC or COMN definition.

An END statement was encountered
within a STRUC or COMN definition or
within an unterminated conditional.

A required operand is missing.

A register value is not in the
range of 0 to 15, or an odd register
value is used where an even value is
required.

Invalid label 1in the source field,
a label in the name field is not
followed by a space, or a required
label is missing; e.g., on EQU,

More than eight characters were
specified in a symbol.

F005

F006

F007

F008

F009

F0l0

FOl11l

F0l2

EXTRN

immediate field

ENTRY

delimiter

invalid expression

apostrophe

invalid operand

improper statement

An invalid type for EXTRN; e.g.,
common block or EXTRN was used in an
expression.

The value of data is too 1large to
fit into the immediate field. A
fullword EXTRN is used in RIl
instruction. A character string
used as an immediate field 1is too
long.

A symbol declared as an ENTRY is
undefined. Improper type for ENTRY;
e.g., common block name.

Operands are not separated by
commas. Unrecognizable operator.
The last operand is not followed by
a CR or a blank. Unbalanced
parentheses. Opcode is not followed
by a space or a carriage return
(CR).

Expression uses common element names
not in the same block.

No ending apostrophe in ¢C,D,E,F,
H,P,U,X or Y constant. Illegal
character encountered in
¢,D,E,F,H,P,U,X or Y constant prior
to the ending apostrophe.

T constant was specified in TARGT 16
assembly. Argument mode of T
constant is not ABS, PURE or IMPURE.
Illegal data specified in BDATA
program, Fullword EXTRN used as an
operand of DCZ. Value of DB operand
must be absolute. Value of DS, DSF,
DSH is illegal. Invalid symbol used
for ENTRY name, Symbol used as
ENTRY must be ABS, PURE, IMPURE, or
Relocatable. Invalid symbol used
for EXTRN name. Invalid data in
BORG. Operand of CNOP or ALIGN is
not absolute. Operand of DLIST is
not absolute,

Improper type for EXTRN operand;
e.g., common block name. Transfer
address on END statement is an
improper type; e.g., EXTRN., Illegal
operand on EQU,

48-050 FOG RO3

F013

F014

F015

I001

MOO1

MOO2

0001

P00l

P002

ROO1

S001

S002

file descriptor

missing string

invalid character

conditional

symbol definition

symbol definition

illegal opcode

location counter

reentrancy check

relocation error

sequence check

COoPY

48-050 F0O0 RO3

Syntax error on file descriptor (£4)
of a COPY, FCOPY, or CLIB statement.

No characters between apostrophes of
¢,E,b,F,H,P,U,X or Y constant.

Illegal character encountered
between apostrophes of an E or D
constant. :

An ELSE or ENDC statement found
without a matching IFx.

The symbol in the name field is also
used in the name field of another
statement, The value or type of a
symbol changed from its definition
on a previous pass. (This can occur
by illegal use of conditionals, ORG,
DO, DS or a misplaced SCRAT
statement.) Forward referenced
symbol used where a previously
defined symbol is required.

An attempt was made to redefine a
symbol with an EQU that is the name
field of a statement,

The opcode used is totally
unrecognizable or illegal for the
specified TARGT.

The location counter exceeded 2'® - 1
on a TARGT-16 or 232 -1 on a
TARGT-32 assembly.

The instruction attempts to modify
PURE code.

An invalid combination of
relocatable terms in an expression.
A relocatable operand follows a
unary minus.

The value in the sequence numbers
field is not greater than the
previous sequence number,

COPY statement appears within a file
being copied. An invalid symbol
used as COPY operand. The operand
of COPY is not followed by a space,
comma or CR,

S003

S004

S005

TOO1

T002

TOO3

TOO04
U001
U002

U003

U004

U005

invalid option
sequence

invalid option

PROG

overflow

floating point

value

divisor
not used

undefined symbol

undefined symbol

A COopY, PAUSE, MSG or DO
statement immediately follows a DO
statement.

An argument is not absolute or
exceeds 32,767. An argument of LCNT
is not in the range of 10 to 99. An
argument of WIDTH is not in the
range of 64 to 132. An argument of
TARGT does not evaluate to either 16
or 32. An argument of SQUEZ is not
in the range of 1 to 99.

Multiple PROG statements were
encountered in a program.

The intermediate or final result of
an arithmetic expression exceeded
2 -1,

An overflow occurred during
conversion of floating point
constant.

The data item exceeds the range for
specified type; e.g., X'12345"',

A division by 0 is attempted.

A referenced symbol is not detfined
in the program.

An attempt was made to circularly
define a symbol; e.g.:

A EQU B
B EQU A

File specified as an operand of
FCOPY, CLIB or COPY does not exist.

Program name is not found in any of
the PCB libraries.

48-050 FOO0 RO3

APPENDIX B
OBJECT CODE FORMAT

Modules in object code format produced by Common Assembly
Language/32 (CAL/32) are divided into records, Each record
contains 126 bytes of information for 32-bit object code or 108
bytes of information for 16-bit object code. The first four
bytes of each record of the object code format are organized as
follows:

050-15

SEQUENCE NUMBER CHECKSUM

BITS: O 15 16 31

The sequence numbers are sequential negative integers -1, -2, -3,
etc., represented in two's complement form. The first record in
a program must have sequence number ~-1. Subsequent records must
be in proper order to be loaded.

The checksum is an exclusive OR sum of all halfwords in the
record, except itself, exclusive ORed with a halfword of all 1's.

The remainder of the record is a sequence of items; an item is a
byte of 1loader information. There are two types of items:
loader items and data items, Each loader item is followed by a
certain number (which can be 0) of data items. The loader items
and their meanings are listed in Tables B-1 and B-2,

48-050 FOO RO3 B-1

TABLE B-1 32-BIT LOADER ITEM DEFINITIONS

. T - W . . W T Y S S Gt WA G Gue S G e SN M Ghd e e G GEE Sew B M G S W e G W Ghe e G G G G G Wl e Ge S ST e S e o . -

NUMBER OF DATA |
ITEMS FOLLOWING |

| LOADER

ITEM

WO

A U

O w b o oo 9

10
11

12
13

14
15
16

MEANING

End of record

End of program

Reset sequence number
Block data indicator

Absolute program address
Pure relocatable program
address

Impure relocatable program
address

2 bytes of pure relocatable
data

2 bytes of impure
relocatable data

4 bytes of pure relocatable
data

4 bytes of impure
relocatable data

Common reference

EXTRN

ENTRY

Common definition

Program label

3 bytes absolute and 3
bytes pure relocatable

3 bytes absolute and 3
bytes impure relocatable
Load program transfer
Define start of chain
(reference)

Load chain definition
address

2 bytes absolute and 2
bytes pure relocatable

2 bytes absolute and 2
bytes impure relocatable

— — ———— — — — — —— — — — — — ——— —— —— — — — — — — — — —— — — ——— — ——— — — — —— —— — — — — —— —

None
None
None
8-byte

name,

=========================m==n================================I

3-byte displacement,
any absolute data

item (2
3-byte
3-byte
3-byte
2-byte
2-byte
4-byte
4-byte
8-byte

3-byte
8-byte

lowed by item 4,

5, or 6

8-byte name fol-
lowed by item 4,

5, or 6

8-byte name fol-

0-5B)

address
address
address
address
address

address

address

address

displacement

lowed by a 3-byte

length

8-character name

6 bytes
6 bytes

Item 4,
Item 4,

Item 4,
4 bytes
4 bytes

5, or 6
5, or 6

5, or 6

48-050

|
|
I
|
|
|
I
|
|
|
|
|
I
|
I
|
|
|
|
I
:
name, fol- |
I
|
|
I
I
|
|
|
|
I
I
I
|
|
I
|
|
|
|
|
I
|

FO0O RO3

B-1 32-BIT LOADER ITEM DEFINITIONS (Continued)

s Gmy B G . S . e S SN E—. SUS e GE W A STD SHE TN SR e WS S T G e G (M G L UG N BAe VY G G G G SN SeR Y G S S G . S ST G G W G S G . - — -

ITEM

- — - ST S S S e e e G S S e v e s S E WS SEN e S e Mew WD S Sns S SEN SEn SR SUN mar Tm Svw mum Sur WU e S SU SN SN¢ ST S man SOU Swe Sme e Sme Sev Sme S emw
R R S N T N S N o S T N N T N S T R S N S N R R N N N S S N E S S m s s, EE=

19
ia
1B
1C
1D
1E
1F
20

22
23

5C
5D

5E
5F

60
62
63

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
I
| 5B
I
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
I
|
| 64
|
|

Short form EXTRN

Length of impure and pure
segments

Perform fullword chain
Perform halfword chain
No operation

2-byte pure translation
table address

2-byte impure translation
table address

Not used

l-byte absolute data

2 bytes absolute data

4 bytes absolute data

6 bytes absolute data

8 bytes absolute data

120 bytes absolute data

Define pure location counter

Define impure location
counter

No operation
Load program address

2 bytes relocatable data
4 bytes relocatable data
2 bytes ABS/ 2 bytes
relocation

3 bytes ABS/ 3 bytes
relocation

Load translate table
address

48-050 F00 RO3

NUMBER OF DATA
ITEMS FOLLOWING

8-byte name and

Item 4, 5 or 6
3-byte impure length
and 3-byte pure
length

None

None

None

2 bytes

2 bytes

N/A

1 byte
2 bytes
4 bytes
6 bytes
8 bytes

120 bytes

l-byte location
number

8-byte section name
8-byte pool name
l1-byte location
number

8-byte section name
8-byte pool name
None

l-byte location
number

3-byte relocate
address

2 bytes

4 bytes

4 bytes

6 bytes
l1-byte location

number
2-bytes data

—— — — — — — —— — — — ——— —— — — — — — — — — — — — — —— —— — — it — — — . — —— — —— — S— —— —

TABLE B-1 32-BIT LOADER ITEM DEFINITIONS (Continued)

- — . - G B . T . — S T SE S e —n S S Gre S R G UAD G S g S g G S g e G G G GEE G S GRS GRS G Gl G S G G G G G S S G wwe . -

IT

EM

Extended EXTRN reference

Link commands

|
|
|
|
|
I
|
|
|
|
I
Extended entry :
|
|
I
|
|
|
|
|
|
|

8-byte external
symbol name

l-byte flag

xxxxXx xx00 standard

xxXxx xx01 weak
xxxx xx10 include

4-byte offset

Item 4, 5 or 6
8-byte entry symbol
l1-byte flag

xxxx xx00 standard

xxxx xx01 data
xxxx xx10 weak
Item 4, 5 or 6
1-byte length

1-80 characters
of command

NUMBER OF DATA |
ITEMS FOLLOWING |

EXTRN
EXTRN

EXTRN

entry
entry

entry

— —— ——— — —— — — — —— — — — ——— — —p— — — — p— — —

QA Urovwo~doaUus WNHRO

End of record

End of program

Perform chain

Toggle absolute/relocatable
mode

Transfer address

Load program address (ORG)
Load reference address
Load definition value

2 bytes absolute data

2 bytes relocatable data
4 bytes absolute data

2 bytes absolute and 2
bytes relocatable data
EXTRN reference

NUMBER OF DATA |
ITEMS FOLLOWING |

2-byte address
2-byte address
2-byte address
2-byte address
2 bytes data
2 bytes data
4 bytes data
4 bytes data

— — —— — — — — —— — — — A S— — o ———

6-byte name

48-050 FO00 RO3

TABLE B-2 16-BIT LOADER ITEM DEFINITIONS (Continued)

T G e G S . G GRS SR G G S S G B 0 G - . T e G S GW @F Gwn Ga Swn Gvw S e G GUS M G GRS S G Gwa SUR S WS Gan S Go G B SO S S

| LOADER | | NUMBER OF DATA |
} ITEM | MEANING | ITEMS FOLLOWING |

==l
D	ENTRY definition	6-byte name
E	Decode next item	Next item
EO	Declare common block	6-byte name
		2-byte size
I El	Load common block	6=byte name !
	definition value	2-byte offset
E2	2 bytes absolute block data	6-byte name
		2-byte offset
		2 bytes data
E3	4 bytes absolute block data	6-byte name
		2-byte offset
		4 bytes data
E4	Reset sequence number to -1	None
E5	1-byte absolute data	1-byte data
E6	1-byte absolute block data	6-byte name
		2-byte offset
		1-byte data I
F	Program label	6-byte name I

B s ke LT e il L T T X R T ——

All items are given in hexadecimal. Note that item E is actually
a compound item whose interpretation depends on the item it
follows. Item E and the following item are considered a single
control item and cannot be split across object records. This
effectively allows more than 16 different control items though
most of them require only one nibble.

48-050 F0O RO3 B-5

A

ABS instruction
Absolute instruction.
ABS.
Add immediate short
instruction
Address constants
types
Address operation
instructions
ALIGN instruction
And address immediate
instruction
APU instruction
APU option
start options
Arithmetic expressions
Arithmetic operators
Assembler control
instructions
batch assembly
copy
copy library
end
file copy
high performance method
lower-case
message
no lower-case
no squeeze
pass pause
pause
scratch
sequence checking
squeeze
squeeze related
target
unreferenced externals
Assembler instructions
absolute
align
common mode
compound conditional
conditional no operation
data definition
data entry
define byte
define command
‘define constant
define list
define storage
do
end
entry
equate
external
high performance method
impure
include

See

48-050 FOO RO3

INDEX

Assembler instructions
(Continued)
LOC
no squeeze
origin
pure
simple IF
symbol definition
weak entry
weak external
Assembly listing
cross reference listing
object program statements
source program statements
symbol cross-reference
table
Auxiliary processing unit.
See APU,

B

Batch end instruction. See
BEND.

BATCH instruction

BDATA instruction

BEND instruction

Block data instruction.
BDATA.,

Block origin instruction.
See BORG.

BORG instruction

Branch and link instructions

See

C

CAL instruction
CAL/32
machine instructions
3200MPS Family of
Processors
3280 System
mnemonics
Series 3200 Processors
summary
operating instructions
start options
task establishment
Character constants
CLIB instruction
CNOP instruction
Comment statements
examples
Common Assembly Language/32,
See CAL/32.
Common instruction. See COMN.
Common mode assembler
instructions
Common mode immediate
operations

3-52
3-60
3-53
3-52
3-71
3-30
3-35
3-35

3-83
3-81
3-81

3-81

3-65
3-76
3-65

3-76
1-17

IND-1

Common mode programming
COMN instruction
Compound conditional
instructions
Conditional assembly
instructions
compound conditional
do
simple IF
Conditional branch
instructions
branch and link
Conditional no operation
instruction. See CNOP.
Constant types
address
character
decimal string
floating point
hexadecimal
integer
Content control instructions
cross reference
error list
freeze
list
list conditionals
list macro
list unreferenced symbols
no cross
no freeze
no list
no list conditionals
no list macro
no list unreferenced
symbols
no processor specific
warning
no warning
processor specific
warning
warning
COPY instruction
Copy library instruction.
See CLIB.
CROSS instruction
Cross reference instruction.
See CROSS.

D

DAC instruction

DAS instruction

Data definition instructions
common mode data
definition
define constant
define storage

Data entry instruction. See

DNTRY.

DB instruction

DC instruction

DCF instruction

IND-2

3-66
3-72
3-71

1-16
1-17

3-55

3-44
3-47
3-47
3-46
3-40
3-42
3-78
3-80
3-80
3-80
3-79
3-79
3-80
3-80
3-80
3-80
3-79
3-79
3-80

3-80

3-80
3-80

3-80
3-80
3-57

Decimal string constants 3-47
packed 3-47
unpacked 3-47

Define address length

constant instruction. See DAC.
Define address length

storage instruction, See DAS.
Define byte instruction. See

DB.
Define command instruction 3-52
Define constant instruction
fullword alignment 3-39
halfword alignment 3-39
Define list instruction., See
DLIST.
Define storage instruction
fullword alignment 3-37
halfword alignment 3-37
DLIST instruction 3-51
DNTRY instruction 3-36
DO instruction 3-72
DS instruction 3-37
DSF instruction 3-37
DSH instruction 3-37
E
EJECT instruction 3-78
ELSE instruction 3-68

End condition instruction.
See ENDC instruction.
END instruction 3-56
End of task codes. See EOT.
End structure instruction.

See ENDS.
ENDC instruction 3-69
ENDS instruction 3-74
ENTRY instruction 3-34
EOT codes 5-13
EQU instruction 3-30
Equate instruction. See EQU.
ERLIST instruction 3-80
Error checking 4-5
Error codes A-1
Error list instruction. See
ERLIST.
Error squeeze instruction.
See ERSQZ.
ERSQZ instruction 3-63
Expressions
evaluations 2-2

Extended branch instructions 3-23
Extended branch mnemonics 3-23
External instruction. See

EXTRN.
EXTRN instruction 3-34

F

FCOPY instruction 3-58
File copy instruction. See

FCOPY. 3-58

48-050 FO0O0 RO3

Floating point constants
double precision
internal representation
single precision

Floating point registers
double precision
single precision

Format control instructions
eject
line count
space
width

Freeze instruction.

FREZE.
FREZE instruction

See

G

Global symbols
ADC
LADC

Hardware
relocation
segmentation
Hexadecimal constants
High performance assembly.
See HPM,
High performance method
assembly
instruction
memory requirements
memory utilization
performance
HPM instruction

I,J,K

I/0 operations
IF instruction
conditional
simple
Implicit symbols
character
decimal
hexadecimal
IMPUR instruction
Impure instruction. See IMPUR,
INCLD instruction
Include instruction. See INCLD.
Input/output processor. See
I0P.
Instruction execution
order
Instruction formats
16-bit
32-bit
abbreviations

reg & index storage/reg
& index storage

48-050 F0O0 RO3

3-46
3-47
3-46

1-3
1-3

3-78
3-78
3-78
3-78

3-80

-b-ibN
Ao

11
-]

w WNDMDNDDNDWW =
!
NWWWWIo (%))
w

[
w
[,

Instruction formats
(Continued)
register and immediate
register-to-register

register/immediate one
register/immediate two
register/indexed storage
register/indexed storage
one

register/indexed storage
three

register/indexed storage
two

short form

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| variations

| Instruction statements
| assembler

| character position
| fixed format

| free format

| machine

| restrictions

| Instruction variations
| Instructions

| compare

| conditional branch
I 1/0

| load PSW

| simulate interrupt
| store

| test

| usual extended branch
| mnemonics

| Instructions for data
| structures

| structure definition

| structure initialization
| Integer constants

] alignment

| examples

| range

| IOoP

| instructions for 3260MPS
| System

|

|

|

|

|

|

|

|

i

|

|

|

|

|

|

|

|

|

|

|

L

LCASE instruction
LCNT instruction
Line count instruction.
LCNT.
List conditionals
instruction. See LSTC.
LIST instruction
List macro instruction.
LSTM.
List unreferenced symbols
instruction. See LSTUR.
Listing control instructions
content control
format control
listing identification

See

See

1
NHEHEO MM

NN

|] 1
S R =
o +H o

| |
[- WP

1
H O HFWHWOWH HEoR

1
~

|
N

|
-
(=4}

HTHHH HWWWWWW THHH [] = ey
[arg s
g

3-73
3-75

3-44
3-43
3-42

3-79

3-78
3-77
3-77

IND-3

Listing identification
instructions
program
title
LOC instructions
absolute
align
conditional no operation
impure
origin
pure
Location counter.
Logical expressions
Logical unit assignment
Lower-~case instruction.
LCASE.
LSTC instruction
LSTM instruction
LSTUR instruction

See LOC.

See

M

Machine instructions
16-bit
CAL/32
mnemonics
Main memory
accessing
Memory addresses
16-bit processors
32-bit processors
Message instruction.
Mixed expressions
Mixed mode computations
MSG instruction

See MSG.

Name field
characters
examples
restrictions

NAPU instruction

NCROS instruction

NFREZ instruction

NHPM instruction

NLCASE instruction

NLIST instruction

NLSTC instruction

NLSTM instruction

NLSTU instruction

No cross instruction.

NCROS.
No freeze instruction.
NFREZ.

No high performance

assembly. See NHPM.

No list conditionals

instruction. See NLSTC.

No list instruction. See

NLIST.,
No list macro instruction.
See NLSTM.

See

See

IND-4

3-79
3-80
3-80

[
[
[SN

ot
I

bt et
)
N (S N,) (8,4 [ol ol =)

Wb N
1
"

No list unreferenced symbols
instruction. See NLSTU.

No lower-case instruction.
See NLCASE.

No processor specific
warning instruction.
See NPWRN.

No sequence checking
instruction. See NOSEQ.

No squeeze instruction.
NOSQZ.

No warning instruction. See
NWARN.

NOCAL instruction

NORX3 instruction

NOSEQ instruction

NOSQZ instruction

NPWRN instruction

NUREX instruction

NWARN instruction

See

0

Object code format
Operand field
reg & index stor/reg &
index stor instruction
register-to-register
instruction
register/immediate
instruction
register/indexed storage
instruction
Operation field
examples
mnemonics
restrictions
ORG instruction
Origin instruction. See ORG.

4
Packed decimal string
constant
examples

internal representation
Pass pause instruction. See
PPAUS,
PAUSE instruction
PPAUS instruction
Processor specific warning
instruction. See PWRN,
PROG instruction
Program instruction. See
PROG.
Program status word.
PSW.
Programs
absolute
relocatable
PSW
condition code
location counter
status descriptor

See

48-050

4-5

3-63
3-64
3-60
3-80
3-66
3-80

[+<]
i
[

1
[RS RS, RS (<)} ~ (8] (=]

Wwwww w w w w
I

3-717

FO00 RO3

PURE instruction
PWRN instruction

Q
Quantities
absolute
relocatable
R

Reg/index storage one
instruction (32-bit). See RXl.

Reg/index storage three
instruction (32-bit).
See RX3.

Reg/index storage two
instruction (32-bit).

See RX2,
Register and immediate
instruction. See RI.

Register and immediate one
instruction (32-bit).
See RI1.

Register and immediate two
instruction (32-bit).
See RIZ.

Register and index/register
and index instruction.
See RXRX.

Register-to-register
instruction. See RR,

Register/indexed storage
instructions. See RX,

Restricted symbols

ABSTOP

ADC

IMPTOP

LADC

PURETOP

instructions

operand representation

RI1l instruction

RI2 instruction

RR instructions

l6-bit

32-bit

operand representation

instructions

16-bit

32-bit

operand representation

RX1 instruction

RX2 instruction

RX3 instruction

RXRX instruction

operand representation

RI

RX

S

SCRAT instruction
Scratch instruction.
SCRAT,

See

48-050 F00 RO3

NN
NN

WHHMHHWHERE WR e HH&HT?T??
1 11

OHHRHENNNY V00 HRooUmauuaa
. wWN

3-64

Sequence checking

instruction. See SQCHK.

Series 3200 Processors
machine

instructions/mnemonics

SF instructions
16-bit
32-bit

Short form instructions.

See SF,

Source statements
comment
instruction

SPACE instruction

Special instructions

SQCHK instruction

Squeeze instruction.

SQUEZ.

Squeeze related instructions
error squeeze
no RX3

SQUEZ instruction

START command

Starting CAL/32
assigning logical units
end of task (EOT) codes
error codes
object code format
using CSS

Statements
assembler
machine

String-processing instruction

STRUC instruction

Structure definition

instructions
common instruction
end structure instruction
structure instruction

Structure initialization

instructions
block data
block origin
Structure instruction.
STRUC.

Subroutines
branching to
returning from

Symbol definition

instructions

Symbols
global
implicit
restricted

Symbols and expressions
examples

See

See

System architecture
mul tiprocessing
uniprocessing

T

Target instruction. See
TARGT.

[N |
WO
oww

w

WHWW upPUuuUOWLWWW
1 1

N RO W
'.J

L

w W
[}
R}
w w

3-73

IND-5

TARGT instruction 3
Task establishment 5
Temporary storage

types %-

3
TITLE instruction ~77
u,v
Unpacked decimal string
constant
examples 3-49
internal representation 3-48
Unreferenced externals
instructions.
See UREX and NUREX.
UREX instruction 3-66
Usual extended branch
mhemonics 3-25
w,X,Y,2
WARN instruction 3-80

Warning instruction, See WARN.
Weak entry instruction., See

WNTRY.
Weak external instruction.

See WXTRN.
WIDTH instruction 3-78
WNTRY instruction 3-35
WXTRN instruction 3-35

3200MPS Family of Processors

machine
instructions/mnemonics 3-20
3260MPS System
I0Ps 3-29

3280 System
usual extended branch

s . —— . T — — o . o o it o S St i o — — — s St St i T S Pt St i, W S, e T T e S S e, e S

mnemonics 3-25
CAL/32 machine
instructions 3-27

IND-6 48-050 F00 RO3

,lzwxﬁrg

ter Corporation
PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our users are an integral source
of information for improving future tevisions. Please use this postage paid form to send us comments,
corrections, suggestions, etc.

1. Publication number

2. Title of publication

3. Describe, providing page numbers, any technical errors you found. Attach additional sheet if
necessary.

4. Was the publication easy to understand? If no, why not?

5. Were illustrations adequate?

6. What additions or deletions would you suggeét?

7. Other comments:

From Date

Position/Title

Company

Address

9409

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

Concurrent Computer Corporation
2 Crescent Place
Oceanport, NJ 07757

ATTN:
TECHNICAL SYSTEMS PUBLICATIONS DEPT.

STAPLE STAPLE
9410

