
• • • • •
II

•
D

II

D

III

1:1

I!l

C

D

~

G

o

[:J

IJ

EJ

II

IJ

1:1

G

D

II

• • • •

~~-~-~--------.. ---~

April 1993

Order Number: 312547-001

PARAGONTM OSF/1

INTERACTIVE PARALLEL DEBUGGER

MANUAL

Intel@ Corporation

Copyright ©1993 by Intel Supercomputer Systems Division. Beaverton. Oregon. All rights reserved. No part of this work may be reproduced or
copied in any form or by any means ... graphic. electronic. or mechanical including photocopying. taping. or information storage and retrieval sys­
tems ... without the express written consent of Intel Corporation. The information in this document is subject to dulnge withOut notice.

Intel Corporation makes no warranty of any kind with regard to this material. including. but not limited to. the implied warranties of merchantability
and filDess for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Ca-poration assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use. duplication. or disclosure is subject to restrictions
stated in Intel's software license agreement. Use. duplication. or disclosure by the U.S. Government is subject to restrictions as set forth in subpara­
sraPhs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation. 2200 Mission College Boule­
vard. Santa Clara. CA 9502. For all Federal use or contracts other than DoD. Restricted Rights under FAR 52.227-14. ALT. III shall apply.

The following are trademarks oflntel Corporation and its affiliates and may be used only to identify Intel products:

286 iCS Intellink
287 iDBP iOSP
4-SITE iDIS iPDS
Above iLBX iPSC
BITBUS im iRMX
COMMputer 1m iSBC
Concurrent File System iMDDX iSBX
Concurrent Workbench iMMX iSDM
CREDIT Insite iSXM
Data Pipeline int I KEPROM
Direct-Connect Module e

Library Manager
FASTPATIi int IBOS

e MAP-NET
GENIUS Intelevision MCS

12ICE

inteligent Identifier Megachassis

inteligent Programming
MICROMAINFRAME

i386 MUL Tl CHANNEL

i387 Intel MULTlMODULE
i486 Intel386 ONCE
i487 Inte1387 OpenNET
i860 Intel486 OTP
ICE Intel487 Paragon
iCEL Intellec PC BUBBLE

Ada is a registered trademark of the U.S. Government. Ada Joint Program Office
APSO is a service mark of Verdix Corporation
DOL is a trademark of Silicon Graphics. Inc.
Ethernet is a registered trademark of XEROX Ca-poration
EXAB YTE is a registered trademark of EXAB YTE Corporation
Excelan is a trademark of Excelan Corporation
EXOS is a trademark or equipment designator of Excelan Corporation
FORGE is a trademark of Applied P!II'allel Research, Inc.
Green Hills Software. C-386. and FORTRAN-386 are trademarks of Green Hills Software. Inc.
GVAS is a trademark of Verdi x Corporation
IBM and IBMlVS are registered trademarks of International Business Machines
Lucid and Lucid Conunon Lisp are trademarks of Lucid. Inc.
NFS is a trademark of Sun Microsystems
OSF. OSF/I. OSFlMotif. and Motif are trademarks of Open Software Foundation. Inc.
POI and POF77 are trademarks of The Portland Group. Inc.
ParaS oft is a trademark of ParaSoft Corporation
SGI aud SiliconGraphics are registered trademarks of Silicon Graphics. Inc.
SUD Mierosystems and the combination of Sun aud a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology
UNIX is a trademark of UNIX System Laboratories
V ADS aud Verdi x are registered trademarks of Verdix Corporation
V AST2 is a registered trademark of Pacific-Sierra Research Corporation
VMS and V AX are trademarks of Digital Equipment Corporation _
VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies. Ltd.
XENIX is a trademark of Microsoft Corporation

ii

Plug-A-Bubble

PROMPT

Promware

ProSolver

QUEST

QueX

Quick-Pulse Programming

Ripplemode

RMX/SO

RUPI

Seamless

SLD

SugarCube

UPI

VLSiCEL

o
o
u
n
B

• • • • • •
II

I:

• • • • •
II:

G

e
II

• •
• •
• • • • • •

• • •
a
D
(I

U

I)

IJ
[J

C

C
(j

IJ
[]

IJ

IJ

I!l

n

• • • •

REV. REVISION HISTORY DATE
-001 Original Issue

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara­
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
000 Limited Rights under FAR 52.2272-14, ALT. III shall apply.

4193

iii

iv

•
a

• • • • • • • • • •
I:

• • • • •
II

• • • • • • • • • • • • •

• • • a
D

D

n
o
n
n
1'1'1

.:1

lJ

(~

1"1
.AJ

G
(j

D

• • • •

Preface

This manual describes the Interactive Parallel Oebugger (IPO), a symbolic source-level debugger
for Fortran, C, and assembly language programs running under the Paragon TM OSF/I operating
system. It contains information describing how to use IPO, as well as detailed reference information
on IPO commands.

This manual assumes you are an application programmer proficient in the use of C, Fortran, or
assembly language and the Paragon OSF/I operating system. The manual contains an overview of
IPO, and describes all of the IPO commands in a reference formaL

Organ ization
Chapter 1

Chapter 2

"Introduction," is an overview of IPO features. It also presents some
important information you need to use IPD effectively.

"IPO Commands," provides detailed information on all the IPD commands in
a reference format.

v

Preface Paragon'M OSFI1 Interactive Parallel Debugger Manual

Notational Conventions

vi

This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call ~es, reserved words,
and other items that must be used exactly as shown.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace

{ }

Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <Ctrl-Alt-Del>

(Brackets) Surround optional items.

(Ellipsis) Indicate that the preceding item may be repeated.

(Bar) Separates two or more items of which you may select only one.

(Braces) SUltound two or more items of which you must select one.

• ••
• • • •

• • • •
D

D

D

D

e
e
D

IJ

1:1
[J

~

~

Ij

IJ

IJ

IJ
[J

IJ

n

Ij

(j

fj

G

• • • •

Paragon™ OSF/1 Interactive Parallel Debugger Manual Preface

Applicable Documents
For more information. refer to the following manuals:

Paragon™ OSFll Commands Reference Manual
312486
Provides detailed information about the commands for the Paragon OSF/l
operating system.

Paragon™ OSFll C System Calls Reference Manual
312487
Provides detailed information on the C calls for the Paragon OSFIl operating
system.

Paragon TM OSFll C Compiler User's Guide
312490
Describes the C compiler for the Paragon OSFIl operating system.

Paragon™ OSFll Fortran Compiler User's Guide
312491
Describes the Fortran compiler for the Paragon OSF/l operating system.

Paragon™ OSFll Fortran System Calls Reference Manual
312488
Provides detailed information on the Fortran calls for the Paragon OSF/l
operating system.

Paragon™ OSFIl User's Guide
312489
Gives an overview of the Paragon OSF/l operating system. Tells how to
develop and run programs.

vii

Preface Paragon™ OSF/1 Interactive Parallel Debugger Manual

Comments and Assistance

viR

Intel Supercomputer Systems Division is eager to hear of your experiences with our new software
product Please call us if you need assistance. have questions. or otherwise want to comment on your
Paragon system.

U.S.A/Canada Intel Corporation
phone: 800-421·2823

email: support@Ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

United Kingdom Intel Corporation (UK) Ltd.
Supercomputer System Division

20090 Assago
Milano
Italy
167877203 (toll free)

France Intel Corporation
1 Rue Edison-BP303
78054 St. Quentin-en-Yvelines Cedex
France
0590 8602 (toll free)

Japan Intel Corporation K.K.
Supercomputer Systems Division
5-6 Tokodai. Tsukuba City
Ibaraki-Ken 300-26
Japan
0298-47-8904

Pipers Way
Swindon SN3 IRJ
England
0800 212665 (toll free)
(44) 793491056 (answered in French)
(44) 793 431062 (answered in Italian)
(44) 793 480874 (answered in German)
(44) 793 495108 (answered in English)

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
8016 Feldkirchen bel Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Supercomputer Systems Division
15201 N.W. Greenbrier Parkway

Beaverton. Oregon 97006
U.S.A.

(503) 629-7600

• • • • • •
•

• •
II

D

D

iii

D

1.1

G

D

II

IJ

IJ

C
Ij

C

~

r:J

IJ

IJ
[J

D

IJ

IJ

Id

e
D

• • • •

Table of Contents

Chapter 1
Using the Interactive Parallel Debugger
IPD Features ... 1-2

Debug Environment Control ... 1-2

Program Execution Control .. 1-3

Program Examination and Modification ... 1-4

Compiling for Debugging .. 1-5

Invoking IPD ... 1-5

IPD Commands .. :· 1-6

Syntax of IPD Commands .. 1-8

Using Aliases ... 1-9

Context, Execution Point, and Scope .. 1-9

Additional Information ... 1-12

Using Breakpoints .. 1-12

Referencing Unnamed Fortran Main Programs ... 1-12

Displaying Fortran Variable Types ... 1-13

Using Keyboard Interrupts ... 1-14

ix

Table of Contents Paragon™ OSF/1 Interactive Parallel Debugger Manual

Chapter 2
IPD Commands

ALIAS .. ALIAS 2-2

ASSiGN .. ASSIGN 2-4

BREAK .. BREAK 2-7

CONTEXT .. CONTEXT 2-11

CONTINUE ... CONTINUE 2-13

DiSASSEMBLE .. DISASSEMBLE 2-15

DISPLAY .. DISPLAY 2-18

EXEC ... EXEC 2-22

EXIT ... EXIT 2-24

FRAME .. FRAME 2-25

HELP .. HELP 2-27

INSTRUMENT .. INSTRUMENT 2-29

KILL .. KILL 2-33

LiST .. LIST 2-35

LOAD ... LOAD 2-39

LOG .. LOG 2-42

MORE ... MORE 2-43

MSGQUEUE ... MSGQUEUE 2-44

PROCESS .. PROCESS 2-45

QUiT .. QUIT 2-48

RECVQUEUE ... RECVQUEUE 2-49

REMOVE .. REMOVE 2-51

RERUN ... RERUN 2-53

RUN ... RUN 2-55

x

• • • • • • • •
• • • • • • • • • • • • • • • • • •
• • •
•
•
•

• • •
D

D

D

D

C

~

n
I]

rJ

IJ
I i

cOJ

IJ

IJ

[J

e
Ij

IJ

IJ

~

o

• • • •

Paragon™ OSF/1 Interactive Parallel Debugger Manual Table of Contents

SET ... SET 2-57

SOURCE .. SOURCE 2-59

STATUS .. STATUS 2-61

STEP .. STEP 2-62

STOP ... STOP 2-64

SYSTEM ... SYSTEM 2-66

TYPE .. TYPE 2-67

UNALIAS .. UNALIAS 2-69

UNSET .. UNSET 2-70

WAIT ... WAIT 2-71

xi

Table of Contents Paragon™ OSFI1 Interactive Parallel Debugger Manual

List of Tables

Table 1-1. Execution Control Command ... 1-6

Table 1-2. Program Examination and Modification Commands .. 1-7

Table 1-3. Debug Environment Commands .. 1-7

Table 1-4. Fortran Variable Type Display .. 1-13

xii

• .,
• • .:

• • •
II

D

D

D

D

o
G

n

Using the Interactive Parallel Debugger

The Interactive Parallel Debugger (!PO) is a complete symbolic, source-level debugger for parallel
programs that nm under the Paragon TM OSFIl operating system. Beyond the standard operations that
facilitate the debugging of serial programs, IPO offers custom features that ease the task of
debugging parallel programs.

Through a command-line interface, which includes on-line help, you can examine and modify
running processes. Among the features specifically designed to aid debugging in a parallel
environment are facilities to help debug message-passing, and the ability to set a command context
to apply commands to multiple processes running on multiple nodes. With these facilities, you can
set breakpoints in selected processes, monitor the queues of messages passing among processors,
and display stack tracebacks and the values of registers or variables.

IPO lets you debug parallel programs written in the following programming languages:

• c
• Fortran

• i860™ assembly language

The IPO command and display syntax for variables follows the language convention of the program
being debugged.

---- -------------------------.---------.-----------------~---

Using the Interactive Parallel Debugger Paragon~ OSF/1 Interactive Parallel Debugger Manual

IPO Features
!PD gives you control over the debug environment and program execution, and provides several
ways to examine and modify the program.

Debug Environment Control

1-2

Control over the debug environment allows you to customize aspects of your debugging session to
save time. This includes the following:

• Defining command aliases and setting debug variables.

• Setting the debug context.

• Debug session recording.

• !PD command file creation and execution.

• Access to on-line help.

You can customize the debug environment by defming aliases and debug variables. Aliases are your
versions of the !PD commands, and debug variables are your versions of strings used in !PD
commands. This allows you to create convenient shortcuts to commands you use most commonly.

You have control over the debug context, which determines the processes that are the targets of!PD
commands. !PD sets the initial default context at load time. You can then change the default context,
or specify a context for a single command at any time during the session. For example, the context
(all:O) is the process with process type 0 on all nodes. The default context is displayed as part of the
prompt.

You can record all or part of your debug session. Executing the !PD log command records all
subsequently entered !PD commands and their responses in a log file.

You can create a file consisting of a set of!PD cominands that you intend to execute more than once,
and execute this file from within the debugger. In addition, you can create a special file containing
commands that are to be executed whenever you invoke !PD. This file must be named .ipdrc and
must reside in your home directory. This file can be used, for example, to defme your standard alias
and debug variable defmitions.

On-line help is also available as you use !PD. By entering the help or? commands, a brief
description of all !PD commands is displayed. By adding the name of a command to the belp
command line, detailed help on that command is provided.

• • • • • • • • • • • • • • • • • • •
II

• • • • • • • • • • • •

• • •
a
n
D

n
D

D

n
D
(j

Ij

~

D

11

D

n
[J

IJ

EJ

~

D

e
III

G

D

• • • •

Paragon™ OSF/1 Interactive Parallel Debugger Manual Using the Interactive Parallel Debugger

Program Execution Control

IPO gives you control over the execution of your program by providing the following:

• Program loading.

• Running, halting, and single-stepping through program execution.

• Code breakpoints.

Load control allows you to specify the partition into which you are loading your program, and, if
desired, the nodes within that partition. You can load multiple files on different sets of nodes within
a partition, and you can specify the process type of all processes. In addition, you can pass arguments
to your program on loading, and redirect standard input.

You can start execution from the beginning of the program, continue after halting within the
program, or single-step through the program.

When you issue a run, rerun, or continue command, execution of the specified processes is started,
and then a prompt is displayed, allowing you control over command entry while the program is
running. If you issue the wait command, the prompt is not returned until all processes within the
context stop, unless you issue a keyboard interrupt. It is important to be aware that executing
processes are allowed to write to stdout and stderr in only two situations:

• Before each IPO prompt.

• During execution of a wait command.

While another command is executing, processes can only be read from the keyboard only if you
issue a wait command.

IPO facilitates setting and removing execution (code) breakpoints. You can set execution
breakpoints at procedure calls, source line numbers of executable statements, and instruction
addresses.

1-3

Using the Interactive Parallel Debugger Paragon'" OSFI1 Interactive Parallel Debugger Manual

Program Examination and Modification

1-4

IPO provides numerous ways to examine and modify your program to aid in debugging, including
the following:

• Source code listing.

• Message queue display.

• Program variable, memory address, register, and stack traceback display.

• Assignment of new values to program variable and memory addresses.

With the list command, you can list source code from the current execution point, from a specified
procedure, or from a source line number, specifying the number of lines to be listed. Line numbers
are displayed in the listing. For debugging on a more detailed level, the disassemble command
allows you to display assembly code.

In parallel programs running on multiple nodes, many program errors are connected with messages
passed among processes. IPO commands allow you to display queues of messages sent but not yet
received, and receives that have been posted but not yet filled.

The display command allows you to ensure that your program variables and memory addresses have
the expected intermediate values. In addition, you can use the frame command to display a stack
traceback, listing the routines accessed, and the files in which those routines are located. If a routine
is compiled to produce debug information, line numbers are displayed; if not, memory addresses are
displayed.

Another important feature is the ability to assign a new value to a program variable or memory
location for the current run. This gives you the opportunity to see the result of such a change without
having to edit and recompile your program before you know what the change will accomplish.

• • • • • • • • • • • • • • • • • • •
II

II

• • • • • • • • • • •

• • •
D

D

D

D

D

G

I~

n
I:J

IJ

I:l

e
t:l

D

r:J
[J

IJ

I:l
I]

D
Ij

G

~

G

II

• • • •

.-.- ... -~~~.- ... -.-.. --.----.----.-.----~- - .. ~--.. ~~--.-.-.--~----

Paragon™ OSF/1 Interactive Parallel Debugger Manual Using the Interactive Parallel Debugger

Compiling for Debugging
To compile for debugging, you should use the following Paragon OSF/I compiler switches:

.Mdebug Generate symbol and line number information. (Default .Mnodebug.)

·Mframe Generate stack frames on function calls. (Default .Mnoframe.) Debugging
code compiled with ·Mnoframe will result in stack tracebacks that have
missing calls when you use the frame command.

·00 Optimization off. If you do not specify ·00 (the default is ·01), access to
individual source lines will be decreased, and display or modification of
variables and registers will probably have unpredictable results.

You can debug programs not compiled for debugging, but your ability to debug will be very limited.

When you are debugging code compiled with the ·ox or ·Inx switches, you can debug the code
running on the nodes, or by setting the context to (host,host), you can debug the controlling process
in the service partition. If you compile without either of these switches, you are running in the
service partition, and the debug context is automatically set correctly.

You must use the IPO load command to load your file into IPO for debugging.

Invoking IPD
IPO resides on the Intel supercomputer system, and runs under the Paragon OSF/I. You can be
logged in either directly or remotely. You invoke IPO from the Paragon OSF/I prompt with the
following syntax:

ipd

When you invoke the debugger, IPO automatically looks for a configuration file named .ipdrc in
your home directory. If you have created this file, it executes the IPO commands contained in this
file. For more information on the .ipdrc file, see the description of the exec command in Chapter 2.

1-5

---------------------~------- -----

Using the Interactive Parallel Debugger Paragon™ OSF/1 Interactive Parallel Debugger Manual

IPO Commands

1-6

The IPO commands fall generally into three categories: execution control, program display, and
debug environment. Table I-I, Table 1-2, and Table 1-3 list the IPO commands associated with
these functions. You can abbreviate any command, keyword, or switch to the minimum number of
characters required to uniquely identify it. For example, for the process command, all of these
abbreviations are valid: proces, proce, proc, pro, pr or p. If the command abbreviation is
ambiguous, IPO displays an error message and ask you to retype the command. The tables also show
the minimum abbreviation for each command.

Table 1·1. Execution Control Command

Minimum
Command Abbreviation Description

break b Set and display breakpoints

continue conti Continue processes stopped by command or by a
breakpoint

instrument i Add, remove, or display program instrumentation
for performance data collection

kill k Terminate processes

remove rem Remove breakpoints

rerun rer Restart the application without reusing command
line arguments

run ru Restart the application, reusing any previous
command line arguments

step ste Execute the next somce statement

stop sto Stop execution of processes

wait w Wait until processes stop running

------~---~- ~~~- -----------------------

• • • • • •
• • • • • • •
• • • • •
• • • • • •
• • • • .:
• • •

• •
D

D

D

III

n
It

£j

n

• • • •

Paragon™ OSF/1 Interactive Parallel Debugger Manual Using the Interactive Parallel Debugger

Table 1·2. Program Examination and Modification Commands

Command Abbreviation Description

assign as Assign a new value to a program variable
or memory location

disassemble disa Display assembler listing of i860 node
program code

display disp Display the value of a program variable or
memory location

frame f Display the runtime activation stack

list Ii List source code of loaded program

msgqueue ms Display messages sent but not yet received

recvqueue rec Display posted receives not yet satisfied

process p Display current state of processes

type t Display type of variable

Table 1·3. Debug Environment Commands

Command Abbreviation Description

alias al Set or display command aliases

unalias una Delete command aliases

context conte Set the current node and process context

quit or exit q ExitIPD

exec exe Read in and execute a command file

source so Set or display the source directory search
path list

help or? h Display IPD commands and syntax

load loa Load node programs

log log Record the debug session

more mo Turn terminal scrOlling on or off

set se Set or display command line variables

status sta Display current IPD status

unset uns Delete command line variables

system or ! sy Execute a Paragon OSFIl command

1·7

-- ---~--------------~----;----.-.--- - - ... ------.. --.------------.~--.-------~-~-- ... --" ._-----

Using the Interactive Parallel Debugger Paragon'" OSF/11nteractive Parallel Debugger Manual

The only commands you can issue prior to the load command are those in Table 1-3. With the
exception of the load command, which sets the default context, and the context command, which
allows you to change the default context, none of these commands use the context. All other IPO
commands require either a default or specified context.

Syntax of IPD Commands

1-8

IPD command lines have the following general form (where full_command denotes an IPO
command and all appropriate arguments):

full_command[;fultcommand;] ... [#comment]

full command The form of afull_command can be one of the following:

command arguments

command -switch arguments

command (context) -switch arguments

command

arguments

-switch

(context)

One of the IPO commands

Command arguments specific to each command. If the
command accepts a number of arguments then the
arguments must be separated by spaces. The order of
command line arguments depends upon the command. For
example, the order of the arguments for assign is
significant, but not for remove. Refer to each command
description to determine if the command line argument
order is important.

A command option shown in boldface and preceded by a
dash is a command line switch. Whether a switch has a
following argument depends upon the command.
Command line switches with no following argument can
appear anywhere on the command line after the command
name. Switches with a following argument are usually
position-dependent. You should refer to each command
description to determine if the command line keyword and
argument order is important.

The context argument is always dermed within
parentheses. The context argument dermes the set of
processes and nodes that are the target of the IPO command
(see the context command). The context argument must
appear immediately after the command and before all other
arguments.

• • • • • • • • • • • • • • • • • •
II

o
II

• •
• • •
• • • • • •

• • • •
o
D

n
o
11

D

n
IJ

1:1

III

G

G

D

c
r:
I:J

I~

n
lj

I)

I~

D

D

• • • •

Paragon™ OSF/1 Interactive Parallel Debugger Manual Using the Interactive Parallel Debugger

comments

The semicolon is a command separator. Multiple commands may appear on the
same command line separated by a semicolon. The exceptions to this rule are the
aHas, set and system commands and comments.

A comment can be entered either at the end of a command line, starting with a
pound sign (#) followed by a space, or on a line by itself, indicated by a pound sign
(#) as the first character of a command line. All following characters to the end of
the line, are considered comment characters and are not interpreted by IPO. This
includes semicolons.

To specify an address or value in a number base other than decimal, it must have a leading zero,
followed by the first letter of the base. In octal, it must have a leading 00. A hexadecimal value must
have a leading Ox. The leading zero is required.

For all IPO commands, aftlename argument refers to a Paragon OSFIl pathname where the tilde (-)
character denotes your home directory. IPO only substitutes your environment variable $HOME for
the tilde; IPO does not expand -user names.

Using Aliases

When you issue an IPO command, IPO frrst searches the IPO alias list before it matches a command
to the IPO command table. You can alias any command to one or more characters for your
convenience. If you create a file named .ipdrc in your home directory containing a set of alias
commands that define convenient aliases for those commands that you use most during a debug
session, these definitions are automatically included whenever you invoke IPO. See the alias
command for more information.

Context, Execution Point, and Scope
To use IPO, you need to understand debug context, execution point, and scope. The context defines
the nodes and processes under debug - those to which the IPO commands refer. The execution
point is the point in a process just before the next statement to be executed. Each process has its own
execution point. The scope of a variable is within those parts of a program where it is recognized and
accessible. The execution point determines what variables are in scope and what file a line number
refers to.

The context determines the nodes and the processes on those nodes that an IPO command affects.
When you enter IPO and execute the load command, you use the same syntax for loading your
program that you use from the shell. IPO loads the program and sets the initial default context. If the
program specifies partitions and nodes internally, it works as if it were loaded from the shell. If you
do not specify a context for the commands whose syntax allows you to specify a context, IPO uses
the default context; the context used by the comamnd (either default or specified) is referred to as
the current context. You can change the default context with the context command. The default
context is shown as the IPO prompt.

1-9


~~~--~.------.-.--.------~ ... -.------

Using the Interactive Parallel Debugger Paragon™ OSF/1 Interactive Parallel Debugger Manual 

1-10 

The Paragon OSF!l operating system allows you to change your program's process type (ptype) 
with a call to setptypeO. After a call to setptypeO, the process has a new process type, but still owns 
the old process type for the duration of the application's execution (even if the process is gone, the 
process type is not reusable). In this case,lPD interprets the old and new process types as alternate 
names for the same process, so the call to setptypeO does not invalidate the default context. 

Some of the IPO commands require the context to include only processes running the same object 
module. A load module is an executable object module that you have loaded onto the system with 
the IPO load command. These commands are assign, break, disassemble, display, instrument, 
list, and type. 

For example, you can set breakpoints in, list, or disassemble only one load module at a time. 
Restricting certain commands to a single load module makes sense, because you would not, in 
general, arbitrarily set a breakpoint on a single line number in completely different load modules. 
You may use these commands on multiple nodes as long as the same modules are loaded on these 
nodes. If your context for these commands is such that it specifies different load modules, IPO 
returns an error. 

For the other IPO commands that use the context, the execution points for different nodes or 
processes can be in different load modules. These commands fall generally under the headings either 
of execution commands or information display commands. 

• Execution commands that allow context to be in separate load modules: continue, kill,step, 
stop, wait. 

• Information display commands that allow context to be in separate load modules: frame, 
msgqueue, process, recvqueue. 

IPO gives you several ways to determine the current scope and context, such as the display of the 
current context as the prompt, and the context, frame, and process commands. While you have 
access to any point in the program(s) that you have loaded using IPO, if the current execution point 
is not within the routine or program to which you want access, you need to prefix the variable name 
with the routine name and/or the file name on the command line. Likewise, you need to set the 
context either with the context command or within a given command to make sure that the command 
applies to the nodes and/or processes that you want it to. 

• 
• • • • • • • • • • 
• • • 
• • • • 
I[ 

U 

• • • • • • • • • • • • 



a 
II 

R 

D 

D 

U 

D 

IJ 
n 
o 
IE 

1:'1 
J 

.-." ,J 

D 

II 

• • • 

Paragon™ OSF/1 Interactive Para"el Debugger Manual Using the Interactive Para"el Debugger 

Consider the following example. The frame command displays procedures that have been activated 
as you execute the program. For this program, the frame command tells you that nodes 0 through 2 
are blocked in the ftickO system call called from the gdhighO system call; node 3 is blocked in a 
different routine, the csendO system call in the shadow routine: 

***** 
[_flick.s{}OxOOOI8dc8] 
[_gdhigh.c{}OxOOOI8ed8] 
[gdhigh_.c{}OxOOOI493c] 

( all: 0) > :frame 
***** (0 .. 2:0) 

_flick ( ) 
_gdhigh( ) 
gdhigh_( ) 
gauss ( ) 
main( ) 

[gauss. f {} #86] 
[pgfmain.c{}OxOOOOOla8] 

***** (3:0) 

_flick ( ) 
csend_( ) 
shadow ( ) 
gauss() 
main( ) 

***** 
[_flick.s{}OxOOOI8dc8] 

[csend_.c{}OxOOOOfeOc] 
[gauss. f {} # 219] 

[gauss.f{}#66] 
[pgfmain.c{}OxOOOOOla8] 

If multiple processes in the current context would result in identical display of information, the 
infonnation is displayed only once, preceded by a line displaying the context to which the 
infonnation applies. In the previous example, nodes 0 through 2 were doing the same thing; node 3 
has a separate display because the information is different. 

The following command line asks for the display of the value of the variable iarn, which is in the 
shadow routine. You need to make sure the scope is correct: 

(all:O) > disp iam 
*** ERROR: Not found: variable _flick.s{}_flick()iam 

The error message indicates that the variable is not in the current scope; while the frame command 
showed that the nodes executing the program stopped in the DickO routine, the variable you are 
looking for is in the shadow routine. The following results if you qualify the variable name with the 
name of the routine (routine names must be followed by parentheses): 

(all:O) > disp sbadow()iam 
*** ERROR: search failed 
*** Not found: iam 

This failure is due to an incorrect context, so you need to override the default context; in this case, 
node 3 is the only one executing the shadow routine. 

(all:O) > disp (3:0) sbadow()iam 
** gauss.f{}shadow()iam ** 

***** (3:0) ***** 
iam = 1 

1-11 



Using the Interactive Parallel Debugger Paragon'" OSF/1 Interactive Parallel Debugger Manual 

Additional Information 
You should be aware of the following additional information when using IPD. 

Using Breakpoints 

Breakpoints may be set on only the last line of a multi-line C function call, because line number 
information is generated only for the last line of the call. In the following example, the breakpoint 
must be set on the line where the 1 is: 

printf ( "%d %d %d %d\n", 
i, 
j, 
k, 
1 ); 

For multi-line Fortran statements, breakpoints can be set only on the first line of the statement. In 
the following example, the breakpoint must be set on the "print *" line: 

print *, 
& ' is " 
& 

& 

, a " 
'multi-line statement.' 

Referencing Unnamed Fortran Main Programs 

1-12 

Fortran programs are not required to have a PROGRAM statement. If the PROGRAM statement is 
omitted, the main routine is given the name _ unnamed(). You need to be aware of this when you are 
qualifying breakpoints or variables in the main routine. 

• • • • • • • • • • • • • • 
• • • • • 
•• 
• • • • • • • • • • • • 



• • 
D 
a 
D 

o 
D 

D 

I~ 

n 
IE 
Ij 

I "i 
cd 

I~ 

I~ 

Ij 

o 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual Using the Interactive Parallel Debugger 

Displaying Fortran Variable Types 

Fortran data types are represented as shown in Table 1-4. The display of some of the variable types 
(those shown with "< ___ " after them) may be unexpected. This is because the debug information 
generated by the compiler is not sufficient to distinguish the declared type from the type displayed 
by IPO in these instances. 

Table 1-4. Fortran Variable Type Display 

Declared type Represented as 

character var CHARACTER*lvar 

character*n var CHARACTER *n var 

character*n var(x,y) CHARACTER *n var(x,y) 

logical* 1 var LOGICAL * 1 var 

logical* 1 var(x) LOGICAL * 1 var(x) 

logical* 1 var(x,y) LOGICAL * 1 var(x,y) 

logical*2 var INTEGER *2 var <---

logical*4 var INTEGER var <---

logical var INTEGERvar <---

integer*2 var INTEGER *2 var 

integer*4 var INTEGER var 

integer var INTEGERvar 

real*4 var REALvar 

real var REALvar 

real*8 var DOUBLE PRECISION var 

double precision var DOUBLE PRECISION var 

complex var COMPLEXvar 

complex *8 var COMPLEXvar 

complex*16 var DOUBLECOMPLEXvar 

1-13 



Using the Interactive Parallel Debugger Paragon™ OSF/1 Interactive Parallel Debugger Manual 

Using Keyboard Interrupts 

1-14 

The following information is for using keyboard interrupts during program execution: 

• There are critical sections in the debugger where IPO does not allow the user to interrupt it from 
the keyboard. This is necessary because there are data structures (for keeping track of processes, 
breakpoints, etc.) that must be synchronized at all times. Thus, the user is not allowed to 
interrupt during the modification of these data structures. 

• If you are sure that IPO has hung up and is not going to respond, using the controJ-backslash 
«ctrl-\ » key sequence should kill the debugger. 

The next chapter provides detailed reference information on each of the IPO commands. 

• • • • • • • • • • • • • • • • • • 
& 

• • • • • • • • • • • -I I • 



• 
II 

D 

0 

D 

0 

n 
D 

I: 

n 
1m 
IJ 

IJ 

I'" .JlJ 

C 

IJ 
Ij 

I!l 
[J 

I:J 
I:] 

I:J 

~ 

1"'1 ,.; 

C 

~ 

C 

D 

II 

• • • 

--.. ----------- --~ 

IPD Commands 

1bis chapter provides detailed reference information on each of the IPD commands. The commands 
are listed in alphabetical order. 

2-1 



(PO Commands Paragon™ OSFl1lnteractive Parallel Debugger Manual 

ALIAS ALIAS 

Display or set aliases. 

Syntax 

Arguments 

Description 

Examples 

2-2 

alias [alias name [command string]] - -

alias name A string (the first character must be a letter) that you choose to represent a 
command. 

command _string The IPO command string that the alias_name represents. All of the text following 
the alias_name to the end of the alias command line, including spaces, the pound 
sign (#), and semicolons, are part of the command_string. 

An alias is a character string of your choice that you define to use in place of an IPO command string. 
Usually, aliases are abbreviations, chosen to save keystrokes. Input on a command line is matched 
with the list of aliases before it is compared with the IPO command list. A recursive alias definition 
(an alias that uses the same alias in its defmition) is flagged as an error when you use the alias. 

Entering the alias command with no arguments lists the current IPO aliases. When you issue the 
command with the alias _ name argument alone, the command displays the definition of that 
alias_name. To defme a new alias or redefine an existing alias, you must specify the alias_name 
followed by the command _string that defines it. 

Use the unaUas command to delete an alias. You can define an alias for unaUas, but you cannot 
define an alias named "unalias". 

You may not use the aUas command on the same IPO command line with another command. 

1. Define an alias for the step command 

(all:O) > alias s step 

• • • • • • 
• • • • • • • 
• • • • • • • • • • • • • • • • • • • 



• • • • 
o 
o 
D 

o 
n 
IE 
n 
I~ 

Ij 

IJ 

D 

D 

D 

IJ 

I:] 

1:1 

Il 
o 
I~ 

I!l 

e 
o 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

ALIAS (cont.) ALIAS (cont.) 

2. Display the current aliases (this example assumes that some aliases have been previously 
defined). 

(all:O) > alias 
Alias Command String 

x 
c 
s 

============== 

exec -echo 
continue ; wait 
step 

2-3 



IPO Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

ASSIGN ASSIGN 

Assign a value to a program variable or address. 

Syntax 

Arguments 

Assign a value to a program variable: 
assign [context] [file{}][procedureO]variable[,count] = value 

Assign a value to a program address: 
assign [context] [-size_switch] address[:addressl,count] = value 

context 

variable 

Defines the nodes and process types that this command will affect All nodes and 
processes executing this command must be running the same load module. If not, 
the command returns an error. If you do not specify a context, the default context 
applies to this command. Specify the context as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

The symbolic name of the variable to which you want to assign a value. If you 
specify an array name without a subscript, each element in the array is asSigned 
the value. For assembly language programs, you can use symbolic names if you 
have used the proper assembler directives to produce the symbolic debug 
information. For C or assembly programs, IPD follows the C scoping rules. It 
looks for the variable in the following four places, in order: in the current code 
block, in the current procedure, in the static variables local to the current file, and 
fmally, in the global program variables. To specify variables not in the current 
scope, prefix the variable name with the procedureO and/or file{} qualifiers. 

Use language-specific syntax to specify a variable. For example, in Fortran you 
would specify an element of ~ two-dimensional array as 8(1,1); in C, it would be 
8[1][1]. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 



• • • 
D 

D 

e 
D 

n 
G 

I~ 

D 

I!i 

I~ 

~ 

e 
I) 

IJ 

I:J 
I] 

C 

G 

e 
I] 

G 

D 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

ASSIGN (cont.) ASSIGN (cont.) 

Description 

ftleO 

procedure() 

address 

count 

value 

The name of the source module in which the variable resides. To refer to a file 
other than the location of the current execution point, you must prefix the variable 
name withftleO. When you refer to a procedure, you can omit theftle{} name 
unless there are duplicate procedure names, because IPD can find the source file 
from the symbol table information. 

The name of the procedure in which the variable resides. You need to specify the 
procedure when the execution point is not in that procedure. 

The size _switch is an option you can use when you assign a value to an address. 
It specifies how many bytes (I, 2, or 4) are to be assigned to the given address. 
You may only assign whole numbers an address; these may be hexadecimal, octal, 
or decimal. Floats, complex, characters, and strings are not allowed. The 
size _switch can be one of the following: 

byte 
short 
long 

A valid memory address to which you want to assign a value. You can specify a 
range of addresses either as start_address:end_address (for example 
0x208:0xllb) or as address,count. where count is the desired number of bytes in 
the address range (for example 0x208,20). 

A positive integer used to denote a range of an array variable or address. First, you 
designate the beginning array element or address followed by a comma and the 
count; for example, x(10),10, or Oxl08,8. This allows you to assign the same value 
to multiple contiguous elements or addresses. 

The value that you want to assign. A value is converted, using C conversion rules, 
to the type of the variable being assigned. You must enclose a character value in 
single quotes ('value') and a string value in double quotes ("value"). 

The assign command changes the value of a variable for the current run. If you re-run the program 
with the run or rerun commands, the values of all variables are reset to their original values. 

When specifying a variable, use the same language syntax convention as that of the source language. 
For example, to specify a Fortran element, you would use names(I); for a C element, names[I]. 

2-5 



IPD Commands Paragon'" OSF/1 Interactive Parallel Debugger Manual 

ASSIGN (cont.) ASSIGN (cont.) 

Examples 

2-6 

To specify a range of addresses. you can use either the address:address form or the address,count 
form, not both. If you try to specify an array element outside the bounds of an array. you will get a 
warning message but. if the address is writable. IPD will perform the requested assignment. 

You cannot assign values to a structure or union as a whole; you must specify the individual 
members of a structure or union one at a time. 

1. Assign a new value to the variable nbrnodes in the current scope. using a context different from 
the default. 

(all:O) > assign (3:0) nbrnodes=3 
(all:O) > disp nbrnodes 

** gauss.f{}shadow()nbrnodes ** 
***** (3:0) ***** 
nbrnodes = 3 

2. Assign a new value to the variable iam in the procedure shadowO. using the current context. 

(3:0) > assign sbadow()iam = 2 
(3: 0) > display sbadow( )iam 

** gauss.f{}shadow()iam ** 
***** (3:0) ***** 
iam = 2 

• • • • • • • • • • • • • • • • • • 
~ 

II 

II 

• • • • • • • • • • • 



• • 
n 
D 

D 

n 
D 

D 

D 

II 

n 
I~ 

I~ 

I~ 

~ 

D 

• • • • 

Paragon™ OSFI1 Interactive Parallel Debugger Manual IPD Commands 

BREAK BREAK 

Set a breakpoint or display current breakpoints. 

Syntax 

Arguments 

Display breakpoint information: 
break [context] 

Set code breakpoint at procedure: 
break [context] [flleOJprocedureO [-after count] 

Set code breakpoint at source line number: 
break [context] [flleO]fprocedure()]#line [-after count] 

Set code breakpoint at instruction address: 
break [context] address [-after count] 

context 

file{} 

Defines the nodes and processes that this command will affect. All nodes and 
processes executing this command must be running the same load module. If not, 
the command returns an error. If you do not specify a context, the default context 
applies to this command. Specify the context as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

The name of the source module in which the procedure or line resides. To refer to 
a file that is not where the current execution point is located, you must prefix the 
line number or variable name withfileO. When you refer to a procedure, you can 
omit the file{} name unless there are duplicate procedure names. 

2-7 



-------------- ---".------ .. ---"--.. ------~---------------~-~. 

fPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

BREAK (cont.) BREAK (cont.) 

Description 

(all:O) 

procedure() 

#line 

address 

-after count 

The name of the procedure at which you wish to set the breakpoint, or the 
procedure in which the line you are specifying resides. You only need to qualify 
a line number with the procedure name if the current execution point is outside 
that procedure. If you set a breakpoint at a procedure name, execution is halted just 
before the first executable line in the procedure, or at the entry point, if line 
information is not available for that procedure because that procedure was not 
compiled for debug. 

The source line number at which you want to set the breakpoint. The line number 
must be preceded with a pound sign (#). In general, the statement must be 
executable. For example, you cannot set a breakpoint on a Fortran FORMAT 
statement, a comment, or an empty line. The process breaks just before executing 
the specified statement. To qualify the line number, use the file{} and/or 
procedureO qualifiers. 

The address can be either an instruction address or a memory address. When it is 
an instruction address, it must be a valid code address, and the process breaks just 
before executing the instruction at the address. 

In all forms of the break command, the count argument is a positive integer 
indicating the number of times this breakpoint is encountered before execution is 
halted. The default count is 1. For example, if you have a Fortran loop defined by 
the following 

DO 10 I = 1,100 

and you wish to break when the variable I equals 5, you would set the breakpoint 
on a line in the body of the loop with -after 5. 

When you define a breakpoint, it takes on either the context that you assign it, or the default context. 
A breakpoint's context denotes the nodes and processes to which it applies. When you display 
breakpoints, only those breakpoints in the current context are listed. 

Entering the break command with no arguments displays all breakpoints in the current context. You 
can also use the break command with the context argument to display all breakpoints in the specified 
context. Following is an example of the break command display: 

Bp # Type File name Procedure Breakpoint Condition Bp context 
--== ==== ========= ========= ==~================= ========== 

1 C Bp gauss.f shadow Line 150 (al1:0) 

2-8 

• • • • • • • • 
• • • • • • • • • • 
I[ 

u 
II 

• • • • • • • • • • •• 



• • • 
D 

D 

D 

II 

II 

I~ 

IE 
I'J 

IJ 

IJ 
[j 

I:J 

~ 

e 
[J 

IJ 

IJ 

IJ 

~ 

I] 

I] 

Ij 

I] 

D 

• • • • 

Paragon™ OSFI1 Interactive Parallel Debugger Manual IPD Commands 

.BREAK (cont.) BREAK (cont.) 

In the preceding display, the flrst line shows the current context for the break command. The labeled 
columns denote the following: 

Bp# 

Type 

Filename 

Procedure 

The number of each breakpoint. The breakpoint number is used as an 
argument to the remove command. 

The type of the breakpoint: C Bp denotes code breakpoint. 

The name of the source file associated with the breakpoint. 

The name of the procedure where the code or variable is located. For global 
or static variables the Procedure fleld is set to <global> or <static>. 

Breakpoint Condition 

Bpeontext 

The condition under which the breakpoint will occur. The after clause is not 
displayed unless the count is greater than 1. 

The breakpoint context. If the text overflows the File name, Procedure and 
Breakpoint Condition columns, the right-most characters of the text are 
truncated. However, if the context overflows the Bp context fleld, the display 
for the breakpoint is continued on the next line. This is denoted by blanks in 
all fields except the Bp context field, which contains the continued breakpoint 
context. 

If a single C statement consists of multiple source lines, set the breakpoint at the ending line; for a 
multiple line Fortran statement, set the breakpoint on the fust line. 

When you set a breakpoint on a function, as in this example: 

break my_functlon() 

the breakpoint is set on the flrst line of the function, if the function was compiled with symbols. If 
it was not compiled with symbols, or line number information has been stripped, the breakpoint is 
set on the function's entry point. As a result, if you set a breakpoint on a function, and then attempt 
to set a breakpoint on the first executable line of the same function, you will get a "breakpoint 
already exists" error. 

2-9 



IPD Commands Paragon'" OSFI1 Interactive Parallel Debugger Manual 

BREAK (cont.) BREAK (cont.) 

Examples 

1. Set a breakpoint at the procedure shadow() in the current source file for node 0, process type 0 
only. 

(0:0) > b shadow() 

2. Set a breakpoint at line number 175 in the file gaussj. Set the breakpoint so that the break occurs 
at the beginning of the tenth execution of the line 175 for process type 0 on nodes 1, 2, and 3. 

(all:O) > break 0 .. 3:0) gauss.f{}#l75 -after 10 

3. Set a breakpoint at line number 180 in the source file gaussj. 

(all:O) > break gauss.f{}#lBO 

4. Display the current breakpoints. The break command displays those breakpoints that have a 
process in the current context. The display context is shown on the line before the table and the 
context of the breakpoint is shown in the rightmost column of the display. 

(0:0) > break (a11:0) 

(all:O) 
Bp # Type 
==== ==== 

1 C Bp 
:2 C Bp 
3 C Bp 

2-10 

File name Procedure Breakpoint Condition 
========= ========= ======~============= 

gauss.f shadow Call shadow 
gauss.f shadow Line 175 after 10 
gauss.f shadow Line 180 

Bp context 
========== 

(0:0) 
(1. .3:0) 
(aU:O) 

• • • • • • 
• • • 
• • • • • • • • • • • • • • • • • • • • • • • 



• • .. .. 
D 

D 

D 

o 
D 

I~ 

D 

I~ 

C 

Cl 

Cl 

~ 

D 

D 

IJ 

IJ 

IJ 

D 

IE 

I:J 
I] 

Ij 

IE 

D 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPO Commands 

CONTEXT CONTEXT 

Set the debug context, defining the default set of processes and nodes to which debug commands apply. 

Syntax 

Arguments 

Description 

context [(nodelist:ptypelist)] 

nodelist 

ptypelist 

A single value indicates a single node. You can specify a range of nodes with the 
syntax nodel .. node2, where node2 > nodel. Specify a list of nodes by separating 
node numbers with commas, using the syntax node, node, node ... The nodelist 
may include both a range of nodes and a list of nodes. Rather than a list of nodes, 
you can use the special value all , which specifies all nodes where loaded 
processes reside. To debug the controlling process in the service partition, you can 
use the special value host. 

A single value indicates a single Paragon OSF/1 process type. You can specify a 
range of process types with the syntax ptypel • .ptype2, where ptype2 > ptypel. 
Specify a list of process types by separating process type numbers with commas, 
using the syntax ptype, ptype, ... ptype. The ptypelist may include both ranges and 
lists of process types. Rather than a list of process types, you can use the special 
value all, which specifies all loaded processes under debug on the specified nodes. 
To debug the controlling process in the service partition, uing the special value 
host specifies the proper pid in the service partition. 

To debug the controlling process in the service partition, uing the special value 
host specifies the proper pid in the service partition. Processes tthat do not have a 
process type are designated with a value that is the Paragon OSFIl pid of the 
process subtraced from zero. Single Paragon OSFIl processes, processes created 
by fork, and controlling processes that have not called setptypeO are treated this 
way. 

The default context is frrst set with the load command and is displayed as part of the IPO prompt 
You can change the default context with the context command. When you need to override the 
default context for a given command, specify the context as part of the command syntax. This 
override is valid only for that command. 

The context command can only refer to existing processes under debug. 

2-11 



--------------,--.-~- -- - -- --- - ----

IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

CONTEXT (cont.) CONTEXT (cont.) 

Examples 

2-12 

Without arguments, the context command displays the nodes and process types in the default 
context. Processes may change their process type by calling setptype(). However, after calling 
setptype(), the process still "owns" the old process type as well as the new one. In this situation, IPD 
considers the old and new process types as alternate names for the same process and the context 
command displays both. 

1. Set the context to process type 0 on all nodes. 

IPD> contezt (all:O) 
(all: 0) > 

2. Display the default context. 

(all: 0 ) > contezt 

Processors 
Current 
Ptype 

=========== ======= 

( all) o 

Previous 
Ptypes 
======== 

Program 
======= 

gauss 

3. Process 0 on node 1 calls setptype(S). Redisplay the process types. 

(all:O) > contezt 
Current 

Processors Ptype 
========== 
(0,2 .. 3) 
(1 ) 

======= 

o 
5 

Previous 
Ptypes 
======== 

(0 ) 

Program 
======= 
gauss 
gauss 

• • • • • • • • • • • • • • 
• • • 
• • 
B 

• • • • • 
• 
• • • • • ." 



II 

a 
n 
a 
n 
II 

n 
D 

n 
n 
IE 

I",] 

IJ 
. Ij 

I: 

c 
c 
II 

• • • • 

Paragon'" OSF/1 Interactive Parallel Debugger Manual IPD Commands 

CONTINUE CONTINUE 

Continue execution of processes stopped by command or breakpoint in the current context. 

Syntax 

Arguments 

Description 

Examples 

continue [context] 

context The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(node!ist:ptypelist) 

The nodelist is the list of nodes, and the ptype!ist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

It is an error to use the continue command in a context containing running processes. However, you 
can use the continue command to start a process after it has been loaded. 

After the processes have been continued, IPD returns control to you by issuing the next IPD prompt 
To cause IPD to wait to return control to you until a process terminates or a breakpoint is hit, use the 
wait command . 

1. Continue executing process type 0 on node 1 when the default context is (all:O). 

(all:O) > continue (1:0) 
(all:O) > 

2-13 



IPO Commands 

CONTINUE (com.) 

2. Continue all processes in the default context. 

(all:0) > continue 
(all: 0) > 

Paragon™ OSF/1 Interactive Parallel Debugger Manual 

CONTINUE (com.) 

3. Continue all processes aIld wait for them to stop. 

(all:0) > continue; wait 

2-14 

• • • • • • • • • • • • • • • • • • 
l: 

II 

• • • • • 
• • • • • • 



a 
a 
n 
D 

o 
II 

n 
n 
n 
1m 
n 

C 

I~ 

IJ 

IJ 
I~ ,,. 

11 

Paragon'" OSFI1 Interactive Parallel Debugger Manual IPD Commands 

DISASSEMBLE DISASSEMBLE 

Display machine code listing of process's instructions. 

Syntax 

Arguments 

Disassemble from current execution point: 
disassemble [context] [,count] 

Disassemble starting from an instruction address: 
disassemble [context] address[:address I ,count] 

Disassemble starting from procedure: 
disassemble [context] lfileO ]procedureO[,count] 

Disassemble starting from a source line number: 
disassemble [context] lfileO][procedure()]#line[: #line I,count] 

context 

count 

Defines the nodes and processes that this command will affect. All nodes and 
processes executing this command must be running the same load module. If not, 
the command returns an error. If you do not specify a context, the default context 
(see the context command) applies to this command. Specify the context as 
follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelisf is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

An integer used to indicate the number of assembly instructions to disassemble. If 
count is positive, disassembly starts at the point specified and continues for count 
instructions. If negative, disassembly begins at count-1 instructions preceding the 
specified starting point and ends at this point. If you do not specify a count, the 
last count argument given to the disassemble command is used. Upon invoking 
IPD, the initial count is 50 instructions. One way to use the count argument is to 
specify a large count and use the IPD more facility (see the more command) to 
browse through the instructions. 

2-15 



- ---------------._----_._----- --_. 

IPD Commands Paragon'" OSF/1 Interaotive Parallel Debugger Manual 

DISASSEMBLE (cont.) DISASSEMBLE (cont.) 

Description 

2-16 

address The address at which to start the disassembly. You can specify a range of 
addresses by specifying ,count following the address, or address:address. 

file{} The name of the source module in which the procedure or line resides. To refer 
to a file in which the current execution point is not located, you must specify file{} 
as a prefix to the line number. When you refer to a procedure, you can omit the 
file{} name unless there are duplicate procedure names in different files. 

procedure() The name of the procedure at which you wish to start disassembling, or the 
procedure in which the line you are specifying resides. You only need to qualify 
a line number with the procedure name if the current execution point is outside 
that procedure. 

#line The source line number at which to start disassembly. The line number must be 
prefixed by a number sign ( # ) and must exist in the symbol table debug 
information. You can specify a range of lines with the syntax #line:#line (you 
must specify the range in ascending order) or #line,count. 

The disassemble command allows you to display assembly language code. The contents of the 
program's address space in memory are disassembled, rather than the contents of the executable file. 
The target processes must be stopped to perform the disassembly. If they are not stopped, an error 
message is displayed. 

If you enter the command without specifying a starting point (using the current execution point), and 
the processes within the current context are stopped at different locations in the load module, 
multiple disassembly lists are displayed, one for each process with a unique execution point. 

If the specified procedure or address matches a source line number, that line number is displayed 
before the instructions. If there is no matching line number, the procedure name + address offset is 
shown, as in the following example: 

procedure () + Ox25. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .1 



a 
D 

o 
D 
I , 

Ii 

n 
o 
IJ 

n 
• i! ~ 

n 
I: 
• . "'! 

.J 

fJ 

r: 

I] 

C 

D 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

DISASSEMBLE (cont.) DISASSEMBLE (cont.) 

Examples 
1. Assume that the current context is (all:O) in a Fortran program. Disassemble 30 instructions. 

starting at the procedure shadowO . 

(all:O) > disa sbadow(),30 
***** (all:O) ***** 
gauss.f{}shadow() + OxO 

00000bl8: eclflOOl orh OxlOOl, rO, r3l 
OOOOOblc: e7fflcOO or OxlcOO, r3l, r3l 
00000b20: lfeOl80l st.l fp, 0(r3l) 
00000b24: a3e30000 mov r31, fp 
00000b28: lfe0080S st.l rl, 4 (r31) 
00000b2c: lc7f87fd st.l rl6, -4(fp) 
00000b30: lc7f8ff9 st.l r17, -8(fp) 
00000b34: lc7f97fS st.l r18, -12(fp) 
00000b38: lc7f9ffl st.l r19, -16(fp) 
00000b3c: lc7fa7ed st.l r20, -20(fp) 
00000b40: lc7fafe9 st.l r21, -24(fp) 
00000b44: lc7fb7eS st.l r22, -28(fp) 

gauss.f{}shadow()#16S 
00000b48: 147cffe9 ld.l -24(fp), r28 
00000b4c: l470fffd ld.l -4(fp) , r16 
OOOOObSO: 139dOOOl ld.l rO (r28) , r29 
00000bS4: 12110001 ld.l rO(rI6) , r17 
00000bS8: 97beOO02 adds 2, r29, r30 
OOOOObSc: 0810fOOO ixfr r30, f16 
00000b60: 08128800 ixfr r17, fl8 
00000b64: lc7ff7d9 st.l r30, -40(fp) 
00000b68: 96320001 adds 1, r17, r18 
00000b6c: 4al491al fmlow.dd f18, f16, f20 
00000b70: lc7f97dl st.l r18, -48(fp) 
00000b74: lc7f8fel st.l r17, -32(fp) 
00000b78: lc7f8fdd st.l r17, -36(fp) 
00000b7c: 2c74ffd6 fst.l f20, -44(fp) 

gauss.f{}shadow()#17S 
00000b80: 147cfffl ld.l -16(fp), r28 
00000b84: 139dOOOl ld.l rO (r28) , r29 
00000b88: 97beffff adds -1, r29, r30 
00000b8c: lc7ff7cd st.l r30, -S2(fp) 
(all: 0) > 

2-17 



IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

DISPLAY DISPLAY 

Display the value of the specified variable, memory address, or processor registers. 

Syntax 

Arguments 

2-18 

Display the value of variable in current scope of context: 
display [context] [-format switch] variable[,count] [variable[,count] ... ] 

Display the value of a global or static C variable: 
display [context] [-format_switch] file{}variable[,count] [fileOvariable[,count] .. ] 

Display the value of a local procedure variable: 
display [context] [-format_switch] [fileO ]procedureOvariable[,count] 

[[fileO]procedureOvariable[,count] ... J 

Display the value of a memory address: 
display [context] address[:addressl,count] ... 

Display the contents of the processor registers: 
display [context] -register 

context 

format_switch 

Defines the nodes and processes that this command will affect. All nodes and 
processes executing this command must be running the same load module. If not, 
the command returns an error. If you do not specify a context, the default context 
applies to this command. Specify the context as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

The format switch overrides the symbol table information that would normally 
determine how a symbol's value would be printed. Theformat _switch can be one 
of the following: 

alphanumeric 
complex 
dcomplex 
decimal 

double 
ftoat 
hexadecimal 
octal 

real (equivalent to the C float type) 
string (see Description) 

.~------ ---------

I 

• • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • 



D 

a 
n 
o 
u 

n 
II 

11 

I~ 

I " J<J 

I~ 

D .. 
• • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

DISPLA Y (cont.) DISPLAY (cont.) 

Description 

variable 

count 

fileH 

procedure() 

address 

-register 

The symbolic name of the variable that you wish to display. For assembly 
programs, variable names can be used if the proper assembler directives have been 
used to produce the symbolic debug information. For C or assembler programs, 
IPD follows the C scoping rules, looking for the variable in the following four 
places, in order: in the current code block, in the current procedure, in the static 
variables local to the current file, and fmally in the global program variables. 

One of the ways to specify a range is to specify the beginning array element 
followed by a comma and a count (for example, x(lO),lO). You must specify the 
range of an array in ascending order. If you only use the array name without a 
subscript, all elements in the array will be displayed. 

The name of the source module in which the variable resides. To refer to a file 
other than the location of the current execution point, you must prefix the variable 
name withfile{}. When you refer to a procedure, you can omit thefile{} name 
unless there are duplicate procedure names. 

To display a local variable in a procedure other than the procedure of the current 
context's execution point, qualify the variable with the Ifile{}]procedureO prefix. 
Because IPD can find the source file from the symbol table information, you can 
omit the file{} prefix unless the specified procedure name is duplicated in another 
source module. 

Display the contents of the memory location specified by the address argument. 
You can display either memory locations or variables, not both. If the fmt display 
item is a memory address, the remaining display items must also be memory 
addresses. 

There are two ways to denote a range of memory locations. You can either specify 
the beginning address and the ending address, separated by a colon (for example, 
0x208:0x21b), or you can specify the beginning address followed by a comma 
and a count (for example, 0x208,lO). 

Display all of the processor registers. 

When specifying a variable, use the same language syntax convention as that of the source language. 
For example, to specify a Fortran element, you would use names(l); for a C element, names(1). For 
assembly programs, you may use either C or Fortran syntax to display a memory address 

To specify a range of addresses, you can use either the address:address form or the address,count 
.form, not both. If you specify an array element outside the bounds of an array, a warning message 
is returned, and, if the resulting address is valid, IPD will display the requested address. 

2-19 



- --~---~-~-.-----~.---~--~~--.--------------

IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

DISPLAY (cont.) DISP LA Y (cont.) 

Examples 

2-20 

You can display the elements of an array by specifying its name You cannot display the elements of 
a structure by specifying its name; individual elements must be specified. 

Use the ostring switch to display a C character array as a null-terminated siring. Otherwise, it is 
displayed as individual characters. For example, in a C program with a variable declared to be char 
name[5]: 

(1:0) > display name 
name [0] J 
name [1] = 0 

name [2] = e 
name [3] y 
name [4] 
(1:0) > display ~strin~ name 
name = Joey 

1. Display the variable named iam in process 0 on node O. 

(0:0) > display iam 
(0:0) iam = 4 

~~---- -~~------------------- .-~-

• • • • • • • • • • • • • • • • • • 
K 

• • • • • • • • • • • • • 



a 

• .. 
o 
n 
n 
o 
o 
n 
n 
I~ 

I~ 

, I 1'\11\ 

: d.,1 

I~ 

C 

D 

n 
D 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual 11'0 Commands 

DISPLAY (cont.) DISPLA Y (cont.) 

2. Display 20 elements of the array a, starting at a( 1.4). To display the entire array, you would 
simply specify the array name. This listing uses column-major indexing because this is a Fortran 
program example. 

(al1:0) > disp (0:0) gauss()a(1,4),20 

** gauss.f{}gauss()a(l,4) ** 
***** (0: 0) ***** 
a(l,4) 0.0000000000000 
a(2,4) 3.1250000000000 
a(3,4) 5.4687500000000 
a(4,4) 6.6406250000000 
a(5,4) 7.1289062500000 
a(6,4) 7.3120117187500 
a(7,4) = 7.3760986328125 
a(8,4) 7.3974609375000 
a(9,4) = 7.4043273925781 
a(10,4) 7.4064731597900 
a(l1,4) = 7.4071288108826 
a(12,4) = 7.4073255062103 
a(13,4) 7.4073836207390 
a(14,4) 7.4074005708098 
a(15,4) 7.4074054602534 
a(16,4) 7.4074068572372 
a(17,4) 7.4074072530493 
a(18,4) 0.0000000000000 
a(19,4) = 0.0000000000000 
a(20,4) = 0.0000000000000 

2-21 



IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

EXEC EXEC 

Read and execute IPO commands from the specified file. 

Syntax 

Arguments 

Description 

2-22 

exec [-echo I-step] filename 

-echo 

-step 

filename 

Causes the IPO commands in the specified file to be echoed to the tenninal before 
they are executed. Along with the command, the current prompt will be echoed to 
show the default context. By default, IPO does not echo commands. 

Causes the IPO command file to be executed line by line. The screen displays each 
IPO command before executing it (comment lines and blank lines are skipped). 
You can execute the displayed command by pressing <Return>; the next 
command then appears on the screen. If you want to stop stepping through the 
command file, use the keyboard interrupt (entering <Del> or <Ctrl-C» to 
terminate the exec command. 

The name of the IPO command file. 

When you specify -echo, a "++" is prefixed to each command line as it is displayed to denote that it 
is being read from a command file. 

You may use the exec command inside the command file. Up to eight levels of exec nesting are 
supported. For every level of nested exec two additional "++" characters will be prefixed to the 
displayed command line if it is being echoed. 

You may insert comments in command files by typing # followed by a space and the comment All 
characters, including semicolons, remaining in the line are considered part of the comment When # 
is the first character of a line, the entire line is a comment 

You can cause IPO to execute a set of commands automatically upon IPO invocation if you put the 
desired commands in a file named .ipdrc in your home directory. The .ipdrc file is often used to 
define configuration information, such as a list of convenient aliases and command line variables. 
The commands in .ipdrc are not echoed. 

.' • • • • • • • • • • • • • • • • • 
• • • • • • • • • • .; 
• • • 



a 
a 
D 

D 

o 
n 
D 
I) 

n 

I~ 

I~ 

D 

II 

• • • 

Paragon 1M OSF/1 Interactive Parallel Debugger Manual IPD Commands 

EXEC (cont.) 

Examples 

EXEC (cont.) 

1. Execute the command file picf, which consists of the following lines: 

load main 
context (1 .. 3:0) 
break #84 
break #90 

When you execute this file, you get the following results: 

ipd> exec -echo picf 
ipd> ++ load main 

*** load symbol table for main. .. 100% 
*** loading program ... 
*** initializing IPD for parallel appplication ... 
*** load complete 

(0:0» ++ context (1 .. 3:0) 
(1 .. 3:0) > ++ break #84 
(1 .. 3:0) > ++ break #90 
(1. .3:0) > 

2-23 



IPO Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

EXIT EXIT 

Terminate a debug session and exit IPD. 

Syntax 

Arguments 

Description 

Examples 

2-24 

exit 

None 

The eXl1 command terminates an IPD session. It is equivalent to the quit command. Either command 
will terminate only those processes that the debugger has loaded. 

1. Exit IPD. 

(all: 0) > exit 
*** IPD exiting ... 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 



• 
a 
n 
II 

II 

1.1 

n 
D 

n 
I] 

I~ 

IJ 

£j 

I~ 

IJ 

I~ 

[J 

I~ 

I) 

II 

• • • 

" .... -•... ,._-------

Paragon™ OSFI1 Interactive Parallel Debugger Manual IPD Commands 

FRAME FRAME 

Display the stack traceback(s) of the current context. 

Syntax 

Arguments 

Description 

frame [context] 

context The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes. and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value. 
a comma-separated list. a range. a combination. or the special value all. indicating 
all nodes and/or process types. For more information. see the context command. 

The frame command displays a stack traceback. which lists the routines accessed and the files in 
which those routines are located. If the routine was compiled to produce debug information. line 
numbers are displayed. If not, memory addresses are displayed 

If routines in the program were compiled without the -Mframe switch. these routines may not 
generate stack frames. and may result in missing routines in the stack traceback. The -Mframe 
switch is on by default; it may slow execution of function calls. 

Parentheses ( 0 )following a name indicate a routine. Braces ( 0 ) indicate a file. 

2-25 



IPD Commands Paragon"" OSF/1 Interactive Parallel Debugger Manual 

FRAME (cont.) FRAME (cont.) 

Examples 

2-26 

1. In the following example, after a program was executed, it bung up, so execution was stopped. 
The frame command traces the stack to provide a history of the routines called, starting from 
the most recent. In this example, node 3 is found to have a different history thaD nodes 0, 1, and 
2. 

( all: 0) > frame 

***** 
[_flick.s{}Ox00023fe8] 
[_gdhigh.c{}Ox000240f8] 
[gdhigh_.c{}OxOOOle9dc] 

***** (0 .. 2:0) 
_flick( ) 
_gdhigh( ) 
gdhigh_( ) 
gauss () 
main( ) 

[gauss.f{}#72] 
[pgfmain.c{}OxOOOOOlac] 

***** (3:0) 
_flick ( ) 
msgwait_( ) 
shadow( ) 
gauss () 
main( ) 

***** 
[_flick.s{}Ox00023fe8] 

[msgwait_.c{}Ox0002011c} 
[gauss. f {} #209] 

[gauss.f{}#58] 
[pgfmain.c{}OxOOOOOlac] 

• • • • • • • • • • • • • • • • • • 
K 

• • 
• • • • • • • • • • • , 



II 

D 

D 

D 

D 

11 

IJ 

IJ 
I , 

"'" 

IJ 

I~ 

Ij 

IJ 

I) 

G 

D 

• • • • 

Paragon'M OSF/1 Interactive Parallel Debugger Manual IPD Commands 

HELP HELP 

Display IPD commands and syntax. 

Syntax 

Arguments 

List all commands: 
{ help I? } 

Obtain syntax help: 
{ help I ? } command 

command The command argument is any IPD command. The command line syntax will be 
displayed for this command. 

Examples 
1. Display the help for the context command. Entering help context would produce the same 

result. 
(all:O) > ?contezt 
Set or display the default debug context: 

context [(nodelist:ptypelist)] 

The context command defines the default set of processes and nodes to which 
many debug commands apply. The initial default context is set by IPD when 
you load an application (see the load command). 
The nodelist lists the nodes, and the ptypelist lists the processes on 
those nodes, to which the commands are to apply. Either can be a single 
value, a comma-separated list, or a range. The special value all means 
all of the loaded nodes or processes. Another special value is host; to 
debug the controlling process in the service partition, you can specify 
the context (host:host), which means the node(s) in the service partition 
running the controlling process, and the Paragon OSF/l pid n~ber of thex 
the controlling process. 

2-27 



IPD Commands Paragon™ OSFl1lnteractive Parallel Debugger Manual 

HELP (cont.) HELP (cont.) 

2. Display the IPO command summary list Entering? would produce the same result. 

(al1:0) > belp 
COMMAND 
alias 
assign 
break 
context 
continue 
disassemble 
display 
exec 
exit 
frame 
help or ? 
kill 
list 
load 
log 
more 
msgqueue 
process 
quit 
recvqueue 
remove 
rerun 
run 
set 
source 
status 
step 
stop 
system or 
type 
unalias 
unset 
wait 

2·28 

ABBREV 
al 
as 
b 
conte 
conti 
disa 
disp 
exe 
exi 
f 
h 
k 
li 
loa 
log 
mo 
ms 
p 
q 
rec 
rem 
rer 
ru 
se 
so 
sta 
ste 
sto 
sy 
t 
una 
uns 
w 

DESCRIPTION 
Set or display command aliases 
Assign a new value to a program variable 
Set or display breakpoints 
Set the default debug context 
Continue stopped or breakpointed processes 
Display an assembly listing of program code 
Display the value of a program variable 
Read debugger commands from a file 
Exit IPD - same as quit 
Display a stack traceback 
Display help information 
Terminate processes 
List source code 
Load node programs 
Record the debug session in a file 
Turn terminal scrolling on or off 
Display the queue of messages sent but not received 
Display the current state of processes 
Exits IPD - same as exit 
Display the queue of receives posted but not satisfied 
Remove breakpoints 
Same as run except do not reuse previous argument list 
Restart processes without deleting breakpoints 
Set or display debug variables 
Set or display source directory search paths 
Display the current IPD status 
Execute the next source statement 
Interrupt node processes 
Execute a UNIX shell command 
Display the type of a variable 
Delete aliases 
Delete debug variables 
wait for processes to stop 

• • • • • • • • • 
a 

• • • • • • • • 
lTI 

D 
I[ 

• • • • • • • • • • • 



II 

D .. 
D 

D 

D 

n 
n 
D 

o 
n 
IJ 

IJ 

G 

~ 

I] 

I] 

e 
IJ 
.-:l ai! 

I~ 

G 

D 

In 
(j 

I!J 

D 

D 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

INSTRUMENT INSTRUMENT 

Add, remove, or display program instrumentation for performance data collection. 

Syntax 

Arguments 

Instrument program for the prof utility: 
instrument [context] [[-on] -prof [start location [stop location]] - -

[directory_name] 

Remove performance instrumentation: 
instrument [context] -otT 

List performance instrumentation information: 
instrument [context] 

context Defines the nodes and processes that this command will affect. If the 
start _location or stop _location parameters are used, then all nodes and processes 
executing this command must be running the same load module. If not, the 
command returns an error. If you do not specify a context, the default context (see 
the context command) applies to this command. Specify the context as follows: 

({aU I nodelist}:{aU I ptype!ist}) 

-on Turn profile instrumentation on. This is the default action when the -prof switch 
is given. The -on switch is provided for cOJ:iunand symmetry with the -off switch. 

-off Stop collecting data, write existing data to directory previously specified, and 
remove all prOfile instrumentation. 

-prof Instrument the program for profiling information. 

start location The start}ocation is the point in the code at which profiling begins. This can be 
an entry or exii point to a procedure, a line number, or an address. The syntax for 
the start}ocation specification is one of the foUowing: 

[-entryl-exitl IftleO lprocedureO 

lftie01wrocedureO]#line 

address 

2-29 



IPD Commands ParagonT1il OSF/1 Interactive Parallel Debugger Manual 

INSTRUMENT (cont.) INSTRUMENT (cont.) 

2-30 

stop _location The location at which performance data collection ends. The stop )ocation can be 
an entry or exit point of a procedure, a line number, or an address. The syntax for 
the stop _location specification can be one of the following: 

[-entryl-exit] [lileO ]procedureO 

[lileO]fprocedure()]#line 

address 

Syntax elements for start _location and stop )ocation are defmed as follows: 

file{} 

procedure() 

#line 

address 

-entry 

-exit 

The name of the source module in which the procedure or 
line resides. To refer to a line in a file other than the file 
containing the location of the current execution point, you 
must prefix the line number withfileO. When you refer to 
a procedure, you can omit the fi/eO name unless there are 
duplicate procedure names that require qualification. 

The name of the procedure at which you wish to set the start 
or stop location, or the procedure in which the line you are 
specifying resides. You only need to qualify a line number 
with the procedure name if the current execution point is 
outside the file containing that procedure. 

The source line number at which you want to set the start 
or stop location. The line number must be preceded with a 
pound sign (#). The statement must be executable. For 
example, you cannot set a start or stop location on a Fortran 
FORMAT statement, a comment, or an empty line. 

The address at which you want to set a start or stop 
location. The address must be an instruction address. 

Place a start or stop location at the entry of the procedure 
specified by procedure(). This is the default action when 
only a procedureO name is given. 

Place a start or stop location at the exit of the procedure 
specified by procedureO. 

• • • • • • • • • • • • • • • • • • 
&. 

• • • • • • • • • • • • • 



• • .. 
D 

o 
o 
D 

D 

n 
IE 
n 
1:1 

IJ 

IJ 

G 

e 
~ 

D 

~ 

IJ 

IJ 
(j 

~ 

I~ 

I~ 

D 

n 
D 

• • • • 

Paragon'M OSF/1 Interactive Parallel Debugger Manual IPD Commands 

INSTRUMENT (cont.) INSTRUMENT (cont.) 

Description 

directory_name directory_name is used as the name of the directory where the performance data 
files are written. The individual data files for each process are written to a file 
named executable _ name.pid.node.ptype where pid is the process id, node is the 
node number, ptype is the current process type at the time the data is written to the 
file. Both node and ptype are set to -1 if they are undefined. The default for 
directory_name is mon.out. If a directory with directory_name exists the user is 
queried before its removal. An auxiliary file will be placed in the directory named 
INFO that contains information on each of the data files. The INFO file has the 
following format: 

Controlling Process: executable_name pid_value 
pid node ptype Executable 
xxxxxxxxxx xxxx xxxx full_path_of_executable 

The first line has three fields: the title, the name of the controlling process's 
executable, and its process id. The second line contains column titles for the 
lines to follow. Each of the rest of the lines, (line 3 through the last line in the 
file) contain a 10 character process id in the first field, a four character node 
number in the second field, a four character process type number in the third 
field and the full path name of the executable file for the process in the last 
field. 

In the context of the instrument command, instrumenting the code means to apply performance 
monitoring hooks to the code under debug to permit collection of performance data. The 
instrumentation of the code occurs when the instrument command is given. The actual collection 
of the data occurs when the program is executed. Data collection starts at the start _location and ends 
at the stop _location. The profiling data is written at the stop Jocation. 

Typically, you would specify entry and exit points to procedures, or line numbers, as the 
startJocation and stop _location, but the syntax permits flexible specification. 

If the stop _location is placed within a loop only the fll'St iteration of the loop is captured. If only the 
start _location is specified, performance mOnitoring starts at that location and continues until the end 
of the program. If neither start nor stop are specified, performance mOnitoring begins at the current 
execution point and continues until the end of the program. 

To instrument different contexts where differing start or stop locations are desired, you must enter 
multiple instrument commands. You can instrument one context with a start _location and 
stop _location pair, and instrument a second context with a different startJocation and stop_location 
pair. 

2-31 



IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

INSTRUMENT (cont.) INSTRUMENT (cont.) 

Examples 

2-32 

This command is equivalent to using the -p compiler switch on most Unix systems. For more 
information on the data collected, see the online manual pages prof 0 and proftlO. 

To analyze the data generated by the prof instrumentation, use the prof utility. By default, the prof 
utility uses the data in the INFO file of the mon.out directory to choose the lowest node:ptype pair 
data file for the specified load file. To view prof output on other node:ptype pairs, you must specify 
the executable _ name.pid.node.ptype data file through the prof utility -m switch. 

1. Starting from the Unix shell, profile an application, my _ app, for its entire run. Profiling data is 
placed in the mon.out directory. 

ipd 
ipd > load my_app 
(all:O) > instrument -prof 
(all:O) > continue 

2. After starting IPD and loading a program, start collecting profiling data at the next call of the 
function my _funcO. Also, in order not to overwrite the current data in the mon.out directory, 
define the output directory to be prof_data. 

(all:0) > instrument -prof my_func() prof_data 
(all: 0) > conti 

3. Given the following code, generate profiling data for the do loop: 

005 program main 
006 
007 call init 
008 do 10 i=l,n 
009 
010 10 continue 
011 
012 end 

After starting IPD and loading the program, start data collection with the instrument command 
shown. This collects data on the program while it is in the loop and writes the data to the default 
mon.out directory. Note that the stop location is placed outside the do loop. 

(all:O) > instrument -prof #8 #11 
(all: 0) > conti 

• 
• • 
• • • • • • • • • • • 
• • 
• • • • • • • 
• • • • • • • • • I' 



a 
II .. 
II 

n 
D 

II 

II 

n 
II 

n 

1-:1 

I] 

Ij 

I] 

n 
D 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

KILL KILL 

Terminate and remove processes in the current context. 

Syntax 

Arguments 

Description 

kill [context][-force] 

context The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

-force Kill process(es) without asking for verification. 

The kill command terminates and removes processes. Because kill is a potentially destructive 
command, the kill commands ask you if you are sure you want to kill the processes. You must enter 
ay to kill the process. Any other character(s) will be taken as a "no." Use the -force switch to force 
the kill without a user prompt. 

The -force switch is not necessary when executing a command file. IPD automatically suppresses 
the confirmation message when reading commands from a file. 

A klll terminates a process and destroys all information IPD has about the process, including 
breakpoints, variable types, etc. When all processes in the default context have been killed, the 
prompt reverts to "ipd >". 

2-33 



IPD Commands 

KILL (cont.) 

Examples 

2-34 

Paragon'M OSF/1 Interactive Parallel Debugger Manual 

KILL (cont.) 

1. Kill process 0 on node 0 when the current context is (1 .. 3:0). 

( 1 .. 3 : 0) > kill (0: 0 ) 
***This command will delete all processes in (0:0). 
Are you sure you want to do this(yjn)? y 

(1 .. 3:0) > 

2. Kill all processes in the current context without a question. In this case, there are no processes 
outside the current context, so when you do this there is no default context, as indicated by the 
hipd" prompt. 

(all:O) > kill -f 
ipd > 

• 
• 
• • • • • • • • • • • • • • • 
• 
II 

E 

• 
• • 
• ., 
• 
• • • .; 
• • 



D 

D 

n 
D 

11 

II 

II 

I~ 

II 

11 

111 

D 

II 

• • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

LIST LIST 

Display source code lines. 

Syntax 

Arguments 

List from current execution point: 
list [context] [,count] 

List starting from procedure: 
list [context] [fileO]procedureO[,count] 

List starting from a source line number. 
list [context] [fileO][procedure()]#line[: #line I ,count] 

context 

count 

Defines the nodes and processes that this command will affect. All nodes and 
processes executing this command must be running the same load module. If not, 
the command returns an error. If you do not specify a context, the default context 
(see the context command) applies to this command. Specify the context as 
follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to whicb the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes anellor process types. For more information, see the context command. 

An integer used to indicate the number of lines of source code to list. If count is 
positive, listing starts at the specified location and continues for count 
instructions. If negative, listing begins at count-} instructions preceding the 
specified location and ends at that location. 

If you do not specify a count, IPD uses the last count argument supplied to a Ust 
command in the current session, except when listing an entire procedure. Upon 
invoking IPD, the initial count is 50 lines. One way to use the count argument is 
to specify a large count and then use the IPD more facility (see the more 
command) to browse through the instructions. 

2-35 



IPD Commands 

LIST (cont.) 

Description 

fileH 

procedure() 

#line 

Paragon™ OSF!1 Interactive Parallel Debugger Manual 

LIST (cont.) 

The name of the source file in which the procedure or line resides. To refer to a 
file other than the location of the current execution point, you must prefix the line 
number with file{}. When you refer to a procedure, you can omit the file{} name 
unless there are duplicate procedure names, because IPD can find the source file 
from the symbol table information. 

The name of the procedure at which you wish to start listing. or the procedure in 
which the line you are specifying resides. You only need to qualify a line number 
with the procedure name if the current execution point is outside that procedure. 

Specifies a source line number at which to start listing. The line number must be 
prefixed by a Dumber sign ( # ) and can be any source line in a source file. You 
can specify a range of lines with the syntax #line:#line (you must specify the range 
in ascending order), or #line,count. 

The list command displays source code lines. To list from the current execution point, all processes 
in the context must be stopped. This is because the current execution point can be defined only when 
all processes in the context are stopped. However. if you specify a line number or procedure as the 
starting point, the state of the processes does not matter. 

IPD finds the source files by searching the source directory search path dermed by the source 
command. You cannot specify a path as part ofthefile{} qualifier. Refer to the source command for 
more information. 

If you enter the command without specifying a starting point (using the current execution point). the 
list command lists the source lines at the current execution point. If the default or specified context 
has processes stopped at different locations, multiple listings are displayed, one for each process 
with a unique execution point. 

If you specify afileO. it must have been used in the compilation of a loaded module. Source files 
unrelated to any loaded module cannot be listed with the list command. Use the system command 
to access Paragon OSFIl commands such as eat or an editor to look at files of this kind. Specifying 
a source file that has the same name as a file used in compiling a program under debug, but is not 
the actual file used does not generate an error or warning. but will provide faulty information. There 
is no way for the debugger to detect this situation. 

If you specify a procedure() argument without count or #line arguments. then the entire procedure 
. is listed, regardless of the last value of count specified. 

• • • • • • • • • • • • • • 
• 
• • • 
I[ 

• • • • • • • • • • • • • 



a 
n 
n 
II 

II 

n 
n 
(J 

II 

n 
11 

1"'1 
:~ 

I~ 

r: 

c 

I: 
Ij 

[j 

II 

• • • • 

Paragon"' OSFI1 Interactive Parallel Debugger Manual IPD Commands 

LIST (com.) LIST (com.) 

Before each listing. the list command displays a line showing the current context and the name of 
the source file that is being listed. If the source lines being listed are from a file that does not contain 
a current execution point, the context information is omitted, and only the file name is displayed 
prior to the listing. 

Examples 

1. Assume that the current context is (1 :0). Issue the list command after the main program 
encounters a code breakpoint to display each source line you are stepping through. 

(1: 0) > run ; wait 
Context state 
======== 

*(1:0) Breakpoint 

(1: 0) > step ; list,l 
Context state 
======= ===== 

*(1:0) Stepped 
***** (1:0) ***** 
File: ./gauss. f 

180: if(iam.eq.O) 
(1:0) > step; list 
Context State 

===== 
*(1:0) Stepped 

***** (1:0) ***** 
File: ./gauss. f 

then 

Reason Src/Obj Name 
====== ============ 

C Bp 1 gauss.f 

Reason Src/Obj Name 
====== ============ 

gauss.f 

Reason Src/Obj Name 
============ 

gauss.f 

194: leftid = irecv(type, a(l,l), length) 

Procedure Location 
========= ======== 

shadow Line 180 

Procedure Location 
========= ====-==-==== 
shadow Line 180 

Procedure Location 
========= 

shadow Line 194 

2-37 



--.------~--------

IPD Commands 

LIST (cont.) 

Paragon™ OSFI1 Interactive Parallel Debugger Manual 

LIST (cont.) 

2. List 17 source lines starting at line number 180 (entering list #180,17 would produce the same 
result). 

(1:0) > list #180:#196 
180: if(iam.eq.O) then 
181:c 
182:c 
183:c 
184:c 
185: 
186: 
187: 
188: 

If I am the leftmost node of the array (node 0) then only exchange 
with the right (to the left is a boundary of the array) 

rightid = irecv(type, a(1,range+2), length) 
call csend(type, a(1,range+1), length, rightnode,O) 
call msgwait(rightid) 

189: else if (iam .eq. nbrnodes) then 
190:c 
191:c If I am the rightmost node of the array (highest numbered node) then 
192:c only exchange with the node to the left. 
193:c 
194: 
195: 
196: 
(1:0) > 

2-38 

leftid = irecv(type, a(l,l), length) 
call csend(type, a(1,2), length, leftnode,O) 
call msgwait(leftid) 

• • • • • • • • • • • • • • 
• • • • 
I!J 
I] 

C 

• • • • • • • • • • • 



o 
o 
D 

II 

n 
u 
n 
I) 

n 
I ll." 101 

n 

IJ 

IJ 

Ij 

I~ 

II 

D 

• • • • 

Paragon'" OSF/1 Interactive Parallel Debugger Manual IPD Commands 

LOAD LOAD 

Load an application under debugger control. 

Syntax 

Arguments 

Description 

load filename [<in file] [arguments] 

filename 

infile 

arguments 

The file name of the program that you want to load. Specify the path name if the 
file is not in the current directory. 

The program's input file argument. All of the program's standard input (stdin) will 
be read from infile. The infile is not read until a wait command is issued. 

Arguments to be passed to the program. Anything following infile is assumed to 
be an argument. This includes any semicolons. 

If the program was compiled with the -ox option, arguments should include any 
Paragon OSF!1 command line arguments necessary for loading the application 
(such as -pn partition, -sz num nodes, opt process type, -nd node list, etc.). For 

- - TM-

a complete description of these arguments, see the Paragon OSFI 1 User's 
Guide. 

The load command loads an application under the debugger's control and sets the default debug 
context. 

For parallel applications that use the special-ox runtime stan-up routine, you can supply arguments 
on the load command line, just as if you were executing the application at the shell prompt. For 
non-parallel applications and for applications that call nxJnitO and nx _ nforkO directly, arg uments 
may also be specified and will be passed to the application. 

The load command may be used to load different programs on different nodes. To do so, compile 
the application with the -nx switch and specify the additional programs in the argument list as 
described in the Paragon™ OSFIl User's Guide. 

2-39 



IPO Commands 

LOAD (cont.) 

Examples 

2-40 

Paragon'" OSF/1 Interactive Parallel OebuggerManual 

LOAD (cont.) 

The default context is set when nx _ nforkO or ox _ nforkveO is called. For parallel applications that 
use the special-ox runtime start-up routine, the ox _ nforkO call is executed automatically during the 
load command. In that case, the default context is set to include all compute partition processes that 
have the same ptype as the first program specified on the command line. For all other applications, 
the load command temporarily sets the default context to (host:-hostyitf), where -hostyid is the 
negative of the Paragon OSF/I pid of the controlling process; if the program later calls ox_nforkO 
directly, the default context is automatically reset to include all compute partition processes that 
have the same ptype as the frrst parallel process loaded. 

The run and rerun commands may be also used to specify command line arguments or to redirect 
standard input. Those commands cause the application to be reloaded if the program has run, or the 
arguments or infile change. 

1. Load the file gauss (compiled with the -nx option) on all nodes in the partition namedfoo; set 
the process type to 99. 

ipd > load gauss -pn £00 -pt 99 
*** load symbol table for gauss ... 100% 
*** loading program ... 
*** initiali~ing IPD for parallel appplication ... 
*** load complete 

(all:99) > 

2. Load the file gauss on 3 nodes in the .compute partition; set the process type to 99; redirect input 
to come from the file gauss.dat and pass the program the additional argument 100. 

ipd > load gauss < gauss.dat -sz 3 -pt 99 100 
*** load symbol table for gauss ... 100% 
*** loading program ... 
*** initializing IPD for parallel appplication ... 
*** load complete 

(all:99) > 

3. Load the file gauss] on node 0 in the .compute partition and set the process type to 1; load the 
file gauss2 on nodes 1 .. 3 in the .compute partition and set the process type to 2. 

ipd> load gaussl -on 0 -pt 1 \; gauss2 -on 1 .. 3 -pt 2 
*** load symbol table for gauss1 ... 100% 
*** loading program ... 
*** initializing IPD for parallel appplication ... 
*** load complete 

(0:1) > 

• • • • • • • • • • • • • • • • • • 
I[ 

• • • • • • • 
• • • • • • 



II 

II 

n 
II 

I) 

11 

It 
I-_~ 

•. 1· ."!1 ." 

I: 

n 

• • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual 

LOAD (cont.) 

4. Load the file gauss compiled without the ·ox option. 

ipd > load gauss 
*** load symbol table for gauss ... 100% 
*** loading program ... 
*** load complete 

(host: -143) > 

IPO Commands 

LOAD (cont.) 

2-41 



IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

LOG LOG' 

Turn debug session logging on or off, or display the name of the current log file. 

Syntax 

Arguments 

Description 

Examples 

2-42 

log [[-on] filename I -off] 

[-on] filename Specifies the name of the file that will contain the debug log. The filename 
argument may be a complete or relative pathname. The -on is optional if you 
specify a file name. 

-off' Turns off logging to the current log file. 

The log command with no arguments displays the name of the current log file. The arguments allow 
you to specify a log file name and tum on logging, or to tum it off. Only one log file can be active 
at a time. If IPD is currently logging input and output and you use the log command to specify 
another log file, the current log file closed and the new log file is opened. 

If you specify a log file that already exists then the file will be overwritten with the new log 
information. 

1. Turn on logging to file gauss.log. 

(all:O) > log gauss.log 

2. Display the name of the current log file. 

(0: 0) > log 
Log file: gauss. log 

• • • • • 
• • • • • 
• • • • • • • • • • • • • • • • • • ., 

I 

I .! 
I .: 
i 
I .1 



D 

a 
n 
D 

D 

o 
D 

n 
D 

U 

n 
1:1 
[J 

I~ 

(] 

C 

D 

~ 

IJ 

IJ 
I , 

:iw 

(j 

~ 

I:J 

11 
~ 

I~ 

D 

II 

• • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

MORE MORE 

Control scrolling of IPD information on the display. 

Syntax 

Arguments 

Description 

Examples 

more [-on I -offJ 

-on 

-off 

Tum on the more function to control scrolling of the display. Whenever IPD 
output from a gi ven command would scroll off the screen, the display is halted. A 
more prompt is issued below the last displayed line of output, at the bottom of the 
screen, and IPD waits for user input (pressing any key on the keyboard) before 
continuing with its output. 

Turn off the more functionality for terminal output. Allows command output to 
scroll freely, even when it is greater than one screen in length. 

The more command allows you to control information scrolling on the display returned by IPD 
commands. The default more state depends upon IPD's standard input and standard output. If the 
standard input and standard output are a terminal, then the default is "more -on". However, if IPD' s 
standard input or standard output is a file then the default is "more -off'. 

To determine the current IPD more state, invoke the more command without arguments. 

1. Turn on IPD's more functionality. 

(all:O) > more -on 

2. Display the current more state. 

( all: 0) > more 
More: on 

2-43 



IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

MSGQUEUE MSGQUEUE 

Display messages sent but not yet received. 

Syntax 

Arguments 

Description 

Examples 

msgqueue [context] [type ... ] 

context 

type 

The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

Only messages of the type(s) specified by the type arguments will be displayed; 
otherwise, all types in the context are listed. 

The msgqueue command displays the messages that have been sent and have arrived on the node(s) 
in the current context but have not yet been received by a process on the node. If you do not specify 
a type, all message types are included, including those sent by library calls. Use the recvqueue 
command to display the processes that have posted receives that have not been satisfied. 

1. Display all messages sent to process type 0 that have not been received. 

(all:O) > msgq 
*** Unreceived messages in (all:O) 

Source Destination Msg Type Msg Length Buf Addr 
•• =-============= ================= ==~======= ========~= ========== 

(all:O) 

I • • • • • • • • 
• • • 
1:. 

II.: 
II] 

• • • • 
EJ 

Ii 
II 

• • • • • • • • ., 
• • 



a 
II 

D 

o 
D 

n 
n 
n 
II 

n 
IE 
( "'" f.J 

IJ 

I~ 

EJ 

IJ 
I i 

-OJ 

I.J 

I~ 

~ 

I~ 

IJ 

IJ 

e 
D 

• • • • 

Paragon™ OSFI1 Interactive Parallel Debugger Manual IPD Commands 

PROCESS PROCESS 

Display information about user processes controlled by IPD. 

Syntax 

Arguments 

Description 

Context 
========= 

(1,2:0) 

* (3 .. 5:0) 
(11:0) 

process [context] [-change] [-load file] 

context 

-change 

-Ioadfile 

The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(nodelist:ptypelist) 

The nodeUst is the list of nodes, and the ptypelist is the list of processes on those~ 
nodes to which the command will apply. These can be specified as a single value, ... 
a comma-separated list, a range, a combination, or the special value all, indicating. 
all nodes and/or process types. For more information, see the context command. 

Display only those processes that have changed state since the last process 
display. 

Display the load module name instead of the source file name. By default, the 
current source file and procedure are displayed for stopped processes, and the load 
module name is displayed for running processes. 

The process command provides information about the processes running under IPD. The following 
is an example of the process display: 

state Reason Src/Obj name Procedure Location 
====== ====== ========= ========= ======== 
Breakpoint C Bp 1 node.f scan( ) line #53 
Executing node 
Breakpoint C Bp 2 assem.s test ( ) OxOO0456 

2-45 



IPD Commands Parago n ™ OSF 11 Interactive Parallel Debugger Manual 

PROCESS (cont.) PROCESS (cont.) 

2-46 

If an asterisk ( • ) appears in the first column of the process display, then the processes on that line 
of the display have changed state since the last process display. The column headings denote the 
following: 

Context 

State 

Reason 

The nodes and process types in context format (see the context command for 
more information). If the Context field overflows, the process command 
splits the information into multiple lines. 

The current state of the processes. A process can be in one of ten states: 
Initial, Executing, Breakpoint, Watchpoint, Stepping, Stepped, Signaled, 
Interrupted, Exited, or Exiting. For processes in the Breakpoint and Exited 
state, the next column under the heading Reason gives further information on 
the process's state. For processes at a breakpoint, the Reason column shows 
the breakpoint type and breakpoint number (see the break command for more 
information on breakpoint type). 

For terminated processes, describes why the process has exited. 

SrdObj name For all process states except Executing and Stepping, shows the source file 
name. For processes in the Executing and Stepping states, shows the name of 
the loaded object file. 

Procedure name 

Location 

Shows the name of the procedure for all states except Executing and 
Stepping. 

Shows the location of the process for all states except Executing and 
Stepping. 

You may use the ·Ioadfile switch to specify that the load module should be displayed instead of the 
file name and procedure. 

The wait and step commands perform an implicit process command upon returning control to the 
user. 

~--------. -.--~---------------------

• • • • • • • • • • • • • • • • • • 
Il 

• • • • 
• • • • • • • • • 



a 
o 
D 

D 

D 

D 

D 

II 

n 
II 

n 
IJ 

IJ 

Ij 

I] 

D 

IJ 

[J 

IJ 

~ 

~ 

lJ 

G 
I] 

n 
II 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

PROCESS (com.) PROCESS (com.) 

Examples 

1. Display process information. Two source modules are loaded: node and main. Notice that the 
node program is loaded but bas not yet executed on nodes 1, 2 and 3. 

(all:all) > process 

context 
========= 

(0: 0) 

(1. .3:0) 

state 
====== 
Breakpoint 
Initial 

Reason 

C Bp 1 

Src/Obj name 
========= 

main.f 
node.f 

Procedure Location 
========= ======== 
MAIN line #84 
MAIN line #86 

2. Continue the execution of the node program, hitting another breakpoint. The wait command 
performs an implicit process command to display the process information. Notice that the node 
program bas executed and is now stopped at a breakpoint. The leading asterisk ( * ) indicates 
that the state has cbanged since the last time process was displayed. 

(all:all) > context (1 .• 3:0) 
(1 .. 3:0) > continue 
( 1 .. 3 : 0) > wai t 

Context state Reason 
========= 

., (1. .3:0) Breakpoint C Bp 3 

Src/Obj name Procedure Location 
========= ========= ======== 
node.f MAIN line #93 

2-47 



IPO Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

QUIT QUIT 

Terminate a debug session and exit IPO. 

Syntax 

Description 

Examples 

2-48 

quit 

The quit command terminates an IPO session. It is equivalent to the exit command. Either command 
will terminate only those processes that the debugger has loaded. 

1. ExitIPO. 

(all:all) > quit 
*** IPD exiting ... 

• • • • • • • • • • • • • • • • • • 
C 

Cl 

II 

• • • • • • • • • • • 



D 

D 

D 

o 
D 

11 

D 

1.1 

I~ 

I~ 

n 
I· '~ · ":.1 

I) 

(j 

I~ :oWl 

IE 

• • • • 

Paragon™ OSFI1 Interactive Parallel Debugger Manual IPD Commands 

RECVQUEUE RECVQUEUE 

Display pending receives. 

Syntax 

Arguments 

Description 

recvqueue [context] [type ... ] 

context 

type 

The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptype!ist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

Only messages of the type specified by the type argument will be displayed; 
otherwise, all message types in the context are displayed. 

The recvqueue command displays receives that have been posted processes in the current 
contextbut not satisfied. Use the rnsgqueue command to display messages that have been sent but 
not received. 

Processes that have receives posted are not necessarily blocked. The process may have posted one 
or more asynchronous receives (using, for example, irecvO or hrecv()) and continued executing. If 
the process has posted an hrecvO call, which requires a handler, the name of the handler is listed 
under the fmal column. 

2-49 



IPD Commands Paragon'" OSF/1 Interactive Parallel Debugger Manual 

RECVQUEUE (cont.) RECVQUEUE (cont.) 

Examples 

1. Display all receives that have not been satisfied by an incoming message. 

(all: 0) > recvq 
*** unsatisfied receives posted in (all:O) 

Call Type Recv Posted By For Msg From Msg Type Msg Len Handler 
========= ================= =============== ========~= ========== =========== 

(all:0) > 

2-50 

• • • • • • • • • • • • 
II 

• • • • • 
It: 

H 
I[ 

• • • • • .' • • • • • 



B 

D 

n 
D 

D 

D 

D 

D 

It 

III 

I; 
[j 

IJ 

IJ 

I] 

[j 

C 

D 

• • • • 

Paragon TM OSFI1 Interactive Parallel Debugger Manual IPD Commands 

REMOVE REMOVE 

Remove breakpoints. 

Syntax 

Arguments 

Description 

remove [context] [breakpoint number [breakpoint number] ... ]I-all - -

context The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(nodelist:ptype!ist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

breakpoint_number 

-aU 

The number of the breakpoint to be removed. To determine the breakpoint 
number, use the break command. 

Remove all breakpoints in the default or specified context. 

The remove command removes the specified breakpoints or all breakpoints from the nodes in the 
current context. Use the break command without arguments to get a listing of breakpoint numbers. 

You may remove nodes from a breakpoint context by specifying the desired nodes in the context 
argument of the remove command. 

When you remove a breakpoint, its breakpoint number is no longer valid, but the number is not used 
again in the same debug session. 

2-51 



IPD Commands Paragon™ OSFI1 Interactive Parallel Debugger Manual 

REMOVE (cont.) REMOVE (cont.) 

Example 

1. Display all current breakpoints, remove breakpoints 1 and 2 on (0:0), then redisplay the 
breakpoints. 

(all:O) > break 

Bp 11 Type File name Procedure Breakpoint Condition Bp context 
==== ==== ========= ========= ==================== =~======== 

1 C Bp gauss.f shadow Call shadow (0:0) 
2 C Bp gauss.f shadow Line 175 after 10 (1. .3:0) 
3 C Bp gauss.f shadow Line 180 (all:O) 

(all: 0) > remove 1 2 
(all:O) > b 

Bp 11 Type File name Procedure Breakpoint Condition Bp context 
==== ========= ========= ==================== -========== 

3 C Bp gauss.f shadow Line 180 (all:O) 

2. Remove breakpoint 3 for (0:0), then redisplay the breakpoints. 

(all:O) > remove (0:0) 

Bp 11 Type File name Procedure Breakpoint Condition Bp context 
==== ========= ========= ==================== ========== 

3 C Bp gauss.f shadow Line 180 (1. .3:0) 

2-52 

• • • 
• • • • • • • • 
I: 
I[ 

II 

• • • • 
II 

G 

.: 

• • • 
• • • • • • • • 



D 

II .. 
D 

n 
II 

n 
o 
D 

n 
n 
IJ 

1:1 

C 

I~ 

I] 

n 
D 
I) 

J] 

I,J 

(] 

~ 

D .. 
• • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

RERUN RERUN 

Reload and restart the execution of the program, clearing previous command line arguments. 

Syntax 

Arguments 

Description 

rerun [<infile] [program args] 

infile The program' s input file argument All of the program' s input will be redirected 
from infile. 

program _ arg s Arguments to be passed to the program. All arguments after the ;nfile argument 
(if it exists) are passed to the program. This includes any semicolons. See the load 
coIIUD8nd for more information on program_arguments. 

The rerun command invokes the kill, load and continue commands to reload and execute a program 
from its beginning. Use the continue command to continue execution of a stopped or breakpointed 
process. All data in the program is re-initialized. 

The rerun command does the following: 

I. Kills the current program, which flushes (deletes) all outstanding messages for the application. 

2. Reloads the program. 

3. Resets all of the user breakpoints and instrumentation if the program arguments have not 
changed from the last load, run, or rerun command. 

4. Resets the argument list 

5. Starts executing the program. 

IPD executes application processes asynchronously. Application program output to the terminal is 
printed either before IPD issues a command prompt or during the execution of the wait command. 
Application program keyboard input is processed and redirected files are read only during execution 
of the wait command. Use the wait command to wait for all processes in a context to stop. 

To restart the application without retyping the previous command line arguments, use the nan 
command. The input redirection is not saved between run commands, so you need to respecify it if 
you issue another run command. 

2-53 



IPO Commands Paragon'" OSF/1 Interactive Parallel Oebugger Manual 

RERUN (cont.) 

Examples 

RERUN (cont.) 

1. Load the program, gauss, on nodes 0 . .3 with program arguments -d -f jile...;..name. 

ipd> load gauss -on 0 .• 3 -d -f file name 

Start the program and wait for it to complete. 

(all:O) > con~inue ; wai~ 

After that completes, restart the program, this time without program argwnents. 

(all:O) > rerun -on 0 .• 3 

• 
• • ., 
• • • • 
• • 
.: 
E: 

Ir 
I( 

• • • 
D 

IJ 

I~ 

C 

• • • • • 
• • • 
• • • 



• .. 
D 

D 

D 

D 

D 

n 
n 
IJ 

n 

1:1 

I~ 

I.l 

D 

IJ 

n 
n 

• • • • 

Paragon™ OSFI1 Interactive Parallel Debugger Manual IPD Commands 

RUN RUN 

Reloads and restarts the execution of a program, reusing previous command line arguments. 

Syntax 

Arguments 

Description 

run [<infile] fprogram_args] 

infile The program's input file argument. If specified, all of the program's input is 
redirected from infile. 

program_args Arguments to be passed to the program. All arguments after the infile argument 
(if it exists) are passed to the program. This includes any semicolons. Refer to the 
load command for more information about program arguments. 

The run command invokes the kill, load and continue commands to reload and execute a program 
from its beginning. Use the continue command to continue execution of a stopped or breakpointed 
process, or to run in a specified context. 

If you assign a value to a variable, the run command resets it to the initial value. You must use either 
the continue or the step command to retain the assigned value of a variable. 

The run command does the following: 

1. Kills the current program, which flushes (deletes) all outstanding messages. 

2. Reloads the program. 

3. Resets all of the user breakpoints and instrumentation if the run command is invoked without 
arguments or if the arguments have not changed from the last load, run, or rerun command. 

4. Resets the argument list if program arguments are specified. 

5. Starts executing the program. 

IPD executes Application processes asynchronously. Application program output to the terminal is 
printed either before IPD issues a command prompt or during the execution of the wait command. 
Program keyboard input is processed and redirected files are read only during execution of the wait 
command. The input redirection is not saved between run commands. 

Use the wait command to wait for all processes in a context to stop. 

2-55 



IPD Commands 

RUN (cont.) 

Examples 

2-56 

Paragon™ OSF/1 Interactive Parallel Debugger Manual 

RUN (cont.) 

A run command that does not specify any application command line arguments reuses the argument 
list from the last run or rerun command command. To restart the application without using the 
previous command line arguments, use the rerun command. 

See the description of the load command for more information on application command line 
arguments. 

1. Load the program gauss with program arguments·d -ffile_name. 

ipd > load gauss -d -f file_name 

Start the program and wait for it to complete. 

(all:O) > con~inue ; wai~ 

After that completes, restart the program using the same arguments. 

(all: 0) > run 

• • • • • • • • • • • • • 
K 

• 
•• • • • • 
II 

• • 
• • • • 



II 

II 

D 

o 
o 
n 
n 
11 

n 
n 
II 

C 

I: 
I: 
I~ .IJi 

11 

I~ 

n 
I] 

e 
u .. 
• • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

SET SET 

Set or display IPD variables. 

Syntax 

Arguments 

Description 

List all set variables: 
set 

List variable definition: 
set variable name 

Define new or redefine old variable: 
set variable_name string 

variable_name The symbolic name of the command line variable you are defining. 

string The string argument includes all text after the variable_name to the end of the set 
command line. This includes the pound sign (#), spaces, and semicolons. You 
may build a command line variable from other command line variables by 
specifying a previously defined variable_name prefixed with a dollar sign ($) in 
the string. 

The set command allows you to set or display command line variables. Command line variables are 
expanded when they are used. A recursive variable defmition generates an error when you use it. 

To use a command line variable in a command, precede the variable_name with a dollar sign ($). 
The variable_name must be followed by a space to separate it from the next argument on the 
command line. If you do not wish a space after the variable_name, enclose it in braces: 

${variable _name} 

Use the unset command to delete command line variables. While you can create an alias for the 
unset command, you cannot use "unset" as an alias. 

You may not use the set command on the same command line as another command . 

2-57 



.-------------------.------------------ -"-'_ ... - .. _--. 

IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

SET (cont.) SET (cont.) 

Examples 

1. Define the command line variable myproc as (1 •• 3:0). Then, use this command line variable in 
the context command. 

(0:0) > set myproc (1 .. 3:0) 
(0:0) > context $myproc 
(1. .3:0) > 

2. Display the current command line variables. 

( 1. .. 3 : 0) > set 
Variables Variable String 
========= =============== 

myproc (1 .. 3:0) 

3. Set x to the command line variable lonL name[1 04}. Alias an to assign in the $myproc context. 
Use an to assign the variable x (that is, an beComes an alias for the command string assign 
(1 •• 3:0) IODg_name[I04] in this example). 

(1 .. 3:0) > set % lon~name[104J 

(1. .. 3:0) > alias an assign $myproc 
(1 .. 3:0) > an $x - 100 

• • • • • • • • • • 
II 

I: 

K 

• • • • • 
E 

• • • 
• • • • 
• • • • • 



.. 
D 

D 

D 

D 

n 
o 
D 

n 
D 

I~ 

11 

C 

IJ 

D 

G 

I~ 

o 

• • • • 

Paragon'M OSF/1 Interactive Parallel Debugger Manual IPD Commands 

SOURCE SOURCE 

Set or display the current source directory search paths. 

Syntax 

Arguments 

Description 

Display source directory search path: 
source [filename] 

Set new source directory search path: 
source filename directory [directory] ... 

Add directories to source directory search path: 
source filename -add directory [directory] ... 

Remove directories from source directory search path: 
source filename -remove directory [directory] ... 

filename The name of a previously loaded executable file, used to specify which program's 
search path to access. 

directory 

-add 

-remove 

A list of path names for the directories that contain the application source files. 

Add the specified directories to the source directory search path. The directories 
specified are appended to the end of the search path. 

Remove the specified directories from the source directory search path. 

The source command with no arguments displays the search paths for all loaded modules. If you 
specify a filename, the search path for that file is displayed. When replacing, adding, or deleting 
directories from the search paths, you must specify a load module filename so IPD can associate the 
search path with the correct executable file. 

The directories are listed in the order that IPD uses to search for a source file for the list command. 
The default directory search path assigned at load time is the current directory (.). A directory must 
exist and be readable to be added to the search list. If a non-existent directory is specified in a list of 
directories to be added, an error message is displayed, and only the directories that precede the 
non-existent directory in the list are added. 

2-59 



IPD Commands Paragon'" OSF/' Interaotive Parallel Debugger Manual 

SOURCE (cant.) SOURCE (cont.) 

Examples 

2-60 

1. Display the current source directory search path for the previously loaded program gauss. Add 
lusrlyoulFpil to the source directory search path and list the node program. 

(all:O) > source gauss 
Source search paths for gauss: 

(all:O) > source gauss -add /usr/you/Fpi 
(all:O) > source gauss 

Source search paths for gauss: 

Source search paths for gauss: 
/usr/you/Fpi 

(all:O) > list,lO 
***** (all:O) ***** gauss.f 
57 program gauss 
58 
59 include 'nx.h' 
60 
61 integer SIZETYPE, INITTYPE, PARTTYPE, MSGSIZE, CUBESIZE, 
62 > HOST, HOSTPID, APPLPID, DOUBLESIZE 
63 
64 integer*4 worknodes, mynode, pid, size 
65 integer*4 basicpoints, extrapoints, mypoints, i, j 
66 integer*4 starttime, points 
(all: 0) > 

I:. • ( 

• • • • • • • • • • 
II 

II 
I( 

• • • • • 
~ 

• • • • • • • • • • • • 



D 

D 

n 
D 

D 

D 

o 
n 
D 

I~ 

II 

I~ 

1:: 

I~ 

I~ 

I~ 

C 

G 

IJ 

I~ 

U 

c 

I~ 

D 

II 

• • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

STATUS STATUS 

Oisplay the debugger status. 

Syntax 

Description 

Examples 

status 

The status command displays the IPO version number, the name of the partition in which IPO is 
running, the number of nodes being used, the state of the IPO more facility, the name of the log file 
(if any) to which the output from the debug session is being written, and the list of source search 
paths for each load module under debug. 

1. Get current IPO status. 

( all: 0) > sta tus 
IPD version number: Release 1.0 
Partition name: .compute 
Number of processors: 2 
More: on 
Log file:/home/me/test/IPD.log 
Source search paths for gauss: 

src 

2-61 



IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

STEP STEP 

Single step through the processes in the current debug context. 

Syntax 

Arguments 

Description 

2-62 

Step through source line(s): 
step [context] [-call] [,count] 

Step one machine instruction: 
step [context] -instruction [-call] [,count] 

context 

-call 

-instruction 

count 

The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

Treat all subroutine and function calls as single statements. If -caD is not specified, 
routines are entered and their statements stepped through. 

Step one instruction instead of stepping one source line. 

The number of source lines or instructions to step through before returning control 
to the user. The default count is one source line or machine instruction. 

The step command allows you to execute a program one source line or machine instruction at a time. 
Upon returning control to the user from a step command, IPD invokes the process command to 
display process information. 

When stepping through source line numbers. any procedures compiled without line number 
information are treated as if the command were step -caD, even if you did not specify -call. 

• • • • • • • • -I • • 
.: 
K 

.: 

• • • • 
E-
m; 

• • • • • • 
• • • • • • 



o 
II 

D 

D 

o 
Ii 

n 
I] 

n 
1m 
o 
1"'1 

.. I 

[j 

IJ 

I~ 

I~ 

I~ 

n 
~ 

n 
D 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

STEP (cont.) STEP (cont.) 

When stepping through machine instructions, you cannot step through a system call trap instruction 
to the operating system. The trap is treated as if the command were step -instruction -caD. 

Single-stepping is synchronous; the step command does not return until all processes in its context 
have stepped. If your program blocks during the step command, use the interrupt signal (pressing 
<Del> or <Ctrl-C» to regain the IPD prompt At this point the current state of the process is 
Running. Use the stop command to stop the process. 

Examples 

1. Assume that the program is stopped at line 93 on all nodes, just before a crecvO. Step to line 94. 

(all:O) > process 
Context State 

====== 
(all:O) breakpointed 

(all:O) > list 10 
***** (all:O) ***** node.f 
93 call crecv(SIZETYPE, 
94 
95 
96c 

worknodes = size 

Reason Src/Obj name 
====== ========= 
C Bp 3 node.f 

size, PARTSIZE) 

97c 
98c 
99 
100 
101c 

receive integration parameters 

call crecv(INITTYPE, msg, MSGSIZE) 

Procedure 
========= 
MAIN ( ) 

102c if this node is not among the worker nodes it returns to the 
( all : 0) > step 

Context state Reason Src/Obj name Procedure 
========= 

* (all: 0) 
(all:O) > 

stepped 
========= ========= 
node.f MAIN( ) 

Location 

line #93 

Location 
======== 
line #94 

2-63 



IPD Commands Paragon™ OSF/1 Interactive Parallel Debugger Manual 

STOP STOP 

Stop program execution in the current context. 

Syntax 

Arguments 

Description 

2-64 

stop [context] 

context The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. For more information, see the context 
command. 

The stop command stops program execution. Processes that are blocked waiting for something, such 
as a crecvO, are not considered to be in a state, but are still executing. Stopping program execution 
when you do not have an IPO prompt requires that you send an interrupt signal (entering < Del> or 
< Ctrl-C > ) so you can get a prompt at which you can enter a stop command to stop application 
processes. Many IPO commands require processes to be stopped so that valid information can be 
obtained from the operating system. 

• • • • • • • • • .1 
• • • • • • • 
II 

l:l 

G 

• • • • • • • • • • • 



B .. 
D 

II 

D 

o 
D 

D 

n 
IJ 

n 
IJ 

IJ 

IJ 

~ 

Il 

~ 

G 

I:J 

I:J 

IJ 

I:l 

e 
n 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

STOP (cont.) STOP (cont.) 

Examples 

1. A program named gauss blocks at its first receive. Send an interrupt signal, then issue the 
process command. This indicates the program is still executing. Issue the stop command, and 
then the process command again. 

(all:O) > run; wait 
*** interrupt ... 

(all:O) > process 
Context State 

===== 
*(all:O) Executing 
(all:O) > stop 
(all: 0) > p 
Context state 
======= ===== 

*(all:O) Stopped 

Reason Src/Obj Name Procedure Location 
============ ========= ======== 
gauss 

Reason Src/Obj Name Procedure Location 
============ ========= ======== 

flick.s flick 



IPD Commands Paragon'" OSFI1 Interactive Parallel Debugger Manual 

SYSTEM SYSTEM 

Execute a shell command. 

Syntax 

Arguments 

Description 

Examples 

NI6 

system shell command 

or 

! shell command 

shell command A string consisting of Paragon OSP/I shell commands (not an IPD command) to 
be executed. All text following the ! or system to the end of the line, including 
semicolons, the number sign (#), and spaces, is part of the shell_command. 

Use either the system or! command to execute a Paragon OSP/I shell command from within IPD. 
The shell_command is not interpreted by IPD. All shell_command text to the end of the system 
command line is passed directly to sh (the Bourne shell). You may not enter any other IPD 
commands on the same line as the system command. 

If a log file is active, output from this command is written in the log file. 

1. Issue the shell command Is·1 from within IPD. 

(all:O) > system 1s -1 /usr/paragon/ezamp1es/fortran/gauss 
total 23 
-r--r--r-- 1 root other 1413 Mar 30 21:03 README 

-r--r--r-- 1 root other 187 Mar 30 21:03 gauss.f 
-r--r--r-- 1 root other 475 Mar 30 21:03 makefile 
(all:O» 

• • .' .! 
• • • • • • • • 
.: 

• • • • • 
C 

C 

• • • • • • • • • • • I" 



II 

• 
D 

D 

o 
II 

D 

D 

D 

U 

o 

[ '.' I .. , 

D 

C 
[j 

G 

D 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

TYPE TYPE 

Display the type of variables in the current context. 

Syntax 

Arguments 

Display type of variable in current scope of context: 
type [context] [-struct] variable [variable] ... 

Display type of global or static C variable: 
type [context] [-struct]fileOvariable [variable] ... 

Display type of local procedure variable: 
type [context] [-struct] [fileO]procedureOvariable [variable] ... 

context 

-struct 

variable 

Defines the nodes and processes that this command will affect. All nodes and 
processes executing this command must be running the same load module. If not, 
the command returns an error. If you do not specify a context, the default context 
(see the context command) applies to this command. Specify the context as 
follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value all, indicating 
all nodes and/or process types. For more information, see the context command. 

Displays type information for the members of a structure or union variable. 

The symbolic name of the variable for which type information is to be displayed. 
For assembler programs, variable names can be used if the proper assembler 
directives have been used to produce the symbolic debug information. For C or 
assembler programs, IPD follows the C scoping rules. It looks first for the variable 
in the current code block, then the current procedure, then in the static variables 
local to the current file, and finally in the global program variables. 

2-67 



IPD Commands 

TYPE (cont.) 

Examples 

file{} 

Paragon™ OSF/1 Interactive Parallel Debugger Manual 

TYPE (cont.) 

The name of the source module in which the variable resides. To refer to a file 
other than the location of the current execution point, you must prefix the variable 
name with file{}. When you refer to a procedure, you can omit the file{} name 
unless there are duplicate procedure names, because IPD can find the source file 
from the symbol table information. 

procedure() The name of the procedure in which the variable resides. You need to specify the 
procedure when the execution point is not in that procedure. 

1. Determine the type of the Fortran variable tms in process type 0 on node O. 

(all:O) > type (0,0) tms 
integer*4 tms 
(all: 0) > 

2. Determine the type of the C structure variable msg. 

( 0 : 0) > type m$g 
struct msg_type msg; 
(0:0) > type -struct msg 
struct msg_type { 

} msg; 
(0:0) > 

double a; 
double b; 
int points; 

• • • • • • • • • • 
E 

~ 

~ 

.: 

• • • 
II 

I~ 

c: ., 
• • • 
E 

• • • • • • 



• • 
II 

D 

o 
D 

D 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

UNALIAS UNALIAS 

D Delete previously dermed aliases. 

~ 

Il 

IJ 

~ 

[j 

e 
D 

• • • • 

Syntax 

Arguments 

Description 

Examples 

unalias alias_name [alias_name ... ] I -all 

alias name A string that was chosen as an alias for an IPD command using the alias 
command. 

-aU Remove all currently defined aliases. 

The unalias command removes a previously dermed alias. Use the alias command without 
arguments to display the current list of alias names. You can create an alias for the unallas 
command, but you cannot use the name of the command as an alias. 

1. Remove the alias ct. 

(all:O) > alias 
Alias Command String 

====== 
ct context 

(all:O) > unalias ct 
(all:O) > alias 

Alias Command String 
====== ====;:========= 

(all:O) > 

2-69 



IPD Commands 

UNSET 

Paragon™ OSF/1 Interactive Parallel Debugger Manual 

UNSET 

• • • • 
D 

Delete previously defmed command line variables. 

• • • • • • 
I: 

Syntax 

Arguments 

Description 

Examples 

2-70 

unset [variable_name [variableyame] ... ] I-all 

variable name The symbolic name of the command line variable you are deleting. Do not precede 
the variable_name to be unset with a $. 

-aU Remove all currently defined command line variables. 

The unset command removes the defmitions of command line variables previously defined with the 
set command. Use the set command with no arguments to display a list of the current command line 
variable names. You can create an alias for the unset command. but you cannot use "unset" as an 
alias. 

1. Delete the command line variable myproc. 

(0: 0) > set 
Variables Variable String 
========= =============== 
myproc (1 .. 3:0) 

(0:0) > unset myproc 
(0: 0) > set 

Variables Variable String 
========= =============== 

I: 

E: 
I[ 

• • 
II 
[J 

CJ 

I: 

• • • • 
(0:0) > I( 

.: 

• • • • • 



• • .. 
D 

o 
II 

D 

o 
D 

D 

D 

I:l 

1:1 

I:J 

G 

~ 

I] 

D 

I:J 
[J 

IJ 
Ij 

~ 

I] 

G 

D 

n 
D 

• • • • 

Paragon™ OSF/1 Interactive Parallel Debugger Manual IPD Commands 

WAIT WAIT 

Wait until alI processes within the context have stopped running. 

Syntax 

Arguments 

Description 

wait [context] 

context The nodes and processes that you want this command to affect. The default 
context is used if you do not specify one. Specify it as follows: 

(nodelist:ptypelist) 

The nodelist is the list of nodes, and the ptypelist is the list of processes on those 
nodes to which the command will apply. These can be specified as a single value, 
a comma-separated list, a range, a combination, or the special value alI, indicating 
all nodes and/or process types. For more information, see the context command. 

The wait command causes IPO to return the prompt only when all processes within the context are 
not in an Executing or Stepping state (see the process command for process state information). 

A program's output written to stdout appears between IPO commands and is not intermixed with 
IPO output. If the program needs to read from the terminal, you must use the wait command to 
process the read requests. To redirect the program's standard input, use the redirect argument in the 
load, run, or rerun command. 

After a run or continue command, IPO immediately issues a prompt. To cause IPO to withold the 
prompt until a process hits a breakpoint or terminates, use the wait command. 

Upon returning control to the user from wait, IPO invokes the process command to display the 
processinfo~on. 

After you have issued a wait. if you decide to wait no longer for all the processes to stop running. 
use the interrupt signal (pressing <Del> or <Ctrl-C» to regain the IPO prompt. 

2-71 



IPD Commands Paragon'" OSF/1 Interactive Parallel Debugger Manual 

WAIT (cont.) WA IT (cont.) 

Examples 

1. Issue a run command followed by a wait. When all the processes have stopped running, the 
wait command issues a process command, and then returns a prompt. 

(all:O) > run; wait 
Context state Reason 
======= ===== ====== 

* (all: 0) 
(all: 0) > 

Breakpoint C Bp 1 

2-72 

Src/Obj Name Procedure Location 
============ ========= 
gauss.f shadow Line 150 

• • • a 
D 

• • • • • • 
~. 

I[ 

III 

• 
II 

• 
II 

~ 

(] 

• • • • • • • • • • • 



D 

D 

0 

D 

D 

n 
D 

0 

n 
n 
D 
[j A 

I: aliasing 1-9 

U 
assign 2-4 

I] 
~ B 

fj break 2-7 

D 
breakpoint number 2-51 

G " c 
D command 

list by function 1-6 
[J com mand file 1-2 

IJ configuration file 1-5 

D context 2-11 
current 2-11 

11 default 2-11 
determ ination 1-10 

~ 
use 1-10 

current context 1-9 
I] 

G D 

11 data reduction 1-11 

D 
debug environment 1-2 

disassemble 2-15 

• display 2-18 

• • • 

E 
exec 2-22 

execution 1-3 

F 
Fortran data type display 1-13 

frame 2-25 

H 
help 1-2,2-27,2-33 

K 
kill 2-33 

killing IPO 1-14 

L 
list 2-35 

load 2-39 

loading files 1-5 

log 2-42 

log file 1-2, 2-66 

Index 

Index-1 



Index 

M 
more 2-43 

msgqueue 2-44 

o 
octal specification 1-9 

p 

process 2-45 

Q 

quit 2-48 

R 
recvqueue 2-49 

remove 2~51 

run 2-13,2-33,2-53,2-55 

Index-2 

Paragon™ OSFI1 InteraotiveParaliei Debugger Manual 

S 
scope 1-9 

scrolling the IPO display 2-43 

set 2-57 

source 2-59 

stack trace facility 2-26 

status 2-61 

step 2-62 

stop 2-64 

system 2-66 

T 
type 2-67 

U 
unalias 2-69 

unset 2-57,2-70 

W 
wait 2-71 

• • • • • • • • • • • • 
I: 

• • • • • 
I~ 

Ir 

• • • • • 
K 

• • • • • 


