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Introduction

Historically, little support and little discipline existed for either real-time
or systems programming on the PC platform. With the advent of more
powerful PC computers, however, PCs have become the development tar-
get for increasingly ambitious applications. With the arrival of iRMX for
Windows, large real-time systems integrated with DOS and/or Microsoft
Windows are included in the set of possible applications that can be devel-
oped for PCs, the most ubiquitous computing platform available.

There is still little support or discipline for DOS systems programmers,
but the situation is much better for iRMX. As a real-time operating sys-
tem, iRMX has traditionally provided its application developers with a set
of coordinated resources that systems programmers have traditionally
needed, but had to do without. These resources include the management of
memory, concurrency, interrupts, and peripheral devices. As an object-
based operating system, iRMX provides these resources in an integrated
and protected fashion that allows programmers to develop fast, robust sys-
tems. The reason a single book can cover both real-time and systems pro-
gramming is that iRMX provides real-time developers with the same facil-
ities the systems programmers used at Intel to develop iRMX itself.

Although most readers of this book will undoubtedly be real-time devel-
opers, specifically those who work with iRMX, this book’s origin is actually
academic. Computer science curricula at both the undergraduate and grad-
uate levels typically include a course on operating systems principles. Such
a course is often a reading course that covers the traditional topics of re-
source management and concurrency. Actual software development, if
any, is often limited to simulations due to the lack of suitable laboratory
facilities for true systems programming. For several years, I have taught
operating systems laboratory courses that use relatively inexpensive com-
puter systems running iRMX. The courses, which are offered to upper-
level undergraduates or graduate-level students, have a traditional operat-
ing systems principles course that used texts such as Deitel (1990) or
Milenkovic (1992) as a prerequisite. The goal of the laboratory courses has
been to use hands-on experience to provide solid mastery of the principles
covered in other operating systems courses.
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Two other approaches could be taken to obtain this laboratory experi-
ence. One would be to develop systems code from scratch. For example,
Wirth’s first Modula programming language provided all the constructs
needed to build a complete operating system with the addition of only a 98-
byte runtime kernel. This approach certainly allows the student to deal
with all the fundamental issues of systems programming, but it makes it
very difficult to deal with the levels of complexity encountered in real sys-
tems.

The second approach is to study and modify an existing operating sys-
tem. The Mt. Xinu (Comer & Fossum, 1988) and Minix (Tannenbaum,
1987) projects take this approach by providing the source code for Unix®-
like systems for students to work with. Another way to use this approach is
to let the student modify and extend a real operating system. Unfortu-
nately, “real” systems are synonymous with “proprietary” systems, which
means that source code and the tools for working at the systems program-
ming level are not normally available to students. Although Unix is a pro-
prietary system, it is often used as a basis for operating system laboratory
courses because AT&T has made source code licenses relatively accessible
to universities. The list of books that can be used for Unix laboratory
courses is extensive, and includes Andleigh (1990), Bach (1986), Ker-
nighan and Pike (1984), Leffler et al. (1989), and Rochkind (1985), among
others.

Enter real-time systems, the category of applications that must be both
logically and temporally correct. Real-time applications are event driven:
asynchronous external events trigger computation sequences, which must
be completed before temporal deadlines pass in order for the application to
operate correctly. Real-time application programs must deal explicitly
with exactly the same issues as systems programs, namely concurrency and
resource management.

The premise of this book is that a commercially available development
environment for real-time applications provides an excellent laboratory
vehicle for studying systems programming. Of course, using such an envi-
ronment also provides the student with a working knowledge of real-time
systems in general and with the chosen development environment in par-
ticular. In addition, Real-Time and Systems Programming for PCs is a
practical laboratory guide to systems programming concepts and tech-
niques.

A number of real-time systems are available commercially. These fall
into the two broad categories of kernels and operating systems. Kernels
provide support for concurrency control and resource management, but do
not provide complete operating system functionality such as a full I/O sys-
tem, networking functions, and the like. T'o use a real-time system to study
systems programming, it is better to choose a real-time operating system
over a kernel not only because an operating system provides a complete set
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of operating system facilities to investigate, but also because a single plat-
form can be used for both development and testing.

From an academic viewpoint, Intel’s iIRMX for Windows operating sys-
tem is a particularly attractive vehicle for an operating system laboratory.
One reason is that the operating system runs on relatively inexpensive PC
platforms. Another reason is that Intel has historically provided very good
support for universities choosing to use iRMX in their courses.

A number of alternative real-time systems can be chosen for an operat-
ing systems laboratory. Particularly interesting are several systems that
run on different manufacturers’ processors (not just Intel’s), and some
newly emerging systems based on the POSIX 1003.4 real-time standard.

Real Time System Programming for PCs is based on my experience using
iRMX to teach semester-long laboratory courses on systems programming
at the graduate and advanced undergraduate level at Queens College. The
backbone of the course has been a sequence of projects designed to illumi-
nate various features of the operating system (OS). My students are al-
ready familiar with the principles of systems programming, so little time is
spent explaining concepts of memory management, process scheduling, or
concurrency control. Rather, the first project is usually a simple applica-
tion designed to familiarize students with the iRMX development environ-
ment, which is significantly different from the sheltered environments
used to provide instruction in computer science principles and applica-
tions programming. A second project typically involves developing a utility
program that exposes the students to most of the resources and facilities of
the OS. A third project concentrates on concurrency by developing either a
program to demonstrate or exercise the multitasking features of the sys-
tem or a device driver, including interrupt handlers and request block man-
agement. Other projects have involved networking utilities, library man-
agement, and source code preprocessing.

The book is logically divided into two parts. Part I is an overview of real-
time and systems programming concepts, the use of an iRMX system and
its development tools, and the architecture of Intel microprocessors. Chap-
ter 1 introduces the fundamental concepts of real-time systems: determi-
nacy, speed, and robustness. Chapter 2 is a guide to iRMX from a user’s
perspective: how to log on, how to use the file system, how to use develop-
ment tools, and the like. Chapter 3 discusses the development process for
iRMX applications. If the reader is familiar only with student compilers or
fully integrated development environments, the material in this chapter is
particularly important; otherwise you may need only to skim through the
chapter to get some iIRMX-specific details. The traditional development
languages for iIRMX have been assembler and PLM, a PL/I-like language
developed by Intel specifically for use with its own microprocessors. With
the emergence of C as the most commonly used language for both applica-
tion and systems programming in other environments, C is rapidly replac-
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ing PLM as the standard high-level language for iRMX programming.
Chapter 4 investigates the language issues in developing iRMX code. An
assumption throughout the remainder of the book is that the reader will be
able to follow code written in either PLM or C.

The first part of the book ends with a chapter on the architecture of the
Intel x86 microprocessor. This chapter on hardware is included in a book
on software development simply because of the nature of both real-time
and systems programs: their software comes in the most direct contact
with the processor itself. Programmers must understand the underlying
processor well in order to develop efficient and fast real-time or operating
systems. It is not necessary to program in assembly language to do most
real-time and systems programming tasks because both C and PLLM can be
used as effective high-level System Implementation Languages (SILs).
This book, however, does include some assembly language code and many
references to assembly language concepts. Chapter 5 is designed to prepare
the reader to understand that material without actually covering assembly
language programming.

The second part of the book covers the iIRMX operating system itself.
Although the book features the iRMX for Windows operating system,
most of the material covered applies to other versions of the operating sys-
tem as well. Readers interested in iRMX I, however, which operates in the
processor’s real mode, must remember that the book assumes a protected-
mode version of the operating system (iRMX II, iRMX III, or iRMX for
Windows) in much of the material presented in the second part. Some of
the sample code also assumes a 32-bit version of the OS (iRMX III or
iRMX for Windows). Finally, the sample code presented in the book has
been tested only on an iRMX for Windows system. It may well work on
other versions of the operating system, but is not guaranteed to do so.

Part II begins by introducing some fundamental concepts about iRMX
in chapter 6. These concepts include the object-based nature of the system
and a description of the three fundamental types of iRMX objects: jobs,
tasks, and memory segments. Chapter 7 surveys many basic iRMX system
calls, and chapter 8 deals specifically with the system calls used for I/O pro-
gramming. Chapters 9 and 10 introduce two important facilities that
iRMX provides for extending the operating system. Chapter 9 discusses
the issue of adding device drivers, and chapter 10 covers the facilities avail-
able for adding new object types and system calls to the operating system
itself.

Chapter 11 introduces the networking facilities provided with iRMX.
The use of a network is integrated with the rest of the book, but this chap-
ter specifically discusses the programming issues involved in interacting
with the various parts of an iRMX network.

Finally, chapter 12 is devoted to those aspects of iRMX for Windows
that are not present in other versions of the operating system. Some of
these features, like console sharing, interrupt management, and file shar-
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ing, are necessary to allow iRMX, DOS, and Windows to operate in an in-
tegrated, reliable fashion. Other features, such as run-time configuration
and loadable operating system layers, are conveniences that were intro-
duced with iRMX for Windows, but which may well be integrated with
other versions of the operating system as well. Still other features, such as
DDE networking support in particular, combine the individual features of
iRMX and Windows in ways that extend well beyond the simple sum of
two parts.
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Chapter

Introduction to Real-Time and
Systems Programming

1.1 Overview

iRMX, Intel’s real-time operating system, is an excellent vehicle for study-
ing systems programming. In fact, it is virtually impossible to develop a
real-time system without doing systems programming. In turn, many cru-
cial parts of a systems programmer’s job deal with real-time issues.

This chapter introduces systems programming, real-time systems, and
the iRMX operating system (OS) to provide a context for the remainder of
the book, as well as to support the argument that real-time systems and
systems programming have much in common. The first part of the chapter
looks at the conventional view of systems programming, and the second
part looks at real-time systems, including some of the features of iRMX
that make it a real-time OS. Finally, we look at how iRMX compares with
conventional operating systems such as MS-DOS and Unix, as well as al-
ternatives to iRMX for real-time systems.

1.2 Systems Programming

To help put systems programming in perspective, consider the following
hierarchy of programming classes: user, application, and systems. Real-
time programming is included here as a parallel entity, spanning the range
of both application and systems programming. The reason the left side is
shown as a hierarchy is that each type of programming builds upon re-
sources provided by the level below.

User Programming

Application Programming Real-Time

Programming

Systems Programming
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User programming. User Programming refers to the types of things an end
user might do to customize a particular application. Examples include
spreadsheet and word processing macros and simple command files (batch
files). The programming language used could be fairly primitive, perhaps
just a matter of recording a sequence of keystrokes. Nevertheless, the pro-
grams implement some sort of algorithm and, thus, qualify as program-
ming by almost any definition of the term, even if the user does not realize
it. This category of programming can require a good amount of sophistica-
tion, and there are people who do user programming professionally.

Application programming. Application Programming is what most people
think of when the term programming is used. It refers to the development
of programs used by end users to perform tasks or sets of related tasks. Ap-
plication programs range from spreadsheet and word processor programs
to graphical modeling or scientific data analysis packages. These programs
rely on an operating system to perform certain functions, such as control-
ling input/output (I/O) devices, but high-level programming languages,
such as C and FORTRAN, often interpose a layer of software called a run-
time library between applications and the OS to make applications porta-
ble across operating systems. Run-time libraries for tvio high-level lan-
guages commonly used for application programming with the iRMX
operating system, PLM and C, are discussed in chapter 3.

Systems programming. There are really two types of programming that
qualify as systems programming. One type is the construction of the oper-
ating system itself, and the other is the development of systems programs,
which provides the tools that application programmers use in their work.
In turn, system programs fall into two categories: development tools and
utilities.

1.2.1 Constructing an operating system

An operating system serves two major functions. The first function is to
provide application programmers with an abstract machine, a computer
that is easier to program than the actual processor on which the OS is im-
plemented. This function is normally provided through a set of subroutines
referred to as system calls that any application program can invoke as
needed. Although they are actually software routines, system calls serve
conceptually as extensions to the hardware instruction set of the central
processing unit (CPU).

The second function of the OS, which is normally closely integrated with
the first, is to manage resources in a controlled way for the various applica-
tions running on the system. Resources that must be managed include pri-
mary memory, use of the CPU, and control of I/O devices. Resource man-
agement is integrated with the abstract machine in the sense that
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application programs make system calls to access the resources managed
by the OS.

The system calls provided by the OS relieve application programmers of
the burden of rewriting the code for functions needed by many different
applications. The code is written once by the systems programmer and is
either always resident in primary memory as part of the OS, or is supplied
as part of a library linked with just those applications that need it. Func-
tions performed by system calls include allocating memory segments into
which applications can store dynamically created data structures and rou-
tines to read and write data between an application’s data buffers and pe-
ripheral devices. Both of these examples stress the necessity of functions
incorporating resource management as an OS system call: two applications
running at the same time must not interfere with each other’s use of system
resources, and the OS must provide the mechanisms for coordinating their
activities. Furthermore, when exceptional conditions occur (such as one
application attempting to access another application’s private data seg-
ment), the OS also provides the code that responds to these conditions.

A major feature that distinguishes programming an operating system
from most application programming is the need to manage concurrent
threads of execution. In a single CPU system, the processor can execute
only a single instruction at a time, but hardware devices (such as I/O con-
trollers and the device that keeps track of the time) generate interrupt re-
quests that are not generally synchronized with the processor’s execution.
The OS must manage the switch of CPU control to the routine that ser-
vices an interrupt and then back to the application that was running when
the interrupt occurred. It must also switch among the various applications
that are ready to run at any particular moment. As you will see, managing
concurrency is also a hallmark of real-time applications. This common
feature of the two types of programming is the main reason this book
claims to discuss both systems programming and real-time programming
as it covers the iRMX real-time OS.

In addition to the issues of developing an abstract machine, managing
resources, and dealing with concurrent threads of execution, an OS devel-
oper must decide how the code for the OS is to be structured. It is possible
to create an OS as a single, monolithic piece of code, but this is not nor-
mally done except in the case of very simple systems. More likely, various
subsystems, such as the memory manager, I/O system, or user interface,
are coded as separate modules and linked together to build the OS itself.
Adding parts to the OS or changing existing parts involves developing or
altering the code for a module and then rebuilding the OS to include the
changes.

The iRMX for Windows version of iRMX has the ability to change the
0OS’s configuration while the OS is initializing and, to a lesser extent, while
the OS is running. The features of iIRMX for Windows that support this
configuration process are covered in chapters 9 and 12. Another iIRMX fa-
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cility for building customized versions of the OS is called the Interactive
Configuration Utility (ICU), which is also introduced in chapter 9. The ICU
is not used with iRMX for Windows.

1.2.2 Developing development tools and utilities

Development tools include the compilers, linkers, loaders, and debugging
programs that application programmers use to code and test their pro-
grams. Development tools are coded much like application programs
themselves. That is, compilers, linkers, loaders, and debugging programs
are developed using compilers, linkers, loaders, and debugging pro-
grams. What differentiates development tools from application programs
is that development tools must be compatible with both each other and the
operating system to generate other programs that can be executed. As a re-
sult, systems programmers producing development tools must generally
know more about the structure of the underlying operating system than
application programmers. Also, developers of development tools have his-
torically not been as concerned with portability as application program-
mers.!

Utility programs are routines that make an application programmer’s
job easier but can also be useful to end users. Examples of utilities include
basic file maintenance programs (list, copy, move, and delete files), text ed-
itors, and anything else someone deems useful. Examples of utilities for
Unix are particularly numerous (grep, sort, more, etc.), and versions of
many Unix tools have been ported to iRMX, DOS, and other operating
systems. As this process suggests, many utilities either are, or can be made
to be, portable across operating systems.

Although portability is not a general concern in this book for reasons
that should be clear by the end of the chapter, be aware that it is a matter of
utmost concern to many software consumers, and thus is extremely im-
portant to many software producers. Portable utility programs that fall
into the systems program category must provide specific code for the dif-
ferent systems on which they will run. Which code will actually be executed
must be selected at compile time, link time, or run time. These terms are
discussed in more detail in chapter 3, which reviews the entire software de-
velopment process.

The programming hierarchy shown at the beginning of this chapter
shows real-time programming as a separate entity from user, application,
and systems programming, one that parallels both the application and sys-

1For perspective, consider the Portable C Compiler available for early Unix systems. This
compiler was written mostly in the C language and could be easily ported to different systems,
thus providing a convenient tool for porting Unix itself to new systems. The availability of
this portable development tool was partly responsible for the early rise in the popularity of
Unix. However, the Portable C Compiler could never be as efficient as a compiler built specifi-
cally for a particular processor, and it was therefore replaced with more efficient, non-porta-
ble versions as soon as practical.
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tems levels. Real-time systems are applications in the sense that there are
end users for real-time systems just as there are end users for conventional
applications like word processing and spreadsheet programs. In addition,
developing real-time applications requires the use of systems program-
ming techniques that go beyond those used to develop conventional appli-
cations. These techniques include explicitly managing resources such as
the I/0 system, primary memory, and the use of the CPU, and might go so
far as to involve modifying or replacing OS modules or adding new system
calls to the OS. The next section describes some of the important features
of real-time systems that lead to this state of affairs.

1.3 Real-Time Systems

The defining characteristic of real-time systems is their need to meet
deadlines, which are constraints on the amount of time the system is al-
lowed for completing a computation or set of computations. Although real-
time systems connote high speed, there is nothing preventing real-time
systems from operating with deadlines measured in hours rather than
fractions of a second.

To develop the concept of real-time systems more fully, you must look at
the environment in which real-time systems normally operate and the
structure of many real-time systems that operate in these environments.
Section 1.3.4 discusses deadlines specifically in the context of task sched-
uling algorithms. Before looking at real-time applications, however, you
should know that there are three ways in which the software for real-time
systems can be structured: monolithic, kernel-based, and OS-based.

Monolithic systems. Monolithic systems include all software for the sys-
tem as a single block of code. This structure is usually practical only for
very simple systems.

Kernel-based systems. Kernel-based systems use a real-time kernel, avail-
able from a vendor or developed in-house, to manage such real-time enti-
ties as tasks and interrupts. The logic for the real-time application is coded
separately from the kernel, and then linked with it to form the complete
real-time system.

0S-based systems. 0OS-based systems differ from kernel-based systems
only in the range of functions provided by an OS compared to a kernel. A
real-time OS provides normal OS functions (file system, user interface,
etc.) in addition to the real-time functions supplied by a kernel. Some ver-
sions of iRMX, for example, are based on an internal real-time kernel
called iRMK. Some versions of iRMX, including iRMX for Windows,
allow real-time applications to access iRMK functions directly. This fea-
ture was added to the OS too late to be covered in this volume.
Although this book is concerned with a real-time OS (iIRMX), the dis-
cussion of real-time concepts in this section generally applies to all three
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types of real-time systems and includes some hardware topics that go
beyond the scope of software structure as well.

1.3.1 Real-time and embedded systems

Real-time and embedded systems are practically identical. The choice of
terms has more to do with what aspect of the system is being stressed than
with different classes of systems. Embedded systems abound in everyday
life, although the end users who come in contact with them seldom use the
term. Just about any modern equipment has some form of automatic con-
trol, usually depending on a computer embedded within it to perform its
control functions. Robots and sophisticated military weapons are obvious
examples of devices with embedded systems, but many microwave ovens,
automobiles, manufacturing tools, and laboratory instruments also use
embedded microprocessors. Conventional computer systems often include
embedded systems in addition to the main CPU to perform high-perfor-
mance graphics processing or smart disk caching.

What characterizes embedded systems is that the end user does not in-
teract with the system as a computer but as something else. The user inter-
face to the embedded computer is perceived as the interface to the equip-
ment being controlled rather than as a computer itself. Although a
conventional keyboard, CRT, and pointing device might be used as the
user interface for embedded systems, these interfaces often feature knobs,
buttons, lights, and panel displays instead. Further, many embedded sys-
tems are self-contained and do not need any user interface other than a
switch to turn them on or off. '

Another feature of embedded systems is that they are typically dedicated
systems. For example, the computer that controls your car’s ignition does
just that. It does not do word processing, spreadsheets, or games. The pro-
cessor itself is often a general-purpose CPU, but the only code available to
it is for the application at hand. There is no connection between your Nin-
tendo’s embedded computer and your microwave oven (yet!).

Embedded systems almost always operate with real-time constraints.
They must meet deadlines and, thus, are real-time systems by definition.
Asinreal life, a deadline is simply the time at which a piece of work must be
completed. Also as in real life, the contingency for missing a deadline might
range from minor inconvenience (for example, stay late at work to finish
the job in real life; achieve slightly less than optimal fuel efficiency in an
automotive embedded system) to major catastrophe (lose your job for not
completing a report; stall the engine in the middle of avoiding a collision).

The term soft real-time refers to systems that can operate at a satisfac-
tory level even if some deadlines are missed. The term hard real-time refers
to systems that are considered to have failed if a deadline is missed. An ex-
ample of a soft real-time embedded system might be a program that deter-
mines the amount of fuel to be delivered each time a cylinder fires in an en-



Introduction to Real-Time and Systems Programming 9

gine, but will use the value from the previous cycle if it misses its deadline.
As long as too many deadlines are not missed, the engine will operate, but
at less than its optimum performance. An example of a hard real-time sys-
tem might be a robot that will walk off a cliff if its control system does not
tell it to turn around soon enough.

1.3.2 The structure of real-time and
embedded systems

To help you understand the nature of real-time systems, consider Figure
1.1, which represents the general structure of the software for an embedded
application. Each block represents a separate thread of execution called a
task, which are called processes in the general OS literature. Each task typi-
cally executes code that is structured like Figure 1.2: after some initializa-
tion, the task enters an endless loop in which it waits for an event to occur,
processes the event when it does occur, and then returns to the top of the
loop to await the next event. This type of processing is called an event loop,
and is not unique to real-time systems. For example, graphical window
systems are typically based on an event loop structure, where the events to
be processed include keyboard presses, mouse clicks, and mouse motion
reports.

As a task computes its response to an event, it might generate additional
events to be processed by other tasks in the system. For example, a mouse
motion report might result in a mouse-entered window event in a graphics
system. These internal events are shown in Figure 1.1 as lines connecting
the input tasks to the processing tasks and connecting the processing tasks
to the output tasks. The figure shows the most general case, but a single
task might very well combine input, processing, and output functions
without using any internal events.

Input Tasks Processing Tasks Output Tasks
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Figure 1.1 Task structure of embedded application.
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Initialization

l

Wait for an Event

J

Process the Event

Figure 1.2 Code structure for a task.

The input events to an embedded system might come from conventional
input devices but, as Figure 1.1 indicates, they might also come from sen-
sors. Keyboards and mice are sensor input devices (they sense finger and
hand movements), but embedded systems often receive their input from
other types of sensors, such as a robot’s visual sensors, or an automobile’s
air and engine temperature sensors. Another example of a real-time system
that receives input events from a nonstandard input device is a stock-
broker’s program-trading system, which receives prices directly from the
stock exchange and generates buy or sell orders in response.

Figure 1.1 also indicates that embedded systems can generate nontradi-
tional outputs, such as the control signals that operate actuators, the
motors to move the parts of a robot, or the valves to control a manufactur-
ing process.

Nonstandard I/O devices are easily interfaced to computers so that they
can be sensed and controlled in the same ways as traditional peripherals.
On the other hand, real-time operating systems such as iRMX need to in-
corporate provisions for interfacing application software to these non-
standard devices while maintaining real-time performance. Techniques
for doing this with iRMX are covered in chapter 9.

1.3.3 Factors affecting real-time
performance

At one level, you can summarize the performance of a real-time system
with one Boolean variable: either it meets its deadlines or it doesn’t. Other
important measures of a real-time system’s performance are not discussed
here, namely cost, fault-tolerance, and robustness. Rather, let us look at
some of the secondary measures that contribute to the ability of a particu-
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lar computer to meet real-time deadlines. These include determinism,
speed, context switch time, and interrupt response time.

Up to now, I have used the terms real-time system and embedded system
without making much distinction between the hardware and software that
compose the system. This lack of distinction is appropriate, because a sys-
tem as a whole relies on both hardware and software for successful opera-
tion. In fact, many functions can be implemented using hardware, firm-
ware (microcode), or software techniques, whatever is most appropriate for
the situation.

Hardware and firmware modules are typically faster than equivalent
software routines but cost more to produce. Another way of looking at this
issue is to remember that one crucial role of an operating system is to im-
plement an abstract machine architecture on top of the real hardware, an
abstract architecture that provides functions that match the needs of the
system’s applications more closely than the actual microprocessor’s ma-
chine instructions. This abstract machine can conceptually be imple-
mented in software, firmware, or hardware, or any combination.

A controversy in computer architecture exists that is relevant here. The
controversy hinges on what level of abstraction is implemented in the pro-
cessor’s hardware or firmware. It is axiomatic that a more complex logic
system must take more time to operate than a simpler one that uses the
same circuit technology. The controversy is based on the notion that a sys-
tem as a whole can execute faster by providing a very simple but very fast
abstract machine in hardware, with software providing a more powerful
abstract machine to the operating system user. Such processors are called
reduced instruction set computers, or RISC processors. Processors that
provide a more powerful abstract machine in hardware and firmware, such
as the Intel microprocessors that are used to run iRMX, are called complex
instruction set computers, or CISC processors. RISC processors presently
enjoy a reputation for better performance than CISC processors using
comparable fabrication technologies.

The RISC/CISC issue is relevant to the present discussion because a
processor’s average speed is often considered an important measure of how
well-suited it is for real-time applications. As mentioned earlier, however,
nothing prevents real-time systems from operating with deadlines mea-
sured in hours rather than fractions of a second. It’s simply the existence of
the deadlines that makes a system real-time. Nonetheless, it would seem
likely that one processor that executes instructions faster than another
would be more suitable for real-time systems. However, instruction execu-
tion rate is not necessarily a good measure of a processor’s speed for two
reasons.

Comparing the speeds of two processors with different instruction sets is
an extremely difficult job to do, despite the variety of standard benchmark
programs that claim to do so. The problem is that you must compare both
the rate at which instructions are executed and the amount of useful work
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done by each instruction. If a RISC processor executes its instructions
twice as fast as a CISC processor, it must use no more than twice as many of
those instructions to provide users with an abstract machine that is equiv-
alent to the one provided by the CISC processor.

More important than raw computing speed for real-time performance is
a computing system’s determinacy, meaning how much variability exists in
the time it takes a given computation to be performed. As an example, con-
sider a real-time application that imposes a 1-millisecond deadline on the
time a task is allowed to compute its response to some event. If Computer A
can perform the computation in an average of 500 microseconds (half a
millisecond) and Computer B requires an average of 550 microseconds to
perform the same task, it is tempting to think that Computer A has a better
real-time performance. But what if that 500-microsecond average con-
sisted of 10 times that took 50 microseconds (Wow, look at that speed!) and
one time that took 5000 microseconds (oops!) because the system’s virtual
memory manager had to swap in a page from disk for the task to complete?
That 1 case in 11 trials is a missed real-time deadline, and Computer A
could not be used for the real-time application. As long as Computer B’s
average is not based on any values greater than the 1-millisecond deadline,
one would have to say that it is the better one (indeed, the only one) for the
application.

Thus, the number of instructions executed per second and the average
time to perform a computation are not the best measures of a processor’s
suitability for real-time applications. Two other measures of a processor’s
speed are often crucial in determining real-time performance, however. To
complicate matters, these two measures are not purely dependent on the
hardware being used but also on policies the OS uses in managing various
resources.

The two measures are context switch time (CST) and interrupt response
time (IRT). Context switch time is the time it takes the CPU to stop exe-
cuting code for one task and start executing code for another task. This in-
terval consists of three phases:

1. Recognizing the need to perform a context switch and selecting the next
task to execute. This is the scheduling problem discussed in the next
section.

2. Saving the state of the CPU’s registers so that the current task can be
resumed at a later time.

3. Loading the CPU’s registers with the values needed to start execution of
the new task.

The first phase is the responsibility of the OS’s task scheduling software,
and the other two phases depend, in part, on the microprocessor instruc-
tions that are available for saving and restoring CPU registers to and from
primary memory. It is debatable whether the scheduling phase is really
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part of a system’s CST or a separate (important) measure of a real-time
system’s performance. The iRMX techniques for keeping CST's small are
covered in chapters 5 and 6, which discuss hardware and software issues re-
spectively.

Interrupt response time is a measure of how much time elapses from the
moment an I/0 device indicates that it is ready to generate an event until
the processor actually starts executing code in response to that event. At
the hardware level, IRT's are limited by the constraint that processors rec-
ognize interrupt requests only between the execution of machine instruc-
tions. Many CISC processors include complex instructions that can take a
long time to execute (a ratio of about 100: 1 execution time for the slowest
and fastest 8086 instructions exists, for example), which can significantly
impact hard real-time designs, which must be based on worst-case values.
(A dedicated hard real-time system would be coded to avoid use of the slow-
est instructions of the processor’s repertoire.) However, IRT hardware
considerations can easily be outweighed by the interrupt management pol-
icy of the operating system, because OS routines can totally disable the
CPU’s response to interrupts for arbitrarily long periods of time. Real-time
operating systems minimize the time that interrupts are disabled as much
as possible, even at the expense of a longer IRT average (or other measures
of average system performance).

Most operating systems that support multiple threads of execution (not
just real-time operating systems) reduce IRT by providing for two levels of
software to be invoked by interrupts. For iRMX, these are called interrupt
handlers, which execute in the same context as the currently running task
(no CST), and interrupt tasks, which are scheduled for execution in com-
petition with all other tasks in the system. Various interrupt hardware
mechanisms are discussed in chapter 5, and iRMX interrupt handlers and
interrupt tasks are covered in chapter 9. Rick Gerber of Intel has developed
two programs that can be used to determine the IRT (inttest) and the CST
(switch) of an iIRMX system. They are available, along with all the code
presented in this book, from the author.?

1.3.4 The scheduling problem

The scheduling problem refers to the issue of which task is selected to use
the CPU at a particular moment. The scheduling problem is fundamen-
tally different for real-time systems than for other systems, such as time-
sharing systems. Real-time systems must schedule tasks so that they all
meet their execution deadlines. Generally, the number of context switches
should be minimized for real-time systems so that more CPU time is avail-
able for tasks working toward their deadlines. Timesharing systems, how-
ever, often interrupt a running task (incurring an extra CST) to provide

2 Anonymous ftp to ipcl.cs.qgc.edu.
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other tasks with their fair share of CPU time. This section looks at some of
the variables of real-time task scheduling. The iRMX task scheduling algo-
rithm is covered in more detail in chapter 6.

A common feature of real-time task schedulers is their use of an algo-
rithm called preemptive priority-based scheduling. This scheduling scheme
simply assigns a numerical priority to each task in the system, the system
keeps track of the scheduling state for each task, and the highest priority
task that is in the “ready” state is always the one selected to run. The run-
ning task continues to execute indefinitely. The only way for the running
task to stop is for either of the two conditions that caused it to be selected
for execution in the first place to become false. Either the task enters a
scheduling state other than ready, or another task of higher priority enters
the ready state. In the first case, the task relinquishes the CPU, either be-
cause it has completed processing an event and met its deadline or because
the task was blocked and cannot use the CPU until resources become avail-
able. I the second case, the task has been preempted by another task.

This simple scheduling algorithm can lead to very complex sequences of
task selection, and by itself, might not provide an optimal solution to the
scheduling problem for a particular application. The following examples
illustrate these two points.

Suppose, for example, that T; represents the ith task in the system, and
E, represents the events to be processed by T;. Assume that events E; arrive
for processing at a rate of 4; per second, that each E; requires 7; seconds of
processing by T;, and that those 7; seconds of processing time must be
completed within J; seconds of real time to meet T,’s deadline. Finally, p;
represents the scheduling priority of T; (0 = highest priority). If two tasks
with unequal priorities are ready to run at the same time, the one with the
higher priority is the one that executes.

Table 1.1 shows the results of simulating the behavior of three tasks
using a preemptive priority-based scheduler. The values chosen for the pa-
rameters were the following:

Ti Al Ti Ji Pi
1 1.00 0.25 1.00 5
2 0.67 0.30 1.50 10
3 0.50 1.00 1.90 15

These values cause the same sequence of events to repeat every 6 seconds,
so the simulation was allowed to run for that amount of simulated time.
The priorities of the three tasks were made proportional to the arrival rates
of events for each task. That is, the higher the value of A, the lower the nu-
merical value of p;. This positive relationship between a task’s priority and
the arrival rate of the task’s events (remember, numerically low means
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TABLE 1.1 Scheduling Simulation of Three
Tasks Running for a Six Second Period
Using a Preemptive Priority-based Sched-
uling Algorithm.

Task Balances
Current  Running (seconds)

Time Task _—

(seconds) (T) 1 2 3
0.00 1 025 030 1.00
0.25 2 0.00 030 1.00
0.55 3 0.00 0.00 1.00
1.00 1 0.25 0.00 0.55
1.25 3 0.00 0.00 0.55
1.50 2 0.00 0.30 0.30
1.80 3 0.00 0.00 0.30
Deadline Missed for Task 3 by 0.20 seconds.
1.90 3 0.00 0.00 0.20

Error: Missed Event for Task 3 when
balance = 0.10 seconds.

2.00 1 0.25 0.00 0.10
2.25 3 0.00 0.00 0.10
2.35 none 0.00 0.00 0.00
3.00 1 0.25 030 0.00
3.25 2 0.00 0.30 0.00
3.55 none 0.00 0.00 0.00
4.00 1 0.25 0.00 1.00
4.25 3 0.00 0.00 1.00
4.50 2 0.00 030 0.75
4.80 3 0.00 0.00 0.75
5.00 1 0.25 0.00 0.55
5.25 3 0.00 0.00 0.55
5.80 none 0.00 0.00 0.00

There were 1.30 seconds of idle time, and
17 context switches

high priority) is known as the rate-monotonic scheduling algorithm, which
is commonly used in real-time systems.

Note that the sequence in which the tasks execute does not follow a sim-
ple pattern, despite the small number of scheduling parameters involved.
Also note that this set of parameters leads to a missed deadline and a lost
event for T;. The simulation program assumed that an event that arrives
for a task while that task is still processing a previous event will be dis-
carded rather than queued for later execution.

If the lost event in Table 1.1 had been queued instead of discarded, T,
would have executed for one additional second of CPU time (the value of
7,), reducing the idle time for the simulation from 1.3 to 0.3 seconds. (An-
other version of this example showed that there would have been no addi-
tional missed deadlines in this case.) Because it appears that there would
have been 0.3 seconds of idle CPU time even if T; had processed all of the
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required events, the question arises of whether a different scheduling algo-
rithm could have avoided the missed deadline.

Table 1.2 shows that an adaptive scheduling algorithm could, indeed,
have achieved the desired result by changing some of the values of p; dy-
namically rather than maintaining fixed values at all times. In particular,
at time 1.50 seconds, the adaptive scheduler would see that the processing
balance for T plus the balance for T, is greater than the time until Ty’s
deadline, and would temporarily raise T,’s priority above T,’s.

It is possible to create a working real-time system without carefully con-
sidering the scheduling problem. Just build the system and see if it works.
But in cases where the system must not fail, the scheduling issue must be
addressed. The actual values of 4;, T;, and J; for each task must be either
measured or computed and the corresponding scheduling algorithm must
be determined, possibly using a simulator such as the one that generated
Tables 1.1 and 1.2. Furthermore, if the system requires an adaptive sched-
uling policy, there must be a means for communicating each task’s 7;and J;
to the scheduler, which must monitor each task’s progress towards its

TABLE 1.2 Scheduling Simulation of
Three Tasks Running for a Six-Second
Period Using an Adaptive Scheduling

Algorithm.
) Task Balances
Current  Running (seconds)
Time Task e ————————
(seconds) (T) 1 2 3
0.00 1 025 030 1.00
0.25 2 0.00 030 1.00
0.55 3 0.00 0.00 1.00
1.00 1 0.25 0.00 0.55
1.25 3 0.00 0.00 0.55
1.50 . 3 000 030 0.30
1.80 2 0.00 0.30 0.00
2.00 1 025 010 1.00
2.25 2 0.00 0.10 1.00
2.35 3 0.00 0.00 1.00
3.00 1 025 0.30 035
3.25 2 0.00 030 0.35
3.55 3 0.00 0.00 035
3.90 none 0.00 0.00 0.00
4.00 1 025 0.00 1.00
4.25 3 0.00 0.00 1.00
4.50 2 0.00 030 0.75
4.80 3 0.00 0.00 0.75
5.00 1 0.25 0.00 055
5.25 3 0.00 0.00 0.55
5.80 none 0.00 0.00 0.00

There were 0.30 seconds of idle time and 18
context switches.
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deadline. Real-time kernels and operating systems do not generally sup-
port adaptive scheduling, so it would have to be implemented by the appli-
cation itself.

1.4 iRMX in Perspective

iRMX is actually the name of a family of operating systems developed by
Intel to run on the microprocessors they manufacture. It is a proprietary
OS rather than an open system. iRMX, as most operating systems today, is
developed and marketed by the same company that makes the processors
that run it. Examples of other proprietary operating systems include VMS
for VAX computers and VM for IBM mainframe computers. MS-DOS for
PCs and MacOS for Macintosh computers are also proprietary operating
systems, even though the companies that make the computer and OS are
not the company that makes the microprocessor inside the computer.
(MS-DOS runs on the same Intel microprocessors as iRMX, and the Mac-
intosh currently uses Motorola microprocessors.)

One characteristic of proprietary operating systems is that they gener-
ally are not portable. That is, they are designed to run on one processor’s
architecture, or a family of compatible architectures from one company,
and cannot be implemented on different processors. In the case of real-
time systems where execution speed is usually very important, this means
that the OS can be built to take advantage of special features of the pro-
cessor on which it runs. As a consequence, it executes very efficiently
compared to an OS that must be coded to work with some lowest common
denominator of many processors’ features.

Some of the reasons for using a proprietary OS have more to do with
marketing decisions than with system performance. If software is devel-
oped to run on a proprietary system, customers are unlikely to switch to
another vendor’s computer because of the expense of porting existing
applications to the new OS and processor. An open operating system,
however, can run on a variety of different processor architectures, usually
because the companies that make the different processors have underwrit-
ten the cost of porting the OS to their machines. Customers are less locked
into one vendor’s computers.

Unix is the primary example of an open system today. Originally devel-
oped at AT&T for internal use, Unix has been licensed to dozens of differ-
ent companies for use on their computers. There are, however, incompati-
bilities among the many versions of Unix that exist today. BSD Unix from
the University of California Berkeley, Unix System V from an organiza-
tion called Uniforum that includes AT&T as a member, and OSF-1 from
an organization called the Open Software Foundation that includes IBM
as a member. See the POSIX section later in the chapter for how all this
relates to iRMX.
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1.4.1 History and versions of iRMX

The iRMX operating systems for the x86 family of microprocessors date
back to 1978 when Intel introduced RMX-86 for use with 8086 and 8088
microprocessors. An earlier operating system from Intel had existed with
the RMX name and ran on the company’s 8080 and 8085 microprocessors.
Intel’s goal had been to encourage engineers to develop new products based
on the 8080 by providing them with the basic software needed to get var-
ious projects started and to market as quickly as possible. RMX-86 was de-
signed in the same tradition as RMX-80, and an early version of RMX-86
even shared some code with its predecessor.

Early microprocessors like the 8080 were not powerful enough to provide
users with general-purpose computing, but were typically embedded into
other equipment to control it. RMX for the 8080 was originally designed to
be embedded into ROM along with the microprocessor, and current ver-
sions of the OS still support this important feature. The actual develop-
ment of a real-time application and the combination of the application
with the OS were done on a separate computer system, also available from
Intel, called a microcomputer development system (MDS).

When developing applications, the MDS is known as the host, and the
system that actually runs the application is called the target system. The
MDS and its OS (iSIS) are no longer used. Instead, the host for developing
real-time applications is now a PC running DOS, a workstation running
Unix, or the target system running iRMX itself. Some of the features of
iRMX that make it good for real-time systems, however, make it less de-
sirable as a development system. The iRMX for Windows version of iRMX
allows developers to run both iRMX and MS-DOS on the same PC at the
same time, thus providing the advantages of both environments, which is
the standard configuration for running iRMX used in this book.

As Intel introduced microprocessors with different architectures, it also
introduced versions of iRMX tailored to those architectures. Today, three
versions of the operating system correspond to the 8086 (iRMX I), 80286
(iRMX II), and 80386 (iRMX III) architectures. Chapter 5 covers the ar-
chitectures of these microprocessors and how they influence each version
of iRMX. In 1991, Intel introduced iRMX for Windows, which is compati-
ble with Microsoft’s MS-DOS and Windows products. iIRMX for Windows
includes all the features of normal iRMX III plus additional features that
allow a single application to include real-time components that are man-
aged by iRMX and conventional components that run “on the DOS side.”
DOS programs can make iRMX system calls, and iRMX programs can
make DOS calls. Both sides can communicate with each other directly and
with the user through Microsoft Windows. If desired, the user can switch
control of the PC’s keyboard and monitor from DOS to iRMX or vice versa
using the hot-key combination <alt/sysRg>. Chapter 12 explores in
some detail how this version of iRMX works, including the features that
this version of iRMX adds to normal iRMX III.
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1.4.2 MS-DOS, 0S-2, and Unix

This section compares iRMX directly with a few other operating systems.
The goal is to make it clear why each serves a different role in computer
systems rather than to find one that is “better” or “worse” than another.

MS-DOS. MS-DOS was developed to run on a microprocessor (the Intel
8086%) that can address, at most, 1 megabyte (MB) of primary memory and
includes no hardware mechanism for controlling memory accesses, such as
accidentally attempting to execute data instead of instructions. As an OS
for the 8086 architecture, DOS was designed (properly) to support a single
user running a single application on one personal computer.

The OS includes no provision for multiple threads of execution, essen-
tially no file system security mechanism (why protect the user from ac-
cessing the files on his or her own computer?), and allows programs to
freely modify the system’s memory, device controllers, and registers. The
tremendous popularity of the PC has invited a wealth of creative code to be
written for DOS systems, including some real-time applications.

The main disadvantages of DOS for real-time applications are its lack of
support for multiple threads of execution; its lack of support for
asynchronous I/0; the design of many of its device drivers, which disable
interrupts for very long periods of time; and the difficulty of incorporating
support for nonstandard I/O devices. Device driver software can be devel-
oped and then loaded into the system when it is bootstrap loaded, but the
OS itself does not provide support for the development process the way a
real-time OS such as iRMX does.

DOS allows a degree of systems programming. The command line pro-
cessor is a separate piece of code from the rest of the OS, so substitute ver-
sions can be developed. Custom device drivers can be loaded when a system
is initialized. Utility programs and development tools can be built for DOS
because the system’s interface to such programs is well documented. But as
far as programming the OS itself, DOS is closed to systems programmers.

0S/2. When Intel developed the 80286 microprocessor that overcame the
8086 architecture’s memory addressing and protection limits, Microsoft
and IBM developed OS/2 to provide an OS that is compatible with DOS,
but which takes advantage of the 80286 architecture to add new features
that would be competitive with Unix, the preferred OS for workstations.
Although no one has really pinned this marketing term down, a worksta-
tion generally connotes a single-user system that is more powerful than a
PC.

The three most important features of 0S/2 for us are its support for mul-
tiple threads of execution, its memory management facilities, and its sup-

3The Intel 8088 and 8086 share the same processor architecture except for the number of
bits that can be read or written per memory access.
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port for interrupt management. Like time-sharing and real-time systems,
0S/2 provides users with multiple threads of execution, and, like time-
sharing systems, the user’s control over these threads is more primitive
than in real-time systems.

For example, a primary objective of 0S/2 is overall system performance,
and to this end, the OS can manipulate the scheduling priority for threads
(tasks) without informing the applications being run. Actually, there are
three classes of priority (with 32 levels within each class), and tasks with a
priority in the class, called time-critical, never have their levels changed by
the OS. But threads that are designated regular or idle-time are subject to
hidden priority changes. These hidden priority changes might seem remi-
niscent of adaptive real-time scheduling mentioned earlier, but in 0S/2
scheduling, adaptations are made to improve overall average performance,
not so that threads can meet deadlines.

0S/2 provides a protected memory environment for applications. This
feature uses hardware mechanisms in the 80286 and later microprocessors
to ensure that different applications do not access each other’s memory ei-
ther inadvertently or maliciously. This feature is critical for the integrity of
timesharing systems. A protected memory environment is valuable in sin-
gle-user systems as well because it guarantees that applications that run
concurrently will not interfere with each other. Protected memory is par-
ticularly valuable during the development phase of any type of application,
conventional or real-time. Without memory protection, a program error
that causes information to be stored in the wrong part of memory (perhaps
in the resident part of the operating system itself) might not be detected
until much later, when the corrupted memory is accessed and causes the
system to crash. With memory protection, such errors are detected as soon
as they occur (even before the damage is done), and can be localized and
debugged relatively easily.

The protection features of OS/2 also provide a controlled interface be-
tween application programs and the OS itself, including the restriction
that application programs cannot perform certain privileged operations,
such as I/0 transfers. The 80286 protection mechanisms also make it pos-
sible for the OS to manage access to hardware interrupts. In 0S/2, each in-
terrupt service routine must register itself with the OS to have a chance to
respond to the interrupt signals.

A popular DOS programming technique is to load a Terminate and Stay
Resident (TSR) program that replaces the normal routine for responding
to aparticular interrupt. When an interrupt occurs, say from the keyboard,
the TSR decides whether it will process the interrupt itself, such as if the
interrupt was the user pressing a hot key (a special combination of keys) on
the keyboard or not. If not, the new routine simply calls the original inter-
rupt service routine to process the event normally.

The OS/2 technique of registering interrupt handlers provides a more
robust and orderly way to manage such chains of handlers than DOS,
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which cannot monitor application programs’ access to the memory con-
taining the table of interrupt service routine addresses.

Because DOS and OS/2 are based on corresponding processor architec-
tures, they have a similar relationship to each other as iRMX I and iRMX
II do. An obvious difference is that iRMX I supports multitasking, while
DOS does not. Also, version 1.2 of 0S/2 runs on any 80286 microprocessor
or better, and version 2.0 runs only on 80386 microprocessors or better.
These two versions of OS/2 correspond to the differences between iRMX
IT and iRMX III, notably the support for very large memory segments with
the 80386 architecture. These architectural matters are covered in greater
detail in chapter 5.

Unix. I mentioned earlier that Unix is the preferred OS for workstations.
In the context mentioned earlier, Unix and OS/2 are competitors for the
single-user, high-performance computer system market. Indeed, Unix was
first designed as a single-user version of the Multics OS that was running
on large mainframe computers at the time Unix was developed. Unix soon
became a time-sharing system in its own right, and today, it is imple-
mented on a broad range of processors. This would, however, include pro-
cessors from single-user workstations to supercomputers and mainframes
supporting many users simultaneously. In addition to the wide range of
available implementations, Unix is popular because it provides a flexible
and powerful environment for the technical user.

Unix is generally perceived as more difficult to use for casual users than
DOS or even 0S/2. This difference is becoming less of an issue, however,
because Microsoft Windows for DOS, Presentation Manager for OS/2,
and Motif for Unix’s X Window system all provide similar graphical user
interfaces. What makes Unix an important consideration is that efforts
are being made to develop real-time versions of it, as you will see in the next
section. To produce a real-time Unix OS, however, several issues must first
be considered:

» Unix processes cannot be preempted while they are in kernel mode.
» Unix processes are expensive.

® Unix use of interprocess communication for real-time applications.

Unix processes cannot be preempted while they are in kernel mode (making
system calls). This means that even a high-priority process might have to
wait arbitrarily long after becoming ready before being scheduled to use the
CPU. The logic for Unix kernel code is thus less prone to error, but it can be
intolerable in real-time situations. Because this code is owned by whatever
company owns Unix, the solution has been for other vendors to rewrite the
kernel themselves to include what are called preemption points, places
where processes executing kernel code will relinquish control of the CPU
to higher-priority processes.
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Unix processes are very expensive compared to tasks in a typical real-time sys-
tem. Processes take a long time to create and context switches are slow
because different processes are generally associated with different users. In
a time-sharing environment, this means that each process must be pro-
tected from other users’ processes that might be running at the same time.
Process scheduling must be more complex and thus slower than task
scheduling.

Another way to look at this issue is to say that Unix processes compete
with each other for the use of the CPU, whereas real-time tasks typically
cooperate with each other to meet deadlines. One way that some real-time
Unix systems deal with this problem is to introduce lightweight processes.
Lightweight processes are similar to real-time tasks in that they can be cre-
ated quickly and, because they execute in the context of a single process,
can be scheduled quickly without the security overhead associated with
regular process scheduling.

Interprocess communication. Another issue for developers of a real-time
version of Unix is interprocess communication, or IPC. Unix provides a
rich and flexible set of IPC mechanisms, including shared memory, ker-
nel-mediated signals, pipes that carry the output of one process through a
disk file to the input of another process, and sockets that allow processes to
communicate with each other across networks using the same syntax as
reading and writing disk files. The problem is that these mechanisms, in
order to provide their rich functionality and flexibility, are much too slow
to be used for intertask communication in many real-time applications.
Even where attempts have been made to provide IPC functions typical of
real-time systems, the Unix versions generally involve too much overhead
for real-time use. The Unix System V semaphore, for example, is very
complex and less efficient to use for synchronizing tasks compared to the
equivalent mechanisms for iRMX or other real-time operating systems.

1.4.3 POSIX

Unix is the prototypical open system, but various incompatible versions of
Unix are common on different computing platforms. T'o promote Unix asa
portable OS, the IEEE Computer Society is developing a portable version
of Unix, called Portable Operating System Interface for Computer Environ-
ments (POSIX). The idea is that an application coded to meet the POSIX
standard can be compiled and run without change on any system that is
POSIX compliant. Vendors are free to add their own features of Unix and
still claim POSIX compliance, provided their added features do not inter-
fere with the POSIX functions. Thus, System V Release 4 (SVR4) and
OSF-1 might be POSIX compliant, but incompatible with each other in
various ways.
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Standards take several different forms, such as industry standards, na-
tional standards, and international standards. An industry standard is
simply something that almost everyone in a particular industry does the
same way. For example, the PC bus was developed by IBM, but IBM made
its specifications public and encouraged other companies to build compati-
ble products, thus making the bus an industry standard. National stan-
dards such as those of the American National Standards Institute (ANSI)
and International Standards Organization (ISO) are developed by com-
mittees that include representatives of the companies or countries inter-
ested in the standard. Formal standards are based on current common
practice rather than creating new rules for doing things. There is a rich po-
litical process involved in developing and approving new formal standards.

The Institute of Electrical and Electronic Engineers (IEEE) is a profes-
sional organization that is developing POSIX under its own initiative. One
might expect IEEE to submit POSIX to ANSI or ISO for adoption but not
necessarily.* The only reason this would be of concern is if some other orga-
nization produced a competing standard and submitted it to ANSI or ISO.

The IEEE formed several subcommittees to develop different parts of
the POSIX standard, and each has a name in the form P1003.x, where x in-
dicates the area of concern. The standards developed by these subcommit-
tees are often referred to with names like POSIX.1 for the standard devel-
oped by subcommittee P1003.1.

POSIX is an important consideration because it is a potential alterna-
tive to iRMX as a target for real-time systems. Which system should be
used depends on the proper trade-off level between portability and per-
formance for a particular application. A real-time application that is devel-
oped for iRMX can only be run on systems based on Intel’s x86 family of
microprocessors and cannot be expected to be portable to other processors;
iRMX is not available for other types of CPUs. The huge number of sys-
tems that run Intel x86 microprocessors may or may not be relevant for a
particular application. On the other hand, Unix is a very large OS com-
pared to iRMX, with process, memory, and security management features
that go far beyond those needed for most real-time applications.

POSIX real-time and threads standards are added to basic Unix func-
tionality. The result is, almost inevitably, a system with more overhead
and poorer real-time performance than an iRMX system. There are four
POSIX standards potentially related to iRMX. Currently only POSIX.1
has been formally adopted by the IEEE. POSIX.4 should be approved in
the near future, and other parts of the POSIX standard are still being de-
veloped.

4For example, the System Application Program Interface (API) [C Language] part of the
standard (IEEE Standard 1003.1) has been adopted as ISO standard ISO/IEC 9945-1.
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POSIX.1. System application program interface [C language]. This standard
specifies a standard application programming interface (API) to the OS.
The Intel C compilers provide a POSIX.1 interface to iRMX. Chapter 4
explains in more detail how this is accomplished and the implications of
how it is implemented. As a practical matter, POSIX.1 compliance means
that many utility programs for Unix for which there is publicly available
source code run on iRMX systems.®

POSIX.4. IEEE Realtime Extension for Portable Operating Systems. The fol-
lowing material stating the scope of this standard is taken from a draft ver-
sion of the standards document:

The key elements of defining the scope are a) defining a sufficient set of func-
tionality to cover a significant part of the realtime application program do-
main, and b) defining sufficient performance constraints and performance re-
lated functions to allow a realtime application to achieve deterministic
response from the system. . . . The specific functional areas included in this
standard and their scope includes:

e Binary semaphores: the minimum synchronism primitive to serve as the
basis for more complex synchronization mechanisms to be defined by the
application program.

¢ Process memory locking: a performance improvement facility to bind appli-
cation programs into a computer system’s high performance random access
memory to avoid potential latencies introduced by operating system storage
of not recently referenced parts of a program on secondary memory devices.

¢ Shared memory: a performance improvement facility to allow separate ap-
plication programs to have portions of their program image comonly acces-
sible to them.

¢ Priority scheduling: a performance and determinism improvement facility
to allow applications to determine the order in which processes that are
ready to run are granted access to CPU resources.

Real-time signal extension: a determinism improvement facility, augment-
ing the signals mechanism of POSIX.1 to enable asynchronous signal noti-
fications to an application to be queued without impacting compatibility
with the existing signals interface.

¢ Timers: a functionality and determinism improvement facility to increase

the resolution and capabilities of the time-base interface.

¢ Interprocess communication: a functionality enhancement to add a high
performance, deterministic interprocess communication facility for local
communication. Network transparency is beyond the scope of this inter-
face.

Synchronized input and output: a determinism and robustness improve-
ment mechanism to enhance the data input and output mechanisms so that

5A rich source of such utilities is the Free Software Foundation of Cambridge, Massachu-
setts.
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an application can insure that the data being manipulated is physically
present on secondary mass storage devices.

e Asynchronous input and output: a functionality enhancement to allow an
application process to queue data input and output commands with
asynchronous notification of completion. This facility includes in its scope
the requirements of supercomputer applications.

* Real-time files: a performance and determinism improvement facility to
allow an application program to pre-allocate mass storage resources and de-
termine characteristics that will enhance the performance of data transfer
to and from mass storage.

¢ Extensions to POSIX.1: those changes needed to complete the definition of
the facilities defined by this standard.

e Performance metrics: each facility includes a set of performance metrics to
allow a uniform treatment of the measurement of performance between dif-
ferent conforming implementations.5

iRMX either already conforms to many of these functional areas of
POSIX. 4 or can easily be made to do so. If you are interested, you can refer
back to the preceding list as various iRMX topics are covered in the chap-
ters ahead and consider what the impact of making iRMX POSIX.4 com-
pliant would be on the OS’s design and efficiency of implementation. For
example, the complex semaphore mechanism of Unix System V is the basis
for the POSIX.4 binary semaphore mechanism, and you might want to
consider the issue of providing this function in iRMX after reading the
discussion of the iRMX semaphore mechanism in chapter 7.

POSIX.4a. Threads Extension to POSIX. The focus of POSIX 4a is to add
lightweight processes, called threads, to POSIX.4, which is based on the
standard (POSIX.1) process model. The relationship between POSIX
processes and threads is approximately analogous to the relationship be-
tween iRMX jobs and tasks, which is discussed in chapter 6.

In addition to introducing threads themselves, POSIX.4a also intro-
duces features for synchronization between threads, control over thread
scheduling, and extension of the POSIX.1 signal mechanism to cover
threads. The two synchronization primitives introduced by POSIX.4a are
mutexes and conditions. The mutex mechanism is closely related to the
iRMX region introduced in chapter 7, but conditions have no direct analog
in iRMX. The iRMX facility for creating composite objects, also intro-
duced in chapter 7, could be used to create the equivalent of conditions.

$The indented information contained on pages 24-25 is copyrighted information of the
IEEE, extracted from IEEE Std P1003.4/D10-1991, copyright ©1991 by the Institute of
Electrical and Electronics Engineers, Inc. This information was written within the context of
the IEEE Std P1003.4/D10-1991. The IEEE takes no responsibility or liability for and will
assume no liability for any damages resulting from reader’s misinterpretation of said infor-
mation resulting from the placement and context in this publication. Information is repro-
duced with the permission of the IEEE.



26 Basics

POSIX 4a dictates that compliant implementations are to support at
least two scheduling algorithms, priority based and round-robin, and pro-
vides functions to assign these algorithms to individual threads. iRMX
supports both priority and round-robin scheduling algorithms, although
not with as rich a function set as POSIX.4a. iRMX task scheduling is de-
scribed in chapter 6.

POSIX signals are closely related to a process, which is only approxi-
mately the same as an iIRMX job. As a result, the signal mechanisms of
POSIX.1 and their extensions in POSIX.4a map only roughly onto iRMX
systems. Actually, the proposed POSIX.4a extensions to signals were not
well enough developed at the time of this writing to say much about them.
Two iRMX features provide the functions for the situations that Unix sig-
nals are meant to deal with: exception handlers, described in chapter 6, and
signal characters, described in chapter 8.

POSIX.16. Multiprocessing. P1003.16 is the name of the group working on
multiprocessing extensions to POSIX. Some of the issues involved in de-
veloping POSIX.4a were purposely deferred until POSIX.16 becomes es-
tablished because of an overlap between certain multitasking and multi-
processing concepts.

All the computer systems considered in this book are based on com-
puters with only one CPU, or CPUs operating independently of each other
except for passing messages to one another. That is, one CPU runs all the
code executed by all the tasks of all the applications that might be in pri-
mary memory at one time, as well as all code executed on behalf of the OS
itself. Conceptually, several tasks could be executing at the same time, but
this is a case of virtual concurrency because a single CPU can actually exe-
cute an instruction for only one task at any particular moment. The situa-
tion is radically different if there are multiple CPUs to which different
threads of execution can be assigned, because the concurrency between
tasks becomes real rather than virtual.

From a real-time application programmer’s point of view, an application
runs correctly on one CPU because the program manages task priorities
and intertask synchronization to guarantee logical correctness without re-
gard to the actual rate at which the processor executes the code for a partic-
ular task. If two tasks of the same priority are ready to run at the same time,
it should not matter whether they run one after the other or, by using mul-
tiple CPUs, at the same time. You can expect some interesting issues to be
raised as the POSIX.4a and POSIX.16 committees interact. Meanwhile,
we can examine the iRMX operating system, confident that the multi-
tasking features it supplies will bear at least conceptually on multiprocess-
ing systems as well.
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Using an iRMX System

2.1 Overview

Most programs developed for iRMX are real-time applications, and many
of those applications interact with human users through nonstandard I/0
devices —if at all. Such applications are often programmed on a non-
iRMX computer, called a development system, which can also be used to
help debug and integrate the application on an iRMX computer, called the
target system.

iRMX does, however, include a software layer called the Human Inter-
face (HI) that allows you to use the OS as a conventional time-sharing sys-
tem, one that can be used as a development system in its own right. This
chapter introduces you to the features of the HI that a user encounters
while using iRMX as a time-sharing system, and the next chapter covers
using an iRMX system as a development system.

In addition to the HI layer, other layers of the OS are referenced. These
are the Nucleus, the Basic I/O System (BIOS), the Extended I/O System
(EIOS), the Application Loader (AL), the Universal Development Inter-
face (UDI), and the C run-time library.! These other layers are covered in
more detail in chapter 6 and beyond. Even if your iRMX applications do
not use the iIRMX HI, and you do your coding on a separate development
system, you should become familiar with the topics covered in this chapter
because they include concepts about the iIRMX I/0 system that will be im-
portant later on.

iRMX is not the first computer system most people work with, so brief
references to DOS and Unix are included in the material that follows.
These references serve two purposes: (1) They might clarify an iRMX

!Versions of iRMX can be configured that omit some of these layers. Such a configuration
would be built for a system that has memory constraints or that does not need the functions
supplied by certain layers. All configurations of iRMX include the Nucleus layer, however.

27
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function to DOS and Unix users, and (2) they might warn DOS or Unix
users that something that seems to be the same in iRMX is actually differ-
ent. If any particular reference to DOS or Unix does not help you, simply
ignore it.

Like the rest of iRMX, the HI is very well documented in the manuals
that accompany the system. The manuals, however, serve as reference doc-
uments rather than tutorials; thus, the manuals often include references to
somewhat obscure features of the system to be completely accurate. This
book, on the other hand, tries to guide you in mastering iRMX. Keeping a
topic clear while you are learning iRMX means being selective about what
is included about that topic at any particular point in this book. If the sys-
tem does not do what you expect it to, it may very well be that you have
stumbled onto something that was only glossed over or is covered later in
the book. So, when in doubt, RTM! (Read The Manual!). Of course, RTM
only works if you know which manual to read, so do look through the com-
plete documentation set for your version of the OS to find out where to look
things up later on. In this book, various volumes in the iRMX for Windows
documentation set are referenced. These references are correct for iRMX
for Windows version 2.0, but might be different for other releases of the
operating system.

2.2 iRMX Platforms

Before using iRMX, you need to understand some background about the
different platforms available for running iRMX. A platform is a type of
computer system that can run iRMX software. Different platforms require
different steps in the procedures. Conceptually, the various versions of
iRMX (I, II, and III) can run on any computer that uses the appropriate
Intel microprocessor. In practice, iRMX has built-in support for applica-
tion development on just three platforms: the AT Bus, Multibus I, and
Multibus II.

The AT Bus platform refers to any industry-standard PC compatible
with the IBM AT or later computer. Although the term AT Bus is used, the
computer can use just about any bus at all, including the following:

® The AT bus itself, which is also called the ISA bus.

= The EISA bus, an extended version of the AT bus.

= [BM’s Micro Channel Adapter bus (MCA).

= One of the buses used in PCs outside of the United States, such as those
used by NEC and Fujitsu in Japan.

The important feature of the platform for iRMX for Windows is simply
that the computer contain code in an IBM or compatible ROM-BIOS for
performing standard 1/0 operations. ISA, EISA, and MCA circuit boards
cannot be intermixed within one computer system, but they are all pro-
grammed the same way using subroutines supplied in the ROM BIOS.
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Two versions of iRMX III were available for the AT platform: one ver-
sion ran as a typical PC operating system, requiring its own disk partition
from which the OS had to be bootstrap loaded and providing no interaction
with the DOS operating system. This version of iRMX III for the AT plat-
form was sometimes called the System 120 configuration. iRMX for Win-
dows is the other version of iRMX III, and is the only version that Intel
now supports for the AT platform.22 iRMX for Windows runs at the same
time as DOS (a DOS command is used to bootstrap load iRMX for Win-
dows), with a hot key, <alt/SysRqg>, used to switch between the two
operating systems. In addition to running concurrently with DOS, iRMX
for Windows can use both the DOS disk partition for its files as well as an
optional, separate iIRMX partition for users who prefer the advantages of
multi-user protection and longer file names offered by the iRMX file sys-
tem.

Note that you can edit and compile iRMX code on any PC platform that
runs DOS because the iRMX software development tools (described in
chapter 3) run under DOS as well as under iRMX. Normally, a program
that is built to run under one OS will not run under a different OS. The de-
velopment tools for iRMX, however, are an exception; an iRMX program
called run86, coupled with their internal use of a software layer called the
Universal Development Interface (UDI) allow Intel’s DOS-hosted develop-
ment tools to run under iRMX. You must, however, be running iRMX it-
self on a PC to actually run and test an iRMX application, but the rest of
the development cycle can be conducted under DOS without running
iRMX. ‘

Multibus I and Multibus II were initially developed by Intel as designs
for system buses. The designs have been adopted as open standards by the
IEEE and are used by a number of vendors in the design of computer sys-
tems. Like the various PC buses, the designs of these buses specify both the
physical dimensions of the circuit boards that can be used with them and
the mechanical and electrical parameters that must be matched for differ-
ent circuit boards to interact properly in an integrated computer system.
There is no standard ROM-BIOS for these two platforms, but to use iRMX
with them as a development system, the circuit board containing the CPU
must include code in ROM for bootstrap loading the OS from disk or a net-
work.?

2]SA, EISA, and MCA bus systems have the CPU, some memory, and various other circuits
on a motherboard, which also holds bus connectors for the other circuit boards that can be
installed in the system. Multibus I and Multibus II systems use a passive backplane to hold
the connectors for all the circuit boards, including the one that holds the equivalent of a
motherboard, which is called a Single Board Computer (SBC). With a passive backplane you
can change CPUs by exchanging SBCs, and you can even have more than one SBC in the sys-
tem. Processors in a multi-SBC system can share memory, and with Mulltibus II they can
pass messages among themselves efficiently. Each processor in a multi-SBC system runs its
own OS.

2aIntel introduced a version of iRMX too late to be included in this book that runs on an AT
platform without requiring DOS to be present.
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2.3 Logging on to an iRMX System

Actually logging on to an iRMX systems is easy: just enter your user name
at the 1ogin: prompt and your password at the password: prompt. Get-
ting those prompts to appear, however, might not be as simple as on other
time-sharing systems with which you are familiar!

If you are running iRMX for Windows on a PC, you must run rmxtsr and
loadrmx, either from the DOS prompt or from a batch file such as
autoexec.bat. Then, press <alt/SysRq> to bring up the login screen
from the DOS prompt. This hot-key technique for accessing iRMX works
only from text screens on the DOS side. To access iIRMX from Windows,
which is a graphics application, start the wterm application that comes
with iRMX for Windows (by double-clicking the icon), and select the
[Wterm, Connect] menu options. Note that some early versions of wterm
require you to click a few “OK” buttons to get to the iRMX login screen.
Winterm a commercially available terminal emulator from Marketfield
Software, Oyster Bay, N.Y., can be used in place of wterm. Winterm offers
more features and generally performs better than wterm.

If you are working with a Multibus I or II platform rather than Windows,
just powering up the system should produce the login screen on all the ter-
minals attached to the system.

If a terminal attached to the computer doesn’t invite you to log in, there
are two possibilities:

First, the system might not be configured to recognize the terminal as a
login terminal. For example, it is often convenient to have a terminal at-
tached to a system reserved specifically for debugging programs inter-
actively. SoftScope, the interactive debugger, allows a developer to use
such a terminal for its own interactions with the user so that debugging
commands and responses do not interfere with the appearance of the pro-
gram being debugged, which continues to interact with the user’s login ter-
minal.

Second, the system might be configured to recognize the terminal as a
static login device, which means that a user gets automatically logged in to
the system on that terminal at power up. For iRMX for Windows, a “termi-
nal” might be either a separate terminal attached to the system through a
serial port or the PC’s own keyboard and monitor, referred to collectively
as the system console.

If you do not have an account on the system yet, you can probably log in
with the user name “world,” which is normally valid on all iRMX systems.
There is usually no password for “world,” so just press <Enter> when
prompted for the password.?

3iRMX does not distinguish between uppercase and lowercase letters in commands and file
names, similar to DOS, but unlike Unix. You can log in as “WORLD,” “world,” or “World,”
and it’s all the same on iRMX. The one exception to this rule is your password, which must be
entered using exactly the same alphabetic case(s) as when you set it up.
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2.4 Entering Commands

When you first log in, some commands will probably be executed automati-
cally by a mechanism like the DOS autoexec.bat file or the Unix
.login file. You will then interact with a program called the Command
Line Interpreter (CLI, pronounced ‘“klee”), which reads your commands
from the keyboard and runs them. The CLI is equivalent to the DOS
and Unix shell programs, command.com and /bin/sh, respectively. The de-
fault CLI prompt string is a hyphen, but iRMX> is used in the examples
throughout the book. A reference number that would not be typed by the
user is also used at the end of command lines in the examples. For example,
command line [1] represents a simple dir command entered by a user in re-
sponse to a CLI prompt. (The dir command lists the names of the files and
directories in the current directory.)

iRMX> dir [1]

You can correct typing mistakes on a command line before you press
<Enter> by using the typical editing keys:

®» <backspace>, <delete>, or <rubout> (depending on your key-
board), which erases the character to the left of the cursor.

® The left and right arrow keys, which move the cursor within the com-
mand line so you can edit it.

®» <AF>, which erases the character under the cursor.
® <AA> which erases all characters from the cursor to the end of the line.
m <esc>, which enters the command exactly as it appears on the screen.

m <Return>>, which erases from the cursor to the end of the line and then
enters the command.

<&> at the end of the line, which continues long commands on more
than one line. If you use <&>, you will see two asterisks as the prompt for
continuation lines.

The CLI command history mechanism allows you to recall previous
commands for editing and entering. Press the up and down arrow keys to
move up and down through the list of previous commands. Alternatively,
you can type <!> followed by the first few letters of the command you want
to recall, and the CLI will search back for the last command that started
with those letters. This mechanism is very similar to the Unix tcsh com-
mand history mechanism, and similar in concept to the DOS 5.0 doskey
facility.

There are several other special keys, some of which can cause problems if
pressed inadvertently. For example, <4 s> is used to stop all output (so it
doesn’t scroll off the screen), and you have to type <+ Q> to allow output to
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resume. <AW> causes console output to stop every 20 lines or so. Press
<AW> to display the next 20 lines. If your terminal seems frozen, it’s possi-
ble you pressed <+ s> or <AW>. Pressing <+ Q> twice will clear most such
problems. The iRMX Command Reference, volume 10 of the iRMX for
Windows documentation set, includes a list of all the special key combina-
tions you can use in its first chapter. The corresponding manual for other
versions of iRMX is called the iRMX Operator’s Guide.

The CLI can process two types of commands: CLI commands and HI
commands. CLI commands are those recognized and processed by the CLI
itself. HI commands are loaded into memory for execution from files.

2.4.1 HI commands

HI commands are the more commonly used commands. These commands
come from a variety of sources. Many are supplied with the system and are
known as system commands. A set of commands known as utilities, or
Commonly Used System Programs (CUSPs) comes from Intel, the iRMX
user’s group called iRUG, and others.* The distinction between system
commands and Intel-supplied utilities can sometimes be obscure, with a
command distributed as a utility at one time being promoted to system
command status in a later release. A third set of commands is placed in the
category of development tools, which includes compilers, linkers, debug-
gers, and the like. Finally, HI commands also include those programs that
you have developed.

The HI commands are fully documented in the iRMX Command Sum-
mary or iIRMX User’s Guide manual depending on the iRMX version. In
addition, an iRMX help command displays information about most HI
commands. (The DOS rmxhelp command can help you when you are using
iRMX system calls, which is a different matter.)

~ For a quick look at most of the names of the HI commands available on
your system, type the following commands:

iRMX> dir :system: [2]
iRMX> dir :utils: [3]
iRMX> dir :lang: [4]

Command line [2] lists the names of the system commands, line [3] lists
the names of the utilities, and line [4] lists the names of the development
tools. Note that since dir is itself a system command, you should see its
name in the first list of files.

4iRUG originally began as the iRMX user’s group but has expanded its purview to “all real-
time systems based on Intel microprocessors.” iRUG can be contacted by calling (800) 255-
IRUG (255-4784).
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Whenyouenteran HIl commandline, the CLIpassesitontothepartofthe
OS called the Human Interface (that’s why they are called “HI Com-
mands”’), which, in turn, searches standard parts of the disk until it finds the
file that contains the program, loads the program into RAM (using a part of
the OS called the Application Loader), and causes it to start executing.

iRMX command lines have a standard format, consisting, from left to
right, of the command name (the name of the file containing the program to
run), aninputpathlist,’apreposition,an output pathlist,and aset of parame-
ters. If parts of a command line are omitted, default values are usually as-
sumed, which often provide a single command with a number of different,
but related, functions. Consider the system command, copy, for example.

iRMX> copy filel to file2 [5]

Here, the input path list is the name of one file, filel, the prepositionis
to, and the output path list is the single file named f£ile2. No parameters
arespecifiedin thisexample. As youwould expect, the command will createa
new file,named £ile2, by copying filel.If file2 already exists, the user
will be prompted whether toreplace it or not. Changing the preposition from
totoover suppresses that prompt, and any existing filenamed file2 isre-
placed automatically. The only other prepositions used by iRMX com-
mands besides toand over areafter and as. Changingtotoafterinthe
example would cause £ilel to be appended to the end of file2. The as
preposition cannot be used with the copy command. (In fact, purists claim
that asisnotatrueiRMX prepositionbecauseitisnot recognized automati-
cally by the normal iRMX command line parsing routines.)

Now let’s experiment with input and output path lists. The itemsin apath
list are separated by commas, so the input and output path lists in the follow-
ing example consist of three file names each:

iRMX> copy filel, file2, file3 to filea, fileb, filec [6]
For this example, filel is copied to filea, file2 is copied to fileb,
and file3iscopiedto filec.Itispossibletonot matchthe numberofinput
and output lists evenly, provided the command makes sense. For example,

the command

iRMX> copy filel, file2, file3 to filea [7]

5A distinction exists between file names and path names. See the section on file manage-
ment later in this chapter for more information.
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wouldcopy fileltofilea,thencopy file2 after filea,and £ile3 after
that, resulting in the concatenation of the three input files in the single out-
put file. The HI shifts the preposition from to to after automatically.

If you omit the preposition and output file list, when using the copy
command the input files are copied to the terminal screen. (You cannot
omit the input file list from a copy command, but you can for many
other commands.)

For an example of a command line parameter, consider the following:

iRMX> copy filel, file2 to filea, fileb query [8]

Youcantellthat queryisaparameterbecause thereis nocommabetween
it and fileb. Commas separate items in the input and output path lists,
while spaces separate path lists from the preposition, the output path list
from the parameters, and the parameters from each other. The queryparam-
eter causes copy to prompt you for permission before copying each file.

Wildcards are supported for input and output path lists. An <*> substi-
tutes for any zero or more characters in a file name, and a <?> substitutes
for any single character. Examples of wildcards are shown in Section 2.5,
File Management, below.

The CLI also supports redirection of console input and output using the
‘<’and >’ characters, respectively. iIRMX uses the terms console input and
console output as well as these redirection characters the same way that
DOS and Unix manipulate what they call standard input and standard
output. Commands that normally accept input from the keyboard and pro-
duce output on the screen can have files substituted for these devices using
‘<’ and >’. Console input redirection cannot be illustrated using copy be-
cause it does not take input from the keyboard, but you have already seen
that copy uses the screen as the default output device if no preposition and
output path list are specified. Thus,

iRMX> copy filel > file2 [9]

has the same effect as line [5]. If you understand that the input path list
and console input are different, and that the output path list and console
output are also different, you should see that lines [5] and [9] are accom-
plishing the same command two totally different ways. For instance, you
could not substitute >’ for to in line [6] (copying three files to three other
files) because it makes sense only for a single file name to follow the <’
character.

Although a standard format exists foriRMX command lines, this format
is not always followed. Processing the command line according to the stan-
dard format is something that must be done by the program itself, and not
all commands need all parts of the standard line. The HI provides system
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calls to do most of the parsing for a program, but some programs prefer not
to use the HI routines but rather work with another syntax for the com-
mand line for one reason or another. In particular, programs written in the
C language normally treat the command line as a list of words separated by
spaces rather than commas, and no notion of input list, preposition, output
list, or wildcards exists. For example, a standard C program would read the
command line

iRMX> mycommand filel, file2, file3 [10]

as a line with three command line arguments after the command name
(each one a character string that has a comma at the end), but it would read

iRMX> mycommand filel,file2,file3 [11]

as a command name followed by a single argument, because there are no
spaces following the commas. A standard iRMX program using the HI
parsing routines would read both as lists of three file names because the HI
parser ignores the spaces after the commas in line [10].

2.4.2 CLI commands

CLI commands are executed directly by the command line interpreter.
These commands support eight different features: history, CLI parame-
ters, aliases, background processing, command files, super, and log off.
This section describes these classes of CLI commands. They are fully docu-
mented in volume 10 of the iRMX for Windows documentation set, the
iIRMX Command Reference (called the iRMX Operator’s Guide for some
other versions of iRMX).

History commands. As you type in commands at the i RMX> prompt, the
CLI stores them in an internal list so that you can reuse them later. You
can see this list by typing the history command, and you can recall previous
commands by either using the up and down arrows to scroll through the
history list, or using the <!> character to recall previous commands. A
command line that starts with <!> followed by either a number or a few
characters causes the CLI to recall either the command with the matching
number (the history list provides the numbers) or the most recently en-
tered command that started with the same few characters.

CLI parameters. The CLI maintains a number of parameters about the
user’s session. These parameters include the user’s prompt string, how
much space to reserve for the alias table (described next), and what type of
terminal is being used. You can add special features to the CLI, such as
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automatically timing the execution of all HI commands, and the CLI will
display parameters for these added features, if they are present, as well.
The set command is used to modify the CLI’s parameters, and if no argu-
ments are used, set displays the current values of all its parameters.

Aliases. Aliases let you define abbreviations for commands. This can be
useful for either reducing typing time (some of the iRMX command names
are very long), or for customizing the iIRMX system to recognize the com-
mands you are accustomed to using on another system. For a combined ex-
ample, consider using the alias cd for the name of the iRMX attachfile
command, which is roughly the same as c¢d in both Unix and DOS. iRMX
aliases can take arguments, as this example illustrates:

iRMX> alias cp = copy #0 to #1 query [12]

After entering this alias, the following command could be used to copy
two files, with a prompt for confirmation before each one is copied:

iRMX> cp filel,file2 filea,fileb [13]

As you might infer, #0 and #1 in the alias are place holders for the argu-
ments that are specified on the command line when the alias is actually
used. Note that there are no spaces between the file names on the cp com-
mand line. The significance of this is that alias substitution uses spaces to
separate the command line into the parameters, #0 and #1, so the entire
string, filel, file2 issubstituted for #0,and the string filea, filebis
substituted for #1. The embedded commas in these strings then signify
lists of file names for the copy command.

Background processing. The CLI lets you run more than one program at a
time. Any HI command line can be preceded by the CLI command back-
ground, and the CLI will start the command running and return with a
prompt for another command to be run at the same time as the first. The
jobs command lists all background commands currently running, and the
kill command aborts background commands. There is a standard alias for
background, which is bk.

The subject of background processing raises the issue of iRMX’s mem-
ory management policies. Like DOS but unlike Unix, iRMX does not in-
clude support for virtual memory. Therefore, all programs you want to run
simultaneously must be loaded into memory in their entirety at the same
time. This strategy is good for real-time systems that cannot afford the un-
certainty in execution time associated with demand-paging algorithms.
However, this strategy can become a problem when you run certain pro-
grams in the background, such as compilers, that ask the OS to allocate as
much memory as possible to themselves when they first start running. The
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more memory a compiler can get, the faster it can run, but the less memory
is then left for running other commands at the same time.

The background command lets you specify both the minimum and maxi-
mum amount of memory a program can have available as it runs in the
background. You might set the minimum high enough to get just accept-
able performance from a program, and set the maximum low enough to en-
sure the program does not occupy too much memory and leave you without
enough memory to do anything else. For example, the command

iRMX> background(450,1024) plm386 myprog.plm [14]

specifies that the PLM compiler is to run with a minimum of 450 kilobytes
(KB) of memory and a maximum of 1 MB (1024 KB). Because the compiler
can run with as little as 380 KB, the command guarantees that the com-
piler will not start unless enough memory exists to give the compiler what
the user considers to be acceptable performance. At the same time, the
compiler is not allowed to use more than 1 MB, presumably because the
user knows that enough memory is available beyond 1 MB to allow other
commands to be run at the same time.

If you entered line [14] as shown, the system would ask you for the name
of a log file. Background commands cannot read or write from or to the op-
erator’s console because doing so would interfere with the use of the con-
sole for normal commands read by the CLI. The CLI thus asks for the name
of alog file to which all console output will automatically be sent as the pro-
gram runs in the background. You can view the contents of the log file as
the background command is running if you want to track the progress of
the command. The skim utility is a convenient way to display text files on
the screen.

If a background command tries to read from the console input device
(the keyboard), the command will be aborted. You can use ‘<’ and >’ on
the command line to redirect console input and output from and to files. If
you redirect console output, you will not be prompted for the name of the
log file. Below is an example of an interactive program named interact that
runs in the background. The input the program reads comes from a file
named input.data, and the output is redirected to interact.log:

iRMX> bk interact < input.data > interact.log [15]

Command files. Command aliases can reduce the typing needed to enter
a single command; command files can extend this concept to sequences of
commands. Use an editor to put the commands to be executed into a text
file, and issue the CLI’s submit command with the file name as an
argument. If the command file name ends in .CSD you can omit that

Command files are often called submit files because they use the submit command.
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part of the file name. You can supply arguments to the command file by
enclosing a parameter list in parentheses on the command line and
referring to them as %0, %1, . . . %9 inside the file. For example, sup-
pose the file doit.csd contains the following text:

copy %0 to %1
delete %0 query

This command file might be invoked using the following command line:
iRMX> submit doit(filel, file2) [16]

In this case, filel would be copied to file2 and then would be deleted
after the user confirms the file deletion.

Command files can contain CLI commands, including other submit
commands, alias commands, background commands, and the like. A useful
strategy is to make submit the object of a background command. Chapter 3
provides such an example after some of the program development tools
have been introduced.

iRMX command files are different from DOS batch files and Unix shell
scripts primarily in the way they are invoked. DOS knows that a file is a
command file by its .BAT extension, and Unix knows the same thing by
looking at the state of the file’s execute permission bit. iRMX lets you use
any file as a command file, but you need to type submit (or a brief alias for
submit, such as s) on the command line.

Below is an alias for a command called do that will submit the command
file named makeit.csd and pass three arguments to it:

iRMX> alias do = submit makeit (#0, #1, #3) [17]
With this alias in place, you can save typing by entering the command

iRMX> do myprog compact debug [18]
which would be equivalent to the command

iRMX> submit makeit (myprog, compact, debug) [19]

Although submit is a CLI command, there is also an HI command by the
same name that comes with the system. The HI submit command operates
the same as the CLI version, except that it does not recognize CLI com-
mands within the command file. The HI command version of submit is
useful to use from within the editor or debugger. These programs allow you
to run HI commands without exiting the program; however, they use their
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own command line interpreters, which can run only HI commands, and not
CLI commands.

Another HI command, called esubmit, is also supplied with iRMX. It not
only supports the standard CLI commands within command files, but also
supports conditional execution of commands based on the results of earlier
commands. An example of an esubmit command file is shown in chapter 3.

When you first log on to an iRMX system, a command file named
:prog:r?logon is automatically submitted. (File names, and the file sys-
tem in general, are described in the next section.) You can edit this file to
contain any commands you want. Most users’ r? 1ogon files contain sub-
mit commands for files consisting of alias commands that set up shorthand
command names. There are usually two of these alias files submitted, one
that is the same for all users on a system, and one that is unique to each
user.

In addition, whenever an iRMX system is first started, the file :con-
fig:r?init is automatically submitted as a command file. The com-
mands in this file usually establish system-wide values, such as the sys-
tem’s network node name. A particularly important file submitted from
:config:r?initis :config:loadinfo, whichloadsprogramsthat run
while the operating system is running, including layers of the operating
system itself.”

Super. Every user of an iRMX system is assigned a unique ID number be-
tween 0 and 65,535. The file system uses these ID numbers to provide a
basic protection mechanism for controlling one user’s access to other
users’ files (discussed in the next subsection). The ID number 0 belongs to
the Super user, who can read or change the access rights for any file on the
system. The CLI’s super command permits a user to gain Super user status.
There is also a super HI command for use when commands are processed
by a nonstandard command line interpreter, such as from within the editor
or debugger. Both the CLI and the HI super commands use the command
exit to leave Super-user mode.

Logging off. Use the CLI’s logoff command to end a time-sharing session.
The file :prog:r?logoff, if it exists, will be submitted as a command
file, and the logon: prompt for the next user will appear. If the terminal is
configured for static logon rather than the usual dynamic logon, the static
user will automatically be logged back on after submitting r?logoff£.
Table 2.1 lists all the iRMX files accessed when the system starts run-
ning and when users log on and off. The files that have names beginning

7At the time of publication, 1oadinfo is used only with iRMX for Windows and iRMX III
systems.
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TABLE 2.1 Text Files Accessed When an iRMX System Starts Running,
When Individual Users Log On or Off, and When the C Language getenv()

Function is Called.

File name

Purpose

:config:rmx.ini
sconfig:r2init

:config:loadinfo

sconfig:terminals

tconfig:logon.msg

:config:udf

:config:user/*

:config:termcap

:config:alias.csd
:configilang386.als

:config:r?env

:sd:user/*

iRMX for Windows systems only. Contains operating system
configuration parameters.

Contains HI commands that are automatically executed when
the system starts running.

iRMX for Windows systems only. Invoked by a command in
:config:r?init. Contains commands to install loadable
parts of the operating system, such as device drivers.

A list of devices to which terminals are connected for accessing
the system. The first line lists how many terminals I/0 lines
exist, and the succeeding lines list, for each line, the device
name of the terminal, an optional user name who is to be
logged onto the terminal automatically (static logon user), a
reserved field, and the type of terminal connected to the I/0
line. If no static logon user exists, the line is used for dynamic
logins in which users must supply their name and password to
access the system. If no initial program exists, the CLI is used.

Contains the text of the message displayed on a terminal while
the system waits for a dynamic logon user to log on.

User Definition File. User names, their encrypted passwords,
and their user ID numbers are contained here. Used to validate
login attempts. This file uses exactly the same format as the
Unix /etc/passwd file, so it can be shared among iRMX and
Unix systems in a networked environment.

The * represents a set of files, one per authorized user. The file
names match the user names in :config:udf. For each user,
the corresponding file in this directory tells the minimum and
maximum amount of memory the user is allowed to use, the
maximum priority for user programs, the pathname of the
user’s home directory, and an optional initial program name.

Contains information used by the CLI, the editor, the
SoftScope debugger (version III) and other programs to
determine how a particular user’s terminal handles moving the
cursor, clearing the screen, and other such control operations.
The CLI's set terminal command is used to select an entry
from this file that can then be accessed by all programs.

A set of CLI alias commands that are to be established for all
users who log onto the system. See :prog:r?logon below.

A set of aliases for running development tools. Submitted by
tconfig:alias.csd.

One of two files that are accessed by C programs to determine
the value of environment variables using that language’s
getenu() function.

The home directories for users. The * normally matches the
user’s login name, but the actual path is determined by the
contents of the user’s : config:user/* file. The home
directory contains another directory named prog that is
referenced using the logical name :prog: in the following
entries.
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TABLE 2.1 Text Files Accessed When an iRMX System Starts Running,
When Individual Users Log On or Off, and When the C Language getenv()
Function is Called. (Continued)

File name Purpose

:prog:r?logon Contains commands that are automatically executed when a
user first logs on to the system. This file normally contains
commands to submit :config:alias.csd and
:prog:alias.csd as well as other commands to tailor the
environment to the user’s preferences.

:prog:alias.csd The other set of alias commands in addition to
sconfig:alias.csd that are usually set up by a submit
command in prog:r?logon.

:prog:r?logoff Contains whatever commands a user wants executed
automatically each time he or she logs off the system.

:prog:r?env The second file that is used to resolve references to
environment variables using the C language getenv() function.

with :config: are normally managed by a system administrator, while
the files with names that begin with :prog: can be edited by individual
users to tailor the system to their own needs. Note that file names that
begin with r? (or R?) are invisible for normal directory listings. Use the
invisible (abbreviated i) parameter on the dir command line to see
these files. For example, the command line

iRMX> dir :prog: i [20]

lists the names of all files in the user’s :prog: directory, including invisi-
ble ones.

2.5 File Management

Al T/0 facilities of iRMX are provided by a layer of OS software called the
Basic I/O System, or BIOS. This BIOS is not the same as the ROM-BIOS
in a PC, although the iRMX for Windows BIOS makes some use of a PC’s
ROM-BIOS when accessing standard PC peripherals. More information
about the iIRMX BIOS, and the related EIOS, is provided in chapter 8. For
now, just remember that BIOS is a software layer of the iRMX OS.

2.5.1 File protection

Each iRMX file or directory has four protection attributes associated with
it. They are called delete, read, append, and update for files. For directories,
read is called list and update is called change to reflect the semantics of di-
rectories more accurately. The BIOS keeps the protection attributes for
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three different users of each file in a data structure called the file’s accessor
list. The three users are the file’s owner (the user who created the file), and
up to two others. User 0 (Super) has read access to all files, but to perform
other operations on a file, even Super must be either the owner or one of the
other two users identified in the file’s accessor list.

Your access rights to files can be displayed using the L (L.ong) parameter
of the dir command, or the E (Extended) parameter, which allows you to
look at the entire accessor list for the files. For example, to see the accessor
lists for all files in the :system: directory, type:

iRMX> dir :system: e [21]

A lot of output is generated from this command, including four or five
lines of output for each file. The first line for each file includes the name of
the file and the name of the owner of the file. The accessor list will appear
toward the right side of the output, in a section that might look like this:

ACCESSORS ACC
0 DRAU
65535 -R--

This list is from a file owned by the Super user, so the first accessor in the
list is 0, with ACCess rights of DRAU, which means delete, read, append,
and update. The second user in this list is 65,535 (0xFFFF), which is the
World user, who has only read access to this file. There is no third user.

Everyone who logs on to an iRMX system is given at least two user IDs,
one of which is unique to the individual and the other of which is always
0xFFFF. By giving read access rights for this file to user 0xFFFF, everyone
who logs on to the system can read the file without being added to its acces-
sor list. iIRMX, by the way, does not distinguish between reading a file to
copy it somewhere and reading it into memory for execution. Since the
sample accessor list is for a file that contains a system command, all users
must have read access to the file to be able to run it.

The reason accessor lists allow three user IDs is based on the Unix file
protection mechanism that provides independent access control for the
owner of a file, a named group of users, and all other users. IRMX does not
implement the notion of a named group of users, but users are assigned a
group ID number when they log in if one has been established for them in
the :config:udf file (see Table 2.1). The accessor list entries other than
the first can contain any user IDs the file owner desires, or can be unused.
There is no iRMX equivalent to the Unix chown command for changing
the first ID in the accessor list for a file or directory.

The entire notion of an accessor list applies only to native-mode iRMX
file systems. When iRMX is used to access the files on a DOS disk, it must
work within the constraints imposed by DOS itself, which does not support
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a file protection mechanism based on user IDs. Instet ad, iIRMX for Win-
dows just accepts all iIRMX commands concerning the iRMX protection
mechanism, such as permit, but treats all user IDs as iIRMX’s World user.
The issue arises again in the context of network access to file systems
managed by another operating system. For example, a Unix file system
does not differentiate between the iRMX append and update privileges
(Unix has a single privilege called write), and iRMX does not differentiate
between the Unix read and execute privileges (iIRMX has a single read priv-
ilege). These disparities are handled as transparently as possible, but the
result is not always exactly what the user expected.

2.5.2 The file driver concept

A design feature of the iIRMX BIOS is that all I/O devices look like files to
application programs. This is true whether the I/O device is a disk con-
taining real files, non-file devices such as terminals and printers, or devices
and files accessed over a network. We have already seen how this feature
provides good flexibility for application programs in the example that
showed input and output redirection using the CLI ‘<’ and >’ characters.
A program that normally reads input from the console keyboard and writes
its output to the console screen does so in the same way it reads and writes
files, so that substituting disk files for both the keyboard and the screen
devices is easy for the CLI to do without changing the program that does
the I/0 itself.

To accomplish this device independence, the BIOS uses a mechanism
known as a file driver. The iRMX file drivers are called physical, named,
stream, remote, and (for iRMX for Windows) EDOS. When the BIOS is
first informed that a particular device is to be used, the BIOS is also told
which file driver to use for that device. After that, all operations involving
that device are automatically filtered by the appropriate file driver. If you
attempt something that does not make sense for a particular file driver,
such as accessing a named file on a printer, the file driver will reject the re-
quest, after examining it, with an error message, E$IFDR, which stands for
“Illegal file driver function.” (iIRMX error-handling is introduced later in
this chapter.)

On the other hand, if you try to access a file located on another computer
system, the remote file driver will recognize the situation and automati-
cally negotiate with the remote system to read and write the file over the
network for you. More discussion on file drivers is provided in chapter 8.

2.5.3 Named files

The BIOS supports access to disk files by name using the named, remote,
and EDOS file drivers. The named file driver supports the native-mode
iRMX file system, the remote file driver supports any type of file system
that can be accessed over the network (iRMX, DOS, VAX/VMS, or Unix
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file systems), and the EDOS file driver supports MS-DOS file systems for
iRMX for Windows. In all three cases, the file system is a way of organizing
a disk volume to support a tree-structured hierarchy of directories and
files. The root of the tree is the root directory, which contains the names of
other directories and files. A particular file in the tree is uniquely identified
by its full path name, which consists of the names of all directories, starting
at the root, that must be accessed to locate the file. The </> character sep-
arates each directory level in a path name, so the path name /dirl/
dir2/filel refers to a file named filel in directory dir2, which is
listed in directory dirl, which is in the root directory. The character <>
can be used in a path name to indicate going up in the tree rather than
down, as is indicated with </>. For the tree structure shown in Figure 2.1,
the file file2 could be accessed using either the path name /d1/42/
file2 or /d3+d1l/d2/file2 (among others). Both DOS and Unix use
<..> to represent the same thing as iRMX’s <4>,

An iRMX directory is simply a file that contains a list of file and direc-
tory names along with an internal pointer to all the information known
about the file for each file name. The actual information about the file,
such as its size, its location on disk, and its accessor list, is kept in a sepa-
rate file (called the fnode file) rather the directory itself.

File names. iRMX file names and directory names can consist of up to 14
characters. No distinction is made between upper- and lowercase letters.
You can use just about any characters you want in file and directory names,
such as multiple dots, spaces, and the like. If you want to put wildcard char-
acters or special symbols inside a name, enclose the name, or the part con-
taining the special characters, in quotation marks.

For example, <2> is a special character in a file name because it nor-
mally acts as a wildcard substituting for any single character. To copy a file
named :prog:r?logon (the <?> is part of the file name) to another file

<root>

filel file2

Figure 2.1 Sample file system tree structure.
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named my logon file (note the two embedded spaces), you could enter
one of the following commands:

iRMX> copy :prog:r''?''logon to ''my logon file'' [22]
iRMX> copy '':prog:r?‘''logon tomy'' '‘logon'' ''file [23]

iRMX file names might or might not include an extension, which is a set
of characters following the last dot in the file name. However, several de-
velopment tools do create names of new files by changing the extension
part of a file name. For example, the editor normally saves the original
contents of an edited file in a file with the extension part of the name
changed to .bak. Editing a file named myfile.text results in the origi-
nal file being preserved as myfile.bak and the edited version of the file
being saved in myfile.text.

Because dots are part of the file name, *. * is different from * as a wild-
card specification. The former consists of all files that have names with
zero or more characters, followed by a dot, followed by zero or more charac-
ters. The latter refers to all files regardless of their names.

Hidden files are those that do not appear in normal directory listings.
This feature is normally used to reduce the clutter of directory listings
rather than for any particular security reasons. iRMX hidden files have
names that start with r? or, equivalently, R?. You can always view hidden
file names by using the i or invisible parameter to the dir command, as
mentioned earlier. The file named :prog:r?logon is an example of a
hidden file because :prog: is actually the path name for a directory (dis-
cussed in the next section), and the name of the file itself starts with r?.
DOS supports hidden files with its hidden file attribute, and Unix hides file
names that start with a dot.

Similar to file attributes, iIRMX file naming rules only apply to iRMX
file systems. If you access files from another OS over a network or use the
iRMX for Windows EDOS file driver to access MS-DOS files on a PC,
some sort of mapping must exist between the file names of the two systems,
which is never perfect. For example, MS-DOS file names cannot have <?>
in them, so the EDOS file driver drops the r? from hidden file names and
sets the MS-DOS hidden attribute for them. The EDOS file driver also
forces file names to conform to the DOS 8.3 rule (a maximum of 8 charac-
ters in the base plus a maximum of 3 characters in the extension) by short-
ening the base and extension parts of the file name as necessary. The
EDOS file driver totally rejects iIRMX file names that contain illegal DOS
characters, such as multiple dots.

Logical names. A logical name is an identifier for a device, remote com-
puter system, file, or directory. For now, our focus is on logical names for
directories. Logical names are normally written with colons around them
to distinguish them from regular file, directory, or device names, but the
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colons can sometimes be omitted when no ambiguity exists, for example,
when the only type of file that would appear somewhere is a logical name.
Logical names follow the same rules as file and directory names except that
they are limited to 12 characters between the colons, so that even with the
two colons they are never longer than file or directory names.

Two major reasons exist for having logical names. First they can save a
lot of typing. If you want to reference the files in the directory /user/
jones/projectl/source many times, for example, you could assign the
logical name :s: to the directory and refer to a file in it as :s:main-
prog.c instead of /user/jones/projectl/source/mainprog.c.
The command to set up logical names for files and directories is attachfile,
so the command to create :s: would be:

iRMX> attachfile /user/jones/projectl/source as :s: [24]

This is a case, by the way, where the colons around the logical name can
be left off. The identifier after the as in an attachfile command is always a
logical name, so the colons around s are optional.

Logical names are much more than just a convenience to save users typ-
ing time. They also contribute to increasing the speed at which disk files
are accessed. To locate a file with a long pathname, the BIOS must read
each directory in the path from disk into memory to find the location on the
disk of the next directory in the path. The BIOS then repeats the process
for each directory in the path until it locates where the file is stored. Each
disk access involved in processing a path name requires time, but the BIOS
saves the information about the disk location of the last item in the path
(either a directory or a file) when you set up a logical name, so the BIOS
does not need to repeat the search process again when the logical name is
used instead of the full path name.

Logical names for directories can always be used as the first part of a
path name. For example, the logical name : s : defined above could be used
to access a file named /users/jones/projectl/source/old/
first_ try.c by using the path name :s:01d/first_try.c. The sec-
ond form eliminates the time needed for disk accesses to the root directory,
to the users directory, to the jones directory, to the projectl directory,
and to the source directory when the file is first accessed. Furthermore, the
same overhead would be eliminated for accesses to all other files in
source.

Logical names for devices look just like logical names for files or directo-
ries, and the two are generally interchangeable. In fact, the logical name for
adisk device with a named file system on it can be used as a logical name for
the root directory of the file system. For example, : sd: is the logical name
for the system disk, the disk from which the OS was bootstrap loaded, so

:sd:dl/d2/filel is generally the same as /d1/d2/filel. The two
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forms do not always have identical meanings, however, which brings us to
the next topic.

Current and home directories. The current directory is that directory
which serves as the default when you specify a file name only without an
explicit path name before it. The logical name : $: always refers to the
current directory, and the current directory is changed with the HI com-
mand, attachfile. For example, to change the current directory to /user/
jones/projectl, enter the command:

iRMX> attachfile /user/jones/projectl as :$: [25]

This form of the attachfile command is so commonly used that as : $: is
the default for the preposition and output file list if nothing else is specified
on the attachfile command line. Most iRMX users set up the alias cd for
attachfile so that the same effect as [25] is obtained by:

iRMX> cd /user/jones/projectl [26]

The colons around <$> are almost always optional, since it is impossible
to start a file name with the <$> character. As a result, the names
:$:filel, $filel, filel,andeven ''$filel’ ' all refer to exactly the
same file. The HI path command displays the current path name of : $:.8

When you first log on to an iRMX system, the current directory is the
home directory that was assigned to you when your account was first set
up. The logical name for your home directory is : home :, and its position in
the file tree can never be changed. Thus, : $: and : home : are both logical
names for the same node in the file tree when you first log on. No matter
where you go with your current directory, you can always return it to your
home directory with the command:

iRMX> attachfile :home: as :$: [27]

This operation is so commonly done that the attachfile defaults to this
command when it is entered without command line arguments. Command
[27] is similar to the cd command in Unix, but not to the cd command for
DOS (which does what the iRMX path command does!).

The difference between the two path names used previously, :sd:d1/
d2/firstand /d1/d2/first,is based on the meaning of the </> at the
beginning of a path name, which always refers to the root directory of the

8DOS and Unix users should note that the iRMX path command is not the same as the
DOS and Unix path commands, and no corresponding iRMX command exists for the Unix
and DOS path commands.



48 Basics

file system that holds : $:. If you use the attachfile command to move : $:
to another disk, </> becomes the root directory of that other disk, but
: sd: remains the root directory of the system disk, normally the one from
which the OS was bootstrap loaded.

Other standard logical names. So far, I have mentioned the logical names
:sd:, :home:, and :$:. An essential difference between :sd: and the
other two is that every user who is logged on to a particular system is refer-
ring to the same location with :sd:, but each user has separate copies of
the logical names :home: and :$:. Logical names that are the same for
everybody, like :sd:, are called system logical names, and logical names
that are different for each user on the system, like :home: and :$:, are
called user logical names. Examples of system logical names include the fol-
lowing:

sd: The system device or the root directory of the system device.
:system: The directory that contains the HI system commands.
sutils: The directory that contains utility programs.

:util286: On iRMX for Windows and iRMX III systems, the directory

that contains utility programs that run under iRMX II, iRMX
III, or iRMX for Windows.

:lang: The directory that contains the development tools.

:config: The directory that contains certain configuration information
needed by the HI, including the User Definition File (UDF) that
contains users’ passwords, the terminals file that identifies
static and dynamic logon terminals, and the r?init file that is
submitted when the system is initialized. This directory also
contains the loadinfo and rmx.ini system initialization

files on iRMX for Windows and iRMX III systems.

rmx: A directory that contains operating system-dependent files.
For iRMX III and iRMX for Windows, this directory is
:sd:rmx386.

:bb: A pseudo-device that discards all information written to it and

that always returns an end-of-file indication when read from.
The name is an abbreviation for byte bucket. The device is sim-
ilar to Unix /dev/null and DOS nul devices.

The standard user logical names are the following:

:home: The user’s home directory, which can never change.

:$: The current working directory. It can be changed with the attach-
file command.

:prog: The same as :home:prog. The directory containing the user’s

r2?logon and r?logoff command files. The name is meant to
suggest that this is the proper directory for keeping executable
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copies of utility or application programs that the user has devel-
oped.

tciz The user’s console input device. Normally the terminal or com-
puter keyboard, but can be redirected to a file or other device using
‘<.

:co: The user’s console output device. Normally, this is the terminal or
computer screen but can be redirected to a file or other device using
‘>’.

:term: The user’s error output device. Same as : co:, but cannot be redi-
rected.

Use the logicalnames command to display all the logical names defined on a sys-
tem. Include the long option on the command to see what each logical name repre-
sents. The alias logs is normally defined for the logicalnames command to save typ-
ing.

Search path list. The search path list is the list of directories that the HI
searches to find a file containing a command to be executed. This list is es-
tablished when the system is set up, and it cannot be changed by users.
Thus, all users on an iRMX system must use the same search path. The
normal search path list for iRMX for Windows is the sequence of logical
names:

:prog:
sutils:
tutil286:
ssystem:
:lang:
S5

Irmx:

The search path list mechanism can be both convenient and disconcert-
ing. It is convenient, for example, if you develop a program named copy and
place it in your :prog: directory. You can run it by typing

iRMX> copy a to b [28]

The HI will find your version of copy to execute before it finds the normal
iRMX copy command because :prog: comes earlier than :system: in
the search path list. A system administrator could achieve the same result
for all the users on a system by putting a local version of a system command
in the :utils: or :util286: directory.

The HI uses the search path list only for command lines that do not in-
clude an explicit path name for the file containing the command to be run.
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For example, if you have your own version of copy in : prog: but want to
use the standard version that is in : system:, use a command line like the
following:

iRMX> :system:copy a to b [29]

If the first character of a command line is <:>, </>, <A>, or <$>, the
HI recognizes that an explicit path name is being used and ignores its
search path list and goes immediately to the specified file to get the com-
mand to be executed. You can use an alias to make an HI command start a
little faster by specifying an explicit path name in the alias. For example,

iRMX> alias cd = :system:attachfile [30]

The search path list mechanism can be disconcerting, however, if a file
with the same name as a command that you want to execute is in one of
the directories in the HI search path. For example, if you create a text
file named copy in your :prog: directory and then issue a copy command,
the HI would find your text file in :prog:copy and try to execute it. The
command would “mysteriously” fail because the text file named copy is
not an executable program. The error message you would get would be:
ES$BAD HEADER, while loading command, which means that the first
part of the file (the header) was not in the proper format to be treated as an
executable file.

Another disconcerting phenomenon occurs when an installation uses a
different search path from the one previously given.? For example, consider
what happens if :utils: comes before :prog: in your system’s search
path list and you develop a program that happens to have the same name as
a utility command that you didn’t know about. The first time you test your
program you will actually run the utility with the same name. You can lose
a lot of time trying to understand why your program is doing things you
never coded into it!

One last point while we are discussing the HI command search mecha-
nism: there is no rule about naming executable files differently from other
files. If you put an executable program in a file named myprog . exe, then
the name of the command is myprog.exe, not myprog, or anything else. The
HI always looks for an exact match between the name of a command and a
file name.

9iRMX for Windows does not support a search path other than the one given above. A dif-
ferent search path can only be set up for systems that can be reconfigured using the ICU.
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2.5.4 Using floppy disks

Floppy disks are good for saving copies of your work and distributing files
to other people, so learning how to use them with iRMX has practical ad-
vantages. Using floppy disks also introduces you to some fundamental I/0
concepts that are developed further in chapter 8.

Before any device can be used with an iRMX system, someone must
create a device connection that gives a logical name to the device. Many
device connections are automatically created when a system is first
started, such as : sd: mentioned above. The attachdevice and detachdevice
commands can be used to create and delete device connections and are the
usual technique for handling the device connections for floppy disks.

The attachdevice command requires you to specify the name of the de-
vice, the associated logical name, and the name of the file driver to be used
with the device. Device names are sometimes called physical names, or
DUIBs (pronounced “doo-ib”), because they are the names of BIOS struc-
tures called Device Unit Information Blocks. iRMX for Windows and
iRMX III support a command called physnames that can be used to obtain
information about the DUIBs available on a system.

Touse DOS diskettes from iRMX for Windows, you must use the EDOS
file driver and the device names a_dos and b_dos to refer to the PC’s A:
and B: drives. If you booted DOS from the C: drive, c_dos would have
been attached as : sd: when iRMX started running. A typical attachdevice
command would be

iRMX> attachdevice a_dos as :a: edos [31]

If you are running iRMX for Windows and only using DOS-formatted
diskettes in your system, this command needs to be issued just once, from
either a user’s r?1ogon file or from the system’s :config:r?init file. A
diskette must be in the drive when this command is issued for the com-
mand to work.

iRMX has its own way of formatting diskettes, however, that are advan-
tageous for users who want longer file names and the security of the file
protection mechanism that DOS cannot provide. These are the same ad-
vantages that might prompt you to install an iRMX-formatted partition
on the hard drive of an iRMX for Windows system, by the way. Of course,
pure iRMX systems must rely on the native iRMX file system, although
that system is flexible enough to allow iRMX users to import and export
DOS diskettes by using some utility programs.

Using iRMX diskettes is a more involved process than using DOS disk-
ettes under iRMX for Windows, but understanding the process helps lay
the groundwork for a deeper understanding of how the entire I/O system
works.
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First, there are dozens of floppy disk DUIB names to choose from when
doing an attachdevice for an iRMX floppy diskette, depending on the size,
density, and format of the diskette, as well as on which particular hardware
controller (and thus, which computer platform) is being used for the drive
itself. Knowing which device name to use can be a bit of a challenge. You
can use the physname command to list the DUIBs on a system, but you
have to know the meanings of the fields in a DUIB to decide which one is
correct for your needs. For iRMX for Windows, the list is in Appendix A of
the iRMX for Windows iRMX Command Reference. For other versions of
iRMX, the list is in the documentation for the attachdevice command it-
self, which is in the iRMX Operator’s Guide. Below is an example of an
attachdevice command for a 3.5” 1.44 MB floppy disk located in the A:
drive of a PC:

iRMX> attachdevice amh as f named [32]

After line [32] has been entered, both the device connection and the root
directory of the iRMX file system on the floppy disk will be known as : f:.
You could type

iRMX> dir :f: [33]
to list the names (files or directories) in the root directory of the floppy, or
iRMX> copy * to :f: [34]

to copy all the files in the current directory to the root directory of the
floppy. Line [3 4] might not do exactly what you want, though, because copy
will treat any subdirectories in the current directory as files. You will end
up with a file rather than a subdirectory on the floppy with the same name
as the subdirectory, but without the contents of the subdirectory on the
floppy. The file with the name of your subdirectory will be a data file that
contains the names and fnode pointers for the files in your original subdi-
rectory. If you want to copy directories and subdirectories, you must use
the copydir command instead of copy.

To delete a device connection, use the detachdevice command, which
simply needs the logical name, with or without colons, as an argument. For
example:

iRMX> detachdevice £ [35]

Now for the messy part. Every time you remove an iRMX-formatted
diskette from a drive and insert another one, you must do a detachdevice
command and another attachdevice command, even if the two diskettes are
formatted exactly alike and even if all the files on the first diskette were
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properly closed before removing it. If you don’t do this, all the information
on the second diskette will be destroyed the first time you write to it. The ex-
planation for this unusual (to put it mildly) behavior illuminates a design
philosophy of iRMX nicely.

The iRMX BIOS improves diskette performance by keeping certain
housekeeping information about the file system in RAM rather than going
to the disk to get the information each time the diskette is read or written.
It continues to use this information from memory until the device is de-
tached. Thus, accessing the second diskette without detaching the first
causes the BIOS to update basic file system information for the second one
incorrectly. If the second diskette is write-protected, it will not be dam-
aged, but you will not be able to read from it correctly until you detach and
reattach the device.

You do not have to do this procedure with DOS diskettes, even if they are
accessed from the iRMX side of iRMX for Windows, because DOS always
assumes a diskette has been changed when you access it and re-reads its
housekeeping information from the diskette every time it is accessed.
iRMX for Windows users will encounter the same overhead when access-
ing DOS disks because the EDOS file driver uses DOS I/0 routines to do
the actual disk I/0.

It is not always this way for iRMX. All 8-inch diskette drives and most
early 5.25-inch diskette drives had a contact switch in the door that sent a
signal to the processor whenever someone opened the drive door to change
diskettes. When this switch is present, iRMX detaches and attaches the
device automatically. Most 5.25-inch and 3.5-inch drives today, however,
don’t generate this signal, so the process must be done manually when
using the drives. Rather than degrade the speed of the system’s floppy disk
system, the designers of the iRMX I/O system placed the burden on the op-
erator to use the system correctly. Other systems are willing to sacrifice
performance to provide a more user-friendly environment.

The flexibility of the iIRMX I/O system should not be overlooked in this
context. One reason there are so many DUIBs for floppy disks, for exam-
ple, is that they are easy to create. Adding a new DUIB to a system, such as
to support a different number of sectors per track, simply involves loading
a device driver with the correct parameter values when an iRMX for Win-
dows or iIRMX III system initializes. For systems that support configura-
tion using the ICU, the process consists of filling in a few menu screens and
then building a new copy of the OS. The entire ICU configuration process
can be completed in 15 minutes.

2.5.5 Accessing network files

This section assumes you have access to a local area network that supports
ISO transport layer connectivity. Examples include Intel’s OpenNet for
iRMX, Xenix, Unix System V, VAX/VMS, and DOS. OpenNet uses ISO
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standard protocols to pass messages among file servers and consumers.
The messages themselves follow Microsoft’s Server Message Block (SMB)
format, so the list of compatible systems might expand if other vendors
choose to follow these standards for their networking products. Internet-
working with Transmission Control Protocol/Internet Protocol (TCP/IP)
can be accomplished by connecting through Unix systems, and direct sup-
port for TCP/IP under iRMX is being developed by Intel at the time of this
writing.

Because the iRMX for Windows EDOS file driver allows iRMX users
and programs to access DOS peripherals, users running a Novell network
on a PC with iRMX for Windows can access network drives from the
iRMX side the same as they access local DOS disks. Chapters 11 and 12
provide information about network programming, as well as more infor-
mation about internetworking with TCP/IP and Novell networks from
iRMX systems. The following material applies to the use of the OpenNet
networking facilities for iRMX, called iRMX-Net.

The remote file driver makes it as easy to access files across a network as
on the system you are logged in to. It may be a bit slower, but it is just as
easy. The process is just like using a floppy disk: issue an attachdevice com-
mand to create a device connection to a remote system and to give that
connection a logical name. Then, use that logical name just like any other
logical name as the first part of a path name.

To issue the attachdevice command, you need to know the name of the
remote system to which you want to connect, just as you had to know the
device name of the floppy disk in the previous section. The difference be-
tween DUIB names and network names is that you can see a list of avail-
able network names by using the netstat utility program, available from the
user’s group iRUG. You use the remote file driver for attaching over the
network:

iRMX> attachdevice systeml as 1 remote [36]

Assuming there is a computer currently up on the network that has set
its network name to systeml, line [36] will create the logical name :1:.
You can see what public directories that system has offered to the network
by giving a dir command

iRMX> dir :1: [37)

The directory you will see is analogous to the root directory of a disk vol-
ume. This directory is called a virtual root, and important differences exist
between a virtual root and the root of a disk volume. The first difference is
that you can never write anything to a virtual root directory over the net-
work. Only users logged on to the local system can change the contents of
that system’s virtual root directory, which is done by using the offer and
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remove commands. You can use the publicdir command to see your local
system’s virtual root directory.

The other difference between the two directories is that a virtual root di-
rectory can contain names for both devices and disk directories, and the
disk directories can come from different disk volumes or from different di-
rectory levels in a single volume. Assume that the following offer com-
mands have been executed on systeml:

iRMX> offer :f: as floppy [38]
iRMX>offer :sd:user/jones/projectl as projl [39]
iRMX>offer :sd:user as usr [40]

Assuming that a floppy disk has been attached with the logical name
: £:, line [38] lets remote users access the root directory of the floppy by
using the public directory name floppy. For example, the user who ac-
cessed systeml with the logical name :1: (line [37]) could copy a file to
the floppy with the command:

iRMX> copy myfile to :1:floppy/myfile.backup [a1]*®

Line [39] demonstrates the use of a subdirectory as a public directory.
Creating a public directory can be done either to save remote users the
trouble of typing long pathnames, or to restrict remote users to accessing
only parts of a disk’s file system. A remote user would not be able to access
the jones directory, for example, by referringto : 1:proj14. That is, you
can’t go up from an entry in a remote system’s virtual root directory. Line
[40] illustrates that there might be different directories from the same disk
in a virtual root, and, in this case, the path name :1:usr/jones would
refer to the jones directory.

OpenNet distinguishes between file consumers and file servers. In the
above examples, systeml was a file server, and the computer from which
the user issued the attachdevice command was a file consumer. In practice,
most OpenNet systems are configured as both servers and consumers
simultaneously, with the exception of pure DOS systems, which cannot be
servers without shutting out command processing for the local user. Net-
works like OpenNet that are based on systems acting as both file servers
and file consumers are called peer-based systems.

The flexibility of peer-based systems can be seen using an example. As-
sume that systeml and systemu are remote iIRMX and Unix computers
that have been attached with the logical names :1: and :u: by auserona
local system running iRMX for Windows. The following command could

10 Assuming that my £ile . backup is not the name of a directory, this is the first example of
a copy command that creates a file with a different name from the original file.
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be issued by the iIRMX for Windows user to copy files from the iIRMX sys-
tem to the Unix system:

iRMX> copy :1l:user/smith/*.txt to :u:usr/jones/*.bak [42]

Of course, this example works only if the iRMX for Windows user has
proper access rights to the directories and files on the two systems.

2.6 Printing Files

Printer support for iIRMX ranges from rudimentary to modestly rich. On a
single-user system with a local printer, you can print files by using copy
with the printer device as the destination. Of course, the device must be at-
tached first. On a network or multiuser system the situation must be more
complex to prevent multiple users from writing to the same printer at the
same time. Unix systems provide good print spooling facilities for control-
ling this situation. Thus, a Unix system on the network can be a good re-
source for managing shared printers. Some DOS systems support print
spooling as well. A print spooler for iRMX is also available from iRUG,
along with an rprint command used to send files to that spooler or to
Unix or DOS systems.

2.7 Remote Login

OpenNet supports logging on to a remote system through a mechanism
called Virtual Terminals (VT) available from Intersoft, Inc. in Lake Os-
wego, Oregon. An iRMX system must be explicitly configured as a VT
server to allow remote users to log on. Unix OpenNet systems, however,
normally act as virtual terminal servers by default. iRMX for Windows
systems are not configured to be VT servers, but a VT server can be started
after the system is loaded.

The vt utility command is used to gain login access to a remote virtual
terminal server. The only argument to the command is the network name
of the remote computer. When the access is successful, you will see the
logon: prompt from the remote computer, and you can log on as usual.
Logging off returns you to the remote system’s logon :prompt. To
break the connection and return to your local system, type the sequence of
characters, <cr><"><.><cr>. (That’s “tilde-dot” at the beginning of a
line.) Breaking the connection also logs you off the remote system if you
have not done so already.

The difference between working by remote login and using remote file
access is a matter of which computer runs your commands. Using remote

UThis is the first example of a copy command that shows the input path list and output
path list matching through wildcards. The example copies all of smith’s . txt files to files
with the same base name in jones directory, but with the extensions changed to .bak.
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file access, you could change your current directory to a directory on an-
other computer’s disk using the attachfile command, and copy, delete, and
otherwise manipulate files just as if they were on your own computer disk.
A copy command, however, is run on the local computer, and the files being
copied pass over the network to your computer on the way to their destina-
tion. That is, to copy a file from one remote computer to another remote
computer, as in the iRMX to Unix example in line [42], you must copy
the file over the network twice, once from the remote computer to the local
computer’s memory and again from the local computer to the remote com-
puter’s file system.

With remote login, commands are executed by the remote system. If you
do aremote login to a Unix system, for example, you must use cp, the name
of the Unix copy command, to copy files. If you were to copy files across
directories on the Unix system itself, the only information to travel over
the network would be the characters you type and the messages that appear
on your screen, not the actual files.

2.8 Error Conditions

Many things can go wrong when you run a command. iRMX provides a
mechanism called an exception handler to deal with these situations. An
exception handler is a subroutine that is called automatically whenever an
error is detected by either the hardware or the operating system. Errors the
hardware detects include arithmetic faults, such as division by zero, and
general protection (GP) faults caused by illegal memory accesses on the
80286 and above processors. Errors the OS detects are always associated
with system calls (subroutines in the OS called by application programs to
perform OS functions).

Whenever a system call detects an error, it generates a numeric condi-
tion code, also called an exception code, to identify the cause of the error.
The operating system passes that code to the subroutine set up as the ex-
ception handler. Application programs have complete control over which
routine handles exceptions, but the OS supplies a default handler, the sys-
tem exception handler, in case no other routine has been specified. For ex-
ample, the HI sets up its own exception handler for the commands it runs,
which is in effect unless the application overrides it with its own exception
handler. The HI exception handler always aborts any command that
causes an error after displaying a message on the console output device.

The term exception is used instead of error because it more accurately
reflects what is being detected rather than out of some need to use delicate
terminology. Some exceptions really are errors, such as passing an illegal
value as a parameter to a system call. But some exceptions are beyond the
control of the programmer, such as trying to write to a printer that is out of
paper. The exception handler mechanism lets programs deal with these
two classes of exceptions differently.
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Some configurations of iRMX are set up to use a monitor program as the
exception handler for errors detected by the hardware. A monitor is a de-
bugging facility that allows you to examine and modify registers and mem-
ory and to execute individual machine instructions. Some monitors are
implemented as software loaded with the OS or shortly afterward, while
other monitors are stored in ROM so that they are available as soon as
power is supplied to the computer. Using a monitor program as an excep-
tion handler can be valuable when you are debugging an application, but
for now it’s more likely that you will simply want to abandon the program
that caused the error and return to the CLI’s iRMX> prompt. You will
know when you are in the monitor program because it prompts for com-
mands with two dot characters (..), usually after displaying a message
about what the error was and the memory address of the machine instruc-
tion that caused the problem.

The command to exit the monitor is g, followed by an address. For iRMX
IIT and iRMX for Windows, use g284 :1c, while for iRMX II, g284:14
should work. iRMX I is a real-mode operating system (see chapter 5 for an
explanation or real and protected modes), so there are no hardware traps
that will take you into the monitor. iRMX for Windows can be set up to
either break to a monitor or abort a program that encounters hardware
faults. The choice is made by setting a parameter called DEH in the system’s
:config:rmx.ini file to true (OFFh) if faulting programs are to be
aborted, or to false (000h) if faulting programs are to cause a break to the
monitor.

A third type of error should be included here: those errors detected by an
HI command because of invalid input data. For example, if you provide a
compiler with a source program that contains syntax errors, the compiler
(which is an HI command) will detect the problem itself and issue a diag-
nostic message.

The question remains what an iRMX user can do when faced with an
error message from an exception handler, such as the HI’s, that contains
some cryptic string, such as 0021 : ESFNEXIST. The number is the condi-
tion code in hexadecimal generated by a system call, and the E$ stringis a
mnemonic name for that code. In this case, a File does Not EXIST. A com-
plete list of exception codes, their E$ names, and a brief statement of what
each one generally means is available to iRMX for Windows users through
the DOS rmxhelp command supplied with that system. All the information
available with rmxhelp is also contained in the iRMX System Call Refer-
ence manual, Volume 9 of the iRMX for Windows documentation set, if
you prefer to work from hard copy documentation.

If you get an error message when you run a command that someone else
programmed, it usually means you did something wrong. If you do not
know what the problem is from the exception code (and by reading the doc-
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umentation for the command!), you can only write down the message and
find someone who can help you. When running your own code during
iRMX programming, such messages will tell you that your application is
not yet fully debugged, and you will need to determine which system call in
your program generated the exception and then fix the problem.






Chapter

Developing an Application

3.1 Overview

Developing a real-time application involves two processes. The first is to
design the application to match the requirements of the project using the
resources available to implement it. The second is to construct the execut-
able code.

For an iRMX application, the design process includes deciding what
tasks are needed for the application and how the tasks will synchronize and
communicate with each other and the external environment. Later chap-
ters in this book present the resources that are available for implementing
real-time applications on iRMX systems. Formal or structured methodol-
ogies for designing real-time applications are outside the scope of this
book; the assumption is the design will be completed using either formal or
informal techniques and proceed from there.

Once the design of a real-time application has been completed, the sec-
ond goal of constructing executable code can begin, which is the subject of
this chapter. The executable code might be a Human Interface (HI) com-
mand that is loaded into memory from a disk file each time it’s run, it might
be a device driver that enables the OS to work with a new peripheral device,
or it might be a new set of system subroutines that will be built into the OS
and loaded with it when the system is initially bootstrap loaded.

Development is done in a cycle that includes editing, compiling, linking,
and testing stages. Errors can be detected at any stage in the cycle, at which
point the cycle returns to the beginning, the editing stage. At each stage a
development tool is used to transform a disk file in some way. These devel-
opment tools include text editors, compilers, linkers or binders (I do not
distinguish between these two terms), and symbolic debuggers.

Central to understanding the development process is the subject of pro-
gram modules, and an overview of the types of modules involved in the de-
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velopment cycle is presented below. The chapter proceeds with a discus-
sion covering types of modules and disk files involved in developing code.

3.1.1 Program modules

The types of modules used in developing applications are called source, ob-
Ject, and loadable modules. A source module is an ASCII text file produced
by a text editor. An object module is the machine language representation
of a source module that a compiler or assembler produces. Each run of a
compiler accepts exactly one source module as input and produces exactly
one object module for output. Most compilers allow pieces of source code,
called include files, to be inserted into a source module during the compila-
tion process. An object module must be processed by a linker or binder be-
fore it is in a format suitable for execution. The linker or binder normally
combines several object modules to produce a single loadable module. This
book describes two types of loadable modules, although other types exist.
One loadable module is called a single task loadable (STL) module, which is
the type of module found in an executable disk file, such as an iRMX HI
command. The other loadable module is called a bootstrap-loadable mod-
ule, which is loaded for execution without any assistance from the OS,
often because it is the OS itself.

The generic term linkable module refers to any module that can be
processed by a linker or binder. A linkable module can be a single object
module produced by a compiler or assembler, or it can be constructed from
several individual object modules by a previous execution of the linker or
binder. A linkable module is not ready to be loaded into memory for execu-
tion; it must be converted to an STL or bootstrap module first. A major
difference between a bootstrap-loadable module and an STL module is
that a bootstrap-loadable module must be loaded into a fixed part of mem-
ory for it to run, but an STL module is relocatable; it can be loaded into any
part of memory for execution.

Figure 3.1 shows the steps in the development process for an STL mod-
ule, and Figure 3.2 shows the steps in the development process for a boot-
strap-loadable module. Both figures show the process in terms of the files
and development tools involved, with files represented by circles and
development tools by rectangles. Source modules and include files are
prepared using a text editor, an object module is generated from a source
module by a compiler (or assembler), and both STL and linkable modules
can be produced by a linker or binder. Figure 3.1 shows the binder being
used to produce an STL module that can be run as an HI command, and
Figure 3.2 shows the binder producing a linkable module, which is then
combined with other linkable modules by a special binder, called the sys-
tem builder, to produce a bootstrap-loadable module.

The structure of a source module is determined by the programming lan-
guage being used, and the structure of all other types of modules is deter-
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Figure 3.1 Development steps for an STL module, such as an HI command file.

mined by a formal specification called the Object Module Format (OMF).
Intel publishes different OMF specifications, depending on the architec-
ture of the target-system microprocessor. Although iRMX I and MS-DOS
both run on the same microprocessors, the 8086, and compatible architec-
tures, Microsoft chose to use a slightly different OMF from Intel’s for both
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object modules and loadable modules. The iRMX I linker will accept object
modules produced by DOS compilers, but the iIRMX program loader will
not accept loadable files that are in Microsoft’s OMF. Because almost all
programs must make system calls to a particular OS to perform such tasks
as I/0O and memory management, the inability to load DOS programs
under iRMX is not really an issue because a DOS program would fail as
soon as it tried to make a DOS system call.

To iRMX users, this means you cannot run your favorite DOS spread-
sheet or word processing program on iRMX, just as you cannot run them
under any other operating system installed on your PC, such as Unix. With
iRMX for Windows, however, you can run your DOS applications on DOS
while running your iRMX applications on iRMX because both operating
systems are in the PC at the same time.

3.1.2 Development and target environments

Before you can develop any program, you must decide on your development
and target environments. The most popular development environment for
iRMX applications is a PC running MS-DOS and, optionally, Microsoft
Windows. The PC can be used with DOS to run all iRMX development
tools, regardless of the target platform and version of iRMX (I, II, or III).
Alternatively, an iRMX system can be used as the development system.
iRMX I can be used only to run the development tools for iRMX I targets,
but both iRMX II and III can be used to develop applications targeted for
any of the three versions of the OS. With iRMX for Windows, the DOS and
iRMX III development environments are just a keystroke away from each
other, so a mixed development strategy can be chosen.

Development tools that run under DOS are sometimes called DHDT,
which stands for DOS-Hosted Development Tool. Likewise, tools that run
on iRMX are called RHDT (RMX-Hosted Development Tool), which are
also sometimes called native-mode tools. Virtually all of Intel’s DHDT's
can be run on iRMX II or Il as well if they are invoked under the control of
a special utility program called run86. A bit of legerdemain is required to
accomplish this feat, which relies on the development tools internally
using the special set of system calls, the Universal Development Interface
(UDI). The run86 program provides a special UDI-to-iRMX system call
translator that is invoked as the development tool runs. Although run8é
enables you to run DHDT's on iRMX, remember that you still cannot run
normal DOS applications from the iRMX prompt, because normal DOS
applications make DOS system calls, not UDI system calls.

The choice of a target system depends on the application. Small embed-
ded applications (less than 1 MB, including the operating system) that can
operate effectively without the benefits of hardware memory protection
can be targeted for iRMX I systems. iRMX I applications are called real-
mode programs in reference to the name for emulating the 8086 architec-
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ture with an 80286 or greater microprocessor. (The architecture of Intel
microprocessors is reviewed in chapter 5.) Relatively small protected-
mode applications (less than 16 MB, including the operating system) can
be run effectively on iRMX II systems. However, performance degrades if
the code or data for the application exceeds 64 kilobytes (KB) because of a
16-bit limit on memory segment offset values for the 80286 architecture.
Choosing an iRMX III target system can significantly improve perform-
ance of large applications because the 80386 architecture allows 32-bit seg-
ment address offsets (4-GB segment sizes), which essentially removes any
size limitations on code and data. Protected-mode applications are called
16-bit or 32-bit, depending on if they were developed for iRMX II or III.

A valuable feature of iRMX IIl is that it runs 16-bit applications without
any changes. If your target is an iRMX III system (including iRMX for
Windows), you can choose to develop and run either 16-bit or 32-bit code.
The tradeoff for 16-bit code is that the same loadable module can be used
on iRMX II, iRMX III, or iRMX for Windows, but it will generally run
slower than 32-bit code.

3.1.3 Development steps

Independent of the target system decision is whether your application will
be run as an HI command or configured into the OS itself. HI commands
are loaded into memory when the user enters the command name at the
keyboard, and the memory they use is then freed when the commands ter-
minate. Resident programs, on the other hand, never terminate and con-
tinue to occupy memory until the system is rebooted or shut down.

The distinction is primarily whether the application executes under user
control or executes under the control of external events. This distinction is
closely related to the difference between conventional and real-time appli-
cations, but there are many exceptions. First, it is very convenient to run
real-time applications as HI commands while they are being developed.
When an error is found, the command can be aborted, repaired, and re-run
without reloading or rebuilding the OS. The application can finally be con-
figured into the OS after it has been debugged. Another possibility is a hy-
brid application, in which part of the application acts as an extension to the
OS and is made resident, providing functions that can be invoked by dy-
namically run HI commands. A device driver is an example of this sort of
code, and there are many others as well.

Resident programs can be either incorporated into the loadable module
that contains the operating system image itself or loaded into memory
after iIRMX starts running. The latter option requires the use of a special
program called sysload that is available only for iRMX III and iRMX for
Windows systems.

Most of the steps used to develop HI commands and resident applica-
tions are identical. Each step in the process consists of running a develop-
ment tool that reads files as input and generates new files as output. As
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Figure 3.1 shows, the steps to develop HI commands are editing, compil-
ing, and binding. The STL file containing the resulting program can
then be loaded into memory for execution either by a debugging program
or by a part of the OS called the Application Loader (AL). A resident ap-
plication that is to be loaded by sysload is built in exactly the same way
as an HI command, so Figure 3.1 applies to the development of both HI
commands and some resident commands.

A resident application that is to be configured into the operating system,
as Figure 3.2 shows, includes an additional step in which the linkable mod-
ules produced by the binder use another development tool, the system
builder, to incorporate the application into an image of the OS that is
loaded into memory when the system is bootstrap loaded. Although the
ICU (mentioned in chapter 2) is used specifically to generate a new copy of
the iRMX operating system, the system builder is a general-purpose devel-
opment tool that can build a bootstrap-loadable module for any operating
system, or even a standalone application that runs without an OS.

3.1.4 Development tools

The development tools must be able to run on the development system,
must all be compatible with each other (since the files output by one tool
are used as input to the next tool), and must generate a program that can
run on the target system. Let’s use the development of a C language appli-
cation as a concrete example. Depending on whether you want to develop a
real-mode, 16-bit, or 32-bit application, you need to use the iC86, iC286, or
1C386 compiler, respectively. Versions of these three compilers are avail-
able that run on DOS, iRMX II, and iRMX III systems. There is also a
C-86 compiler that runs on iRMX I. The files produced by these compilers
use different OMF's, so the appropriate linker or binder must be chosen to
be compatible with the chosen compiler. Link86 can process the output of
the C-86 compilers, bnd286 can process the output of the C-286 compilers,
and bnd386 can process the output of both C-286 and C-386 compilers.
There are versions of the linker and binders that run on different types of
development systems, so the possibility for mismatching development
tools may seem likely. In practice, you select your development and target
systems, get the one set of tools you need, and go to work.

3.2 A Sample Application

To make the material in this chapter more concrete, the following sections
will use the sample PLM program in Figures 3.3* (the main program) and

*The first comment line of all sample code in this book includes the name of the file
(hellormx.plm in this example) containing the code. The files are available by anonymous
ftto ipcl.cs.qc.edv. Readers can also obtain the files by mailing a diskette to the author:
Dr. Christopher Vickery, Computer Science Dept., Queens College of CUNY, Flushing, NY,
11367-0909.
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Figure 3.3 Source code for the sample PLM main program.

/***> hellomx‘plm <****~k*********************************************

*
* Sample PLM program for iRMX

* -- main program
*
**t*******************************************************************/

$title ('Sample PLM Main Program')

hellormx: DO;
$include (hellormx.ext)
DECLARE

prompt (*) BYTE PUBLIC INITIAL (0, 'Type something: '),
reply (81) BYTE,
Status WORD_16;

dosub: PROCEDURE (response$ptr, response$max) EXTERNAL;
DECLARE

responses$ptr POINTER,

responsesmax WORD_16;
END dosub;

/*
* Execution Starts Here
*/

prompt (0) = size (prompt) - 1;
CALL dosub (@reply, size (reply) - 1);

CALL rqgc$sends$cos$response (NIL, 0, @(1ll, 'You typed: '), @Status);
CALL rqgcs$send$cosresponse (NIL, 0, @reply, @Status);
CALL rg$exitS$io$job (0, NIL, @Status);

END hellormx;

3.4 (a subroutine) as an example of an application to be developed into an
iRMX HI command. Examples of resident applications are shown in later
chapters when you have a better understanding of iRMX. This program is
written in Programming Language for Microcomputers (PLM) and will
run equally well under any version of iRMX. PLM was developed by Intel
specifically to generate code for its microprocessors, and is the traditional
systems programming language for iRMX systems.

The C language, however, is quickly supplanting PLM as the language of
choice for much of the work being conducted with iRMX, and will be the
primary expository language in this book. PLM is used for the sample code
in this chapter, however, because it illustrates the concepts of interest here
a bit more clearly than the equivalent C program. If you have trouble fol-
lowing the PLM code, you can refer to the equivalent ANSI C version of the
same program provided in chapter 4. The two languages are compared in
some detail in that chapter.

The main program and subroutine for the sample program are in differ-
ent files (hellormx.plm and hellosub.plm). Each file contains vari-



Developing an Application 69

ables referenced by the code in the other file. This structure for the sample
program was chosen to illustrate some concepts in the binding step better
than if the entire program was in a single file. It is not intended to illustrate
an optimal design for the program, nor even to illustrate a typical iRMX
application.

The following discussion is quite detailed, so you might wish to refer to
Figure 3.5 first to see the complete sequence of iRMX commands that
could be used to build the sample program and run it. Lines [1] and [2] of
the figure use the editor to create two source files, hellormx.plm and
hellosub.plm. Lines[3]and[4]compile the two source files to create two
object module files, hellormx.obj and hellosub.obj. Line [5] binds
the object module files with the necessary library module producing an ex-
ecutable file named hellormx, and line [6] runs the program.

Figure 3.4 Source code for the sample PLM subroutine.

VAREPS hellosub.plm K ok ok ke ok ek ok ok ok ok ok ok ok ok ok ke ko ok ok ok ok ok ok ok ok k ko ok ok k ok ok k ok ok

*

* Sample PLM program for iRMX

* -- subroutine
*

**********************************************************************/
$title ('Sample PLM Subroutine')
hellosub: DO;
$include (hellosub.ext)
DECLARE
prompt (*) BYTE EXTERNAL,
Status WORD_16;

dosub: PROCEDURE (resp$ptr, respS$max) PUBLIC;
DECLARE

resp$ptr POINTER,

resps$max WORD_16;

CALL rqgc$sendS$coS$response (resp$ptr, respSmax, @prompt, @Status);
RETURN;

END dosub;
END hellosub;

Figure 3.5 A sequence of iRMX commands that could be used to build the sample program in
this chapter.

iRMX> aedit hellormx.plm [1]
iRMX> aedit hellosub.plm [2]
iRMX> plm386 hellormx.plm compact debug [3]
iRMX> plm386 hellosub.plm compact debug [4]

iRMX> bnd386 hellormx.obj, hellosub.obj, &

** /rmx386/1lib/rmxifc32.1ib, :lang:plm386.1ib rc(dm(0, OFFFFFFFFh)) &

** ss(stack(8192)) rn(code32 to code) oj(hellormx) [5]
iRMX> hellormx [6]
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3.3 Text Editing

At the top of Figure 3.1, a source file is processed by an editor to produce a
new source file. The original source file is optionally saved as a backup file
in case the user wants to undo an entire editing session.

Any text editor can be used to prepare files for use with iRMX but there
is just one text editor that runs on both DOS and iRMX development
systems — aedit. Aedit is a good, full-screen editor designed for use with
terminals connected to the system through a serial communication link. As
such, it does not support colors or mouse menus; however, it is very easy to
use, very powerful, and, because it is available for both iRMX and MS-
DOS (using either the PC’s console or a terminal connected to a serial
port), it can provide a useful consistency in editing as you switch between
the two operating systems. Even if you will not be using aedit, you should
still read the following paragraphs, but then skip the Aedit Usage Sum-
mary section.

The end of each line in an iRMX text file ends with the ASCII
<cr><1f> (carriage return, linefeed, 0x0D, 0x0A) sequence.! There is no
end-of-file character in text files. Aedit handles these conventions auto-
matically, but using files developed on other systems or exporting iRMX
text files to other systems might require minor adjustments. In particular,
Unix systems terminate lines with just the <1£> character, and Unix
refers to that character as a “newline” (<n1>).

To understand the difference between these two methods of ending
lines, let’s review the roles that the ASCII control codes <cr> and <1£>
played on mechanical terminals: the <cr> character initiated the move-
ment of the printing head to the left margin, an operation that took consid-
erable time to complete, and the <1£> character advanced the paper up
one line. By sending <cr> and <1£> to mechanical terminals in that se-
quence, the paper-up movement could occur while the carriage was moving
left, and the terminal would be ready to print the next character when it
arrived. That is, a new line operation required two characters, and these
characters had to be received in the proper sequence for some terminals to
work properly.

CRT displays still use the same two ASCII codes to move the cursor left
and down as independent operations, but the order is irrelevant because
there are no mechanical timing constraints. Unix systems save file space
by storing just the <1£> code at the end-of-text-file lines, but they must
also generate the <cr> character whenever text is displayed to make it
look right. Just to confuse matters a little bit, there will be places where you

1Ttems in <> represent single keys. The name of an ASCII code, a letter, the normal name
on the keycap, or a letter with a modifier might appear inside the angle brackets. The modi-
fiers used are alt- for the Alt key, and 4 for the control key. Modifier keys work like shift
keys.



Developing an Application 71

will see aedit refer to the <cr><1£f> combination as <n1>, the same
notation that Unix uses for the ASCII <1£> character.

The result of all this is that when you look at a Unix file on iRMX, the
lines might walk across the page

something like this
because

iRMX systems expect the file to contain the <cr> characters that tell
when to return to the left margin. Most development tools for both iRMX
and Unix are indifferent to the presence or absence of <cr> characters in
practice, but you can always convert an entire Unix file to an iRMX file
in aedit with the command sequence, <j><s></><r><AR><0>
<a><esc><Enter><esc>. An English translation is “Jump to Start
of file, Replace all 0x0A characters with <cr><1£>.2

The other text file compatibility issue is the MS-DOS convention of in-
serting a <A 2> character (0x1A) at the end of text files. Most software for
both iIRMX and DOS is indifferent to the presence or absence of this char-
acter as well. In aedit it looks like a <?> on the screen and can be deleted
just like any other character in the file.

3.3.1 Aedit usage summary

If you will not be using aedit as your editor, you can skip this section.

This summary of aedit operations is not a tutorial, simply a guide to the
features of the editor to speed learning it. The Aedit User’s Guide that ac-
companies the system explains all the details. (The manual is Volume 12 of
the iRMX for Windows documentation set.)

When aedit starts, it reads an initial set of commands from a file called
aedit .mac. That file is in the same directory as aedit by default, but users
can keep a personal copy in :home: . Aedit.mac can contain commands
that you would type at the keyboard as well as macro definitions.

Intel supplies a set of macro definitions in a file called useful .mac that
you can copy into your aedit .mac file. These macros really are useful if
you use aedit very much, and they are documented in the Aedit User’s
Guide. The following discussion assumes that none of the aedit defaults
have been changed by commands in your aedit.mac file.

Aedit is always in one of three modes: insert, exchange, or command. In-
sert and exchange are standard insert and overstrike modes for entering
text. Use the arrow keys as usual. To go as far as possible horizontally or
vertically, press an arrow key followed by the <Home> key. As far as possi-
ble horizontally is to the left or right end of the line; the maximum verti-
cally is forward or backward one screen length. <Backspace> erases the

21f you export an iRMX file to Unix, vi will show <AM> at the end of each line (<cr> is the
same as control-Min ASCII). The vi command :1, $s/AVM// removes all the <cr> char-
acters in the file.
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character to the left of the cursor, <Del> or <AF> erases the character
under the cursor. <+ 2> erases the current line, and <4 A> erases from the
cursor to the end of the line. <4 R> allows you to insert characters by giving
their numeric values in hexadecimal (used in the carriage return example
above). Note that aedit and the Command Line Interpreter (CLI) both use
the same keys for editing a single line, except for aedit's <AA>, which is
accomplished by <cr> in the CLI.

In command mode, a menu of commands is shown at the bottom of the
screen, and <tab> is used to scroll through the menu. (One of the
useful.mac macros lets you use the spacebar in place of <tab>.) Typing
the first letter of a command either executes the command, brings up a
submenu, or produces a prompt for more information, such as text to be
searched for or the name of a file to retrieve. Commands are terminated
with the <esc> key, but for terminals without an <esc> key, aedit can
be configured to recognize some seldomly used character, such as <*>
(backquote) for <esc>. Commands can be canceled by typing <+c>.

Of course, the first command to learn is the last one, the one to exit the
editor. For aedit, that command is quit, achieved by typing <Q> in com-
mand mode. The <Q> command leads to a submenu with the following
choices:

s <A>, Abort the editing session without changing any disk files.

s <g>, Exit the program, writing the newly edited file to disk. The original
file being edited, if there was one, is also saved with the extension .BAK.

® <w>, Write the file to disk, but stay in aedit.
s <1>, Begin editing a new file without leaving aedit.
m <U> Same as Exit, but stay in aedit.

Aedit supports editing two files at once. The <0> (Other) command
switches between the two. This feature is particularly well suited for edit-
ing a source file and a listing file for the same program during the compila-
tion stage (discussed in the next section). The <w> (Window) command
splits the screen into top and bottom portions so you can view and edit two
parts of one file or two different files at the same time. After splitting the
screen into two windows, the <w> command is used to switch the cursor
between the two, and <k> (Kill) returns the screen to a single window. The
make utility (discussed in section 3.7.2) uses these commands to invoke an
aedit session whenever syntax errors are discovered during compilation.
The top part of the screen shows the statement in error with the compiler’s
error or warning message, and the lower part of the screen shows the source
code with the cursor placed on the line that caused the error. The user can
step through a sequence of syntax errors by typing the aedit command se-
quence <E><esc>.

To copy a block of text while in command mode, move the cursor to one
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end of the block of characters you want to copy, type a <B>, and the cursor
will become an <@>. Move the <@> cursor to the other end of the block you
want to copy, and type <B> again to copy the block into an internal aedi t
buffer. Now move the cursor to where you want the text copied, and type
<G><Enter> or <AB> to insert a copy of the internal buffer into the file.
To move a block instead of copying it, just use <D> instead of <B> in the
above description. The <G> command used to insert the internal text
buffer can also be used to insert the entire contents of a file into the one you
are editing. Simply type the name of the file you want between the <G> and
the <Enter>.

The feature of aedit that you most want to carefully study is the macro
facility. With a bit of practice, macros become very easy to define and use.
Just to give a quick example, try typing the following sequence when
aedit is in command mode:

<M><LC><PgUp><Enter><up arrow><Home><M>

Those seven keystrokes create a macro named <PgUp> that will scroll up a
screenful at a time every time you press the <pgUp> key. If you want to
save the macro in your aedit.mac file so it is automatically defined in
each editing session, select aedit .mac for editing, create the macro defi-
nition, and type <M><S><PgUp><Enter>>. The macro is saved as a se-
quence of codes that the editor interprets as keyboard characters when it
reads aedit.mac. (Aedit for DOS recognizes the <PgUp> and <Pgbn>
commands directly, so this example works only in aedit for iRMX.)

3.4 Compiling

The same command line can be used to run a compiler regardless of the de-
velopment environment, although an alias might be required for the com-
mand name on some systems, and certain logical names or environment
variables might need to be established before a tool will run. Such details,
however, are normally handled automatically by the installation process.
The iRMX> prompt is used for the examples, even though users of the
DOS-hosted compilers will see C> at the beginning of the line (and will be
using <\> instead of </>in path names). Assume that our sample PLM
program is going to run as a 32-bit application on an iRMX III or iRMX for
Windows target. That means that you must use the PLM-386 compiler,
and the command line would look like line [3] presented in Figure 3.5:

iRMX> plm386 hellormx.plm compact debug [3]
The compact and debug parameters are compiler controls, and could al-

ternatively be placed inside the source code file by using $compact debug
as the first line of the file. The compact control is explained more in the
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section on memory segmentation models later in this chapter, and the
debug control is discussed in the section on debugging below.

3.4.1 Source modules and source files

The sample program is split into two source modules, contained in the two
source files hellormx.plmand hellosub.plm. Inside each source file is
a DO block with a label that is the same as the base part of the source file
name. For example, hellormx.plm contains:

hellormx: DO;

END hellormx;

A source module is defined as all the PLM statements inside the outer-
most labeled DO block in the source file. Each file that is to be processed by
the PLM compiler must contain exactly one source module. The $title
statements in the sample source files are directives to the compiler rather
than source code statements, so they do not need to be inside the DO block.
The compact and debug controls tell the compiler how to compile the
source module, so they must appear before the labeled DO block if they ap-
pear inside the file. The label on the DO statement is the name of the source
module. Generally, you use the same name for the source module as the
base part of the source code file name so that you are compatible with the
SoftScope debugger (discussed below).

The C language does not have any syntactic structure that delimits a
source module the way PLM does, but there is a C compiler control called
modulename (abbreviated mn) that can be used to set the name of a mod-
ule. If the mn control is not used, the compiler uses the base part of the
source code file name as the source module name.

3.4.2 Include files

The code in a source module can come from more than one file by using the
include directive provided by both C and PLM. The sample source files
both contain include controls, one for the file hellormx.ext and the
other for the file hellosub.ext. Before the compiler actually compiles a
file, it creates a temporary file that contains all the statements from the
source file with the code from any include files inserted in the appropriate
location. Strictly speaking, this temporary file is the source module that is
compiled, not just the contents of the source file itself. Include files for C
programs typically have an extension of .h, and are called header files.
They are discussed more in chapter 4.

An important function of include files is to provide code that declares the
names and argument types for subroutines that are not otherwise defined
within the source module being compiled. An example of this type of decla-
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ration appears for the subroutine dosub() in the code for hellormx.plm.
That same source module contains references to two other external sub-
routines, the system calls rqcsendcoresponse() and rgexitiojob( ). Note that
the PLM compiler ignores the dollar sign character in symbolic names.

The iRMX operating system provides text files with the external proce-
dure declarations for every iRMX system call for each of the various pro-
gramming languages used for iRMX development. For PLM, the file is
called /rmx386/inc/rmxplm.ext, and for C the corresponding header
file is called : include: rmxc.h. Some versions of iRMX, notably iRMX
for Windows versions 2.0 and later, come with an additional header file for
C programs called : include:rmx_c.h. This header file provides aliases
for system call names that insert underscore characters for improved legi-
bility, analogous to the dollar sign in PLM names. For example, rmx_c.h
changes rqcsendcoresponse() and rgexitiojob()torq_c_send_co_response()
and rq_exit_io_job().

The appropriate include file should be included in every source file that
contains iRMX system calls, but because these files contain the declara-
tions for every system call supported by the OS, compiling all this included
source code takes quite a bit of time. It can be worthwhile to build custom-
ized include files that contain just the declarations for those system calls
actually referenced by a particular source module. The utility program
extgen, available from iRUG, generates such customized include files
automatically for PLM programs. It was used to generate the files
hellormx.ext and hellosub.ext by the command

iRMX> extgen hellormx, hellosub [71

The code for hellormx.ext and hellosub.ext is listed in Figure 3.6
and 3.7, respectively. These files include some boilerplate code that de-
clares new data type names as literal substitutions for some of the data

Figure 3.6 Included file, hellormx.ext, for the sample PLM main program.

$save nolist
/* This file was generated by EXTGEN */
DECLARE TOKEN LITERALLY °‘'SELECTOR',
BOOLEAN LITERALLY 'BYTE',
TRUE LITERALLY 'OFFh',
FALSE LITERALLY '000h';

$if WORD16

DECLARE WORD_16 LITERALLY ‘WORD';
$else

DECLARE WORD_16 LITERALLY 'HWORD';
Sendif

RQ$SExitIoJob:
PROCEDURE (
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Figure 3.6 (Continued)

usersfaults$code,
return$datas$ptr,
except$ptr) EXTERNAL;
DECLARE

users$fault$code WORD_16,
returnsdata$ptr POINTER,
except$ptr POINTER;

END RQ$ExitIoJob;

RQS$CS$SendCoResponse::
PROCEDURE (
responsesptr,
responses$max,
nmessagesptr,
except$ptr) EXTERNAL;
DECLARE
response$ptr POINTER,
response$max WORD_16,
messageS$ptr POINTER,
except$ptr POINTER;
END RQ$C$SendCoResponse;

Srestore

Figure 3.7 Included file, hellosub.ext, for sample PLM subroutine.

$save nolist
/* This file was generated by EXTGEN */
DECLARE TOKEN LITERALLY 'SELECTOR',
BOOLEAN LITERALLY 'BYTE',
TRUE LITERALLY 'OFFh',
FALSE  LITERALLY '000h';

$if WORD16

DECLARE WORD_16 LITERALLY 'WORD';
selse

DECLARE WORD_16 LITERALLY 'HWORD';
Sendif

RQ$C$SendCoResponse:
PROCEDURE (
response$ptr,
responses$max,
messages$ptr,
except$ptr) EXTERNAL;
DECLARE
response$ptr POINTER,
responses$max WORD_16,
message$ptr POINTER,
except$ptr POINTER;
END RQS$SC$SendCoResponse;

$restore
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types recognized by the compiler. The data types WORD_16 and WORD_32
are conditionally defined depending on the setting of the WORD16 or
WORD32 control for the PLM-386 compiler. The PLLM-386 compiler uses
different data type names for 16- and 32-bit values, depending on which
compiler control is in effect. The WORD16 control is used for PLM-286
compatibility. All PLM programs in this book use $include to include a
declaration file that was generated by extgen.

3.4.3 Listing files

As indicated in Figure 3.1, the compiler produces a listing file and an object
file. These two files have the same base name as the source file, with an ex-
tension of . LST for the listing file and . OBJ for the object file. For example,
the two sample source files are hellormx.1lst,and hellormx.obj. The
object file is the one carried on to the binding stage of the development pro-
cess, but the listing file is important now, before the object file is ready for
use, because the listing file is where the compiler puts error messages indi-
cating problems it had compiling the source file.

When you get errors from the compiler, you must re-edit the source file
to correct them while consulting the listing file to see what the errors were.
Aedit’s two editing buffers are very useful for this, because you can use the
window command to view both the source and listing files at the same time.
For convenience, you could use the following aedi t command line to load
hellormx.lst into aedit’s main editing bufferand hellormx.plminto
the other editing buffer at the same time.

iRMX> aedit hellormx.lst-plm [3]

Aedit running on DOS versions prior to 5.0 does not support this form of
command line. If you try it, only hello. 1st will be loaded for editing and
you will have to use the command sequence other, quit, init to load
hello.plm into the other buffer for editing. Keep in mind the following
hints:

» All error messages and warnings from the compilers start with three or
four asterisks followed by a blank. If you remember not to use that se-
quence of characters in your programs’ comments or character strings, it
is a convenient string to search for in the listing file as you look for error
lines to fix. The angle brackets in the first line of each sample program in
this book are there to prevent the line from containing the “***” string,
for example.

® Be careful to edit the source file, not the listing file, as you make your
corrections!

The listing file tells the lexical level for each source statement, which can
be helpful when tracking down error messages from the compiler about il-
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legal nesting or mismatched block identifiers. In addition, the listing file
can be augmented with information useful for debugging binder and run-
time errors. Look up the symbols and code compiler controls in your lan-
guage’s Users Guide for more information.

At the end of the listing file is a summary of how much memory is needed
for each part of program: code, data, and stack. This information can be
particularly valuable for real-mode and 16-bit applications that must keep
track of segment sizes, as well as any other application with memory-size
constraints.

Finally, the listing file is designed for maintaining hard copy program
documentation. For example, the title directive (and for PLM, the sub-
title directive) generates a new page in the listing with header informa-
tion that can make it easier for readers to follow the code.

C programmers accustomed to the traditional Unix environment or to
an integrated development environment will probably already have devel-
oped work habits that do not include using listing files because Unix com-
pilers traditionally do not produce them, and development environments
provide error and source windows automatically linked to each other.
Aedit’s double file editing using the compiler’s listing file is the closest
thing available for development on iRMX systems. With Windows, you
can keep multiple windows open for the editor and compiler, but you must
keep their contents synchronized manually.

3.4.4 Obiject files and object modules

The compiler translates the source module into an object module and then
places it into an object file. The compiler names the object module using
the name of the source module, and it names the object file using the source
file’s base name plus the extension .0BJ. For C, the base name of the
source file, the base name of the object file, the name of the source module,
and the name of the object module are always the same unless you use the
modulename compiler control. The same is also true for PLM programs,
provided you explicitly name the source module the same as the base part
of the source file’s name. Thus, the source file hellormx.plm contains
a source module named hellormx, and compilation produces an object
file named hellormx.obj, which contains the object module named
hellormx.

If you compile using PLM386, the object module will adhere to the
OMF-386 specification, which is compatible with the BND386 binder. For
an iRMX I target, PLM86 would generate an OMF-86 format object mod-
ule, which would be processed by the LINK86 linker. As you might expect,
PLM286 generates OMF-286 object modules, and the corresponding
binder is BND286 for iRMX II. In addition, however, BND386 can process
OMF-286 object modules, and iRMX III can run OMF-286 STL modules.
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3.5 Segmentation Models

Each program that runs on a processor with an x86 architecture consists of
three types of memory segments, called code, data, and stack.? Code
segments contain executable machine instructions, data segments contain
data variables, and stack segments contain memory for parameters, return
addresses, and local variables for subroutines. Data constants can be
stored in either code or data segments. This segmented memory architec-
ture is discussed more thoroughly in chapter 5.

The compiler generates machine code for exactly one code, one data, and
one stack segment for each object module that it produces. When the com-
piler generates machine language instructions, it must use different types
of memory pointers depending on how the segments from the object mod-
ules that compose the program will be combined by the binder. The differ-
ent rules the binder can use to combine separate object modules are called
either memory segmentation models or models of compilation, and all object
modules that will be linked by the binder must use the same model. The
compiler must be told which segmentation model the binder will use so the
compiler can generate the correct types of pointers in the object module.

iRMX I and II programs use one of two different segmentation models,
compact or large, while iIRMX Il and iRMX for Windows programs almost
always use the compact model. The compilers, on the other hand, can gen-
erate modules using models called small or medium as well as compact or
large. For 32-bit bootstrap-loaded applications, another model called flat is
also available. You must explicitly tell the compiler which model to use be-
cause both the PLM386 and C386 compilers default to the small model,
which will not work for iRMX systems. The compact model was specified
when compiling the source files for the sample program.

The different models are described further in the next section on the
binding stage of the development process, but a full understanding must
wait until chapter 5, which describes the relevant features of x86 micro-
processor architectures further. The whole subject is even more compli-
cated because compilers support a facility called extended segmentation,
which allows the careful programmer essentially to mix compilation
models within a program.

The most commonly used segmentation model is compact, which uses
less memory for addresses and runs faster than the large model for real
mode and 16-bit applications. The large model must be used for real mode

3PLM-86 programs might have another segment called memory that serves somewhat the
same function as blank common does for Fortran programs. All PLM programs that reference
a built-in array named memory refer to locations within this segment.



80 Basics

and 16-bit applications that need more than 64 KB of code or data. For 32-
bit applications, the PLM-386 and iC-386 compilers treat large and com-
pact models the same because each code and data segment can contain up
to 4 GB.% Thus, our example, which was compiled using the PLM-386 com-
piler, would have produced the same object module if it had been compiled
with the large model.

When combining modules compiled using the compact model, the binder
will produce a single code segment that contains all the code from all of the
object modules it processes, plus one data segment containing all the data
from all of the object modules it processes, plus one stack segment that is
shared across all modules. For 16-bit applications, the large model still has
a single stack segment, but the binder maintains separate code and data
segments for each object module processed.

Readers familiar with the segmentation models used for Microsoft and
Borland C compilers will find that some of the Microsoft and Borland
names for various models are the same as Intel’s, but that the actual defini-
tions of the models are different. Intel compilers, however, do not provide
models named tiny or huge. The following list of corresponding names for
segmentation models is only relatively accurate, but you can get an idea of
how the segmentation model names do not match up across vendors.

Intel Borland  Microsoft
small tiny
compact small small
medium compact  compact
medium medium
large large large
huge huge

3.6 Binding an HI Command

Once all the source modules for an application have been compiled without
errors, the resulting object modules must be combined with other object
modules to construct the program. Since our sample program is going to be
a 32-bit application, we will use BND386 to do the binding.

3.6.1 Input files: object files and libraries

The format of a BND386 command line consists of an input file list fol-
lowed by a number of parameters known as binder controls. For the sample
program, the command line might be:

4 Although the iC-386 and PLLM-386 compilers seem to treat large and compact models the
same, they set the combine-types of segments differently for the two modules. The binder
then combines segments differently. It is also sometimes necessary to differentiate between
near and far procedures and pointers. As described in chapter 5, the distinction involves
whether selectors are involved in accessing a memory location or not. The C language pro-
vides the key words near and far for dealing with this issue. Both PLM-386 and iC-386 can
also handle such situations using extended segmentation controls.
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iRMX> bnd386 hellormx.obj, hellosub.obj, &

** /rmx386/lib/rmxifc32.1ib, :lang:plm386.1ib &

** rc(dm(0,O0FFFFFFFFh)) ss(stack(8192)) &

** rn (code32 to code) oj(helloplm) (41

Note that this is the same [4] in Figure 3.5. Remember, <&> tells the
iRMX CLI that a command is continued on the next line and “**” is the
normal iRMX prompt for continuation lines. Long command lines such as
this can also be put into a file referenced with the c £ (command file) binder
control, like this:

iRMX< bnd386 cf(bnd386.cf) [5]
The command file bnd386 .cf would contain:

hellormx.obj, hellosub.obj, &

/rmx386/1ib/rmxifc32.1ib, :lang:plm386.1ib &

rc(dm(0, OFFFFFFFFh)) ss(stack(8192)) &

rn (code32 to code) oj(helloplm) [4]

This technique can be particularly useful for DOS-hosted development
tools because DOS does not support continued command lines. Note that
everything starting with rc (dm( . . . is a list of binder controls, which are
described in the next section. For now, the focus is on the input file list.

The input file list consists of all the file names that the binder will com-
bine to build the executable program. For the sample program, the list con-
sists of the two object files plus two library files called /rmx386/1ib/
rmxifc32.1lib and : lang:plm386.1ib. The name of the first library
file tells a bit about what it contains. ' ' rmxif ' ' indicates that this library
contains iRMX interface procedures. That is, this file contains the sub-
routines to allow programs to access the system call subroutines that are
part of iRMX. Chapter 6 introduces the iRMX system call mechanism,
and chapter 10 explains the mechanism in some detail. The next part of the
file name, “c32,” indicates that this library can be used with 32-bit appli-
cations that are compiled using the compact segmentation model. As the
sample source modules were both compiled using the compact control,
and all modules processed by the binder must be compiled using the same
model, the compact library must be used. For 16-bit applications, there are
two other interface libraries, /rmx386/1ib/rmxifc.lib for compact
model programs and /rmx386/1ib/rmxifl.1lib for large model pro-
grams, that would be used instead. The other input file is the PLM run-
time library, which is described further in chapter 4. It is not actually
needed for most iRMX application (including this one).

Libraries are simply files that contain more than one object module. A
special code in the first byte of the file, not the name of the file, tells the
binder whether the file contains one object module or a library of object
modules. The OMF-386 (or -286 or -86) specification describes the internal
structure that both libraries and object modules must use. You can create a
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library and add your own object modules to it (or remove or replace them)
using the lib386, lib286, or lib86 librarian that comes with the system. The
librarians can work interactively and have a good built-in help command.

Selecting object modules to combine. The binder uses the object modules
from every object file named in the input path list as it constructs a pro-
gram, but it is selective about modules it uses from libraries. The reason for
being selective is to save memory and binding time. There is no need to in-
clude every object module from a big library just to get the few that are
needed for a particular application.

To understand how object modules are selected from libraries, first con-
sider the process the binder uses to deal with the variables and procedures
generally declared public and external in object modules.5 In the sample
program, the procedure dosub is declared external in hellormx.plm
and is declared publicin hellosub.plm. Figure 3.8 represents the hel -
lormx object module.

When the compiler encounters the CALL dosub statement, it generates
part of a machine language call instruction, but it cannot fill in the ad-
dress of dosub needed to complete the instruction. Instead, the compiler
leaves space for the address in the instruction’s code, indicated by a box
with a question mark in the figure. The compiler includes the ASCII name
dosub in the Fixup List that is part of the object module, along with a link
from the ASCII name to the incomplete address in the code segment.®

There will be one entry in the Fixup List for each external symbol refer-
enced by the module. When the binder processes the hellormx object
module, it copies the information from the Fixup List into an internal
symbol table that it builds, and marks the symbol dosub as unresolved.
The symbol prompt has been declared public, so it appears in the Public
Symbols List that is also part of the object module. The names of such
public symbols are also entered into the binder’s internal symbol table,
along with the address of where in the module’s data segment the symbol is
defined. This address is said to be the value of the symbol, and it is this
value that will be used to fix up incomplete instructions that reference the
symbol. The binder will also find the external names rqgcsendcore-
sponse and rgexitiojob in the hellormx object module and enter

5C programs are not as explicit about declaring things to be public or external as PLM pro-
grams. Chapter 4 provides more information on this topic.

$The terms address, pointer, and link are imprecise at this point. Chapter 5 will deal with
the nature of pointers and memory addresses in more detail. There are two parts to a pointer
(selector or base and offset). An address may consist of either a selector (or base) and an off-
set, or just an offset. Fixups sometimes have to be applied to the selector or base and some-
times to the offset. We use the term link to refer to pointers that the binder needs for its own
housekeeping, to distinguish them from the pointers or addresses that will become part of the
code that is output by the binder.
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them into its symbol table as well. Thus, after processing the first object
module, the binder will have constructed a symbol table that looks some-

thing like this:

Symbol Name Symbol Value
dosub unresolved
rqcsendcoresponse  unresolved
rgexitiojob unresolved
prompt address in data segment

When the binder processes the next file in its input path list, hello-
sub.obj, it combines the code segments from the two object modules into
a single module, and does the same for the data segments as well (see
below). The binder finds that the compiler has left the ASCII name dosub
in the hellosub module’s Definition List (the list of public symbols de-
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fined within the module), along with a pointer to the place in that module’s
code segment where the dosub subroutine begins. The binder now can fix
the call instruction that referenced dosub so that dosub points to the sub-
routine, and the binder resolves the value of dosub in its symbol table to be
the address of the subroutine in case the binder needs the value again dur-
ing the binding sequence. When the compiler built the hellosub object
module, it was unable to generate the complete data address of prompt in
the call to rqcsendcoresponse because of the external declaration.
When the binder processes the hellosub object module, it resolves this
symbol (prompt), and can fix the instruction that referenced prompt (an
instruction to push the address onto the stack) immediately. The binder’s
symbol table now looks something like this:

Symbol Name Symbol Value

dosub address in code segment
rqgcsendcoresponse  unresolved
rgexitiojob unresolved

prompt address in data segment

At this point, the loadable module that is being built looks like Figure 3.9.
The question marks represent links to the unresolved external symbols.”

With all this background about the binding process, it is quite simple to
tell which modules the binder will include from a library: those modules
with public declarations for symbols marked unresolved in the binder’s
symbol table. To make this process efficient, each library contains a mas-
ter dictionary of all the public symbols that are defined in it along with
links to the object modules that contain them.

The binder’s symbol table is very dynamic. Including one object module
to satisfy an unresolved symbol can result in new unresolved symbols that
are referenced by the newly included module. The binder resolves these
second-level references from the same library, using the master dictionary,
if possible, and then moves on to the next file in its input list for processing.

It is possible to construct libraries that make circular references to each
other, such as 1ibraryl containing a reference to amodule in 1ibrary2,
which contains a reference to another module in 1ibraryl. The binder
does not automatically go back to a file once it has processed it, so for a cir-
cular reference, you must list the same library file (in this case, 1ibraryl)

“The subroutines in the rmxifc32.1ib library do not actually perform the functions
of rqgc$send$co$response, which is to issue a prompt and read a reply, and
rqgSexit$io$job, which is to terminate the program. Rather, they act as interface proce-
dures to the actual subroutines that are part of the OS itself. (The letters if in the file names of
the libraries stand for interface.) These interface procedures are covered in detail in chapter
10, when we cover the techniques for adding system calls to the OS. The system calls them-
selves are covered in chapter 7.
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Code Segment

(from module hellormx)

call [dosub] l s, i
call [rgcsendcoresponse]
call [rgexitiojob]

(from module hellosub)

push [prompt] | 0 i
call [rgcsendcoresponse]

Data Segment

(from module hellormx)

L? "Type Something: "

(from module hellosub)

Figure 3.9 STL module (executable file) for sample PLM program. Note
that the binder has linked modules hellormx and hellosub, but has
not yet linked any of the libraries.

multiple times on the binder’s input list. Alternatively, you could force the
binder to include modules from 1ibraryl even though they have not been
referenced yet. You can accomplish this using the syntax 1ibraryl (mod-
ulel, module2), which would force the binder to include modules named
modulel and module2 from the file libraryl.

3.6.2 Output files: the map and load files

As Figure 3.1 indicates, the binder produces two files, a map file and a load-
able file. The map file, which normally has the same base name as the first
object file on the binder’s command line and an extension of .mp1, con-
tains any error messages generated by the binder, the sizes of the various
segments generated, a list of the object modules included, and a list of any
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external symbols left unresolved at the end of the binder’s execution. For
example, hellormx.mpl includes these lines:

SEGMENT MAP

COMBINE COMBINE
LIMIT ACCESS ALIGN USE TYPE NAME
0000018DH ER DWORD USE32 NORMAL CODE
0000007AH RW DWORD USE32 NORMAL DATA
FFFFDFFFH RW DWORD USE32 STACK STACK

INPUT MODULES INCLUDED:

HELLORMX (HELLORMX.OBJ)
HELLOSUB (HELLOSUB.OBJ)

HXSNCR (:SD:RMX386/LIB/RMXIFC32.LIB)
EXJEXJ (:SD:RMX386/LIB/RMXIFC32.LIB)
ERT14N (:SD:RMX386/LIB/RMXIFC32.LIB)
HRT1CN (:SD:RMX386/LIB/RMXIFC32.LIB)
RQCERR (:SD:RMX386/LIB/RMXIFC32.LIB)
RQCSEX (:SD:RMX386/LIB/RMXIFC32.LIB)
NRT1CE (:SD:RMX386/LIB/RMXIFC32.LIB)
NUCLER (:SD:RMX386/LIB/RMXIFC32.LIB)

The first line of the segment map is for a segment that is 0x018D bytes
long, has executable and readable memory protection attributes (ER),
starts on a doubleword memory boundary (DWORD), was generated by a 32-
bit compiler (USE32), and is the result of combining all segments named
code in the typical method (i.e., according to the rules for the compact seg-
mentation model).® The size of the stack segment looks strange with a deci-
mal value of -8193 (0xFFFFDFFF); this value is negative because a stack
segment grows downward in memory as data is pushed onto the stack.

The second part of this .MP1 file shows the names of the object modules
and the files from which they come. The first two modules are from the ob-
ject files the compiler generated from the source files. The next two mod-
ules contain the subroutines rgcsendcoresponse and rgexitiojob,
respectively. All other modules listed were included because they are mod-
ules that satisfied external declarations made by some module earlier in
the list. In particular, they were included to support the OS’s exception
handling mechanism for system calls, mentioned in chapter 2.

The most common message in a .MP1 file is “unresolved external sym-
bol.” This message is considered a warning, rather than an error, by the
binder because of the possibility that the output file will later be bound
with other object modules that will provide public declarations for the
unresolved symbols (discussed further below). It should be considered an
error when you are producing a file intended to be executed, as in the

8For segment size, hexadecimal constants end with the letter <h> in PLM, and this con-
vention carries over into numerical parameters for several iRMX commands, including the
binder. The C language format is used for hexadecimal consants in the text of this book.
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present example. Trying to run an HI command that generated this warn-
ing when bound will almost certainly result in a hardware fault.

The second file generated by the binder is its output file, which can be
either in the STL format suitable for loading into memory for execution as
an HI command, or a linkable module, which can be used later as input to
another run of the binder or as input to the system builder (BLD386), as
described below.

The first part of an STL file is a header that tells the minimum amount
of memory the program will need to be loaded, the maximum amount of
memory the program will need during execution, the types and sizes of all
the memory segments that compose the program (see chapter 5 for infor-
mation on memory segmentation), and information needed to initialize the
CPU'’s registers when the program is loaded for execution, such as the ad-
dress of the first instruction to be executed. After the header comes infor-
mation explaining which information goes into which memory segments.

The information in an STL file is just what iRMX needs to load a pro-
gram into memory and start it executing, but the same file could be run by
any OS that recognizes OMF-386 structures. Although iRMX is a multi-
tasking operating system, all iRMX programs start execution with a single
task, or thread of execution, but might create additional tasks during exe-
cution as needed. However, iRMX tasks are not hardware tasks in the
sense intended by the term single task loadable, and the STL format is per-
fectly suited for loading iRMX multitasking applications. Chapter 5 dis-
cusses hardware tasks further, and chapter 6 discusses the nature of iRMX
tasks.

Instead of an STL module, the binder can produce a file that contains a
linkable module. By default, such files are given file names ending in . 1nk,
although it is the content of the file rather than its name that determines
its nature. For all practical purposes, a linkable file looks like the output of
a compiler, especially if the linkable file uses the compact segmentation
model. In this case, the linkable module contains one combined code seg-
ment and one combined data segment, just as if all the object modules that
were linked together had originally come from one big source module. The
situation is a bit different for the large segmentation model, however, be-
cause in this case the linkable module will contain multiple code and data
segments, one from each of the linked object modules. Compilers never
generate multiple code or data segments.

There are three reasons for generating a linkable module. The first rea-
son is that this format is used for input to the system builder, b1d386 (or
b1d286or 1oc86). The operating system is constructed from relatively in-
dependent layers that do not share code or data with one another through
public or external variables. Each layer can be independently bound into a
linkable module without concern for any public or external symbol names
that might clash with such symbols used in another layer. The resulting
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link files are then processed by the system builder to construct a bootstrap
loadable file on disk, the process summarized in Figure 3.2.

A second reason for generating a linkable file is to control public and ex-
ternal symbols when building a single HI command. For example, if it is
necessary to bind a program with two different libraries that both contain
public symbols for subroutines with the same names, the application can
be bound first with the library containing the desired version of the sub-
routine, and that public symbol can be purged from the resulting linkable
file using the publics except binder control. (See the section Producing
Linkable and Bootloadable Modules below for more information on this
process.) The linkable file can then be bound to the second library without
any “duplicate public symbol” messages from the binder.

A third reason for working with linkable files is for applications that mix
16-bit and 32-bit code. The binder combines all segments with the same
name (such as code32), but it is an error to combine segments with differ-
ent attributes (16-bit and 32-bit, for example). Separate linkable files
could be built, one containing only 16-bit segments and the other contain-
ing only 32-bit segments. The combined segments can then be given differ-
ent names using the rn control (described below), and the linkable mod-
ules can be bound together without error.

3.6.3 Binder controls

This section provides a summary of the four binder controls included on
the sample bnd386 command line. For further details, consult the binder
section in the Intel386 Family Utilities User’s Guide, volume 17 of the
iRMX for Windows documentation set.

rc(dm(0,0FFFFFFFFh)). This control identifies how much memory the
program will need when it is loaded and executed. rc originally stood for
RMX Configure, but the documentation for BND386 generalizes this to
“‘an 80386 operating system.” dm stands for dynamic memory. The first of
the two hexadecimal values represents the minimum amount of memory
that must be free to load the program, and the second value limits how
much memory the program can allocate from the OS during execution.?
The values specified here (0 and 4 GB) are synonyms for no limits, but
could be adjusted either to ensure there is enough memory for the program
to complete once it is loaded, or to limit the amount of memory the program
will use as it runs. If you omit this control, bnd386 will still generate an
STL module, but it will set both the minimum and maximum values to
zero, and the system will substitute reasonable values when the program is

9These two values correspond to the minipool and maxpool arguments to the CLI’s back-
ground command mentioned in section 2.4.2. The background command arguments can be
used to override the rc(dm()) arguments to the binder.
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run. If you omit this control for bnd286 you will generate a linkable module
rather than an STL module.

ss(stack(8192)). Thess control manipulates the size of segmentsinthe
load module. In this case, the size of the stack segment is set to 8 KB. Com-
pilersplaceinformation in object modulesidentifying how muchstack space
is needed for the code in each module for calling subroutines and allocating
local variables, but the compilers cannot know how much stack space will be
needed for nested subroutine calls, such as recursive subroutines or OS sys-
tem calls. The figure 8K is very generous, and allows enough stack space for
use by both system calls and the SoftScope debugger.

Note that SoftScope uses the same stack as the application program that
it is debugging in iRMX I and II. SoftScope for iRMX III and iRMX for
Windows runs with its own separate stack, so the application’s stack may
not need to be so large.

rn (code32 to code). This control renames segments with the name
code32 to code. The binder will only combine segments that have the
same name, and will issue error messages if the same symbol appears in
different segments that it cannot combine. Since the compiler names the
code segment code32 but the library functions have code segments called
code, this rename operation must be performed for a successful bind.

oj(helloplm). This control specifies the name for the file that receives
the load module produced by the binder. The full name for this control is
object, which does not relate well to our terminology for types of modules.
By default, the binder places the load module in a file that has the same
name as the base part of the first file name in the input list, and no exten-
sion. That is, oj (helloplm) was superfluous in our example. It will be
crucial for some C programs, however, so it was used here to establish a
good precedent.

3.7 Automating the Process

Typing and retyping long command lines as you iterate through the steps
of the development process can be tedious, and there are ways to improve
the situation. The CLI’s alias command and command history buffer facil-
ity, discussed in chapter 2, can do much to improve the situation, but for
real production work, stronger solutions are needed.

3.7.1 Command files

Sequences of commands can be typed into command files for invocation by
the submit command, and the parameter substitution feature of both
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alias and submit can help in the construction of general purpose tools. For
example, here is a command file that will compile, bind, and execute a sin-
gle-source-module PLM program:

plm386 %$0.plm compact debug

bnd386 %0.0bj,/rmx386/1ib/rmxifc32.1ib &
rc(dm(0, OFFFFFFFFh)) ss(stack(8192)) &
rn(code32 to code) 0j(%0)

%0

Expanding a bit on the “doit” example from chapter 2, assume the pre-
ceding lines were entered into a text file named cbe . csd, and the following
alias is defined:

iRMX> alias g=submit cbe(#) [6]

Now, a PLM program, say myprog . plm, can be compiled, bound, and exe-
cuted with the single command line:

iRMX> g myprog [71

Two problems exist for automating the development process with this
approach. One, it does not account for the possibility that the compilation
might fail due to syntax errors, thus making the binding step inappropriate
(or binding might fail, thus making execution inappropriate). Two, no pro-
vision exists for different numbers of source modules contributing to dif-
ferent load modules, making the file a somewhat inflexible tool.

The first problem can be handled by the HI command esubmit, which is
an extended version of submit that supports testing the results of one step
before continuing to the next step in the command file. Below is an esubmit
command file that performs the same function as the submit file above, but
skips the binding step if compilation fails and skips execution if binding
fails. It also includes a crude mechanism for handling either one or two
source files.

$reset eok
$reset quit

run86 -fixplm :lang:plm386 $0.plm compact debug
$if not commandexcep = eok

$set quit

$endif

$ifexist $1l.plm

run86 -fixplm :lang:plm386 $1.plm compact debug
$if not commandexcep = eok

$set quit

$endif

$endif

$if not quit
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run86 :lang:bnd386 $0.0bj, &

$ifexist $1.0bj
%$1l.obj, &

1$endif
:sd:rmx386/1ib/rmxifc32.1ib &
rc(dm(0, OFFFFFFFFh)) ss(stack(8192)) &
rn(code32 to code)
$if commandexcep = eok

%0

$endif

$endif

One of the reasons this file looks so complex is, as an HI command, esub-
mit does not have access to the CLI’s aliases, so the invocation of the com-
piler and binder must be explicit. Until now, the sample command lines
have assumed an alias exists, which conceals the fact that the pIm386 com-
mand actually involves invoking the compiler using the run86 utility.

3.7.2 The make command

The esubmit command is a relatively recent addition to iIRMX, and future
versions might make this a stronger tool. Meanwhile, a version of the Unix
make command for iRMX is available that works very well for automating
the development process.!® The basic idea of make is that you specify the
name of a file to be created on the command line and make invokes exactly
those HI commands needed to create the file. The file to be created is called
the target, and make is supplied with a set of rules that identify which com-
mands to run to build targets based on their file names.

For example, if you tell make to create a file calledmy£file.obj, it would
look for a source file to compile. If, on the other hand, you told make to
create a file called simply myfile, it would invoke the binder. The two
powerful features of make are that it performs only those operations actu-
ally necessary, based on the time and date of the last modification the OS
stores with each file, and its macro capability, which gives it a great deal of
flexibility.

The rules that make follows are stored in two text files, called
:lang:builtins.mk and : $:makefile. Both files contain the same in-
formation, but if there is any conflict between them, makefile takes pre-
cedence over builtins.mk. For a single-source-module program written
in either C or PLM and a properly set-up builtins.mk, you should be
able to just type a make command with the name of the program as an ar-
gument to compile and bind the program, even without a makefile
present. If the compilation stage fails, edit the source file to fix the prob-
lem, and issue the same make command again.

If more than one source file constitutes a program, make proves to be

1°The command is called mk in some versions of iRMX.
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very powerful, but it does have to be told by statements inmakef i 1e which
modules compose the program. The technique is to enter a line in the ma 