intel

EXTENDED iRMX®II.3
OPERATING SYSTEM
DOCUMENTATION

VOLUME 4

SYSTEM UTILITIES AND
PROGRAMMING INFORMATION

Order Number: 461847-001

Copyright © 1988, intel Corparaticn, All Rights Reserved

[n lpocations vutside the United States, obtain additional coples of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly before the reader reply card in the back of the manual.

The information in this document is subject to change without notice

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
iimited to, the implied warranties of merchantablility and fitness for a particular purpose. Intel
Carporation assumes no responsibility for any errors that may appear 1in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in un Intel prisduct. Noother circuit patent licenses are implied.

[nte! sottware products are copyvrichted by and shall rematn the property of Intel (orporation.
Use, duplication or disclosure 15 subject 1o restrictions stated in Intel's software license, or as

defined in ASPR 7-104 9 3¢9,

No part of this document may be copied or reproduced in any form or by anv means without prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above 1LBX 1PSC OpenNET

BITBUS im 1RMX ONCE

COMMputer iMDDX 1SR Plug-A-Bubble

CREDIT IMMX 15BX PROMPET

Data Pipeline Insite 151M Promware

gr'nius intgl 1558 QUEST

I intaIBOS iSXM QueX

1 Intelevision Library Manayger Ripplemode

[2ICF, intgligent Identifier MCS RMX/80

ICE inteligent Programming Megachassis RUPI

ICEL [ntellec MICROMAINFRAME Seamlass

iCs Inteilink MULTIBUS S1.D

DBP 106P MULTICHANXNEL UPI

1DIS 1IPDS MULTIMODULE VISICEL
1PSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics s a
trademark of Centromes Data Computer Corporation, Chassis Trak is a trademark of General
Deviees Company, Ine. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Haves are trademarks of Hayes Microcomputer Products, Ine. IBM is a
registered trademark of [nternational Business Machines. Soft-Scope is a registered trademark of
Concurrent Sciences.

Copyright® 1988, Intel Corporation

VOLUME PREFACE

MANUALS IN THIS VOLUME

This volume (Volume 4, Extended iRMX® II Operating System Utilities and Programming
Information) includes the following manuals:

Extended iIRMX® I Bootstrap Loader Reference Manual
Extended iRMX® [I System Debugger Reference Manual
Extended iRMX® If Disk Verification Utility Reference Manual
Guide to the Extended iRMX® If Interactive Configuration Utility
Extended iRMX® IT Programming Techniques Reference Manual

The Extended iRMX® [T Bootstrap Loader Reference Manual describes the use of the
Bootstrap Loader and how to modify the Bootstrap Loader files.

The Extended iRMX® I System Debugger Reference Manual describes the iIRMX® 11
Operating System’s static debugger. All of the System Debugger commands are explained
and an example debugging session is provided.

The Extended iRMX® I{ Disk Verification Utility Reference Manual describes the Disk
Verification Utility which is used to examine and modify the data structures of iIRMX® 11
named and physical volumes.

The Guide to the Extended iRMX® II Interactive Configuration Utility manual describes the
Interactive Configuration Utility commands and menus, and provides an example system

configuration.

The Extended iRMX® II Programming Technigues Reference Manual provides programming
techniques and examples.

iRMX® II System Ultilities and Programming Information Volume

ree
i

VOLUME PREFACE

VOLUME CONTENTS

Manuals are listed in the order they appear in the volumes. For a synopsis of each manual,
refer to the Introduction to the Extended iRMX\ 1l Operating System.

VOLUME 1. Extended iRMX® II Introduction, Installation, and Operating Instructions

Introduction to the Extended iRMX IT Operating Systern
Extended iIRMX I Hardware and Software Installation Guide
Operator’s Guide to the Extended iRMX 1T Human Interface
Master Index

VOLUME 2: Extended iRMX® I Operating System User Guides

Extended iRMX® 1l Nucleus User’s Guide

Extended iRMX® II Basic I/0 System User’s Guide

Extended iRMX® [Extended 1/0 System User's Guide

Extended iRMX® [l Human Interface User’s Guide

Extended iRMX® [I Application Loader User’s Guide

Extended iRMX® Il Universal Development Interface User's Guide
Device Drivers User’s Guide

VOLUME 3. Extended iRMX® [[System Calls

Extended iRMX® I1 Nucleus System Calls Reference Manual

Extended iRMX® IT Basic I/0 System Calls Reference Manual
Extended iRMX® [] Extended [/0 System Calls Reference Manual
Extended iIRMX® Il Application Loader System Calls Reference Manual
Extended iRMX® II Human Interface System Calls Reference Manual
Extended iRMX® I1 UDI System Calls Reference Manual

VOLUME 4: Extended iRMX® Il Operating System Utilities
Extended iRMX® [I Bootstrap Loader Reference Manual
Extended iRMX® [T System Debugger Reference Manual
Extended iRMX® [I Disk Verification Utility Reference Manual

Extended iRMX® I Programming Technigues Reference Manual
Guide to the Extended iRMX® II Interactive Configuration Utility

VOLUME 5: Extended iRMX® [Interactive Configuration Utility Reference

Extended iRMX® [[Interactive Configuration Utility Reference Manual

iv iRMX® 11 System Utilities and Programming Information Volume

REVISION HISTORY

DATE

Original [ssue.

01/88

intal

EXTENDED iRMX®II
BOOTSTRAP LOADER
REFERENCE MANUAL

intel Corporation
3065 Bowers Avenue
Santa Clara, Califernia 95051

Copyright ~ 1988, Intel Corporation, All Rights Reserved

PREFACE

INTRODUCTION

The Bootstrap Loader enables you to generate a system that can bootload from Intel-
supplied or custom devices. A bootable system gains control immediately after power-up
or system reset. This manual provides information that enables you to configure your
system to boot from specific devices, to include your own custom device drivers as part of
the system, and to place your generated system into PROM devices.

READER LEVEL

The manual assumes that you are familiar with the iRMX 11 Operating System and an
editor with which you can edit source code files. 1t may also be helpful if you are familiar
with the following:

« SUBMIT files.

¢ ASMB6 source code files.

MANUAL OVERVIEW

This manual is organized as follows:
Chapter 1 This chapter provides an overview of the Bootstrap Loader operations.

Chapter 2 This chapter provides an operator’s viewpoint of using the Bootstrap
Loader.

Chapter 3 This chapter describes how to configure the first stage of the Bootstrap
Loader.

Chapter 4 This chapter describes how to configure the third stage of the
Bootstrap Loader.

Chapter 5 This chapter describes how to write custom first-stage drivers.

Chapter 6 This chapter describes how to write custom third-stage drivers.

Bootstrap Loader iii

PREFACE

Chapter 7 This chapter describes error handling procedures.

Appendix A This appendix describes how to include automatic boot device
recognition into your system.

Appendix B This appendix describes how to load the Bootstrap Loader and the
monitor into PROM devices.

CONVENTIONS

iv

The following conventions are used throughout this manual:

Information appearing as UPPERCASE characters when shown in keyboard
examples must be entered or coded exactly as shown. You may, however, mix lower
and uppercase characters when entering the text.

Fields appearing as lowercase characters within angle brackets { < >) when shown in
keyboard examples indicate variable information. You must enter an appropriate
value or symbol for variable fields.

User input appears in one of the following forms:

as bolded text within a screen I

The term "iIRMX II" refers to the Extended iIRMX 11.3 Operating System.
The term "IRMX 1" refers to the iRMX T (iRMX 86) Operating System.

All numbers, unless otherwise stated, are assumed to be decimal. Hexadecimal
numbers include the "H" radix character (for example, OFFH).

Bootstrap Loader

CONTENTS

CHAPTER 1 PAGE
OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1.1 Introduction to the Bootstrap Loader..........ccooiiiiis s 1-1

1.2 The Stages of the Bootstrap Loader...........ccocooivvviri i env s 1-2

L2017 FIISESTAZE (oot ettt b e et s bbbt ner s 1-2

12,2 SECONA SLABE ...ttt s e 1-3

123 Third SEAEE ..ottt bt 1-4

1.2.3.1 Generic Third Stage TS OT TSRO URUO OB 1-4

1.2.3.2 Device-Specific Third Stage ..o 1-5

1.2.3.3 Naming the Third Stage ... 1-5

1.2.4 Load File ettt e 1-5

1.3 DevICE DIFIVETS. .o.oiiciii i et b et b e 1-7

1.4 Memory Locations Used by the Bootstrap Loader ... 1-8

L5 Configuring Your Own Bootstrap Loader ... 1-9

CHAPTER 2 PAGE
USING THE BOOTSTRAP LOADER

2.1 INETOUUCTION Lttt et 2-1

2.2 Operator’s Role in Bootstrap Loading ..o rsssenns 2-1

2.2.1 Specifying the Load File ...t 2-1

2.2.2 Debug OPtiOn o e 2-3

2.3 Placing the Bootstrap Loader Into Memory ... 2-4

2.4 Choosing a Third Stage.......coiiiiiiiii e 2-6

CHAPTER 3 PAGE
CONFIGURING THE FIRST STAGE

J.1 INEFOAUCTION Lottt e e e 3-1

3.2 BS1.A86 and BSIMB2.A86 Configuration Files ... 3-2

3.2.1 %BIST Macro (MULTIBUS® II Only) oooriin e seeees 3-8

3.2.2 9%COPY Macro (MULTIBUS® T Only) oot 3-9

323 %AUTO_CONFIGURE MEMORY Macro (MULTIBUS® II Only)...... 3-10

328 GoCPU MACTO .eoveooeooese oottt oottt 3-11

3.2.5 %BMPS Macro (MULTIBUS® H Only).....ocoooiriiieeie e, 3-11

3.2.6 961APX 186 INIT Macro (iRMX® { MULTIBUS® [Systems Only) 3-13

32.7 %CONSOLE, %MANUAL, and %AUTO MACros ...oocooooooveovevvemreoreeeresreoson. - 3-14

3.2.8 FELOADFILE MACTO (oot 3-16

3.29 9%DEFAULTFILE MACTo oo 3-17

Bootstrap Loader

CONTENTS

CHAPTER 3 (continued) PAGE
3210 GGRETRIES MACTO oottt et an e s n s en s g e 3-17
3211 %CLEAR SDM EXTENSTONS Macroocoovvecincscsnnnin s 3-18
3212 GHCTCO MACTO oottt e 3-18
3.2.13 %SERIAL CHANNEL MACTO ocoviiiiiini s 3-19
3214 GeDEVICE MACTO oot eeeeesv e sssesies st es et snssaseneseisnnseetss s nnsenenns 3724
3285 GEEND MACED oot eb ettt e et et e ettt ene e et 3-27

3.3 BSERR.A86 Configuration File ... 3-27
3.3.1 GCONSOLE MACIOa ittt ev et aae e et ae e 3-28
332 GETEXT MACTO oottt ettt er e st ettt et et a ekt a e 3-28
ETR TR/ I 1 B, F: T o« TR O SOOI 3-28
334 GBAGATIN MACTO oottt et vesre s en e r s rasmnae e 3-29
335 GEINTT MECTO oot tab s e hete s er s s ebe s s s e s e resesaes s s an e empeseae s 3-29
3.3.6 GoINTI MEACTO oottt erere e et ssn s s eses e eseeenenasseses s sensenssrasnns 3730
F3B GZENID MACTO (et aa e e e sa e e aesae e 3-31

3.4 Device Driver Configuration Files ... 3-31
341 GEB208 MACTO et ee et et et ees et et benssrsssensenes 3732
3.4.2 GBMSC and Z5B220 MUCTOS oo 332
343 GB21BA MUCTO oo ettt ettt ettt sttt 3-33
3.4.4 TLB224A MECTO ccoiiiieioe oottt are s s et estere s et e aenees e 3-34
3045 GDB25T MACTO i iiie ettt a s et e b eaenieaseaseaesa e e aaeanesentes 3-35
3.4.0 GoB254 MACIO....iiciiii e e e st 3-36
3.4.7 GHB204 MACEO. oottt vsesrin e a et se e eee s ebee e es s ae et ee s s e s sesereeees 3-36
3.4.8 GHBSCSE MACTO ittt et e s s e eee s 3-37
349 DSASI_UNIT INFO Macro. oo oo 3-39
3.4.10 User-Supplied DIEIVEES ... vt sttt rens e 3-40

3.5 Generating the First STAge ... 341

3.5.1 Modifying the BS1.CSD Submit File ..o, 3-44
3.5.2 Invoking the BS1.CSD Submit File ..o 3040

3.6 Memory Locations of the First and Second Stages ..., 3-47
CHAPTER 4 PAGE
CONFIGURING THE THIRD STAGE

4.1 INEPOAUCTION ...ooiiiiiitc et 4-1

4.2 Overview of Third Stage Configuration ... 4-1

4.3 BS3.A86, BS3MB2.A86 and BG3.A86 Configuration Files ... 4-2

4.3.1 %BMPS Macro (MULTIBUS® I Only)....ocicincnei e 4-5
432 %DEVICE Macro (BS3.A86 and BS3IMB2.A86 Only)....c..cocccccvciinnnnrc 46
4.3.3 %SASI UNIT INFO Macro (BSCSLAS6 File).....coooooviniiiiiciiiies 4-7
4.3.4 GoINTI MACTO ..ot 4-9
4.3.5 FoINTI MACTO (.ot et s 4-10
4.3.0 GEHALT MACTO. oo e 4-10
4.3.7 GCPU_BOARD MACIo....ooiiiiicnnn s, 4-10

vi Bootstrap Loader

CONTENTS

CHAPTER 4 (continued) PAGE

4.3.8 %INSTALLATION Macro (BG3.A86 Only) .o 4-11

4.3.9 GoEND MACTO ..ot ettt e 4-12

4.3.10 User-Supplied DIIVELS ...ttt 4-12

4.4 Generating the Third StAge ... e 4-13

4.4.1 Modifying the Submit Files ..., 4-14

4.4.2 Invoking the Submit File ... 4-15

4.5 Memory Locations of the Three Stages.....c.cocooeoiiie e 4-16

CHAPTER 5 PAGE
WRITING A CUSTOM FIRST-STAGE DRIVER

S0 TNEPOAUCLION oottt s et 5-1

5.2 Device Initialize Procedure. ...t 5-2

5.3 Device Read Procedure. ...ttt 5-3

5.4 Supplying Configuration Information to the First-Stage Driver..........c...cccooooo.e.... 5-4

5.4.1 Hard-Coding the Configuration [nformation ..., 5-4

5.4.2 Providing a Configuration FIUe ..o 3-5

5.5 Using the MULTIBUS® [1 Transport Protocolc.ceoreeneescrneseneens 5-8

5.5.1 Message Passing Controller [nitialization ... 5-9

5.5.2 MESSALEE TYPES 1ottt et et st b 5-10

5.5.3 Request/Response Transaction Modeloocoooooiioioeiiee 5-10

5.5.4 Send and Receive Transaction Models........c.ocooovovinonnnieeeee. 5-15

5.5.5 Message BroadCastil. ..ot 5-20

5.5.6 Transmission MOGESooouciiiiii e e 5-22

5.5.7 INTErcoNNECt SPACE ... e e e 5-22

5.5.8 Driver Code ConsIAerationsooo oo 5-30

5.6 Changing BS1.A86 or BSIMB2.A86 to Include the New First-Stage Driver........ 5-33

5.7 Generating a New First Stage Containing the Custom Device Driver................. 5-34

CHAPTER 6 PAGE
WRITING A CUSTOM THIRD-STAGE DRIVER

0.1 INtrOdUCTION ..ot e erens 6-1

6.2 What a Third-Stage Device Driver Must Contain........c..occoverirciieccies e, 6-1

6.3 Device Initialization ProCedure.. ...t 6-3

6.4 Device Read Procedure ... 6-4

6.5 Protected Mode Considerationscoooi ot 6-6

6.6 Supplying Configuration Information to the Third-Stage Driverc.cccoocoveieene. 6-7

6.7 Using MULTIBUS® II Transport Protocol ... 6-8

6.8 Changing BS3.A86 to Include the New Third-Stage Driver............coooovieee. 6-8

6.9 Generating a New Third Stage Containing the Custom Driver ..o 6-9

Bootstrap Loader vii

CONTENTS

CHAPTER 7 PAGE
ERROR HANDLING
Tl INEEOAUCHION ittt bbb nan s 7-1
7.2 Analyzing Bootstrap Loader Failures ... 7-1
7.2.1 Actions Taken by the Bootstrap Loader After an Error......ocoveveenccncne, 7-1
7.2.2 Analyzing Errors With Displayed Error Messages ..., 7-2
7.2.3 Analyzing Errors Without Displayed Error Messages..........ooooivenncnene. 7-5
7.2.4 InItIAlZAtON EITOTS oottt bttt s 7-7
APPENDIX A PAGE
AUTOMATIC BOOT DEVICE RECOGNITION
AL INTFOAUCTION oottt ettt A-1
A.2 How Automatic Boot Device Recognition WOorks.......cccoooivenrciiin e, A-1
A.3 How to Include Automatic Boot Device Recognitionccooeiviiieiciinicnnn. A-2
A.4 How to Exclude Automatic Boot Device Recognitionccoeoveveievenenieevenennen, A-5
APPENDIX B PAGE
PROMMING THE BOOTSTRAP LOADER AND THE ISDM™ MONITOR
B.1 INtrOAUCHION (oot ettt B-1
B.2 Incorporating the iSDM™ MONItOr ..o B-1

viii Bootstrap Loader

CONTENTS

TABLES

TABLE PAGE
1-1 Intel-Supplied Bootstrap Loader DIiversooooovoeoeoesoer e 1-8
2-1 Supplied Third Stage FIles ...t 2-7
3-1 Procedure Names for Intel-Supplied First Stage Driverscccooovooovooiiccieenenn 3-25
3-2 5.25-Inch Diskettes Supported by iSBC® 208 and MSC-Specific Drivers............ 3-26
3-3 8-Inch Diskettes Supported by iISBC® 208 and MSC-Specific Drivers................. 3-26
4-1 Names for Intel-Supplied Third Stage DIIVErS .t 4-7
4-2 Memory Locations Used by the Bootstrap Loader. ..o, 4-16
7-1 Postmortem Analysis of Bootstrap Loader Failure ..., 7-6

FIGURES

FIGURE PAGE
3-1 Intel-Supplied BSTABO FIle ..o 3-3
3-2 Intel-Supplied BSIMB2.ABO File ..., 3-6
3-3 First Stage Configuration File BSERR.ABOc.co.oooivivioe oo, 3-27
3-4 First Stage Configuration File BSLCSD ...t 3-42
3-5 Excluding the iSBC® 251 and iSBC® 254 DIFIVETS.......oovovvvvveeeecsse e 3-45
4-1 Intel-Supplied BS3.A86 File ..o 4-3
4-2 Intel-Supplied BS3MB2.A86 File 4-4
4-3 Intel-Supplied BG3.A86 File ..o et 4-5
4-4 Device-Specific Third Stage SUBMIT File (BS3.CSD)o.oovereirirsr e, 4-13
4-5 Generic Third Stage SUBMIT File (BG3.CSD)...oooviiivoirieesecees e, 4-14
5-1 Hard-Coded Configuration Information.............c.cocooveoiicvs e 5-5
5-2 Moadified BST.CSD File .ot 5-8
5-3 Modified BST.ABGO File ..o -3
0-1 Changing the BS3.ABO File ..o 6-9
A-1 EIOS Configuration Screen (ABR) ..o et . A-2
A-2 ABDR Screen (DLN, DPN, DFD, DO) oo A-3
A-3 Device-Unit Information Screen (NAM and UN) ..o, A-4
A-4 Logical Names SCreeN ..ot st rs e A-3

Bootstrap Loader ix

CHAPTER 1

OVERVIEW OF BOOTSTRAP

LOADER OPERATIONS

1.1 INTRODUCTION

The Bootstrap Loader is a program that is not part of any particular Operating System.
Rather, it is a program that loads an application system into RAM from secondary storage
so that it can begin running. This process is called bootstrap loading or booting. Booting
can occur when the system is turned on, when the system is reset, or under operator
control when the monitor is active.

The Bootstrap Loader eliminates the need to place complete applications into PROM
devices. Instead, you can place the Bootstrap Loader--a relatively small program--into
PROM devices and store your application system on a mass storage device. The Bootstrap
Loader can then be used to load the application program into RAM.

The Bootstrap Loader consists of three stages.

The first stage resides in PROM devices. It determines the name of the file to load, loads
part of the second stage, and passes control to that part. Intel System 300 Series
Microcomputers are delivered with the first stage of the Bootstrap Loader and the iSDM
monitor already placed in PROM devices. Intel Modules Development Platforms are
delivered similarly except with the D-MON386 monitor. If you are building your own
computer systems, you can use the information in this manual to configure a first stage and
place it into PROM devices.

The second stage resides on track 0 of every IRMX-formatted named volume. That is,
whenever you use the Human Interface FORMAT command to format a volume, the
second stage is copied to that volume. When invoked, the second stage finishes loading
itself into memory and then loads a file from the same volume and passes control to it.
The contents of this load file depend on the kind of system you are loading. If you are
loading an iRMX I system, the file loaded by the second stage contains the application
system itself. If you are loading an iRMX II system, the file loaded by the second stage
contains the third stage of the Bootstrap Loader, which finishes the loading process.

Bootstrap Loader

1-1

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

The third stage is necessary for loading iRMX 11 applications, because these applications
require the 80286 processor to be running in protected mode and because they use the
OMF-286 object module format. The OMF-286 format is different from the OMF-86
format and therefore cannot be handled by the second stage. The third stage places the
processor in protected mode, loads the iRMX II application system, and transfers control
to that application system. The third stage resides in a named file on the same volume as
the second stage. Your Bootstrap Loader package contains a configured third stage that
can load applications from selected devices. The instructions in this manual can help you
configure your own third stage to add support for other devices.

The bootstrap loading process cannot be completed without a device driver. The device
driver is a small program that provides the interface between the Bootstrap Loader and a
hardware device (or a controller for the device). When you configure the Bootstrap
Loader (a task that is independent of operating system configuration), you specify the
device drivers that the Bootstrap Loader requires. During the course of configuration,
these device drivers (which are usually distinet from the drivers needed by the application
system) are linked to the Bootstrap Loader automatically.

1.2 THE STAGES OF THE BOOTSTRAP LOADER

The Bootstrap Loader has a number of stages that control the loading of the application
system. iRMX I applications load with a two-stage process. iRMX IT applications use
these two stages but also require a third stage.

1.2.1 First Stage

The Bootstrap Loader’s first stage consists of two parts. One part is the code for the first
stage, and the other part is a set of minimal device drivers used by the first and second
stages to initialize and read from the device that contains the system to be booted.

The Bootstrap Loader package contains device drivers for many common Intel devices. To
support other devices, you can write your own drivers and configure them into the first
stage.

To use the Bootstrap Loader, the first stage must be in one of two places. The natural
place for the first stage is in PROM devices, either as a standalone product or combined
with a monitor. Intel System 310 and 380 Series Microcomputers are delivered with the
Bootstrap Loader’s first stage, the iSDM monitor, and the System Confidence Test (SCT)
in the PROM devices. Intel System 320 Series Microcomputers are delivered with the
Bootstrap Loader’s first stage, the iSDM monitor, the D-MON386 monitor, and the SCT in
the PROM devices. Intel Modules Development Platforms are delivered with the
Bootstrap Loader’s first stage, the D-MON386 monitor, and the SCT in the PROM
devices.

1-2 Bootstrap Loader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

If you have a system that includes the iISDM monitor and you are adding your own device
driver to the Bootstrap Loader’s first stage, you might find it useful to load the first stage
into the target system’s RAM using a development system iSDM loader and activate the
first stage under iSDM control from the development system. After activating the first
stage, you could then debug driver code. If your system includes the D-MON386 monitor,
however, you must perform all driver debugging from the target system. You cannot
download the first stage from a development system into the target system and then use D-
MON?386 to initiate program execution. When debugging under these latter circumstances,
you may wish to either debug within the PROM devices or perhaps use a working
Bootstrap Loader to bootlead the Bootstrap Loader that contains the new driver.

When the first stage begins running, it first identifies the bootstrap device and the name ot
the file to boot, either by accepting that information from a command line entered at the
monitor or by using default characteristics established when the first stage was configured.
The Bootstrap Loader next calls its internal device driver for the device, which initializes
the device and reads the first portion of the second stage into memory. (The second stage
always resides on track 0 and block 0 of the named volume, s0 it can be accessed easily by
the first stage.) After calling the internal device driver, the tirst stage passes control to the
second stage.

Because the first stage works on both 8086/ 186- and 80286/386-based computers, it
operates in real address mode when running in an 80286/386-based system. This means
that any device drivers you write for the first stage must also operate in real address mode.

1.2.2 Second Stage

Unlike the first stage, the second stage of the Bootstrap Loader is not configurable. Its size
is always the same (less than 8K bytes), and it does not depend on the application in any
way. The code for the second stage resides on all volumes formatted with the iRMX T or
iIRMX IT Human Interface FORMAT commands. Therefore, the second stage is always
available for loading applications residing on random access devices.

When the second stage receives control, it finishes loading itself into memory and then
loads the file determined by the first stage. When loading the file, it uses the same device
driver used by the first stage. In IRMX [systems, the load file is the application system
iself. In iIRMX 11 systems, this file is the third stage of the Bootstrap Loader.

Bootstrap Loader 1-3

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

NOTE

You cannot bootstrap load the IRMX 1.1, 11.2, I1.3 Operating System from a
volume that was formatted using the iRMX 1.6 or 1.7 (iRMX 86 Release 6 or 7)
FORMAT command. However, you can make the volume bootable without
reformatting the entire volume and losing the data stored on it. To be able to
boot both the iIRMX T and iRMX 11 Operating Systems from the same volume,
invoke the iRMX I1.3 FORMAT command and specify the BOOTSTRAP
control. With BOOTSTRAP specified, FORMAT just replaces the second
stage on track 0 of the volume while leaving the remaining data untouched.
When the FORMAT commanad finishes, you can bootstrap load both the iRMX
I and iRMX II Operating Systems from the same volume.

1.2.3 Third Stage

The third stage of the Bootstrap Loader is used for loading iRMX II-based applications
into memory. The third stage resides in a named file on the bootstrap device. Both the
third stage and the application system to be loaded must reside in the same directory on
the volume.

There are two types of third stages: a generic third stage and a device-specific third stage.
The type needed for your system depends on the size of the application system you intend
to load.

1.2.3.1 Generic Third Stage

The generic third stage is so named because it can load application systems from any
device that the first stage recognizes. This stage contains no device driver of its own.
Instead, it uses the same device driver used by the first and second stages. This means that
you won't need to write a separate device driver to work in protected mode, but it also
means that the generic third stage runs in real address mode. In real address mode,
addressability is restricted to the first (lowest) megabyte of memory. Therefore, the
generic third stage can load only those application systems that are smaller than 840K
bytes. The remaining space is used by the Bootstrap Loader, the monitor and the SCT. To
load larger applications, you must use a device-specific third stage.

When the generic third stage receives control, it uses the device driver supplied in the first

stage to load the application system. Then it switches the processor into protected virtual
address mode and passes control to the application.

1-4 Bootstrap Loader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1.2.3.2 Device-Specific Third Stage

The device-specific third stage switches the processor to protected virtual address mode
before loading the application system. This enables this stage to load into memory
addresses higher than one megabyte. However, because this stage switches the processor
into protected mode, it cannot use the first stage’s device drivers (which operate only in
real mode). Instead, it must contain its own device driver, operating in protected mode, to
control the device from which the application system is loaded.

The device-specific third stage supplied in your Bootstrap Loader package supports the
following devices:

s 1SBC 215G/iSBX 218A winchester and diskette controller combination or the
iISBC 214 controller

+ 1SBC 264 bubble memory controller
» iSBC 186/224A multi-peripheral controller

s SCSI (Small Computer Systems Interface) and SASI (Shugart Associates Systems
Interface) peripheral bus controllers having iSBC 286/100A CPU board as the host.

If you want to boot from any other device, you must write a protected mode device driver
for the device and link the driver in when you configure the device specific third stage (see
Chapter 6).

When the device-specific third stage receives control, it performs the same operations as
the generic third stage. However, before invoking the device driver to load the application
system, it switches the processor into protected mode. This enables the third stage to load
applications that reside outside the first megabyte.

1.2.3.3 Naming the Third Stage

Both the generic and the device-specific third stages are stored as executable files. The
base portion of this file’s name -- the filename minus any extension -- must be the same as
the base portion of the file containing the application system to be loaded. Because the
name of the third stage and the name of the application system must match, you must
provide a separate third stage file for each bootable system on the volume. To provide
additional third stage files, simply make a copy of the third stage file you are currently
using. Name the copy so that it matches the application system you intend to load.

1.2.4 Load File

The load file is a file containing the application system you are trying to boot. The load file
should be on an iRMX I- or iRMX II-formatted named volume. This volume must have
been formatted by the Human Interface FORMAT command. If the load file is an IRMX
11 application, the volume must also have a file containing the third stage of the Bootstrap
Loader.

Bootstrap Loader 1-5

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

If your load file 1s an iIRMX 11 application, the name of that file must correspond to the
name of the Bootstrap Loader third stage, as follows:

e The base portion of the load file’s name (the filename minus the extension) must be
the same as that of the file containing the third stage.

e The extension portion of the load file’s name must consist of the characters ".286".
The following are examples of valid and invalid third stage /load file combinations:

Valid Combinations

Third stage -- MYSYS
Load file -- MYSYS.2K6
Third stage -- SYS1.3RD
Load file -- SYS1.286

Invalid Combinations

Third stage -- MYSYS

Load file -- YOURSYS.286
Third stage -- MYSYS.3RD
Load file -- MYSYS.LOD

When you configure the first stage of the Bootstrap Loader, you can choose the file name
that will be used if the operator doesn’t specify a filename when invoking the Bootstrap
Loader. By default, the file name is /SYSTEM/RMX86 for iIRMX I load files. For iRMX
Il systems, /SYSTEM/RMX86 is the default name of the Bootstrap Loader’s third stage
and /SYSTEM/RMX86.286 is the default name of the iRMX Ii load file.

NOTE

Because of the way the Bootstrap Loader interprets filenames, the only period
(.) allowed in the entire pathname for the load file is the one that precedes the
extension 286. For example, the pathname /SYSTEM.1/MYSYS 286 is invalid
because it contains more than one period.

1-6 Bootstrap Loader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1.3 DEVICE DRIVERS

When the Bootstrap Loader starts running, there is no software in place to enable the
processor to communicate with the device from which you want to load the system. Part of
the task of the Bootstrap Loader is to establish communications with the boot device. To
communicate with devices, the Bootstrap Loader must include programs, called device
drivers, for the devices from which you want to boot. When configuring the Bootstrap
Loader, you specify the device drivers you want to include. The configuration process links
the drivers to the Bootstrap Loader code.

Both the first stage and the device-specific third stage require their own drivers. The first-
stage drivers operate in real address mode and are used to load iIRMX 1 applications and
the third stage of the Bootstrap Loader. The generic third stage also uses the first-stage
drivers to load iIRMX Il applications.

The third-stage drivers operate in protected virtual address mode and are used by the
device-specific third stage to load iIRMX IT applications into the full 16 megabyte address
space.

The first stage must include a reat mode device driver for each device from which you want
to boot. The generic third stage includes no drivers of its own, but the device-specific third
stage must include a protected mode driver for each of the boot devices. Intel includes
several real and protected mode drivers in the Bootstrap Loader package, as listed in Table
1-1. All the real mode drivers can be used with the first stage and with the generic third
stage. All the protected mode drivers can be used with the device-specific third stage.

If you want to boot from a device not supported by these device drivers, you can write your
own device driver. See Chapter 5 for information on writing a new device driver.

Bootstrap Loader 1-7

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

Table 1-1. Intel-Supplied Bootstrap Loader Drivers

Driver Type

1ISBC 208 Flexible Disk Drive Controller. Real Mode. Also used with the
generic third stage.

Mass Storage Controller (MSC), supporting the ISBC 214 Both Real and Protected Mode.
and iISBC 215G controller boards. Also supports the
iSBX 218A controller when it is mounted on the iISBC 215G

board.

iISBX 218A Flexible Disk Controller {used on a processor Real Mode only. Also used

board) with the generic third stage.

iSBC 220 SMD Disk Controller Real Mode only. Also used
with the generic third stage.

iSBC 186/224A Both Real and Protected Mode.

iSBX 251 Bubble Memory Controller Real Mode Only.

iSBC 254 Bubble Memory Controller Real Mode Only.

iSBC 264 Bubble Memory Controller Both Real and Protected Mode.

SC8I (Small Cormputer Systems Interface) and SASI Both Real and Protected Mode.

(Shugart Associates Systems Interface) Peripheral Bus
Controllers when the host for these controllers is the
iISBC 286/100A CPU board.

SCSI (Small Computer Systems Interface) and SASI Real Mode Only.
(Shugart Associates Systems Interface) Peripheral Bus
Controllers when the host for these controliers is the
iSBC 186/03A CPU board.

1.4 MEMORY LOCATIONS USED BY THE BOOTSTRAP LOADER

All three stages of the Bootstrap Loader reside in or are loaded into memory. This section
discusses the memory locations for different types of systems.

NOTE

When you configure your own version of the Bootstrap Loader, you must
ensure that the memory locations occupied by the three stages do not overlap.
In addition, when you configure the application system, you must ensure that it
will not be loaded into the memory occupied by the stage that is loading it.
However, you can configure this memory so that the iIRMX I and iRMX II free
space manager has access to it once the application begins running,

1.8 Bootstrap Loader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

The code for the first stage is normally located in PROM devices in the upper part of the
memory address space. The first stage data and stack are located by in conjunction with
the second stage code at address 0B800OOH. The second stage uses the same data and stack
as the first stage. The first stage data and stack plus the second stage code require 8K
bytes of memory. You can change the locations of the first stage data and stack, and the
second stage code by selecting a different address for the second stage when you invoke the
SUBMIT file, BS1.CSD, to configure the first stage. Chapter 3 describes the BS1.CSD file.

The device-specific third stage is located by default at address 0BCO0OH. It requires 16K
bytes of memory, and it uses its own stack and data segments. You can change the location
of the device-specific third stage by using the BS3.CSD SUBMIT file to generate your own
version. Chapter 4 describes the BS3.CSD file.

The generic third stage is located by default at address 0BCO00H. Unlike the device-
specific third stage, it uses the data and stack of the first stage (because it uses the first-
stage device drivers). You can change the location of the generic third stage by using the
BG3.CSD SUBMIT file to generate your own version of it. Chapter 4 describes the
BG3.CSD file.

When you use the second stage and generic third stage loaded into memory at their default
addresses (0B8000H and 0BCO00H), blocks of memory beginning at these two addresses
are used to load the application. The generic third stage uses 16K bytes of memory. Thus,
if your application were to occupy memory between 0B8000H and 0BFFFFH, the generic
third stage would fail to load the application.

1.5 CONFIGURING YOUR OWN BOOTSTRAP LOADER

If you intend to create your own version of the Bootstrap Loader, you must use the
Bootstrap Loader configuration and generation files supplied by Intel. In iIRMX I systems,
these files reside by default in the directory /RMX86/BOOT. In iRMX II systems, the
files reside in the directory /RMX286/BOOT. Information about configuring the first and
third stages is available in Chapters 3 and 4, and information on writing new device drivers
is available in Chapters 5 and 6.

Bootstrap Loader 1-9

CHAPTER 2
USING THE BOOTSTRAP LOADER

2.1 INTRODUCTION

The procedure for using the Bootstrap Loader depends on where you locate the first stage,
and for iRMX 1 users, which third stage you choose. This chapter explains the operator’s
role, methods of defining the first stage, and options to consider when choosing a third
stage.

2.2 OPERATOR’S ROLE IN BOOTSTRAP LOADING

The operator’s principal role in the bootstrap loading process is to specify the pathname of
the file that is to be loaded. For iRMX I systems, this is the pathname of the application
system. For iIRMX 1l systems, this is the pathname of the Bootstrap Loader’s third stage.
If the operator is using the Intel-supplied {irst stage, the load file specifications can be
entered in one of the following ways:

o By specifying neither the device name nor the file name

e By specifying both the device name and the file name

+ By specifying the device name only

¢ By specifying the file name only

In addition, if you have the iSDM monitor, the operator can also use the Debug option to

specity that control should pass to the monitor after loading is complete. (The D-MON386
monitor does not support a debug option.)

2.2.1 Specifying the Load File

An operator can specify a load file:

» When the monitor has issued a prompt. In this case, the operator can enter the
monitor’s B (bootstrap) command, followed by the name of the load file (include the
name within single quotes if you are using the D-MON386 monitor). For this to work,
the Bootstrap option must have been configured into the monitor. Refer to the iSDM
System Debug Monitor User’s Guide and the D-MON386 Dehug Monitor for the 80386
User’s Guide for information on configuring monitors.

Bootstrap Loader 2-1

USING THE BOOTSTRAP LOADER

o When the first stage of the Bootstrap Loader has issued an asterisk (*) prompt. When
this prompt appears, the first stage waits for an operator to enter the name of the load
file.

The method used to determine which file to load depends on the configuration of the
Bootstrap Loader’s first stage. Refer to Chapter 3 for more information about first stage
configuration.

When entering the monitor’s B command or responding to the Bootstrap Loader’s asterisk
prompt, the operator must specify the load file. One way to do this is to simply press
Carriage Return. This causes the Bootstrap Loader to search for a default file on the
default device (these defaults are set up when you configure the first stage). The Intel-
supplied first stage uses the following pathname as its default:

/SYSTEM/RMX86

If you were using the default first stage and you wanted to load the file called
/SYSTEM/RMX86 from the default device, you could simply type the B command with no
parameters (if you boot from the monitor) and press Carriage Return, or type a Carriage
Return only (if the Bootstrap Loader displays its own prompt).

If you need to specify a load file that is different from the default one, use the following
format for the specification:

:device:pathname (iSDM)
“device:pathname’ (D-MON?386)

Where:

:device: This is the name of the secondary storage device that contains the load
file. If you omit the device name, the default device is used (as
established during first stage configuration).

pathname When loading iRMX 1 applications, this is the full pathname of the file
you want to load. When loading iRMX I applications, this is the full
pathname of the Bootstrap Loader’s third stage. For iRMX II systems,
the file to be loaded is assumed to have the same pathname as the third
stage except for the filename extension, which is assumed to be .286.

If you omit this name, the Bootstrap Loader attempts to load the
default file (always /SYSTEM/RMX86).

To invoke the Bootstrap Loader with the monitor’s B command, the processor must be
running in real address mode. If your processor is running in real address mode, you can
simply break to the monitor and issue the boot command.

2-2 Bootstrap Loader

USING THE BOOTSTRAP LOADER

However, if the processor is running in protected virtual address mode (as it is when the
iRMX I Operating System is in control), you cannot boot another system by breaking to
the monitor and issuing a boot command. You must first reset the system. After resetting
the system, you can invoke the Bootstrap Loader at the monitor prompt.

Example 1: Assume that an iRMX 1 application system resides in the file
/SYSTEM/MY86SYS on drive :WF0:. You can boot this system by issuing the following
command at the iISDM monitor prompt:

Example 2: Assume that an iRMX II system resides in the file /SYSTEM/MYSYS.286 on
drive :WF0:, and that the third stage of the Bootstrap Loader resides in the file
/SYSTEM/MYSYS. If the processor is in real address mode, you can boot this system by
issuing the following command at the D-MON386 monitor prompt:

>

2.2.2 Debug Option

Assuming that the iSDM monitor is present in the system, the operator can include a
debug option when specifying a load file (the D-MON386 monitor does not support &
debug option). This option instructs the Bootstrap Loader to do the following immediately
after loading is complete:

e Set a breakpoint at the first instruction to be executed by the application system. For
iRMX I systems, the breakpoint will be set in the load file. For iRMX II systems, the
load file (the third stage) will be loaded as always and it will load the application
system. The breakpoint will then be set in the application system.

¢ Pass control to the iSDM monitor, which displays an "Interrupt 3 at <xox:xoox>"
message at the terminal, issues its prompt (a single period for real-mode iRMX 1
systems, two periods for protected-mode iRMX II systems), and waits for a command
from the terminal. At this point the operator can invoke any of the iSDM monitor
commands that are appropriate for real or protected mode. (To continue running the
loaded program, enter G <cr>.)

One advantage of the Debug switch is that the monitor’s interrupt message tells you that
the loading process was successful. If a system you are booting fails, you might not
otherwise be able to tell whether the bootstrap load itself was unsuccessful, or whether the
system loaded successfully and then failed during initialization. The presence or absence of
the interrupt message when you use the Debug option clarifies whether the loading was
successful.

Bootstrap Loader 2-3

USING THE BOOTSTRAP LOADER

Because the Debug option leaves you in the monitor, you can alter the contents of specific
memory locations and perform other monitor actions (such as debugging) before you start
your system running with the monitor’s G command.

To use the Debug option when you are invoking the Bootstrap Loader from the iSDM
monitor, include the letter D in the command line immediately after the B (boot)
command. Specify any load file pathname after the B and D characters.

For example, any of the following command lines invoke the Bootstrap Loader (from the
iISDDM monitor) with the Debug option:

Notice that the "D" and any pathname must be separated by at least one space.

You can also use the Debug option on systems in which the Bootstrap Loader is configured
to request the load file name; that is, on systems that issue the Bootstrap Loader’s first
stage asterisk (*) prompt. On these systems, place the "D" in the command line before the
load file specification (separated by at least one space). Examples of this are:

L

2.3 PLACING THE BOOTSTRAP LOADER INTO MEMORY

Before you can invoke the Bootstrap Loader, you must place it into memory. Several ways
exist to place the Bootstrap Loader into memory:

1. Place the first stage, configured for standalone operation, in PROM devices. In this
case, the first stage begins to run on power-up or reset. Depending on its
configuration, the standalone Bootstrap Loader may issue an asterisk prompt so that
you can enter the name of the load file. To configure the first stage for standalone
operation, refer to Chapter 3.

2-4 Bootstrap Loader

USING THE BOOTSTRAP LOADER

2. Configure the monitor to include the Bootstrap option, reconfigure the first stage of
the Bootstrap Loader to include the first stage device driver(s) needed for bootstrap
loading as not all of the device drivers supplied with the Bootstrap Loader will fit
into the memory range provided by the monitor. Then program new PROM devices
with the combination of the monitor and the first stage of the Bootstrap Loader.
With this method, you initiate bootstrap loading via the monitor’s "B’ (boot)
command. To use this method, refer to chapter 3 for configuration information.
Refer to the Guide to the Extended iRMX II Interactive Configuration Utility for
information on programming a monitor and the Bootstrap Loader into the same set
of PROM devices.

3. Place the first stage in secondary storage. Then, using the iISDM monitor or ICE in-
circuit emulator, invoke the first stage. This procedure is particularly useful when
you are adding a new device driver to the first stage and you need to debug the code.
To configure the first stage for standalone operation where loading is to be
performed with the iSDM monitor or ICE in-circuit emulator, refer to Chapter 3.

NOTE

If your system includes the D-MON386 monitor, you cannot download
the first stage from one system to another and then invoke it using
D-MON386 as described above. The previous description applies only
to a system configured with the iSDM monitor or ICE in-circuit
emulator.

4. Place the first stage in secondary storage, and then load it programmatically. This
applies only to iIRMX I systems. Because the iRMX Il Operating System cannot
switch back to real mode from protected mode, it cannot load the first stage, which
runs in real mode. (These systems can load the first stage in real mode only.)

The rest of this section gives instructions for using the fourth method.

Although bootstrap loading is usually performed in response to an external event (such as a
system reset or a monitor command), it can be initiated by an executing program. Such a
program can load another system by calling the PUBLIC symbol BOOTSTRAP _ENTRY.

To prepare for such a call, do the following:

1. Define BOOTSTRAP_ENTRY as an EXTERNAL symbol in the code of the
invoking program.

2. Place a call to BOOTSTRAP_ENTRY in the code of the invoking program. The
form of the call 1s

CALL BOOTSTRAP_ENTRY/(@filename)

Bootstrap Loader 2-5

USING THE BOOTSTRAP LOADER

where:

filename An ASCII string containing either the pathname of the
target file followed by a CARRIAGE RETURN, or a
CARRIAGE RETURN only. If the string contains a
pathname, the named file is loaded. If the string
contains a CARRIAGE RETURN only, the default file,
as defined by the %DEFAULTFILE macro in the
BS1.A86 or BSIMB2.A86 configuration file, is loaded.
(The BS1.A86 and BSIMB2.A86 files are discussed in
Chapter 3.)

The call must follow the PL/M-86 LARGE model of segmentation. (Even though this
is a call, rather than a jump, it does not return.)

3. Link the calling program to a version of the first stage of the Bootstrap Loader. You
can do this by using the BS1.CSD file as a model and making the following changes:

» Add the calling program to the list of modules that are linked in BS1.CSD.

» "Comment out" the locate sequence if you want to use any code other than absolute
code. For more details on absolute code, refer to the i4PX 86, 88 Family Ultilities
Guide.

More information on the BS1.CSD file is available in Chapter 3.

2.4 CHOOSING A THIRD STAGE

If you plan to load IRMX IT applications, you must include a version of the Bootstrap
Loader’s third stage on the secondary storage device from which you are loading your
application. You can use the following kinds of third stages, depending on the type of
system you are loading.

¢ A generic third stage

¢ A default device-specific third stage

¢ Your own configuration of the device-specific third stage containing customized device
drivers.

The rest of this section should help you decide which third stage best suits your needs.

The important factors to consider when choosing a third stage are the size of your system,

the type of mass storage devices you are using to boot your system, and the CPU board you
are using.

If you plan to load your system from any of the Intel-supplied devices, you can use the
default device-specific third stage regardless of the size of your system or a default generic
third stage for systems up to 840K bytes. Both third stages are supplied for 80286 and
80386 CPU boards.

2-6 Bootstrap Loader

USING THE BOOTSTRAP LOADER

If you plan to load your system from a custom device, the size of the system determines
which third stage you should use.

For systems that are not expected to exceed 840K bytes, use the generic third stage. I[n
this case, you do not need to supply a custom device driver for the third stage. You will
already be supplying a custom first stage driver; the generic third stage will use that
same driver to access the custom device.

If your application exceeds 840K bytes, you must use the device-specific third stage,
because it switches the processor into protected mode before loading the application.
This enables the third stage to load into the entire 16 megabyte address space
supported by protected mode. However, to load applications from your custom device,
you must write a third stage device driver for your device. This driver can be a
modification of your first stage driver that runs in the 80286 processor’s protected
mode. For information on writing a third stage driver, refer to Chapter 6.

NOTE

The 840K byte limit on systems loaded by the generic third stage applies
to the boot file only. Once the boot file 1s loaded and has control, the
entire 16 megabytes of memory address space is available for the system
(both the free space manager and the Application Loader).

Table 2-1 lists the versions of the third stage that are supplied on the Bootstrap Loader
Release Diskette. This table enables you to pick the appropriate third stage for your
system. After you install your system, these files are available in the /RMX286/BOOT

directory.

Table 2-1. Supplied Third Stage Files

Device-Specific Generic

CPU Board Third Stage Third Stage
iSBC 286/10 28612 28612.GEN
iSBC 286/10A 28612 28612.GEN
ISBC 286/12 28612 28612.GEN
iISBC 286/100A 2B6100A 286100A.GEN
iSBC 386,2X 38620 38620.GEN
ISBC 386/3X 38620 38620.GEN
iSBC 386/116 386100 386100.GEN
iISBC 386/120 386100 386100.GEN

Bootstrap Loader 2-7

CHAPTER 3
CONFIGURING THE FIRST STAGE

3.1 INTRODUCTION

There are three stages to the Bootstrap Loader, and two of these stages (the first stage and
the third stage) can be configured to match your application system. The second stage is
constant and does not need to be configured. This chapter describes how to configure the

first stage.

Configuring the first stage of the Bootstrap Loader involves the following operations:

» Editing three or more assembly language source files to indicate the configurable
options and device drivers to include in the first stage.

+ Invoking a SUBMIT tile to assemble the source files, link them together with the code

for the first stage, and assign absolute addresses to the code in preparation for placing
it into PROM devices.

Default versions of the assembly language source files and the SUBMIT file are placed in
the /RMX86/BOOT or /RMX286/BOOT directory during installation. These files
include the following:

BS1.A86

BSIMB2.A86

BSERR.AB6

Bootstrap Loader

This assembly language source file contains macros that specify
information about the processor and the bus, how the boot device
and load file are selected, and which devices can be hooted from.
You should use this file if your system 1s a MULTIBUS [system.

This assembly language source file contains macros that specify
information about the processor and the bus, how the boot device
and load file are selected, and which devices can be booted from.
You should use this file if your system is a MULTIBUS II system.

This assembly language source file contains macros that tell the
Bootstrap Loader what to do if errors occur during bootstrap
loading.

CONFIGURING THE FIRST STAGE

B208.A86 These assembly language source files contain configuration
BMSC.A86 information about the first stage device drivers. Each file describes
B218A.A86 one device driver. For each device driver that you want to include
B224A ARG in the first stage, you must set up the appropriate file and link it to
B251.A86 the rest of the first stage.

B254.A86

B264.A86

BSCSI.A86

BS1.CSD This SUBMIT file contains the commands needed to assemble the

preceding source files, link the resulting modules (and any others
that you supply), and locate the resulting object module containing
the configured first stage.

As shipped on the release diskettes, these files are set up to generate the default version of
the Bootstrap Loader’s first stage. 1f you decide to configure your own version of the first
stage, you will most likely edit either the BS1.A86 or BSIMB2.A86 configuration file
(depending upon your system), the BSERR.A86 configuration file, and the BS1.CSD
submit file. Make changes in the device driver configuration files only if you want to
change the Intel-supplied defaults in those files.

The following sections describe how to modify all the configuration files to tailor the first
stage of the Bootstrap Loader to meet your specifications.

NOTE

It's important that the BS1.A86 or BSIMB2.A86 configuration file and the
BS1.CSD SUBMIT file agree as to the device drivers that are included in the
first stage. Whenever you change the device driver specifications in one of
these files, be sure to check the other file as well. Specific areas that you should
check are discussed in descriptions of the files.

3.2 BS1.A86 AND BS1MB2.A86 CONFIGURATION FILES

Figures 3-1 and 3-2 show the BS1.A86 and BSIMB2.A86 files as they are delivered from
Intel. These files consist of four INCLUDE statements and several macros. The
definitions of the macros that can appear in these files are contained in the INCLUDE file
BSLINC. The macros themselves are discussed in the next few sections.

32 Bootstrap Loader

CONFIGURING THE FIRST STAGE

NOTE

Depending on your system, you must choose between BS1.A86 and
BS1MB2.A86 as the correct configuration file. If your system is a MULTIBUS
I system, choose the BS1.A86 configuration file. If your system is a
MULTIBUS IT system, choose the BSIMB2.A86 configuration file.

name bsl
Sinclude(:fl:becico.inc)
Sinclude(:fl:bmb2.inc)
Sinclude(:fl:bmps.inc)
Sinclude(:fl:bsl.inc)
Zcpu(80386)
; iSBC 188/48 initialization of the i1APX 188
;1APX_186_INIT(y,0fc38h,none, 80bbh,none, 003bh)

; iSBC 186/03(A) and iSBC 186/51 initialization of the iAPX 186
;1APX 186 INIT(y,none,none, 80bbh,none,0038h)

%console

Imanual

Zauto

%loadfile

Zdefaultfile(’ /system/rmx86')
“retries(5)
;clear_sdm_extensions

icico

;. 1iSBC 86/05/12a/14/30/35
;serial_channel(8251a,0d8h,2,8253,0d40h,2,2,8)

; iSBX 351 (on iSBX #0)
;serial channel(8251a,0A0h,2,8253,0B0h,2,2,8)

Figure 3-1. Intel-Supplied BS1.A86 File

I
Ca

Bootstrap Loader

CONFIGURING THE FIRST STAGE

; iSBX 354 Channel A (on 1SBX #0)
;serial channel(82530,084K,2,82530,084H,2,0,0eh,a)

; iSBX 254 Channel B (on iSBX #0)
;serial channel(82530,080H,2,82530,080H,2,0,0eh,b)

; 8 MHz iSBC 186/03A Channel A
;serial_channel(8274,0d48h,2,80186,0f£00h,2,0,0dh)

; 8 MHz iSBC 186/03A Channel B
;serial channel(8274,0dah,2,80186,0££00h,2,1,0dh)
;serial channel(8274,0dah,2,80130,0e0h,2,2,034h)

; & MHz 1SBC 186/03/51 Channel A
;serial channel (8274 ,0d8h,2,80186,0££00h,2,0,0ah)

; & MHz iSBC 186/03/51 Channel B
;serial_channel (8274 ,0dah, 2,80186 ,0ff00h,2,1,0ah)
;serial channel(8274,0dah,?,80130,0e0h,2,2,027h)

; iSBC 188/48/56 SCC ##1 Channel A
;serial _channel (82530,0d40h,1,82530,0d0h,1,0,0eh,a)

; iSBC 188/48/56 SCC #1 Channel B
;serial_channel(82530,0d42h,1,82530,0d2h,1,0,0eh,b)

; iSBC 286/10¢A)/12 Channcl A
;jserial channel (8274 ,0d48h,2,8254,0400,2,2,8)

; iSBC 286/10(A)/12 Channel B
;serial channel(8274,0dah,2,8254,0d0h,2,1,8)

; iSBC 386/2X and iSBC 386/3X
;eerial channel(8251a,0d8h,2,8254,0d40h,2,2,8)

Figure 3-1. Intel-Supplied BS1.A86 File
(continued)

Bootstrap Loader

CONFIGURING THE FIRST STAGE

..

LA R A N R A A A A N N A R R R R O A R R I N N A AN AR T A - L R B N A R

Multibus I devices ;

e R A AR A I N A A A e R e O I R I R I R B O R R

%tdevice(af0, 0, deviceinit208gen, deviceread208gen)

kdevice(afl, 1, deviceinit208gen, deviceread208gen)

#device(w0, 0, deviceinitmscgen, devicereadmscgen)

Zdevice(wl, 1, deviceinitmscgen, devicereadmscgen)

#device(wf0, 8, deviceinitmscgen, devicereadmscgen)

%device(wfl, 9, deviceinitmscgen, devicereadmscgen)

#device(s0, O, deviceinitscsi, devicereadscsi)

Zdevice(sx1410a0, O, deviceinitscsi, devicereadscsi, sasi_x1410a)
Zdevice(sx1410b0, O, deviceinitscsi, devicereadscsi, sasi x1410b)
%device(smf0, 2, deviceinitscsi, devicereadscsi, sasi x1420mf)
“device(pmf0, 0, deviceinit2184A, devicereadZl8A)

#device(pb0, 0, deviceinit25l, deviceread251)

Zdevice(bl, 0, deviceinit254, deviceread?54)

%“device(bal, 0, deviceinit264, deviceread?f4)

%end

Figure 3-1. Intel-Supplied BS1.A86 File
(continued)

Bootstrap Loader

N

CONFIGURING THE FIRST STAGE

name bsl
Sinclude(:fl:bcico.inc)
Sinclude(:fl:bmb2.inc)
Sinclude(:fl:bmps.inc)
+bist (OFFFFH: OFFFFH)
;copy (0B8000H, OOFFH, 08000H, 000FH, 08000H, OH)

: (LBX), (PSB,addr) or (LBX+PSB)
;auto_configure memory(LBX)

$include(:fl:bsl.inc)

Lepu(80386)

; MPC and ADMA configuration for iSBC 286/100 with iEXM 100 MPC module
;bmps (O0H, 4, O8BH, 200H, 3, 2, 0AOH, 16)

; MPC and ADMA configuration for iSBC 286/100A
;bmps (O0H, 4, O8BH, 200H, 2, 3, OEOH, 16)

; MPC and ADMA configuration for iSBC 386/100
Zbmps(OOH, 4, 089H, 200H, 2, 3, OOOH, 16)

Zconsole

Zmanual

fauto

#loadfile
#defaultfile(’/system/rmx86')
fretries(5)

;clear _sdm extensions

;cico

Figure 3-2. Intel-Supplied BSIMB2.A86 File

3-6 Bootstrap Loader

CONFIGURING THE FIRST STAGE

; iSBX 351 (on 1iSBX #0)
;serial channel(8251a,040h,2,8253,0B0h,2,2,8)

: iSBX 354 Channel A (on iSBX #0) for iSBC 386/100
;serial_channel(82530,084H,2,82530,084H,2,0,0eh,a)

; iSBX 354 Channel B (on iSBX #0) for iSBC 386/100
;serial_channel(82530,080H,2,82530,080H,2,0,0eh,b)

; iSBC 286/100A Channel A
;serial channel(82530,0dch,2,82530,0dch,2,0,0eh,a)

; iSBC 286/100A Channel B
;serial channel(82530,0d48h,2,82530,0d8h,2,0,0eh,b)

LA A A O O R I I A R I B R R A A I SR 2 D R R N TR N BTN I SN NI T B N A

%device(s0, 0, deviceinitscsi, devicereadscsi)

4device(sx1410a0, 0, deviceinitsesi, devicereadscsi, sasi_x1410a)
Zdevice(sx1410b0, 0, deviceinitscsi, devicereadscsi, sasi_x1410b)
Zdevice(smt0, 2, deviceinitscsi, devicereadscsi, sasi x1420mf)
kdevice(pmf0, 0, deviceinit218A, deviceread?18Aa)

4device(w0, 0, device_init_224a, device_read_224a)

idevice(wl, 1, device_init_224a, device_read_224a)

tdevice(wf0, 4, device_init_224a, device_read_224a)

tdevice(wfl, 5, device_init_224a, device read 224a)

%end

Figure 3-2. Intel-Supplied BSIMB2.A86 File
(continued)

To configure your own version of the Bootstrap Loader first stage, edit either the BS1.A86
or BSIMB2.A86 file if you need to include or exclude macros. A percent sign (%)
preceding the macro name includes (invokes) the macro, and a semicolen (;) preceding the
macro name excludes the macro, treating it as a comment.

NOTE

When you exclude a macro, you must replace the percent sign with a semicolon.
Do not simply add a semicolon in front of the percent sign.

The order in which the macros should appear is the same order that they are listed in the
BS1.A86 or BSIMB2.A86 file.

Bootstrap Loader 3.7

CONFIGURING THE FIRST STAGE

The following sections describe the macros that can appear in the BS1.A86 and
BSIMB2.A86 files. Because the Bootstrap Loader supports both iIRMX T and iRMX TI
Operating Systems, some of these macros apply to one Operating System and not the
other. In such cases, the section heading notes the operating system to which the macro
applies. When no operating system designation appears, the macro is valid for both the
iRMX I and iRMX Il Operating Systems. The macros are described in the order they are
listed in the BS1.A86 and BSIMB2.A86 files.

If you make a syntax error when entering macros into the BS1.A86 or BSIMB2.A86 file, an
error message appears when assembling the file. For example, if you misspell a macro
name in a macro call, the following type of message may be returned:

*%% ERROR #301 IN 129, (MACRO) UNDEFINED MACRO NAME
INSTDE CALL: BADNAME
Sokk 3

*+% ERROR #1 IN 129, SYNTAX ERROR

If an error such as this occurs, check for correctness in the BS1.A86 or BSIMB2.AR6 file
and attempt to reassemble the file.

3.2.1 %BIST Macro (MULTIBUS® Il Only)

MULTIBUS II systems include a Built-In Self Test (BIST) program in PROM devices that
verifies MULTIBUS Il hardware when the hardware is powered up. The %BIST macro
causes the Bootstrap Loader to invoke the BIST program on the CPU board during
Bootstrap Loader initialization. The BIST program then tests the hardware.

If the BIST program encounters an error condition, it places an error code in the AX
register and loops. [t does not call the Bootstrap Loader’s BSERROR routine because an
error of this type implies that the system hardware is inoperable.

The %BIST macro should be included only for MULTIBUS 11 systems, and only for those
systems that don’t also include a monitor in PROM devices. In systems that include a
monitor, the monitor becomes active before the Bootstrap Loader, and it invokes the BIST
program. Therefore, invoking the BIST program from the Bootstrap Loader is
unnecessary.

3-8 Bootstrap Loader

CONFIGURING THE FIRST STAGE

The syntax of the macro is

%BIST (address)
where:
address Address of the CPU board’s BIST program. This parameter must be

entered in the form BASE:OFFSET (for example, 1234:5678). To
determine the address of your CPU board’s BIST program, refer to the
hardware reference manual for that board.

3.2.2. %COPY Macro (MULTIBUS® Il Only)

The %COPY macro is used with 386/116- and 386/120-based systems. If your system is
not of this type, do not include the %COPY macro in the BSIMB2.A86 file.

Both 386/116- and 386/120-based systems locate EPROM memory at the top of the 4
gigabyte address space supported by the 80386 upon reset. However, the first stage of the
Bootstrap Loader must execute within the first megabyte of address space (real mode).
Because the first stage must be repositioned within memory, you must use the %COPY
macro for any application where the EPROM memory is mapped outside of the first
megabyte of address space upon reset.

In contrast, the 386/2X and 386/3X systems locate EPROM memory at the top of the first
megabyte of memory space upon reset. Thus, the %COPY macro is unnecessary.

This macro copies the first stage of the Bootstrap Loader from EPROM devices to the low
megabyte of RAM. You should only specify this macro if you do not have a monitor
installed and the Bootstrap loader executes first upon system reset.

The syntax of the 9%2COPY macro is as follows:

%COPY (src_lo, src_hi, dest lo, dest_hi, count _lo, count_hi)

where:
src_lo The low word of the 24-bit physical source address.
src_hi The high byte of the 24-bit physical source address.
dest lo The low word of the 24-bit physical destination address.
dest_hi The high byte of the 24-bit physical destination address.
count_lo The low word of the number of bytes in the first stage.
count_hi The high byte of the number of bytes in the first stage.

Bootstrap Loader 39

CONFIGURING THE FIRST STAGE

3.2.3. %AUTO_CONFIGURE_MEMORY Macro (MULTIBUS® II
Only)

This macro causes the Bootstrap Loader to automatically configure the starting and ending
addresses of all ILBX and/or iPSB memory boards available to MULTIBUS II systems.
Configuration begins with the memory board in the lowest numbered slot and progresses
through the memory board in the highest numbered slot. Configuration occurs differently
depending upon how you invoke the macro.

You should include the ZAUTO CONFIGURE_MEMORY macro only for MULTIBUS
1 systems, and only for those systems in which the Bootstrap Loader is invoked upon
system reset (as opposed to under program control). In systems that include the monitor
in PROM devices, the monitor becomes active before the Bootstrap Loader, and it should
invoke its own %AUTO _CONFIGURE _MEMORY macro. Therefore, invoking the
macro from the Bootstrap Loader is unnecessary.

The syntax of the macro is

%AUTO_CONFIGURE _MEMORY/(interface type [,start_address])

where:
interface_type A string representing the bus interface of the memory
board(s) to be configured. Valid strings are LBX, PSB,
or LBX+PSB.
start_address The starting 64K page of memory when PSB memory is

being configured.

Three possible configuration options exist: iLBX only, iPSB only, or iLBX and iPSB. You
must specify the required parameters using one of the following three methods:

%AUTO_CONFIGURE MEMORY (LBX)

This option configures memory boards accessible to the processor via the iLBX bus.
Using this configuration option, the macro assigns sequential consecutive addresses
beginning with zero for the start and stop addresses of each iLBX memory board.
Board configuration proceeds from the board occupying the lowest slot number to the
board occupying the highest slot number.

%AUTO_CONFIGURE MEMORY (PSB, start address)

This option configures memory boards accessible to the CPU via the iPSB bus. Using
this configuration option, the macro assigns sequential consecutive addresses for the
start and stop addresses of each IPSB memory board. The assigned addresses begin
with the supplied starting address. Board configuration proceeds from the board
occupying the lowest slot number to the board occupying the highest slot number.

3-10 Bootstrap Loader

CONFIGURING THE FIRST STAGE

%AUTO CONFIGURE MEMORY (LBX+PSB})

This option configures memory in the same manner as the first option, with one
additional configuration. All boards on the iLBX bus that also have iPSB interfaces
have the same starting and ending addresses for both interfaces.

The following syntax errors can occur if you enter incorrect parameters or incorrect
combinations of parameters.

ERROR - <type>, invalid interface type
ERRCR - invalid parameter combination

3.2.4 %CPU Macro

The 9% CPU macro identifies the type of CPU that performs the bootstrap loading
operation. You must include this macro in the BS1.A86 or BSIMB2.A86 file once (and
only once).

The syntax of the CPU macro is
%CPU(cpu_type)

where:

cpu_type The type of CPU performing the bootstrap operation. Valid types are:

Type Description

8086 8086 processor (iRMX I only)

8088 8088 processor (iIRMX [only)

80186 80186 processor (IRMX I only)

80188 80188 processor (1IRMX I only)

80286 80286 processor (IRMX | and iRMX II)
80386 80386 processor (iIRMX I and IRMX 11)

3.2.5 %BMPS Macro (MULTIBUS® Il Only)

The %BMPS macro configures the message passing system used during bootstrap loading.
This macro identifies the base address of the Message Passing Coprocessor (MPC),
address distance between MPC ports, and information that defines how direct memory
access (DMA) transfers occur. If you have a MULTIBUS Il system that bootloads from a
device whose driver uses MULTIBUS II transport protocol (i.e. the 186/224A driver), you
must use this macro. If you have a MULTIBUS I system or a system that bootloads from a
device whose driver does not use MULTIBUS II transport protocol, you must not use this
macro.

Bootstrap Loader 3-n1

CONFIGURING THE FIRST STAGE

The syntax of the %BMPS macro is

%BMPS (mpc$base$addr, port$sep, duty$cycle, dmaShase$addr, dma$in, dmafout,
dma$trans, data$width)

where:

mpe$base$addr The base I/O port address of the MPC. Refer to the
appropriate single board computer user’s guide for this
address.

port$sep The number of addresses separating individual MPC
ports. For example, if the mpc$base$addr is 0000H and
the next three [/O port addresses are 0004H, 0008H,
and 000CH, respectively, the port$sep 1s 4H. Refer to
the appropriate single board computer user’s guide for
the 1/O port address map.

duty$cycle The MPC duty cycle for the local bus. (The rate at
which data packets are generated.) For information on
how to calculate a duty cycle suitable for the local bus,
refer to the MPC User’s Manual. For duty cycles suitable
for Intel single board computers, refer to the appropriate
single board computer user’s guide.

dma$base$addr The base I/O port address for the Advanced Direct
Memory Access (ADMA) controller. Refer to the
appropriate single board computer user’s guide for this
address.

dmaSin The channel used to receive (input) DMA message
passing transfers. Refer to the appropriate single board
computer user’s guide for this channel number.

dma$out The channel used to send (output) DMA message
passing. Refer to the appropriate single board computer
user’s guide for this channel number.

dma$trans The [/O port address used for DMA data transfers.
Refer to the appropriate single board computer user’s
guide for this address.

data$width The data width in bits of the local bus. This value must
be either 16 or 32 (decimal). If the width is set to 32 bits
on a 386/116- or 386/120-based board, flyby (one cycle)
DMA mode is enabled.

The %BMPS macro can generate errors if the tocal bus width is not 16 or 32 bits wide.

3-12 Bootstrap Loader

CONFIGURING THE FIRST STAGE

3.2.6 %iAPX 186 INIT Macro (iIRMX | MULTIBUS® | Systems
Only)

The %1APX _186_INIT macro specifies the initial chip select and mode values for 80186
and 80188 CPUs. Include this macro only for systems that use the 80186 or 80188
processor and do not include a monitor in PROM devices. In systems that include the
iISDM monitor, the monitor becomes active before the Bootstrap Loader, and the monitor
must initialize the CPU. An iSDM configuration macro is available for this purpose. See
the iSDM System Debug Monitor Reference Manual for more information.

The syntax of the IAPX_186_INIT macro is

ZiAPX 186 INIT(rmx, umcs, Imes, mmcs, mpcs, pacs)

where:
rmx The inttial mode of the 80186 Programmable Interrupt Controller
(PIC). Acceptable values are as follows:
Value Description
y The 80186 PIC is initialized in iRMX compatibility
mode.
n The 80186 PIC is initialized in default mode.
umcs Initial value for the upper-memory chip-select control register.
Imces Initial value for the lower-memory chip-select control register.
mmcs Initial value for the midrange-memory chip-select control register.
mpcs Initial value for the memory-peripheral chip-select control register.
pacs Initial value for the peripheral-address chip-select control register.

In all parameters except the first one (rmx), NONE is also an acceptable value, implying
that no initialization value should be placed in the corresponding register. For information
on the chip-select control registers, and the values to place in them, see the data sheets for
the 80186 and 80188 processors.

All the default parameter values for this macro (in the Intel-supplied BS1.A80 file shown in
Figure 3-1) are appropriate to initialize the CPUs on the iSBC 186/03(A), iSBC 186/51
and iSBC 188/48/56 boards.

The iRMX I Operating System does not allow you to move the 80186 relocation register to
I/O addresses other than OFFO0H, its default register.

Bootstrap Loader 3-13

CONFIGURING THE FIRST STAGE

3.2.7 %CONSOLE, %MANUAL, and %AUTO Macros

The CONSOLE, MANUAL, and AUTO macros specify how the first stage identifies the
file that the second stage will load (either the load file or the third stage) and the device on
which the file is found.

The syntax of the % CONSOLE, %“MANUAL, and %AUTO macros is
%CONSOLE
%MANUAL
%AUTO

There are no parameters associated with any of these macros.

Depending on the action you want the Bootstrap Loader to take, you can include none,
any, or all of these macros, and the combination you choose defines the set of actions
taken. Because the %2MANUAL macro automatically includes both the %2CONSOLE and
% AUTO macros, five functionally-distinct combinations are possible. Each of these
combinations requires that the device list at the end of the BS1.A86 or BSIMB2.ARg6 file
be set up in a certain way. For more information on the device list, see the discussion of
the %DEVICE macro later in this chapter. The following paragraphs list the possible
macro combinations, the device requirements, and the actions that the Bootstrap Loader
takes when each combination is invoked.

No (Requires that the device list defined with %DEVICE macros have
% CONSOLE, only one entry.)

%MANUAL,

or %2AUTO

macro

o The Bootstrap Loader tries once to load from the active device.

o The Bootstrap Loader tries once to load the file with the default
pathname (the one you define with the %DEFAULTFILE macro).

3-14 Bootstrap Loader

CONFIGURING THE FIRST STAGE

%CONSOLE (Requires that the device list have only one entry.)
only

« The Bootstrap Loader tries once to load from the device in the device
list.

+ The Bootstrap Loader issues an asterisk (*) prompt at the console
terminal and waits for an operator to enter the pathname of the file to
load. It tries once to load the file the operator specifies.

-- If the operator enters a pathname, the Bootstrap Loader loads
the file with that pathname.

-- If the operator enters a CARRIAGE RETURN only, the file
with the default pathname is loaded.

%ZMANUAL (Requires a device list with at least one entry.}
only

o The Bootstrap Loader issues an asterisk (*) prompt for a pathname at
the console terminal.

e The Bootstrap Loader chooses a device depending on the operator’s
response.

-- If a device name is entered, the Bootstrap Loader loads from
that device. It tries to load until the device becomes ready or
until no more tries are allowed (as limited by the optional
% RETRIES macro).

-- If only CARRIAGE RETURN is entered, the Bootstrap Loader
looks for a ready device by searching through the list of devices
(in the order the %2DEVICE macros are listed in the BS1.A86
or BSIMB2.A86 file). The search continues until a ready device
is found or until no more tries are allowed (as limited by the
optional %2 RETRIES macro). If the Bootstrap Loader finds a
ready device, it loads from that device.

s The Bootstrap Loader chooses a file depending on the operator’s
response.

-- If a pathname is entered, it tries once to load the file with that
pathname.

-- If no file name is entered, it tries once to load the file with the
default pathname.

Bootstrap Loader 3-15

CONFIGURING THE FIRST STAGE

%AUTO (Requires a device list with at least one entry.)

o The Bootstrap Loader looks for a ready device by searching through the
list of devices (in the order the %DEVICE macros are listed in the
BS1.A86 or BSIMB2.ABG file). The search continues until a ready
device is found or until no more tries are allowed (as limited by the
optional % RETRIES macro).

» If the Bootstrap Loader finds a ready device, it tries once to load the
file with the default file name.

%AUTO, (Requires a device list with at least one entry.)
%MANUAL,
and
% CONSOLE
o The Bootstrap Loader issues an asterisk (*) prompt for a pathname at
the console.

» If the operator responds with a pathname that contains no device name,
the Bootstrap Loader looks for a ready device by searching through the
fist of devices (in the order the % DEVICE macros are listed in the
BS1.A86 or BSIMB2.A86 file). The search continues until a ready
device is found or until no mare tries are allowed (as limited by the
optional %2 RETRIES macro).

+ If the Bootstrap Loader finds a ready device or the operator responds
with a pathname containing a device name, the Bootstrap Loader tries
once to load the file indicated by the operator’s response.

-- If a pathname 1s entered, it tries to load the file with that
pathname.

-- If only CARRIAGE RETURN is entered, it tries to load the file
with the default pathname.

Whenever the Bootstrap Loader’s asterisk prompt appears, the operator can include a
Debug Switch along with a device and/or filename specification. The Debug Switch is
described in Chapter 2.

3.2.8 %LOADFILE Macro

The %LOADFILE macro causes the Bootstrap Loader to display the pathname of the file
it loads. Hf you are loading an iRMX I system, this will be the pathname of the load file. If
you are loading an iRMX I1 system, the pathname of the Bootstrap Loader’s third stage
will be displayed. The macro displays the pathname at the console after loading the second
stage but before loading the load file (or third stage).

3-16 Bootstrap Loader

CONFIGURING THE FIRST STAGE

If you include the %LOADFILE macro, you must also include either the %CONSOLE or
9%MANUAL macros to enable the Bootstrap Loader to access the console.

The syntax of the %LOADFILE macro is
%LOADFILE

There are no parameters associated with this macro.

3.2.9 %DEFAULTFILE Macro

The %DEFAULTFILE macro specifies the complete pathname of the default file. The
default file is the file that the second stage loads whenever no other file is specified.

The syntax of the %2DEFAULTFILE macro is
%DEFAULTFILE('pathname’)

where:

pathname Hierarchical pathname of the default file, starting at the root directory.
The pathname must be enclosed in single quotes. For example, the
name ’'/BOOT/RMX28612" might be used.

If you omit this macro from the BS1.A86 or BSIMB2.A86 file, a NULL pathname is
assumed by the Bootstrap Loader first stage. In this case, the second stage assumes the
default name is /SYSTEM/RMX86. The Intel-supplied BS1.A86 and BS1IMB2.A86 files
include a %DEFAULTFILE macro and assigns /SYSTEM/RMX86 as the default file.

3.2.10 %RETRIES Macro

The %RETRIES macro, when included with the %AUTO or %¢MANUAL macros, limits
the number of times that the first stage searches the device list for a ready device.

NOTE

If you omit the %2RETRIES macro when including the %AUTO or
%MANUAL macros and no device in the list is ready, then the search for a
ready device continues indefinitely.

Bootstrap Loader 3-17

CONFIGURING THE FIRST STAGE

The syntax of the %RETRIES macro is

%RETRIES(number)
where:
number Maximum number of times the first stage checks each device for a ready
condition. You can specify any number in the range of 1 through
OFFEH.

3.2.11 %CLEAR _SDM _ EXTENSIONS Macro

The %CLEAR _SDM_EXTENSIONS macro causes the Bootstrap Loader to clear the
1ISDM monttor command extensions (the U, V, and W commands). Once cleared, a
monitor extension, such as the iRMX I or iRMX II System Debugger (SDB) or the System
300 System Confidence Test (SCT), must be reinitialized before it can be used again.

This macro is useful when adding monitor-level debugging command extensions. It
prevents you from inadvertently attempting to invoke a monitor extension that was loaded
in a previous debugging session and overwriting application or Operating System code.

The syntax of this macro is
%CLEAR_SDM_EXTENSIONS

The Intel-supplied versions of the BS1.A8 and BSIMB2.A86 files do not invoke this
macro. This macro must not be invoked if you are configuring a standalone Bootstrap
Loader.

3.2.12 %CICO Macro

The CICO macro specifies that console input and output are to be performed by
standalone CI and CO routines; that is, routines that are not part of the monitor. If you
include the CICO macro, you must perform some other operations as well, depending on
whether the CI and CO routines you want to use are your own or those supplied by Intel.

If you use the Intel-supplied standalone CT and CO routines:

1. Change the line in the BS1.CSD file (Figure 3-3) that reads

& :fl:bcico.obj, &
to
:fl:becico.obj, &

2. Include exactly one instance of the %SERIAL_CHANNEL macro (described in the
next section) in the BS1.A86 or BSIMB2.A86 file.

318 Bootstrap Loader

CONFIGURING THE FIRST STAGE

If you supply your own standalone CI and CO routines:

1. Change the line in the BS1.CSD file (Figure 3-3) that reads

& :fl:beico.obj, &

to
:fl:mycico.obj, &

where:

mycico.obj An object file that you supply containing procedures
named CI, CO, and CINIT. CINIT must perform
initialization functions required to prepare the console
for input and output operations.

2. Do not include the %SERIAL_CHANNEL macro in the BS1.A86 or BSIMB2.A86
file.

The syntax of the %CICO macro is

%CICO

There are no parameters associated with this macro. The CICO macro is not invoked in
the Intel-supplied BS1.A86 or BSIMB2.A86 file. This macro must be invoked if you are
configuring a standalone Bootstrap Loader which prompts for the load file pathname.

3.2.13 %SERIAL CHANNEL Macro

The %SERIAL _CHANNEL macro identifies the type and characteristics of the serial
channel used to communicate with your system console.

You must omit this macro if any of the following conditions are true:

* Your system includes a monitor.

* Your system does not use a terminal during bootstrap loading.

* You supply your own CI and CQ routines.

NOTE

You cannot use the %SERIAl. CHANNEL macro unless the serial device is
local to the CPU board. Also, the 9%SERIAL CHANNEL macro does not
support the on-board diagnostic serial port on the iSBC 386/100 board.

Bootstrap Loader 3-19

CONFIGURING THE FIRST STAGE

You must include this macro if you are configuring a standalone Bootstrap Loader to use
the Intel-supplied CI and CO routines (see the description of the %CICO macro in the
previous section). In this case, use the %SERIAL_CHANNEL macro to describe the
serial controller device that handles the communication to and from the terminal accessed
by the Bootstrap Loader.

The Bootstrap Loader permits serial communication via an 8251A USART, an 8274 Multi-
Protocol Serial Controller, or an 82530 Serial Communications Controller. The Intel-
supplied BS1.A86 and BSIMB2.A86 files list appropriate invocations of the

%SERIAL CHANNEL macro for each of these serial channel controllers. To choose one
of these versions of the macro, replace the semicolon on the appropriate line with a
percent sign. Including more than one %SERIAL CHANNEL macro causes an assembly
error in BS1.A86 or BSIMB2.A86.

The syntax of the %SERIAL_CHANNEL macro is as follows:

%SERIAL _CHANNEL (serial_type, serial_base_port, serial_port_delta,
counter_type, counter_base port, counter_port_delta,
baud counter, count, flags)

where:
serial_type The serial controller device you are using. Valid values
are 8251A, 8274, and 82530.
serial_base port The 16-bit port address of the base port used by the

serial channel. This port varies according to the type of
serial controller device and, if applicable, the channel
used on the device. To determine the port whose
address you should specify here, look at the left column
of the following list. Pick the item that corresponds to
the serial device on your CPU board and the channel
through which the CPU communicates with your
terminal. Then specify the port address of the
corresponding port listed in the right column. The
hardware reference manual for your CPU board lists the
port addresses for these serial devices.

Serial Channel Base Port

8251A Data Register Port

8274 Channel A Channel A Data Register Port

8274 Channel B Channel B Data Register Port

82530 Channel A Channel A Command Register
Port

82530 Channel B Channel B Command Register
Port

3-20 Bootstrap Loader

serial port delta

counter_type

counter_base_port

C()umer_porl_della

baud counter

Bootstrap Loader

CONFIGURING THE FIRST STAGE

The number of bytes separating consecutive ports used
by the serial device.

The type of device containing the timer your CPU board
uses to generate a baud rate for the serial device defined
by this macro. Valid values are:

8253 8254
80130 80186
82530 NONE

Specifying NONE implies that the baud rate timer is
automatically initialized and the Bootstrap Loader does
not need to perform this function.

The 16-bit port address of the base port used by the
baud rate timer. The port whose address you specify
varies according to the type of timer device and, if
applicable, the channel used on the device. The following
list shows the ports for each of the valid timers. Specify
the address of the port that corresponds to your timer
device. The hardware reference manual for the CPU
board lists the port addresses for these serial devices,

Timer Type Base Port

8253 Counter () Count Register Port

8254 Counter 0 Count Register Port

80130 1ICW1 Register Port

80186 Use OFFO00H for all boards

82530 Channel A Channel A Command Register
Port

82530 Channel B Channel B Command Register
Port

The number of bytes separating consecutive ports used
by the timer.

The number of the counter that is used for baud-rate
generation. The following list identifies the possible
counter numbers you can specify for each of timers.

Timer Type Counter Numbers
8253 0,1, o0r2

8254 0,1, or2

80130 2

80186 Oorl

82530 0

321

CONFIGURING THE FIRST STAGE

count A value that when loaded into the timer register
generates the desired baud rate. The method of
calculating this value follows these parameter
definitions.

flags Applies only when the serial type parameter is defined
as 82530. For other serial controllers, omit this
parameter.

This parameter specifies which channel of an 82530
Serial Communications Controller will serve as the serial
controller. Valid values are

Value Channel
A Channel A
B Channel B

To derive the correct value for the count parameter, you must perform five computations.
The starting values for these computations are the desired baud rate at which you want the
serial port to operate and the clock input frequency to the timer. The clock input
frequency is listed in the data sheet for the timer.

First, perform one of the following calculations to obtain a temporary value for use in later
calculations:

If the timer is an 8253, 8254, 80130, or 80186,
temporary value = (clock frequency in Hz)/(baud rate x 16)
If the timer is an 82530,
temporary_value = ({clock frequency in Hz)/(baud rate x 2)) - 2

Next, perform the following calculation to obtain the fractional part of the temporary value
found in the first calculation:

fraction = temporary_value - INT(temporary_value)

The INT function gives the integer portion of temporary value.

3-22 Bootstrap Loader

CONFIGURING THE FIRST STAGE

The third and fourth calculations yield the desired count value and another value, called
error_fraction. The error_fraction value is needed to determine whether the calculated
count value is feasible, given the clock frequency specified in the first calculation. These
calculations, performed according to the size of the value of "fraction" from the second
calculation, are as follows:

If the value of "fraction” is greater than or equal to .5,

count = INT (temporary value) + 1
error_fraction = 1 - fraction

If the value of "fraction" is less than .5,

count = INT (temporary value)
error_fraction = fraction

The fifth and final calculation yields the percentage of error that occurs when the clock
frequency is used to generate the baud rate, as follows:

% error = (error_fraction / count) x 100

If the % error value is less than 3, then the calculated count value is appropriate, and the
desired baud rate will be generated by the specified clock frequency. However, if the %
error value is 3 or greater, you must do one or both of the following:

» Provide a higher clock frequency

¢ Select a lower baud rate

After choosing one or both of these options, go through the series of computations again to
get a new "count” value and to see whether the revised value of "% error" is less than 3.
Continue this process until the "% error” value is less than 3.

The %SERIAL CHANNEL macro can generate the following error messages:

ERROR - invalid port delta for the (ser_type) Serial Device

ERROR - <ser_type> is an invalid Serial Channel type

ERROR - Invalid port delta for the Baud Rate Timer

ERROR - 8253/4 Baud Rate Counter is not 0, 1 or 2

ERROR - Counter 2 is the only valid 80130 Baud Rate Counter

ERROR - 80186 counter counter_type is not a valid Baud Rate Counter
ERROR - <counter type> is an invalid Baud Rate Timer type

ERROR - Counter @ is the only valid 82530 Baud Rate Counter

ERROR - 82530 channel must be specified as A or B only

ERROR - Max Baud Rate Count must be greater than 1

Bootstrap Loader 3-23

CONFIGURING THE FIRST STAGE

3.2.14 %DEVICE Macro

The % DEVICE macro defines a device unit from which your application system can be
bootstrap loaded. If the BS1.A86 or BSIMB2.A86 file contains multiple %9 DEVICE
macros, their order in the file is the order in which the first stage searches for a ready
device unit.

All %ZDEVICE macros that select device units on the same controller must be listed
consecutively in BS1.A86 or BSIMB2.A86, or assembly errors will occur. Recall that
multiple %DEVICE macros may be included only if the %AUTO or % MANUAL macro
is included (otherwise, an error occurs during the assembly of BS1.A86 or BSIMB2.A86).

The syntax of the %DEVICE macro is
%DEVICE(name, unit, device$init, device$read, unit_info)

where:

name The physical name of the device, not enclosed in quotes or between
colons. This is the name that you would enter to specify this device
when invoking the Bootstrap Loader from the keyboard. (However,
when invoking the Bootstrap Loader, you would surround this name
with colons.)

After the Bootstrap Loader loads from a device, it passes the physical
name of the device, as listed here, to the load file. To enable the
Operating System’s Automatic Boot Device Recognition capability (see
Appendix A) to function, this physical name must match a device-unit
name for the device as specified during the configuration of the
Operating System. Refer to the Interactive Configuration Utility
Reference Manual for more information about configuring the
Operating System.

unit The number of this unit or this device. Unit numbering is the same as
that used for devices by the Basic I/O System. Refer to the Device
Driver User’s Guide for more information about unit numbering.

device$init The name of the device initialization procedure that is part of the first
stage device driver for this device-unit. Before attempting to read from
the device-unit, the Bootstrap Loader calls this procedure to perform
initialization functions. If the device-unit has an Intel-supplied device
driver, specify the name of the device initialization procedure as listed
in Table 3-1. If you supply your own driver (written as described in
Chapter 5), enter the name of the initialization procedure.

3-24 Bootstrap Loader

device$read

unit_info

CONFIGURING THE FIRST STAGE

The name of the device read procedure that is part of the first stage
device driver for this device-unit. To read from this device-unit, the
first and second stages of the Bootstrap Loader call this procedure. If
your Bootstrap Loader uses a generic third stage, it too uses this device
read procedure to read from the device unit. If the device-unit has an
Intel-supplied device driver, specify the name of the device read
procedure as listed in Table 3-1. If you supply your own driver (written
as described in Chapter 5), enter the name of the device read
procedure.

An ASMS0 label that marks the location of an array of BYTEs
containing specitic device-unit information required by the mass storage
device defined by this invocation of the %DEVICE macro.

This parameter is currently used only by the SCSI device driver. If you
include it for any other device, the Bootstrap Loader will fail to load
your application from that device. Refer to the "First Stage Device
Driver Files" section of this chapter, under the descriptions of the
9%SCSI and %SASI UNIT INFO macros for information about how
and when to specify this unit information and for examples of its use.

Table 3-1 lists the names of the device initialization and device read procedures for Intel-
supplied first stage device drivers.

Table 3-1. Procedure Names for Intel-Supplied First Stage Drivers
Device Initialize Device Read
Device Driver Procedure Procedure
iSBC 208 Specific Driver deviceinit208 deviceread208
iSBC 208 General Driver deviceinit208gen deviceread208gen

iI8BC MSC Specific Driver,
iISBC MSC General Driver
SCSI Driver

iISBX 218A Driver

i1ISBC 224A Driver

iISBC 251 Driver

iISBC 254 Driver

iISBC 264 Driver

deviceinitmsc
deviceinitmscgen
deviceinitscsi
deviceinit218A
deviceinit224A
deviceinit251
deviceinit254
deviceinit264

devicereadmsc
devicereadmscgen
devicereadscsi
deviceread218A
deviceread224A
deviceread2s
deviceread254
devicereadz264

* The MSC drivers support the iSBC 214, iSBC 215G, iSBC 220 controllers, as well as the iSBX 218A
controller mounted on the ISBC 215G hoard. The drivers must be reconfigured to support the iSBC

220 controller,

Table 3-1 lists both specific and general procedures for the iISBC 208 and MSC devices.
Configurations of the Bootstrap Loader that use the general version of either driver will be

larger.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

One difference between the two versions of these device drivers is that the general versions
will bootstrap load applications from any of the standard types of diskettes as defined in
the Installation Systems. The specific versions will bootstrap load applications only from
specific types of diskettes listed in Tables 3-2 and 3-3. These tables apply to the specific
versions of both the iISBC 208 and MSC device drivers.

Table 3-2. 5.25-Inch Diskettes Supported by iSBC 208 and MSC-Specific Drivers

Sector Size Density Sectors per Track
256 Single 9
256 Double 16

NOTE: The diskettes can be formatted with either 48 tracks per inch or 96 tracks per inch, and
can be either single- or double-sided.

Table 3-3. 8-Inch Diskettes Supported by iSBC 208 and MSC-Specific Drivers

Sector Size Density Sectors per Track
128 Single 26
256 Double 26

NOTE: The diskettes may be either single- or double-sided.

The Intel-supplied BS1.A86 and BSIMB2.A86 configuration files include %DEVICE
macros for all of the supported devices, and include multiple instances of some of the
macros to indicate multiple units on the same device. It doesn’t hurt to include support for
all of these devices, even if your application system won’t contain all of them. And if you
add a new device later, you'll be able to boot from the device without generating new boot
PROM devices. However, you can reduce the size of your Bootstrap Loader by excluding
support for devices that you never intend to use. Release 3.2 of the iSDM monitor
provides space from 0FE400H to OFFF7FH for use by the Bootstrap Loader. This
requires you choose only the devices you need when you reconfigure the Bootstrap Loader
so it will fit into the space allocated by the iSDM monitor. If the Bootstrap Loader does
not fit into the space allocated by the monitor, you must locate it below the monitor.

To exclude a device driver from the Bootstrap Loader, two steps must be performed. First,
exclude all the %DEVICE macros in BS1.A86 or BSIMB2.A86 that apply to device units
on that controller. To do this, edit BS1.A86 or BSIMB2.A86 and replace the percent sign

(%) in front of the macro with a semicolon (;). The edited version of such a macro would
look similar to:

;device(ba0, 0, deviceinit264, deviceread264)

3-26 Bootstrap Loader

CONFIGURING THE FIRST STAGE

The semicolon replacing the percent sign turns the %DEVICE macro for the iSBC 264
driver (in this case) into a comment.

Second, edit the file BS1.CSD as described later in this chapter.

3.2.15 %END Macro

The %END macro is required at the end of the BS1.A86 or BSIMB2.A86 file. The syntax
of this macro is

9%eEND

There are no parameters associated with the %END macro.

3.3 BSERR.A86 CONFIGURATION FILE

The BSERR.ASG file, shown in Figure 3-3, defines what the first stage of the Bootstrap
Loader does if it cannot load the load file.

name bserr
Sinclude(:fl:bserr.inc)

;console
ytext
ZTlist

;again
-intl
£inc3
;halt

Zend

Figure 3-3. First Stage Configuration File BSERR.A86

The BSERR.AR86 file consists of an INCLUDE statement and several macros. The
BSERR.INC file in the INCLUDE statement contains the definitions of the macros in the
BSERR.AS6 file.

The following sections describe the functions of the macros in the BSERR.AS86 file. For
each macro, if a percent sign (%) precedes the name, then the macro is included (invoked).
If a semicolon (;) replaces the percent sign, then the macro is treated as a comment and is
not included.

Bootstrap Loader 3.27

CONFIGURING THE FIRST STAGE

The first three macros, %CONSOLE, % TEXT, and %LIST, determine what the Bootstrap
Loader displays at the console whenever a bootstrap loading error occurs. The other four
macros, %AGAIN, %INT1, %INT3, and %HALT, determine what recovery steps, if any,
the Bootstrap Loader takes whenever a bootstrap loading error occurs. Only one of the
latter three macros can be included in the BSERR.A86 file.

3.3.1 % CONSOLE Macro

The %CONSOLE macro causes the Bootstrap Loader to display a brief message at the
console whenever a bootstrap loading error occurs. The message indicates the nature of
the error (see Chapter 7 for the message list).

The syntax of the %CONSOLE macro is
% CONSOLE
There are no parameters associated with this macro.

This %CONSOLE macro is completely unrelated to the %ZCONSOLE macro used in the
BS1.A86 or BSIMB2 A86 file. Be careful not to confuse them.

3.3.2 %TEXT Macro

The % TEXT macro is similar to the %CONSOLE macro in that it causes the Bootstrap
Loader to display a message at the console whenever a bootstrap loading error occurs. The
advantage of the % TEXT macro is that its messages are longer and more descriptive. The

disadvantage of the %TEXT macro is that it generates more code and makes the first stage
of the Bootstrap Loader larger.

The syntax of the %ZTEXT macro is

%TEXT

There are no parameters associated with this macro. If you include the %TEXT macro,
the %CONSOLE macro is automatically included.

3.3.3 %LIST Macro

The %LIST macro causes the Bootstrap Loader to display a list of the ready device-units
at the console whenever the operator enters an invalid device-unit name. You can include
this macro only if you include the %2MANUAL macro in the BS1.A86 or BSIMB2.A86 file,
as described earlier in this chapter.

3-28 Bootstrap Loader

CONFIGURING THE FIRST STAGE

The syntax of the %LIST macro is
% LIST

There are no parameters associated with this macro. If you include the %LIST macro, the
9eCONSOLE and %TEXT macros are automatically included.

3.3.4 %AGAIN Macro

The %AGAIN macro causes the bootstrap loading sequence to return to the beginning of
the first stage whenever a bootstrap loading error occurs. You should include this macro if
you include the %CONSOLE macro in the BSERR.AS6 file, either directly or by including
the %TEXT or %LIST macro.

The syntax of the % AGAIN macro is
% AGAIN

Exactly one of the %AGAIN, %INT1, %INT3, and %HALT macros must be included, or
an error will occur when BSERR.AS86 is assembled.

3.3.5 %INT1 Macro

The %INT1 macro causes the Bootstrap Loader to execute an INT | (software interrupt)
instruction whenever a bootstrap loading error occurs. This macro useful for passing
control to the D-MON386 monitor. The iSDM monitor does not support this macro.

The syntax of the %INT1 macro is
Z%INTI
There are no parameters assoctated with this macro.

Exactly one of the %GAGAIN, %INT1, %INT3, and %HALT macros must be included, or
an error will occur when BSERR.A86 is assembled,

The %INT1 macro, as well as the %INT3 and %HALT macros described next, are
reasonable choices if none of the %CONSOLE, %TEXT, or %LIST macros are included
in the BSERR.AS8G6 file,

Bootstrap Loader 3-29

CONFIGURING THE FIRST STAGE

3.3.6 %INT3 Macro

The %INT3 macro causes the Bootstrap Loader to execute an INT 3 (software interrupt)
instruction whenever a bootstrap loading error occurs. If you are using the iSDM monitor,
the INT 3 instruction passes control to the monitor. Otherwise, the INT 3 instruction has
no effect unless you have placed the address of your custom interrupt handier in position 3
of the interrupt vector table.

The syntax of the %INT3 macro is
eINT3
There are no parameters associated with this macro.

Exactly one of the %AGAIN, %INT1, %INT3, and %HALT macros must be included, or
an error will occur when BSERR.AS86 is assembled.

The %INT3 macro, as well as the 2INT1 and %HALT macros, are reasonable choices if

none of the %CONSOLE, %TEXT, or %LIST macros are included in the BSERR.A86
file.

3.3.7 %HALT Macro

The %9HALT macro causes the Bootstrap Loader to execute a halt instruction whenever a
bootstrap loading error occurs.

The syntax of the %SHALT macro is
%HALT
There are no parameters associated with this macro.

Exactly one of the %AGAIN, %INT1, %INT3, and %HALT macros must be included, or
an error will occur when BSERR.A86 is assembled.

The %HALT macro, as well as the %INT! and %INT3 macros, are reasonable choices if

none of the %CONSOLE, % TEXT, or %LIST macros are included in the BSERR.A86
file.

3-30 Bootstrap Loader

CONFIGURING THE FIRST STAGE

3.3.8 %END Macro
The %END macro is required at the end of the BSERR.A86 file.
The syntax of this macro is
GEND

There are no parameters associated with the %END macro.

3.4 DEVICE DRIVER CONFIGURATION FILES

A separate configuration file is included for each device driver provided with the Bootstrap
Loader. These files are named B208.A86, BMSC.A86, B2 18A.A86, B224A.A86, B251.A86,
B254 A86, B264.A86, and BSCSI.A86. Each consists of an include statement and a macro
call. The source file always has the form

$include(:f1:bxa.inc)
Febxoax(parameters)

where:

b 904 Either 208, MSC, 218A, 224A, 251, 254, 264, or SCSI, depending on the
device driver.

The number and type of parameters that are included with the macro depend on the device
driver. The parameters for each macro are discussed in the following sections.
Additionally, when a SASI controller board is used with the SCSI device driver, it requires
another macro. Refer to the "%BSCSI Macro” and "%SASI_UNIT_INFO Macro" sections
for details and for invocation examples. The default parameter values for the macros in
these sections are compatible with the default parameter values of the Installation Systems.

You should prepare one of these files for each type of device you want the first stage of the
Bootstrap Loader to support. In most cases, you can use the Intel-supplied files. The
following sections describe the individual macros so that you can make changes to them, if
necessary.

Bootstrap Loader 3-31

CONFIGURING THE FIRST STAGE

3.4.1 %B208 Macro

The 2% B208 macro has the form

%B208(i0_base)

where:

io_base 1/0 port address selected (jumpered) on the iSBC 208 controller board.

The default invocation of this macro in the B208.A86 file is

2, B208(180H)

3.4.2 %BMSC and %B220 Macros

The BMSC.AS6 file contains two macros, %BMSC and %B220. However, you can use
only one. 1If you have one of the drivers listed at the bottom of Table 3-1, you should use
the %BMSC macro. If you have the iSBC 220, you should use the 9%B220 macro. Both
macros have the form

%Bxxx (wakeup, cylinders, fixed heads, removable_heads, sectors,
dev_gran, alternates)

where:
XXX Either MSC or 220.
wakeup Base address of the controller’s wakeup port.

The remaining parameters are used to specify the characteristics of the disk drives. If
the % DEVICE macro you used for MSC or iSBC 220 devices in the BS1.A86 or
BSIMB2.AB6 file has deviceinitmsc (rather than deviceinitmscgen) as its third
parameter, then all MSC or iSBC 220 drives used by the Bootstrap Loader must have
the characteristics listed in the following parameters. That is, they must have the same
number of cylinders per platter, fixed heads, removable heads, sectors per track, bytes
per sector, and alternate cylinders. However, if the %9 DEVICE macro specifies
devicemnitmscgen, these restrictions do not apply and the following parameters are not
used by the Bootstrap Loader.

cylinders Number of cylinders on the disk drive or drives.
fixed heads Number of heads on fixed platters.
removable_heads Number of heads on removable platters.
sectors Number of sectors per track.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

dev_gran Number of bytes per sector.

alternates Number of cylinders set aside as backups for cylinders
having imperfections.

In the BMSC.A86 file, the default invocation of the %BMSC macro is
%BMSC(100H, 256, 2, 0, 9, 1024, 5)
and the default form of the uninvoked %B220 macro is

;B220(100H, 256, 2, 0, 9, 1024, 5)

3.4.3 %B218A Macro
The %B218A macro has the form

%B218A(base_port_address, motor flag)

where:
base port address The base port address of this device unit, as selected on
the 1ISBX 218A controller board.
motor_flag A value indicating whether the motor of a 5 1/4" flexible

diskette drive should be turned off after bootstrap
loading. Valid values are:

Value Description

OFFH ‘The drive will be turned off after
bootstrap loading. Specify this value only
if this device is not to become the system
device. Turning off the drive slows slows
bootstrap loading.

00H The drive will not be turned off after
bootstrap loading.

The default invocation of this macro in the B218A.A86 file is

%B218A(80H, 00H)

This allows you to mount the iSBX 218A module in the SBX 1 socket of your CPU board.

Bootstrap Loader 333

CONFIGURING THE FIRST STAGE

3.4.4 %B224A Macro

The %B224A macro has the form

%B224A (instance, board _id, cylinders, heads, sectors, device gran,
slip$sectors, %(reserved))

where:

instance

board_id

A value indicating which iSBC 186/224A controtler the driver should
use if the system contains multiple iSBC 186/224A boards. During
initialization the driver calculates the instance by scanning the
MULTIBUS II slots in ascending order and sequentially assigning
numbers to each iSBC 186/224A controller found. For example, 1 is
assigned to the iSBC 186/224A board in the lowest-numbered slot, and
2 to the iISBC 186/224A in the next-lowest-numbered slot. This method
of identifying the board provides slot independence.

A ten-byte string identifying the board. The board-id is found in
registers 2-11 of the header record in the interconnect space. For the
iSBC 186/224A controller board, the board _id is ASCII 186/224A
followed by two ASCH NULL (0) characters and can be entered in the
B224A.A86 file using the following form:

186/224AXX
where "XX’ are ASCII NULL (0) characters.

The following parameters are used for initializing Winchester disk drives but not floppy

disk drives:
cylinders
heads

sectors
device gran

slip§sectors

A word specifying the number of cylinders on the disk.

A byte specifying the number of tixed data heads on Winchester disk
drives.

A byte specifying the number of sectors per track.
A word specifying the number of bytes per sector for the device.

A byte specifying the number of sectors per track to be used as alternate
sectors when bad sectors are found during formatting. This feature is
enabled only when the sector-slipping option is used. Currently sector-
slipping is not supported; therefore, this value should be set to zero.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

reserved This parameter is reserved for future use. Tt consists of 10 one-byte
values, separated by commas. The driver uses these bytes as the last ten
bytes of the parameter buffer it uses to initialize the drive. For
example, the iSBC 186/224 A expects these ten bytes to be zero. This
parameter may be specified as either

%(0,0,0,0,0,0,0,0,0,0)
or
%(10 dup(0))
The iSBC 186/224A device driver sends an initialize command to the iSBC 186/224A
controller, which uses the preceding values to initialize the Winchester disk drive. Then

the volume label is read. If the volume label has valid device characteristics, the drive is
reinitialized with those characteristics.

Intel assumes the floppy disks are in standard format: track 0 formatted as 128
bytes/sector, 16 sectors/track. The disk characteristics are read from the volume label and
the drive 1s reinitialized with those characteristics.
The default invocation of this macro in the B224A A86 file is

%B224A ('186/224A77, 132H, 4, 9, 1024, 0,%(10 dup (0)))

Note, the characters *??" represent two ASCII NULL characters entered using AEDIT. To
input an ASCII NULL character, invoke AEDIT, position the cursor on top of the second
single quote mark, press the key "H’ for hex input, press the key "I for input,, press the key
'’ for the value. After inserting one ASCII NULL character, enter a second one.

3.4.5 %B251 Macro
The %B251 macro has the form

%B251 (io_base, dev_gran)

where:
io_base I/O port address selected (jumpered) on the iISBX 251 controller board.
dev_gran Page size, in bytes.

The default invocation of this macro in the B251.A86 file is

%B251 (80H, 64)

Bootstrap Loader 3-35

CONFIGURING THE FIRST STAGE

3.4.6 %B254 Macro

The ¢ B254 macro has the form

%B254 (io_base, dev_gran, num_boards, board_size)

where:
io_base I/O port address selected (jumpered) on the iSBC 254 controller board.
dev gran Page size, in bytes.

num_boards Number of boards grouped in a single device unit.

board size Number of pages in one iSBC 254 board.
The default invocation of this macro in the B254.A86 file is

%B254 (0880H, 256, 8, 2048)

3.4.7 %B264 Macro
The %B264 macro has the form

%B264 (io_base, dev_gran, num_boards, board _size)

where:
io_base 1/0 port address selected (jumpered) on the iISBC 264 controller board.
dev _gran Page size, in bytes.

num_boards Number of boards grouped in a single device unit.

board size ~ Number of pages in one iISBC 264 board.
The default invocation of this macro in the B254.A86 file 1s

%B264 (0880H, 256, 4, 8192)

3-36 Bootstrap Loader

3.4.8 %BSCSI Macro

CONFIGURING THE FIRST STAGE

This macro allows you to specify the details of a SCSI host board, such as the
ISBC 186/03A, iSBC 286/100 or iSBC 286/100A board, when an 8255A Programmable
Peripheral Interface component is used to implement the host interface.

The %BSCSI macro has the form

%BSCSI (a_port, b_port, ¢_port, control_port, reserved, reserved,
dma_controller, dma_channel, dma_base_address, dma_separation,

scsi_info, info)

The END command at the end of this file is an ASM&6 statement and it does not require a

%.

where:

a_port

b port
¢ port
control port

reserved
reserved

dma_controller

dma channel

dma_base_address

dma_separation

Bootstrap Loader

The WORD address of Port A of the 8255
Programmable Peripheral Interface (PPI) used by this
SCSI driver,

The WORD address of Port B of the 8255 PPI used by
this SCSI driver.

The WORD address of Port C of the 8255 PPI used by
this SCSI driver.

The WORD address of the control word register of the
8255 PPI used by this SCSI driver.

Reserved for future use. It should be set to zero.
Reserved for future use. 1t should be set to zero.

The type of DMA controller used. Possible values are

Value Controller Type
01 80186 DMA controller
02 82258 Advanced DMA controller

Other values are reserved for future use.

A BYTE that indicates which channel on the DMA
controller will be used. Specify the number of the DMA
channel as listed in the appropriate Intel data sheet.

A WORD that indicates the base 1/O port address of
the controller’s registers.

A BYTE that indicates the number of bytes separating
consecutive ports on the controller.

3-37

CONFIGURING THE FIRST STAGE

scsi_info This parameter is iSBC-board-specific; it does not
depend on the SCSI driver’s requirements. This
parameter is a BYTE which has the following meaning:

Value Meaning

0 Indicates that no additional
information is needed to
configure the Bootstrap Loader
for the iSBC board you are using,

1 Indicates this configuration of the
Boaotstrap Loader is used on the
iSBC 286/100A board.
2-255 Reserved for future use.
info Varies depending on the value of scsi_info.

If scsi_info is 0, then no other information is needed and
info 1s left blank,

If sesi_info is 1, then info is a single WORD that
specifies the port address of the iSBC 286/100 or

1ISBC 286/100A port used for multiplexing DMA sources
into the on-board 82258 DMA component.

The SCSI driver can be used to bootstrap load from any random-access device on the SCSI
bus. The SCSI driver can also be used to bootstrap load from specific random-access
devices on the SASI bus. When using the SASI bus, you must select a specific device,
because the SASI devices require unique initialization information. Do this by specifying
unique unit information for each device on the SAST bus (the %SASlI UNIT_INFO macro
is used for this purpose). -

The %BSCSI macro can be invoked only once in the BSCS1.A86 configuration file. The
%SASI_UNIT_INFO macro (described in the next section) can be invoked multiple times
to allow specification of the units on the SASI bus, Refer to the description of the
%SASI_UNIT _INFO macro to see how to specify unigue unit information for devices on
the SASI bus.
In the BSCSI.A86 file, the default versions of the %BSCSI macro are

%BSCSI(0C8H, 0CAH, 0CCH, 0CEH, 0, 0, 1, 0, OFFCOH, 2, 0)

;BSCSI(0C8H, 0CAH, 0CCH, 0CEH, 0, 0, 2, 0, 0200H, 2, 1, 0D1H)

The SCSI host board interface defined by the first instance (which is invoked) is the
iISBC 186/03A board and uses the 80186 DMA controller.

338 Bootstrap Loader

CONFIGURING THE FIRST STAGE

The SCSI host board interface defined by the second instance (which is not invoked) is the
1SBC 286,100 or iSBC 286/ 100A MULTIBUS II board and uses the on-board 82258
Advanced DMA controller. if you want to invoke this board, replace the ";" with a "%", and
replace the "%" with a ";" to comment out the interface defined by the first instance (iISBC
186/03A board using the 80186 DMA controller).

An important feature to note about devices that use an SCSI controller is the configuration
information is device-independent. That is, only the host board interface to the controller
needs to be specified in the configuration file. The configuration values contain no
information about the device(s) actually being used.

3.4.9 %SASI _UNIT INFO Macro

The SCSI device driver provides an interface to mass storage devices through either SASI
or SCSI controllers. If using devices controlled by a SASI controller, you must specify a
sequence of initialization bytes for the controller. This information is not required by SCSI
controllers. The initialization sequence identifies the type of device you have assigned to
the particular unit of the SASI controller. The sequence will be different depending on the
manufacturer and model of the hard disk or flexible diskette drive, and the manufacturer
and model of the SASI controller board itself.

This macro enables you to define the initialization sequences required by your devices on
the SASI bus. For each instance of the %DEVICE macro (in the BS1.A86 or
BS1MB2.A86 file) that defines a device on the SASI bus, you must also include the
%SASI_UNIT_INFO macro (in the %BSCSI.A86 file) to define that device’s initialization
sequence. The label specified for the unit info field of the %2 DEVICE macro must match
the label field of the corresponding %SASI UNIT INFO field.

The information supplied by an occurrence of the %SASI_UNIT INFO macro is not used
by devices on the SCS] bus. Therefore in the BS1.A86 or BSIMB2.A86 file, %2DEVICE
macros for devices controlled by the SCSI bus should never specify a value for the unit info
parameter. Note that there is only one pair of device initialization/device read procedures
for the SCSI driver regardless of whether the controller is SCSI or SASI.

The %SASI_UNIT _INFO macro can be included only in the SCSI/SASI driver
configuration file, BSCS1.A86. The macro has the form

%SASI UNIT INFO (label, init command, init_count, init_data }

Bootstrap Loader 3-39

CONFIGURING THE FIRST STAGE

where:

label A valid ASM86 label name matching the one you
specified in the unit info field of the %ZDEVICE macro
for your device (in the file BS1.A86 or BSIMB2.A86).

init_command A WORD that is the initialization command for your
particular SASI controller.

init_count A BYTE specifying the number of initialization BYTEs
that your SASI controller requires.

init_data The array of BYTESs of initialization data required by

your SASI controller. The length of this array must be
equal to the value in the init count parameter.

The default invocations of this macro in BSCSI.AB6 are

; iSBC 186/03A SCSI Host

%bscsi(OC8H, OCAH, OCCH, OCEH, €, 0, 1, 0, OFFCOH, 2, 0;

: iSBC 2867100 SCSI Host

;bscsi{ OCBH, 0CAH, OCCH, OCEH, O, 0, 2, 0, 0200H, 2, 1, OD1H)

: Xebec S1420 SAST controller and a Teac model F55B, 5 1/4-inch

; flexible diskette drive.

tsasi_unit_info(sasi_x1420mf, 11h,10,0,28h,2,90h,3,0fh,56h,0fh,014h,0)
; Xebec §1410 SAST controller and a Quantum model Q540, 5 1/4-inch
; Winchester disk drive.

%sasi unit_info(sasi_x1410b, Och, 8, 2, 0, 8, 2, 0, 0, 0, Obh)

: Xebec 51410 SASI contreoller and a Computer Memories, Inc.

; model CMI-5619 5 1/4-inch Winchester disk drive.
%tsasi_unit_info(sasi_x140a, Och, 8, 1, 32h, 6, O, Ob4h, 0, O, Obh)

3.4.10 User-Supplied Drivers

If you want to bootstrap load your system from a device other than one for which Intel
supplies a first stage device driver, you must write your own device initialization and device
read device driver procedures that the first stage will call. Chapter 5 describes how to do
this. In addition, perform the following actions to add the procedures to the Bootstrap
Loader:

» Specify the names of the device initialization and device read procedures in a
%DEVICE macro in the BS1.A86 or BSIMB2.AS86 file.

3-40 Bootstrap Loader

CONFIGURING THE FIRST STAGE

+ If there are configurable parameters associated with your device (such as base
addresses or wakeup ports), you might want to create your own configuration macro
and include it in a special configuration file, just like the Intel devices do. Chapter 5
describes how to set up a macro.

» Assemble your device initialization procedure, your device read procedure, and your
configuration file (if you have one), and link the resulting object code to the rest of the
Bootstrap Loader object files and libraries.

3.5 GENERATING THE FIRST STAGE

The submit file BS1.CSD performs the assembly, linkage, and location of the first stage of
the Bootstrap Loader. Often it will need to be modified to generate the particular
configuration of the Bootstrap Loader you specified in BS1.A86 or BSIMB2.A86. Figure
3-4 shows commands in the Intel-supplied BS1.CSD file.

Bootstrap Loader 3-41

CONFIGURING THE FIRST STAGE

attachfile § as :fl:
; The next four lines must be used to generate the Bootstrap Loader on
; iRMX II. The iRMX II Updates supply the MPL286 utility.

mpl286 :f1:%2.a86 $object(:f1:%Z2.mpl)

mpl286 :fl:bgerr.aB6 $object(:fl:bserr.mpl)

asm86 :£1:%2.mpl macro(90) object(:f1:%2. obj) print(:f1:%2.1st)
asm86 :fl:bserr.mpl macro(50) object(:fl:bserr.obj) print(:fl:bserr.lst)

; The next two lines must be used to generate the Bootstrap Loader on

; iRMX 86. No invocation of MPL286 is required. Comment out the previous
; four lines by inserting a ‘;’ in front of the line. Remove the ';' from
; the front of the next two lines if generating on iRMX 86,

rasm86 :f1:%2.a86 macro(90) object(:f1l:%2.0bj) print(:f1:%2.1st)
;asm86 :fl:bserr.all6 macro(50) object(:fl:bserr.obj) print(:fl:bserr.1lst)

asm86 :f1:b208.a86 macro(50) object(:fl:b208.0bj) print(:f1:b208.1st)
asmB6 :f1:bmsc.aBb macro(50) object(:fl:bmsc.obj}) print(:fl:bmsc.lst)
asmB6 :f1:b218a.aB6 macro(50) object(:fl:b218a.obj) print(:fl:b218a.1st)
asmB6 :fl:b251.a86 macro(50) object(:fl:b251.0bj) print(:f1:b251.1st)
asm86 :f1l:b254. a86 macro(50) object(:£f1:b254.0bj) print(:£f1:b254.1st)
asm86 :f1:b264,a86 macro(50) object(:£f1:b264.0bj) print(:fl:b264 1st)
asm86 :fl:bscsi.aB6 macro(50) object{:fl:bscsi.obj) print(:fl:bscsi.lst)

r

Figure 3-4. First Stage Configuration File BS1.CSD

3-42 Bootstrap Loader

CONFIGURING THE FIRST STAGE

; Multibus II configuration

’

;asm86

1link86

(fl:

(fl
& :fl

1 fl
:f1

:f1

& fl
:fl
:fl

to :fl

:f1:b224a,a86 macro(50) object(:fl:b224a.0bj) print(:fl:b224a.lst)

%2.0bj,

:bserr.obj,
:beico.obj,
:fl:

b208 .obj,

‘bmsc.obj,
:b218a.0bj,
:f1:

b251.0bj,

:b254 . 0bj7,
:f1:
:b224a.0bj,
:hsesi.obji,
:bsl.1lib
:%2 . 1nk princ(:£1:%42.mpl) &
&nopublics except(firststage,

b264 .0bj,

;for standalone serial channel support

PRI IIRRRRRR

red

& firststage_186, &

&

& Remove the ‘&' from the beginning of the previous line if the

& 1APX_186_INIT macro is invoked in the configuration file.

&

& bootstrap_entry)

loc86 :f1:%2.1nk &
addresses{classes{code(0%Q0),stack(0%1))) &
order(classes(stack,data,boot,code,code_error)) &

&
noiniteode &
start(firststage) &

&

& Change the previous line to 'start(firststage 186)' if the

& iAPX_186_INIT macro is invoked in the configuration file.

&

segsize(boot (1800H)) &

Figure 3-4. First Stage Configuration File BS1.CSD

Bootstrap Loader

(continued)

343

CONFIGURING THE FIRST STAGE

map print(:f1:%2 mp2) &

;bootstrap
Remove the ';' from the line ' ;bootstrap’ when generating a
a standalone Bootstrap Loader in PROM for a 80286-based CPU beoard.
Do not remove the ';' if the Bootstrap Loader is being generated

for an 80386-based CPU bhoard.

Bootstrap Loader first stage generation complete.

Figure 3-4. First Stage Configuration File BS1.CSD
{continued)

3.5.1 Modifying the BS1.CSD Submit File

To generate your own version of the Bootstrap Loader first stage, there are several
changes you might need to make.

First, if you have excluded any device drivers from the Bootstrap Loader (by excluding
%DEVICE macros from the BS1.A86 or BSIMB2.A86 file), you won't want to link the
code for those drivers into the the first stage. To prevent the linking of a device driver, edit
the LINK86 command in the BS1.CSD file and place an ampersand (&) in front of any file
name that corresponds to a driver you want to exclude. Figure 3-5 is an example that
shows a portion of the BS1.CSD file after excluding the iSBC 208, iSBX 218A, iISBX 251,
i1ISBC 254 and SCSI device drivers.

3-44 Bootstrap Loader

CONFIGURING THE FIRST STAGE

1ink86 &
:f1:%42.0bj, &
:fl:bserr.ob], &
& :fl:bcico.obj, & ;for standalone serial channel support
& :f1:b208.0bj, &
:fl:bmsc.obj, &
& :fl:b218a.obj, &
& :fl:b251.0bj, &
& :fl:b254 0bj, &
:f1:b264.0b], &
:f1:b224a . 0bj &
& :fl:bscsi.obj, &
:fl:bsl.1lib &
to :f1:%42.1nk print(:f1:%2 mpl) &
&nopublics except(firststage, &

firststage 186, &

Remove the '&' from the beginning of the previous line if the
iAPX_186_INIT macro is invoked in the configuration file.

e

Figure 3-5. Excluding the iSBC 251 and iSBC 254 Drivers

NOTE

If you exclude a device driver, do NOT include any %DEVICE macros for it in
the BS1.A86 or BSIMB2.A86 configuration file or errors from LINK86 will
occur.

Also, if you are not using an iRMX I or iRMX 1 system to configure the Bootstrap
Loader, you must comment out the command attaching the directory where the Bootstrap
Loader files reside as the logical name :F1:. Change the line:

ATTACHFILE § AS :F1:

to

;ATTACHFILE $ AS :F1:

Bootstrap Loader 3-45

CONFIGURING THE FIRST STAGE

3.5.2 Invoking the BS1.CSD Submit File

After you have modified the BS1.CSD file to correspond to your configuration, invoke the
submit file to assemble the Bootstrap Loader files, link them together, and assign absolute
addresses. The format for invoking the submit file is as follows:

ATTACHFILE /RMX286/BO0OT
SUBMIT BS1(first stage_address, second stage_address, first_stage_file)

where:

first_stage address The starting address of the first stage of the Bootstrap
Loader. This can be a RAM address if you intend to run
the Bootstrap Loader from RAM, or it can be a PROM
devices address if you intend to place the Bootstrap
Loader into PROM devices. The address you specify
should be a full 20-bit address. Do not use the
base:offset form to indicate the address. The iISDM
Release 3.2 monitor allocates the address range from
OFE400H to 0FFF7FH to the Bootstrap Loader. If your
configuration of the Bootstrap Loader will not fit in this
space, locate it at a lower address than FIF8000H.

second_stage address The address in RAM where the second stage of the
Bootstrap Loader will be loaded. The data area for the
first and second stages is also located here. The size of
this second stage area consists of less than 8K contiguous
bytes. The default address for the second stage 1s
OBBOOOH. This address has been chosen to be
compatible with the default address of the third stage
which is 0BCO00H.

first_stage file The first-stage configuration file to use. If your system is
a MULTIBUS I system, set this parameter equal to the
string 'bs1’. Setting this parameter to 'bs1’ causes the
located Bootstrap Loader file to be named ’bs1’. If your
system is a MULTIBUS II system, set this parameter
equal to the string ’bs1mb2’. Setting this parameter to
’bsImb2’ causes the located Bootstrap Loader file to be
named 'bsImb2’.

3-46 Bootstrap Loader

CONFIGURING THE FIRST STAGE

To invoke the BS1.CSD SUBMIT file with the default addresses for combining with the
1ISDM monitor, type one of the two sets of commands below:

3.6 MEMORY LOCATIONS OF THE FIRST AND SECOND STAGES

When you invoke the BS1.CSD file, you assign memory locations to the first and second
stages. It is important that the addresses you assign do not cause the stages to overlap,
either with themselves or with the files they load. Chapter 4 discusses the memory
locations of all three stages of the Bootstrap Loader and the steps to take to ensure that
they don’t overlap. Also inspect the map file, BS1.MP2, to ensure the segments are
properly laid out. If too many device drivers have been configured into the Bootstrap
Loader, some segments will be located in low memory starting at 200H. This is
unacceptable and you must remove some more device drivers from your configuration.

Bootstrap Loader 3-47

CHAPTER 4

CONFIGURING THE THIRD STAGE

4.1 INTRODUCTION

The third stage of the Bootstrap Loader is used only for loading iRMX II systems. It
provides the capability of loading modules that use the 80286 object module format (such
as those produced using BND286 and BLLD286) and those that require the processor’s
protected virtual address mode. This chapter describes how to configure the third stage.

There are two different types of third stages that can be used to load iIRMX 11 files: the
generic third stage and the device-specific third stage. Both load OMF-286 modules, but
the generic third stage leaves the processor in real address mode while it loads. This
permits it to use the first-stage device drivers to access the storage devices. The device-
specitic third stage switches the processor into protected mode before calling the device
driver. Although this permits the device driver to load into the entire 16 megabyte address
space, special device drivers that work in protected mode must be included in the third
stage.

Configuration of the third stage differs slightly depending on whether you configure the
generic or device-specific third stage. However, the differences are small enough that hoth
will be described together throughout most of this chapter. The next two sections provide
overviews of configuring each type of third stage. The rest of the chapter provides the
details of third-stage configuration, noting any options that apply specifically to one type of
third stage.

4.2 OVERVIEW OF THIRD STAGE CONFIGURATION

Contiguring the third stage (either the generic or device-specific third stage) is very similar
to configuring the first stage. It involves the following operations:
1. Editing an assembly language source file to indicate which CPU board to run on and

what to do if errors occur during bootstrap loading. If you are using the device-
specific third stage, you must also indicate which devices the third stage supports.

2 Invoking a SUBMIT file to assemble one or more assembly language source files,
link them with code for the third stage, and assign absolute addresses to the code,
This executable module remains in a file to be loaded by the second stage.

Bootstrap Loader 4-1

CONFIGURING THE THIRD STAGE

Like the first stage, the device-specific third stage requires its own device drivers.
Therefore, you might expect to modify, assemble, and link configuration files for each of
the devices, just as you do for the first stage. Actually, the SUBMIT file does assemble and
link the device configuration files, but you don’t need to do any additional work on these
files. Because device-specific information (such as the I/O port address, the number of
cylinders, etc.) is the same regardless of which stage accesses the device, the SUBMIT file
uses the same device configuration files used for first-stage configuration.

The generic third stage uses the first-stage device drivers to communicate with mass
storage devices. Therefore there is no need to supply configuration information about
devices to the generic third stage.

Default versions of the assembly language source files and the SUBMIT file are placed in
the /RMX286/BOOT directory during installation. These files include the following:

BS3.A86 These assembly language source files contain macros that specify
BS3MB2.A86 the devices supported by the third stage (for device-specific third
BG3.A86 stage only), identify the CPU board, and indicate what to do if

errors occur during bootstrap loading. The BS3.A86 file applies to
the device-specific third stage for MULTIBUS I systems, the
BS3MB2.A86 file applies to the device-specific third stage for
MULTIBUS II systems, and the BG3.A86 file applies to the generic
third stage on either MULTIBUS T or MULTIBUS Il systems.

BMSC.A86 These assembly language source files apply just to the device-

B264.A86 specific third stage. They contain configuration information about
the devices in your system. These are the same files that were used
during the configuration of the first stage. You do not need to
modify them for the device-specific third stage.

BS3.CSD These SUBMIT files contain the commands needed to assemble the

BG3.CSD source files, link the resulting modules (and any other you supply)
with the code for the third stage, and locate the resulting object
module. The BS3.CSD file applies to the device-specific third stage,
while the BG3.CSD file applies to the generic third stage.

As shipped on the release diskettes, these files are set up to generate the default versions
of the Bootstrap Loader’s device-specific and generic third stages.

4.3 BS3.A86, BS3MB2.A86, AND BG3.A86 CONFIGURATION FILES

Figures 4-1, 4-2, and 4-3 list the assembly language configuration files for the device-
specific third stage files BS3.A86 and BS3MB2.A86 and the generic third stage file
BG3.A86. Each of these files consists of an INCLUDE statement and several macros. The
definitions of the macros that can appear in these files are contained in the INCLUDE file
(BS3CNF.INC). These macros are similar to the macros that can appear in the first stage
configuration file.

4.2 Bootstrap Loader

CONFIGURING THE THIRD STAGE

To configure your own version of the generic or device-specific third stage, you should edit
the BS3.A86, BS3IMB2.A86, or BG3.A86 file to include or exclude macros. For each
macro, a percent sign (%) preceding the name includes (invokes) the macro, and a
semicolon (;) preceding the name excludes the macro, treating it as a comment.

NOTE

When you exclude a macro, you must replace the percent sign with a semicolon.
Don’t just add a semicolon in front of the percent sign.

The following sections describe the macros that can appear in the BS3.A86, BS3MB2.A86,
and BG3.A86 files. Unless otherwise specified, the macros can appear in either of the
three files (the %DEVICE macro is the only one that applies just to the device-specific
third stage).

name bs3

$include (:fl:bs3cnf.inc)
§include(:fl:bmps.inc)

*device (0,w0,deviceinitmscgen,devicereadmscgen,data msc)

#device (1,wl,deviceinitmscgen,devicereadmscgen,data msc)

tdevice (8,wf0,deviceinitmscgen,devicereadmscgen,data msc)

idevice (9,wfl,deviceinitmscgen,devicereadmscgen,data_msc)

#device (0,s0,deviceinitscsi, devicereadscsi,data_scsi)

Zdevice (0,sxl&lOaO,deviceinitscsi,devicereadscsi,data_scsi,sasi_xl&lOa)
Zdevice (0,sx1410b0,deviceinitscsi,devicereadscsi,data_scsi,sasi_xlﬁlOb)
Zdevice (2,sme,deviceinitscsi,devicereadscsi,datawscsi,sasi_xlé20mf)
%device (O,pme,deviceinit218Agen,devicerealeBAgen,dataw218)

Xdevice (0,ba0,deviceinit264,deviceread264,data_264)

;intl

Zint3

;halt

Zcpu_board (286/12)

Yend

Figure 4-1. Intel-Supplied BS3.A86 File

Bootstrap Loader 4-3

CONFIGURING THE THIRD STAGE

name bs3

Sinclude (:fl:bs3ecnf.inc)

Sinclude(:fl:bmps.inc)

: MPC and ADMA configuration for iSBC 286/100 with iEXM 100 MPC module
:bmps (O0H, 4, O8BH, 200H, 3, 2, 0ACH, 16)

: MPC and ADMA configuration for iSBC 286/100A

;bmps (O0OH, 4, 08BH, 200H, 2, 3, OECH, 16)

i MPC and ADMA configuration for iSBC 386/100

tbmps (O0H, 4, 089H, 200H, 2, 3, 000H, 16)

L I R T R T R R R A A A I I I I R A R R RN N N N NN IR N NN N N D 2 N I I I I N I B

: Multibus II devices ;

%device (0,s0,deviceinitscsi, devicereadscsi,data_scsi)

%device (0,sx1410a0,deviceinitscsi,devicereadscsi,data_scsi,sasi_x1410a)
%“device (0,sx1410b0,deviceinitscsi,devicereadscsi,data scsi,sasi _x1410b)
%device {2,smf0,deviceinitscsi,devicereadscsi,data_scsi,sasi_x1420mf)
%tdevice(0, w0, device_init 224a, device_read_224a, data bs_drivers)
%tdevice(l, wl, device_init_224a, device_read_224a, data_bs_drivers)
%tdevice(2, wf0, device_init_224a, device_read_224a, data_bs_drivers)
%device(3, wfl, device_init_224a, device_read_224a, data_bs_drivers)
;intl

Zint3

;halt

%“epu _board (386/100)

Zend

Figure 4-2. Intel-Supplied BS3IMB2.AR6 File

4-4 Bootstrap Loader

CONFIGURING THE THIRD STAGE

name bg3

Sinclude (:fl:bs3enf.ine)
;intl

Z2int3

;halt

%*cpu board (286/12)

Zinstallation(n)

Zend

Figure 4-3. Intel-Supplied BG3.A86 File

4.3.1 %BMPS Macro (MULTIBUS® Il Only)

The %BMPS macro configures the message passing system used during bootstrap loading.
This macro identiftes the base address of the Message Passing Coprocessor (MPC),
address distance between MPC ports, and information that defines how direct memory
access (DMA) transfers occur.

The syntax of the %2BMPS macro is

%BMPS (mpcSbase$addr, port$sep, duty$cycle, dma$base$addr, dma$in, dmaSout,
dma$trans, data$width)

where:
mpcibase$addr The base 1/O port address of the MPC. Refer to the
appropriate single board computer user’s guide for this
address.
port$sep The number of addresses separating individual MPC

ports. For example, if the mpc$base$addr is 0000H and
the next three [/O port addresses are 0004H, 0008H,
and 000CH, respectively, the port$sep is 4H. Refer to
the appropriate single board computer user’s guide for
the [/O port address map.

Bootstrap Loader 4-5

CONFIGURING THE THIRD STAGE

duty$cycle

dma$base$addr

dma$in

dmaS$out

dmaS$trans

data$width

The MPC duty cycle for the local bus. (The rate at
which data packets are generated.) For information on
how to calculate a duty cycle suitable for the local bus,
refer to the MPC User’s Manual. For duty cycles
suitable for Intel single board computers, refer to the
appropriate single board computer user’s guide.

The base /O port address for the Advanced Direct
Memory Access (ADMA) controller. Refer to the
appropriate single board computer user’s guide for this
address.

The channel used to receive {(input) DMA message
passing transfers. Refer to the appropriate single board
computer user’s guide for this channel number.

The channel used to send (output) DMA message
passing transfers. Refer to the appropriate single board
computer user’s guide for this channel number.

The 1/0 port address used for DMA data transfers.
Refer to the appropriate single board computer user’s
guide for this address.

The data width in bits of the local bus. This value must
be either 16 or 32 (decimal). If the width is set to 32 bits
on a 386/116- or 386/120-based board, flyby (one cycle)
mode is enabled.

The %BMPS macro can generate errors if the local bus width is not 16 or 32 bits wide.

4.3.2 %DEVICE Macro (BS3.A86 and BS3MB2.A86 Only)

The %DEVICE macro applies only to the device-specific third stage (BS3.A86 and
BS3MB2.A86 files). It associates a device with a particular third stage device driver. The
syntax of the %DEVICE macro is as follows:

%DEVICE (unit, name, device$init, device$read, device$data,unit_info)

where:
unit The unit number of this device. Unit numbering should be the same as
that used in the BS1.A86 or BSIMB2.A86 file described in Chapter 3.
name The name of the device. You should always specify the same name that
you used for the device in the BS1.A86 or BSIMB2.A86 file.
4-6 Bootstrap Loader

CONFIGURING THE THIRD STAGE

deviceSinit Public name of the third stage device driver’s initialization procedure.
Table 4-1 lists the names used for Intel-supplied device drivers. If you
supply your own driver (written as described in Chapter 6), enter the
name of its initialization procedure.

device§read Public name of the third stage device driver’s read procedure. Table 4-1
lists the names used for Intel-supplied device drivers. If you supply your
own driver (written as described in Chapter 6), enter the name of its
read procedure.

device$data Public name of a label that marks the first byte of the data segment used
by the third stage device driver. Table 4-1 lists the names used for Intel-
supplied device drivers. If you supply your own driver (written as
described in Chapter 6), you must create such a label and enter its name
here.

unit_info An ASM&0 label that marks the location of an array of BYTEs
containing specific device-unit information required by the mass storage
device defined by this invocation of the % DEVICE macro.

Table 4-1 lists the names of the device initialization procedures, device read procedures,
and data segments for Intel-supplied third stage device drivers.

Table 4-1. Names for Intel-Supplied Third Stage Drivers

Device Initialize Device Read
Device Driver Procedure Procedure Data Segment
MSC Driver deviceinitmscgen devicereadmscgen data_msc
iSBC 264 Driver deviceinit264 deviceread264 data 264
iISBC 186/224A Driver device_init 224A device read 224A data bs drivers
SCS| Driver deviceinitscsi devicereadscsi data scsi

4.3.3 %SASI_UNIT INFO Macro (BSCSI.A86 File)

The SCSI device driver provides an interface to mass storage devices through either SASI
or SCSI controllers. If using devices controlled by a SASI controller, you must specify a
sequence of initialization bytes for the controller. This information is not required by SCSI
controllers. The initialization sequence identifies the type of device you have assigned to
the particular unit of the SASI controller. The sequence will be different depending on the
manufacturer and model of the hard disk or flexible diskette drive, and the manufacturer
and model of the SASI controller board itself,

Bootstrap Loader 4-7

CONFIGURING THE THIRD STAGE

This macro enables you to define the initialization sequences required by your devices on
the SASI bus. For each instance of the %DEVICE macro (in the BS1.A86 or
BS1MB2.A86 file) that defines a device on the SASI bus, you must also include the
%SASI_UNIT _INFO macro (in the %BSCSI.A86 file) to define that device’s initialization
sequence. The label specified for the unit info field of the %DEVICE macro must match

~ the label field of the corresponding 9%SASI UNIT_INFO field.

The information supplied by an occurrence of the %SASI_UNIT _INFO macro is not used
by devices on the SCSI bus. Therefore in the BS1.A86 or BSIMB2.A86 file, %2DEVICE
macros for devices controlled by the SCSI bus should never specify a value for the unit info
parameter. Note that there is only one pair of device initialization/device read procedures
for the SCSI driver regardless of whether the controller is SCSI or SASI.

The %SASI_UNIT_INFO macro can be included only in the SCSI/SASI driver
configuration file, BSCS1.A86. The macro has the form

%SASI_UNIT _INFO(label, init_command, init_count, init_data)

where:

label A valid ASM86 label name matching the one you
specified in the unit info field of the %ZDEVICE macro
for your device (in the file BS1.A86 or BSIMB2.A86).

init_command A WORD that is the initialization command for your
particular SASI controller.

init_count A BYTE specifying the number of initialization BYTESs
that your SASI controller requires.

init_data The array of BYTEs of initialization data required by

your SASI controller. The length of this array must be
equal to the value in the init count parameter.

4-8 Bootstrap Loader

CONFIGURING THE THIRD STAGE

The default invocations of this macro in BSCSI.A86 are

; iSBC 186/03A SGSI Host

Zbscsi{ OCBH, 0CAH, OCCH, OCEH, 0, 0, 1, 0, OFFCOH, 2, Q)

| iSBC 286/100 SCSI Host

;bscsi(OC8H, OCAH, OCCH, OCEH, 0, 0, 2, 0, 0200H, 2, 1, OD1H)

; Xebec 51420 SASI controller and a Teac model F55B, 5 1/4-inch

; flexible diskette drive.

*sasi_unit_info(sasi x1420mf, 11h,10,0,28h,2,90h,3,0fh,50h,0fh,014h,0)
; Xebec 51410 SASI controller and a Quantum model Q540, 5 1/4-inch
; Winchester disk drive.

%sasi_unit_info(sasi x1410b, Och, 8, 2, 0, 8, 2, 0, 0, 0, Obh)

; Xebec S1410 SASI controller and a Computer Memories, Inc.

; model CMI-5619 5 1/4-inch Winchester disk drive.
Zsasi_unit_info(sasi x140a, Och, 8, 1, 32h, 6, 0, Obsh, 0, O, Obh)

4.3.4 %INT1 Macro

The %INT1 macro causes the third stage to execute an INT 1 (software interrupt)
instruction whenever a bootstrap loading error occurs. This enables you to pass control to
a user-written program if loading fails. However, to pass control to another program, you
must place the address of that program in position 1 of the interrupt vector table. This
macro is supported by only the D-MON386 monitor. The iSDM monitor does not support
this macro.

The syntax of the 9%INT1 macro is
%INT]1
There are no parameters associated with this macro.

Exactly one of the %INT1, %INT3, and %HALT macros must be included, or an error will
occur when BS3.AR6, BSIMB2.A86, or BG3.A86 are assembled.

Bootstrap Loader 4-9

CONFIGURING THE THIRD STAGE

4.3.5 %INT3 Macro

The %INT3 macro causes the third stage to execute an INT 3 (software interrupt)
instruction whenever a bootstrap loading error occurs. If you are using the iSDM monitor,
the INT 3 instruction passes control to the monitor. Otherwise, the INT 3 instruction has
no effect unless you have placed the address of your custom interrupt handler in position 3
of the interrupt vector table.

The syntax of the %INT3 macro is
%INT3
There are no parameters associated with this macro.

Exactly one of the %INT1, %INT3, and %HALT macros must be included, or an error will
occur when BS3.A86, BS3AMB2.AR6, or BG3.A86 are assembled.

4.3.6 %HALT Macro

The %HALT macro causes the third stage to execute a halt instruction whenever a
bootstrap loading error occurs. The syntax of the %2HALT macro is as follows:

%HALT
There are no parameters associated with this macro.

Exactly one of the %INT1, %INT3, and %HALT macros must be included, or an error will
occur when BS3.A86, BS3IMB2.AR6, or BG3.AR6 are assembled.

4.3.7 %CPU_BOARD Macro

The %CPU_BOARD macro specifies the type of processor board in your system. The
third stage needs this information so that it can properly initialize the board when

switching into protected virtual address mode. The syntax of the %CPU_BOARD macro
is as follows:

%CPU_BOARD (type)

4-10 Bootstrap Loader

where:

type

CONFIGURING THE THIRD STAGE

The type of processor board in your system. The following are the valid

values:
Yalue

286/12
286/12
286/12
286/100A
386,20
386/ 100

Processor Board

1ISBC 286/10 board

1ISBC 286/ 10A board

1SBC 286/ 12 board

ISBC 286/100A board

iISBC 386/2X board or iSBC 386/3X Board
iISBC 386/116 board or iSBC 386/120 Board

4.3.8 %INSTALLATION Macro (BG3.A86 Only)

The %2INSTALLATION macro specifies whether the generic third stage will enter the
monitor after loading the application system or not. The syntax of the %INSTALLATION

macro is:

%INSTALLATION (monitor_entry)

where:

monitor_entry

The type of action the Bootstrap Loader is to take upon
loading the application system. If monitor entry is 'n’ the
system is loaded and then executed with no monitor
entry inbetween. I[f it is’y’, the monitor is entered after
the system is loaded. You must type in the monitor GO
command to continue.

When the monitor is entered, as a result of specifying 'y’ for the monitor_entry parameter,
the Bootstrap Loader prints the following message to the terminal:

Insert the Start-up System Commands Diskette and type "G<RETURN>"]

NOTE

If your system has the D-MON386 monitor rather than the iSDM monitor, type
"GO<RETURN>".

Bootstrap Loader

CONFIGURING THE THIRD STAGE

This macro is used to generate the generic third stage used to boot the Operating System
from diskettes. The %INSTALLATION macro allows one diskette, which contains only
the Operating System boot file and the third stage to be used to load the system from
diskette into memory. In entering the monitor, it allows a second diskette, which contains
the necessary system commands, to be used as the system device when the system is
initialized.

4.3.9 %END Macro

The %END macro is required at the end of the BS3.A86, BS3MB2.AB6, and BG3.A86
files. The syntax of this macro is as follows;

ZeEND

There are no parameters associated with the %ZEND macro.

4.3.10 User-Supplied Drivers

If you want to use the device-specific third stage to load your system from a device other
than one for which Intel supplies a third-stage driver, you must write your own device
driver procedures that the third stage will call. Chapter 6 describes how to do this. In
addition, perform the following actions to add the procedures to the Bootstrap Loader:

» Specify the names of the device initialization procedure, the device read procedure,
and the driver’s data segment in a % DEVICE macro in the BS3.A86 file.

» If there are configurable parameters associated with your device (such as base
addresses or wakeup ports), you might want to create your own configuration macro
and include it in a special configuration file, just like the Intel devices do. Chapter 5
describes how to set up a macro. You will probably use the same configuration file for
both the first- and third-stage drivers.

* Assemble your device initialization procedure, your device read procedure, and your
configuration file (if you have one}, and link the resulting object code to the rest of the
Bootstrap Loader object files and libraries.

4-12 Bootstrap Loader

CONFIGURING THE THIRD STAGE

4.4 GENERATING THE THIRD STAGE

Two SUBMIT files (BS3.CSD and BG3.CSD) are used to generate the two types of third
stages. B53.CSD performs the assembly, linkage, and location of the device-specific third
stage. BG3.CSD performs the same operations for the generic third stage. Figures 4-4 and
4-5 show the Intel-supplied BS3.CSD and BG3.CSD files.

attachfile § as :fl:

mpl286 :f1:%0.a86 Sobject(%0.mpl)
asm86 :£f1:%20.mpl

asm86 :fl:bmsc.aBé

asm86 :£f1:b218a.a86

asmB6 :f]1:b264, 286

asm86 :fl:bscsi.aB6

asm86 :fl1:b224a.a86

1ink86
:f1:%0.0bj,
:fl:bs3.1ib,
:fl:bmsc.obj,
:f1:b218a.0bj,
:f1:b264.0bj

& :fl:bscsi.obj,

& :fl:b224a.0bj

to (£f1:%0.1nk print(:f1:%40.mpl) notype nolines nosymbols

PR

loc86 :fl:%20.1nk
addresses(classes{code(%1)))
order{classes(code,data))
noinitcode purge
start(bs3)
map print(:£1l:%0.mp2)

PR

; The Third Stage, located at address %1, is in the file Z0

Figure 4-4. Device-Specific Third Stage SUBMIT File (BS3.CSD)

Bootstrap Loader 4-13

CONFIGURING THE THIRD STAGE

attachfile $ as :fl:

ésm86 :Fl:bgd. aflé nolist

1ink86 &
:fl:bg3.0bj, &
:£1:bg3.1ib &

to :fl:bg3.lok notype nolines nosymbols

locB6 :fl:bg3.1nk
addresses(classes{code(Z1)))
order(classes(code, data))}
noinitcode
start(bs3) purge
to :F1:%0.%1 map print(:fl:%0.mp2)
delete :(Fl:bg3.tmp
;The Generic Third Stage is located at address %2 and is
:in the file %0.%1.

r

PR

Figure 4-5. Generic Third Stage SUBMIT File (BG3.CSD)

4.4.1 Modifying the Submit Files

Before generating your own version of the third stage, you should modify the appropriate
submit file to match your intended configuration.

If you are using the device-specific third stage and you have excluded any device drivers
from it (by excluding %DEVICE macros from the BS3.A86 or BS3MB2.A86 file), you
won’t want to link the code for those drivers into the the third stage. To prevent the
linking of a device driver, edit the LINK86 command in the BS3.CSD file and place an
ampersand (&) in front of any file name that corresponds to a driver you want to exclude.

If you are not using an iIRMX 1 or iRMX II system to configure the third stage, you must
comment out the line where the directory containing the Bootstrap Loader files is attached
as :f1: before invoking the other commands in the BS3.CSD or BG3.CSD file. Change the
line:

ATTACHFILE § AS :Fl:

to

JATTACHFILE $ AS :Fl:

4-14 Bootstrap Loader

CONFIGURING THE THIRD STAGE

4.4.2 Invoking the Submit File

After you have modified either the BS3.CSD or BG3.CSD file to correspond to your
configuration, invoke the appropriate SUBMIT file to assemble the third stage files, link
them together, and assign absolute addresses. The format for invoking either SUBMIT file

is as follows:

Device-specific third stage

SUBMIT BS3 (filename, third_stage addr)

Generic third stage

SUBMIT BG3 (filename, extension, third_stage _addr)

where:

filename

extension

third stage addr

Bootstrap Loader

The name of the file in which to store the generated
third stage. Also, the name of the third-stage
configuration file you are using (BS3.A86 for
MULTIBUS I systems and BS3IMB2.A86 for
MULTIBUS Il systems). The generic third stage
appends the next parameter (extension) to the filename.

The extension the generic third stage is to have. This
does not apply to the device specific third stage. Normal
generic third stages usually have the extension 'GEN’.
Generic third stages used for Operating System
installation should use the extension 'INS’.

The address in RAM where the third stage will be
loaded. The address you specify should be a full 20-bit
address. Do not use the base:offset form to indicate the
address.

If you have no special requirements for loading the third
stage, specify a value of 0BCO00H for this parameter.

4-15

CONFIGURING THE THIRD STAGE

4.5 MEMORY LOCATIONS OF THE THREE STAGES

When you configure the first and third stages of the Bootstrap Loader, you can assign the
addresses at which the three stages will be located. Before setting these addresses, you
must understand how default memory is assigned in the Bootstrap Loader.

Table 4-2 lists the default memory locations used by the Bootstrap Loader. It also names
the SUBMIT files you can invoke to change the memory assignments.

Table 4-2. Memory Locations Used by the Bootstrap Loader

Maximum Configuration
Description Default Size* File
1st Stage Application Dependent * 14K Bytes BS1.CSD
Code CFE400H for iSDM R3.0
2nd Stage 0BB8COOH 8K Bytes BS1.CSD
Code, 1st/2nd
Data and Stack
3rd Stage OBCO00H 16K Bytes BS3.CSD
(specific)
Code, Data
and Stack
3rd Stage OBCOOCH BK Bytes BG3.CSD
{generic)
Code
Third Stage 0B8000OH — BS1.CSD
{generic)
Data and Stack
* Maxirmum size is a function of the size of the device drivers included in the Bootstrap Loader.

The Bootstrap Loader Release Diskette contains a standalone version of the Bootstrap
Loader, in the file named BS1, which selects all the supported Intel device drivers. The
map file, BS1.MP2, is supplied to show the layout of the segments in BS1. The first stage is
located at OCO000H and the second stage is located at 0BROOOH. All default third stages
are located at 0BCOOOH.

Bootstrap Loader

CHAPTER 5

WRITING A CUSTOM FIRST-STAGE

DRIVER

5.1 INTRODUCTION

You can configure the Bootstrap Loader to run with many kinds of devices. If you plan to
use one of the devices for which Intel supplies a device driver, you can skip this chapter.

If you want to use the Bootstrap Loader with a device other than those supported by Intel,
you must write your own first-stage device driver. (If you want to load iRMX IT
applications past the first megabyte of address space, you must also write a custom third-
stage driver. Chapter 6 describes how to write third-stage drivers.) This chapter provides
you with guidelines for writing a custom first-stage driver.

You must include two procedures in every first-stage device driver: a device initialize
procedure and a device read procedure. The device initialize procedure must initialize the
bootstrap device. The device read procedure must load information from the device into

RAM.

The rest of this chapter refers to the two procedures as DEVICES$INIT and
DEVICESREAD. However, you can give them any names you want, provided no other
first-stage driver procedure uses the chosen names. To check the names of the Intel-
supplied first-stage procedures, use LIB86 to list the modules in the object library
/RMX286/BOOT/BS1.LIB or /RMX86/BOOT/BS1.LIB.

You must write both procedures in an 8086 language (either PL/M-86 or ASM86) and
conform to the LARGE model of segmentation of the PL/M-86 programming language.
This means that you must declare the two procedures as FAR (not NEAR) and all pointers
must be 32 bits long. You must adhere to the interfacing and referencing conventions of
the PL/M-86 LARGE model even if you write the procedures in assembly language.

If your driver code is going to operate in the MULTIBUS Il environment, two additional
driver code constraints exist. First, you must follow the MULTIBUS II transport protocol
for communication between the driver and the device controller you bootstrap load from.
You can accomplish this by using Bootstrap Loader Communication System utility calls
within your driver code. Second, you must organize your driver code so that it belongs to
the BSL-Drivers COMPACT sub-system. This last requirement is necessary because the
Bootstrap Loader Communication System utilities are all NEAR calls.

Bootstrap Loader

5-1

WRITING A CUSTOM FIRST-STAGE DRIVER

The next two sections describe the interface these two procedures must present to the first-
stage Bootstrap Loader code. Subsequent sections describe how to supply configuration
information to the driver, how to use Bootstrap Loader Communication System utilities in
your driver code, and how to generate first-stage Bootstrap Loader code that includes the
new driver.

5.2 DEVICE INITIALIZE PROCEDURE

The device initialize procedure must present the following PL/M-86 interface to the
Bootstrap Loader:

device$init: PROCEDURE (unit) WORD PUBLIC;
DECLARE unit WORD;

(Typical code)
END device$init;

where:

device$init The name of the device initialize procedure. You can choose any name
you wish for this procedure, as long as it does not conflict with the
names of any other first-stage procedure.

unit The device unit number, as defined during Bootstrap Loader
configuration.

The WORD value returned by the procedure must be the device granularity (in bytes) if
the device is ready, or zero if the device is not ready.

To be compatible with the Bootstrap Loader, the device initialize procedure must perform
the following steps:
1. Test to see if the device is present. If not, return the value zero.

2. Initialize the device for reading. This operation is device-dependent. For guidance
in initializing the device, refer to the hardware reference manual for the device.

3. Test to see if device initialization is successful. If not, return the value zero.

4. Obtain the device granularity. For some devices, only one granularity is possible,
while for other devices several granularities are possible. The hardware reference
manual for your device explains this device-dependent issue.

5. Return the device granularity.

5-2 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

NOTE

In addition to the above five steps, the procedure must follow MULTIBUS II
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS II environment. Refer to Section 5.5 for
more information on these two requirements,

5.3 DEVICE READ PROCEDURE

The device read procedure must present the following PL/M-86 interface to the Bootstrap
Loader:

deviceSread: PROCEDURE (unit, blknum, bufptr) PUBLIC;

DECLARE unit WORD,
blk$num DWORD,
buf$ptr POINTER;

(Typical code)
END deviceSread;

where:

device$read The name of the device read procedure. You can choose any name you
wish for this procedure, as long as it does not conflict with the names of
any other first-stage procedure.

unit The device unit number, as defined during Bootstrap Loader
configuration.

blk$num A 32-bit number specifying the block number the Bootstrap Loader
wants the procedure to read. The size of each block equals the device
granularity, with the first block on the device being block number 0.

buf$ptr A 32-bit POINTER to the buffer in which the device read procedure
must copy the information it reads from the secondary storage device.
The device read procedure does not return a value to the caller.
To be compatible with the Bootstrap Loader, the device read procedure must perform the
following steps:

1. Read the block specified by blk§num from the bootstrap device specified by unit into
the memory location specified by buf$ptr.

Bootstrap Loader 53

WRITING A CUSTOM FIRST-STAGE DRIVER

2. Check for I/O errors. If none occur, return to the caller. Otherwise, combine the
device code, if any, for the device with 01 (in the form <device code>01), push the
resulting word value onto the stack, and call the BSERROR procedure. For example,
if the device code is 0B3H, push B301H onto the stack, and call BSERROR. If no
device code exists, use 00.

Adding the following statements accomplish this in PL./M-86:

DECLARE BSERROR EXTERNAL;
DECLARE 10 _ERROR LITERALLY ‘OB301H’;
CALL BSERROR(IO_ERROR);

If you call the BSERROR procedure from assembly language, note that BSERROR
follows the PL/M-86 LARGE model of segmentation; that is, declare BSERROR as

extrn BSERROR: far

NOTE

In addition to the above two steps, the procedure must follow MULTIBUS 11
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS II environment. Refer to Section 5.5 for
more information on these two requirements.

5.4 SUPPLYING CONFIGURATION INFORMATION TO THE
FIRST-STAGE DRIVER

Any custom device driver you write needs some configuration information about the device
it supports, such as the address of the device wakeup port. (To determine what device-
specific information your driver needs, consult the hardware reference manual for the
device.) You can provide this information to the custom device driver one of two ways:

+ Place the information directly into the driver (hard-coding)

o Create a configuration file similar to those provided with the Intel-supplied drivers.

5.4.1 Hard-Coding the Configuration Information

One way to supply configuration information to a custom device driver is to place it
directly into the code. This method works, but if any of the configuration information
changes, or if you want to support a similar device that has a slightly different
configuration, you must change the driver and reassemble it. Fortunately, first-stage device
drivers are usually small enough so that the amount of time required to reassemble them is
negligible.

5-4 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

Figure 5-1 illustrates how to place the configuration information directly into the code.
This figure lists the "Constants and Data" section that could be used to supply the MSC
first-stage driver with device-specific configuration information.

R i AR D 2 I R A R R RN I N I I AN TN N N B I TN Y B SN R 1

: Constants and Data

:

O T N R
;

data_bsmsc segment ;Static Data
wakeup_newdrivl dw 100H ;MSC wakeup address

device newdrivl db 0

drtab_newdrivl dw 256 ;number of cylinders
db 2 ;number of fixed heads
db 0 ;number of removable heads
db 9 :number of sectors
db 1024 ;device granularity
db 5 ;number of alternate cylinders

Figure 5-1. Hard-Coded Configuration Information

5.4.2 Providing a Configuration File

The second way to supply configuration information is to declare all device-specific
parameters as variables that are external to your device driver. A separate small module
can declare these parameters as public variables in . You can incorporate this second
module into the Bootstrap Loader by placing assembly and link commands in the first-
stage SUBMIT file BS1.CSD. To use this approach, follow the steps below:

Bootstrap Loader 5-5

WRITING A CUSTOM FIRST-STAGE DRIVER

1.

5-6

In the code for the device driver, declare the device-specific parameters as external
variables. For example, the following code could be used instead of the hard-coding
shown in Figure 5-1.

name bpmsc
;Configuration information:

extrn wakeup_newdrivl word ;Wakeup port
;address

extrn device_newdrivl byte ;Device number

extrn drtab_newdrivl byte ;Device Table

Create an INCLUDE file containing a macro definition. The macro definition must
declare the device-specific parameters as public variables (matching the external
declarations from the previous step). This file should be named as "ox.inc" where
xxx is any name you choose. For example, you could place the following code into a
file called NEWDRIV1.INC to define a macro for the device-specific parameters
declared in Step 1.

%*DEFINE (bnewdrivl(wakeup,ncyl,nfsur,nrsur, nsec,secsize,nalt)} (
name bnewdrivl
public wake_msc, device_msc, drtab_msc

code_newdrivl segment byte public ‘CODE’

wakeup newdrivl dw %iwakeup
device_newdrivl db 0
drtab_newdrivl dw %ncyl
db infsur
db inrsur
db insec
dw “secsize
db inalt

code_newdrivl ends)

2* DEFINE (end) (end)

Create another file that contains the macro invocation. You should name this file
"xxx.a860", where xxx is any name you choose. The file must also contain an
INCLUDE directive for the INCLUDE file created in the previous step. To be
consistent with the Intel-supplied device drivers, the INCLUDE directive should use
the logical name :F1: as a prefix to the name of the include file. For example, the file
NWDRVIMAC.A86 could contain the following information to invoke the macro
defined in Step 2.

Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

S$include(:fl:newdrivl.ine)

#bnewdrivl (100H, 256, 2, 0, 9, 1024, 5)
¥end

If the device-specific configuration information ever changes, you can change the
macro invocation in this file to refiect those changes. This is normally easier than
changing the source code of the driver, especially for users who are not familiar with
assembly language.

4. Store the files created in Steps 2 and 3 in the directory where the Bootstrap Loader
configuration files reside (normally /RMX286/BOOT or /RMX86/BOOT). For
example, the following Human Interface commands can be used to copy the files
created in Steps 2 and 3.

- copy newdrivl.inc, nwdrvlimac.a86 to &
*k /rmx286/boot/newdrivl.inc, /rmx286/boot/nwdrvimac.aBé
newdrivl. inc copied to /rmx286/newdrivl.inc
nwdrvmac.a86 copied to /rmx286/nwdrvmac.a8é

5. Edit the first-stage SUBMIT file (BS1.CSD) to cause it to assemble your configuration
file and link it to the first stage. To the list of ASM86 invocations, add an ASM86
invocation for the file created in Step 3 (xxx.a86). To the list of modules to be linked
(immediately below the LINK86 invocation), add the name of the object module
created when your file (xxx.a86) is assembled. In both the ASM86 invocation and the
LINKS6 invocation, preface the filename with the logical name :F1: (such as
:f1:xxx.a86). Unless you have reason to do otherwise, use the same ASM86 and
LINKS36 options shown for other files assembled and linked by BS1.CSD.

Figure 5-2 shows modifications to BS1.CSD that add support for the driver
configuration files just created. Arrows at the left of the figure show the lines that were
added. Notice that only the configuration file is being assembled each time BS1.CSD is
invoked, not the entire driver. BS1.CSD assumes the use of the configuration file
BS1.A86 and that you have assembled your driver and added the resulting object
module into the library BS1.LIB.

Bootstrap Loader 57

WRITING A CUSTOM FIRST-STAGE DRIVER

;asmBé :fl:bsl.afé macro{90) object(:fl:bsl.obj) print{:fl:bsl. lst)

asm86 :f1:b264.a86 macro(50) object(:fl:b264.0bj) print{:f1:b264.1st)
asm86 :fl:bscsi.aB6 macro(50) object(:fl:bscsi.obj) print{:fl:bsesi.lst)
--> asm86 :fl:nwdrvlmac.a8é macro(50) object(:fl:nwdrvimac.obj nolist

1ink86

&
:£1:bsl.obj, &
:fl:bserr.obj, &
&;standalone serial channel support

& :fil:beico.obj,

:fl:bsesi.obj,
:f1:b264 .0bjJ,
--> :fl:nwdrvlimae.obj,
:fl:bsl.1ib
to :fl:bsl.1lnk print(:fl:bsl.mpl

R R

&

Figure 5-2. Modified BS1.CSD File

5.5 USING THE MULTIBUS® Il TRANSPORT PROTOCOL

If the driver you are creating functions within a MULTIBUS I environment, you need not
read this section. Skip to Section 5.6.

If the driver you are creating functions within a MULTIBUS II environment, you must
write the driver code to use the MULTIBUS II message transport protocol. To help you
accomplish this task, Intel provides a small, single-thread communication system that
enables Bootstrap Loader drivers to communicate with device controllers within a
MULTIBUS II environment. This communication system is called the Bootstrap Loader
Communication System.

The following paragraphs provide an overview of the Bootstrap Loader Communication
System, which uses concepts similar to the Nucleus Communication System. Should you
desire a more complete description of these communication system concepts, refer to the
Extended iRMX I Nucleus User’s Guide in Volume 2 of the iRMX 11 documentation set.

5-8 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

The Bootstrap Loader Communication System can be thought of as a subset of the Nucleus
Communication System. It fully conforms to the MULTIBUS I transport protocol
suitable for a limited bootloading environment. Unlike the Nucleus Communication
System, the Bootstrap Loader Communication system is designed to handle bootstrap
loading only. Consequently, the system is synchronous in nature. In other words,
procedures execute to completion one after the other; no multitasking or need to handle
asynchronous events exists.

MULTIBUS II transport protocol functions supported by the Bootstrap Loader
Communication System include control and data message types, a subset of the
request/response transaction model, send and receive transaction models, message
broadcasting, and access to device interconnect space.

To support these functions, Intel supplies a set of system utilities grouped together in a
Bootstrap Loader Message Passing System Module. As a programmer, you have access to
these utilities through system calls you place in your driver code. The remainder of this
section explains the supported functions in the Bootstrap Loader Communications System
and shows you how to use each of the utilities.

5.5.1 Message Passing Controller Initialization

Before any Bootstrap Loader Communication System calls can be made, you must
initialize certain parts of the hardware in preparation for message passing. You
accomplish this initialization through the BSSMPSSINIT utility. You must make this call
from your driver’s initialization procedure before making any other Bootstrap Loader
Communication utility calls. The following utility description presents BSSMPSSINIT:

CALL BSSMPSSINIT

INPUT PARAMETERS

This utility has no input parameters.
OUTPUT PARAMETERS

This utility has no output parameters.
DESCRIPTION

The BSSMPSSINIT utility provides hardware initialization for the Message Passing
Controller (MPC) and the Advanced Direct Memory Access (ADMA) devices. You must
perform a call to this utility before attempting any other Bootstrap Loader Communication
System utility calls.

Bootstrap Loader 59

WRITING A CUSTOM FIRST-STAGE DRIVER

CONDITION CODES

This utility has no condition codes.

5.5.2 Message Types

The Bootstrap Loader Communication System supports two types of messages: control
messages and data messages.

Control messages consist of only a control portion. These messages occur between the
sender and receiver requiring no explicit buffer resource allocation. The reason for no
buffer allocation is because a control message has no data part. The maximum length of a
control message is 20 bytes. Also, a one-to-one correspondence exists between control
messages and MULTIBUS II unsolicited messages (all unsolicited messages are control
messages).

Data messages consist of both a 16-byte control portion and a variable length data portion.
These messages do require explicit buffer allocation between the sender and receiver. The
reason buffer allocation is required is because this type of message contains a variable
amount of data. The maximum length of the data portion is 64K-1 bytes.

5.5.3 Request/Response Transaction Model

The Bootstrap Loader Communication System supports a subset of the request/response
transaction model that the Nucleus Communication System uses. This subset has the
following characteristics:

» Because the Bootstrap Loader Communication System functions within a bootloading
environment, request messages originate only from the host CPU board. The specific
device controllers then match responses to requests on a one-to-one basis.

* No support exists for multiple outstanding requests.

» Fragmentation and transmission of response messages into specific application buffers
can occur. Because this fragmentation is completely transparent to the user, the
fragmented response is considered as a single response to a single request.

e The Bootstrap Loader Communication System receives messages in the order in which
they are sent.

Communication between the CPU host board executing the driver and the bootable device
controller uses the basic transmission model of send and receive. The driver sends a
request to the device controller and then receives a response back. When the driver
initiates the message, an internal transaction ID is generated that logically associates the
request with the response. This ID remains valid unti! the device controller responds, thus
completing the transaction.

5-10 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

For messages that require data as part of the response, the driver can initiate the allocation
of an rsvp data message buffer in which to receive the response data. The data can then
arrive either whole or fragmented. Regardless of fragmentation, the host CPU board views
the response message as one message. If the request message requires no data as a
response, the response must be a control message.

The utility the Bootstrap Loader Communication System uses to support the
request/response transaction model is BS$SEND$RSVP. The following utility description
presents BSSSENDSRSVP:

CALL BSSSEND$RSVP (socket,control$ptr,data$adr,data$length,
rsvp$control$p,rsvp$data$adr,rsvp$data$length,
flags,exception$ptr)

INPUT PARAMETERS

socket A DWORD of the form host$id:port$id identifying the
remote destination.

control$ptr A POINTER to a control message. If data$adr=NULL
(0) or data$length=0, then the control message is 20
bytes long. Otherwise, the control message is 16 bytes
long.

data$adr A DWORD containing the absolute address of a data
message. If data$adr is NULL (0), then a control
message 1s sent. Otherwise, data$adr points to a
contiguous buffer.

data$length A WORD defining the length of the data message. If
data$length is equal to zero, the control message length
is assumed to be 20 bytes.

rsvp$control$p A POINTER to the received control message. If
rsvp$data$adr=NULL (0) or rsvp$data$length =0, then
the control message is 20 bytes long. Otherwise, the
control message 1s 16 bytes long.

rsvp¥datafadr A DWORD containing the absolute address of a data
message buffer for the return response that is expected.
If rsvp$data$adr is NULL (0), then a control message is
expected as a reply. Otherwise, rsvp$data$adr points to
a contiguous buffer in which the data message arrives.

Bootstrap Loader 5-11

WRITING A CUSTOM FIRST-STAGE DRIVER

rsvp$data$length A WORD defining the length of the rsvp data buffer.
flags WORD reserved for future use. Although this
parameter is ignored, you must supply a "0" value as a
placeholder.
OUTPUT PARAMETER
exception$ptr A POINTER to a WORD to which the Operating

System returns the exception code generated by this
Bootstrap Loader Communication System call.

DESCRIPTION
The BSSSENDS$RSVP utility sends a message from a port to a remote socket with an

explicit request for a return response. This call is synchronous with respect to both the
request and the response.

5-12 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

EXAMPLE

This example illustrates the fundamentals of the request/response transaction model
between the host CPU board and bootable device controller board. This example is
written in PL/M-86 code and is intended to be generic in nature.

JHEFTRR TR R KRR R A KR H AR A oo ke sk ook e de e ok e sk oo A o s ek
This example sends a 20-byte control message to the
bootable device controller board located in slot 1
at port 500 of the MULTIBUS II system. This message
solicits data from the device as part of the
response.

The control message sent is contained in the 20-byte
data array pScommand$msg (Peripheral Command
Message). The control message received is captured
in the 20-byte data array p$status$msg (Peripheral
Status Message).

The solicited data is received from the device via
an rsvp buffer. Note that the address pointing to
the rsvp buffer must be an absolute address before
it is passed to BS$SENDSRSVP. Thus, the need for
calling a conversion routine. In this example, a
routine (not shown) called CONVERT_ADDRESS handles
the address conversion. It is up to the programmer
te supply the conversion routine.

Setting dataSlength and data$adr to NULL (0)
indicates that only a control message is being sent

from the host CPU board to the controller board. *
R S R e

% ok F W K % ok % %k ok K N % % N % ok H A X K X %
A EEE R E R EEEEEEEEE R

Bootstrap Loader 5-13

WRITING A CUSTOM FIRST-STAGE DRIVER

SAMPLE _BS$SENDSRSVP: DO;

DECLARE
DECLARE

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

socket
socket$o structure
(host$id

CODE: DO;

END CODE;

portSid WORD) AT (@socket);
pScontrol$msg(20) BYTE;
pSstatusSmsg(20) BYTE;
send$data(100) BYTE;
rsvp$data(l024) BYTE;
rsvpSdataSadr DWORD;
rsvp$dataSliength DWORD;
flags WORD;
exception WORD;
slot LITERALLY ‘1K'
port LITERALLY "1F4H' ;
null LITERALLY "OR' ;
socket$o.host$id = slot;
socket$o.port$id = port;
rsvpSdataSlength = 400H;
flags = null;

rsvpSdata$adr ~ CONVERT_ADDRESS (@rsvp$data(0});

DWORD;

WORD,

{Typical code to define

the 20-byte pScontrolSmsg block
with the control message.)

CALL BSS$SENDSRSVP

{socket,@pScontrolSmsg(0) ,null,
null,@p$status$msg(0),
rsvp$data$adr,rsvpSdataSlength,
flags,@exception);

IF exception < 0

THEN CALL BSERROR;

(Typical code to execute
for successful status,)

END SAMPLE BSSSENDSRSVP;

5-14

Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

CONDITION CODES
E$OK 0000H No exceptional conditions.
BS$ESBUFFERSSIZE 00E2H The rsvp buffer posted is too
small.
BSSE$§TRANSMISSION 00E1H An error occurred while
transmitting a MULTIBUS
message.

5.5.4 Send and Receive Transaction Models

In addition to the request /response transaction model, the Bootstrap Loader
Communication System supports send and receive transaction models. Normally,
communication between a driver and a device in a bootloading environment uses the
request/response or send models. However, if your host CPU board can capitalize on a
receive transaction model initiated from the driver, the utility is available.

You can make calls to the send and receive utilities, respectively when you need the driver
to simply send a message with no request for a response, or when you need the driver to
wait for spontaneous communication from a specific device controller.

The two utilities available to you that support the send and receive transaction models are
BS$SEND and BS$RECEIVE. The following utility descriptions present BS$SEND and
BS$RECEIVE:

CALL BSSSEND (socket,control$Sptr,data$adr,data$iength,
flags,exception$ptr)

INPUT PARAMETERS

socket A DWORD of the form host$id:port$id identifying the
remote destination,

control$ptr A POINTER to a control message. If data$adr=NULL
{0) or data$length =0, then the control message is 20
bytes long. Otherwise, the control message is 16 bytes
long.

data$adr A DWORD containing the absolute address of a data

message. If dataSadr is NULL (0), then a control
message is sent. Otherwise, data$adr points to a
contiguous buffer.

Bootstrap Loader 5-15

WRITING A CUSTOM FIRST-STAGE DRIVER

data$length A WORD defining the length of the data message. If

data$length is equal to zero, the control message length
is assumed to be 20 bytes.

flags WORD reserved for future use. Although this
parameter is ignored, you must supply a "0" value as a
placeholder.

OUTPUT PARAMETER
exception$ptr A POINTER to a WORD in which the Bootstrap
Loader returns the exception code generated by this
Bootstrap Loader Communication System call.
DESCRIPTION

The BS$SEND utility sends either a control or a data message to a MULTIBUS H board
identified by the parameter socket.

EXAMPLE

This example illustrates the fundamentals of message passing from the host CPU beard to
the bootable device controller board. This example is written in PL/M-86 code and is
intended to be generic in nature.

JFFEFFAEKF T EFKHF AT AT KA TR F IRk kdokkok k& ok ok

* This example sends a data message to the bootable
controller board located in slot 1 at port 500 of
the MULTIBUS I1 system.

The control portion of the message sent is located
in the 16-byte data array p$control$msg (Peripheral
Command Message). The data portion of the message
sent is located in the 100-byte data array
send$data.

Note that the programmer is responsible for ensuring
pScontrol$msg and the area containing the data
portion of the message are Initialized with correct

data. *
B e R R S T T S T S

% % % % % X % % % F Kk % *
% % % % ok % ok % ok F F * %

5-16 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

SAMPLE_BSS$SEND: DO;
DECLARE socket DWORD;
DECLARE socket$o structure
{host$id WORD,
port$id WORD) AT (@socket);
DECLARE p$control$msg(l6) BYTE:
DECLARE send$data(100) BYTE;
DECLARE data$adr DWORD;
DECLARE data$length WORD;
DECLARE flags WORD;
DECLARE exception WORD;

DECLARE slot
DECLARE port
DECLARE null

DECLARE length LITERALLY "B64H";

CODE: DO;

socket$o . host$id = slot:

socket$o.port$id - port;

data$length = length;

flags = null;

data$adr = CONVERT_ADDRESS (@send$data(0));

CALL BS$SEND

IF e

END CODE;
END SAMPLE BS$SE

LITERALLY "1H";
LITERALLY "1F4H*
LITERALLY 'OH' ;

(Typical code to define
the 16-byte p$control$msg block
holding the control message.)

(Typical code to define

the 100-byte message
portion.)

{socket ,@pScontrolSmsg(0),dataadr,
data$length,flags, @exception);

xception <> O
THEN CALL BSERROR;

{Typical code to execute
for successful status.)

ND;

Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

CONDITION CODES
ESOCK 0000H No exceptional conditions.
BSSESTRANSMISSION 00E1H An error occurred while
transmitting a MULTIBUS 11
message.

CALL BS$RECEIVE (socket,control$ptr,data$adr,data$length,
exception$ptr)

INPUT PARAMETERS
socket A DWORD of the form host$id:port$id identitying the
remote sender.
control$ptr A POINTER to the area in memory that receives the
control message.
data$adr A DWORD containing the absolute address of a data
message received. If data$adr is NULL (0), then the
host CPU board expects a control message. Otherwise,
data$adr points to a contiguous buffer that receives the
data portion of the message.
data$length A WORD defining the length of the data message
received.
OUTPUT PARAMETERS
exception§ptr A POINTER to a WORD to which the Operating
System returns the exception code generated by this
Bootstrap Loader Communication System call.
DESCRIPTION

The utility BSSRECEIVE enables a host CPU board to receive a message from a specific
device controller. The utilities call identifies the MBII slot to wait on, the type of message,
and addresses for the control portion and, if necessary, the data portion of the message.

To receive data messages, you must provide a buffer containing adequate space in which to
capture the data. If you do not supply a large enough buffer, the receiving CPU host
rejects the message. Also, your application must make a call to BSSRECEIVE before the
actual message is sent. No facility for queuing asynchronously received messages exist.

5-18 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

EXAMPLE

This example illustrates the fundamentals of message passing from the hootable device
controller board to the host CPU board. This example is written in PL/M-86 code and is
intended to be generic in nature.

/**

* This example illustrates how a host CPU board *
* receives a data message from the bootable *
* controller board located in slot 1 at port 500 of *
* the MULTIBUS II system. *
* *
* The control portion of the message received is *
* located in the 16-byte array p$status$msg *
* (Peripheral Status Message). The data portion of *
* the message received is located in the 1024-byte *
* data array sent3data. *

*********************%**************************************/

SAMPLE BSSRECEIVE: DO;

DECLARE socket DWORD;
DECLARE socket$o structure
(host$id WORD,
port$id WORD) AT (@socket);
DECLARE p$status$msg(16) BYTE;
DECLARE dataSadr DWORD;
DECLARE data$length WORD;
DECLARE flags WORD;
DECLARE exception WORD;
DECLARE sentSdata(1024) BYTE;
DECLARE slot LITERALLY TIH’;
DECLARE port LITERALLY ’1F4H’:
DECLARE length LITERALLY "4Q0H"
DECILARE null LITERALLY ‘OH’ ;
CODE: DO;
socket$o.host$id = slot;
socket$o.port§id = port;
data$length = length;
flags = null;
data$adr = CONVERT ADDRESS (@sent$data(0));

CALL BS$RECEIVE
(socket,@pSsta
data$length, fl

tusSmsg(0),data$adr,
ags ,{dexception);

Bootstrap Loader

5-19

WRITING A CUSTOM FIRST-STAGE DRIVER

IF exception <> 0
THEN CALL BSERROR;

(Typical code to execute
for successful status.)

END CODE;
END SAMPLE BSSRECEIVE;

CONDITION CODES

ESOK 0000H No exceptional conditions.

BSEBUFFERSSIZE O00E2H The receive data buffer posted is
too small.

BSETRANSMISSION 00ETH An error occurred while
transmitting a MULTIBUS I
message.

5.5.5 Message Broadcasting

Message broadcasting enables one control message to go out at the same time to all boards
(bus agents) in the MULTIBUS II system. Recall that the identification scheme for boards
employs sockets, which have the host$id:port$id form. Host$id indicates the board
involved and port$id indicates the unique 1/0O port within the board. During message
broadcasting, the host$id portion of the socket is uninterpreted. Thus, the message arrives
at every board having a port identified by port§id.

The Bootstrap Loader Communication System uses the bs$broadcast utility to support
message broadcasting. The following utility description presents bs§broadcast:

CALL BS$BROADCAST (socket,control$ptr,exceptiondptr)

INPUT PARAMETERS
socket A DWORD of the form host$id:port$id identifying the
remote destination. The host$id component is ignored.
control$ptr A POINTER to the control message sent.

5-20 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

OUTPUT PARAMETER
exception$ptr A POINTER to a WORD to which the Operating
System returns the exception code generated by this
Bootstrap Loader Communication System call.
DESCRIPTION

The bs§broadcast utility transmits a single control message to the MULTIBUS II boards
having a port whose 1D matches the port$id portion of the parameter socket. This
message goes out on all MULTIBUS 11 buses (iPSB parallel system bus and/or iSSB serial
system bus) connected to the broadcasting CPU host board.

EXAMPLE

This example illustrates the fundamentals of broadcasting control messages over a
MULTIBUS IT system. This example is written in PL/M-86 code and is intended to be
generic in nature.

g N T
* This example illustrates how a hest CPU board
broadcasts a control message to all system boards
having a port$id of 500. During message
broadcasting, the host$id portion of socket is
ignored.

* % % % ok ¥ ¥
% % %k % % A %

The control message sent is located in p$controlSmsg
(Peripheral Command Message. *
L e

SAMPLE_BS$BROADCAST: DO;

DECLARE socket DWORD;
DECLARE socket$o structure
{host$id WORD,
peort$id WORD) AT (@socket):
DECLARE p$controlémsg(20) BYTE:
DECLARE exception WORD;

DECLARE slot LITERALLY '"1H'
DECLARE port LITERALLY "1F4H' ;

CODE: DO;
socket$o . host$id = slot;
socket$o.port$id = port;

CALL BSSBROADCAST
(socket,@pScontroldmsg(0),@exception};

Bootstrap Loader 5-21

WRITING A CUSTOM FIRST-STAGE DRIVER

IF exception <> O
THEN CALL BSERROR;

(Typical code to execute
for successful status.)

END CODE;
END SAMPLE_BS$BROADCAST;

CONDITION CODES

E$OK 0000H No exceptional conditions.

BSSESTRANSMISSION O00ETH An error occurred while
transmitting a MULTIBUS 11
message.

5.5.6 Transmission Modes

Data message transmissions are synchronous in that the sender of the message waits for
the receiver of the message to return a transmission status value. This value indicates
whether or not the receiver successfully acquired the message. Control messages, however,
are not synchronous in this manner. There is no indication to the sender that a control
message has been received. Also, related to each type of message transmission is a
transaction [D value. The communication system uses this value internally to match
requests with responses and to indicate whether the message is an rsvp message or a
nonrsvp message. If the message sent is not an rsvp message, the associated transaction ID
value is zero. If the message sent is an rsvp message, the associated transaction 1D value is
a nonzero value matched to both the request and the response.

5.5.7 Interconnect Space

The Bootstrap Loader Communication System supports access to board interconnect
space. This access enables the driver to determine critical device status information. The
Bootstrap Loader Communication System provides interconnect space access through two
system utilities: BSSGETSINTERCONNECT and BS$SETSINTERCONNECT. When
you use these calls within your driver code, you must verify the value read or written from
or to the interconnect space is what you expect. The Bootstrap Loader code does not know
what "correct” values should be.

5-22 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

The following utility description presents BSSGETSINTERCONNECT:

value = BSSGETSINTERCONNECT (slot$number,reg$number,

exception$ptr)

INPUT PARAMETERS

slot$number

regdnumber

OUTPUT PARAMETERS

value

exception$ptr

DESCRIPTION

A BYTE that specifies the MBII slot whose interconnect
space Is to be read. You must specify this value as
follows:

Value Meaning

0-19 specifies iPSB slot numbers 0-19
20-23 illegal values

24-29 specifies iLBX slot numbers 0-5
30 illegal

31 specifies the 1PSB slot of the CPU

that the calling software 1s
executing on, regardless of the
actual iPSB slot number of the
CPU

32-255 illegal values

A WORD identifying the interconnect register to be
read. This value must be in the range of 0000H to
01FFH (the interconnect space definition).

A BYTE containing the contents of the interconnect
register read.

A POINTER to a WORD in which the Bootstrap
Loader returns the exception code generated by this
Bootstrap Loader Communication System call.

The utility BSSGETSINTERCONNECT reads the contents of the interconnect register
specified by regfnumber from the board specified by slot$number and returns the contents

in the parameter value.

Bootstrap Loader

5-23

WRITING A CUSTOM FIRST-STAGE DRIVER

EXAMPLE

This example illustrates the fundamentals of reading interconnect space registers. The
example is written in PL/M-86 code and is intended to be generic in nature.

/**

b3

This example reads the general purpose register of the *
unit definition record within the Interconnect space *
found on the board in slot number three. Note that *
this code does no checking of status after each call to *
BS$GETSINTERCONNECT. The programmer must ensure the *
value returned is correct. *
Tk ook ok ks ko ok ok ok ok ke etk ekl ek kol skttt ok skl kb ok ok /

%* % Ok A ok

SAMPLE BSSGETSINTERCONNECT: DO;

DECLARE slot$number BYTE;
DECLARE recordSoffset WORD;
DECLARE unitSdefSrec BYTE;

DECLARE rec$length$regSoff BYTE;
DECLARE gen$statusS$regSoff BYTE;

DECLARE record$found BYTE;
DECLARE eot$rec BYTE;
DECLARE status WORD;
DECLARE value BYTE;
DECLARE slot LITERALLY '3H';
DECLARE udr LITERALLY 'OFEH';

DECLARE gsro LITERALLY "OAH' ;
DECLARE eotrec LITERALLY "OFFH’
DECTARE rlro LITERALLY *O1H’

DECLARE ro LITERALLY *Q20H";
CODE: DO;
slot$number = glot;
unit$defSrec = udr:
genSstatus$regSoff = gsro;
eotSrec = eotrec:
recSlengthSregSoff = rlro;

S T ST R ST
* Set up to read the first nonheader record within the *

* interconnect space. This is done by establishing *
* recordfoffset past the interconnect space header *
* record, which in this case is 32 bytes long. *

***/

record$offset = ro;

5-24 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

/***

* PRead the record type register {(the first register *
* within a record) of the first nonheader record inte *
* the variable record$found. *

***/

record$found = BSSGETSINTERCONNECT
(slot$number,
record$offset,
@status);

/3T Kook sk ko ook otk ok ok sk ek ok dkab ko kst e ok st e ok ko
* Determine if this first record is the record we want to *

* read from. If so, bypass the DO WHILE loop and get *
* right to reading the specific register. If not, *
* and the record is not the EQT (End Of Template) record, *
* execute the DO WHILE loop to get at the next record. *

**/

DO WHILE (recordS$found <> unit$defS$rec) AND
{record$found <> eot$rec);

JFR Rk kAR ok ot bk ket ek ok ok
* Position record$offset to read the next sequential
record. This is done by calling BSGETINTERCONNECT
to read the current record length, adding 2 (for the
two bytes used for the record type and record length

registers), and finally adding the current
record$offset value. HNote that record$offset +
rec$lengthSregloff vields the interconnect register

that holds the current record length. *
B R e e e st e e

* % % % A+ % X
% o N % X ¥ ¥

recordSoffset = record$Soffset + 2 +
BSSGETSINTERCONNECT
(slot$number,
recordSoffset +
recSlengthS$regsoff,
dstatus);

/***

* Read the next record-type register into the variable *

* record$found. *
Bk R R R e T S S R T L

Bootstrap Loader 5-25

WRITING A CUSTOM FIRST-STAGE DRIVER

record$found = BSSGETSINTERCONNECT
(slotSnumber,
recordSoffset,
{@status);

END;

[FF KTk kok ko ook ook kksok kb kb ok ek o ok otk ok ok
* Call BS$GETSINTERCONNECT to read the general status *
* register. The exact register location is determined by *
* adding the register offset wvalue pen$status$regSoff to *

* record$foffset *
R S e e T

value = BSSGETSINTERCONNECT (slot$number,
recordSoffset + genSstatusSregSoff,
@@status);

END CODE:
END SAMPLE BSGETINTERCONNECT;

CONDITION CODES
E$OK 0000H No exceptional conditions.

The following utility description presents BS$SETSINTERCONNECT:

CALL = BSISETSINTERCONNECT (value,siot$number,regfnumber,
exception$ptr)

5-26 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

INPUT PARAMETERS

value A BYTE containing the value to be written into the interconnect register.

slot$number A BYTE specifying the MBII slot whose interconnect
space is to be written. You must specify this value as
follows:
Value Meaning
0-19 specifies IPSB slot numbers 0-19
20-23 illegal values
24-29 specifies iLBX slot numbers 0-5
30 illegal
31 specifies the iPSB slot of the CPU

that the calling software is
executing on, regardless of the
actual 1PSB slot number of the

CPU
32-255 illegal values
regbnumber A WORD identifying the interconnect register to be

written. This value must be in the range of 0000H to
01FFH (the interconnect space definition).

OUTPUT PARAMETERS
exception$ptr A POINTER to a WORD 1n which the Bootstrap
Loader returns the exception code generated by this
Bootstrap Loader Communication System call.
DESCRIPTION

The utility BSSSETSINTERCONNECT writes the interconnect register specified by
regdnumber on the board specified by slot§number with the contents in the parameter
value.

Bootstrap Loader 5-27

WRITING A CUSTOM FIRST-STAGE DRIVER

EXAMPLE

This example illustrates the fundamentals of writing interconnect space registers. The
example is written in PL/M-86 code and is intended to be generic in nature.

e e e e L e et et
* This example writes the controller initialization
register of the parallel system bus control record
within the interconnect space found on the board in
slot number three. Note that this code does no

checking of status after each call to
BS$GETSINTERCONNECT and BSSSETSINTERCONNECT.
programmer must ensure values returned and written are

correct.

* % % % ok % H ¥ ok %

SAMPLE BSSSETSINTERCONNECT: DO;

DECLARE slotSnumber
DECLARE status

DECLARE recordSoffset
DECLARE psb$ctrlSrec
DECLARE rec$lengthSregSoff
DECLARE contr$initSreg$off
DECLARE record$found
DECLARE eotSrec

DECLARE host$mess$id
DECLARE slot LITERALLY
DECLARE pshcr LITERALLY
DECLARE ciro LITERALLY
DECLARE eotrec LITERALLY
DECLARE rlro LITERALLY
DECLARE hmid LITERALLY
DECLARE ro LITERALLY

CODE: DO;
slotSnumber
pshSctriSrec
contr$initSregSoff
eotSrec
rec$length$regSoff
hostSmess$id

BYTE;
WORD;
WORD;
BYTE;
BYTE;
BYTE;
BYTE;
BYTE;
BYTE
'BH';
!6}_{';
fDHf:
"OFFH' ;
*OlH’;
IAHP;
*Q20H° ;

= glot;

psber;
ciro;

= egtrec,

i

rlro;
hmid;

The

This example uses the same record-searching scheme

shown in the example for BS$GETSINTERCONNECT.
B R e T et e LT s

* oA A % ok % O F N ¥

%

5-28

Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

[FF AT A R AR R R AR Rk b e Rk ek
* Set up to read the first nonheader record within the %

* interconnect space. This is done by establishing *
* record$offset past the interconnect space header *
* record, which in this case is 32 bytes long. *

***/

recordSoffset = ro;

/***

* Read the record type register (the first register *
* within a record) of the first nonheader record into *
* the variable record$found. *

***/

record$found = BSSGETSINTERCONNECT
(slot$number,
record$offset,
@status);

/3 el ek ek ke o AR ok ek ks ek ok s sk sk kb sk ot ok
* Determine if this first record is the record we want to *
write., If so, bypass the DO WHILE loop and proceed *
writing the specific register. If not, and the record %
is not the EOT (End Of Template) record, execute the DO *

WHILE loop to get at the next record. *
i S e e

* X % %

DO WHILE (recordS$found <> pshSctrlSrec) AND
(record$found < eotSrec);

/**

* Position record$offset to read the next sequential
record. This is done by calling BSGETINTERCONNECT
to read the current record length, adding 2 (for the
two bytes used for the record type and record length
registers), and finally adding the current
record$offset value. Note that recordSoffset +
rec$length$reg$off yields the interconnect register

that holds the current record length. *
ek ook bk ok sk R bk ek ok sk ok R ARk AR R A/

Y EEE R
kK N %k

record$offset = recordSoffset + 2 +
BSSGETSINTERCONNECGT
(slot$number,
record$Soffset +
rec$lengthSregSoff,
{dstatus});

Bootstrap Loader

5-29

WRITING A CUSTOM FIRST-STAGE DRIVER

/***

* Read the next record-type register into the variable *

* recordS$Sfound. *
B D s s

record$found = BSSGETSINTERCONNECT

(slotSnumber,
record$offset,
@status);

END;

JRFF T A FAAEIAKR A A Ak kT kbbb ko setabbed ok d ket ok ok d ook ook
* Call BSSSETSINTERCONNECT to write the controller *
* 1initialization register. The exact register location *
* is determined by adding the register offset value *
* contr$initSregSoff to record$offset. *

**/

CALL BSSSETSINTERCONNECT(hostSmess$id, slot$number,
record§offset + contr$initSregSoff, @status);

END CODE;
END SAMPLE BSSSETSINTERCONNECT;

CONDITION CODES

ESOK 0000H No exceptional conditions.

5.5.8 Driver Code Considerations

When writing the first-stage driver, you must provide two procedures to the Bootstrap
Loader: a device initialization procedure and a device read procedure. To be compatible
with the Bootstrap Loader, these procedures must perform the same steps as the
initialization and read procedures listed in Sections 5.2 and 5.3.

An additional requirement for driver code used in a MULTIBUS 11 environment stipulates
that code using any of the utilities shown in Sections 5.5.2 through 5.5.6 belong to the
Bootstrap Loader Drivers COMPACT sub-system. The reason for this requirement is
because all the utilities are accessible as NEAR calls.

530 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

The following partial code provides an example of how to ensure your driver code is part of
the Bootstrap Loader Driver COMPACT sub-system. In this example, the coding is shown
using the ASM86 programming language.

name bsZpci

public device_init 2244
public device_read 2244

bsl_drivers cgroup group bsl_drivers_code
bsl_drivers dgroup group bsl drivers data

assume ¢s: bsl drivers cgroup
assume ds: bsl_drivers dgroup

bsl_drivers_data segment word public 'DATA’
(Typical code}
bsl drivers data ends

bsl drivers code segment byte public ’CODE’
device_init_274A proc far

(Typical code)

bsl_drivers_code ends

In the above example, bs2pci is the name of the driver module. You can name your driver
module any unique name you desire.

The two following public statements declare the device initialization and device read
procedures as public. These public statements enable the Bootstrap Loader code to access
them as FAR calls. Again, you can name your device initialization and read procedures
any unique name you desire.

Next, the two group statements ensure that this driver module is grouped together with the
Bootstrap Loader utilities as part of the same COMPACT sub-system. You must use the
two group names bsl_drivers cgroup and bsl_drivers_dgroup and the two segment names
bsl_drivers_code and bsl_drivers_data.

Finally, the two assume statements establish the correct values for the code segment base
address and the data segment base address, ¢s and ds.

Bootstrap Loader 5-31

WRITING A CUSTOM FIRST-STAGE DRIVER

The following algorithm is an example that illustrates both a method of using the Bootstrap
Loader Communication System as a way of verifying a certain board is present in the
system and of using the utility BSSGETSINTERCONNECT. The example is written using
a pseudo code that is not meant to represent any known programming language.

*BEGIN COMMENTS:
Parameters received are BOARDSID and INSTANCE.

BOARDSID is the identification value
of the board being looked for.

INSTANCE is the instance of a particular
board on the parallel bus system. This
parameter allows for multiple occurrences of
the same board within the MULTIBUS II system.

Parameters returned are 1PSBSSLOT

i{PSBSSLOT is the MULTIBUS II board slot when the board
is found, or the value OFFH when the board is
not found.

Note that the variable VENDOR_ID points to the
specific interconnect space register that
contalns the board identification value.

* % b % % % O % o ok ok Ok ok F % X OF OF % %

*END COMMENTS:
sk Aok ok s sk ek s e e kel ok ek bk kb kR
*

*BEGIN CODE:

DO until all MULTIBUS Il board slets on the PSB are
sequentially examined. Use the variable
iPSBSSLOT as the looping variable to indicate
the slot number for the board being examined.

VENDORSID =~ BS$GETSINTERCONNECT (iPSB$SLOT,
VENDOR_ID, STATUS)

& o ok % % F % ¥

5-32 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

If
the VENDOR$ID returned is nonzero,
a board exists in the examined slot
then
if
VENDORSID matches BOARDSID
then
If
INSTANCE is the desired instance of
BOARDSID
then
return the iPSBSSLOT looping index to
indicate the slot number of BOARDSID
else
else
elsge
If we have checked all board slots
then
Return the value OFFH as the iPSBSSLOT
parameter indicating the device
to boot from does not exist.

b R I . S R S R 2

else
Loop back to beginning to check the next
board slot.
END DO
*END CODE:

5.6. CHANGING BS1.A86 OR BS1MB2.A86 TO INCLUDE THE NEW
FIRST-STAGE DRIVER

The first stage of the Bootstrap Loader obtains information about the devices and their
associated device drivers from the Bootstrap Loader configuration file BS1.A86 or
BS1MB2.A86. To support a custom device driver, you must add to that file a ¥DEVICE
macro for each unit on the device that your first-stage device driver supports. For
example, if two flexible diskette drives are attached to the device, you must add two

% DEVICE macros to the list (one for each drive). Chapter 3 describes the syntax of the
%DEVICE macro.

Bootstrap Loader 5-33

WRITING A CUSTOM FIRST-STAGE DRIVER

As an example, Figure 5-3 shows a portion of the BS1.A86 file that was changed to add

9% DEVICE macros for two units supported by a custom first-stage driver (changes to
BSIMB2.A86 would occur similarly). The units have numbers 0 and 1, and their physical
names are YZ0 and YZ1, respectively. The name of the custom driver device initialization
procedure is NEWDEVICEINIT, and the name of the device read procedure is
NEWDEVICEREAD. Arrows to the left of the figure show the added lines.

name bsl
Sinclude(:fl:bsl.inc)
%epu(80286)

:iSBC 188/48 initialization of the 1iAPX 188
;1APX_186_ INIT(y,0fc38h,none,80bbh,none,003bh)

Zdevice(b0, 0, deviceinit254, deviceread?b4)
Ydevice(bal, 0, deviceinit2é4, deviceread26é4)
«.> %device(yz0, 0, newdeviceinit, newdeviceread)
--> %device(yzl, 1, newdeviceinit, newdeviceread)
Zend

Figure 5-3. Modified BS1.A86 File

5.7. GENERATING A NEW FIRST STAGE CONTAINING THE
CUSTOM DEVICE DRIVER

Once you have written the custom device driver and changed the Bootstrap Loader
Configuration files, you must generate a new first stage that includes the custom device
driver. To do so, follow the steps below. (These steps assume that you use an iIRMXTI
system to develop your code.)

1. Compile or assemble the first-stage device initialization and device read procedures.
For example, the following command assembles device read and device initialize
procedures that are assumed to reside in the file NEWDEVICE 1.A86.

- asm86 newdrivl.a86 object(newdrivl.obj)
iRMX II 8086/87,/186 MACRO ASSEMBLER, V2.0
Copyright 1980, 1981, 1982, INTEL CORP.
ASSEMBLY COMPLETED, NO ERRORS FFOUND

5-34 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

2. Insert the object modules for the device read and the device initialize procedures into
the object library of the Bootstrap Loader. This library is named BS1.LIB and
normally resides in the directory /RMX286/BOOT or /RMX86/BOOT. The
following commands add the object modules generated in Step 1.

- LIB86
iRMX II 808& LIBRARTAN V2.0
Copyright 1980 INTEL CORPORATION

*add newdrivl.obj to /rmx286/boot/bsl.1lib
*

3. Attach the directory containing the Bootstrap Loader configuration files as the current
default directory:

- attachfile /rmx286/boot
/rmx286/boot, attached AS :§:

4. Generate a new first stage by invoking the SUBMIT file named BS1.CSD. Chapter 2
describes the details of the invocation. As an example, the following command assumes
that you have chosen 40000H as the memory location of the first stage and 43000H as
the memory location of the second stage.

This step assumes that you have made appropriate changes to the BS1.CSD file as
described earlier in this chapter.

The BS1.CSD file places the resulting located Bootstrap Loader in the file BS1.
One thing to remember about this procedure is that because you added your device driver

to the object library of the Bootstrap Loader, the device driver is automatically included in
all future versions of the first stage created by BS1.CSD.

Bootstrap Loader 5-35

CHAPTER 6
WRITING A CUSTOM THIRD-STAGE
DRIVER

6.1 INTRODUCTION

If you plan to use the Bootstrap Loader to load iRMX 11 applications from a device for
which no Intel-supplied third-stage driver exists, you can make one of two choices
dependent upon the size of your loadtile:

¢ For loadfiles smaller than 840K bytes, use the generic third stage. The generic third
stage uses the first-stage device drivers you have already supplied. Since the loadtile
fits in the 1 megabyte address space supported in real mode, and first-stage device
drivers are able to place the loadtile, no need for you to create new device drivers exists
for the third stage.

+ For loadfiles larger than 840K bytes, use the device-specific third stage. The device-
specific third stage uses new device drivers that you must supply. These device drivers
run in protected virtual address mode enabling the loadtile to be placed using the full
16 megabyte range of addresses.

This chapter outlines the procedure for writing a third-stage driver needed for the device-
specific third stage. To assist you in writing your own drivers, the IRMX II package
contains the source code for a working third stage driver. After installing your IRMX 11
system, you can find the source code in the file /RMX286/BOOT/BPMSC.A86.

6.2 WHAT A THIRD-STAGE DEVICE DRIVER MUST CONTAIN

The third stage device driver, like the first stage, must contain a device initialization and a
device read procedure. For the most part, these procedures are similar to their first-stage
counterparts. However, two differences exist.

» Both procedures must reside in the same code segment.

* You must also create a PUBLIC symbol that contains a pointer to the device driver
data segment. The third stage needs this information so that it can create a descriptor
for the data segment, enabling the driver to access the segment in protected mode.

Bootstrap Loader 6-1

WRITING A CUSTOM THIRD-STAGE DRIVER

When developing code for your third stage driver, you must remember that the second
stage always loads the third stage. including the drivers you write. The only type of code
that the second stage can load is code that uses the 8086 object module format (OMF-86).
Therefore, you must use 8086 tools (ASM86, PL/M-86, LINKSG, etc.) to develop the third-
stage device initialization and read procedures.

Even though you use 8086 tools to develop your driver code, the resulting initialization and
read procedures must be able to run in protected mode. One ramification of running in
protected mode is that all long pointers produced by PL/M-86 (or by any other means)
that were correct in real mode cause an ILLEGAL SELECTOR exception in protected
mode. Therefore, if you must use long pointers, your device initialization and read
procedure must determine whether or not the processor is in protected mode. If protected
mode is active, the procedure must replace all the selector portions of long pointers with a
new selector that is valid in protected mode.

You can determine the processor mode by using the following assembly code:

DB OFH,01H,OE3H ;Opcode for the ASM286 instruction
;SMSW BX. You must use
;DB OFH,01H,0E3H because SMSW is an
;ASM286 instruction unrecognized by

;ASMBE .
AND BX, O1H ;Examine lowest bit of MSW to see if
; CPU is rumnming in PVAM.
JZ REAL ;No, not runming in PVAM.
code to override ;Yes, running in PVAM.

selectors of :
long pointers ;

If your driver code is going to operate in the MULTIBUS 1l environment, two additional
driver code constraints exist. First, you must follow the MULTIBUS II transport protocol
for communication between the driver and the device controller you bootstrap load from.
You can accomplish this by using Bootstrap Loader Communication System utility calls
within your driver code. Second, you imust organize your driver code so that it belongs to
the BSL-Drivers COMPACT sub-system. This last requirement is necessary because the
Bootstrap Loader Communication System utilities are all NEAR calls.

The next twa sections describe the interface these procedures must present to the third
stage. The sections after that describe how to supply configuration information to the
driver and how to generate a third stage that includes the new driver.

6-2 Bootstrap Loader

WRITING A CUSTOM THIRD-STAGE DRIVER

6.3 DEVICE INITIALIZATION PROCEDURE

The device initialization procedure must present the following PL./M-86 interface to the
third stage:

device$init: PROCEDURE (unit) WORD PUBLIC;
DECLARE unit WORD;

END device$init;

where:

device$init The name of the device initialization procedure. You can choose any
name you wish for this procedure, as long as it does not conflict with the
names of other third-stage procedures.

unit The device unit number as defined during Bootstrap Loader

configuration.

The WORD value returned by the procedure must be the device granularity, in bytes, if the
device is ready, or zero if the device is not ready.

The third-stage device driver initialization procedure, (like the first-stage device
initialization procedure) must perform the following operations:

1. Test to see if the device is present. If the device is not present, return the value zero.
2. Initialize the device for reading. This is a device-dependent operation. For guidance
in initializing the device, refer to the hardware reference manual for the device.

3. Test to see if device initialization was successful. If it was not, return the value zero.

4. Read the device volume label to to obtain the device granularity. (For information

on the location and organization of the volume label, see the iIRMX 86 Disk
Verification Utility manual.)

5. If the attempt to obtain the device granularity was successful, return the device
granularity. Otherwise, return the value zero.

NOTE

In addition to the above five steps, the procedure must follow MULTIBUS II
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS Il environment. Refer to Section 5.5 for
more information on these two requirements.

Bootstrap Loader 6-3

WRITING A CUSTOM THIRD-STAGE DRIVER

Notice that the functions of the first-stage and the third-stage device initialization

procedures are identical. Therefore, you can take two courses of action to provide a device
initialization procedure for the third-stage custom driver.

1. You can allow the first-stage custom driver and the third-stage custom driver to
share the same data segment. In this case, the third-stage device initialization
procedure is redundant because the device was initialized by the first stage and any
data in the data segment remains valid.

Because the third stage calls the device initialization procedure regardless of your
intentions, you must supply a third-stage driver device initialization procedure even
if it is redundant. However, the device initialization procedure can be an empty
routine whose only function is to return the device granularity read from the
common data segment.

2. You can require the first-stage and third-stage drivers to use different data segments.
In this case, the first-stage and third-stage initialization procedures must
independently initialize their respective data segments. With this arrangement, you
must provide two complete device initialization routines. However, because their
functions are identical (except for assigning a value for the data segment), you can
use the same code for both procedures.

6.4 DEVICE READ PROCEDURE

The device read procedure must present the following PL/M-86 interface to the third
stage:

deviceSread: PROCEDURE (unit, blknum, bufptr) PUBLIC;
DECLARE unit WORD;

DECLARE blkS$num DWORD;

DECLARE buf$ptr POINTER;

(code)
END deviceSread;

where:

device$read The name of the device read procedure. You can choose any name you
wish for this procedure, as long as it does not conflict with the names of
any other third-stage procedure.

unit The device unit number as specified during Bootstrap Loader
configuration.

6-4 Bootstrap Loader

WRITING A CUSTOM THIRD-STAGE DRIVER

blk$num A 32-bit value specifying the number of the block that the Bootstrap
Loader wants the procedure to read. Each block is of device granularity
size, with the first block on the device being block 0.

buf$ptr A 32-bit ponter to the buffer in which the device read procedure must
copy the information it reads from the secondary storage device.

The device read procedure does not return a value to the caller. It simply reads data from
the bootstrap device and places it in the memory location specified by the buf$ptr
parameter.

The third-stage and first-stage device read procedures perform similar functions.
Therefore, you may want to create the third-stage read procedure by performing
modifications on the first-stage read procedure (if, for instance, it has already been written
and resides in PROM). If the first-stage read procedure does not yet exist, you can write
the third-stage read procedure first and then modify it to create the first-stage procedure.

Unlike the Bootstrap Loader first stage, the third stage has no built-in facilities for
reporting I/O errors. That is, the device driver cannot call BSSERROR. Therefore, if you
require I/O error reporting, you must write a complete custom error-checking mechanism
and include it in the device read procedure. (For an explanation of BSSERROR, refer to
Chapter 3.)

To be compatible with the Bootstrap Loader, the device read procedure must perform the
following steps:

1. Save the third stage DS (the data segment selector of the calling routine), and then
copy the driver data segment selector from the AX register into the DS register.
(When calling the device read procedure, the third stage puts the driver data
segment selector in the AX register.) The device read procedure must perform this
function immediately.

Because register manipulation is not possible with high-level languages (such as
PL/M-86), you must write this portion of the device read procedure in assembly
language (ASMS86).

2. Check whether the processor is in real or protected mode. 1f the processor is in
protected mode, you may want to initialize other selectors to appropriate values
(buf$ptr for example). Assuming Step 1 has already been accomplished, you need
not initialize the code (CS), data (DS), and stack (SS) registers. These registers will
already be set correctly.

3. Read the block (specified by the blk$num parameter) from the bootstrap device
(specified by the unit parameter) and place the data in the memory location
specified by the bufSptr parameter.

4. Restore the third stage data segment selector to the DS register. As with Step 1, you
must write this code in assembly language, because it involves register manipulation.

Bootstrap Loader 6-5

WRITING A CUSTOM THIRD-STAGE DRIVER

NOTE

In addition to the above steps, the procedure must follow MULTIBUS II
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS II environment. Refer to Section 5.5 for
more information on these two requirements.

6.5 PROTECTED MODE CONSIDERATIONS

Because you develop your driver procedures using 8086 tools and run the procedures in
protected mode, you should keep several items in mind:

» When the third stage calls the device read procedure, it puts the driver data segment
selector in the AX register. When first called, the device read procedure must save the
DS used by the caller (the third stage data segment selector), and then copy the driver
data segment selector from the AX register into the DS register. Before exiting, the
procedure must restore the original contents of the DS register. If you are writing in
assembly language, you can perform this operation as follows:

THESDEVICESREAD PROC FAR

PUSH BP ;Get Addressability to
) arguments

MGV BP, SP

PUSH DS ;Save third stage DS

MOV DS, AX ;Get local data segment
:Perform the device read
:functions

POP DS ;Restore third stage DS

POP BP ;Restore BP

RET 8 :Return

THESDEVICESREAD ENDP

If you are writing code in a high-level language (such as PL/M-86), vou still must code this
function in assembly language. The reason for this restriction is because higher level
languages do not allow you to manipulate registers directly. You can, however, combine
assembly language with your high-level language by writing an assembly language "shell"
that handles the register manipulation and then calls a PL./M-86 procedure to perform the
other device read functions. For instance, the following example saves the third stage DS,
calls a high-level language routine to do the device read, and restores the third stage DS
register before returning,

6-6 Bootstrap Loader

WRITING A CUSTOM THIRD-STAGE DRIVER

THESDEVICESREAD PROC FAR

PUSH BP ;Get Addressability to
;arguments

MOV BE, SP

PUSH DS ;Save third stage DS

MOV DS, AX :Get local data segment

CALL PIMREAD :Call a PIM procedure to

;perform the
rdevice functions

POP DS ;Restore third stage DS
POP BP :Restore BP
RET 8 :Return

THESDEVICESREAD ENDP

s Be careful when changing DS, SS, CS, or ES registers while in protected mode. They
point to valid entries in the global descriptor table (GDT) that were prepared for your
driver by the third stage. If you change any of these registers, the new value must be a
valid GDT entry or an ILLEGAL SELECTOR or a GENERAL PROTECTION

exception will occur.

« Do not link your code to PLMB06.LIB, because the compiler issues long calls to
procedures in that library. These long calls cause exceptions when the calls are
attempted in protected mode.

o The buf$ptr parameter the third stage passes to the device read procedure is a valid
pointer in real mode only. You can pass this value to the device as a physical address,

but do not try to use it as a pointer in protected mode. If you require a pointer, replace

the buft$ptr selector with the third stage DS value. This DS value is intact when the
device read procedure is called.

6.6 SUPPLYING CONFIGURATION INFORMATION TO THE
THIRD-STAGE DRIVER

Like a first-stage device driver, all third-stage drivers require configuration information
about the devices they support. You can provide this information either by hard-coding it
into the driver or by creating a special configuration file for the device. Both of these
techniques are the same for the first and third stages. Refer to the section in Chapter 5
entitled "Supplying Configuration Information to the First Stage" for descriptions of these
techniques.

Bootstrap Loader

WRITING A CUSTOM THIRD-STAGE DRIVER

If you decide to create configuration files for your first-stage and third-stage drivers, you
should probably use a single configuration file for each device and link it to both the first-
stage and third-stage drivers. The device-specific information is the same for both drivers,
and keeping the information in a single file prevents you from giving conflicting
information to the two drivers. You can include the configuration file by editing BS3.CSD
to assemble and link the configuration file to the third stage. Refer to Section 5.4.2 for an
example that shows the similar first-stage process.

6.7 USING MULTIBUS® Il TRANSPORT PROTOCOL

If the driver you are creating functions within a MULTIBUS [environment, you need not
read this section. Skip to Section 6.8,

If the driver you are creating functions within a MULTIBUS Il environment, you must
write the driver code to use the MULTIBUS II message transport protocol. To help you
accomplish this task, Intel provides a small, single-thread communication system that
enables Bootstrap Loader drivers to communicate with device controllers within a
MULTIBUS 1l environment. This system is called the Bootstrap Loader Communication
System, and is a subset of the Nucleus Communication System.

Concerning adherence to the MULTIBUS II transport protocol, requirements for third-
stage device drivers and first-stage device drivers are identical. Thus, you should refer to
Section 5.5 for an overview of the Bootstrap Loader Communication System, the available
Bootstrap Loader Communication System utilities, and guidance in writing the device
initialization and device read procedures.

Should you desire a more complete description of Bootstrap Loader Communication
System concepts similar to Nucleus Communication System concepts, refer to the Extended
iIRMX II Nucleus User's Guide in Volume 2 of the IRMX 1I documentation set.

6.8 CHANGING BS3.A86 TO INCLUDE THE NEW THIRD-STAGE
DRIVER

The device-specific third stage obtains information about the device and its associated
device driver from the Bootstrap Loader configuration file BS3.A86. To support a custom
device driver, you must add to that file a % DEVICE macro for each unit on the device that
your first-stage device driver supports. For example, if two flexible diskette drives are
attached to the device, you must add two %DEVICE macros to the list (one for each
drive). Chapter 4 describes the syntax of the %2DEVICE macro.

6-8 Bootstrap Loader

WRITING A CUSTOM THIRD-STAGE DRIVER

Figure 6-1 shows a portion of the BS3.A86 file that was changed to add %DEVICE macros
for two units supported by a custom third-stage driver. The arrows in the figure indicate
the changes. The new units have numbers 0 and 1, and their physical names are YZ0 and
YZ1, respectively. (These physical names must match the names used in the %DEVICE
macros in the first-stage configuration file BS1.A86 or BSIMB2.A86.) The name of the
custom driver device initialization procedure is NEWDEVICEINIT, and the name of the
device read procedure is NEWDEVICEREAD. The public name of the driver data
segment is DATA NEWDEV,

Sinclude (:fl:bs3enf.inc)
%device (0,w0,deviceinitmscgen,devicereadmscgen,data_msc)
Zdevice (1,wl,deviceinitmscgen,devicereadmscgen,data_msc)
%device (8,wf0,deviceinitmscgen,devicereadmscgen,data_msc)
#device (9,wfl,deviceinitmscgen,devicereadmscgen,data_msc)
“device (0,bal,deviceinit264,deviceread264,data_264)
--> %device(0, yz0, newdeviceinit, newdeviceread, dataﬁnewdev)
--> Xdevice(l, yzl, newdeviceinit, newdeviceread, data_newdev)
;intl
Zint3
;halt

%cpu_board (286/12)

Zend

Figure 6-1. Changing the BS3.A86 File

6.9 GENERATING A NEW THIRD STAGE CONTAINING THE
CUSTOM DRIVER

Once you have written the custom device driver and changed the Bootstrap Loader
Configuration files, you must generate a device-specific third stage that includes the
custom device driver. To do so, perform the following steps. (These steps assume that you
use an iRMX system to develop your code.)

1. Compile or assemble the third-stage device initialization and device read procedures.
For example, the following command assembles device read and device initialization
procedures that reside in the file NEWDRIV3.A86.

Bootstrap Loader 6-9

WRITING A CUSTOM THIRD-STAGE DRIVER

- asm86 newdriv3.a86 object{newdriv3.obj)
iRMX IT 8086/87/186 MACRO ASSEMBLER, V2.0
Copyright 1980, 1981, 1982, INTEL CORP.
ASSEMBLY COMPLETED, NO ERRCRS FOUND

2. Insert the object modules for the device read and the device initialize procedures
into the Bootstrap Loader object library. This library is named BS3.LIB and
normally resides in the directory /RMX86/BOOT or /RMX286/BOOT. The
following commands add the object modules generated in Step 1.

- LIB86
iRMX 1T 8086 LIBRARIAN V2.0
Copyright 1980 INTEL CORPORATION
*add newdriv3.obj to /rmx286/boot/bs3.1ib
*

K} Attach the directory containing the Bootstrap Loader configuration files as the
current default directory:

- attachfile /rmx286/boot
/rmx286/boot, attached AS :§:

4. Generate a new third stage by invoking the SUBMIT file named BS3.CSD. Chapter
3 describes the details of invoking BS3.CSD. As an example, the following command
names the new third stage "NEW3STG," and locates it at memory location 0BCO00H.

This step assumes that you have made any appropriate changes to the BS3.CSD file
that are required to support any configuration files you might have designed.

6-10 Bootstrap Loader

CHAPTER 7
ERROR HANDLING

7.1 INTRODUCTION

If the bootstrap loading process is unsuccesstul, the Bootstrap Loader initiates error-
handling procedures. Notification of tailures occurring during the loading process depends
on the configuration of the first and third stages. This chapter describes the Bootstrap
Loader’s error handling facilities,

7.2 ANALYZING BOOTSTRAP LOADER FAILURES

The Bootstrap Loader can display messages at the terminal when bootstrap loading is
unsuccessful. As discussed in Chapter 3, the SCCONSOLE, S TEXT, and %LIST macros
in the BSERR.AB6 file determine whether or not messages are displayed when errors
occur during the first and second stages, how detailed the messages are, and under what
circumstances they are displayed. As Chapter 4 explains, the third stage automatically
determines if a monitor is present, and if so, displavs error messages at the terminal
regardless of the first stage contiguration.

The following sections describe what happens when a hootstrap loading error oceurs and
how to analyze the error. There are two situations described: error analysis when messages
are displayed, and error analysis when no messages are displayed.

7.2.1 Actions Taken by the Bootstrap Loader After an Error

After responding to an error by pushing a word onto the stack and optionally displaying a
message, the Bootstrap Loader either tries again, passes control to a monitor, or halts. If
the error is detected in the first or second stage, the action taken depends on whether your
BSERR.AB6 file contains an S“AGAIN, €ZINTL, SZ2INTA, or S%SHALT macro. If the error
is detected in the third stage, the action taken depends on whether your BS3.A86 or
BG3.A86 file contains an 92INTI, % INT3, or %2HALT macro.

The only difference between the device-specific and generic third stages is that the generic
third stage never generates the error code "Device Not Supported” (refer to error code 34
later in this chapter), because the generic third stage supports all the devices supported by
the first stage. If you invoke the Bootstrap Loader with a device name that is not
supported by the first stage, the generic third stage will never even get loaded into memory.

Bootstrap Loader 7-1

ERROR HANDLING

7.2.2 Analyzing Errors With Displayed Error Messages

If your BSERR.A86 file contains the %2 CONSOLE, %TEXT, or %LIST macro, then the
Bootstrap Loader displays an error message at the terminal whenever a failure occurs in
the bootstrap loading process. The message consists of one or two parts. The first part,
which is always displayed, is a numerical error code. The second part is a short description
of the error. Although the second part is always displayed for third stage errors, it is
displayed for first and second stage errors only if the %TEXT or %LIST macro is included.

Each numerical error code has two digits. The first digit indicates, if possible, the stage of
the bootstrap loading process in which the error occurred. The second digit distinguishes
the types of errors that can occur in a particular stage. There are four possible values for
the first digit.

First Digit Stage
0 Can’t tell
1 First
2 Second
3 Third

The error codes, their abbreviated display messages, and their causes and meanings are as

follows.
Error Code: 01
Description: 1/O error

An I/O error occurred at some undetermined time during the bootstrap loading
process.

If the % CONSOLE macro is included, the Bootstrap Loader places a code in the high-
order byte of the word it pushes onto the stack, so that you can further diagnose the
problem. This byte identifies the driver for the device that produced the error, as

follows:

Code Driver

08H 208

I5H MSC (with or
without 218A)

18H 218A on CPU board

25H 186/224A

51H 251

S54H 254 or 2064

0EOH SCSI

other (in range AOH-DFH) driver for your custom

7-2 Bootstrap Loader

ERROR HANDLING

Note that this device code is overwritten when the description is printed if the % TEXT
or %LIST macro s included.

The last entry in the list of device codes assumes that you have written a device driver
for your device and have identified the driver by some code in the indicated range --
other values are reserved for Intel drivers. For information about how to incorporate
this code into the driver, see Chapter 3.

Error Code: 11
Description: Device not ready.

The specific device designated for bootstrap loading is not ready. This error occurs
only when your BSERR.A86 file does not contain the SSAUTO macro. Therefore,
either the operator has specitied a particular device or only one device is in the
Bootstrap Loader’s device list, and the device is not ready.

Error Code: 12
Description: Device does not exist, (If BSERR.A86 contains the %LIST macro,
the display then shows the [ist of known devices.)

The device name entered at the console has no entry in the Bootstrap Loader’s device
list. This error occurs only when vour BSERR.A86 tile contains the MANUAL
macro and you enter a device name, but the device name you enter is not known to the
Bootstrap Loader. After displaying the message, the Bootstrap Loader displays the
names of the devices in its device list.

Error Code: 13
Description: No device ready.

None of the devices in the Bootstrap Loader’s device list are ready. This error occurs
only when your BSERR.A86 file contains the %AUTO or %MANUAL macro and you
do not enter a device name at the console.

Error Code: 21
Description: File not found.

The Bootstrap Loader could not find the indicated file on the designated bootstrap
device. This is the default file if no pathname was entered at the console. Otherwise, it
is the file whose pathname was entered. In iRMX 11 systems, the Bootstrap Loader
could not find the third stage.

Bootstrap Loader 7-3

ERROR HANDLING

Error Code: 22
Description: Bad checksum.

While trying to load the target file (the application system for iRMX I systems, or the
third stage for iRMX I1 systems), the Bootstrap Loader encountered a checksum error.

Each file consists of several records. Associated with each record is a checksum value
that specifies the numerical sum (ignoring overflows) of the bytes in the record. When
the Bootstrap Loader loads a file, it computes a checksum value for each record and
compares that value to the recorded checksum value. If there is a discrepancy for any
record in the file, it usually means that one or more bytes of the file have been
corrupted, so the Bootstrap Loader returns this message instead of continuing the
loading process.

Error Code: 23
Description: Premature end of tile.

The Bootstrap Loader did not find the required end-of-file records at the end of the
target file (the application system for iRMX I systems, or the third stage for iRMX 11

systems).
Error Code: 24
Description: No start address found in input file.

The Bootstrap Loader successtully loaded the target file but was unable to transfer
control to the file, because initial CS and IP values were not present.

Error Code: 31
Description: File not found.

The third stage was unable to find the target file on the designated bootstrap device.
Regardless of the way you invoked the Bootstrap Loader, the target file is expected to
have a .286 extension.

Error Code: 32
Description: Bad checksum.

The third stage encountered a checksum error while trying to load the target file.

Error Code: 33
Description: Premature end of file.

The third stage reached end-of-file earlier than expected while attempting to load the
target file.

7-4 Bootstrap Loader

ERROR HANDLING

Error Code: 34
Description: Device not supported.

The specified device is not supported by the device-specific third stage. That is, there
is no %DEVICE macro invocation for this device in the BS3.A86 file.

Error Code: 35
Description: Invalid file type.

The target file is not an 80286 bootloadable file (usually produced by BLD286).

7.2.3 Analyzing Errors Without Displayed Error Messages

In most cases, you can determine the cause of a Bootstrap Loader failure by observing the
behavior of the Bootstrap Loader when it fails to load the application successfully. You
can then take steps to correct the failure. Table 4-1 lists some common behaviors and
possible causes for failure. The table assumes that the Bootstrap Loader is set up to halt if
it detects an error. Before halting, the Bootstrap Loader places the error code into the CX
register.

Another possible cause of failure, the eftects of which are unpredictable, is that the device
controller block (as determined by the device’s wake-up address) can be corrupted. To
avoid this kind of failure, ensure that neither the Bootstrap Loader nor the target file
overlaps the device controller block for the device.

Bootstrap Loader 7-5

ERROR HANDLING

Table 7-1. Postmortem Analysis of Bootstrap Loader Failure

Behavior of Loader

Possible Causes

Bootstrap loading fails in
the first stage.

The indicated device is not ready or is not
known to the Bootstrap Loader.

An I/O error occurred during the first stage
operation.

Bootstrap loading fails in
the second stage.

The indicated file is not on the device.

The file has no end-of-file record or no start
address.

The file contains a checksum error.

An /O error 1s occurring during the second
stage operation,

Bootstrap Loader enters
second stage, but does not
halt or pass control to the
file it loads.

The Bootstrap Loader is attempting to load
the system, or third stage, on top of the
second stage.

The second stage 1s attempting to load the
file into nonexistent memory.

Bootstrap loading fails in
the third stage.

The designated file with a .286 extension was
not found on the device.

The third stage reached an end-of-file earlier
than expected,

The file contained a checksum error.

An 1/O error occurred during the third stage
operation.

The Bootstrap Loader is attempting to load
the second stage on top of the Protected
Mode third stage.

Bootstrap Loader

ERROR HANDLING

7.2.4 Initialization Errors

If an error occurs during the initialization of one of the layers of the iRMX I or II
Operating System, an error message will be displayed at the console. The message lists the
name of the layer whose initialization failed, and gives the iRMX exceptional condition
code that indicates the cause of the failure. The following is an example of the kind of
message that will be displayed:

HI INITIALIZATION: QO021H

Interrupt 3 at 0280:34D8

The messages you see will be similar to this one.

Refer to the Operator’s Guide 1o the iIRMX 86 Human Interface or the Operator’s Guide to
the Extended iRMX I Human Interfuce for more information about the condition codes.

Bootstrap Loader 7-7

APPENDIX A
AUTOMATIC BOOT DEVICE
RECOGNITION

A.1 INTRODUCTION

Automatic Boot Device Recognition (ABDR) allows the IRMX I or iRMX 11 Operating
System to recognize the device from which it was bootstrap loaded and to assign a logical
name (normally :SD:) to represent that device.

If you use this feature, you can configure versions of the Operating System that are device
independent, that is, versions you can load and run from any device your system supports.

This section describes the ABDR teature in detail. It consolidates information found in
other iRMX I manuals and answers the following questions:

e How does Automatic Boot Device Recognition work?

» How do you configure a version of the Operating System that includes this feature?

A.2 HOW AUTOMATIC BOOT DEVICE RECOGNITION WORKS

The Nucleus, the Extended 1/0 System, and the Bootstrap Loader combine to provide the
Automatic Boot Device Recognition feature, as follows:

1. The Bootstrap Loader, after [oading the Operating System, places a pointer in the
DIL:SI register pair. This pointer points to a string containing the name of the device
from which the system was loaded. The name it uses is the one supplied as a
parameter in the % DEVICE macro when the Bootstrap Loader was configured.

2. The Bootstrap Loader sets the CX and DX registers to the value 1234H. This value
signifies that the pomnter contained in the DI:SI register pair is valid.

3. Theroot job checks CX and DX and then, if both contain 1234H, uses the pointer in
DI:ST to obtain the device name. The Root Job sets a Boolean variable to indicate
whether it found the name of the boot device. If CX contains 1234H and DX
contains 1235H, the IRMX root job will execute an INT3 instruction before any other
code in the Operating System is executed.

Bootstrap Loader A-1

AUTOMATIC BOOT DEVICE RECOGNITION

4. The Nucleus checks the Root Job's Boolean variable and, if true (equal to OFFH),
places the device name in a segment and catalogues that segment in the root job’s
object directory under the name RQBOOTED. If it is false (equal to 0), nothing is
catalogued in the Root Job’s directory. The absence of RQBOOTED from the Root
Job’s directory indicates the system was not bootloaded or that ABDR was not
selected.

5. The Extended I/O System looks up the name RQBOOTED and, if successful,
obtains the device name from the segment catalogued there. If the name
RQBOOTED is not catalogued in the root directory, the Extended I/O System uses
a default device name specified during the configuration of the Extended 1/0O System
{DPN prompt of the "EIOS" screen).

6. The Extended I/O System attaches the device as the system device, assigning it the
logical name that you must have specified during the configuration of the Extended
I/O System (DLN prompt on the "EIOS" screen).

A.3 HOW TO INCLUDE AUTOMATIC BOOT DEVICE RECOGNITION

This section describes the operations you must perform to include the ABDR feature in
your application. The operations include

s The ABR prompt on the "EIOS" screen (Figure A-1) affects whether the ABDR
feature will be included in your application. If you set ABR to "no," the Extended I/O
System does not attach a system device. 1f you set ABR to "yes,"” the Extended 1/0
System automatically attaches the system device. The ICU displays another screen
{shown in Figure A-2) that lets you specify the characteristics of the system device.

EIOS
-->(ABR) Automatic Boot Device Recognition [Yes/No] Yes
{IRS) Internal Buffer Size [0-OFFFFh] 0400H
{DDS) Default I0 Job Directory Size [5-3840] 50
(ITP) Internal EIOS Task’'s Priorities [0-255] 131
(PMI) EIOS Pool Minimum [0-OFFFFH] 0180H
{PMA) EIOS Pool Maximum [0-0OFFFFH] OFFFFFH
(CD) Configuration directory [1-45 characters] :SD:RMX286 /CONFIG

Figure A-1. EIOS Configuration Screen (ABR)

A-2 Bootstrap Loader

AUTOMATIC BOOT DEVICE RECOGNITION

» Ifyou set ABR to "yes," the ICU displays the screen shown in Figure A-2. On this
screen, you must specify the characteristics of the system device via the DLN, DPN,
DFD, and DO prompts. For the DLN, DFD, and DO prompts, you must not supply
this information later in the "Logical Names" screen.

With the DLN prompt, you can specify the logical name for your system device. If you
change this value from the default (SD), you must change all other references to the
:SD: logical name to the new name you specify. The Extended 1/0Q System creates the
logical name you specify only if you set ABR to "yes."

With the DPN prompt, you specify the physical name of a device that you want to use
as your system device in case the Extended 1/O System cannot find the name
RQBOOTED catalogued in the root object directory. This situation normally occurs
when you load your system using a means other than the Bootstrap Loader. For
example, if you transfer the Operating System to your target system via the iSDM
monitor, there is no bootstrap device. In this case, the Extended I/0 System uses the
device name specified in the DPN prompt as the system device.

With the DFD and D0 prompts, you set other characteristics associated with the
system device. For most cases, the defaults (DFD =Named and DO =0000H) are the
preferred values.

(ABDR) Automatic Boot Device Recognition

--->(DLN) Default System Device Logical Name [1-12 chars] SD
--->(DPN) Default System Device Physical Name [1-12 chars] w0
--->(DFD) Default System Device File Driver [P/S/N/R} Named
--->(D0) Daefault System Device Owners ID [0-OFFFFH] 0000H

Figure A-2, ABDR Screen (DLN, DPN, DFD, DO)

¢ During configuration of the Basic I/O System, you must specify device-unit
information for the devices you wish to support. One of the prompts on each "Device-
Unit Information” screen (NAM) requires you to specify the name of the device-unit.
Another parameter (UN) requires you to specify the unit number. (See Figure A-3 for
an example of these prompts.) To enable the ABDR feature to work correctly, you
must assign device-unit names and unit numbers that match the device names and unit
numbers assigned during Bootstrap Loader configuration.

* You assign the Bootstrap Loader device names and unit numbers by including or
modifying %eDEVICE macros in the first-stage configuration file (BS1.A86 or
BSIMB2.AB6). With the 1CU, you can define device-unit names and unit numbers
other than those that are valid tor the Bootstrap Loader. But each Bootstrap Loader
device name must have a corresponding device-unit name, and the unit numbers must
be the same.

Bootstrap Loader A-3

AU

TOMATIC BOOT DEVICE RECOGNITION

Before you can use the ABDR feature, you must format your system device using the

FORMAT command. The Guide to the Extended iRMX Il Interactive Configuration Utility

d

escribes how to set up your system device for use with the current release.
{IMSC) Mass Storage Controller Device-Unit Information
(DEV) Device Name [1-16 Characters]

--->(NAM) Device-Unit Name [l-14 chars]
(PFD) Physical File Driver Required [Yes/No] YES
(NFD) Named File Driver Required [Yes/No} YES
(S5DD) Single or Double Density Disks [Single/Double] DOUBLE
(SDS) Single or Double Sided Disks [Single/Double] DOUBLE
(EF1) 8 or 5 inch Disks [8/5] 8
(SUF) Standard or Uniform Format [Standard/Uniform] STANDARD
(GRA) Granularity [0-OFFFFH] 0100H
(DSZ) Device Size [0O-OFFFFFFFFH] 07C500H

--->(UN) Unit Number on this Device [0-0FFH] C000H
(UIN) Unit Info Name [1l-16 Chars]
(RUT) Request Update Timeout [0-OFFFFH] 0096H
{NB) No. of Buffers [nonrand = {/rand = 1-0FFFFH] $008H
{CUP) Common Update [True/False] TRUE
(MB) Max Buffers [0-0FFH] OFFH

A-4

Figure A-3. Device-Unit Information Screen (NAM and UN)

Bootstrap Loader

AUTOMATIC BOOT DEVICE RECOGNITION

A.4 HOW TO EXCLUDE AUTOMATIC BOOT DEVICE RECOGNITION

To configure a system that does not include the ABDR feature, set the ABR prompt in the
"EIOS" screen to "no" (see Figure A-1). This disables the ABDR feature.

When you set ABR to "no", the ICU will not display the ABDR screen. Therefore, you
must provide information for the DLN, DPN, DFD, and DO prompts as input to the
"Logical Names" screen. Figure A-4 shows an example of this screen after it has been filled
in to include a logical name for the system device. The underlined information in Figure
A-4 is the information you would supply if you set the ABR prompt in Figure A-1 to "no”
and you want the system device to be a flexible diskette drive controlled by an iSBC 208
device controller.

(LOGN) Logical Names

Logical Name = log name,device_name,file driver,owners-id
[1-12 Chars], [l-14 Chars], [P/S/N/R}],[0-0FFFFH]

[1] Logical Name = RB BB , PHYSICAL, OH

[2] Logical Name = STREAM , STREAM, STREAM CH
[3] Logical Name = LP , LP , PHYSICAL, OH
--->[4]) Logical Name = SD , AFC , NAMED . OH

Figure A-4. Logical Names Screen

Bootstrap Loader A-5

APPENDIX B
PROMMING THE BOOTSTRAP
LOADER AND THE iSDM™ MONITOR

B.1 INTRODUCTION

Chapter 2 stated that one of the ways to prepare the Bootstrap Loader for use is to
combine it with one of the Intel monitor packages and burn the combined code into
PROM. This appendix supplies information about combining the Bootstrap Loader and
the iISDM monitor. The iSDM Systesn Debug Monitor User’s Guide also contains
information about this process.

B.2 INCORPORATING THE iSDM MONITOR

This section gives the instructions required to place the first stage and the iSDM monitor
into two 27128 EPROM devices. You can modify this example to suit your own purposes,
or you can follow it exactly. Refer to the iPPS PROM PROGRAMMING SOFTWARE
USER’S GUIDE for detailed information about the commands. The step-by-step
procedure is as follows:

1. Enter the name of the (version 1.4 or later) software used with the jUPP Universal
PROM Programmer:

2. Specify that the PROMs are 27128 EPROM devices:

3. Respond with the number of the desired work file drive:

1
This says that drive :f1: will be used for creating temporary IPPS workfiles.

4, Initialize the file type to be loaded:

This says that the load file is an 8086 Object Module Format file (which the first
stage and the iISDM monitor are).

Bootstrap Loader

B-1

PROMMING THE BOOTSTRAP LOADER AND THE iSOM™ MONITOR

5. Specify that the even-numbered bytes of the BS1 (first stage) file are to go into
EPROM 0 and the odd-numbered bytes are to go into EPROM 1. (The address
FE400H is an example value which is compatible with most configurations of the
iSDM R3.2 monitor. The upper bound of the format range is 0FFF7FH, the highest
memory location the Bootstrap Loader can use when combining it with the iSDM
monitor. The upper bound also applies to all previous versions of the iISDM 86 or
iISDM 286 monitors. Always check the monitor and Bootstrap Loader memory maps
before burning the addresses into the PROM devices. Also, be sure that the
addresses you use do not collide. The numbers 3, 2, and 1 match IPPS prompts for
defining the information.)

6. Tell the software to program one EPROM with even-addressed bytes. Use the
following formula to determine the address to use:

address = ((address of first stage) - (start address of EPROM pair))/2
Therefore:
address = (FE400H - F8000H)/2 = 3200H

The IPPS command is as follows:

7. Do the same for the odd-numbered bytes.

8. Exit the IPPS program.

As a further example for step number six above, the formula below determines the address
to specify when using 27512 EPROM devices:

address = (FE400H - OEO000H)/2 = 0F2000H

B-2 Bootstrap Loader

INDEX

%Again 3-27,29

% Auto 3-14
%Auto_configure_memory 3-10
%B208 3-32

%B215 3-32

%B218A 3-33

%B220 3-32

%B251 3-35

%B254 3-36

% B264 3-36

%BIST 3-8

%BMPS 3-11,4-5

%BSCSI 3-37
%BSERR.A86 3-27
%CICO 3-18

%Clear SDM_extensions 3-18
% Console 3-14, 27, 28, 7-1,2
%CPU 3-11,4-5, 10
%Defaultfile 3-17
%Device 3-24, 4-6, 5-34, 6-8
%End 3-27, 31, 4-5, 12
%Halt 3-27, 30, 4-5, 10
9%1APX 186 INIT 3-13
ZInstallation 4-5, 11
GINTI1 3-27,29,4-5,9

G INT3 3-27, 30, 4-5, 10
%List 3-27,28,7-1,2

% Loadfile 3-16

%Manual 3-14

%Retries 3-17

9%SASI unit_info 3-39, 4-7
%Serial _channel 3-19
%Text 3-27,28,7-1,2

Bootstrap Loader Index-1

INDEX

A

Actions taken by the Bootstrap Loader after an error 7-1
Automatic boot device recognition A-1,2,5
Automatically configuring memory 3-10

B208.A86 3-2, 31
B215.A86 3-2,31,4-2
B218A.A86 3-2,31
B251.A86 3-2,31
B254.A86 3-2,31
B264.A86 3-2,31,4-2
BG3.A86 4-2

Default file 4-5

Editing 4-3

Excluding macros 4-3
BG3.CSD 4-2

Detault file 4-14

Invocation 4-15

Modification 4-14
Board-scan algorithm 5-32
Boot device recognition A-1
Booting iIRMX® | and iRMX® [} Operating Systems from the same volume 1-4
Bootstrap Loader communication system 5-8, 6-8
Bootstrap Loader driver COMPACT sub-system 5-31
Bootstrap Loader failures 7-1, 6
BS$BROADCAST 5-20, 21
BSSGETSINTERCONNECT 5-22, 23
BS$RECEIVE 5-18
BS$SEND 3-15, 16
BS$SENDSRSVP 5-11, 12
BSSETINTERCONNECT 5-22, 26, 27
BS1.A86 3-1,2,5-33

Custom drivers 5-33

Editing 3-7
BS1.CSD 3-2, 41

Default file 3-42

Invocation 3-46

Modification 3-44
BS3.A86 4-2, 6-8

Editing 4-3

Excluding macros 4-3

Modification 6-8

Index-2 Bootstrap Loader

INDEX

BS3.CSD 4-2, 13
Default file 4-13
Invocation 4-15
Modification 4-14
BSCSILAB6 3-2, 31
BSERR.A86 3-1, 7-1
Built-In Self Test (BIST) 3-8

C

Chip mode configuration 3-13
Choosing a third stage 2-6
CI routines 3-18, 19
Clearing iSDM monitor command extensions 3-18
CO routines 3-18, 19
Condition codes
BS$BROADCAST 5-22
BS$GETSINTERCONNECT 5-26
BS$RECEIVE 3-20
BS$SEND 5-18
BS$SENDSRSVP 5-15
BS$SETSINTERCONNECT 5-30
Configuration 3-1, 4-1
CPU board 4-10
Files 3-31
Files for custom drivers 5-5
First stage 3-1
Memory 3-10
Message passing system 3-11, 4-5
Processor board type 4-10
Third stage 4-1
Controlling error message display 3-28
Conventions iv
CPU board configuration 4-10
CPU type 3-11,4-10
CS register integrity 6-7

Bootstrap Loader Index-3

INDEX

Custom drivers 5-1, 6-7
BS1.A86 alterations 5-33
BS3.A86 alterations 6-8
Configuration files 5-5
Determining processing mode 6-2
Device initialize 5-2, 6-3
Device read 5-3, 6-4
First stage configuration 5-4
First stage considerations 5-30
First stage requirements 5-1
Generating the first stage 5-34
Generating the third stage 06-9
Hard-coded configuration 5-4
MULTIBUS® I1 transport protocol 5-8, 6-8
Protected mode 6-6
Third stage configuration 6-7
Third stage requirements 6-2

D

Debug option 2-3
Default BG3.AB6 file 4-5
Default BG3.csd file 4-14
Default BS1.CSD 3-42
Default BS3.CSD file 4-13
Default BSERR.A86 file 3-27
Default load fite 3-17
Defining bootable devices
First stage 3-24
Third stage 4-6
Defining SASI bus initialization sequences 3-39, 4-8
Device driver 1-2, 7, 8
Code considerations 5-30
Configuration files 3-31
First stage 3-25
Device initialization
Requirements, first stage 5-2
Requirements, third stage 6-3
Procedure 5-1, 2, 6-1, 3
Device read
Procedure 5-1,3,6-1, 4
Requirements, first stage 5-3
Requirements, third stage 0-5
Device-specific third stage 1-5

Index-4 Bootstrap Loader

INDEX

Displayed error messages 7-2
Displaying error messages 3-28
Displaying the load file pathname 3-16
Drivers, custom 35-1

E

Editing BS1.AB6 3-7,5-33
Errors
Analyzing 7-2, 5
Bootloading 3-27
Code 01 7-2
Code 11 7-3
Code 12 7-3
Code 13 7-3
Code 21 7-3
Code 22 74
Code 23 74
Code 24 7-4
Code 31 7-4
Code 32 7-4
Code 33 7-4
Code 34 7-5
Code 35 7-5
Controlling message display 3-2%
Handling 7-1
Initialization 7-7
Message display 3-28
Procedures 3-1, 8,27, 7-1
ES register integrity 6-7
Examples
Board-scan algorithm 5-32
BS$IBROADCAST 5-21
BS$GETSINTERCONNECT 35-24
BSSRECEIVE 5-19
BS$SEND 5-16
BS$SENDSRSVP 5-13
BS$SETSINTERCONNECT 5-28
Maintaining DS register integrity 6-0
Modified BS1.A86 file 5-34
Excluding a device driver 3-26, 45
Excluding automatic boot device recognition A-5
Excluding BS1.A86 macros 3-7

Bootstrap Loader Index-5

INDEX

F

Failures 7-1

First stage 1-1,2
BSI1.CSD file 3-42
BSERR.A86 file 3-27
Configuration 3-1
Custom drivers 5-1, 30
Defining a bootable device 3-24
Device driver configuration files 3-2
Device drivers 1-7
Device initialization 5-1,2
Device read 5-1,3
Error procedures 7-1
Failure 7-6
Generation 3-41
Generation for custom drivers 5-34
Halting the boot 3-30
Initialization requirements 5-2
iISDM™ monitor inclusion B-1
Location 1-2, 8,9, 3-47, 4-16
Placing in memory 2-4
Read requirements 5-3
Second stage identification 3-14
Size 1-2
Steps when supplying your own drivers 3-40
Supported device drivers 3-25
User-supplied drivers 3-40)

G

Generation
First stage containing a custom device driver 5-34
Third stage 4-13
Third stage (custom device driver) 6-9

Generic third stage 1-4

H

Halting the Bootstrap [oader during errors
First stage 3-30
Third stage 4-10
Hard-coding custom driver configuration information 5-4
How to configure the first stage 3-1
How to configure the third stage 4-1
How to define a device to boot from, first stage 3-24

Index-6 Bootstrap Loader

INDEX

How to display the load file pathname 3-16

How to exclude automatic boot device recognition A-5
How to include automatic boot device recognition A-2
How to indicate a default load file 3-17

Identifying the serial channel 3-19
Including automatic boot device recognition A-2
Incorporating the iSDM™ monitor B-1
Initialization errors 7-7
Intel-supplied BG3.A86 file 4-5
Intel-supplied Bootstrap Loader device drivers 1-8
Intel-supplied device drivers 3-31
Intel-supplied first stage drivers 3-23
Intel-supplied third stage drivers 4-7
Intel-supplied third stage files 2-7
[nterconnect space 5-22
Interrupt
INTT 3-29, 4-9
INT3 3-30, 4-10
[nvocation from the 1ISDM monitor 2-2
Invoking the BG3.CSD submit tiles 4-15
Invoking the BS1.CSD submit file 3-46
Invoking the BS3.CSD submit files 4-15
ISBC® 208 Driver 3-25
iISBC® 215 Driver 3-25, 4-7
iSBC® 251 Driver 3-25
iSBC® 234 Driver 3-25
iISBC® 264 Driver 3-25, 4-7
iISBX® 218A Driver 3-25
iISDM™ monitor B-1
1ISDM™ monitor command extensions, clearing 3-18

L

Load file 1-5
Device 3-14
Pathname specification 2-1
Loading the Bootstrap Loader into memory 2-4
Location of first stage 1-2
Location of second stage 1-3

Bootstrap Loader Index-7

INDEX

Manual overview iii

Memory locations used by the Bootstrap Loader 1-8, 3-47, 4-16
Message broadcasting 5-20

Message passing system configuration 3-11, 4-5
Message types 5-10

Modifying the BG3.CSD submit files 4-14
Modifying the BS1.CSD submit tile 3-44
Moditying the BS3.CSD submit files 4-14
Monitor entry after third stage 4-11
MULTIBUS® 1T environment 5-30, 6-2
MULTIBUS® Il transport protocol 5-1.%,6-2, 8

N

Naming the load file 1-5
Naming the third stage 1-5

O

Operator’s role 2-1

P

Placing the Bootstrap Loader into memory 2-4

Product overview iii, 1-]

Programmatically loading the first stage 2-3

Promming the Bootstrap Loader and the iSDM™ monitor B-1
Protected mode considerations 6-6

R

-

Reader level iii

Receive transaction model 5-15
Request/response transaction model 5-10
Retries for ready devices 3-17

S

SASI bus initialization sequence definition 3-39, 4-8
SASI controller 3-39, 4-7

SCSI controller 3-39, 4-7

SCSI driver 3-25

Searching for a ready device 3-17

Index-8 Bootstrap Loader

INDEX

Second stage 1-1,3

Error procedures 7-1

Failure 7-6

Location 1-3, 8,9, 3-47, 4-16

Size 1-3
Send transaction model 5-15
Serial channel identification 3-19
Serial communication

Base port 3-20

Baud counter 3-21

Counter base port 3-21

Counter type 3-21

Flags 3-22
Serial communication 3-20

Error messages 3-23
Serial controller device 3-20
Software interrupt (INT1) 3-29, 4.9
Software interrupt (INT3) 3-30, 4-10
SS register integrity 6-7
Stages 1-2
Supplying configuration information

First stage driver 5-4

Third stage driver 6-7
Supplying your own device driver 3-40, 4-12
Supported 5.25-inch diskettes 3-26
Supported 8-inch diskettes 3-26
Supported device drivers 3-25, 31
Supported devices 1-8

T

Third stage 1-2, 4
BG3.CSD file 4-14
BS3.CSD file 4-13
Choosing 2-6
Configuration files 4-2
Custom drivers 6-1, 6-8
Defining a bootable device 4-6
Device drivers 1-7
Device initialization 6-3
Device read 6-4
Device-specific 1-5, 4-1
Error procedures 7-1
Failure 7-6
Generation 4-13

Bootstrap Loader Index-9

INDEX

Third stage (cont.)

Generation for custom drivers 6-9

Generic 1-4, 4-1

Halting the boot 4-10

Initialization requirements 6-3

Intel-supplied 2-7

Location 1-4, 8,9, 4-16

Naming 1-5

Read requirements 6-5

Steps for supplying your won drivers 4-12

User-supplied drivers 4-12
Transaction ID value 5-22
Transmission

Modes 5-22

Status 5-22

U

User-supplied drivers 3-40, 4-12
Using the Bootstrap Loader 2-1
Using the iISDM debug option 2-4

W

Writing a custom first stage driver 5-1
Writing a custom third stage driver 6-1

Index-10 Bootstrap Loader

intal

EXTENDED iRMX"1I
SYSTEM DEBUGGER
REFERENCE MANUAL

Intel Corporatio
3065 Bowers Avenue
Santa Clara, California 95051

Copyright © 1988, Intel Corporation, All Rights Reserved

PREFACE

INTRODUCTION

The iRMX II System Debugger is a memory-resident extension of the iISDM™ System
Debug Monitor and the D-MON386 Monitor. The System Debugger gives you a static
debugging tool that can recognize and display all IRMX II objects. Tt enables you to
examine your iIRMX II system interactively so you can find and correct errors.

READER LEVEL

This manual is intended for application engincers familiar with the concepts and
terminology introduced in the Extended iRMX IT Nucleus User's Guide and system
programmers implementing device drivers, object managers, and operating system
extensions.

MANUAL OVERVIEW

This manual consists of the following chapters:

Chapter 1 INTRODUCTION--This chapter describes the features of the
System Debugger, illustrates how the System Debugger relates
to EPROM-based debugging tools, and explains how to use the
System Debugger. Read this chapter if you are going through
the manual for the first time.

Chapter 2 SYSTEM DEBUGGER COMMANDS--This chapter contains
detailed descriptions of the System Debugger commands,
presented in alphabetical order. When debugging your system,
refer to this chapter for specific information about the format
and parameters of the commands.

System Debugger iii

iRMX® 11 SYSTEM DEBUGGER OVERVIEW

Chapter 3 SAMPLE DEBUG SESSION--This chapter shows in a step-by-
step fashion how to use System Debugger features. The chapter
contains 4 sample debugging session demonstrating how to use
iISDM monitor and System Debugger commands to locate an
application-code error, correct it, and test the change. Discrete
examples showing additional debugging techniques are also
included. Use this chapter as a hands-on introduction to the
System Debugger.

Appendix A 1ISDM MONITOR COMMANDS--This appendix briefly
describes the function of all basic iSDM monitor commands.
Use this appendix as a quick reference to the iSDM monitor,
For more information see the iSDM System Debug Monitor
User's Guide.

Appendix B D-MON386 MONITOR COMMANDS--This appendix briefly
describes the function of all basic D-MON386 monitor
commands. For more information, refer to the D-MON386
Debug Monitor for the 80386 User’s Guide.

CONVENTIONS

This manual uses the following format conventions:

iv

User input appears in one of the following forms:

as bolded text within a screen |

The text <CR> appears where you must enter a carriage return. When pressing the
carriage return key, the text <CR > does not appear on the console.

Although all syntax diagrams show uppercase letters (e.g., VR), you can also use
lowercase letters.

The manual refers to the iIRMX [l Operating System as the operating system.

All numbers unless otherwise stated are assumed to be decimal. Hexadecimal numbers
include the "H" radix character (for example, 0FFH).

Darker shaded text appearing over shaded text within figures or screen displays does
not actually appear on the screen. The text within the darker box supplies information
that is helpful in understanding the figure or screen display.

System Debugger

CONTENTS

CHAPTER 1 PAGE
iRMX® Il SYSTEM DEBUGGER OVERVIEW
1.1 Introducing the IRMX® IT System Debuggercoovvooveeeeeeeoeeeoeeeeeeeen. 1-1
1.2 Supporting the System Debug@er. ..., 1-2
1.3 Configuring the System DebBEZer. ... oo 1-2
1.4 Invoking the System DebUBEer ... 1-2
1.5 Using the System Debugger ... 1-3
1.6 Returning to Your APPLCAtION .c..ooo..o oo ees e es s 1-4
CHAPTER 2 PAGE
SYSTEM DEBUGGER COMMANDS
2.1 INMOAUCHION oo 2-1
2.2 Checking Validity of TOKENS.......ocoooovieiiciie oo tes e 2-1
2.3 Pictorial Representation 0f SYNLAXcooo.ovcvvericreee oo resses e 2-2
2.4 Leaving the MOMILOT. ...ttt 2-3
2.5 Command DIFeCtOrY.....coocoiiiiii oo s ee e 24
VB--Display DUIB INfOrmation . .co...oo.oooooooioieeeeee e 2-
VC--Display System Call Information ..., 2-9
VD--Display a Job’s Object Dir€Ctony ... 2-12
VF--Display Number of Free SIots ..o 2-14
VH--Display Help Information ..ot e 2-16
VI--Display Job HIerarchy ..o 2-18
VK--Display Ready and Sleeping Tasks. ..o oo 2-22
VO--Display Objects In a Job....cooiiioo e, 2-24
VR--Display 1/0 Request/Result SEEmMent...........cooocoov oo cor e, 2-27
VS--Display Stack and System Call Information...........o..ccoeecevvreeronneconreereressreesnn, 2-31
VT--Display iIRMX® 1L OBJECt......cooiioeiiminiieci e eee s, 2-36
JOb DISPLAY ...ttt 2-37
Task DISPlaY ... 2-39
MailboX DISPIAYoiiiiiiiii e 2-42
Semaphore DIsplay ..o, 2-44
Region DISPlay ... e 2-45
Segment DISPLAY ..o 2-46
Extension Object DISPlay oo e 2-47
Composite Object DISplay oot 2-47
Buffer Pool DHSPIAY ...t e 2-60)
VU--Display System Calls in & Task™s STacK......ooooivoooeeeoeeee oo 2-62

System Debugger

CONTENTS

CHAPTER 3 PAGE
SAMPLE DEBUG SESSION
3.1 INTEOQUCTION oottt ettt bbb mb s h b e 3-1
3.2 SAMPIE PrOZIAIM.co.cvurrioeiiieeii ettt 3-1
3.3 Debugging the PrOZraml. ..o s 39
3.4 Viewing System ObJECTS ..ot 3-17
APPENDIX A PAGE
ISDM™ MONITOR COMMANDS
AT INEEOAUCHION oo et s bbb s s A-1
A2 ComMMANG DIFECIOTY ¢ovoieieiieietiit st bbb A-1
A3 Command DESCTIPHOMNS -.ovoiv ittt e A3
A3.1 B--Bootstrap Load........ A-3
A3.2 ComCOMIPATE oo eb bbb A-4
A.3.3 D--Display Memory/Descriptor Tables/Disassembled Instructions........... A-4
AB4 BrBXIbi e ottt A-4
A3 FaoFINUo it s A-S
A3 GrrG0 i e A-S
AT T--POTt INPUL. .ot e A-5
A3.8 K-EChO FIle oo A-5
A3.9 L--Load Absolute Object File .o, A-0
A0 Moo MOVE L e A-0
A.3.11 N--Execute Single InStruCtions......ooooocs A-0
A312 O--Port QUIPUL ..o s A7
AL33 PacPriNl e A-7
A.3.14 Q--Enable Protection (80286,/80386 only) ... A-7
A3.15 Re-Load and GO A-8
A.3.16 S--Substitute Memory/Descriptor Table Entry ... A-8
A.3.17 X--Examine/Modify Registers.....oiiin e A-9
A.3.18 Y--Symbols (80286 or 80386 only).....ccooooii A-9
APPENDIX B PAGE
D-MON386 COMMANDS
B.1 INrOQUCHION coe ottt e B-1
B.2 Entering CommMands..........c.cccoiiiiiiiiiii oo B-1
B.3 Command DHTECIOTY ..o et B-2
B.4 Command DESCrPLIONS ..ccooiiiiiiiiii i B-4
B L G B-5
BA.2 ASM o e s B-5
Bid.3 Bt s B-5
B.dd BASE ..ot B-5
B.4.5 BYTE oottt B-5
B.4.6 COUNT/ENDCOUNT ..o B-5
B.4.T CREGS ..ottt ettt B-0

vi System Debugger

CONTENTS

APPENDIX B (continued) PAGE
B.4.8 DPORT ..ottt b sttt ee s B-6
BidO DT et b ettt B-6
BA.10 DWORD ...t et b s sb sttt B-6
BTl EVAL oottt B-6
B 12 FLAGS ... ss sttt B-6
Bid 13 GDT oottt s B-7
Bid. 14 GO oo B-7
B4 1S HELP oottt vt B-7
B 16 HOST oot ettt bbb B-7
Bu 17 TDT oo b b et B-7
B 18 INTI o e B-7
BiA 18 ISTEP ...ttt e bbb e n s B-8
BiA 19 LDT ettt s sttt B-8
Bid20 NO-NO ..ot bbb st B-8
BiA.21 ORDIM.c..cst s st st B-8
Bid22 PD oo et st b s B-8
Bid.23 PORT oottt st B-9
B.4.24 REGISIEr-NAMEooo.ooirririie ittt e naees B-9
B.4.25 REGS ..ottt e B-9
B.4.26 SREGS ... B-9
B.A27 SWBREAK ...t B-9
B.4.28 SWREMOVE ... B-10
Bid.29 TS b B-10
Bid30 USE oo et r s b s B-10
B.4.31 VERSION oottt ess s besst st B-10
Bid.32 WORD ..ottt e B-10
Bid.33 WPORT ..ottt st s B-11

FIGURES

FIGURE PAGE

2-1 Format of VB OUtPUL ..o een e cnen 2-5
2-2 Format of VO QUIPUL ...ttt e ssssssens 2-9
23 Format of VD OULPUL ..ottt es bbb 2-12
24 Format of VEF QUIPUL ... e 2-14
2-5 Format of VH QUIPUL.......cccciiiiiiiiinicceriseccisi e esr e s 2-17

System Debugger vii

CONTENTS

FIGURE PAGE
2-0 Format of VI OUIPUL i 2-18
2-7 IRMX® TF JOD TTEE ..ottt e 2-20
2-8 Format of VK QUIPUL.....coooi i 2-22
29 Format of VO OUIPUL ..o 2-24
2-10 Format of VR QUIPUL.......co e 2-28
2-11 Format of VS OUEPUL ..ot 2-32
2-12 Format of VT Output: Job Display......ees 2-37
2-13 Format of VT Output: Non-Interrupt TasK ... 2-39
2-14 Format of VT Qutput: Interrupt Task 2-39
2-15 Format of VT Qutput: Mailbox with No Queue... 242
2-16 Format of VT Output: Mailbox with Task Queue ... 2-42
2-17 Format of VT Qutput: Mailbox with Object Queue 2-43
2-18 Format of VT Qutput: Mailbox with Data Message Queue s 2-43
2-19 Format of VT Output: Semaphore with No Queue. 2-44
2-20 Format of VT Qutput: Semaphore with Task Queue 2-45
2-21 Format of VT Output: Region with No Queue 2-45
2-22 Format of VT Qutput: Region with Task Queue 2-46
2-24 Format of VT Qutput: Extension Object. 2-47
2-23 Format of VT Output: SCRmMent s 2-40
2-25 Format of VT Output: Compaosite Object Other Than BIOS ... 2-48
2-26 Format of VT Qutput: BIOS User Object COmposite s 2-49
2-27 Format of VT Output: BIOS Physical File Connection ... 2-49
2-28 Format of VT Output: BIOS Stream File Connection.. . 2-33
2-29 Format of VT Output: BIOS Named File Connection .. 2-54
2-30 Format of VT Qutput: BIOS Remote File Connection ... 2-56
2-31 Format of VT Output: Signal Protocol POort e 2-57
2-32 Format of VT Qutput: Data Transport Protocol Port ... 2-58
2-33 Format of VT Output: Data Transport Protocoi Port .. 2-58
2-34 Format of VT Qutput: Buffer Pool.. 2-60
2-35 Format of VU OUEPUL et 2-63
3-1 Example PL/M-286 Application (Init)........ci s 3-2
3-2 Example PL/M-280 Application (AIphonse) ..., 3-5
33 Example PL/M-280 Application (Gaston) ... 3-7
3-4 MOVW in Gaston Code i 3-12

viii System Debugger

CHAPTER 1
IRMX® Il SYSTEM DEBUGGER
OVERVIEW

1.1 INTRODUCING THE iRMX® Il SYSTEM DEBUGGER

When you develop application systems, you need debugging capabilities on your
development system. In addition to the iSDM System Debug Monitor or the D-MON386
Monitor, Intel provides the iRMX 11 System Debugger (SDB) for debugging your

iRMX II-based application system.

NOTE

The remainder of this manual uses the term "monitor" to refer 1o both the
iISDM System Debug Monitor and the D-MON386 Monitor.

The System Debugger is a memory-resident extension of the monitor; therefore, you must
have the monitor if you have the System Debugger configured into your system. The
monitor provides code disassembly, execution breakpoints, memory display, and program
download capabilities. The System Debugger extends the monitor’s disassembly functions
by interpreting IRMX 11 calls, data structures, and stacks.

Monitor and System Debugger commands are entered in response to the iSDM Monitor's
protected-mode prompt (..) or the D-MON2386 Monitor's prompt (>). When you invoke
the monitor, both the operating system and your application system are frozen. As you use
monitor commands to set breakpoints while the application code is executed, vou can
inspect system objects. change system call parameters and registers, and test changes.
Refer to Appendix A for more information on iSDM Monitor commands and Appendix B
for D-MON386 Monitor commands.

System Debugger 1-1

iRMX® 11 SYSTEM DEBUGGER OVERVIEW

1.2 SUPPORTING THE SYSTEM DEBUGGER

To use the System Debugger, you must have one of the following hardware configurations
with all the required support hardware:

An Intel Microcomputer connected to an 80286- or 386-based board

A terminal connected directly to an 80286- or 386-based board

An Intellec® Development System connected to an 80286- or 386-based board

In addition to the above hardware, vou must have both of the following:

The EPROM portion of the iSDM System Debug Monitor or the D-MON386 Monitor

At least the minimal configuration of the IRMX II Nucleus

1.3 CONFIGURING THE SYSTEM DEBUGGER

You cannot use the System Debugger until you include it in your system through the
Interactive Configuration Utility (ICU). To include the System Debugger, begin by
invoking the ICU. Next, provide the following information the ICU requires to configure
the System Debugger:

1.
2.

In the ICU’s "Sub-Systems” screen, respond "yes" to the SDB prompt.

In the ICU's "System Debugger" screen, set the interrupt level you want to use to
invoke the monitor manually (by pressing a hardware interrupt button).

To use the Non-Maskable Interrupt (NMI) for debugging device drivers, see the
Extended iIRMX Il Hardware and Software Installation Guide.

For detailed information on configuring the System Debugger, consult the Extended
IRMX I Interactive Configuration Utilin: Reference Manual,

1.4 INVOKING THE SYSTEM DEBUGGER

You must enter the monitor to use the System Debugger. You can invoke the monitor n
three ways:

1.

1-2

Use a hardware switch physically connected to the interrupt level you specified during
configuration. Activating this switch halts the application svstem, saves the system’s
contents, and passes control to the monitor.

Use the Human Interface DEBUG command. DEBUG loads vour specified
application program into main memory and transfers control to the monitor.

System Debugger

iRMX® II SYSTEM DEBUGGER OVERVIEW

3. Use the Bootstrap Loader DEBUG switch. When you specify this switch, the monitor
comes up after the system is loaded but before the system starts running. The CS:IP
points to the first instruction of the application system. At this point the system has not
been initialized; therefore, you can run only monitor commands. Using the MAP286
output, you can identify where you want to insert breakpoints. (For more information
on BIND, MAP, and OVL, see the idPX 286 Utilities User's Guide for iIRMX 11 Systems).
Use the break address parameter in the monitor’'s GO (G) command to set breakpoints
in the application system code. When you enter "G <CR>", the system starts and is
tnitialized. The monitor is invoked when the CS:1P reaches the breakpoints. For more
information on booting with DEBUG, consult the Extended iRMX IT Bootstrap Loader
Reference Manual.

When you invoke the monitor, the application system stops running and all system activity
freezes. The appropriate prompt appears (the *.." for the iISDM Monitor or the ">" for the
D-MON386 Menitor), and you can begin entering System Debugger and monitor
commands to examine system objects.

1.5 USING THE SYSTEM DEBUGGER

The System Debugger uses monitor procedures to parse the command line and to output
to the console; therefore, you run both System Debugger and monitor commands from the
monitor. The syntax for System Debugger commands is a "V" or "v" followed by another
letter, an optional space, and an optional parameter.

The twelve System Debugger commands (described in Chapter 2) fall into three categories:

« Eight commands extend the monitor memory display functions by displaying iRMX 11
data structures and objects.

e Three commands extend the monitor disassembly functions by recognizing and
displaying iIRMX II calls.

* A help command provides a short description of all the commands.

All commands either display information as hexadecimal numbers or try to interpret the
information. If the System Debugger cannot interpret the information, it displays the
actual hexadecimal value, followed by two question marks.

IRMX 1 provides two features that enable you to leave the monitor without resetting your
system: warm-start and Cli-restart. The warm-start feature reinitializes the system and
returns control to the Human Interface. The CLI-restart feature deletes the current job
then returns control to the Command Line Interpreter. Refer to Chapter 2 for more
tnformation on these features.

System Debugger 1-3

iRMX® II SYSTEM DEBUGGER OVERVIEW

1.6 RETURNING TO YOUR APPLICATION

When you have finished debugging your application system with the System Debugger, or if
you want to test the changes you made to the application code, use the monitor’s GO
command (G) to resume execution of the application.

1-4 System Debugger

CHAPTER 2
SYSTEM DEBUGGER COMMANDS

2.1 INTRODUCTION

This chapter contains detailed descriptions of the iIRMX 11 System Debugger commands.
Commands appear in alphabetical order, with the first occurrence of each command
appearing in at the top of the page. A directory of the commands, divided into
functional groups, precedes the command descriptions.

This chapter uses the following conventions:

"CS:IP" is the Code Segment:Instruction Pointer--The pointer to the instruction that
would be executed next if the application system were running. 1f you specify an 1P
value (one four-digit hexadecimal number) but not a CS value, the Systein Debugger
uses the current CS as the default base.

* "SS:5P"is the Stack Segment:Stack Pointer--The pointer to the current stack location.
+ Entering zero (0) as a value tor an optional parameter is the same as omitting the
parameter; the default value of the parameter is used.

» All terminal examples assume that the iSDM System Debug Monitor is being used.
Thus, example input lines show the ISDM monitor prompt ().

2.2 CHECKING VALIDITY OF TOKENS

Many System Debugger commands use iIRMX 11 tokens as parameters or display tokens as
part of the command output. The IRMX 1T Operating System maintains tokens in doubly
linked lists. When you enter a token as a parameter, the System Debugger checks the
validity of the token by fooking at the forward and backward links of the token.

It one of the links is bad, the System Debugger generates an error message along with the
standard command output. The token you enter as a parameter always appears as the
center value in each line of the token display. The displays for forward- and backward-link
errors are as follows:

Forward link ERROR: 4111-->4EX3 4111 <--4ER5--> 41355 T'FFFF <--4153

Backward link ERROR: 4111-->410F? 4111<--4E85-->4155 4E85 <--4155

System Debugger 2-1

System Debugger Commands

Arrows to the left indicate backward links; arrows to the right indicate forward links. A

question mark before or after a value signifies a forward or backward link error,
respectively.

If both links are bad, the System Debugger considers the token invalid. A token may also
be invalid if it belongs to an object in the deletion process, if an incorrect token is entered
as a parameter in a system call, or if a deleted or unused token is entered as a parameter.
When the token is invalid, the System Debugger displays the following message:

**% TNVALID TOKEN #%%

A link error indicates that iRMX 11 data structures have been corrupted. The most
common reason for this problem is a task might have accidentally written over part of the
system data structures. However, the iRMX IT protection mode feature protects against
such overwriting under normal circumstances. Data structure corruption can also occur if
you are using the Non-Maskable Interrupt (NMI). The Nucleus may have been
interrupted while it was setting up the links. (The NMI is a hardware interrupt. For more

information on the NMI, see the 80286 Hardware Reference Manual or the 80386 Hardware
Reference Manual.)

2.3 PICTORIAL REPRESENTATION OF SYNTAX

This chapter uses a schematic device to illustrate command syntax. The schematic consists
of what looks like an aerial view of a model railroad, with syntactic elements (appearing in
circles) scattered along the track. To construct a valid command, imagine that a train
enters the system at the far left, travels from left to right only (backing up is not allowed),
chooses one branch at each fork, and finally departs at the far right. The command
generated consists of the syntactic elements it encounters on its journey. The following
schematic shows two valid sequences: AC and BC.

(-

x-455

2-2 System Debugger

System Debugger Commands

These schematics do not show spaces as elements, but you may include one or more spaces
between the command and parameter. For example, even though the syntax for VR is as
follows:

segment
token

VR

x 4hE

The following command is valid:

The space between "VR" and "xxxx" is optional.

2.4 LEAVING THE MONITOR

Two features enable you to leave the monitor without resetting your system: warm-start
and CLI-restart.

The warm-start feature is the process of starting a system without reloading it from
secondary storage. Warm-start reinitializes the system, that is, it begins executing the
application system at the same point where the Bootstrap Loader passes control to the
system.

To warm-start the system from the iISDM monitor, enter the following command:

To warm-start the system from the D-MON386 monitor, enter the following command:

>

If no system code or data segments were corrupted, the system reinitializes. If segment
corruption has occurred, the application system will not run; you must reboot the system.

If your system contains ¢ Command Line Interpreter, and running your application
program causes an exception that breaks to the monitor (for example, a General
Protection exception), enter the following command to CLI-restart the system from the
iISDM monitor:

System Debugger 2-3

System Debugger Commands

Enter the following command to CLI-restart the system from the D-MON386 monitor:

>
These commands causes the system to attempt to delete the job tree of the running task. It
the running task is part of the application’s job (not a subsystem task running on behalf of

the job) control returns to the Command Line Interpreter. Otherwise, you must reboot the
system.

2.5 COMMAND DIRECTORY

Command Page

DISPLAYING iRMX 11 DATA STRUCTURES

VB--Display DUIB Information............ 2-5
VD--Display a Job’'s Object Directory.......... 2-12
VF--Display Number of Free Slots......... 2-14
VJ--Display Job Hierarchy.......... 2-18
VK--Display Ready and Sleeping Tasks.......... 2-22
V0--Display Objects in a Job...... i, 2-24
VR--Display I/0 Request/Result Segment......................... 2-27
VT--Display iRMX II Object. i 2-36

RECOGNIZING AND DISPLAYING iRMX I SYSTEM CALLS

VC--Display System Call Information.......................... ..2-9
VS--Display Stack and System Call Information.................. 2-31
VU--Display System Calls in a Task’s Stack..................... 2-62
OTHER COMMANDS

VH--Display Help Information........ 2-16

2-4 System Debugger

The VB command displays the DUIB information for the specified physical device. For
additional information about Device-Unit Information Blocks (DUIBs), refer to Chapter 4
of the Extended iRMX IT Device Drivers User’s Guide.

Physical device
name

x- 1862

PARAMETER
Physical device The name of the physical device for which you want to view the
DUIB information (e.g., WMFG(). This device must be part of
the system configuration.
DESCRIPTION

The VB command displays the DUIB information for the specified physical device. Figure
2-1 illustrates the output from the VB command.

Device name: <physical device name>
Functs: XX DUIB address XXXX | XXXX
DevSgran NKXX Max$buffers XX
DevSsize HKAKRXAKX Device XX
Unit XX DevSunit KXHX
Device$infoSp XEXK I XXXX Unit$infolp XXX IXXNKX
Update$timeout HXKX Num$buffers XXKX
Priority XX FixedSupdate XX
Init$io XERK XHXX Finish$io KXKK I XNKX
Queue$io XXHK I XKXXX Cancel$io XXXX I XKXX
Flags: XX Valid
Density XRXXAK Sides XXXXXX
Size X Format KXAXKXAKKXK
File driver:; NKHXK Named XXXX
Physical XXXX Stream KXRKKXK

Figure 2-1. Format of VB Qutput.

System Debugger 2-5

VB--DISPLAY DUIB INFORMATION

The fields displayed in Figure 2-1 are as follows:

2-6

Functs

DUIB address
Dev$gran

MaxS$buffers

DevSsize
Device
Unit
DevSunit

Device$infoSp

Unit$info$p

Update$timeout

Num$buffers

Priority
Fixed$update

Init$io

A BYTE used to specify the [/O function validity for this
device-unit.

The starting address in memory of the specified DUIB.

A WORD that specifies the device granularity, in bytes. This
parameter applies to random access devices, and to some
common devices, such as tape drives. It specifies the minimum
number of bytes of information that the device reads or writes in
one operation.

The maximum number of buffers that the EIOS can allocate tor
a connection to this device-unit when the connection is opened
by a call to SSOPEN.

The number of bytes of information that the device-unit can
store.

The number of the device with which this device-unit is
assoclated.

The number of this device-unit, which distinguishes this unit
from other units of the device.

The device-unit number, which distinguishes this device-unit
from other device-units in the hardware system.

A POINTER to a structure that contains additional information
about the device. The common, random, and terminal device
drivers require a Device Information Table in a specific format,
for each device,

A POINTER to a structure that contains additional information
about the unit. Random access, common device (such as tape
drives), and terminal device drivers require this Unit
Information Table in a specific format.

The number of system time units that the [/O System must wait
before writing a partial sector, after processing a write request
for a disk device,

The number of buffers of device-granularity size that the 1/0O
System allocates.

The priority of the [/O System service task for the device.

Indicates whether the fixed update option was selected for this
device-unit when the application system was configured.

The address of the Initialize 1/O procedure associated with this
unit.

System Debugger

Finish$io

Queuelio

Cancel$io

Flags
Valid

Density

Sides

Size

Format

File driver:

Named

Physical

Stream

System Debugger

VB--DISPLAY DUIB INFORMATION

The address of the Finish 1/O procedure associated with this
unit.

The address of the Queue 1/O procedure associated with this
unit.

The address of the Cancel 1/0 procedure associated with this
unit.

Specifies the characteristics of diskette devices.

Indicates whether the Flags field is "Valid" or "Not Valid" for
this device.

The density of the device. If the flags for this DUIB are invalid,
this field is marked "N/A".

The number of media sides that the device can write ta. [f the
flags for this DUIB are invalid, this field is marked "N/A".
The physical size of the device (5 1/4-inch or 8-inch). If the
flags for this DUIB are invalid, this field is marked "N/A".
Indicates whether track 0 of a disk 1s to be formatted as a
STANDARD diskette (128 bytes/sector) or as a UNIFORM
diskette (all sectors formatted as specified). This parameter
applies only to flexible diskettes. Hard disks are always

specified as UNIFORM. If the flags for this DUIB are invalid,
this field is marked "N/A™

A WQORD that indicates the BIOS file driver to which this
connection 18 attached.

Indicates whether this device is configured to use the Named file
driver.

Indicates whether this device is configured to use the Physical
file driver.

Indicates whether this device is configured to use the Stream file
driver.

2.7

VB--DISPLAY DUIB INFORMATION

ERROR MESSAGES
Syntax Error An error was made when entering the command. The correct
syntax is VB <physical device>. Any other syntax produces this
message.

VB not supported VB couldn’t find the byte bucket DUIB entry in the BIOS code
segment. [f no DUIB entry for the byte bucket exists, VB is
unsupported.

If the BIOS has not been configured into the system, or if the
BIOS code segment has execute-only attributes, this error
message 1s returned.

DUIB not found VB returns this error message under these conditions:
1. The DUIB is not configured into the system.

2. The DUIB entry for the specified device is located before
the byte bucket DUIB entry.

3. The user made an error while entering the physical device
name.

2-8 System Debugger

The VC command checks to see if a CALL instruction is an iRMX T system call. The VC
command identifies system calls for all IRMX I Operating System layers.

(D~ Coom >

x 457

PARAMETER

pointer The address of the CALL instruction to be checked. This
parameter can be any valid monitor address (two four-digit
hexadecimal numbers separated by a colon).

If you are using the 1ISDM monitor and you do not supply a
pointer (or you specify 0), this parameter defaults to the current
CS:IP. If you specify an IP value (one four-digit hexadecimal
number) but not a CS value, the System Debugger uses the
current CS as the default base.

If you are using the D-MON386 monitor and you specify the
address with an offset value with no base value, the parameter
defaults to the current CS:IP value.

DESCRIPTION

If the CALL instruction is an iIRMX 11 system call, the VC command displays information
about the CALL instruction as shown in Figure 2-2.

gate {NNNN
{subsystem)system call

Figure 2-2. Format of VC Output

The fields in Figure 2-2 are as follows:

gate #FNNNN The gate number associated with the IRMX 11 system call at the
address specified in the command.

System Debugger 249

VC--DISPLAY SYSTEM CALL INFORMATION

(subsystem) The iRMX II Operating System layer corresponding to the
system call.
system call The name of the iRMX Il system call.
NOTE

The System Debugger uses the gate number to determine whether the CALL
instruction represents a system call. Since the System Debugger does not
disassemble the code, but rather examines a byte value at a particular offset
from the CALL instruction, in rare cases a non-system call can be displayed as
an IRMX 11 system call. However, the System Debugger does recognize and
display all iIRMX II system calls.

ERROR MESSAGES
Syntax Error An error was made in entering the command.
Not a system CALL The parameter specified points to a CALL instruction
that is not an iIRMX H system call.
Not a CALL instruction The CS:1IP specified does not point to any kind of call
instruction.
EXAMPLES

Suppose you disassembled the following code using the iSDM monitor’s Display Memory
(DX) command:

1840:006D 50 PUSH AX

18A0:006E EBADILE CALL A = 1F1lE :5+7856
18a0:0071 EBDDO3 CALL A = 0451 15+992
18A0:0074 BB0OOOO MOV AX .0

18A0:0077 50 PUSH AX

1840:0078 8D060600 LEA A¥ WORD PRT 006

1840:007C 1E PUSH bS

18A0:007D 50 PUSH AX

18A0:007E E8411E CALL A = 1EC2 1547748
18A0:0081 A30000 MOV WORD PTR 0000H,AX

if you use the VC command on the CALL instruction at address 18A0:006E by entering
the following command:

System Debugger

VC--DISPLAY SYSTEM CALL INFORMATION

The System Debugger displays the following information:

gate #0468
(Nucleus) set exception handler

Gate number 0468 corresponds to an RQ$SETSEXCEPTIONSHANDLER system call,
which is a Nucleus call.

Now, suppose you want to see if the CALL instruction at 18A0:0071 is a system call. Enter
the following command:

The System Debugger responds with the following:

Not a system CALL]

Finally, if you use the VC command on the instruction at 18A0:0074, the System Debugger
responds with the following:

L Not a CALL instruction |

System Debugger 2-11

The VD command displays a job’s object directory.

vD job token
PARAMETER
job token The token for the job having the object directory you want
displayed. To obtain the job token, use the VJ command.
DESCRIPTION

If you specified a valid job token, the System Debugger displays the job’s object directory,
as shown in Figure 2-3.

Directory size: xxxx Entries used: xxxx
namel tokenl

name 2 tasks walting token?. . .tokeni
name j token]

namek tokenk

namen tokenn

Figure 2-3. Format of VD) Output

Figure 2-3 shows these fields:

Directory size The maximum number of entries this job can have in its object
directory.
Entries used The number of entries presently in the directory.

2-12 System Debugger

VD--DISPLAY A JOB'’S OBJECT DIRECTORY

namel..namen The names under which objects are catalogued. These names
were assigned at the time the objects were catalogued with
RQSCATALOGSOBJECT.

tokenl...tokenn Tokens for the catalogued objects.

tasks waiting Signifies that one or more tasks have performed an

RQSLOOKUPSOBJECT on an object not catalogued. The
tokens following this field identify the tasks still waiting for the
object to be catalogued.

For more information on object directories, see the Extended iRMX 1T Nucleus User's
Guide.

ERROR MESSAGES
Syntax Error No parameter was specified for the command, or an
error was made in entering the command.
TOKEN is not a Job A valid token was entered that is not a job token.

*** INVALID TOKEN *** = The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this
chapter).

EXAMPLE

Suppose you want to look at the object directory of job "2280". Enter the following
command:

The System Debugger responds with

Directory size: 000A Entries used: 0003

$ 2228
R?I0USER 2200
RQGLOBAL 2280

The symbols "§", "R?IOUSER", and "RQGLOBAL." are the names of objects the system
creates; their respective tokens are 2228, 2200, and 2280. There are no waiting tasks or
invalid entries.

System Debugger 2-13

The VF command displays the number of free Global Descriptor Table slots availabie to
the user.

@

x-1863

PARAMETERS
The VF command has no parameters.

DESCRIPTION

The VF command displays the number of free Global Descriptor Table (GDT) slots
available to the user, in the format shown in Figure 2-4.

Number of free slots = XXXXXXXX

Figure 2-4. Format of VF Output.

2-14 System Debugger

VF--DISPLAY NUMBER OF FREE SLOTS

ERROR MESSAGES

Syntax Error An error was made in entering the command.

System Debugger 2-15

The VH command displays and briefly describes the twelve System Debugger commands.

-

s 459

PARAMETERS
This command has no parameters.

DESCRIPTION

The VH command lists all of the System Debugger commands, along with their parameters
and descriptions.

ERROR MESSAGE

Syntax Error An error was made in entering the command.

EXAMPLE

If you enter the following command:

2-16 System Debugger

VH--DISPLAY HELP INFORMATION

The System Debugger responds as shown in Figure 2-5.

vb <Dev Name>
ve [<POINTER>]
vd <Job TOKEN>
vE

vh

vj [<Job TOKEN>]
vk

vo <Job TOKEN>
vr <Seg TOKEN>
vs [<count>]

vt <TOKEN>

vu <task TOKEN>

Extended iRMX II SYSTEM DEBUGGER, Vx.y
Copyright <year> Intel Corporation

Displays DUIB for physical device.

Display system call.

Display job's object directory.

Displays number of free slots available to user,
Display help information.

Display job hierarchy from specified level.
Display ready and sleeping tasks,

Display list of objects for specified job.
Display I/0 Request/Result Segment.

Display stack and system call information.
Display iRMX II object.

Unwind task stack, displaying system calls.

Figure 2-5. Format of VH Qutput

<> Angle brackets surround required variable fields.
[< >] Square and angle brackets surround optional fields.

NOTE

The system uses default values if you specify zero (0) for any of the optional
parameters in Figure 2-5. Using zero for required parameters causes the
system to display the following message:

L_ Syntax Error

System Debugger

2-17

The VJ command displays the portion of the job hierarchy that descends from the level you

specify.
O,

» 460

PARAMETER

job token The token of the job for which you want to display descendant
jobs.

If you do not specify a job token, or you specify zero (0), VI
displays the root job and its descendant jobs.

If the job has more than 44 generations of job descendants, the
System Debugger discontinues the display at the 44th
descendant level, displays an error message, and prompts for
another command.

DESCRIPTION

The VJ command displays the token of the specified job and the tokens of all its
descendant jobs. It also displays the tokens of jobs (and their descendants) at the same
level as the specified job. The tokens for descendant jobs are indented three spaces to
show their job’s position in the hierarchy. Figure 2-6 shows the format of the job hierarchy
display.

iRMX® 11 Job Tree

tokenl Root Job
token2 Human Interface
token3 Command Line Interpreter
token, Application
token5 EIGS
token6 BIGS

Figure 2-6. Fermat of V} Output

2-18 System Debugger

VJ]--DISPLAY JOB HIERARCHY

The fields in Figure 2-6 are

token The token you specified as job token (recall that the root job
token is the default).

token,...tokeng The tokens for the descendant jobs of token,.

In Figure 2-6, the Human Interface, EIOS, and BIOS Jobs are indented three spaces to
signify that they are children of the Root Job. Similarly, the Command Line Interpreter
Job is the child of the Human Interface Job, and the Application Job is the child of the
Command Line Interpreter Job.

ERROR MESSAGES
Syntax Error An error was made in entering the command.
TOKEN is not a Job A valid token was entered that is not a job token.

*** INVALID TOKEN *** The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this

chapter).
SDB job nest limit The specified job (or the default job) has
exceeded more than 44 generations of job descendants.

EXAMPLES

If you want to examine the hierarchy of the root job, enter the following command:

Suppose the System Debugger responds with the following job tree:

iRMX® II Job Tree

0258
OF38
1670
2460
OE88
QEQCO

Figure 2-7 shows this job tree:

System Debugger 2-19

V]J--DISPLAY JOB HIERARCHY

Root Job
{0258)
Human Interface EIOS BIOS
(0F38) (0E88) (OECQO)

/

Command Line Interpreter
(1670)

/

Application

(2460)
F 0539

Figure 2-7. iRMX® II Job Tree

If you want to display the descendant jobs of "0E88", enter the following command:

2-20 System Debugger

VJ--DISPLAY JOB HIERARCHY

The System Debugger displays the following:

iRMX® TI Job Tree

0OE88
QEQO
OF38
1670
2460

Note that the tokens for all jobs at the same level as the specified token (0E00 and 0F38),
and their descendants (1670 and 2460), are also displayed.

System Debugger 2-21

The VK command displays the tokens for tasks in the ready and sleeping states.

®_

x-461

PARAMETERS

This command has no parameters.

DESCRIPTION

The VK command displays the tokens for tasks that are ready and asleep, in the format
shown in Figure 2-8.

Ready tasks: XXXX XXKX

Sleeping tasks: XXXX XXXX

Figure 2-8. Format of VK Qutput

The fields in Figure 2-8 show the following:

Ready tasks The tokens for all tasks in the ready state. The first token in this
list represents the running task.
Sleeping tasks The tokens for all tasks in the sleeping state.
ERROR MESSAGES
Syntax Error An error was made in entering the command.
Ready tasks: Can’t locate The system is corrupted.
Sleeping tasks: Can'’t locate The most common reason for this type of error is

not initializing the Nucleus. To recover from this
errof, reinitialize the system.

2.22 System Debugger

VK--DISPLAY READY AND SLEEPING TASKS

EXAMPLE

To display a list of all the ready and sleeping tasks in your system, enter the following
command:

The System Debugger responds with the following:

Ready tasks: 2F00

Sleeping tasks: 26F0 2588 26B8 2200 21BO 2090 25E8 2050
2020 1FF8 2698 2238 2118 2668 2638 2768
20D0 0300

System Debugger 2-23

The VO command displays the tokens for the objects in the specified job.

vO job token

x 462

PARAMETER

job token The token of the job for which you want to display objects.

DESCRIPTION

The VO command lists the tokens for a job’s child jobs, tasks, matlboxes, semaphores,
regions, segments, extensions, composites, and buffer pools in the format shown in Figure

2-9.

Child Jobs: XXXX XXXX XXXX
Tasks: XXXX XKXX XXXX
Mailboxes: KXXX XXKX XXX
Semaphores: XXXX XXX XXXX
Regions: XEXX XXXX XXXX
Segments: XKXXX XXXX XXXXK
Extensions: XXXX XXXX XXXX
Composites: XXXX REKK XXXX
Buffer Pools: XXXX XXXX KXXX

Figure 2-9. Format of VO Output

The fields in Figure 2-9 are as follows:

Child Jobs The tokens for the specified job’s offspring jobs.
Tasks The tokens for the tasks in the specified job.
Mailboxes The tokens for the mailboxes in the job. An "o" following a

mailbox token means that one or more objects are queued at the
mailbox. A "t" following a mailbox token means that one or
more tasks are queued at the mailbox.

2-24 System Debugger

Semaphores

Regions

Segments
Extensions

Composites

Buffer Pools
ERROR MESSAGES

Syntax Error

TOKEN is not a Job

VO--DMSPLAY OBJECTS IN A JOB

The tokens for the semaphores in the specified job. A "t"
following a semaphore token means that one or more tasks are
queued at the semaphore.

The tokens for the regions in the specified job. A "b" (busy)
following a region token means that a task has access to
information guarded by the region.

The tokens for the segments in the specified job.
The tokens for the extensions in the specified job.

The tokens for the composites in the specified job. A "s"
following a composite signifies a port with a signal waiting. An
"m" signifies a port with a message waiting. A "t" signifies a port
with a task waiting.

The tokens for the buffer pools in the specified job.

No parameter was specified for the command or an
error was made in entering the command.

A valid token was entered; however, it is not a job token.

*** INVALID TOKEN *** The value entered for the token is not a valid token (as

System Debugger

defined in "Checking Validity of Tokens" earlier in this
chapter).

2-25

VO--DISPLAY OBJECTS IN A JOB

EXAMPLE

If you want to look at the objects in the job having the token "1670", enter the following
command:

The System Debugger responds with the following:

Child jobs: 2460

Tasks: 1688 1778 17B8 1940 1950 2FF8
Mailboxes: 1720 1728 1738 ¢+ 1740 t 1760 t 1768 t
Semaphores; 1740 1748 t

Regions:

Segments: 16D8 1750 1958 1960 2FE8 2FC8
Extensions:

Composites: 16990 16F0 1710 1828 1848 1980
Buffer pools:

This display shows the tokens for the child jobs, tasks, mailboxes, semaphores, regions,
segments, extensions, composites, and buffer pools in the job. It also tells you that tasks
are waiting at four mailboxes and one semaphore.

226 System Debugger

The VR command displays information about the iRMX II Basic 1/0O System 1/0
Request/Result Segment (IORS) that corresponds to the segment token you enter.

segment
VR token
x 467
PARAMETER
Segment token The token for a segment containing the IORS you want to
display. If this segment is not an IORS, the VR command
returns invalid information. To obtain a list of the segment
tokens in a job, use the VO command.
DESCRIPTION

The VR command displays the names and values for the fields of a specific IORS. The
contents of the IORS reflect the most recent I/O operation in which this IORS was used.
Except for ensuring the specified segment is between 45 and 65 bytes long, the System
Debugger cannot determine whether the segment contains a valid IORS, so you must
ensure that it does. If the parameter is a valid segment token for a segment containing an
IORS, the System Debugger displays information about the IORS as shown in Figure 2-10.
For more information on 1/O Request/Result Segments, see the Extended iRMX I Basic
1/0 System User’s Guide.

For more detailed information about the IORS contents, see the Extended iRMX 1] Device
Drivers User’s Guide.

System Debugger 2-27

VR--DISPLAY I/0 REQUEST/RESULT SEGMENT

1/0 Request Result Segment

Status RXXX Unit status XXXX
Device XXXX Unit XX
Function KXHKKEX Subfunction XXXRXKX
Count KEXXX Actual RKXXX
Device location XXAXKXXX Buffer pointer XXXXIXXXX
Resp mailbox XXXX Aux pointer KXXX I XKXX
Link forward KEKX I XXXX Link backward KKK | XXXX
Done XAXXX Cancel 1D XXNX
Connection token XXX

Figure 2-10. Format of VR Output

The fields in Figure 2-10 are as follows:
Status The condition code for the [/O operation.

Unit status Additional status information. The contents of this field are
meaningful only when the Status field is set to the ES1O
condition (002BH). If the Status field is not set to ESIO, the
Unit Status field displays "N/A".

Device The number of the device for which this 1/O request is intended.
Unit The number of the unit for which this 1/O request is intended.
Function The operation performed by the Basic /O System. The
possible functions are
Function System Call
Read RQIASREAD
Write ROQIASWRITE
Seek RQSASSEEK
Special RQSASSPECIAL
Att Dev ROSASPHYSICALSATTACHSDEVICE
Det Dev RQSASPHYSICALSDETACHSDEVICE
Open RQSAJOPEN
Close RQSASCLOSE

If the Function field contains an invalid value, the System
Debugger displays the actual value in this field, followed by a
space and two question marks.

2-28 System Debugger

Subfunction

Count

Actual

Device location
Buffer pointer
Resp mailbox
Aux pointer
Link forward

Link backward

System Debugger

VR--DISPLAY I/0 REQUEST/RESULT SEGMENT

A further specification of the function that applies only when the
Function field contains "Special” from the BIOS
RQSASSPECIAL system call. Possible subfunctions and their
descriptions are

Subfunction

For/Que
Satisfy

Notify

Device char
Get Term Attr
Set Term Attr
Signal

Rewind

Read File Mark
Write File Mark
Retention Tape
Set Font

Set Bad Info

Description

Format or Query

Stream file satisfy function
Notify function

Device characteristics

Get terminal attributes
Set terminal attributes
Signal function

Rewind tape

Read file mark on tape
Write file mark on tape
Take up slack on tape

Set character font

Set bad track/sector information

Get Bad Info Get bad track/sector information

If the Function field doesn’t contain "Special,” then the
Subfunction field contains "N/A." If the Subfunction field
contains an invalid value, the System Debugger displays the
value of the field followed by a space and two question marks.

The number of bytes of data called for in the [/O request.

The number of bytes of data transferred in response to the
request.

The eight-digit hexadecimal address of the byte or logical block
where the /O operation began on the specified device.

The address of the buffer the Basic 1/0 System read from, or
wrote to, in response to the request.

A token for the response mailbox to which the device sent the
IORS after the operation.

The pointer to the location of auxiliary data, if any. This field is
significant only when the Function field contains "Special.”

The address of the next IORS in the queue where the IORS
waited to be processed.

The address of the previous IORS in the queue where the IORS
waited to be processed.

2-29

VR--DISPLAY I/O REQUEST/RESULT SEGMENT

Done This field is always present but applies only to IORSs for I/O
operations on random-access devices. When applicable, it
indicates whether the 1/O operation has been completed. The
possible values are TRUE (0FFH) and FALSE (00H).

Cancel ID A word used by device drivers to identify 1/O requests that need
to be canceled. A value of zero (0) indicates a request that
cannot be canceled.

Connection token The token for the file connection used to issue the request for
the I/O operation.

ERROR MESSAGES
Syntax Error No parameter was specified for the command or an
error was made in entering the command.
TOKEN is not a SEGMENT The token entered is valid but not a segment token.

*** INVALID TOKEN *** The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this

chapter).
SEGMENT wrong size - The specified segment is not between 45 and
not an IORS 65 bytes long, so it is not an I/O Request/Result
Segment.

2-30 System Debugger

The VS command identifies system calls (as does the VC command) and displays the stack.

D

x-464

PARAMETER

count A decimal or hexadecimal value that specifies the number of
words from the stack to be included in the display. A suffix of T,
as in 16T, means decimal. No suffix or a suffix of H indicates
hexadecimal.

If you do not specify a count, or you specify a count of zero (0),
the number of words in the display depends on the number of
parameters for the system call at the CS:IP. Or, in the case
when CS:1P is not pointing to a system call, the entire contents
of the stack is displayed.

DESCRIPTION

The VS command identifies IRMX IT system calls for all iIRMX 11 subsystems (as does the
VC command) and interprets the system call parameters on the stack. If the stack does not
contain a system call, the VS command displays either the number of stack elements you
specify or all of the stack contents, whichever is least. If a parameter is a string, the System
Debugger displays the string. For additional system call information, see the appropriate
iRMX II Volume 3 system call manual.

The VS command interprets the CALL instruction at the current CS:1P. If you want to
interpret a CALL instruction at a different CS:1P value, you must move the CS:IP to that
value. To move the CS:IP using the iSDM monitor, use the GO (G) command or the
EXAMINE/MODIFY REGISTER command (X with CS or IP specified as the 80286 or
80386 register). If you are using the D-MON386 monitor, use only the GO command.

If the instruction is not a CALL instruction, VS displays the contents of the words on the
stack and no message. If the instruction is a CALL but not a system call (for example, a
PL/M-286 call to a procedure), VS displays the stack contents and a message informing
you that the CALL was not a system call.

System Debugger 2-31

VS--DMSPLAY STACK AND SYSTEM CALL INFORMATION

The VS command uses current values of the SS:SP (Stack Segment:Stack Pointer) registers
to display the current stack values. If the instruction is an iIRMX I system call, VS displays

the system call and the stack information as shown in Figure 2-11.

gate #NNNN

KXXX I XXXX KEXK KEXX XXXX KEXX XXXX XXXX EXXXK XXXX
KRXXA I XXXX XXXX XXXX XXXX AXXX XXXX XAXX XXXX XAXXX
(subsystem)system call
|parameters|
Figure 2-11. Format of VS Output
The fields in Figure 2-11 are as follows:
XXXX:XXXX The contents of the SS:SP (stack memory addresses).
XXX Values (tokens) currently on the stack. The number of stack

values varies, depending on the number of parameters in the

system call.

parameters The names of the stack values. The parameters correspond to
the stack values directly above them. The maximum number of

displayed parameters is 24.

The three remaining fields in Figure 2-11 are identical to those in the VC command:

gate #NNNN The gate number associated with the system call.

(subsystem) The iRMX 11 Operating System layer that the system call is part
of.

system call The name of the IRMX II system call.

2-32

System Debugger

ERROR MESSAGES

Syntax Error

Not a system CALL

Unknown entry code

EXAMPLES

VS--DISPLAY STACK AND SYSTEM CALL INFORMATION

An error was made in entering the command.

The CS:IP is pointing to a CALL instruction that is not an
iIRMX II system call.

This message indicates that one of two infrequent events has
occurred. One is that the System Debugger has mistaken an
operand belonging to some instruction in the object code for the
FAR CALL instruction. The other event is that a software link
from user code into iIRMX 11 code has been corrupted. To
recover from system corruption, reboot the system.

Suppose you determine that the SS:SP 1s 1906:07CA (using the 1ISDM Monitor’s X
command, for example) then use the VS command by entering the following command:

The System Debugger responds with the foliowing:

gate #0360
1906:07CA 0OBO8 1980 1EAS8 1980 1980 0000 0BOO 1908
1906:07DA 19A0 0B20 0580 1EAS8 1EAQ 1EE8 0000 0000
{Nucleus) delete mailbox

| . .excep$p..| . mbox.|

The parameter names identify the stack values directly above them. That is, the "excep$p”
parameter name signifies that the first two words represent a pointer (1980:0B08) to the
exception code. Similarly, the "mbox" parameter signifies that the third word (1EAS8) is the
token for the mailbox being deleted.

Now, suppose that you move the SS:SP to 2906:07D0. If you invoke the VS command by
entering the following command:

System Debugger

VS--DISPLAY STACK AND SYSTEM CALL INFORMATION

The System Debugger displays the following stack and a message informing you that the
instruction is a CALL instruction but not an iRMX IT system call:

2906:07D0 2980 2980 0000 0600 2908 29A0 0020 1580
2906:07E0 27C8 27C8 25C8 25C8 25C8 25C8 25C8 25C8

Not a system CALL

When an iRMX II system call is executed, its parameters are pushed onto the current
stack, and then a CALL instruction is issued with the appropriate stack address. If the call
has more parameters than will fit on one line, the System Debugger automatically displays
multiple lines of stack values, with corresponding multiple lines of parameter descriptions
directly below them.

For example, suppose you use the VS command as follows:

gate #0310

27CC:0F9A 0158 20C8 0000 20C8 20C8 0000 0600 17C8
27CC:0FAA 20E8 0028 0000 0000 20C8 OOEQ 2FF8 2FF8
27CC:0FBA 2608 1A58 1AF8 2608 0000 0000 0000 0000

(Nucleus) create job

[...excep$p...| . t$flgs. |stksze]..sp..|..ss..|..ds..]|..ip..]|
|..cs..|..pri.[.jSflgs.|.exp$infodp. . |maxpri|maxtsk|maxob]j |
|poolmx |poolmn|.param..|dirsiz]

This display indicates that the CALL instruction is a Nucleus RQSCREATES$JOB system
call with 18 parameters. The names of these parameters are shown between the vertical
bars (|). The words on the stack correspond to the parameters directly below them.

2-34 System Debugger

VS--DISPLAY STACK AND SYSTEM CALL INFORMATION

The following display shows that the CALL instruction is a Basic I/O System (BIOS)
RQSASATTACHSFILE system call with five parameters. The "subpath$p" parameter
points to a string seven characters long: the word "example.”

gate #0500
27CC:0F4E (OF88 17C8 25F8 0000 2600 29A0 0000 2600
27CC:0F5E 2608 110 2600 1320 26D0 0r78 ODF8 2FF8

{BI0S) attach file

f....excep$p...|.mbox.|..subpath$p..|.prefix]|. user
subpath--> 07'example’

The following display indicates that the CALL instruction at CS:IP is an Extended [/O
System RQ$SSRENAMEJFILE system call with three parameters. Two of the parameters
have strings: the "new$path8$p" parameter points to a string four characters long ("XY70");
the "path$p" parameter points to another string four characters long ("temp").

gate FO6E8

27CC:0F98 0l48 20C8 0858 20E8 (06A0 20E8 0000 0600
27CC:0FA8 17¢8 20ES8 0028 1320 0000 20C8 0008 2600

{(EIOS) rename file
| . .excep$p..|..new$pathSp..|...pathSp...]|

new path--> Q4'XY70!
path--> 04’ temp’

NOTE

If a string is more than 50 characters long, the System Debugger displays only
the first 50 characters. If the pointer is pointing to a nonreadable segment, the
System Debugger does not display the string.

System Debugger 2-35

The VT command displays information about the iRMX TT object associated with the token

you enter.
x- 465
PARAMETER
token The token of the object for which you want to display
information.
DESCRIPTION

The VT command determines the type of iRMX Il object represented by the token and
displays information about that obiect. Both the information and the format in which the
System Debugger displays the information depend on the type of object.

The following sections are divided into display groups illustrating the display format for

these iIRMX II objects:

s Jobs
s Tasks
+ Mailboxes

+ Semaphores

* Regions

ERROR MESSAGES

Syntax Error

*** INVALID TOKEN ***

2-36

¢ Segments
» Extensions
» Composite objects (six types)

+« Buffer Pools

No parameter was specified for the command or an
error was made in entering the command.

The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this
chapter).

System Debugger

JOB DISPLAY

VT--DISPLAY iRMX® [I OBJECT

If the parameter you specify is a valid job token, the System Debugger displays information
about the job having that token, as Figure 2-12 shows.

Object type

-1

Current tasks

Current objects
Directory size
Except handler

Pool min
Borrowed

Job

XXXX
XXX
XXXX

HKEKK T XKAXX

AXKXX
XXXXX

Byte range

22-44H
44 -84H
84-200H
200H-1K
1K-2K
ZK-4K
4K -BK
BK-32K
+32K

Max tasks XXXX Max prioricy XX
Max objects XXXX Parameter obj KXXX
Entries used KXXX Job flags XXKX
Except mode XX Parent job HAKXK
Pool max xxxxx Initial size XAXXX
Number chunks | Largest chunk | Total memory
| |
KXXXXKKXX | xxxxxxxx | XXXXKKKX
KXXKKKXX | xxxXxXXX | xxxxxxxx
KRXXKKXX | xxxXXRXX | =xxxxxxx
AXXXKXKXK | xxxxxxxx | xxxxxXXX
KXXXXKXX | xxxxxxxx | XXXXXXXX
KXXXXXXX | XXXXXXXX | xx=xxxxx
KKAXXKKX | XXXXXXRX | XXXXXKXX
XXXXRKKX | XXXXXxXXX | KAXXXKKX
KXXKXHKX | xxxxxxxx | xxxxxxxx

Figure 2-12. Format of VT Output: Job Display

The fields in Figure 2-12 (from left to right) are as follows:

Current tasks

Max tasks

Max priority

Current objects

Max objects

System Debugger

The number of tasks currently existing in the job. If the Max
tasks is not OFFFFH (no limit), the number of Current tasks is

equal to the Current tasks of this job plus all of its children Max

tasks.

The maximum number of tasks that can exist in the job
simultaneously. This value was set when the job was created.

The maximum (numerically lowest) priority allowed for any one

task in the job. This value was set when the job was created.

The number of objects currently existing in the job.

The maximum number of objects that can exist in the job
simultaneously. This value was set when the job was created.

VT--DISPLAY iRMX® II OBJECT

2-38

Parameter obyj

Directory size

Entries used

Job flags

Except handler
Except mode
Parent job
Pool min

Pool max
Initial size
Borrowed

Free Space

The token for the object that the parent job passed to this job.
This value was set when the job was created.

The maximum number of entries the job can have in its object
directory. This value was specified by the first parameter when
the job was created with the Nucleus RQSCREATES$JOB
system call or the RQE$SCREATES$JOB system call.

The number of objects currently catalogued in the job’s object
directory.

The job flags parameter specified when the job was created. It
contains information the Nucleus needs to create and maintain
the job.

The start address of the job’s exception handler. This address
was set when the job was created.

The value that indicates when control is to be passed to the new
job’s exception handler. This value was set when the job was
created.

The token for the specified job’s parent.

‘The minimum size (in 16-byte paragraphs) of the job’s memory
pool. This value was set when the job was created.

The maximum size (in 16-byte paragraphs) of the job’s memory
pool. This value was set when the job was created.

The initia] size (in 16-byte paragraphs) of the job’s memory
pool.

The current amount (in 16-byte paragraphs) of memory that the
job has borrowed from its ancestor(s).

All free memory in a job’s pool is accounted for, via several
double-linked lists. Each list contains a range of chunk sizes. A
chunk is a piece of contiguous memory. Column one of the free
space table shows the size ranges for the list. Column two shows
the number of chunks on each list. Column three displays the
largest chunk on each list. Column four shows the total amount
of memory on each list.

System Debugger

VT--DISPLAY iRMX® [I OBJECT

TASK DISPLAY

The System Debugger displays information about tasks in two different ways. Figure 2-13
shows the display for non-interrupt tasks, and Figure 2-14 shows the display for interrupt
tasks.

Object type = 2 Task

Static pri XX Dynamic pri XX Task state RKAXXKKKKX
Suspend depth xx Delay req XXXX Last exchange xxxx
Except handler =x=xxx:xxxx Except mode XX Task flags XX
Containing job xxxx Interrupt task no K-saved 55:5P =xxx:xxxx

Figure 2-13. Format of VT Qutput: Non-Interrupt Task

Object type = 2 Task

Static pri XX Dynamic pri XX Task state KXXAKXKAKXK
Suspend depth xx Delay req XXHX Last exchange XXXX
Except handler xxxx:xxxx Except mode XX Task flags XX
Containing job xxxx Interrupt task yes Int level XX

Master mask XX Slave mask XX Pending int XX

Max interrupts =xx K-saved S55:5P XXXX I XXXX

Figure 2-14. Format of VT Output: Interrupt Task

The fields in Figures 2-13 and 2-14 (from left to right) are as follows:

Static pri The maximum priority value of the task. This value was set by
the max$priority parameter when the task’s containing job was

created with RQ$CREATES$JOB or RQE$CREATES$JOB.

Dynamic pri A temporary priority that the Nucleus sometimes assigns to the
task to improve system performance. For example, if a higher
priority task wants control of a region that belongs to a currently
executing lower priority task, the Nucleus assigns the lower
priority task a priority equal to that of the higher priority task.
This increasing of a task’s priority, in this case, improves the
overall system performance.

System Debugger 2-39

VT--DISPLAY iRMX® II OBJECT

Task state The state of the task. The twelve possible states, as they are
displayed, are

State Description

ready task is ready for
execution

asleep task is asleep

susp task is suspended

aslp/susp task is both asleep and
suspended

deleted task is being deleted

on exch Q task is waiting at an
exchange

aslp/exch task is asleep waiting
at an exchange

sl/xc/susp task is asleep and

suspended waiting at
an exchange

on port Q task is queued at a port

aslp/port task is asleep waiting at
a port

on trans Q task is queued at a port
on transaction queue

aslp/trans task 1s asleep and

queued at port on
transaction queue

If this field contains an invalid value, the System Debugger
displays the value followed by a space and two question marks.

Suspend depth The number of RO$SUSPENDSTASK system calls that have
been applied to this task without corresponding
RQIRESUMESTASK system calls.

Delay req The number of sleep units the task requested when it last
specified a delay at a mailbox or semaphore, or when it last
called ROSSLEEP. If the task has not done any of these, this
field contains zeros.

Last exchange The token for the mailbox, region, or semaphore at which the
task most recently began to wait.

Except handler The start address of the job’s default exception handler. This
value was set either when the task was created with
RQ$CREATES$TASK, RQ$CREATES$JOB,
RQESCREATES$JOB, or later with
ROSSETSEXCEPTIONSHANDLER.

2-40 System Debugger

Except mode

Task flags

Containing job

Interrupt task

K-saved SS:5P

Int level

Master mask

Slave mask

Pending int

Max interrupts

System Debugger

VT--DISPLAY iRMX® II OBJECT

The value that indicates the exceptional conditions under which
control is to be passed to the new task’s exception handler. This
value was set either when the task was created with
RQSCREATESTASK, RQ$SCREATESJOB,
RQESCREATESJOB, or later with
RQS$SETSEXCEPTIONSHANDLER.

The task flags parameter used when the task was created with
RQ$CREATESTASK. It contains information the Nucleus
needs to create and maintain the job’s initial task.

The token of the job that this task belongs to.

Indicates whether this task is an interrupt task. "No" signifies
that the task is not an interrupt task. In this case, only the K-
saved field follows in the display. (See Figure 2-13.)

"Yes" signifies that the task is an interrupt task. In this case,
additional fields appear in the display. (See Figure 2-14.)

The contents of the SS:SP registers when the task last left the
ready state.

The level that the interrupt task services. This level was set
when this task called RQ$SETSINTERRUPT.

The value associated with the interrupt mask for the master
interrupt controller. This value represents the master interrupt
levels disabled by the interrupt level that the task services.

For example, if the task services master interrupt level 68H,
then master levels 6 and 7 are disabled, so the master mask field
is 11000000B (=0COH). For more information about interrupt
levels, see the Extended iRMX 1I Nucleus User’s Guide.

The value associated with the interrupt mask for a slave
interrupt controller. This value represents the slave interrupt
levels disabled by the level that the task services.

For example, if the task services slave interrupt Jevel 62H, then
slave levels 2 through 7 are disabled, so the slave level field is
11111100B (=0FCH). For more information about interrupt
levels, see the Extended iRMX II Nucleus User’s Guide.

The number of RQ$SIGNALSINTERRUPT calls pending for
the Int level.

The maximum number of RQ$SIGNALSINTERRUPT calls
that can be pending for the Int level.

2-41

VT--DISPLAY iRMX® I OBJECT

MAILBOX DISPLAY

The System Debugger displays information about mailboxes in three different ways:

Figure 2-15 shows the display when nothing is queued at the mailbox.
Figure 2-16 shows the display when tasks are queued at the mailbox.

Figure 2-17 shows the display when objects are queued at the mailbox.

Figure 2-18 shows the display when data messages are queued at the mailbox.

Object type = 3 Mailbox

Mailbox type 19:9.6:0:94 Task queue head xxxx
Queue discipline XXXX Object queue head 0000
Containing job KXXX Object cache depth =xx

Figure 2-15. Format of VT Output: Mailbox with No Queue

Object type = 3 Mailbox

Mailbox type XXXXXX Task queue head zzzz
Queue discipline XXXX Object queue head 0000
Containing job XXXX Object cache depth =xx
Task queue ZZZZ RXXXX

Figure 2-16. Format of VT Output: Mailbox with Task Queue

2-42

System Debugger

VT--DISPLAY iRMX® Il OBJECT

Object type = 3 Mailbox

Mailbox type KAKXXK
Queue discipline KXXX
Containing job XKKX
Object cache queue Z27Z

Object overflow queue xxxx

Task queue head xxxx
Object queue head zzzz
Object cache depth xx

XXXX

XXXX

Figure 2-17. Format of VT Output: Mailbox with Object Queue

Cbject type = 3 Mailbox

Mailbox type KXRKXX
Queue discipline XXKX
Containing jobh XXKX

Data message queue XXXX!XXXX
XXXX I XXXX

Task queue head =zzzz
Data queue head RAAK I KKAK

XXXX | XXXX HXAK IXXXX
XXXX | XXXX

Figure 2-18. Format of VT Output: Mailbox with Data Message Queue

The fields in Figures 2-15, 2-16, 2-17, and 2-18 are as follows:

Mailbox type The type of mailbox: object or data. Mailbox type Is either
Object or Data. The mailbox type is defined when the
matlbox is created.

Task queue head The token for the task at the head of the queue. [f the task
queue for this mailbox is empty, this field contains the
mailbox token.

Object queue head The token for the object at the head of the queue. If the
object queue for this mailbox is empty, this field contains
"0000". If the mailbox type is "Data”, this field contains

"N/A"

System Debugger

VT--DISPLAY iRMX® II OBJECT

Queue discipline Indicates how tasks are queued at the mailbox. Tasks are
queued as "FIFO" (first-in-first-out) or by "PRI" (priority),
depending on how the mailbox was defined when it was
created with ROSCREATESMAILBOX. If the System
Debugger can't interpret this field, it displays the actual
value followed by a space and two question marks.

Object cache depth The size of the high-performance cache portion of the
object queue associated with the mailbox. This size was
specified when the mailbox was created with
RQS$CREATESMAILBOX. If the mailbox type is "Data",
this field contains "N/A".

Containing job The token for the job that contains this mailbox.

Task queue A list of tokens for the tasks queued at the mailbox in the
order they are queued. If there are no tasks in the task
queue, this field is not displayed.

Object cache queue A list of tokens for the objects queued in the object cache
queue, in the order they are queued. If there are no
objects in the object cache queue or the mailbox type is
Data, this field is not displayed.

Object overflow queue A list of tokens for the objects queued in the object
overflow queue, in the order they are queued. If there are
no objects in the object overflow queue or the mailbox type
is Data, this field is not displayed.

Data queue head The pointer for the first data message at the head of the
message queue.
Data message queue Pointers for the data messages residing at the mailbox.
SEMAPHORE DISPLAY

The System Debugger displays information about semaphores in two ways. The first
display appears when no tasks are queued at the semaphore (Figure 2-19), and the second
appears when tasks are queued at the semaphore (Figure 2-20).

Cbhject type = 4 Semaphore

Task queue head HXXX Queue discipline XXXX
Current value KKXXX Maximum value RXXX
Centaining job XXKX

Figure 2-19. Format of VT Output: Semaphore with No Queue

2-44 System Debugger

VT--DISPLAY iRMX® Il OBJECT

Object type = 4 Semaphore

Task queue head KXXX Queue discipline XXXX
Current wvalue XXXX Maximum value XXXX
Containing job XXXXK

Task queue XXXX XXXX

Figure 2-20. Format of VT Output; Semaphore with Task Queue

The fields in Figures 2-19 and 2-20 are as follows:

Task queue head The token for the task at the head of the queue. If the task
queue is empty, this field contains zeros.

Queue discipline Indicates how tasks are queued at the semaphore. Tasks are
queued as "FIFO" (first-in-first-out) or by "PRI" (priority),
depending on how the semaphore was specified when it was
created with ROSCREATESSEMAPHORE.

Current value The number of units currently held by the semaphore.

Maximum value The maximum number of units the semaphore can hold. This
number was specified when the semaphore was created with
RQ$CREATESSEMAPHORE.

Containing job The token for the job that the semaphore belongs to.

Task queue A list of tokens for the tasks queued at the semaphore, in the
order they are queued. If no tasks are queued, this list does not
appear.

REGION DISPLAY

If the parameter you supply is a valid token for a region, the System Debugger displays
information about the associated region as shown in Figures 2-21 and 2-22.

Object type = 5 Region

Entered task XKXXX Queue discipline XXXX
Containing job KAXX

Figure 2-21. Format of VT Qutput: Region with No Queue

System Debugger 2-45

VT--DISPLAY iRMX® II OBJECT

Object type = 5 Region

Entered task XXXX Queue discipline XXXX
Containing job KEKX
Task queue XXXX XXXX

Figure 2-22. Format of VT Qutput: Region with Task Queue

The fields in Figures 2-21 and 2-22 are as follows:

Entered task The token for the task currently accessing information guarded
by the region.
Queue discipline Indicates how tasks are queued at the region. Tasks are queued

as "FIFO" (first-in-first-out) or by "PRI" (priority), depending on
how the region was specified when it was created with

RQSCREATESREGION.
Containing job The token for the job that the region belongs to.
Task queue Tokens for the tasks waiting to gain access to data guarded by

the region. This line is displayed only if a task is already in the
region and another task is waiting.

SEGMENT DISPLAY

If the parameter that you supply is a valid token for a segment, the System Debugger
displays information about the associated segment as shown in Figure 2-23.

Object type = 6 Segment

Segment size xxxx Containing job XAXX

Figure 2-23. Format of VT Output: Segment

2-46 System Debugger

VT--DISPLAY iRMX® II OBJECT

The fields in Figure 2-23 are as follows:

Segment size The number of bytes in this segment. The size of the segment
was specified when the segment was created with
RQSCREATESSEGMENT.

Containing job The token for the job that the segment belongs to.

EXTENSION OBJECT DISPLAY

If the parameter that you supply is a valid token for an extension, the System Debugger
displays information about the associated extension as shown in Figure 2-24.

Object type = 7 Extension

Extension type XXX Deletion mailbox XXXX
Containing job XXKX

Figure 2-24. Format of VT Output: Extension Object

The fields in Figure 2-24 are as follows:

Extension type The type code associated with composite objects licensed by this
extension. This code was specified when the extension type was
created with RQSCREATESEXTENSION. See the Extended
IRMX 1I Nucleus User’s Guide for more information about
extension types.

Deletion mailbox The token for the deletion mailbox associated with this
extension. This mailbox was specified when the extension type
was created with RQSCREATESEXTENSION.

Containing job The token for the job that the extension belongs to.
COMPOSITE OBJECT DISPLAY

The VT command displays the following kinds of composite information:

e All composites except those defined in the Basic I/O System (BIOS) and the port
connection

» BIOS user objects
o BIOS physical file connections

» BIOS stream file connections

System Debugger 2-47

VT--DISPLAY iRMX® [1 OBJECT

¢ BIOS named file connections

e BIOS remote file connections

e Port connection

Figure 2-25 shows the format for the display of non-BIOS objects.

Object type = 8 Composite

Extension type =xxxx Extension obj xxxx Deletion mbox xXxXxX
Containing job xxxx Num of entries xxxx
Component list XAXX XXXX KKXHK XXKX

Figure 2-25. Format of VT Output: Composite Object Other Than BIOS

The fields in Figure 2-25 are as follows:

Extension type The code for the extension type of the extension object used to
create this composite. This code was specified when the
extension object was created with ROQSCREATESEXTENSION.

Extension obj The token for the extension object used to create this composite
object.
Deletion mbox The token for the mailbox to which this composite goes when

the composite is to be deleted. This mailbox was specified when
the extension was created with RQSCREATESEXTENSION.

Containing job The token for the job that the composite object belongs to.
Num of entries The number of component entries in the composite object.
Component list The list of tokens for the components of the composite.

2-48 System Debugger

Extension type xxxx
Containing job =xxxx

VT--DISPLAY iRMX® 11 OBJECT

Figure 2-26 shows the format for the Basic I/O System user object display.

Object type = 8 Composite

Extension type xxxX Deletion mbox

Contalining job =xxxx

Extension obj XXXX
Num of entries =xxx

BIOS USER OBJECT:
User segment xxxx Number of IDs XXXX

User ID list AKX XXKX

Figure 2-26. Format of VT Output: BIOS User Object Composite

Figure 2-26 uses the composite display described in Figure 2-25 as a base and appends the

following fields:

User segment

object.
Number of 1Ds The number of user IDs associated with the user object.
User 1D list List of the user IDs associated with the user object.

Figure 2-27 shows the format for a (file) connection to a physical file.

The token for the segment containing the user 1Ds for the user

Object type = 8 Composite

Extension obj XXAX
Num of entries xxxx

TSCONNECTION OBJECT:

File driver Physical Conn flags XX Access

Open mode HEUXKX Open share XXXEXEX File pointer
IORS cache XXKX File node NXXX Device desc
Dynamic DUIB XXKXX DUIB pointer XXXX I XXXX Num of conn
Num of readers xxxx Num of writers =xxxx File share
File drivers XXXX Device gran XKXXX Device size
Device functs XXXX Num dev conn XXKX Device name

Figure 2-27. Format of VT Output: BIOS Physical File Connection

Deletion mbox

XXXX

XXXX
):9.9:9.9:9.9:9.4
XXXX

XXXX
KEXXXEX
XXXX
§:9:9.9.9.0:9:9.0.9.4

System Debugger

2-49

VT--DISPLAY iRMX® II OBJECT

Figure 2-27 uses the composite display described in Figure 2-25 as a base and appends the
following fields:

File driver The BIOS file driver to which this connection is attached. The
four possible values are Physical, Stream, Named, and Remote.
If this field contains an invalid value, the System Debugger
displays the value followed by a space and two question marks.

Conn flags The flags for the connection. To determine how the flag is set,
convert the hexadecimal value to binary. The following
description shows the connection state when a bit (0 is the
rightmost bit) is set to 1:

Bit Condition
0 The connection is being detached
1 The connection is active and can be

opened

2 This is a device connection
4 The connection was forcibly
detached
3 Reserved
5-7 Reserved
Access The access rights for this connection. This display uses a single

character to represent each access right. If the connection has
the access right, the character appears. If the connection does
not have an access right, a hyphen (-) appears in the character
position. The access rights and the characters that represent
them are

Delete

List
Directory files: Add
r— Change
L— Update
Data Files: Append
Read

Delete

2-50 System Debugger

Open mode

Open share

File pointer
IORS cache

File node

System Debugger

VT--DISPLAY iRMX® Il OBJECT

The mode established when this connection was opened. The
possible modes are

Open Mode Description

Closed Connection is closed

Read Connection is open for
reading

Write Connection is open for
writing

R/W Connection is open for

reading and writing

If this field contains an invalid value, the System Debugger
displays the value, followed by a space and two question marks.
If this value is Read, Write, or R/W, this value was specified
when the connection was opened.

The sharing status established for this connection when it was
opened. The sharing status for a connection is a subset of the
sharing status of the file (see the File share field). The possible
modes are

Share Mode Description

Private File cannot be shared

Readers File can be shared with
readers

Writers File can be shared with writers

ALL File can be shared with all
users

0 Connection is not open

If this field contains an invalid value, the System Debugger
displays the value, followed by a space and two question marks.
This probably indicates that the connection data structure has
been corrupted.

The current location of the file pointer for this connection.

The token for the segment at the head of the BIOS list of used
IORSs. These IORSs are being saved for the RQ§WAITSIO
system call to use again. This list is empty if zeros appear in this
field.

The token for a segment that the operating system uses to
maintain information about the connection. The information in
this segment appears in the next two fields.

2-51

VT--DISPLAY iRMX® IT OBJECT

Device desc The token for the segment that contains the device descriptor.
The device descriptor is used by the operating system to
maintain information about connections to a device.

Dynamic DUIB Indicates whether a Device Unit Information Block (DUIB) was
created dynamically when the device associated with this
connection was attached.

DUIB pointer The address of the DUIB for the device unit containing the file.
See the Extended iRMX H Device Drivers User’s Guide for more
information about DUIBs.

Num of conn The number of connections to the file.

Num of readers The number of connections currently open for reading.

Num of writers The number of connections currently open for writing.

File share The share mode of the file. This parameter defines how other

connections to the file can be opened. The share mode of a file
1s a superset of the sharing status of each of the connections to
the file (see the Open share field description). The possible

modes are
Share Mode Description
Private File cannot be shared
Readers File can be shared with readers
Writers File can be shared with writers
All File can be shared with all users

If this field contains an invalid value, the System Debugger
displays the value, followed by a space and two question marks.
This probably means that the internal data structure for the file
or the fnode for the file has been corrupted. See the Extended
iRMX II Basic 1/0 System User’s Guide for more information
about sharing modes for files and connections.

File drivers The file drivers that connect the file. If the file can be connected
to a given file driver, then the bit in the display is set to 1. Bit 0
is the rightmost bit.

Bit Driver

0 Physical file
1 Stream file
2 Reserved

3 Named file
4 Remote file

2-52 System Debugger

Device gran

Device size

Device functs

Num dev conn

Device name

VT--DISPLAY iRMX® [I OBJECT

The granularity (in bytes) of the device. This is the minimum
number of bytes that can be written to or read from the device
in a single (physical} 1/O operation.

The capacity (in bytes) of the device.

Describes the functions supported by the device where this file
resides. Each bit in the low-order byte of the field corresponds
to one of the possible device functions. If that bit is set to 1,
then the corresponding function is supported by the device.

Bit

~d O LA R e S

Function

F$READ

F$WRITE

F$SEEK

F$SPECIAL
FSATTACHSDEV
F$DETACHS$DEV

F$OPEN

F$CLOSE

The number of connections to the device.

The 14-character (or fewer) name of the device where this file

resides.

Figure 2-28 shows the format for a (file) connection to a stream file.

Object type = 8 Composite

Extension type XXxX
Containing job =xxx

T$CONNECTION OBJECT:

File driver Stream
Open mode hit b6 6164
TORS cache XANX
Dynamic DUIB XKXXXX
Num of readers =xxxx
File drivers XXX
Device functs XAXX
Req queued XXXX

Figure 2-28. Format of VT Qutput:

Extension ob]j KXNX
Num of entries xxXxx

Conn flags XX

Open share XXXXXX
File node XXXX

DUIB pointer NXXX ! XKXX
Num of writers xxxx
Device gran XXXX

Num dev conn XXXX
Queued conn KXXX

Deletion mbox

Access

File pointer
Device desc
Num of conn
File share
Device size
Device name
Open conn

B10S Stream File Connection

HAXXK

KEAXX
). 9.9.4.9.9.9.9.4
HAXX
KXXEX
KXXXKXX
XXXX
Stream
HKAXX

System Debugger

2-53

VT--DISPLAY iRMX® I OBJECT

Figure 2-28 uses the physical display described in Figure 2-27 as a base and appends the

following fields:
Req queued

The number of requests currently queued at the stream file.

Queued conn

Open conn

The number of connections currently queued at the stream file.

The number of connections to the stream file currently open.

Figure 2-29 shows the format for a file connection to a named file.

Object type = 8 Composite

Extension type
Containing job

XXXX
XXXX

TSCONNECTION OBJECT:

File driver
Open mode

IORS cache
Dynamic DUIB
Num of readers
File drivers
Device functs
Num of buffers
Fnode number
Owner

Total blocks
Volume gran

Named
HAKKKK
XXXX
KXKXXX
KXXX
XXXX
XXXX
XXXX
XXXX
XXXXX
XXEXKKXK
KXXX

Figure 2-29. Format of VT Output: BIOS Named File Connection

Extension ohj XXXX Deletion mbox KXKK

Num of entries xzxx
Conn flags XX Access XXXX
Open share XEXKXX File pointer XKARKKXKKK
File node XXX Device desc XXXX
DUIB pointer XXXX ! XXXX Num of conn XXXX
Num of writers =xxxx File share XXX
Device gran XXXX Device size XAXRAKXXXK
Num dev conn KNXX Device name XRAK
Fixed update HXXX Update timeout xxxx
File type XRXHXXKKXX Fnode flags XXXX
File/Vol gran XXXX Frnnode PTR(s) KXXX I XXXX
Total size KREXAKXX This size p5.31518:6:6:9 4
Volume size XEXARKKX Volume name XXXKXX

Figure 2-29 uses the physical display described in Figure 2-27 as a base and appends the

following fields:

Num of buffers

Fixed update

2-54

The number of butfers allocated for blocking and unblocking
I/O requests involving the device. A value of zero (0) indicates
that the device is not a random-access device.

TRUE or FALSE indicates whether the device uses the fixed
update timeout feature. For more information about update
timeout, see the Extended iRMX II Basic /0 System User’s
Guide.

System Debugger

Update timeout

Fnode number

File type

Fnode flags

Owner

File/Vol gran
Fnode PTR(s)

System Debugger

VT--DISPLAY iRMX® Il OBJECT

The length of the time for the update timeout feature, measured
in Nucleus time units. For more information about fixed
updating, see the Extended iRMX II Basic /0O System User’s
Guide.

The fnode number of this file. For more information about
fnodes, see the Extended iRMX 1I Disk Verification Utility
Reference Manual.

The type of named file, The possible values are

File type Description

DIR Directory file

DATA Data file

SPACEMAP Volume free space map file
FNODEMAP Free fnodes map file

BADBLOCKMAP Bad blocks file

If this field contains an invalid value, the System Debugger
displays the value, followed by a space and two question marks.

A word containing flag bits. 1f a bit is set to 1, the following
description applies. Otherwise, the description does not apply.
(Bit 0 is the rightmost bit.}

Bit Description
0 This fnode is allocated
1 The file is a long file
2 Primary fnode
3-4 Reserved
5 This file has been
modified
6 This file is marked for
deletion
7-15 Reserved

The 1D of the owner of the file. If this field has a value of
FFFFH, then the field is displayed as "WORLD". See the
Extended iRMX 11 Basic 1/0 System User’s Guide for more
information about file ownership.

The granularity of the file (in volume granularity units).

The addresses of the fnode pointers. See the Extended iRMX 11
Disk Verification Utility Reference Manual for more information
about fnode pointers.

2-55

VT--DISPLAY iRMX® II OBJECT

Total blocks The total number of volume blocks currently used for the file;
this includes indirect blocks. See the Extended iRMX II Disk
Verification Utility Reference Manual for more information about

blocks.
Total size The total size (in bytes) of the file; this includes actual data only.
This size The total number of bytes allocated to the file for data.
Volume gran The granularity (in bytes) of the volume,
Volume size The size (in bytes) of the volume.
Volume name The name of the volume.

Figure 2-30 shows the format for a file connection to a remote file.

Object type = 8 Composite

Extension type =xxxx Extension obj XXXX Deletion mhox XXX
Containing job =xxxx Num of entries =xxxx

TSCONNECTION OBJECT:

File driver Remote Conn flags XX Access XXXX
Open mode XXXXXx Open share XRXKRXAX File pointer PO.4:0:5:9.9.0 4
IORS cache XXXX File node XXXX Device desc XKXKX
Dynamic DUIB p9:9.4:4.4 DUIB pointer XXXX I XXXX Num of conn XXXX
Num of readers xxxx Num of writers =xxxx File share .0.0.4:4
File drivers XXXX Device gran XRXX Device size XXXKXKKXX
Device functs KXAX Num dev conn XXXX Device name XXXX

Figure 2-30. Format of VT Output;: BIOS Remote File Connection

The fields in Figure 2-30 are the same as the fields in Figure 2-27, with the exception of the
File driver field, which is "Remote" rather than "Physical."

Figure 2-31 shows the display format for a port having signal protocol type.

2-56 System Debugger

VT--DISPLAY iRMX® Il OBJECT

Object type = 8 Composite

Extension type =xxxx Extension obj XXXX Deletion mbox XX%X
Containing job xxxx Num of entries xxxx

TSPORT OBJECT:

Protocol type Signal Queue discipline xxxx Signal count XXXX
source id XXXX
Task gueue XXXX AXXX

Figure 2-31. Format of VT Output: Signal Protocol Port

Figure 2-31 uses the composite display described in Figure 2-23 as a base and appends the
following fields:

Protocol type The message protocol. This value is "Signal” to indicate signal
service The type is determined when the port is created through
RQ$CREATESPORT.

Queue discipline Indicates how tasks are queued at the port. Tasks are queued as

"FIFO" (first-in-first-out) or by "PRI1" (priority), depending on
how the port was specified when it was created with
RQ$CREATES$PORT. If this field is uninterpretable, the actual
BYTE value followed by a space and two question marks

appears { 77).

Signal count The number of signals currently waiting to be received at the
port.
Source id The board (agent) identification number for which this port was

created to send messages to or receive messages from. This
identification number matches the slot number of the remote
board. The number is established through the "message$id”
field when the port is created using the utility
RQ$CREATESPORT.

Task queue The tokens for the list of tasks (if any) queued at the port.

Figure 2-32 shows the display format for a port having data transport protocol type.

System Debugger 2-57

VT--DISPLAY iRMX® It OBJECT

Object type = 8 Composite

Extension type
Containing job

TSPORT OBJECT:

Protocol type
Fragmentation
Destination msg

Transaction id
Transaction id

Message queue

KXXX Extension obj XXRX Deletion mbox

XKKX Num of entries KXRX

Data T Queue discipline XXXX Buffer pool

xxXX Max Port Transctns XxXXX Sink port XKXXX
id xxxx Destination port id xxxx Source port 1id
XXXX Task token XXXX
HRXX Message pointer xxXXX:XxXXX

XEAX I XXX XXEXX T XXXX

Figure 2-32. Format of VT Output: Data Transport Protocol Port

XXXX

XXXX

XKXX

Object type = 8

Extension type
Containing job

Composite
XXXX Extension obj XXXX Deletion mbox
XXXX Num of entries XXXX

TSPORT OBJECT:

Protocol type
Fragmentation
Destination msg

Transaction id
Transaction id

Task queue

Data T Queue discipline XXXX Buffer pool
XXX Max Port Transctns XxXX Sink port
id =xxxx Destination port id xxxx Source port id
XXXX Task token XXXX
XXXX Message polinter XXXX:XXXX
RXXX XXKX

Figure 2-33. Format of VT Output: Data Transport Protocol Port

XXXX

XXXX
HXXX
KXXX

Figures 2-32 and 2-33 use the composite display described in Figure 2-23 as a base and
append the following fields:

Protocol type

2-58

The message protocol. This value is "Data T" to indicate Data
Transport service The type is determined when the port is
created through RQ§CREATE$PORT.

System Debugger

Queue discipline

Buffer pool

Fragmentation

Max Port Transctns

Sink port

Destination msg id

Destination port id

Source port id

Transaction 1d

Task token
Message pointer

Message queue

System Debugger

VT--DISPLAY iRMX® II OBJECT

Indicates how tasks are queued at the port. Tasks are queued as
"FIFO" (first-in-first-out) or by "PRI" (priority), depending on
how the port was specified when it was created with
RQSCREATES$PORT.

The token of the attached buffer pool (if any). The utility
RQSATTACHSBUFFERS$POOL attaches a buffer pool to a
port.

The fragmentation protocol. This value is either "Yes" if the
port can handle message fragmentation, or "No" if the port does
not handle message fragmentation. Port fragmentation protocol
is defined through the utility ROSCREATESPORT.

The maximum number of simultaneous outstanding transactions
for the port. This limitation is defined when the port 1s created
using RQSCREATE$PORT.

The token of the sink port (if any) associated with the port.
Sink ports are connected to ports through the
ROQSATTACHSPORT utility.

The host$id portion of the socket identifying the remote port
that this port is connected. This value is established through the
RQSCONNECT utility.

The port$id portion of the socket identifying the remote port
that this port is connected. This value is established through the
RQ$CONNECT utility.

The board (agent) identification number for which this port was
created to send messages to or receive messages from. The
number is established through the "port$id” field when the port
is created using the utility ROSCREATESPORT.

Outstanding transaction identification numbers at this port.

The token(s) of the task or tasks with outstanding transactions
at this port.

The pointer of the message(s) with outstanding transactions at
this port.

The list of pointers representing the messages queued at this
port. This field appears only if the port has queued messages.

VT--DISPLAY iRMX® [1 OBJECT

NOTE

In addition to the display forms shown in Figures 2-32 and 2-33, the VT output
for a Data Transport protocol port can appear with the following combinations
of fields:

» Transaction information with no Message Queue or Task Queue
information

* Message Queue information with no Transaction or Task Queue
information

» Task Queue information with no Transaction or Message Queue
information

» No Transaction, Message Queue, or Task Queue information
BUFFER POOL DISPLAY

If the parameter that you supply is a valid token for a buffer pool, the System Debugger
displays information about the buffer pool as shown in Figure 2-34.

Object type = 10 Buffer pool

Max Buffers KXHX Total buffer count xxxx Total size count xxxx
Containing job xxxx

Buffer pocl contents:

Buffer size XXXX Buffer count XXXX
Buffer size XXXX Buffer count XHXK

Figure 2-34. Format of VT Output: Buffer Pool

Figure 2-34 display fields are defined as follows:

Max buffers The total number of buffers allowed in this buffer pool. This
maximum value is determined when the huffer pool is created
using RQSCREATESBUFFER$POOL.

Total buffer count The number of buffers currently in the buffer pool. This

number is equivalent to the number of buffers created in the
pool using RQ3CREATESSEGMENT.

2-60 System Debugger

Total size count

Containing job

Buffer size

Buffer count

System Debugger

VT--DISPLAY iRMX® 11 OBJECT

The number of different buffer sizes in the buffer pool. The
maximum number of different buffer sizes is eight.

The token for the job that created this buffer pool.

The available buffer sizes for this buffer pool. These sizes are
determined when the individual buffers are created through
RQSCREATESSEGMENT.

The number of buffers that are of the buffer size displayed in
the field directly to the left.

2-61

The VU command displays (unwinds) the IRMX 1I system calls in the stack of the task
having the token you enter.

-

PARAMETER
token The token for the task having the stack to be searched for
system calls.
DESCRIPTION

The VU command accepts a token for a task and then searches the task’s stack for
iRMX II system calls, starting at the top of the stack. For each system call it finds in the
stack, it displays

e The return address for the call. This is the address of the next instruction to be
executed on behalf of the task after the system call has finished running.

o The VS display with two lines of stack values (or more if required for parameters of the
system call), as if the CALL instruction for the system call were in the CS:IP register
and the displayed stack values were at the top of the stack.

This command requires that the task stack reside inside an iIRMX TI segment.

The VU command uses internal iRMX 11 data structures to get some of its information.
The data structures are updated immediately after the system call at the top of the task’s
stack runs to completion. Since the monitor interrupt might come after the system call is
completed, but before the data structures are updated, some of the information the VU
command uses may be obsolete. Therefore, the first system call the VU command displays
may not be valid.

Figure 2-35 illustrates the format of one system call display by the VU command. System
calls can be nested, with one calling another, so some invocations of the VU command
produce multiple displays of the type shown in the figure.

If the stack of the indicated task has no system calls, the VU command displays the
following message:

2-62 System Debugger

VU--DISPLAY SYSTEM CALLS IN A TASK'S STACK

No system calls on stack

gate #NNNN

Return cs: lp - YYYYIVYYY

XXXKX I XXXX XXX KXXX XXXX XXXX XXXX XXX XXXX ~ XXXX
KXXX I XXXX XXXX KXXAR KXKX KXXX XXKX KXXX XXX KXAX
(subsystem) system call

|parameters|

Figure 2-35. Format of VU Output

The fields in Figure 2-34 are as follows:

gate #NNNN The gate number associated with the system call.

Return cs:ip The return address for the system call of this display (yyyy:yyyy)-
XXXX:XXXX The address of the stack portion devoted to this call.

XXKX Values currently on the stack.

(subsystem) The iIRMX 11 Operating System layer containing the system call.
system call The name of the IRMX 11 system call.

parameters The parameter names associated with the stack values. The

parameters correspond to the stack values directly above them.
If one of the parameters is a string, it displays the string contents
below the parameters.

ERROR MESSAGES

Syntax Error

*** INVALID TASK TOKEN ***

Stack not an iIRMX II segment

TOKEN is not a TASK

System Debugger

An error was made in entering the command.

The value entered for the token is not a valid
task token.

The stack of the task is not an iRMX Il segment,
as is required.

The value entered for the token is valid;
however, it is not a task token.

VU--DISPLAY SYSTEM CALLS IN A TASK'S STACK

EXAMPLE

This example shows how the VU command responds when system calls are nested. The
task for the example has called RQ$S§WRITESMOVE of the Extended 1/0 System.
RQ$SSWRITESMOVE has called RQSASWRITE of the Basic 1/O System.
RQJAFSWRITE has called ROSRECEIVESMESSAGE to wait for the data transfer to be
completed.

Suppose that before the message arrives signaling the completion of the transfer, you enter
the System Debugger and invoke the following VU command:

The System Debugger responds by displaying the following;

gate #0430
Return cs:ip -09B8:576A
216A:01B2 01C8 216a 01¢8 2164 FFFF 1768 1760 1988
216A:01G2 1550 0000 2148 1FF8 1440 2558 2000 2050
(Nucleus) receive message

|...excep$p....|... .resp$p...|.time.|.mbox. |
gate ff05B0
Return cs:ip -09D8:08EY
216A:01D4 0O1E8 216A 1F58 0400 0G00 20E8 2098 2088
216A:01E4 1430 2048 OlF8 20F8 1400 0218 0000 OlF8
{BICS) write

f...excep$p...|..mbox.[.count|...buffer$p..|.conn.
gate #0710
Return cs:ip -09F8:06FA ‘
216A:0218 0020 19F0 0400 0030 19F0 2098 2080 2140
2164:0228 2058 0000 0000 2008 20C8 20C8 20C8 20C8

{EIOS) write move

|...excepSp...|..count|...buffer$p...|.comn.

2-64 System Debugger

CHAPTER 3

SAMPLE DEBUG SESSION

3.1 INTRODUCTION

This chapter provides a sample PL/M-286 program that was developed on an Intel 310
system running on an iSBC® 286/10 processor board with the iRMX 11.3 Operating
System. The terminal was a Hazeltine {510. The code has compiled without errors;
however, it does not run. The step-by-step process for using iSDM monitor and System
Debugger commands to locate and fix the bug, then to test the corrected code is described
in section 3.2. A scenario examining debugging technigues and additional commands is
provided in section 3.3.

3.2 SAMPLE PROGRAM

This program includes three tasks: an initialization task (called Init) that creates the other
two tasks and a mailbox, and two tasks (called Alphonse and Gaston) that exchange
messages via mailboxes. The source code s listed in Figures 3-1, 3-2, and 3-3. For
information on compiling and binding this code, see the Extended iRMX II Programniing
Techniques Reference Manual. The following description explains how the program is
supposed to work.

The application code runs as a Human Interface program; therefore, the <name of the
OBJECT file specified in BND286 > is entered at the HI prompt. The task called Init runs
first, creating a mailbox it catalogs in the root directory under the name "master.” 1t
creates the tasks Alphonse and Gaston then suspends itself.

When Gaston receives control, it gets the token for the mailbox created by Init (by looking
up the name "master” in the root job's object directory). It then creates a segment (in
which it will place a message) and a response mailbox (to which Alphonse will send a
reply). Next it goes into a loop in which it places a message in the segment (after
displaying it on the screen), sends the segment to the master mailbox, then waits at the
response mailbox for a reply.

When Alphonse receives control, it also gets the token for the mailbox created by Init (by
looking up the name in the root job's object directory). It then goes into a loop in which it
waits at the mailbox for a message and checks to see if the token it received is a segment.
If it is a segment, Alphonse places its own message in the segment (after displaying it on
the screen), then sends the segment to the response maitbox. If it isn’t a segment,
Alphonse drops out of the loop and deletes itself.

System Debugger

3-1

SAMPLE DEBUG SESSION

By using the two mailboxes, the tasks Alphonse and Gaston are synchronized. Gaston
sends a message to the first mailbox and waits at the second one before continuing.
Alphonse waits at the first mailbox. When it receives a message, it sends a reply to the
second mailbox and waits at the first for another message. This cycle continues for 6
messages.

After sending its sixth message, Gaston drops out of the loop. Instead of sending a
segment to the master mailbox, Gaston displays a final message to the screen then sends
the task token (the token for the Init task) to the mailbox. When Alphonse receives this
token and finds it is not a segment, Alphonse drops out of its loop and deletes itself.

To finish the processing, Gaston causes the Init task to resume processing (remember, the
Init task suspended itself earlier). When Init takes over, it deletes both offspring tasks and
issues an EXITIOJOB system call to return control to the Human Interface level.

compact

init: DO;

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

gaston:

PROCEDURE EXTERNAL,;

token
fifo
self

taskSpriority
calling$task
calling$tasks$job

masterS$mbox

status

init$raskStoken
gastonStask$token
alphonseS$task$token
alphonse$start$add
gaston$start$add

gastonids

alphonse$ds
stackS$pointer

stackS$size
task$flags

END gaston;

alphonse:

PROCEDURE EXTERNAL;

END alphonse;

LITERALLY "SELECTOR' ;

LITERALLY 0,
LITERALLY SR

BYTE:
TOKEN

TOKEN;

TOKEN

WORD ;

TOKEN;

TOKEN ;

TOKEN;
POINTER
POINTER ;

WORD EXTERNAL:
WORD EXTERNAL;
POINTER;

WORD;

WORD ;

Figure 3-1. Example PL/M-286 Application (Init)

32

System Debugger

SAMPLE DEBUG SESSION

$include{/rmx286/inc/nuclus.ext)
Sinclude(/rmx286/inc/eios.ext)

calling$tasks$job = SELECTOR$OF(NIL); /* Directory obj cataloged in */

calling$task = SELECTORS$OF(NIL); /* Task whose priority will */
/* be gotten */

gaston$start$add = @gaston; /* Set up start addresses for */

alphonse$start$add = @alphonse; /* tasks */

stack$pointer = NIL; /* Values for creating tasks */

stack$size = 500;

task$flags = 0;

initStaskStoken = RQ$SGETSTASKSTOKENS(/* Get token for init task */
self,

@status);

CALL RQS$CATALOGSOBJECT (/% Catalog task token in */
callingStasks$job, /% directory of calling */
init$task$token, /% task's job */

@4, "init"),
@status) ;

masterSmbox = RQSCREATESMATLBOX (/* Create mailbox tasks use */
fifo, /% to pass messages */
{dstatus);

CALL RQS$CATALOGSOBJECT (¢ /* Catalog mailbox in */
calling$tasks$job, /* directory of calling */
masterSmbox, /* task's job * /
@(6, 'master’),
dstatus) ;

task$priority = RQSGETSPRIORITY (/% Get priority of calling */
callingStask, /* task */

@@status);
taskSpriority = taskSpriority + 1; /% Pick lower priority for */

/* new tasks */

Figure 3-1. Example PL/M-286 Application (Init) (continued)

System Debugger 33

SAMPLE DEBUG SESSION

alphonse$task$token = RQSCREATESTASK (/* Create tasks */
task$priority,

alphonse$start$add,

SELECTORS$0F (@alphonseSds),

stack$pointer,

stack$size,

task$flags,

@status):

gastonStask$token = RQSCREATESTASK (
task$priority,
gaston$start$add,
SELECTORS$OF (@gaston$ds) ,
stack$Spointer,
stack$size,
task$flags,
@status);

CALL RQSSUSPENDSTASK (/% Suspend self and let other */
callingS$task, /* tasks run */
{@status);

CALL RQS$DELETESTASK (/* Clean up and exit */
gaston$Stask$token,
@status);

CALL RQSDELETESTASK (
alphonse$taskStoken,
@status):

CALL RQ$EXITSIO$JOB (
0 ¥

NIL,
{@status);

END; /% Init * /

Figure 3-1. Example PL/M-286 Application (Init) (continued)

34 System Debugger

SAMPLE DEBUG SESSION

Scompact
alphonse$code: DO;

DECLARE token LITERALLY *SELECTOR’ ;
Sinclude (/rmx286/inc/nuclus.ext)
Sinclude(/rmx286/inc/eios.ext)

$include(/rmx286/inc/hi.ext)

alphonse:
PROCEDURE PUBLIC;

DECLARE CR LITERALLY "13;
DECLARE LF LITERALLY *10*;
DECLARE waitS$Sforever LITERALLY ‘OFFFFH’ ;
DECLARE FOREVER LITERALLY '"WHILE 1°';
DECLARE calling$tasks$job TOKEN;
DECLARE master$mbox TOKEN;
DECLARE responseSmbox TOKEN;
DECLARE status WORD;
DECLARE typeScode WORD,
DECLARE time$limit WORD;
DECILARE count WORD;
DECLARE alphonse$ds WORD PUBLIC;
DECLARE segStoken TOKEN;
DECLARE seg$size WORD;
DECLARE display$message(*) BYTE DATA(
CR,LF, 'aAfter you, Gaston', CR, LF);
DECLARE message BASED segStoken STRUCTURE(
count BYTE,
text(25) BYTE) ;
time$limit = 25; /* Delay factor for message */
/* display */
segSsize = 32; /* Size of message sepgment */
callingStasks$job = SELECTORSOF{(NIL); /* Directory in which to look */
/* up obj */

Figure 3-2. Example PL/M-286 Application (Alphonse)

System Debugger 3-5

SAMPLE DEBUG SESSION

master$mbox = RQ$LOOKUPSOBJECT (/* Look up message */
callingStasks$job, /* mailbox */
@(6, 'master"'),
waitSforever,
@status):
DO FOREVER;
segStoken = RQSRECEIVESMESSAGE (/* Receive response */
masterS$mbox, /* from Gaston */
waitS$forever,
@responseSmbox,
@status)
typeScode = RQSGETSTYPE(/* See what kind of */
segStoken, /* object it is */
@dstatus);
IF typeScode <> 6 THEN /* If it isn't a */
CALL RQSEXITSIOSJIOB (/* segment, exit */
0,
NTL,
{dstatus);

message.count = 21;
CALL MOVB(@display$message, @message.text, size(displaySmessage));

CALL RQSCSSENDSCOSRESPONSE (/* Send message to */
NIL, /*screen */
0,

@message .count,
@status);

CALL RQSSLEEP(/* Wait a while to */
time$limit, /* give user time to */
@status); /* see the message */

CALL RQS$SEND$SMESSAGE (/* Send message to */
response$Smbox, /* response mailbox */
segStoken,

SELECTORSOF(NIL),
@status);
END; /* FOREVER */
END alphonse; /* Alphonse */

END alphonse$code;

Figure 3-2. Example PL/M-286 Application (Alphonse) (continued)

3-6 System Debugger

SAMPLE DEBUG SESSION

Scompact
gaston$code: DO;

DECLARE token LITERALLY 'SELECTOR' ;
Sinclude(/rmx286/inc/nuclus. ext)
$include(/rmx286/inc/eios.ext)
S$include (/rmx286/inc/hi.ext)
gaston:
PROCEDURE PUBLIC;
DECLARE CR LITERALLY 137,
DECLARE LF LITERALLY 10’ ;
DECLARE fifo LITERALLY '0r;
DECLARE wait$forever LITERALLY "OFFFFH’ ;
DECLARE parentStask TOKEN;
DECLARE calling§tasks$job TOKEN;
DECLARE master$mbox TOKEN;
DECLARE responseSmbox TOKEN;
DECLARE status WORD;
DECLARE time$limit WORD
DECLARE count WORD;
DECLARE final$count WORD:
DECLARE gaston$ds WORD PUBLIC;
DECLARE seg$token TOKEN;
DECLARE seg$size WORD;
DECLARE mainSmessage(*) BYTE DATA(
CR,LF, 'After you, Alphonse’, CR, LF);
DECLARE finalSmessage(*) BYTE DATA(
CR,LF, 'If you insist, Alphonse', CR, LF):
DECLARE message BASED segStoken STRUCTURE (
count BYTE,
text(27) BYTE);
count = 0; /* Initialize count */
finalScount = 6; /% Set number of loops */
time$limit = 25; /* Delay factor for display %/
/% to screen */
segSsize = 32; /* Size of message segment */
callingStasks$job =~ SELECTORSOF(NIL); /* Directory in which to leoock #*/
/* up object */

Figure 3-3. Example PL/M-286 Application (Gaston)

System Debugger

3-7

SAMPLE DEBUG SESSION

master$mbox = RQSLOOKUPSOBJECT (
calling$tasks$job,
@(6, 'master'),
wait$forever,
{@status) ;

response$mbox = RQSCREATES$MAILBOX (
fifo,
@status);

segStoken = RQSCREATESSEGMENT(
seglsize,
@status);

DO WHILE count < final$count;
message.count = 23;

/* Look up message mailbox

/* Create response mailbox

/* Create message segment

CALL MOVW(@mainSmessage, (@message.text, SIZE(main$message));

CALL RQSCSSENDSCOSRESPONSE (
NIL,
0,
@message.count,
@status):

CALL RQS$SLEEP(
time$limit,
@status) ;

CALL RQSSENDSMESSAGE ¢
masterS$mbox,
segStoken,
responseSmbox,
@status);

segStoken = RQSRECEIVESMESSAGE(
responseSmbox,
wait$forever,
NIL,
@dstatus);

count = count + 1;
END;

?

message.count = 27;

/* Send message to screen

/* Wait a while to give user
/* time to see the message

/% Send message to mailbox

/% Receive response from
/* Alphonse

/* WHILE

CALL MOVB(@final$message,@message.text,SIZE(finalSmessage));

Figure 3-3. Example PL/M-286 Application (Gaston) (continued)

*/

*/

*/

*/

*/
*/

*/
*/

*/

System Debugger

SAMPLE DEBUG SESSION

CALL RQCSSSENDSCOSRESPONSE (
NIL,

01

@message .count,

@status)

CALL RQS$SENDSMESSAGE (
masterSmbox,
master$Smbox,
SELECTORSOF(NIL),
@status);

parent$task = RQSLOOKUPSOBIECT (
calling$tasks$job,
@4, "init "y,
wait$Sforever,
@status);

CALL RQSRESUMESTASK(
parent$task,
{dstatus) ;

END gaston;
END gaston$code;

/'k
/*

/*
/*
/'k

/*
/*

/)‘c
/*

/*

Send final message to
screen

Send token for mailbox
to mailbox. This will
stop other task.

Look up token for
calling task

Resume calling task
for cleanup

Gaston

Figure 3-3. Example PL/M-286 Application (Gaston) (continued)

*/

*/
*/
*/

*/
*/

*/

*/

3.3 DEBUGGING THE PROGRAM

Although it’s a good idea to include error checking when developing programs, we did not

include any in our sample program so that we could demonstrate more features of the
System Debugger. The sample program contains one error. We will show two approaches

to finding and correcting it using the System Debugger.

The addresses and token values appearing in the following examples are those the system

assigned in this debugging session. Most of these values will change from session to
session. It’s helpful to keep paper and pencil handy to note the various addresses and

tokens.

System Debugger

SAMPLE DEBUG SESSION

When the iSDM monitor is invoked, both the application code and the operating system
code freeze. However, by using iSDM monitor and System Debugger commands you can
disassemble and execute the application instructions. Thus, in a debugging session you will
move the CS:IP through your code, examining system objects, possibly changing stack or
register values. These changes are valid for only one pass through the code. To re-execute
the code, kill the current job by using the CLI-restart feature, then re-enter the iSDM
monitor by using the Human Interface DEBUG command.

EXAMPLE #1:

When <name of OBJECT file specified in BND286> runs, the system displays the
following message:

Interrupt 13 at 2C38:0199 General Protection ECODE=0000

The values 2C38:0199 are where the CS:1P was pointing when the program halted. The
protected-mode prompt (..} indicates that we are in the iSDM monitor. However, since the
program has been executed, we must re-enter the iSDM monitor to re-execute the code.
We can use the CLI-restart feature to return to the Command Line Interpreter. Enter the
following command:

The system responds with the Human Interface prompt (-). Next, enter the following
command:

The system responds with the following:

Interrupt 3 at 2A70:FFFF

Use the iSDM monitor’s GO (G) command to set a breakpoint at the instruction where the
program halted (remember the CS:IP value is given in the interrupt message displayed
when the program halts). The code segment (CS) value will change each time you re-enter
the iISDM monitor, but the instruction pointer (IP) will remain the same. Enter the
following command:

3-10 System Debugger

SAMPLE DEBUG SESSION

To find out where we are in the code, use the iSDM monitor’s D (DISPLAY
MEMORY /DESCRIPTOR TABLES) command to display a disassembled block of code.
Enter the following command:

The system displays the following code:

2500
2500

:0199
:019B
2500
2500:
2500:
2500
2500:
2500:
2500:
2500:

019E
01A0
01lal
0lA2
01a5
01A9
01AC
01AD

F2A5
B8O0O00
8BDO

52

50
680000
8EG63E00
B80O0O
06

50

REP
MOV
MOV
PUSH
PUSH
PUSH
MOV
MOV
PUSH
PUSH

MOVSW
AX, 0000
DX, AX

DX

AX

0000

ES, [003E)
AX, 0000
ES

AX -

The instruction at address 2500:0199 is a MOVE STRING WORD command. The only
move word instruction in the sample program is the PL/M-286 MOVW call when Gaston
enters the loop after creating the segment. The following display shows this section of

code:

System Debugger

3-11

SAMPLE DEBUG SESSION

response$mbox = RQSCREATESMAILBOX ({ /* Create response mailbox */
fifo,
@status);

segStoken = RQ$SCREATE$SEGMENT(/* Create message segment */
segSsize,
@status);

DO WHILE count < final$count;
message.count = 23;

r CALL MOVW(Rmain$message, dmessage.text, SIZE(mainSmessage});

CALL RQSCSSENDSCOSRESPONSE /* Send message to screen */
NIL,
Ol'
@message.count,
@status);

F-0545

Figure 3-4. MOVW in Gaston Code

It displaying the instruction doesn’t provide enough information about why the program
halted, we can look at the surrounding code by displaying forward or backward from the
CS:IP. The comma we specified in the DX command enables us to enter just a comma (,)
now to display forward another ten instructions from the current CS:P. (Displaying
backward from the CS:IP is shown in Example #2.)

However, since the instruction where the exception occurred is traceable to the sample
code, we know where the program fails. To examine what happens when the system tries
to move the message, we'll return to the protected-mode prompt (by entering a carriage
return < CR>) and examine register contents before and after MOVSW is executed.
Enter the following command:

3-12 System Debugger

The system displays the following:

SAMPLE DEBUG SESSION

AX=0000
BX=0034
CX=0017
DX=2680

£8=2500
58=2638
DS=2530
ES=2680

1pP=0199
SP=01F2
S1=0042
DI=0001

FL=0293 RGDT .BASE=002000 LIMIT=2FFF

BP=01F2 RIDT .BASE=005000 .LIMIT=03FF
MSW=FFFB

TR=0278 RLDT=0240

To execute the MOVSW instruction, enter the following command:

The system displays the following:

2500:0199

F2A5

REP MOVSW

Enter a comma ().

The system responds with the following;

Interrupt 13 at 2500:0199 General Protection ECODE=0000

To see how executing this instruction changed register contents, enter the following

command;

The system displays the following:

AX=0000
BX=0034
CX=0006
DX=26C0

£S=2800
55=26D8
DS=28E8
ES=26C0

IP=0199
SP=01F2
SI=0062
DI=0021

F1L=0293 RGDT .BASE=0020C00 .LIMIT=2FFF
BP=01F2 RIDT .BASE=005000 .LIMIT-03FF
M5W=FFFB

TR=0278 RLDT=02A0

System Debugger

SAMPLE DEBUG SESSION

In the ASM286 Assembly language MOVSW instruction, DS:SI represents the source data
is moving from; ES:DI is the destination. (For more information on MOVSW, see the
ASM286 Assembly Language Reference Manual.) To check the limit of the ES register,
enter the following command:

The system displays the following:

GDT (1427T) DSEG BASE=090484 LIMIT=001F P=1 DPL=0 ED~0 W=1 A=1 SRuOOOO(ESl]

The LIMIT parameter shows that the segment limit is 1FH (31 decimal). Since the system
counts from zero, the limit is 32 decimal which is the value assigned to seg$size in Gaston.
The DI register (shown in the previous display) contains 21H (33 decimal), indicating the
system was trying to write past the segment limit when the program halted. This fact
suggests the PL/M-286 MOVW call should be changed to MOVB. Here we could exit the
iSDM monitor, change the PL/M-286 code, then recompile and run it.

However, we can use the iISDM monitor's EXAMINE/MODIFY REGISTERS (X)
command to change a register value and the GO (G) command to execute the program.
Making changes with the X and S (SUBSTITUTE MEMORY) commands enables us to
test code without having to recompile and bind it.

The CX register contains the count of bytes or words moved. If we decrease the count in
the CX register to 15 before we execute the MOVSW instruction, we should be able to
move all the data. Re-enter the iSDM monitor and set a breakpoint at the MOVSW
instruction by entering the following commands:

Set the CX register to 15. Enter the following command:

Now, execute the rest of the program by entering the following command:

3-14 System Debugger

SAMPLE DEBUG SESSION

The system responds with the following:

After you, Alphonse
After you, Gaston

Interrupt 13 at 2A70:0199 General Protection ECODE=0000

Since our change was valid for one pass through the code, the first pass through the Gaston
loop worked. The next pass failed. To return to the Command Line Interpreter, enter the
following command:

This partially successful run shows that if we reduce the number of words moved, the
program works. Therefore, to make a permanent fix, we should change the PL/M-286
MOVW call to MOVB in the sample code, then recompile and bind it.

EXAMPLE #2:

We can also make changes in the disassembled code. Suppose we have run the program
for the first time, and the system displayed the following message:

Interrupt 13 at 2A70:0199 General Protection ECODE=0000

Restart the system using the CLI-restart feature as you did in Example #1, then re-enter
the iSDM monitor by entering the following command:

Set a breakpoint at the instruction that was executing when the program failed and display
a block of disassembled code by entering the following commands:

System Debugger 3-15

SAMPLE DEBUG SESSION

The system displays the following:

1258:0199 F2A5 RE?P
1258:019B BE0OOOO MOV
1258:019E 8BDO MOV
1258:01A0 52 PUSH
1258:01A1 50 PUSH

MOVSW
AX, 0000
DX, AX

To look at the instructions preceding MOVSW, enter the following command:

The system displays the following code:

1258:0174 8BO63800
1258:0178 3BO63A00
1258:017¢C 7203
1258:017E E97600
1258:0181 B11l7
1258:0183 8EG63EQO
1258:0187 26880E0000
1258:018¢C B300
1258:018E 8E063E00
1258:0192 BF0100
1258:0195 BE4200
1258:0198 FC
1258:0199 F245
1258:0198 B30O0O0OO
1258:01%E 8BDO

MoV
CMP
JB

JMP
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CLD
REP
MOV
MOV

AX, [0038]
AX, [0034]
A=0181
A=01F7
CL,17

ES, [003E]
ES: [0000],CL
CH, 00

ES, [0G3E]
DI,0001
ST,0042

MOVSW
AX, 0000
DX , AX

MOVSW s a repetitive move from DS:S1 to ES:DI. Looking at the preceding instructions,
we see 1258:0181 moves 17H into CL, which is the low-order register of CX. Remember
that CX is the count of bytes or words moved. (For more information on the register set,
see the ASM286 Assembly Language Reference Manual). 1f we display the ES register
contents using "ddt(es) <CR>"as we did in the last example, we can check the limit. Since
the limit is 32 (decimal) and the system is trying to write 17H words, the system fails when
it tries to write past the segment limit. [f we reduce this count we should be able to move
the data. We must re-enter the iSDM monitor, then using the iISDM monitor’s
SUBSTITUTE (S) command, we can change the code at 1258:0181. Semicolons (;)
precede the explanations in the following code; enter the information appearing in blue:

System Debugger

SAMPLE DEBUG SESSION

;enter monitor command to substitute
memory at Ip=0181
1258:0181 BL - ;enter a comma to step to the count
1258:0182 17 - ;enter the new count
;re-start code execution

The system responds with six iterations of the following:

After you, Al
After you, Gaston

After six iterations of the previous screen, the monitor displays the following:

If you insist, Alphonse

3.4 VIEWING SYSTEM OBJECTS

Consider that we have a deadlock problem. By looking at system objects at various stages
of execution, we can observe how synchronization (or lack of it} is occurring.

We can view any object in a job using the VO command (specifying the job’s token) to
provide the broad picture of the system state, then the VT command to focus on individual
elements. Suppose, we want to view the state of the objects before entering the loop in
which Gaston and Alphonse exchange messages. Assume we have stepped through the
code, verifying system calls until we located the CS:IP for the Nucleus create$segment
system call in Gaston. Re-enter the iSDM monitor and set a breakpoint at this CS:IP by
entering the following commands:

-Debug <name of OBJECT file specified in BND286> <GR>
..g,16d <CR>

System Debugger 3-17

SAMPLE DEBUG SESSION

To get the job token, enter the following command:

The system displays the following:

0258
0F38

0E88
QEOQ

1670

iRMX® 11 Job Tree

Note that "246(" is the token for the application job. To view objects for this job, enter the

following command:

The system displays the following:

Tasks:
Mailboxes:

Regions:
Segments:

Child Jobs:

Semaphores:

Extensions:
Composites:

26D0 26F0
25C0 t 1ABSB

23B0 25E8

24A0

1ACE 1900

25E0 2650 2528 2480 2478

At this stage of program execution, two mailboxes exist. The "t" following mailbox 25C{}
means one or more tasks are waiting at it (Alphonse was created first and 1s waiting for a
message from Gaston). Examine mailbox 25C0 by entering the following command:

System Debugger

SAMPLE DEBUG SESSION

The system responds with the following:

Object type = 3 Mailbox

Task queue head 1900 Object queue head 0000
Queue discipline FIFO Object cache depth 08
Containing job 2460

Task queue 1900

Use the System Debugger’s VU command to view the waiting task’s stack. To unwind the
stack, enter the following command:

The system displays the following:

gate #0430

Return cs:ip - 1b18:029F
16C8:01E6 0086 1D28 0084 1Db28 FFFF 17EQ0 0000

(Nucleus)receive message

...excepSp...|....resp$p...|.time.|.mbox. |

We can continue to examine objects or set a breakpoint at the return CS:IP. Setting the
CS:IP (g, 29f <CR>) in the sample program causes the iSDM monitor to display the
following:

Interrupt 13 at 21F0:0199 General Protection ECODE=00Q00Q

This message indicates that the program halts in Gaston and that 21F0:0199 is the
instruction executing when it dies.

System Debugger 3

SAMPLE DEBUG SESSION

This chapter has shown two ways to find an error and two ways to make temporary fixes
from the System Debugger. The message displayed when the program halts contains the
CS:IP of the last instruction executing. If setting the CS:IP at this instruction and
displaying the surrounding code doesn’t give you enough information about where this
point is in your application code, you can use combinations of VJ, VO, VT, VU, and VS to
locate the running task. Then set the breakpoint at the CS:IP of the last executing
instruction and display code, objects, and registers to determine how the system is
executing that instruction.

3-20 System Debugger

APPENDIX A
iISDM™MONITOR COMMANDS

A.1 INTRODUCTION

This appendix briefly describes the iISDM System Debug Monitor commands in
alphabetical order. A command directory listing the functional groups and page references
precedes the command descriptions. For examples and more detailed information about
the commands, see the iSDM System Debug Monitor User’s Guide.

A.2 COMMAND DIRECTORY

This section provides a brief summary of all iSDM monitor commands listed by functions.
Each entry in the following summary contains along with the command name a brief
description of the command and a page reference where you can find more information on
the command.

Command Function Performed Page

PROGRAM LOADING AND EXECUTION

B Bootstrap load code from the target system's
secondary storage into the target system's memory.... A-3

G Begin executing application program.................. A-5
L* Load an 8086 absolute object file or an 80286

object file from a development system into

rarget SYSTEM MEeMOLYottt A-b

N Execute one or more instructions at a time........... A-6

R* Toad and execute an 8086 absolute cbject file or an
BO0286absolute object file in target system memory... A-8

iSDM™ System Debugger A-1

iSDM™ MONITOR COMMANDS

Command Function Performed

I/O PORT INPUT AND OUTPUT COMMANDS

1 Input and display a byte or word from the specified
L0
0 Output a byte or word to the specified port..........
BLOCK MANIPULATION
C Compare the contents of one block of memory with
that of another block......
F Search the specified block of memory for a sequence
of hexadecimal digits.......
M Copy the content of a block of memory to another

block of memory.

MEMORY/REGISTER DISPLAY AND MODIFICATION

D

Display the contents of memory and descriptor table
Entries. e

Display and (opticnally) modify memory locations and
descriptor table entries.......

Display and/or modify CPU/NPX register or task state
segment contents, i e e

iSDM™ System Debugger

A-9

iSDM™ MONITOR COMMANDS

Command Function Performed Page

MISCELLANEOUS COMMANDS

E* Exit the loader program. Return control to the
development SySCemM......... i, A-4

K*¥ Echo all console output to a file. A-5

P Display the base and offset portion of an address
OF an eXPresSslon.. A-7

Q Enable Protected Virtual Address Mode (protected
MOde) e e e e A-7

Y* Display and define symbol informatiom................ A-9

* Command requires an attached development system.

A.3 COMMAND DESCRIPTIONS

This section provides brief descriptions for iSDM monitor commands in an easily
referenced alphabetical order. For more information on command parameters, syntax, and
options, refer to the iSDM System Debug Monitor User’s Guide.

A.3.1 B--Bootstrap Load

The B command passes control to the bootstrap loader to load absolute object code from
secondary storage into your target system memory. The Bootstrap Loader loads the file
into the target system at the memory address specified in the file. After the bootstrap
loader finishes loading the file, the code begins executing. To use the B command
correctly, you must be operating in real mode.

If either the file you specified or the default file does not exist, the bootstrap loader halts
and takes action according to how it is configured.

iSDM™ System Debugger A-3

iSDM™ MONITOR COMMANDS

A.3.2 C--Compare

The C command compares the contents of one block of memory defined by a range with
the contents of another block of memory that begins at a destination address. The iSDM
monitor expects the blocks to be equal in length. If the iSDM monitor encounters any
mismatched bytes, it displays them in the following format:

aaaa:bbbb =xx vyy aaaa:bbbb

where "aaaa:bbbb" are the addresses of the bytes that do not match and "xx" and "yy" are
the bytes themselves.

A.3.3 D--Display Memory/Descriptor Tables/Disassembled
Instructions

The D command is actually three commands in one. You can use it to display the contents
of a specified block of memory, the contents of an 80286,/80386 descriptor table, or the
contents of a specified block of memory in disassembled form. If you are operating in real
mode, you cannot display descriptor table entries. However, if you are operating in
protected mode, you can use both functions of this command.

A.3.4 E--Exit

The E command enables you to exit the loader program by returning control from the

loader program to the development operating system. Upon return, the iSDM monitor
loses all symbol information.

When using the E command, you must use it on a line by itself; do not use multiple
commands on a line with the E command. Also, your system must include an attached
development system before you can use this command.

When you reinvoke the iSDM monitor after exiting the foader program, one of two things
happens:

+ The iSDM monitor prints either a single or double prompt depending upon whether
you were operating in real or protected mode when you exited.

» The iSDM monitor prints its usual sign-on message and re-initializes itself if you reset

your target system between the time you exited the loader and the time you reinvoked
the iISDM monitor.

A-4 iSDM™ System Debugger

iSDM™ MONITOR COMMANDS

A.3.5 F--Find

The F command searches the block of memory you specified to determine if it contains the
sequence of hexadecimal digits you chose in the data parameter. Each time the iSDM
monitor finds a match, it displays the address of the first matching byte.

A.3.6 G--Go

The G command instructs the iSDM monitor to begin executing your application program.
In response to the G command, the iSDM monitor single steps the first instruction, then
executes all succeeding instructions at full speed.

Your application program must have at least 12 bytes of stack available for the ISDM
monitor to use. If you are operating in protected mode, each task in your program must
contain at least 12 bytes of stack at privilege level 0 for the iSDM monitor to use.

With 80286 and 80386 boards, a special situation arises when you execute the G command
and you specify a breakpoint address but not a starting address. If the breakpoint is in an
interrupt handler and the current CS:IP is at a software interrupt instruction (INT x,
INTO, BOUND), the 1SDM monitor single steps the interrupt instruction, executing the
interrupt handler at full speed and bypassing the breakpoint you set. To get around this
80286/80386 operational anomaly, make sure that the CS:IP is pointing to the (or any)
instruction preceding the software interrupt instruction before you execute the

G command.

A.3.7 I--Port input

The I command retrieves and displays a byte or word from the port you specify. Byte and
word formats are different. (See the iSDM System Debug Monitor User's Guide for byte and
word format descriptions).

A.3.8 K--Echo File

The K command copies all console output to a development system file you specify.
Repeating the K command without specifying a file causes the iSDM monitor to stop
copying console output. Your system must include an attached development system in
order to use this command.

iSDM™ System Debugger A-§

iSDM™ MONITOR COMMANDS

A.3.9 L--Load Absolute Object File

The L command loads absolute 8086 or 80286 object files into target system memory. The
iSDM monitor loads the data from the file into the memory location that you specified
when you used the LOC86 or BLD286 commands. When loading the data, the iSDM
monitor discards all previously loaded symbol information and loads the new symbol
information, but it retains all user-defined symbols. If the file contains a register
initialization record, the iSDM monitor sets the appropriate registers to the values the file
specifies. Your system must include an attached development system in order to use this
command.

The L. command cannot load relocatable modules. If you are operating in real mode, you
can load only 8086 absolute object files. If you are operating in protected mode, you can
load only 80286 absolute object files.

When you load an 80286 object file, the iISDM monitor initializes the first 40 global
descriptor table (GDT) entries for its own use. In addition, the iISDM monitor initializes
any uninitialized interrupt descriptor table (IDT) entries. If the access byte is equal to
zero, the iSDM monitor assumes that the descriptor table entry is not initialized. Refer to
Intel’s Microprocessor and Peripheral Handbook, Microsystem Components Handbook, or
IAPX 286 Operating System Writer's Guide for more information about the descriptor tables.

A.3.10 M--Move

The M command copies the contents of a block of memory to a memory address you

specify.

A.3.11 N--Execute Single Instructions

The N command displays and executes one or more disassembled instructions at a time.
Going through your application line-by-line is called "single-stepping." Single-stepping
allows you to begin at a CS:IP you specify and check your application for problems in an
instruction-by-instruction manner.

Your application program must have at least 12 bytes of stack available for the iSDM
monitor to use. If you are operating in protected mode, each task in your program must
contain at least 12 bytes of stack at privilege level 0 for the iISDM monitor to use.

When you are single-stepping instructions, you should be aware of some special

considerations. See the iSDM System Debug Monitor User's Guide for more information
about these special considerations when using the N command.

A-6 iSDM™ System Debugger

iSDM™ MONITOR COMMANDS

A.3.12 O--Port Output

The O command allows you to enter data (a byte or word) at the console and send it to a
port you select.

A.3.13 P--Print

The P command allows you to display either the value of an expression or the value of the
base (or selector) and offset portions of an address. The values are displayed on your
console terminal screen. The iISDM monitor always displays an address in hexadecimal
form. If you enter "P" plus an expression, the iISDM monitor prints the value in
hexadecimal. If you enter "PT" or "PS" plus an expression, the iSDM monitor prints the
value in decimal or signed decimal form, respectively.

In this command, the comma acting as a separator also causes the iSDM monitor to add a
space between the addresses or expressions it displays.

A.3.14 Q--Enable Protection (80286/80386 Only)

The Q command changes the 80286- or 80386-based system from real mode to protected
mode. The iSDM monitor displays the following message when you use the Q command:

Now in Protected Mode]

When you invoke this command, the iSDM monitor initializes the entries it needs in the
GDT and the IDT. The iSDM monitor then places itself at privilege level zero. If you are
already operating in protected mode when you invoke this command, the iSDM monitor
re-initializes the GDT and IDT entries. The only way you can return to real mode is to
reset the 80286 or 80386 hardware.

iSDM™ System Debugger A-7

iSDM™ MONITOR COMMANDS

A.3.15 R--Load and Go

The R command is a combination of the Load command (L) and the Go command (G).
This command loads an absolute object file from a development system into target system
memory then executes this program. This command causes the iSDM monitor to discard
all previously loaded symbol information and load new symbol information; however, the
iISDM monitor retains all user-defined symbols. Your system must include an attached
development system in order to use this command.

The iSDM monitor loads the data from the file into the memory location that you specified
when you used the LOC86 or BLD286 commands. If the file contains a register
initialization record, the iSDM monitor sets the appropriate registers to the values the file
specifies.

The R command cannot load relocatable modules. If you are operating in real-addressing
mode, you can load only 8086 absolute object files. If you are operating in protected mode,
vou can load only 80286 bootloadable (absolute) files.

When you load an 80286 object file, the ISDM monitor initializes the first 40 global
descriptor table (GDT) entries for its own use. In addition, the iSDM monitor initializes
any uninitialized interrupt descriptor table (IDT) entries. Refer to Intel’s Microprocessor
and Peripheral Handbook, Microsystem Components Handhook, or iAPX 286 Operating
System Writer's Guide for more information about the 80286 component’s descriptor tables.

After the iISDM monitor loads the file and sets the appropriate registers to the values the
file specifies, it begins to execute the program at the location specified by the CS and IP
registers.

Your application program must have at least 12 bytes of stack available for the ISDM
monitor to use. If you are operating in protected mode, each task in your program must
contain at least 12 bytes of stack at privilege level 0 for the iISDM monitor to use.

A.3.16 S--Substitute Memory/Descriptor Table Entry

The § command is actually two commands in one. You can use it to display and
(optionally) modify either the contents of memory or the contents of descriptor table
entries. [f you are operating in real mode, you cannot display and modify descriptor table
entries. However, if you are operating in protected mode, you can use both functions of
this command.

A-8 iSDM™ System Debugger

iSDM™ MONITOR COMMANDS

If you enter the S command without an equal sign (=), the iISDM monitor displays a
special hyphen (-) prompt. Then, it waits for you to enter either

+ A continuation comma instructing the iSDM monitor to display the next memory
location.

e A single expression or a list of expressions separated by slashes (/). By entering an
expression (or expressions), you instruct the iSDM monitor to substitute these values in
place of those already in the memory location you specified.

The iSDM monitor continues to issue hyphen prompts until you enter a carriage return.

A.3.17 X--Examine/Modify Registers

The X command allows you to examine and (optionally) modify the contents of your
system’s NPX and microprocessor registers.

If you use the X command with no parameters, the iSDM monitor displays all of the 80806,
286, and 386 registers.

If you use both the register name and an expression, (for example, CS = XXXX), the value
you entered (XXXX) is placed in the specified register.

You can use the X command to set the 8086 tamily and NPX registers and the task state
segment contents to any value. If you used any invalid values, the iISDM monitor reports
them when you execute the application program.

A.3.18 Y--Symbols (80286 or 80386 Only)

The Y command allows you to display and define symbol information generated by 80286
translators. If you use the Y command with no parameters, the iSDM monitor displays all
the symbols stored in the current domain module or in all modules if you set no demain.
You can also choose to have the iSDM monitor display the symbols and their values in a
particular module or you can use this command to define your own symbols. To use this
command, you must be operating in protected mode, with an attached development
system.

iSDM™ System Debugger A9

APPENDIX B
D-MON386 COMMANDS

B.1 INTRODUCTION

This appendix briefly describes the 80386 Debug Monitor (D-MON386) commands in

alphabetical order. A command directory listing the functional groups and page references

precedes the command descriptions. For examples and more detailed information about
the commands, see the D-MON386 Debug Monitor for the 80386 User's Guide.

B.2 ENTERING COMMANDS

To enter D-MON386 commands, follow the guidelines below:

 Terminate a command line by pressing the ENTER key or the RETURN (<CR>)
key. A command line can consist of one or more commands.

* Separate multiple commands on a single line using a semicolon (;).

» Continue commands from one line to another by entering the slash (/) just before
terminating the line with the ENTER key or RETURN key.

» Enter commands using upper or lower case characters.

» Use CTRL-C (pressing the control key down while at the same time pressing the C
key) to abort a command being constructed on the command line.

D-MON386 System Debugger

ND-MON386 COMMANDS

B.3 COMMAND DIRECTORY

This section provides a brief summary of all D-MON386 commands listed by functions.
Each entry in the following summary contains along with the command name a brief
description of the command and a page reference where you can find more information on
the command.

Command Function Performed Page
BLLOCK
COUNT/ENDCOUNT Provides monitor command control
structures. These structures enable you
to enter and repeat execution of several
monitor commands. e B-5
CONTROL VARIABLES
BASE Display or set the base number system to
to either binary, octal, decimal, or
hexadecimal B-5
NO-N9 Display or set scratch registers zero
through nine........ B-8
5 Display or set the current execution point.. B-5

EXPRESSION DISPLAY

EVAL Evaluates an expression and displays the
results. ... e B-6

EXECUTION ENVIRONMENT

GO Controls high-level execution environment. .. B-7
ISTEP Enables single-step execution............... BE-8
SWBREAK Displays and sets software code breaks. B-9
SWREMOVE Removes software code breaks................ B-10

B-2 D-MON386 System Debugger

D-MON386 COMMANDS

Command Function Performed Page
DESCRIPTOR TABLE ACCESS
GhT Displays the Global Descriptor Table or
specific entries. B-7
LDT Displays the Local Descriptor Table or
specific entries.. B-8
IDT Displays the Interrupt Descriptor Table or
specific entries....... B-7
DT Displays the Global or Local Descriptor
tables. B-6
MEMORY ACCESS
ASM Disassembles memory as 80386 assembler
MNemonics. B-5
BYTE Reads or writes bytes of memory............. B-5
DWORD Reads or writes double words of memory...... B-6
INTn Reads or writes 1-, 2-, or 4-byte integers
In MEmMOYy. B-7
ORDn Reads or writes 1-, 2-, or 4-byte ordinals
inmemory. B-8
USE Initializes the default for disassembling
code to 1l6-bit or 32-bit.,.................. B-10
WORD Reads or writes words of memory......... B-10
PAGE TABLE ACCESS
PD Displays the Page Table Directory or page
table entries..... B-8

D-MON386 System Debugger B-3

D-MON386 COMMANDS

Command Function Performed Page
PORT1/0O
DPORT Reads or writes 32-bit ports................ B-6
PORT Reads or writes 8-bit ports................. B-9
WPORT Reads or writes 1l6-bit ports................ B-11
REGISTER ACCESS
CREGS Displays the control registers.............. B-6
FLAGS Displays the lower 16 bits of the EFLAGS
register in mnemonic form................... B-6
Register-name Displays or modifies individual registers... B-9
REGS Displays a set of selected registers as a
ELOUD . oottt e e e BE-9
SREGS Displays the segment registers as a group... 5-9

TASK STATE SEGMENT ACCESS

TSS Displays the contents of a task state

SEEMENT . . . e B-10
USER AID
B Executes a real mode interface program...... B-5
HELP Displays the help screen................... . B-7
HOST Provides the capability for operation with

PMON host software.................., B-7
VERSION Displays the version of D-MON386............ B-10

B.4 COMMAND DESCRIPTIONS

This section provides brief descriptions for D-MON386 commands in an easily referenced
alphabetical order. For on-line syntax help, refer to the HELP command. For more
information on command parameters, syntax, and options, refer to the D-MON386 Debug
Monitor for the 80386 User’s Guide.

B-4 D-MON386 System Debugger

D-MON386 COMMANDS

B4.1 $

This command displays or modifies the current execution point via the execution address
register (CS:EIP). The contents of CS:EIP determine which ASM386 statement executes
next. Entering $ by itself displays the current contents of CS:EIP.

B.4.2 ASM

This command disassembles code into ASM386 opcode mnemonics. Using this command
and the addresses you supply with it, you can disassemble from one to several lines of code.
Disassembled code appears on the screen in column form. Each row of columns contains
an address, a hexadecimal object value, an opcode mnemonic, any operands, and
comments appended to the operands.

B4.3 B

This command invoKes a user-supplied real mode interface program. The B command is
intended primarily for including a bootstrap loader program.

B.4.4 Base

This command displays or modifies the number base. Available number bases include
binary, octal, decimal, and hexadecimal. The hexadecimal base is the monitor default base.
Entering BASE by itself displays the current base. Entering BASE followed by an
expression that evaluates to 2, 8, 10, or 16 {all decimal numbers) sets the base to binary,
octal, decimal, or hexadecimal, respectively.

B.4.5 Byte

This command displays or modifies partitions of memory using a byte format. You can
specify the partition as a single byte or a range of bytes. Entering the command BYTE
followed by an address or range of addresses causes that partition of memory to appear on
the screen. Entering the command BYTE as an equation causes the partition of memory
on the left side of the equation to be replaced with the contents of memory or value of the
right side of the equation.

B.4.6 Count/Endcount

This command executes groups of D-MON386 commands in a specified order for a
specified number of times. After entering COUNT expr, simply enter in commands you
wish to execute. After entering ENDCOUNT, one iteration of the commands will have
already been executed. The entire group of commands then continues to execute for expr-
1 number of times.

D-MON386 System Debugger B-5

D-MON386 COMMANDS

B.4.7 Cregs

This command displays the contents of the control registers and the EFLAGS register
when the processor is in real mode. If the processor is in protected mode, the CREGS
command also displays the system address registers TR and LDTR. The display appears
using a hexadecimal number base.

B.4.8 Dport

This command reads or writes a 32-bit port. Entering DPORT with the physical
input/output address space as a 16-bit unsigned quantity causes the specified port to be
read and the contents to appear on the screen. If you supply an expression to the right of
the equal sign when entering this command, the addressed port is written with the value
the expression equals.

B.4.9 DT

This command displays descriptors from either the LDT or the GDT depending upon the
index supplied with the command.

B.4.10 Dword

This command displays or modifies partitions of memory using a double word format. You
can display a specific double word or a range of double words by entering DWORD
followed by the single address or the range of addresses. Entering the DWORD command
as an equation causes the partition of memory specitied on the left-hand side of the

equation to be replaced with the contents of memory or value of the right-hand side of the
equation.

B.4.11 Eval

This command evaluates the expression entered in after the keyword EVAL. The results

of the expression appear on the screen in binary, octal, decimal, hexadecimal, and ASCII
formats.

B.4.12 Flags

This command displays the contents of the lower 16 bits of the EFLLAGS register. The

display appears in a mnemonic form. The presence of a mnemonic indicates a flag is set.
The absence of a mnemonic in the display indicates a flag is not set.

B-6 D-MON386 System Debugger

D-MON386 COMMANDS

B.4.13 GDT

This command displays the entire Global Descriptor Table (GDT) or individual GDT
descriptors. Entering the keyword GDT by itself causes the entire GDT to appear.
Entering GDT followed by an index expression causes a specific descriptor to appear.

B.4.14 Go

This command supplies high-level execution control. Use of the GO command enables you
to begin and end program execution using specific points in the application. You can also
clear and specify break conditions using the GO command.

B.4.15 Help

This command displays the major D-MON386 commands along with thetr general syntax.
For examples and more detailed information about the commands, see the D-MON3&6
Debug Monitor for the 80386 User’s Guide.

B.4.16 Host

This command provides the capability for operation with PMON host software. When
entering this command, be sure to press only the ENTER key or a carriage return <CR>
immediately after HOST.

B.4.17 IDT

This command displays the entire Interrupt Descriptor Table (IDT) or individual IDT
descriptors. Entering the keyword IDT causes the entire 1DT to appear. Entering [DT
followed by an index causes a specific descriptor from the 1DT to appear.

B.4.18 INTn

This command displays or modifies partitions of memory using an integer format. When
entering the command, you can substitute the numbers 1, 2, or 4 for n. Thus, the integer
type(s) referenced in memory are either 1-, 2-, or 4-byte integers. You can specify the
partition as a single INTn value or a range of INTn values. Entering the command INTn
followed by an address or range of addresses causes that partition of memory to appear on
the screen. Entering the command INTn as an equation causes the partition of memory on
the left side of the equation to be replaced with the contents of memory or value of the
right side of the equation.

D-MON386 System Debugger B-7

D-MON386 COMMANDS

B.4.18 Istep

This command performs single-step execution. You can use this command to single-step
through the executable code from one to 255 executable statements. ISTEP also provides
the capability to begin execution from a point other than the current execution point.

B.4.19 LDT

This command displays the entire Local Descriptor Table (LDT) or individual LDT
descriptors. Entering the keyword LDT causes the entire LDT to appear. Entering LDT
followed by an index causes a specific descriptor from the LDT to appear.

B.4.20 NO-N9S

This command displays or alters scratch registers zero through nine. Entering Nn (where n
is a number 0 through 9) by itself causes the value of the appropriate register to appear on
the screen. You can enter Nn followed by an equal sign and an expression to alter the
contents of the appropriate scratch register.

B.4.21 ORDn

This command displays or modifies partitions of memory using an ordinal format. When
entering the command, you can substitute the numbers 1, 2, or 4 for n. Thus, the ordinal
type(s) referenced in memory are either 1-, 2-, or 4-byte ordinals. You can specify the
partition as a single ORDn value or a range of ORDn values. Entering the command
ORDn followed by an address or range of addresses causes that partition of memory to
appear on the screen. Entering the command ORDn as an equation causes the partition of
memory on the left side of the equation to be replaced with the contents of memory or
value of the right side of the equation.

B.4.22 PD

This command examines the Page Table Directory and page tables. When paging is
enabled, the 80386 uses two levels of tables to translate a linear address into a physical
address: the Page Table Directory and the page tables themselves. Entering the PD
command by itself causes the entire 4K Page Table Directory to scroll to the screen. You
can, however, supply an index with the PD command to view a particular directory entry
within the Page Table Directory. Also, you can use the additional .PT option with an index
to view a particular page table entry.

B-8 D-MON386 System Debugger

D-MON386 COMMANDS

B.4.23 Port

This command reads or writes a 8-bit port. Entering PORT with the physical input/output
address space as a 16-bit unsigned quantity causes the specitied port to be read and the
contents to appear on the screen. If you supply an expression to the right of the equal sign
when entering this command, the addressed port is written with the value the expression
equals.

B.4.24 Register-name

D-MON?386 enables you to display or alter the contents of 80386 registers. To gain register
access, enter the name of the register Entering the name of the register only causes the
contents of the register to appear on the screen. Entering the name of the register
followed by an equal sign and a valid expression causes the contents of the register to be
written with the value of the expression. For a complete list of register names, refer to the
u-MON386 Debug Monitor for the 850386 User’s Guide.

NOTE

Register modification is dependent on the current processor protection model.
You cannot modify protected registers.

B.4.25 Regs

This command displays the contents of a set of registers as a group. The register set
depends on which mode the processor is currently operating under (real or protected).
The display is always in hexadecimal, and it provides less detail for the segment and control
registers than the command that are specifically designed for those groups of registers, that
1s SREGS and CREGS, respectively.

B.4.26 Sregs

This command displays, in hexadecimal, the contents of the segment registers (CS, DS, SS,
ES, FS, and GS).

B.4.27 Swbreak

This command displays or sets code patch breaks. Entering SWBREAK by itself causes all
current software break definitions to appear. If you enter SWBREAK followed by an
equal sign and one or more addresses, the command sets a software break at the specified
address or addresses.

D-MON386 System Debugger B-9

D-MON386 COMMANDS

NOTE

When specifying software break addresses, the address must be able to be
written, present in physical memory, and on an instruction boundary. A
maximum of 16 software breaks may be in effect at one time.

B.4.28 Swremove
This command removes all or selected code patch breaks. Entering this command followed

by ALL removes all current software breaks. If you supply one or more addresses with the
command, the software breaks at those addresses alone are removed.

B.4.29 TSS

This command displays the contents of a task state segment. TSS supports both 80386 and
80286 task state segments. Task state segments appear using the component names.

B.4.30 Use

This command specifies the default (16-bit or 32-bit code) for disassembling code from
physical or linear addresses. When entering the command, the expression to the right of
the equal sign must evaluate to either 16 or 32 (decimal).

B.4.31 Version

This command displays the version number of the D-MON386 software you are using.

B.4.32 Word

This command displays or modifies partitions of memory using a word format. You can
specify the partition as a single word or a range of words. Entering the command WORD
followed by an address or range of addresses causes that partition of memory to appear on
the screen. Entering the command WORD as an equation causes the partition of memory
on the left side of the equation to be replaced with the contents of memory or value of the
right side of the equation.

B-10 D-MON386 System Debugger

D-MON386 COMMANDS

B.4.33 Wport

This command reads or writes a 16-bit port. Entering WPORT with the physical
input/output address space as a 16-bit unsigned quantity causes the specified port to be
read and the contents to appear on the screen. If you supply an expression to the right of

the equal sign when entering this command, the addressed port is written with the value
the expression equals.

D-MON386 System Debugger B-11

INDEX

Altering descriptor table entries A-8
Altering memory contents A-8, B-5, 6,7, 8, 10
Altering register contents 3-14, A-9, B-8, 9

Bootloading from the monitor A-3, B-5
Bootstrap Loader DEBUG switch 1-3
Breakpoints 1-3, 3-10, B-9, 10

Cc

Changing current instruction pointer B-5
Changing disassembled code 3-15, 16
Changing descriptor table entry contents A-8
Changing memory contents A-8, B-5, 6, 7, 8, 10
Changing modes A-7
Changing register contents 3-14, A-9, B-8,9
CLI-restart 1.3, 2-3, 3-10
Code blocks, displaying 3-12, 16
Commands

D-MON386 B-1

Directory 2-4

ISDM™ A-1

Overview 1-3

Syntax for debugger 1-3

Token validity 2-1

VB 2-§

vC 2-9

vD 2-12

VF 2-14

VH 2-16

VI 2-18,3-18

VK 2-22

VO 2-24,3-17, 18

VR 2-27

System Debugger Index-1

INDEX

Commands (cont.)
VS 2-31
VT 2-36, 3-17, 18
VU 2-62,3-19
Comparing blocks of memory A-4
Configuration 1-2
Contents of the stack 2-31
Conventions iv, 2-1
Copying blocks of memory A-6
Current instruction, displaying 3-11, B-5

D

D-MON386 monitor command directory B-2
D-MON386 monitor command overview B-1, 5
D-MON2386 monitor commands

$ B-5

Asm B-5

B B-5

Base B-5

Byte B-5

Count/Endcount B-5

Cregs B-6

Dport B-6

DT B-6

Dword B-6

Eval B-6

Flags B-6

GDT B-7

Go B-7

Help B-7

Host B-7

IDT B-7

INTn B-7

Istep B-8

LDT B-8

NO-N9 B-8

ORDn B-8

PD B-8

Port B-9

Register name B-9

Regs B-9

Sregs B-9

Swbreak B-9

Index-2 System Debugger

INDEX

D-MON386 monitor commands (cont.)
Swremove B-10
Syntax B-1
TSS B-10
Use B-10
Version B-10
Word B-10
Wport B-11
Deadlock 3-17
DEBUG command 1-2, 3-10
Debug session, sample 3-1
Descriptor tables, displaying A-4, B-6, 7, 8
Determining the base and offset of an address A-7
Disassembled code, displaying 3-15, A-4, B-5, 10
Displaying blocks of code 3-12, A-4
Displaying symbol information A-9
Displaying the number base B-5
DUIB information, displaying 2-5

E

Echoing console output A-5

ES register limit, checking 3-14

Examining a mailbox 3-18

Examining page table directory and tables using D-MON386 B-8
Examining register contents 3-12, 13, B-6, 9
Examining stack contents 3-19

Example debug session 3-1

Executing a program 3-14, 15, A-5, 8, B-7
Executing a single line of code 3-13, A-6, B-8
Exiting the monitor A-4

Expression evaluation A-7, B-6

F
Finding text A-5

G

GDT slots, displaying free amount 2-14
Getting help 2-16, B-7

H

Hardware/Software requirements 1-2
Help 2-16, B-7

System Debugger Index-3

INDEX

I/O Result Segment (IORS) 2-27
Identifying system call parameters on the stack 2-31
Interpreting system call parameters on the stack 2-31
Invocation 1-2, 3-10
[ORS, displaying 2-27
[SDM™ monitor command directory A-1
[SDM™ monitor command overview A-1
ISDM™ monitor commands

B - bootstrap load A-3

C - compare A-4

D - Display 3-11, A4

E - exit A-4

F - find A-5

G-go 3-10, 14, 15, A-5

I - port input A-5

K - echo file A-5

L - load A-6

M - move A-6

N - single instruction execution 3-13, A-6

O - port output A-7

P - print A-7

Q - enable protection A-7

R -load and go A-8

S - substitute A-8

X - examine/modify 3-12, 13, 14, A-9

Y - symbols A-9

J

Job and descendent job tokens, displaying 2-18
L

Loading object files A-6, 8
Locating running tasks 3-20
Looping within D-MON386 B-5

Mailbox examination 3-18
Manual Overview iii
Modifying the number base B-5
Mode changing A-7

Monitor 1-1

Index-4 System Debugger

INDEX

Monitor commands
iSDM™ A-1
D-MON386 B-1
Moving blocks of memory A-6

O

Object directory, displaying 2-12
Objects, displaying 2-24, 3-18

P

Ports
Displaying data A-5, B-6,9, 11
Entering data A-7, B-6, 9, 11
Product overview iii, 1-1
Program code execution 3-13

Q
Quitting the debugger 1-4, A-4
R

Re-entering the iISDM™ monitor 3-10, 15
Reader level 1ii

Redirecting console output A-5

Removing Breakpoints with D-MON386 B-10
Register contents, examining 3-12, 13
Returning to your application -4

S

Sample debug session 3-1

Searching for text A-5

Setting breakpoints 1-3, 3-10, B-9
Single-step execution A-6, B-8

Stack contents 2-31, 3-19

Starting the debugger 1-2

Strings, display limitations 2-35
Support 1-2

Symbol information, displaying A-9
Syntax for D-MON386 commands B-1

System Debugger Index-5

INDEX

Syntax for debugger commands 1-3, 2-2

System call information, displaying 2-9

System call parameters on the stack, displaying 2-31
System requirements 1-2

T

Task system calls, displaying 2-62
Task tokens, displaying 2-22
Tokens, displaying 2-36, 3-18

U

Using PMON host software with D-MON386 B-7
Using the debugger 1-3, 3-9

A

VB command 2-5

VC command 2-9

VD command 2-12

Version number of D-MON386, displaying B-10

VF command 2-14

VH command 2-16

VJ command 2-18

VK command 2-22

VO command 2-24, 3-17

VR command 2-27

VS command 2-31

VT command
Buffer pool display 2-60
Composite object display 2-47
Extension object display 2-47
Job display 2-37
Mailbox display 2-42, 3-18
Region display 2-45
Segment display 2-46
Semaphore display 2-44
Task display 2-39

VT command 2-36

VU command 2-62

w

Warm-start 1-3, 2-3

Index-6 System Debugger

EXTENDED iRMX®11
DISK VERIFICATION
UTILITY REFERENCE MANUAL

Intel Corporation
3065 Bowers Avenue
Santa Clara, Califorma 95051

Copyright © 1988, Intel Corporation, All Rights Reserved

PREFACE

INTRODUCTION

The iRMX 1T Disk Verification Utility is a software tool that runs as a Human Interface
command verifying and moditying the data structures of iIRMX named and physical
volumes.

This manual describes the utility invocation and contains detailed descriptions of all utility
commands. Tt also documents the iRMX 11 capability of backing up and restoring volume
file descriptor nodes (fnodes).

In addition, the manual describes the structure of iRMX named volumes as users must be
familiar with volume structure to use the fult capabilities of the Disk Verification Utility.

READER LEVEL

This manual is intended for programmers who have an understanding of the operating
system, and particularly the Basic 1/0 System and Human Interface layers. To use this
manual effectively, programmers should be familiar with iRMX volume structure.
Appendix A provides a brief review of IRMX named volume structure. However, this is
intended as a reference and not as a tutorial.

MANUAL OVERVIEW

This manual is organized as follows:

Chapter 1 This chapter describes two ways of invoking the Utility: single-
command mode or interactive mode. It explains single-command
mode and how to interpret output and error messages from the
single-command verification. It also describes the invocation in
interactive mode and the interactive mode error messages.
Commands for the interactive mode are explained in Chapter 2.

Disk Verification iii

PREFACE

Chapter 2 This chapter contains detailed descriptions of the Disk Verification
Utility commands. The commands are discussed in alphabetical
order. When verifying and modifying volumes, you should refer to
this chapter for specific information about the format and
parameters of the commands.

Chapter 3 This chapter explains the fnode backup and restore feature in
detail. This feature provides a limited mechanism for attempting
to recover data when the volume label or the fnode file has been
damaged.

Appendix A This appendix provides information on the format of IRMX named
volumes. Tt includes details of the volume label and fnode file,
differences between Jong and short files, and format information
specific to diskettes. Programmers should be familiar with this
information before attempting to modify a volume.

CONVENTIONS

This manual uses the following conventions:

» Information appearing as UPPERCASE characters when shown in keyboard
examples must be entered or coded exactly as shown. You may, however, mix lower
and uppercase characters when entering the text.

» Fields appearing as lowercase characters within angle brackets (< >) when shown in
keyboard examples indicate variable information. You must enter an appropriate
value or symbol for variable fields.

» User input appears in one of the following forms:

as bolded text within a screen

. text is used to indicate the first occurrence of each command described in
Chapter 2; subsequent occurrences are printed in black ink.

o The terms "iIRMX [I" and "Operating System" refer to the Extended iRMX 11
Operating System.

» The term "IRMX I" refers to the IRMX 1 Operating System (iRMX 86 Operating
System).

¢ All numbers unless otherwise stated are assumed to be decimal. Hexadecimal
numbers include the "H" radix character (for example, 0FFH).

iv Disk Verification

CONTENTS

CHAPTER 1 PAGE
INVOKING DISKVERIFY
1.1 TNEEOQUCEION «oooeeet ettt b s s b bbb s 1-1
1.2 TIVOCALION .11ttt s eb e ser et e s s R e 1-2
13 OULPUL e eb s r eSS 1-5
1.4 Invocation Error MESSages ...t s 1-6
CHAPTER 2 PAGE
DISKVERIRY COMMANDS
2.1 INETOAUCEION c.oomieeceet sttt ettt sh s s s sn st e 2-1
2.2 COMMANG SYNTAX ..ot s st 2-1
2.3 Command NAMIESocovoiviiiriitirere et b bbb 2-2
2.4 PATAINEIELS 1oevieveeeeeeeieeeeteeecs ettt ee e ereseara e sisa s st s e aeans b sa e b e aE s eb e e st s b s 2-3
2.5 TNPUL RAGICES ..ot b bbb 2-3
2.6 Aborting Diskverify Commands.........ci s 2-4
2.7 Diskverify Error MESSages. ... s 24
2.8 Command DICHONATV. ...t cessesra e bbb s 2-5
ALLOCATE oot ettt ettt e ee o4 b e s b e et 2-8
BACKUPENODES ...ttt ettt st e e sae s bbb et b ar s 2-11
DITSK oo eee ettt e e e bR 2-13
DISPLAYBYTE ..ottt ettt et s as s bbbt 2-16
DISPLAYWORD ..ottt s mr s b s 2-18
DISPLAYDIRECTORY ..ottt sa s s s 2-20
DISPLAYFNODE ...t e b e e 2-23
DISPLAYSAVEENODE ..ot 2-27
DISPLAYNEXTBLOCK ..ottt sass s s s et s 2-28
DISPLAYPREVIOUSBLOCKot nn i 2-29
EDITENODE ...ttt me s e sn s i s e 2-30
EDITSAVEFNODE ..ottt st b e 2-33
234 16 AT OO OSSO OO SO OUOTURR PP PRSP 2-34
| 23 . OO TP OO OO PP TSSOSO POPOPI NP 2-35
FIREE ..o tes ettt ess st e ss e s et s s et e s 2-38
GETBADTRACKINFO ..ot e bbb e 2-41
| Sk) SO OO OO T O PO O SOOI TR PSRRI PP 2-43
LISTBADBLOCKS L. oot s b sae s e s s o 2-44

Disk Verification

CONTENTS

CHAPTER 2 (continued) PAGE
MISCELLANEOUS COMMANDS ...t 2-46
ADD e et et e 2-46
ADDRESS ..ottt e e e 2-46
BLOCK .. e e e st et e n e e e 2-47
DEC ... oottt st e1 s e es ettt 2-48
DIV ettt e s s e e et ey ek e et e e e e e e ma A e e s e e ea st eetee b et e s £ e e aee s e e ene et eanrane 2-4%
H E X ettt bbbt e e bbbt st sttt e 2-49
MOTD et etk bbb 2-49
IMIUL etttk bbbt 2-50
SUB e e e e s 2-50
QU et e et r e e en b h ettt 2-52
RIEEAD ottt ee et 2-53
RESTOREFNODE ..ot i as et secsissinsansansneens 2-54
RESTOREVOLUMELABEL ... e 2-57
S AV E e et ettt ottt e s em e e e 2-59
SUBSTITUTEBYTEooiriiiiiiciiti ittt e e 2-61
SUBSTITUTEWORD ..ottt ebs sttt st 2-64
VERIFY ottt et e e et 2-65
WRITE L.ttt b bt bbb b et 2-74
CHAPTER 3 PAGE
BACKING UP AND RESTORING FNODES
J.1 OVEIVIEW. ettt et et et et et 3-1
3.2 Using FNODE Backup and Restore............ccocceee e 3-4
3.2.1 Creating the R7SAVE FNODE Backup File ... 324
3.2.2 Backing up FNODESs on a Volume ... 325
3.2.3 Backing up the Volume Label ... 3-6
3.2.4 Restoring FNODES..........coooiiii ey 32T
3.2.5 Restoring the Volume Label ... 3-10
3.2.6 Displaying R?SAVE FNODESccoooieieieecececeeeise e 3-11
APPENDIX A PAGE
STRUCTURE OF A NAMED VOLUME
ALT INtFOAUCHION ..ttt ettt A-1
A2 VOIUME SITUCLULE ..ot sttt A-1
A3 VoluME Labels ..o et A-2
A3.1T ISO Volume Label.......ocoiioiicniciii e A-3
A32 IRMX®II Volume Label.......oicieseie e A-4
A TNl FIIES ..ot A-8
AdT FNODE FIle ..ot A-8
A.4.2 FNODE 0 (FNODE fil€)ooiiiiieiiee ettt A-14
A.4.3 FNODE T (Volume Free Space Map File) oo, A-15
A.4.4 FNODE 2 (Free FNODES Map File) oo A-15
A.4.5 FNODE 3 {Accounting File) ..o A-15
A.4.6 FNODE 4 (Bad BIocks Map File) ..o A-16

vi Disk Verification

CONTENTS

APPENDIX A (continued) PAGE
A.4.7 FNODE 5 (Volume Label File) ... A-16
A48 FNODE 6 (ROOt DIFECIOMY) covuvuiiiriini et emsereneie s rserenenes s eons A-16
A9 FNODE 7 (R7SAVE) ..o e A-17
A4 10 Other FINODIES. ...ttt et s s s es s s s sasens A-17
A5 Longand Short FHESs ... e, A-17
AST SROTUFIIES .o et b ettt b ans A-17
AS2 Long Files... i A-19
A.6 Flexible Diskette FOIMAlS...iiiiiiiiiieviis et cesieseascerssesssiessns e s s s sanssssssansns A-21
TABLES
TABLE PAGE
A-1 8-Inch Diskette CharacteristiCs. .o ouiivriiiiioeeet e ee e A-21
A-2 5 1/4-Inch Diskette CharaCteristicso A-22
|
|; FIGURES
:
FIGURE PAGE
2-1 DISPLAYBYTE FOMMAL ..ottt ve st 2-17
2-2 LISTBADBLOCKS FOIMAL vttt ea e beseenee s 2-44
23 NAMED1 Verification OUtPUL ..o 2-67
2-4 NAMED?2 Verification OULPUL ... 2-68
2-5 PHYSICAL Verification QUtput........cccoocvciiinecnicicecee s, 2-68
A-1 General Structure of Named VOIRMES .o A-2
A-2 SHOE FIle FROGE ... et st e e eee e aas e reenens A-18
A-3 Long File FNODE. ... A-20

Disk Verification vii

CHAPTER 1

INVOKING DISKVERIFY

1.1 INTRODUCTION

When using an iRMX 1I application system, you will need to store data on secondary
storage devices. Unfortunately, occasional power irregularities or accidental reset may
destroy the index to the data on these devices, making the information inaccessible to the
system. In some cases, losing even a small amount of data can render an entire volume
useless.

You need a tool to examine and fix the damaged volume. This tool should enable you to
determine how much of the data was damaged and help you recreate file structures on the
damaged volume. The iRMX II Disk Verification Utility (DISKVERIFY) is a tool that
enables you to verify the consistency and recover damaged data on iRMX volumes.

The Disk Verification Utility inspects, verifies, and corrects the data structures of iRMX
named volumes. It can also verify an iRMX physical volume. The Disk Verification
Utility can reconstruct the fnode file, the volume label, the file descriptor nodes (fnodes)
map, the volume free space map, and the bad blocks map of the volume. In addition, with
DISKVERIFY you can manipulate fnodes, bad track information, and the actual data on
the volumes. The Disk Verification Utility also supports auto-volume recognition which
means you can verify any iIRMX named volume without detaching and attaching the
device with the correct DUIB.

You can use DISKVERIFY in one of two ways:

* As asingle command that verifies the structures of a volume and returns control to
the Human Interface

* As an interactive program that enables you to check and modify data on the volume
by entering disk verification commands

To take full advantage of this utility, you must be familiar with the structure of iIRMX
(either iRMX I or iIRMX II as the volume structure is almost the same for both) named
volumes. Appendix A contains detailed information about volume structure. If you are
unfamiliar with the iRMX II volume structure, you should avoid using the DISKVERIFY
commands. Some commands, if not used correctly, can render your volumes unusable.

However, even if you know nothing about iRMX volume structures, you can still use the
Disk Verification Utility as a single command to verify that the data structures on an
iRMX volume are valid.

Disk Verification

1-1

INVOKING DISKVERIFY

1.2 INVOCATION

To invoke DISKVERIFY, enter the following command:

GISKUENFD—(‘ i '-me):

where:

:logical name:

TO

OVER

AFTER

CUTPATH

GETBADTRACKINFOQ
“—{ VERIFY } j‘
X

NAMEDA

A

Fl

10 goeoe

NAMED J

LIST

ALL

2

PHYSICAL

Logical name of the secondary storage device containing the
volume to be verified.

Copies the output from the Disk Verification Ultility to the file
specified in OUTPATH. If no "TQ" is specified, output is directed
to the console screen (:CO:).

Copies the output from the Disk Verification Utility over the
specified file.

Copies the output from the Disk Verification Utility beginning at
the end of the specified file.

Disk Verification

INVOKING DISKVERIFY

OUTPATH Pathname of the file to receive the output from the Disk
Verification Utility. If you omit this parameter and no preposition
is specified, output is directed to the console screen (:CO:) by
default. You cannot direct the output to a file on the volume being
verified. If you attempt this, the utility returns an
ESALREADY ATTACHED error message.

Following is a list of the DISKVERIFY options. If you invoke DISKVERIFY without
specifying one of these options, you enter the interactive mode. In this case, the utility
displays a header message and the utility prompt (*). You can then enter any of the
DISKVERIFY commands listed in Chapter 2.

DIiSK

GETBADTRACKINFO
or GB

VERIFY or V

Disk Yerification

Displays the attributes of the volume being verified. If you
specify this option, the utility performs the function and
returns control to you at the Human Interface level. You can
then enter any Human Interface command, provided that the
device verified is not the system device. Any parameter after
this one is ignored. Refer to the description of the DISK
command in Chapter 2 for more information.

Reads the bad track information from the volume and
displays it. Bad track information that is redirected to a file
can be used as input to the FORMAT command by removing
the header information. Chapter 2 provides a complete
explanation of this command.

Verifies the volume. This function and the associated options
are described in detail under "VERIFY" in Chapter 2. If you
specify only this option, the utility performs the NAMED
verification function and returns control to you at the Human
Interface level. You can then enter any Human Interface
command, provided the device verified is not the system
device.

INVOKING DISKVERIFY

FIX Performs the same functions as VERIFY. In addition, it tries to fix
several types of problems on the volume after performing the
verification. You should be careful when using FIX as it changes
the data on the disk {which may prove dangerous). For example,
during NAMED | verification, FIX corrects the checksums on
fnodes with bad checksums. However, an fnode with a bad
checksum may indicate another problem with the fnode which
should not be ignored. As a result, it is recommended that you use
FIX only after performing the following steps.

1. Use DISKVERIFY with the VERIFY option.

2. Examine the output and the problems on the volume to
determine the type of "fix" needed.

3. [If the problems can be fixed using DISKVERIFY,
run DISKVERIFY with the FIX option to correct
the problems.

NAMEDI or N1 VERIFY or FIX option that applies to named volumes only. This
option checks the fnodes of the volume to ensure that they match
the directories in terms of file type and file hierarchy. This option
also checks the information in each fnode to ensure consistency.

When used with FIX, the NAMEDI1 option corrects bad
checksums and attaches orphan fnodes to their parents. Refer to
the description of the VERIFY and FIX commands in Chapter 2
for more information.

NAMED?2 or N2 VERIFY or FIX option that applies to named volumes only. This
option checks the allocation of fnodes and space on the volume,
constructs the space and fnode bit maps to reflect the current
contents of the volume, and verifies that the fnodes point to the
correct locations on the volume. When used with the FIX option,
NAMED? saves the correct bit maps, that were constructed during
the verification phase, on the volume. Tt also removes fnodes with
multiple references from their illegal parents. Refer to the
description of the VERIFY and FIX commands in Chapter 2 for
more information.

NAMED or N VERIFY or FIX option that performs both the NAMED1 and
NAMED?2 verification functions on a named volume. If you
specify VERIFY or FIX with no option, the system assumes
NAMED (default).

1-4 Disk Verification

ALL

PHYSICAL

LIST

1.3 OUTPUT

INVOKING DISKVERIFY

VERIFY or FIX option that applies to both named and physical
volumes. For named volumes, this option performs both the
NAMED and PHYSICAL verification functions. For physical
volumes, this option performs only the PHYSICAL verification
function.

VERIFY or FIX option that applies to both named and physical
volumes. This option reads all blocks on the volume and checks for
1/0O errors. When used with FIX, it adds the bad blocks that it
encounters to the volume’s bad block map.

A control that you can use with any option that activates NAMEDI1
verification (NAMED, NAMED1, or ALL). When you use this
option, the file information generated by VERIFY or FIX is
displayed for every file on the volume, even if the file contains no
errors. Refer to the description of the VERIFY and FIX
commands in Chapter 2 for more information.

When you enter the DISKVERIFY command, the utility responds with

iRMX 11 Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation

where Vx.x is the version number of the utility. If you specify the VERIFY (or V)
parameter in the DISKVERIFY command, the utility verifies the volume and displays the
verification information on the screen (or copies it to the file specified by the outpath
parameter). The verification information is the same as that from the VERIFY utility
command. After generating the verification output, the utility returns control to the
Human Interface, which prompts you for more Human Interface commands. The
following is an example of such a DISKVERIFY command:

-DISKVERIFY :Fl: VERIFY NAMED2Z <CR>
iRMX 11 Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation

DEVICE NAME = wfd0 : DEVICE SIZE = 0003E300 : BLOCK SIZE = 0080

'NAMED2' VERIFICATION

BIT MAPS O.K.

Disk Verification

1-5

INVOKING DISKVERIFY

If you omit the DISK or VERIFY parameter from the DISKVERIFY command, the
utility does not return control to the Human Interface. Instead, it issues an asterisk (*)
prompt and waits for you to enter DISKVERIFY commands. The following is an

example:

-DISKVERIFY :Fl: <CR>
IRMX IT Disk Verify Utility,

Vx.x
Copyright <year> Intel Corporation
*

At the asterisk prompt, you can enter any of the DISKVERIFY commands listed in the
DISKVERIFY COMMANDS chapter of this manual. If you enter anything else, the

utility will display an error message.

NOTE

Although you can use DISKVERIFY to verify the system device (:sd:),
note that all connections to this device are deleted by the operating system.
After exiting, you must reboot the system or use the warm start feature
(see the Extended iRMX II System Debugger Reference Manual).

1.4 INVOCATION ERROR MESSAGES

1-6

The following is a list of error messages you might encounter when invoking the Disk

Verification Utility.
argument error

<logical name >, invalid logical
name,

0045 : ESLOG_NAME NEXIST
or <logical name>, logical name
does not exist

<outpath> 0038 :
ESALREADY ATTACHED

command syntax error

The option specified is not valid.

The logical name does not exist; was
longer than 12 characters; contained
invalid characters; or was missing a
matching colon.

A nonexistent <logical name> was
specified in either the :logical name: or
outpath parameter.

The output was directed to a file on the
volume being verified.

A syntax error was made when entering
the command.

Disk Verification

<logical name >, outstanding
connections to the device have
been deleted.

<logical name> or <outpath>,
invalid wildcard specification

<logical name>, can’t attach
device

device size inconsistent size In
volume label = <valuel> :
computed size = <value2>

not a named disk

<partial logical name >,
0081: E$STRING_BUFFER

<logical name >, device does not

belong to you

<logical name >, device size is
ZEero

Disk Verification

INVOKING DISKVERIFY

This warning is not fatal and will occur
every time you try to verify the system
device or any other volume on which files
have been attached.

The logical name or output pathname
contained a wildcard character.

The device cannot be attached and read.

When the Disk Verification Utility
computed the size of the volume, the size
it computed did not match the
information recorded in the iRMX 11
volume label. The volume label may
contain invalid or corrupted information.
This is not a fatal error, but it is an
indication that further error conditions
may result during the verification session.
You may have to reformat the volume or
use the Disk Verification Utility to
restore the volume label.

A NAMED, NAMEDI1, or NAMED2
verification was requested for a physical
volume.

The logical name was longer than 14
characters in length, not including colons.

An attempt was made to verify a device
that was attached by another user. For
example, the system device is :SD: and

USER is not the super user.

The logical name entered does not define
4 mass storage device. For example, you
cannot perform DISKVERIFY on a line
printer.

1-7

CHAPTER 2
DISKVERIFY COMMANDS

2.1 INTRODUCTION

When the Disk Verification Utility issues the asterisk (*) prompt, you can enter
DISKVERIFY commands to examine or change file structure information on the volume.
This process usually involves reading a portion of the volume into a buffer, modifying that
buffer, and writing the information back to the volume. This chapter describes the
commands that enable vou to perform these operations.

The commands in this chapter are presented in alphabetical order regardless of their
function. The only exception is when two commands are similar, such as DISPLAYBYTE
and DISPLAYWORD, In this case, the first command is explained in its alphabetical
order, and the second command follows it with only the differences described.

The first occurrence of each command name is printed in blue ink and appears on the
outside upper corner of the page; subsequent occurrences are printed in black ink. Blue
or bolded text is also used to indicate an entry you make from vour terminal.

Before describing the individual commands, this chapter discusses command syntax,
command names, parameters, input radices. and error messages. It also provides a
command dictionary that gives a brief description of each command and the page number
on which the command 1s found.

2.2 COMMAND SYNTAX

The syntax for each command described in this chapter is presented in a "railroad track”
schematic, with syntactic elements scattered along the track. Your entrance to any given
schematic is always from left to right, beginning with the command name entry.

Elements shown in uppercase characters must be typed in a command line exactly as
shown in the schematic, however, you may enter them in either uppercase or lowercase.
Syntactic elements shown in lowercase are generic terms, which means you must supply
the specific item, such as the pathname of a file.

Disk Verification

2-1

DISK VERIFY COMMANDS

"Railroad sidings" go through optional parameter elements. In some cases, you have a
choice of going through one of several sidings before returning to the main track. In still
other cases, the main track itself diverges into two separate tracks, which means you must
select one track or the other but not both. For example, a command that consists of a
command name and two optional parameters would look like this:

—=(COMMAND - >
‘* param 2

FO213

You can enter this command in any one of these forms:

The arrows are used here to illustrate the possible flow through the tracks. They do not
appear in the schematics in the rest of this chapter.

2.3 COMMAND NAMES

2-2

When you enter a DISKVERIFY command, you can enter the command name or its
abbreviation (listed in this chapter), or you can enter any unique portion of the command

name. For example, when specifying the DISPLAYFNODE command, you can enter any
of the following:

You can also enter any other partial form of the word DISPLAYFNODE that contains at
least the characters DISPLAYF.

Disk Verification

DISK VERIFY COMMANDS

2.4 PARAMETERS

Several DISKVERIFY commands have parameters described as being in this form:

You can also enter these parameters in this form:

For example, both of these specify a FREE command:

2.5 INPUT RADICES

DISKVERIFY always produces numerical output in hexadecimal format. You can
provide input to DISKVERIFY in any one of the following three radices by including a
radix character immediately after the number. The valid radix characters are

radix character example

hexadecimal horH 16h, 7CH
decimal torT 23t, 100T
octal 0,0,q,0rQ 270, 33Q

If you omit the radix character, DISKVERIFY assumes the number is hexadecimal.

Disk Verification 2-3

DISK VERIFY COMMANDS

2.6 ABORTING DISKVERIFY COMMANDS

You can abort the following DISKVERIFY commands by entering a CONTROL-C,
which terminates the command and returns control to the Disk Verification Utility (not
the Human Interface command level).

DISK

DISPLAYBYTE
DISPLAYDIRECTORY
DISPLAYFNODE
DISPLAYNEXTBIL.OCK
DISPLAYPREVIOUSBLOCK
DISPLAYWORD
EDITFNODE
EDITSAVEFNODE

FIX
GETBADTRACKINFO
LISTBADBLOCKS
SUBSTITUTEBYTE
SUBSTITUTEWORD
VERIFY

2.7 DISKVERIFY ERROR MESSAGES

Each DISKVERIFY command can generate a number of error messages, which indicate
errors in the way the command was specified or problems with the volume itself. The
following messages can be generated by many of the commands (each command
description lists the error messages generated by the particular command):

block I/0 error The utility attempted to read or write a block on the
volume and found that the block was physically
damaged and therefore, could not complete the
requested command. Or, an attempt was made to
write a block to a disk volume that is write
protected. The error message states whether read
or write was performed and the number of the
block causing the error.

command syntax error A syntax error was made in 2 command.
illegal command The command specified is not a valid
DISKVERIFY command.

Disk Verification

fnode file/space map
file inconsistent

argument error

not a named disk

seek error

DISK VERIFY COMMANDS

One of the files, R?SAVE or REFNODEMAP, is
damaged and DISKVERIFY cannot perform
further verification.

The command was missing an argument, or the
argument was illegally specified.

The device is not a named volume (a tape, for
example) or the iIRMX volume label, obtained when
DISKVERIFY begins processing, contains invalid
information. If the label contains invalid
information, the utility (in some cases) can assume
that a named volume is a physical volume. In this
case, the commands that apply to named volumes
only (such as DISPLAYFNODE,
DISPLAYDIRECTORY, and VERIFY NAMED)
issue this message. If you are sure the volume is a
named volume, this message may indicate that the
IRMX I volume label is corrupted. (If the file was
formatted with the RESERVE option of the
FORMAT command, DISKVERIFY issues this
message only if both volume labels are corrupted.
When only the volume label is invalid, the duplicate
in the save area is used.)

The utility unsuccessfully attempted to seek to a
location on the volume. This error normally results
from invalid information in the iRMX II volume
label or in the fnodes. Or, 4 new volume was
inserted after DISKVERIFY was invoked.

2.8 COMMAND DICTIONARY

The command dictionary below lists the DISKVERIFY commands in alphabetical order
and provides a brief functional description of each command. Following each command
name is its unique abbreviation, if any. For quick reference, you can locate the command
using the page headers remaining in this chapter.

Command

ALLOCATE

BACKUPFNODES
BF

Disk Verification

Marks a particular fnode or volume block
as allocated

Copies current fnode file into a backup
file named R?SAVE

2-5

DISK VERIFY COMMANDS

Command

DISK

DISPLAYBYTE
DBorD

DISPLAYWORD
DwW

DISPLAYDIRECTORY
DD

DISPLAYFNODE
DF

DISPLAYSAVEFNODE
DSF

DISPLAYNEXTBLOCK
DNB or > or <CR>

DISPLAYPREVIOUSBLOCK
DPBor <

EDITFNODE
EF

EDITSAVEFNODE
ESF

EXIT
E

FIX
FREE

GETBADTRACKINFO
GB

Synopsis

Displays the attributes of the volume
being verified.

Displays the working buffer in byte
format

Displays the working buffer in word
format

Displays directory contents

Displays the specified fnode information
Displays the fields of a single fnode in the
R?SAVE file

Displays the "next" volume block

Displays the "previous” volume block
Edits the specified fnode

Edits the specified saved fnode

Exits the Disk Verification Utility
Verifies the disk and fixes inconsistencies

Marks a particular fnode or volume block
as free

Displays the bad track information

Disk Verification

Command

HELP
H

LISTBADBLOCKS
LBB

Miscellaneous Commands

RESTOREFNODE
RF

RESTOREVOLUMELABEL
RVL

SAVE

SUBSTITUTEBYTE
SBorS

SUBSTITUTEWORD
SwW

VERIFY
A%

WRITE
w

Disk Verification

DISK VERIFY COMMANDS

Synopsis
Lists the DISKVERIFY commands

Displays all the bad blocks on the volume

Perform useful arithmetic and conversion
functions; the commands include ADD,
SUB, MUL, DIV, MOD, HEX, DEC,
ADDRESS,and BLOCK

Exits the Disk Verification Utility
Reads a volume block into the working
buffer

Copies one fnode (or range of fnodes)
from the R?SAVE file to the fnode file

Copies the duplicate volume label to the
volume label offset on track 0

Writes the updated fnode map, free space
map, and bad block map to the volume

Modifies the contents of the working
buffer in byte format

Modifies the contents of the working
buffer in word format

Verifies the volume

Writes the working buffer to the volume

27

This command designates file descriptor nodes (fnodes) and volume blocks as allocated.
You can also use this command to designate one or a range of volume blocks as "bad.”
The format of the ALLOCATE command is as follows:

FNODE fnodenum,

FNODE - fnodenum, fnodenum

BLOCK = blocknum

BLOCK = blocknum, blocknum

BADBLOCK - blocknum

BADBLOCK = blocknum. blocknum

ALLOCATE

INPUT PARAMETERS

fnodenum Number of the fnode to allocate. This number can range from 0
through (max fnodes - 1), where max fnodes is the number of
tnodes defined when the volume was originally formatted. Two
fnode values separated by a comma signifies a range of fnodes.

blocknum Number of the volume block to allocate. This number can range
from 0 through (max blocks - 1), where max blocks is the number
of volume blocks in the volume. Two block numbers separated by
a comma signifies a range of block numbers.

OUTPUT

If you are using ALLOCATE to allocate fnodes, ALLOCATE displays the following
message:

<fnodenum>, fnode marked allocated

where <fnodenum> is the number of the fnode that the utility designated as allocated.

If you are using ALLOCATE to allocate volume blocks, ALLOCATE displays the
following message:

<bloeknum>, block marked allocated

where <blocknum> is the number of the volume block that the utility designated as
allocated.

2-8 Disk Verification

ALLOCATE

If you are using ALLOCATE to designate one or more volume blocks as "bad,"
ALLOCATE displays the following message:

<blocknum>, block marked bad]

where <blocknum> is the number of the volume block that the utility designated as "bad."
If this block was not allocated before you attempt to designate it as "bad," ALLOCATE
also displays

<blocknum>, block marked allocated

ALLOCATE checks the allocation status of fnodes or blocks before allocating them.
Therefore, if you specify ALLOCATE for a block or fnode already allocated,
ALLOCATE returns one of the following messages:

<fnodenum>, fnode already marked allocated 44J

<blocknum>, bleock already marked allocated

<blocknum>, block already marked bad]

DESCRIPTION

Fnodes are data structures on the volume that describe the files on the volume. They are
created when the volume is formatted. An allocated fnode is one that represents an
actual file. ALLOCATE designates fnodes as allocated by updating the FLLAGS field of

the fnode and free-fnodes-map file with this information.

An allocated volume block is a block of data storage that is part of a file; it is not available
to be assigned to a new file. ALLOCATE designates volume blocks as allocated by
updating the volume free-space-map with this information.

When you use ALLOCATE to designate bad blocks, it not only updates the volume free-
space-map but also marks an associated bit as "bad" in the bad blocks file.

Disk Verification 2-9

ALLOCATE

ERROR MESSAGES

argument error

<blocknum >, block out of range

<fnodenum >, fnode out of range

no badblocks file

2-10

A syntax error was made in the command
or a nonnumeric character was specified
in the blocknum or fnodenum parameter.

The block number specified was larger
than the largest block number in the
volume.

The fnode number specified was larger
than the largest fnode number in the
volume.

The volume does not have a bad blocks
file. This message could appear if an
earlier version of the Human Interface
FORMAT command was used when the
disk was formatted.

Disk Verification

This command copies the current fnode file into a designated fnode backup file named
R?SAVE. R?SAVE must have been reserved when the volume was formatted. (That is,
the RESERVE option of the FORMAT command must have been specified.} The format
of the BACKUPFNODES command is as follows:

——T(BACKUPFNODES)—7—

8

Fi2ms

INPUT PARAMETERS
None.
OUTPUT

BACKUPFNODES displays the following message:

fnode file backed up to save area J

DESCRIPTION

The BACKUPFNODES command ensures against data loss that occurs when the fnode
file is damaged or destroyed. To use this command, you must have formatted the volume
using the FORMAT command (V1.1 or later) to create a special reserve area (R?SAVE).
A switch in the FORMAT command (the RESERVE switch) controls the creation of
R?SAVE. If you did not specify the RESERVE parameter when the volume was
formatted, the BACKUPFNODES command will be unable to copy the fnode ftile to
R?SAVE. An error message will be returned indicating that no save area has been
reserved. In this case, the volume must be reformatted if you wish to use the
BACKUPFNODES command.

The FORMAT command writes the initialized copy of the fnode file into R?SAVE.
Therefore, you do not have to use BACKUPFNODES to back up a newly formatted
volume. Subsequently, you can routinely (for example, once a day) backup tnodes to
assure that the data in R?SAVE matches the data in the fnode file. You can do this by
using either the BACKUPFNODES command or the Human Interface SHUTDOWN
command with the BACKUP option. (For more information on SHUTDOWN, see the
Operator's Guide to the Extended iIRMX II Human Interface.)

Disk Verification 2-11

BACKUPFNODES

NOTE

Be sure that the current fnode file is valid before executing the
BACKUPFNODE command (using NAMED verification).

ERROR MESSAGES

argument error When the command was entered, an
argument was supplied.
BACKUPFNODES does not accept an

argument.

no save area was reserved when The volume has not been formatted to

volume was formatted support fnode backup. To allow future
use of backupfnodes on this volume, you
should invoke the Human Interface
BACKUP command to save the data on
the volume, reformat the volume with a
save area (using the RESERVE option of
the FORMAT command), and finally,
restore the volume data.

not a named disk The volume specified when the Disk
Verification Ultility was invoked is a
physical volume, not a named volume.

EXAMPLE

super-~ diskverify ;sd: <CR>

iRMX II Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

!sd:, outstanding connections to device have been deleted
*verify NAMED <CR>

BIT MAPS O.K.
*backupfnodes <CR> or bf <CR>

friode file backed up to save area
*

2-12 Disk Verification

This command displays the attributes of the volume being verified. You can abort this
command by typing a CONTROL-C. The format of the DISK command is as follows:

x-225

INPUT

None.

OUTPUT

The output of the DISK command depends on whether the volume is formatted as a

physical or named volume. For a physical volume, the DISK command displays the
following information:

<devname>

1

device name
physical disk
device granularity
block size

number of blocks
volume size

<devgran>
<devgran>
<numblocks>
<size>

1

where:

<devname > Name of the device containing the volume. This is the physical
name of the device, as specified in the ATTACHDEVICE Human
Interface command.

<devgran> Granularity of the device, as defined in the Device Unit
Information Block (DUIB) for the device. Refer to the Guide to
the Extended iRMX II Interactive Configuration Utility for more
information about DUIBs. For physical devices, this is also the
volume block size.

<numblocks > Number of volume blocks in the volume.

<size> Size of the volume, in bytes.

Disk Verification 2-13

DISK

For a named volume, the DISK command displays the following information:

device name = <devname>
named disk, volume name = <volname>
device granularity = <devgran>
block size = <volgran>
number of blocks = <numblocks>
nunher of free blocks = <numfreeblocks>
volume size = <size>
interleave = <inleave>
extension size = <xsize>
number of frnodes = <numfnodes>
number of free fnodes = <numfreefnodes>
save area reserved = (yes/no)

The <devname>, <devgran>, <numblocks>, and <size> fields are the same as for
physical files. The remaining fields are as follows:

<volname > Name of the volume, as specified when the volume was formatted.
<volgran> Volume granularity, as specified when the volume was formatted.
<numfreeblocks> Number of available volume blocks in the volume.

<inleave > The interleave factor for a named volume.

<xsize> Size, in bytes, of the extension data portion of each file descriptor
node (fnode).

<numfnodes> Number of fnodes in the volume. The fnodes were created when
the volume was formatted.

<numireefnodes > Number of available fnodes in the named volume.

save area reserved Indicates whether the R7SAVE file is reserved for volume label
and fnode file backups.

Refer to Appendix A of this manual or to the description of the FORMAT command in
the Operator's Guide to the Extended iRMX Il Human Interface for more information about
the named disk fields.

DESCRIPTION

The DISK command displays the attributes of the volume. The format of the output from
DISK depends on whether the volume is formatted as a named or physical volume.

ERROR MESSAGES

None.

2-14 Disk Verification

DISK

EXAMPLE

The following example shows the output of the DISK command for an 5.25-inch diskette.

super- diskverify :f0: <CR>
iRMX I Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation

*disk <CR>

device name = wmfdx0
named disk, volume name = rmx286
device granularity = 0200
block size = 0200
number of blocks = 0000027C
number of free blocks = 000001ES
volume size = 0004F800
interleave = 0005
extension size = 03
number of fnodes = QOCF
number of free fnodes ~ 00BE
save area reserved = Mo

Disk Verification 2-15

This command displays the specified portion of the working buffer in BYTE format. It
displays the buffer in 16-byte rows. You can abort this command by typing a CONTROL.-
C. The format of the DISPLAYBYTE command is as follows:

)
o1}
]

startottsel

endotisel

x 226

INPUT PARAMETERS

startoffset Number of the byte, relative to the start of the buffer, that begins
the display. DISPLAYBYTE starts the display with the row
containing the specified offset. If you omit this parameter and the
endoffset parameter, DISPLAYBYTE displays the entire working
buffer.

endoffset Number of the byte, relative to the start of the buffer, that ends the
display. If you omit this parameter, DISPLAYBYTE displays only
the row indicated by startoffset. However, if you omit both
startoffset and endoffset, DISPLAYBYTE displays the entire
working buffer.

OUTPUT

In response to the command, DISPLAYBYTE displays the specified portion of the
working buffer in rows, with 16 bytes displayed in each row. Figure 2-1 illustrates the
format of the display.

2-16 Disk Verification

DISPLAYBYTE

As Figure 2-1 shows, DISPLAYBYTE begins by listing the block number where data
resides in the working buffer. It then lists the specified portion of the buffer, providing
the column numbers as a header and beginning each row with the relative address of the
first byte in the row. It also includes, at the right of the listing, the ASCII equivalents of
the bytes, if the ASCII equivalents are printable characters. (If a byte is not a printable
character, DISPLAYBYTE displays a period in the corresponding position.)

*displaybyte 7,13 <CR>
BLOCK NUMBER = blocknum
offset 0 1 2 3 4 5 6 7 8 9 A B C D E F ASCII STRING

0000 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0010 61 6E 20 65 F8 61 6D 70 6C 65 20 20 20 20 20 20 an example

Figure 2-1. DISPLAYBYTE Format
DESCRIPTION

DISKVERIFY maintains a working buffer for READ and WRITE commands. The size
of the buffer is equal to the volume’s granularity value. After you read a volume block of
memory into the working buffer with the READ command, you can display part or all of
that buffer, in BYTE format, by entering the DISPLAYBYTE command.
DISPLAYBYTE displays the hexadecimal value for each byte in the specified portion of
the buffer.

If you omit all parameters, DISPLAYBYTE displays the entire block stored in the
working buffer.

ERROR MESSAGES
argument error A syntax error was made in the command
or a nonnumeric character was specified
in one of the offset parameters.
<offset >, invalid offset Either a larger value was specified for

startoffset than for endoffset or an offset
value larger than the number of bytes in
the block was specified.

Disk Verification 2-17

This command is the same as the DISPLAYBYTE command, except that it displays the
working buffer in WORD format, 8§-words per row. The format of the DISPLAYWORD

command is as follows:

T
DISPLAYWORD

” 1—(startoliset
e

endoftsel

EXAMPLES

Assuming that the volume granularity is 128 bytes and that you have read block 20H into
the working buffer with the READ command, the following command displays that block
in WORD format.

*DISPLAYWORD <CR>

BLOCK NUMBER = 20

offset 0 2 4 6 8 A C E
0000 00GO 00GO 0000 0000 0000 Q000 0000 0000
0010 0000 0080 0000 0000 0000 0001 FFOF OQOFF
0020 0000 0Q0G0O 0500 0000 0000 0025 0108 FFFF
0030 1Fz5 0000 ©O02E 0000 1F25 0000 O002B 0000
0040 0001 0000 0001 0080 0000 0000 0000 0000
0050 000G 000G 0000 QGO0 0000 Q00D 0000 0000
0060 000G G000 0000 0000 0000 (0000 0080 0000
0070 J000 Q000 0001 FFOF OOFF GQODOQ 0000 03500

The following command displays the portion of the block that contains the offsets 31h
through 45h (words beginning at odd addresses).

*DW 31, 45 <CR>
BLOCK NUMBER = 20

offset 0 2 4 6 8 A C E
0031 O01F 2E00 Q000 2500 O001F 2BOO 0000 0100

0041 G000 G100 8000 Q00O 0000 Q000 0000 0000
%

2-18 Disk Verification

DISPLAYWORD

The following command displays the portion of the block that contains the oftsets 30h
through 45h (words beginning at even addresses).

*DISPLAYWORD 30, 45 <CR>
BLOCK NUMBER = 20

offset 0 2 4 6 8 A G E
0030 1F25 0000 O002E 0000 1F25 0000 002B 0000
0040 0001 0000 0001 0080 0000 0000 0000 0000

*

Disk Verification

2-19

This command lists all the files contained in a directory. You can abort this command by
typing a CONTROL-C. The format of the DISPLAYDIRECTORY command is as
follows:

DISPLAYDIRECTORY

%
% 227
INPUT PARAMETER
fnodenum Number of the fnode that corresponds to a directory file. This

number can range from 0 through (max fnodes - 1), where max
fnodes is the number of fnodes defined when the volume was
originally formatted. DISPLAYDIRECTORY lists all files or
directories contained in this directory.

OouTPUT

In response to the command, DISPLAYDIRECTORY lists information about all files
contained in the specified directory. The format of this display is as follows:

FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE

<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>
<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>

where:
<filenam> Name of the file or directory contained in the directory.

<fnode > Number of the fnode that describes the file.

2-20 Disk Verification

DISPLAYDIRECTORY

type> Type of the file. The <type> can be
Type of file Description
DATA data files
DIR directory files
SMAP volume free space map
FMAP free fnodes map
BMAP bad blocks map
VLAB volume label file
DESCRIPTION

DISPLAYDIRECTORY displays a list of files contained in the specified directory, along
with their fnode numbers and types. You can then use other DISKVERIFY commands to

examine the individual files.
ERROR MESSAGES

argument error

<fnodenum >, fnode not
allocated

<fnodenum >, not a directory

fnode

<fnodenum >, fnode out of range

Disk Verification

A nonnumeric character was specified in
the fnodenum parameter.

The number specified for the fnodenum
parameter does not correspond to an
allocated fnode. This fnode does not
represent an actual file,

The number specified for the fnodenum
parameter 18 not an fnode for a directory
file.

The number specified for the fnodenum

parameter is larger than the largest fnode
number on the volume.

2-21

DISPLAYDIRECTORY

EXAMPLE

The following command lists the files contained in the directory whose fnode is fnode 6.

*DISPLAYDIRECTORY 6 <CR>

FILE NAME FNODE TYPE FILE NAME FNODE TYFE FILE NAME FNODE TYPE
R?SPACEMAP 0001 SMAP R?FNODEMAP 0002 FMAP R?BADBLOCKMAP 0004 BMAP
R?VOLUMELABEL 0005 VLAB R?SAVE 0007 DATA RMX286 0008 DIR
MYFILE 0009 DATA YOURFILE 000A DATA ONEFILE 000B DATA

*

222 Disk Verification

This command displays the fields associated with an fnode. You can abort this command
by typing 8 CONTROL-C. The format of the DISPLAYFNODE command is as follows:

fnodenum

x-228

INPUT PARAMETER

fnodenum Number of the fnode to be displayed. This number can range from
0 through (max fnodes - 1), where max fnodes is the number of
fnodes defined when the volume was originally formatted.

OUTPUT

In response to this command, DISPLAYFNODE displays the fields of the specified
fnode. The format of the display is as follows

Fnode number = <fnodenun
path name: <pathname>
flags : <flgs>
type : <typ>
file gran/vol gran : <gran>
owher . <own>
create,access,mod times : <crtime>, <acctime>, <modtime>
total size,total blks : <totsize>, <totblks>
block pointer (1) : <blks>, <blkptr>
bloek pointer (2) : <blks>, <blkptr>
block pointer (3) : <blks>, <blkptr>
block pointer (4) : <blks>, <blkptr>
block pointer (5) : <blks>, <blkptr>
block pointer (6) : <blks>, <blkptr>
block polnter (7) : <blks>, <blkptr>
block pointer (8) : <blks>, <blkptr>
this size : <thissize>
id count : <count>
accessor (1) : <access>, <id>
accessor (2) : <access>», <id>
accessor (3) : <access>, <id>
parent, checksum : <prnt>, <checksum>
aux(*) : <auxbytes>

Disk Verification

DISPLAYFNODE

where:
<fnodenum > Number of the fnode being displayed. If the fnode does not
describe an actual file (that is, if it 1s not allocated), the following
message appears next to this field:
*** ALLOCATION STATUS BIT IN THIS FNODE NOT SET ***
In this case, the fnode fields are normally set to zero.
<pathname> Full pathname of the file described by the fnode. This field is not
displayed if the fnode does not describe a file.
<flgs> A word defining the attributes of the file. Significant bits of
this word are as follows:
Bit Meaning
0 Allocation status. This bit is set to 1 for
allocated fnodes and 0 for free fnodes.
1 Long or short file attribute. This bit is set to 1
for long files and 0 for short files.
5 Modification attribute. This bit is set to 1
whenever a file is modified.
6 Deletion attribute. This bit is set to 1 to
indicate a temporary file or a file to be deleted.
The DISPLAYFNODE command displays a message next to this
field to indicate whether the file is a long or short file.
<typ> Type of file. This field contains a value and a description which is
displayed next to the value. The possible values and descriptions
are as follows:
Value Descriptions
00 fnode file
01 volume map file
02 fnode map file
03 account file
04 bad block file
06 directory file
08 data file
09 volume label file
<gran> File granularity, specified as a multiple of the volume granularity.
<own> User ID of the owner of the file.

2-24 Disk Verification

<crtime>
<acctime >
<modtime>

<totsize>

<totblks >

<blks>, <blkptr>

< thissize >

<count>

<access>, <id>

<prnt>
<checksum >

<auxbytes>

DISPLAYFNODE

Time and date of file creation, last access, and
last modification. These values are expressed as
the time, in seconds, since January 1, 1978.

Total size, in bytes, of the actual data in the file.

Total number of volume blocks used by the file, including indirect
block overhead.

Values that identify the data blocks of the file. For short files, each
<blks> parameter indicates the number of volume blocks in the
data block, and each <blkptr> is the number of the first such
volume block. For long files, each <blks> parameter indicates the
number of volume blocks pointed to by an indirect block, and each
<blkptr > is the block number of the indirect block.

Size in bytes of the total data space allocated to the file, minus any
space used for indirect blocks.

Number of user IDs associated with the file.

Each pair of fields indicates the access rights for the file and the ID
of the user who has that access ID. Bits in the <access> field are
set to indicate the following access rights:

Data File Directory
Bit Operation Operation
0 delete delete
1 read list
2 append add entry
3 update change entry

The first ID listed is the owner’s 1D.
Fnode number of the directory file that contains the file.
Checksum of the fnode.

Auxiliary bytes associated with the file.

Appendix A contains a more detailed description of the fnode fields.

DESCRIPTION

Fnodes are system data structures on the volume that describe the files on the volume.
The fnode structures are created when the volume is formatted. Each time a file is
created on the volume, the IRMX II Basic I/O System allocates an fnode for the file and
fills in the fnode fields to describe the file. The DISPLAYFNODE command enables you
to examine these fnodes and determine where the data for each file resides.

Disk Verification

2-25

DISPLAYFNODE

ERROR MESSAGES

argument error

<fnodenum > ,fnode out of range

Unable to get pathname

<Teason >

EXAMPLE

The vaiue entered for the fnodenum
parameter was not a legitimate fnode

number.

The number specified for the fnodenum
parameter is larger than the largest fnode

number on the volume.

The pathname specified could not be
retrieved. Possible causes of this error
are seek error, /O error, or invalid

parent.

The following example displays fnode 10 of a volume. This fnode represents a directory.

*DISPLAYFNODE 10 <CR>
Fnode number = 10

path name : /MYDIR

flags

type :

file gran/vol gran :

owner

create,access,mod times

total size,total blocks:

block pointer (1)

block pointer (2)

block pointer (3)

block pointer (4)

block pointer (5)

block pointer (6)

block pointer (7)

block pointer (8)

this size

id count

accessor (1)

accessor (2)

accessor (3)
parent, checksum
aux (*)

: 0025 =>short file

06 =>directory file
01

FFFF

10219017, 10219E58,
00000360, 00000001

10219E58

© 0001, 000050
. 0000, 000000
: 0000, 000000
. 0000, 000000
. 0000, 000000
. 0000, 000000
. 0000, 000000
: 0000, 000000
: 00000400

: 0001

: OF, FFFF

. 00, 0000

© 00, 0000

. 0006, 0000

: 000000

2-26

Disk Verification

This command is identical to DISPLAYFNODE, except the DISPLAYSAVEFNODE
takes the fnode information from the R?SAVE file, and displays the fnode as saved.
R?SAVE must have been reserved when the volume was formatted. (That is, the
RESERVE option in the FORMAT command must have been specified.) The format of
the DISPLAYSAVEFNODE command is as follows:

DISPLAYSAVEFNODE

ERROR MESSAGES

argument error

<fnodenum >, fnode out of range

no save area was reserved when
volume was formatted

Unable to get pathname
<reason>

Disk Verification

FO212

When the command was entered, no
argument was supplied.
DISPLAYSAVEFNODE requires a
designation of the fnode number.

The number specified for the fnodenum
parameter is larger than the largest fnode
number on the volume.

The volume was not formatted to support
backup fnodes. This means the
RESERVE option was not specified
when the volume was formatted.

The pathname specified could not be
retrieved. Possible causes of this error
are seek error, I/O error, or invalid
parent.

2-27

This command displays the "next" volume block. (The "next" volume block is the block
immediately following the block currently in the working buffer.) The display format can
be either WORD or BYTE. The utility remembers the mode in which you displayed the
volume block currently in the working buffer, and it displays the next block in that format.
So, if you used DISPLAYBYTE to display the current volume block, the next volume
block appears in BYTE format; if you used DISPLAYWORD, the next volume block
appears in WORD format. DISPLAYNEXTBLOCK uses the BYTE format as a default
if you have not yet displayed a volume block. You can abort this command by typing a
CONTROL-C. The format of the DISPLAYNEXTBLOCK command is as follows:

DISPLAYNEXTBLOCK }—,—

CARRIAGE RETURN

@ F-0205

OuUTPUT

in response to the command, DISPLAYNEXTBLOCK reads the "next" volume block into
the working buffer and displays it on the screen.

DESCRIPTION

The DISPLAYNEXTBLOCK command copies the "next" volume block from the volume
to the working buffer and displays it at your terminal. It destroys any data currently in the
working buffer. Once the block is in the working buffer, you can use
SUBSTITUTEBYTE and SUBSTITUTEWORD to change the data in the block. Finally,
you can use the WRITE command to write the modified block back out to the volume.

NOTE

If you specify the DISPLAYNEXTBLOCK command at the end of the
volume, the utility "wraps around" and displays the first block in the
volume.

2-28 Disk Verification

This command is identical to DISPLAYNEXTBLOCK, except that it displays the volume
block preceding the current block in the working buffer. The format of the
DISPLAYPREVIOUSBLOCK command is as follows:

DISPLAYPREVIOUSBLOCK

F 0206

Disk Verification 2-29

This command allows you to edit values within a specitied fnode. It can be aborted by
entering CONTROL-C. The format of the EDITFNODE command is

EDITFNODE

FNODE#

x-1597

INPUT PARAMETER

fnode Number of the fnode to edit. This number can be in the range of 0
through (max fnodes - 1), where max fnodes is the number of fnodes
defined when the volume was originally formatted.

OUTPUT

When EDITFNODE is invoked it displays the following message:

Frnode number = nnnn w

where nnnn is the number of the fnode you want to edit. The first field of the fnode is
displayed with its current value, as follows:

flags (xxxx): I

where x0x is the current value of the flags field. From this point on, you can edit the
fnode fields, one at a time. After the last fnode field has been edited or a "Q" has been
entered while in edit mode, the following query appears on the screen and the modified
fnode is displayed.

Write back? l

A response of "Yes" causes the fnode with the modified values to be written on the
volume and the following message to be displayed:

Fnode has been updated —[

2-30 Disk Verification

EDITFNODE

Any other response causes the fnode to remain unchanged and the following message to
be displayed:

Fnode not changed

DESCRIPTION

EDITFNODE is used to change values within a specified fnode. When it is invoked, it
displays the message shown above. Once you receive the invocation message, you can edit
the fnode, one field at a time. The first field, flags, is displayed upon invocation (as shown
above). The current value of each field is displayed followed by a colon. EDITFNODE
then waits for one of the following responses from the terminal.

Response Meaning
<CR> No modification to the field.
numerical value <CR> The new value to be assigned.

This value is always interpreted
as hexadecimal.

Quit or Q or g <CR> Skip the remaining fields and
display the query.

Any response, other than those listed above, causes the field to remain unchanged, and
the next field to be displayed.

Once the fnode has been updated, you can use DISPLAYFNODE to examine the
contents of the fnode and the changes you made. Changing the contents of an fnode
causes it to have a bad checksum. Use FIX with the NAMEDI1 option to correct it. For
more details, see the explanation of FIX later in this chapter.

ERROR MESSAGES
argument error The option specified is not valid.
<fnode num>, fnode out of The fnode number specified was larger
range than the largest fnode number on the
volume.
Error in Input Invalid input was entered while editing an
entry.

Disk Verification 2-3i

EDITFNODE

EXAMPLE

The following example illustrates using EDITFNODE to edit fnode 10.

*editfnode 10 <CR>
fnode number = 10
flags(0025) :<CR>
type (0006} : <CR>

file gran/vol gran(0l): <CR>

owner (OFFFF): 0 <CR>

create time(10219CB2): ¢ <CR>

Entering "q" causes the modified fnode to be displayed.

flags
type
file gran/vol gran :
owner
create,access,mod times
total size,total blocks:
block pointer (1)
block pointer (2)
block pointer (3)
block pointer (4)
block pointer (5)
block pointer (&)
bleck pointer (7)
block pointer (8)
this size :
id count :
accessor (1)
accessor (2)
accessor (3)
parent, checksunm
aux (%)

Write back? yes <CR>

Fnode has been updated
*

: 0001,
: 0000,
: 0000,
: 0000,
. 0000,
. 0000,
. 0000,
: 0000, 000000

: 0025 =>short file
: 06 =>directory file

01

: 0000

10219CB2, 10219CC8, 10219cc8
00000360, 00000001

000050

000000

400000

000000

000000

000000

000000

00000400
0001

. OF, FFFF

- 00, 0000

. 00, 0000

: 0006, 0000
© 000000

2-32

Disk Verification

EDITSAVEFNODE is identical to EDITFNODE, except that it allows you to edit an
fnode from the R?SAVE file. (R?SAVE must have been reserved when the volume was
formatted.} In addition, it designates the fnode as saved when displaying the fnode
number. You can abort this command by entering CONTROL-C. The format of the
EDITSAVEFNODE command is

EDITSAVEFNODE

FNODE#

x-1598

ERROR MESSAGES

The error messages are the same as in EDITFNODE with the addition of the following
message.

no save area was The volume was not formatted to support
reserved when volume backup fnodes. This means the RESERVE option
was formatted was not specified when the volume was formatted.

Disk Verification 2-33

This command exits the Disk Verification Utility and returns control to the Human
Interface command level. The format of the EXIT command is as follows:

wcel

F-0207

This command is identical to the QUIT command.

NOTE

Although you can use DISKVERIFY to verify the system device (:sd:),
note that all connections to this device are deleted by the operating system.
After exiting, you must reboot the system or use the warm start feature
(see the Extended iRMX H Systern Debugger Reference Manual),

2-34 Disk Verification

This command verifies the volume in the same way as the VERIFY command to
determine if the data on the volume is consistent. Tn addition, this command "fixes"
various kinds of inconsistencies discovered during verification. You can abort this
command by entering CONTROL-C. (CONTROL-C i1s ignored when FIX is writing to
the volume in order to prevent inconsistencies on the volume.)

Because FIX and VERIFY perform the same verification functions and generate the
same error messages, the command description given below describes only the additional
functions of FIX. For a complete explanation of the verify functions, see the VERIFY
command described later in this chapter. The format of the FIX command is:

FIX < r

0%

ALL

N2

PHYSICAL x-1596

Disk Verification 2-35

FIX

INPUT PARAMETERS

NAMED1 or N1

NAMED?2 or N2

NAMED or N

ALL

PHYSICAL
LIST

2-36

Performs NAMED1 verification and fixes the following
inconsistencies:

¢ Fixes bad checksums

+ Attaches orphan fnodes to their parents. An orphan fnode is
an fnode contained within a directory and whose parent field
does not point back to this directory. If the parent field of the
specified fnode points to a second valid directory, and the
second directory also points to the fnode, no fix is performed
since the specified fnode belongs to an existing directory. This
is a case of multiple references (discussed in NAMED2).

If the parent field does not point to a valid parent, the parent field
is fixed to point to the directory that contains this fnode in its file
list.

Performs NAMED? verification and fixes the following
inconsistencies:

¢ Removes fnodes from their illegal parents. If there is a multiple
reference to an fnode, the fnode is removed from the
directories that it does not point to (if FIX was performed with
NAMEDI, the fnode should now point to one valid parent).

» Saves fnode and block bit maps on completion of NAMED?2.

Performs both the NAMED1 and NAMED? verification functions
on a named volume and fixes the inconsistencies defined for these
options.

Performs all operations appropriate to the volume. For named
volumes, this option performs both the NAMED and PHYSICAL
verification functions. For physical volumes, this option performs
only the PHYSICAL verification function. For both NAMED and
PHYSICAL volumes, ALL performs the fixes for the relevant
verifications.

Performs PHYSICAL verification and saves the bad block bit map.

Lists the file information displayed in Figure 2-3 for any
verification that includes NAMEDI.

Disk Verification

FIX

OUTPUT

FIX produces the same output as the VERIFY command (see Figures 2-3, 2-4, and 2-5)
with additional messages displayed when an inconsistency is fixed. NAMED1 output
includes these messages.

Checksum Fixed
fnode nnnn was attached to parent nnnn

The first message appears after a bad checksum is fixed. The second message is displayed
when the parent field of an fnode is modified to point to a valid parent.

NAMED?2 displays this message when an fnode with multiple references is removed from
the directory.

fnode removed from this directory

If an fnode exists on a disk and is marked allocated, but has not been referenced, FIX
issues a warning message and asks if you want to save the bit maps. This prevents SAVE
from freeing this fnode and its blocks and possibly causing a file to be lost.

Disk Verification 2-37

This command designates fnodes and volume blocks as free (unallocated). It also
removes volume blocks from the bad blocks file. The format of the FREE command is as

follows:
\—-(FNODE = fnodenum, fnodenum >—/
W_)
BLOCK blocknum. blocknum >+
;CBADBLOCK - biotknum)—/
BADBLOCK = blocknum, blacknum
— .
INPUT PARAMETERS
fnodenum Number of the fnode to free. This number can range from 0
through (max fnodes - 1), where max fnodes is the number of
fnodes defined when the volume was originally formatted. Two
fnode values separated by a comma signify a range of fnodes.
blocknum Number of the volume block to free. This number can range from
0 through (max blocks - 1), where max blocks is the number of
volume blocks in the volume. Two block numbers separated by a
comma signify a range of block numbers.
OUTPUT

If you are using FREE to deallocate fnodes, FREE displays the following message:

<fnodenum>, fnode marked free

where <fnodenum> is the number of the fnode that the utility designated as free.

If you are using FREE to deallocate volume blocks, FREE displays the following message:

<blocknum>, block marked free

where <blocknum > is the number of the volume biock that the utility designated as free.

2-38 Disk Verification

FREE

If you are using FREE to designate one or more "bad" blocks as "good," FREE displays
the following message:

<blocknum>, block marked good

where <blocknum > is the number of the volume block that the utility designated as
"good."

FREE checks the allocation status of fnodes or blocks before freeing them. Therefore, if
you specify FREE for a block or fnode that is already unallocated, FREE returns one of
the following messages:

<fnodenum>, fnode already marked free J

<blocknum>, block already marked free l

<blocknum>, block already marked good |

DESCRIPTION

Free fnodes are fnodes for which no actual files exist. FREE designates fnodes as free by
updating both the FLAGS field of the fnode and the free fnodes map file.

Free volume blocks are blocks that are not part of any file; they are available to be
assigned to any new or current file. FREE designates volume blocks as free by updating
the volume free space map.

When you use the FREE command to designate one or more bad blocks as "good," it
removes the block number from the bad blocks file. However, FREE BADBLOCK does
not designate the blocks as free. To update the volume free space map and designate
these blocks as free, use the FREE BLOCK command.

ERROR MESSAGES

argument error A syntax error was made in the command
or a nonnumeric character was specified
in the blocknum or fnodenum parameter.

<blocknum >, block out of range The block number specified was larger
than the largest block number in the
volume.

<fnodenum >, fnode out of range The fnode number specified was larger

than the largest fnode number in the
volume.

Disk Verification 2-39

FREE

no badblocks file

not a named disk

The volume does not have a bad blocks file. This message could

appear because an earlier version of the Human Interface
FORMAT command was used when the disk was formatted.

FREE was performed on a physical volume.

Disk Verification

This command displays the volume’s bad track information. It can be aborted by entering
CONTROL-C. The format of GETBADTRACKINFO is

GETBADTRACKINFO

—

x-1599

INPUT PARAMETERS
None.
OUTPUT

The GETBADTRACKINFO command displays the volume’s bad track information as
written by the manufacturer or the Human Interface FORMAT command. The output
displayed by the GETBADTRACKINFO command is compatible with the format
required by the Human Interface FORMAT command when writing bad track
information on the disk. To use the output as input to FORMAT, remove the first two
lines, leaving only the actual bad track information data. The display is as follows:

Bad track information:
cyl head sector
ccece hh 53

ccec hh 55

where ccece is cylinder number, hh is the head number and ss is the sector number (always
zero for all devices supported in this release of the Operating System).

Disk Verification 2-41

GETBADTRACKINFO

As mentioned above, the output of the GETBADTRACKINFO command can be used as
input to the FORMAT command when creating the bad track information file. The
example below shows how to use GETBADTRACKINFO this way.

~attachdevice wmfdx0 as :w: <CR>
-diskverify :sd: to :w:bad.list <CR>
*getbadtrackinfo <CR>

*exit <CR>

After exiting DISKVERIFY and rebooting the system, edit :w:bad.lst and remove the

header lines. The file can then be used as input to the bad track information file created
by the FORMAT command.

ERROR MESSAGES
I/O error while trying to read bad An [/O error occurred while reading the
track information bad track information.
No valid bad track info found Bad track information is not valid and
cannot be displayed.
No bad track info found The area designated for bad track

information is empty.

2-42 Disk Verification

This command lists all available Disk Verification Utility commands and provides a short
description of each command. The format of the HELP command is

o

OUTPUT

F0214

In response to this command, HELP displays the following information:

*help
allocate/free :
backup/restore fnedes (bf/rf)
Control C :
disk :

display byte/word (d,db/dw)
display directory (dd)
display frnode (df)
display next block (>,dnb)

display previous block (<,dpb) :

display save fnode (dsf)
exit, quit

list bad blocks (lbb)

read (r)

restore volume label (rvl)

save .

substitute byte/word (s,sh/sw)

verify :

write (w)
edit fnode (ef)
edit save frnode (esf)
fix
get bad track info (gb)
misc commands-

allocate/free fnodes, space blocks, bad blocks

: backup/restore fnode file to/from save area

abort the command in progress
display disk attributes

. display the buffer in (byte/word format)

display the directory contents

display fnode information

read and display ‘next' volume block

read and display 'previous' volume block
display saved fnode information
quit disk verify

list bad blocks on the
read a disk block into
copy volume label from
save free fnodes, free

volume

the buffer

save area

gpace & bad block maps

: modify the buffer (byte/word format)

verify the disk

: write to the disk block from the buffer

edit an fnode
edit a saved fnode

: perform various fixes on the volume

address :
block :

hex/dec :
add,+,sub, - ,mul,* div,/,mod :

get the bad track info on the volume

convert hlock number to absclute address
convert absolute address to block number
display number as hexadecimal/decimal number
arithmetic operations on unsigned numbers

Disk Verification

2-43

This command displays all the bad blocks on a named volume. You can abort this
command by typing a CONTROL-C. The format of the LISTBADBLOCKS command is
as follows:

LIST BAD BLOCKS)—/—

F-0208

OUTPUT

In response to this command, LISTBADBLOCKS displays up to eight columns of block
numbers that you specified as "bad." Figure 2-2 illustrates the format of the display.

Badblocks on Volume: volumenum
<blocknum>» <blocknum> <blocknum>» <blocknum> <blocknum> <blocknum>

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknum>

<blocknum> <blocknum> <blocknum>» <blocknum> <blocknum> <blocknum>

Figure 2-2. LISTBADBLOCKS Format

If none of the blocks have been marked as "bad", LISTBADBLOCKS displays the
following message:

no badblocks

NOTE

Bad tracks and bad blocks are different. Bad tracks are handled by the
device drivers in conjunction with the hardware, whereas, bad blocks are
handled by the iRMX II Basic I/O System.

2-44 Disk Verification

LISTBADBLOCKS

ERROR MESSAGES

no badblocks file The volume does not have a bad blocks file. This message could
appear because an earlier version of the Human Interface
FORMAT command was used when the disk was formatted or
because the disk 1s a physical volume.

Disk Verification 2-45

The following commands provide you with the ability to perform arithmetic and
conversion operations within the Disk Verification Utility. The commands perform the
operations on unsigned numbers only and do not report any overflow conditions. When
the number is displayed in both hexadecimal and decimal format, it appears in
hexadecimal format first, followed by the decimal number in parentheses. For example:

| 13 ¢ 191)

ADD

This command adds two numbers together. [ts format is

ADD . e
T . argt >®—< arg2 >-
* e —

argl and arg2 Numbers the command adds together. The value of each argument
cannot be greater than 27°7-1.

where:

In response, the command displays the unsigned sum of the two numbers in both
hexadecimal and decimal format.

ADDRESS

All memory in a volume is divided into volume blocks, which are areas of memory the
same size as the volume granularity. Volume blocks are numbered sequentially in the
volume, starting with the block containing the smallest addresses (block 0). The
ADDRESS command converts a block number into an absolute address (in hexadecimal)

on the volume, so that you don’t have to perform this conversion by hand. The format of
this command is

ADDRESD—(blocknum)—

2.46 Disk Verification

MISCELLANEOUS COMMANDS

where:

blocknum Volume block number that ADDRESS converts into an absolute
address in hexadecimal. This parameter can range from 0 through

{max blocks - 1), where max blocks is the number of volume blocks
in the volume.

In response, ADDRESS displays the following information:

absolute address = <addr>

where:
<addr> Absolute address in hexadecimal that corresponds to the specified
block number. This address represents the number of the byte that
begins the block and can range from 0 through (volume size - 1),
where volume size is the size, in bytes, of the volume.
BLOCK

The BLOCK command is the inverse of the address command. [t converts a 32-bit
absolute address (in hexadecimal) into a volume block number, so that you don’t have to
perform this conversion by hand. The format of this command is

BLOCK addres)-—

—

where:

address Absolute address in hexadecimal that BE.OCK converts into a
block number. This parameter can range from 0 through (volume
size - 1), where volume size is the size, in bytes, of the volume.

In response, BLOCK displays the following information:

block number = <blocknum> I

where:

<blocknum > Number of the volume block that contains the specified absolute
address in hexadecimal. The BLOCK command determines this
value by dividing the absolute address by the volume block size and
truncating the result.

Disk Verification 2-47

MISCELLANEOUS COMMANDS

DEC

This command finds the decimal equivalent of a number. Its format is

T

where:

arg Number for which the command finds the decimal equivalent. The
value of the argument cannot be greater than 232.1. The default
base is in hexadecimal.

In response, the command displays the decimal equivajent of the specified number.

DIV

This command divides one number by another. Its format is

T ow \ e — ——
Tem— - argl ; Y !M arg2? B
TN - _’g J— R — 2 I />-
/)
N

where:

argl and arg2 Numbers on which the command operates. It divides argl by arg2.
The value of each argument cannot be greater than 2 21

In response, the command displays the unsigned integer quotient in both hexadecimal and
decimal format.

2-48 Disk Verification

MISCELLANEOUS COMMANDS

HEX

This command finds the hexadecimal equivalent of a number. Its format is

where:

arg Number for which the command finds the hexadecimal equivalent.
If you are specifying a decimal number, you must specify a "T".
The value of the argument cannot be greater than 2°-1.

In response, the command displays the hexadecimal equivalent of the specified number.

MOD

This command finds the remainder of one number divided by another. Its format is

— oo g1)_Q>_</ gz

where:

argl and arg2 Numbers on which the command operates. It performs the

operation argl modulo arg2. The value of each argument cannot
be greater than 2321,

In response, the command displays the value argl modulo arg2 in both hexadecimal and
decimal format.

Disk Verification 2-49

MISCELLANEOUS COMMANDS

MUL

This command multiplies two numbers together. Its format is
-< . >~ BRI s ST

where:

argl and arg2 Numbers the command multiplies tozgether. The value of each
1

argument cannot be greater than 2321,

In response, the command displays the unsigned product of the two numbers in both
hexadecimal and decimal format.

SuUB

This command subtracts one number from another. Its format is
\“-. sug) _ . L
. . - }_(, 3-,;;1 >—-l\‘!/}—-(\ argzm-)—
N

where:

argl and arg2 Numbers on which the command operates. The command

subtracts arg? from argl. The value of each argument cannot be
greater than 27<-1.

In response, the command displays the unsigned difference in both hexadecimal and
decimal format.

2-50 Disk Verification

MISCELLANEOUS COMMANDS

ERROR MESSAGES
The following error messages may be returned by any of the Miscellaneous Commands:

argument error A syntax error was made in the
command, a nonnumeric value for one of
the arguments was specified, or a value
for a block number parameter that was
not a valid block number was specified.

<blocknum >, block out of range If the command was an ADDRESS
command, the block number entered was
greater than the number of blocks in the

volume.
<address >, address not on the If the cormmmand was a BLOCK command,
disk BLOCK converted the address to a

volume block number, but the block
number was greater than the number of
blocks in the volume.

EXAMPLES

*MUL 134T, 13T <CR>
6CE (17427T)

*+ 8, 4 <CR>
0c (12T)

*SUB 8884, 256 <CR>
862E (34350T)

*MOD 1225, 256T <CR>

25 (37T)
*HEX 155T <CR>
9B

*ADDRESS 15 <CR>
absolute address = 0A80
*BLOCK 2236 <CR>
block number = 44

Disk Verification 2-51

This command exits the Disk Verification Utility and returns control to the Human
Interface command level. The format of the QUIT command is as follows:

®

F-0209

This command is identical to the EXIT command.

2-52 Disk Verification

Disk Verification

This command reads a volume block from the disk into the working buffer. The format of
the READ command is

READ

- blfc—an—

INPUT PARAMETER

blocknum Number of the volume block to read. This number can range from
() through (max blocks - 1), where max blocks is the number of
volume blocks in the volume.

OUTPUT

In response to the command, READ reads the block into the working buffer and displays
the {ollowing message:

read block number: <blocknum>
where <blocknum > is the number of the block.
DESCRIPTION

The READ command copies a specified volume block from the volume to the working
buffer. Tt destroys any data currently in the working buffer. Once the block is in the
working buffer, you can use DISPLAYBYTE and DISPLAYWORD to display the block,
and you can use SUBSTITUTEBYTE and SUBSTITUTEWORD to change the data in
the block. Finally, you can use the WRITE command to write the modified block back to
the volume and repair damaged volume data.

ERROR MESSAGES
argument error A nonnumeric character was specified in
the blocknum parameter.
<blocknum >, block out of range The block number specified was larger
than the largest block number in the
volume.
FFFFFFFF, block out of range No block number was specified and no

previous read request was executed on
this volume.

This command copies an fnode or a range of fnodes from the R?SAVE file to the fnode
file. Before changing the fnode file, RESTOREFNODE displays the fnode number to be
changed and prompts you to confirm (by entering a "y") that the fnode 1s to be restored.
R7?SAVE must have been reserved (the RESERVE option of the FORMAT command
must have been specified) when the volume was formatted. The format of the
RESTOREFNODE command is as follows:

T(RESTOREFNODE
(&9

INPUT PARAMETER

fnodenum

F-0216

fnodenum The hexadecimal number of the fnode to be restored. This number
must be greater than or equal to zero and less than the maximum
number of fnodes defined when the volume was formatted.

fnodenum1 The initial hexadecimal fnode number in a range of fnodes to be
restored. This number must be greater than or equal to zero and
less than or equal to the final fnode number in the range
(fnodenum?).

fnodenum?2 The final hexadecimal fnode number in a range of fnodes to be
restored. This number must be greater than or equal to the initial
fnode number in the range (fnodenum1) and less than the
maximum number of fnodes defined when the volume was
formatted.

OUTPUT

When the fnode is restored (the response to the confirmation query is "Y" or "y"):

restore fnode (fnodenum)? Y <GR>
restored fnode number: (fnodenum)
*

2-54 Disk Verification

RESTOREFNODE

When the fnode is not restored (the response to the confirmation query is not "Y"):

restore fnode (fnodenum)? <CR>
*

DESCRIPTION

The RESTOREFNODE command enables you to rebuild a damaged fnode file, thereby
re-establishing links to data that would otherwise be lost. RESTOREFNODE copies an
fnode or a range of fnodes from the R?SAVE file (the fnode backup file) to the fnode file.
Before each of the specified fnodes is copied, RESTOREFNODE displays a query
prompting you to confirm that the indicated fnode is to be restored. You must reply to
this query with the letter "Y" (either "Y" or "y") to restore the fnode. If you enter any
other response, RESTOREFNODE will not restore the fnode and will pass on to the next
fnode in the range.

Since RESTOREFNODE operates on the R7SAVE file, you must have reserved this file
when the volume was formatted. (You reserve R?SAVE by specifying the RESERVE
parameter when you invoke the FORMAT command to format the volume.) 1f the
R7SAVE file was not reserved when the volume was formatted, RESTOREFNODE will
return an error message.

CAUTION

When using this command, be sure that any fnode you restore represents
a file that has not been modified since the last fnode backup.
RESTOREFNODE overwrites the specified fnode in the fnode file with the
corresponding fnode in the R?SAVE file. If that fnode has not been
backed up since the last file modification, a valid fnode may be
overwritten with invalid data. Thus, all links to the associated file will be
destroyed, and YOU WILL LOSE ALL OF THE DATA IN THE FILE.

ERROR MESSAGES
argument error When the command was entered, no
argument was supplied. This command
requires an argument.
no save area was reserved when The volume was not formatted to support
volume was formatted backup fnodes. This means the

RESERVE option was not specified
when the volume was formatted.

Disk Verification 2-55

RESTOREFNODE

not a named disk

<fnode num >, fnode out of
range

allocation bit not set for saved
fnode restore fnode <fnode
num>"?

EXAMPLE

The volume specified when the Disk
Yerification Utility was invoked is a
physical volume, not a named volume.

The fnode number specified is not in the
range of 0 to (maximum fnodes - 1).

The fnode you specified has not been
backed up in the R?SAVE file. If you
respond to the query with a "Y", THE
DATA IN THE FILE ASSOCIATED
WITH THE ORIGINAL FNODE WILL
BE L.OST.

super- diskverify :sd: <CR>

*restorefnode 9,0B <GR> or

restore fnode 2? Y <CR>
restored fnode number: g

restore fnode OA? Y <CR>
restored fnode number: A

restore fnode 0B? Y <CR>
restored fnode number: OB

*

iRMX II Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
:sd:, outstanding commections to device have been deleted

rf 9,0B <CR>

2-56

Disk Verification

This command copies the duplicate volume label to the volume label on track 0. The
duplicate volume label must have been constructed when the volume was formatted.
(That is, the RESERVE option of the FORMAT command must have been specified
when the volume was formatted.) The format of the RESTOREVOLUMELABEL
command is as follows:

RESTOREVOLUMELABEL)—/—

F-0211

INPUT PARAMETERS
None.

OUTPUT

volume label restored

DESCRIPTION

The RESTOREVOLUMELABEL command enables you to rebuild a damaged volume
label, thereby re-establishing links to data that would otherwise be lost.
RESTOREVOLUMELABEL copies the duplicate volume label to the volume label offset
on track 0. When you use the Human Interface FORMAT command to create the
duplicate volume label (by specifying the RESERVE parameter), the volume label is
automatically copied to the end of the R?SAVE file. Because the contents of the volume
label do not change, no other volume label backup is required.

If a duplicate volume label has been reserved on a volume, the Disk Verification Utility
can access that volume as a Named volume even if the volume label is damaged. When
the original volume label is corrupted, the Disk Verification Utility attempts to use the
duplicate volume label. If the backup label is used, a "DUPLICATE VOLUME LABEL

USED" message appears when the utility is invoked.

If the duplicate volume label was not reserved when the volume was formatted,
RESTOREVOLUMEILABEL will return an error message.

Disk Verification 2.57

RESTOREVOLUMELABEL

ERROR MESSAGES

argument error

no save area was reserved when
volume was formatted

not a named disk

EXAMPLE

When the command was entered, an
argument was supplied. This command
does not accept an argument.

The volume has not been formatted to
support volume label backup.

The volume specified when the Disk
Verification Utility was invoked is a
physical volume, not a named volume.

volume label restored
*

super- diskverify :sd: <CR>

iRMX II Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

:sd:, outstanding connections to device have been deleted
BUPLICATE VOLUME LAREL USED

*restorevolumelabel <CR>

rvl <GR>

2-58

Disk Verification

This command writes the reconstructed free fnodes bit map, volume free space bit map,

and the bad blocks bit map to the volume being verified. {The NAMED?2 and
PHYSICAL options of the VERIFY command originally created the maps.) The format
of the SAVE command is

x 240

OUTPUT

In response to this command, SAVE displays the following message:

save fnode map?

If you want to write the reconstructed free fnodes map to the volume, enter Y, y, or YES.
Otherwise, enter any other character or a carriage return. If you enter YES, SAVE writes
the free fnodes map to the volume and displays the following message:

free fnode map saved I

In any case, SAVE next displays the following message:

save space map? l

If you want to write the reconstructed free space map to the volume, enter Y or YES.
Otherwise, enter any other character or a carriage return. If you enter YES, SAVE writes
the volume free space map to the volume and displays the following message:

free space map saved

SAVE displays the following message if the bad blocks map is reconstructed:

save bad block map?

If you want to write the reconstructed bad blocks map to the volume, enter Y, y, or YES.
Otherwise, enter any other character or a carriage return. If you enter YES, SAVE writes
the volume bad blocks map to the volume and displays the following message:

bad block map saved

Disk Verification 2-59

SAVE

DESCRIPTION

Whenever you perform a VERIFY function with the NAMED? option (refer to the
description of the VERIFY command for more information), VERIFY creates its own
free fnodes map and volume free space map. It does this by examining all directories and
fnodes on the volume, not by copying the maps that exist on the volume. To create the
free fnodes map, it examines every directory on the volume to determine which fnodes
represent actual files. To create the volume free space map, it examines the
POINTER(n) fields of the fnodes to determine which volume blocks the files use.

If the volume has a bad blocks file and you perform a VERIFY function with the
PHYSICAL option (refer to the description of the VERIFY command for more
information), VERIFY creates its own bad blocks map. It does this by examining every
block on the volume, not by copying the maps that exist on the volume.

VERIFY then compares the newly created maps with the maps that exist on the volume.
If a discrepancy exists, VERIFY displays a message indicating this.

The SAVE command takes the free fnodes map, the volume free space map, and the bad
block map created during the VERIFY operation and writes them to the volume,
replacing the maps that currently exist.

ERROR MESSAGE

nothing to save No bit map was constructed prior to invoking SAVE. (Bit maps
are constructed by NAMED?2 or PHYSICAL verifications.)

EXAMPLE

The following example illustrates the format of the SAVE command after you use
VERIFY and the NAMED or NAMED?2 option.

*VERIFY NAMED2 <CR>
'NAMED?' VERIFICATION

BIT MAPS O.K.
*SAVE <CR>
save fnode map? y <CR>
free fnode map saved
save space map? y <CR>

free space map saved
*

2-60 Disk Verification

This command enables you to interactively change the contents of the working buffer (in
byte format). You can abort this command by typing a CONTROL-C. The format of the
SUBSTITUTEBYTE command is

FSUBSTITUTEBYTE
o
2
— 7_7-7“\
offset
s B -

LAy

INPUT PARAMETER

offset Number of the first byte, relative to the start of the working bufter,
that you want to change. This number can range from 0 to (block
size - 1), where block size is the size of a volume block (and thus
the size of the working buffer). If you omit this parameter, the
command assumes a value of 0.

OUTPUT

In response to the command, SUBSTITUTEBYTE displays the specified byte and waits
for you to enter a new value. This display appears as

<offset>: val -

where <offset> is the number of the byte, relative to the start of the buffer, and val is the
current value of the byte. At this point, you can enter one of the following:

o A value followed by a carriage return. This causes SUBSTITUTEBYTE to substitute
the new value for the current byte. If the value you enter requires more than one byte
of storage, SUBSTITUTEBYTE uses only the low-order byte of the value. It then
displays the next byte in the butfer and waits for further input.

s A carriage return alone. This causes SUBSTITUTEBYTE to leave the current value
as is and display the next byte in the buffer. It then waits for further input.

Disk Verification 2-61

SUBSTITUTEBYTE

+ A value followed by a period {.) and a carriage return. This causes
SUBSTITUTEBYTE to substitute the new value for the current byte. It then exits
from the SUBSTITUTEBYTE command and gives the asterisk (*) prompt, enabling
you to enter any DISKVERIFY command.

e A period (.) followed by a carriage return. This exits the SUBSTITUTEBYTE
command and gives the asterisk (*) prompt, enabling you to enter any DISKVERIFY
command.

DESCRIPTION

With the SUBSTITUTEBYTE command you can interactively change bytes in the
working buffer. Once you enter the command, SUBSTITUTEBYTE displays the offset
and the value of the first byte. You can change the byte by entering a new byte value, or
you can leave the byte as is by entering a carriage return. The command then displays the
next byte in the buffer. In this manner, you can consecutively step through the buffer,
changing whatever bytes are appropriate. When you finish changing the buffer, you can
enter a period followed by a carriage return to exit the command.

The SUBSTITUTEBYTE command considers the working buffer to be a circular buffer.
That is, entering a carriage return when you are positioned at the last byte of the buffer
causes SUBSTITUTEBYTE to display the first byte of the buffer.

The SUBSTITUTEBYTE command changes only the values in the working buffer. To
make the changes in the volume, you must enter the WRITE command to write the
working buffer back to the volume.

ERROR MESSAGES
argument error A nonnumeric character was specified in
the offset parameter.
<offsetnum>, invalid offset An offset value larger than the number of

bytes in the block was specified.

2-62 Disk Verification

EXAMPLE

SUBSTITUTEBYTE

This example changes several bytes in two portions of the working buffer. Two

SUBSTITUTEBYTE commands are used.

0041:

*

00

0042: 00 -

*SUBSTITUTEBYTE<CR>
0000: AQ - O00<CR>
0001: 80 - <CR>
0002: E5 - <CR>
0003: FF - 31<CR>
0004; FF - .<CR>

*SUBSTITUTEBYTE 40<CR>

0040: 00 - E6<CR>

E6<CR>
.<CR>

Disk Verification

2-63

This command is identical to SUBSTITUTEBYTE, except that it displays the buffer in
WORD format, and substitutes word values in the buffer. The format of the
SUBSTITUTEWORD command is

EXAMPLE

SUBSTlTUTJO@L

@ J LC.T)I

x 240

This example changes several bytes in two areas of the working buffer. Two
SUBSTITUTEWORD commands are used. In the first command the words begin on
even addresses, and in the second command, they begin on odd addresses.

*

0039:

*SUBSTITUTEWORD<CR>
0000: AOBO - 0000<CR>
0002: 8070 - <CR>
0004: ES511 - <CR>
0006: FFFF - 3111<CR>
Q008: FFFF - .<CR>

*SUBSTITUTEWORD 35<CR>

0035: 0000 - E&FF<CR>
0037:

0000 - E6AB<CR>

0000

.<CR>

2-64

Disk Verification

This command checks the structures on the volume to determine whether the volume is
properly formatted. You can abort this command by typing a CONTROL-C. The format
of the VERIFY command is

\ I
SAVED:

| N1

f

N
NAMED?Z2

I

_J
F-0217
INPUT PARAMETERS
NAMED1 or N1 Checks named volumes to ensure that the information recorded in

the fnodes is consistent and matches the information obtained
from the directories themselves. VERIFY performs the following
operations during a NAMED1 verification:

¢ Checks fnode numbers in the directories to see if they
correspond to allocated fnodes.

o Checks the parent fnode numbers recorded in the fnodes to see
if they match the information recorded in the directories.

¢ Checks the fnodes against the files to determine if the fnodes
specify the proper file type.

o Checks the POINTER(n) structures of long files to see if the
indirect blocks accurately refiect the number of blocks used by
the file.

s Checks each fnode to see if the TOTAL SIZE, TOTAL BLKS,
and THIS SIZE fields are consistent.

e Checks the bad blocks file to see if the blocks in the file
correspond to the blocks marked as "bad" on the volume.

s Checks the checksum of each fnode.

Disk Verification 2-65

VERIFY

NAMED?2 or N2 Checks named volumes to ensure that the information recorded in
the free fnodes map and the volume free space map matches the
actual files and fnodes. VERIFY performs the following
operations during a NAMED?2 verification:

+ Creates a free fnodes map by examining every directory in the
volume. It then compares that free fnodes map with the one
already on the volume.

o Creates a free space map by examining the information in the
fnodes. It then compares that free space map with the one
already on the volume.

¢ Checks to see if the block numbers recorded in the fnodes and
the indirect blocks actually exist.

s Checks to see if two or more files use the same volume block.
If so, it lists the files referring to each block.

* Checks the volume free space map for any bad blocks that are
marked as "free."

o Checks to see if two or more directories reference the same
fnode. If so, it lists the directories referring to each fnode.

NAMED or N Performs both the NAMED1 and NAMED?2 operations on a
named volume. If you specify the VERIFY command with no
option, NAMED is the default.

ALL Performs all operations appropriate to the volume. For named
volumes, this option performs both the NAMED and PHYSICAL
operations. For physical volumes, this option performs only the
PHYSICAL operations.

PHYSICAL Reads all blocks on the volume and checks for 1/O errors. This
parameter applies to both named and physical volumes. VERIFY
also creates a bad blocks map by examining every block on the
volume.

LIST When you specify this option, the file information in Figure 2-3 is
displayed for every file on the volume, even if the file contains no
errors. You can use this option with all parameters that, either
explicitly or implicitly, specify the NAMED| parameter.

OUTPUT
VERIFY produces a different kind of output for each of the NAMED1, NAMED?2, and

PHYSICAL options. The NAMED and ALL options produce combinations of these
three kinds of output.

2-66 Disk Verification

VERIFY

Figure 2-3 illustrates the format of the NAMED!1 output (without the LIST option).

DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLOCK SIZE = <blksize>
‘NAMED1’ VERIFICATION

FILE=(<filename>, <fnodenum>): LEVEL—<lev>: PARENT=<parnt>: TYPE=<typ>
<error messages>

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>: TYPE=<typ>
<error messages>

FILE=(<filename>, <fnodenum>): LEVEL=<lev>: PARENT=<parnt>: TYPE=<typ>
<error messages>

Figure 2-3. NAMEDI1 Verification Output

The following paragraphs identify the fields listed in Figure 2-3.

<devname > Physical name of the device, as specified in the ATTACHDEVICE
Human Interface command.

<devsize > Hexadecimal size of the volume, in bytes.

<blksize > Hexadecimal volume granularity. This number is the size of a
volume block.

<filename > Name of the file (1 to 14 characters).
<fnodenum > Hexadecimal number of the file’s fnode.
<lev> Hexadecimal level of the file in the file hierarchy. The root

directory of the volume is the only level 0 file. Files contained in
the root directory are level 1 files. Files contained in level 1
directories are level 2 files. This numbering continues for all levels
of files in the volume.

<parnt> Fnode number of the directory that contains this file, in
hexadecimal.

Disk Verification 2-67

VERIFY

<typ> File type, either DATA (data files), DIR (directory files), SMAP
(volume free space map), FMAP (free fnodes map), BMAP (bad
blocks map), or VLAB (volume label file). If VERIFY cannot
ascertain that the file is a directory or data file, it displays the
characters "****" in this field.

<error messages> Messages that indicate the errors associated with the previously-
listed file. The possible error messages are listed later in this
section.

As Figure 2-3 shows, the NAMED1 option (without the LIST option) displays
information about each file that is in error. If you used the LIST option with the
NAMED option, the file information in Figure 2-3 is displayed for every file, even if the
file contains no errors. The NAMED1 display also contains error messages that
immediately follow the list of the affected files.

Figure 2-4 illustrates the format of the NAMED? output. If VERIFY detects an error
during NAMED?2 verification, it displays one or more error messages in place of the "BIT
MAPS O.K." message.

DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLK SIZE = <blksze>
"NAMED?' VERIFICATION

BIT MAPS O.K.

Figure 2-4. NAMED?2 Verification Qutput

The fields in Figure 2-4 are exactly the same as the corresponding fields in Figure 2-3.

Figure 2-5 illustrates the format of the PHYSICAL output.

DEVICE NAME = <devname> : DEVICE SIZE = <devsize> : BLOCK SIZE = <blksize>
"PHYSICAL' VERIFICATION

NO ERRORS

Figure 2-5. PHYSICAL Verification Qutput

2-68 Disk Verification

VERIFY

The fields in Figure 2-5 are exactly the same as the corresponding fields in Figure 2-3.

If VERIFY detects an error during PHYSICAL verification, it displays the message:

<blecknum>, error

in place of the "NO ERRORS" message.

If you specify NAMED verification, VERIFY displays both the NAMED1 and NAMED?2
output. If you specify the ALL verification for a named volume, VERIFY displays the
NAMEDI1, NAMED?, and PHYSICAL output. If you specify the ALL verification for a
physical volume, VERIFY displays the PHYSICAL output.

DESCRIPTION

The VERIFY command checks physical and named volumes to ensure that the volumes
contain valid file structures and data areas. VERIFY can perform three kinds of
verification: NAMED1, NAMED?2, and PHYSICAL. NAMED1 and NAMED?2
verifications check the file structures of named volumes. They do not apply to physical
volumes. A PHYSICAL verification checks each data block of the volume for I/O errors.
PHYSICAL verification applies to both named and physical volumes.

As part of the NAMED? verification, VERIFY creates a free fnodes map and a volume
free space map, which it compares with the corresponding maps on the volume. You can
use the SAVE command to write the maps produced during NAMED2 verification to the
volume, overwriting the maps on the volume.

When you perform a PHYSICAL verification on a named volume, VERIFY also creates
a bad blocks map. You can use the SAVE command to write the bad blocks map
produced during PHYSICAL verification to the volume; this destroys the bad blocks map
already on the volume.

ERROR MESSAGES

Four kinds of error messages can occur as a result of entering the VERIFY command:
VERIFY command errors, NAMEDI1 errors, NAMED2Z errors, and PHYSICAL errors.

VERIFY Command Error

argument error The parameter specified is not a valid VERIFY parameter.

Disk Verification 2-69

VERIFY

NAMED] Messages
The following messages can appear in a NAMEDI1 display, immediately after the file to
which they refer.
¢ <blocknum 1 - blocknum n>, block bad
The block numbers displayed in this message are marked as "bad.”
¢ <blocknum 1 - blocknum n >, invalid block number recorded in the
fnode/indirect block

One of the POINTER(n) fields in the fnode specifies block numbers larger than the
largest block number in the volume.

» directory stack overflow

This message indicates that a directory on the volume lists, as one of its entries, itself
or one of the parent directories in its pathname. If this happens, the utility, when it
searches through the directory tree, continually loops through a portion of the tree,
overflowing an internal buffer area. In this case, performing NAMED?2 verification
may indicate the cause of this problem.

e file size inconsistent
total$size = <totsize> :this$size = <thsize> :data blocks = <blks>

The TOTAL SIZE, THIS SIZE, and TOTAL BLKS fields of the fnode are
inconsistent.

o <filetype>, illegal file type

The file type of a user file, as recorded in the TYPE field of the fnode, is not valid.
The valid file types and their descriptions are as follows:

File type Number Description
SMAP 1 volume free space map
FMAP 2 free fnodes map
BMAP 4 bad blocks map
DIR 6 directory
DATA 8 data
VLAB 9 volume label file

s <fnodenum>, allocation status bit in this fnode not set

The file is listed in a directory but the flags field of its fnode indicates that fnode is
free. The free fnodes map may or may not list the fnode as allocated.

¢ <fnodenum >, fnode out of range

The fnode number is larger than the largest fnode number in the fnode file.

2-70 Disk Verification

VERIFY

s <fnodenum>, parent fnode number does not match

The file represented by fnodenum is contained within a directory whose fnode number
does not match the parent field of the file.

¢ invalid blocknum recorded in the fnode/indirect block

One of the pointers within the fnode or within the indirect block specifies a block
number that is larger than the largest biock number in the volume.

» insufficient memory to create directory stack

There is not enough dynamic memory available in the system for the utility to perform
the verification.

¢ sum of the blks in the indirect block does not match block in the fnode

The file is a long file, and the number of blocks listed in a POINTER(n) field of the
fnode does not agree with the number of blocks listed in the indirect block.

» total-blocks does not reflect the data-blocks correctly

The TOTAL BLKS field of the fnode and the number of blocks recorded in the
POINTER(n) fields are inconsistent.

e Bad Checksum, checksum is : <number>
Checksum should be : <number >

An invalid checksum has been calculated.

NAMED?2 Messages

The following messages can appear in a NAMED?2 display.
s <blocknum] - blocknum?2 >, bad block not allocated

The volume free space map indicates that the blocks are free, but they are marked as
"bad" in the bad biocks file.

e <blocknum >, block allocated but not referenced

The volume free space map lists the specified volume block as allocated, but no fnode
specifies the block as part of a file.

s <blocknum >, block referenced but not allocated

An fnode indicates that the specified volume block is part of a file, but the volume free
space map lists the block as free.

Disk Verification 2-71

VERIFY

¢ directory stack overflow

This message can indicate that a directory on the volume lists, as one of its entries,
itself or one of the parent directories in its pathname. If this happens, the utility,
when it searches through the directory tree, continually loops through a portion of the
tree, overflowing an internal buffer area. The "Multiple Reference" message
(explained below) may help you find the cause of this problem.

+ Fnodes map indicates fnodes > max$fnode

The free fnodes map indicates that there are a greater number of unallocated fnodes
than the maximum number of fnodes in the volume.

+ <fnodenum>, fnode-map bit marked allocated but not referenced

The free fnodes map lists the specified fnode as allocated, but no directory contains a
file with the fnode number.

+ <fnodenum >, fnode referenced but fnode-map bit marked free

The specified fnode number is listed in a directory, but the free fnodes map lists the
fnode as free.

¢ Free space map indicates Volume block > max$Volume$block

The free space map indicates that there are a greater number of unallocated blocks
than the maximum number of blocks in the volume.

+ insufficient memory to create directory stack

Not enough dynamic memory is available in the system for the utility to perform the
verification.

» insufficient memory to create fnode and space maps

During a NAMED?2 verification, the utility tried to create a free fnodes map and a
volume free space map. However, not enough dynamic memory is available in the
system to create these maps.

» insufficient memory to create bad blocks map

During a PHYSICAL verification, the utility tried to create a bad blocks map.
However, not enough dynamic memory is available in the system to create the map.

o Multiple reference to fnode <fnodenum>
Path name : <full path name >
referring fnodes:
<fnodenum > Path name: <full path name >
<fnodenum > Path name: <full path name>

The directories on the volume list more than one file associated with this fnode
number.

2-72 Disk Verification

VERIFY

o Multiple reference to block <blocknum>
referring fnodes:
<fnodenum > Path name: <full path name >
<fnodenum> Path name: <full path name >

More than one fnode specifies this block as part of a file.

PHYSICAL Messages

¢+ <blocknum>, error

An I/O error occurred when VERIFY tried to access the specified volume block. The
volume is probably flawed.

Miscellaneous Messages

The following messages indicate internal errors in the Disk Verification Utility. Under
normal conditions these messages should never appear. However, if these messages (or
other undocumented messages) do appear during a NAMED1 or NAMED?2 verification,
you should exit the Disk Verification Utility and re-enter the DISKVERIFY command.

directory stack empty

directory stack error
directory stack underflow

EXAMPLE

The following command performs both named and physical verification on a named
volume.

*VERIFY ALL <CR>

DEVICE NAME = Fl : DEVICE SIZE = O003E900 : BLOCK SIZE = 0080

'NAMEDL' VERIFICATION

*NAMED2' VERIFICATION
BIT MAPS O.K.
'PHYSICAL’ VERIFICATION

NO ERRORS
*

Disk Verification 2-73

This command writes the contents of the working buffer to the volume. The format of

this command is
WRITE

INPUT PARAMETER

blocknum Number of the volume block to which the command writes the
working buffer. If you omit this parameter, WRITE writes the
buffer back to the block most recently accessed.

F-G210

OUTPUT

In response to the command, WRITE displays the following message:

write to block <blocknum>?

where <blocknum> is the number of the volume block to which WRITE intends to write

the working buffer. If you respond by entering Y or any character string beginning with Y
or y, WRITE copies the working buffer to the specified block on the volume and displays

the following message:

written to block number:<blocknum>

Any other response aborts the write process.
DESCRIPTION

The WRITE command is used in conjunction with the READ, DISPLAYBYTE,
DISPLAYWORD, SUBSTITUTEBYTE, and SUBSTITUTEWORD commands to
modify information on the volume. Initially you use READ to copy a volume block from
the volume to a working buffer. Then you can use DISPLAYBYTE and
DISPLAYWORD to view the buffer and SUBSTITUTEBYTE and
SUBSTITUTEWORD to change the buffer. Finally, you can use WRITE to write the
modified buffer back to the volume. By default, WRITE copies the buffer to the block
most recently accessed by a READ or WRITE command.

A WRITE command does not destroy the data in the working buffer. The data remains
the same until the next SUBSTITUTEBYTE, SUBSTITUTEWORD, or READ
command modifies the buffer.

2-74 Disk Verification

WRITE

ERROR MESSAGES

argument error A syntax error was made or nonnumeric
characters were specified in the
blocknum parameter.

<blocknum >, block out of range The block number specitied was larger
than the largest block number in the
volume.

FFFFFFFF, block out of range No blocknum was specified and no
previous read request was executed on
this volume.

EXAMPLE

The following command copies the working buffer to the block from which it was read.

*WRITE <CR>
write 4B? y <CR>

written to block number: 4B
*

Disk Verification 2-75

CHAPTER 3

BACKING UP AND RESTORING

FNODES

3.1 INTRODUCTION

To access data on a named volume (such as a disk), the iIRMX Il Operating System uses a
mechanism common to virtually all operating systems: it maintains an index to every file
on the disk. This index is created when the disk is formatted and remains as a permanent
structure at a dedicated location on the disk. The index consists of a system of pointers
that indicate the location of the data files on the disk. Thus, when data must be stored on
or retrieved from the disk, the operating system can find the exact location of the
appropriate file by looking up the file name in the index.

In the operating system, the index consists of the iIRMX 11 volume label and an fnode file.
This volume label resides at the same location in all devices and serves as the initial entry
point into the device. The fnode file can reside anywhere on the disk (specified when the
disk is formatted) and contains a series of individual structures called file descriptor nodes
or "fnodes." There is one fnode for each file on the disk. The fnode contains information
essential to accessing and maintaining the respective file.

The IRMX H file structure for a named volume is organized as a hierarchical tree. That
is, there is a root directory with branches to other directories and ultimately, to files. The
organization of the fnode file reflects this hierarchical structure. The IRMX I volume
label contains a pointer to the fnede of the fite structure’s root directory. The root
directory is always the starting address for any file or directory on the volume. It lists ali
the first level files and directories on the volume. First level directories point to second
level files and directories, and so on, down the hierarchical structure.

As previously mentioned, each file or directory is represented by an fnode. The fnode,
along with other data describing the file or directory, contains pointers to blocks on the
volume. If the fnode describes a short file, these blocks contain the actual file data, If the
fnode describes a long file, these blocks contain pointers to other blocks containing the
actual data. If the fnode describes a directory, these blocks contain entries which describe
the contents of the directory. Each entry lists the tnode number and name of the
associated file or directory.

The operating system creates the iRMX I volume label and the fnode file when the disk
is formatted.

Disk Verification

3-1

BACKING UP AND RESTORING FNODES

The number of unallocated fnodes in the fnode file is controlled by the FILES parameter
of the FORMAT command. In addition to the unallocated fnodes, seven (with an option
of eight) allocated fnodes are established when the fnode file is created. These allocated
fnodes represent

« the fnode file

e the volume label file - R7VOLUMELABEL

« the volume free space map file - R?SPACEMAP
o the free fnodes map file - RZFNODEMAP

+ the bad blocks file - RZBADBLOCKMAP

« the root directory

« the space accounting file,

+ Optionally, the duplicate volume label file - R7SAVE
For a full description of these files, see Appendix A "Structure of A Named Volume."

Thereafter, when files or directories are created directly subordinate to the root, the
operating system must adjust a pointer in the root fnode to indicate the fnode number of
the new data file or directory file. Subsequently, directories subordinate to the root must
also have their pointers adjusted when they become parents to a new data file or
directory.

This method of storing and retrieving data on a disk has one major drawback. All access
to files on the disk is through the iRMX I volume label and the fnode file. If either the
volume label file or the fnode file is damaged or destroyed, there is no practical way to
recover data on the disk.

The backup and restore fnodes feature enables some recovery of data lost as a result of
damage to the fnode file or the iIRMX Il volume label. With this feature, you create a
backup version of the volume label and all the fnodes on the disk. The backup version is
stored in one of the innermost tracks of the disk where the chance of accidental loss of
data is minimal. (In normal use, the disk heads do not extend to the innermost tracks.)

To implement this feature, the Human Interface FORMAT command has been modified
to include an optional parameter -- RESERVE. This version of the FORMAT command
creates a file named R?SAVE in the innermost track of the volume. A copy of the iRMX
Il volume label is placed in the front (that is, the physical end) of the file and an fnode is
allocated for R?SAVE in the fnode file. (The fnode for the R?SAVE file is allocated out
of the fnodes reserved through the FILES parameter of the FORMAT command. Thus,
if you specify "FILES = 3000" when you format, only 2999 of those fnodes will remain
available after the R?SAVE fnode has been allocated.) Finally, FORMAT copies the
fnode file into R?SAVE.

Disk Verification

BACKING UP AND RESTORING FNODES

Notice that the FORMAT command creates a backup of the fnode file in its initialized
state. R?SAVE is not subsequently updated as files are written to or deleted from the
volume. Therefore, you will have to use the BACKUPFNODES Disk Verification Utility
command or the BACKUP option of the Human Interface SHUTDOWN command to
back up the fnode file at regular intervals. If the volume label or the fnode file become
damaged, you can attempt to recover files on the volume by using the Disk Verification
Utility commands (RESTOREFNODE and RESTOREVOLUMELABEL) to rebuild the
index. To assist in this process, the DISPLAYSAVEFNODE Disk Verification Utility
command enables you to look at individual fnodes stored in the R?SAVE file.

Since the contents of the iIRMX IT volume label do not change, the copy of the volume
label in R?SAVE is always valid. Therefore, you can restore the volume label at any time
regardless of when the R?SAVE file was last updated. (When the Disk Verification
Utility encounters a damaged volume label, it automatically uses the backup volume label
if the R?SAVE file is present, however, it does not restore unless explicitly instructed.)

CAUTION

One note of caution: The fnode file is changed each time a volume is
modified (that is, each time a file or directory is created, written to, or
deleted from the volume). Therefore, valid restoration can be assured
only for fnodes whose associated files or directories have not been
changed since the last backup.

If the fnodes are not backed up after each modification, the structure of
the R?SAVE file will differ from that of the fnode file. Some fnodes in
R?SAVE may not be associated with the same files as the corresponding
fnodes in the fnode file. Attempting to recover fnodes under these
conditions is dangerous because the RESTOREFNODE command will
overwrite what may be a valid fnode in the fnode file.

While the backup and restore fnodes feature is a useful aid in attempting to recover data
on a volume, this capability is limited in scope. If you are troubleshooting your system,
you may want to back up the fnodes on the system disk before taking any action that may
risk the disk’s integrity. You may also decide to back up the fnodes on a routine basis
(before or during each system shutdown, for instance) so that the R?SAVE file is always
relatively current. However, under normal circumstances, where a volume is accessed and
modified frequently, backing up the fnodes after each modification is not practical. The
most practical solution is to back up the fnode file once a day using the BACKUP option
of the SHUTDOWN command.

Disk Verification 33

BACKING UP AND RESTORING FNODES

Note that this feature is not intended to provide comprehensive protection from the loss
of data associated with damaged iRMX Il volume labels or fnode files. Rather, it offers a
tool that, when properly applied, can be useful in maintaining volume integrity in certain
situations. For comprehensive protection against loss of data use the Human Interface
BACKUP command.

3.2 USING FNODE BACKUP AND RESTORE

To use the fnode backup and restore feature, you must use Version 1.1 (or later) of the
Human Interface FORMAT command and the Version 2.0 (or later) of the Disk
Verification Utility. Used together, these versions of the FORMAT command and the
Disk Vertfication Utility enable you to

+ format a volume to create the backup file (R?SAVE)

e back up the fnodes of any files written to the volume

+ examine the contents of the backup file (R?SAVE)

+ restore damaged fnodes

s restore the volume label

¢ edit fnodes or save fnodes
This section describes how to perform each of these operations. A brief overview of the
operation is followed by one or more examples of a typical implementation. In the

examples, blue or bolded text indicates an entry you make from your terminal. Standard
type (this is standard type) indicates system output to your terminal.

3.2.1 Creating the R?SAVE Fnode Backup File

3-4

[f you intend to backup the volume fabel and the fnodes on a volume, you must first create
the R?SAVE backup file on the innermost tracks of the volume. To do so, you must
invoke Version 2.0 of the Human Interface FORMAT command, specifying the
RESERVE option. NOTE THAT THE FORMAT COMMAND OVERWRITES ALL
OF THE DATA CURRENTLY ON THE DISK. Therefore, make a backup copy of any

files you wish to save using the Human Interface BACKUP command.

Once the volume has been formatted, the R?SAVE file will contain a copy of the fnode
tile including the allocated fnodes (R?7SPACEMAP, R?ZENODEMAP, etc.). Therefore,
you need not back up the fnode file immediately after formatting the volume.

PROCEDURE

FFrom the Human Interface, invoke the FORMAT command, specifying the RESERVE
parameter.

Disk Verification

BACKING UP AND RESTORING FNODES

EXAMPLE

Assume that you have booted your system from a flexible diskette to format the system
disk. The command listed below formats the disk and creates the R?SAVE backup file.
The initialized fnode file is copied into R?SAVE.

-attachdevice cmbo as :mydisk: <CR>
-format :mydisk: il = 4 files = 3000 reserve <CR>

volume {) will be formatted as a NAMED volume

granularicy = 1,024 map start - 7,859
interleave = 4
files = 3000
extensionsize = 3
save area reserved = ves
bad track/sector information written = no
volume size = 15,984K
TTTTTTTTTTITTTTTT

volume formatted

The disk has now been formatted. A file named R?SAVE has been reserved in the
innermost tracks of the disk. (If you use the Disk Verification Utility
DISPLAYDIRECTORY command on the volume root fnode (fnode 6) or the Human
Interface DIR command with the invisible (1) option on the volume root directory, you
will find an fnode listed for R?SAVE.) R?SAVE contains a duplicate copy of the fnodes
in the fnode file. That is, R?’SAVE contains eight allocated fnodes (R?SAVE,
R?SPACEMAP, R7ZFNODEMAP, etc.) and 2,999 unallocated fnodes. (Remember, the
R?SAVE fnode is allocated out of the 3,000 fnodes specified through the FILES
parameter.)

3.2.2 Backing up Fnodes on a Volume
DESCRIPTION

To back up the fnodes on a volume, you must have previously reserved the back up file
R?SAVE when the volume was formatted. Thereafter, any modification to the volume
(creating, writing to, or deleting a file) requires that the fnodes be backed up if the
R?SAVE file is to contain an accurate copy of the fnode file.

You can backup the fnode on a volume either by:

e Using the Human Interface SHUTDOWN command with the BACKUP option
¢ Using the BACKUPFNODES option of DISKVERIFY (see Chapter 2)

Disk Verification 3-5

BACKING UP AND RESTORING FNODES

EXAMPLE 1

This example shows how to backup the fnode file using SHUTDOWN with the BACKUP
option. The BACKUP option allows you to copy the volume fnode file to its duplicate
file, R?SAVE, on any attached volume.

super-SHUTDOWN B <CR>

***SYSTEM WILL BE SHUTDOWN IN 10 MINUTE(S)

:5D:, outstanding connections to device have been deleted
*%%SHUTDOWN COMPLETED %

R?SAVE now contains a duplicate copy of all fnodes in the fnode file.

EXAMPLE 2

This example shows how to use the BACKUPFNODE command of DISKVERIFY to
backup the fnode file. Assume that the system disk is attached as logical device :sd:. The
initial contents of the :sd: fnode file were copied to R?SAVE by the FORMAT command.
A file has just been written to the volume. An fnode for this file is entered in the fnode
file; however, no corresponding entry has been made in R?SAVE. The following
sequence of commands will copy all fnodes in the fnode file into the R?SAVE file.

super- diskverify :sd: <CR>

iRMX IT1 Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

:sd:, outstanding comnections to device have been deleted
*backupfnodes <GR> or bf <CR>

fnode file backed up to save area
*

R?SAVE now contains a duplicate copy of all fnodes (allocated and unallocated) in the
fnode file.

Note that in both cases you must reboot the system after backing up the fnodes on the
volume,

3.2.3 Backing up the Volume Label
The volume label is initially copied to R?SAVE when the volume is formatted. Since the

contents of the volume label do not change, no other volume label backup procedures are
required.

3-6 Disk Verification

BACKING UP AND RESTORING FNODES

3.2.4 Restoring Fnodes
DESCRIPTION

To restore fnodes on a volume, you must have previously reserved the backup file
R?SAVE when the volume was formatted. If damage has occurred to the fnode file, you
can attempt to rebuild the file (or portions of it) by using the Disk Verification Utility
RESTOREFNODE command.

RESTOREFNODE enables you to restore a single fnode or a range of fnodes. You
designate the fnodes to be restored by entering the fnode numbers. The specified fnodes
in R?SAVE are copied into the corresponding fnodes in the fnode file.

Before restoring each fnode, RESTOREFNODE prompts you with the message "restore
fnode <fnode number>?". To restore the fnode, you must enter "yes" or the letter "Y"
(either Y or y). If you enter any other response, the fnode will not be restored.

When restoring fnodes, you must be very careful to ensure that you are not overwriting a
valid fnode in the fnode file with an invalid fnode from R?SAVE. Be sure the volume has
not been modified since the fnodes were last backed up.

PROCEDURE
1. Invoke the Disk Verification Utility, using the logical device name of the volume to
be backed up.

2. When you receive the Disk Verification Utility prompt (*), enter the appropriate
Disk Verification Utility commands (VERIFY, DISPLAYFNODE, etc.) to examine
the fnodes file and determine which fnode must be restored.

3. Invoke the Disk Verification Utility RESTOREFNODE command to replace the
damaged fnodes. The Disk Verification Utility prompts you to confirm that the
proper fnode is being restored. Make sure you have specified the correct
hexadecimal number for the fnode, then enter the letter "Y" in response to the
prompt.

4. RESTOREFNODE returns the message "restored fnode < fnode number >" after
the fnode in the R?SAVE file has been written over the corresponding fnode in the
fnode file.

Disk Verification 3-7

BACKING UP AND RESTORING FNODES

EXAMPLE 1

Assume that a disk drive is attached as logical device :sd:. The volume :sd: contains the
R?SAVE fnode backup file. You have not modified the disk since the fnodes were last
backed up. You suspect the fnode file has been damaged, so you use the Disk
Verification Utility to confirm your suspicions:

supet- diskverify :sd: «CR>

iRMX IT Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

:sd:, outstanding connections to device have been deleted
*verify

After using the Disk Verification Utility to examine the structure of the disk, you find that
fnodes 9 through 0C have probably been destroyed. You then use the
RESTOREFNODE command to recover these fnodes.

*restorefnode 9, 0C <CR> or rf 9, 0C <CR>
restore fnode 9? Y <CR>

restored fnode number:; 9

restore fnode 0A7 Y <CR>

restored fnode number: 0A

restore fnode OB? Y <CR>

restored fnode number: 0B

restore fnode 0C? Y <CR>

restored fnode number: 0C

Fnodes (9 through 0C in the R?SAVE file have been copied into fnode 09 through 0C in
the fnode file. Since the disk has not been modified since the last fnode backup, restoring
the damaged fnodes should now enable you to recover the data on the disk.

3-8 Disk Verification

EXAMPLE 2

Assume the same initial conditions as Example 1 with the following exception: two files
have been modified since the last time the fnodes were backed up. In the fnode file, the
new files are represented by fnodes 0D and OE. Again, you suspect that the fnode file has
been damaged, so you use the Disk Verification Utility to check the condition of data on

the disk:

BACKING UP AND RESTORING FNODES

super- diskverify :sd: <CR>
iRMX II Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation

:sd:, outstanding connections to device have been deleted

*verify

After using the Disk Verification Utility to examine the structure of the disk, you find that
fnodes 9 through 10 have probably been destroyed. You decide to use the
RESTOREFNODE command to recover these fnodes. You do not wish to restore fnodes
0D and OE because they were not backed up. Since the data fields of fnodes 0D and OE in
R?SAVE contain all zeros, you would be destroying possibly useful data in the
corresponding fnodes. You then use RESTOREFNODE to restore a range of fnodes that
includes 0D and OE. However, you intend to pass over the restoration of these two fnodes
by responding to the confirmation prompt with some character other than "Y."

*restorefnode 9,10 <CR> or rf 9,10 <CR>

restore fnode
restored fnode
restore fnode
restored fnode
restore fnode
restored fnode
restore fnode
restored fnode
allocation bit
restore fnode
allocation bit
restore fnode
restore fnode
restored fnode
restore fnode
restored frnode

97 Y <CR>
number: 9
DA? Y <CR>
number: 0A
OB? Y <CR>
number: OB
0C? Y <CR>
number: 0C
not set for saved fnode
0D? <CR>

not set for saved fnode
0E? n <CR>
OF? Y <CR>

number: OF
10?7 Y <CR>

number: 10

Disk Verification

39

BACKING UP AND RESTORING FNODES

Notice that because fnodes 0D and OE were not allocated when they were backed up,
those fnodes in R?SAVE are unallocated. Therefore, the Disk Verification Utility
returns the "allocation bit not set for saved fnode" message. Since you do not wish to
restore this fnode, you respond to the confirmation prompt with a character other than
IIY‘II‘

The R?SAVE fnodes (09 through 0C and fnodes OF through 10 have been copied over the
corresponding fnodes in the fnode file. Fnodes 0D and OE were not restored.

3.2.5 Restoring the Volume Label
DESCRIPTION

To restore the volume label, you must have previously reserved the backup file R?SAVE
when you formatted the volume. If the volume contains the R?SAVE file, a backup copy
of the volume label already exists. The FORMAT command automatically places a copy
of the volume label into R?SAVE when the file is created. Thereafter, the contents of the
volume label do not change and you can restore the label without fear of destroying data
in the existing label.

To restore the volume label, you must invoke the Disk Verification Utility using the
logical device name of the appropriate volume. If the volume label is corrupted, the Disk
Verification Utility attempts to use the backup copy of the volume label in R?SAVE.
When the backup label is used, the Disk Verification Ultility issues a message that reads
"duplicate volume label used." If this message appears when the Disk Verification Utility
is activated, then the volume label is damaged. To restore the volume label, enter the
Disk Verification Utility RESTOREVOLUMELABEL command. The current volume
label will be overwritten with the volume label copy from R?SAVE.

PROCEDURE

1. Invoke the Disk Verification Ultility, using the logical device name of the volume to
be backed up.

2. If the "duplicate volume label used" message appears, the volume label must be
restored. Enter the Disk Verification Utility RESTOREVOLUMELABEL
command.

3. When the volume label has been restored, the Disk Verification Utility returns the
message "volume label restored.”

3-10 Disk Verification

BACKING UP AND RESTORING FNODES

EXAMPLE

Assume that a disk drive is attached as logical device :sd:. The volume :sd: contains the
R?SAVE fnode backup file. When you attempt to access files on :sd:, the system returns
an ESILLEGAL VOLUME message. You suspect that the volume label may be
damaged. You decide to check your suspicions using the Disk Verification Ultility.

super- diskverify :sd: <CR>

iRMX II Disk Verify Utility, Vx.x

Copyright <year> Intel Corporation

:sd:, outstanding connections to device have been deleted

duplicate volume label used
*

The "duplicate volume label used" message confirms that the volume label has been
damaged. You restore the volume label using the RESTOREVOLUMELABEL
command.

*restorevolumelabel <CR> or rvl <CR>

volume label restored
*

The original volume label has been overwritten with the duplicate copy from the R7SAVE
file. Attempts to access files on volume :sd: should now be successful.

3.2.6 Displaying R?SAVE Fnodes
DESCRIPTION

Any fnode (both allocated and unallocated) in the R?SAVE file can be examined by using
the Disk Verification Utility DISPLAYSAVEFNODE command. The Disk Verification
Utility will display vital information about the fnode (total blocks, total size, block
pointers, parent node, etc.). The fnode is displayed in the same format used by the
DISPLAYFNODE command.

To display an R?SAVE fnode, enter the DISPLAYSAVEFNODE command and specify
the hexadecimal number of the fnode to be displayed.

Disk Verification 3-11

BACKING UP AND RESTORING FNODES

PROCEDURE

1. Invoke the Disk Verification Utility using the logical device name of the
appropriate volume.

2. When you receive the Disk Verification Utility prompt (*), enter the Disk
Verification Utility DISPLAYSAVEFNODE command. Specify the hexadecimal
number of the fnode to be displayed.

3. The Disk Verification Utility will return with an fnode display.
EXAMPLE

Assume that you cannot access a file on a disk attached as :sd:. You suspect that the
fnode file may be damaged. By entering the Disk Verification Utility and displaying the
file’s directory, you find that the file you were unable to access is represented hy fnode
3C8. You use DISPLAYFNODE to display fnode 3C8, but you are not confident of the
data you see. Since the fnode for the file has been backed up since the file was last
modified, you decide to use data in the R?SAVE fnode to examine the fnode file. The
following command displays the data for fnode 3C8 in R?SAVE.

3-12 Disk Verification

BACKING UP AND RESTORI