intal

EXTENDED iRMX®II.3
OPERATING SYSTEM
DOCUMENTATION

VOLUME 2
USER'S GUIDES

Order Number: 461845-001

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

Copyright © 1988, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your eonvenience, international sales office addresses
are located dicectly before the reader reply card in the back of the manual,

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel’s software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation,

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC OpenNET

BITBUS iy iRMX ONCE

COMMputer iMDDX iSBC Plug-A-Bubble .

CREDIT iMMX iSBX PROMPT

Data Pipeline Insite iSDM Promware

Eeniu.q intgl iS58 QUEST

1 intelIBOS iSXM QueX

i Intelevision Library Manager Ripplemode

12ICE intgligent Identifier MCS RMZX/80

ICE intgligent Programming Megachassis RUPI

iCEL Intellec MICROMAINFRAME Seamless

iCs Intellink MULTIBUS SLD

iDBP i0OSP MULTICHANNEL UPI

iDIS iPDS MULTIMODULE VLSIiCEL et
iPSHB

XENIX, M8-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM is a
registered trademark of International Business Machines. Soft-Scope is a registered trademark of
Concurrent Sciences.

Copyright® 1988, Intel Corporation

=
—a

MANUALS IN THIS VOLUME

This volume (Volume 2, Extended iRMX® II User’s Guides) contains the following
manuals, all of which document the iRMX II layers. These manual are intended to provide
the information needed to use the iRMX 1I Operating System.

Extended iRMX® [T Nucleus User’s Guide

Extended iRMX® II Basic 1/O System User’s Guide
Extended iRMX® II Extended I/0 System User’s Guide
Extended iRMX® IT Application Loader User’s Guide
Extended iRMX® II Human Interface User’s Guide
Extended iRMX® IT UDI User’s Guide

Extended iRMX® 11 Device Drivers User’s Guide

The Extended iRMX® II Nucleus User’s Guide describes the concepts of the innermost layer,
the Nucleus.

The Extended iRMX® I Basic I/O System User’s Guide describes the concepts of the Basic
I/O System.

The Extended iRMX® II Extended 1/0 System User’s Guide describes the concepts of the
Extended I/O system.

The Extended iRMX® II Application Loader User’s Guide describes how to use the Loader
to load your programs.

The Extended iRMX® II Human Interface User’s Guide explains how to use and modify the
Human Interface.

The Extended iRMX® II UDI User’s Guide describes the use of all UD], the language
interface.

The Extended iRMX® II Device Drivers User’s Guide describes the data structures and
support routines needed to write device drivers.

iRMX® II User Guides Volume iii

VOLUME PREFACE

VOLUME CONTENTS

Manuals are listed in the order they appear in the volumes. For a synopsis of each manual,
refer to the Introduction to the Extended iIRMX\ II Operating System.

VOLUME 1: Extended iRMX® II Introduction, Installation, and Operating Instructions

Introduction to the Extended iRMX II Operating System
Extended iRMX Il Hardware and Software Installation Guide
Operator’s Guide to the Extended iRMX IT Human Interface
Master Index

VOLUME 2: Extended iRMX® II Operating System User Guides

Extended iIRMX® IT Nucleus User’s Guide

Extended iRMX® II Basic I/O System User’s Guide

Extended iIRMX® I Extended 1/0 System User’s Guide

Extended iRMX® II Human Interface User’s Guide

Extended iRMX® II Application Loader User’s Guide

Extended iRMXP® II Universal Development Interface User’s Guide
Extended iRMX® II Device Drivers User’s Guide

VOLUME 3: Extended iRMX® II System Calls

Extended iRMX® II Nucleus System Calls Reference Manual

Extended iRMX® II Basic 1/O System Calls Reference Manual
Extended iRMXP® II Extended 1/0O System Calls Reference Manual
Extended iRMX® II Application Loader System Calls Reference Manual
Extended iRMX® I Human Interface System Calls Reference Manual
Extended iRMX® IT UDI System Calls Reference Manual

VOLUME 4: Extended iRMX® IT Operating System Utilities
Extended iRMX® II Bootstrap Loader Reference Manual
Extended iRMX® II System Debugger Reference Manual
Extended iRMX® II Disk Verification Urility Reference Manual

Extended iRMX® II Programming Techniques Reference Manual
Guide to the Extended iRMX® II Interactive Configuration Utility

VOLUME 5: Extended iRMX® II Interactive Configuration Utility Reference

Extended iRMX® II Interactive Configuration Utility Reference Manual

iv iRMX® II User Guides Volume

REV.

REVISION HISTORY

DATE

-001

Original Issue.

01/88

L

i

Lo

f

|'l'. :f

X
|,
i 1

in

EXTENDED iRMX®II
NUCLEUS USER'S GUIDE

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

Copyright© 1988, Intel Corporation, All Rights Reserved

This manual documents the Extended iRMX II Nucleus subsystem. The material
contained in this manual is primarily intended for programmers who need to access
system capabilities.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts contained in
the Introduction to the Extended iRMX IT Operating System.

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful to readers of
this manual.

o IRMX 286 Networking Software User's Guide, Order Number: 122323
o [APX 286 Utilities User’s Guide, Order Number: 121934

e MULTIBUS® II Transport Protocol Specification, Order Number: 149247

Nucleus User’s Guide iii

;

& sdmi

CHAPTER
OVERVIEW PAGE

TOICOEMCEIONT. - o o ccor s moesneazansamasne ot e Ao e s
1L N o L e e RO ERURTIN VI
122 JObS o i B AR T
123 SCOMENES. .us vasimssassusivsisinsssmssviii e o asmssssiirmit i tas e s obaes T sl sds st
el B E TVRE ST 2] St DU e . S0 .
1.2.5:1 MailbOXesuiisimsiasisimmsisme s s G S et tan
1.2.5.2 Semaphores....
1.2.5.3 Regions....
1.2.6 Extension And Composne Ob] ects
1.3 Descriptors.... 3
1.3.1 Descnptor lables U NN S N R O,
1.3.1.1 Global Descnptor Table (GDT) il ssbh s R S S
1.3:1.2 Local Descriptor Table (LDT) vouumimimisansmsmsmisisiimisisisinis
1.3.1.3 Interrupt Descrlptor Table (IDT)
1.3.2 Call-Gates... i
1.4 Handlers... o
14.1 Exceptlon Handlers ...
1.4.2 Interrupt Handlers....
2.1 Introduction...
2.2 Job Tree and Resource Sharmg
2.3 Job Creation ...
2.4 Job Deletion... s
2.5 System Calls for J obs

CHAPTER 3

R) §
sisiins 12
A o)
e 123

wese 125

1-5

weenes 125
sz 1-6
RN

.. 1-6
vorene 127
17
o 157

1-7

. 157

1-8

sienss 21
w2-1

i Al
w2-2

TASK MANAGEMENT PAGE

R O e e i e T e
3.2 Priority....
3.3 Task btates -
3.3.1 The Asleep State
3.3.2 The Suspended State
3.3.3 The Asleep-Suspended State o
3.3.4 The Ready and RUNNINg States.......cvcrieirimimreriissssmisssmissssssiisns
34 Task State TTanSibION st s e
St N B T il el et s o R OSSO U S . AL N
3.6 Additional Task Attributescocovivrienierens
3.7 Task Resources ..o
3.8 System Calls for Tasks

Nucleus User’s Guide

3-1

.31

sonsasz 31
32

Rt
w32

3-4

werrne 3-0
s 0

CONTENTS

vi

CHAPTER 4
EXCHANGE MANAGEMENT

4.1 Introduction...

4.2 Mailboxes... e
42.1 Maﬂbox Queues
422 Mailbox Mechamcs

4.2.3 High-Performance Pornon of Object Queue

4.2.4 System Calls for Mailboxes...
4.3 Semaphores4

4:3:1- Semaphore QUens .iunimiaminnm
4327 Semaphore MechanlIes i uaiiimimn b s i e e
4.3.3 System Calls for Semaphores

4.4 Regions....
4.5 Tasks Involved in Sharmg Data
4.6 Mutual Exclusion Using Semaphores

4.7 Mutual Exclusion Using Regmns

Usefulness of Semaphores ...

4.10 Cautionary Notes on Usmg Regmns

4.11 System Calls for Regions....

CHAPTER 5
MEMORY MANAGEMENT

R B L3 (175 1 T S S O N e
S Y IS s o T TR Ao e 8 s o e Bgee Sl e

5.3 Memory Pools ...
5.4 Controlling Pool S1ze
5.5 Movement of Memory Between J obs
5.6 Memory Allocation ...
5.6.1 Buffer Pools...

5.7 System Calls for Memory Management
CHAPTER 6
OBJECT MANAGEMENT

G0 Introduction o naansiaannissinmni
6.2 Access Rights.....

6.3 Object Address =

6.4 Inquiring About Ob] ect Types

6.5 Using Objcct Directorics...

6.6 System Calls for Objects......... R

PAGE

— |
wrensennns 4=1
S— |
—
a2

Sre B L2

S
b4
4-5
B
v 4-0
w4-6

.4-8
4 10
o 4-10

PAGE
.5-1
5-1
caieiac D=2

w52

vereeen 923
w3-4

PAGE
ceenens 0-1
S— T
R

e 02
. 6-2
e 03

Nucleus User’s Guide

CONTENTS

CHAPTER 7
DESCRIPTOR MANAGEMENT PAGE

71 TE L Ta 0 (o T T TR A S e e S e e R |
7.2 Explicit Desorlptors e Lo R AR e 5 S T e o |
7.2.1 Descriptors with Allases T N
7.2.2 Descriptors for Undefmed Memory 7-2
1.3 Cautionary Notes on USIng DeSCriplOrS.uiiinsssisssiisssisiosisssansisssssooniotisiisseiarssioosass T2
7.4 System Calls for Descriptor Managementecreeeresssesssnssmssesssesissssssssasssnses 1=2

CHAPTER 8
EXCEPTIONAL CONDITION MANAGEMENT PAGE

8.1 Introduction... R e e I e |
8.2 Condition Cocles " A S RN b e = L
8.3 Types of Exceptlonal COnleOIlS T S L G 1 |
8.4 Condition Code Ranges.... R e N S SN DI e |
8.5 Exception Handlers... B S A R S S el st O
8.6 Assigning an Exceptmn Handler e e s s TR S i e B e)
8.7 Invoking an Exception Handler.... s LR R e e
8.8 Handling Exceptions In-Line... = o s St By S vt St (A
8.9 Handling Exceptions in 80286 Processor Systems e
8.10 System Calls for Exception HAndIErs.coovevememcereceeeeeeeceee oo ee e 8-6

CHAPTER 9
INTERRUPT MANAGEMENT PAGE

S RS 1T 11601 e e e N OO A MV SUDIRRREe - e o e ey 1 |
9.2 Interrupt Mechamsm s S e e i et SO D)
9.2.1 Interrupt Contro]lers and Interrupt Lmes N T e R L2
9.2.2 Interrupt Levels... v R e S e e R s T
9.2.3 Interrupt Descrlptor Table R e e e
9.2.4 Assigning Interrupt Levels to Extemal Sources St -6
9.2.5 Disabling Interrupts.... R s SRS TS A e T wog 0
Interrupt Handlers and Interrupt Tasks T Rl AN . i L
9.3.1 SettingUpanInterrupt Hatdlerconunninmininmmmmansisiavimi 910
9.3.2 Using an Interrupt HandIercccocccvveercreserenseserssnssrsssessesseresssssassansisnseserssesese =11
9.3.3 Using an Interrupt Task .. i S BT e 9= L
9.3.3.1 Duties of the Interrupt Handler B R S WL] 4

9.3.3.2 Duties of the Interrupt Task... G R R D T2

9.3.3.3 Interrupt Task Pnormes 9-12

934 ThicrmIpE SErvICIE PATEINS oot a i s B A s aiars 9-15
9.3.5 Using Multiple Buffers to Service INtErrupts ...c..co.eeremrerrersossnnrinsessernsarasnsens 9-16
9.3.5.1 Single Buffer Example 9-16

9.3.5.2 Multiple Buffer Example.... R e s D LT

9.3.5.3 Specifying The Count L1m1t i A 1

9.3.5.4 Enabling Interrupt Levels From Wlthm a Task e

Nucleus User’s Guide vii

CONTENTS

9.4 HANDLING SPURIOUS INTERRUPTScocucspmnimmmmisrinis ittt 9-20
9.4.1 Calling GETSLEVEL... A e g e e P Ly
9.4.2 Judicious Selection of Interrupt Levels e e Ry
9.4.3 Examining the In-Service Register.... e B Y o oY s L)

9.5 EXAMPLES OF INTERRUPT SERVICING 9-24

06" System Al 1oL TNTETTUPLS (v unissmsar st ssmmisssias s irssssam e |

CHAPTER 10
OPERATING SYSTEM EXTENSIONS PAGE

10.1 Introduction.......... e el s e RN B ()]
10.2 Three Ways of Addmg Functlonahty ST e LU=]
10.3 Creating an Operating System Extensng

10.3.1 Procedures Used In Operating System Extensions2

10.3.2 Interface Procedures7

10.3.3 Entry Procedures?

10.3.4 Function Procedures8

10.3.5 RQSERROR And NUCSERROR Procedures8
10.4 Establishing Exception-Handling Mechanismsc..cccveeurecenemenrrerinsissssesveninenes 10-11
10.5 Customized EXCeption Codes.......ccowmmrvmeerreerreeereesesenreessernssserssssssesossensersrssesensereses 10-14
10.6 Linking the Procedures ... R S e e e et 0= 14
10.7 Including OS Extens:ons fok A AN S e s o LT 1
10.8 Protecting Resources From Bemg Deleted s e e LD
10.9 System Calls For Extending The Operating System e cE ST b e R

CHAPTER 11
TYPE MANAGERS PAGE

11.1 Introduction... B S B s e R S [s b e 1] |
11.2 Creating New Objects S S e b |
11.3 Manipulating Composue Objects and Extensmn Types oo sk | [
11.4 Deleting Composite Objects and Extension Types e
11.4.1 Type Manager Responsibilities During DELETE$JOB T e
11.4.2 Type Manager Responsibilities During DELETE$EXTENSION G 11-5
11.4.3 Deletion of Nested Compos1tes 11-5
11.5 Writing a Type Manager e I e e B)
11.6 Example-A Ring Buffer Manager R e L
11.6.1 Initialization.... P A e R IO s s L Y
11.6.2 The Interface ijrary A e i o
11.6.3 The Create Ring Buffer Procedure PR (5 CE R ey Sl M L
11.6.4 The Delete Ring Buffer Procedure 11-15
11057 The POt BYte PEacetURe o oo e sietmmisminyaos oimmaasst st sniesesssons LIS 13
1116:6" TheGet Byte Proctedite . i a1
11.6.7 Epilogue... AR W e et 4 £ [
11.7 System Calls for Type Managers e P L L R R T e b 1]

viii Nucleus User’s Guide

CONTENTS

CHAPTER 12
IRMX® Il MULTIBUS® Il SYSTEMS PAGE

12.1 Introduction... A OO RS Sy 1 D ST L
12.2 Features of MULTIBUS® II Systems e 1 2]
12.3 An Analogy of How MULTIBUS® II Systems Work cwisisEsasisisisasi il 22
12.4 MULTIBUS® II Hardware Overview... PPN - S e Ve I 0.2
12.4.1 Central Services Module (CSM).... - 12-4
12.4.1.1 Global Time-of-Day Clock 12 i global clock MULT[BUS H 12-5
12.4.2 Interconnect Address Space12-.iInterconnect address space 12-5
12.4.3 Built-In Self Tests (BIST)...........................12—.i.BuiIt—in Self Tests (BIST) 12-6
12.4.4 The MULTIBUS® IT Message Passing Hardware and Message 12-6
12.5 Extended iRMX® IT SOftWAre OVEIVIEWcuumurvvuvererssssesnsesssssssssereosesesessessesesessssss 27
12.5.1 The MULTIBUS® II Transport Protocol...........coocceeeeceemeemeeereoereeseesemereiennerns 12-8
1252 The Nucleus Communication SEIVICEvmmiimrmmnresssmmnississsmssiessssensanes 12-8
12.5.3 Nucleus Communication OBJECES..........urereveresissesississsnmseresesesesesessseessanesss 12-9
12.5.3.1 Port... o L S S e e e 1220
12532 Buffer PooIs =¥ R e L)
12.5.3.2.1 System Calls for Buffer Pools T e e e B
12.5.3.2.2 Data Chains... SN TSI U R SR o S M e L s Bz
12.5.3.2.3 Message Fragmentauon s 12-13
12.5.4 System Calls to Work With MULTIBUS® II Message Space cerenenes 12213
12.5.4.1 System Calls for Interconnect Space..... Snmel2:13
12.5.4.2 System Calls for Sending Messages thmugh Message Space sl 2-13
12.5.4.3 Calls For Getting Information About Message Passmg
Agents (Boards).... AT e 10T
12.5.5 The Nucleus Commumcatmns Semce System Calls B i a1 1
12.5.5.1 System calls used with buffer pool objects.... e 12-14
12.5.5.3 System Calls Used to Send/Receive Messages Through Ports....... 12-15
12.5.5.4 System Calls used with the Interconnect Registers on a board....... 12-16
12.5.6 Examples Using Nucleus Communications Service Callsccovrervenren 12-16
12.5.6.1 Interconnect Space Example................ BN e 1.5 |
12.5.6.2 Creating a Port for Message Sendmg and Recelvmg e]
12.5.6.3 Sending Data Using RQ$SEND$RSVP... e e L R
12.5.6.4 Sending a Data Chain MesSage.......cccumicmisiisnianisisssensrsisssinsissssisois 12237
12.5.6.5 Sending a Message in FTagments.......coressssenssinssenssenssenssensseness 12-44
12.5.6.6 Receiving a Message in Fragment FOrm......cc..couvcrnnveecrvonnirnsssenssonnens 12-47
12.5.6.7 The Name Server EXAMPIEcocoreverereennsnssinsisnsesssenserssrsssessssssessosseoss 12-54
126 (GlOBSATY . coosisussivssssusssisssiosmanic s s s s i a0 1256

CHAPTER 13
NUCLEUS CONFIGURATION PAGE

12.1 Introduction... S s O S S SR e T i e el 251
12.2 Hardware.... 5 T e DU S0 WS, e, 0ol e SRR, . |
12.3 System Charactenstlcs R s e 22
12.4 System Initialization Error Reportmg eV B0

Nucleus User’s Guide ix

CONTENTS

APPENDIX A
EXTENDED iRMX® Il DATA TYPES PAGE

APPENDIX B
OBJECT TYPES AND RESOURCE REQUIREMENTS PAGE

B.1 Introductioneeeeeeeccveieninneas I e R e e e e R S |
B.2 Object Types B-I

B3 ‘Resotrce ReqUITEMIEIES ittt sssntarsisissaissisisissioninna B2

APPENDIX C
EXCEPTION CODES PAGE

Gl I OO UCHON s s it i e i i oo e BT S T e e e Gl

Table 8-1. Condition Code Ranges.... e e s T e vsveve b s o D,
Table 8-2. Return Address after an Exceptlon S s SRR SRR S e L)
Table 9-1. Allocation of Interrupt Entries................ s O
Table 9-2. Interrupt Levels Disabled for Runnmg Task S R oo DS
Table 9-3. Interrupt Level and Task Priority Informationccccocecevicveecevcrcncennnnnnn. 9-13
Table 9-4. Handler and Task Interaction through Time.........ccccovorvvevrnrrerrinrnrrsssnsaenss 920
Table 9-5. Servicing Interrupts with an Interrupt Handler.........cc.coeveenereciivnrininninssnns. 9-24
Table 9-6. Servicing Interrupts with an Interrupt TasK......cccccceereceecereeereisenesveressersssrares 9-25
Table 9-7. Servicing Interrupts with an Interrupt Handler,

Interrupt Task, and Multiple Buffering.... = S =20
Table 10-1. Comparison of Techmques for Creatmg Common Functlons.................. 10-2
Table B-1. Type Codes... SR e o e R R kR S SR PG B R
Table C-1. Exception Codes... ...C-1

Figure 1-1. Initial Job Tree... T e e
Figure 3-1. Task State Transmon Dlagram S A e et e R e S]
Figure 5-1. Memory Movement Dlagram RN A e e e
Figure 9-1. Interrupt Processing Mode ... i ssemsmmmissmsessaeesssmensstmsssssansessons 9212
Figure 9-2. 80286 Interrupt Lines... e S T e
Figure 9-3. Flow Chart of Interrupt Handhng . 9-15
Figure 9-4. Single-Buffer THtErTUPt SEIVICINE i.vviesurrirmmmmussssssrssisarsmsssrssissisonsossessssssasarss 9 17

X Nucleus User’s Guide

CONTENTS

FIGURES (continued)

Figure 9-5. Multiple-Buffer INterrupt SErVICINGvveereereisrerssrssmersssssssssssssaressssssns 9-18
Figure 10-1. OS Extensions with Entry Procedure... e) [0
Figure 10-2. OS Extension without Entry Proceclure SRR o R |0

Figure 10-3. Summary of Duties of Procedures in OS Extens1ons................................ 10-6
Figure 10-4. Handling Exceptions with an Exception Handler........c.cccoe.vcvevvrneveennnn, 10-10
Figure 10-5. Control Flow for Handling Exceptions Tn-Lin€.....c.ccocoooooeererinrce 10413
Figure 11-1. Creation Sequence for Composite ObjJECtS.........coeumrurerrivsrsmsnenssrnsernsereenns 111
Figure 11-2. Type Manager Involvement in DELETESJOB..........cccoeivirnirinsnnennn. 114
Figure 11-3. A Ring Buffer... s R e a1
Figure 12-1. Simplified MULTIBUS® II Bus Archltecture e i BB S
Figure 12-2. A Simplified MULTIBUS® I Message 12-7

Figure 12-3. A Data Chain Block and a Data Chain12-12

Figure 12-4. Physical Location of Boards in the Examples17

Figure 12-5. Board Scanning Algorithm18

Figure 12-6. Implementation of a Board SCANNET w..einiernssnsnnsismnsmsssessanesenens 12725
Figure 12-8. Creating a Data Transport Protocol POItvrerererimerssnesseresenenns 12-30
Figure 12-9. An RSVP/REPLY Transaction between Two

Extended iRMX® II Hosts ... e R e e O 1 1
Figure 12-10. Algorithm for RQ$SEND$RSVP Example S e
Figure 12-11 Algorithm for Server Board... wisisRs iR 12-33
Figure 12-12. Client Board Code for RQ$SEND$RSVP Examp[e 12-35
Figure 12-13. The Server Board Code to Receive and Answer

an RSVP Message.... A AR R SR SR SRS S S s g she R AT,
Figure 12-14. Data Cham Send SRR el 20 L
Figure 12-15. Receive a Message in Data Cham Form T P R e
Figure 12-16. Send a Message in Fragments.... = TN = i Ll s | 1252

Figure 12-17. Receive a Message in Fragments GG s LRI
Figure 12-18. Sending a Message that Requircs

Receive Fragmentation............... R o b Ly
Figure 12-19. Literal File DCOM LIT DR e ER SR (et e e)
Figure 12-20. External File DCOM. EXT SRR s e 1 254

Nucleus User’s Guide xi

: Wm\g.-...‘-.....‘...ﬁm&ﬁ]
i‘_" %) ‘**'; =R SR o

i o ML TR TRG

- 3

Ihw_-\:u .

e T

AT

..u.._' -Il—l-o;dll.l—ﬂm--i-u\,-- J,.....!...',. -M_p-q-r-|-.-.

.-—.-.1..-.-,.-... e

i _k.u..,.&gaﬂ‘i

e LR P L ST

Rt o s Ll el Bt

INTRODUCTION

The Extended iRMX® II Nucleus is the core of every iRMX II application system. Its
activities include

o Supplying scheduling functions

e Controlling access to system resources

o Providing for communication between processes and processors

o Enabling the system to respond to external events

The Nucleus provides the building blocks from which the other subsystems (Basic I/O
System, Extended I/O System, Application Loader, and Human Interface) and

application systems are constructed. These building blocks are called objects and are
classified into the following categories called object types:

o Tasks

o Jobs

e Segments
o Mailboxes

o Semaphores
e Regions
o [Extension objects

o Composite objects

The following generalizations can be made about these types:
o Tasks are the active objects in a system. They do the work of the system.

o Jobs are the environments in which tasks do their work. An environment consists of
tasks, the objects that tasks use, a directory where tasks can catalog objects so as to
make them available to other tasks, and a memory pool.

o Segments are pieces of memory, the medium that tasks use for communicating and for
storing data.

e Mailboxes are objects to which tasks go to send or receive other objects.

Nucleus User’s Guide 1-1

OVERVIEW

e Semaphores are the objects that enable tasks to synchronize their actions with other
tasks.

o Regions are objects that guard a specific collection of shared data.

o Extension objects are objects which designate new types of objects.

e Composite objects objects of the new types designated by extension objects.

The Nucleus does extensive record-keeping of objects. It keeps track of each object by

means of a 16-bit value called a token The Nucleus provides a number of operators,
called system calls that tasks use to manipulate objects.

When using a system call, a task supplies parameter values, such as tokens, names, or
other values, depending on the requirements of the system call. Some of the functions
that tasks can perform with system calls are

o Create objects

e Delete objects

¢ Send messages to other tasks

e Receive messages from other tasks

¢ Obtain information about objects

o Catalog objects with descriptive names

o Delete objects from catalogs

1.2 OBJECTS

Each of the object types discussed in this manual has unique characteristics. These
characteristics are discussed in detail in the following sections.

1.21 Tasks

Tasks do the work of the system. They can be considered a virtual CPU. Tasks used by
the iRMX II Operating System are software tasks. They should not be confused with
80286 processor hardware tasks. The entire iRMX II Operating System and its tasks,
when operating without exceptions, are one hardware task. A task has two goals:

° Its primary goal is to do a specific piece of work.
° Its secondary goal is to obtain control of the processor so that it can progress
toward its primary goal.

1-2 Nucleus User’s Guide

OVERVIEW

One of the main activities of the Nucleus is to arbitrate when several tasks each want
control over the processor. The Nucleus does this by maintaining an execution state and a
priority for each task. The execution state for each task is, at any given time, either
running, ready, asleep, suspended, or asleep-suspended. The priority for each task is an
integer value between 0 and 255, inclusive, with 0 being the highest priority.

The arbitration algorithm that the Nucleus uses is that the running task is the ready task
with the highest (numerically lowest) priority.

As viewed by the Nucleus, a task is merely a set of values, some of which are

o The task’s priority

e The task’s execution state

e A token for the job that contains the task

When a task becomes the running task, the following events occur, in order:
1. The context of the previously running task is saved by the Nucleus.
2. The Nucleus loads the new running task’s context.

3. The new task begins executing.

The task continues to run until one of the following events occurs:

o The task removes itself from the ready state. For example, the task can suspend or
delete itself; the task can attempt to receive a token for an object that has not yet been
sent, in which case it might elect to wait (in the asleep state).

o The task (task A) is pre-empted when a higher priority task (task B) becomes ready.
For example, task B might previously have gone into the asleep state for a specific
period of time. When the time period has passed, task B becomes ready again.
Because it is then the highest priority ready task, task B becomes the running task.

o The task is rescheduled due to round-robin. For a complete explanation of round-
robin scheduling, see Chapter 3.

1.2.2 Jobs
A job consists of tasks and the resources they need.
The jobs in a system form a family tree, with each job, except the root job, obtaining its
resources from its parent. The tasks in the user jobs can create additional objects. If they

create additional jobs, this enlarges the job tree.

The job tree, as it may look after the initialization of a system, is shown in Figure 1-1.

Nucleus User’s Guide 1-3

OVERVIEW

ROOT JOB

i l |

USER JOB USEREJOB USERNJOE
#1] &

Figure 1-1. Initial Job Tree

Associated with each job is an object directory. Objects are known to the Nucleus by their
respective tokens, but often, in the code that is executed by tasks, the objects are known
by symbolic names. The object directory for a job is a place in memory where a task can
catalog an object under a name. Other tasks that know the name can then use the
directory to access the object.

Also associated with each job is a memory pool. This is an amount of memory, up to 16M

bytes, which is allocated to the job and its descendants. All memory needed to create
objects in the job comes from the memory pocl.

1-4 Nucleus User’s Guide

OVERVIEW

1.2.3 Segments

A fundamental resource that tasks need is memory. Memory is allocated to tasks in the
form of segments which are addressable, contiguous blocks of memory containing up to
64K bytes of either code or data. A task needing memory requests a segment of whatever
size it requires. The Nucleus attempts to create a segment from the memory pool given to
the task’s job when the job was created. While the segment is being used by the task, the
80286 microprocessor checks the segment length to ensure that the segment does not read
or write beyond the segment length defined. If there is not enough memory available, the
Nucleus will try to borrow the needed memory from ancestors of the job. In this respect,
the tree-structured hierarchy of jobs is instrumental in resource distribution.

1.2.4 Buffer Pools

Buffer pools are holding areas for segments, you create a buffer pool and then fill it with
buffers using the ROSCREATE$SEGMENT system call. Having a pool of memory
readily available cuts down on system overhead because allocating existing buffers is faster
than creating and deleting segments.

1.2.5 Exchange Objects

Three of the object types are used as information exchanges: mailboxes, semaphores, and
regions. Each of these is explained in the following sections.

1.2.5.1 Mailboxes

A mailbox is one of three types of objects that can be used for intertask communication.
When task A wants to send an object or a data packet to task B, task A must send a token
for the object or the actual message to a mailbox, and task B must visit that mailbox. If a
token or a data packet isn’t there, task B has the option of waiting for any desired length
of time. If a token is being sent, task B can access the object after obtaining the token.
Sending a token for an object in this manner can achieve various purposes. The object
might be a segment that contains data needed by the waiting task. On the other hand, the
segment might be blank, and sending its token might constitute a signal to the waiting

task.
1.2.5.2 Semaphores
A semaphore is a custodian of abstract "units." It dispenses units to tasks that request

them, and it accepts units from tasks. Units at a semaphore behave like null messages at a
mailbox.

Nucleus User’s Guide 1-5

OVERVIEW

An example of typical semaphore use is mutual exclusion. Suppose your application
system contains one I/O device which is being used for output by multiple tasks. To
ensure that only one of these tasks can use the device at a given time, you can establish a
semaphore which has one unit and require that tasks obtain the unit before using the
device. A task wanting to use the device would request the unit from the semaphore.
When it gets the unit, it can use the device and then return the unit to the semaphore.
Because the semaphore has no units while the task is using the device, other tasks are
effectively excluded from using the device. You might want to think of units at a
semaphore like currency at a bank. If there is no money in the bank, the bank cannot
function.

1.2.5.3 Regions

A region is a one-unit semaphore with special semantics. It is an iRMX II object that
tasks can use to restrict access to a specific collection of shared data. Once a task gains
access to shared data through a region, by issuing a successful ACCEPT$SCONTROL
system call, the task can not be suspended or deleted (although it may still be pre-empted
by a higher priority task) by other tasks until it surrenders access. When the task
currently using the shared data no longer needs access, it notifies the operating system,
which then allows the next task to access the shared data.

1.2.6 Extension And Composite Objects

Whenever more than one job in your application system requires a function not supplied
by the iRMX IT Operating System, you can add new types of objects to your system to
provide the needed function. The procedures that support these added functions are
called operating system extensions. A type manager is an operating system extension that
can create objects of a new type. A given type manager can only create one type of object,
but can create numerous objects (called composite objects) of that object type. The object
type is designated by an object called an extension object.

1.3 DESCRIPTORS

1-6

The Nucleus keeps track of each object by means of a 16-bit value called a token. The
token contains the logical address of the object. However, a descriptor is needed to
determine the physical address. Descriptors are used to give an area of memory
addressability. Each descriptor is an entry in a descriptor table and contains the physical
address of a segment. The operating system assigns each object a descriptor when it is
created. Every object must have at least one descriptor or there is no way to address it.

Nucleus User’s Guide

OVERVIEW

1.3.1 Descriptor Tables

All descriptors reside in a hardware descriptor table. There arc three types of descriptor
tables: the Global Descriptor Table (GDT), the Local Descriptor Table (LDT), and the
Interrupt Descriptor Table (IDT).

1.3.1.1 Global Descriptor Table (GDT)

The GDT is a table of up to 8K entries each of which is a descriptor containing the 24-bit
physical address used by the system to access areas of memory. Descriptors in the GDT
can be used by every task in the system. There is only one GDT for the entire operating
system. All the descriptors you need will be in the GDT.

1.3.1.2 Local Descriptor Table (LDT)

The LDT is the only hardware LDT in the iRMX II Operating System. It is reserved for
system use. Additional LDTs are not available.

1.3.1.3 Interrupt Descriptor Table (IDT)
The IDT is a table containing the address of the interrupt handling code to be executed

when an interrupt occurs. Addresses can be entered into the IDT either when the system
is created or dynamically using the SETSINTERRUPT system call.

1.3.2 Call-Gates

Call-gates are used to enter the iIRMX II Operating System and OS extensions. They
redirect flow within a task from one code segment to another. Each system call uses a
call-gate to transfer the program directly to the IRMX service routine requested. Call-
gates are part of the descriptor tables and are reserved when the system is configured.

1.4 HANDLERS

Two kinds of events can be handled specially: exceptional conditions and interrupts. The
remainder of this chapter describes the handlers for these events.

Nucleus User’s Guide 1-7

OVERVIEW

1.4.1 Exception Handlers

Tasks occasionally make errors. If an error occurs during an iRMX II system call, it
causes an exceptional condition. If an error occurs as a result of a hardware protection
feature, such as, a program trying to execute out of its segment bounds or trying to
execute a segment that is defined as read only, it causes an exceptional condition known
as a trap. The occurrence of an exceptional condition or a trap can, if desired, cause a
transfer of control to the exception handler associated with the current task. The
exception handler is a procedure that typically deals with the problem by one of the
following methods:

o Correcting the cause of the problem and trying again

o Deleting or suspending the task that caused the error

The designer of an iRMX II-based system has two kinds of decisions to make when
establishing an exception handler for each task. The first decision concerns the choice of
exception handlers. The task can have its own custom exception handler, it can use the
exception handler for the job to which it belongs, or it can use the Intel-provided system
exception handler. The second decision concerns when control goes to an exception
handler. The task can direct control to the exception handler in avoidable (programmer)
and/or unavoidable (environmental) conditions. If control is not directed to an exception
handler, the task must handle the exception.

1.4.2 Interrupt Handlers

To function effectively as a real-time system, an iRMX II application system must be
responsive to external events. An interrupt handler, which is required for each source of
external events (interrupts), is a procedure that is invoked by hardware to respond to an
asynchronous event. The handler takes control immediately and services the interrupt.
When the interrupt handler is finished servicing the interrupt, it surrenders the processor,
which returns to the interrupted procedure.

As part of its servicing, the interrupt handler can invoke a task to further process the
interrupt. An interrupt handler invokes an interrupt task if the processing of an interrupt
requires large amounts of time or if the processing requires those Nucleus system calls
that interrupt handlers are prohibited from using.

1-8 Nucleus User’s Guide

2.1 INTRODUCTION

A job is an environment in which iRMX II objects such as tasks, mailboxes, semaphores,
segments, and (offspring) jobs reside. In addition, a job has an object directory and a

memory pool of up to 16M bytes. The job’s memory pool provides the raw material from
which objects can be created by the tasks in the job.

Applications consist of one or more jobs. Jobs are independent but they may share
resources. Each job has its own tasks and may have its own object directory. Objects may
be shared between jobs, although each object is contained in only one job.

The programmer must decide whether tasks belong in the same job. In general, you
should place tasks in the same job if

e They have similar or related purposes
o They share many resources

e They have similar lifespans

2.2 JOB TREE AND RESOURCE SHARING

The jobs in a system are arranged in the form of a tree. The root job is provided by the
Nucleus. The remaining jobs, including jobs that are created dynamically while the system
runs, are descendants of the root job. A job containing tasks that create other jobs is a
parent job. A newly created job is a child of the job whose task created it.

Associated with each job is the following set of limits:

e Maximum size of its object directory

o Maximum and minimum sizes of its memory pool

e Maximum number of simultaneously existing objects that it can contain

o Maximum number of simultaneously existing tasks that it can contain

» Highest priority of any task contained in it

You must specify these limits whenever you create a job. These limits, with the exception
of object directory size, apply collectively to the job and all of its descendant jobs.

Nucleus User’s Guide 2-1

JOB MANAGEMENT

For example, if job A creates job B, these events occur:

e Sufficient memory to meet job B’s minimum memory pool requirements is transferred
from job A’s memory pool to that of job B.

e The memory for job B including its object directory is taken from job A’s memory
pool.

o The numbers of tasks and total objects that job A can contain are reduced by the
corresponding values specified for job B.

o The specified maximum priority for tasks in job B cannot exceed the maximum
priority for tasks in job A.

If job B is later deleted, its resources are returned to job A.

2.3 JOB CREATION

A job is created with one task whose functions should include doing some initializing
activities for the new job. Initializing activities can include housekeeping and creating
other objects in the new job.

When a task creates a job, it has the option of passing a token for a parameter object to
the newly created job. The parameter object can be of any type and can be used for any
purpose. For example, the parameter object might be a segment containing data,
arranged in a predefined format, needed by tasks in the new job. Tasks in the new job can
obtain a token for the job’s parameter object by means of the GET$TASK$TOKENS
system call, described in the iRMX IT Nucleus System Calls Reference Manual.

2.4 JOB DELETION

Before a job can be deleted, all of its extension objects (see Chapter 11) and descendant
jobs must be deleted. By using the RQESOFFSPRING system call, the deleting task can
probe down the job tree and find all of the descendants. Then it can delete them,
beginning with descendants that have no children and working up the tree. After all of the
descendants have been deleted, the task can delete the target job.

2.5 SYSTEM CALLS FOR JOBS

The following system calls manipulate jobs:

o RQESCREATES$JOB--creates a job with a memory pool of up to 16M bytes and
returns a token for the job; resources for the new job are drawn from the resources of
the job to which the invoking task belongs. This system call should be used for all new
applications or for present applications which may expand beyond 1M byte.

2-2 Nucleus User’s Guide

JOB MANAGEMENT

o CREATESJOB--creates a job with a memory pool of up to 1M byte and returns a
token for the job; resources for the new job are drawn from the resources of the job to
which the invoking task belongs. This call is available for compatibility with the iRMX
86 Operating System. It should be used only by applications that require compatibility
with the iRMX 86 Operating System. All new applications should use
RQES$CREATES$JOB.

e DELETE$JOB--deletes a childless job that contains no extension objects and returns
the job’s resources to its parent.

o RQESOFFSPRING--provides a list of the child jobs of the specified job in a user-
supplied data structure.

e OFFSPRING--provides a segment containing tokens of the child jobs of the specified
job.

For a complete list and explanation of the iRMX II Nucleus system calls, see the Extended
iIRMX II Nucleus System Calls Reference Manual.

Nucleus User’s Guide 23

3.1 INTRODUCTION

Tasks are the active objects in an iRMX II system. Each task is part of a job and is
restricted to the resources that its job provides.

The iRMX IT Nucleus maintains a set of attributes for each task. Among these attributes
are the priority and execution state of the task.

3.2 PRIORITY

A task’s priority is an integer value between 0 and 255, inclusive. The lower the priority
number, the higher the priority of the task. A high priority task has favored status as it
competes with other tasks for the microprocessor.

Unless a task is involved in processing interrupts (see Chapter 9), its priority should be
between 128 and 255. When a task having a priority in the range 0 to 127 is running,
certain external interrupt levels are disabled, depending on the priority.

3.3 TASK STATES

A task is always in one of five execution states. The states are asleep, suspended, asleep-
suspended, ready, and running.

3.3.1 The Asleep State

A task is in the asleep state when it is waiting for a request to be granted. A task can put
itself in the asleep state by issuing a SLEEP system call, or it can be placed there by the
operating system after issuing a request that cannot be granted immediately if the task is
willing to wait. In either case, the length of time the task stays in the asleep state is
controlled by a parameter that the task specifies.

Nucleus User’s Guide 3-1

TASK MANAGEMENT

3.3.2 The Suspended State

A task enters the suspended state when it is placed there by another task, when it is
waiting for an interrupt, or when it suspends itself. Associated with each task is a
suspension depth, which reflects the number of "suspends" outstanding against it. Each
suspend operation must be countered with a resume operation before the task can leave

the suspended state. The suspension level (the number of outstanding suspends) is not
available as a service of the operating system.

3.3.3 The Asleep-Suspended State

When a sleeping task is suspended, it enters the asleep-suspended state. In effect, it is
then in both the asleep and suspended states. While asleep-suspended, the task’s sleeping
time might expire, putting it in the suspended state. Also, if another task resumes an
asleep-suspended task, the latter task will enter the asleep state.

3.3.4 The Ready and Running States

A task is ready if it is not asleep, suspended, or asleep-suspended. For a task to become
the running (executing) task, it must be the highest priority task in the ready state.

3.4 TASK STATE TRANSITION

32

The Nucleus allocates processor time to tasks in a priority-based manner. The following
discussion explains this method of allocating processor time.

As an iIRMX II application system runs, events occur which cause tasks to pass from state

to state. The iRMX II Operating System is, therefore, event-driven. Figure 3-1 shows the
paths of transition between states.

The following list describes, by number, the events that cause the transitions in Figure 3-1.
In this list, the migrating task is called "the task":
(1) When the task is created, it is placed in the ready state.
(2) The task goes from the ready state to the running state when one of the following
OCCUTS:
o The task has just become ready and has higher priority than any other ready task.

¢ The task is ready and no other task of equal or higher priority is before it in the
ready queue (see section, "Round-Robin Scheduling," for further explanation).

(3) The task goes from the running state to the ready state when the task is pre-empted
by a higher priority task that has just become ready or when the task is rescheduled
as a result of round-robin (see section "Round-Robin Scheduling").

Nucleus User’s Guide

R,

(4)
)
(6)
i ()
(8)
©)
(10)

TASK MANAGEMENT

The task goes from the running state to the asleep state when one of the following
OCCurs:

e The task puts itself to sieep (by the SLEEP system call).

o The task makes a request (for example, by issuing a RECEIVE$MESSAGE,
RECEIVESUNITS, or LOOKUP$OBIECT system call) that cannot be granted
immediately and expresses, in the request, its willingness to wait.

The task goes from the asleep state to the ready state or from the asleep-suspended
state to the suspended state when one of the following occurs:
o The time period specified in the invocation of the SLEEP system call expires.

e The task’s designated waiting period expires without its request being granted.

e The task’s request is granted (because another task issued a system call such as
SEND$MESSAGE or SEND$UNITS that sends a message, and the message was
received).

o The object at which the task was waiting was deleted (for example, mailbox).

The task goes from the running state to the suspended state when the task suspends
itself (by the SUSPENDS$TASK or WAITSINTERRUPT system call).

The task goes from the ready state to the suspended state or from the asleep state
to the asleep-suspended state when the task is suspended by another task (by the
SUSPENDS$TASK system call).

The task remains in the suspended state or the asleep-suspended state when one of

the following occurs:

o The task is suspended by another task (by the SUSPEND$TASK system call).

o The task has a suspension depth greater than one and the task is resumed by
another task (by the RESUMES$TASK system call).

The task goes from the suspended state to the ready state or from the asleep-
suspended state to the aslecp state when the task has a suspension depth of one and
the task is resumed by another task (by the RESUMESTASK system call).

The task goes from any state to non-existence when it is deleted (by the
DELETESTASK, DELETES$JOB, or RESET$INTERRUPT system call).

Nucleus User’s Guide 33

TASK MANAGEMENT

(s) (9)

(2) (3) {7)

(e

()

(9 ()

F-0517

Figure 3-1. Task State Transition Diagram

3.5 ROUND-ROBIN SCHEDULING

As mentioned previously, the iRMX II Operating System schedules tasks based on

priority. Two tasks with the same priority compete for CPU resources, and often one task
is left waiting indefinitely. To prevent this from happening, the iRMX II Operating
System offers round-robin scheduling.

Round-robin scheduling is particularly desirable in a multi-user development
environment. It prevents one task from monopolizing the CPU while other tasks wait
indefinitely.

There are a number of factors which can cause a task to lose control of the CPU.

o The task is pre-empted by a hardware interrupt.

34 Nucleus User’s Guide

TASK MANAGEMENT

o The task is pre-empted by a higher priority task.
o The task performs a system call that causes it to relinquish control of the CPU.

In the first two cases, the task (referred to throughout the text as task A) remains in the
READY state. Without round-robin scheduling, when the higher priority activity is
completed, task A regains control. Thus, any other tasks having the same priority as task
A will not run until task A performs a system call causing it to relinquish control of the
(@ 4O

With round-robin scheduling, task A is allocated a time quota. When its time quota
expires, it is pre-empted. If there are other tasks of the same priority in the READY
state, task A loses control of the CPU to another task, and is placed in the ready list after

all tasks of the same priority. Task A regains control only when it reaches the top of the
list.

Round-robin scheduling affects only tasks that are of lower priority (numerically higher)
than a level you determine when configuring the system. The recommended threshold
priority level of 140 ensures that high-priority, time-critical tasks such as interrupt tasks
are not affected. The Nucleus always executes the highest priority task until it is pre-
empted by a higher priority ready task or until it relinquishes control.

The following example illustrates the advantage of using round-robin scheduling. Assume
you have tasks A, B, and C. Task C has priority 130, and tasks A and B have priority 200.
Round-robin scheduling has been configured with a time quota of 5 ticks and a threshold
priority of 140. Task A runs for 2 clock ticks when task C becomes ready. Task C
immediately gains control because of its higher priority. When task C relinquishes control
of the CPU, task A continues to run for its remaining 3 clock ticks. It is then pre-empted
and task B runs. After task B relinquishes control or is completed, task A is rescheduled
for another 5 clock ticks. Without round-robin scheduling, task B would not run as task A
would continue running until a higher priority task became ready or it relinquished the
processor.

To implement round-robin scheduling, it is necessary to configure two parameters on the
"Nucleus" screen of the Interactive Configuration Utility. These parameters establish the
threshold priority level and the time quota each task can run before it is pre-empted. The
default threshold priority is 255, which means round-robin is turned off. To use round-
robin, the recommended threshold priority is 140. The default time quota is 50
milliseconds. For more details on configuring the Nucleus, see the iRMX II Interactive
Configuration Utility Reference Manual.

Nucleus User’s Guide 3-5

TASK MANAGEMENT

3.6 ADDITIONAL TASK ATTRIBUTES

In addition to priority, execution state, and suspension depth, the Nucleus maintains
current values of the following attributes for each existing task: containing job, its register
context, starting address of its exception handler (see Chapter 8), its exception mode (see
Chapter 8), whether or not it is an interrupt task (see Chapter 9) and whether the task
uses the Numeric Extension Processor (NPX).

3.7 TASK RESOURCES

When a task is created, the Nucleus takes any resources that it needs at that time (such as
memory for a stack) from the task’s containing job. If the task is subsequently deleted,
these resources are returned to the job.

3.8 SYSTEM CALLS FOR TASKS

The following system calls are provided for task manipulation:
o CREATESTASK--creates a task and returns a token for it.
o DELETE3JTASK--deletes a non-interrupt task from the system.

o SUSPENDSTASK--increases a task’s suspension depth by one; suspends the task if it
is not already suspended.

o RESUMESTASK--decreases a task’s suspension depth by one; if the depth becomes
zero and the task was suspended, it then becomes ready; if the depth becomes zero
and the task was asleep-suspended, then it goes into the asleep state.

o SLEEP--places the calling task in the asleep state for a specified amount of time.

o GETS$TASK$TOKENS--returns a token to the calling task for either the task, its job,
its job’s parameter object, or the root job, depending on which option is specified in
the call.

¢ GETSPRIORITY--returns the priority of the specified task.
o SET$PRIORITY--sets a task’s priority to the specified level.

For a complete list and explanation of the iRMX II Nucleus system calls, see the iRMX II
Nucleus System Calls Reference Manual.

3-6 Nucleus User’s Guide

4.1 INTRODUCTION

The iRMX II Nucleus provides exchanges to facilitate intertask communication,
synchronization, and mutual exclusion. When a task uses an exchange, it is always acting
either as a sender or as a receiver. There are three kinds of exchanges: mailboxes,
semaphores, and regions. If the exchange is a mailbox, one task will send a message to the
mailbox; another task will go to the mailbox to receive the object’s message. If the
exchange is a semaphore, cither a task is receiving units from the semaphore, or it is
sending units to the semaphore. If the exchange is a region, the data in the region can be
accessed by only one task at a time, and this task cannot be deleted or suspended until it
relinquishes control.

4.2 MAILBOXES

Mailboxes support intertask communication. A sending task uses a mailbox to pass either
a token or a message of up to 128 bytes to another task. For example, the object might be
that of a segment containing data needed by the receiving task.

4.2.1 Mailbox Queues

Each mailbox has two queues, one for tasks that are waiting to receive objects or
messages, the other for objects or messages that have been sent by tasks but have not yet
been received. The Nucleus sees that waiting tasks receive objects or messages as soon as
they are available, so, at any given time, at least one of the mailbox’s queues is empty.

4.2.2 Mailbox Mechaniés

When creating a mailbox, you must specify whether the mailbox is a data mailbox or a
message mailbox. Data mailboxes are manipulated with the system calls SEND$DATA
and RECEIVESDATA, whereas, message mailboxes are manipulated with the
SEND$MESSAGE and RECEIVE$MESSAGE system calls. If you try passing a message
to a mailbox with the wrong system call, for example sending a token with SEND$DATA,
the Nucleus issues an ESTYPE exception code.

Nucleus User’s Guide 4-1

EXCHANGE MANAGEMENT

When a task sends either a token or a data packet to mailbox, using the
SEND$MESSAGE or the SEND$DATA system call, one of two events occurs. If no
tasks are waiting at the mailbox, the message is placed at the rear of the message queue
(which might be empty). Message queues (object or data queues) are processed in a first-
in/first-out (FIFO) manner, so the message remains in the queue until it moves to the
front and is given to a task.

If there are tasks waiting, the receiving task, which has been asleep, goes either from the
asleep state to the ready state or from the asleep-suspended state to the suspended state.

NOTE

If the receiving task has a higher priority than the sending task, then the
receiving task preempts the sender and becomes the running task.

When a task attempts to receive a message from a mailbox via the
RECEIVESMESSAGE or RECEIVESDATA system call, and the message queue at the
mailbox is not empty, the task receives the message immediately and remains ready.
However, if there are no messages at the mailbox one of two events occurs:

o If the task specifies in the time$limit parameter that it is willing to wait, it is placed in
the mailbox’s task queue and is put to sleep. If the designated waiting period elapses
before the task gets a message, the task is made ready and receives an ESTIME
exceptional condition (see Appendix D for a list of error conditions).

o If the task specifies in the time$limit parameter that it is not willing to wait, it remains
ready and receives an E$TIME exceptional condition.

A task has the option, when using the SEND$MESSAGE system call, of specifying that it
wants acknowledgment from the receiving task. Thus, any task using the
RECEIVESMESSAGE system call should check to see if an acknowledgment has been
requested. This option is not available to a task using the SEND$DATA system call. For
details, see the description of the system calls in the Extended iRMX IT Nucleus Systemn
Calls Reference Manual.

As stated earlier, the message queue for a mailbox is processed in a FIFO manner.
However, the task queue of a mailbox can be either FIFO or priority-based, with higher-
priority tasks toward the front of the queue. When a task creates a mailbox, the task
specifies which kind of task queue the mailbox is to have.

4.2.3 High-Performance Portion of Object Queue

4-2

The object queue of each mailbox is divided into two portions: a high-performance
portion and an overflow portion. The high-performance portion is directly associated
with each mailbox, while the overflow portion is created by the operating system as
needed.

Nucleus User’s Guide

EXCHANGE MANAGEMENT

A task, when creating a mailbox with CREATE$MAILBOX, can specify the number of
objects the high-performance portion can hold, from 4 to 60. By using this high-
performance portion of the object message queue, the task can greatly improve the
performance of SENDSMESSAGE and RECEIVE$MESSAGE when these calls actually
get or place objects on the queue (the high-performance portion has no effect when tasks
are already waiting at the task queue). When more objects are queued at a mailbox than
the high-performance portion can hold, the objects overflow into an extra buffer that
holds up to 100 messages. The overflow buffer is not deleted until the object message
queue empties. Thus, the average slowdown experienced when the high-performance
portion overflows is almost negligible.

The high-performance portion has high speed because the Nucleus allocates memory for
it while creating the mailbox. The Nucleus allocates this memory permanently to the
mailbox, even if no objects are queued there. No space is allocated for the overflow
portion of the queue until the space is needed to contain objects. However, because an
overflow buffer is not created for every send/receive message, but rather for every 100
messages, there is almost no effect on performance. Performance is affected only in the
worst-case when a SENDSMESSAGE system call causes the allocation of an overflow
buffer. In this case, extra time is required for the allocation. If you know the number of
objects you will have, it is advisable to configure the high-performance portion to hold
them.

4.2.4 System Calls for Mailboxes

The following system calls manipulate mailboxes:

s CREATE$MAILBOX--creates a mailbox and returns a token.

¢ DELETE$MAILBOX--deletes a mailbox from the system.

o SENDS$DATA--sends a data packet of up to 128 bytes to a mailbox.
o SEND$MESSAGE--sends an object to a mailbox.

o RECEIVESDATA--receives a data packet from a mailbox; the task has the option of
waiting if no data packets are present.

o RECEIVESMESSAGE--receives an object from a mailbox; the task has the option of
waiting if no objects are present,

For a complete list and explanation of the iRMX II Nucleus system calls, see the Extended
IRMX II Nucleus System Calls Reference Manual.

Nucleus User’s Guide 4-3

EXCHANGE MANAGEMENT

4.3 SEMAPHORES

A semaphore is a custodian of abstract units. A task uses a semaphore either by
requesting a specific number of units from it via the RECEIVE$UNITS system call or by
releasing a specific number of units to it via the SEND$UNITS system call. Although
these operations do not support communication of data, they facilitate mutual exclusion,
synchronization, and resource allocation.

4.3.1 Semaphore Queue

Semaphores have only one queue, a task queue. The task queue is either FIFO or
priority-based. The queueing scheme to be used is specified for each semaphore at the
time of its creation.

4.3.2 Semaphore Mechanics

4-4

Because tasks can request more than one unit, a semaphore might simultaneously have
both tasks in its queue and units in its custody. That scheme is best understood by
imagining that the semaphore is trying, at all times, to satisfy the request of the task which
is at the front of the semaphore’s task queue. Only when it can provide as many units as
the task requested does it award units, and then it does so immediately. A request made
to a semaphore is either granted in full or it is not granted at all.

When a task uses the CREATE$SEMAPHORE system call, it must supply two values.
One value specifies the initial number of units to be in the new semaphore’s custody. The
other value sets an upper limit on the number of units that the semaphore is allowed to
keep at any given time. The lower limit is automatically zero.

When a task requests units from a semaphore via the RECEIVE$UNITS system call, the
request must be within the specified maximum for that semaphore; otherwise, the request
is invalid and causes an ESLIMIT exceptional condition. If a task’s request for units is
valid and if the size of the request is within the semaphore’s current supply of units and,
the task is at the front of the semaphore’s task queue (or would be if queued), then the
request is granted immediately and the task remains ready. Otherwise, one of the
following applies:

¢ If the task specifies in its time$limit parameter that it is willing to wait, it is placed in
the semaphore’s task queue and is put to sleep. If the designated waiting period
elapses before the task gets its requested units, the task is made ready and receives an
E$TIME exceptional condition.

o If the task specifies in its time$limit parameter that it is not willing to wait, it remains
ready and receives an E$TIME exceptional condition.

Nucleus User’s Guide

EXCHANGE MANAGEMENT

For example, suppose that two tasks, A and B, are waiting at a semaphore, with A at the
front of the queue. The semaphore has no units, A wants 3 units, and B wants 1 unit. The
following three separate cases illustrate the mechanics of the semaphore:

e If the semaphore is sent 2 units, both A and B remain asleep in the semaphore’s

queue. Note that B’s modest request is not satisfied because A is ahead of B in the
queue.

o If the semaphore is sent 3 units, A receives the units and awakens, while B remains
asleep in the queue.

o If the semaphore is sent 4 units, A and B both receive their requested units and are
awakened (A is awakened first).

When a task sends units to a semaphore, the task remains ready. Sending units to a
semaphore causes an ESLIMIT exceptional condition if it pushes the semaphore’s supply

above the designated maximum. The number of units in the custody of the semaphore
remains unchanged.

NOTE

A task sending units to a semaphore can be pre-empted by a higher
priority task becoming ready as a result of receiving its requested units.

4.3.3 System Calls for Semaphores

The following system calls manipulate semaphores:
CREATES$SEMAPHORE--creates a semaphore and returns a token for it.
DELETE$SEMAPHORE--deletes a semaphore from the system.

SEND$UNITS--adds a specific number of units to the supply of a semaphore.

RECEIVESUNITS--asks for a specific number of units from a semaphore.
For a complete list and explanation of the iRMX IT Nucleus system calls, see the Extended
IRMX II Nucleus System Calls Reference Manual.

4.4 REGIONS

A region is an iRMX II object that tasks can use to guard a specific collection of shared
data. Each task desiring access to shared data awaits its turn at the region associated with
that data. When the task currently using the shared data no longer needs access, it
notifies the operating system, which then allows the next task to access the shared data.

Regions should be restricted to specific uses. Misuse of regions can have profound affects
on your application system.

Nucleus User’s Guide 4.5

EXCHANGE MANAGEMENT

4.5 RISKS INVOLVED IN SHARING DATA

Occasionally, several tasks in a system must share data. If the tasks run concurrently and
the data is subject to change, access to the data must be restricted to one task at a time,
The following example illustrates the importance of controlling task access to data.

Suppose tasks A and B are both part of an air-traffic-control application system. Task A
runs at fixed time intervals and checks for any potential collisions. Task B runs as a result
of an interrupt caused whenever the sweep of the radar detects an aircraft. Task B is of
higher priority than task A and is responsible for updating the position of the detected
aircraft. Potentially, task B could corrupt the data used by task A. For instance, suppose
that task A is in the process of extrapolating the position of a particular aircraft. It first
fetches the craft’s last-reported position and uses the craft’s velocity to estimate the
position at some time in the near future. While task A fetches the X-coordinate of the
position it is pre-empted by task B before it can fetch the Y- and Z- coordinates. Task B
now updates the craft’s X-, Y-, and Z-coordinates to reflect the fresh information
gathered from the radar. Task B surrenders the processor, and the system resumes
running task A. Task A finishes fetching the craft’s last-reported position but ends up
with corrupt information. Instead of using (old X, old Y, old Z) or (new X, new Y, new
Z), task A believes the last reported position to be (old X, new Y, new Z). In this
application, this error could lead to disaster.

Corruption of data can occur in this manner whenever the following three conditions are
met:

o The data is shared between two or more tasks.

o The tasks sharing the data run concurrently. (That is, one of the tasks could possibly
pre-empt another.)

o At least one of the tasks changes the data.

Whenever all three of these conditions exist, you must take special precautions to protect
the validity of the shared data. You must ensure that only one task has access to the
shared data at any instant, and you must ensure that the task having access cannot be pre-
empted by other tasks desiring access. This protocol for sharing data is called mutual
exclusion.

4.6 MUTUAL EXCLUSION USING SEMAPHORES

4-6

Tasks can use semaphores to obtain mutual exclusion. However, using semaphores for
this purpose can lcad to two kinds of problems:

o Priority Bottlenecks

Suppose that three tasks, A, B and C, have low, medium and high priority,
respectively. If these tasks employ a priority-queued semaphore to ensure that no

Nucleus User’s Guide

EXCHANGE MANAGEMENT

more than one of them uses shared data at any instant, the following situation could
arise:

1. Task A (low priority) obtains access to the data and continues to run.

2. Task C (high priority) attempts to gain access, but is forced to wait at the
semaphore until task A frees the data.

3. Task B (medium priority) awakens from a timed sleep and pre-empts task A
(low priority).

In Step 2, task C must wait for task A (which has lower priority) to finish using
the shared data, since task A gained access to the data before task C. This kind
of delay is inherent in mutual exclusion.

In Step 3, however, the delay is unreasonable. Task C is forced to wait for task
B (which has lower priority than task C) even if task B does not use the shared
data.

o Tying Up the Shared Data

If several tasks use a semaphore to govern access to shared data, and the task
currently having access is suspended, the semaphore prevents any other tasks
from using the shared data. Only after the suspended task is resumed can it
free the shared data for use by the other tasks.

If the task using the data is deleted, rather than merely being suspended, the
situation is even worse. The governing semaphore prevents any other tasks
from ever using the shared data.

/ You can eliminate both of these kinds of problems by using regions rather than
1 semaphores to govern the sharing of data.

\

4.7 MUTUAL EXCLUSION USING REGIONS

Tasks can use regions as well as semaphores to obtain mutual exclusion. However, you
should note these facts about regions:

o The priority of the task that currently has access to the shared data may temporarily
be raised. This happens automatically (at regions where the task queue is priority-
based) whenever the task at the head of the queue has a priority higher than that of
the task that has access. Under such circumstances, the priority of the task having
access is raised to match that of the task at the head of the queue. When the task
having access surrenders access, its priority automatically reverts to its original value.
This priority adjustment prevents the priority bottleneck that can occur when tasks use
semaphores to obtain mutual exclusion.

e Once a task gains access to shared data through a region, the task can not be
suspended or deleted (although it many still be pre-empted) by other tasks until it
surrenders access. This characteristic prevents tasks from tying up shared data.

Nucleus User’s Guide 4.7

EXCHANGE MANAGEMENT

CAUTION

When a task gains access through a region, it must not attempt to
suspend or delete itself. Any attempt to do so will lock up the
region, preventing other tasks from accessing the data guarded by
the region. In addition, the task will never run again and its memory
will not be returned to the memory pool. Also, if the task in the
region attempts to delete itself, all other tasks that later attempt to
delete themselves will encounter the same memory pool problems.

You should avoid using regions in Human Interface applications. If a
task in a Human Interface application uses regions, the application
cannot be stopped asynchronously (via CONTROL-C entered at a
terminal) while the task is accessing data guarded by the region.

When you create a region you must specify which of two rules (FIFO or priority) is to
be used to determine which waiting task next gains access to the shared data.

4.8 USEFULNESS OF SEMAPHORES

Despite the seeming drawbacks of semaphores, there are three reasons to use them:

1o

4-8

You can use semaphores to accomplish much more than mutual exclusion. For
example, with semaphores you can synchronize multiple tasks or allocate resources.
Regions, on the other hand, provide only mutual exclusion.

Because of the possibility of deadlock, regions should not be used outside of
extensions to the operating system. Consequently, programmers not familiar with
operating system extensions must use semaphores to accomplish mutual exclusion.

Semaphores allow a task to set an upper limit on the amount of time the task is
willing to wait for access. In contrast, regions provide no such option. Tasks using
regions for mutual exclusion have only two choices:

They can request immediate access (with the ACCEPT$§CONTROL. system
call). If a task makes such a request and access is not available immediately, the
task does not wait at the region. Rather, it receives an exception code and
continues to run.

They can request access as it becomes available (with the
RECEIVESCONTROL system call). This kind of request causes the task to

wait at the region until access becomes available. If access never becomes
available, the task never runs again.

Nucleus User’s Guide

EXCHANGE MANAGEMENT

4.9 REGIONS AND DEADLOCK

A major concern in any multitasking system is avoiding deadlock. Deadlock occurs when
one or more tasks permanently lock each other out of required resources. The following
hypothetical situation illustrates how deadlock can occur in using nested regions and how
to avoid this situation.

NOTE

In the following example, the only system call used to gain access is the
RECEIVE$CONTROL system call. Tasks using the

ACCEPTSCONTROL system call cannot possibly deadlock at a region
unless they keep trying endlessly to accept control.

Suppose that two tasks, A (high priority) and B (low priority), both need access to two
collections of shared data, called Set 1 and Set 2. Access to each set is governed by a
region (Region 1 and Region 2).

Now suppose that the following events take place in the order listed:
1. Task B requests access to Set 1 via Region 1. Access is granted.

2. Before task B can request access to Set 2, an interrupt occurs and task A pre-empts
task B.

Task A requests access to Set 2 via Region 2. Access is granted.

4. Task A requests access to Set 1via Region 1. Task A must wait because task B
already has access.

5. Task B resumes running and requests access to Set 2 via Region 2. Task B must
wait because task A already has access.

At this point task A is waiting for task B and vice versa. Tasks A and B are hopelessly
deadlocked, and any other tasks that request access to either set of data will also become
deadlocked.

This team deadlock situation applies only to systems in which regions are nested. If your
system must use nested regions, you can prevent team deadlock by adhering to the
following rule:

Apply a strict ordering to all the regions in your system, and code tasks so that they
gain access according to the order. For cxample, supposc that your system uscs 12
regions. Write the names of the regions on a piece of paper in any order, and number
them starting with 1. As you program a task that nests any of the regions (say Regions
3, 8, and 10), be sure that the task requests access in numerical order and relinquishes
the regions in reverse numerical order. The essential element of this technique is that

Nucleus User’s Guide 4-9

EXCHANGE MANAGEMENT

all tasks must request access in a consistent order. The precise order is unimportant
as long as all tasks obey it.

If you follow this rule consistently, you can safely nest regions to any depth.

4.10 CAUTIONARY NOTES ON USING REGIONS

Use of regions should be restricted to programmers that have a firm understanding of the
operating system and the entire application system. A less-knowledgeable programmer
can, by abusing regions, corrupt the interaction between tasks in an application system.
For instance, by creating a region and gaining access to nonexistent shared data, a
programmer can make tasks immune to delction. If they never surrender access, the tasks
can permanently avoid deletion.

Abusing some of the features described in this manual (such as regions) can affect the
integrity of the entire operating system. If you wish to preserve the integrity of your
application system, confine the use of regions to programmers writing operating system
extensions.

4.11 SYSTEM CALLS FOR REGIONS

The following system calls manipulate regions:

o ACCEPT$CONTROL--allows a task to gain access to shared data only when access is
immediately available. If a different task already has access, the requesting task
remains ready but receives an exception code.

o« CREATE$REGION--creates a region and returns a token for it. One of the
parameters passed during this call specifies the queuing rule (FIFO or priority).

» DELETE$REGION--deletes a region.

e RECEIVE$CONTROL--causes a task to wait at the region until the task gains access
to the shared data.

o SENDSCONTROL--when issued by a task, frees the operating system to grant a
different task access to the shared data.

For a complete list and explanation of the iRMX II Nucleus system calls, see the Extended
IRMX II Nucleus System Calls Reference Manual.

4-10 Nucleus User’s Guide

5.1 INTRODUCTION

Occasionally a task needs additional memory. The Free Space Manager in the Nucleus
supplies the run time memory required by the jobs in an Extended iRMX II Operating
System. All free space initially belongs to the root job. By using Nucleus system calls for
allocating and deallocating memory, tasks can usually satisty their memory needs.

5.2 SEGMENTS

Allocated memory is treated as a collection of segments. A segment is a contiguous
sequence of memory not exceeding 64K bytes. A segment’s physical starting address is on
an even byte boundary (that is, it is divisible by 2). A segment is assigned a slot
(descriptor) in the GDT. That GDT slot serves as the segment token. You can access a
segment by loading the specific slot number into a selector.

When a task needs a segment, it can request one of the desired length via the
CREATES$SEGMENT system call. If enough memory is available, the Nucleus returns a
token for the segment.

NOTE

The token for a segment can be used as the selector of a pointer to the
segment. Thus, the token can be used as a selector (as when writing a
message in the segment) or as an object reference (as when sending the
segment-with-message to a mailbox). The PL/M-286 SELECTOR data
type is especially useful in referring to the segment.

Nucleus User’s Guide 5-1

MEMORY MANAGEMENT

5.3 MEMORY POOLS

A memory pool is the memory available to a job and its descendants. Each job has a
memory pool. When a job is created, the memory for its pool is allocated from the pool
of its parent job. Thus, there is a tree-structured hierarchy of memory pools, identical in
structure to the hierarchy of jobs. Memory that a job borrows from its parent remains in
the pool of the parent as well as being in the pool of the child. Such memory, however, is
only available to tasks in the child job, and not to tasks in the parent job, until the child job
releases the borrowed memory.

5.4 CONTROLLING POOL SIZE

Two parameters, pool$min and pool$max, of the RQESCREATES$JOB system call (and
CREATES$JOB, although it has been retained for compatibility only), dictate the range of
sizes of a new job’s memory pool. The job’s memory pool can be up to 16M bytes.
Initially, the memory pool is physically contiguous and is equal to pool$min, the pool
minimum. If the task needs more memory, it may borrow the memory from its parent
job. In this case, the memory requested is a contiguous memory block, but is is not

contiguous to the initial memory pool. The maximum amount of memory that may be
borrowed is equal to

pool$max - pool$min

Memory allocated to tasks in the child job is still considered to be in the job’s pool. A task
needing to know about its job’s pool or another job’s pool may use the
RQESGETSPOOLSATTRIB system call to obtain pool$min, pool$max, the initial pool
size, the number of paragraphs currently available, the number of paragraphs currently
allocated, and the amount of memory borrowed.

5.5 MOVEMENT OF MEMORY BETWEEN JOBS

When a task tries to create a segment (or an object of any other type), and the
unallocated part of its job’s pool is not sufficient to satisfy the request, the Nucleus tries to
borrow more memory from the job’s parent (and then, if necessary, from its parent’s
parent, and so on). Such borrowing increases the pool size of the borrowing job and is
thus restricted by its pool maximum attribute. When a job is deleted, the memory in its
pool becomes unallocated, and access to it is given back to the parent job.

Note that if a job has equal pool minimum and pool maximum attributes, its pool is fixed
at that common value. This means that the job may not borrow memory from its parent.

5-2 Nucleus User’s Guide

MEMORY MANAGEMENT

5.6 MEMORY ALLOCATION

The memory pool of a job consists of two classes of memory: allocated and unallocated.
Memory in a job is unallocated unless it has been requested, either explicitly or implicitly,
by tasks in the job or unless it is on loan to a child job. A task’s request for memory is
explicit when it calls the CREATE$SEGMENT system call and implicit when the task
attempts to create any type of object other than a segment.

When a task requests memory, the memory is allocated in segments 18 bytes longer than
the specified size. These 18 bytes are for internal use by the Nucleus. However, each
selector returned points to the first address available to the task.

The Nucleus borrows small amounts of memory from a job’s pool each time a task in that
job creates an object. This memory is needed for bookkeeping purposes. When the
object is deleted, the borrowed memory is returned to the pool. Appendix B lists these
memory requirements.

When a task no longer needs a segment, it can return the segment to the unallocated part
of the job’s pool by using the DELETE$SEGMENT system call. Because of the algorithm
used by the Free Space Manager for returning segments to the memory pool, memory
fragmentation is minimal and has little effect on performance. Figure 5-1 shows how
memory "moves."

PARENT JOB'S POOL

CREATES- DELETES JOB CREATES- ADELETES-A DELETESSEGMENT
JOB SEGMENT JoB (BORROWING)
(BORROWING)
Y CREATESSEGMENT i
(NORMAL)
LUNALLQCATED ALLOCATED
MEMORY DELETESSEGMENT MEMORY

CHILD JOB'S PQOL

x-145

Figure 5-1. Memory Movement Diagram

Nucleus User’s Guide 53

MEMORY MANAGEMENT

5.6.1 Buffer Pools

Buffer Pools are holding areas for segments which are used by tasks when needed.
Having a pool of memory readily available to tasks cuts down on system overhead because
allocating the existing buffers is faster than creating and deleting segments.

Buffer pools are empty when created. The user gives segments to the buffer pool. The
segments are created using the the RQ$CREATESSEGMENT system call. The created
segments are given to a buffer pool by using the RQSRELEASE$BUFFER system call.
The buffers are then used by tasks that require memory. Any task that requires frequent
creation and deletion of segments may improve performance by using a buffer pool with
pre-allocated segments.

Buffer pools incur a certain amount of system overhead in their creation. The following
formula defines the amount of resources required.

(Max Buffers * 4) + 108 bytes = the amount of memory used by any given buffer pool.

When you create a buffer pool you specify the following information:

o The maximum number of buffers that can reside in the buffer pool at any one time
(8192 maximum.)

5.7 SYSTEM CALLS FOR MEMORY MANAGEMENT

The system calls for memory management are

o CREATESBUFFER$POOL--Creates a buffer pool object.

o CREATE$SEGMENT--creates a segment and returns a token for it.

¢ DELETE$BUFFER$POOL--Deletes a buffer pool object.

o DELETE$SEGMENT--returns a segment to the pool from which it was allocated.
o GETS$SIZE--returns the size, in bytes, of a segment.

¢ RQE$GETSPOOLSATTRIB--returns the following memory pool attributes of the
specified job: pool minimum, pool maximum, initial size, number of allocated
paragraphs, number of available paragraphs, and the amount of memory borrowed.
Both pool minimum and pool maximum may be up to 16M bytes of memory.

o GET$POOLSATTRIB-returns the following memory pool attributes of the calling
task’s job: pool minimum, pool maximum, initial size, number of allocated
paragraphs, and number of available paragraphs. Both pool minimum and pool
maximum are limited to 1M byte of memory. This system call is provided for

compatibility with the iRMX I Operating System. However, for new applications use
RQESGET$POOLSATTRIB.

o RELEASESBUFFER--Return a (segment) bufter to a previously created buffer pool.

5-4 Nucleus User’s Guide

MEMORY MANAGEMENT

o REQUESTSBUFFER--Get a buffer (segment) from a buffer pool that has been
supplied with buffers via the RQSCREATE$SEGMENT system call.

For a complete list and explanation of the iRMX II Nucleus system calls, see the Extended
IRMX II Nucleus System Calls Reference Manual,

Nucleus User’s Guide 5-5

i)

2

_
=2

6.1 INTRODUCTION

The Nucleus provides the objects from which the other subsystems are constructed. The
Extended iRMX II Nucleus uses 16-bit values, called tokens, to manage the objects in the
system. Tokens, as defined by the iRMX II Operating System, are logical addresses.
They are selectors that reference an entry in the global descriptor table (GDT). It is the
GDT entry which contains the 24-bit physical address of the memory used by the object.

6.2 ACCESS RIGHTS

One of the protection features of the 80286 processor is the access byte. This byte
contains the attributes of an 80286 segment, that is, it defines the way a segment can be
used by instructions in other 80286 segments. When an iRMX I object is created, its
corresponding segment is assigned a read/write access type. Before any operation is
performed, the hardware checks the access type. If you have entered the wrong access
type, the hardware causes an exception. The iRMX 11 Operating System has taken
advantage of this hardware feature by allowing a task to change an object’s access type for
segment objects, descriptor objects or composite objects. Access rights for all other object
types (job, task, mailbox, semaphore, region and extension) cannot be changed.

Two system calls are provided for manipulating the access byte.
ROESGETSOBJECTSACCESS supplies the value of the object’s access byte. The
RQE$CHANGESOBIECTSACCESS system call allows you to change an object’s access
rights. It uses the access byte format provided by the 80286 processor for both code and
data segment descriptors. For a list of the possible access byte values, see the Extended
iRMX IT Nucleus System Calls Reference Manual.

NOTE

Do not try to change bits in a token. This may cause a hardware trap.

Nucleus User’s Guide 6-1

OBJECT MANAGEMENT

6.3 OBJECT ADDRESS

The RQE$GETSADDRESS system call converts an object’s logical address into its 24-bit
physical address. The physical address may be necessary when using device drivers or
when creating aliases as part of descriptor management (see Chapter 7).

6.4 INQUIRING ABOUT OBJECT TYPES

The GET$TYPE system call enables a task to present a token to the Nucleus and get an
object’s type code in return. (Type codes for Nucleus objects are listed in Appendix B.)
This is useful, for example, when a task is expecting to receive objects of several different
types. With the object’s type code, the task can use the appropriate system calls for the
object.

6.5 USING OBJECT DIRECTORIES

6-2

Each job has its own object directory. An entry in an object directory consists of a token
for an object and the object name. The name contains from one to twelve characters,
where a character is a one-byte value (from 0 to OFFH). Such a feature is often needed
because some tasks might only know some objects by their associated names.

By using thec LOOKUP$OBJECT system call, a task can present the name of an object to
the Nucleus. The Nucleus consults the object directory corresponding to the specified job
and, if the object has been cataloged there, returns the token.

NOTE

In object directories, upper and lower case alphabetic characters are
treated as being different. The Nucleus sees the name as just a string of
bytes. It does not interpret these bytes as ASCII characters.

If the object has not yet been cataloged, and the task is not willing to wait, the task
remains ready and receives an E$TIME exceptional condition (unless the object directory
is full, in which case the task receives an ESLIMIT condition code). However, if the task
is willing to wait, it is put to sleep; then two possibilities exist:

o If the designated waiting period elapses before the task receives its requested token,
the task is made ready and receives an E§TIME exceptional condition (see Appendix
D).

o If the task receives its requested token within the designated waiting period, it is made
ready with no exceptional condition. This case is possible because another task can
catalog the appropriate entry in the specified object directory while the requesting
task is waiting.

Nucleus User’s Guide

OBJECT MANAGEMENT

When a task wants to share an object with the other tasks in a job (not necessarily its own
job), it can use the CATALOG$OBJECT system call to put the object in that job’s object
directory. Typically, this is done by the creator of the object. Likewise, entries can be
removed from a directory by the UNCATALOG$OBJIECT system call.

When using an object directory, you must give the token of the job whose directory is to
be used. The root job’s object directory, called the root object directory, is special in that
its token is easily accessible. Any task can call the GET$TASK$TOKENS system call to
obtain the token of the root job.

6.6 SYSTEM CALLS FOR OBJECTS

The following system calls manipulate objects:

CATALOGS$OBIECT--places an object in an object directory.

GETS$TYPE--accepts a token for an object and returns its type code.
LOOKUPSOBIJECT--accepts a cataloged name of an object and returns a token for it.
RQE$SCHANGESOBJECT$ACCESS--changes the access byte of an object.
RQESGET$ADDRESS--returns the physical address of an object.
RQESGET$OBIECT$ACCESS--returns the value of an object’s access byte.
UNCATALOGS$OBJECT--removes an object from an object directory.

For a complete list and explanation of the iRMX II Nucleus system calls, see the Extended
IRMX IT Nucleus System Calls Reference Manual.

Nucleus User’s Guide 6-3

7.1 INTRODUCTION

Descriptors are used to address an area of memory. Every segment must have at least
one descriptor or it is not addressable. Each descriptor is an entry in the GDT and
contains the physical address, the access rights, and the segment limits.

The Nucleus assigns each object a descriptor when it is created. This type of descriptor
may be thought of as an implicit descriptor. Implicit descriptors are managed by the
Operating System. Application programmers do not need any additional information
about descriptors and may want to skip the rest of this section.

7.2 EXPLICIT DESCRIPTORS

The system programmer should know that there is a second type of descriptor which can
be thought of as an explicit descriptor. Explicit descriptors are used primarily for the
following purposes:

¢ To gain addressability to areas of memory that are not defined when the system is
configured and thus, have no logical address.

o To create aliases to existing segments. (Aliases are one of several descriptors that
may be necessary to define a different segment type or a different access right for the
same segment.)

e To add device drivers to the system. (See the Extended iRMX II Basic I/O System
User’s Guide.)

You can manipulate descriptors like segments. You can create, change and delete them.
In fact, to the operating system they look just like segments. If you call GET$TYPE on a
descriptor, the type code returned is for a segment.

Nucleus User’s Guide 7-1

DESCRIPTOR MANAGEMENT

Great care should be taken when creating a descriptor. By calling
RQE$CREATES$DESCRIPTOR it is possible to create a descriptor for any physical
address. An error in calculating the physical address may overwrite valuable system
information such as the GDT. When you create a descriptor a hardware slot is
established in the GDT with the required physical address. The Nucleus marks the object
as a descriptor. In this way, the Nucleus "knows" that when the descriptor is deleted, using
RQESDELETESDESCRIPTOR, only the GDT slot is to be recycled, not the memory
addressed by the descriptor.

The iRMX II Operating System also provides the ROESCHANGE$SDESCRIPTOR
system call which can be used to change the physical address of a descriptor and/or the
length of the segment addressed. This system call is particularly useful in applications that
include I/O drivers.

7.2.1 Descriptors with Aliases

As stated above, you can use descriptors with aliases and with areas of memory that were
not defined at configuration time. Aliases allow you to have several descriptors for the
same segment. They provide segments with alternate names in much the same way as
people use nicknames. Deleting an alias descriptor does not delete the segment to which
it refers.

7.2.2 Descriptors for Undefined Memory

Descriptors can also be used to gain addressability to areas of memory that were not
defined when the system was configured and thus, have no logical address. These memory
areas are not allocated from the job’s memory pool. When they are created they do not
reduce the size of the memory pool. Therefore, when they are deleted, they do not return
memory to the memory pool.

7.3 CAUTIONARY NOTES ON USING DESCRIPTORS

Descriptors are a very powerful feature of the operating system. If they are misused, they
can can affect the integrity of the entire operating system. If you wish to preserve the
integrity of your application system, confine the use of descriptors to experienced
programmers who have a firm understanding of iRMX II addressing. A less-
knowledgeable programmer can, by abusing descriptors, corrupt the interaction between
tasks in an application system.

7.4 SYSTEM CALLS FOR DESCRIPTOR MANAGEMENT

The following system calls manipulate descriptors.

7-2 Nucleus User’s Guide

DESCRIPTOR MANAGEMENT

e RQESCREATE$DESCRIPTOR--returns a segment token for an entry in the GDT.

° RQESCHANGES$SDESCRIPTOR--changes the physical address contained in the
GDT and/or the size of the segment described.

o ROEJDELETE$DESCRIPTOR--returns a slot from the GDT to the operating
system for reuse.

For a complete list and explanation of the iRMX IT Nucleus system calls, see the Extended
IRMX II Nucleus System Calls Reference Manual.

Nucleus User’s Guide 73

T
)

VR

— -

= _

| .,.m- m-'

8.1 INTRODUCTION

When a task invokes an iRMX II system call, sometimes the results are not what the task
is trying to achieve. For example, a segment access may overflow its boundaries or a task
may request memory that is not available. In such cases, the operating system must
inform the task that an error occurred. Whenever a task makes a system call or the 80286
processor traps an illegal condition, the system uses a condition code to communicate the
success or failure of the call.

8.2 CONDITION CODE VALUES AND MNEMONICS

Condition codes are numeric values that represent unique conditions. Each condition
code also has a mnemonic (such as ESOK), to indicate the code’s meaning. Appendix D
lists the condition codes with their numeric values and mnemonics.

When writing application tasks, you can refer to the condition codes by their mnemonics
as long as you declare each mnemonic and its numeric code to be literally equal. Intel
supplies the /RMX286/INC/ERROR.LIT file which contains literal declarations of all

the iRMX II condition code mnemonics.

8.3 TYPES OF EXCEPTIONAL CONDITIONS

Conditions that represent failure (or not complete success) are called exceptional
conditions. These conditions have two classifications: programmer errors and
environmental conditions. A programmer error is a condition that the calling task can
prevent. In contrast, an environmental condition arises outside the control of the calling
task. See Appendix D for a complete list of both programmer errors and environmental
conditions.

8.4 CONDITION CODE RANGES

The values of condition codes fall into ranges based on the iRMX II layer which first
detects the condition. Table 8-1 lists the layers and their respective ranges, with numeric
values expressed in hexadecimal notation.

Nucleus User’s Guide 8-1

EXCEPTIONAL CONDITION MANAGEMENT

Table 8-1. Condition Code Ranges

Environmental Programming
Layer Conditions Errors
Nucleus 0OH to OFH 8000H to 800FH
1/0 Systems 20H to 5FH 8020H to 805FH
Application Loader 60H to 7FH 8060H to 807FH
Human Interface 80H to AFH 8080H to 80AFH
Universal Development COH to DFH 80COH to 80DFH
Interface
Reserved for Intel EOH to 3FFFH B0OEOH to BFFFH
Reserved for users 4000H to 7FFFH COOQO0H to FFFFH

8.5 EXCEPTION HANDLERS

The iRMX II Nucleus supports exception handlers which deal with the errors that tasks
encounter in making system calls. How an exception handler deals with an exceptional
condition is a matter of programmer discretion. In general, a handler performs one of the
following actions:

o Logs the error.
o Deletes or suspends the task that erred.

o Ignores the error. If this option is taken, the system continues as if no error had
occurred. Continuing under such circumstances is generally unwise, however.

An exception handler is written as a procedure with four parameters passed in the
following order:

o The condition code (WORD).

o A code (BYTE) indicating which parameter, if any, was faulty in the call (1 for first, 2
for second, etc., 0 if none).

o A reserved (WORD) parameter.

o A (WORD) parameter containing the Numeric Processor Extension (NPX) status
word. This parameter is valid only if the condition code is ESNDPSERROR.

8.6 ASSIGNING AN EXCEPTION HANDLER

A task may use the SETSEXCEPTIONSHANDLER system call to declare its own
exception handler. Otherwise, the task inherits the exception handler of its job. A job can
receive its own exception handler at the time of its creation. If it doesn’t, the job inherits
the system exception handler. Thus, the Nucleus can always find an exception handler for
the running task.

8-2 Nucleus User’s Guide

EXCEPTIONAL CONDITION MANAGEMENT

A system exception handler is provided as part of the iRMX II Operating System. When
you configure the system, you may specify the System Debugger, SDB, as the system
exception handler (this is convenient for debugging). In this case, the iRMX II Operating
System lets the monitor and the SDB debugger take control of all the 80286 hardware
exceptions (except those that handle the Numeric Processor Extension). This means that
the monitor, in conjunction with the SDB debugger, will always handle hardware
exceptions (causing a break to the monitor, and sending a message to the console), even
for iRMX 1I tasks that specify their own exception handler. A user-written exception
handler may still be invoked to handle errors detected in the iRMX II system calls.

If you want to write your own exception handlers, compile them using the PL/M-286
LARGE control, specitying the PUBLIC attribute. It is also possible to compile exception
handlers using the COMPACT control, as long as the following conditions are met:

* One extra dummy word parameter is added to the calling sequence (at the end of the
parameter list).

o The exception handler must be in the same code segment as the task it serves.

o The exception handler does not handle hardware traps.

8.7 INVOKING AN EXCEPTION HANDLER

An exception handler normally receives control when an exceptional condition occurs.
However, when a task encounters an exceptional condition, it need not always have
control passed to its exception handler. The factor that determines whether control
passes to the exception handler is the task’s exception mode. This attribute has four
possible values, each of which specifies the circumstances under which the exception
handler is to get control in the event of an exceptional condition. These circumstances are

e Programmer errors only
e Environmental conditions only
o All exceptional conditions

o No exceptional conditions

When the Nucleus detects that a task has caused an exceptional condition in making a
system call, it compares the type of the condition with the calling task’s exception mode.
If a transfer of control is indicated, the Nucleus passes control to the exception handler on
behalf of the task. The exception handler then deals with the problem, after which control
returns to the task, unless the exception handler deleted the task. When the exception
handler returns, the task can also detect that an error occurred, because the system call’s
except$ptr parameter points to a word containing the condition code. While the
exception handler is executing, the errant task is still regarded by the Nucleus to be the
running task. Therefore, the exception handler task uses the stack and environment of
the errant task.

Nucleus User’s Guide 8-3

EXCEPTIONAL CONDITION MANAGEMENT

When a task is created, its exception mode is set to its job’s default exception mode. The

task can change its exception handler and exception mode attributes by using the
SET$EXCEPTION$HANDLER system call.

8.8 HANDLING EXCEPTIONS IN-LINE

If a task’s exception mode attribute does not direct the Nucleus to transfer control to the
task’s exception handler, the responsibility for dealing with an error falls on the task.

Each system call has as its last parameter a POINTER to a WORD. After a system call,
the Nucleus returns the resulting condition code to this WORD. By checking this WORD
after each system call, a task can determine whether or not the call was successful. (See
Appendix D for condition codes.) If the call was not successful, the task can learn which
exceptional condition it caused. This information can sometimes enable the task to
recover. In other cases, more information is needed.

If a system call returns an exception code to indicate an unsuccessful call, all other output
parameters of that system call are undefined.

NOTE

If an invalid parameter causes an exceptional condition it should be
handled by an exception handler. When using Nucleus system calls, the
handler receives the parameter number of the first invalid parameter.

8.9 HANDLING EXCEPTIONS IN 80286 PROCESSOR SYSTEMS

The following sections are particularly important for users who are familiar with the
iRMX 86 Operating System. The increased protection features of the 80286
microprocessor have resulted in a different way of handling exceptions and new exception
codes.

The operating system software "catches" and returns most of the exceptional conditions.
However, a few conditions occur because the microprocessor catches (or traps) an invalid
condition. The trap causes control to be passed to special exception handling code which
the iRMX II Operating System provides. This code examines the exception mode of the
current task and acts in one of the following ways.

o It may call a system-supplied exception handler.
o It may call a user-supplied exception handler.

o It may return control directly to the faulting iRMX II task.

8-4 Nucleus User’s Guide

EXCEPTIONAL CONDITION MANAGEMENT

For 80286 processors, a CPU trap sets the instruction pointer (IP) register to point to the
instruction that caused the CPU trap. This difference means that without an exception
handler, an 80286-based application can never get past the instruction that caused the
CPU trap. (Users familiar with 8086, 88, 186, or 188 processors will remember that with
these processors a CPU trap sets the IP register to point to the instruction after the one
that caused the CPU trap. This situation allows some applications to ignore errors and
continue processing.)

Therefore, for 80286-based systems, you should always designate an exception handler to
handle exception codes generated by CPU traps (programming errors), even if the
handler does nothing more than increment the IP value that is pushed onto the task’s
stack when the trap occurs (that is, the return address). Without a handler of some kind,
your application will get caught in an infinite loop in the event of a CPU trap.

If you use the exception handler supplied with the operating system to handle
programmer errors, your application will run the same, regardless of the CPU. However,
if you write your own exception handlers, you should include code to handle either of the
situations mentioned in this section.

If you have user-written exception handlers that are being upgraded from the iRMX 86
Operating System to the iRMX II Operating System, be sure to change the code in
exception handlers for the divide by zero trap. In the iIRMX 86 Operating System after a
divide by zero, the Nucleus returns to the next instruction whereas, in the iRMX II
Operating System, the Nucleus returns to the same instruction. If you do not ensure that
the return address is the next instruction, you could get caught up in an infinite loop. Intel
recommends that you upgrade all user-written exception handlers to enable them to
handle the new exception codes.

Table 8-2 lists the conditions which may cause a trap and the instruction to which it
returns. The table also compares the handling of an iRMX II exception with an iRMX 86
exception (if you are operating the iRMX 86 Operating System on an 80286 processor).
Some exceptions such as power failure do not return control to the faulting task. These
exceptions have been marked N/A (not applicable).

Nucleus User’s Guide 8-5

EXCEPTIONAL CONDITION MANAGEMENT

Table 8-2. Return Address after an Exception

Instruction Returned To

Interrupt

Number Description IRMX Il iIRMX 86 on 80286 Processor
0 Divide by zero Same Same
1 Single step Next Next
2 Power failure (non-maskable) N/A N/A
3 One byte interrupt instruction Next Next
4 Interrupt on overflow Next Next
5 Run time array bound error Same Same
8 Undefined opcode Same Same
7 NPX not present/NPX task switch Same Same
8 Double fault N/A N/A
9 NPX segment overrun N/A N/A
10 Invalid Task State Segment N/A N/A
1 Segment not present Same N/A
12 Stack exception N/A N/A
13 General Protection Same N/A
16 Processor Extension Error N/A Same

If your system supports an 80287 Numeric Processor Extension (NPX, some references to
NDP in the error codes are for compatibility reasons) exceptions 7, 9 and 16 may be of
special interest to you. Interrupt 7 may occur on systems that support an NPX and on
those that don’t. If your system does not have an NPX and you receive interrupt 7, treat it
as you would any other program exception. However, if your system has an NPX and
interrupt 7 occurs, do not try to service it as Interrupt 7 is reserved for the system. A
context switch of the NPX environment takes place and the faulting task continues.

In the event of interrupts 9 or 16, the return address is that of the current instruction.
However, the exception was caused by the previous NPX instruction. This is true because
the 80287 NPX, unlike the 8087 NPX, does not cause an exception as soon as an error
occurs. An exception occurs only when the next floating point instruction in the same task
is executed.

8.10 SYSTEM CALLS FOR EXCEPTION HANDLERS

The following system calls manipulate exception handlers:

o SETSEXCEPTIONSHANDLER--sets the exception handler and exception mode
attributes of the calling task.

o GETSEXCEPTIONSHANDLER--returns to the calling task the current values of its
exception handler and exception mode attributes.

For a complete list and explanation of the iRMX II Nucleus system calls, see the Extended
IRMX II Nucleus System Calls Reference Manual.

8-6 Nucleus User’s Guide

9.1 INTRODUCTION

Interrupts and interrupt processing are central to real-time computing. External events
occur asynchronously with respect to the internal workings of an iRMX II application
system. An interrupt, signalling the occurrence of an external event, triggers an implicit
"call" using an address supplied in a section of memory known as the interrupt descriptor
table. This directs control to a procedure called an interrupt handler. At this point, one
of two events occurs. If handling the interrupt takes little time and requires no system
calls other than certain interrupt-related system calls, the interrupt handler can process
the interrupt itself. Otherwise, the interrupt handler can invoke an interrupt task, which
deals with the interrupt. After the interrupt has been serviced by either the interrupt
handler or the interrupt task, control returns to the ready application task with highest
priority. See Figure 9-1 for a graphic representation of this interrupt process.

Nucleus User’s Guide 9-1

INTERRUPT MANAGEMENT

: INTERRUPT
INTERRUPT DESCRIPTOR INTERRUPT INTERRUPT
TABLE HANDLER TASK

(6) {74)
INTERRUPT r
TASK
YES
(2) signal$interrupt
> o
PIC % CPU

9

3) NO -
A\l: exitdinterrupt --
(IRET) : |
waitbinterrupt

78 ANDS3 (7B)

&)

=

F-0516

Programmable Interrupt Controller (PIC) receives an interrupt.
PIC signals the CPU.
CPU acknowledges the interrupt.
PIC sends the interrupt number to the CPU.
CPU obtains the interrupt handler from the interrupt descriptor table (IDT).
Control sent to the interrupt handler.
7a. Activate the interrupt task.
or
7b. Return to the interrupted task.
8 Return to the interrupted task.

Note: the solid arrows (=B) indicate software vectors;
the hollow arrows (:D) indicate hardware vectors.

O SO B ool

Figure 9-1. Interrupt Processing Model

9.2 INTERRUPT MECHANISMS

This section discusses the major concepts of interrupt processing: interrupt controllers
and lines, interrupt levels, and the interrupt descriptor table. It also discusses assigning
interrupt levels to external sources and disabling interrupts.

9-2 Nucleus User’s Guide

INTERRUPT MANAGEMENT

9.2.1 Interrupt Controllers and Interrupt Lines

External interrupts are passed through programmable interrupt controllers (PICs) such as
the 8259A PIC. The iRMX II Operating System supports the configuration described
here. Refer to the Extended iRMX II Interactive Configuration Utility Reference Manual
for information on configuring the operating system to support the hardware
configuration.

Under the iRMX IT Operating System, interrupts must be funneled through 8259A PICs.
In this environment, an individual master PIC can manage interrupts from as many as
eight external sources. However, the IRMX II Operating System also supports an
expanded (or cascaded) environment in which up to seven input lines of one master PIC
are connected to slave PICs (one input line from the master PIC must be connected
directly to the system clock). In a cascaded environment, an input line of a master PIC
can connect either to an external interrupt or to a slave PIC, but not to both.

Because each of the slave PICs can manage eight interrupts, a cascaded environment
allows the operating system to manage interrupts from as many as 56 external sources
plus the system clock.

If your 80286-based system includes an 80287 NPX, you cannot connect the NPX to a
PIC. Instead of using the PIC, the NPX uses CPU interrupt traps 7 and 16 to
communicate directly with the 80286 component. Figure 9-2 illustrates this situation.

9.2.2 Interrupt Levels

The interrupt lines of the master and slave PICs are associated with numbers called
interrupt levels, as shown in Figure 9-2. An interrupt level names an interrupt line and
indicates the priority of the line (in general, the lower the number, the higher the
priority). The interrupt lines on the master PIC are numbered MO0 through M7. The
interrupt lines on the slave PICs are numbered x0 through x7 (where x ranges from 0 to
T

Lower-numbered interrupt lines like M0 or M1 (or lines from slave PICs connected to
them) have higher priority than higher-level lines like M5 or M6 (or lines from slave PICs
connected to them). Therefore, if two interrupts occur simultancously, the PIC informs
the CPU of the higher-priority interrupt first.

The Nucleus often disables low-priority interrupts to allow tasks to service high-priority

interrupts. Refer to the "Disabling Interrupts" section of this chapter for more
information.

Nucleus User’s Guide 9-3

INTERRUPT MANAGEMENT

System
Clock is
usually

here
‘\H_____/

SLAVE 1 PIC

00+

014

3 02+
2 P PR 031

80286 CPU \ Mol ol
i . ot ey ey 05-

| M2-- 06-

CP Master M3-- 074

R

i

I

i

1 1 (R} o] 1

P

APS PIC M4 e
M5-- et
M6-- &

80287 NPX ek \ SLAVE 7 PIC

004-
014
c2-
03
04
05+
06+
07

T

=-—= ==

F R R O e 3 T

W-0302

Figure 9-2. 80286 Interrupt Lines

9.2.3 Interrupt Descriptor Table

When an interrupt occurs, it triggers the processor to invoke a procedure whosc address is
listed in a section of memory called the interrupt descriptor table (IDT). You enter
interrupt addresses into the IDT when configuring the system or dynamically, using
SETSINTERRUPT. When an interrupt occurs, the processor uses the entry in the IDT as
a pointer to the interrupt handling code to be executed for the specific interrupt. Each
entry in the IDT is a descriptor that contains the physical address of the interrupt
procedure that should be processed when the specified interrupt occurs. The IDT is
similar to the GDT and LDT, except that it is referenced only as a result of an interrupt
or a trap. The IDT may be located anywhere in the memory of the iRMX II Operating
System. For more details about the IDT, see the i4PX 286 Programmer’s Reference
Manual.

Nucleus User’s Guide

INTERRUPT MANAGEMENT

Many different events may cause an interrupt. To allow the cause of the interrupt to be
identified, the hardware assigns each interrupt cause a number and gives it an entry in the
IDT. The IDT is composed of up to 256 entries, numbered 0-255. You specify the
number of entries your application needs when you configure the system. Most users will
not need more than 128 entries. If, for example, your system has only the 8259A PIC
master with no 8259A PIC slaves, and does not use software interrupts, the first 64 entries
are enough, The iRMX II Nucleus does not use entrics 128-255. These entries are
available for users. The entries are allocated as shown in Table 9-1.

Table 9-1. Allocation of Interrupt Entries

Entry Number Description
0 divide by zero
1 single step (used by the iSDM monitor)
2 power failure (non-maskable interrupt,used by the iSDM
monitor)
3 one-byte interrupt instruction (used by the iSDM monitor)
4 interrupt on overflow
5 run-time array bounds error
6 undefined opcode
7 NPX not present/NPX task switch
8 double fault
9 NPX segment overrun
10 invalid TSS
11 segment not present
12 stack exception
13 general protection
14-15 reserved
16 NPX error
17-55 reserved
56-63 8259A PIC master (external interrupts)
64-127 8259A PIC slaves (external interrupts)
128-255 unused

When an interrupt occurs on any master or slave level, the processor looks at the
corresponding entry in the interrupt descriptor table to determine the address of the
procedure to execute. The procedure that executes in response to an interrupt is called an
interrupt handler.

For example, if a level M2 interrupt occurs, the processor examines interrupt descriptor
58 for the location of the interrupt handler for that level. Then it transfers control to the
interrupt handler.

Nucleus User’s Guide 9.5

INTERRUPT MANAGEMENT

The Nucleus provides two system calls for setting up the interrupt descriptor table:
SETSINTERRUPT and RESETSINTERRUPT. SETSINTERRUPT assigns an interrupt
handler to an interrupt level by placing a pointer to the first instruction of the handler in
the appropriate descriptor. RESETSINTERRUPT cancels the assignment of an interrupt
handler by clearing out the appropriate entry in the interrupt descriptor table. With these
two system calls, you can set up the descriptor table to meet your needs.

9.2.4 Assigning Interrupt Levels to External Sources

You must obey the following restrictions when assigning interrupt levels to external
SOurces:

o You must assign the system clock to a master interrupt level. The level number is a
configuration option and is described in the Extended iRMX II Interactive
Configuration Utility Reference Manual.

o When you attach an interrupting device to a level on the master PIC, you cannot also
attach a slave PIC to the same level. For example, suppose that you physically attach
the device to level M3. This means that entry 59 (decimal) of the IDT must contain
the address of the interrupt handler for the device. It also means that entries 88
through 95 (decimal) of the 1DT (the slave level entries that correspond to master
level M3) will not be used.

9.2.5 Disabling Interrupts

Occasionally you may want to prevent interrupt signals from causing an immediate
interrupt. For example, you don’t want low-priority interrupts to interfere with the
servicing of a high-priority interrupt. In the iRMX II Operating System, each interrupt
level can be disabled. In some circumstances (described later), the Nucleus disables
levels. Tasks can also disable and enable levels by means of the DISABLE and ENABLE
system calls. However, the master level reserved for the system clock should not be
disabled or enabled.

If an interrupt signal arrives at a level that is enabled, the operating system transfers
control to the address contained in the IDT entry that corresponds to the level on which
the interrupt occurred. If the level is disabled, the interrupt signal is blocked until the
level is enabled, at which time the signal is recognized by the CPU. However, if the signal
is no longer emanating from its source, it is not recognized and the interrupt is not

handled.
An interrupt level can be disabled in four ways:

o A task can explicitly disable a specific interrupt level by invoking the DISABLE
system call. Later, a task can re-enable the level by invoking the ENABLE system call.

o A task can invoke the SETSINTERRUPT system czll to designate itself as the
interrupt task for a particular interrupt level. When it makes this designation, the task

9.0 Nucleus User’s Guide

INTERRUPT MANAGEMENT

can specify a limit to the number of interrupts that it will queue. If enough interrupts
occur on the task’s interrupt level, the queue can become full. Whenever this
happens, the operating system automatically disables the interrupt level until the
queue ceases to be full.

o Whenever a task invokes the RESETSINTERRUPT system call to cancel the
assignment of a particular interrupt handler to a particular interrupt level, the
operating system automatically disables that interrupt level.

o To provide pre-emptive priority-based scheduling, the operating system can
automatically disable or re-enable some interrupt levels whenever a task begins
running, depending on the priority of the new running task and the priority of the
previous running task. This allows high-priority tasks to run faster, without interrupts
from lower-priority external devices. Table 9-2 shows the correlation between the
levels disabled and the priority of the running task.

NOTE

A task that makes system calls when interrupts are disabled should never
use the PL/M-286 DISABLE statement or the ASM286 CLI (clear
interrupt-enable flag) instruction to disable operating system interrupts.
Nucleus system calls may cause interrupts to be enabled.

Nucleus User’s Guide 9.7

INTERRUPT MANAGEMENT

Table 9-2. Interrupt Levels Disabled for Running Task

Task Priority Disabled Levels
Slave Levels Master Levels

0-2 00-77 Mo - M7

34 01-77 M1 - M7

5-6 02-77 M1 - M7

7-8 03-77 M1 - M7
g-10 04-77 M1 - M7
11-12 05-77 M1 - M7
13-14 06-77 M1 - M7
15-16 07-77 M1 - M7
17-18 10-77 M1 - M7
18-20 11-77 M2 - M7
21-22 12-77 M2 - M7
23-24 13-77 M2 - M7
25-26 14-77 M2 - M7
27-28 15-77 M2 - M7
29-30 16-77 M2 - M7
31-32 17-77 M2 - M7
33-34 20-77 M2 - M7
35-36 21-77 M3 - M7
3738 22-77 M3 - M7
39-40 23-77 M3 - M7
41-42 24 -77 M3 - M7
43-44 25-77 M3 - M7
45-46 26-77 M3 - M7
47-48 27-77 M3 - M7
49-50 30-77 M3 - M7
51-52 31-77 M4 - M7
53-54 32-77 M4 - M7
55-56 33-77 M4 - M7
57-58 34-77 M4 - M7
59-60 35-77 M4 - M7
61-62 36-77 M4 - M7
63-84 37-77 M4 - M7
65-66 40-77 M4 - M7
67-68 41-77 M5 - M7
69-70 42 -77 M5 - M7
71-72 43-77 M5 - M7
73-74 44 -77 M5 - M7

continued
9-8 Nucleus User’s Guide

INTERRUPT MANAGEMENT

Table 9-2. Interrupt Levels Disabled for Running Task (continued)

Task Priority Disabled Levels
Slave Levels Master Levels
75-76 45-77 M5 - M7
77-78 46-77 M5 - M7
79-80 47 - 77 M5 - M7
B1-82 50-77 M5 - M7
83-84 51-77 MG - M7
85-86 52-77 M6 - M7
87-88 53-77 M6 - M7
89-90 54 -77 M6 - M7
91-92 55-77 M6 - M7
93-94 56-77 M6 - M7
95-96 57-77 M6 - M7
97-98 60-77 ME - M7
99-100 61-77 M7
101-102 62-77 M7
103-104 83-77 M7
105-106 684-77 M7
107-108 65-77 M7
108-110 B8 .-77 M7
111-112 67 -77 M7
113-114 70-77 M7
115-116 M-77 None
117-118 72-77 None
119-120 73-77 None
121-122 74-77 None
123-124 75-77 None
125-126 76-77 None
127-128 77 None
129-255 None None

9.3 INTERRUPT HANDLERS AND INTERRUPT TASKS

Whether an interrupt handler services an interrupt level by itself or invokes an interrupt
task to service the interrupt depends on two factors:
» The kinds of system calls needed

o The amount of time required

Nucleus User’s Guide 9.9

INTERRUPT MANAGEMENT

Regarding the first factor, interrupt handlers can make only the ENTERSINTERRUPT,
EXIT$INTERRUPT, GET$LEVEL, DISABLE, and SIGNALSINTERRUPT system
calls. If the handler requires other system calls to service the interrupt, it must invoke an
interrupt task.

Regarding the second factor, an interrupt handler should always invoke an interrupt task
unless the handler can service interrupts quickly. Time is important because an interrupt
signal disables all interrupts, and they remain disabled until the interrupt handler either
services the interrupt and exits or invokes an interrupt task. Invoking an interrupt task
allows higher priority interrupts (and in some cases, the same priority interrupts) to be
accepted.

9.3.1 Setting Up an Interrupt Handler

Interrupt handlers are generally written as PL/M-286 interrupt procedures, but they can
be written in assembly language. If you use assembly language, you must save and restore
all register values, as noted later.

Before an interrupt handler can service an interrupt level, a task must invoke the
SETSINTERRUPT system call to bind the handler and an interrupt task to an interrupt
level. SET$INTERRUPT operates as follows:

o One of the SETSINTERRUPT parameters, the interrupt$handler parameter,
specifies the starting address of the interrupt handler. SETSINTERRUPT binds the
handler to a level by placing this starting address into the IDT at the entry that
corresponds to the level. When an interrupt of that level occurs, control automatically

transfers through the IDT to the handler.

o Another parameter in SETSINTERRUPT, the interrupt$task$flag parameter,
determines whether an interrupt task is associated with the level. If the
interrupt§task$flag parameter contains a zero, there is no interrupt task for the
specified level. Otherwise, the calling task becomes the interrupt task for the level.

If you want your interrupt handler to use another data segment, you can specify the
selector of the interrupt handler’s data segment in the interrupt$handler$ds parameter of
SETSINTERRUPT. The interrupt handler can later load this value into the DS register
by calling ENTER$INTERRUPT. Interrupt handlers written in PL/M-286 (including
COMPACT model) have their DS registers loaded automatically on invocation. In most
cases, an interrupt handler and an interrupt task are compiled together and share the
same data areas.

9-10 Nucleus User’s Guide

INTERRUPT MANAGEMENT

When an iRMX II application system starts running, all interrupt levels are disabled.
Before the operating system enables an interrupt level, a task must invoke
SETSINTERRUPT. When SET$INTERRUPT binds an interrupt handler but not an
interrupt task to a level, the operating system enables the level immediately. However, if
SETSINTERRUPT binds the handler and an interrupt task to the level, the operating
system does not enable the level until that task invokes the WAITSINTERRUPT or
ROESTIMEDSINTERRUPT system call (described later). An interrupt task should not
enable its own level before making its first call to WAITSINTERRUPT or
RQESTIMEDSINTERRUPT.

A RESETSINTERRUPT system call cancels the link between an interrupt level and its
interrupt handler. The call also disables the specified level. If there is an interrupt task
for the level, RESETSINTERRUPT deletes it. DELETE$TASK does not delete
interrupt tasks.

9.3.2 Using an Interrupt Handler

If an interrupt handler services interrupts for a given level without invoking an interrupt
task, the handler must assume one of two forms, depending on whether it requires the
Nucleus to set up the sclector of its data segment.

If the interrupt handler does not need to access the data segment, or if it can load the DS
register with the data segment selector, then it should perform the following steps:

1. Ifin assembly language, save all register contents (PL/M does it for you when the
procedure is given the INTERRUPT attribute).

2. Service the interrupt.

3. Call EXITSINTERRUPT. (This sends an end-of-interrupt signal to the hardware.)
4. Ifin assembly language, restore all register contents.

5. Return.

In the rare case where you may want to use a special data segment, call
ENTERS$INTERRUPT immediately after step 1. An example of how to use

EXITSINTERRUPT is given in the Extended iRMX II Nucleus System Calls Reference
Manual.

9.3.3 Using an Interrupt Task

If both an interrupt handler and an interrupt task are associated with a level, the interrupt
handler invokes the interrupt task by making a SIGNALSINTERRUPT system call. Ifa
level has only an interrupt handler, however, the handler cannot call
SIGNALSINTERRUPT without causing an ESCONTEXT error.

Nucleus User’s Guide 9-11

INTERRUPT MANAGEMENT

9.3.3.1 Duties of the Interrupt Handler

If an interrupt handler invokes an interrupt task, the handler must perform the following
steps:

1. Ifin assembly language, save the register contents.

2 Optionally, do some servicing.

3 Optionally, call ENTERSINTERRUPT.

4. Optionally, begin servicing the interrupt without system calls.
5

Call SIGNALSINTERRUPT, which starts the interrupt task and enables higher
(and possibly equal) priority interrupts.

6. Optionally, do some servicing,
7. If in assembly language, restore the register contents.
8. Return.

An interrupt handler uses the resources of the interrupted task. The interrupt task,
however, like any other task, has its own resources.

9.3.3.2 Duties of the Interrupt Task

An interrupt task must perform the following functions in the indicated order, although
the first two functions may be interchanged:

Call SETSINTERRUPT;
Do initialization;
Do forever;
Call WAITSINTERRUPT (or RQESTIMEDS$INTERRUPT);
Service the interrupt (system calls allowed);
End;

An interrupt task, once initialized, is always in one of two modes: it is either servicing an
interrupt or waiting for notification of an interrupt.

9.3.3.3 Interrupt Task Priorities

9-12

When a task becomes an interrupt task by calling SETSINTERRUPT, the Nucleus assigns
a priority to it according to the interrupt level to be serviced. Table 9-3 shows the
relationship between interrupt levels and the priorities of tasks that service those levels.

Table 9-3 lists several other values for each interrupt level. It lists the encoding for the

interrupt level (the value used for the level parameter of SETSINTERRUPT), and the
number of the corresponding IDT entry.

Nucleus User’s Guide

o

If an interrupt task’s priority exceeds the maximum priority attribute of its
job, the Nucleus returns an exceptional condition code. Prevent this by

NOTE

giving the job a higher maximum priority.

Table 9-3. Interrupt Level and Task Priority Information

INTERRUPT MANAGEMENT

Nucleus User’s Guide

Interrupt Level Interrupt
Encoding IDT Slots | Task Priority
Master Slave
00H 00 64 4
01H 01 65 6
02H 02 66 8
03H 03 67 10
04H 04 68 12
0sH 05 69 14
0sH 06 70 16
07H 07 71 18
08H Mo 56 18
10H 10 72 20
11H 11 73 22
12H 12 74 24
13H 13 75 26
14H 14 76 28
15H 15 77 30
16H 16 78 32
17H 17 79 34
18H M1 57 34
20H 20 80 36
21H 21 81 a8
22H 22 82 40
23H 23 83 42
24H 24 84 44
25H 25 85 46
26H 26 86 48
27H 27 87 50
28H M2 58 50
30H 30 88 52
31H 31 89 54
32H 32 80 56
33H 33 91 58
34H 34 92 60
35H 35 93 82
(continued)

9-13

INTERRUPT MANAGEMENT

Table 9-3. Interrupt Level and Task Priority Information (continued)

Interrupt Level Interrupt
Encoding IDT Slots | Task Priority
Master Slave
36H 36 94 64
37H 37 95 66
38H M3 59 66
40H 40] 68
41H 41 97 70
42H 42 o8 72
43H 43 99 74
44H 44 100 76
45H 45 101 78
46H 46 102 80
47H 47 103 82
48H M4 60 82
50H 50 104 84
51H 51 106 86
52H 52 106 88
53H 53 107 g0
54H 54 108 92
55H 55 109 sS4
56H 56 110 96
57H 57 111 g8
58H M5 61 g8
60H 60 112 100
61H 61 113 102
62H 62 114 104
&63H 63 115 108
64H 64 118 108
65H 65 117 110
5oH 66 118 112
67H 67 118 114
68H M8& 62 114
70H 70 120 116
71H 71 121 118
72H 72 122 120
73H 73 123 122
74H 74 124 124
75H 75 125 126
76H 76 126 128
77TH 77 127 130
78H M7 63 130

9-14

Nucleus User’s Guide

INTERRUPT MANAGEMENT

9.3.4 Interrupt Servicing Patterns

Figure 9-3 illustrates the relationships between the servicing patterns of interrupt handlers
and interrupt tasks.

INTERRUPT OCCURS AND
INTERRUPT HANDLER
GETS CONTROL

NEED
A NEW
DS VALUE
E

YES

CALL
ENTERSINTERRUFPT

NO }
>,

INTERRUPT HANDLER
DOES SOME
INTERRUPT SERVICING

NEED

NO TO INVOKE YES

INTERRUPT

TASK
?

INTERRUPT
HANDLER CALLS
SIGNALSINTERRLUPT

I

INTERRUPT TASK
COMPLETES
INTERRUPT
SERVICING

[

INTERRUPT
HANDLER CALLS
EXITSINTERRUPT

INTERRUPT TASK
CALLS
WAITSINTERRUPT

CONTROL RETURNS TO AN i
; APPLICATION TASK _/

Figure 9-3. Flow Chart of Interrupt Handling

x-148

Nucleus User’s Guide 9.15

INTERRUPT MANAGEMENT

Note that an interrupt handler might call an interrupt task sometimes yet not call it at
other times, for example an interrupt handler that puts characters entered at a terminal
into a buffer. Whenever a character is received, the interrupt handler is invoked, and it
puts the character in the line buffer. If the character is an end-of-line character, or if the
character count maintained by the interrupt handler indicates that the buffer is full, the
interrupt handler calls its interrupt task to process the contents of the buffer. Otherwise,
the interrupt handler calls EXITSINTERRUPT and then returns control to application
tasks. The next section discusses this kind of interrupt servicing in more detail.

9.3.5 Using Multiple Buffers to Service Interrupts

In certain instances, as illustrated in Figure 9-3, both an interrupt handler and an
interrupt task are involved in servicing interrupts. The handler performs the simple, less
time-consuming functions and then signals an interrupt task to perform the more
complicated functions. In doing this, the handler and the task usually exchange
information by sharing data buffers. The handler places information into the buffers and
the task uses that information. The number of buffers determines when and how
interrupts are disabled.

9.3.5.1 Single Buffer Example

9-16

An example of a single-buffer interrupt service mechanism is an interrupt handler that
reads data from an external device, character by character, and places the characters into
a buffer. When the buffer fills, the handler calls SIGNAL$INTERRUPT to signal an
interrupt task to further process the data. Since there is only one buffer for the data, the
interrupt level associated with the interrupt task must be disabled while the task is
processing. The operating system, knowing (as a result of the task calling
SETSINTERRUPT with max$interrupts equal to 1) that there is only one buffer,
automatically disables the interrupt level when the handler invokes
SIGNALSINTERRUPT. This prevents the interrupt handler from destroying the
contents of the buffer by continuing to place data into an already full buffer. Figure 9-4
illustrates this situation which indicates single buffering.

If you require only single buffering in interrupt servicing routines, you need not read the

rest of this section. (Ensure that all interrupt tasks specify a value of 1, which indicates
single buffering, for the interrupt$task$flag parameter in the call to SETSINTERRUPT.)

Nucleus User’s Guide

INTERRUPT MANAGEMENT

INTERRUPT e - INTERRUPT

HANDLER > P e = TASK
{1) PLACES DATA —— |(Z)WHEN BUFFER IS FULL,
INTO BUFFER e HANDLER CALLS
e SIGNALSINTERRUPT
R e TO START TASK

A

INTERRUPT

(3)UPON COMPLETION.
TASK CALLS

WAITSINTERRUPT

x-147

Figure 9-4. Single-Buffer Interrupt Servicing

9.3.5.2 Multiple Buffer Example

Now suppose that the interrupt handler and the interrupt task provide the same functions
as in the first example, but they use multiple buffers. In this case, the interrupt level
associated with the task need not always be disabled while the task runs. Instead, the task
can process a full buffer while the handler continues to accept interrupts. When the
handler fills a buffer, it calls SIGNALSINTERRUPT to start the interrupt task, as in the
first example. However, because of the multiple buffers, the interrupt level is not
disabled. Instead, the handler continues to accept interrupts, placing the data into the
next empty buffer. ;

While this occurs, the interrupt task processes the full buffer. When the task completes
the processing, it calls WAITSINTERRUPT or ROESTIMEDSINTERRUPT to indicate
that it is ready to accept another SIGNALSINTERRUPT request (another full buffer)
and to indicate that the buffer it just finished processing is available for reuse by the
handler. Figure 9-5 illustrates this multiple buffer situation.

Nucleus User’s Guide 9-17

INTERRUPT MANAGEMENT

BUFFERS

(&} OBTAINS
FULL BUFFER
——— / \ INTERRUPT

INTERRUPT
"Lz_\ J'J\ TASK ;]H_ /J‘f SIGNALS
\ /!
A I ™~ <
(Z) WHEN FULL, CALLS
SIGNALSINTERRUPT _i
/’ LS

TO START TASK ON
FULL BUFFER / \
!

\
© caLLs : INTERRUPT | PROCESSES
WAITSINTERRUPT TASK FULL BUFFER
TO WAIT FOR NEXT\\

FULL BUFFER L
rd
)\ L =

e e

(1) STARTS FILLING
EMPTY BUFFER

INTERRUPT
HANDLER

INTERRUPT
INTERRUPT TASK

x-157

Figure 9-5. Multiple-Buffer Interrupt Servicing

Because the handler and the task are running somewhat independently, the handler may
fill a buffer and call SIGNALSINTERRUPT before the task has finished processing the
previous buffer. To prevent the SIGNALSINTERRUPT request from becoming lost, the
operating system maintains a count of these requests. Each time the handler calls
SIGNALSINTERRUPT, the count is incremented by one. Each time the task calls

WAITSINTERRUPT OR RQE$TIMEDS$INTERRUPT, the count is decremented by
one.

9-18 Nucleus User’s Guide

INTERRUPT MANAGEMENT

If the count is still greater than zero after the interrupt task calls WAITSINTERRUPT or
RQESTIMEDSINTERRUPT, the task does not wait for the next SIGNALSINTERRUPT
to occur before resuming execution. Instead, it realizes that outstanding requests exist
and immediately starts processing the next request (the next full buffer). Thus, with
proper tuning, neither the interrupt task nor the interrupt handler has to wait for the
other. The interrupt handler can continually respond to interrupts without having the task

disable the interrupt level. The interrupt task can continually process full buffers of data
without waiting for the handler to call SIGNALSINTERRUPT.

9.3.5.3 Specifying The Count Limit

The interrupt task, when it initially calls SETSINTERRUPT, puts a limit on the maximum
number of outstanding SIGNALSINTERRUPT requests. The interrupt$task$flag
parameter specifies this limit. When the interrupt handler calls SIGNALSINTERRUPT,
causing the count to be incremented to the limit, two events happen:

» The interrupt level is disabled, preventing the handler from accepting further
interrupts until the interrupt task makes its next WAITSINTERRUPT or
RQESTIMEDSINTERRUPT call.

o The ESINTERRUPT$SATURATION condition code is returned by
SIGNALSINTERRUPT to the handler, indicating that the limit has been reached.
This is an informative message only.

When the task calls WAITSINTERRUPT or RQE$TIMEDSINTERRUPT and
decrements the count below the limit, the interrupt level is enabled, allowing the handler
to resume accepting interrupts.

The task should always set the limit equal to the number of buffers that the task and
handler use. If the task sets the limit larger than the number of buffers, the handler will
accept interrupts when no buffers are available and data will be lost. If the task sets the
limit smaller than the number of buffers, there will always be empty buffers and space will
be wasted.

For example, if one buffer is used, the task should set the limit to one. In this case, the
interrupt level is always disabled while the task is processing the buffer. If two buffers are
used, the task should set the limit to two. Then, the handler can fill one buffer while the
task is processing the other. Additional buffers require correspondingly higher limits.
However, if the task sets the limit to zero, the interrupt handler operates without an
interrupt task.

NOTE

When an interrupt task sets the count limit to one,
SIGNALSINTERRUPT will not return the
ESINTERRUPTSSATURATION condition code.

Nucleus User’s Guide 9-19

INTERRUPT MANAGEMENT

Table 9-4 illustrates the situation described in this section. It shows the actions of the
handler and the task illustrated in Figure 9-4. The table is broken up into three parts:
actions of the interrupt handler, actions of the interrupt task, and SIGNALSINTERRUPT
count. The count limit is set to two. The table shows the actions of both the handler and
the task through time, and the change in value of the count.

Table 9-4 documents two extreme conditions, labeled A and B. At position A, the
interrupt handler fills its last available buffer and calls SIGNALSINTERRUPT to notify
the task. However, the task has not finished processing the first buffer, so the count is
incremented to the limit and interrupts are disabled until the task finishes with the first

buffer and calls WAITSINTERRUPT.
At position B, the opposite case exists. The task finishes processing its buffer and calls

WAITSINTERRUPT. However, the handler has not processed enough interrupts to fill a
buftfer, so the task must wait until the handler calls SIGNALSINTERRUPT.

Table 9-4. Handler and Task Interaction through Time

SIGNALS
Time Interrupt Interrupt INTERRUPT
Handler Task Count
Call SET$INTERRUPT to 0
establish handler and task for level,
setting count limit to 2.
Call WAITSINTERRUPT 0
to wait for first request from handler.
Intrpt Process interrupt, start filling first buffer.
Intrpt Process interrupt, continue filling first buffer.
Intrpt Process interrupt. Buffer is full. Call
SIGNALSINTERRUPT,
Start processing 1
first full buffer.
Intrpt Process interrupt. Start filling next buffer.
Intrpt Process interrupt. Buffer is full. Call 2
SIGNALSINTERRUPT. Count is at limit.
Interrupt level is disabled.
(continued)

9-20 Nucleus User’s Guide

INTERRUPT MANAGEMENT

Table 9-4. Handler and Task Interaction through Time (continued)

Call WAIT$INTERRUPT, 1
Task starts processing next full

buffer immediately and returns

empty buffer. Interrupt level is

enabled,

Intrpt Process interrupt. Start filling next buffer.

Call WAITSINTERRUPT. 0
No full buffers are available. Task
waits for next request.

Intrpt Process interrupt. Buffer is full. Call
SIGNALSINTERRUPT,

Start processing i
next full buffer.

9.3.5.4 Enabling Interrupt Levels From Within a Task

Sometimes, an interrupt task may finish with a buffer of data before it finishes its
processing. An example of this is a task that processes a buffer and then waits at a
mailbox, possibly for a message from a user terminal, before calling WAITSINTERRUPT.
If other buffers of data are available to the handler (i.e., the count of outstanding
SIGNALSINTERRUPT requests has not reached the limit), this does not present a
problem. The handler can continue accepting interrupts and filling empty buffers.
However, if the interrupt task is processing the last available buffer (i.e., the count limit
has been reached), the interrupt handler cannot accept further interrupts because the
interrupt level is disabled. This may be an undesirable situation if the interrupt task takes
a long time before calling WAITSINTERRUPT.

To prevent this situation, the interrupt task can invoke the ENABLE system call
immediately after it processes the buffer, enabling its associated interrupt level. This
means that while the task engages in its time-consuming activities, the interrupt handler
can accept further interrupts and place the data into the buffer just released by the task.
(You can also use this technique whenever the count limit is one, whether or not you use
a buffer.)

However, if the interrupt handler fills the buffer and calls SIGNALSINTERRUPT before
the task calls WAITSINTERRUPT, the following events occur:

o The count of outstanding SIGNALSINTERRUPT requests is incremented, causing it
to exceed the user-specified limit,

o An exception code, ESINTERRUPT$OVERFLOW), is returned to the interrupt
handler to indicate this overflow.

Nucleus User’s Guide 921

INTERRUPT MANAGEMENT

o The interrupt level is again disabled. The interrupt task cannot explicitly enable the
level again until the count falls to or below the limit.

If the interrupt task calls ENABLE when the count is below the limit, nothing happens
and no exception code is returned. However, if the interrupt task tries to enable the
interrupt level when the count is greater than the limit, the ENABLE system call returns
the ESCONTEXT exception code.

If a task other than an interrupt task tries to enable the level, one of three events may
occur:

o Ifthe level is already enabled, the ENABLE system call returns the ESCONTEXT
condition code.

o If the non-interrupt task tries to enable the level (presumably following a DISABLE)
and the interrupt task is not running (i.e., the interrupt task has called
WAITSINTERRUPT and is waiting for a service request), the level is enabled
immediately.

o If the interrupt task is running, the enable does not take affect until the interrupt task
next invokes WAITSINTERRUPT.

9.4 HANDLING SPURIOUS INTERRUPTS

When a PIC receives a signal from an interrupting device, it informs the operating system
of the interrupt level. If the interrupting device sends interrupt signals of short duration
(that is, the input line is active for very short periods), the interrupt signal might be gone
when the PIC tries to determine the interrupt level. If this happens, the PIC cannot
determine the interrupt level and thus treats the interrupt as a spurious interrupt.

Each time the PIC detects a spurious interrupt, it responds as if a level 7 interrupt had
occurred. Thus, if a master PIC detects a spurious interrupt, it responds as if the
interrupt occurred on level M7. If a slave PIC detects a spurious interrupt (for example, a
slave connected to master level M3), it responds as if the corresponding level 7 interrupt
occurred (in this case, level 37).

A spurious interrupt indicates a problem; the PIC detected an interrupt signal but was
unable to determine the level. Every application system should provide some means of
isolating spurious interrupts to prevent further problems (such as falsely responding to a
level 7 interrupt). This involves judiciously selecting interrupt levels and adding code to
all level 7 interrupt handlers (handlers that service master level M7 or slave levels x7,
where x ranges from 0 through 7). Once the spurious interrupt has been isolated, the level
7 interrupt handler can either attempt to correct the problem or ignore the spurious
interrupt and resume system processing.

9.22 Nucleus User’s Guide

INTERRUPT MANAGEMENT

In either case, before the handler returns control it should call EXITSINTERRUPT to
clear the hardware.

The following sections describe several options for isolating spurious interrupts.

9.4.1 Calling GET$LEVEL

One way that a level 7 interrupt handler can check for spurious interrupts is by invoking
the GETSLEVEL system call as soon as the handler starts running. GETSLEVEL
returns the level of the highest priority interrupt that a handler has started but not yet
finished processing. If the level returned is not the level associated with the interrupt
handler, the interrupt is spurious.

This method is simple to implement, but it does take more (handler) time to execute

GETSLEVEL. Some handlers may have speed requirements that prohibit the use of
GETS$LEVEL.

9.4.2 Judicious Selection of Interrupt Levels

Another way to isolate spurious interrupts is to avoid connecting devices to level 7
interrupts (master level M7 and slave levels x7, where x ranges from 0 to 7). If you have
no devices connected to these levels, and thus no handlers servicing them, spurious
interrupts will not affect system operation. Instead, each time a spurious interrupt occurs,
the PIC reacts as if a level 7 interrupt had occurred and sends control to the appropriate
IDT entry. Because no handler is associated with level 7, that entry contains a pointer to
the default handler, which returns control to the highest priority ready task.

9.4.3 Examining the In-Service Register

Another way that a level 7 interrupt handler can check for spurious interrupts is by
immediately reading the ISR (In-Service Register) of the corresponding PIC. If the
BYTE value obtained from that register does not have a 1 in the high-order bit, the
interrupt is spurious. To read the value, the handler must know the port address of the

ISR. In PL/M-286, the following lines perform this check when placed at the beginning of
the interrupt handler:

IF ((INPUT (port address of ISR)) AND 80CH) = 0
THEN interrupt is spurious

This method of isolating spurious interrupts should be used only as a last resort. It

requires the handler to know the address of the ISR (which may vary from system to
system).

Nucleus User’s Guide 9.23

INTERRUPT MANAGEMENT

9.5 EXAMPLES OF INTERRUPT SERVICING

Tables 9-5, 9-6, and 9-7 should help you understand the major points already described.
Each table outlines the turning points in a scenario where an interrupt handler is assigned
to a level, an interrupt arrives at that level and is serviced, and the assignment of an

interrupt handler is cancelled. The tables show the following cases:

o Table 9-5--the interrupt handler deals with the interrupt (handler is assigned to
master level 4).

o Table 9-6--the interrupt handler invokes an interrupt task, either immediately or after
filling a single buffer of data (handler is assigned to master level 4).

e Table 9-7--an interrupt handler and an interrupt task use multiple buffers to service
interrupts (handler is assigned to slave level 35).

In the right-hand column of each table, the phrase "interrupt levels necessarily disabled"
indicates that the events of the example cause certain levels to be enabled or disabled.
Other events, outside the scope of the example, might cause other levels to be disabled as

9-24

well.
Table 9-5. Servicing Interrupts with an Interrupt Handler
Interrupt Levels
Step Events Explanation Necessarily
Disabled
i - No interrupt handler
assigned to level M4. M4
2 RQ$SETSINTERRUPT A task assigns an
(LEVEL$4,0,...); interrupt handler to None
level M4.
3 Level 4 device An interrupt arrives
interrupts at level M4. All
4 The interrupt is
serviced by the
interrupt handler. All
5 RQS$EXITSINTERRUPT Interrupt hardware
(LEVEL$4,...); reset by the
interrupt handler. All
6 Interrupt handler Interrupts are
returns, re-enabled. None
7 RQ$RESETSINTERRUPT A task cancels the
(LEVELS4,...); assignment of an
interrupt handler to
level M4. M4
Nucleus User’s Guide

Table 9-6. Servicing Interrupts with an Interrupt Task

INTERRUPT MANAGEMENT

Interrupt Levels
Step Events Explanation Necessarily
Disabled
1 = No interrupt handler
assigned to level M4, M4
2 RQ$SETSINTERRUPT A task assigns an interrupt
(LEVEL$4, 1, ...); handler to level M4 and
assigns itself to be the
interrupt task for that level.
It specifies that one
SIGNALSINTERRUPT request M4-M7,
can be outstanding. 50-77
3 RQSWAITSINTERRUPT The interrupt task begins
or RQE$TIMED$- to wait for an interrupt. None
INTERRUPT
(LEVEL$4,...);
4 Level 4 device An interrupt arrives at
interrupts level M4. The interrupt
handler gains control and
optionally, does some
servicing. The handler may
service several interrupts
by performing steps 4
through & of Table 9-5, All
5 RQ$SIGNALSINTERRUPT The interrupt handler M4-M7,
(LEVEL®$4,...); invokes the interrupt task. 50-77
6 The interrupt is
serviced by the M4-M7,
interrupt task. 50-57
7 RAQSWAITSINTERRUPT The interrupt task finishes
or RQE$TIMEDS- and begins to wait for
INTERRUPT another level M4 interrupt.
(LEVEL$4,..); Control passes back to the
interrupt handler and then
back to an application task. None
8 RQ$RESETSINTERRUPT A task cancels the
(LEVELS$4,...); assignment of a
handler to M4. M4
Nucleus User’s Guide 9-25

INTERRUPT MANAGEMENT

Table 9-7. Servicing Interrupts with an Interrupt Handler, an Interrupt Task, and Multiple

Buffering

Step

Events

Explanation

Interrupt Levels
Necessarily
Disabled

RQ$SETSINTERRUPT
(LEVEL$35, 2, ...);

RQSWAITSINTERRUPT
or RQESTIMEDS-
INTERRUPT
(LEVEL$35,...);

Level 35 device
interrupts

RQ$SIGNALSINTERRUPT
(LEVEL$3S,...);

No interrupt handler
assigned to level 35.

A task assigns an
interrupt handler to

level 35 and assigns

itself to be the

interrupt task for that
level. It specifies

two SIGNAL$INTERRUPT
requests can be
outstanding (double
buffering).

The interrupt task
begins to wait for
an interrupt.

An interrupt arrives

at level 35. The
interrupt handler gains
control and does some
servicing.

The handler services
all interrupts, as
described in steps

4 through 6 of Table
9-5, until the first
buffer is full.

The interrupt handler
invokes the interrupt
task.

9-26

M4-M7,
36-77

None

All

All

M4-M7,
36-77

continued

Nucleus User’s Guide

e

INTERRUPT MANAGEMENT

Table 9-7. Servicing Interrupts with an Interrupt Handler, an Interrupt Task, and
Multiple Buffering (continued)

Step

Events

Interrupt Levels
Explanation

Necessarily
Disabled

RQSWAITSINTERRUPT
or RQE$TIMEDS-
INTERRUPT
(LEVEL$35,...);

RQSRESETSINTERRUPT
(LEVEL$3S,....);

The interrupt task
processes the full
buffer. Meanwhile,
the interrupt handler
services interrupts,
as described in steps
4 through 6 of Table
9-8, until the next
buffer is full.

The interrupt task
finishes and waits

for another signal

from the interrupt
handler.

Control passes back to
the interrupt handler
and then back to an
application task.

A task cancels the
assignment of an
interrupt handler to
level 35.

M4-M7,
36-77

None

9.6 SYSTEM CALLS FOR INTERRUPTS

The following system calls manipulate interrupts:

SETSINTERRUPT--assigns an interrupt handler and, if desired, an interrupt task to
an interrupt level.

RESETSINTERRUPT--cancels the assignment made to a level by
SET$INTERRUPT and, if applicable, deletes the interrupt task for that level.

EXITSINTERRUPT--used by interrupt handlers to send an end-of-interrupt signal to
hardware.

SIGNALSINTERRUPT--used by interrupt handlers to invoke interrupt tasks.

RQESTIMEDSINTERRUPT--puts the calling interrupt task to sleep for a specified
time. The task awakens either when the specified time elapses or a
SIGNALSINTERRUPT system call is issued.

WAITSINTERRUPT--suspends the calling interrupt task until it is called into service
by an interrupt handler (via SIGNALSINTERRUPT).

Nucleus User’s Guide 9.27

INTERRUPT MANAGEMENT

o ENABLE--enables an external interrupt level.
o DISABLE--disables an external interrupt level.

o GETSLEVEL--returns the interrupt level of highest priority for which an interrupt
handler has started but has not yet finished processing.

o ENTERSINTERRUPT--sets up a previously designated data segment base address
for the calling interrupt handler.

For a complete list of the iRMX II Nucleus system calls, see the Extended iRMX II
Nucleus System Calls Referenice Manual,

928 Nucleus User’s Guide

10.1 INTRODUCTION

A feature of the Extended iRMX II Operating System is that it can be extended to include
customized objects and system calls. With this feature you can create an operating system
that precisely meets your needs. This chapter explains how to extend the iRMX II
Operating System to include your own system calls.

Material presented in this chapter is intended for programmers who write system
programs to extend the operating system. Users familiar with the iRMX I Operating
System should read this chapter carefully as the method of implementing operating
system extensions in the iRMX II Operating System is different.

10.2 THREE WAYS OF ADDING FUNCTIONALITY

If more than one job in your application system requires a function not supplied by the
iRMX II Operating System, you have at least the following three ways of adding the
needed function:

Write the function as a procedure and place it in a library by using LIB286. After
compiling each job that requires the function, use BND286 to bind the library to the
object module for the job.

Write the function as a task and allow application tasks to invoke the function through
a mailbox interface.

Write the function as a procedure and add it to the iRMX IT Operating System.
Application programs then invoke the function by means of a system call.

The relative advantages and disadvantages of the three alternatives are summarized in
Table 10-1.

The third alternative involves extending the operating system. The procedures that you
must add to the operating system in order to support the added function are called
operating system extensions or OS extensions. From the application programmer’s
standpoint, an OS extension appears to be a collection of one or more customized system
calls.

Nucleus User’s Guide 10-1

OPERATING SYSTEM EXTENSIONS

Table 10-1. Comparison of Techniques for Creating Common Functions

Procedure
Library Task OS Extension
INTERFACE FOR
APPLICATION SIMPLE COMPLEX SIMPLE
PROGRAMS
RELATIVE GOOD POOR MODERATE
PERFORMANCE (for (for (for
all quick quick
functions) functions) functions)
MODERATE GOOD
(for (for
slower slower
functions) functions)
SYNCHRONOUS
or BOTH ASYNCHRONOUS BOTH
ASYNCHRONOUS ONLY
CALLS
SYSTEM NOT NOT
PROGRAMMING REQUIRED REQUIRED REQUIRED
DUPLICATE Difficult to Easy to avoid Automatically
CODE avoid avoided
REQUIRES
RELINKING TO YES NO NO
CHANGE
SUPPORTS
NEW OBJECT NO NO YES
TYPES

10.3 Creating an Operating System Extension

Creating an OS extension involves writing several procedures and establishing entry
points or call-gates for them.

10.3.1 Procedures Used In Operating System Extensions
Every OS extension is composed of an interface and a function procedure. Figure 10-2
illustrates the simplest arrangement of these functions.

Interface Procedure

An interface procedure connects the customized system call to the operating system.

For example, to issue a NEWSFUNCTION system call, an application task executes a
statement like

CALL NEWSFUNCTION(......);

10-2 Nucleus User’s Guide

OPERATING SYSTEM EXTENSIONS

This statement is, in fact, a call to an interface procedure, named NEW$FUNCTION,

that transfers control to the operating system. One interface procedure is required for
each customized system call.

Function Procedure

The function procedure does the important work of the system call. That is, it
performs the actions requested by the calling task. One function procedure is
required for each customized system call.

A third kind of procedure may also be employed, however, it is optional.
Entry Procedure

The entry procedure serves as a multiplexor for OS extensions supporting more than
one system call. Figure 10-1 depicts a single OS extension with four system calls. The
primary purpose of the entry procedure is to route the call from the interface
procedure to the proper function procedure. Note that four interface procedures are
still required to support the four system calls. Users familiar with the iRMX I
Operating System should note that entry procedures are less important in the iRMX
IT Operating System because there are now 8K GDT slots in which to put the
extensions rather than 32 software interrupts.

Figure 10-2 depicts four OS extensions, each containing one system call. Note that the
interface procedures are part of the application software and the function procedures are
part of the system software. The application tasks are linked to the interface procedures,
but the interface procedures are not linked to the function procedures. Instead, the
interface procedures pass control to the function procedures by way of a call-gate.

Call-gates are used to enter the OS extensions. They redirect flow within a task from one
code segment to another. Each system call uses a call-gate to transfer the program
directly to the iRMX service routine requested. This makes it possible to go directly from
the interface procedure to the function procedure. Call-gates are part of the descriptor
tables and can be reserved when you configure the system. Since there are 8K slots in the
GDT, you have a great deal of flexibility when creating operating system extensions.

Figure 10-3 contains, in algorithmic form, summaries of these descriptions. Also, Chapter
11 contains an example of an OS extension that manages a customized object type.

Nuclens User’s Guide 10-3

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWARE

TASKS

<«—— CALL/RETURN

INTERFACE
PROCEDURES

CALL/RETURN
VIA GATE

ENTRY
PROCEDURE

CALL/RETURN —/ \

e e

FUNCTION
PROCEDURES

SYSTEM SOFTWARE

z-0002

Figure 10-1. OS Extensions with Entry Procedure

10-4 Nucleus User’s Guide

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWARE

TASKS

<~——CALL/RETURN

INTERFACE
PROCEDURES

CALL/RETURN
VIA GATE

FUNCTION
PROCEDURES

SYSTEM SOFTWARE

z-0001

Figure 10-2. OS Extension without Entry Procedure

Nucleus User’s Guide 10-5

OPERATING SYSTEM EXTENSIONS

CALLING ‘
TASK l

INTERFACE
PROCEDURE

(OPTIONAL)
ENTRY <
PROCEDURE '

FUNCTION
PROCEDURE

A

DO SOME PROCESSING
CALL AN INTERFACE PROCEDURE mccecaeeaa ;
DO SOME MORE PROCESSING

e ————

Y

LOAD INTO A SPECIFIC PAIR OF REGISTERS APOINTER TO THE
PARAMETERS ON THE TASK'S STACK

IF THERE IS AN ENTRY PROCEDURE THEN
LOAD INTO A SPECIFIC REGISTER A CODE IDENTIFYING THE FUNCTION
BEING CALLED

CALL A CALL GATETO CALLTHEENTRY PROCEDURE OR A FUNCTION
PROCEDURE = = coccmmmccmmmmmmmecmccmcssmsee cc e e cme e e a——— e

EXAMINE THE CX REGISTER

IFTHE CX CONTAINS A NONZERO VALUE THEN CALL RQ$ERROR TO
INFORM THE TASK OF THE EXCEPTION

RETURN (RET)---;

B
]

e

IF USING DEFAULT RQSERROR PROCEDURE AND IF DESIRED, THEN SAVE
TASK'S EXCEPTION HANDLER (GET SEXCEPTIONSHANDLER) AND SET
UP A TEMPORARY REPLACEMENT
(SETSEXCEPTION$HANDLER)

IF POSSIBLE THEN
DO PROCESSING COMMON TO ALL FUNCTION PROCEDURES IN THIS
OS EXTENSION

GET FUNCTION CODE STORED BY INTERFACE PROCEDURE

CALL THE DESIGNATED FUNCTION PROCEDURE ----

IFEXCEPTION HANDLERS WERE SWITCHED EARLIER THEN RESTORE
ORIGINAL (SETSEXCEPTIONSHANDLER)

IF NOTIFIED OF AN EXCEPTION BY A FUNCTION PROCEDURE THEN PLACE
EXCEPTION CODE IN CX REGISTER
PLACE PARAMETER IN DL REGISTER

RETURN (RET) =

OR

OBTAIN INPUT PARAMETERS

PERFORM ACTIONS EXPECTED BY CALLING TASK

RETURN EXCEPTION CODE AND ANY VALUES EXPECTED
BY CALLING TASK

RETURN (RET):-

Figure 10-3.

Z-0

Summary of Duties of Procedures in OS Extensions

003

10-6

Nucleus User’s Guide

OPERATING SYSTEM EXTENSIONS

10.3.2 Interface Procedures

For each system call in your OS extension, you must write a re-entrant assembly language
interface procedure. (For detailed information concerning the ASM286 Assembly
Language, refer to the ASM286 Assembly Language Reference Manual.) This procedure
uses a call-gate to transfer control from the task that invoked the system call to a function
procedure. When transferring control to a function procedure whose call-gate number is
441H, for example, the interface procedure calls GATE 0441 which is the PUBLIC name
for this gate. (You can find a gate’s PUBLIC name in the MP2 file generated by
BLID286.)

A second important function of the interface procedure is informing the calling task (or
its exception handler) of any exceptional conditions that have occurred. The function
procedure communicates this information to the interface procedure by placing the
exception code in the CX register and the number of the parameter that caused the error
in the DL register. The interface procedure then does the following:

Checks the CX register for the condition code. If this register contains a value other
than zcro (E$OK), an exceptional condition exists.

Calls a procedure named RQ$ERROR, if an exceptional condition exists.

The Nucleus interface library contains a default RQSERROR procedure or you may write
your own RQSERROR procedure (further details are given in section, "RQ$ERROR
Procedure").

Another important function of interface procedures is that they make function procedures
independent of the PL./M-286 model being used to compile your application. This is done
by providing a library of interface procedures for each PL/M-286 model. The benefit of
this independence is that only one call-gate, and its related function procedure, is needed
for each additional application function. The call-gate and its function procedure are then
available for use by all PL./M-286 models.

10.3.3 Entry Procedures

Each OS extension comprising more than one system call may include a reentrant entry
procedure, whose purpose is to route the call to the appropriate function procedure. As
stated previously, this procedure is optional in the iIRMX II Operating System because
there are 8K GDT slots in which to put extensions.

Other possible functions of entry procedures are

To set up the exception handling mechanism for the OS extension, if this option is
required (see below).

To perform a routine common to all system calls in this OS extension.

Nucleus User’s Guide 10-7

OPERATING SYSTEM EXTENSIONS

To transmit the exception incurred by the function procedure back to the interface
routine--in CX and DL registers as explained above.

Write the entry procedure in assembly language so that you can directly access the stack
and the registers. This gives you access to the input parameters passed by the calling task
and the interface procedure. It also allows you to set the CX and DL registers in the
event of an exceptional condition. To enable the entry procedure to route the call to the
appropriate function procedure, the interface procedure must send a code identifying the
function procedure called by the entry procedure. The interface procedure does this by
loading the code into a previously designated register or onto the stack of the calling task.

10.3.4 Function Procedures

The duties of the function procedure are principally to perform the actions requested by
the calling task. If there is no entry procedure, the function procedure should inform the
interface procedure of the system call’s exception status. It does this by setting CX and
DL, as described in the description of entry procedures. Function procedures should be
reentrant and can be written in PL/M-286 or assembly language.

10.3.5 RQ$ERROR And NUC$ERROR Procedures

The iRMX II Operating System has one interface library, RMXIFC (or RMXIFL
depending on the scgmentation modcl) which contains both the RQJERROR and
NUCSERROR procedures. These procedures invoke the task’s exception handler.
NUCSERROR is a procedure called by the Nucleus interface procedures when an
exceptional condition occurs, and RQ$ERROR is a procedure called by the interface
procedures of all the other subsystems. For example, if your application task makes a
SEND$MESSAGE system call to a non-existent mailbox, the Nucleus returns the error, in
the CX and DL registers, to the Nucleus interface library linked to your application task.
The procedure in the library then calls NUCSERROR to process the error.

Every subsystem of the operating system that implements system calls also provides this
mechanism for returning exceptions (because the Nucleus regards each subsystem as an
OS extension). If an application task makes an I/O system call (CREATES$FILE, for
example) and incurs an exceptional condition, the I/O System returns control to the I/O
System interface library linked to that task. The interface procedure in that library calls
RQ$ERROR to process the error.

10-8 Nucleus User’s Guide

OPERATING SYSTEM EXTENSIONS

RQSERROR gets the exception code and parameter number from the CX and DL
registers and then makes a SIGNALSEXCEPTION system call to inform the calling task
(or its exception handler) of the exception. When SIGNALSEXCEPTION returns to the
RQS$ERROR procedure, RQSERROR restores CX and DL with the exception code and
parameter number and places a value of 0FFFFH in the AX registcr. This version of
RQS$ERROR should be linked to application tasks to ensure that their exception handlers
are called when exceptional conditions occur. Figure 10-4 illustrates the flow of control
from an application task to an exception handler when the task incurs an exception.

NUCSERROR performs the same functions as ROSERROR. However, it does not call
SIGNALSEXCEPTION. Instead, when a Nucleus system call returns with an exceptional
condition, the stack contains three (3) extra words to process the exception. One word is
the exception mode and the other two contain a pointer to the exception handler. If the
exception mode indicates the need to call the exception handler, NUCSERROR calls the
exception handler directly.

If you do not want to use the default ROSERROR or NUCSERROR procedures, you can
write your own procedures. Your ROSERROR procedure can perform any functions it
needs in order to inform the application task of the exceptional condition. The only
restriction placed on an ROSERROR procedure is that it should always return a value of
OFFFFH in the AX register (so that OFFFFH is returned as a function value for your
system calls that are typed procedures). An example of an alternate RQSERROR
procedure is one that simply places OFFFFH in AX and then issues a RETURN,
returning control directly to the application task to avoid the task’s normal exception
handler. If you write your own NUCSERROR you must always pop three extra words
from the stack.

To ensure that your own procedure is called instead of the default version, link your
procedure directly to the interface pracedure or include it in a library with the rest of your
interface procedures. When linking your modules together, this library should always
precede the Nucleus interface library in the link sequence.

Nucleus User’s Guide 10-9

OPERATING SYSTEM EXTENSIONS

START
HERE

APPLICATION TAEK

o
L]

-
CALL RQOSSENDSMESSAGE
L]

Y
°

NUCLEUS INTERFACE LIBRARY

RQSSENDSMESSAGE
INTERFACE PROCEDURE

- CALL VIA GATE
TQ NUCLEUS

CALLNUCSERROR =

Y

RETURN

i NUCSERROR PROCEDURE

e SAVE CX AND DL

@ REGISTERS

CALL VIA GATETO

NUCLEUS ROSSIGNALS
EXCEPTION

QOFFFFH IN AX -

RESTORE CX, DL AND PLACE

RETURN

EXCEPTION
HANDLER
-
- L}
[}
RETURN
NUCLEUS
ROSSENDSMESSAGE
e TR el

EXCEPTION ENCOUNTERED

ROSSIGNALSEXCEPTION l

— |
|

TRANSFER TO
EXCEPTION HANDLER

Z-0004

Figure 10-4. Handling Exceptions with an Exception Handler

10-10

Nucleus User’s Guide

OPERATING SYSTEM EXTENSIONS

10.4 ESTABLISHING EXCEPTION-HANDLING MECHANISMS

The following section refers to the OS extension code and the interface it uses to call
existing operating system calls (Nucleus, BIOS, etc.). The interface discussed here is not
the interface (described at the beginning of this chapter) used by the application task to
call the OS extension functions.

Exception handling in an OS extension can be done in one of two ways, depending on
whether the OS extension has its own exception handler or whether it wants to handle
exceptions in-line. Using any other method results in unpredictable execution of the OS
extension code. If an exception occurs while the extension calls an iRMX II system call,
the flow within the exception code is dependent on the exception handler and mode of the
task invoking the extension.

If the OS extension has its own exception handler, the function procedure must change
the exception handler from that of the calling task to an exception handler for the OS
extension. To make this change, the function procedure should first call
GET$EXCEPTION$HANDLER to obtain and save the task’s exception handler address
and exception mode. It then calls SETSEXCEPTION$SHANDLER to set new values for
these entities. Just before returning control to the interface, the function procedure again
calls SETSEXCEPTIONSHANDLER to restore the original values. In case of an entry
procedure, the entry procedure saves and restores the exception handler and mode.

If you want the OS extension to handle exceptions in-line, you can follow the above
strategy, calling SET$EXCEPTION$SHANDLER with the EXCEPTION$MODE
parameter set to NEVER. This is the simplest and most straightforward method.
However, it costs three (3) Nucleus calls (to get, set, and restore) for every extension call.
This is because it is done upon entry and exit from the function procedure.

Another way of handling exceptions in-line is to link your OS extension to your version of
RQ$ERROR or NUCSERROR. The RQ$ERROR procedure may simply place
OFFFFH in the AX register (so that OFFFFH is returned for system calls that are invoked
as functions) and then do a RETURN, to return control directly to the interface library.
The interface library then returns control to your OS extension, allowing the OS extension
to process the exception in-line.

If you want to overridle NUCSERROR with your own procedure, you should return from
your version of the NUCFERROR procedure by using RET 6, to pop three (3) extra
words from the stack. These words are used by the Nucleus to save the call to
RQS$SIGNALSEXCEPTION.

Nucleus User’s Guide 10-11

OPERATING SYSTEM EXTENSIONS

Even though your OS extension processes its own exceptions in-line, it will still want to
return exceptions to tasks (or other OS extensions) that invoke the customized system
calls. This means that the function procedure of your OS extension places the condition
code and parameter number in CX and DL, and returns to the interface linked to the
application task. The interface procedure then calls RQSERROR in the event of an
exceptional condition. The ROQO$ERROR procedure that gets called is the one in the
interface library linked to the calling task, not the one in the interface library linked to the
OS extension.

Figure 10-5 illustrates the flow of control for an OS extension that incurs an exceptional
condition, processes the exception in-line, and then returns an exception to the
application task that called it. When examining the diagram follow the numbered arrows.
Notice that both the OS extension and the application task, although not linked together,
are each linked to interface libraries and an RQSERROR procedure. The RQ$SERROR
procedure linked to the OS extension returns control to the OS extension. The
RQS$ERROR procedure linked to the application task is the default procedure which calls
SIGNALSEXCEPTION.

10-12 Nucleus User’s Guide

OPERATING SYSTEM EXTENSIONS

Nucleus User’s Guide

e Y
OSSEXTENSION NUCLEUS INTERFACE LIBRARY NUCLEUS
5 [RGSSENDSMESSAGE
s ° NTERFACE PROCEDURE RQSSENDSMESSAGE
o CALL VIA GATE %
CALL ROSSENDSMESSAGE _| TO NUCLEUS > o
° CALL NUCSERROR o
o +— | EXCEPTION
2 —— RETURN ENCOUNTERED
RETURN .
L]
@ .. L '
NUCSERROR PROCEDUR
OS EXTENSION INTERFACE LIBRARY
Tahiia e PLACE OFFFFH IN AX
CUSTOMIZED SYSTEM CALL FOP 3 WORDS
@ INTERFACE PROCEDURE | G
o ——— @ U e
L]
L]
CALL VIA GATE
TO 08 EXTENSION
L]
. RQSSIGNALSEXCEPTION |
GALL NUCSERROR TRANSFER TO
RETURN EXCEPTION HANDLER
NUCS$ERROR PROCEDURE
SAVE CX AND DL REGISTERS
CALL VIA GATE TO NUCLEUS @
RQSSIGNALSEXCEPTION
TN
RESTORE CX, DL AND PLACE
OFFFFHIN AX
RETURN
. ®
1
1
1
1
1
O |
i
@ APPLICATION TASK EXCEPTION HANDLER
. =)
L
L]
L]
RETURN
EELE CALL OS EXTENSION
iz °
L]
START 20005
HERE
. . . .
Figure 10-5. Control Flow for Handling Exceptions In-Line
= X

10-13

OPERATING SYSTEM EXTENSIONS

10.5 CUSTOMIZED EXCEPTION CODES

When adding OS extensions, you may want to add your own exceptional conditions and
associated codes. Values available to uscrs for exception codes are 4000H to 7FFFH (for
environmental conditions) and 0C000H to OFFFFH (for programmer errors).

10.6 LINKING THE PROCEDURES

For each OS extension, you should produce several libraries of interface procedures. In
fact, you should produce one library for each PL/M-286 model in which the calling task
can be written. Within each library, you should have one interface procedure for each
system call of the OS extension. Each module in your system should be linked to the
appropriate interface library for each OS extension that is called.

For each OS extension, the function procedure (and the entry procedure, if any) should
all be linked together, along with any operating system interface libraries that the
procedures need. They should not be linked to any application code, since they are
connected to the application tasks via call-gates.

Any RQ$ERROR (or NUCSERROR) procedure that you write should be linked to the
appropriate routines. If you write your own RQ$ERROR procedure to inform the
application task of an exception, you should place that RQSERROR procedure in the
interface library you create. If you write a RQSERROR (or NUCSERROR) procedure
to process exceptions that your OS extension incurs, you should link this RQFERROR (or
NUCS$ERROR) procedure directly to the function procedures.

You should link the Nucleus interface library, and the interface libraries for any of the
other subsystems that you use, to the application task and/or the OS extension, whichever
uses these subsystems. If you provide your own RQ$ERROR (or NUCSERROR)
procedure, either for your interface procedures to call or to process exceptions in your OS
extension, this procedure must precede the Nucleus interface library in the link sequence.

10.7 INCLUDING OS EXTENSIONS

Before an interface procedure can successfully transfer control to an OS extension, a call-
gate must be established. There are two ways of establishing call-gates. One way is to
include them dynamically using the system call RQESETOSSEXTENSION. If you use
RQES$SETSOSSEXTENSION to designate the call-gate through which your OS extension
is to be entered, you must specify the gate number when you configure the system. Then
when you invoke the system call, enter the gate number and the start address of the first
instruction.

10-14 Nucleus User’s Guide

OPERATING SYSTEM EXTENSIONS

OS extensions can also be configured into your system by using the "OS Extension" Screen
of the Interactive Configuration Utility (ICU). In this case, the Nucleus initializes your
OS extensions. For more information see the iIRMX II Interactive Configuration Utility
Reference Manual.

10.8 PROTECTING RESOURCES FROM BEING DELETED

Normally, an object can be deleted by a call to the deletion system call corresponding to
the object’s type. However, OS extensions can use the DISABLESDELETION system
call to make the object immune to this kind of deletion. A subsequent call to
ENABLESDELETION removes the immunity.

An object can have its deletion disabled more than once. Each call to
DISABLESDELETION must be countered by a call to ENABLESDELETION before the
object can be deleted. An object’s disabling depth at any given moment is defined to be
the number of times the object has had its deletion disabled minus the number of times its
deletion has been enabled. Usually, an object cannot be deleted until its disabling depth is
zero. The only exception is that a call to FORCESDELETE deletes objects whose
disabling depth is one. Also, calling ENABLE$DELETION for an object whose deletion
depth is zero results in the ESCONTEXT exception code.

None of these system calls--DISABLESDELETION, ENABLE$SDELETION, and
FORCESDELETE--should be used in jobs that an operator invokes via a Human
Interface command. If a Human Interface job contains objects whose disabling depths are
greater than one, the operator cannot cancel the command by entering CONTROL-C.
For most commands, the ability to cancel via CONTROL-C is desirable, if not required.
To prevent other similar situations, it is recommended that you use
DISABLESDELETION, ENABLESDELETION, and FORCESDELETE only in OS
extensions.

NOTE

When a task attempts to delete an object whose disabling depth is too high
to permit deletion, that task goes to sleep. The task remains asleep until
the object’s deletion depth becomes small enough to permit deletion. At
that time, the object is deleted and the task is awakened. Because these
circumstances can cause system deadlock, your tasks should exercise
caution when deleting objects and when disabling deletion.

10.9 SYSTEM CALLS FOR EXTENDING THE OPERATING SYSTEM

The following system calls are used extensively by OS extensions:
DISABLESDELETION--increases the deletion disabling depth of an object by one.

Nucleus User’s Guide 10-15

OPERATING SYSTEM EXTENSIONS

ENABLE$DELETION--removes one level of deletion disabling from an object,
reversing the effect of one DISABLESDELETION call.

FORCE$DELETE--deletes objects whose disabling depths are one or zero.

RQES$SETIOSSEXTENSION--attaches the entry point address of the OS extension
to a call-gate. Users familiar with the iIRMX 86 Operating System should be aware
that this system call replaces SETSOS$EXTENSION. When writing an OS extension,

you must use this system call.

SIGNALSEXCEPTION--advises a task that an exceptional condition has occurred in
an OS extension that the task has called.

For a complete list and explanation of the iRMX II Nucleus system calls, see the /RMX IT
Nucleus System Calls Reference Manual.

10-16 Nucleus User’s Guide

11.1 INTRODUCTION

The object types and system calls provided by the Nucleus and I/O System are sufficient
for many applications. However, some applications require additional object types and
system calls for manipulating them. A type manager is an operating system extension that
provides these services.

If your system requires additional object types, you must write a type manager for each of
those types. The responsibilities of each type manager include

Implementing a new type by creating objects of the new type.

Providing a mechanism for deleting objects of the new type.

Optionally providing the system calls that application tasks can invoke to create,

manipulate, and delete objects of the new type.

This chapter describes creating and deleting objects of a new type. The end of this
chapter contains an example that extends the operating system and creates and deletes
objects of a new type.

11.2 CREATING NEW OBJECTS

Creating customized objects is a two-step process:
1. Create the type.
2. Create objects of that type.

The CREATESEXTENSION system call creates the type. CREATESEXTENSION
accepts a new type code as a parameter and returns a token for the new type. The token
represents a license to create objects of the new type.

The CREATESCOMPOSITE system call creates objects of the new type.
CREATE$COMPOSITE accepts as a parameter the token returned from
CREATESEXTENSION. CREATESCOMPOSITE also accepts as input a list of tokens
for the objects that will compose the new object (the component objects) and returns a
token for the new object, called a composite object.

Figure 11-1 illustrates the creation process for composite objects.

Nucleus User’s Guide 11-1

TYPE MANAGERS

Input System Call Qutput
Type Code 3 CREATESEXTENSION——>Token for type —

|"l’nl-csen for type—— 3. CREATE$COMPOSITE——> Token for new object

List of component
object tokens W-0303

Figure 11-1. Creation Sequence for Composite Objects

Note these two facts when creating a composite object:

1. Its components, called component objects, are all iRMX II objects, either Intel- or
user-provided.

2. No structure is imposed on composite objects of a given extension type. Two
objects of the same extension type can be completely different in structure or in the
number of components objects they comprise. This feature allows for maximum
flexibility in the creation of new objects.

Once a type manager creates a new object type by calling CREATESEXTENSION, that
type manager owns the type. Only the type manager can create composite objects of that
type. In addition, when it creates composite objects, the type manager can request that
the composite object be sent back to the type manager when the object has to be deleted.
(Later sections describe this in detail.)

11.3 MANIPULATING COMPOSITE OBJECTS AND EXTENSION
TYPES

Two system calls manipulate existing composite objects: INSPECT$COMPOSITE and
ALTERSCOMPOSITE. INSPECT$COMPOSITE returns a list of component tokens for
a composite object. ALTERSCOMPOSITE replaces a token in the component list of a
composite object, with either another token or a null.

11-2 Nucleus User’s Guide

TYPE MANAGERS

11.4 DELETING COMPOSITE OBJECTS AND EXTENSION TYPES

Two system calls delete composite objects: DELETE$COMPOSITE and
DELETESEXTENSION. DELETE$COMPOSITE deletes a particular composite object
(but not its components). DELETE$EXTENSION deletes a specified extension type, and
either deletes all composites of that type or sends them to a deletion mailbox, in which
case the type manager must delete them.

A third system call, DELETE$JOB, also deletes composite objects as a part of its
processing. Although DELETES$JOB cannot delete extension types (it returns an
exception code if the job contains any extension objects), it can delete composites or send
them to deletion mailboxes where their type managers delete them.

The deletion$mailbox parameter in the CREATE$EXTENSION system call determines
whether DELETE$EXTENSION and DELETE$JOB delete composite objects or send

them to deletion mailboxes. This parameter has two options:

If you specify SELECTORS$SOF(NIL) for the parameter, then
DELETES$EXTENSION and DELETES$JOB assume all responsibility for deleting
composite objects. The type manager plays no part in the deletion process. In this
case, you can skip the next three sections of this chapter.

If you specify a mailbox token for the parameter, then DELETE$EXTENSION and
DELETES$JOB send tokens for all composite objects of the indicated type to the
mailbox. The type manager is then responsible for deleting the composite objects.

Two conditions must be met before the type manager receives tokens for composite
objects via the deletion mailbox:

The type manager, when it calls CREATESEXTENSION, must fill in the
deletion$mailbox parameter with a token for a mailbox.

A task must call DELETE$EXTENSION or DELETES$JOB.

The following sections describe the type manager’s responsibilities in more detail.

11.4.1 Type Manager Responsibilities During DELETE$JOB

When a task calls DELETES$JOB, the Nucleus normally deletes every object in the job.
However, if the job contains a composite object whose extension has a deletion mailbox,
the Nucleus sends the token for the composite object to the deletion mailbox. The
Nucleus then waits until the type manager calls DELETE$COMPOSITE before
continuing the deletion process.

The type manager has the following responsibilities for servicing the deletion mailbox:

1. It must wait at the deletion mailbox to receive the tokens for the objects to be
deleted.

Nucleus User’s Guide 11-3

TYPE MANAGERS

2. It must perform any special processing required to delete the composite object. For
example, it might want to wait until all tasks have stopped using the composite.

3. It has the option of deleting those component objects not contained in the job being
deleted. It cannot, however, delete any objects contained in the job being deleted or
it will incur an exceptional condition. (This is not a problem because the objects in
the job being deleted will automatically be deleted during the DELETE$JOB call.)

4. It should call DELETE$SCOMPOSITE, which deletes the composite object (but not
the component objects) and informs the Nucleus that the type manager has finished
the special processing that deletes the composite object, After the type manager
calls DELETESCOMPOSITE, the Nucleus resumes the DELETE$JOB processing,

The type manager must call DELETE§COMPOSITE each time the Nucleus sends a
token for a composite object to the deletion mailbox because DELETE$COMPOSITE
returns control to the Nucleus. If the type manager fails to call DELETE$COMPOSITE,
the DELETE$JOB system call will not finish processing. Figure 11-2 illustrates the type
manager’s involvement in the DELETE$JOB process.

DELETESJOB

NUCLEUS SENDS COMPOSITE

TO DELETION MAILBOX

NUCLEUS STARTS DELETING Ll
OBJECTS IN THE JOB:

DELETION
MAILBOX

composite

composile TYPE MANAGER

composite _] —
> 1. WAITS FOR OBJECT AT
S MAILBOX.

A

2. PERFORMS CLEANUP

lask OPERATIONS, IF ANY.
: 3. CALLS DELETESCOMPOSITE.
i CONTROL RETURNS f

.TO DELETESJOB

x-155

Figure 11-2. Type Manager Involvement in DELETE$JOB

114 Nucleus User’s Guide

TYPE MANAGERS

Note that the type manager is not required to delete all component objects. In the course
of DELETES$JOB, the Nucleus deletes any Nucleus objects in the job. The Nucleus sends
the tokens for any I/O System, Extended I/O System, or Human Interface (all three are
OS extensions) objects to their respective deletion mailboxes, where the subsystems
themselves delete the objects. The Nucleus sends the tokens for all other composite
objects to their own deletion mailboxes, where their type managers are responsible for
deletion. Therefore, all the component objects are eventually deleted, provided they are
in the job being deleted.

11.4.2 Type Manager Responsibilities During DELETE$EXTENSION

A task can call DELETESEXTENSION to delete an extension type. This is useful when
the license to create composite objects of a given extension type is no longer needed.
When a task calls DELETESEXTENSION and the extension has a deletion mailbox, the
Nucleus sends the tokens for all composite objects of that extension type to the deletion
mailbox. After sending a token for an object to the deletion mailbox, the Nucleus waits
until the type manager calls DELETE$COMPOSITE before sending the next composite.

The type manager has responsibilities during DELETESEXTENSION similar to
DELETES$JOB. First, it must wait at the deletion mailbox for the objects’ tokens. Then,
it must handle any special processing necessary to delete the object. Finally, it must call
DELETE$COMPOSITE to delete the composite. As with DELETE$JOB, the type
manager must call DELETESCOMPOSITE for each token it receives at the deletion
mailbox. If it does not do this, the DELETESEXTENSION system call will not finish
processing,

However, unlike DELETES$JOB processing, the type manager has the choice during
DELETESEXTENSION of whether or not to delete individual component objects. If it
wishes the component objects to be deleted, the type manager must explicitly delete these
objects. Unlike DELETES$JOB, DELETESEXTENSION does not delete any component

objects.

11.4.3 Deletion of Nested Composites

Since a composite object can contain objects of any kind, some of its component objects
may be composite objects themselves. This can cause problems for type managers when
they delete the composite objects if the type manager for any of the composite objects
depends on the existence of any of the other composite objects to complete its processing.

For example, suppose objects A and B are composites in the same job. They have
different extension types, and B is a component of A. Each composite has a type manager
that performs special cleanup functions before it can delete the corresponding composite.
If neither type manager requires information contained in the other composite to perform
its special processing, the deletion process can proceed without difficulty.

Nucleus User’s Guide 11-5

TYPE MANAGERS

However, if the type manager for composite A requires some information contained in
composite B to complete its processing, the deletion process becomes more complex. For
this deletion scheme to work, you must guarantee that composite A will be deleted before
composite B. Thus, you must know the order in which the DELETE$JOB deletes objects
and sends composites to deletion mailboxes, so that you can set up your composites
correctly.

DELETES$JOB deletes composite objects before it deletes non-composite objects. It
deletes composite objects on a last-in-first-out basis; that is, in the reverse order from
which they were created. Therefore, a type manager can depend on receiving the tokens
for composite objects that it creates before the Nucleus deletes the component objects
contained in them. The only exception is when a composite (composite A) is created
before another composite (composite B), and composite B is inserted as a component
into composite A using ALTER$COMPOSITE. In this case, composite B will be deleted
first, and the type manager of composite A cannot rely on the existence of composite B
when it receives composite A for deletion.

11.5 WRITING A TYPE MANAGER

A type manager consists of two parts:

The initialization part creates the type and optionally creates a deletion mailbox to
which the system can send tokens for objects when deleting cither jobs or the type
itself.

The service part provides system calls so tasks can create and manipulate objects of

the type.

Because the initialization phase must be completed before any task attempts to obtain
tokens for objects, the initialization part should be written as a task that executes early in
the life of the system. To ensure early execution, the task should be part of the
initialization task of a first-level user job in the job tree. Refer to the iRMX II Interactive
Configuration Utility Reference manual for information concerning first-level jobs.

The service part of the type manager is written as an operating system extension. (Refer
to Chapter 10 for more information.)

The best way to learn about type managers is to study an example. The following example
presents the main parts of a type manager for ring buffers.

11-6 : Nucleus User’s Guide

TYPE MANAGERS

11.6 EXAMPLE--A RING BUFFER MANAGER

This example shows the most educational portions of a ring buffer manager. It also serves
to illustrate the various parts of an operating system extension. Be advised, however, that
the example is incomplete and should be imitated with discretion. In particular, the
example has the following shortcomings:

The issue of exception handling is not addressed. Clearly the code supporting a
system call should examine each invocation for validity, but, for brevity, the ring buffer
example does not do this.

There are no safeguards against partial creation of an object. When creating a
composite object, a type manager must first create the components of the object.
Occasionally, after creating some of the components, the manager might be unable to
create the others. A type manager should be able to recover from this situation,
usually by deleting the components already created and returning an exception code to
the caller. The example, again for brevity, does not do this.

The entry routine does not check the entry code for validity.

The potential for problems with deletion is ignored. For this reason, you should
imagine that the environment of the example is constrained in at least two ways. First,
only one task will ever try to delete a ring buffer and, when it does try, no other task
will be using that buffer. Second, when a job containing a task that created a ring
buifer is deleted, no tasks in other jobs are using that ring buffer.

The example Fas been desk-checked, but the example has not actually been tested.

A ring buffer is a block of memory in which bytes of data are placed at successively higher
addresses. Interspersed with byte insertions are byte removals, with the restriction that
the byte being removed must always be the byte that has been in the buffer for the longest
time. Thus, data enters and leaves a ring buffer in a FIFO manner. Ring buffers are so
named because the lowest address logically follows the highest address. That is, if the last
byte placed in (or retrieved from) the buffer is at its highest address, then the next byte to
be placed in it (or retrieved from it) is at the lowest address. As data enters and leaves
the buffer, the portion containing data "runs" around the ring, with the pointer to the last
byte out "chasing" the pointer to the last byte in. Figure 11-3 illustrates these
characteristics.

Nucleus User’s Guide 11-7

TYPE MANAGERS

LAST BYTE QUT
POINTER

© o Low
ADDRESS

HIGH
ADDRESS

LAST BYTE IN
POINTER

RING BUFFER

x-156

Figure 11-3. A Ring Buffer

The main (service) part of the example consists of four procedures: CREATE RING
BUFFER, DELETE RING BUFFER, PUT BYTE, and GET BYTE. The last two
procedures are for placing a character in a ring buffer and for retrieving a character,
respectively.

11-8 Nucleus User’s Guide

TYPE MANAGERS

/ FRAR A AT A R R e R R e R R R R R AR AR A A AR R R Rk Ak R e Ay

* NOTE: The following common literal file (COMMON.LIT) is included *
* 1in each of the PL/M-286 portions of the example. *
TR bbbkt ekl e eekeoknnk o /

DECLARE TOKEN LITERALLY 'SELECTOR';
DECLARE forever LITERALLY ‘WHILE 1°';
DECLARE indefinitely LITERALLY 'OFFFFRH';
DECLARE ASTR$STRUG LITERALLY '‘'STRUCTURE(
num$slots WORD,
num$components WORD,
seg TOKEN,
emptySct TOKEN,
full$et TOKEN) ' ;
DECLARE POINTERS$STRUC LITERALLY 'STRUCTURE(
offset WORD,
selector SELECTOR) ' ;
DECLARE SEGMENTS$STRUC LITERALLY ’'STRUCTURE/(
size WORD,
head WORD,
tail WORD,
buffer(l) BYTE) ' ;

11.6.1 Initialization

The initialization creates a region to protect data in ring buffers from being manipulated
by more than one task at a time. This part of the OS extension also creates the required
extension type, creates a deletion mailbox, and then waits at the deletion mailbox. The
OS extension call-gates are established during configuration. For this example, they are
GDT slots 440H, 441H, 442H and 443H. Code for the initialization includes the

following:

$INCLUDE(: Fx:COMMON.LIT) ; /* Declares common literals */

Nucleus User’s Guide 11-9

TYPE MANACGCERS

RING$BUFFERSMANAGER: PROCEDURE EXTERNAL;
END RINGSBUFFERSMANAGER;

DECLARE ring$buffer$type TOKEN PUBLIC;
DECLARE ring$buffer$region TOKEN PUBLIC;
RING BUFFER INIT:

PROCEDURE;

DECLARE delete$object TOKEN;

DECLARE exception WORD;

DECLARE fifo LITERALLY ‘0°;
DECLARE rbS$code LITERALLY '8000H';
DECLARE deleticn$mbox TOKEN;;

DECLARE responseS$mbox TOKEN;

ring$buffer§region = RQSCREATESREGION (
fifo,
@exception);
deletion$mbox = RQ$CREATESMAILBOX (
fifo,
@exception);
ring$buffer$type—RQ$CREATESEXTENSION (
rbScode,
deletion$mbox,
@exception);
CALL RQENDINITSTASK:
DO FOREVER:
deleteSobject = RQSREGEIVESMESSAGE (
deletionSmbox,
indefinitely,
@responseS$Smbox
@exception);

[R R RRR TR Tk Rk kR ek ok ook dk ket s ook e ok e ek e s o s ek et ok e s sk
* If desired, delete the components of the composite object. They are *
* not automatically deleted when DELETESEXTENSION is called. See the *
* DELETESRINGSBUFFER procedure, shown later, for the code that does *
* this. *
FRHRTRFHAFHIHIHTH A AR TS Sk ok sk sttt st e b ek sk /

CALL RQSDELETESCOMPOSITE (
delete$object,
@exception);

END; /% FOREVER */

END RING BUFFER_INIT;

11-10 Nucleus User’s Guide

TYPE MANAGERS

— 11.6.2 The Interface Library

The user interface library consists of four small procedures, one for each of the system
calls provided by the operating system extension. The library supports application code
written in the PL/M-286 LARGE model. If a different model had been used for
compiling the application code, these interface procedures would be slightly different,
reflecting the fact that, when making procedure calls in other models, the stack is used
differently than in the LARGE model. The interface procedures are as follows:

CREATERB

buffer

CREATERB

DELETERB

DELETERB

GETRBYTE

GETRBYTE
PUTRBYTE

PROC
PUBLIC
EXTRN

PUSH
MoV
PUSH
CALL
POP
RET
ENDP

PROC
PUBLIC
EXTRN

PUSH
MOV
PUSH
CALL
POP
RET
ENDP

PROC
PUBLIC
EXTRN

PUSH
MOV
PUSH
CALL
POP
RET
ENDP
PROC
PUBLIC
EXTRN

Nucleus User’s Guide

FAR
CREATERB
GATE 440: FAR

BP

BP,SP

BP+6 ; parameter--the size of the ring buffer
GATE_440 ; call the OS-extension via a call-gate
BP

2

FAR
DELETERB
GATE 441: FAR

BP

BP,SP

BP+6 ; parameter--the ring buffer to delete

GATE 441 ; call the OS-extension via a call gate
BP

2

FAR
GETRBYTE
GATE 442: FAR

BP

BP,SP

BP+6 ; parameter--ring buffer to read from

GATE_ 442 ; call the 0S-extension via a call-gate
BP

2

FAR

PUTRBYTE
GATE 443: FAR

11-11

TYPE MANAGERS

PUSH BP

MOV BP,SP

PUSH BP+8 ; parameter--the character to write

PUSH BP+6 ; parameter--ring buffer to write to
CALL GATE 443 : call OS-extension via a call-gate

POP BP

RET 4

PUTRBYTE ENDP

These interface procedures correspond to a set of external procedure declarations in the

application PL/M-286 code:

CREATERB: PROCEDURE(size) TOKEN EXTERNAL;
DECLARE size WORD;
END CREATERB;

DELETERB: PROCEDURE(ring$buffer$token) EXTERNAL:
DECLARE ringSbuffer$token TOKEN;
END DELETERB;

GETRBBYTE: PROCEDURE(ring$buffer$token) BYTE EXTERNAL;
DECLARE ring$buffer$token TOKEN;
END GETRBBYTE;

PUTRBBYTE: PROCEDURE(char, ring$buffer$token) EXTERNAL;
DECLARE char BYTE;
DECLARE ringShbuffer$token TOKEN ;

END PUTRBBYTE:

11-12 Nucleus User’s Guide

TYPE MANAGERS

11.6.3 The Create Ring Buffer Procedure

The sole function of the CREATE_RING_BUFFER procedure is to create a ring buffer
for the calling task and to return to the task a token for the composite ring buffer object.

Each ring buffer consists of three objects: a segment and two semaphores. The

supporting data structure, required by the operating system for calls to
CREATESCOMPOSITE and INSPECT$COMPOSITE, has the following five fields:

The number of slots available for tokens in the following list of component object
tokens. Because ring buffers are composed of three objects and no components will
be added, the number of slots is set to three.

The number of component objects actually in the composite object. In this case, the
number of components is three.

A token for a segment. The segment contains the ring buffer. The first word in the
segment contains the size of the actual ring buffer. The second word of the segment is
a pointer to the most recently entered byte in the buffer. The third word points to the
oldest byte in the buffer. The remainder of the segment is used as the buffer itself.
Note that, in the program, a structure reflecting the intended breakdown of the
segment is superimposed on the segment.

A token for a semaphore. This semaphore is used to keep track of the number of
vacancies in the ring buffer. Thus, it is initialized to the size of the buffer.

A token for a semaphore. This semaphore is used to keep track of the number of
occupied bytes in the ring buffer. Thus, it is initialized to zero.

The CREATE_RING_BUFFER routine creates the components of the composite ring
buffer object, initializes the appropriate fields, then creates the composite object, as
follows:

Nucleus User’s Guide 11-13

TYPE MANAGERS

11-14

SINCLUDE(:Fx:COMMON,LIT); /* Declares common literals */

DECLARE ring$buffer$type TOKEN EXTERNAL;

CREATE RING BUFFER:
PROCEDURE (size) TOKEN PUBLIC REENTRANT;

DECLARE size WORD;

DECLARE segSptr POINTER;

DECLARE ptr$struc POINTER$STRUC AT (@segSptr);
DECLARE astr ASTR$STRUC;

DECLARE segment SEGMENT$STRUC BASED seg$ptr;
DECLARE exception WORD;

DECLARE ring$buffer TOKEN;

DECLARE priority LITERALLY '1°;

astr.num$slots = 3;
astr.num$components = 3;
astr.seg = RQ$CREATE$SEGMENT (
size+6,
@exception);
astr.empty$ct = RQSCREATE$SEMAPHORE (
size,
size,
priority,
@exception);
astr.full$ect = RQ$CREATE$SEMAPHORE (
0!
size,
priority,
@exception);

ptréstruc.base = astr.seg;
ptrSstruc.offset = 0;
segment.size = size;
segment.head = -
segment.tail = 0;
ring3buffer = RQSCREATESCOMPOSITE (
ring$buffer$type,
@astr,
@exception);
RETURN ring$buffer;
END GREATE RING BUFFER:

3
.

The segment.head variable is set to -1 becausc the PUT BYTE procedure (shown later)

advances this pointer before placing a character in the buffer.

Nucleus User’s Guide

TYPE MANAGERS

11.6.4 The Delete Ring Buffer Procedure

DELETE RING BUFFER, which can be called by any task, deletes a ring buffer.

$INCLUDE(: Fx:COMMON,LIT); /* Declares common literals */
DECLARE ring$buffer$type TOKEN EXTERNAL;

DELETE RING_BUFFER:
PROCEDURE (ring$buffer$token) REENTRANT PUBLIC;
DECLARE ring$buffer$token BASED TOKEN;
DECLARE astr ASTR$STRUC;
DECLARE exception WORD;

astr.num$slots - 3;

CALL RQSINSPECTSCOMPOSITE (
ring$bufferStype,
ring$buffer$token,
@astr, @exception);

CALL RQ$DELETE$COMPOSITE (
ring$buffer$type,
ring$buffer$token,
@exception)

CALL RQSDELETES$SEGMENT (
astr.seg,

@exception);

CALL RQ$DELETE$SEMAPHORE (
astr.emptySct,
@exception);

CALL RQ$DELETES$SEMAPHORE (
astr.full$ct,
@exception);

END DELETE RING BUFFER;

11.6.5 The Put Byte Procedure

PUT BYTE places a character in the buffer by advancing the pointer to the front of the
buffer then placing the character in the byte being pointed to.

Nucleus User’s Guide 11-15

TYPE MANAGERS

$INCLUDE(:Fx:COMMON.LIT); /% Declares common literals */
DECLARE ring8bufferStype TOKEN EXTERNAL;
DECLARE ring$buffer$region TOKEN EXTERNAL;

PUT BYTE;
PROCEDURE(char, ringSbuffer$token) REENTRANT PUBLIC:
DECLARE ringSbuffer$token TOKEN,

char BYTE;
DECLARE size WORD;
DECLARE seg$ptr POINTER;
DECLARE ptr$struc POINTER$STRUC AT (@segSptr);
DECLARE astr ASTR$STRUC;
DECLARE segment SEGMENT$STRUC BASED seg$ptr;
DECLARE exception WORD;
DECLARE units$left WORD;

astr.num$slots = 3;

CALL RQ$INSPEGT$COMPOSITE (
ring$bufferStype,
params.ring$buffer$token,
@astr,

@exception);

units$left = RQSRECEIVESUNITS (
astr.empty$ct,
indefinitely,

{@exception);

CALL RQSRECEIVES$CONTROL (
ring$buffer$region,
@exception);

ptr§struc.base = astr.seg;

ptréstruc.offset = 0;

segment.head = ((segment.head + 1) MOD segment.size):

segment .buffer(segment.head) = params.char;

CALL RQS$SEND$CONTROL (
(@exception);

CALL RQ$SEND$UNITS (
astr . fullbet,

1!
(@exception};
END PUT BYTE:

Note that this procedure enters a region after obtaining the desired unit. To reverse these

steps would create a deadlock situation, particularly if the same reversal occurs in the
GET_BYTE routine (shown later).

11-16 Nucleus User’s Guide

TYPE MANAGERS

11.6.6 The Get Byte Procedure

GET_BYTE removes the oldest byte in the buffer then advances the segment.tail pointer.

SINCLUDE(;: Fx: COMMON.LIT): /* Declares common literals %/
DECLARE ring$buffer$type TOKEN EXTERNAL;
DECLARE ring$buffer$region TOKEN EXTERNAL;

GET BYTE: PROCEDURE(ring$buffer$token) BYTE PUBLIC REENTRANT;
DECLARE ringSbuffer$token TOKEN;

DECLARE size WORD;
DECLARE seg$ptr POINTER;
DECLARE ptr$struc POINTER$STRUC AT (@segSptr);
DECLARE astr ASTRS$STRUC;
DECLARE segment SEGMENT$STRUC BASED seg$ptr;
DECLARE exception WORD;
DECLARE char BYTE;
DECLARE units$left WORD;
astr.num$slots = 3;
CALL RQSINSPECTSCOMPOSITE (
ring$buffer$type,
ring$bufferStoken,
@astr
@exception);

units$left = RQSRECEIVESUNITS (
astr.full$ct,
19
indefinitely,
{@exception);
CALL RQ$RECEIVESCONTROL (
ringShuffer$region,
@exception);
ptr$struc.base = astr.seg;
ptr$struc.offset = 0;
char = segment.buffer(segment.tail);
segment.tail = ((segment.tail + 1) MOD segment.size);
CALL RQ$SENDSCONTROL (
@exception);
CALL RQ$SENDSUNITS (
astr.e,ptySct,
@exception);
RETURN char;
END GET BYTE;

Nucleus User’s Guide 11-17

TYPE MANAGERS

11.6.7 Epilogue

This completes the important parts of the example (recall that the example is not
complete). Any task in any job linked to these procedures may call any one of the
procedures. The procedure names to be used in such calls are CREATE$RB,
DELETE$RB, GETSRB$BYTE, and PUTSRBSBYTE. Note that application programs
cannot manipulate either ring buffers or their component objects, except through these
system calls. In fact, application programmers need not be aware that ring buffers are
composed of several other objects. To them, ring buffers appear (except for the absence
of "RQ" in the procedure names) to be standard iRMX II objects.

11.7 SYSTEM CALLS FOR TYPE MANAGERS

The following system calls enable type managers to manipulate extension and composite
objects:

ALTER$COMPOSITE--replaces a component in a composite object with either a null
or another object.

CREATESCOMPOSITE--creates a composite object of a specified extension type.

CREATE$EXTENSION--creates an extension object that may subsequently be used
as a license for creating composite objects. Input may include a token for a mailbox
where these composite objects are sent for deletion.

DELETE$COMPOSITE--deletes a composite object.

DELETE$EXTENSION--deletes an extension object and optionally, sends all
composite objects of that extension type to the associated deletion mailbox.

INSPECT$COMPOSITE--returns a list of the component object tokens contained in
a composite object.

For a complete list of the iIRMX II Nucleus system calls, see the iRMX II Nucleus System
Calls Reference Manual.

11-18 Nucleus User’s Guide

12.1 INTRODUCTION

This chapter is intended for programmers who need to understand the basic concepts of
the MULTIBUS II architecture as it relates to the Extended iRMX I1.3 Operating
System. The following topics are discussed:

An analogy of how MULTIBUS II works

An averview of MULTIBUS II hardware

An overview of Extended iRMX II Nucleus Communication Service
Examples of using the Extended iRMX Il MULTIBUS II services

A glossary of terms used in this chapter

For a list of documents that contain more detailed discussions of the MULTIBUS II bus
architecture, see the Related Publications section in the Preface of this book.

Throughout this chapter, the term "agent" is used interchangeably with "board" to mean

any board that contains a Message Passing Coprocessor (MPC) and resides in one of the
MULTIBUS II Parallel System Bus (iPSB) slots.

12.2 FEATURES OF MULTIBUS® Il SYSTEMS

Extended iRMX II and MULTIBUS II together form an easy-to-use and reliable
computer system. Among the features provided by this architecture are:

High-performance 32-bit-wide reliable bus with a 40M bytes per second transfer rate
Multiprocessor support
Interprocessor communication via message passing

System calls that free the user from needing to know details of how data is sent using
MULTIBUS II message passing

255 virtual interrupts per board
Geographic addressing of bus agents by cardslot number (ID)

Nucleus User’s Guide 12-1

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

12.3 AN ANALOGY OF HOW MULTIBUS® Il SYSTEMS WORK

The MULTIBUS II bus architecture defines a connectionless mode of data transfer. In
this type of data transfer, the information is sent in a format called a message or
datagram. The principle of sending these messages is similar to sending a letter through
the mail. You write a letter, put it in an envelope and address it to the person that you
want to receive it. If you want to be certain that the person answers your letter, you put
an RSVP and your return address in the letter. You drop your letter into a mailbox and
wait. The letter is delivered and answered using the information you provided. This is
connectionless because you do not check to see if the person in question still lives at the
same address before you send your letter. If the letter is not deliverable, it will be
returned to you.

Systems based on the MULTIBUS II architecture perform data transfers between boards
in this connectionless message format. All the information needed to direct the data
(message) to its destination, explain what is wanted, and identify where to send the
answer, is included in the message. Both the system’s hardware and operating system
perform functions in directing and moving this data.

In traditional architectures (ones that rely on connections), when processor or controller
boards need to communicate they use shared memory. This shared memory is set aside
during the system configuration and is available as "wake-up" addresses for both kinds of
devices. This type of data transfer is similar to making a telephone call. First you dial the
number, wait for an answer on the other end of the line, and then have your conversation.
While you are on the phone, neither party can make or accept any other phone calls.

In the telephone analogy above, the phone line represents the system bus of a computer.
Whenever any two processors are involved in communication, the system throughput is
limited to the data transfer rate of the slower device. MULTIBUS II systems overcome
this and other limitations of the shared memory approach.

The rest of this chapter divides the explanation of iRMX I and MULTIBUS II into first a
hardware overview, followed by a software overview.

12-2 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® 11 SYSTEMS

12.4 MULTIBUS® Il HARDWARE OVERVIEW

The MULTIBUS II bus architecture consists of six buses, as shown in Figure 12-1:

The Parallel System Bus (iPSB) is a high-performance, general-purpose, 32-bit bus
that provides system data movement and interprocessor communication facilities. It

can be thought of as the "message passing" bus.

The Local Bus Extension (iLBX II) is an extension of the on-board processor bus that

provides arbitration-free, high-bandwidth access to local memory.

The Serial System Bus (iSSB) is a low-cost, one-bit alternative to the iPSB bus that
adds flexibility to meet the requirements of a wide range of systems.

The MULTICHANNEL DMA 1/O Bus is retained from the MULTIBUS I bus
architecture. It allows high-speed block transfers of data over the shared data path
between custom peripherals and single board computers.

The iSBX 1/O Expansion Bus is retained from the MULTIBUS I bus architecture. It

allows incremental board expansion through the addition of small iSBX
MULTIMODULE boards.

The BITBUS Interconnect is a serial bus, optimized for the high-speed transfer of
short control messages and implemented as a pair of twisted wires.

In addition to the six buses, the MULTIBUS II bus architecture consists of four separate
address spaces:

Message address space is the range of addresses that identify all iPSB agents that send
and receive messages. Each agent is assigned a one-byte message address that
uniquely identifies that board in the system. The term "host ID" is used
interchangeably with the term message address.

Interconnect address space is a set of 512 byte-wide registers that provide
identification and configuration information for each message-passing agent. Bach
board contains its own set of interconnect registers.

1/O address space is the I/O port address range that serves as a system-wide interface
to terminal controllers, mass storage devices, and other peripheral devices.

Memory address space is the address range for storing and retrieving data and code.
A MULTIBUS II system can have up to 4 gigabytes of memory. Each
Extended iRMX II agent can have up to 16M bytes of memory for its own use.

Nucleus User’s Guide 12-3

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

iSBX™ Bus

CPU

MULTICHANNEL™ DMA Bus

BITBUS™

Memory

11O Controller

iLBX™ Il Bus

iPSB Bus

iSSB Bus

y

ey

'

X-571A

Figure 12-1. Simplified MULTIBUS® IT Bus Architecture

12.4.1 Central Services Module (CSM)

12-4

The iSBC CSM/001 Central Services Module, or CSM, is an agent that coordinates
certain system-level services and functions common to all agents. The CSM board must
be present in every MULTIBUS II system and must be installed in cardslot 0 of the
backplane. The CSM board provides these system services:

It generates, on power-up or cold reset, the message addresses (cardslot IDs) and
arbitration numbers (arbitration IDs) for all agents connected to the iPSB bus.

It provides a central source for the iPSB clock signals (BCLK* and CCLK*),

It generates system wide reset signals on power-up (RST*), cold reset (CRST*), or
warm reset (WRST*).

It monitors timeout error conditions and generates the timeout error (TIMOUT#).

It maintains the system wide, battery backed-up, global time-of-day clock.

* A hardware signal that is active when low (0 volts.)

Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIRUS® 11 SYSTEMS

12.4.1.1 Global Time-of-Day Clock

The CSM board maintains an on-board, battery backed-up global time-of-day clock. This
clock is used by every agent in the system that requires a clock. Agents in the system can
maintain a local time-of-day clock that is a copy of the global clock. Both the global and
local clocks keep track of:

e The current day (day, month, and year)

o The current time (hours, minutes, and seconds)

The two types of clocks are necessary because accessing the global clock takes much
longer than accessing a local clock. Each agent with a local clock accesses the global clock
only on system reset or at the request of the user.

Two Basic I/O system calls allow your application to read or set the global clock. See the
Extended iRMX II Basic 1/0 System Calls Reference Marnual for information on these calls.

Two Extended iRMX II Human Interface commands (DATE and TIME) can be used to
read or set the global clock from a terminal (for the super user only.) See the Operator’s
Guide To The Extended iRMX II Human Interface for information on these commands.

12.4.2 Interconnect Address Space

On each MULTIBUS II agent is an area called the interconnect space or interconnect
registers. This space is a set of 512 8-bit registers used for dynamic software-controlled
initialization, configuration, testing, and error diagnosis. Part of their function can be
described as electronic jumpers. With a MULTIBUS II board the board configuration is
changed by writing values into interconnect registers, not by installing or removing
physical jumper connections. Each interconnect register is addressable by its own 16-bit
interconnect address (interconnect ID.) The interconnect ID consists of the cardslot ID
of the agent (0 through 19 for iPSB cardslots, 24 through 29 for iLBX II cardslots, and 31
for the host processor board) and the interconnect register number (0 through 511).

Interconnect registers 0 and 1 contain the Intel-assigned vendor ID for the vendor of the
particular board. The vendor ID is read-only; write operations to these two registers are

_ignored. Interconnect registers 2 through 511 contain such board specific attributes as
board ID, revision number, cardslot ID, type of board (e.g. processor, I/O controller), and
iPSB starting and ending addresses. The contents of these registers are board-dependent.
Register values are read and modified through the interconnect address space. Refer to
the board’s hardware reference manual for details on interconnect register usage.

Nucleus User’s Guide 12-5

EXTENDED iRMX® II MULTIBUS® II SYSTEMS

During power-up or cold reset and through each board’s interconnect address space, the
Bootstrap Loader, the Root Job, and the system monitor can automatically configure the
boards in the system to the configuration you choose. During power-up the system
monitor can initialize any read/write interconnect registers. Two system calls are
provided that allow programs to dynamically read (get) or write (set) the contents of any
interconnect register on any board in the system. See the Extended iRMX IT Nucleus
System Calls Reference Manual for information on these system calls.

12.4.3 Built-In Self Tests (BIST)

Each board in a MULTIBUS II system contains a set of firmware-based diagnostic tests
that, on power-up, does some internal checking and assigns a "go" or "no-go" condition to
the board based on the results of the test. These tests are called the Built-In Self Tests or
BIST.

On power-up, or cold reset, each board’s BIST automatically invokes its initialization
checks and diagnostic tests. If successful, the BIST initializes the board to a predefined
state and clears its RSTNC* (reset-not-complete) signal. However, if a test fails, the BIST
assesses a "no-go" condition, flags the error, and ceases initialization of that board. After
an error, the BIST Test ID register (in the board’s interconnect space) contains the
number of the test that failed, so the problem can be identified and corrected.

12.4.4 The MULTIBUS® Il Message Passing Hardware and Message

12-6

The entire MULTIBUS II architecture of six buses and four types of address space was
designed to perform the function of sending data between agents through one of the local
buses in a traditional manner, or over one of the message passing buses in the form of
packets of information called messages. A MULTIBUS II message is a variable length
sequence of bytes (called a packet) that provides a means for one bus agent to
communicate with another. All the information needed to know which agent sent the
message and what the sending agent wants is stored in the first "packet."

Each agent on the bus has a Message Passing Coprocessor (MPC) chip that performs the
message passing functions. When a message comes across the bus, each agent checks a
portion of the message header that contains the message address of the destination agent.
It compares the destination address with its own agent ID, if they match it retrieves the
entire message packet from the bus. If the addresses do not match the message is
ignored. '

When a message is retrieved from the bus, more bytes are examined to determine:
o The agent ID of the sending board.

o Is this message a reply to a previous message or is it a new communication being
started by another agent.

Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® 11 SYSTEMS

e Which port on the board is to receive the message?

o Isaresponse necessary?

° Are more "packets" coming that are part of the same message?

Figure 12-2 shows a simplified MULTIBUS II message packet. Although the specific
format of messages is different for different types of messages, blocks of bytes can be
identified by what part of the entire system reads and uses those bytes.

4 BYTES

12 BYTES

168 BYTES

W-0304

Used by MPC

Used by
Nucleus Communications Service

Available for use
by user applications

Optional data part 16M bytes-1
maximum length

Figure 12-2. A Simplified MULTIBUS® IT Message

12.5 EXTENDED iRMX® 1l SOFTWARE OVERVIEW

The Extended iRMX II Operating System is largely concerned with managing the
resources available to a single processor board. These resources are I/O devices and

RAM boards that are related to a processor board so that the the resources appear to be

physically on the processor board. For example, RAM boards are typically placed on the
Local Bus Extension (iLBX) bus. Boards on this bus appear to the processor to be a part

of its own board resources.

Nucleus User’s Guide

12.7

EXTENDED iRMX® II MULTIBUS® II SYSTEMS

12.5.1 The MULTIBUS® Il Transport Protocol

Extended iRMX II also supports the concept of gaining access to resources and services
on boards distributed on the MULTIBUS II Parallel System Bus (iPSB) bus through a
new feature called the Nucleus Communications Service, which is an implementation of
Transport Protocol. The Transport protocol is a software interface that works with the
MULTIBUS II message passing hardware. The Nucleus Communication layer is the
Extended iRMX II implementation of the MULTIBUS II Transport Protocol. Among
other things it provides:

o an interface that hides many of the details of sending data (messages) over the
message passing bus, the Parallel System Bus (iPSB).

o ability to address a particular task running on a particular board. Using just the
message passing hardware enables you to send and receive messages to a specific
agent (board) in a system. Using the Nucleus Communication System (transport
protocol) enables you to send messages to a specific task (program) running on a
board.

o an "open software" approach. By developing a controller board that runs on
MULTIBUS II and conforms to transport protocol you ensure that your controller
can communicate with other boards in the same system using transport protocol, even
if the boards are not running the same operating system.

12.5.2 The Nucleus Communication Service

In an Extended iRMX II system, the process of performing a disk read is largely the same
whether the device being read is "local" or on the iPSB bus. If you are familiar with the
iRMX system calls, you will be able to use them in the same manner as in the past. The
following paragraph provides an example situation.

If your application needs to read data from a MULTIBUS II 1/O device, such as the
iSBC 186/224A multi-peripheral controller, it makes one of the READ system calls. The
device driver for this device and the Nucleus Communication service (Extended iRMX II
implementation of Transport Protocol) translate this read into a MULTIBUS II message.
The I/O device’s controller board receives this message and sends back a response
message to inform your processor that it either can or cannot perform the read. If the
I/O controller can fill the request, a series of messages is sent between the two agents
(boards) defining how the actual read will be performed. When this short series of
messages is complete the actual data read is performed and the data is sent to your
application as another group of messages. When the entire process is complete, the MPC
on the board where your application is running sends an interrupt to the CPU informing it
of the completion of the data read. The entire message passing process is transparent to
your application.

12-8 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® IT SYSTEMS

12.5.3 Nucleus Communication Objects

Two objects and system calls to manipulate them have been added to the Operating
System to provide an interface to the MULTIBUS II hardware. The following sections
explain the port and the buffer pool, the new objects.

12.5.3.1 Port

A port is a bi-directional communications access point for tasks running on different
agents. Ports provide a level of addressing that permits sending data to a particular task
(program) running on a board. The port is the software interface to the message passing
hardware. All of the "send" and "receive" message system calls have parameters that
identify the ports that are involved in the operation.

AN You create a port with the RQ$CREATESPORT system call. Two types of ports can be
created, a data port that is used to send and receive relatively large amounts of data, and
a signal port that is used to send and receive control signals only. The signal port is
provided for compatibility with systems that use the Message Interrupt Controller
(MIC).The MIC is a subset of the MPC available on earlier products.

When you create a port you specify the following information in the system call:

e The number of simultaneous transactions that can be outstanding at the port.

(Ignored for signal ports.)

N

o What typc of messages this port can send and receive.

o Whether tasks waiting for messages will be queued in FIFO or priority order.

o A port ID, which is a number that uniquely identifies this port on this board. The user
can enter this, or enter a zero which tells the Nucleus Communication Service to
create the port ID.

o What the system should do if an outgoing message is too large to fit in any one buffer
available at the destination port. You can specify that the message can or cannot be
broken into pieces if it is too large to fit in a single buffer. If you specify that messages
cannot be broken into pieces, an error will be returned if the situation occurs.

o Aswith all system calls, you specify where the condition code generated from the call
should be placed.

Ports are deleted from the system using the ROSDELETE$PORT system call.

System calls have been added to provide flexibility in manipulating ports. The following

paragraphs discuss these system calls.

P

Nucleus User’s Guide 12-9

EXTENDED iRMX® II MULTIBUS® II SYSTEMS

The ROSCONNECT system call provides a method of specifying a default destination for
messages sent from a port. When a port issues this call, it is logically connected to
another remote port. After issuing the RQ$CONNECT call, no remote destination
(socket, a two-word data structure shown below) is specified when sending messages,
because the connected port (default) is assumed.

socket LITERALLY ’STRUCTURE(
host_id WORD,
port_id WORD) ' ;

When receiving messages, any message that does not have this default port socket as its
source is ignored. This call affects only the port that issues it, not the port that is
connected. A remote port that is connected is not limited to sending and receiving
messages to the connecting port.

The ROSATTACHSPORT system call permits the forwarding of messages. A port may
specify that all messages sent to it be forwarded to another port. In this arrangement, the
port that is forwarding its messages is referred to as the source port and the port that
receives the messages is referred to as the sink port. One level of forwarding is permitted,
that is a sink port may not forward its messages. The message forwarding is canceled by

issuing an RQSDETACHS$PORT system call.

The ROSATTACHSBUFFER$POOL system call provides a port with memory resources
called buffer pools (discussed in a later section.) These memory resources are used in
receiving large data messages. These memory resources can be detached from the port by
using the RQ$DETACH$BUFFER$POOL system call.

The ROSGETSPORTSATTRIBUTES system call allows a task to get information about
any port. The information returned is the same information discussed above as being
specified when a port is created, plus the following: does the port have a default socket
and is it forwarding its messages.

12.5.3.2 Buffer Pools

Buffer Pools are holding areas for segments which in MULTIBUS II systems are usually
associated with a port. Having a pool of memory readily available to a port cuts down on

system overhead because allocating the existing buffers is faster than creating and deleting
segments.

12-10 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® II SYSTEMS

Buffer pools are empty when created. The user gives segments to the buffer pool. The
segments are created using the the RQSCREATESSEGMENT system call. The created
segments are given to a buffer pool by using the RQSRELEASE$BUFFER system call.
The buffers are then used by tasks that require memory. Both MULTIBUS I and
MULTIBUS II systems can use buffer pools. In MULTIBUS II systems, ports require an
associated buffer pool as a holding area for messages. Any task that requires frequent
creation and deletion of segments may improve performance by using a buffer pool with
pre-allocated segments.

Buffer pools incur a certain amount of system overhead in their creation. The following
formula defines the amount of resources required.

(Max Buffers * 4) + 108 bytes = the amount of memory used by any given buffer pool.

When you create a buffer pool you specify the following information:

o The maximum number of buffers that can reside in the buffer pool at any one time
(8192 maximum.)

o Whether or not the buffer pool supports data chains. Data chains are a method of
receiving messages that are larger than any single buffer can hold. Note that data
chaining is one of two supported methods for receiving messages larger than any single
buffer. The other method is message fragmentation.

12.53.2.1 System Calls for Buffer Pools

The ROSCREATESBUFFER$POOL system call creates a buffer pool object. Each
buffer pool object acts as a holding area for segments (buffers.) When a buffer pool is

created it is not associated with any port, see RQSATTACH$BUFFER$POOL in an
earlier section. Buffer pools are deleted using the RQSDELETE$BUFFERSPOOL
system call,

The ROSREQUESTSBUFFER system call gets a buffer from the specified buffer pool.
Ideally, the data will fit into an existing buffer; if this is not possible, a special method
called data chaining is used. Buffers are returned to the buffer pool using the

ROSREI EASE$BUFFER system call.
12.532.2 Data Chains

When a buffer pool is created, you can set a bit in the flag field that specifies support for
data chains. Data chaining is supported only on processor boards that contain the ADMA
(Advanced Direct Memory Access) device.

Nucleus User’s Guide 12-11

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

In buffer pools that support data chaining, if a message is too large to fit in any single
buffer, the message can be broken into smaller pieces. These pieces are placed in smaller
non-contiguous buffers and a data structure called a data chain block is used to keep track
of the different parts of the message. Data chains are created automatically by the
receiving board’s hardware, but the user must extract the data by using the information in
the data chain block. No element of a data chain can be longer than 64K-2 bytes. Figure
12-3 illustrates a data chain block and a data chain.

Data chains incur a certain amount of system overhead in their creation. The minimum
data chain block size can be computed by:

(Max_elements * 8) + 2 bytes

Where:

Max_elements is a configuration option Maximum Data Chain Elements (MCE)
from the ICU Nucleus screen.

LENGTH OF e DATA

BLOCK 0 Eor il

PTRTO. |
BLOCK 0

Reserved
Word

LENGTH OF
BLOCK 1

PTR TO -- .
BLOCK1 [=

Reserved
Word

FINAL BLOCK

LENGTH = 0
. ——————————

Figure 12-3, A Data Chain Block and a Data Chain W-0307

12-12 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® II SYSTEMS

12.53.2.3 Message Fragmentation

When setting up a data port you can set a bit in the flag field that enables or disables a
method of breaking large messages into smaller pieces when no single buffer is large
enough for the message. For the port object, this process is called message fragmentation.
Messages can be fragmented by the sending board, send fragmentation or fragmented by
the receiving board, receive fragmentation.

Message fragmentation is performed as a series of messages sent between the agent
sending the data and the agent receiving the data. Because multiple messages must be
sent and received to perform message fragmentation, there is more system overhead
involved in message fragmentation than in data chaining.

12.5.4 System Calls to Work With MULTIBUS® 1l Message Space

In addition to the system calls that manipulate the MULTIBUS II objects, system calls
that provide an interface to the four types of address space, discussed in the hardware
overview, are provided. A complete interface to the MULTIBUS II bus architecture is
provided by these system calls.

12.5.4.1 System Calls for Interconnect Space

The ROSGETSINTERCONNECT system call reads the contents of one byte-wide
interconnect register on one board for each invocation of the call. This call is used for,
among other things, finding out how many and what type of boards are in a system, and
what the HOST$ID (message address of a board) is.

The ROSSETSINTERCONNECT system call writes over the contents of one byte-wide
interconnect register on one board for each invocation of the call. (Some interconnect
registers are read only.) One use for this call is to dynamically reconfigure a board.

12.5.4.2 System Calls for Sending Messages through Message Space

The ROSSEND system call sends a message to a remote host without any request for a
response. The message can be a control message only or can be a control message and
contain a POINTER to a data portion of the message.

The ROSSENDSRSVP system call initiates a message interchange that is used to send
large amounts of data from one board (host) to another. This call specifies that a reply is
requested.

The ROSSENDSREPLY system call is used to answer a previous RQ$SENDSRSVP
system call.

The RQS§BROADCAST system call is used to send a control message to each board in the
system. Note that only one port on each board can receive this message.

Nucleus User’s Guide 12-13

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

The RQSCANCEL system call cancels a message transmission. It is used to end data
transfer initiated by an RQ$SEND$RSVP system call.

The ROSRECEIVE system call initiates a message reception at a port. If the message
contains a data portion, the receiving port must have already allocated a buffer large
enough to hold the message before issuing the RQSRECEIVE message. If no buffer is
allocated, or no buffer is large enough, the message is rejected by the receiving agent.

The ROSRECEIVESREPLY system call accepts a reply to an earlier RQ$SEND$RSVP
message. Sink ports, any port that receives forwarded messages, cannot issue this call.

The ROSRECEIVESFRAGMENT system call accepts a part of a message that was too
large to fit in any buffer available at the receiving port. A buffer to receive the message
fragment is specified in the call.

Message Space Calls that Support the MIC Device
The two calls are available that support the MIC device are:

The ROSSENDISIGNAL system call sends a signal message (dataless message) to a
remote host (another board in the system.

The RQSRECEIVES$SIGNAL system call picks up a signal message from the bus.
These are should be used only with systems that contain the MIC device.
12.5.4.3 Calls For Getting Information About Message Passing Agents (Boards)

The ROSGETSHOSTSID system call, returns the HOSTS$ID, the message address of the
calling task’s board. It provides the host$id part of the host$id:port$id pair that makes up
a socket. A socket is defined as a DWORD structure of the following format:

12.5.5 The Nucleus Communications Service System Calls

This section groups the Nucleus Communications Service system calls into functionally
related groups.

12.5.5.1 System calls used with buffer pool objects

RQSCREATESBUFFERSPOOL Create or delete a buffer pool, a holding area

RQ$DELETESBUFFER$POOL for buffer segments. These buffer pools are
used in conjunction with the port object as
buffer space for messages sent or received at a
port.

12-14 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® I SYSTEMS

RQSREQUEST$BUFFER Request or return a RAM buffer (segment)
RQS$RELEASE$BUFFER that is associated with a particular buffer pool.

Buffers are created with the
RQSCREATESSEGMENT system call.

12.5.5.2 System calls used with the port object

RQ$CREATES$PORT Create or delete port objects. You specify the
RQ$DELETE$PORT type of port, data or signal, in the
RQS$SCREATES$PORT system call.

RQ$CONNECT Associate a port with a remote socket; such
that, when a message is sent from that port it
automatically goes to the connected port.

RQSATTACHS$PORT Create or remove a message-forwarding link

RQ$DETACHS$PORT between two ports. When a task issues the
"ATTACH" call, the port that forwards its’
messages is known as the source port. The
port that is attached by the call, receives the
forwarded messages, and is known as the sink
port.

RQSATTACH$BUFFERSPOOL Attach or detach a pool of buffer segments to

RQ$DETACH$BUFFER$POOL the specified port(s). This area of RAM is used
as buffer space for messages sent to and from
the specified port(s).

RQSGET$SPORTSATTRIBUTES Request information about a port. The
following information is returned: the port
type, maximum number of simultaneous
transactions and discipline (FIFO or priority).
Does it have a default socket, sink port, or
buffer pool associated with it? Is message
fragmentation supported?

12.5.5.3 System Calls Used to Send/Receive Messages Through Ports

RQ$BROADCAST These calls are used to send and receive
RQS$SEND messages of the data transport protocol type.
RQSSEND$RSVP MULTIBUS II messages may consist of either:
RQ$SEND$REPLY

RQ$CANCEL control-only control + data
RQS$RECEIVE 32 bytes 32 bytes plus
RQ$RECEIVES$REPLY (unsolicited) up to 16 Mbytes-1
RQ$RECEIVESFRAGMENT of data (solicited)

Nucleus User’s Guide 12-15

EXTENDED iRMX® II MULTIBUS® II SYSTEMS

RQS$SEND$SIGNAL These calls are used to send and receive

RQSRECEIVESSIGNAL messages of the signal or dataless type. They
should be used only in systems that contain the
MIC device.

12.5.5.4 System Calls used with the Interconnect Registers on a board

RQOSGETSINTERCONNECT These calls are used to read or write to the
RQS$SETSINTERCONNECT interconnect registers located on each
MULTIBUS IT host board.

12.5.6 Examples Using Nucleus Communications Service Calls

This section provides a conceptual explanation of most of the examples provided with the
Operating System. The examples provide a more complete understanding of message
passing as it relates to the Extended iRMX II Operating System. Each example includes a
brief description of the operation of the example and all of the PL/M 286 code for the
example.

All of the examples in this chapter are provided with the iRMX II Operating System. The
MULTIBUS II examples discussed here are located in the path
/RMX286/DEMO/PLM/MB2/INTRO. For a complete diagram of the iRMX II
directory structure, see the Operator’s Guide to the Human Interface manual. When you
are ready to examine these examples, type:

ATTACHFILE /RMX286/DEMO/PLM/MB2/INTRO <CR>

to attach to the directory containing the example programs. To generate the executable
modules for these examples type:

SUBMIT COMPILE <CR>

These two commands must be typed in on both host terminals, assuming that each host
has its own disk.

Most of the examples use an external file called DCOM.EXT and a literal file called
DCOM.LIT. Both of these files are presented at the end of this chapter.

The examples in this chapter are presented in an order similar to their use in a real
system. The examples step you through the following concepts:

1. Scanning the system to determine what boards are in the system. This example
runs independently of all the other modules.

2. Creating a data transport protocol port to use in message passing. This example runs
independently of all the other modules.

12-16 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® 11 SYSTEMS

3. Sending an RSYP message to another board and waiting for a reply. This module
must be run with example 4 in this list or with example 7 in this list.

4. Answering an RSVP message from the receiving board. This module must be run with

example 3 in this list.

5. Sending a data chain message. This example must be run with example 6 in this list.

6. Receiving a data chain message. This example must be run with example 5 in this list.

7. Sending a fragmented message. This example must be run with example 3 in this list.

The examples listed above make certain assumptions about the locations of the host
boards in the MULTIBUS II system that they run on. The Figure 12-4 shows the required
physical locations of the host boards (agents) in the system.

(Chassis not to scale)

=
QJ
@eisT
@rrary]

SBC WNSHD

i

Memory For
= Host in Slot 5

£ % ;
HIEL R e v | e
>] M ry For
[) ¢ ! ([Memendr
b g g 21t | HOST BOARD
e« T 7 =it
Iy 88§ B g
IJ 366 %6 g [% CSM Board
W-0306

Figure 12-4. Physical Location of Boards in the Example

Nucleus User’s Guide

12-17

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

The MULTIBUS II examples directory also contains a larger example that is not shown in
this chapter. This example implements a "name server", a program that permits the
dynamic cataloging of all ports created in a system. A later section of this chapter
discusses this example.

12.5.6.1 Interconnect Space Example

Before passing messages between agents (boards) in your system you need to determine
what boards are in your system and the message addresses for the boards (host$id or
cardslot number for boards on the iPSB bus.) You may also need to read or write the
contents of a particular interconnect register. Writing a board scanner task allows you to
dynamically determine host IDs, board type, and multiple occurrences (instances) of a
board type.

This section presents an example of getting the interconnect information for an entire
system. The example performs the board scan, getting the slot number and board type of
each board in the system and places the information into an array of structures called

sys map. When the board scan is complete, sys map is displayed on the console screen.

Figure 12-5 presents a board-scanning algorithm. The "reads" in the Figure 12-5. Board
Scanning Algorithm refer to the RQ$GETSINTERCONNECT system call. For a map or
template of a particular board’s interconnect registers, refer to the board’s hardware
reference manual.

FOR i = 0 to number of slots minus 1
DG;
Read board i's wvendor ID register;
IF vendor ID <> 0 then
DO;
Read board i's class and subclass ID registers /* Determine board type */
Write the board information into the system map

END;
ELSE;
Write ’'empty’ into the sys map for the slot number
END;
Get ID of local host
END;
FOR i = 0 to number of slots minus 1
DO:
Print slot numbers and board types to console screen
END;

Figure 12-5. Board Scanning Algorithm

12-18 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® 11 SYSTEMS

In the fourth line of the board scanner algorithm, a vendor ID of 0 (for iPSB hosts only)
indicates that either the board was manufactured by a nonlicensed vendor or the cardslot
is empty. If you are also scanning the iLBX II bus, replace the 0 with OFFFFH.

To run the board scanner example type:

IC <CR>

Nucleus User’s Guide 12-19

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

The following figure is an implementation of the board scanner algorithm.

$title('ic - scan interconnect space and print map of system’)
Scompact

/‘2': KAEEAREERAFAFAAAAFAAARATF AT AR AR AAAA A A A AR AR AL AR AR A A A A AR AT A AT AR T AFER R AR ARASES

* INTEL CORPORATION PROPRIETARY INFORMATION

*

* This software is supplied under the terms of a

* license agreement or nondisclosure agreement with

* Intel Corporation and may not be copied or disclosed

* except in accordance with the terms of that agreement.

*

* Copyright Intel Corporation 1987, 1988

* All rights reserved

%

* For Intel customers licensed for the iRMX II Operating

* System under an Intel Software License Agreement, this source code and
* object code derived therefrom are licensed for use on a single central
* processing unit for internal use only. Necessary backup copies and

* multiple users are permitted. Object Code derived from this source code
% 1is a Class I software product under the Intel Software License Agreement
* and is subject to the terms and conditions of that agreement.

*

* For the right to make incorporations, or to transfer this software to
* third parties, contact Intel corporation.

%

%/

/******************************k***/

/***
*

#* MODULE NAME: iescan

*

* DESCRIPTION: Scan the iPSB backplane. Record each board instance and

* slot number in a system map. Get local host slot number

* and id and record in system map. Print system map on console.

B
ic: DO;
$include(/rmx286/inc/rmxplm.ext)

$include (/rmx286/inc/error.lit)
Sinclude(err.ext)

Figure 12-6. Implementation of a Board Scanner (continued)

12-20 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® 11 SYSTEMS

DECLARE

MAXSIOTS

VENDOCRIDREG

BOARDIDREG
BOARDIDLEN
BUFLEN
LOCALHOST

PSBCONTROLREC
PSBSLOTIDOFF

NOEXCEPT

RECNOTFOUND

map_struc

DECLARE
con_tab(16) byte INITIAL('O’,’1’,’2*,’3","4" "5 "6’ '7' '§*,

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

LITERALLY

$subtitle(’find record’)

/*
*
%
*
*
*
x
%
¥
%
®
K
*

*
¥
*
*

PROC NAME:

DESCRIPTION:

find record

/% literals */

maximum number of slots */

low byte of vendor id reg */

register offset of board id */

number of bytes in board id */

length of board id rmx string */

selects local host interconnect */

psb control record wvalue */

offset of slot id reg in psb control rec *

/* no exception handling by system */
/* indicates intercomnnect record not found *

201, o
JOOF’ /*
"02H’, /*
’10', /*
tllf, /*
131t 4R
r06H', /%
'02H', [/*
Lot
"OFFH',
' STRUCTURE (

slot num

id(BUFLEN) BYTE,

BYTE) '’ ;

l’g!,FA!’J‘BF’FC!,!DI,fEf’fF!);

Searches through the interconnect space of the specified board
(slot_number) until either the record type passed is found or the

EOT (end of template) record is found.
then its record type and offset are returned.

is found, then OFFH is returned,

CALL:
INPUTS:

record type
RETURNS: record found

OUTPUTS: record offset ptr

If the record is found,
If the EOT record

record found = find_record(slot_number, record_type, rec offset ptr);
slot_number

BYTE containing slot number of board

BYTE containing record type to find

byte indicating whether record was found

(contains OFFH (EOT record type) if record not found)

POINTER to WORD offset of record found

**/

Figure 12-6. Implementation of a Board Scanner (continued)

Nucleus User’s Guide

12-21

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

find_record: PROCEDURE(slot_number, record type, rec_offset ptr) BYTE PUBLIC . __
REENTRANT ;

DECLARE
slot_number BYTE,
record_type BYTE,
rec_offset_ptr POINTER,
rec_offset BASED rec_offset ptr WORD,
record_found BYTE,
status WORD;
DECLARE
EOT_REC LITERALLY ‘OFFH', /* end of template record ¥/
HDRRECLENGTH LITERALLY '20H’, /* number of registers in header rec %,
RECLENREG LITERALLY '1l’'; /* record length register %/ 5

/T
* QGet record type for each record past the header
* record until the specified record is found

L

rec_offset = HDRRECLENGTH;

record found = rqgetincterconnect(slot number, rec offset, @status);

CALL errorScheck(100, status);

DO WHILE (record_found <> record_type) AND (record_found <> EOT_REC); S

/¥
* Get offset for next record by adding length of current record
* to previous record offset (add 2 to account for type and length
register)
7
rec_offset = rec_offset + 2 + rq$get§interconnect(slot number,
rec_offset + RECLENREG,

@status);

CALL error$check(110, status); et

record_found = rqgetinterconnect(slot_number, rec offset, @status);

CALL error$check(120, status);

END;
RETURN(record found);
END find record;

Figure 12-6. Implementation of a Board Scanner (continued)
S

12-22 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® I1 SYSTEMS

$subtitle('out_byte - print a byte on the console')
/** sevdestedbe e e el e et e s st sl e e e e sl dle b ae e e sk sl s s e e e et e st e sl e e e s sl e e e e e s s sl e e

%

PROC NAME: out_byte

DESCRIPTION: Write the hex representation of hex byte to the console.
CALL: CALL out_byte(hex_byte)

INPUT: hex_byte - byte whose hex value is to be printed

GLOBALS:

EoE R S

L e e e
out_byte: procedure(hex byte) public;

DECLARE
hex byte BYTE,
hex_buf(3) BYTE,
cur_byte BYTE,
status WORD;

cur_byte = shr(hex _byte, 4);

hex_buf(0) = 2;

hex buf(l) = con_tab(cur_byte);

cur_byte = hex byte AND QFH;

hex buf(2) = con_tab(cur_byte);

call rqc$send$eoSresponse(NIL,0,@hex buf,@status);
END out_byte;

$subtitle(’'print map - print system map’)

JEFRERA RN AR R R A AR AR R e R R R R R R R R e Rk
*

* PROC NAME: print_map

%

* ABSTRACT: Write system map to console

*

* CALL: CALL printmap(sys_map_ptr);

*

* INPUT: sys_map_ptr - pointer to system map
%

* GLOBALS:

%

* CALLS: rgc$send$eoSresponse, out_byte

***/

Figure 12-6. Implementation of a Board Scanner (continued)

Nucleus User’s Guide 12-23

EXTENDED iRMX® 1T MULTIBUS® II SYSTEMS

print_map: PROCEDURE(sys_map_ptr) PUBLIG;

DECLARE /* params %/

sys_map_ptr POINTER;

DECLARE /* locals */

sys_map BASED sys_map_ptr(MAXSLOTS) map_struc, /* system map */

1
status

BYTE, /* local index */
WORD;

CALL rqc$send$eo$response(NIL,0,@(2,0dh,0ah),@status);

CALL rqc$sendS$SeoS$response(NIL,0,@(17,"
CALL rqec$sendSeo$response(NIL,0,@(23, 'hoard

DO i = 0 to MAXSLOTS -1;

@status);

SYSTEM MAP’,0dh,0ah),@status);
glot!',0dh,0ah,0dh,0ah),

CALL rqc$send$eo$response(NIL,0,@sys_map(i).id,@status);
CALL rqgc$send$eo$response(NIL,0,@(5," "),@status);
CALL out_byte(sys map(i).slot num);

CALL rqc$sendSeoSresponse(NIL,0,@(2,0DH,0Ah),@status);

END;

END print_map;

DEC

LARE /% globals */

iPSB_slot BYTE,
status WORD,
count BYTE,
vendor_id lo BYTE,
vendor_id hi BYTE,
id_char BYTE,
local_slot BYTE,
psb_reg off WORD,
r_type BYTE,

sys_map (MAXSLOTS)

map_struc;

/% begin main */

CALL set$exception(NOEXCEPT):

DO iPSB_slot = 0 TO MAXSLOTS - 1;
sys_map(iPSB_slot).slot num = iPSB_slot;
vendor_id lo = rqgetinterconnect(iPSB slot, VENDORIDREG, @status):
CALL errorS$check(130, status);

/*

/*
/*

/*
/*
/*
/*
/*

psb slot currently scanned %/

index into id string %/
low byte of vendor id */

character in board id */

slot number of local host */

offset of psb control record */

record type returned by find record */
map of boards in system %/

Figure 12-6. Implementation of a Board Scanner (continued)

12-24

Nucieus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® 11 SY. STEMS

*

* Only check status after first call to get$interconnect,
* to see if call is configured (no other error is returned
* by get$interconnect)

*

vendor_id hi = rqgetinterconnect(iPSB_slot, VENDORIDREG+1, @status);
CALL error$check(140, status):
*

* If vendor_id is not equal to 0, then there is a
* board in this slot, so get the board’'s id

=/

IF ((vendor_id_hi OR vendor_id lo) <> 0) THEN DO;
count = 0;
sys_map(iPSB_slot).id(0) = BOARDIDLEN;
DO WHILE (count < BOARDIDLEN);
id char = rqSget$interconnect(iPSB_slot, BOARDIDREG+count, @status)
CALL error$check(150, status);
IF (id_char <= '!*) OR (id_char >= ‘})’) THEN
id_char = ' ';
sys_map(iPSB_slot).id(count+l) = id_char;
count = count + 1;
END;
END;
ELSE
CALL movb (@(10, ' EMPTY '), @sys_map(iPSB slot).id, BOARDIDLEN+1);
END;
/%
* Now get slot number and id of local host. To access local intercon-
*/ nect, the special slot number, LOCALHOST, must be used
*
r_type = find record(LOCALHOST, PSBCONTROLREC,@psb_reg_off);
IF r_type <> RECNOTFOUND THEN DO;
local_slot = rqgetinterconnect(LOCALHOST, psb_reg off + PSBSLOTIDOFF,
@status);
CALL error$check(l60, status);
local_slot = shr(local_slot,3);
sys_map(local_slot).slot num = local slot;
count — 0
DO WHILE (count < BCARDIDLEN);
id_char = rqgetinterconnect(LOCALHOST, BOARDIDREG+count, @status):
CALL error$check(170, status);
IF (id char <= '!') OR (id_char >= ’})') THEN
id char = ' *; _
sys_map(local_slot).id(count+l) = id char;
count = count + 1:
END;
END;
CALL print_map(@sys_map);
CALL rq$exit$io$job(0,NIL,@status);
END ic;

Figure 12-6. Implementation of a Board Scanner

Nucleus User’s Guide 12-25

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

Figure 12-7. Sample Screen Output From the Interconnect Example

Figure 12-7 shows a sample output of the board scanner example.
12.5.6.2 Creating a Port for Message Sending and Receiving

Once you have information on what boards are in your system, the next step is to create a
port for message passing and associate a buffer pool with it. The following example
creates a buffer pool, releases a number of 1K buffers to it, and then creates a data
transport type port and returns a TOKEN to use as a reference to the port.

This module is not run from the Human Interface, it is called by the other modules
described in this chapter.

12-26 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® IT SYSTEMS

$title(’'crport - create a port and attach a buffer pool to it’)
$compact

e s b T R R R R

*

BN N N % W ok w oW & W O W W % % % N %

i

INTEL CORPORATION PROPRIETARY INFORMATION

This software is supplied under the terms of a
license agreement or nondisclosure agreement with
Intel Corporation and may not be copied or disclosed
except in accordance with the terms of that agreement,

Copyright Intel Corporation 1987, 1988
All rights reserved

For Intel customers licensed for the iRMX II Operating

System under an Intel Software License Agreement, this source code and
object code derived therefrom are licensed for use on a single central
processing unit for internal use only. Necessary backup copies and
multiple users are permitted. Object Code derived from this source code
is a Class I software product under the Intel Software License Agreement
and is subject to the terms and conditions of that agreement.

For the right to make incorporations, or to transfer this software to
third parties, contact Intel corporation,

/****************ﬁ***/

crport: DO;

$include (/rmx286/inc/rmxplm.ext)
$include (/rmx286/inc/error.lit)
S$include(dcom.1lit)
$include(err.ext)

DECLARE

NOEXCEPT LITERALLY Lo /* no exception handling by system */

Figure 12-8. Creating a Data Transport Protocol Port (continued)

Nucleus User’s Guide 12-27

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

$eject NS
$subtitle(’create$bufpool’)
N S T Tt)

*

% PROC NAME: createbufpool

%

* DESCRIPTION: Create a buffer pool with the attributes passed by the
caller. CGreate an initial number of 1K buffers and
release them to the buffer pool. Return a token for
the buffer pool to the caller.

CALL: buf$pool$tok = createbufpool(max bufs, init_num bufs,
attrs, status_ptr);
INPUTS: max bufs - maximum number of buffers for buffer pool
init_num bufs - initial number of buffers for buffer
pool.
attrs - buffer pool creation attributes e e
status_ptr - points to a status word

% % % % ok ok H % % % % % * ok

RETURNS: buf$pool$tok - token for newly crecated buffer pool

‘k'k**7‘:1’:**#*‘*-k*'3:':'nb'c'k'a‘r'k'a'c***‘k‘k:’r**‘k>'c-k>'r'>‘c******‘k*****‘k****************/

createbufpool: PROCEDURE(max_bufs, init num bufs, attrs, status_ptr) TOKEN
PUBLIC;

DECILARE /* Parameters */ e
max_bufs WORD, /% maximum number of buffers in buffer pool */
init_num_bufs WORD, /* 1Initial number of buffers in pool */
attrs WORD, /* buffer pool creation attributes */
status_ptr POINTER; /* exception pointer %/

DECLARE /* Local Variables */
status BASED status_ptr WORD ,
buf pool TOKEN, /* buffer pool complete with buffers »/ —
buf tok TOKEN, /* buffer token */

i WORD; /* local index */
DECLARE /% Literals %/
BUFSIZE LITERALLY '1024', /* buffer size */
BFLAGS LITERALLY '010B'; /% single buffer, don't release %/

buf_pool = rq$create$buffer$pool(max bufs, attrs, status ptr);
CALL error$check(10, status);

Figure 12-8. Creating a Data Transport Protocol Port (continued)

12-28 Nucleus User’s Guide

e

EXTENDED iRMX® 11 MULTIBUS® II SYSTEMS

DO i = 1 to init num_bufs;
buf_tok = rqScreate$segment(BUFSIZE, status ptr);
CALL error$check(20, status);
CALL rq$release$buffer(buf pool, buf_tok, BFLAGS, status ptr);
CALL error$check(30, status);
END;
RETURN buf pool;

END createbufpool;

Seject
$subtitle(’getSdport’)
SRR R R R R R R o R T sk ok sk s st et e e e et ek e

PROC NAME: getS$dport

DESCRIPTION: This procedure creates a port for data transport service.
A buffer pool is created and attached to the port.
A token for the newly created port and buffer pool are
returned to the caller. 1If either port or buffer
creation fails, the call returns with neither a buffer
pool or port created,

CALL: dport$tok = get$dport(port_num,buf pool ptr, b_attrs,
status_ptr)

INPUTS: port_num - port number assigned to newly created port
b_attrs - buffer pool creation attributes
status_ptr - points to status word
OUTPUTS: buf_pool_ptr - points to buffer pool token attached to
the newly created port
RETURNS: dport$tok - token to newly created port

ook X % o ok ok W % ok % % R % N N H ¥ % %

****i":‘c*k*****:‘c**k**********************':%'****‘k*********#**************/

get$dport: PROCEDURE(port_num, buf pool ptr,b_attrs, status ptr) TOKEN PUBLIC;

DECLARE /* Parameters */
port_num WORD, /* port id for new port %/
buf pool ptr POINTER, /* points to buffer pool */
b_attrs WORD, /* buffer pool creation attributes */
status_ptr POINTER;

Figure 12-8. Creating a Data Transport Protocol Port (continued)

Nucleus User’s Guide 12-29

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

R

max number outstanding trans at port */
indicates data com port */

fifo, fragmentation flags %/

maximum # buffers in pool */

initial number of buffers */

/% local port */
/% buffer pool with initial alloc of
buffers %/

DECLARE /% Literals */
NUM_TRANS LITERALLY =10, /*
DATACOM LITERALLY '2', /%
PFLAGS LITERALLY 0, Ve
MAXBUFS LITERALLY '30', Vs
INITBUFS LITERALLY *10°; /*
DECLARE /* locals */
bpool BASED buf pool ptr TOKEN,
port_t TOKEN,
bufpool_t TOKEN,
port_info port_info s,
loc_status WORD,

status BASED status_ptr WORD;
/* Begin get$dport */

port_info.port_id = port_num;
port_info.type = DATACOM;
port_info.reserved = 0O;
port_info,flags = PFLAGS;

port_t = rq$create$port(NUM TRANS, @port info, status ptr);

CALL error$check(40, status);

/% local status word */

bufpool_t = createbufpool (MAXBUFS, INITBUFS, b_attrs, status_ptr); o

CALL error$check(50, status);
bpool = bufpool t;

CALL rq$attach$bufferSpool(bufpool_t, port_t, status_ptr);

CALL errorS$check(60, status);
RETURN port t;

END getSdport;

END crport;

Figure 12-8, Creating a Data Transport Protocol Port

12-30

Nucleus User’s Guide

EXTENDED iRMX® I MULTIBUS® II SYSTEMS

12.5.6.3 Sending Data Using RQ$SEND$RSVP

Now that you have information on the boards in the system and a data port you are ready
to send data in message form. The next example illustrates one of the most common
message passing formats, the request/response, typically used between two Extended
IRMX IT hosts. Two terms used to describe the boards involved in request/response
messages, are client which indicates the requesting board and server which indicates the
responding board.

Figure 12-9 shows the logical representation of the message-passing model for a
request/response transaction. A task on the client board initiates the transaction by
sending an RQ$SENDSRSVP call to a well-known port on the server board. Because the
ports on a remote board cannot be dynamically determined, this example assumes a port
that is created on all boards as a starting point for message passing. Once you have a
HOSTSID for a remote board you combine it with the PORTS$ID of this "well-known"
port to create the socket for the destination of a message. When the server board
receives the message it replies with the RO$SENDSREPLY call. The request/response
messages continue until the data requested in the original ROSSEND$RSVP system call
is received by the task on the client board.

For this example we are assuming the following:
o the port on the client board has a single buffer large enough for the requested data

e the port receiving the RSVP message is not being used as a sink port

Figure 12-10 is an algorithm for this transaction and Figure 12-4 shows the physical
location of the boards in a system.

Nucleus User’s Guide 12-31

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

BOARD ISSUING THE RSVP CALL
CLIENT BOARD - e

BOARD REPLYING TO THE RSVP C

ALL

SERVER BOARD

BUS INTERFACE BUS INTERFACE

—&—' —_—_————————— e —

RECEIVE
RECEIVE Local CPU
. (TTT]
= - EEEE - e @ ,
fELC A
® e e SEND | SEND & ¢

]
]
QF

R L e~ Rl o e, o 2 Rt

Gt - From Server Board

<:> Message Passing Bus

® TASK 2
TASK 1
L B L L B e R s s o I
Operations that are transparent to calling tasks W05
LEGEND
w3 From Client Board

10.

The task on the Client board issues an RQ$SEND$RSVP call. In an RSVP/REPLY transaction, the
board that issues the send RSVP is the client; the board that replies is the server.
The Nucleus Communication Service turns the information in the "RSVP" system call into a message,
and sets up the buffer space for the expected reply.
The MPC sends the message across a message passing bus to the remote agent specified in the RSVP
system call.
The CPU on the server board receives a PIC interrupt informing it that a MULTIBUS Il message has
been received.
The Nucleus Communication Service on the server board directs the message to the appropriate port
(and therefore task.)
Task 2 responds with an RQ$SENDSREPLY system call that contains information about the data being
sent.
The Nucleus Communication Service on the server board turns the mformat:on in the
RQ$SENDSREPLY call into a message that is sent by the MPC.
The message travels across the message passing bus, an operation that is transparent to the operating
systems on both boards.
The MPC on the client board places the message into the buffer that was set up in step two, and then
sends an interrupt to the CPU, informing it of the completion of the message transaction.

The Nucleus Communication Service on the client board directs the message to the correct task
using the PORTSID, The CPU on the client board is "aware" of only the operations performed in steps
1,2,9, and 10,

Figure 12-9. An RSVP/REPLY Transaction between Two Extended iRMX® II Hosts

12-32

Nucleus User’s Guide

B W

EXTENDED iRMX® 11 MULTIBUS® I SYSTEMS

Client board
Call an external procedure called getSdport that returns a TOKEN
for the local port to be used in the RQ$SENDSRSVP call.
Initialize the socket structure, declared externally.
Set the message size to be zero length.
Equate the global variable rsvp_size to the LITERAL RSVPB (128 bytes.)
Issue the RSVP system call using the previously initialized variables.
Use the RQSRECEIVESREPLY system call to wait for an answer.

Send the reply message, "This is a send$reply" message" to the console screen.
Exit from the example,

Figure 12-10. Algorithm for RQ$SEND$RSVP Example

Server board
Call an external procedure, get$dport, that returns a TOKEN to
be used in the RQ$RECEIVE and RQ$SENDSREPLY calls.
Perform an RQSRECEIVE using the TOKEN returned from get$dport
Perform an RQ$SENDSREPLY on successful completion of the RQSRECEIVE
IF the data arrives correctly, msg ptr <> NIL
Return the buffer to the buffer pool
End server procedure

Figure 12-11 Algorithm for Server Board

This example must be run with the following example shown in Figure 12-13. To run
these two examples, first on the host in slot five type:

RCVMSG <«CR>

Then on the host in slot one type:

SNDRSVP <CR>

Nucleus User’s Guide 12-33

EXTENDED iRMX® IT MULTIBUS® IT SYSTEMS

Stitle('sndrevp - initiate a request-response transaction')
Scompact

e T e e e e T T T et
* INTEL CORPORATION PROPRIETARY INFORMATION

This software is supplied under the terms of a
license agreement or nondisclosure agreement with
Intel Corporation and may not be copied or disclosed
except in accordance with the terms of that agreement.

Copyright Intel Corporation 1987, 1988
All rights reserved

For Intel customers licensed for the iRMX II Operating

System under an Intel Software License Agreement, this source code and
object code derived therefrom are licensed for use on a single central
processing unit for internal use only. Necessary backup copies and
multiple users are permitted. Object Code derived from this source code
is a Class I software product under the Intel Software License Agreement
and is subject to the terms and conditions of that agreement.

For the right to make incorporations, or to transfer this software to
third parties, contact Intel corporation.

%% ok ok of b o ok sk b o ok ok oF 3 % b ok OF

*f

/*********#**#*************/

/**#*******
*

MODULE NAME: sndrsvp

is sent as an unsolicited message, ie with no data part. Wait

*

*

* DESCRIPTION: Send a transaction request to a well-known socket. The request
%

* for a response and print the message on the console,

*

R T
sndrsvp: DO;

$include(/rmx286/inc/rmxplm.ext)

Sinclude(dcom. ext)

Sinclude (dcom.lit)

$include (/rmx286/inc/error.lit)
$include(err.ext)

Figure 12-12, Client Board Code for RQ$SENDS$SREPLY Example (Continued)

12-34 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® II SYSTEMS

DECLARE /* Literals */
REMPORT LITERALLY '8C1H’, /* Port id of remote port */
REMHOSTID LITERALLY i /* hostid of remote host */
CONBUF LITERALLY '20', /* control buffer size */
RSVPB LITERALLY '128’, /* rsvp buffer size */
TSTPORT LITERALLY ‘801H’, /* well-known port */
NOEXCEPT LITERALLY '0Q’, /* no exception handling by system %/
SFLAGS LITERALLY ‘(00000B’; /* data buffer, synch, rcvreply flags*/
DECLARE /* Global vars */
status WORD,
port_t TOKEN, /* Token for local port */
messock socket, _ /* socket to which message iz sent *
msock DWORD AT (@messock), /* dword alias for messock */
con_buf (CONBUF) BYTE, /* control buffer */
rsvp_buf (RSVPB) BYTE, /* rsvp buffer *x/
mess_size DWORD, /% number of bytes in data message *
rsvp_size DWORD, /% rsvp buffer size */
rsvp_ptr POINTER, /% points to rsvp message */
info rec_info, /% receive info block */
buf_pool TOKEN, /* buffer pool attached to port */
trans_id WORD; /* transaction id =*/

CALL setSexception(NOEXCEPT);
port_t = get$dport(TSTPORT, @vwuf pool, CHAIN, @status);
messock.host _id = REMHOSTID;
messock.port_id = REMPORT;
mess_size = 0;
rsvp_size = RSVPB;
trans_id = rq$send$rsvp(port_t,msock, @con buf, NIL,
mess_size, @rsvp_buf, rsvp size, SFLAGS, @status);
CALL error$check(100, status): :
rsvp_ptr = rq$receive$reply(port_t, trans_id, WAITFOREVER, @info, @status);:
CALL error$check(110, ctatus);
call rqc$send$eo$response(NIL,0,@rsvp buf,@status);
CALL error$check(120, status):
call rq$exit$8io$job(0,NIL,@status);

end sndrsvp;

Figure 12-12. Client Board Code for RQ$SENDSRSVP Example

Nucleus User’s Guide 12-35

EXTENDED iRMX® II MULTIBUS® IT SYSTEMS

Stitle('revrsvp - respond to a request-response transaction')

Scompact
R e e s i e

% INTEL CORPORATION PROPRIETARY INFORMATION

*

* This software is supplied under the terms of a

* license agreement or nondisclosure agreement with

* Intel Corporation and may not be copied or disclosed

* except in accordance with the terms of that agreement,

*

* Copyright Intel Corporation 1987, 1988

* All rights reserved

*

* For Intel customers licensed for the iBMX II Operating

* System under an Intel Software License Agreement, this source code and
_ % object code derived therefrom are licensed for use on a single central Lo

* processing unit for internal use only. Necessary backup copies and

* multiple users are permitted. Object Code derived from this source code

*# is a Class I software product under the Intel Software License Agreement

* and is subject to the terms and conditions of that agreement,

*

*® For the right to make incorporations, or to transfer this software to

* third parties, contact Intel corporation.

*

*
[FFF SRSkt ek ok ek ook / —
/TR R R R R R R R R s sk e

%

* MCDULE NAME: revrsvp

*

* DESCRIPTION: When a message is received, send a response via rq$send$reply

* and exit.

*

*

Tk kool bk bk ookl obeb oot ior oo ko ko / ~—
rcvrsvp: DO;

$include(/rmx286/inc/rmxplm.ext)
Sinclude(dcom. ext)
$include(dcom,lit)
$include(/rmx286/inc/error.lit)
S$include(err.exi)

Figure 12-13. The Server Board Code to Receive and Answer an RSVP Message (Continued)

12-36 Nucleus User’s Guide

EXTENDED iRMX® I MULTIBUS® IT SYSTEMS

DECLARE /* Literals %/

TSTPORT LITERALLY '801H', /% well-known port */

SFLAGS LITERALLY '00000B’, /% data buffer, synchronous flags¥/

NOEXCEPT LITERALLY 'Q'; /* no exception handling by system */
DECLARE /* Global vars */

status WORD,

port_t TOKEN, /* Token for local port */

info rec_info, /* info block on message received */

buf pool TOKEN, /% buffer pool attached to port */

mes_buf (*) BYTE initial (30, 'This is a send$reply message’,0dh,0ah),

tran id WORD,

con_buf (20) BYTE, /* control message buffer */

msg ptr POINTER; /* pointer to received message */

CALL set$exception(NOEXCEPT);
port_t = get$dport(TSTPORT, @vuf pool, CHAIN, @status);
msg ptr = rq$receive(port_t, WAITFOREVER, @info, @status);
CALL error$check(100, status):
tran_id = rg$send$reply(port_t, info.rem$socket,
info.trans$id, @con_buf,
@mes_buf, SIZE(mes_buf), SFLAGS, @status);
CALL errorS$check(110, status);
IF msg_ptr < NIL THEN DO;
CALL rq$release$buffer(buf_pool, selector$of(msg ptr), (info.flags AND 3),

@status);
CALL errorS$check(100, status);
END;
CALL rqS$exit$io$job(0,NIL,@status);
END revrsvp;

Figure 12-13. The Server Board Code to Receive and Answer an RSVP Message

12.5.6.4 Sending a Data Chain Message

This section presents an example of sending and receiving a message that is in data chain
form. The example is presented in two modules, one that sends the data chain and one
that receives it. Note that a port’s ability to receive messages in data chain form is set
according to the attributes of the port’s associated buffer pool.

This example must be run with the following example shown in Figure 12-15. To run

these example two commands must be typed, one on each host terminal. First, on the
host in slot five, type:

Nucleus User’s Guide 12-37

EXTENDED iRMX® II MULTIBUS® IT SYSTEMS

RCVMSG <CR>

Second, on the host i~ slot one, type:

DCSNDMSG <CR>

The host terminal in slot five will display:

This is a data chain message sent by server.

$title('desndmsg - send a data chain message to a known port’)
Scompact

/***

* INTEL CORPORATION PROPRIETARY INFORMATION
%
* This software is supplied under the terms of a
* license agreement or nondisclosure agreement with
* Intel Corporation and may not be copied or disclosed
* except in accordance with the terms of that agreement.
%
* Copyright Intel Corporation 1987, 1988
* All rights reserved
*
* For Intel customers licensed for the iRMX II Operating
* System under an Intel Software License Agreement, this source code and
% object code derived therefrom are licensed for use on a single central
* processing unit for internal use only. Necessary backup copies and
* multiple users are permitted. Object Code derived from this source code
* is a Class I software product under the Intel Software License Agreement
* and is subject to the terms and conditions of that agreement.
*
* For the right to make incorporations, or to transfer this software to
* third parties, contact Intel corporation.
*
*
*

k***/

Figure 12-14. Data Chain Send (continued)

12-38 Nucleus User’s Guide

EXTENDED iRMX® 1T MULTIBUS® II SYSTEMS

/ e g b L S
*

MODULE NAME: dcsndmsg

*
%
* DESCRIPTION: Send a data chain message.
*

ke R R AR R R R AR /
desndmsg: DO;

$include(/rmx286/inc/rmxplm.ext)
$include(dcom.ext)

$include (dcom.lit)

$include (/rmx286/inc/error.lit)
$include(err.ext)

DECLARE /* Literals ¥/
de_el LITERALLY 'STRUCTURE(/* data chain element %/
b_size WORD, /% buffer size */
buf ptr POINTER, /* buffer pointer %/
res WORD)', /% reserved %/
REMPORT LITERALLY '801H’, /% Port id of remote port %/
REMHOST LITERALLY ’05', /% Host id of remote host %/
GONBUF LITERALLY ’'16', /% size of a control buffer */
TSTPORT LITERALLY '801H', /* well-known port */
MSIZE LITERALLY Yie /* message size */
BUFSIZE LITERALLY '100', /% buffer size */
NOEXCEPT LITERALLY rar /* no exception handling by system */
DCBUFSIZE LITERALLY '8'; /* data chain buffer size %/
DECLARE /% Global wvars */
status WORD,
port_t TOKEN, /% Token for local port */
messock socket, /* socket to which message is sent %/
msock DWORD AT (@messock), /* dword alias for messock %/
con_buf (CONBUF) BYTE, /* control buffer */
mess_size WORD, /* number of bytes in data message */
bpool TOKEN, /* buffer pool attached to port =/
offset WORD, /% buffer offset where chain buffer starts *
sflags WORD, /* transmission flags %/
dc_seg_size WORD, /* segment size for data chain */
dc_seg t TOKEN, /* token for data chain segment */
dec_ptr POINTER, /* pointer to data chain segment #/
d_chain based dc_ptr(l) dc_el, /* data chain */
dc_idx WORD, /* data chain index */
trans_id WORD; /* transaction id */

Figure 12-14. Data Chain Send (continued)

Nucleus User’s Guide 12-39

EXTENDED iRMX® Il MULTIBUS® II SYSTEMS

DECLARE

de_buf (BUFSIZE) BYTE INITIAL
(45,'This is a data chain message sent by server',60dh,0ah);

CALL set$exception(NOEXCEPT);

port_t = get$dport(TSTPORT, @bpool, CHAIN, @status);
messock.host_id = REMHOST;

messock.port _id = REMPORT,

/* create data chain with at least enough blocks for each message
buffer + a terminating block */

mess_size = SIZE(dc_buf);

V&a

* Calculate the size of the segment that will contain the data chain.
The message is divided into pieces whose size is DCBUFSIZE so the total
number of elements in the data chain is mess_size/DCBUFSIZE + 2.
The additional 2 includes one possible piece of the message less than
DCBUFSIZE and the terminating data chain element.

% % % %

L4
dc_seg size = (mess_size/DCBUFSIZE + 2)*(size(d_chain));

dc_seg t = rq$create$segment(dc_seg size, @status);
de_ptr = build$ptr(dc_seg_t,0);

/% Fill in the fields of the data blocks for each buffer containing
a part of the message %/
offset 0;
de_idx = 0;
DO WHILE offset < mess size;
d chain(dec_idx).b_size = DCBUFSIZE;
d_chain(de_idx).buf_ptr = @dc_buf(offset);
offset = offset + DCBUFSIZE;
de _idx = de_idx + 1;
END;
d_chain(dc_idx).b_size = 0;
d chain(de_idx) .buf ptr = NIL;

/% send data chain */

sflags = DATACHAIN OR SYNCHTRANS;

trans_id = rq$send(port_t,msock, @con_buf, @d_chain,
mess_size, sflags, (@status);

CALL error$check(1l00, status);

CALL rqSexitiojob(0,NIL,@status);

END dcsndmsg;

Figure 12-14. Data Chain Send

12-40 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® 11 SYSTEMS

$title('dcrcvmsg - receive a 2K data chain message’)
Scompact

Pk e e e e T T T R A AR LT R R LR
INTEL CORPORATION PROPRIETARY INFORMATION

This software is supplied under the terms of a
license agreement or nondisclosure agreement with
Intel Corporation and may not be copied or disclosed
except in accordance with the terms of that agreement.

Copyright Intel Corporation 1987, 1988
All rights reserved

For Intel customers licensed for the iRMX II Operating

System under an Intel Software License Agreement, this source code and
object code derived therefrom are licensed for use on a single central
processing unit for internal use only. Necessary backup copies and
multiple users are permitted. Object Code derived from this source code
is a Class I software product under the Intel Software License Agreement
and is subject to the terms and conditions of that agreement,

For the right to make incorporations, or to transfer this software to
third parties, contact Intel corporation.

% ow W o b W % e W N N % % ¥ Y ok % % % N

=
JFFFFIT R TR o Rtk kel keokokedeloor /
SRR Rk ko dokdoddetdeinb b ik bbb b b bbbk b e ek deob ke deb b ek debe bk
*
MODULE NAME: dcrecvmsg

*
*

* DESCRIPTION: When a message is received, determine whether it is in data
* chain or buffer form. If data chain, compress the chain into
* a single segment. Expect a 2K message with a printable

* part at the first and second 1K + 2 boundaries. Write the

* printable part to the console.

*

***/
derevmsg: DO;

$include (/rmx286/inc/rmxplm. ext)
Sinclude(dcom.ext)
Sinclude(dcom.lit)
S$include(/rmx286/inc/error.lit)
Sinclude(err.ext)

Figure 12-15. Receive a Message in Data Chain Form (continued)

Nucleus User’s Guide 12-41

EXTENDED iRMX® IT MULTIBUS® IT SYSTEMS

DECLARE /% Literals */
TSTPORT LITERALLY *801H',
NOEXCEPT LITERALLY 0 1B
DECLARE /* Global vars %/
status WORD,
port_t TOKEN,
local_host WORD,
info rec_info,
bpool TOKEN,
demsg_ptr POINTER,
msg_ptr POINTER,

msg BASED demsg _ptr (1) BYTE;

$rubtitle(’get$dc§data’) _
JFAREAR TR AR ek ek ek ok e

%

% % %

¥

L S

PROC NAME: getdcdata

/% well-known port %/

/*

VEd
J*
/*
/*
/%
Ve

no exception handling by system */

Token for local port */

local host id */

info block on message received */
buffer pool */ :
pointer to data chain message */

pointer to received message %/

DESCRIPTION: This procedure takes a data chain and copies the data described
by it into a single segment. This procedure only works if the
data is less than 64K in size. Data chains can describe data

greater than 64K,

CALL: mbuf ptr = getdcdata(dc ptr, status_ptr) ~—

INPUTS: dc_ptr - points to a data chain
status_ptr - polints to a status word

RETURNS: mbuf ptr - points to a segment containing the data

described by a data chain
kb ek R ek /

get$dcfdata: PROCEDURE(dc_ptr, status_ptr) POINTER PUBLIC;

12-42

DECLARE /% Params %/ B
dc_ptr POINTER, /% points to data chain */
status_ptr POINTER; /* points to status word */
DECLARE /% Locals */
Figure 12-15. Receive a Message in Data Chain Form (continued)

Nucleus User’s Guide

EXTENDED iRMX® I MULTIBUS® IT SYSTEMS

dc BASED dc_ptr (1) blk struc,

status BASED status_ptr WORD,

num_bytes WORD, /* number of bytes in data chain */
cpybuf tok TOKEN, /* buffer to hold data chain data %/
cpybuf ptr POINTER, /% points to cpybuf */

cpybuf BASED cpybuf ptr c_buf,

i WORD, /* local index */

cpyidx WORD; /¥ index into cpybuf #*/

num_bytes = 0;
i=0;

/* get the size of the data described by the data chain */
DO WHILE dc(i).b_size < 0;

num_bytes = num bytes + dc(i).b_size;
Tomdd ol ;
END;
/* add 2 to num_bytes for the size field in c¢_buf #%/
num _bytes = num_bytes + 2;
cpybuf_tok = rq$create$segment(num bytes, status ptr);
CALL error$check(100, status);
cpybuf_ptr = build$ptr(cpybuf tok, 0);
cpybuf.size = num_bytes - 2;

i=20;

cpyidx = 0;

DO WHILE dc(i).b_size <> 0;
CALL movb(dc(i).buf ptr, @cpybuf.buf(cpyidx), dc(i).b_size);
cpyidx = cpyidx + de(i).b_size;
i=1i+1;

END;

RETURN cpybuf ptr;
END getSdcdata;

/* Start main */

CALL set$exception(NOEXCEPT);
port_t = get$dport(TSTPORT, @bpool, CHAIN, @status);
msg_ptr = rq$receive(port_t, WAITFOREVER, @info, @status);
CALL errorScheck(110, status);
IF (info.flags AND DATACHAIN) = DATACHAIN THEN DO;

demsg ptr = getdcdata(msg_ptr, @status);

CALL error$check(120, status);

Figure 12-15. Receive a Message in Data Chain Form (continued)

Nucleus User’s Guide 12-43

EXTENDED iRMX® II MULTIBUS® II SYSTEMS

/*

* print message that was contained at start of the buffer described
* by the first element in the data chain

*

CALL rqc$send$eo$response(NIL,0,@msg(2),@status);

CALL errorScheck(130, status);

/*

* print message that was contained at start of the buffer described
* by the second element in the data chain

*

*/
CALL rqc$send$eo$response(NIL,0,@msg(1l026),@status);
CALL error$check(140, status);

END;

ELSE DO:
CALL rqc$send$eo$response(NIL,0,meg_ptr,@status);
CALL errorScheck(150, status);

END;

CALL rq$release$buffer(bpool, SELECTOR$OF(msg ptr), (info.flags AND 3),

@status);
CALL rq$exit$io$job(0,NIL,@status);
END decrevmsg;

Figure 12-15. Receive a Message in Data Chain Form

12.5.6.5 Sending a Message in Fragments

This section presents an example of sending and receiving a message that is broken into
fragments. The example is presented in two modules, one that sends the fragmented
message and one that receives it. Note that a port’s ability to receive messages in
fragment form is set according to the attributes given to the port at the time of its
creation.

This example must be run with the RSVP procedure shown in Figure 12-12. To run this
example two commands must be typed, one on each host terminal. First, on the host in
slot five, type:

SNDFRAG <CR>

This procedure will break the data into fragments and send them to the processor board
in slot one.

Second, on the host in slot one, type:
SNDRSVP <CR>

This procedure will receive the fragmented data and display in on the terminal.

The host terminal in slot one will display, "This is a reply sent in fragments."

12-44 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® IT SYSTEMS

Stitle(’'sndfrag - send a fragmented message’)
$compact

/***

o e ok F sk % % N N N N N H K % N % %

7/

INTEL CORPORATION PROPRIETARY INFORMATION

This software is supplied under the terms of a
license agreement or nondisclosure agreement with
Intel Corporation and may not be copied or disclosed
except in accordance with the terms of that agreement.

Copyright Intel Corporation 1987, 1988
All rights reserved

For Intel customers licensed for the iRMX II Operating

System under an Intel Software License Agreement, this source code and
object code derived therefrom are licensed for use on a single central
processing unit for internal use only. Necessary backup copies and
multiple users are permitted. Object Code derived from this source code
is a Class I software product under the Intel Software License Agreement
and is subject to the terms and conditions of that agreement.

For the right to make incorporations, or to transfer this software to
third parties, contact Intel corporation.

/**/

/***********k***********************************ﬁ********************

*

*
*
*
®
*

MODULE NAME: sndfrag

DESCRIPTION: Receive a transaction request, send the reply as a fragmented
message.

***/

sndfrag: DO;

$include(/rmx286/inc/rmxplm.ext)
Sinclude(dcom.ext)
Sinclude(dcom, lit)
$include(/rmx286/inc/error.lit)
Sinclude(err.ext)

Figure 12-16. Send a Message in Fragments (continued)

Nucleus User’s Guide 12-45

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

DECLARE /* Literals */
FRAGLEN LITERALLY B /* fragmentation buffer length */
TSTPORT LITERALLY '801H', /* well-known port */

EOTFLAGS LITERALLY '00000B’, /* sendSreply flags for buffer, synch
tran and eot */

NOEXCEPT LITERALLY ‘0', /* no exception handling by system */
NOTEOTFLAGS LITERALLY *0200H'; /% same as above except not eot %/
DEGLARE /* Global vars */

status WORD,

port_t TOKEN, /* Token for local port */

info rec_info, /* info block on message received */

buf pool TOKEN, /% buffer pool attached to port */

mes buf(*) BYTE initial (35,'This is a reply sent in
fragments’,b0dh,0Oah),

mes_idx WORD, /* mes_buf index */

mes_size WORD, /* size of mes_buf %/

frag size WORD, /* size of fragment sent */

sflags WORD, /* send message flags %/

tran_id WORD, /* transaction id %/

con_buf (20) BYTE, /% control message buffer */

msg_ptr POINTER; /* pointer to received message %/

CALL set$exception(NOEXCEPT);
port_t = get$dport(TSTPORT, @uf pool, NOCHAIN, @status);
msg_ptr — rq$receive(port_t, WAITFOREVER, @info, @status);
CALL error$check(100, status);

IF info.status = ES0K THEN DO;
mes_size = size(mes_buf);
mes_idx = 0;
sflags = NOTEOTFLAGS;
frag size = FRAGLEN;

Figure 12-16. Send a Message in Fragments (continued)

12-46 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® II SYSTEMS

/% Break message into fragments and send them */
DO WHILE mes_idx < mes_size;
IF mes_idx + FRAGLEN > mes_size THEN DO;
frag size = mes_size - mes_idx;
sflags = EOTFLAGS;
END;

tran_id = rq$send$reply(port_t, info.rem$socket, info.trans$id,
@con_buf, @mes_buf(mes idx), frag size,
sflags, @status);
CALL error$check(110, status);
mes_idx = mes_idx + FRAGLEN;
END;
IF msg ptr <> NIL THEN DO;
CALL rq$release$buffer(buf_pool, selector$of(msg ptr), 0, @status);
CALL errorS$Scheck(l10, status);
END;

END;

CALL rq$exit$io$job(0,NIL,@status);
END sndfrag;

Figure 12-16. Send a Message in Fragments

12.5.6.6 Receiving a Message in Fragment Form

This section presents an example of sending a message and receiving it in fragment form.
The example is presented in two modules, one, SFRAG, that initiates a transaction which
forces receiving to be done in fragment form. The other module, RCVFRAG, which
receives the message and prints it on the console screen. To run this example two
commands must be typed:

First, on the host in slot five, type:

RCVFRAG <CR>

Second, on the host in slot one, type:

SFRAG <CR>

The host terminal in Slot one will display:

This is a reply to a fragmented message.
The host terminal in Slot five will display:

This is the second fragment,

Nucleus User’s Guide 12-47

EXTENDED iRMX® II MULTIBUS® II SYSTEMS

Stitle('revirag - receive a fragmented mescage’)
Scompact

e R e e e e L e
* INTEL CORPORATION PROPRIETARY INFORMATION

This software is supplied under the terms of a
" license agreement or nondisclosure agreement with
Intel Corporation and may not be copied or disclosed
except in accordance with the terms of that agreement,

Copyright Intel Corporation 1987, 1988
All rights reserved

For Intel customers licensed for the iRMX II Operating

System under an Intel Software License Agreement, this source code and
object code derived therefrom are licensed for use on a single central
processing unit for internal use only. Necessary backup coples and
multiple users are permitted. Object Code derived from this source code
is a Class I software product under the Intel Software License Agreement
and is subject to the terms and conditions of that agreement,

For the right to make incorporations, or to transfer this software to
third parties, contact Intel corporation.

% o N X o N ¥ oM % % N N N N ¥ N N X%

x

/**/ Mo ioid

/*********#**
AR

% MODULE NAME: rcvfrag
*
DESCRIPTION: Receive a fragmented message and print the message contained
at the beginning of each fragment.

*
*

*

* The task receives a printable message. If there is not enough

* buffer space to receive the entire message, receive the message —
* in fragments. (The info data structure associated with the

* rqSreceive call contains the message length and the transaction

* id necessary to receive the message in fragments.) Print

* the message and send a printable message to the sender.

*

k**********/

Figure 12-17. Receive a Message in Fragments (continued)

12-48 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® II SYSTEMS

revirag: DO;

$include (/rmx286/inc/rmxplm. ext)
Sinclude(dcom.ext)
$include(dcom.lit)
$include(/rmx286/inc/error.lit)
Sinclude(err.ext)

DECLARE /* Literals %/
FRAGLEN LITERALLY '1024', /* fragmentation buffer length */
BUFFRAG LITERALLY 5O, /% fragment is buffer flag */
TSTPORT LITERALLY "801H', /* well-known port */
SFLAGS LITERALLY '00000B’, /% data buffer, synchronous flage¥/
NOEXCEPT LITERALLY '0’'; /* no exception handling by system %/
DECLARE /* Global vars */
status WORD,
port_t TOKEN, /% Token for local port */
info rec_info, /% info block on message received %/
buf_pool TOKEN, /* buffer pool attached to port */
mes_buf (*) BYTE initial (41, 'This is a reply to a fragmented
message',0dh,0ah),
tran_id WORD, /% transaction id */
bytes_rec WORD, /% number of bytes received in mess fragments */
con_buf (20) BYTE, /% control message buffer %/
frag buf (FRAGLEN) BYTE, /* fragmentation buffer ¥/
msg_ptr POINTER; /% pointer to received message */

CALL setS$exception(NOEXCEPT);
port_t = get§dport(TSTPORT, @uf_pool, NOCHAIN, @status);
msg_ptr = rq$receive(port_t, WAITFOREVER, @info, @status);
CALL errorS$check(l00, status);
IF info.status = E$OK THEN DO; /* message may not be fragmented */
CALL rqc$send$eo$response(NIL,0,msg ptr,@status);
CALL error$check(120, status);
tran_id = rq$send$reply(port_t, info.rem$socket,
info.trans$id, @con_buf,
@mes_buf, size(mes_buf), SFLAGS, @status);

Figure 12-17. Receive a Message in Fragments (continued)

Nucleus User’s Guide 12-49

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

CALL error$check(130, status);
IF msg_ptr < NIL THEN DO;
CALL rq$release$buffer(buf_pool, SELECTOR$OF(msg_ptr), (info.flags AND 3),
@status);
CALL errorScheck(140, status);
END;
END;

b

ELSE DO;
IF info.status = ESNOSLOCALSBUFFER THEN DO:

/* receive fragments and print message at beginning of fragments %/
bytes_rec = O;
DO WHILE bytes rec < info.data$length;
CALL rq$receiveS$fragment(port_t, info.rem$socket, info.trans$id,
@frag_buf, FRAGLEN, BUFFRAG, @status);
CALL errorScheck(150, status); s
bytes_rec = bytes_rec + FRAGLEN,
CALL rqc$send$eo$response(NIL,0,@frag buf,@status);
CALL error$check(l60, status);
END;

/% complete transaction by sending a printable message */
tran_id = rg$send$reply(port_t, info.rem$socket,
info.trans$id, @con_buf,
@mes_buf, size(mes_buf), SFLAGS, @status);
CALL error$check(1l70, status); S
END;

ELSE
CALL rqSexit8iojob(0,NIL,@status);
END;

CALL rq$exit$io$job(0,NIL,@status);
END rcvfrag;

Figure 12-17. Receive a Message in Fragments

12-50 Nucleus User’s Guide

EXTENDED iRMX® 11 MULTIBUS® II SYSTEMS

$title('sfrag - initiate a transaction that forces receive fragmentation')
Scompact

/***#*********

INTEL CORPORATION PROPRIETARY INFORMATION

This software is supplied under the terms of a
license agreement or nondisclosure agreement with
Intel Corporation and may not be copied or disclosed
except in accordance with the terms of that agreement.

Copyright Intel Corporation 1987, 1988
All rights reserved

For Intel customers licensed for the iRMX II Operating

System under an Intel Software License Agreement, this source code and
object code derived therefrom are licensed for use on a single central
processing unit for internal use only. Necessary backup copies and
multiple users are permitted. Object Code derived from this source code
is a Class I software product under the Intel Software License Agreement
and is subject to the terms and conditions of that agreement,

For the right to make incorporations, or to transfer this software to
third parties, contact Intel corporation.

/**/

/**

MODULE NAME: sfrag

DESCRIPTION: Send a transaction request to a well-known socket.
The request is sent with a data part to force receive
fragmentation if the buffers at the receive port are
less than 2K. Wait for a response and print the message
on the console.

#******/

sfrag: DO;

$include(/rmx286/inc/rmxplm.ext)
$include(dcom.ext)

$include (dcom.lit)
S$include(/rmx286/inc/error.lit)
S$include(err.ext)

Figure 12-18. Sending a Message that Requires Receive Fragmentation (continued)

—
*
*
*
¥
*
*
%
*
*
*
*
Py
*
*
*
*
*
*
*
%
+x
N ¥
*
*
x
*
*
*
¥ S #
*
*
o S

Nucleus User’s Guide ' 12-51

EXTENDED iRMX® II MULTIBUS® II SYSTEMS

DECLARE /* Literals %/ e
REMPORT LITERALLY "801H’, /* Port id of remote port */
REMHOSTID LITERALLY ‘'5‘, /* hostid of remote host */
CONBUF LITERALLY '20', /* control buffer size %/
RSVPB LITERALLY r128', /* rsvp buffer size %/
TSTPORT LITERALLY '801H’, /* well-known port */
NOEXCEPT LITERALLY L0 /* no exception handling by system */
SFLAGS LITERALLY '0OO0000B‘; /* data buffer, synch, rcvreply flags*/
DECLARE /* Global wars */
status WORD,
port_t TOKEN, /* Token for local port */
messock socket, /* socket to which message is sent */
msock DWORD AT (@messock), /% dword alias for messock */
con_buf (CONBUF) BYTE, /* control buffer */ N
rsvp_buf (RSVFB) BYTE, /¥* rsvp buffer */
mess size DWORD, /* number of bytes in data message %/
rsvp_size DWORD, /% rsvp buffer size %/
rsvp_ptr POINTER, /* points to rsvp message */
info rec_info, /% receive info block */
buf pool TOKEN, /% buffer pool attached to port */
mhuf (2048) BYTE INITIAL(37,’'this was received via fragmentation’,0Oah,0dh),
trans id WORD; /% transaction id */
CALL set$exception{NOEXCEPT); N
port_t = get$dport(TSTPORT, @buf pool, CHAIN, @status);
messock.host_id = REMHOSTID;
messock.port_id — REMPORT;
mess size = size(mbuf);
rsvp_size = RSVPB;
CALL MOVB(@(29,'This is the second fragment’,b0dh,0ah),@mbuf(1024), 30):
trans_id = rq$send$rsvp(port_t,msock, @con buf, @mbuf,
mess_size, @rsvp_buf, rsvp size, SFLAGS, @status);
CALL error$check(100, status);
rsvp_ptr = rqSreceiveSreply(port_t, trans_id, WATTFOREVER, @info, @status): “~—
CALL errorS$Scheck(110, status);
CALL rqc$send$eo$response(NIL,0,@rsvp_buf,@status);
CALL errorScheck(120, status);
call rq$exit$io$job(0,NIL,@status);
END sfrag;
Figure 12-18. Sending a Message that Requires Receive Fragmentation
N

12-52 Nucleus User’s Guide

EXTENDED iRMX® I MULTIBUS® II SYSTEMS

DECLARE
socket LITERALLY ’'STRUCTURE(
host_id WORD,
port_id WORD) ',

host_info LITERALLY ‘STRUCTURE(
th_count WORD,

next id WORD,
hcount WORD,
reS(Z) BYTE,

hostids(10) WORD) ',
port_info_s LITERALLY " STRUCTURE (

port_id WORD,

type BYTE,

reserved BYTE,

flags WORD) ',
rec_info LITERALLY 'STRUCTURE(

flags WORD,

status WORD,

trans$id WORD,
data$length DWORD,
for$port TOKEN,
rem$socket DWORD,
con$msg(20) BYTE,
reserved(4) BYTE)'

blk_strue LITERALLY ’'STRUCTURE(
b_size WORD,
buf ptr POINTER,
res WORD) ',
c_buf LITERALLY ’'STRUCTURE/(
size WORD,
buf (1) BYTE) ' ;
DECLARE /* constant literals */
DATACHATIN LITERALLY *0001B', /% data chain message flag */
NODATACHAIN LITERALLY '0', /* contiguous buffer mess flag */
CHAIN LITERALLY '010B’', /% data chain buf pool creation flag */
NOCHAIN LITERALLY ‘0', /% no data chain bufl pool creation [lag *
SYNCHTRANS LITERALLY '0', /% synchronous transmission flag */
ASYNCHTRANS LITERALLY ‘010000B', /* asynchronous transmission flag */
RECRES LITERALLY '0100000000B', /* receive used for send$rsvp */
RECREPLY LITERALLY '0', /* receive$reply used for send$rsvp */
NOTRAN LITERALLY ‘000000000B’', /* transactionless message */

STATMESS LITERALLY '000010000B', /* status message */
TREQUEST LITERALLY '000100000B', /* transaction request message %/
TRESPONSE LITERALLY '001000000B’; /* transaction response mess */

Figure 12-19. Literal File DCOML.LIT

Nucleus User’s Guide 12-53

EXTENDED iRMX® IT MULTIBUS® II SYSTEMS

createSbuf$pool: PROCEDURE(max_bufs, init num bufs, attrs, status_ptr) TOKEN
EXTERNAL;

DECLARE /* Parameters ¥/
max_bufs WORD, /* maximum number of buffers in buffer pool */
init num bufs WORD, /* initial number of buffers in pool */
attrs WORD, /* buffer pool creation attributes %/
status_ptr POINTER; /* exception pointer */
END createSbufSpool;
getSdport: PROCEDURE(port_id,buf pool ptr,b_attrs,status ptr) TOKEN EXTERNAL;
DECLARE /* Parameters */
port_id WORD,
buf_poel ptr POINTER,
b_attrs WORD,
status_ptr POINTER;
END getS$Sdport;

Figure 12-20, External File DCOM.EXT

12.5.6.7 The Name Server Example

This is the most complex example provided to the user with the Extended iRMX II
Operating System. This example implements a table that is used to dynamically catalog
the names of all the ports created in a system. Two tasks, one for remote requests and
one for local requests, manage the name server table.

The remote server task uses both control and data messages to service requests. The local o

server services requests through data mailboxes. Both tasks are needed because the
Nucleus Communication Service cannot be used for local communication. The name
server table itself is implemented as a circular list which is accessed by a group of
procedures that insert or delete port names, get or change socket information, and set up
the table for these accesses.

When a client board makes a request to the name server, the request is sent, the calling
task waits for a reply, and the name server returns information specific to the request
(e.g., the result of modifying an entry in the table, or the socket for a remote port.)

In order to run the name server example, the following commands are necessary:

12-54 Nucleus User’s Guide

EXTENDED iRMX® Il MULTIBUS® I1 SYSTEMS

ATTACHFILE /RMX286/DEMO/PLM/MB2/NSERVR <CR>

This command makes the directory containing the name server example the current
directory. Next, type:

SUBMIT COMPILE <CR>

This command invokes a Command Sequence Definition (CSD) file that generates the
executable name server and all of its required modules.

The name server can be run as a background job one of the processors. To start the name
server running as a background job type:

BACKGROUND NSERVR > NSERVR.DOC <CR>

See the Extended iRMX II Operator’s Guide To The Human Interface manual for
information on the background command.

Two modules are provided which demonstrate the use of the name server. NSSNDMSG
and NSRCVMSG which execute as a pair. NSRCVMSG must execute first, it posts a
socket with the nameserver under the name "receiver." NSSNDMSG then executes,
sending the nameserver a look-up request on the name "receiver." NSSNDMSG then
sends a message to "receiver"; NSRCVMSG prints the message "This is a simple
message", to the terminal console.

This process can be demonstrated on either host board, but the order of module execution
cannot be changed.

Nucleus User’s Guide 12-55

EXTENDED iRMX® II MULTIBUS® II SYSTEMS

12.6 GLOSSARY
Agent--Any board that is connected to the MULTIBUS II parallel system bus (iPSB).

bus interface--The Message Passing Coprocessor (MPC) chip is sometimes referred to as
the bus interface. The purpose of the MPC is to provide a transparent interface between
the local CPU and the parallel system bus (iPSB).

Client--A physical board (usually a processor board) that requests a service from another
board. During a read from a disk, the processor board that requests the read is the client.
See also Server.

data chain--A method of receiving data messages that are larger than any one buffer can
hold. Data chaining is performed transparently by the system hardware.

datagram--The message format used by MULTIBUS II. Datagrams can be described as
similar to mailing a letter. You write a letter, address it, put a stamp on it a place it in a
mailbox. You assume that the letter will get to its destination, or if a reply is needed, you
put an RSVP in the letter itself.

Interconnect Space--A group of 512 registers that contain information about each board.
The primary use of this space is to replace physical jumpers. The configuration of a board
can be changed by writing to interconnect space rather than inserting or removing physical
jumpers.

message--All data and interrupts sent over the MULTIBUS IT Parallel System Bus (iPSB).
Messages can be thought of as a block of bytes sent over the bus that contains all of the
information needed to send the message to the intended destination agent (board) and
receive a reply, if requested. Two types of messages are supported in MULTIBUS II,
solicited and unsolicited. See also unsolicited messages and solicited messages.

port--A data structure defined in the transport protocol that is used in passing messages.
It provides a level of addressing that permits sending data to a particular task (program)
running on a board.

Server--A physical board (frequently a controller that provides data storage) that provides
a service to another board. During a read from a disk, the controller hoard that does the
read and sends the data to the requestor is the server. See also Client.

solicited messages--Any data message that requires negotiation for buffer resources.
Solicited messages are used to send data, such as disk read and write data, from one
board to another. (See also, message and unsolicited message.)

12-56 Nucleus User’s Guide

EXTENDED iRMX® I MULTIBUS® II SYSTEMS

source/destination address--An eight-bit field in every message passed on the parallel
system bus (iPSB). This eight-bit field allows the unsolicited message to act as a virtual
interrupt, this addressing scheme permits a total of 255 possible interrupts or boards, in a
single system.

unsolicited messages--Any message that comes over the iPSB bus that was not requested
by the receiving agent (board). Unsolicited messages are used as interrupts, or control
signals. They relieve the local CPU from having to poll for messages coming over the bus.
The unsolicited message is 32 bytes long. (See also, message, solicited message, and
source/destination address.)

virtual interrupt--A software-routed interrupt that is contained in a MULTIBUS II
message. Each MULTIBUS II message contains an eight-bit field that specifies the
source and destination of the message. These source and destination bits allow the
message to act as an interrupt to the Message Passing Coprocessor (MPC).

Nucleus User’s Guide 12-57

13.1 INTRODUCTION

The Nucleus is a configurable part of the operating system. It contains several options
that you can adjust to meet your specific needs. To help you make configuration choices,
Intel provides three kinds of information:

o A list of configurable options

e
¢ Detailed information about the options
o Procedures to help you specify your choices
The rest of this chapter provides the first category of information. To obtain the second
and third categories of information, refer to the iRMX II Interactive Configuration Utility
Reference Manual.
) 13.2 HARDWARE
The operating system supports a variety of hardware environments. By using the ICU,
you can tailor the operating system to match your hardware. In particular, you can specify
information about the following hardware elements:
Timer You can specify the timer’s base port, interval between ports, clock
interrupt level, and clock frequency.
NPX You can specify the addition of a Numeric Processor Extension for tasks
g

requiring floating point instructions. The default option assumes that no
NPX is present. If there is an NPX in your system, but you do not indicate
it during configuration, your application cannot use NPX instructions. If
you specify an NPX during configuration and your system does not contain
an NPX, you may cause unexpected results.

Nucleus User’s Guide 13-1

NIICLETIS CONFIGURATION

13.3 SYSTEM CHARACTERISTICS

13-2

When you configure the Nucleus, you can specify a number of characteristics that affect

your system:

Parameter

Validation

GDT Entries

IDT Entries

Default Exception
Handler

Round Robin
Scheduling

A system call validates input parameters by checking for the
existence of objects and by verifying that the objects are the correct
type. If your system does not include the Basic I/O System, you
can exclude parameter validation from your system.

Each iRMX II object requires one GDT entry. Therefore, you
need to configure the number of GDT slots your system requires.

You can allocate the number of IDT entries, up to 256, that your
system needs in the interrupt descriptor table.

You can choose from one of four options for your system default
handler:

o Use the system default exception handler that deletes offending
tasks.

o Use the alternative system exception handler that suspends
rather than deletes.

o Use the iRMX II System Debugger as the exception handler.
o Supply your own exception handler.

You can determine if round robin scheduling will be in effect. If
50, you can set the priority below which tasks will be assigned

round robin scheduling, and the number of clock ticks each task
may run before being rescheduled.

Nucleus User’s Guide

NUCLEUS CONFIGURATION

13.4 SYSTEM INITIALIZATION ERROR REPORTING

During the configuration process, you can elect to have initialization errors reported for
each layer of the operating system. This is done by configuring Initialization Error
Reporting (RIE) into your system when you configure the Nucleus. Then, whenever the
operating system encounters an initialization error in a layer, it displays the following
message and relinquishes control to the monitor:

<layer name> Initialization Error: <error code number>

If Initialization Error Reporting is not configured into the Nucleus and an initialization
error occurs, a code indicating the layer responsible for the initialization error and the
corresponding error code are placed in the first two words of the Nucleus data segment
(1E0:0000H). The Nucleus initialization task then goes into an infinite loop.

The codes for the layers that can cause an initialization error are

1 = Nucleus failure

2 = BIOS failure

3 = EIOS failure

4 = Human Interface failure

Nucleus User’s Guide 13-3

ikl '
o

.04

The Extended iRMX II Operating System recognizes these data types:

BYTE
WORD
DWORD

INTEGER

POINTER

SELECTOR

TOKEN

STRING

Nucleus User’s Guide

An unsigned, eight-bit, binary number.
An unsigned, two-byte, binary number.

An unsigned, 32-bit binary number, occupying two contiguous
words of memory.

A signed, two-byte, binary number stored in two’s complement
form.

Two words containing the segment selector and an offset, (offset
first). '

A 16-bit quantity that is equivalent to the selector portion of a
POINTER.

A word containing the logical address of an object. Tokens are
selectors that reference an entry in a descriptor table. The entry in
the descriptor table contains the physical address of the object.

A sequence of consecutive bytes having this structure:

length BYTE,
chars (255) BYTE;

The first byte contains the length of the string (the number of
succeeding bytes).

The subscript of the chars field (255) is the maximum number of
bytes in any string. Note, that some system calls limit strings to
lengths shorter than 255 bytes.

A-1

B.1 INTRODUCTION

This appendix lists the type codes for all IRMX I objects. In addition, it documents the
amount of memory needed to create Basic I/O System objects.

B.2 OBJECT TYPES

Each iRMX II object type is known within iRMX II systems by means of a numeric code.
Table B-1 lists the types with their codes.

Table B-1. Type Codes

OBJECT TYPE NUMERIC CODE

Job 1

Task 2

Mailbox 3

Semaphore 4

Region 5

Segment 6

Extension 7

Composite 8

User 100

Connection 101

1/O Job 300

Logical Device 301

User-Created varies from 8000H to

Composite OFFFFH depending on the value
specified in CREATESEXTENSION
NOTE: Users and connections are described in the Extended iRMX II Basic 1/O System

User’s Guide in Volume 2. 1/0 jobs and logical devices are described in the Extended
IRMX II Extended 1/0 System Reference Manual,

Nucleus User’s Guide

B-1

iRMX® II OBJECT TYPES AND RESOURCE REQUIREMENTS

B.3 RESOURCE REQUIREMENTS

B-2

The Basic I/O System obtains memory from the calling job’s memory pool when creating
objects. The values listed here reflect Release 3 of the iRMX II Operating System.

Ohbject
I/O Result
Segment

Connection (to
named file)

Connection (to
physical file)

User object

Number of 16-byte paragraphs
required by the Basic I/O System

4 (5 for an internal IORS that the Operating
System creates when attaching a device)

6

3 (minimum)

Nucleus User’s Guide

C.1 INTRODUCTION

Table C-1 provides a complete list of the Extended iRMX II condition codes that can

occur during system operations. It lists the condition codes by layer with their numeric
values and mnemonics.

Table C-1. Conditions and Their Codes

Nucleus User’s Guide

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
E$OK The most recent system call was

successful. 0H 0

Nucleus Environmental Conditions

E$TIME A time limit (possibly a limit of

zero time) expired without a task’s

request being satisfied. 1H 1
ESMEM There is not sufficient memory avail-

able to satisfy a task’s request. 2H 2
ESBUSY Another task currently has access to

the data protected by a region. 3H 3
ESLIMIT A task attempted an operation which,

if it had been successful, would have

violated a Nucleus-enforced limit, 4H 4
ESCONTEXT A system call was issued out of

context or the operating system was

asked to perform an impossible

operation. SH]
ESEXIST A token parameter has a value which

is not the token of an existing

object. 6H 6

continued

C-1

EXCEPTION CODES

Table C-1. Conditions And Their Codes (continued)

C-2

Nucleus User’s Guide

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
ES$STATE A task attempted an operation which
would have caused an impossible
transition of a task’s state. 7H 7
ESNOT$CON- This system call is not part of the
FIGURED present configuration. 8H 8
ESINTER- An interrupt task has accumulated the
RUPTS$SAT- maximum allowable number of SIGNALS$-
URATION INTERRUPT requests. 9H 9
ES$INTER- An interrupt task has accumulated
| RUPT$OV- more than the maximum allowable
ERFLOW amount of SIGNALSINTERRUPT requests. | 0AH 10
ESTRANS- A NACK, timeout, or bus error occurred. .0BH 1
MISSION
E$SLOT There are no available GDT slots. 0CH 12
ESDATASCHAIN | A data chain has been returned. The 0DH 13
token points to a data chain block.
Nucleus Communications System Environmental Conditions
ESCANCELLED | A SEND$RSVP transaction has been 00E1H 225
remotely cancelled.
E$HOSTSID The host$id portion of the socket 00E2H 226
parameter is not valid.
ESNOJLOCALS- | The local buffer is too small to 00E3H 227
BUFFER hold the message data.
ESNOSREMOTES$- | The buffer on the remote agent is 00E4H 228
BUFFER too small to hold the message data.
E$RESOURCES$- | Either the simultaneous messages, or 00E6H 230
LIMIT or transactions is not adequate.
continued

EXCEPTION CODES

Table C-1. Conditions And Their Codes (continued)

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
E$TRANSSID The transmission is already done, or
the specified trans$id is invalid. 00ES8H 232
E$DISCON- The socket is zero and the local port 00E9H 233
NECTED is not connected.
ESTRANSSLIMIT | There has been a transmission 00EAH 234
resource limitation.
I/O System Environmental Conditions
ESFEXIST The specified file already exists. 20H 32
ESFNEXIST The specified file does not exist. 21H 33
ESDEVFD The device driver and file driver
are not compatible. 22H 34
E$SUPPORT The combination of parameters
entered is not supported. 23H 35
E$EMPTYS$- The specified entry in a directory
file is empty. 24H 36
E$DIRSEND The specified directory entry index
is beyond the end of the directory
file. 25H 37
ES$FACCESS The connection does not have the
correct access to the file. 26H 38
ESFTYPE The requested operation is not valid
for this file type. 27H 39
E$SHARE The requested operation attempted an
improper kind of file sharing. 28H 40
E$SPACE There is no space left on the volume. 29H 41
ESIDDR An invalid device driver request
occurred. 2AH 42
E$1O An I/O error occurred. 2BH 43
continued
Nuclens User’s Guide C-3

EXCEPTION CODES

Table C-1. Conditions And Their Codes {(continued)

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
ESFLUSHING The connection specified in the call

was deleted before the operation

completed. 2CH 44
E$ILLVOL The device contains an invalid or

improperly formatted volume. 2DH 45
EDEVOFF- The device being accessed is now
LINE offline. 2EH 46
ES$IFDR An invalid file driver request

occurred. 2FH 47
E$FRAGMENT- | The file is too fragmented to be
ATION extended. 30H 48
E$DIRSNOTS- The call is attempting to delete a
EMPTY directory that is not empty. 31H 49
E$SNOTSFILES- The connection parameter is a device
CONN connection, not a file connection. 32H 50
ESNOTSDEV- The connection parameter is not a
ICE$CONN device connection. 33H 51
E$CONNSNOTS$- | The connection is not open for
OPEN reading, writing or updating. 34H 52
ESCONNSOPEN | The task attempted to open a

connection that is already open. 35H 53
ESBUFFEREDS- | The specified connection was opened
CONN by the EIOS, and used by the BIOS

which is not allowed. Once you have

an open connection, you must

manipulate it with a system call

provided by the same I/O System. 36H 54
ESOUTSTAND- | A soft detach was specified, but
ING$CONNS connections to the device still

exist. 37TH 55

continued
C4 Nucleus User’s Guide

EXCEPTION CODES

Table C-1. Conditions And Their Codes (continued)

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
ESALREADYS$- The specified device is already
ATTACHED attached. 38H 56
EDEV- The file specified is on a device
DETACHING that the operating system is in

the process of detaching, 39H 57
ESNOTSSAMES- | The existing pathname and the new
DEVICE pathname refer to different devices.

You cannot simultaneously rename a

file and move it to another device. 3AH 58
ESILLOGICALS- | The call is attempting to rename a
RENAME directory to a new path containing

itself. 3BH 59
E$STREAMS- A stream file request is out of
SPECIAL context. Either it is a query

request and another query request

is already queued, or it is a

satisfy request and either the

request queue is empty or a query

request is queued. 3CH 60
ESINVALIDS- The connection refers to a file with
FNODE an invalid fnode. You should delete

this file. 3DH 61
E$PATHNAMES- | The specified pathname contains
SYNTAX invalid characters. 3EH 62
E$FNODES$- The volume already contains the
LIMIT maximum number of files. No more

fnodes are available for new files. 3FH 63
ESLOG$NAMES- | The specified pathname starts with a
SYNTAX colon (3), but it does not contain a

second, matching colon; the specified

pathname has more than 12 characters

or contains invalid characters. 40H 64
ESIOMEM The Basic I/O System has insuf-

ficient memory to process a request. 42H 66

continued
Nucleus User’s Guide C-5

EXCEPTION CODES

Table C-1. Conditions And Their Codes (continued)

C-6

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
ESMEDIA The device containing a specified

file is not on-line. 44H 68
ESLOGS$NAMES- | The specified path contains an
NEXIST explicit logical name, but the

Extended 1/O System was unable to

find the name in the object

directories of the local job, the

global job, and the root job. 45H 69
ESNOT$OWNER | The user who attempted to detach the

device is not the owner of the

device. 46H 70
ESIO$JOB The Extended I/O System cannot

create an I/O job because the size

specified for the object directory

is too small. 47TH 71
ESUDF$SFORMAT| The User Definition File is not

in the right format. 48H 72
E$NAMES- The user name specified in the call
NEXIST is not listed in the User Definition

File. 49H 73
ESUIDSNEXIST | The user ID in the specified user

object does not match the ID listed

in the User Definition File for the

corresponding user name. 4AH 74
E$PASSWORD- The password specified in the call
$MISMATCH does not match the one listed in the

User Dcfinition File for the corres-

ponding user name. 4BH 75
EUDFIO The User Definition File specified

cannot be found. 4CH 76
ESIO$UNCLASS | An unknown type of I/O error

occurred. 50H 80
EIOSOFT A soft I/O error occurred. A retry

might be successful. S1H 81

continued

Nucleus User’s Guide

EXCEPTION CODES

Table C-1. Conditions And Their Codes (continued)

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
EIOHARD A hard I/O error occurred. A retry

is probably useless. 52H 82
EIOOPRINT The device was off-line. Operator

intervention is required. 53H 83
ESIO$WRPROT | The volume is write-protected. 54H 84
ESIO$NOSDATA | A tape drive attempted to read the

next record, but it found no data. 55H 85
ESIO$MODE A tape drive attempted a read/write

operation before the previous write

(read) completed. 56H 86
ESIO$NOS- An attempt was made to assign an
SPARES alternate track, but no more alternate

tracks were available. 57H 87
EIOSALTS- An alternate track was assigned during
ASSIGNED this I/O operation. 58H 88

Application Loader Environmental Conditions
ESBADSHEADER| The object file contains an invalid

header record. 62H 98
E$EOF The Application Loader encountered

an unexpected end-of-file while

reading a record. 65H 101
E$NOSLOAD- There is insufficient memory to
ERSMEM satisfy the memory requirements

of the Application Loader. 67H 103
E$NOSSTART The Application Loader could not

find the start address. 6CH 108
E$JOBSSIZE The maximum memory-pool size of the

job being loaded is smaller than the

amount of memory required to load its

object file. 6DH 109

continued
Nucleus User’s Guide C-7

EXCEPTION CODES

Table C-1. Conditions And Their Codes (continued)

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
ESOVERLAY The overlay name does not match any

of the overlay module names. 6EH 110
ESLOADERS- The file requires features not
SUPPORT supported by the Application Loader

as configured. 6FH 111

Human Interface Environmental Conditions

ESLITERAL The parsing buffer contains a

literal with no closing quote. 80H 128
E$STRINGS- The string to be returned exceeds
BUFFER the size of the buffer the user

provided in the call. 81H 129
E$SEPARATOR | The parsing buffer contains a

command separator. 82H 130
E$CONTINUED | The parse buffer contains a

continuation character. 83H 131
ESINVALIDS- A numeric value contains invalid
NUMERIC characters. 84H 132
ESLIST A value in the value list is missing. 85H 133
E$SWILDCARD A wild-card character appears in an

invalid context, such as in an inter-

mediate component of a pathname. 86H 134
E$PREPOSI- The command line contains an invalid
TION preposition. 87H 135
E$PATH The command line contains an invalid

pathname. 88H 136
E$CONTROLS$C | The user typed a CONTROL-C to abort

the command. 89H 137
E$SCONTROL The command line contains an invalid

control. 8AH 138

continued
Nucleus User’s Guide

C-8

EXCEPTION CODES

Table C-1. Conditions And Their Codes (continued)

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
ESUNMATCHED- | The number of files in the input and
$LISTS output pathname lists is not the

same. 8BH 139
ESINVALID- The operator entered an invalid date, 8CH 140
$DATE
ESNOSPARAM- | A command expected parameters, but
ETERS the operator didn’t supply any. 8DH 141
E$VERSION The Human Interface is not compatible

with the version of the command the

operator invoked. 8EH 142
EGETPATH- A command called CSGET3OUTPUTS-
$ORDER PATHNAME before calling

CSGETSINPUTSPATHNAME. 8FH 143
ESPERMISSION | The user does not have permission to

to access the requested resource. 90H 144
E$INVALID- The operator entered an invalid time. 91H 145
$TIME

UDI Environmental Conditions

E$UNKNOWN- The program exited normally. 0COH 192
$EXIT
E$WARNINGS- The program issued warning messages. 0C1H 193
EXIT
ESERRORSEXIT | The program detected errors. 0C2H 194
ESFATALSEXIT | A fatal error occurred in the program. 0C3H 195
ESABORTSEXIT | The operating system aborted the 0C4H 196

program.
ESUDISINTER- A UDI internal error occurred. 0CSH 197
NAL

continued
Nucleus User’s Guide C-9

EXCEPTION CODES

Table C-1. Conditions And Their Codes (continued)

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
Nucleus Programmer Errors
E$ZEROS- A task attempted a divide in which
DIVIDE the quotient was larger than 16 bits. 8000H 32768
ESOVERFLOW An overflow interrupt occurred. 8001H 32769
ESTYPE A token referred to an existing
object that is not of the required
type. 8002H 32770
E$PARAM A parameter that is neither a token
nor an offset has an invalid value. 8004H 32772
E$SBADSCALL An OS extension received an invalid
function code. 8005H 32773
E$ARRAYS- Hardware or software has detected an
BOUND array overflow. 8006H 32774
ESNDPSERROR | A Numeric Processor (NPX) error has
occurred. OS extensions can return
the status of the NPX to the
exception handler. 8007H 32775
ESILLEGALS- The processor tried to execute an
OPCODE invalid instruction. 8008H 32776
ESEMULATORS- | An ESC instruction was encountered
TRAP with the emulator bit set in the
machine status word. 8009H 32777
E$CHECKS$EX- A PASCAL task has exceeded the bounds
CEPTION of a CASE statement. 800AH 32778
NDP$SEGMENT- | The NPX tried to access an address
$OVERRUN that is out of segment boundaries. 800BH 32779
E$PROTECTION | A general protection error. 800DH 32781
E$NOTS- A request has been made to load a
PRESENT a segment register whose segment
is not present. 800EH 32782
continued
C-10 Nucleus User’s Guide

s

EXCEPTION CODES

Table C-1. Conditions and Their Codes (continued)

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
E$BADSADDR The logical address is illegal-

either the selector does not point

to a valid segment or the offset is

not within the segment boundaries. 800FH 32783

Nucleus Communications Programmer Errors

E$PROTOCOL The port specified is of the signal S80EOH 32992

type, not the data communication type.
E$SPORTSIDS- The specified port$id is already in 80E1H 32993
USED use.
ESNUCS$BADSBUF | The buffer referred to is invalid, or 80E2H 32994

not large enough.

I/O System Programmer Errors

E$NOUSER No default user is dcfined. 8021H 32801
E$SNOPREFIX No default prefix is defined. 8022H 32802
EBADBUFF Illegal usage of memory buffers in

read or write requests. 8023H 32803
ESNOTSLOGS$- The specified object is not a device
NAME connection or file connection. 8040H 32832
ESNOTSDEVICE | A token parameter referred to an

existing object that is not, but

should be, a device connection. 8041H 32833
E$SNOT$CON- A token parameter referred to an
NECTION existing object that is not, but

should be, a file connection. 8042H 32834

Application Loader Programmer Error

ESJOBSPARAM | The maximum memory pool size

specified for the job is less than

the minimum pool size specified. 8060H 328064

continued

Nucleus User’s Guide

C-11

EXCEPTION CODES

Table C-1. Conditions and Their Codes (continued)

Category/ Numeric Code
Mnemonic Meaning Hex Decimal
Human Interface Programmer Errors
E$PARSES$- There is an error in the internal
TABLES parse tables. 8080H 32896
E$JOBSTABLES | An internal Human Interface table
was overwritten, causing it to
contain an invalid value. 8081H 32897
ESDEFAULT$SO | The default output name string
is invalid. 8083H 32899
E$STRING The pathname to be returned exceeds
255 characters in length. 8084H 32900
ESERRORS- The command invoked by CSSENDS$-
OUTPUT COMMAND includes a call to C$SEND$-
EOS$RESPONSE, but the command connec-
tion does not permit CSSENDEO-
RESPONSE calls. 8085H 32901
UDI Programmer Errors
ESRESERVES$- The calling program tried to reserve
PARAM memory for more than 12 files or
buffers. 80C6H 32966
ESOPENSPARAM | The calling program rcquested more
than two buffers when opening a file. 80C7H 32967
C-12 Nucleus User’s Guide

A

access rights
discussion of 6-1
aliases 7-1
allocating memory 5-3
analogy of how MULTIBUS 11 systems work 12-2
applications 2-1
assigning levels to each interrupt 9-5

b

BITBUS interconnect 12-3

buffer pools 12-10

buffer pools 5-4

buffer pools, system calls for
CREATE$BUFFERS$POOL 12-11
CREATES$BUFFER$POOL, DELETE$BUFFERSPOOL 12-14
REQUESTSBUFFER 12-11
REQUEST$BUFFER, RELEASE$BUFFER 12-15

Built-in Self Tests (BIST) 12-6

C

call gates 1-7
Call-gates and OS extensions 1-3
case sensitivity of object directory names 6-2
child job 2-1
comparison of procedures, tasks, and OS extensions 10-2
composite objects
deleting 11-3
system calls for 11-2
composite objects 1-2

Nucleus User’s Guide Index-1

INDEX

condition codes
defined 8-1
literal file 8-1
ranges 8-1
types 8-1
configuration of the Nucleus, see chapter 121
context switches 3-2
controlling memory pool size 5-2
creating an OS extension 1-2
creating new operating system objects 11-1

D

data chain block 12-12
data chains 12-11
data type, see Appendix A1l
declaring your own exception handler 8-2
default time quota for round-robin scheduling 3-5
definition of
round-robin scheduling 3-4
deleted of nested composites 11-5
descriptor 1-6
descriptor tables
global 1-7
interrupt 1-7
local 1-7
descriptors
aliases 7-2
cautions on using 7-2
changing the address or length of 7-2
creating 7-2
defining memory with 7-2
definition of 7-1
deleting 7-2
explicit 7-1
system calls for 7-2
type code returned for 7-1
directory, object 1-4
disabling interrupts 9-6
discussion of round-robin scheduling 3-5

Index-2 Nucleus User’s Guide

E

enabling interrupts 9-21
entering an object’s name in the object directory 6-3
examples
interrupt servicing 9-24
ring buffer manager 11-7
exception handlers
inherited 8-2
invoking 8-3
exception handlers 8-2
exception handling
for 80286 processor 8-4
in-line 8-4
exception mode 8-3
exceptional conditions
defined 8-1
environmental 8-1
programmer errors 8-1
exchange types 4-1
execution states of tasks 3-1
extension objects 1-2

F

features of MULTIBUS II systems 12-1
four types of address space

I/O 12-3

interconnect 12-3

memory 12-3

message 12-3
Free Space Manager 5-1

G

getting an object’s name 6-2
getting an object’s type code 6-2
global clock, MULTIBUS II 12-5

H

handlers
exceptional 1-8
interrupt 1-8
handling spurious interrupts 9-22

Nucleus User’s Guide

INDEX

Index-3

INDEX

in-service register, examining 9-23
Interconnect address space 12-5
interconnect space, calls for
GETSINTERCONNECT 12-13
SETSINTERCONNECT 12-13
interrupt controllers 9-3
interrupt descriptor table 9-4
interrupt handler, using 9-11
interrupt handlers and tasks 9-9
interrupt levels 9-3
interrupt lines 9-3
interrupt mechanisms 9-2
interrupt servicing, using multiple buffers 9-16
interrupt task priorities 9-12
interrupt task, using 9-11
interrupts
system calls for 9-27
interrupts 9 or 16 8-6
interrupts, handling spurious 9-22
interrupts, limit on outstanding 9-19
iSBX I/O expansion bus 12-3

J

job 2-1
job deletion 2-2
job tree 2-1

L

limit on outstanding interrupts 9-19

M

mailbox
discussion of queues 4-2
mechanics 4-1
queues 4-1
mailboxes
system calls for 4-3

Index-4 Nucleus User’s Guide

mailboxes 4-1
memory
how to allocate 5-3
returning to the system 5-3
memory allocation 1-5
memory allocation performance feature 5-4
memory management
system calls 5-4
memory needed to create an ohject, see Appendix Bl
memory pool 1-4
memory pools 5-2
message agents, calls for getting information
GET$HOSTSID 12-14
Message Fragmentation 12-13
message space, calls for
BROADCAST 12-13
CANCEL 12-14
RECEIVE 12-14
RECEIVESFRAGMENT 12-14
RECEIVE$REPLY 12-14
SEND 12-13
SEND$REPLY 12-13
SEND$RSVP 12-13
Message Space Calls that Support the MIC Device 12-14
movement of memory between jobs 5-2
MULTIBUS II hardware overview 12-3
MULTIBUS II systems, an analogy of how they work 12-2
MULTIBUS II systems, features of 12-1
MULTICHANNEL DMS I/O bus 12-3
multiple buffers and interrupt servicing 9-16

N

NUCS$ERROR 1-8

Nucleus Communication Service 12-8

number of interrupts possible on cascaded PICs 9-3
number of interrupts possible on one PIC 9-3
numeric codes for object types, see Appendix B1

o)

object access (-2
object directories
using 6-2

Nuclenus UUser’s Guide

INDEX

Index-5

INDEX

object directory 1-4
entering an object’s name 6-3
object queues
high-performance portion 4-2
object types 1-1
objects
extension and composite 1-6
job 1-3
mailbox 1-5
region 1-6
segment 1-5
semaphore 1-5
system calls to manipulate 6-3
tasks 1-2
objects 1-1
'OS extension interface procedures 10-7
OS extensions
and customized exception codes 10-14
and error procedures 10-8
entry procedures 10-7
exception handling in 10-11
function procedure 10-8
functions of the interface procedures 10-7
including into your system 10-14
linking the procedures 10-14
making objects immune from deletion 10-15
procedures needed 1-2
system calls for 10-15

P

parallel system bus (iPSB) 12-3

parameter object 2-2

parent job 2-1

port 12-9

ports, information provided on creation 12-9

port,system calls for
ATTACH$BUFFER$POOL 12-10
ATTACHS$PORT 12-10
ATTACHSPORT, DETACHS$PORT 12-15
CONNECT 12-10, 15
CREATE$PORT, DELETE$PORT 12-15
GET$PORTSATTRIBUTES 12-10, 15

priority for tasks 3-1

procedures needed in an OS extension 1-2

Index-6 Nucleus User’s Guide

"

P

R

regions

cautionary notes 4-10

deadlock and 4-9

discussion of sharing data 4-6

mutual exclusion 4-7

system calls for 4-10
regions 4-5
relationships between interrupt tasks and handlers 9-15
resource sharing 2-1
restrictions when assigning interrupt levels 9-6
returning memory to the system 5-3
round-robin scheduling 3-4
RQ$ERROR 10-8

S

segments 5-1
semaphores4
mutual exclusion 4-6
system calls for 4-5
task queue 4-4
semaphores 4-4
send$message
acknowledging 4-2
serial system bus(iSSB) 12-3
services provided by the Central Services Module 12-4
setting up an interrupt handler 9-10
spurious interrupts, using GETSLEVEL to detect 9-23
system calls
for interrupts 9-27
type manager 11-18
system calls 1-2
system calls for
tasks 3-6
system calls for exception handlers 8-6
system calls for memory management 5-4
system calls that manipulate the 80286 processor’s access byte 6-1
system calls to manipulate jobs 2-2
system calls to manipulate objects 6-3
system initialization error reporting 12-3

Nucleus User’s Guide

INDEX

Index-7

INDEX

T

task attributes 3-6
task execution states 3-1
task priority 3-1
task resources 3-6
task state transition 3-2
task states
asleep 3-1
asleep-suspended 3-2
ready 3-2
running 3-2
suspended 3-2
tasks 3-1
three ways to add functionality in iRMX 10-1
token 1-2
tools for interrupts 9-2
Transport Protocol 12-8
two system calls that set up the interrupt descriptor table 9-6
type manager
jobs during DELETESEXTENSION 11-5
jobs during DELETE$JOB 1-3
typical actions of an exception handler 8-2

u

use of PL/M-286 DISABLE statement in tasks with interrupts diabled 9-7

using an interrupt handler 9-11
using an interrupt task 9-11

Index-8

Nucleus User’s Guide

EXTENDED iRMX®I1
BASICI/O SYSTEM
USER’S GUIDE

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

Copyright & 1988, Intel Corporation, All Rights Reserve d

INTRODUCTION

This manual documents the Basic 1/O System, one of the layers of the iRMX II Operating
System. The material contained herein is intended primarily as introductory and
background information for using the system calls. You can find detailed information for
using these system calls in the Extended iRMX II Basic 1/O System Calls Reference Manual.

Readers who are familiar with the iRMX T Basic I/O System will also be familiar with the
iIRMX Il version. The iIRMX II Operating System is hasect on the iRMX I Operating
System.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the Extended iRMX II Nucleus Use’s Guide and with the PL/M-
286 programming language.

MANUAL ORGANIZATION

This manual is divided into eight chapters. Some of the chapters contain introductory or
overview material that you do not need to read if you are already familiar with the iRMX
IT subsystems. Other chapters contain reference material that you will refer to as you
write your application tasks. You can use this chapter to determine which of the other
chapters you need to read. The manual organization is as follows:

Chapter 1 This chapter describes the features of the Basic I/O System. You
should read this chapter if you are going through the manual for
the first time or if you have had very little previous exposure to the
Basic I/O System.

Chapter 2 This chapter explains some basic terminology associated with the
Basic 1/O System, including the concepts of system programmer,
device, volume, file, and connection. You should read this chapter
if you are tooking through the manual for the first time or if you
are unfamiliar with the Basic I/O System.

Basic [/O User’s Guide

PREFACE

Chapter 3-5 These chapters describe named, physical, and stream files and how

to use them. You should read one or more of these chapters,
depending on the kinds of files your application uses. The use of
remote files is not described in this manual.

Chapter 6 This chapter describes general information about synchronous and
asynchronous system calls.
Chapter 7 This chapter lists the configuration options that pertain to the
Basic I/O System.
CONVENTIONS

This manual uses the following conventions:

iv

The term "IRMX II" refers to the Extended iIRMX I1.3 Operating System.
The term "IRMX 1" refers to the IRMX I (iRMX 86) Operating System.

All iRMX II system calls begin with one of two standard prefixes: RQ$ or RQES.
When referring to the system calls that begin with RQS$, this manual uses a shorthand
notation and omits the prefix. For example, SSCREATESFILE means
RO$SSCREATESFILE. The actual PL/M-286 external procedure names used to
invoke these system calls are shown only in the Extended iRMX I Extended 1/0 System
Calls Reference Manual, which lists the detailed calling sequences,

All iIRMX II system calls begin with one of two standard prefixes: RQ$ or RQES.
When referring to the system calls that begin with RQ$, this manual uses a shorthand
notation and omits the prefix. For example, ASCREATES$FILE means
RQSASCREATESFILE. The actual PL/M-286 external procedure names used to
invoke these system calls are shown only in the Extended iRMX II Basic 1/0 System
Calls Reference Manual, which lists the detailed calling sequences.

When referring to system calls that begin with RQES, this manual spells out the
complete names, including the RQES$ characters.

You can also invoke the system calls from assembly language, but to do so you must
obey the PL/M-286 calling conventions that are discussed in the Extended iRMX IT
Programming Techniques Manual.

Basic I/0 User's Guide

CHAPTER 1 PAGE
FEATURES OF THE BASIC I/O SYSTEM

BT IDICOQUCTION 1ottt ettt st s em et en s emerenas s oeas 1-1
1.2 16M-byte Memory Addressabilitycocmmiisnseries e seeesesessesessessnes 1-2
L3 Protection FEAtULESot st st e eeeecee e e st b eene e 1-2
1.4 Synchronous and Asynchronous Operation..............cei oo 1.2
1.5 Device INdependence. ... i ses s sossssssssssssse e eesesessseseseesesosens 1-3
1.6 Support for Many Kinds 0f DeVICES ... rronsensie s s smsssasssensans 1-3
1.7 Four Distinet Kinds of FLES. ..o assssssssssssaseossssessnserens 14
LT NAME FLESoorriien st b et es s sa st s s i-4
1.7.2 PhYSICAL FIIES oot eves sttt ees s e s neeeeeesen 1-4
L7.3 Sream FHlES ..ottt e rtcs e eensts s re s et n st st s st 1-4
1.7.4 REMOLE FIlS....cciiiiiiicriirriersites sttt sttt 1-5
1.8 File Sharing and Access CONTEOL.......ioim oo eer v eseesessreneae e s eresee 1-5
1.8.1 FlE SRATINE . ..cccoririiniiii et onann 1-5
1.8.2 ACCESS CONIIOL . ittt eens s 1-5
1.9 Separation of File Lookup and File Open Operationsco.wionvonrosrsssersienenass 1-5
1.10 Control Over Internal Fragmentation of FIles. ... 1-6
1.11 Global Time-0f-Day CIOCK ... ssssisss s s sessresonosesenons 1-7
112 DIHSK INTEEIILY coreiieite ittt et et s e sast b b 1-7
L1221 AtACh FLAGS oo ns e es st s srs s 1-8
1.122 Fnode Checksum FIeld......c.cisiscsiis s s sssnssanans 1-8
1.12.3 Getting and Setting the Bad Track/Sector Information............cewe.vevevirneernn. 1-8
CHAPTER 2 PAGE
FUNDAMENTAL CONCEPTS
2.1 INErOQUCTION ..ottt bbb bt s bbbt men s ereemr s 2-1
2.2 SYStEM PrOZLAMIMIELS ...oouvuvivemeiivscsstensstesssessere s rrsstesssesesesssosesss s esesesssnaso s asstecassssnes 2-1
2.3 Device Controllers and Device UNItS... ..o 2-1
2.4 VOIUINES ...cooviririreiii sttt ss st sb et i s et ottt s ss st n s st ames st sest et st sa s 2-2
2.5 FIIES oottt e e bbbt 2.2
2.6 Connections for Task and Device-Unit Communicationccoocorvuvivreveroronnn. 2-2
2.6.1 Interlayer Bonds Preceding Initialization. ... vvereronseronsenosssnmeieceiess e, 2-3
2.6.2 Post-Initialization Bond - the Configuration Interface........cocooroveerrcrierornnns 2-4
2.6.2.1 Device CONNBCLIONScuvveiireer ettt sa bt besas 2-4
2.6.2.2 File CONMECHONS ..oivorveiercieccteerreisrens s rsns e be st esseras e essreees e senareen 2-5
2.6.2.3 Some Observations about Devices and Connectionsc.cccoovvereveen, 2-8

Basic 1/0 User’s Guide

CONTENTS

CHAPTER 3 PAGE
NAMED FILES
3.1 INTOAUCTION c.cvtireiicc ettt s ettt sttt 3-1
3.2 Multiple Files on a Single DYavice ... 3-1
3.3 Hierarchical Naming of FIES ...t ees e 3-1
3.3.1 COMNECIIONS woovvrencrecerrcrrererersiesemsins o sseresesesasasesesasesesasasasscssasasaresetessessnsnssosasasassassons 3-3
332 Paths e et et 3-4
3.3.3 Prefix and Subpath ..o e 34
334 Default PrefiX .. e sieces s eonessrescsonsnesaree 3-4
3.4 Controlling ACCESS t0 FILESveviviieiviririrossiersarireresisenssessesss s ssssesassssesssnsne 3-5
3.4.1 Users and USer ODJECIS......cccommiiiiimecononiiioiesossersesenassesesssesesesesesesssssssons 3-5
FA LT USEIIDS i ese s eras s srsesesenss s orasesesssnsesarasens 3-6
3.4.1.2 USEr OLJECES vttt s s sne e sesan s s anons 3-6
3.4.1.3 Default User Object FOF @ JOD..vveioeriesriinsressreresssnsornsrens 3-7
3.4.2 Types of Access 10 Files ...t 3-7
3.4.3 File ACCESS LISt ccurvrrrrererreicrerniesereseseniniaaiecceaieian s e sres e e s neeen 3-8
3.4.4 Computing Access for File Connections ..., 3-9
3.4.5 SPECIAl USEIS c.ecurierirrrreserirrnnereerniss bbbt s et em s s 3-11
3.4.5.1 System Manager USET ..ottt sttt eeeain 3-11
3.4.5.2 WOTId USEE .ottt e 311
3.4.0 EXAMIPIE. .ottt 3-11
3.5 EXtension DAtal.......ciicrineenn st et st s s s s snaess 3-13
3.6 System Calls for Named F1les........oiirssse e iersssanens 3-13
3.6.1 Obtaining and Deleting COnNEctioNS. ... ceremsee e eeaneans 3-13
3.6.2 USEI OBJBCES ..couercrereririe vttt seene st sss st st sss st ransaas 3-14
3.6.3 Default PrefiXxes ...t s 3-15
3.6.4 Manipulating Datid ..ot e 3-15
3.6.5 ODbtaining StATUS. ..ot ettt s em st 3-17
3.6.6 Reading Directory ENtries ... eornmeisiiesor e e 3-17
3.6.7 Deleting and Renaming FHES ..o.iie oo 3-17
3.6.8 Changing ACCESScccoiieiiriirieneine et e ees bbbt sbae 3-18
3.6.9 Identifying a File’s NAIME c.oo.ovveeieceee sttt 3-18
3.6.10 Manipulating EXtension Data ... 3-18
3.6.11 Detecting Changes in Device Statuscovovevreimrironsonrissenesssenssesseneonne, 3-18
3.7 Accessing the Global Time-0f-Day ClOCKcvuvrorcimreriieeerec e esessseses s 3-19
3.8 Accessing Files Through iRMX-NETcccccconmmmiinnnsssssesseereeee e 3-19
3.9 Chronological Overview of Named FIIESoivinnninresee e sieresns 3-19
3.9.1 Most Frequently Used System Calls ... 3-19
3.9.2 Calls Relating to User OBJeClS .ot 3-19
3.9.3 Calls Relating to PrefiXes ... s oo 3-20
3.9.4 Calls Relating to SEREUS ...coiiireeneinnneeeeecesnsrsssssssssesesiiss s sees e emees e eeseens 3-20
3.9.5 Calls Relating to Changing ACCESSooooveoereiirriress s 3-20

vi Basic /0 User’s Guide

CONTENTS

CHAPTER 3 {continued) PAGE
3.9.6 Calls for Monitoring Device Readiness........ocoueerieeeeeeeeococeeceeeeecnevesnasasss s 3-21
3.9.7 Calls Relating to EXtension Data........ewecerecnvoniesiossseronssseoereereessrennes 3-21
3.9.8 Calls for Renaming FIES ...t 3-21
3.9.9 Calls for Identifying File Namescccovvireimeieireecroecrosesesosesesesesessssssions 321
3.9.10 Calls for IRMX-NET ... cssnssnsesesesssesssenesans 3-21
CHAPTER 4 PAGE
PHYSICAL FILES
4.1 INEPOCUCTION 1ottt eresei st as st ssa s bbb bttt rene s ereenenen 4-1
4.2 Situations Requiring PhySICal FILEScco..ovovoroeeeeeeerereeseeeeroseressesssssssssesssess s sssasns 4-1
4.3 Connections and Physical FIles ...t esvesseesessneees 4-2
4.4 Using Physical Files ... eeseescees e sme s sansssnsases 4-2
CHAPTER 5 PAGE
STREAM FILES
5.1 INErOAUCTION wouviiiviinitnsintiorcror e sas s st bbb st essssonser s sesese s ins 5-1
5.2 Actions Required of the Writing TasK......ccccumevuoieresionsons s sss s sonsns 5-1
5.3 Actions Required of the Reading Taskcierminiinsinriniiieseesssseeesseessiosens 5-3
CHAPTER 6 PAGE
SYNCHRONOUS AND ASYNCHRONOQUS SYSTEM CALLS
0.1 INEFOQUCTION 11ttt tbe bt et bbbt sba s nraes 6-1
6.2 Synchronous System Calls ... s s ses st 6-1
6.2.1 USEr PATAMEIETcuoiiiii et bbbt b 6-2
6.2.2 File-Path Parameter(s) for Named Files.......ccovivinrnnnnssssiesece s 06-2
6.2.3 Response MailboX Parameter ... 6-4
0.2.4 T/O BUTTEIS 1ottt s rsea s sb e s bbb aranton 6-6
0.3 Asynchronous SYStem Calls ... e serressessssssssesssssanions 6-6
6.4 CondItion COUES ... s b st s b erss b a1 6-19
CHAPTER 7 PAGE
CONFIGURING THE BASIC |/O SYSTEM
7.1 INTEOAUCTION weteirrii e st st s s e bbb sttt 7-1
7.2 Basic I/O System Calls ..o s sssssssssssssssssssasssanes 7-1
7.3 Intel I/O DEVICES .oucioiiiierscn sttt st 7-1
T BUITRIS. ..ot n vttt anans 7-1
7.5 TIMING FACIILIES....cvvierreer e sissnisss s essressasssesssssss e ssesssesstossresosssesesesssesssasins 7-2
7.6 Service Task PIIOTILIES .oviiie ettt s ss s s essarens 7-2
7.7 Creating a File with an Existing Pathname. ..o oneosisesssonsns 7-2
7.8 SYSLEM MANAEETcoeiiriiiiisiccieieiecre st abnab et et eee s sanerneser s 72
7.9 System Initialization Error REPOItNgoccoovc oo snssiesess s ses s sanssanans 7-2
7.10 Factors Affecting Basic I/O System Performance.........covuomniomeseonn 7-3
APPENDIX A PAGE
iIRMX® Il DATA TYPES
AT Data TYPES ottt ar st b sa bbb bbbt st A-l

Rasic 1/0 User’s Guide

Ly
vl

CONTENTS

APPENDIX B
OBJECT TYPES AND RESOURCE REQUIREMENTS

B.1 Tntroduction .t
B.2 ObJECt TYPES covrvurirriciccicev v sssassss s sessasesss s
B.3 Resource ReqQUIrementsooiccvierecriornsemiceseeveessesesesese s

APPENDIX C
I/0 RESULT SEGMENT

Col OVEIVIBW.....ruercrerrciimnerenisienriseerasasssssssssssseasssessssissssasassssstasasssosen
C.2 Structure of I/O Result SEgMent......c.cccoeeoevrrninniernssisssnnns
C.3 Unit Status For Specific DeVICEScoccrvermnvrrivnerserrererraranan.

C.3.1 iSBC®214/215G Controller ...c...coeocecvrvrinrinsiensnns

APPENDIX D
EXCEPTION CODES

D1 OVEIVIEW ..o sses s sssssessns
D.2 Sequential (Environmental) Exception Codes......o.ouvveennn.ne
D.3 Sequential (Programmer Error) Exception Codes
D.4 Concurrent (Environmental) Exception Codes.............en....
D.5 Concurrent (Programmer Error) Exception Code

APPENDIX E
LOGICAL DEVICES AND THE BASIC /O SYSTEM

E.l Logical DeVICESccoorirmrnrtinnirrssiesseessss s tessssse e eeeesnsssennnns
E.2 RELEIENCES ...c..ovvveietcrrrrrrec et et s s sttt ee s

APPENDIX F
IRMX® | AND IRMX® lli BASIC 1/0 SYSTEM DIFFERENCES

F.1 INtroduction ...t s ssesasessssssane.
F.2 80286 Capabiliti€scciimuivmimnisrvnencsieresesisies oo
F.2.1 16M-Byte Addressability ..o..ccooceiermvccerrseise e,
F.2.2 Memory Protection......cccmcreccirnmnssnssssesssenns

F.3 Device DIIVETSocrirerrerrrcrrerncenseniseee e ssssssnsssesssessss s
F 4 Disk Integrity FEatures ..o ses s

F.4.1 Attach FIags ..o,
F.4.2 Fnode Checksum Field ...
F.43 Getting and Setting the Bad Track/Sector Information

viii

Basic I/O User’s Guide

CONTENTS

TABLE PAGE

FIGURE PAGE
2-1 Layers of Interfacing Between Tasks and a DevICevuvieincveceeeeeceeevereeveseene 2-3
2-2 Schematic of Software at Initialization TIMEco..coovvveveveereiecceeceees s es e sseeens 2-4
2-3 A System with Device and File CONNections ..o coeereeeeereveeesoseosssesceesseeseeeeons 2-6
3-1 Example of @8 Named-Fle TIee......coccovmvriiiirisissiieeeceeesoeos s eneonese s seeseeseesens 3-2
3-2 Computing the Access Mask for a File CONNeCtion............o.coovvrervorerorerreroenenonrrns 3-10
3-3 Chronology of Frequently Used System Calls for Named Filesoovoververeenee. 3-20
6-1 Sample Named FHE TICEccooccorvriieiiesienieteces s ssssse s s essne st sreneon 6-5
6-2 Concurrent Behavior of an Asynchronous System Callooueveeovoreorerereeenn. 6-8

Basic I/0O User’s Guide

1.1 INTRODUCTION

Because the iIRMX II Operating System is designed for use by Original Equipment
Manufacturers (OEMs), it provides a large number of features--including some that are
not generally found in operating systems aimed at end users. These features include

16M-byte memory addressability

Memory protection

Synchronous and asynchronous system calls
Device independence

Support for many kinds of devices

Four distinct kinds of files

File sharing and access control

Separation of file lookup and file open operations
Control over fragmentation of files

Global time-of-day clock

Disk integrity

This chapter explains each of these features and familiarizes you with the terminalogy of
the Basic I/O System,

NOTE

All material on iRMX Networking Software (IRMX-NET) can be found in
the iRMX Networking Software User’s Guide. This manual is not part of the
iIRMX I manual set,

Basic I/O User’s Guide

1-1

FEATURES OF THE BASIC I/O SYSTEM

1.2 16M-BYTE MEMORY ADDRESSABILITY

The iRMX II Operating System runs in Protected Virtual Address Mode (PVAM) of the
80286 or B0386 processors. As a result, it can access as much as 16M bytes of memory.
The Basic I/O System takes advantage of this feature by allowing you to create I/O jobs
with memory pools of up to 16M bytes. Therefore, tasks that invoke Basic I/O System
calls can have more code and can have more room for data than with iRMX L.

Application tasks must use logical addresses to access memory. Logical addresses take
the form:

selector:offset

Some device controllers also support a 16M-byte address space. These controllers use
physical addresses (direct 24-bit addresses) to refer to the memory space. If you write
your own device drivers for these controllers, your device drivers must know how to
convert logical addresses to physical addresses. The Extended iRMX IT Device Drivers
User's Guide discusses this technique.

1.3 PROTECTION FEATURES

Because the IRMX II Operating System accesses the processor in PVAM, it benefits from
some of the inherent memory protection features of the processor. Thesc featurcs
protect your code and data by preventing any task from reading or writing buffers of
memory unless it has explicit access to those buffers. They also prevent memory reads or
writes from crossing segment boundaries. The Operating System generates exception
codes if an attempted protection violation occurs.

The Operating System also checks system call parameters for protection violations and for
incorrect values, Appendix D lists the exception codes that can be returned.

1.4 SYNCHRONOQOUS AND ASYNCHRONOUS OPERATION

When you examine the Extended iRMX II Basic 1/0 System Calls Reference Manual, you
will find that the system calls can be divided into two categories according to their names.
The first category consists of system calls having names of the form:

RQIXXXXX

where XXXXX is a brief description of what the system call does. The second category
consists of system calls having names of the form:

RQSASXXXXX

1-2 Basic I/O User’s Guide

FEATURES OF THE BASIC /O SYSTEM

System calls of the first category, without the A, are synchronous calls. They begin
running as soon as your application invokes them, and continue running until they detect
an error or accomplish everything they must do. Then they return control to your
application. In other words, synchronous calls act like subroutines.

System calls of the second category (those with the A} are called asynchronous because
they accomplish their objectives by using tasks that run concurrently with your application.
This allows your application to accomplish some work while the Basic I/O System deals
with devices such as disks or tape drives.

1.5 DEVICE INDEPENDENCE

The Basic 1/O System provides you with one set of system calls that can be used with any
collection of devices. For instance, rather than using a TYPE system call for output to a
terminal and a PRINT system call for output to a line printer, you can use a WRITE
system call for output to any device.

This notion of one set of system calls for I/O to any collection of devices is called device
independence, and it allows your application much flexibility. For example, suppose that
your application logs events as they occur. The device independence of the Basic I/0
System allows you to create an application that can log the events on any device rather
than just one.

For instance, when the event application is running and circumstances force an operator

to reroute logging from the teletypewriter to the line printer, your application can be
written to do this.

For a more detailed explanation of device independence, refer to the Introduction to the
Extended iRMX II Operating System,

1.6 SUPPORT FOR MANY KINDS OF DEVICES

Although your application can be device independent, the Basic I/O System must be able
to communicate with a wide variety of devices. To connect a particular device to the
Basic I/O System, you must have a device driver {(a collection of software procedures)
designed especially for the device being connected.

The Basic [/O System provides device drivers for many devices. The Extended iRMX IT
Interactive Configuration Utility Reference Manual lists these devices and describes how to
include their device drivers in your application system. If you need drivers for other
devices, you must supply the drivers. Refer to the Extended iRMX II Device Drivers User’s
Guide for instructions on how to write your own device driver.

Basic I/0 User’s Guide 1-3

FEATURES OF THE BASIC I/0 SYSTEM

1.7 FOUR DISTINCT KINDS OF FILES

Files in the Basic I/O System are byte-oriented (as opposed to record-oriented files). The
System provides you with four kinds of files: named, physical, stream, and remote.

1.7.1 Named Files

Named files are intendecd for usc with random-access, secondary storage devices such as
disks, diskettes, and bubble memories. They allow your application to organize its files
into a tree-like, hierarchical structure that reflects the relationships between the files and
the application. Furthermore, only named files allow your application to store more than
one file on a device, and only named files provide your application with access control,
Named files also provide a good starting place for building custom access methods such as
the indexed sequential access method (ISAM).

For more information regarding named files, refer to Chapter 4.

1.7.2 Physical Files

Physical files differ from named files in that each physical file occupies an entire device.
In fact, from the standpoint of the Basic I/O System, a physical file is a device. Yet with
the Basic [/O System, an application can deal with a physical file as if it were a string of

bytes.
Physical files provide several important advantages:
¢ An application can have direct control over a device.

¢ This direct control provides complete flexibility. For example, an application can
interpret volumes created by other systems.

» An application can conserve memory and still be able to communicate with devices
that do not need the power of named files. Examples of such devices include line
printers, display tubes, plotters, and robots,

The disadvantages of physical files, as compared to named files, are that hierarchical file
structures and access control are not available,

1.7.3 Stream Files

Stream files provide a means of intertask communication. Some tasks can write into a
stream file while other tasks read from it concurrently. Stream files use no devices and
provide no access control. They are implemented in memory.

1-4 Basic I/O User’s Guide

FEATURES OF THE BASIC I/O SYSTEM

1.7.4 Remote Files

The Basic I/O System can also access remote files through iRMX-NET. For more
information on accessing remote files, consult the iIRMX Networking Software User’s Guide.

1.8 FILE SHARING AND ACCESS CONTROL

The Basic I/O System provides your application with the ability to share files and, in the
case of named files, to control access to the files.

1.8.1 File Sharing

In a multitasking system, it may be useful to have several tasks manipulating a file
simultaneously. Consider, for example, a transaction processing system in which a large
number of operators concurrently manipulate a common data base. If each terminal is
driven by a distinct task, the only way to implement an efficient transaction system is to
have the tasks share access to the data base file. The iRMX II Operating System allows
multiple tasks to concurrently access the same file.

1.8.2 Access Control

Also useful in a multitasking system is the ability to control access to a file. For instance,
supposc that scveral cngincering departments share a computer. An engineer in one
department may want to reserve for himself the ability to delete his files, while allowing
people in his department to write and read his file, and people in other departments to
only read the files, The Basic I/O system named files provide your applications with this
kind of access control.

1.9 SEPARATION OF FILE LOOKUP AND FILE OPEN OPERATIONS

Many operating systems waste valuable time by looking up a file whenever an application
tries to open one. The Basic I/O System avoids this by using a special type of object
(called a connection) to represent the bond between the file and a program.

Whenever your application software creates a file, the Basic I/O System returns a
connection. Your appiication can then use the connection to open the file without
suffering the expense of having the Basic I/O System lqokup the file. Even when your
application wants to open an existing file, the application can present the connection and
bypass the file lookup process.

There are several other benefits associated with connection objects. In the case of named

files, connections embody access rights to the file. This means that access need only be
computed once (When the connection is created) rather than each time the file is opened.

Basic I/0O User’s Guide 1-5

FEATURES OF THE BASIC T/0 SYSTEM

A second benefit of connections is that several connections can simultaneously exist for
the same file. This allows several tasks to concurrently access different locations in the
file. This is possible because each connection maintains a file pointer to keep track of the
location, within the file, where the task is reading or writing.

1.10 CONTROL OVER INTERNAL FRAGMENTATION OF FILES

When information is stored on a mass storage device, space is aliocated in blocks rather
than one byte at a time. These blocks are calied granules, and the block size is called
granularity. There are three kinds of granularity that are important,

device granularity

The device granularity is hardware dependent and varies among individual mass storage
devices. It represents the minimum amount of data that the device can read or write
during one 1/O operation. For disk media, a device granule is called a sector; therefore
the device granularity is the sector size. Each buffer that the Basic 1/O System uses when
reading and writing data is equal in size to the device granularity.

volume granularity

Volume granularity is a multiple of the device granularity. It represents the minimum
amount of space that can be allocated to a file at one time. The Basic I/O Systein uses an
algorithm based on volume granularity when deciding where on the volume to allocate
this space. You specify the volume granularity when you format the volume.

file granularity

File granularity is a multiple of volume granularity which specifies the actual amount of
space on the mass storage device that the Basic 1/O System allocates to a file at one time.
You assign the file granularity on a per-file basis when you invoke ASCREATESFILE to
create the files.

By selecting the proper granularity values, you can minimize fragmentation of your
volumes. Use the following guidelines when selecting these values:

» Device granularity depends on hardware. If your device supports multiple device
granularities, selecting the larger value usually gives higher performance. Although
you can obtain greater performance, you may waste storage space due to a few large
granules containing only a few bytes of data.

¢ For flexible diskettes, always set the volume granularity equal to the device
granularity, unless you plan to store many large files on the volume. Even then, don’t
select a volume granularity larger than 1K (1024 bytes).

1-6 Basic I/0 User’s Guide

FEATURES OF THE BASIC 1/0 SYSTEM

» For hard disks, set the volume granularity equal to the device granularity, unless the
device granularity is less than 1K. Then set the volume granularity to 1K.

o When creating a [arge file, assign a large file granularity to minimize the number of
noncontiguous blocks that make up the file. This decreases the fragmentation of the
volume. For smaller files, set the file granularity equal to the volume granularity to
minimize wasted space on the volume.

1.11 GLOBAL TIME-OF-DAY CLOCK

Some boards supported by the IRMX IT Operating System have an on-board, battery
backed-up, time-of-day clock. The Basic I/O System reads and writes the time of day,
taking advantage of this clock feature. The global time-of-day clock is global in the sense
that it is the timekeeper for the entire system. The iRMX 1T Operating System maintains
a "local” time-of-day clock of its own, which is a copy of the global clock. The global and
local clocks keep track of two items:

¢ The current date (day, month, and year)

* The current time (hours, minutes, and seconds)

The iRMX T Operating System needs two time-of-day clocks because it takes much
longer (100 milliseconds and up) to access the global clock than the local clock.
Therefore, the IRMX II Operating System maintains the local time-of-day clock for its
date and time needs, and accesses the global time-of-day clock only during system
initialization or upon request from the operator,

The iRMX 1 Basic 1/0 System provides two system calls that enable your applications to
read the global date and time and set them to new values. These system calls are
GETSGLOBALSTIME and SETSGLOBALSTIME. It also provides two system calls for
manipulating the local clock: GET$TIME and SET$TIME.

1.12 DISKINTEGRITY

In any computer system, there are many occurrences beyond the control of the program
or programmer that can cause damage to files or disk volumes. For example, power
outages can occur just as a file is being written, or marginal disk sectors can suddenly
become unreliable. The Basic 1/0 System has several features that enable programs to
maintain disk integrity and determine whether files or volumes have been corrupted. The
following sections outline these [eatures.

Basic 1/0 User’s Guide 1-7

FEATLIRFS OF THE RASIC 1/O SYSTEM

1.12.1 Attach Flags

The Basic I/O System maintains flags that can indicate the integrity of named volumes
and named files. Whenever you attach a named volume, the Basic 1/O System sets a flag
in the volume label to indicate that the volume is attached. Likewise, when you attach a
named file, the Basic I/O System scts a flag in the fnode (file descriptor node) file to
indicate that the file is attached. When you detach a volume or file, the Basic I/O System
clears the associated flag, indicating that the file or volume was successfully detached.

Although the Basic 1/O System doesn’t check these flags to determine file or volume
integrity, you can check the condition of a volume by invoking the
ASGETSFILESSTATUS system call,

The Basic 1/O System doesn’t provide a system call for checking the file flag. However,
you can write your own programs to check this flag, or you can use the Disk Verification
Utility to examine the fnode file,

1.12.2 Fnode Checksum Field

The Basic 1/O System uses the fnode file to keep track of every named file on a volume.
The fnode file lists such information as the file name, the creation and last modification
dates, and the location of every disk sector that makes up the file. Whenever you access a
file, the Basic I/O System uses the fnode file to determine the file’s location on the
volume. Whenever you create, modify, or delete a file, the Basic [/O System modifies the
frnode tile to match the changes you made.

When the last connection to the file is deleted, the Basic T/O System writes to the fnode
file, and it always calculates a checksum and writes that value in one of the fields of the
fnode file. This checksum can be used to determine whether any data errors occurred
when the Basic /O System wrote the fnode file. Although the Basic I/O System doesn’t
calculate another checksum and compare it against the original when it next reads the file
your programs can use the checksum field to determine whether the fnode file has
become corrupted. DISKVERIFY and SHUTDOWN can be used.

7

1.12.3 Getting and Setting the Bad Track/Sector Information

It is not uncommon for a hard disk to have a few sectors or tracks that cannot reliably
store information. Many of these disks have a record of these bad tracks written on the
second-highest cylinder of the disk. When the Basic 1/0 System formats a disk, it uses
this bad track/sector information to assign alternate tracks or sectors for the bad
tracks/sectors listed. The ASSPECIAL system call also has the ability to retrieve and set
the bad track/sector information on a volume. One subfunction allows you to retrieve the
current list of defective tracks or sectors. Another subfunction enables you to set up a
new bad track/sector list.

1-8 Basic I/0O User’s Guide

2.1 INTRODUCTION

Before you use the Basic I/O System, you must understand several fundamental concepts.
Some of these concepts were presented in Chapter 2. The remaining concepts are

¢ System programmers

+ Device controllers and device units
* Volumes

¢ Files

» Connections

The following sections explain these concepts.

2.2 SYSTEM PROGRAMMERS

There are two programming roles associated with the iRMX II Operating System. One
role involves using system calls and objects that affect only your own iRMX 11 job, while
the other role involves manjpulating system resources and characteristics. These two
roles are called application programming and system programming.

Although the roles have different names, separate people are not required. One
individua] can perform both roles. The reason for the distinction is that the actions of the
system programmer affect the performance and security of the entire system, whereas the
actions of the application programmer have a more limited effect.

The Extended iRMX Il Basic 1/0 System Calls Reference Manual gives you several system
call descriptions that begin with caution notices. These system calls, if misused, can have
serious consequences for an application system. Therefore, you should consider these
system calls to be reserved for the exclusive use of system programmers.

2.3 DEVICE CONTROLLERS AND DEVICE UNITS

You are probably familiar with the notion of a device; a hardware entity that tasks can use
to read or write information, or to do both. Devices include flexible diskette drives, line
printers, terminals, card readers, and the like.

Basic 1/0 User’s Guide

FUNDAMENTAL CONCEPTS

In the iRMX II environment, it is convenient to make a distinction between devices and
the hardware interfaces that communicate directly with an iRMX {1 application system. A
hardware entity that talks directly with iRMX II software is a device controller. Devices
such as those named in the previous paragraph are device units. Typically, a device
controller acts as an interface between iRMX 11 application software and several device
units. For example, an iSBC 214 Winchester Controller board acts as an interface
between application software and from one to four Winchester disk drives (device units.)

2.4 VOLUMES

A volume is the medium used to store the information on a device unit. For example, if
the device unit is a flexible disk drive, the volume is a diskette; if the device unit is a
bubble memory board, the volume is the bubble memory; and if the device unit is a multi-
platter hard disk drive, the volume is the disk pack.

2.5 FILES

Some operating systems treat a file as a device, while others treat a iile as information
stored on a device. The Basic I/O System considers a file to be information.

The Basic I/O System supports four kinds of files, and each has characteristics that make
it unique. Regardless of the kind of file, the Basic I/O System provides information to
applications as a string of bytes, rather than as a collection of records.

2.6 CONNECTIONS FOR TASK AND DEVICE-UNIT
COMMUNICATION

In complex environments such as those supported by the iRMX IT Operating System,
several layers of software and hardware must be bound together before communication
between application tasks and device units can commence. Figure 2-1 shows these layers.

22 Basic [/O User’s Guide

FUNDAMENTAL CONCEPTS

APPLICATION SOFTWARE

TASKS TASKS TASKS

FILE DRIVER : SOFTWARE

DEVICE CONTROLLER

" HARDWARE

DEYICE UNIT

|
|
|

x-054

Figure 2-1. Layers of Interfacing Between Tasks and a Device

2.6.1 Interlayer Bonds Preceding Initialization

The bond between a device controller and the device units that it controls is a physical
bond, usually in the form of wires or cables. A device driver is bound to device controllers
by data residing in a data structure known as a Device Unit Information Block (DUIB).
You supply the data for the DUIBs when you use the Interactive Configuration Utility
(ICU) to configure the Operating System.

When your application starts up, there is a gap between the application software and the
file drivers, and another gap between the file drivers and the device drivers. Figure 2-2
tlustrates this situation. The new element, shown in the figure as the configuration
interface, is the "glue" that provides the final bonds.

Basic I/0 User’s Guide 2-3

FUUNDAMENTAL CONCEPTS

2.6.2 Post-Initialization Bond - the Configuration Interface

The configuration interface provides two kinds of system calls. Before a task can use a
file, both of these kinds of calls must be invoked, and each produces a connection. These
connections are called device connections and file connections, and several of them are
shown in Figure 2-3 as conduits and wires through the conduits, respectively.

TASKS

APPLICATION SOFTWARE
TASKS

TASKS

PHYSICAL FILE OGRIVER

NAMED FiLE DRIVER

STREAM FILE GRIVER

CONFIGURATION INTERFACE

DEVICE DRIVER CRIVE DRIVER DEVICE DRIVER
DEVIGE DEVICE DEVICE DEVICE
CONTROLLER CONTROLLER CONTROLLER CONTROLLER
i
DEVICE DEVICE DEVICE D o1 D D DEVICE
UNIT UNIT UNIT UNIT | UNIT | UNIT | UNIT UNIT

%055

Figure 2-2. Schematic of Software at Initialization Time

2.6.2.1 Device Connections

lasks employ the configuration interface first by calling the

ASPHYSICALSATTACHSDEVICE system call, which returns a token for an iRMX 11
object type called a device connection. This device connection is the application’s only
pathway 1o the device. Moreover, there can be only one device connection between a
device unit and all of the application tasks that need 1o use the device.

Basic 1/0 User’s Guide

FUNDAMENTAL CONCEPTS

Because the device connection is so centrally important to the application, only tasks
written by a system programmer should call ASPHYSICALSATTACHS$DEVICE. Such a
task could make the device connection available to application tasks selectively by sending
it to certain mailboxes or by cataloging it in certain object directories. Or, to ensure that
all required device connections will be available to all of the application tasks that nced
them, the system programmer could provide an initialization task that creates all of those
device connections and catalogs them in the roat object directory.

It and when the device is no longer needed by the application, an appropriate task can call
ASPHYSICALSDETACHSDEVICE to delete the device connection.

2.6.2.2 File Connectlons

When an application task is ready to use a device unit, it must usc the device connection
for that device unit to obtain a file connection object, which is a connection to a particular
file on that device unit. How the task does this depends on whether the file already exists.
If the file already exists, the task usually calls ASATTACHSFILE, although it can also call
AJCREATESFILE. If the file does not vet exist, the task must call ASCREATESFILE.

Basic I/O User’s Guide 2-5

FUNDAMENTAL CONCEPTS

TASK TASK TASK

CONFIGURATION
INTERFACE

pevice |!
CONT- ||
ROLLER ||
I
| 1
o
UN-
comn. | conn
pevice | PESICE
v UNIT

TASK

[
I o
| :
Ly !
| | PHYSICAL I
I FILE |
I CRIVER |
Iy |
by |
| | I
' I
: I L1
| | DEVICE !
| 1| priver I
| L
|
L I
I o
|
I
[
I | DEVICE
[CONT-
1 ROLLER !
[:
[|
I i
"
CONNECTED CONN,
OEVICE DE-
UMIT YICE
URIT

TASK

L | CONM.
CE-
YICE
UMIT

APPLICATION SOFTWARE

TASK TASK

| CONN.

DE-
VICE
umMIT

TASK TASK TASK TASK TASK
' . ———
s
| |! .
1
11
NaMED || STAEAM
FILE I FILE
DRIVER : I DRIVER
I : W STREAM 9 STREAM
I I: FILE FILE
I
i
Cl
DEVICE g
DRIVER |
(]
[
b
il
1
[
OEVICE e
CONT- et
ADLLER | 1|
I
|
1
i
|
1l

FILE

FILE

CONNECTED
DEVICE
UNIT

FILE

CONDUWITS REFRESENT DEVICE CONNECTIONS
WIRES IN CONDUITS REPRESENT FILE CONNECTIONS

2-6

Figure 2-3. A System with Device and File Connections

SHAaNFD AREA
REPRESENTS A
DIRECTCORY

= DBE

exist. There are two reasons for this.

NOTE

Lven though a task can call ASCREATESFILE to obtain a file connection
for a file that already exists, it is not a good idea for a task to use
ASCREATESFILE unless the task is certain that the file does not yet

Basic I/O User’s Guide

FUNDAMENTAL CONCEFPTS

First, if a named file exists, then calling ASCREATESFILE to obtain a
connection to the file might cause the file to be truncated. This could
cause problems for tasks having other connections to that file, because the
file pointers (discussed later in this section) for those other connections
are not affected, even though the cnd-of-file marker might be moved
closer to the beginning of the file.

Second, if a file exists as either a physical or stream file, then it does not
matter whether new connections to the file are obtained by a call to
AICREATESFILE or ASATTACHSFILE. However, it is possible that
the code that does this will someday be used to create a connection to a
named file, and as you can see, this can cause problems.

Unlike device connections, there can be multiple file connections to a single file. This
allows different tasks, if necessary, to have different kinds of access to the same file at the
same time, as the next paragraph shows.

After receiving a file connection, a task calls ASOPEN to open the connection. In the call
to ASOPEN, the task specifies how it intends to use the file connection and how it is
willing to share the file with other tasks using other connections, by passing the following
as paramclcrs:

¢ An open-mode indicator

The open-mode indicator tells the Basic I/O System how your application is going to
use the connection. This parameter can specify that the connection is open for
reading only, for writing only, or for both reading and writing,

* A sharc-modc indicator

The share-mode indicator specifies how other connections can share the file with the
connection being opened. 'F'his parameter can specity that there can be no other apen
connections to the file, that other connections to the file can be opened for reading
only, that other connections to the file can be opened for writing only, or that other
connections to the file can be opened for both reading and writing.

For each open file connection to a random-access device unit, the Basic I/O System
maintains a file pointer. This is a pointer that tells the Basic T/O System the logical
address of the byte where the next I/O operation on the file is to begin. The logical
addresses of the bytes in a file begin with zero and increase sequentially through the
entire file. Normally the pointer for a file connection points at the next logical byte after
the one most recently read or written. However, a task can use the file connection, if
need be, to modify the file pointer by means of the ASSEEK system call.

Basic 1/0 User’s Guide 2-7

FUNDAMENTAL CONCEPTS

2.6.2.3 Some Observations about Devices and Connections

2-8

Figure 2-3 is quite detailed and shows most of the situations that are possible for device
units and file connections to them. In particular, you can observe the following:

Device connections extend from the application software to the individual device
units, and each passes through one and only one file driver,

There is only one device connection to each connected device, and multiple file
connections can share the same device connection.

Different device units with the same controller can be connected via different file
drivers.

Tasks can share access to the same device unit through the physical file driver, and

they can share access to the same files on the same device unit through the named file
driver.

There is only one device connection through the stream file driver, reflecting the fact
that a single, logical device contains all stream files. There can be additional stream
files in the application if more are needed.

The configuration interface, which is depicted as a pile of conduits, is off to one side.

All but one of the device units are connected. The unconnected device unit is still
separated from the application software by the configuration interface.

Basic I/O User’s Guide

CHAPTER 3
NAMED FILES

3.1 INTRODUCTION

Named files are intended for use with random-access, secondary storage devices such as
disks, diskettes, and bubble memories. Named files provide several features that are not
provided by physical or stream files, These features include

o Multiple Files on a Single Device
¢ Hierarchical Naming of Files

» Access Control

o Extra Data in a File’s Descriptor

These features combine to make named files extremely useful in systems that support
more than one application and in applications that require more than one file.

3.2 MULTIPLE FILES ON A SINGLE DEVICE

As shown in Figure 3-1, your application can use named files to implement more than one
tile on a single device. This can be very useful in applications requiring more than one
operator, such as transaction processing systems.

3.3 HIERARCHICAL NAMING OF FILES

The iRMX I named files feature allows your application to organize its files into a
number of tree-like structures as depicted in Figure 3-1. Each such structure, called a file
tree, must be contained on a single device, and no two file trees can share a device. In
other words, if a device contains any named files, the device contains exactly one file tree.
Named file trees must zlso fit on a single volume.

Basic I/O User’s Guide 31

NAMED FILES

OEPT1
DEPT?
BEPTA
DEPTH J| DEPTZ i GEPTS
BILL GEQRGE SUE
TOM HA&RRAY
SAM BiLL
[[oo I
— R —_——— - . . __i . J— —
aiL TOM—‘ GEDRGE] HARRY . SAM SUE BILIJ
SIM SOURCE TEST-DATA
SIM-DBJECT TEST DBJECT
]
I
SIM - SOURCE SIM-OBJECT TEST-DBJECT
TEST DATnl
BATGH -1 = DIRECTORY
BATCH 2

T T

H

CATA FILE

AN

#-053
BATCH 1 BATECH 2

Figure 3-1. Example of a Named-File Tree

Each file tree consists of two categories of files--data files and directories. Data files
(which are shown as triangles in Figure 3-1) contain the information that your application
manipulates, such as inventories, accounts payable, transactions, text, source code, or
object code. In contrast, directory files (shown as rectangles) contain only pointers to
other files or directories. The purpose of the directory files is to provide you with
flexibility in organizing your file structure.

32 Basic /O User’s Guide

NAMED FILES

To illustrate this flexibility, take a close look at Figure 3-1. This figure shows how named
tiles can be useful in multi-user systems. Figure 3-1 is based on a collection of
hypothetical engineers who work for three departments (Departments 1, 2 and 3). Each
engineer is responsible for his own files. This multiperson organization is reflected in the
file tree. The uppermost directory (called the device’s root dircetory) points to three
"department directories." Each department directory points to several "engineer’s
directories.” And the engineers can organize their files as they wish by using their own
directories.

Each file (directory or data) has a unique shortest path connecting it to the root directory
of the device. For instance, in Figure 3-1, the file called SIM-SOURCE has the path
DEPT1/BILL/SIM-SOURCE. This notion of "path” reflects the hierarchical nature of
the named-file tree.

Another characteristic of hierarchical file naming is that there is less chance for duplicate
file names. For example, note that Figure 3-1 contains directories for two individuals
named Bill. {(These directories are on the extreme Jeft and right of the third level of the
figure.) Even if the rightmost Bill had a data file with the file name of SIM-OBJECT, its
path would differ from that leftmost Bill’s SIM-OBJECT. Specifically, the leftmost SIM-
OBJECT is identified by:

DEPT1/BILL/SIM-OBJECT
whereas the rightmost STM-OBJECT would be identified by:
DEPT3/BILL/SIM-OBIECT

Whenever your application manipulates either kind of named file, the application must
tell the Basic /O System which file is to be manipulated. There are several ways to
specify a particular named file to the Basic I/O System, all of which involve connections
and paths.

3.3.1 Connections

Once you have a connection to a particular named file, you can use the connection as the
PREFIX parameter of any system call. If, in the same call, you set the SUBPATH
parameter to NIL or SELECTORSOF(NIL), the Basic 1/O System will ignore the
SUBPATH and use only the PREFIX to find that particular file.

Basic I/O User's Guide 33

NAMED FILES

3.3.2 Paths

If you do not have a connection to the file, you can spectfy the file by using its path. To do
this, build an iRMX II string. (An iRMX I string is a representation of a character string.
To represent a string of n characters, you must use n+ 1 consecutive bytes. The first byte
contains the character count, n. The following n bytes contain the ASCII codes for the
characters, in the same order as the string.) This string is called a path name. Then use a
pointer to this path name as the SUBPATH parameter in the system call, and use the
device connection as the PREFIX parameter in the system call,

For example, if your named file tree is on Drive 1, and it has the path name
DEPT2/HARRY/TEST-RESULTS, you can specify the file by using the device
connectjon for Drive 1 as the PREFIX parameter and a pointer to the path name as the
SUBPATH parameter.

3.3.3 Prefix and Subpath

Once your application has obtained a connection to a directory file within a named file
tree, the application can use that connection as a basis for reaching all files that descend
from the directory.

For example, referring again to Figure 3-1, suppose your application has a connection to
Directory DEPT1/TOM. The application can refer to Data File BATCH-1 by using bath
the PREFIX and the SUBPATH parameters. The application should use the connection
to Directory DEPT1/TOM as the PREFIX, and it should use a pointer to a subpath name
as the SUBPATH. The subpath name is a string that connects Directory DEPT1/TOM to
Data File BATCH-1. For this example, the subpath name is TEST-DATA/BATCH-1.

3.3.4 Default Prefix

Within one iRMX IT job, most references to a named file tree are generally confined to
one branch of the tree. For example, in Figure 3-1, Tom will usually access the files in his
directory more frequently than files outside of his directory. Recognizing this clustering,
the Basic [/O System provides the notion of default prefix.

The Basic I/O System allows your application to specify onc default prefix for each
IRMX I job. A default prefix is a connection to a directory at the head of the most
commonly used branch in your named file tree. For instance, in Figure 3-1, Tom’s
application would probably use a connection to Directory DEPT1/TOM as the default
prefix. To use the default prefix, the application sets the PREFTX parameter to NIL or
SELECTORSOF(NIL).

3-4 Basic I/0 User's Guide

NAMED FILES

A default prefix provides a job with two advantages. First, by providing a reference point
within a named file tree, it allows your application to use subpath names instead of path
namcs. If your tree is several levels deep, this can save programming time during
development. Second, and more significantly, a default prefix provides a means of writing
generalized application code that can work at any of several locations within a tree.

Consider an example. Suppose that an assembler (implemented as an iRMX II job) uses
a default prefix to find a location in a named file tree. The assembler could then use a
subpath name of TEMP to find or create a temporary work file, Before an application
invokes the assembler, it sets the default prefix of the assembler job to a directory in the
application’s named file tree. This allows more than one job to invoke the assembler
concurrently without the risk of sharing temporary files.

The Basic 1/0 System keeps track of a job’s default prefix by using the job’s object
directory. Whenever your tasks use the SETSDEFAULT$PREFIX system call to specify
a connection as being the default, the Basic 1/O System catalogs the conncction under the
name § in the job’s object directory.

3.4 CONTROLLING ACCESS TO FILES

In most environments where files are shared among multiple users, it is necessary to have
a means of controlling which users have access to which files. Among users who have
access to a given file, it is frequently necessary to grant different kinds of access to
different users. The iRMX 1I Operating System provides this control by identifying users
with user IDs and embedding access rights for these IDs into the files. This section
describes the user ID and file access mechanisms.

3.4.1 Users and User Objecis

The iRMX II Operating System uses the concept of "user” to correlate file access to
people or to iIRMX II jobs. But the precise definition of "user" depends on the nature of
your application.

If your application allows several people to enter information (at terminals, for example),
you might want to consider each person (or small group of persons) a user. This allows
each individual (or small group) to maintain access different from other individuals (or
smali groups).

Alternatively, if your application does not interact with people (or allows only one person
to interact), you might wish to consider each iRMX 1T job as a user. This setup would
allow your application to control the files that each job can access.

i

Basic I/O User’s Guide 3-

NAMED FILES

In more general terms, the set of entities that manipulate named files in your system is
the set of all users. If you want all of these entities to be able to access any file, you can
consider them to be a single user. However, if you want to distribute different access to
dilferent collections of these entities, you must divide the entities into subsets, each of
which 1s a separate user.

For example, look at Figure 3-1. As mentioned earlier, all engineers are responsible for
their own files. If engineers want to have unique access to their ftiles (perhaps permitting
no one else to use their files), each engineer must be a separate user. However, if all
engineers are willing to give uniform access to other members of the department, then the
department can be a separate user.

3.4.1.1 UserlDs

A user ID is a 16-bit number that represents any individual or collection of individuals
requiring a separate identity for the purpose of gaining access to files.

3.4.1.2 User Objects

The Basic /O System uses a special type of object called a user object when determining
access rights to files. A user object contains a list of one or more user IDs. When a task
attempts 1o manipuiate a file, it must supply the token for a user object. ‘l'o determine
access, the Operating System compares the IDs in the supplied user object with
information contained in the file itself,

To understand user objects, consider an application in which every person who accesses
the system is a separate user. In this situation, every person would have a separate user
object. The user object represents the person,

The first ID in the user object is the owner ID. This is the ID of the user whom the object
represents. 1f you think of a user object as a person, the owner ID represents the name of
that person. When a person creates files, the Operating System automatically embeds the
ewner 1D of that person’s user object into the file, allowing that person automatic access
to the file.

The IDs that follow the owner ID represent additional kinds of access that the person has.
For example, people often helong to organizations such as athletic clubs and fraternal
groups which distribute identity cards to their members. To participate in the
organization, people must show their identity cards to prove they are members. The user
IDs that follow the owner 1D serve the same purpose. They identify the person as one of
a select group, all of whom have the same access to a certain set of files.

The Basic 1/O System has three system calls that manipulate user objects:

» CREATESUSER creates a user object and returns to the calling task a token for that
user object.

3-6 Basic I/O User’s Guide

NAMED FILES

» DELETESUSER deletes a user object.

» INSPECTSUSER returns to the calling task the list of IDs in the user object specified
in the call.

3.4.1.3 Default User Object For a Job

Most 1/O operations performed within a particular iRMX II job are performed on behalf
of one user object. Recognizing this, the Basic I/O System allows your application to
designate a default user object for each job. Whenever your application invokes a Basic
1/O System call on behalf of the default user object, the application can use
SELECTORSOF(NIL) as the token for the "user" parameter. The Basic T/O System
recognizes the SELECTORSOF(NIL) as referring to the default user.

The Basic I/O System provides two system calls to manipulate a job’s default user.
SETSDEFAULTSUSER can be used either to change an existing default user object or,
in the case of jobs having no default user object, to establish one.
GETSDEFAULTS$USER can be used to ascertain the default user for a job.

The Basic I/O System uses the job’s object directory to keep track of the job’s default user
object. Whenever one of your tasks sets or gets a default user object, the Basic I/O
System either catalogs or looks up the entry for the default user object in the object
directory. It uses the name R?IOUSER to refer to the defauit user object. To prevent
problems, you should consider R?USER to be a reserved name, and you should avoid
using it.

3.4.2 Types of Access to Files

Each of the two kinds of named files--directory files and data files--can be accessed in four
different ways.

Every directory file can potentially be accessed in one or more of the following ways:
Delete Delete the directory file with ASDELETESFILE.

List Obtain the contents of the directory file with ASREAD or
ASGETSDIRECTORYSENTRY.

Add Entry Add entries to the directory with ASCREATESFILE,
ASCREATESDIRECTORY, ur ASRENAMESFILE.

Change Entry Change the access rights of files listed in the directory with
ASCHANGESACCESS.

Basic [/O User’s Guide 37

NAMED FILES

Every data file can potentially be accessed in one or more of the following ways:

Delete Delete the file with ASDELETESFILE or rename the file with
ASRENAMESFILE,

Read Read the file with A READ.

Append Add information to the end of the file with ASWRITE.

Update Change information in the file with AAWRITE or drop information with
A$TRUNCATE.

A user’s access rights to a particular file depend on the access list associated with that file.

3.4.3 File Access List

For each named file (data or directory), the Basic I/O System maintains an access list
which defines the users who have access and their access rights. Each access list is a
collection of up to three ordered pairs having the form

ID, access mask
The ID portion is a user TD. The list of user IDs defines the users who can access the file.

The access mask portion defines the kind of file access that the corresponding user has.
An access mask is a byte in which individual bits represent the various kinds of access
permitted or denied that user. When such a bit is set to 1, it signifies that the associated
kind of access is permitted. When sct to 0, the bit signifies that the associated kind of
access is denied.

The association between the bits of the access mask and the kinds of access they control
are as follows {(where bit 0 is the least-significant bit):

Bit Directory Files Data Files
0 Delete Delete

1 List Read

2 Add Entry Append

3 Change Entry Update

The remaining bits in the access mask have no significance.
For example, an access list for a data file might look like the following;

SB31 00001110
OF2C 00000010

3-8 Basic I/0O User’s Guide

NAMED FILES

where the ID numbers (left column) are in hexadecimal and the access masks (right
column} are in binary. This means that the ID number 5B31 has read, append, and
update access rights, while the 1D number 9F2C has the read access right.

The first entry in the file’s access list is placed there automatically by the Basic I/O
System when it creates the file. The ID portion of that entry is the first ID number in the
user object specified in the call to ASCREATESFILE. That ID is known as the owner ID
for the file. The access rights portion is supplied as a parameter in the same call.

Tasks can alter the access list of a file by means of the ASCHANGESACCESS system
call. With ASCHANGESACCESS, you can add or delete ID-access pairs, and you can
change the access rights of 1Ds already in the access list.

NOTE

The user whose ID is the owner ID for a file has one advantage over other
users. Only a file’s owner can use the ASCHANGESACCESS system call
to modify the file’s access list without being granted explicit permission to
do so.

3.4.4 Computing Access for File Connections

Whenever a task calls AJCREATESDIRECTORY, ASCREATESFILE, or
ASATTACHSFILE, the Basic 1/O System constructs an access mask and binds it to the
file connection object returned by the call. This access mask is constant for the life of the
connection, even if the access list for the file is subsequently altered. When the
connection is used to manipulate the file, the access mask for the connection determines
how the file can be accessed. For example, if the computed access rights for a connection
to a data file do not include appending or updating, then that connection cannot be used
in an invocation of ASWRITE.,

When a task calls ASCREATESDIRECTORY or ASCREATESFILE, the access mask
for the connection is the same as the access mask that the task supplies in the "access”
parameter of the system call. However, when a task calls ASATTACHSFILE, the Basic
/O System compares the user object specified in the "user” parameter with the file’s
access list and computes an aggregate mask.

Figure 3-2 tllustrates the algorithm that the Basic I/O System uses during a call to
ASATTACHSFILE. As the figure shows, the Basic I/Q System compares the IDs in the
specified user object with the IDs in the file’s access list. The access masks corresponding
to matching IDs are logically ORed, forming an aggregate mask.

Basic I/0 User’s Guide 3.9

NAMED FILES

USER OBJECT FOR
CALLING TASK'S JOB

OWNER 1D -

T ACCESS LIST FOR
TARGET FILE
D ,r'/ N o ACCESS -
{ }

(MATCHES) ACCESS MASK FOR
i

QR ————— £|LE CONNECTIGN
I\\ / o ACCESS -

0 / 5 ACCESS

Figure 3-2. Computing the Access Mask for a File Connection

Normally, the Basic 1/O System uses the aggregate access mask embedded in the
connection to determine a task’s ability to access a file. However, there are two
circumstances in which the Basic I/O System computes access again: during
ASCHANGESACCESS and during ASDELETESFILE. When a task invokes one of
these system calls, the Basic I/O System computes the access to the target file (or to the
data file or directory specified in the "prefix" parameter, if the subpath portion is null). If
the user object specified in the system call does not have appropriate access rights, the
Basic I/O System denies the task the ability to delete the file or change the access.

3-10 Basic I/0 User’s Guide

NAMED FILES

NOTE

When computing access, the Basic I/O System checks the access only to
the last file in the specified subpath and to the parent directory of the last
file. It does not check the access to any other directory files specified in
the path. If the subpath is null, the Basic I/O System checks the access to
the file indicated by the “prefix” parameter.

3.4.5 Special Users

There are two user IDs that can have special meaning to the Basic I/O System. One is
the number 0 (the system manager), which has special meaning to the Basic I/0 System.
The other is the number OFFFFH (the WORLD user), which can have special meaning
based on the application.

3.4.5.1 System Manager User

If so indicated during the configuration process, user ID 0 represents the "system
manager." A user object containing this value is privileged in two respects. First, when it
is used to create or attach files, the resulting file connection automatically has read access
to data files and list access to directory files. This is true even if a file’s access list does not
contain an ID-access mask pair whose ID value is 0. The second privilege granted such a
user object is that it can call ASCHANGESACCESS to change any file’s access list.

3.4.5.2 World User

By convention, the user ID 0FFFFH represents WORLD (all users in the system). To
implement this convention, you should place the ID for WORLD in the list of user IDs for
every user object you create. This allows your application to set aside certain files as
public files, giving everyone limited access. For example, your file system might contain a
series of utilities, such as compilers or linkers, which all users need to access. Instead of
granting everyone access on an individual basis (which is impossible if you have more than
three users), you can grant the user WORLD access to the files. Since WORLD is on the
ID list of every user object, this grants everyone access to the files.

As a side effect of including the WORLD ID in every user object, any file whose owner ID
1s OFFFFH (WORLD) can have its access list modified by anyone. That is, any file
connection for that file can be used in a cali to ASCHANGESACCESS.

3.4.6 Example
The following example can help you understand how to use 1Ds, access masks, access lists,

and user objects to permit each user in a system to have exactly the kinds of access that
you want that user to have.

Basic I/0 User's Guide 3-11

NAMED FILES

Referring back to Figure 3-1, suppose that Tom is to have all kinds of access to the file
BATCH-1, that Bill is to have read and append access only, and that the members of
Department 2 are to have read access only.

Tom (or whoever creates BATCH-1) can arrange for these kinds of access by doing the
following:

» Create a number of user objects, one for Tom, one for Bill, and one for each of the
members of Department 2 (George, Harry, and Sam). When creating the user
objects, assign unique owner IDs for each user. Assume that the owner ID numbers
are 4000H for Tom and 8000H for Bill. Assign unique owner [Ds for each of the
members of Department 2, but also include a common user ID (assume FOO0H for
this example) as an additional D in each of their user objects.)

» Use ASCREATESFILE to create the file BATCH-1. In the call to
A3CREATESFILE, use the token for the user object containing the 4000H ID
number and specify the access mask 00001111B. This call returns a file connection
that gives its user (Tom) all kinds of access to BATCH-1. At this point, the access list
for BATCH-1 has just one ID-access mask pair.

» Use ASCHANGESACCESS to add an ID-access mask pair to the access list of
BATCH-1. The ID should be 8000H and the access mask should be 00000110B. This
gives Bill read and append access to Batch-1. Now the aceess list for BATCII-1 has
two ID-access mask pairs.

*» Use AJCHANGESACCESS to add a third pair to the access list of BATCH-1. The
ID should be FOOOH and the access mask should be 00000010B. This gives the people
in Dcpartment 2 read access to BATCH-1.

» Inform Bill that he can read the contents of BATCH-1 and append new information to
it. Describe to him the prefix and subpath that are needed to attach BATCH-1, and
tell him to create a user object with the 1D 8000H. Tell him to specify that user object
when attaching BATCH-1.

¢ Inform the members of Department 2 that they can read the contents of BATCH-1.
Describe for them the prefix and subpath needed to attach BATCH-1, and tell them
to create user objects that contain an entry for the ID FOO0H. Tell them to specify
those user objects when attaching BATCH-1.

When Bill attaches BATCH-1, he receives a file connection that he can use in calls 1o

ASREAD. He also can use ASWRITE, provided that the file pointer for that connection
1s at the end of the file.

When a member of Department 2 attaches BATCH-1, he receives a file connection that
he can use in calls to ASREAD.

Note that this example shows that one ID number can be used to give certain access rights

to an individual and that another ID number can be used to give different access rights to
a collection of individuals.

312 Basic I/O User’s Guide

NAMED FILES

3.5 EXTENSION DATA

For cach named file on a random access valume, the Basic /O System creates and
maintains a file descriptor on the same volume. The first portion of the descriptor
contains information for the Basic I/O System. The last portion, called extension data, is
available to your operating system extension. You specify the number (from 0 to 255,
inclusive) of bytes of extension data for each named file on the volume, when formatting
the volume with the FORMAT utility.

If you are writing an operating system extension, and you want to record special
information in a file’s descriptor, you can use ASSETSEXTENSIONS$DATA to place the
data into the trailing portion of the descriptor. ASGETSEXTENSIONSDATA can be
used to access this data when it is needed later.

3.6 SYSTEM CALLS FOR NAMED FILES

Several system calls relate to iRMX II named files. Some of these calls are useful for hoth
data and directory files, some for only one kind of file, and some (such as
CREATESUSER} don’t relate to either kind of file.

The following sections briefly explain the purpose of each of the system calls. The
descriptions are grouped by function rather than alphabetically. These descriptions are
very brief. The Extended iRMX IT Basic 1/0 System Calls Reference Manual contains
detailed descriptions of the calls.

3.6.1 Obtaining and Deleting Connections

Six system calls pertain to obtaining or deleting connections.
+ ASCREATESFILE

This call applies only to data files. Your application must use this call to create a new
data file, and it can use this call to obtain a connection to an existing data file. Tf the
application uses this call to create a new file, the Basic I/O System automatically adds
an entry in the parent directory for this new file.

+ AJCREATESDIRECTORY

This call applies only to directory files. Your application must use this call to create a
new directory file. The call cannot be used to obtain a connection to an existing
directory. The Basic [/O System automatically adds an entry in the parent directory
for this new directory.

+ ASATTACHSFILE
This call applies to both data and directory files. Your application can use this call to
obtain a connection to an existing data or directory file.

Bagie T/0O User’s Guide 313

NAMED FILES

ASDELETESCONNECTION

This call applies to both data and directory files. Your application can use this call to
delete a connection to either kind of named file. This call cannot be used to delete a
device connection.

ASPHYSICALSATTACHS$DEVICE

This call does not directly apply to either data or directory files. Your application uses
this call to obtain a connection to a device. Even though this connection is a device
connection, it can be used as the prefix for the root directory of the device. However,
using this system call causes a task to lose its device independence.

ASPHYSICALSDETACHSDEVICE

This call does not directly apply to either data or directory files. Your application uses
this call to delete a connection to a device.

3.6.2 User Objects

Five system calls pertain directly to user objects. None of these calls are specifically
related to data or directory files. The calls are:

3-14

CREATESUSER
This call is used to create a user object.
DELETESUSER
This call is used to delete a user object.
INSPECTSUSER

This call is used to ascertain a user object’s id and to find out to which groups the user
belongs.

SET$DEFAULTSUSER
Your application can use this call to establish a default user for any iRMX II job.
GET$SDEFAULTSUSER

Your application can use this call to ascertain the default user for any iRMX 1T job.

Basic I/O User’s Guide

NAMED FILES

3.6.3 Default Prefixes

Two calls pertain to default prefixes, and neither of these calls pertains directly to data
files or directory files. The calls are:

« SETIDEFAULTSPREFIX

Your application can use this call to set the default prefix for any iRMX 1T job.
+ GETSDEFAULTS$PREFIX

Your application can use this call to ascertain the default prefix for any iRMX II job.

3.6.4 Manipulating Data

Eight system calls allow you to manipulate the data in a file. Four apply to both directory
and data files, two apply to data files only, and two are auxiliary calls that aid in the data
manipulation process. The system calls are:

+ ASOPEN

This call applies to both data and directory files. Before your application can use any
other system calls to manipulate file data, the application must open a connection to
the file. This system call is the only way to open a connection.

» ASCLOSE

This call applies to both data and directory files. After your application has finished
manipulating a file, the application can use this system call to close the file connection.
Your application can elect to leave the file open, letting the Basic I/O System close it
when the connection is deleted, but there is an advantage to closing connections when
they are not being used.

This advantage derives from the fact that, when a connection is shared between two or
more applications, some of the applications can place restrictions on the manner of
sharing. For instance, an application can specify sharing with writers only. By closing
connections, your application can improve the likelihood that the connections can be
used by other applications. A connection is not closed until all pending I/O requests
have been handled.

« A3ISEEK

This system call applies to both data and directory files. Whenever your application
reads, writes, or truncates a file, the application must tell the Basic 1/O System the
location in the file where the operation is to take place. To do this, your application
uses the ASSEEK system call to position the file pointer of the file connection. The
ASSEEK system call requires that the file connection be open.

Basic I/0 User's Guide 3-18

NAMED FILES

o ASREAD

This system call applies to both data and directory files. Your application can use this
system call to read file data from the location indicated by the file pointer and place
the data in a memory buffer. Before using this system call, your application ¢an use
the ASSEEK system call to position the file pointer. The ASREAD system call
requires that the file connection be open. It also requires that the segment of memory
to which you copy the data be a writable segment.

The outcome of this system call depends upon whether a data file or a directory is
being read. If your application reads a data file, the application will receive data that
makes up the file. If the application reads from a directory, the application will
receive data that represents the entries of the directory.

Each entry in a directory consists of 16 bytes. The first two bytes contain a 16-bit file
descriptor number corresponding to the file descriptor number associated with the
ASGETSFILESSTATUS system call in the Extended iRMX I Basic 1/0 System Calls
Reference Manual. The remaining 14 bytes are the ASCIH characters making up the
name of the file to which the directory entry points. (A file’s name is the last
component of a path name.) The advantage in using the ASREAD system call to read
a directory is that your application can obtain several entries with one operation.

» ASWRITE

This system call applies only to data files. Your application uses this system call to
copy information from a memory buffer and place it in the file. Before using this call,
the application can use AJSEEK to position the file pointer at the }ocation within the
file to receive the information. The ASWRTTE system call requires that the file
connection be open. It also requires that the segment of memory from which you
copy the data be readable.

« ASTRUNCATE

This system call can be used only on data files. Your application can use this call to
trim information from the end of the file. To do so, the application first must use
A3SEEK 1o position the file pointer at the first byte to be dropped. Then the
application invokes the ASTRUNCATE call to drop the specified byte and any bytes
located after the specificd byte. The ASTRUNCATE system call requires that the file
connection be open.

s WAITSIO

Your application can use this system call after calling ASREAD, ASWRITE, or
ASSEEK to receive the concurrent condition code of the prior system call. WAIT$IO
can also return the number of bytes read or written.

3-16 Basic I/O User’s Guide

NAMED FILES

« ASUPDATE

This system call forces the Basic I/O System to transfer data remaining in internal
butfers immediately to the files on a device. Your application can use this system call
to ensure that all files on removable volumes (such as diskettes) are updated before
the operator removes the volume.

3.6.5 Obtaining Status

‘there are two status-related system calls, one for connections and one for files. The calls

are ASGETSFILESSTATUS and ASGET$SCONNECTIONS$STATUS. Both of these calls
can be used with data files and directory files.

3.6.6 Reading Directory Entries

There are two system calls that your application can use to read entries from a directory.
The ASREAD system call (which can also be used to read a data tile) was discussed
earlier, under the heading "Manipulating Data." The second system call is
ASGETSDIRECTORY$ENTRY. This system call can be used only on directory files,

and can be used without opening a connection,

3.6.7 Deleting and Renaming Files

The Basic I/O System provides one system call for deleting files and another for renaming
files. Both of these calls can be used with data files and directory files. The calls are:

+« ASDELETESFILE

Your application can use this system call to delete data files and directory files.
ITowever, any attempt to delete a directory that is not empty will result in an
exceptional condition.

‘The process of deleting a tile involves two stages. First, the application must call
AIDELETESFILE. This causes the file to be marked for deletion. The second stage,
which is performed by the Basic 1/O System, involves deciding when to delete the file.
The Basic [/O System deletes marked files only after all connections to the file have
been deleted. Refer to the ASDELETESCONNECTION system call to see how to
delete connections.

o ASRENAMESFILE

Your application can use this system call to rename both data files and directory files.
In renaming a file, your application can move the file to any directory in the same
named file tree. For example, you can rename A/B/C to be A/X/C. In effect, this
example simply moves File C from Directory B to Directory X. This means that your
application can change every component of a file’s path name.

Basic 1/0 User’s Guide 3-17

NAMED FILES

3.6.8 Changing Access

The Basic [/O System provides one system call to let your application change a file’s
access list. This call is ASCHANGESACCESS, and it applies to both data files and
directories. One rule governs the use of ASCHANGE$ACCESS--only the owner of a file
or a user with change entry access to the directory containing the file can change the file’s
access list.

3.6.9 ldentifying a File’s Name

The Basic I/O System provides a system call to let your application find out the [ast
component of a file’s path name when the application has a connection to the file. The
system call is ASGETSPATHSCOMPONENT, and you can use it on data files and
directories. For an explanation of how you can use this system call repeatedly to obtain
the entire path name for a file, see the description of this system call in the Extended
{RMX IT Basic 1/0O System Culls Reference Manual,

3.6.10 Manipulating Extension Data

When you format a volume to accommodate named files, you have the option of allowing
each file to include extension data, The Basic 1/O System provides two system calls that
allow you to get and set extension data. These calls apply to both data and directory files.

+ ASSETSEXTENSIONSDATA

This call provides a means of writing extension data. ASSETSEXTENSIONSDATA
can be used even if the file connection is not open.

*» ASGETSEXTENSIONSDATA

This call provides a means of reading extension data. ASGET$EXTENSIONSDATA
can be used even if the file connection is not open.

3.6.11 Detecting Changes in Device Status

The Basic I/O System provides the ASSPECIAL system call to allow your application to
detect a change in the status of the device containing your named file tree. Specifically,
your application can use the "notify" function of the ASSPECIAL system call to establish a
mechanism for finding out if the device ceases to be ready. For more information, refer
to the ASSPECIAL section of the Extended iRMX II Basic I/O System Calls Reference
Manual.

3-18 Basic I/O User’s Guide

NAMED FILES

3.7 ACCESSING THE GLOBAL TIME-OF-DAY CLOCK

The Basic I/O System provides one system call that obtains the time of day from a
battery-powered time-of-day clock {called a global clock), if such a clock is available.
Another system call exists to set the global time-of-day clock. The system calls are

» GETSGLOBALSTIME

This system call returns the date and time value stored in the global time-of-day
system clock.

¢« SETSGLOBALSTIME

This call sets the global date and time values in the global time-of-day clock.

3.8 ACCESSING FILES THROUGH iRMX-NET

The Basic I/O System supports the IRMX NET local area network standard by allowing
you to configure the remote file driver and by providing the ENCRYPT system call. This
system call encrypts passwords as defined by the iRMX-NET local area network
encryption standard.

3.9 CHRONOLOGICAL OVERVIEW OF NAMED FILES

The system calls that can be used with named files cannot be used in arbitrary order. This
section provides you with a sense of how the calls relate to one another.

3.9.1 Most Frequently Used System Calls

Figure 3-3 shows the chronological relationships between the most frequently used Basic
1/O System calls. To use the figure, start with the leftmost box and follow the arrows.
Any path that you can trace is a legitimate sequence of system calls. Keep in mind that
this figure does not represent all possible sequences.

3.9.2 Calls Relating to User Objects

The system calls relating to user objects are completely independent of other Basic I/O
System calls. With one exception, your application must have a user object before it can
use any system call requiring a user object.

Five system calls pertain to user objects. Of the five, GET$SDEFAULT$USER and
CREATESUSER can be invoked at any time. Two others, DELETE$USER and
INSPECTSUSER, can be invoked only after user objects exist. The remaining call,
SET$DEFAULTSUSER requires that both a job and a user ohject exist.

Basic I/O User's Guide 319

NAMED FILES

w] CHEATE . _ _
FILE [i |
L— -
READ
WRITE -} ;
c~1 oPEN el ek | e close | o PERETE connECTION”
— — ! or .
o] TRUNCATE | .
| ATTACH | ./ . J— | - E—
| FILE L o - o ‘{
I
) ¥
. DATA FILES beracH
DEvICE | DIRECTORIES DEVICE
—-, :
: i
: SEEK
CREATE
1 o . -~ OFEM - or - * CLOSE
CHRECTORY] ' AFAD , — J— —
A F .
i | S
R - ST+ DELETE DELETE | 4
\) FILE " JCONNECTICN
—1
: [-l GET L — : |_\ ;
“F‘rleCH - DIHEC TORY —_
. ENTRY

s

ERIVL

Figure 3-3. Chronology of Frequently Used System Calls for Named Files

3.9.3 Calis Relating to Prefixes

The GETSDEFAULTSPREFTX system call can be invoked whenever a job exists, The
SET$DEFAULTSPREFIX, however, requires both 4 job and a user object.

3.9.4 Calls Relating to Status
Both of the status-related system calls, ASGET$FILE$STATUS and

ASGETSCONNECTIONSSTATUS, can be invoked whenever your application has a file
connection.

3.9.5 Calls Relating to Changing Access

The only system call related to changing access, ASCHANGESACCESS, can be invoked
whenever your application has both a user ubject and a path or connection to a file.

3-20 Basic I/0 User’s Guide

NAMED FILES

3.9.6 Calls for Monitoring Device Readiness

There is only one system call that lets your application monitor the readiness of a device,
the AJSPECIAL system call. Your application can use the "notify" function of this call
any time after your application has obtained a device connection.

3.9.7 Calls Relating to Extension Data

The two system calls relating to extension data, ASGETSEXTENSIONS$DATA and
ASSETSEXTENSIONSDATA, can be invoked whenever your application has a
connection to a file.

3.9.8 Calls for Renaming Files

The one call for renaming a file, AFRENAMESFILE, can be used whenever your
application has a connection to the file to be renamed, a user object, and a path that is to
become the new pathname.

3.9.9 Calls for Identifying File Names

There is only one system call for finding out a file’s name,
ASGETSPATHSCOMPONENT. Your application can use this call whenever the
application has a connection to the file.

3.9.10 Calls for iRMX-NET

The BIOS system call ENCRYPT encrypts a password to enable remote file access
through iRMX NET. You must use this call to encrypt a password. The ENCRYPT
system call can also be used by any application that needs to perform password
encryption. Password decryption is not supported.

Basic T/0 User’s Guide 3-21

" CHAPTER4
PHYSICAL FILES -

4.1 INTRODUCTION

The Basic /O System provides physical files to allow your applications to read (or write)
strings of bytes from {or to) a device. A physical file occupies an entire device, and the

Basic 1/O System provides your applications with the ability to capitalize on the physical
characteristics of the device.

4.2 SITUATIONS REQUIRING PHYSICAL FILES

The close relationship between a device and a physical file is particularly useful when your
application uses sequential devices. For example, you should use physical files to
communicate with line printers, display tubes, plotters, magnetic tape units, and robots.

There are even some instances where you should use physical files to communicate with
random devices such as disks, diskettes, and bubble memories. For instance
+ Formatting Volumes

Whenever you create an application to format a disk or diskette, the application must
have access to every byte on the volume, Only physical files provide this kind of
access,

* Volumes in Formats Required by Other Systems

It your application must read or write volumes that have been formatted for systems
other than the Basic I/O System, you must use physical files. Your application will
have to interpret such information as labels and file structures. A physical file can
provide your application with access to the raw information.

¢ Implementing Your Own File Format

Suppose that your application requires a less sophisticared file structure than that
provided by IRMX II named files. You can build a custom file structure using a
physical file as a foundation.

Basic I/O User’s Guide 4-1

PHYSICAL FILES

4.3 CONNECTIONS AND PHYSICAL FILES

Although there is a one-to-one correspondence between the bytes on a device and the
bytes of a physical file, the device connection is different than the file connection. The
Basic 1/O System maintains this distinction to remain consistent with named files and
stream files. This consistency helps you develop applications that can use any kind of file.

4.4 USING PHYSICAL FILES

Several system calls can be used with physical files, but the order in which they are used is
not arbitrary. The following list provides a brief description (in chronological order) of
what an application must do to use a physical file.

1. Obtain a device connection.

Your application must call ASPHYSICALSATTACHSDEVICE to obtain a device
connection for the device. This needs to be done only once for each device and is
necessary for two reasons. When your application creates the physical file, the
device connection tells the Basic 1/O System which device is to contain the file and
also that the file must be a physical file.

2. Obtain a file connection.

If your application knows that the file has not yet been created, it should use the
ASCREATESFILE system call to obtain a file connection. This will work even if the
physical file has already been created. Use the token of the device connection as the
PREFIX parameter to tell the Basic [/O System which device you want as your
physical file.

If, on the other hand, your application is certain that the file has already been
created, use the ASATTACHSFILE system call to obtain the file connection. To do
this, your application can use either the device connection for the device or an
existing file connection to the file as the PREFIX parameter in the system call.

This carefu] distinction between the ASCREATESFILE and the
ASATTACHSFILE system calls is necessary to be consistent with named files. If
you want your application to work with any kind of file, you must maintain this
consistency.

3. Open the file connection.

Use the AYOPEN system call to apen the connection. When opening the
connection, your application must specity how the file can be shared and how the
application uses the connection.

4-2 Basic I/O System User’s Guide

PHYSICAL FILES

4. Manipulate the file.

Four system calls can be used to read, write, or otherwise manipulate your physical
file:
+ The ASREAD and ASWRITE system calls can be used to read from the device
and write ta the device, respectively.

» The ASSEEK system call can be used to manipulate the file connection’s file
pointer if the device is a random device such as disk, diskette, or bubble.

» The ASJSPECIAL system call can be used to request device-dependent functions
from the device driver. The precise nature of these functions depends upon the
kind of device and the number of special functions supported by the device
driver. Be aware that use of special functions can prevent an application from
being device-independent.

5 Close the file connection,

Use the AJCLOSE system call to close the connection. This is particularly
important if the share mode of the connection restricts the use of the file through
other connections. Note that your application can repeat steps 2, 3, and 4 any
number of times.

6. Delete the file connection,

Use the ASDELETE$CONNECTION system call to delete the file connection.
This 1s only necessary if your application is completely finished using the file.

7. Request that the device be detached.

Invoke the ASPHYSICALSDETACHS$DEVICE system call to let the Operating
System know when your application is finished using the device. The Operating
System keeps track of the number of applications using the device and avoids
detaching it until it is no longer being used by any application. Only then does the
Operating System actually detach the device.

All of these system calls are described in the Extended iRMX I Basic I/0 System Calls
Reference Manual.

Basic /O User’s Guide 4-3

CHAPTER 5

5.1 INTRODUCTION

Stream files provide a means for one task to send large amounts of information to
another task. Be aware that this is one of several techniques for job-to-job
communication. If you are not familiar with other techniques, refer to the Extended
IRMX H Programming Technigues Manual.

The aspect of stream files that makes them very useful is that they allow a task to
communicate with a second task as though the second task were a device. This extends
the notion of device independence to include tasks.

Because two tasks are involved in using each stream file, each task must perform one half
of a protocol. There are several protocols that work, but the following one is typical and
serves as a good illustration. Note that the two halves of the protocol can be performed in
either order or concurrently.

5.2 ACTIONS REQUIRED OF THE WRITING TASK

The writing task must perform seven steps in its half of the protocol to ensure that it has
established communication with the reading task. The steps are

1. Obtain a connection to the stream file device.

Although stream files do not actually require a physical device, your application must
call ASPHYSICALSATTACHSDEVICE to obtain a device connection before
creating a stream file. This is necessary because, when your application invokes the
ASCREATESFILE system call, the device connection tells the Basic /O System
what kind of file to create.

The ASPHYSICALSATTACHS$DEVICE system call requires a parameter that
identifies the device to be attached. For stream files, there is only one device, and its
name is specified during the process of configuring the system. Intel recommends
the name "STREAM?", but it is possible that the person responsible for configuring
your system changed this name. For the remainder of this discussion, this manual
assumes that the name of your system’s stream file device is "STREAM™.

Basic I/O User’s Guide

STREAM FILES

As with other devices, "STREAM" cannot be multiply attached, so the system
program should be written so as to call ASPHYSICALSATTACHS$DEVICE only
once. The program can then save the device connection and pass it to any
application program that requests it.

2. Create the stream file.

Use the AJSCREATESFILE system call with the device connection to create the
stream file and obtain a token for a file connection to the stream file. Use the token
for the device connection as the PREFIX parameter, in order to tell the Basic I/0O
System to create a stream file.

3. Pass the file connection to the reading task.

There are several ways of doing this, including the use of object directories and
mailboxes. For explicit instructions, refer to the Extended iRMX II Programming
Techniques Manual.

4. Open the file for writing.

Use the ASOPEN system call to open the file connection for writing. Set the
CONNECTION parameter equal to the token for the file connection; set the MODE
parameter for writing; and set the SHARE parameter for sharing only with readers.

5. Write information to the stream filc.

Use the ASWRITE system call as often as needed to write information to the stream
fite. Use the token for the file connection as the CONNECTION parameter.

The Basic I/O System uses the concurrent part of the ASWRITE system call to
synchronize the writing and reading tasks on a call-by-call basis. The Basic 1/0
System does this by sending a response to each invocation of ASWRITE only after
the reading task has finished reading all information that was written by the
ASWRITE call.

6, Close the connection.

When finished writing to the stream file, use the ASCLOSE system call to close the
connection. Note that after this step, the writing task can repeat steps 4, 5, and 6 as
many times as needed.

7. Delete the connection.
Use the ASDELETE$CONNECTION system call to delete the connection to the
stream file.

All of these system calls are described in the Extended iRMX IT Basic 1/0 System Calls
Reference Manual,

5.2 Basic I/O User’s Guide

STREAM FILES

5.3 ACTIONS REQUIRED OF THE READING TASK

The reading task must perform the following six steps in its half of the protocol to
successfully read the information written by the writing task.

1.

Get the file connection for the stream file.5-;

The technique used to accompiish this depends on how the writing task passed the
file connection.

Create a second file connection for the stream file.

There are two reasons for doing this. First, the reading task must have a different
file pointer than that of the writing task. Second, the Basic I/O System rejects any
connections created in one job but used by another to manipulate a file.

Obtain this new connection by using the ASATTACHSFILE system call. Set the
PREFIX parameter to the taken for the original file connection.

NOTE

The reading task can also use the ASCREATESFILE system call to obtain
the new connection to the same stream file. The reason for this is that the
Basic I/O System examines the nature of the PREFIX parameter in the
ASCREATESFILE system call. If the value provided is a device
connection, the Basic I/O System will create a new file and return a
connection for it. On the other hand, if the value provided is a file
connection, the Basic I/O System will just create another connection to the
same file.

This careful distinction between the ASCREATESFILE and the
ASATTACHSFILE system calls is necessary to be consistent with named
and physical files. If you want your application to work with any kind of
file, you must maintain this consistency.

Open the new file connection for reading.

Use the ASOPEN system call to open the connection for reading. Set the
CONNECTION parameter egual to the token for the new connection. Set the
MODE parameter for reading, and set the SHARE parameter for sharing with all
connections to the file.

Commence reading.

Use the ASREAD system call to read the file until reading is no longer necessary or
until an end-of-fite condition is detected by the Basic I/O System.

Close the new file connection.

Use the ASCLOSE system call to close the new file connection. Note that after this
step, the reading task can repeat steps 3, 4, and 5 as many times as needed.

Basic I/O User’s Guide 5-3

STREAM FILES

6. Delete the new file connection.

Use the ASDELETESCONNECTION system call to delete the new connection to
the stream file. The writing task deletes the old connection, and, as soon as both
connections have been deleted, the Basic I/O System deletes the stream file.

All of these system calls are described in the Extended iRMX I1 Basic 1/O System Calls
Reference Manual.

5-4 Basic I/O User’s Guide

6.1 INTRODUCTION

This chapter provides you with background information on the system calls of the Basic

I/O System. For detailed information on system call parameters, refer to the Extended
iRMX II Basic 1/0 System Calls Reference Manual.

BIOS system calls can be divided into two categories according to their names. The first
category consists of system calls having names of the form

ROSXXXXX

where XXXXX is a brief description of what the system call does. The second category
consists of system calls having names of the form

ROJAIXXXXX

System calls of the first category, without the A, are synchronous calls. They begin
running as soon as your application invokes them, and continue running until they detect
an error or accomplish everything they must do. Then they return control to your
application. In other words, synchronous calls act like subroutines.

System calls of the second category (those with the A) are called asynchronous because
they accomplish their objectives by using tasks that run concurrently with your application.
This allows your application to accomplish some work while the Basic /O System deals
with devices such as disk drives and tape drives.

6.2 SYNCHRONOUS SYSTEM CALLS

The following paragraphs explain properties of certain input parameters to synchronous
Basic I/O System calls.

Basic I/0 User’s Guide

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

6.2.1 User Parameter

This parameter is specified in many synchronous system calls (and in some asynchronous
ones as well). It contains a token designating the caller’s uscr object. A

SELECTORSOF(NIL) specification designates the default user. The Basic I/O System
ignores this parameter for physical and stream files.

6.2.2 File-Path Parameter(s) for Named Files

Named files are designated in system calls by specifying their path, that is, their prefix and
subpath. The prefix parameter can be a token designating an existing device connection
or file connection. If this parameter is SELECTORSOF(NIL), the default prefix for the
calling task’s job is assumed.

For named files, the subpath parameter is a pointer to an ASCII string. The form of this
string I8 described in the following paragraph. The subpath can also be NIL or can point
to a null string, in which case a prefix indicates the desired connection. For physical and
stream files, the subpath parameter is always ignored.

NOTE

A file connection that was obtained in one job cannot be used as a
connection by another job. However, a file connection can be used as a
prefix by other jobs in any call requiring prefix and subpath parameters,
(The only exceptions to this rule are that the other jobs cannot use the
connection as a prefix while specifying a null subpath in calls to
ASCHANGESACCESS or ASDELETESFILE.) This means that a file
connection can be passed to another job and the other job can obtain its
own connection to the same file by calling ASATTACHSFILE, with the
passed file connection being used as the prefix parameter in the call.

6-2 Basic 1/0 User’s Guide

SYNCHRONOUS AND ASYNCHRONQOUS SYSTEM CALLS

System culls referring to named files can specify paths in the following forms:

Prefix Subpath Designated Connection

1] a pointer Connection whose token
to a null string is the default prefix.

0 Pointer to ASCIT string defines a
ASCII string path from the connection

whose token is the
default prefix to the
target connection.

token a pointer Connectian whose token
to a null string is contained in the prefix.
token Pointer to Prefix parameter
ASCII string contains a token for a

connection. ASCII string
defines a path from that
connection to the target
connection.

The subpath ASCIT string is a list of file names separated by slashes, terminating with the
desired file. A file name can be 1-14 ASCII characters, including any printable ASCIT
character except the slash (/) and up-arrow () or circumflex (*). In Figure 6-1, for
example, if the prefix is the token for directory OBSTETRICS and we wish to reference
tile OUT-PATIENT, the subpath parameter must point to the string

DELIVERY/POST-PARTUM/OUT-PATIENT

If the ASCII string begins with a sfash, the prefix mercly designates the tree and the
subpath is assumed to start at the root directory of the tree associated with the prefix.
For example, if the prefix designates directory GYNECOLOGY in Figure 6-1, the
subpath to OUT-PATIENT is

/OBSTETRICS/DELIVERY/POST-PARTUM/OUT-PATIENT

Named files can also be addressed relative to other files in the tree, using "t"or "/"as a
path component. (These two symbols have the same meaning. Seme terminals do not
have the up-arrow key.) The "t" or "/" refers 10 the parent directory of the current file in
the path scan. For example, now that we have a connection to QUT-PATIENT in Figure
6-1, we can use that connection to specify a subpath to IN-PATIENT. With the token for
the OUT-PATIENT connection as our prefix, the subpath string would be

/IN-PATIENT

Basic I/O User’s Guide 6-3

SYNCHRONOUS AND ASYNCHRONOQUS SYSTEM CALLS

Note that no slash follows the "/" in this example.

Of course an even simpler approach would be to designate directory POST-PARTUM as
the prefix, in which case the ASCII string becomes

IN-PATIENT

NOTE

The Basic [/O System does not distinguish between uppercase and
lowercase characters in subpaths. For example, the subpath "xyz" is
equivalent to the subpath "XYZ".

6.2.3 Response Mailbox Parameter

6-4

This parameter is specified only in asynchronous system calls. It contains a token
designating the mailbox that is to receive the result of the call. This information is
provided by tasks to synchronize parallel operations. To receive the result of the call, a
task must either call RECEIVESMESSAGE and wait at the designated mailbox or call
WAITSIO. Be aware that if several calls share the same mailbox, the results may be
received out of order.

Muost asynchronous system calls return only an 1/O result segment to the response
mailbox. This segment contains an exception code and other information about the
operation. Appendix C describes the 1/O result segment. Other system calls--
ASATTACHSFILE, ASCREATE$DIRECTORY, ASCREATESFILE, and
ASPHYSICAISATTACHSDEVICE--return to the mailbox a token for a connection if
the system call performs successfully or an 1/O result segment otherwise. After calling
RECEIVESMESSAGE to obtain the result of one of these system calls, a task should
perform a GETSTYPE system call to ascertain the type of object returned to the response
mailbox. The Extended iRMX II Nucleus User’s Guide describes GET$STYPE in detail.

NOTE

[/O result segments should be deleted when they are no longer needed.
They remain in memory until deleted.

Basic I/O User’s Guide

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

Q8STETRICS

GYNECOLOGY

—

!

f

L

PRENATAL ——‘
DELIVERY

ROOT
DIRECTORY

-— IN-LABOR
POST-PARTUM —_—

Y
— IN-PATIENT

CUT-PATIENT |——-

EMPTY
DIRECTORY
EMPTY
DIRECTORY
®-303

Figure 6-1. Sample Named File Tree

Basic I/O User’s Guide

6-5

SYNCHRONOUS AND ASYNCHRONOQOUS SYSTEM CALLS

6.2.4 1/0 Buffers

The ASREAD and ASWRITE system calls each require a buffer to read from or write to
while performing I/O. When you create these buffers, bear in mind the following
restrictions:

» The memory segments used for the I/O buffers must have the appropriate access
rights. For example, if you are going to read data from an I/O device and place it into
a buffer, the memory segment must have write access. Likewise, if you are going to
take data from a buffer and write it to an I/O device, the memory segment must have
read access.

» Once the 1/O operation has been invoked, the tasks of your application should avoid
changing the contents of the buffer until the Basic I/O System finishes the operation.

o Ifyou use an iRMX II segment as a buffer, be sure that the buffer is not deleted while
an I/O operation is in progress.

o If you choose to use an iRMX II segment as a buffer, you must ensure that the
segment is in the same job as the task performing the I/O operation. Using segments
from one job as buffers for 1/0 operations in a different job can lead to a problem.
For instance, suppose that Job A owns an iRMX H segment, and that Job B uses this
segment as a buffer for I/O. If Job A is deleted, the iIRMX H Operating System
automatically deletes the butfer even if Job B has 1/O in progress.

Note that the problem of unintentional deletion of objects shared between jobs exists
for all objects when the job that owns the object is deleted.

6.3 ASYNCHRONOQUS SYSTEM CALLS

6-6

Each asynchronous system call has two parts--one sequential, and one concurrent. As you
read the descriptions of the two parts, refer to Figure 6-2 to see how the parts rclate.

» the sequential part

The sequential part behaves in much the same way that fully synchronous system calls
do. Its purpose is to verify parameters, check conditions, and prepare the concurrent
part of the system call. The sequential part then returns control to your application.

« the concurrent part

The concurrent part runs as an iRMX II task. The task is made ready by the
sequential part of the call, and it runs only when the priority-based scheduling of the
iRMX II Operating System gives it the processor.

Basic I/O User’s Guide

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

The reason for splitting the asynchronous calls into two parts is performance. The
functions performed by these calls are somewhat time-consuming because they usually
involve mechanical devices. By performing these functions concurrently with other work,
the Basic I/O System allows your application to run while the Basic I/O System waits for
the mechanical devices to respond to your application’s request.

Let’s look at a brief example showing how your application can use asynchronous calls.
Suppose your application requires some information that is stored on disk. The
application issues the ASREAD system call to have the Basic I/O System read the
information into memory. Let’s trace the action one step at a time:

1. Your application issues the ASREAD system call. This call requires, as do all
asynchronous calls, that your application specify a response mailbox for
communication with the concurrent part of the system call.

2. The sequential part of the ASREAD call begins to run. This part checks the
parameters for validity.

3. If the sequential part of the call detects a problem, it signals an exception and returns
control to your application. It does not make ready the Basic I/O System task to
perform the reading function.

4. Your application receives control. Its actions at this point depend on the condition
code returned by the sequential part of the system call. Therefore, the application
tests the condition code. If the code is ESOK, the application continues running
until it must have the informatjon from the disk. It is at this point that your
application can take advantage of the asynchronous and concurrent behavior of the
Basic 1/O System.

For example, your application can implement double (or multiple) buffering by
issuing another (or several) ASREAD system call(s) while waiting for the first call to
finish running. Alternatively, your application can use this overlapping processing to
perform computations. The point is that you can decide what you want your
application to do while the asynchronous system call is running,

On the other hand, if your application finds that the condition code returned from
the sequential part of the system call is other than ESOK, the application can assume
that the Basic I/O System did not make ready a task to perform the function.

For the balance of this example, we will assume that the sequential part of the system
call returned an E$OK condition code.

Bagsic I/0O User’s Guide 6-7

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

APPLICATION CCDRF

QG SYSTEM COOE

INYOKE - TEST FOR
ASREAD sl VALIDITY
TES MAKE | O
TASK READY
NO I
RETURNM WITH
EXCERTION P
CODE
EXAMINE i — —
EXCFPTION
CODE | 7
RETUAN WITH i
Es0K - — o ed
|
N DO ERAACH
ESOK PROCESSING *
10 TASK
es PERFORMS
! l
Do
CONCURRENT Y
PAGCESSING nUT STATLS
OF OPERATION
IN MESSAGE
Y
RECEIVES
MESSAGE FAOM Y

RESPONSE MAILBOX

T
Y

EXAMINE

STATUS

MO

D& EAAGA
PROCESSING

YES

GET DaTA
FROM

BUFFER

SEND MESSAGE
TO RESPONSE
MAILBOX

v

AWAIT NEXT
| O REQWEST FOR
THIS CONNECTION

Figure 6-2. Concurrent Behavior of an Asynchroneus System Call

Basic I/O User’s Guide

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

5. Your application now must have the information. Before taking the information
from the buffer, your application must verify that the concurrent part of the
ASREAD system call ran successfully. There are two ways in which the task can do
this. One way is for the application to issue a RECEIVE$MESSAGE system call to
check the response mailbox that the application specified when it invoked the
ASREAD system call. The other way (which can be used only after a call to
ASREAD, ASWRITE, or A$SEEK) is for the application to issue a WAIT$IO
system call, in which it passes a token for the response mailbox and receives the
concurrent condition code directly.

By using the RECEIVESMESSAGE system call, the application obtains a segment
that contains, among other things, a condition code for the concurrent part of the
ASREAD system call. If this condition code is ESOK, then the reading operation
was successful, and the application can get the data from the buffer. On the other
hand, if the code is not ESOK, the application should analyze the code and attempt
to ascertain why the reading operation was not successful.

By using the WAITSIO system call, the application receives directly the condition
code for the concurrent part of the ASREAD system call. The application also
receives directly another value. If the concurrent condition code for ASREAD is
E$OK. then this other value is the number of bytes successfully read; otherwise, this
other value has no significance.

In the foregoing example, we used a specific system call (ASREAD) to show how
asynchronous calls allow your application to run concurrently with 1/O operations. Now
let’s look at some generalities about asynchronous calls,

» All asynchronous system calls consist of two parts--one sequential and one concurrent.
The Basic [/O System will activate the concurrent part only if the sequential part runs
successfully (returns E$OK).

» Every asynchronous system call allows your application to designate a response
matbox through which the application receives the result of the concurrent part of the
system call.

» Whenever the sequential part of an asynchronous system call returns a condition code
other than ESOK, your application should not attempt to receive a message from the
respanse mailbox, nor should it call WATT$IO. There can be no further information
for the application because the Basic 1/O System cannot run the concurrent part of
the system call.

» Whenever the sequential part of an asynchronous system call runs successfully
(ESOK), your application ¢an count on the Basic I/O System running the concurrent
part of the system call. Your application can take advantage of the concurrency by
doing some processing before receiving the message from the response mailbox or

before calling WAITSIO.

Basic I/O User’s Guide 6-9

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

* Whenever the concurrent part of a system call runs, the Basic I/O System signals its
completion by sending an object to the response mailbox., The precise nature of the
object depends upon which system call your application invoked. You can find out
what Kind of object comes back from a particular system call by looking up the call in
the Extended iRMX I Basic I/0O System Calls Reference Manual. 1f more than one type
of object can be returned, your application can ascertain the type of the returned
object by calling GETSTYPE.

» Whenever the Basic I/O System returns a segment to your application’s response
mailbox and the application calls RECEIVESMESSAGE to obtain information from
that segment, the application should delete the segment when the segment is no
longer needed. The Basic 1/O System draws memory for such segments from the
memory pool of the calling task’s job, so il the application fails to delete such
segments, large amounts of memory are wasted on unneeded segments.

» 1t your application calls WAIT$IO to obtain the results of a call to ASREAD,
ASWRITE, or A$SEEK, the application does not have access to the 1/O result
segment and therefore cannot delete it. While this seems to be a problem at first
glance, it is actually an advantage. It enables the Basic /O System to maintain a
supply of I/O result scgments that it can use repeatedly, instead of creating a separate
I/O result segment for each ASREAD, ASWRITE, or ASSEEK. Because most I/O-
related operations are reads, writes, or seeks, this means a significant performance
enhancement for your application,

6.4 CONDITION CODES

The Basic I/O System returns a condition code when a system call is invoked. If the call
exceutes without error, the Basic 1/O System returns the code "E$OK." If an error is
encountered, some other code is returned.

For those system calls that do not require a response mailbox parameter, the Basic I/O
System returns the condition code to the word pointed to by the except$ptr parameter. If
an exceptional condition occurs, the Basic I/O System can then either return control to
the calling task or pass control to an exception handler. See the Extended iRMX IT
Nucleus User’s Guide for a detailed description of exception handling.

For those system calls that do require a response mailbox parameter (the asynchronous
calls), the Basic I/O System returns a condition code for the sequential portion of the call
to the word pointed to by the except$ptr parameter and a condition code for the
concurrent portion of the call to the status field of the I/O result segment (see Appendix
C). If a sequential exceptional condition occurs, the Basic 1/O System either returns
control to the calling task or passes control to an exception handler. [t does not process
the asynchronous portion of the call. If a concurrent exceptional condition occurs, the
calling task must signal the exception handier or process the exceptional condition in line.

6-10 Basic I/0 User’s Guide

7.1 INTRODUCTION

The Basic I/O System is a configurable layer of the iRMX II Operating System. It
contains several options that you can adjust to meet your specific needs. To help you
make configuration choices, Intel provides three kinds of information:

» A list of configurable options

» Detailed information about the options

« Procedures to allow you to specify your choices

The balance of this chapter provides the first category of information. To obtain the

second and third categories of information, refer to the Extended iRMX I1 Interactive
Configuration Utility Reference Manual.

7.2 BASIC |/O SYSTEM CALLS

You can select the timers, clocks, and drivers required by your application. The
advantage in being able to do this is that you can reduce the amount of Basic I/O System
code needed to support your application. With the Interactive Configuration Utility
(ICU), you can exclude entire file drivers, such as the stream file driver.,

7.3 INTEL I/O DEVICES

You must specify which Tntel I/O devices (controllers) are part of your hardware
configuration. The devices that you can specify are listed in the Extended iRMX II
Interactive Configuration Utility Reference Manual.

For each device that you select, you must specify a name, physical characteristics, and
desired operating modes.

7.4 BUFFERS

For each device, you must specify the number of buffers that the Basic I/O System is to
manage during {/O operations on that device.

Basic 1/0 User’s Guide

CONFIGURING THE BASIC I/O SYSTEM

7.5 TIMING FACILITIES

You must specify whether you want your system to include the timing facilities related to
the SET$TIME, SETSGLOBALSTIME, GET$TIME, and GET$GLOBALSTIME system
calls.

7.6 SERVICE TASK PRIORITIES

You must specify the priorities of the Basic I/O System tasks that attach devices and
delete connections.

7.7 CREATING A FILE WITH AN EXISTING PATHNAME

Occasionally, a task will call ASCREATESFILE, specifying a pathname that is identical to
the pathname of a file that already exists. The Basic [/0 System provides a configuration
parameter (called NO CREATE FILE) that enables you to specify what should happen in
this case.

If NO CREATE FILE is selected, a call to ASCREATESFILE will return the exception
code ESFEXIST, regardiess of the value of the must§create parameter in the call.

It NO CREATE FILE is not selected, then what happens depends upon the value of the
must$create parameter in the call to ASCREATESFILE. If must$create is true (OFFH),
then the Basic I/O System returns the ESFEXIST exception code. Tf must$create is false
(0, then the existing file is truncated or expanded, according to the size parameter in the
call to ASCREATESFILE.

7.8 SYSTEM MANAGER ID

You must specify whether you want a system manager (user).

7.9 SYSTEM INITIALIZATION ERROR REPORTING

During the configuration process, you can elect to have the system report BIOS
initialization errors. If you configure System Initialization Error Reporting (SIER) into
your application system when you configure the Nucleus, the Operating System reports
initialization errors from all layers of the Operating System. On encountering a BIOS
initialization error, it gives control Lo the monitor after writing the following message to
the monitor console:

7-2 Basic I/O User’s Guide

CONFIGURING THE BASIC I/0O SYSTEM

BIOS Initialization Error:

If System Initialization Error Reporting is not configured into the system, the original
BIOS initialization task places the BIOS ID code (2) and the corresponding error code
into the first two words of the Nucleus data segment (1E0:0000H). If no monitor is
configured, it then goes into an infinite error loap.

7.10 FACTORS AFFECTING BASIC [/O SYSTEM PERFORMANCE

The purpose of this section is to make you aware of the factors that have the greatest
impact on the performance (speed) of the Basic I/O System. Note that you determine
somc of these factors during software configuration, but you determine other factors at
other times. The factors are as follows:

* Device granularity, which is the smallest number of bytes that can be read from or
written to a device in a single I/0 operation. If this value is selectable, you determine
it either by jumpering hardware or by means of software, depending upon the device.

* Volume granularity, which is the smallest number of contiguous bytes that can be
allocated from a volume in a single allocation. This value can vary from volume to
volume and must be a multiple of the device granularity. You specify it when
formatting the volume with the FORMAT command of the Human Interface.

» File granularity, which is the smallest number of bytes that can be allocated to a file in
a single allocation. This value can vary from file to file and must be a multiple of the

volume granularity. You specify each file’s granularity when creating the file with the
ASCREATESFILE system call.

+ The number of buffers for each device-unit. You specify this value when configuring
the Basic I/O System.

+ The number of bytes to be read or written. You specify this value in calls to ASREAD
and ASWRITE.

+ The amount of time between updates performed by the fixed update and timeout
update features. You specify these time intervals when configuring the Basic I/O
System. These two kinds of updating are explained in the Extended iRMX II Basic 1/0
System Calls Reference Manual in the description of the ASUPDATE system call.

For best results with these factors, you should begin by using your best judgment. Then,
using the resulting performance figures as a base, you can experiment by changing a few
{perhaps only one) factors at a time.

Obtaining the optimum combination of these factors is vital to the performance of any

application of which I/O operations are a major part. Testing system performance with
various combinations can result in a system with higher performance.

Basic I1/0O User’s Guide 7-3

A.1 DATATYPES

The following are the data types that are recognized by the iRMX II Operating System:

BOOLEAN

BYTE
DWORD
INTEGER
OFFSET

POINTER

SELECTOR

STRING

TOKEN

WORD

A BYTE that is considered to have a value of TRUE if it is 0FFH, and
FALSE if it is 00H. In PL/M-286,

DECLARE BOOLEAN LITERALLY 'BYTE’;

An unsigned eight-bit binary number.,

An unsigned four-byte binary number.

A signed two-byte binary number that is stored in two’s complement form.

A WORD whose value represents the distance from the base of an 80286
segment.

Two consecutive WORDs containing the selector of an 80286 segment and
an offset into that segment. The eoffset must be in the word having the
lower address.

An index into a descriptor table that identifies a particular memory
segment. The descriptor table entry lists the segment’s base, limit, type,
and privilege level.

A sequence of consecutive BYTESs. The value contained in the first byte is
the number of bytes that follow it in the string,

A SELECTOR that contains the logical address of an object. The selector
refers Lo an entry in the descriptor table that lists the physical address of
the object. A token must be declared literally a SELECTOR.

An unsigned two-byte binary number.

Basic 1/0 User’s Guide

A-l

B.1 INTRODUCTION

This appendix lists the type codes for all iRMX II objects. In addition, it documents the
amount of memory needed to create Basic I/O System objects.

B.2 OBJECT TYPES

Each iRMX II object type is known within iRMX II systems by means of a numeric code.
Table B-1 lists the types with their codes.

Table B-1. Type Codes

OBJECT TYPE NUMERIC CODE

Job 1

Task 2

Mailbox 3

Semaghore 4

Region 5

Segment 6

Extension 7

Composite 8

User 100

Connaction 101

/0 Job 300

Logical Device 3o

User-Created varies frorm B000H to

Composite OFFFFH depending on the value
specified in CREATESEXTENSION

The first eight objects, plus user-created compasites, are described in the Extended iRMX H
Nucleus ?/ser’s Guide. User and connection object types are described in Chapter 4 of this
manual. 1/0 jobs and logical devices are described in the Extended iRMX II Extended I/0O
Svstem User’s Guide.

Basic I/0O User’s Guide B-1

OBJECT TYPES AND RESOURCE REQUIREMENTS

B.3 RESOURCE REQUIREMENTS

The Basic I/O System obtains memory from the calling job’s memory pool when creating
objects. The values listed here reflect Release 3 of the iRMX IT Operating System.

Object Number of 16-byte paragraphs
required by the Basic I/O System
I/O Result 4 (5 for an internal IORS that the Operating
Segment System creates when attaching a device)
Connection (to 6
named file)
Connection (to 4
physical file)
User object 3 (minimum)

B-2 Basic I/O User’s Guide

 APPENDIXC

C.1 OVERVIEW

Certain asynchronous I/O system calls return a data structure called an I/O Result
Segment to the mailbox specified by the "resp$mbox” parameter. The following system
calls can return such a segment:

ASATTACHSFILE
ASCHANGESACCESS

A3CLOSE
ASCREATESDIRECTORY
ASCREATESFILE
ASDELETESCONNECTION
ASDELETESFILE

AS$OPEN
ASPHYSICALSATTACHSDEVICE
ASPHYSICALSDETACHSDEVICE
ASREAD

ASRENAMESFILE

ASSEEK

AS$SPECIAL

ASTRUNCATE

ASUPDATE

ASWRITE

Four of these system calls (ASATTACHSFILE, ASCREATESDIRECTORY,
ASCREATESFILE, and ASPHYSICALSATTACHSDEVICE) can return either a
connection or an I/O result segment to the mailbox. Your application task can determine
which type of object has been returned by making a GET$TYPE system call before trying
to examine the object.

Before waiting at the response mailbox to receive the 1/O result segment, your application
task should examine the condition code returned in the word pointed to by the
"exceptIptr” parameter. If this code is "E$OK", the task can wait at the mailbox.

However, if the code is not "E$OK", an exceptional condition exists and nothing is sent to
the mailbox.

Basic I/0Q User’s Guide

C-1

1/O RESULT SEGMENT

Immediately after receiving the I/O result segment, the task should examine the status
field. This field contains an "ESOK" if the system call was completed successfully or an
exceptional-condition code if an error occurred. The result segment also contains the
actual number of bytes read or written, if appropriate.

C.2 STRUCTURE OF |/O RESULT SEGMENT

The I/O result segment is structured as follows:

DECLARE iors STRUCTURE (
status WORD,
unitS$status WORD,
actual WORD) ;
where
status Condition code indicating the outcome of the call. Appendix D lists these

asynchronous condition codes.

unit$status The lower four bits of this field contain device-dependent error code
information that is meaningful only if the status is E$IOQ. The codes, their
meanings, and their associated mnemonics are as follows:

Code Mnemonic Meaning
0 IO$UNCLASS An error occurred for which
it was impossible to ascertain
the cause.
1 IO$SOFT Soft error; the I/O system

has retried the operation and
failed; another retry is not

possible.

2 IO$HARD Hard error; a retry is not
possible.

3 [O$OPRINT Operator intervention is
required.

4 IO§WRPROT Write-protected volume,

5 IOSNOSDATA No data on the next tape
record.

C-2 Basic I/0 User’s Guide

Code Mnemonic

6 10$MODE

7 IO$NOSSPARES

8 TIOSALTSAS-

I/0 RESULT SEGMENT

Meaning

A read (or write) was
attempted before the
previvus write (or read)
completed.

An 1/O error occurred
during disk formatting; no
alternate tracks were
available.

An [/O error occurred

SIGNED during disk formatting; an
alternate track was assigned.
actual The actual number of bytes transferred.

The I/O result segment contains other ficlds which are of interest only to the designer of
a device driver. Refer to the Extended iRMX II Device Drivers User’s Guide for
information about the remaining fields in the I/O result segment.

C.3 UNIT STATUS FOR SPECIFIC DEVICES

You may need to know the information contained in the "unit$status” field for the

following devices.

C.3.1 iSBCe214/215G Controller

Under certain circumstances, the iSBC 215 Winchester disk controller and the iSBC 214
diskette, disk, and tape controller place information in the high twelve bits of this word. If
the low four bits indicate TO$SOFT, the controller sets the high twelve bits as follows:

Bit Interpretation

15 (leftmost) 1=seek error

14 1=cylinder address miscompare
13 1=drive fault

12 1=1D field ECC error

11 1=data field ECC error

10-8 unused

7 I =sector not found

6-4 unused

Basic I/0O User’s Guide

1/0 RESULT SEGMENT

C4

On the other hand, if the low four bits indicate IOSHARD, the iSBC 215G and iSBC 214

controllers set the high 12 bits as follows:

Bit Interpretation
15 t=invalid address
14 1 =sector not found
13 I =invalid command
12 1=no index
11 1 =diagnostic fault
10 I =illegal sector size
9 1=end of media
8 1=illegal format type
7 1=seek in progress
6 1=ROM error
5 1=RAM error
4 unused

If you need more detailed information regarding the meaning of these errors, refer to the
ISBC®15 Winchester Disk Controller Hardware Reference Manual or to the iSBC®214 Multi-

Peripheral Controller Hardware Reference Manual,

Basic I/0O User’s Guide

D.1 OVERVIEW

CODE

E$OK

E$TIME

ESMEM

FST.IMIT

ESEXIST
ESNOT$CONFIGURED
ESSUPPORT
ESDEV$OFFSLINE
E$IFDR
E$NOTSFILESCONN
ESNOTSDEVICE$CONN
E$BUFFEREDSCONN
ENOTSAMESDEVICE
ESPATHNAMES$SYNTAX

Basic 1/O User’s Guide

DECIMAL

R = O

46
47
50
51
54
58
62

This appendix lists two types of exception codes. Those detected synchronously with
system call invocation (sequential codes) and those detected during the asynchronous
portion of system call processing (concurrent codes). Exception conditions are further
classified into programmer errors and environmental conditions. A programmer error is
a condition that is preventable by the calling task. An environmental condition is an
exception condition caused by circumstances beyond the control of the calling task. The
sequential codes are returned to the location addressed by the "except$ptr” field of the
system call. The concurrent codes are returned in an I/O result segment (see Appendix
C). This appendix lists all codes with their decimal and hexadecimal equivalents.

D.2 SEQUENTIAL (ENVIRONMENTAL) EXCEPTION CODES

HEXADECIMAL

0H
I
2H
4H
6H
8H
23H
2EH
2FH
32H
33H
36H
3AH
3EH

EXCEPTION CODES

D.3 SEQUENTIAL (PROGRAMMER ERROR) EXCEPTION CODES

CODE

ESTYPE
ESPARAM
ESNOUSER
ESNOPREFIX
ESBADSBUFF

DECIMAL

32770
32772
32801
32802
32803

HEXADECIMAL

8002H
8004H
8021H
8022H
8023H

D.4 CONCURRENT (ENVIRONMENTAL) EXCEPTION CODES

D-2

CODE

E$OK

ESMEM

ESFEXIST

ESFNEXIST

ESDEVFD

ESSUPPORT
ESEMPTYSENTRY
ESDIRSEND

ESFACCESS

ESFTYPE

E$SHARE

E3SPACE

ES$IDDR

E$IO

ESFLUSHING

ESILLVOL
ESDEVSOFFLINE
ESIFDR
ESFRAGMENTATION
ESDIRSNOTSLEMPTY
ESNOTSFILESCONN
ESNOTSDEVICE$SCONN
ESCONNSNOT$OPEN
ESCONNSOPEN
E$BUFFERED$CONN
ESOUTSTANDINGS$CONNS
ESALREADYSATTACHED
E$DEVSDETACHING
ESNOT$SAMESDEVICE
ES$ILLOGICALSRENAME

DECIMAL

0
2
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

HEXADECIMAL

OH
2H
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH

Basic I/0O User’s Guide

EXCEPTION CODES

CODE DECIMAL HEXADECIMAL
E3STREAMSSPECIAL 60 3CH
ESINVALID$FNODE 61 3DH
ESPATHNAMESSYNTAX 62 3EH
ESFNODESLIMIT 63 3FH
ESTOSUNCLASS 80 50H
ESIO$SOFT 81 51H
ESIOSHARD 82 52H
ESIOOPRINT 83 33H
EIOWRPROT 84 S4H
ESIOSNOSDATA 85 55H
E$IOSMODE 86 56H
ESIOSNOJSPARES 87 57H
ESIOSALTSASSIGNED 88 58H

D.5 CONCURRENT (PROGRAMMER ERROR) EXCEPTION CODE
CODE DECIMAL HEXADECIMAL

E$PARAM 32772 8004H

Basic I/O User’s Guide D-3

E.1 LOGICAL DEVICES

You can assign a logical name to any device with the I/O System call
LOGICALSATTACHSDEVICE. This creates a logical device object, (TSLOGSDEV)
and catalogs the object in the root object directory.

Typically, you use these logical device objects with 1/O System calls. However, Basic I/0
System calls also permit the prefix parameter to be a logical device object. When you use
a logical device object as the prefix parameler in Basic I/O System calls, the Basic I/O
System looks inside the logical device object to determine the device connection. In such
cases, you could receive the exception code ESDEVSOFFSLINE. If you r