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PREFACE

The 1979 International Conference on Parallel
Processing is the eighth of a series of annual
meetings initiated in 1972 at Sagamore, N. Y.

A tradition has developed characterizing this
conference: the papers presented are heavily
oriented towards research topics but with a very
pragmatic flavor. Also, the remoteness of the
meeting location and the informal atmosphere have

fostered the spirit of exchange among participants.

We hope to encourage the continuation and
expansion of this excellent tradition. This year
we received a total of 93 papers of which 23 came
from 10 countries other than the U. S. despite
the increasing number of emerging conferences on
closely related topics. In an effort to better
serve the participants we have planned to have
these Proceedings printed and available at the
time of the conference. You will not, therefore,
find the awards for most original paper and best
presentation announced in the following pages,
but the selection will take place at the confer-

ence as usual. For this same reason session chair-

men are not acknowledged at this time. The new
publication schedule has unquestionably imposed
tighter time constraints than ever before on
authors and reviewers alike. To them should go
the credit of the accomplishment and my heartfelt
appreciation for their willing cooperation.

The present program reflects some new and
broader trends towards concurrent computing. It
is illuminating to analyze the changing interests
of the authors. My assessment is .that the empha-
sis has shifted from the hardware organization
features to more conceptual language translator
and algorithmic topics. More attention is given
to the synchronization and control issues in the
languages and models of parallel architectures as
noticed in the first two sessions. I consider
this a very natural and healthy development.
Also, the topics of searching and reconfigurable
systems showed more strength than in the past
when compared to better established subjects such
as performance evaluation, parallel arithmetic
and pipelining. The session on networks for
interconnection promises to be one of the strong-
est ever; some fascinating concepts are presented
on array processors and there are novel results
on special purpose multiprocessor architectures.

Tse Feng comes first in my list of acknowl-
edgments on the organization of this conference
as General Chairman, particularly when I conside
his many other present commitments. He and his
assistants handled the arrangements, publicity
and tentative program printing and distribution.
Next Annette Krygiel has planned a panel sessior
in which practitioners will focus on the most ui
gent problems facing parallel computing. A form
program committee was not appointed and I believ
this contributed to both the spontaneity and
heterogeneous nature of. the papers received. It
did make the task of the Program Chairman more
involved and I would recommend such a committee
for the future on that basis. The difficulties
were ameliorated by a number of reviewers who
contributed well beyond the call of duty in a
variety of circumstances. From the list on 157
reviewers recognized later in these Proceedings,
I would like to particularly thank Tilak Agerwal
Jean-Loup Baer, Bruce Berra, Dave Davis, Mario
Gonzalez, Robert Keller, Willis King, Jack
Lipovski, Mike Liu, Nancy McDonald, Ken Thurber,
Kishor Trivedi, and Dave VanVoorhis, among other
in that category. Also Mariagiovanna Sami and
Chris Vissers publicized enthusiastically our
call for papers in Europe and to them we express
our gratitude.

The presentation by our keynote speaker, Dr
Paul Schneck which is appropriately the only un-
refereed contribution to these Proceedings, sets
the pace for the papers that follow. We appre-
ciate his willingness to accomodate to our sched-
ule and his sharing his views with us.

Last but foremost, I want to acknowledge thc
assistance of the Secretary of our Computer

Science Program at the University of South Florida,

Mrs. Brenda Malowney, who is responsible for the
organization, addressing and copies of more than
600 pieces of mail involving authors, reviewers
and other participants.
We hope that the labors of those involved
may be repaid by your enjoyment of the conference.
. 7. 7
//V/ / 1 [ (B htect
Oscar/N. Garcia
Progfam Chairman
Tampa, Florida ~






TABLE OF CONTENTS

Page
KEYNOTE ADDRESS
Issues in Parallel Computing: A Non-Euclidean Examination 1
Dr. Paul B. Schneck
Office of the Director
NASA/Goddard Space Flight Center
SESSION 1: LANGUAGES AND TRANSLATIONS
High-Speed Multiprocessors and Their Compilers 5
D. J. Kuck and D. A. Padua
Parallel Processing of High-Level Language Programs 17

P. S. Wang and M. T. Liu

v/’A Flow Analysis Procedure for the Translation of High Level Languages to a Data

Flow Langugge 26
S. J. Allan and A. E. Oldehoeft

v An Abstract Implementation for Concurrent Computation with Streams 35
J. B. Dennis and K. K. -S. Weng

V/Translation and Optimization of Data Flow Programs 46
J. D. Brock and L. B. Montz

SESSION 2: MODELS AND ANALYSIS OF PARALLEL COMPUTATION

Limiting Multiprocessor Performance Analysis 55
R. F. Vaughan and M. S. Anastas

An Introduction to the Modelling of Parallel Systems with Dynamic Structure 65
J. C. Wileden

A Generalized Cluster Structure for Large Multi-Microcomputer Systems 74
S. B. Wu and M. T. Liu

Parallel Transition Machines 76
M. S. Anastas and R. F. Vaughan

SESSION 3: PERFORMANCE EVALUATION

Performance Evaluation and Resource Optimization of Multiple SIMD Computer
Organizations 86
K. Hwang and L. M. Ni

Computation Structures Reflected in General Purpose and Special Purpose Multi-
Microprocessor Systems 95
W. Handler, H. Schreiber, and V. Sigmund

Performance Modeling and Evaluation for Hierarchically Organized Multiprocessor
Computer Systems 103
U. Herzog, W. Hoffmann, and W. Kleinoder

Performance Bounds for a Certain Class of Parallel Processing 115
N. L. Soong



TABLE OF CONTENTS (CONT'D)

SESSION 4: ARITHMETIC PROCESSING

A Block-Oriented Sparse Equation Solver for the CRAY-1
D. A. Calahan

VLSI Architectures for Matrix Computations
E. Horowitz

Efficient Function Implementation for Bit-Serial Parallel Processors
A. P. Reeves and J. D. Bruner

A Bit-Slice Multi-Microprocessor System for Range Arithmetic
W. H. Burkhardt

Fast Parallel Biharmonic Semidirect Solvers
M. Vajtersic

SESSION 5: SEARCHING I

A Parallel Microprocessing System
B. C. Desai

Distributed Enumeration on Network Computers
0. I. El-Dessouki and W. H. Huen

The Multisensor Data Correlation and Handover Problem
D. D. Marshall

PANEL SESSION: PROBLEMS SEARCHING FOR A SOLUTION

Chairperson: Annette J. Krygiel, Defense Mapping Agency

SESSION 6: INTERCONNECTION NETWORKS

A Framework for the Study of Permutations and Applications to Memory Processor

Interconnection Networks
D. K. Pradhan and K. L. Kodandapani

On Conflict-Free Permutations in Multi-Stage Interconnection Networks
M. A. Abidi and D. P. Agrawal

The Reverse-Exchange Interconnection Network
C. L. Wu and T. Y. Feng

Partitioning Permutation Networks: The Underlying Theory
H. J. Siegel

LSI Implementation Options for the Shuffle-Exchange Network in a Microprogrammed

SIMD Array
S. Ruhman

vi

Page

116

124

128

134

135

136

137

147

148

159

160

175

185



TABLE OF CONTENTS (CONT'D)

SESSION 7: SYNCHRONIZATION

Scheduling Parallel Processes Without a Common Scheduler
G. Holober and L. Snyder

Modelling of Conflicts, Priority Hierarchies and Reentrancy in Concurrent
Synchronization Structures

K. B. Irani and C. R. Zervos

A Generalized Instrumentation Procedure for Concurrent Pascal Systems
0. G. Johnson

A Demon Language Compiler on a Network for Parallel Control
F. El1-Wailly, P. Greene, J. Putnam, and M. Evens

An Algorithm for the Concurrent Update of Multiple-Copy Databases
M. G. Gouda and R. G. Arnold

SESSION 8: RECONFIGURABLE SYSTEMS

Complexity Measures of Computer Structures
W. Handler and V. Sigmund

Parallel Memory System for a Partitionable SIMD/MIMD Machine
H. J. Siegel, F. Kemmerer and M. Washburn

Adaptable Pipeline System with Dynamic Architecture
S. P. Kartashev and S. I. Kartashev

SESSION 9: ARRAY PROCESSORS

A Comparison of Three Types of Multiprocessor Algorithms
H. F. Jordan, M. Scalabrin and W. Calvert

On the Mapping Problem
S. H. Bokhari

MPP - A Massively Parallel Processor
K. Batcher

SESSION 10: SEARCHING II

Concurrent Search and Insertion in AVL Trees
C. S. Ellis

A Tree Machine for Searching Problems
J. L. Bentley and H. T. Kung

Fast Evaluation of Arbitary Decision Trees
R. H. Kuhn

vii

Page

186

196

205

209

210

211

212

222

231

239

249

250

257

267



TABLE OF CONTENTS (CONT'D)

Page

SESSION 11: RECENT RESULTS

Fault-Diagnosis for a Class of Multistage Interconnection Networks - 269
C. L. Wu and T. Y. Feng

Concurrent Diagnosis in Parallel Systems 279
L. Simoncini and A. D. Friedman

RELACS, A Data Base Computer 287
E. Oliver and P. B. Berra

SESSION 12: SPECIAL PURPOSE ARCHITECTURES

Parallel Recognition of Parabolic and Conic Patterns by BUS Automata 288
J. Rothstein and A. Davis

An Architecture for Parallel Processing of '"Sparse" Data Streams 298
T. Trilling

A Multiprocessor for Continuous System Simulation 306
E. P. 0'Grady

A Modular Multi-Microprocessor Oriented for Real-Time Controls 307
M. Coppo and A. Giordana

SESSION 13: PIPELINING

Solving Banded Triangular Systems on Pipelined Machines 308

D. D. Gajski

A Parallel/Pipeline Multiprocessor Architecture for Solving Systems of Linear
Equations 320
W. C. Liles and J. W. Demmel

Macrocellular Pipelined Multiplying Arrays 321
L. Ciminiera and A. Serra

Modeling Maximum Parallel Executions in Pipeline Executable Form Using Precedence
Expressions 322
B. I. Dervisoglu

LIST OF REFEREES 323
INDEX OF AUTHORS 324
Late Paper 325

viii



ISSUES IN PARALLEL COMPUTING:
A NON-EUCLIDEAN EXAMINATION

Paul B. Schneck
Office of the Director
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

Abstract -- In this talk I will review some
of the identifiable milestones of the evolution
of computers toward what we currently term
parallel systems. A significant observation is
that parallelism has been present in computing
systems from the beginning, but that programmers
did not have to deal with it until recently.

One might even conclude that the difficulties
currently associated with parallel computers
originate with software and programming and not
exclusively with the innovative architectures of
those machines. We will discuss this issue and
explore potential approaches to a solution.

Introduction

I am going to to identify some of the broader
underlying issues relating to parallel processing.
Only after we have identified the appropriate
issues can we begin to make substantial progress
toward their resolution.

As a starting point, let us note that 55
papers will be presented this year, an increase of
more than 25 percent over the 42 papers presented
last year. The magnitude of our parallel process-
ing vector has clearly grown. What about its
orientation? To understand the orientation of
the conference we will classify the papers (some-
what arbitrarily) into one of three possible
subject areas:

We begin by briefly looking at the group of
papers classified as hardware related. The
thrust in this area has shifted somewhat from
geometric considerations to those dealing with
concurrency. The lock-step model for parallel
processing has begun to fade. This year there
are sessions devoted to synchronization and to
serial-by-bit arithmetic. What is the underlying
theme?

In the area of software, the number of
papers has declined, even as the conference has
grown. Where this stems from a reduction to
practice of state-of-the-art software, the field
has grown. But where this is a result of our
inability to cope with facing the problems of
parallel computing, we may be in trouble. The
traditional software work in languages continues.
In fact, there is already talk of standardizing
the language for array processing. The decreased
emphasis in the software area may result from a
lack of either "push" or "pull." A "pull" comes
about in response to requirements for improvements
which can be brought about by software. Surely
there is no lack here. A "push" develops when
new algorithms are available for implementation.
It appears that this is the bottleneck.

hardware, software, and algorithms.

If there has been a bottleneck due to the
lack of availability of algorithms for parallel
processing, then this conference brings reason
to expect an end to that situation. The growth
from last year to this year occurs in the area
of algorithms.

There seems to be a recognition that the
mere existence of a problem's solution, perhaps
demonstrated by software, does not result in a
practical application of parallel processing.

If this is the case, then we may look forward to
renewed vigorous efforts in software, based on a
sound algorithmic foundation.

Parallel Computer Development: The Process

In this section we will examine the process
leading to the development of parallel computers
with an eye toward overcoming any apparent
deficiencies.

The Traditional Approach. The traditional
approach to development of a parallel processing
capability is shown in figure 1. We note that
the engineering inspiration which underlies all
of the following activities may be decoupled from
the discipline activities for which the system
will be used.

PARALLEL PROCESSOR
(HARDWARE)

'

PROGRAMMING LANGUAGE

ENGINEER

(SOFTWARE)
e PROBLEM SOLUTION
=) —> (ALGORITHMS)
DISCIPLINE
INDIVIDUAL

FIG. 1. THE TRADITIONAL APPROACH TO
. PARALLEL PROCESSING



What does the engineer use as a basis for
his design? While there is no definitive answer
to this question, there does seem to be a reason-
able response: Lacking other inputs, the engineer
attempts to optimize the performance of the
computer (and here we are referring only to the
mainframe) in terms of potential results per unit
of hardware. It is this phenomenon that was
behind the slow acceptance of floating point and
its eventual incorporation into hardware. After
all, the existence of separate execution facili-
ties capable of handling both fixed pcint arith-
metic means that when one facility is in use, the
other is idle--perhaps a convenience, but not *
an optimization. The quest for component utili-
zation is so deeply embedded that the requirement
for general availability of floating point
stimulated two departures in architecture.

In the first instance, typified by the CDC
6600 and IBM 360/91, additional control circuitry
was added to the instruction unit of the computer
so that both the floating point and fixed point
execution units could perform concurrently. In
the second instance, which developed at about the
same time, microprogramming was implemented as a
means of control of a processor. (The IBM 360/30
and 360/40 are excellent examples of this.) This
permitted a single hardware unit, i.e., a serial-
by-byte adder or multiplier, to be used for
either floating point or fixed point operations,
as appropriate.

By analogy, the introduction of parallel
computers (or vector computers) was merely
responding to the same thrust to make optimum
use of hardware in a design. There was no
coupling with a discipline area. Thus, it is
not surprising that the utility of these first
machines has been questioned, that their accep-
tance has been slow in coming.

The Modified Approach. Because of difficul-
ties experienced with these initial design efforts
we have adopted a modified approach to the use of
parallel machines. This modified approach is
depicted in figure 2. We note that the basic
approach to hardware design remained unchanged.
What has changed is the earlier interaction of
individuals skilled in the discipline areas which
will utilize the machine. This earlier involve-
ment results in new techniques which are respon-
sive to the special abilities (as well as the
relative inabilities) of parallel processors.

I will cite a particular example to demon-
strate the importance of algorithmic interaction
at this point in the process. 1In the solution
of the finite difference approximation to the par-
tial differential equation representing the heat
flow in a solid, the Gauss-Seidel method, or
method of successive displacement converges twice
as fast as the Jacobi method, or method of
simultaneous displacement. The numerical analysis
of the two methods reveals that the eigenvalues
of the former method are the square of eigen-
values of the latter method. Thus, two

iterations of the latter method are necessary for
each iteration of the former method. Now, the
Fortran representation of the succssive displace-
ment scheme appears something like:

DO 1 I=
DO 1 J-=

1 A(I,J)=2.5*%(A(I-1,J)+A(I+1,J)+A(I,J-1)+A(I,J+1))

While the Fortran representation of the simultane-
ous displacement scheme appears as:

DO 2 I= 1
Do 2 J=2,N-1

I
N
2

1

2 A(I,J3) = B(I,J)

" Clearly the method of successive displacement is

not only faster, but less cumbersome, easier to
read, and occupies only half as much space for
data as compared with the method of simultaneous
displacement. Naturally, we almost exclusively
see the method of simultaneous displacement
implemented for conventional, sequential machines.

'
\&.u 4,

PARALLEL PROCESSOR

(HARDWARE)
ENGINEER *
= @ PROBLEM FOUNDATION
e
@‘ (ALGORITHMS)
DISCIPLINE *
INDIVIDUAL
PROGRAMMING LANGUAGE
(SOFTWARE)

Y

PROBLEM SOLUTION
(CODING)

FIG. 2. MODIFIED TRADITIONAL APPROACH
TO PARALLEL PROCESSING.

A New Approach. What, if anything, does
this have to do with parallelism? The answer is
that when we aim to solve a heat flow problem on
a parallel machine we need to reexamine the way
in which the hardware will perform the Fortran
statements. In the classical case of a lock-step
parallel processor (i.e., the ILLIAC-IV) the
method of simultaneous displacement is the natural
mode of operation. In order to implement the
method of successive displacement it would be
necessary to operate with only one processing
element at a time, defeating the potential advan-
tage of a parallel processor.



To summarize, the method of simultaneous
displacement uses all of the processing elements
e.g. 64 for the ILLIAC-IV, and requires twice as
many iterations as the method of successive
displacement, which results in an advantage of
e.g. 32 for this "inferior" algorithm.

Let us now consider how we find the maximum
value of a set. With a sequential machine we
merely step through the entire set, retaining
the maximum, until we reach the end. At that
time the value retained is the maximum for the
set. This is depicted in Fortran as:

AMX = A(l)
DO 1 = 1I=2,N
1 AMX =  AMAX(AMX,A(I))

On a parallel machine we want to take
advantage of the simultaneous availability of
computing resources. This is a crucial point,
so I will clarify the intent of that statement.
We do not wish merely to maximally utilize the
processor's resources. We do wish to use the
resources to reduce problem solution time.

When dealing in these circumstances we are
no longer interested in the strict computational
complexity of an algorithm. It may be preferable
to perform more operations to solve a problem
and yet obtain a faster solution.

In obtaining the maximum of a set of N
elements many of the processing elements will
remain idle during the log , N steps necessary.

Thus, we arrive at the process depicted in
figure 3 as a recommendation for a system

approach to problem solving.

The Role of Software

Following are some general observations
about software. They are particularly pertinent
to all of us, as practitioners of parallel
processing:

1. Computer instruction sets typically
have 100-200 instructions.

2. The majority of programs are written
in compiler languages (e.g. Fortran, COBOL,
Ada) .

3. Compilers usually generate only 50-60
different instructions.

During a project on compiler portability,
I transferred to a CDC 6600 compiler for "LITTLE"
to an IBM 360. This was accomplished in a
straightforward manner by transliterating the
instructions generated for the CDC 6600 to
their counterparts for the IBM 360. There are
a few instructions of course, e.g. population
count and pack, which do not have direct counter-
parts. These required special treatment but do
not conflict with the above observations.

PROBLEM
FOUNDATION
(ALGORITHM)

N

» PARALLEL PROGRAMMING
— |  PROCESSOR LANGUAGE
(SOFTWARE)
ENGINEER,
COMPUTER
SCIENTIST
PROBLEM
SOLUTION
(CODING)

FIG. 3. A NEW APPROACH TO PARALLEL
PROCESSING

Based on these observations, one can infer
that:

1. The full range of instructions available
on present computers is not being utilized.

2. Broadening the semantic range of pro-
gramming languages might result in significant
improvements in ease of programming, speed, and
space utilization.

This view of the state of programming
languages and compilers is depicted in figure 4.
The key issue is brought to the fore with this
figure. We do not know, indeed, we cannot deter-
mine, the performance of the software that is
the channel between the discipline activity and
the computer system.

D r
LANGUAGE
COMPUTER
ALGORITHMS | f——P FOR Y
SYSTEMS
FOR COMPILERS
PROBLEM |3 f—————
SOLUTIONS ALGORITHMS
NOT
> ACCOMMODATED
BY CURRENT INSTRUCTIONS | ] INSTRUCTION
LANGUAGES TILIZED
] T ) SETS
CURRENT
COMPILERS

FIGURE 4. THE ALGORITHM-COMPUTER
IMPEDANCE PROBLEM



We find ourselves without a metric. At
best it is difficult to make progress in this
mode. We cannot easily determine whether we
are approaching our target or withdrawing from
it. We do not know how far we have to go to
reach our goal. In the case of building circuits
to perform binary addition there was a continual
refinement and improvement of performance.
Relatively late in the era of building such cir-
cuits a metric was devised. Only then did we
know for certain that we were truly near our
target.

A similar result for matrix multiplication
removed the previous barrier to performance
which had long stood unchallenged. Recent results
have lowered the number of multiply operations
a second time.

A Spectrum of Parallel Processors

There has been steady progress across the
spectrum of computer organizations from initial,
fully sequential processors to parallel pro-
cessors. While this has occurred the structure
of programming languages has not kept pace.

In figure 5 we see that the first steps in
this progression were not visible to the
programmer. In fact, they were almost invisible,
even at the instruction set level. Except for
differences in timing there were no- functional
changes caused by early parallelism. Compilers
with instruction schedulers made it possible
for programmers to completely ignore these new
capabilities. Later steps in this direction
have radically changed the instruction set
capabilities and induced some changes in program-
ming languages. This is a specific case of the
situation to which we referred earlier.

As a computer user, I can measure a system's
effectiveness only in broad terms. Programming
languages and compilers must now advance so that
we can exploit the advantages of parallel archi-
tectures.

T T T

SERIAL PARALLEL PARALLEL
BY BIT INSTRUCTION (ASYNCHRONOUS)
EXECUTION/ INSTRUCTIONS
SERIAL BY ACCESS PARALLEL —MIMD
CHARACTER (LOCKSTEP)
INSTRUCTIONS
—SIMD
“PARALLEL PARALLEL
WORD" INSTRUCTION
SERIAL EXECUTION
INSTRUCTION UNITS

FIGURE 5. SPECTRUM OF PARALLELISM

Conclusion

We need to address the problems of concep-
tion, design, and software for parallel processor
systems in a new fashion. We must look at all
the elements of this assemblage as a system
requiring optimization. If we address any indi-
vidual component we may achieve only a local
maximum and forego an opportunity to improve the
system.

I will conclude by providing questions, not
answers, to this audience.

Why does current software frequently blur
the distinction between parallel processors and
vector processors?

What is the critical element in parallel
processing: data structure, execution scheduling,
algorithm, etc.?

Can we develop a metric with which we can
judge the relative advantages and disadvantages
of alternatives in hardware, software, and
algorithms?

What are the primitives on which concepts of
parallelism are based?

The dialogue generated by this conference
will lead toward resolution of those issues.
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HIGH-SPEED MULTIPROCESSORS AND THEIR COMPILERS

D. J. Kuck and D. A. Padua
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Abstract -- High speed multiprocessors are
seen as a means of speeding up a wide class of
computations that are not amenable to array
processing. We discuss the structure of such
machines and compare them to other organizations.
The key to their efficient use is good compiler
algorithms, and we present several approaches to
compilation.

1. Computer Structures

Introduction

Parallelism in computer systems arises for
two different reasons. One is to increase the
speed of execution of a single program, and the
other is to increase the throughput of a multi-
programmed system. Among existing computers,
most parallel and pipeline array processors have
been designed with the first reason in mind and
most multiprocessors with the second.

Most present multiprocessors do not seem to
consider in their architecture any features aimed
specifically at the speedup of a single program,
except for the fact that they have a memory which
can be accessed by every processor. This is obvi-
ously good enough for multiprogramming or for
speeding up programs capable of decomposition
into processes requiring a low frequency of inter-
action. However, it is clear that by allowing a
higher frequency of interaction, not only could
more speedup be obtained, but also the class of
programs capable of speedup would increase notice-
ably.

In this paper we address the question of
whether additional architectural features could
enhance the performance of a multiprocessor with
respect to the speed of single programs. The
best way to proceed seems to be to consider struc-
tures frequently found in programs and to evaluate
the impact of different designs upon their execu-
tion time. In contrast to the language-directed

*

This work was supported in part by the National
Science Foundation under Grant No. US NSF MCS77-
27910.

approach to machine design, we advocate the
program—-directed approach. We have measured
FORTRAN program characteristics,with the goal of
discovering the limitations of array machine
structures ,for some time [KuMC72], [KBCD74]. The
same methods have been used for COBOL [Stre74],
GPSS [Davi72], and SNOBOL [Chen77], some of which
led to multiprocessors, as well. We are now
making measurements of programs that are not suit-—
able for array processing, with the goal of
designing a high-speed multiprocessor. Such a
machine could be used to speed up a single program
or to emhance throughput by multiprogramming.

1.1 A Machine Survey

In [Kuck78, Sect. 4.2.5], a control unit
taxonomy was presented that is similar to that of
[Flyn72] but can be extended to more classes of
machines; 16 categories were mentioned. The idea
is to view a control unit as accepting one or more
instruction sequences and generating execution
sequences for the rest of the machine. For the
moment, we will be concerned only with execution
sequences and will restrict our attention to four
kinds of machines:

SES: single execution, scalar;
MES: multiple execution, scalar;
SEA: single execution, array; and

MEA: multiple execution, array.

An SES machine is a traditional serial com-—
puter. Many SEA machines have been built,
including pipeline and parallel processors for
which single instructions generate an array of
executable operations. In fact, pipeline array
processors attached to minicomputer hosts are now
in widespread use. A number of array machines
(including the CRAY-1 and TI ASC) can execute
several array operations simultaneously and may be
regarded as MEA machines. The MES category
includes several types of machines that can exe-
cute multiple scalar operations at once; for
example, the CDC 6600 or various multiprocessors.
Clearer distinctions between machine types can be
made by also considering instruction sequences (as
mentioned above), but that is beyond our present



scope. Any SEA, MEA or MES machine may be
regarded as a multioperation machine, because sev-
eral operations are being carried out at once.
However, we are concerned with high-speed execu-
tion of single programs, and will consider the
shortcomings of traditional array processors
together with how a kind of multiprocessor can be
used to improve the situation.

Historically, when SES machines were seen to
be too slow and technology was not speeding up
fast enough, architectural innovations were used
to achieve faster turnaround. For example, the
CDC 6600 allowed several operations to be carried
out at once and the 360/91 added pipelining to ~
this idea. A combination of compiler software,
control unit hardware, and processor hardware was
used to attain speed improvements over SES ma-
chines. These machines (and their successors)
may be called "data-flow" machines because data
and control dependences are used to determine when
operations can be executed, so some operation
overlap is possible. Research in this area con-
tinues [DeMi74], [KeLP79], [Davi79]. On the other
hand, SEA machines generally rely on a user or
software vectorizer to introduce explicit array
statements in a source program, and these are then
executed at high speed. It is sometimes difficult
for users to rethink and rewrite their programs
properly. Automatic vectorizers, although they
can be much more powerful than hand reprogramming,
have not been commercially available until re-
cently.

It may be observed that certain algorithms
are amenable to substantial speedup by a combina-
tion of these ideas. For example, the merging and
sorting networks of Batcher [Batc68], the FFT net-
work of Pease [Peas68], the arithmetic expression
tree evaluation of Kuck and Muraoka [Swan72],
[Vazi78], etc.

Machines in which the completion of one oper-
ation triggers the next can become complex and
cumbersome when one attempts to push the idea too
far. Array machines and vectorizers are the fast-
est available systems today, but it can be shown
abstractly and empirically, that they are ineffi-
cient for certain classes of computations. What
then is the proper next step toward 'ultimate
speed" machines that are useful in a wide range of
applications?

We believe that since a fairly wide class of
computations can be successfully vectorized for
array machines [KuMC72], [KBCD74], [Ruck77],
[CKTB79], one should take this as given and study
the difficulties with the remaining computations.
One should look for additional compiler algorithms
and hardware flexibilities that lead to substan-
tial speedups on a much wider class of computa-
tions. Thus we are led to a class of machines
that can behave as a high-speed array processor
when appropriate and can behave as a high-speed
multiprocessor when necessary. The data and con-
trol flow notions of earlier machines must, of
course, be exploited by such a system in an effi-
cient manner.

1.2 A High-Speed Multiprocessor

The following sketch of a high-speed multi-
processor is preliminary. We have studied a num-
ber of algorithms and programs and believe this
offers a substantial improvement over current ma-—
chines. Ideas about compiling for this machine
will be presented in later sections. We are in
the process of implementing these and, after ana-
lyzing our collection of over 1,000 programs, we
expect the architecture to become clearer.

First, we describe a processor cluster (PC)
that can behave as a SIASEA (single instruction,
array; single execution, array) machine or as a
MISMES (multiple instruction, scalar; multiple
execution, scalar) machine. Each processor in the
cluster is a fairly traditional machine, with a
scalar control unit and processor, together with a
local memory. Thus, each processor may carry out
an independent computation. The processor capa-
bilities can be chosen to meet the intended appli-
cation areas, but the use of LSI processors is
clearly attractive (e.g., 32-bit floating-point
microprocessors). The cluster size is also a
design variable, but from the viewpoints of both
technology and applications effectiveness, 8 to
16 processors per cluster seems appropriate.

Fig. 1 shows two such processor clusters
(containing c¢ processors each) interconnected via
a set of local alignment networks (LANs). These
alignment networks can be used to communicate
within one cluster (each can use half of the LAN
independently) or adjacent clusters can inter-
communicate through the shared LAN. Each cluster
also has an array control unit that accepts an
array instruction set and drives all c processors
in lock-step fashion.

The alignment networks can be used to commu-
nicate data between processors and memories. They
may also be used, simultaneously, to send status
bits between processors. One important feature of
each processor control unit is that the execution
of each instruction is conditional on a set of
status bits. These can be set by other processors
in the cluster (or outside the cluster). Thus, a
set of computations running in a PC can be made
dependent at the instruction level--so, for ex-
ample, data computed in processor 1 can be stored
in a local memory, processor 1 can set an appro-
priate bit in processor 2, and processor 2 can
fetch the result of processor 1 to proceed with
its computation. All of this can be accomplished
in a matter of a few clocks, so very tight cou-
pling is possible. For example, if each processor
is computing one iteration of a loop and there are
data dependences from one statement to the next
between iterations, these can be quickly satis-
fied. As another example, a PC could evaluate an
arithmetic expression tree quickly by appropriate
alignments, see [Swan72]. We shall discuss the
use of such a PC in more detail later with respect
to program structures. For the moment it is clear
that a PC can operate as an MES or SEA machine.

Next, consider a collection of PCs to form a



complete system. Fig. 2 shows a collection of n
PCs plus a set of global control units (GCUs), a
global alignment network (GAN), and a global mem-
ory (slower levels in the memory hierarchy are
ignored here). The GCUs allow a collection of
PCs to work together either in an array or scalar
fashion. Thus, the entire system could be parti-
tioned to handle several jobs at once, but the key
point is that any job may be handled in either an
SEA, MEA or MES mode. Program memory is associ-
ated with each control unit.

Array access and alignment from the global
memory through the global alignment network is
well understood [BuKu71], [KuSt79], [LaVo79],
[Lawr75], and the same ideas can be used in each
PC for array operations. Also, memory access for
independently distributed addresses is well under-
stood [ChKL77]. Thus, a set of array computations
with linear addressing patterns can be assumed to
work well. Memory stores and fetches for MES
operation as well as most subscripted subscript
array accesses should work well also. The problem
of aligning data in these latter cases has been
unsolved until recently. We will discuss this in
more detail in Section 4.

2. Language/Machine Relations

The flow of data and control in programs are
fundamental considerations in the design and per-
formance of a machine to execute those programs.
We are interested in relating various program con-
structs to various computer organizations. In
order to proceed, we shall first give a broad
paradigm for the languages and programs we are
considering. Then we will relate these to the
machine organizations discussed earlier.

The language paradigm emphasizes those as-—
pects of programs that most concern us in com-
piling programs and executing them with high
performance on the given machine structures. Many
details are omitted in the interest of brevity.
The presentation contains three parts:

1) m-blocks;
2) DAGs of m-block clusters; and
3) Control structures for (1) and (2).

2.1 m-Blocks

The name "m-block" means a block that is de-
rived from a partition of a program's data and
control dependence graph. The discussion here is
a generalization of that in [Kuck78], which was
given in a narrower language setting.

We shall consider m-blocks as the smallest
objects of concern to a compiler in scheduling a
computation on a machine. It is assumed that
atomic operations exist in any given machine, and
that dependence graphs of such atomic operations
are contained within each T-block. Several exam—
ples of m-blocks follow.

An arithmetic assignment statement is a m-
block with atomic arithmetic operations connected

by a data dependence tree, as well as an atomic
assignment operator. Similar statements can be
made about Boolean assignment statements or char-
acter string assignment statements. Also,
cons(car(x),cdr(y)) might be a LISP m-block, or a
complex APL expression might be a m-block. 1In
programs for a sorting or merging network machine
[Batc68], the comparison of two numbers and trans-
mission of the greater in one direction and les-
ser in the other direction can be regarded as a
m-block. A similar definition could be made with
respect to an FFT network [Peas65], etc. Other
examples of T-blocks are decision trees that
branch to one of several program locations, and
conditional expressions that may do a branch or
select one sequence of several assignment state-
ments [Kuhn79].

Thus, T-blocks may have as values data items
of any type, or program addresses. They can also
be subject to mode bits that determine whether or
not particular values are to be computed.

Programs are collections of T-blocks of the
types mentioned above. In order to be able to
deal with acyclic graphs of objects later (in
scheduling and in the hardware), we define a m—
block to be a single node of the type mentioned
above, or a maximal cycle of such nodes formed by

data and control dependences.

2.2 DAGs of m-Block Clusters

Just as there were dependences within -
blocks, there are dependences among the T-blocks
of a program. A graph formed using T-blocks as
nodes and dependences as arcs is, however, a di-
rected acyclic graph (DAG), because all depen-
dence cycles are within T-blocks. For purposes
of compilation and execution, we may be inter-
ested in forming nodes that are clusters of sev-
eral T-blocks; such clusters may be formed from
T-blocks accessing the same variables, or re-
quiring similar data alignments for processing,
etc. Thus, we will now consider clusters of T-
blocks interconnected in the form of a DAG.

The arcs in this DAG may represent depen-
dences due to control or data flow, and there are
three types of the latter: data dependence, anti-
dependence and output dependence (cf., [Kuck78]).
Associated with each of these types of arcs is a
set of distance vectors, one for each pair of
array variables causing a dependence. The dis-
tance vector indicates the difference in sub-
script values in each position.

Most programming languages have some kind of
repetition statement (e.g., DO, FOR, etc.). We
will assume that the control for such repetitions
has been distributed down to the level of m-block
clusters (see [Kuck78], [CKTB79], or [KuMC72] for
more details). If a cluster contains m-blocks
that originated in different repetition state-
ments, they may be combined using mode bits, for
example.

Henceforth, we will consider DAGs of m-block



clusters. The clusters are interconnected by data
dependence arcs labeled with distance vectors, and
repetitions are associated with T-block clusters.
Thus, we can deal with a graph that consists of
antichains of m-block clusters, any of which can
be executed at once, and the program can be exe-
cuted by simply observing the dependences between
" the antichains.

2.3 Statement Execution Ordering

The atomic operations within a m-block usu-
ally have well-known dependence relations (e.g.,
operator precedence for arithmetic expressions).
At higher levels, it is necessary to assume or
explicitly specify these dependences.
most programming languages for traditional com-
puters assume that statements are normally exe-
cuted one after the other from the top to the
bottom of a written page or memory area. When
hardware parallelism is available, programming or
compiler techniques are needed to exploit it.

For blocks of assignment statements, various
statement execution orderings were specified in
[Kuck78]. Without repeating the formal defini-
tions we will sketch the ideas here, and then we
will extend these ideas to a block of assignment
statements (or T-block cluster) with an associated
repetition statement.

The two broad classes of statement execution
ordering are SEQ and SIM. SEQ means that all the
normal data dependence, antidependence and output
dependence arcs are followed in executing a pro-
gram, but any statements without such dependences
between them may be executed in any order. If a
number of assignment statements are to be executed
with SIM ordering, all right-hand side atoms must
be fetched before any left-hand side results are
stored. These two classes have an intersection
that contains a class specified by TOG; such
statements may be executed together, i.e., in any
order at all, since there are no dependences be-
tween them. SEQ contains a class called SF (store
all previous left-hand sides before fetching the
next right-hand side) which corresponds to the
strict sequential ordering implied by traditional
languages running on traditional serial machines.
Other execution orderings are specified in
[Kuck78].

These ideas can be extended to repetition
statements as follows. Let I be an ordered set
(I,<il,...,im>) called an index set, let B be a

block of assignment statements with a specified
execution ordering, and let control represent SEQ,
SIM, SF, TOG or any other execution ordering.

Then by

DO control I[B]
we mean the following.

1) Expand B according to its statement
execution ordering.

2) Copy the result of (l) for il’ 12, «e., and

im from left to right.

For example,

3) Apply the execution ordering specified by
control to this set of m sequences.

Example A traditional loop (e.g., a FORTRAN
DO loop) can be specified as

DO SF I[SF[sl;...;sn]],

where I = (I,<i ..,im>).

1’

The inner SF requires that statements S, through

1
sn be executed in a serial way with the left-hand

side of Si being stored before any of the right-

hand side atoms of Si+l are fetched. This se-

quence is computed m times: first for i then

l’
for i2, ..., and finally for im. -

Other examples will be given in the follow-
ing section.

2.4 Machine Considerations

In this section we will discuss how one
singly-nested loop can be mapped onto each of the
several kinds of machine structures discussed
earlier. The statement execution orderings of
the previous section will be used to illustrate
what a user might write or what a pre-compiler
might generate from a traditional source language
program. Later we will show how these statements
can be compiled for high-speed multiprocessors.

The four types of machines mentioned in
Section 1 were SES, MES, SEA and MEA. The ex-
ample of Section 2.3 showed how to specify a
purely sequential loop for a traditional SES ma-
chine. This may, in fact, be regarded as the
meaning of a FORTRAN DO loop. For each of the
other machine organizations, it is important to
know some details of the statements in the loop.
For an SEA machine, some parts of a loop may need
to be executed as on an SES machine, but others
can be executed as

SF[DO SIM I[Sl]; DO SIM I[Sz]; cees
DO SIM I[Sn]],

which corresponds to a sequence of array oper-
ations. The goal of vectorizers for array ma-
chines is just this kind of code, see [KuMC72],
[KBCD74].

An MEA machine has the additional flexibil-
ity of being able to execute several array oper-
ations at once., Thus, in general, the outer SF
of the SEA machine can be replaced by SEQ to
allow as many simultaneous array operations as
the program has and the machine can handle. So
we have

SEQ[DO SIM I[s,]; DO SIM I[S,]; ...;
DO SIM I[S 1]

as the canonical MEA machine program.



Finally, consider the MES machine and several
types of programs. In the simplest case, we can
execute the same serial program independently in
each available processor, once for each loop repe-
tition. Thus, we can write

DO TOG I[SF[Sl;SZ;...;Sn]]

to denote a set of m independent repetitions of n
statements. Note that if some of the Si are con-

ditional expressions, separate paths may be fol-
lowed for each of the m cases. Also, this idea
can be generalized to a set of distinct and inde-
pendent blocks as might arise from a sequence of
loops.

Next, assume an MES machine with a program
that requires data to be passed between proces-
sors. In this case we can write

DO SEQ I[SF[Sl;Sz;...;Sn]]

to denote a set of m SF sequences, each of which
can be executed at once, subject to whatever de-
pendences exist between them as indicated by SEQ.
In order to have such a program execute effi-
ciently, a tight interprocessor coupling is neces-—
sary. Note that in contrast with the SEA case, we
have the index on the outside and SF on the inside
here. The SEA machine executes a sequence of
array operations, whereas the MES machine executes
an array of serial computations, for the same
given source program.

3. The Compiler

We now proceed to consider a methodology to
translate programs written in a sequential lan-
guage like FORTRAN into code suitable for fast
execution in multioperation machines.

The first step is to translate the original
program into a DAG of m-block clusters. Tech-
niques to do this have been developed and imple-
mented during the last few years [CKTB79],
[Wolf78].

The transformations that should be applied to
the DAG of m-block clusters are the subject of
the remainder of this section. For reasons of
space, we had to choose in our description between
clarity and precision. We will strive to obtain
the first, relying mostly on examples (see
[Padu79] for more details).

Transformations on DAGs of m-block clusters
can be classified as follows:
1) T7-block transformations;
2) mw-block cluster transformations; and
3) DAG of m-block cluster transformations.

When the target machine is of the SEA type, the
T-block cluster transformations and some of the
m-block transformations will not be applicable.

We will study each one of these types of
transformations in turn. We will try to make our
considerations as machine independent as possible,

Example 3.1

making use of the language of SEQs, SIMs, etc.,
wherever convenient. In Section 3.4, we will con-
sider the influence of particulars of the target
machine, giving special emphasis to the machine
described in Section 1. Throughout this section,
our goal is obtaining as fast execution time as
possible. However, even if we consider an ideal
target computer (like Murtha's IT machine
[Murt66]) and very simple programs, we find that
algorithms to obtain the optimum execution time
are impossible in practice (they are NP-
complete). For very simple problems, like bin
packing, it has been proved that some heuristics
give results very close to the optimum. The
proofs, however, are sometimes quite elaborated
[Grah76]. 1In our case, the problem of finding an
optimal algorithm or amalyzing a heuristic are
even harder because machines are not ideal and
programs are, in general, very complex to analyze
involving, for example, IF statements and, there-
fore, probabilistic execution times. We are
forced, then, to abandon any search for optimal
transformation and content ourselves with engi-
neering judgment and experimental evaluation of
our techniques. For these reasons, the statements
made here about the different transformations are
tentative; a more concrete assessment must await
experimentation.

3.1 m-Block Transformations

We will consider three types of T-block trans-—
formations. They should be applied in the same
order they are presented here, as shown in the
overall algorithm presented in Section 3.1.4.

3.1.1 Partition A m-block can be assumed to
represent an SF statement. Let us say that its
form is

DO SF I{SF[s;38,5...35 1} (€D)

where, by definition of a m-block, there is a path
in the graph of dependences from Si to Sj for all

i, j e{1,2,...,n} if cycles are present.
In cases where it is applicable, the parti-

tion method will produce a TOG statement seman-—
tically equivalent to (1) of the following form:

TOG{DO SF Il[SF{Sl;sz;...;sn}];
DO SF I,[SF{s3S,;...35 }13 (2)

DO SF Im[SF{Sl;Sz;...;Sn}]}
where the Iis, i=1, 2, ..., m are pairwise dis-

joint and their union is I. We will demonstrate
its applicability by several examples.

The loop

DO I =1, M
S, : A(I) = B(I) + C(I)
ENDO



represents a vector operation (here Sl is a m-

block by itself). It is easy to see that the
following transformation is correct:

DO SF(I,<1,2,...,M>) [s;] =>
TOG{DO SF(I,<1>) [sl];

DO SF(I,<2>) [s;1; (3)

. . .

DO SF(I,<M>) [51]}‘

The last TOG statement can be written more
compactly as

DO TOG(I,<1,2,...,M>) [Sl]

Transformations similar to the ones in
Example 3.1 can always be done when no cycles are
involved in the dependence graph of the T-block.
This type of transformation may be called total

partition.

Sometimes it is possible to apply partition
to T-blocks involving cycles as shown in the next
example.

Example 3.2 Consider the loop

DO I=3,M
X A(I) = A(T-2) + 1
ENDO

We can partition this loop using the follow-
ing transformation

DO SF(I,<3,...,M>) [5;] =>
TOG{DO SF(1,<3,5,...,[E%ij*2+1>) [51];

DO SF(I,<4,6,...,[%J*2>) (5,1}
n

To be able to do transformations like the one
in Example 3.2 (called partial partition), it is
necessary to make use of the distance vectors.
For a similar method called splitting, see
[BCKT79]. Partial partition may not help in the
case of single-instruction stream machines be-
cause the cycles could involve IF statements.

In the previous two examples, we considered
only singly-nested loops. Generalization to
loops with more levels of nesting should be obvi-
ous. There is, however, a method that is useful
in some cases for the partition of multiply nested
DO loops. This method, loop interchange, is de-
scribed in [CKTB79] and [Wolf78]. The methods of
this section would be useful with the DOALL con-
struct of [Burr79].

3.1.2 Algorithm Change If the method of
partition does not work, this second method will
be applied. The idea is to use as much informa-
tion as possible from a m-block in order to detect
what sort of algorithm is represented by it. Thus,
if the T-block is recognized as a linear recur-.

rence, the best parallel algorithm known for the
particular target machine should be applied.
Algorithms for linear recurrences have been widely
studied, some results and references can be found
in [Kuck78].

3.1.3 Loop Freezing When everything else
fails, the T-block will have to be executed
serially. In this case, the body of the m-block
can be considered as a program segment and global
transformations can be applied to it.

Example 3.4 The following loop cannot be par-
titioned, and no known algorithm can be applied to
speed it up.

DO I1=1, M

5yt A(I) = A(I-1) * A(I-2) * C(I-2) + X

Syt D(I) = D(I-1) * A(I-1) * C(I-1) + Y

S3: C(I) = C(I-1) * A(I) * D(I) + 2
ENDO

If we freeze this loop (i.e., serialize it
and consider its body as a program segment), we
obtain the following graph of dependences

Now, applying to the body a global trans-
formation (see Section 3.3), we obtain

DO SF(I,<1,2,...,M>) {SF[T0G{s35,};5,1} -

3.1.4 Overall Strategy We conclude our dis-
cussion on T-block transformations with a descrip-
tion of the overall strategy. This is shown in
the following algorithm:

Algorithm 3.1

Input: T-block P of the form DO SF I{SF[Sl;Sz;
..}
Output: Execution structure

If partition can be applied to P
Then

Transform DO SF I{SF[Sl;Sz;...;Sn]}
to TOG{DO SF Il[SF{Sl;Sz;...;Sn}];
DO SF Im[SF{Sl;SZ;...;Sn}]}

For k = 1 to m apply Algorithm 3.1

to DO SF Ik{SF[Sl;...;Sn]}

Else
If algorithm change can be applied
- Then apply algorithm change

10



Else apply global transformation to the
body of P (i.e., to SF[Sl;Sz;...;
Sn])' -

To see how the algorithm will work, we will
use the following example. '

Example 3.5 Let us apply Algorithm 3.1 to the

loop
DO I =1, MI
DO J =3, MJ
S, A(I,J) = A(1,J-2) + 1

ENDO
ENDO

Originally, S. is a m-block by itself with

1

the following representation
DO SF(I,<1,2,...,MI>) X (J,<3,4,...,MI>)
[s,] (5)

When we apply Algorithm 3.1 to (5), we will
have the following sequence of transformations

Step 1
DO SF(I,<1,2,...,MI>) X (J,<3,4,...,MI>) [Sl]
J
TOG{DO SF(I,<1>) x (J,<3,4,...,MJ>) [Sl];
DO SF(I,<2>) X (J,<3,4,...,MJ>) [Sl];

DO SF(I,<MI>) X (J,<3,4,...,MI>) [sl]}

Step 2

Applying the algorithm to DO SF(I,<k>) X (J,
<3,4,...,MI>) [sl] for k ¢{1,2,...,MI}, we obtain

TOG{DO SF(1,<k>)(J,<3,5,...,LMg°lj*2+1>)
(5,15 (6
MJ
DO SF(I,<k>)(J,<4,6,...,15-1%2>) [Sl]}
as in Example 3.2.
Step 3
Finally, we can apply a linear recurrence
algorithm to the DO SFs in (6). L)

3.2 m-Block Cluster Transformations

In this section we will start by considering
a cluster of m-blocks with the following charac-
teristics:

1) All m-blocks come from the same loop in the
original source program;

2) The DAG of dependences of the T-blocks in

11

the cluster has the form of a chain; and
3)

The execution time of every iteration of
any given T-block is constant.

We will study how to transform this cluster,
which we will call a simple cluster, to produce
good machine code. Later, we will mention
briefly how to extend the techniques studied to
more general clusters. We will consider the case
of a MES machine only. The case of a MEA machine
can be treated similarly.

Let us say that the statements in the cluster
are Sl, 52, cees Sn' One way of executing this

cluster is the one shown at the end of Section 2.4,
namely,

DO SEQ I[SF[Sl;Sz;...;Sn]].

Let us consider the consequences of executing a
recurrence computation using this method. Suppose
that statement Sj is of the form

X, « X,

* A, + B,.
i i-1 i i

Assuming that statements S, through Sj_l had no

1
recurrence, all processors in an MES machine could
reach statement Sj within a short time interval of

each other. However, Sj would be executed first

on processor 1, then on processor 2, then on
processor 3, and so on, with a gap of length O(m)
in processor m as it waits for Xm—l' Thus the

execution time for a program with a single recur-
rence, assuming m loop repetitions and n state-
ments, would be O(m+n) steps. Since the serial
computation takes O(mn) steps, the efficiency
(speedup/processors) is O(n/(mt+n)).

Now let us study an alternative scheme for
executing such a computation, where the machine
will execute the first T-block on processor 1, the

second T-block on processor 2, and so on. This
computation can be represented by
SEQ[DO SF I[SF[Sl;...;Sp]]; e
)

DO SF I[SF[S ;.. 35,11,

where Sl

Sq . Sn form the last T-block.

e SP form the first T-block and
Each T-block is

executed serially by DO SF I; however, the en-
semble of cluster repetitions is executed with SEQ
control, so they proceed as much in parallel as
possible. We call this method pipelining because
a loop is broken into a number of smaller loops
that may be chained together. Note that in this
case, assuming that clusters are small, O(n)
processors are used, and assuming that dependences
exist across the entire set of processors, the
computation time is O(m+n) steps (as it was above),
but the efficiency is now O(m/(m+n)). Thus, pipe-
lining tends to be more efficient when the number
of loop repetitions is large, relative to the num-
ber of loop statements. Of course, if we need not
pay time for dependences across the entire array,
then the pipeline time is O(m) so the speedup and



efficiency increase.

Henceforth, we will assume that the number of
loop repetitions is large relative to the number
of statements. We will, therefore, only consider
pipelining. The application of what follows when
the number of statements is large is immediate.

When translating to an instruction controlled
machine (as opposed to a data controlled or data-
flow machine) we, for simplicity, will use a syn-
chronization per iteration approach. The result-
ing structure for the case of a singly-nested loop
is shown next.

parbegin
T

1t DO I=1, M
515 855 «ee3 S33 V(Ol)
ENDO;
ﬂg: DO I =1, M
P(Gg_l); Sgs eee3 Sy V(Gg) (8)
ENDO;
nm: DO I =1, M
P(om_l); sq; e sn
ENDO
parend

Here, as before, Sl’ 52, ..., S_form the first

m-block, S, ...S

2 k
Sn form the last T-block of DO SF I[Sl;...;sn].

form the gth m-block, and Sq e

The statements P and V are the well-known
synchronization primitives, and the Oi, i=1,

..., m - 1 are semaphores. From the definition of
a T-block, it is easy to see that (8) is a correct
transformation.

In the segment of program shown
in (8) we see that for large enough M the execu-
tion time is dominated by the bottlemecks, which
are defined as those T-blocks of maximum execution
time.

Given that pipelining can be applied to a
cluster of m-blocks, we are faced with the problem
that local transformations can also be applied to
the individual T-blocks. We now proceed to state
an algorithm that integrates the local transforma-
tions of 3.1 with pipelining.

Algorithm 3.2
Input: A simple cluster of m-blocks

Output: The cluster transformed for parallel

execution; and its execution time.

Step 1

Compute the execution time of the cluster
when executed as a pipeline. To compute this time,
we should attempt to decrease the size of the
bottlenecks by applying loop freezing and global
transformations to their bodies. Call the pipe-
line execution time Tpi , and the program struc-

.

ture resulting PS
& “opip

Step 2

Let us say that the T-blocks in the cluster
are m,, M,, ..., M_and that m_ is the first
1 2 m g

bottleneck. Then we proceed as follows:
1) Apply local transformations (Algorithm 3.1)
to ﬂg. Let Tg be the execution time of the

resulting program structure and PSg the

structure itself.
2) Apply Algorithm 3.2 to the chain Tis Moo

ceey “g-l' Let Tl be the execution time of

the resulting structurz and PSl the struc-
ture itself.

3) Same as (2) but for chain T ey T

m
the

gtl’
Let T2 be the execution time and P52

resulting structure.

Finally, let T =T, + T + T, and PS =

gl 1 g 2 gl SF[PSl;
Psg;PSZ]'

If T, <T,6, then the result is T ., and PS_,
pip — gt pip pip

else the result is T and P

gl ge” m

Example 3.7 Consider the following loop:

DO I =1, 10

st A(I) = B(I) + C(I)
S,: D(I) = A(T) + 1 (10)
5,y E(I) = D(I) + 2

ENDO

Here each statement is a T-block by itself.
If we only count arithmetic operations when com-
puting the execution time, then we have T =

pip
2 + 10 = 12.

When Step 2, Algo. 3.2 is executed, Sl (the

first bottleneck) will be partitioned as a vector
operation (total partition). The exiﬁution time
when P processors are available is IETJ.

Finally, if it is assumed that P > 3, then

10
> = =
Tpip 3[P 1 T
cuted as a sequence of vector operatioms. L

gt Therefore, (10) should be exe-

12



Example 3.8 In the loop

DO I =1, 100

: A(I) = B(I) + 1
C(I) C(I) * C(I-1) + A(I) * C(I-2)
D(I) = C(I) + 1

ENDO

(11)

W W W0

each statement is a m-block. The pipeline execu-
tion time (assuming as in Example 3.7, that only
arithmetic operations count) is T ., = 2 + 4 X
100 = 402. pt

Applying Algorithm 3.2 to (11), we find that

the bottleneck cannot be improved. Therefore,
_ 100
ng =2 X [-F—] + 4 x 100, and Tpip < Tg

P > 3. We conclude that pipelining should be
used for (11). ]

9 when

In general, we will have to deal with more
general cases than a chain of m-blocks. Some of
the considerations required to extend our previous
algorithm are given next.

1) 1In general, the execution times of the T-
blocks will not be constant. For example,
if IF statements are involved, the execu-
tion time could be random.

In this case, we could be very precise when
computing execution times if all probabilities are
known. This computation can, however, become
lengthy and furthermore, the probabilities are not
always known. We should try, then, to use a
simple value like maximum possible execution time
when computing the overall execution time of the
cluster.

2) Cluster of m-blocks could have a DAG of
dependences more general than simple chains.
If the number of iterations of the original
DO loop is much bigger than the number of
statements, we could apply topological
sorting [Knut73] to obtain a chain, and
then apply Algorithm 3.2. However, if the
number of iterations is comparable to the
number of m-blocks, a different algorithm
should be applied.

3) The m-blocks in a cluster do not have to
originate in the same loop of the source
program. By using techniques like fusion
[ABKL79], m-blocks coming from different
loops could become part of the same cluster.

3.3 DAG of m-Block Clusters Transformations

Once the m-block clusters have been trans-
formed, it remains to transform the whole DAG of
m-block clusters.

If the target machine is of the SEA type,
topological sorting should be done on the DAG,
and then we can execute the clusters sequentially.
On the other hand, for MES or MEA computers as
many clusters as possible should be executed
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simultaneously.

Example 3.9 Consider the following DAG of
clusters of m-blocks

The antichains are C C, and C C, and C

172 35 %y
and C6' Execution of this DAG in a MEA or MES
computer, given that enough processors are avail-
able, will be as follows:

SF[TOG{Cl;Cz;CB}; Toc{ca;cs};c6]

53

In a SEA computer, the DAG could be executed as
SF[CI;CZ;CB;CA;CS;C6]

3.4 Transformations Dependent

on Machine Particulars

We now briefly consider some transformations
that could be helpful in the particular machine
we showed in Section 1. These transformations are
intended as illustrative and are by no means ex-
haustive.

3.4.1 Data Transmission and Synchronization

One of the goals in code generation should
be to try to make as little use as possible of
the global alignment network. Also, if the pro-
cessors have general registers, we should try to
use them instead of the local alignment network.
Transformations to achieve this goal are not
always straightforward.

Example 3.10 Consider the following program

DO I=1, N

sy A(I) = B(I) + C(I)
ENDO (12)
DO I=1,N
S,: D(I) = A(I-8) + 2
ENDO
th

If (12) is executed in such a way that the i
iteration of Si is executed in the same processor

as the i iteration of § it will be necessary

2’
to use the local alignment network (or even the
global alignment network if the clusters are very
small)for data transmission (and synchronization
if the global control unit is not used). A better

solution is to execute the i iteration of Sl in

iteration of S,.

the same processor as the (i+8)th 2



Then data transmission and synchronization are
avoided. .

Example 3.11 Suppose we want to pipeline the
following DAG of T-blocks.

eﬂe‘@fe‘@e

If we have the machine of Fig. 1 with c = 2, there
will be some allocations that will need use of the
global alignment networks and others that won't,
as shown in the next figure.

Cluster 1 2 3

Processor P P P P P P

A good allocation| S S S S S S

A bad allocation S S S S S S

]
3.4.2 Reclustering to Increase Efficiency
of Pipelining
Let us start with one example.
Example 3.11 If in the chain of m-blocks
12)

One iteration of 83 takes two units of time

and S, and S, take one unit of time per iteration

1 2
each, then if we execute (12) (using a canonical
transformation like (8)) as

SEQ{DO SF I[s,]5 DO SF I[s,]; DO SF 1[53]}, (13)
we will obtain an efficiency close to 2/3. How-
ever, if we cluster Sl and S2 and execute as

SEQ{DO SF I[SF{s,;S,}]; DO SF I[s,]} (14)
we will obtain an efficiency close to 1. Notice

that (13) and (14) will take the same amount of
time. L)

The goal of the process of reclustering is to
increase efficiency without increasing time. The
complexity of the problem of finding the best
possible clustering can be easily shown to be NP-
complete; therefore, some heuristics should be
used.

3.4.3 Allocation Overhead If dynamic proces-
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‘for array processors.

sor allocation is allowed, the time to allocate a
processor could have a determining effect on the
degree of parallelism that can be used profitably.
We have looked at a very simplified version of
this problem and it turns out that even if allo-
cations times are constant and an unlimited
amount of processors are available, the problem
is NP-complete [Padu79].

4. Conclusion

Throughout this paper we have discussed
methods of compilation for a high-speed multi-
processor and we have referenced similar papers
Table I summarizes some
general conclusions about the performance of two
types of machines. Two points that are frequent
sources of difficulty in array machines are con-
ditional branching inside loops and the accessing
of arrays (or other data structures) in irregular

ways. Both of these subjects will be treated
here.
IF Trees

Conditional statements inside loops can fre-
quently be turned into array tests for fast exe-
cution [Bane79]. 1In fact, nearly all of the pro-
grams analyzed in [KBCD74] achieved substantial
SEA speedup despite IF statements inside DO loops.
Nevertheless, in some cases, IF statements inside
loops can present serious difficulties to fast
SEA execution.

For example, a loop with many, equally
likely paths and relatively few iterations could
lead to many, very short vector operations. In
such cases, it may be desirable to partition the
loop for execution in a high-speed multiprocessor.
Thus, each processor can follow a separate path
through the loop as in each iteration of a serial
machine execution. Synchronization may be needed,
but it can also be traded for some redundant com-
putation.

Additional speedup may be achieved by equip-
ping each processor with a parallel IF-tree
evaluator [Kuhn79]. After the conditions of the
tests are computed, the path through the decision
tree is evaluated in time (gate delays) propor-
tional to the log of the number of IFs in the
loop (we are assuming there are many IFs). After
the proper outcome is selected, final computa-
tions are made for each iteration in its proces-
sor. This technique may be viewed as an array of
sequential computations, and this is indicated in
Table I.

Interconnections

It is well known that the fastest possible
processor-memory switch is the crossbar. How-
ever, the cost of the crossbar switch for a large
number of processors and memories is quite high.
Alternatives to the crossbar switch have been
developed using the concept of perfect shuffle
[Ston71].



Table I

Array Processor Vectorization Multiprocessor Pipelining
Across
(sequence of arrays) (array of sequences) Multiprocessors
1) Number of processors * Proportional to the number * Proportional to number * Proportional
for maximum speedup of iterations of the loop. of iterations of the to the number
loop. of statements.
2) Speedup * High if n-blocks are vector * High * Proportional
operations or if they are to number of
linear recurrences. Equal processors.
or worse than pipelining if
this is not the case.
3) Efficiency * High for vector operations * High * Over 707% in

and linear recurrences with
small band. Drops off in
other cases.

most cases.

For array machines, we could use the omega Trans. on Comput. (Dec., 1971), pp. 1566-1569.

network [Lawr75] which allows fast access to rows,
columns and diagonals of two-dimensional matrices [Burr79]
when these are suitably distributed among memory
modules. This same omega network could be used in
multiprocessors as proposed in [Burr79].
‘//[Chen77]
Another possibility is the one-stage perfect
shuffle with queueing on each comparator [Lang76].
The queueing works well for array machines; how-
ever, when requests to memory are random, as could
be the case in a multiprocessor, the queues could [ChKL77]
become too long. An alternative to queueing we
have been studying is to set at random the two in-
put modules when conflict arises. One of the re-
sults we have obtained is that, if two one-stage
perfect shuffles are present in a system with n [Davi7 2]
processors and n memories, the average delay for a
request between processor and memory will take

0(95) stages [Padu79]. This magnitude can be
greatly decreased using other techniques.
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PARALLEL PROCESSING OF HIGH-LEVEL LANGUAGE PROGRAMS*
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Abstract -- The unifying effects of progress
in language and computing theory, coupled with
the advent of inexpensive microprocessor, has led
many computer architects to consider the modular
design of computer systems incorporating multiple
microprocessors to implement various functions of
the overall system. This paper is concerned with
the parallel processing of high-level language
programs by a multiple microprocessor system,
The notion of a Parallel Execution String (PES)

is first introduced as a representation of
expressions for parallel execution, The PES
approach is then applied to detect the

parallelism at both the statement and the block
levels., The advantage of the PES approach over
the conventional '"'parallel by level' approach is
discussed, and two algorithms are given to
convert expressions into PgES's, Finally, the
organization of a multiple microprocessor system
designed for parallel processing of PES's is
presented, Code generation and optimization
techniques are also discussed,

I, Introduction

The advent of inexpensive microprocessors
has led many computer architects to consider the
design of computer systems incorporating multiple
microprocessors to implement various functions of
the overall system [1]. Examples are the
implementation of a general-purpose pipelined
CPU [2], an emulator for the Sperry Univac 1108
mainframe [3], the Cm* [4], the Multi Associative

Processor (MAP) [5], the Distributed Function
Multiple Processor (DFMP) [6], the
direct-execution computer organization [7], etc.

This paper is concerned with the parallel
processing of high-level language programs.

In this paper, we investigate the problems
involved in parallel execution of arithmetic
expressions in high-level programming languages,

We are not concerned with the tree-height
reduction techniques as proposed by Baer and
Bovet [8], by Ramamoorthy and Gonzalez [9], by

Squire [10], and by Stone [11]., Rather, we are
dealing with a representation of parallelism, a

way the expressions are executed, and an
* Research reported herein was supported in
part by grants AFOSR-77-3400 and

NSF-MCS-77-23496,
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appropriate computer organization for carrying
out the execution. The concept and notion of a
Parallel Execution String (PES) is introduced as.
a representation of expressions for parallel
execution, The PES approach is then applied to
detect the parallelism at both the statement and
the block levels in Section 1I and Section III,
respectively, Two algorithms are then given to
convert expressions into PES's and to schedule
them for execution in Section IV, A machine
organization suitable for carrying out parallel
operations with our approach is described in
Section V., Finally, code generation and code
optimiration techniques are discussed in Section
VI and Section VII, respectively,

II, Parallel Processing of Expressions

It is well known that an expression can be
represented by a rooted tree, with its internal
nodes denoting operators and its external nodes
variables and constants [12]. The son-nodes of a

node are the operands of that node,. For two
operator nodes in the tree, if neither is the
ancestor of the other, these two operators are

independent and thus can be executed in parallel.
In order to take advantage of the parallelism

during the execution of an expression, there
should be an intermediate form, into which the
expression can be transformed, that shows the

parallelism explicitly, One method (i.e. the
conventional parallel-by-level approach [13]) is
to group together the operations that are at the
same level in the tree, and then to execute the
operations in a group in parallel. The result of
each operation is represented by some external
symbol, which is not in the expression, and the
symbol is then used as the operand of some
operation on a higher level. The implication of
this method is that we should have assumed that
all operations take equal 1length of time, for
otherwise there will be instances that the
executions of some operations are delayed
unnecessarily. However, this assumption does not
hold for most real computers. Thus we propose
another scheme to represent an expression in such
a form that is appropriate for parallel
executions regardless of the execution time of
various operations, Later we will see that this
scheme also has some additional advantages.,
First, let us give some definitions:



definition

In an expression tree, an operator node is
called
type 1 -- if all of its operands are
variables or constants;
type 2 -- if exactly one of its operands is
an operator; and
type 3 -- if more than one of its operands
are operators,
If we consider only wunary and binary

operators, then the definition of type 3
becomes :
type 3 -- if it has two operands being

operators,

For simplicity reasons, from now on we will

consider unary and binary operators,
the proposed scheme can be easily
to handle operators with more than two

only
However,
extended
operands,

If we consider the type l nodes as starting
points toward the root of the tree, then there
are as many paths as type 1 nodes. Each path
passes through a sequence of operators and
uniquely defines a string of operators and
operands, starting at a type 1 node and ending at
the root, The string is to be called a
Parallel Execution String (PES). These paths
merge together on their ways toward the root and
eventually converge at the root, where the last
operation is performed. Note that each path has
a type 1 node at one end and the root of the tree
at the other end, and all of the intermediate

nodes on each path are of type 2 or type 3. Type
3 nodes are merging points of paths, whereas the
others are of type 2.

We observe that for each path, all the

on that path have to be executed
sequentially, beginmning from the starting node
and heading toward the root., However, any two
nodes on two different paths prior to the merging
point of these two paths (even though they are at
different levels), are independent and thus can
be executed in parallel, From these observations
we can see that there exists more parallelism
among the PES's of an expression than what can be

operations

exploited by the parallel-by-level approach. In
a formal way, we can define a PES as follows:
Definition
A Parallel Execution String (PES) of an
expression is a sequence
Dy T; Dy Ty .... Dp.1 Tn-1 Dn
where
(1) T1,T9,....Tp-1 are operator nodes in

the tree, Tjis a type 1 node, Ty,...,
Ty-1 are of type 2 or 3, and Tp.1 is
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the root node;

(2) father

for i=l,2,...,n-2, Tis+1 is the
node of Tj;

(3)
(%)

D] and D2 are operands of Tj;

for every i such that Tj is of type 2,
Di+1 1is either empty or an operand of
Ti, depending upon whether Tj is an
unary or binary operator;

(5) for every i such that Tj is of type 3,
Di+1 is represented by "#k'", where k
is a number uniquely identifying the
node Tj among all the type 3 nodes;
and

(6) if Ti corresponds to a non-commutative
operator X, and Tj.] is the right
son-node of Tij, then Tj is represented
by X'.

Figure 1 is an example of
expression in PES notations,
will present an algorithm for
arithmetic expression into PES's,)

representing an
(In Section IV, we
converting an

The expression - (A+G+B*C)/(D*(E+I)+F)+H
can be represented as a tree:

CE I
It can be compiled into PES's as:

A+Ga+#1 -/ #2 + H

B*Ca+ #1 -/ #2 + H

E+I*D+F /' #2 + H

Fig. 1 Example of translating an expression
into PES's

With the definitions above, we thus propose
a scheme to decompose an expression into PES's
and execute them in parallel as follows.
Whenever a processor is free, it will pick up one
of the PES's that have not yet been taken, and
start executing that PES from left to right. The
first operation is always of type 1, which means
all of its operands are variables or constants,
so that it can be executed immediately, If it is
a unary operator, it performs the operation and
keeps the result in the processor for the next
instruction, If it is a binary operator, it

loads the first operand into the processor,
performs the operation on the first and second
operands, and keeps the result for the next
instruction,



When the processor reaches a type 2 node,
nothing will prevent it from performing that
operation., Because this node has exactly one of
its operands as an operator which has already
been executed immediately prior to this node by
the same processor. Note that the result of the
previous operation is still kept in the processor
and can be readily used as the operand for this
type 2 node, The processor will execute the type
1 and type 2 nodes in the PES one by one,
independent of other PES's,

When the processor reaches a type 3
operator, i.e. the operator with a #k operand, it
will either continue executing the PES or save
the partial result obtained thus far and then
give up the PES, depending upon whether or not
any of the other PES's, passing through the same
type 3 node, has been executed up to this mnode.
One possible machine organization to implement
this scheme is described in Section V, Each PES
will be executed only by one processor, although
the processor may give up that PES before it
reaches the end.

As mentioned earlier, the PES scheme has the
advantage that it can exploit all the parallelism
within an expression regardless of the operations

that may take unequal length of time. In
addition we also find that it has the following
advantages:
1, The execution of a PES is done
straightforward from left to right, No
precedence relation between the operators

needs to be considered, and it does not need
any stack.

If the operations in the eXpressions are
limited to wunary and binary operatioms, it
only needs a one-address instruction to
perform the operation for each of type 2 and
type 3 nodes, and two one-address
instructions for each of type 1 nodes.

The partial results need not be stored for
any type 1 and type 2 nodes, and they remain
in the processors and will be used in
subsequent operations, Even though the
partial result may have to be stored for a
type 3 node, it occurs only when the other
path has not yet reached that node, so that
storing the partial result in this case will
not really increase the total execution
time,

When a PES is assigned to a processor, a
sequence of operations will be performed by
the processor without the intervention of
others, so that the execution can be done as
fast as possible, This also makes it
possible to employ some techniques (e.g.,
pipelining instruction fetching, decoding,
and exXecution) to increase the execution
speed further,

As will be seen in the next section, the PES
scheme allows detection of parallelism
between the operations in different
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statements,

III. Parallel Processing of Statements

It can be argued that expressions in most
programs tend to be short and hence the scheme
described above will not speed up the execution
too much, Therefore, we need to go a step
further to investigate how the PES scheme can be
applied to exploit the parallelism among a block
of statements,

To execute two statements in parallel, a
condition must be satisfied: the input set and
the output set of either statement cannot have
any variable in commen with the output set of the
other statement. There are two methods that we
can use to exploit the parallelism between
statements to make the PES scheme more practical.
The first method is to make the statements
independent of each other by using a technique
called forward substitution [12]. After applying
forward substitution, the expressions become
independent of each other and usually become more
complicated and have more parallelism to be
exploited, so that we can use the PES scheme to
execute the statements in parallel.

In this paper we propose another method to
detect the parallelism between the operations in
dif ferent statements., Our approach is based on
the concept introduced in Section II that an
expression can be represented by one or more
Parallel Execution Strings (PES's). The PES's of
the statements in a block are tested for
dependency and scheduled for execution according
to the same condition mentioned above for
statements, but here the tasks being tested and
scheduled are the PES's generated from the
statements, instead of the statements themselves.
The advantage of this scheme is apparent in the
example below. In the scheduling process, each
PES will be assigned to a specific execution
stage. Program execution will be done stage by
stage. Those PES's which are assigned to the
same stage can be executed in parallel.

The following is an example for this scheme.
The original program consists of three assignment
statements:

X = A*¥B*%*C+ D
X:= C*X / (D+E* (F-G))
A:z= D*¥E4+C*B
The PES's for these three statements are:
A% B* C+ D =X
C*X / #1 = X ]
F-G*E4+D/'#l —» X
D*¥E + #2 —» A
C*B+ #2 —> A

These PES's will be scheduled to two stages for
execution:



A*¥B*C+D—>X
F-G*E+D/'#l
C* B + #2

Stage 2

From the example above we can see that this
scheme has the advantage that, even though
Statement 1 and Statement 2 are not independent,
a subexpression of Statement 2 can be executed
concurrently with Statement 1, Similar situation
also exists between Statement 1 and Statement 3.

IV. Compiling Algorithms

In this section we will present two
algorithms: Algorithm A is to convert an
arithmetic expression into Parallel Execution
Strings, and Algorithm B is to detect the
parallelism between PES's in a block and to
schedule them for execution. Algorithm A
requires only one pass through the input
expression and each PES corresponds to one of the
execution paths described in Section II.
Algorithm B is applied to the PES's in a block
one by one.

For simplicity reasons, Algorithm A  will
assume that the input expressions have been
translated into reversed Polish strings.
However, the algorithm can be easily modified to
accept arithmetic expressions without any
preprocessing, Figure 2 is the flowchart of
Algorithm A. Since scanning a reverse Polish
string corresponds to the post-order traverse of
the expression tree, a stack is used in Algorithm
A to keep the operands before their operators are
scanned, If the operand stored in the stack is
an operator, it will be represented as $n, where
n is the highest numbered PES passing through the
operator node.

When a variable or constants is scanned, it
is always pushed onto the stack, When an
operator is scanned, it will be handled according
to its type. In Step 5 of Algorithm A, binary
operators are processed in Case 1 through Case 3,
for type 1 through type 3 nodes, respectively.
For type 1 nodes (Case 1), a new PES is generated
for the operation, and the operands on the stack
are replaced by the string number, For type 2
nodes (Case 2), the operator and the constant or
variable operand are appended to each of the
PES's passing through the operator node, and the
operand is deleted from the stack, For type 3
nodes (Case 3), the operator and a "#i'" are
appended to each of the PES's passing through the
operator node, where i is a unique integer for
the type 3 node, and the top two elements on the
stack are replaced by the larger of the two.
Unary operators are processed in Step 6, There
are only two possible types for unary operators:

type 1 and type 2. For type 1 nodes (Case 1), a
new PES is generated for the operation and the
operand on the stack is replaced by the string
number, For type 2 nodes (Case 2), append the
operator to each of the PES's passing through the
operator mnode, No changes to the stack will be
made,

Algorithm A

1. Convert the expression into a reverse Polish
string, This procedure can be found in

Hamblin [14] and is omitted here, Here we
may use the tree-height reduction
techniques [8-11] to obtain a modified

Polish string.

2, Initialize i « 1, j « 1, where
i is an index for temporary storage and
j is an index for generated strings,

3. From left to right scan the Polish string
for the next symbol S,
If it is the end of string, the procedure is
done, and String 1, String 2, ceees
String (j-1) are outputs,

4, If the symbol S is an operand, push it onto
the stack, then go to Step 3.

5. If the symbol S is a binary operator, the
top two elements on the stack have the
following possibilities:

case 1 Both are operands:

1) Create a new String j.

2) Pop the top element off the stack, and
let it become the third symbol of
String j; then let the operator S be
the second symbol of String j, pop
stack again, and make it the first
symbol of String j.

3) Push the symbol $j onto the stack,

4) j « j+l,

End case 1

Case 2 One is an operand, and the other is
a $k:

Let e be the number such that $e is the
next $'s appearing in the stack below
$k. If no such $e exists, e is O,

1) If $k is on top of the stack and the
operator is not commutative, append the
"'reverse operator'" of S to each of:
String k, String (k-1), ey
String (e+l). Otherwise, append the
operator S to each of the same set of
strings. (The 'reverse operator' means
that the order of its operands is
reversed),

2) Pop up the stack twice. Append the one
which is an operand to the same set of
strings as in 1,

3) Push $k onto the stack.

End case 2

Case 3 Both of the top two elements on the
stack are $'s:
Let the top one be $n, the second one be



$m, and m ¢ n,

Let e be the number such that $e is the

next $'s appearing in the stack below
$m, If no such $e exists, e is O,

1) Append the operator S to each of:
String m, String (m-1), cees

String (e+l).

2) If the operator § is commutative,
append it to each of: String n,
String (n-1), ooy String (m+l).
Otherwise, append its reverse operator
to each of these strings,

3) Append a symbol #i to each of:
String n, String (n-1), ..., String m,

«e., String (e+l).
Pop up the stack twice,
onto the stack,
5) i « i+l,
End case 3

4) and push $n

Go to Step 3.

6. If the symbol S is a unary operator, there
are two possible cases:
Case 1 Top of the stack is an operand:
1) Create a new String j.
2) Pop the top element of the stack., Let

it become the first symbol of String j.
Let the operator S become the second
symbol of String j.

4) Push $j onto the stack.,

5) j & j+l.
End case 1

3)

Case 2 Top of stack is $k:
Let e be the number such that $Se is the
next $'s appearing in the stack below
$k., If no such $e exists, e is O,
Append the operator S to each
String k, String (k-1),
String (e+l).
End case 2

of:

s e ey

Go to Step 3.

End of Algorithm A

Figure 3 shows the flowchart of Algorithm B,
Algorithm B will detect the parallelism across
statements based on the PES scheme, It uses a
symbol table to keep track of the variable names
used in the block. For each variable in the
symbol table, there are two fields associated
with it: LAST-FETCHED and LAST-STORED, We will
use LF(X) and LS(X) to denote the two fields
associated with variable name X, These two
fields contain the stage numbers at which a
variable name was last fetched and last stored,
respectively, Any PES's changing the variable X
will be scheduled for a stage later than the
larger of LF(X) and LS(X), because they cannot
change the value of X until the prior fetching
and storing operations of X are completed. Case
1 in Step 1 is to handle this situation., Any
PES's wusing the variable X as input will be
scheduled for a stage later than LS(X), because
they have to wait until the storing operation of

21

X is completed. This situation is handled by

Case 2 in Step 1.

In Algorithm B, we use an array TMP whose
size 1is at least the maximum number of temporary
storage elements used in a block, TMP(K) keeps
the largest stage number of the scheduled PES's
that contain the symbol #k, TMP is wused for
eliminating unnecessary conflict checking and for
assigning sub-expressions to the earliest stage
possible. During the scanning of a PES, if we
find any temporary storage symbol which has been
scheduled before, there is no need to continue on
the current PES. This situation is handled by
Case 3 in Step 1. During the scanning of a PES,
a variable STG is updated to the largest stage
number in which variable conflicts will prohibit
the execution of the current PES, When it comes

to Step 2, the current PES has been determined
not to be executed in or before stage STG.
Therefore, the PES is scheduled for stage STG+1.

In Step-3, the table entries of LF, LS, and TMP
are updated to reflect the results of scheduling
up to the current PES,

Algorithm B

0) Clear the TMP array.
Apply the following steps to each of the
PES in the block one by one.
Set STIG to 0.

1) Scan the PES from left to right, If it

reaches the end of the PES, go to Step 2.
Otherwise, get next symbol S,

If S is an operator, ignore it and get the
next symbol,
If it is an operand, there are three

possible cases:

If S is the output variable of the
assignment:

1.1) STG e— max[STG,LF(S),LS(S)]

1.2) go to Step 1.
End case 1

Case 1

If S is an input variable of the
assignment statement:

1.3) STG «— max[STG,LS(S)]

1,4) go to Step 1.

End case 2

Case 2

If S is a temporary for
partial result, say #k:

If TMP(k)= 0, go to Step 1.

If TMP(k) > STG, go to Step 2.

If 0 < TMP(k) ¢ STG, then

S «— end of string,

go to Step 2.

End case 3

Case 3 storage

2) STG =— STG+l.

3) the

For each operand T to the left of S in
string, do the following:

If T is the output variable
assignment, )

LS(T) +— STG.

of the



If T is variable of the
assignment,

LF(T) < max[STG,LF(T)].
If T is a temporary storage for the partial
result, say #j,

TMP(j) «— STG.

an input

End of Algorithm B

V. Machine Organization

A possible machine organization for parallel
processing of PES's is shown in Figure 4, In
this system, there is a variable number of
identical microprocessors, Each microprocessor
has its own program counter PC, accumulator AC,
busy bit indicator B, and ALU, It is capable of

fetching, decoding, and executing the
instructions stored in the main memory. At the
completion of a non-branching instruction, the

microprocessor increments its own program counter
and starts executing the next instruction fetched
from the main memory. The instruction set of
each microprocessor will have a  special
"operate-or-store'" type of instructions, which is
an ordinary operator except that the execution
will depend upon the condition of the operand.
If the operand in the PR memory (to be explained

below) shows a '"not ready" condition, the
execution will mnot proceed any longer, the
microprocessor will become free, and its B
indicator will be reset to O, Instead of
performing the operation, it simply stores the
content of its AC into the storage location
addressed by the operand field of the
instruction, If the operand is ready, the

instruction will be performed as an ordinary
operation, Instructions of this type are wused
for binary operators of which both of their
operands are the results of some other operators,
i,e, the type 3 nodes in the tree representation,

There is a Partial-Result (PR) memory in the
system., Its purpose is to store the partial
result obtained by the microprocessor that
reaches a Type 3 node first, Each location in
the PR memory has a status bit which indicates
the availability of the partial result, The
status bits are reset initially. The first
"operate-or-store' instruction ac essing a PR
location will store its partial result and set

the status bit, The second "operate-or-store"
instruction ac essing the same location will use
its content and reset the status bit, While a
microprocessor is executing the
"operate-or-store'" type instructions, no other

microprocessors will be allowed to access the
same location in the PR memory. This is to
insure that only one of the two operands for a

type 3 node will be stored into the PR memory,

In the
"Entry-Point-List"
of pointers pointing to the

system, there is an
(EPL) memory, which consists
starting points of

each PES, There is a pair of registers "Front"
® and "Rear" (R), and . an indicator
""Need-Processor" (NP)., F and R contain pointers
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to the EPL memory. Before an execution stage
starts, F points to the beginning of the EPL for
that stage, and R points to the beginning of the
EPL for the next stage, F is incremented by one
when a PES is taken by a processor for execution,

The indicator NP indicates 1 when F is not equal
to R, and 0O when F= R, Thus NP indicates
whether or not the stage needs any more

processors for execution,

There is an FR memory to store the pointers
that will be loaded into F and R throughout the
execution, The 'Central-Program-Counter' (CPC)
register is a pointer pointing to the FR memory
for the current execution stage. Changing the
execution sequence is done by changing the
content of the CPC register,

In order to detect the completion of an
execution stage, a ''Number-of-Parallel-Strings'
(NPS) register is used, When new values are load
into F and R, NPS is set to a value equal to the
difference between the values of R and F, It is
then decremented at the completion of each PES,
The completion of an execution stage is indicated
by a zero in the NPS,

The control sequence for each microprocessor
can be summarized as follows:

0. Idles. When NP=1, go to 1,
1. PC « EPL(F), F « F+l, B « 1,

2. Fetch, decode, and execute instructions,
Repeat until it encounters an IDLE
instruction or the operand of an
"operate-or-store'" instruction is not ready.

3. NPS « NPS-1, B « 0O, go to 0.

The control sequence for CPC, FR, F, R, and
NPS can be summarized as follows:

0. R «~ FR(CPC), CPC « CPC+l,

1. F «- R, R «FR(CPC), CPC « CPC+l,

2, NPS « R-F.

3. When NPS=0, go to 1,

The design of a multi-microprocessor system
using Am2900 bit-slice microprocessors can be

found in [15]. The system has the capability of
performing parallel operations with the PES
approach, and the capability of multi-processing
sequential programs. It also has an efficient
and flexible interrupt handling mechanism, The
memory system is also designed to match the high
throughput of the multi-microprocessor system,

VI. Code Generation

several sequences of
Each sequence of
PES's

For each expression,
instructions will be generated.
instructions corresponds to one of the

‘generated by Algorithm A described above, which

to one path in the tree
representation, The last instruction of each
sequence is always an IDLE instruction, which
will set the processor free, However, if there

also corresponds



is only one sequence in each of two consecutive
execution stages, the first sequence will not
have the IDLE instruction at its end, This is to
eliminate the overhead in rescheduling processors
in the case that only one processor is needed in

each of the two consecutive execution stages.

For each sequence of instructions, an EPL
entry, which is the address of the first
instruction in the sequence, is generated in the
EPL memory. For each execution stage, an FR
entry, which is the address of the first EPL in
the execution stage, is generated in the FR
memory., Again, if there is only one sequence in
each of two consecutive execution stages, there
will be no FR entry generated for the second
stage. This code generation scheme will insure
that a strictly sequential program can be
executed by a multi-processor computer system as
fast as by a uni-processor computer system, while
the programs with parallelism exploited by the
PES scheme will be executed by a multi-processor
computer system faster than by a uni-processor
computer system,

The translations from the PES's to machine

instructions are straightforward. It can be
summarized as follows:

1. The first symbol in the PES is always an

operand, Generate a LOAD instruction to

load that operand into the accumulator,
Continue scan the PES from left to right and
do the following steps.

If it is a wunary operator, generate an
instruction to perform that operation on the
content of the accumulator, The result of
the operation will be in the accumulator,

If it is a binary operator, generate an
instruction to perform the operation on the
next symbol, The operation has an implied
operand which is in the accumulator, and the
result is stored in the accumulator,

In step 3, if the next symbol is a numerical
symbol preceded by a #, then the instruction
generated is a special 'operate or store'
instruction,

For example the PES: A + G % #1 / #2 + H will be

translated into:

LDA A sload A into accumulator
ADD G s;add G to accumulator
MOS #1 smultiply #1 to ACC or
; store ACC to #1 then
;5 idle
DOS #2 ;divide ACC by #2 or
;3 store ACC to #2 then
;3 idle
ADD H sadd H to ACC
IDLE ;end of PES, free

; the processor

23

VII, Code Optimization

There are two types of code optimization

that can be done with the proposed compiling
scheme, The first one 1is to eliminate the
redundant portion of a PES to save space. When
the PES's generated from an expression are
scheduled to be executed in more than one
execution stage, the redundant portions of some
PES's can be eliminated as follows. If a PES

contains a partial result symbol (i.e. the symbol
preceded by a '"#'") which also appears in some
PES's scheduled for a later execution stage, then
the substring to the right of that symbol can be
eliminated, That substring is redundant because
the execution of the PES will never proceed
beyond that partial result symbol.

The other type of optimization is to reorder
the PES's to minimize the total execution time.
If the number of processors is equal to or
greater than the number of PES's in an execution
stage, the reordering of the PES's will not

affect the total execution time, But if there
are more PES's than processors, it might be
advantageous to reorder the PES's, The tasks to

be scheduled are the PES's in an execution stage.
The execution time for each PES can be estimated
by adding up the execution time for all the
operators in the PES, The goal is to find a
optimal non-preemptive m-processor schedule for
the PES's in an execution stage to minimize the
total execution time, However, it is known that
the problem of finding the optimal non-preemptive
schedule for n independent tasks with unequal
length executed by m processors is NP-complete
even for m 2 [16]. The problem is complicated
even more by the fact that reordering the PES's
will vary the execution time for each PES.
Therefore, we can only find some near optimal
scheduling strategies. A simple and intuitively
sound strategy for this problem is the
longest-processing-time scheduling, which gives
the tasks with the longest processing time the
highest priority, Simulations based on randomly
generated PES's show that the longest-processing-
time schedules have mnear-optimal performance,
despite that the estimated execution time for a
PES is usually not its actual execution time,

VIIL, Conclusion

In this paper, we have first proposed the
PES scheme for compiling the eXpressions in
high-level language programs into an intermediate
form suitable for parallel processing. We then
went a step further to apply the scheme to a
block of statements to exploit more parallelism,
The advantages of this approach were briefly
discussed, It should be noted that the PES
approach we have proposed does not preclude the
use of the tree-height reduction techniques and
other techniques of program analysis for parallel
processing [12].



Note that the PES scheme can be applied to a
system with conventional machine instruction set

as well as the indirect-execution high-level
language computers [17]. In the latter, the PES
notation is used as an intermediate language
which is ready for parallel execution by the
hardware. The translation from the source
language to the intermediate language is not
complicated., The intermediate language clearly

indicates the parallelism exploited in the source
language programs.

We also presented the organization of a
multi-microprocessor system suitable for parallel
processing of PES's, The code generation and
optimization techniques for such a system were
also discussed, The proposed machine
organization and code generation method have the
advantage that it minimizes the overhead of
executing a strictly sequential program or
program segment while the programs with
parallelism can be executed faster on such a
multi-processor system compared with a
uni-processor system, The optimization
techniques described here can be used with other
machine-independent optimization techniques in
compiling programs.
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A FLOW ANALYSIS PROCEDURE FOR THE TRANSLATION
OF HIGH LEVEL LANGUAGES TO A DATA FLOW LANGUAGE*
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Abstract A data flow analysis procedure is
described which may be used in the translation of
high level languages to parallel target languages.
The technique analyzes the data dependencies which
exist between statements in a high level program
and constructs an intermediate form amenable to
optimizing transformations and code generation.
An example illustrates how information provided by
the analysis may be used in generating code for a
highly parallel data flow machine. Within the
framework of the described data flow analysis pro-
cedure, extensions to the high level language are
discussed which allow for higher utilization of
the data flow machine.

Introduction

The user acceptance of a data flow computer
to some extent will be influenced by the ability
of the user to program application programs in a
high 1level language. This calls for a translator
to translate the high level 1language to a data
flow language. This paper describes a technique
for data flow analysis which may be used in this
translation. The technique is useful for a broad
class of high level languages which include the
sequential von Neumann type high level languages
in common use as well as nonsequential high level
languages such as the so called single assignment
languages [1,6,7,16]. In order for this flow
analysis technique to be applicable to single
assignment languages, it 1is required that the
definition of a value precede any use of that
value in the text of the high level program. In
some single assignment languages this is required
by the definition of the language while others
would require a preprocessor to topologically ord-
er the statements.

The target language could be the instruction
set provided by any of a variety of parallel ar-
chitectures. In this paper, however, the assumed

*Research reported herein was supported by the
National Science Foundation under NCS77-02467 and
by the Sciences and Humanities Research Institute
of Iowa State University.

**Present address: Computer Science Department,
Colorado State University, Ft. Collins, Colorado
80523.
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-that target code may be generated to

- have

target machine is a highly parallel data driven
machine [5,9,15,17]. The underlying assumption
behind a data driven machine is that a program is
not a sequence of instructions that cause changes
to a memory space, but instead a program is a col-
lection of computations related to each other by
the need for data values that are produced and
consumed. The order of execution of the computa-
tions is not directly stated by the program but
rather by the partial ordering provided by the
data dependencies. The purpose of the data flow
analysis 1is to determine this partial ordering so
exploit the
inherent parallelism in the program. While other
techniques [2,4,10,11] provide a general basis for
the analysis, additional information must be gath-
ered to generate code for such a parallel execu-
tion environment.

A compiler wusing the data flow procedure
described in this paper has been implemented to
translate programs written in a typical von Neu-
mann type high level language to the language of a
simulated data flow machine [14]. The discussion
of the flow analysis technique is presented with
this implementation used as an example. Some
extensions to the language are then discussed
which rely on this same technique of flow analysis
but allow higher wutilization of a data flow
machine.

High Level Language and Data Structure
for Internal Representation

A high level programming langauge, devoid of
features incompatible with the notion of func-
tionality of programs, was designed as a vehicle
to help achieve the objectives of the research
[14]. The language is similar in appearance to
Pascal but, at the moment, has about the same
expressive power as Algol 60. A program consists
of a main procedure with declarations, including
the definitions of other procedures and functioms,
and a body of statements. Procedures and func-
tions may be recursively applied. Statements in
the language include  assignment, conditional
(i.e., if-then and if-then-else), iterative (i.e.,
while-do, repeat-until and for), procedure call,
and input and output. The for statement is
translated directly into a while-do statement and
no further reference to it is made in the paper.
Parameters of procedure calls and definitions must

an "in" and/or "out" directionality



attribute. Integer, real and boolean data types
are currently supported along with a full comple-
ment of operators and intrinsic functions which
can operate on identifiers declared with the above
data types. The array is the only data structur-
ing facility which exists at the present time. An
array may have any number of dimensions and may be
dynamically declared at run time upon procedure
entry. Transfer of control (e.g., goto's) and
global references are not allowed in the language.

The compiler translates the source text of a
program written in the high level language into an

intermediate form. This intermediate form is
recorded as a table of relatively high level en-
tries and is hereafter referred to as the IFT.

Initially, the IFT is a representation of the tree
structure of the high level program. After later
phases add data flow information, the IFT becomes
a representation of a data flow graph, amenable to
optimizing transformations and code generation.

Each entry in the IFT consists of four major
fields as shown in Figure 1.

TYPE I 0 TREE

Figure 1 Entry in the IFT

TYPE is the field that indicates the type of
statement represented by the entry; I is the set
of dinput values for the entry; O is the set of
output values for the entry; and TREE is the syn-
tax tree for the entry, if one exists.

A separate IFT is generated for every pro-
cedure and function defined in the program.
Entries are created in the IFT during the parse
phase and are threaded to represent the ordering
of the statements as they were encountered in a
sequential scan of the high level program. Each
high level statement results in the generation of
one or more entries in the IFT where the data flow
information is maintained. The general form of
the different high level statements and the types
of entries in the IFT generated by the compiler
are given in Figure 2. A simple high level state-
ment (i.e., assignment, procedure or function
call, and procedure or function heading) generates
only one IFT entry in which the data flow informa-
tion for that statement will be maintained. For
compound statements that are conditionally execut-
ed (i.e., bodies of while, repeat and if con-
structs) an '"interface" entry is generated to
maintain the cumulative data flow information for
the condition and block of statements within the
body. These interface entries are denoted in Fig-
ure 2 by "if", "while" and '"repeat'. An interface
represents a staging area for the values used by
the condition and block and for the values defined
by the block. All information used by the block
is conceptually passed from preceding statements
through the interface and all information defined
by the block is conceptually passed to succeeding
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statements through the interface. This allows for
local flow analysis of blocks of statements. A
"close" or "end" entry is generated to mark the
end of a repeat, while, if, procedure or function

block and contains no data flow information. The
"then" and "else" entries are also generated to
mark the start of the then and else bodies. The
input/output statement generates an
"input"/"output”" entry in the IFT for each com-
ponent in its list. If an input or output com-

ponent involves an implied do loop, a while loop
is generated with corresponding entries placed in
the IFT.

High level statement Entries in the IFT

procedure (function)
statement list
end

procedure (function)
entries for statement
list
end

input/output al,...,an input/output for al

input/output for an

X := expression assign
if condition if
then statement listl condition
{else statement list2} then
entries for statement
listl
else l
{ .entries for statement
[ 1ise2 5
close
while condition while
statement list condition
end entries for statement
list
close
repeat repeat
statement list entries for statement
until condition list
condition
close
x(in(...),out(...)) call

Figure 2 High level statements and
entries in the IFT
Figure 3(a) shows a segment of a high level

program using the Runge-Kutta method for finding
the numerical solution to the ordinary differen-
tial equation y'=x+y with y(0)=1. Figure 3(b)
shows the corresponding set of entries in the IFT.
The actual data flow information for these entries
will be illustrated later. Figure 3(c) shows the
syntax tree for entry 8.



x =0

y =1

i:=1

repeat
z = xty
k1l := h%*z
k2 := h*(z+h/2+k1/2)
k3 := h*(z+h/2+k2/2)
k4 := h*(z+h+k3)
y = y+(1./6.)*(k1+2*k2+2*k3+k4)
x := x+h
i = 4i+1

until n < i

(a) High level program segment

TYPE TREE TYPE TREE
0. assign TO 7. assign T6
1. assign Tl 8. assign T7
2. assign T2 9. assign T8
3. repeat 10. assign T9
4. assign T3 11. assign T10
5. assign T4 12. condition T11
6. assign T5 13. close
(b) IFT entries
/N
k&4 / \\
n/ N
z /ﬁ\\
h k3
(c) Syntax tree T7
Figure 3 High level program segment and IFT
entries
Data Flow Analysis
The data flow analysis technique presented

here assumes the IFT as an internal form of the
program and also assumes that the target machine
provides direct semantic support for those opera-
tions which are implicit in the high level program
(i.e., arithmetic operators, array selection and
appendage, procedure call). The general technique
is a top-down recursive descent flow analysis
[10]. Since the TIFT is a highly structured
representation of the program and since procedures

are free of side effects, the flow analysis is
highly simplified.
The total data flow analysis is performed in

three phases. In the first phase, the input and
output sets for each statement are collected. The
second phase generates the use and definition
information about each value and the third phase
performs the 1live value analysis. The three
phases are outlined in subsequent sections and
described in detail elsewhere [3].
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Collection of Input and Output Sets

This section describes the generation of
input and output sets for each type of entry in
the IFT.

The calculation of the input set and the out-
put set for a non-interface IFT entry is straight-
forward, as illustrated in Figure 4.

The dinput and output sets for interface en-
tries for compound blocks of statements (if, while
or repeat) are somewhat more complicated, depend-
ing on conditionally defined values and values
which are used in a block prior to their redefini-
tion.

Entry Type Input and Output Sets for Entry EO
assign I(EQ0) = {x:x is referenced by the
assignment statement}
O(E0) = {x:x is defined by the
assignment statement}
condition I(E0) = {x:x is referenced by the
condition}
0(EQ) = ¢ (null set)
input I(E0) = {x:x is referenced by the
input statement} U
{input filename}
0(E0) = {x:x is defined by the
input statement} U
{input filename}
output I(E0) = {x:x is referenced by the
output statement} U
{output filename}
0(E0) = {output filename}
call, I(E0) = in(S)
function or 0(EQ) = out(S)
procedure where in(S) and out(S) are the
sets of parameter values in the
high level statement with the
corresponding directionality
attribute.

Figure 4 Calculation of input and output sets
for single IFT entry blocks

Let E = El,...,En be any set of entries in
the IFT corresponding to a compound block of
statements. Disregarding conditionally defined

values, this set of sequential entries, E, has its
input and output sets defined to be

i-1
u O(Ej))} and
j=1

n
I(EL) u {u (I(Ei) -
i=2

I(E)

n
u O(Ei).
i=1

0(E)



This means that the input set for E consists of
values which are used before their redefinition
within the corresponding block of statements being
processed and the output set contains all values
defined within the block.

Suppose that x 1is conditionally defined in
such a block and x is used in some subsequent com-
putation. The value for this use of x may depend
on its conditional definition or on some previous
definition. This is portrayed in Figure 5(a). In
order to simplify the data flow analysis, the pre-
vious definition of x is added to the input set to
denote unconditional production of the most recent
value of x whether it comes from within the condi-

tional block or from the previous definition.
This is portrayed in Figure 5(b).
Type Input Output
Set Set
X = assign X
if cond then x := if X b'q
z =X assign X
(a) High level segment (b) IFT entries

Figure 5 Conditional definition

The calculation of the input and output sets
for interface entries representing if, while and
repeat blocks is given in Figure 6. An input set
contains the upward exposed uses of values appear-

ing in the block of statements constituting the
body along with values which are conditionally
defined by the block. The collection of this

information is readily implemented by a
recursive descent parse.

top-down

Interface entry Input and Output Sets

EO for block of

the form

if C then E I(E0) = I(C) u I(E) u O(E)
0(EQ) = 0(E)

if C then El1 I(E0) = I(C) u I(E1l) v I(E2)

else E2 u {0(E0) - (O(E1l)
n 0(E2))}

O(EO) = O0(E1l) u 0(E2)

while C do E I(E0) = I(C) u I(E) u O(E)
0(E0) = O(E)

repeat E until C I(E0) = I(E) U (I(C) - O(E))
0(E0) = O(E)

Figure 6 Calculation of input and output sets for
interface entries
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Figure 7 shows the IFT entries for the
Runge-Kutta program segment (presented in Figure
3) expanded to include the input and output sets.

Entry Input Set Output Set

0. assign [1} x

1. assign 1] y

2. assign [} i

3. repeat X,i,Y’h,n Z’kl9k2’k39k4,y9i9x
4. assign X,y z

5. assign h,z k1l

6. assign h,z,kl k2

7. assign h,z,k2 k3

8. assign h,z,k3 k4

9. assign yv,kl,k2,k3,k4 |y

10. assign x,h X
11. assign i i

12. condition {i,n 1]
13. close
Figure 7 Input and output sets calculated for IFT

Generating the Use and Definition Sets

After the input and output sets have been
constructed, the dependency relationships must be
established between the definition of values and
their subsequent use. This is done by matching
names of values (names of identifiers in original
source code) in the corresponding input and output
sets of entries in the IFT. For all entries pro-
ducing a value, a list is constructed showing all
the entries where that value 1is wused. Thus,
use(x,Ei) denotes the set of entries at the same
nesting level as Ei which use the value of x de-
fined in Ei. For each value x used by an entry
Ej, an ordered 1list def(x,Ej), having maximum
length of two, is constructed showing the entries
where the value was defined. The entry which
defines a value can be found by a backward scan of
the preceding entries wuntil the value appears
either in an output set of an entry (corresponding
to a statement at the same level within the same
block) or in the interface entry of the enclosing
statement. If it is not found, the value has no
definition. If x is used in Ej, then def(x,Ej) =
(a,(b,c)) denotes the definition set of x. For a
non-interface entry, this set consists of only a,
the first element. For an interface entry, this
set contains two elements a and (b,c). The ele-
ment a identifies where the value was most recent-
ly defined outside the block and (b,c) identifies
the last definition within the block. Except for
the case of an if-then-else, ¢ is null. A member
of the set is denoted by def(x,Ej) (u) where u is
one of a, b, or c.

The use and definition analysis is presented
in Figure 8 as a recursive top-down procedure
which produces the use and def sets for the entire
IFT. Suppose H denotes the interface entry for
the block of statements to be analyzed and E
denotes the set of entries corresponding to state-
ments within the block. This procedure modifies
the IFT entries by attaching the use and def sets.



procedure useanddef (in(E,H) ,out (E,H))
elseflag := false
for i = 1 to [E| do
if TYPE(Ei) = (else or then) then
if (TYPE(Ei) = else) then
elseflag := true
end if
else
for each x € I(Ei) do
finddef (in(i,x,E,H) ,out (E,H))

end for
for each x ¢ 0(Ei) do
if x € O(H) then

if elseflag then
def (x,H)(¢) := Ei
else def(x,H)(b) := Ei
end if
end if
end for
if TYPE(Ei) = (while or repeat or if) then
U := {x:x is a subblock of Ei}
useanddef (in(U,Ei) ,out (U,Ei))
end if
if TYPE(Ei) = (while or repeat) then
for each x ¢ I(H) - O(H) do
def(x,H)(b) :=H
use(x,H) := use(x,H) U H
end for
end if
if TYPE(Ei) = (while or repeat or if or
procedure or function) then
for each x € O0(H) do
if def(x,H)(b) # ¢ then
SB := def(x,H) (b)
use(x,SB) := use(x,SB) U H
end if
if def(x,H)(c) # ¢ then
SB := def (x,H)(c)
use(x,SB) := use(x,SB) U H
end if
end for
end if
end if
end for
end procedure

procedure finddef (in(i,x,E,H),out(E,H))
found := false
for j = i-1 to 1 while not found do
if x € O(Ej) then
def(x,Ei)(a) := Ej
use(x,Ej) := use(x,Ej) v Ei
found := true
end if
end for
if not found then
if x ¢ I(H) then
def(x,Ei)(a) := H
use(x,H) := use(x,H) v Ei
else def(x,Ei)(a) := ¢
end if
end if
end procedure

Figure 8 Use and definition analysis procedure
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Figure 9 shows the IFT entries for
Runge-Kutta program segment (given

the
in Figure 3)

expanded to include the use and definition infor-
mation.
Entry Input Set Output Set
val def use val | use
0. assign [1] X 3
1. assign 1) y 3
2. assign [} i 3
3. repeat X 0,10 4,10 |x,k1, {?
i 2,11 |11 k2,k3,?
y 1,9 14,9 k&,y, |?
h ? 5,6,7,lz,i |?
8,10
n ? 12
4, assign X 3 z 3,5,6,
y 3 7,8
5. assign h 3 kl 3,6,9
z 4
6. assign h 3 k2 3,7,9
z 4
k1l 5
7. assign h 3 k3 3,8,9
z 4
k2 6
8. assign h 3 k4 3,9
z 4
k3 7
9. assign y 3 y 3
kl 5
k2 6
k3 7
k4 8
10. assign b4 3 X 3
h 3
11. assign i 3 i 3,12
12. condition ||i 11 [}
n 3
13. close

Figure 9 Use and definition for IFT

Live Value Analysis

Live value analysis provides necessary infor-
mation for certain optimizing transformations. A
value 1is defined to be live at a given point in a
program if it has a subsequent use. Live value
analysis requires information gathered in the
first two phases of data flow analysis. Associat-
ed with each value x in the output set of entry Ei
is a boolean value, 1live(x,Ei), which indicates
whether x is live at this point.

A top-down recursive descent
liveanalysis is wused to generate
The algorithm analyzes values in
for each entry starting with the first entry of a
procedure. If an interface entry is encountered,
a recursive call on the procedure liveanalysis is
made (propagating known live information inward)
to analyze entries in the inner nesting level.

algorithm called
this information
the output set

The algorithm for live value analysis is
given in Figure 10. This procedure modifies each



value in the output set of the IFT entries by
attaching a boolean value. The initial call would
take the form liveanalysis(in(E,H),out(E,H)) where
E is the set of entries corresponding to a pro-
cedure H. Figure 11 shows the IFT for the Runge-
Kutta program segment (given in Figure 3) expanded
to include the live value analysis information.

procedure liveanalysis(in(E,H),out(E,H))

for i = 1 to IEI do
for each x € 0(Ei) do
live(x,Ei) := false

if use(x,Ei) # @ then
if use(x,Ei) = {H} then

if TYPE(H) = (while or repeat)
and x € I(H) then
live(x,Ei) := true

else
if TYPE(H) = (procedure

or function) then

live(x,Ei) := true
else live(x,Ei) := live(x,H)
end if
end if
else live(x,Ei) := true
end if
end if
end for

if TYPE(Ei) = (while or repeat or if) then
U := {x:x is a subblock of Ei}
liveanalysis (in(U,Ei),out (U,Ei))
end if
end for
end procedure

Figure 10 1liveanalysis procedure

Entry Input Set Output Set
val val live
0. assign "] X true
1. assign ] y true
2. assign [} i true
3. repeat x,i,y,h,n z,kl, ?
k2,k3, ?
kb4,y, ?
i,x ?
4. assign X,y z true
5. assign h,z k1l true
6. assign h,z,kl k2 true
7. assign h,z,k2 k3 true
8. assign h,z,k3 k4 true
9. assign y,kl,k2,k3,k4 |y true
10. assign x,h X true
11. assign i i true
12. condition i,n ¢
13. close

Figure 11 Live values for the IFT
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Language Extensions for the Exposure
of Parallelism

In this section, extensions to the high level
language are discussed which allow for higher
utilization of a data flow machine. The concepts
of the '"forall" statement [1], the "stream" data

type [13,17] and array to scalar functions are
introduced to allow more efficient execution. The
flow analysis described in the previous section

remains basically the same.

The forall statement, depending on its imple-
mentation, allows for significant reduction in the
order of the computation. The intent of the
forall is that the invocations of the body are
independent so that, in theory, all may execute in
parallel. The syntax of the forall and the
corresponding IFT entries are shown in Figure 12.

High level statement Entries in the IFT

forall forall cond do
statement list
end

forall
forall condition
entries for statement
list
close

Figure 12 Forall statement and IFT entries

The input and output sets are calculated in the
same manner as the iterative for statement. It is
assumed that the body of the forall statement
obeys the single assignment rule which states that
a value may be assigned only once during the exe-
cution of the program. Thus, any value used on a
right hand side within the body of the forall must
be computed outside the forall statement. The
only value that can be output from a forall
statement is an array.

The implementation of the forall statement is
dependent on the wunderlying data flow architec-
ture. Possible implementations include unwinding
of loops by the architecture [5] or by recursion
or the use of special hardware functions such as
compose and decompose [15].

Loop decomposition, described by Lo [12] and
extended by Allan [3], can be used as an optimiza-

tion technique at compile time to transform some
iterative statements to forall statements. Every
value used in right context in the body of the

loop is examined to determine if it depends on a
value computed in a previous iteration. If the
iterations are found to be independent, the loop
is immediately transformed into a forall state-
ment. Otherwise, attempts are made to break these
data dependencies through forward substitution,
saving o0ld values of an array in a temporary ar-
ray, making scalars into arrays and rearranging
the code (maintaining the precedence relations
that previously existed). If the iterations are



still dependent, the loop 1is decomposed into
smaller loops by finding a partition of the state-
ments in the loop such that the precedence rela-

tions between the statements are still preserved.’

If the partitioning is successful, each partition
is treated as a single loop and the process is
repeated. Loops which cannot be partitioned are
executed in the original iterative manner. Figure
13 illustrates a simple decomposition of a loop.

i:=13 forall i in (1,n) do
while i <= n do b'(i) := b(i)
b(i) := a(i) + c(i+l) end;
c(i) := b(i+l) forall i in (1,n) do
end b(i) := a(i) + c(i+l)
end;
forall i in (1,n) do
c(i) :=b'(E+1)
end
(a) before (b) after

Figure 13 Example of loop decomposition

As a second technique, streams
offer some advantages. When a forall
plicable, streams might still be used to reduce
the coefficient of the order of the computation
through pipelining sections of the data flow pro-
gram. Streams, combined with recursion, can
result in a reduction in the order of the computa-
tion.

appear to
is not ap-

A third technique for the higher utilization
of a data flow machine is the introduction of cer-
tain functions (e.g., sum, product) which map an
array or stream to a scalar value. A recursive
implementation may be used to reduce the order of
a computation from O(n) to 0(log2 n), where n is
the length of the array or stream.

Code Generation

This section illustrates how the information
provided by the data flow analysis may be used in

generating code for a highly parallel data flow
machine.
The data flow program can be viewed as a

directed graph consisting of nodes and edges [8].
Figure 14 shows a data flow graph for the Runge-
Kutta program. A node represents a base language
operation and an edge represents a data dependency
between nodes. The normal firing rules allow a
node to execute whenever there is a value on each
of its input edges and no tokens on any of its
output edges. The value produced by the node is
placed on each of the output edges.

Special firing rules exist for merge gate and
true and false gate operations, which support con-
ditional execution. A merge gate of the form
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Figure 14 Data flow graph of Runge-Kutta program



takes a data value from its T input edge or F

input edge (denoted by open arrow heads) depending IN

on a boolean control value present on its control

edge (denoted by a closed arrow head). A true

gate of the form (D) allows a data value to be

passed from its input edge (open arrow head) to C

its output edge if a true boolean control value is

received on its control edge (closed arrow head).

The data value is destroyed if a false boolean T F
control value is received. Analogous firing rules
hold for a false gate of the form (. Boolean
control values are produced by relational nodes. then else

body body

The target language generated by the compiler
is a set of instructions for the data flow
machine, which is simply a linear representation
of the data flow graph. Following the flow T F
analysis described in the previous section, it 1is ouT
conceptually easy to generate the data flow graph.

For entries in the IFT, inter-entry dependencies (a) if-then-else
have been established by the use and definition
analysis. Intra-entry dependencies are esta-

blished according to the syntax tree (TREE) of the
IFT entry. Generalized code templates for three
constructs, found in conventional high level
languages, appear in Figure 15. In each of the
graphs, the edges labeled IN or OUT indicate the
sets of data values that pass into and out of the
specified construct. The set of values represent-
ed by the IN edge can be found in the input set of
the interface entry and the set of values
represented by the OUT edge can be found in the
output set of the same entry. Figure 14 illus-
trates the details for a repeat-until construct.

Conclusions

(b) while-do
This paper has presented a data flow analysis
procedure which 1is wuseful in the translation of
high level languages to the machine language for a
highly parallel data flow processor. This tech-
nique could be used for a variety of parallel
architectures and is similar to flow analysis
techniques used for code optimization on a conven-

tional machine. On one hand, the algorithm t
presented in this paper is generally simpler than
other techniques due to the enforcement of struc-
tured programming constructs and the elimination
of side effects. On the other hand, the algorithm
maintains more data flow information than do other
techniques since the primary purpose of the
analysis is to generate code for a data flow

machine.

A compiler has been implemented and is fully
operational using this technique in the generation
of code for execution on a simulated data flow
machine. A
Ty manes glaim P (c) repeat-until

/2“7 fﬁm}?}&i{_«grs« /L*ﬂv'[w-

Figure 15 Generalized code templates
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AN ABSTRACT IMPLEMENTATION

FOR

CONCURRENT COMPUTATION WITH STREAMS®

Jack B. Dennis
Ken K.-S. Weng
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract -- This paper is a contribution toward
developing practical general-purpose computer systems
embodying data flow principles. We outline a hardware
structure capable of high concurrency and present an
abstract model of data flow program execution which could
be implemented within the proposed hardware structure.
Our abstract model supports a user programming language
that iIncludes recursive function modules and provides
streams of values for inter-module communication.

Introduction

We present here a conceptual model of program
execution that can serve as the functional specification for
a distributed or highly concurrent computer system based on
data flow principles. The programming language supported
by our conceptual mode!l or "abstract implementation" is an
applicative or value-oriented language that includes
streams of values as a basic programming tool. Streams are
attractive because use of streams for communication
between program modules leads to programs whose modules
have functional semantics and whose overall meaning can
be expressed as functional components combined using
composition and a fixpoint operator [12] - thus avolding use
of side effects. In the present discussion we only consider
determinate programs. The extension of this work to
nondeterminate computation is a subject of current
research.

Specifically, we introduce a value-oriented language
and discuss representation of its semantics by translation
into recursive data flow schemas [9]. We sketch an
operational semantics (formal interpreter) for these data
flow schemas and outline the structure of a hardware
system capable of highly concurrent execution of
value-oriented programs. A more detailed and complete
presentation of this work is given in the thesis of Weng

[17].

(a) This research was supported in part by the National
Sclence Foundation under research grant MCS75-04060
AO1 and in part by the Lawrence Livermore Laboratory of
the University of California under contract 8546403.
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A Simple Value-Oriented Language

Our textual language departs from conventional
languages in several ways. There is no notion of sequential
control flow and there are no explicit primitives for
introducing parallelism. The concurrency of a computation is
determined by the data dependency within the program
rather than by explicit creation of concurrent processes.

The language is value-oriented in the sense that each
syntactic unit defines a mathematical function that maps
input values into result values: there are no side effects or
other spurious interactions in the evaluation of expressions.

The language does not have the notion of memory
locations or variables commonly found in conventional
sequential programming languages; instead names are used
to denote values defined by expressions in much the same
way as in mathematics. With value-oriented semantics, it is
natural to write programs in a form that exhibits the inherent
concurrency of an algorithm. The data types of the
language(’) are integer, real, boolean, character-string,
structure, and procedure. We shall call these data types
simple data types. The operations for types integer, real,
boolean, and character-string are the usual operations and
need no comment. The operations for values of type
structure are defined below. The only operation for
procedure values Is procedure application.

The syntax of the language is given in Fig. 1. A
procedure consists of a set of procedure definitions
followed by an expression. A procedure definition is of the
form

P = procedure ( a4:Tq,..., 8y:Tpy) yields Rq,....Rp;
<{procedure def)>

<{procedure def>
{expression>
end P;

(a) The language described here is closely related to the
language cailled VAL in development at MIT [3].



Notation : {<E>}* means CEX|CED, {<E>)*
{<E>} means { CE>)}*|empty

< program > ::= program { < procedure def > } < expression > end

< procedure def > ::= < name > = procedure ( < input list > )
yield < output list >;
{ < procedure def > }; < expression >
end < name >

Cinput list > ::= { < type declaration > }
< type declaration > ::= <{ name > :  type >
Coutput list > ::= { < type >}

< expression > ::= < primitive expression >
| { < expression > }*
| < let-block expression >
| < conditional expression >
| < application expression »
< let-block expression > ::=

let { < type declaration > }; { < name def > }; in  expression > end

< name def > ::= { < name > } =  expression >

< conditional expression > ::=

if < expression’> then < expression > else < expression > end

< application expression > ::= < name > ( < expression > )

< primitive expression > ::=

< expression > € primitive operation > € expression >
| < primitive operation > ( < expression > )

| < name >
| < constant >

< simple data type > ::= integer | real | boolean | character-string | structure
< type > ::= ( simple data type ) | stream of < simple data type >

Figure 1. Syntax of the language

This ' defines a procedure P that requires m -input values
aq,..,ay of types T4,..,T, respectively. The names
a4,...,8y, must be dlst!nct and can appear free In
<expression>. The evaluation of the procedure yields an
ordered set of values of types Ry,...,R, resulting from
{expression>.

Each expression denotes an ordered set (n-tuple) of
values whose arity is n. We give a recursive definition of

the arity A(E) of each of the five types of expressions as
follows:

A( <primitive expression> ) = 1

A( <expy), ... <exprd)
= A(<expy> ) + ... + A( <expy> )

A( <let-block expression) )
= A( let <definitions> in <exp> end )
= A( <exp> )

A( <conditional expression) )
= A(if <exp> then Cexpy> else <exp¢> end )
= A( <expp> )
= A( <expg> )
A( <procedure application) )
= A( <name> ( Cexpression) ) )
= the number of elements in the {output list>
of procedure <name).

For a <{procedure def) to be correct, the arity of the
expression which is its body must match the number of
result types specified in its <output list)>.

Often it is convenient to introduce names for
expressions because they are common subexpressions of
larger expressions. The let-block expression is used for
introducing names such that each name stands for an
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expression of arity one. A let-block expression is
form:

of the

let { <type declaration) };
(name-llst,) = <expq>;

<{name-list, > = <exp\>;
In <exp> end;
The names In type declarations of a let-block are local
names meaningful only within the block; these names must
be distinct from each other and may appear free in
<expqJ,...,{expy>, and <exp>. Name conflicts in nested
let-blocks are resolved by the scope rule that inner
definitions take precedence over outer definitions.

We require that the number of names in a name-list be
equal to the arity of the expression to the right of the
equality sign. The value of a name in a name-list is the
value of the corresponding expression appearing on the
right hand side of the equal sign, and must be of the type
specified by the type declaration. The value of a let-block
expression is the value of {exp>.

A conditional expression is of the form:
if <exp4> then <exp,> else (expz> end;

The expression <exp4> is a boolean value of arity one. The
expressions <expp> and <{expg> have the same arity and
the corresponding value in each expression must be of the
same type. The value of a conditional expression is the
value of <expp> If <(expy> is the boolean value true;
otherwise it is the value of <exp3).

A procedure application expression is of the form:
P( <exp> );

where the expression <{exp> has the same arity as the
“number of input values required by the procedure P and the
type of each value matches that of the input specification.
The result of the procedure application is an expression of
the arity and types defined by the yield clause of the
procedure heading.

As a simple example of a program in our value-oriented
language, Fig. 2 shows a procedure that defines a parallel
computation of the factorial function.

Data Structures

For the purpose of the present exposition, we will
introduce a simple but very general data structure type. A
data structure can be either pil which denotes the structure
having no components, or a structure having n component
values vq,..,v,, whose selector names are respectively
The selectors are either character strings or
integers and each selector name must be different from all

sS4 ,...,Sn.
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Factorial = procedure ( n : integer )
yields integer;

Product = procedure ( ny4 : integer, n, : integer )
ylelds integer;
ﬁ ﬂz =< n1 _t_b_ﬂl_ ﬂ1
else let middle : integer;
middle = (nq + ny) guotient 2;
in Product( nq, middle )
* Product( middle+1, ny ) end

end
end Product;

if n < O then error else Product(1, n) end;

end Factorial;

Figure 2. An Example Program

others in the same data structure. We represent such a
structure value by the notation

(s4 :v,....,sn:vn).
The operations on data structures are defined below, where

d and d' are data structures, s is a selector name, and c is
a value of any type:

(1) create ()
The create operation yields the nil data structure.

(2) append (d, s, ¢)
The result is a data structure d' which is identical
to d except that the s component is c regardless of
whether d already contains a component with
selector name s.

(3) delete (d, s)
The result is a data structure d' which does not
have an s component.

(4) select (d, s)
If d has an s component, the result is the value of
that component. Otherwise, the result is the value
undefined.

(6) nil-structure (d)
This is a predicate whose value is true if d is nil;
otherwise its value is false.

Notice that the effects of
delete (d, s)
and
append (d, s, nil)
are different, since the the delete operation would remove

the component (s, d') while the append operation would
replace it with (s, nil). It should be mentioned that an array



reverse = procedure ( x : structure )
yields structure;

if nil-structure ( x ) then x else
let left, right : structure;
left = reverse( select( x, "r") );
right = reverse( select( x, "I") );
in append( append
( create( ), "I", left), "r", right)

end

end reverse;

Figure 3. reverse

Is simply a data structure whose selector names are all
integers.

The data structure operations are illustrated by the
recursive procedure "reverse" in Fig. 3, which interchanges
the role of selector names | and r in a given data structure
of arbitrary depth.

Streams

A stream is a sequence of values, all of the same type,
that are passed in succession, one-at-a-time between
program modules.

The use of streams of data in programming is an
alternative way of expressing computations that have
conventionally been expressed as coroutines or a set of
cooperating processes. For example, a compiler may be
organized into phases which are implemented as a set of
coroutines [6].

The operations on values of type stream of T are
defined below where s and s' are streams, and c Is a value
of type T.

Ml
The result is the empty stream which is the
sequence of length zero.
(2) cons (¢, s)
The result is a stream s' whose first element is ¢
and whose remaining elements are the elements of
the stream s.
(3) first (s)
The result is the value c which is the first element
of s. If s is empty, the result is undefined. h
(4) rest (s)
The result is the stream left after removing the first
element of s. If s = [ ], the result is undefined.
(6) empty (s)
The result is true if s = [ ], and is false otherwise.
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prime__generator = procedure ( n : integer )
yields stream of integer;

generate = procedure ( |, n : integer )
yields stream of integer;
ifi<nthen[]
else cons ( i, generate( i+1, n ) ) end;
end generate;

sieve = procedure ( s : stream of integer )
yields stream of integer;
if empty (s ) then[ ]
else let x : integer,
8o, sg : stream of integer;

x,sp = first (s), rest(s);
sg = delete ( x, 85 );
In cons ( x, sleve( s3) ) end;

end;
end sieve;

delete = procedure ( x : integer,
s : stream of integer )
yields stream of integer;
if empty (s ) then[]
else lety : integer,
sp, 83 : stream of integer;
y.sp =first (s ), rest(s);
sg = delete ( x, 55 );
in_ if divide ( x, y ) then s3
else cons (y, s3 ) end;

end;

end delete;

sleve ( generate (2,n));

end prime__ generator;

Figure 4. A Prime Number Generator

The following identity is satisfied by the stream operations:

If empty(s) then s=[]
else s = cons( first( s ), rest(s))
end

The problem of generating all prime numbers less than
a given integer n is a good example of the use of streams in
constructing 'a modular program so as to expose many
independent actions for concurrent execution. The sieve of



Eratosthenes expressed in our textual language is
presented in Fig. 4. The procedure "generate" produces
the sequence of successive integers beginning with 2. This
stream is processed by "sieve" to remove nonprime
elements. Procedure "sleve" operates by taking the first
element of its input and removing all multiples of the first
element (using "delete") and applying "sieve" recursively to
the remaining elements. (The first use of stream concepts
for the prime number sieve, as far as we know, was in [16].
It seems the example has been discovered independently
by several authors.)

Data flow schemas

A data flow schema Is an operational model of
concurrent computation. The form of schemas used here
derives from the work of Dennis and Fosseen [9] and Dennis
[7]. A data flow schema is a directed graph composed of
nodes called actors and arcs connecting them. An arc
pointing to an actor is called an input arc of the actor; and
an output arc is an arc emanating from the actor. Each
actor has an ordered set of input arcs and output arcs.
There are five types of actors: link, operator, switch, merge
and sink. The five types of actors are shown in Fig. 5. An
(m, n) data flow schema must have m links which do not
have input arcs, and n links not having output arcs. These
links are respectively called /input links and output links of
the (m, n) schema. Further, we require that the schema
must be proper in the sense that all other actors must have

" the required arcs of its actor type, and each arc must be
connected at both ends.

(@) Llink (d) merge
(b) operator (e) siok
1 m
1 n sig
(c) switch (data)
(control)
Figure 5. Data flow actors.
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(a) link (b) operator
v vy Vo
v \4
\11 Un
u = true if u = false

/

Examples of firing rules.

Figure 6.

Stating the operational semantics of data ‘flow
schemas requires additional concepts. A configuration of a
data flow schema is the graph of the schema together with
an assignment of labeled tokens to some arcs of the graph.
An assignment of a token to an arc is represented by the
presence of a solid circle on the arc. The label denotes the
value carried by the token and may be omitted when the
particular value is irrelevant to the discussion. Informally,
the presence of a token on an arc means that a value is
made available to the actor to which the arc points. For the
present, tokens carry values of type integer, real, boolean,
structure, or stream.

Firing Rules

Execution of an (m, n) schema advances it from one
configuration to another through the firing of some actor
that is enabled. The firing rules for the principal actor types
are specified in Fig. 6. A necessary condition for any actor
to be enabled is that each output arc does not hold a token.
An actor is enabled when a token is present on each input
arc -- with the exception of a merge actor. The firing of an
actor causes the tokens to be absorbed from the input arcs
and completes by placing a token on each of the output
arcs. The values of the output tokens are functionally
related to the values of the input tokens. A link simply
replicates the value received and distributes it to the
destination actors indicated by output arcs. The effect of
firing an operator is to apply to the inputs ViV the
function associated with the operation name written inside
the operator to yield the outputs uy4,...,u,. The switch and
merge are used for controlling the flow of tokens. A switch
requires a data input and a control input which is a boolean
value. The firing of a switch replicates the input token on
one of the output arcs according to the boolean control
value. The arrival of a token on elther input arc enables a




merge, and upon firing, a token conveying the same value is
placed on the output arc. The behavior of a merge is
inherently nondeterminate: when two input tokens reside on
the input arcs, the firing rule does not specify in which
order the output tokens will be generated. A sink absorbs
the Input tokens upon firing and places a special token
signal on the output arc. The purpose of a sink actor is to
absorb unwanted values; the signal output token Is
necessary for the implementation of schema application to
be described.

The set of functions commonly associated with an
operator includes the scalar arithmetic operations and
constant functions.

Well Formed Data Flow Schemas

Unrestricted use of actors in data flow schemas is
undesirable since an arbitrary interconnection of these
actors may form a schema which deadiocks or has
nondeterminate behavior. Because these properties are
undesirable for reliable programming we choose a subclass
of schemas which will satisfy the needs of programming.

An (m, n) well formed data flow schema is an (m, n)
data flow schema formed by any acyclic composition of
component data flow schemas, where each component is
either a link, a sink, an operator, cr a conditional subschema.

trig

trig

A conditional schema.

Figure 7.
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Fig. 7 is an example of a conditional schema which computes
the value of the expression

ifa>bthena+belseb-3

Here, the trig output provides a completion signal indicating
that the sink actor has absorbed the unused copy of a. The
structure of a conditional schema corresponds in an obvious
way to conditional expressions.

The Apply Actor

The class of well formed data flow schemas cannot
express program features such as procedures, procedure
applications, and iterations. We introduce an actor apply
whose meaning is explained in Fig. 8. The first input to an
apply actor is a token associated with an (m, n) well formed
data flow schema. An apply actor is enabled when a token
is present on each input arc. The effect of firing an apply
actor is to replace the actor with the specified (m, n)
schema as shown in the figure. The (m, n) schema replacing
the apply actor may itself contain apply actors, allowing
recursion to be expressed.

- We have not included structures of data flow schemas
which correspond to language constructs such as while
loops in Algol 80 or Do statements in Fortran. Such
structures necessarily involve cyclic connections of actors
which do not correspond to actual data dependencies, and
introduce unnecessary delays. Furthermore, the semantics
of cyclic schemas is more complicated, since issues of
safety and liveness must be dealt with. We choose to
support these language features in the equivalent form of
recursive application of data flow schemas. This aliows
simultaneous execution of instances of a data flow schema
which correspond to successive iterations of a while loop.

An example of the use of apply actors is given in Fig.
9. This recursive schema implements the "reverse" function
stated earlier in Fig. 3. The input link actor labeled trig is
an input link whose function is to trigger those actors that
generate constants, in this case the create actor that
produces the empty data structure.

The 9.22!1 actor presented requires that all input
values be present on the input arcs to become enabled. A
language implemented in terms of the apply actor will have
"call by value" semantics, that is, the result of application is
well defined only when the computations producing
arguments to the procedure all terminate. This is in contrast
with a more general form of procedure application which
allows procedure application to begin even though
computation of some arguments is not complete.

Data Flow Processor

The structure of a data flow processor suitable for
supporting execution of recursive data flow schemas is
shown Fig. 10. It consists of six subsystems: Functional
Units, Structure Controller, Execution Controller, the
Arbitration and Distribution Networks, and the Packet



Figure 8. The apply

actor.
trig reverse
z r

@
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Vlz"
t r x
(it ™) i)
create
_ WA
trig (result)

Figure 9. Recursive schema.
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Memory. The Execution Controller fetches instructions and
operands from the Packet Memory and forms them into
operation packets. Each operation packet is passed to the
Arbitration Network for transmission to an appropriate
Functional Unit if a scalar operation is called for, or to the
Structure Controller for the data structure operations
create, append, and select. Instruction execution in the
Structure Controller and Functional Units generate result
packets which are sent through the Distribution Network to
the Execution Controller where they will join with other
operands to activate their target instructions. How this is
done is explained in greater detalil In the next section.

The Packet Memory holds the collection of data
structures as a collection of /tems each being a one-level
data structure having scalar values and unique identifiers of
other items as its components [8]. This collection of items
represents an acyclic directed graph where each arc
corresponds to a unique identifier component of the item
representing its origin node. The Packet Memory maintains
a reference count for each item and reclaims physical
storane space as items become inaccessible.

Data structures held in the Packet Memory have three
roles in the execution of data flow schemas: (1) as
operands for the data structure operations implemented by
the Structure Controller; (2) as procedure structures that
have as components the instructions of a data flow
procedure; and (3) activation records which hold operand
values for instructions waiting for their enabling condition to
be satisfied.

Although the Execution Controller, Structure Controllier
and the Packet Memory are shown in Fig. 10 as single units,
we imagine that each is in fact a collection of many identical
units. For example, the Packet Memory subsystem would
consist of separate systems, each holding all items whose
unique identifiers belong to a well defined part of the
address space of unique identifiers. The Execution
Controller subsystem would consist of identical modules
each of which would serve a distinct subset of procedure
activations.

The concept of a Packet Memory System was
Introduced in [8], and the design issues for these systems
and the Structure Controller have been studied in [1, 2].

implementation of Data Flow Schemas
Procedure Structures

A data flow schema Is represented in the machine by a
kind of data structure called a procedure structure
Hustrated in Fig. 11a. A procedure structure corresponding
to a data flow schema of n actors is a data structure having
n components with integer selector names from 1 to n
assigned to the actors. Each component, called an
instruction, Is an encoding of an actor and its output arcs.
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Figure 10. Data flow processor.

Tne components of an instruction include an operation
field which defines the function performea by the actor, and
destination fields D1, ..., Dp corresponding to p output arcs.
Each destination field has three subcomponents: the /nst
component is the integer selector name of the destination
Instruction; the arc component is an integer designation of
an input arc of the destination; and the count component is
the number of operand values required by the destination
Instruction.

Activation Records

Since multiple instances of the same schema may be
concurrently active in a computation, each activation (an
instance of procedure execution) is represented by a
separate activation record as shown in Fig. 11b. Each actor
in an activation Is uniquely identified by the tuple (A, 1),
where A is a uid allocated for the activation record and i is
the
structure. A token of value v on the k-th input arc of an
actor (A, i) corresponds to a result packet that carries the

integer assigned to the actor in the procedm'e'
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Procedure structure P

(a)

?
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1 i n
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I
instruction! 'op" 1 k P
opcode #
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"ne f'" n "
destination 1nf‘ afc ciunt
int n int
(b) Activation record A
f I |
1 i n "text"
| | T 1
1 j g "arr'
b ) l b
any any any int
= Y
operand record
Figure 1l1. Procedure and activation structures.

information (A, i, k, v, count), where "count" is the number of
tokens (operands) required for the enabling of the actor.

Enabling of an actor is detected by checking the
number of result packets having arrived at the operand
record -- the i component of the activation record A -
against the count in the result packet. The detection of
enabling is a function of the Execution Controller and the
Packet Memory that store activation records. Upon enabling
of actor instance (A, i), the instruction of the actor Is
fetched from the i component of the procedure structure.
The following section describes how activation records
might be manipulated.

An activation record has components with integer
selectors for.operand records and an additional "text"
component that is the procedure structure for the
activation. . (In our implementation, this component is shared
by other activations of the same schema.) An operand
record may have as many integer subcomponents as input
arcs of an actor, and also contains an “arrived"
subcomponent indicating the number of arrived result
packets. Since an activation record stores values of
arrived result packets in its components, operations on an
activation record modify its oomponents These operations
are defined as follows:



(1) create-activation( P )

This returns the uid of a new activation record
having P as its "text" component, but no other
components.

insert( A, I, k,v)

The insert operation adds the value v as the k-th
operand of the i-th instruction in activation record
A. In addition, the "arr" component of the operand
record is incremented by one. To handle the first
operand value to arrive, a missing "arr" component
Is interpreted as having the value zero.

remove( A, i)

This operation releases the i component of A; and is
performed by the Execution Controller once it has
generated the operation packet for actor instance
(A, D.

free(A)

This operation releases the entire activation record
A by means of a command packet sent to the
Packet Memory.

(2)

3)

a)

i For each arriving result packet ( A, i, k, count, v ) the
Execution Controller performs the operation insert( A, |, k, v
) and tests the updated value of the "arr® component
against the "count" field of the result packet. If the values
are equal, the instruction is fetched from the Packet
Memory and used, together with the operand record, to
construct an operation packet which is delivered to the
Arbitration Network. The | component of activation record A
is then released.

Procedure Activation

Our implementation of the apply actor is illustrated in
Fig. 12. The apply actor is replaced by the code
diagrammed in Fig. 12b, and the applied graph F Is
augmented as in Fig. 12c. Here we use the notations

v v

to mean insert ( A, I, 1, v ). The new actors extr-uid,
const-ret and distribute will be explained below.

This implementation assumes the actors in each
recursive schema are numbered according to this rule:

(1) Input link actors are numbered 1, ..., m. ‘

(2) The link actors that receive the n-tuple of values
resulting from a schema application are numbered J
+ 1, ..., J + n for some integer J.

(3) A link actor numbered O receives a packet ( A, J, n
) containing the information needed to construct
result packets for returning values resulting from
procedure execution. ‘

(4) The remaining actors may be numbered arbitrarily.
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®)

(c)

Implementation of apply.

Figure 12.

The Iimplementation scheme works as follows: The
create-act actor produces the uid A' of a new activation
record containing "text" component F' and passes it to the
Insert actors associated with input value vy, ..., vp,. These
actors cause result packets of the form ( A", |, 1, 1, vj) to
be generated which initiate execution of the new activation
of F'. At the same time, the extr-uid and const-ref actors
form the return value ( A, J, n ) and send it to link O of
schema F'. Once result values yq, .., y, have been
produced, the distribute and insert actors of F' generate
result packets of the form ( A, J + 1, 1, 1, y; ) which deliver
result velues to the calling schema. The free actor then
releases the activation record, and its uid A’ Is returned to
the pool of free uid's managed by the Packet Memory.

implementation of Stream Actors

In the Implementation streams are represented as data
structures. A stream Is a data structure having an "f"
component which is the first element of the stream, and an
" component which is the data structure representing the



rest of the stream. The empty stream Is represented by nil.
Operations on streams become operations on structure
values; thus first( s ) and rest( s ) are implemented by
select( s,"f" ) and select( s,"r" ), respectively.

We wish to make it possible for a stream to be
processed by consuming modules while further stream
elements: are generated concurrently. To provide for this
behavior, we must augment our concept of data structures
80 a data structure may be accessed before It is entirely
constructed. We use the concept of holes which is based
on the work of Henderson [11] who used the term “token".
Our idea is related to but different from the idea of
"suspensions” discussed by Friedman and Wise [10].

The idea is embodied in the implementation of the cons
operation. described in Fig. 13. Here the create-hole and
write-hole actors are special data structure operators
defined as follows:

A create-hole actor returns a uid H aliocated from e
data structure address space. The free node is called
a hole in that it has two states: filled and unfilied. In
the unfilled state, all data structure operations on the
hole are queued except the write-hole operation.
Upon completion of the write-hole(H,v) operation, the
hole H changes its state to filled and contains the
value v. Al previously queued and subsequent
.operations on H are processed without further delay; a
subsequent write-hole operation on H is iilegal.

To lllustrate the concurrency provided by this
implementation of streams, consider the recursive schema

<
L]
]

stream[T]

stream[T]

Figure 13. Implementation of coms.
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apply 'delete"

apply "sieve"

trig (result)
Figure 14, Data flow schema for "sieve'.

shown in Fig. 14 for the "sieve" procedure of the prime
number generator. Note that the output of the top
activation of "sieve™ will be a data structure containinng
the first element of the result stream and a hole waiting to
be filled in with the data structure generated by the
recursive activation of "sieve”. In this implementation each

higher activation of “sieve" may be released as soon as it
has completed its work (l.e., its hole has been filled),
feaving the remaining work  to be finished by deeper
activations of the code.

Remarks

The concept of stream has appeared in many forms
[6, 12, 14, 16]. One of the earliest papers that discussed
streams as a prbgrammlng feature was an unpublished paper
by Mcliroy [16].  Despite the conceptual elegance of
streams, programming has not yet departed from the
sequential notion of coroutines and process synchronization



primitives.

Recent interest in concurrent programming

languages and processors have motivated several other
authors to investigate the feasibility of implementation of
streams and related concepts of data structures with holes
or with suspensions [4, 10, 13].

(1
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(5]
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TRANSLATION AND OPTIMIZATION OF DATA FLOW PROGRAMS(®

J. Dean Brock
Lynn B. Montz
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract -- We present ADFL, an Applicative Data Flow
Language with an iterative control abstraction based on tail
recursion and an error-handling scheme appropriate to the
concurrency of data flow. An algorithm for translating ADFL
programs into data flow graphs is described. These graphs
may be executed without possibility of deadlock, but with
potential loss of some concurrency, on packet
communication systems with bounded buffering, such as the
Dennis-Misunas data flow computer. Two techniques for
optimizing graphs are given and their effect on performance
and correctness is analyzed. One is the insertion of identity
operators (buffers) into graphs to increase pipelining. The
other is the elimination of unneeded acknowledge signals.

Introduction

In a data flow computer, an operation is performed as
soon as its operands have been computed. The machine
language is an explicit representation of the data
dependencies of program operations. Its programs are
directed data flow graphs whose nodes are called
operators. The role of operators in a data flow machine is
similar to the role of instructions in a von Neumann machine.
The execution of an instruction corresponds to the firing of
an operator. Each operator has several input and output
ports. Whenever an operator fires, it absorbs tokens
(values) at its input ports and produces tokens at its output
ports. Operators have firing rules which determine when
they are enabled for firing. These firing rules are based on
the presence or absence of tokens on the operator's ports.

When operators are joined to form data flow graphs,
the links of the graph are directed from operator output
ports to operator input ports. A link transports the resuits
produced at an operator output port to an operator input
port. Thus, links form the pathways upon which data flows
as tokens are absorbed and produced by the firing of
operators during the execution of a graph.

(a) This research was supported in part by the Lawrence
Livermore Laboratory of the University of California under
contract 8545403, in part by the National Science
Foundation under research grant MCS75-04060 AO1, and in
part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research
contract NOOO14-76-C-0661. Part of the research was
conducted while Mr. Brock was supported by a National
Science Foundation graduate fellowship.

The data flow graph of an elementary expression
resembles its parse tree. The graph for computing the
distance function:

sqrt((x1-x2)2 + (y1-y2)2)

is illustrated in Figure 1. The solid black dot in the figure
represents the copy operator which is used to distribute
the results of one output port to several input ports. Note
how this graph represents the operation dependencies and
independencies of the distance function.

Preliminary data flow machine designs have been made
by Arvind and Gostelow [2], Davis [5], and Dennis and
Misunas [7]. Within these machines, a data flow graph is
distributed over a network of processing elements. These
elements operate concurrently, constrained only by the
operational dependencies of the graph. Thus, a very

efficient utilization of the machine's resources appears
possible.

ADFL - An Applicative Data Flow Language

Data flow programming languages resemble
conventional languages restricted to those features whose
ease of translation does not depend on the state of a
computation being a single, sequentially manipulated entity.
Because the "state" of a data flow graph is distributed for
concurrency, goto's, expressions with side effects, and
multiple assignments to the same variable are difficult to
represent. ADFL, Applicative Data Flow Language, is a
simplification of VAL, the value-oriented data flow language
being developed by Ackerman and Dennis [1]. A BNF

Figure 1. sqrt((x1-x2)2 + (y1-y2)2)
x1 x2 y1 . y2

sart((x1-x2)2 + (y1-y2)?)



specification of the syntax of ADFL follows:

exp ::= id | const | exp , exp | oper(exp) |
let idlist = exp in exp end |
if exp then exp else exp end |
for idlist = exp do iterbody end

iterbody ::= exp | iter exp |
let idlist = exp in iterbody end |
if exp then iterbody else iterbody end

id ::= "programming language identifiers"
idlist ::=id { ,id }
const ::= "programming language constants"
oper ::= "programming language operators"
The most elementary expressions of ADFL are

identifiers and constants. Tuples of expressions are also
expressions: One such expressionis "x, 5". The application
of an operator to an expression is an expression. Although,
the BNF specification only provides for operator applications
in prefix form, such as "+(x, 5)"; applications in infix form,
such as "x + 5", are considered acceptable equivalents
(sugarings) and will be used in example ADFL programs. In
sequential programming langﬁlages execution exceptions are
generally handled by program interrupts (signals). This
solution is inappropriate for data flow since there is no
control flow to interrupt. Applied to "exceptional" inputs,
data flow .operators yield special error values, such as
zero divide or pos over. The documentation of VAL [1]
contains a detailed specification of this method of
error-handling. For simplicity, only one error value undef is
used throughout this paper.

Since ADFL is applicative, it provides for the binding,
rather than the assignment, of identifiers. Evaluation of the
binding expression:

lety,z=x+5,6iny *zend

implies the evaluation of "y * z" with y equal to "x + 5" and
z equal to 6. The result of binding is local: the values of y
and z outside the binding expression are unchanged.

ADFL contains a conventional conditional expression,
but has an unusual iteration expression. Evaluation of the
iteration expression:

for idlist = exp do iterbody end

is accomplished by first binding the iteration identifiers, the
elements of idlist, to the values of exp. Note from the BNF
specification of iterbody, that the evaluation of the iteration
body will ultimately result in either an expression or the
"application" of a special operator iter to an expression.
This application of iter is actually a tail recursive call of the
iteration body with the iteration identifiers bound to the
"arguments" of iter. The iteration is terminated when the
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evaluation of the iteration body results in an ordinary, non
iter, expression. The value of this expression is returned
as the value of the iteration expression. The following
iteration expression computes the factorial of n:

fori,y=1,1do
ifi<ntheniteri+ 1,y *ielseyend
end

Syntactic restrictions which ensure that expressions
are used only when appropriate in arity and type have been
omitted from this discussion. Elsewhere in this volume,
Dennis and Weng [8] define arity and type restrictions for a
data flow language similar to VAL and, consequently, ADFL.
Their language differs from ours in emphasis: They present
an abstract interpreter with a dynamic allocation scheme for
executing graphs and, accordingly, emphasize procedural
control abstractions. We investigate the execution of
statically allocated graphs (data flow machine language
programs) and, accordingly, emphasize iterative control
abstractions.

Translation of ADFL

The translation algorithm of ADFL consists of two
functions 7 mapping ADFL expressions into their data flow
graph implementations, and .‘7|. mapping ADFL iteration
bodies into their implementations. The graph implementing
an expression or iteration body has an input port for each
free variable of the expression or iteration body. For an
expression exp which returns n values when evaluated,
Tlexp]l has n output ports. Recall that evaluation of an
iteration body will yield either results to be re-iterated or
results to be returned by the containing iteration
expression. The graph ~7'U_iterbody]] has an output port
iter? which signals which possibility has occurred and sets
of output ports for each possibility: | output ports for values
to be iterated and R output ports for values to be returned.

The translation algorithm for ADFL resembles previous
translation schemes of Dennis [6] and Weng [11]. A
detailed recursive definition of the algorithm over the
eleven cases of the BNF specification of the syntax of ADFL
has been given by Brock [3]. For brevity, only the cases of
the conditional expression, the conditional iteration body,
and the iteration expression will be examined in detail. It is
assumed that most readers, informed that the graph of
Figure 1 may be re-labeled:

:‘7[[let dx,dy = x1-x2,y1-y2 in sqrt(dx*dx+dy*dy) end]]
will discover the translation of the eight "trivial" cases.

The graph J[if exp, then exp, else exp, end]] is
shown in Figure 2. The graph contains three subgraphs,
llexp,], ‘:7|Iexp2]], and J[[exp,]l, and several gates. The
T gate has a control input port (entering its left side), a
data input port, and an output port. When the T gate fires,
it absorbs a token from each input port. If the control token
is true, the data token is passed to the output port. If the



Figure 2, f7[[if exp, theJnLepo else exp, end]
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control token is false, the data token is simply absorbed.
No output token is The F gate is defined
analogously. 1t passcs its datla token only if its control
token is false. By passing inputs to _7[[nxp?]]. respectively

produced.

,7[]:(3)(;),&]]. through T gates, respectively F gates, controlled

by the output of A“‘][Inxp‘]]. the proper subexpression is
"enahled"” during data flow evaluation of the conditional
expression. The results of Jlexp,] and .7[[exp3]] are
merged by M gates. The M gate has one control input port,
two data input ports, and one output port. Its control token
selects the data token to be passed. If the control value is
the error value undef; cach T or F gate absorbs a data
token and produces no output tokens, and each M gate
produces undef and absorbs no input tokens. Thus, data
flow evaluation of a conditional expression yields a tuple of
undef's if the condition is undef.

.f7|[[if exp then iterbody, else iterbody, end]), the
conditional iteration body graph-illustrated in Figure 3, is
With T and F
gates, the output of the expression subgraph, .f7llexp]],
enables one of the iteration body subgraphs, _7|[[itcrbody1]]

similar to the conditional expression graph,

and A:7|[[iror'body;,]]. The seclected subgraph will produce
output at either its | or R output ports, according to its iter?
output: true, for I outputs to be iterated; false, for R
outputs to he returned. Using the output of the expression
subgraph and the iter? outputs of the iteration body
subgraphs, the IC gate calculates three iteration control
outputs: the qraph iter? output and the control tokens for
the M gates producing the graph | and R outputs. The table
at the bhottom of Figure 3 gives the firing rules of the
IC gate. Note that, if the output of the expression subgraph
is undef, the conditional iteration body graph will produce
false at its iter? port, thus announcing termination of
iteration, and will produce undef at its R output ports.

The qraph _7[[for idlist = exp do iterbody end]] is
shown in Figure 4. This cyclic graph is formed by using
M gates to merge the outputs of “J[[exp]] and the | outputs
of A‘_Jll]:iterbody]] and by routing the merged outputs into the

input ports of .‘7|[[ilerbody]] labeled by identifiers of idlist.
The control input port of each M gate is connected to the
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Figure 3. _7.[[” exp then jterbody, else iterbody, end]]
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iter? | R

IC gate firing rules

inputs outputs
true true - true true -
true false - false - true
false - true true false -
false - false false - false
undef - - false = undef

“Figure 4. J[[for idlist = exp do iterbody end]]
I\

¥
false ( 7|[[ilfr_body]]

iter? output of 7'[[iterbody]]. The connecting arc contains
an initial false token to ensure that the first data value is
selected from V7[[r.~xp]].

selected according to iter?.

Thereafter, data tokens are
A true iter? token, signalling
continued iteration, selects the data tokens of the | output

ports. A false iter? token, signalling termination,
re-initializes the M gates for subsequent iteration
expression evaluations. Identifiers which are free in

iterbody but are not contained in idlist are routed through
S gates. For false control tokens, the S gate absorbs,
stores. and outputs its data tokens. For true control
tokens, it produces its stored value and absorbs no data
tokens. Thus, the S gate stores new values when



evaluation of the iteration expression begins and produces
them at each subsequent iteration step. Like the M gate, it
Is initialized with a false control value.

Brock [4] has verified this translation algorithm by
proving it to be consistent with a denotational [10]
specification of ADFL. In the proof, data flow arcs are
assumed to be implemented by infinite (unbounded) queues.
The transformations described subsequently will relax this
requirement without affecting the correctness of
translation.

Transformations of Data Flow Graphs

In proposed data flow machines of the
Dennis-Misunas [7] design, operations are held in instruction
cells which contain a register for each input arc. These
registers are effectively an implementation of data flow
arcs as queues of capacity one. The implication of the
bounded arcs is that operators must be prevented from
producing new tokens until their output arcs are empty.
This behavior is ensured by modifying the firing rules so that
no operator is enabled if a token is present on any of its
output arcs.

By performing a transformation, illustrated in Figure 5,
which replaces each arc of the graph by an appropriate
data/acknowledge arc pair (d/a arc pair), the effect of the
modified firing rule can be explicitly built into the graph:
The presence of a token indicates that the corresponding
data arc is empty. As a consequence, operator firing rules
revert to the original format of depending only on the
presence of tokens on input (including acknowledge) arcs,
where the previous enabling requirement that output arcs
be empty has been replaced with the requirement that
acknowledge inputs be present.

Montz [9] and Dennis and Misunas [7] have shown
that graphs of data flow programs may be executed without
deadlock when arcs are implemented as data/acknowledge

Figure 5. Replacement of one-place buffers with dla(
arc pairs
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" Figure 6.
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pairs. Consequently, the correctness of the translation
algorithm is not affected by this transformation. However,
the implementation is not without cost. Aside from the
obvious overhead involved in incorporating acknowledge
arcs and tokens, the constraints which they impose on the
token flow through the graphs may cause bottlenecks. In
response to these issues, Montz[9] has developed
optimization techniques specifically aimed at either
increasing the throughput by balancing the token flow or
decreasing the overhead by removal of unnecessary
acknowledge arcs.

Balancing Token Flow

The goal of the optimization to balance token flow
through the graph is to increase throughput by modifying the
graph to display maximum pipelining. The bottleneck
problem, and therefore application of the optimization, arises
in acyclic segments of a data flow graph. A clear illustration
of the problem and solution is shown in the Figure 6 graph,
the implementation of the ADFL expression: 7Eif f=1 then
f1 else f2 end]]. Although successive sets of inputs should
be processed simultaneously, the control structure of the
graph dictates that the overlap be very minimal. In order for
a second set of values to enter the branches of the
conditional, both a and 8 (Figure 6) must fire a second time
presenting the sets of T and F gates with new control
inputs. However, a cannot fire a second time until the
M gate to which it also sends a control input has fired, to
produce an acknowledge. Thus the d/a arc pair connecting
a and the M gate (shown with slashes in Figure 6) creates a
bottleneck whose severity depends on the depth of the
computations performed within the branches of the
conditional.

Eliminating this behavior so that successive sets of
values may pipeline through the graph can be accomplished
by inserting identity operators (buffers) along the slashed
arc, breaking it into d/a arc segments which consequently

Insertion of buffers for a conditional
expression




allow a to fire several times before forcing the M gate to
fire. For the Figure 6 graph, this is accomplished by
replacing the slashed arc with the arc segment shown to its
immediate left. To generalize this optimization technique, a
determination of the ideal number and location of inserted
buffers must be made. This requires an analysis of data
flow graph execution.

Though the data flow computer is asynchronous, it can
be made to model a synchronous machine by assuming that
during any given unit of time all enabled operators must fire
and produce a result. This approximates optimal program
execution by preventing an enabled operator from remaining
enabled and thereby slowing up processing for any length of
time.

Referring to Figure 6, we note that each input set to
the graph will result in the production of a token on the
control (slashed) arc and tokens that will be processed by
either f1 or f2. While under the "synchronous machine"
assumption the tokens being processed by the functional
operators can move one step through the graph during
every time unit, the control token on the slashed arc cannot,
restricting throughput to an output every fifth time unit.
Adding identity operators to equalize buffer capacities
achieves maximum pipelining, or equivalently, the optimal
throughput of an output every second time unit. The
algorithm presented below equalizes buffering.

Algorithm to Maximize Pipelining

Starting from each graph input, descend through the
graph assigning consecutive numbers to the arcs
joining successive sets of operators until a
multi-input operator is encountered. Compare the
arc numbers on the input arcs of the operator and:

(a) if equal, continue the arc numbering process

(b) if not equal, balance the arcs by inserting
identity operators into the lower numbered
arcs. Renumber the modified arcs and
continue the arc numbering process.

Note that if the operator is an M gate, the comparison and
balancing process described above must involve all three
input arcs, using the highest numbered arc as the goal.
_Figure 7 shows the result of applying this algorithm to the
graph translation of the following program segment:

if f=1 then if s=1 then x*(y+1) else x*(y-1) end
else x*y end

For reference purposes, the added identities have been
numbered. Identities 11 and 12 have been added in
response to the imbalances which occur when comparing arc
numbers on the input arcs to the multiplication operators.
I3 through 15 are added Iin response to the comparison of
input arcs to the inner M gate. Note that as specified in the
algorithm, arc number comparisons involve all three M gate
input arcs. Finally, operators 16 through 115 are introduced
as a result of comparing input arcs to the outer M gate.
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Figure 7. Example of maximal pipelining

In applying the algorithm to this example, there are
several interesting observations to make. Recall from the
algorithm, that M gate comparisons must involve the two
data arcs and the control arc. The' algorithm modifies the
graph to achieve maximum pipelining by making buffering
capacities of the paths through the graph to the control arc
and two data arcs the same. However, while each branch
of the conditional operates in conjunction with the control
arc, the branches themselves are independent. Thus, while
each branch must pipeline with the control path, they need
not necessarily pipeline with each other. If the two
conditional paths are of different lengths, the pipelining
choices available are to equalize the control path with
either the shorter or the longer conditional branch, or to
equalize all three. The latter of these, implemented by the
algorithm above, achieves best throughput, but has the
disadvantage of causing the insertion of additional identity
operators in the shorter conditional branch. The other two
choices recognize the independence of the two conditional
paths and avoid excess buffering, but possibly at the cost
of reduced throughput. ’

A factor not yet considered which interacts with this
pipelining choice is the frequency with which graph paths
are taken. In Figure 7 each input set can take any of three
paths corresponding to the three possible states of f and s.
If, for example, the pattern of input sets is such that no one
of the three paths is taken twice in a row, identity
operators 11 and 12 would be unnecessary and could be
removed without decreasing the throughput. lllustrations of
this point can be found in Montz [9]. ’



The discussion of trade-offs and options to consider in
maximally pipelining data flow graphs, indicates that the
advantage of smaller size resulting from a less than
maximally pipelined graph may be worth a decrease in
throughput. Some key issues influencing the choice might
include cost of identity operations, processor utilization,
token flow patterns, and width and depth of program. By
modifying the pipelining algorithm, we can produce data flow
graphs which display limited pipelining, meaning that the
delay between an operator's firing and receiving
appropriate acknowledge signals may be several time units.
For example, it is possible to specify that the delay in
sending acknowledge signals be no greater than two time
units. The change to the algorithm, which involves balancing
arcs to within a specified bound, allows a graph to be easily
reconfigured to display different degrees of pipelining, and
thereby provides a feasible and practical control method of
studying varying levels of pipelining in a graph. Though the
details of the modified algorithm will not be given, we
proceed by briefly comparing the Figure 7 graph with that of
Figure 8 which can be produced using a limited pipelining
algorithm.

The most striking contrast between the fully pipelined
graph and this partially pipelined version is the large
reduction in inserted identity operators, from 15 to 7. The
question which arises is whether the cost of this reduction
is a decrease in performance, where the Figure 7 graph
displays the optimum performance by producing an output
every second time unit. An analysis of several token flow
patterns using different successions of input sets shows
that the limited pipelining scheme does not necessarily
degrade the throughput. This can be seen by pipelining

Figure 8. Example of limited pipelining
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three sets of inputs through the Figure 8 graph assuming
that they respectively follow the paths indicated by the f-s
values: true-true, false, and true-false.

Once an actual data flow machine is available, a study
of the number of inserted identity operators vs. throughput
trade-off should provide insight into the direction to take
concerning optimization. This information in combination with
a particular application should indicate other optimization
possibilities; for instance, concentrating on only the main
source of bottleneck within a graph. For the conditional
construct this point appears to be the control arc to the
M gate. Modifications of the pipelining algorithm could also
be weighed more realistically as alternative approaches.

A final point to note in the consideration of this
pipelining optimization strategy is that conditional constructs
and general compositions of operators turn out to be fairly
representative of the type of graphs for which this
optimization is applicable. In fact, this optimization approach
is basically inappropriate for an iterative process whose
function is to modify and recycle a single set of inputs at a
time (although subgraphs within an iteration may be
pipelined). Thus an alternative optimization which aims to
minimize the number of acknowledges in a graph by
eliminating those which are unnecessary has been
developed.

Eliminating Acknowledges

This optimization technique aims at decreasing
overhead by removing acknowledge arcs which are not
necessary to maintaining safe operation. This safety
requirement is equivalent to guaranteeing that at most one
token will reside on any arc of a data flow graph at any
time. An examination of various ADFL constructs leads to
the identification of arc pairs which are candidates for
acknowledge arc removal. The strategy will be to develop a
rule specifying the requirements for acknowledge arc
removal for each candidate arc pair identified in the
construct. By recursively applying the resuilting set of rules
to the data flow graph translation of an 'ADFL program,
acknowledge arc removal for all candidate arc pairs can be
determined.

To illustrate the analysis and formulate the desired
rules, we begin by considering the data flow graph
translation of the general conditional construct shown in
Figure 6. As in the preceding section, the discussion
centers on the arc pair connecting a and the M gate.
However, while overcoming the restricting behavior of this
arc pair was the focus of that optimization aimed at
increasing pipelining, the restriction is an advantage to the
process of eliminating acknowledges. Specifically, a, which
cannot fire a second time until it receives an acknowledge
from the M gate, guarantees that a second input set will not
be within the branches of the conditional until processing of
the preceding set has completed. Each input set (which will
be processed by either f1 or f2) places a token on the
controlling arc of the M gate and a data token on each of
the arcs labeled either a and b, or ¢ and d, depending



respectively on whether the control token was true or false.
Assuming that f7 and f2 are well-formed, an output should
appear on arc g (assuming the control token was true)
within finite time, with the impossibility of a second token
appearing on arc g, or of any token appearing on arc h until
the M gate has fired. This firing simultaneously processes
the token on arc g and sends an acknowledge token to a,
consequent to which a successive input set may enter a
branch of the conditional. This behavior guarantees that the
acknowledge arc of the arc pair denoted by g can be safely
removed. By an analogous argument we can remove the
acknowledge arc of the arc pair labeled h.

Using similar reasoning one might be tempted to
remove the acknowledge arcs from arc pairs a, b, ¢, and d
under the assumption that once a set of tokens has entered
a branch of the conditional, the tokens must be used by the
appropriate function to produce the corresponding output.
However, a consideration of the Figure 9 data flow graph
will show that removal of acknowledge arcs for these arc
pairs is dependent on the subgraphs represented by f1 and
f2.

The Figure 9 data flow graph is a translation of the

following ADFL program segment:

if =1 then if s=1 then x*(y+1) else x end

else x*y end
Assume that the outer decision operator evaluates to true
and that of the inner conditional construct previously
represented by f1, evaluates to false. The important point
to note is that an output can be produced using only the
tokens on arcs a and b. The token on arc ¢ need not

Figure 9, Unsafe token configuration resulting from
removal of c's acknowledge arc

52

propagate through the graph, and may in fact still be on the
arc when a successive set of values arrives. Removal of
c's acknowledge arc would make it possible to reach the
unsafe token configuration shown in Figure 9. This example
shows that the necessity of acknowledge arcs for arc pairs
a through e is dependent on whether or not their values are
guaranteed to be used in producing the outputs of their
appropriate subgraph (f7 or f2). An analysis of the
subgraphs in Figure 9 reveals that tokens arriving on arcs a,
b, d, and e must be used to produce their corresponding
output, while the need of a token arriving on arc c is
dependent on the outcome of the inner decision operator.
Therefore, we must leave c's acknowledge arc, but can
remove those of arc pairs a, b, d, and e.

This analysis, specific to the conditional construct,
results in designating all input arc pairs to the f1 or f2
subgraphs subject to rule C1 with regard to acknowledge
arc removal:

C1: The acknowledge arc of an input arc pair to a
subgraph may be removed if any token arriving on
the arc must be used in producing the output of the
subgraph.

This form of analysis must be recursively applied to
subgraphs in determining acknowledge arc removal for both
inner constructs and outer arc pairs. It is interesting to
note that this rule could be applied at the source level by
taking the intersection of variables appearing in the then
and else clauses. Variables found in the intersection would
be guaranteed to be used in producing the output, and in
graph form would not require acknowledge arcs.

Referring to Figure 6, the arc pairs presenting inputs
to the T and F gates have not yet heen discussed with
regard to acknowledge arc removal. Since the only way to
guarantee the absence of a token on any of these data
arcs is via the presence of a token on the corresponding
acknowledge arc, these acknowledge arcs must remain. A
final point concerns the initially discussed control arc
connecting a with the M gate which may not need an
acknowledge arc. The control arc of the inner conditional
construct of Figure 9 is an example of such an occurrence
which can be characterized by rule C2:

c2: The acknowledge arc of the control arc
connecting a and the M gate of a conditional
construct can be removed if the acknowledge arc of
the output arc pair of the M gate has been
removed.

Developing a complete recursive algorithm to determine
acknowledge arc removal in data flow graphs requires this
type of analysis for each ADFL construct.

As a second example, we briefly examine the iteration
construct shown in Figure 10 to identify candidate arc pairs
for acknowledge arc removal. The arc labeled V., the
control output of the iteration, provides the controlling value
for the sequence of M gates handling the presentation of



Figure 10. “J[[for idlist = exp do iterbody end]]

successive sets of inputs to the iteration body. Since the
Y er» Value is dependent on at least some of the M gate
inputs, a number of them must fire before a second Y ter?
value is produced. This necessarily implies the firing of the
copy operator, "L", to present the M gates with new control
inputs needed to re-enable them, ensuring that the 7, .,
output arc from the iteration body to L must be empty for a
successive V.., value to be produced. Consequently, the
Y ter» @rc needs no acknowledge. No such guarantee can be
made for the arcs between the copy operator and M gates,
acknowledges for which can be conditionally removed
subject to rule T1:

T1: The acknowledge arc for an arc pair between
operator L and the sequence of M gates can be
removed if its data value must be used in producing
the 7, value.

The output arc of the iteration body labeled |
represents the arc pairs for the iteration variables: The
analysis for these arcs is more complex and is governed by
the following rule:

T2: The acknowledge arc of an | (iteration) arc pair

can be removed if either
(1) The iteration body cannot emit a value on
that output arc until it has absorbed the

corresponding input value on the
corresponding input arc.
(2) The 7., value depends on the

corresponding input arc.

Examples involving the iteration construct, as well as an
expanded discussion of these rules and an analysis of the
remaining arcs can be found in Montz [9].
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Conclusions

We have described a data flow language, an algorithm
for translating its programs into data flow graphs, and two
techniques for optimizing these graphs for execution with
data flow machines of the Dennis-Misunas [7] design. While
the two optimization methods have been presented as
isolated techniques, they must be integrated into a single
procedure for application to a given program.

We have not compared the costs of operation of the
Dennis-Misunas [7] computer design with that of the
Arvind-Gostelow [2] design, which avoids conflicts through
the use of tagged values rather than acknowledge tokens.
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LIMITING MULTIPROCESSOR PERFORMANCE ANALYSIS
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Seattle, Washington

Abstract -- This paper describes an analysis
of the major sources of overhead in multiprocessor
systems with emphasis on performance equations for
large systems. A model is developed for studying
the relative contributions of these sources of
overhead. The traditionally treated problem of
memory contention is shown to be containable with-
in bounds with limit equations provided. Software
control table lockout on the other hand is shown
to be beyond containment in large systems such
that an upper limit on performance exists. Effec-
tive methods of reducing lockout overhead are
explored. Control program efficiency is shown to
be the only means of achieving very large multi-
processor systems which are efficient. It is
shown also that if such efficiency could be ob-
tained in a centralized control mechanism (by hard-
ware or other means), there are no other immediate
theoretical problems associated with increasing
multiprocessor size.

Introduction

There are known limitations to single proc-
essor approaches to increasing general purpose
computer throughput capabilities [8]; moreover,
requirements for increased throughput seem more
general and insatiable than ever. The advent of
inexpensive microprocessors has emphasized the
necessity for an effective multiprocessing tech-
nology capable of effectively combining many proc-
essors to obtain significant throughput. The cost
advantages of multi-microprocessors over high
speed main frame processors provide a natural
motivation for re-evaluating the problems pre-
viously encountered in large MIMD multiprocessing
systems. It is therefore the limiting performance
behavior where many processors are involved that
is the central theme of this paper.

The theoretical problems associated with dead-
lock avoidance and synchronizing concurrent proc-
esses have been solved. [3]1,[9],[13] The practi-
cal problems however, which are encountered when
implementing large multiprocessing systems have
seemed unavoidable. To address these practical
issues, a general parameterized model of the major
overhead contributions in multiprocessing systems
is presented. Descriptions of the individual over-
head contributions modeled separately are found in
the literature, but not integrated mathematical
models as presented here. Nor has the emphasis of

these other models been on performance expectations.

in the limit as system size increases. The model
described in this paper relates the three major
contributions to overhead in multiprocessing sys-
tems to the desired application program processing
requirements in order to assess potential perfor-
mance capabilities. A diagramatic illustration of
the modeled sources of overhead is provided in
Figure 1. These are the following:
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1. System Control. The multiprocessor exe-
cutive control program execution time requirements.

2. Control Table Lockout. To provide co-
ordinated control, common queues are required
which imply critical sections in the control pro-
gram which accesses these queues.

3. Memory Contention. Common physical mem-
ory for multiple processors requires the possi-
bility of multiple processors converging on the
same physical memory module, in which case a
processor may have to wait until other processors'
access requests have been serviced.
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FIGURE 1: MODELED SOURCES OF OVERHEAD

To obtain a comprehensive model of multiproc-
essing overhead, without inappropriate complexity,
a hierarchical model has been developed. The
levels and states in this hierachy are the obvious
ones. Figure 2 is a state diagram of the time
expenditure states at the top level in this model
of a multiprocessor system. These states are:

P, the normal processor operations associated with
instruction sequencing and performing the instruc-
tions in its repertoire, and C, the memory delays
which may include sequences awaiting memory con-
tention resolution. In order for this model to

be valid, both the spatial and temporal distribu-
tions of memory access requests must be constant
and independent of the changing occupations of

the processor. These assumptions are character-
istic of current multiprocessing. (One of the

LEGEND:
P= PROCESSCR OPERATION
(= MEMORY ACCESS DELAY

FIGURE 2: TIME EXPENDITURE STATES



design trades considered further on investigates
potential advantages resulting from changing the
temporal-distribution.)

Time overhead (throughput) is the multiproc-
essing concern here. Other aspects of multiproc-
essing including memory and peripheral sizing have
been modeled in reference [6].
are very important in a system, and should be op-
timized to obtain the best performance for any
given configuration. But they are not the major
obstacles to a viable multiprocessing capability.

Processor Time Expenditure Model

The time utilization characteristics of the
various activities that can be assigned to the
processor are modeled here. In a multiprocessor
system, it is expected that for some of these
activities the amount of time expended may be de-
pendent upon the number of processors, N. (This
definition of N will be assumed throughout the
rest of this paper.) The P state of the processor

shown in Figure 2 can be modeled in more detail “as
shown in the state diagram of Figure 3.

7N

The four

LEGEND:

I=IDLE STATE DUE TO INSUFFICIENT TASKS
A=APPLICATION PROGRAM EXECUTION
@=CONTROL PROGRAM OVERHEAD

L=CONTROL TABLE LOCKOUT STATE

SECOND LEVEL: TIME EXPENDITURE SUB-
STATES WITHIN THE PROCESSOR TIME
EXPENDITURE STATE, P

states in this diagram are the following:

FIGURE 3:

1. 1Idle state, awaiting an eligible appli-
cation program task,

2. Application task execution,

3. Control program execution, and

These other aspects
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4. Control table lockout.

In order to get performance predictions in-
dependent of the software configuration, it has
been assumed that the idle state will be null.

We are only interested here in performance degra-
dation not attributable to insufficient jobs to

go around. (Utilization considerations will be
discussed later on however.) It is also assumed
that lockout will only be experienced as a part

of the control program execution, and is therefore
called control table lockout. Critical sections
in the application program are assumed to be re-
solved by task eligibility considerations handled
by the control program. To resolve such conflicts
in the application programs is not the direction
of high performance multiprocessing, since ex-
cluding the parallel execution of such programs
improves throughput. The timeline in Figure 4
shows the phasing among the remaining three states.

EXECUTION EXIT

%

I ENTRY

YOS -

A = APPLICATION PROGRAM EXECUTION TIME
P = ¢a+¢b = MULTIPROCESSING EXECUTIVE OVERHEAD

Ly

L= La+Lb = LOCKOUT OVERHEAD FOR ACCESSING CONTROL

INFORMATION COMMON TO MULTIPLE PROCES-
SORS

FIGURE 4; TASK TIMELINE BASIS FOR PROCESSOR

OVERHEAD

Each of the three remaining processor time expen-
ditures is modeled very simply in the following.
An equilibrium situation is assumed among the
states, so that the numbers of processors entering
and leaving each state are approximately equal.
The level of sophistication could obviously be
increased appreciably in these models, but it has
been found that performance predictions are re-
latively insensitive to such improvements. The
simpler models are easier to describe and under-
stand, and fit existing multiprocessor performance
data very adequately.

Application Program Task Execution

The model of application task execution in-
volves a constant execution time requirement, A,
for all tasks with a single queue/dispatch/exit
control program request overhead. The model is
still valid for programs making multiple requests
so long as the ratio of application to control
program execution time, P = A/@, is a contant.

This ratio is used extensively later on in the
analytical derivation of performance} it is called
the individual processor efficiency. It is af-
fected only by the control program overhead per
application task, defined so as to exclude the
effects of lockout induced by multiple processors.



Control Program Execution

‘The execution time of the control program is
assumed to be broken into J partitions. These
partitions are assumed to be mutually exclusive
critical sections with equal execution frequency
as well as execution time, ¢j.

J

¢= L ¢. =39,
i=1 J J

The control program is assumed to require the
same constant total amount of execution time, @,
for each task. It is also assumed that its exec-
ution time is independent of the number of proc-
essors in the system. The latter of these assump-
tions supposes that queues are implemented with
multiple pointers such that the lengths of queues
do not result in a commensurable amount of search-
ing to process linked task lists. This seems to
be a unilateral approach to sophisticated control
programs appropriate to multiprocessing.

Control Table Lockout

Coordination of the activities of many proc-
essors to achieve a single computational objective
requires the control program to have common task
queues for exploiting the parallel aspects of in-
dividual application programs. It is assumed
that control table lockout occurs at entry to each
of the J control program partitions, each of which
is comprised o0f a mutually exclusive critical
section. The total amount of lost time due to
this control table lockout will be:

J
is the amount of lockout

L = L., where L,
J J

j=1

attributed to the jth critical section.

In order to derive an expression from which a
value can be computed for the overhead L, we will
define N, as the number of processors waiting and/

or executing the jth critical section in the con-
trol program. From this definition it can be seen
that the amount of lockout time a processor will
experience before entering the jth critical sec-
tion will be L, = N.p, = N, —.
J 3] iJ

mined as the probability Pj of an individual proc-

Nj can be deter-—

essor being in this jth state, times the number of
possible competing processors, N-1 in this case.
The probability Pj can be determined as the pro-

portion of time spent in the jth state to the
total amount of time spent by each processor.

¢j+Lj (1+Nj)
i AL T J(p+IHN))

P

Thus, since Nj = Pj-(N—l), we obtain a second

order equation for Nj:

(1+N,) - (N-1)

Ny = J(p+1+Nj)
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The formal solution to this equation is:

J 2J 2

For J=1, we obtain:

¢ [5;—"+‘/(—N—§9—)2; -1]

The expected number of locked out processors,

Nl is plotted in Figure 5 for various values of p.
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These curves are in agreement with Madnick [15]
in spite of a very different derivation. The
significance of increasing the effective parti-
tions in the control program will be discussed
further on.

Combining Processor Time Expenditures

The objective of the processor activity mo-
deling has been to obtain insight into the rela-
tive amount of time spent by each processor in
its A, @ and L states. Equivalently we are inter-
ested in knowing the total number of processors
in the configuration occupied by each activity.
This assessment can be obtained by establishing
the ratios of time spent in each activity to the
unit of a processor's time. By defining X,, X¢,

and XL as the respective ratios for the A, #, and
L activity states, it can be seen that:
A [ L
= + + =1
Xy T X * X T AgL T AL | AVPHL

Furthermore, the equivalent number of proc-
essors involved in each activity per unit time
NA’ NQ, and NL can be determined as:

NA = XA’N, N¢ = XG’N, NL = XL'N



In order to establish these relative contri-
butions, we can substitute in the results obtained
previously. The unit of processor time for J=1
is thus seen to be:

2
U FP+I+L/@ = [lq‘;—9+ (N—;Q) +P ]

N, =P N- Ut

A
-n .yl
Ng=N"'1U

-1
NL=(U—D—1)'N U

Memory Contention Delay Model

There are various memory/processor intercon-
nection schemes that can be employed for access
arbitration including multiport controllers and
crossbar switches as described by Enslow [10]
which effect the logical interconnecting paths
shown in Figure 1. Specific configuration depen-
dencies such as processor clock phasing, memory
address interleaving, processor to memory speed
ratios, and processor memory request duty cycle
are discussed in reference [17]. The mathematical
modeling of the performance to be expected of con-
figurations incorporating such dependencies is
addressed here.

In a general multiprocessor configuration with
M memories and N processors, we are concerned with
the percentage of time that the processors spend
waiting for a memory to service their requests
[21,[12].

General Model of Synchronous Interleaved Memory

To simplify the model we have assumed equal
likelihood of a processor accessing any of the
memories on a given request. Address interleaving
makes that a realistic assumption. In addition,
it has been assumed that each processor synchro-
nously makes a memory access each cycle; this is
a worst case situation tending to make the result-
ing performance predictions pessimistic rather
than optimistically unrealistic.

We will begin by defining the probability,
Ps(i) of exactly i processors converging on single

memories anywhere in the system on a given access:
1)
i

ps(i,j), where LxJ is the largest

0y = 2
P = 5

integer less than or equal to x, and Ps(i,j) is

the probability that there are j instances of
exactly i processors converging on single memories
in the system. (For a detailed treatment of pro-
bability theory, refer to Feller [11].) To pro-
ceed, we will consider the conditional probabili-
ties pp(i,j), and pm(i,j) which are respectively

the probabilities of a processor and a memory
being: involved in an i-way convergence of proc-
essors on memories if there are j instances of
such convergence in the system. Under the random

accessing and equivalence between processors as-
sumptions that we have made:

pp(i,j)=i'%3 since ixj of the N processors are

involved.

pm(i,j)=l3 since j of the M memories are involved.

Now the unconditional probabilities of processors
and memories being involved in i-way convergence
situations can be determined as:

L3 13

P = X p (,3) P (D) = X b (L,1) 7
i=1 i=1
N N
Ly 4

P )= X p (1,3t op (L,3) =5 2 b (6,3) ]
j=1 i=1

oM
And therefore: Pp(l) iy Pm(l)

Modeling Memory Response Time

So far we have only been dealing with the
probabilities of processor/memory convergence,
whereas what we are really interested in is con-
tention situations where processor time is lost.
We therefore assume that there is some number, k
(not necessarily unity, but for convenience a
positive integer) of processors whose requests can
be accommodated by each memory module without any
of the contending processors experiencing delays.
k is the ratio of processor request time over
memory response time. A new conditional probabil-
ity, PR(i) can therefore be defined which is the

probability that a processor involved in an i-way
convergence situation will actually experience
contention:
PR(i) = il—%—kl, for i>k; PR(i) = 0, otherwise.
Then the probability a processor will experience
memory contention due to i-way convergency situ-
ations is:

P (i) = Pp() * BL(1)
P = (1=K " % - R_(1), for 1k;

PC(i) = 0, otherwise.

The total probability of a processor experi-
encing memory contention P can be computed as:

C’
N
PC = 2: Pc(i), since contention can only occur
i=k+1
when i>k. Therefore we have:
M N
Po=x 2 P () 7 (1K)
i=k+1



Approximating the Distribution Function

We are left then with the requirement for ob-
taining a distribution function Pm(i). Many such

models of processor queueing on individual memor-
ies have been advanced [2],[7]. It has been shown
that little accuracy advantage accrues from se-
lecting the more sophisticated models involving
Markov chains. This is particularly applicable
for the configurations discussed in this article
where memory contention is shown to be small,
since we are primarily interested in configurations
for which M>N and k>1. Bhandarkar [5] has shown
percentage errors of less than 5 percent in all
cases for the model assumed here.

The model that we have selected is the bi-
nomial approximation of Strecker [16] which was
found to "work well in all cases" by Baskett and
Smith [4] and with more accuracy for M>N by
Bhandarkar [5]. This model is precisely valid
for the initial allocation of processors to mem—
ories under the assumptions made previously.

According to this model, the probability that

exactly i processors converge on a given memory
module on a given cycle is:

P () = (

where N = ___l!__
i/~ il(N-i)!
Therefore, according to this model:

N-i

=

N
—
<41
SN

[N
S
=

31H
~~—"

N
M NI (i-k)
NS TaED ( ) (1—F0

The form of Pclas a function of the number of

memory modules is shown for N=20 processors in
The impact of varying the relative

Figure 6.

0.5

o O
. .
w

0.2

0.1
0.0

PROBABILITY OF MEMORY CONTENTION

o

10 20 30
NUMBER OF MEMORIES

FIGURE 6 IMPACT OF RATIO OF PROCESSOR REQUEST
TO MEMORY RESPONSE TIMES
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speed, k of memory access and processor request
logic is illustrated in the figure, applying re-
spectively for k=1, 2 and 3.

It should be noted that all of the conver-
gence and contention probabilities are functions
of M, N, and k, specifically PC = PC (M, N, k).
The probability distribution functions Pp and Pm
are functions of M and N as well as i, e.g.,

P (i) =P (i, M, N .

Limiting Behavior of ''Square'' Systems

It is interesting to note that memory conten-
tion decreases very rapidly with M until the num-
bers of memories and processors are approximately
equal (M=N), and very slowly thereafter. We will
refer to systems for which M=N as "square' multi-
processors, and define the notation: PC(M=N,¢,k)

= PC(M,M,k) = PC(N,N,k).

ficance of configuring multiprocessors with ap-
proximately equal numbers of memory modules and
processors, consider the limiting values of
PC(M,N,k) as M and N become large. The limits of

To understand the signi-

the summation can be changed to obtain:

M X M LS
=3 ‘2_) (i-k) B (1) -5 2 (i-K) P (1)
i=0 i=0

N
Then noticing that 2: Pm(i,M,N)=l, we obtain:
i=0

c

N k
=0 i=0

To obtain a limit for Pc’ we have substituted

M=N into Pm(i,M,N) and used the limit

N
_ Limit . 1
1l/e = - 19
Then for '"square' systems:

(k-l)

Limit P_ (M°N,k) = 1-k + = 2:
N0 =0

The limting values for k=1,2, and 3 are
shown in Table I.

TABLE I: LIMITING MEMORY CONTENTION PROBABILITIES
Asymmetry Ratio Limiting Conten—

Relative Speed | (Numbers of Probability
(Memory to Processors to Limit P (M,N))
Processor, k) Memories,n ) M, N+

1 1 0.368

2 0.104

3 0.023

1 1/2 0.213

1 1/3 0.150




Incorporating Access Duty Cycle

In real systems there is typically not exact-
ly one memory access per processor per request
cycle, and the processors are not synchronized
relative to whether they actually access memory
on a given cycle. There are two typical processor
characteristics which are responsible.

1. Processor operations do not typically re-
quire an access on every cycle of the instruction.
Statistically, somewhat less than half of the TI
9900 microprocessor machine cycles require a
memory access, for example.

2. Some processors implement a cache memory
scheme for look-ahead memory accessing to reduce
the average wait time in the processor. This
reduces the number of cycles for which the proc-
essor makes memory accesses, but substantially
increases the number of accesses outstanding
when they are made.

These (in general combined) phenomena estab-
lish an effective,although statistically varying
memory access duty cycle. These characteristics
of real systems cannot be modeled by varying the
memory to processor speed ratio, k. However, at
least where large numbers of processors are as-—
sumed, and approximately constant access duty
cycle, d can be expected which will alter the
apparent number of processors actually making mem-
ory accesses at any particular cycle to an equili-
brium value for large systems of N= d .N'. Real
"square' systems would then be characterized by
the model as "rectangular" systems of dimensions
N= N.M, where

Limiting Behavior of "Rectangular' Systems
g g y

It is interesting to consider memory con-
tention effects when system size is increased in
congruent rectangular form. Just as was the case
for "square'" systems, it can be seen that for
large "rectangular" systems the contention prob-
abilities level off to approximately constant
values. Chang, Kuck and Lawrie [8] derived an
expression for the limit from the memory's view-
point (the probabilitiy of a memory rather than a
processor being involved in a contention situa—
tion). The results do not incorporate the speed
ratio, k.

Limiting processor contention in large '"rec-
tangular'" systems can be derived using the same
approach as described previously for "square"
systems.

k .
k,1 L e ptTt

Limit Pc N= NM,k) =1 - n i=0 il

Moo e

Accuracy considerations relying on Bhan-
darkar's [4] data suggest N < 1 as the primary
domain of usefulness for this equation. The
limits for k=1 and for asymmetry values n-=1,
1/2 and 1/3.are shown in Table I. The asymp-
totic approach to these limits is shown in
Figure 7.

N is the apparent asymmetry ratio.
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: ASYMPTOTIC APPROACH TO LIMITING MEMORY
CONTENTION PROBABILITY VALUES

Combining Processor and Memory Contention Overhead

In the previous accounting of processor time
expenditures, there were only three categories
corresponding to the three processor states of
application program, control program and control
table lockout. It must now be acknowledged that
not all of the ti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>