Z'77-6358

TECHNTEAL
TNFORNAITTEN
ermaneE

OPERATING SYSTEM/360 CONVERSION AND

INSTALLATION INFORMATION FOR PROGRAMMERS

Miss Sylvia 3. Murphey
IBM Corporation

1439 Peachtree Street, N. E,
Atlanta, Georgia 30309

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N.Y. 10601

Sept. 30, 1966

This paper centers around an example program intended to
demonstrate what can be included in a program for the
Operating System. Covered in detail is a description of
register conventions, including SAVE and RETURN macros;
description of data sets, including Data Control Blocks and
Data Definition statements; operator communication, includ-
ing Write to Operator with Reply (WTOR), Write to Operator
(WTO), and usage of the PARAM entry in the EXEC job
control card; and a description of control characters. There
is also a section on documentation covering program docu-
mentation and a scheme for naming jobs, job steps, Data
Definition statements, Data Control Rlocks, data sets and
programs. A helpful list of topics is provided with reference
to specific O/S manuals and page numbers. Although this
paper is focused on the Queued Sequential Access Method -
(QSAM), most information can be applied to other access
methods.

For IBM Internal Use Only

Vi.

TABLE OF CONTENTS

General Introduction

A. Prerequisites
B. Source Manuals
C. Topic References

Program Example

A. Introduction
B. Program

Description of Data Sets
A. Data Definition Statements
1. Introduction
2, DD Cards
3. Explanation
B. Data Control Blocks
1. Program Chart

Register Conventions

A. SAVE and RETURN

B. Register Restrictions

Operator Communication

A, Write to Operator with Reply (WTOR)

B. Write to Operator (WTO)
C. PARAM

Control Characters

A. ASA
B. Machine Codes

Page

N —

Vit.

Documentation

A. Program Organization
B. Program Folder

1. Table of Contents
2. Configurator

C. Naming Conventions

Page
22

22
24

24
25

26

INTRODUCTION

$/360 Operating System offers the user a myriad of facilities and options. The
system creates a new environment for data processing in that one of its main
objectives is to maintain a constant work flow through the computing system.
Keywords, such as turn-around time and throughput, are given new significance
and meaning by minimizing setup time and computer time lost on job-to-job
transition. The concept of a JOB is expanded from being one program only to
a broader idea of a unit of work to be done encompassing many programs and
several job steps.

However, with enlarged capability comes complexity. Most novices in the
Operating System find that the volume of information written about the system

is quite large. The evergrowing and constantly changing storehouse of informa-
tion can be quite overpowering. Systems Engineers and IBM customers must
somehow sift out of all of the information available what they must know in
order to begin the programming effort. It must be emphasized that there is

NO substitute for reading the manuals. However, in an attempt to aid
programmers get some idea of what is necessary to write a program for the
Operating System, a skeleton example program may be very helpful. Often

a concrete example helps the programmer to obtain a firm grasp on some of

the things that he needs to know. An example may show many details which

the progrommer may otherwise overlook . If he sees something used, he may then
return to his manuals to pursue the write-up of the macro or instruction in depth.

Documentation and program organization become even more important as the
complexity of a program grows. Therefore, included in the example program
is an illustration of one way a program may be organized. We have found that
the important thing with documentation is that whatever may be agreed upon
should be strictly enforced if it is to be effective.

The program was written for an installation which planned initially to use in
most of its programs the Primary Control Program, the Queued Sequential Access
Method (QSAM), the move mode of GET and PUT, and Assembler Language .
These four limitations narrow the focus of this paper.

A. PREREQUISITES
1. A basic understanding of Assembler Language .

2. Familiarity with Introduction to O/S, C28-6534, and Concepts and
Facilities, C28-6535.

B. SOURCE MANUALS

Introduction

Concepts & Facilities
Job Control Language
Control Progrom Services
Data Management

Linkage Editor

C. TOPIC REFERENCES

C28-6534
C28-6535
C28-6539
C28-6541
C28-6537

C28-6538

Topics are listed in order of presentation in paper.

Topic
QSAM

OPEN

CLOSE

GET * Move Mode
PUT * Move Mode
DD Statements

Generation Data Sets
Data Control Block * QSAM

SAVE

RETURN

Register Usage

Page
132

133
122

124
143

146

134

44
29

27

(INTRO)
(CF)
(Jecu)
(CPs)
(O™

(LE)

Manual
(CPS)

(CPS)
(CPS)

(CPS)
(CPS)
(CPS)
(Jcy)
(oM

(CPS)
(CPS)
(CPS)
(CPS)
(CPS)

(CPS)

Event Control Block
WTO

PARAM in EXEC Card

Control Characters ASA

Machine Code

Page
112
9

m

15
333

29
12

(CPS)
(CPS)
(CPS)

(CPS)
Jcu)

(CPS)

IBM 2821 Control Unit 424-3312
$/340 Reference Data Card X20-1703-3

1. PROGRAM EXAMPLE

A. PROGRAM INTRODUCTION

The following program example contains:

1.

)

Comment cards used to organize the program into basic sections

Housekeeping

Main Line

Sub-routines

Special Routines

Constants, Accumulators, and Working Storage
Input and Output Areas

Data Control Blocks

@ 0o oo oa

The example is designed to use the Queued Access Method with
the Move Mode of GET and PUT.

There are three input files and four output files. Input from tape,
card, and disk--Output to tape, card, disk, and printer.

Examples of WTOR, GET, PUT are given.

.6 -

ob

L NAME

PGM
PROG1
*

. START

ASTRSK

ADCON1
ADCON?

*
BESIN

MSG1

MSG2A
MSG2

SUGGESTED GENERAL PROGRAM OUTLINE

PAGE

10 OP 16 OPERAND

TITLE *GENERAL PROGRAM OUTLINE FNOR (1/S?

START

®x% HOUSEKEEPING *%xx%x

SAVE (14,12),,PROG1 SAVE REGISTERS 14,15,0-12
BALR 12,0

USING *,12 A

USING *44096,11

USING *+8192,10

L 11,ADCON1

L 10,ADCON2

ST 13,SAVE+4 STORE ADDR 0OF CALL ING PRIG'S SAVE AREA

. IN YOUR SAVE AREA

LA 59 SAVE STORE ADDR OF YOUR SAVE AREA IN
ST 598(0,13) CALLING PROG®'S SAVE AREA

) BEGIN

nc ALASTRSK+4096)

o]0 A{ASTRSK+8192)

EJECT

*%% MAIN LINE PROGRAM *%x

OPEN (TAPEIN, (INPUT)) NPEN ALL DCB*S

OPEN (DISKIN, (INPUT))

OPEN (CARDIN, (INPUT))

OPEN (TAPENUT, (JUTPUT))

OPEN (DISKOUT, (OUTPUT))

OPEN (CARDOUT, (QUTPUTY))

OPFN (PRINTER, (QUTPUT))

INSTRUCTIONS .

INSTRUCTIONS .
BAL 3,GETCARD BAANCH AND LINXK TN COMMIN GFT RIYTINES
BAL 3,GETDISK
BAL 3,GETTP

INSTRUCTIONS

INSTRUCTIONS .

ISSUE MESSAGE TN OPERATOR VIA CANSOLE
NI ECR1,X*RF*
WTOR *'GIVE CURRENT PROCESSING GATE',CURDT,6,EC8B1
WAIT ECR=eCAl
ANSWER 1S PLACED IN STORAGE CURDT
NI FCR1yX*RF?
WTNR 'TS THIS A WEFKLY RUN®,ANS,3,FCR1
WAIT FCR=ECBRI1
cLc ANSyNOT DEPENDING NN REPLY A BRANCH
- BE DAILY IS TAKEN
cLC ANS, YES
BF WEEKLY
8 MSG2A REISSUE MESSAGE IF WRING REPLY

INSTRUCTIUONS

INSTRUCTIONS
BAL 3,HEADRTN
BAL 3,PUTTP BRANCH AND LINK TO COMMON PUT
BAL 3, PUTDSK
8AL 3,PUTCD
BAL 3y WRITEPRT

CLOSE (TAPEIN) CLOSE ALL NC3*S

72

s 1 NAME

*
GETCARD
GETT?
GETOSK
PUTTP
PUTDSK
PUTCH

WRITEPRT

SK1P

PUTPRT

HEADRTN

*
ERROR

£ 3
*

*

SAVE
EC31

PAGF
10 OP 16 OPERAND
CLOSE (DISKIN)
CLOSE (CARDIN)
CLOSE (TAPEOUT)
CLOSE (DISKOUT)
CLOSE (CARDOUT)
CLOSE (PRINTER)
L 13,SAVF+4 LJAD ADDR 0OF Y)IUR SAVE ARFA [N REG 13
RETURN (14,12) RESTORE SAVED REGISTF2S
EJECT END DOF MAIN LINE 0OF PRNGRAM
*%%x SUBROUTINES *%%
SPACE 2
GET CARDIN, WRKREADN GET MOVE PLACFS A LOGICAL 2ECNRD
BR 3 TIN SPECIFIED WIRK ARLA
GET TAPFIN,WRKTPIN .
BR 3
GFT DISKIN,WRKDSKIN
BR 3
PUT TAPEQUT ,WRKTPIUT "ALL PUT RIITINFS ARFE PUT MOVFE
BR 3 DATA MUST HAVE REFN MOVED VIA
PYT DISKOUT,, ARKDSK(i) PRIOGRAMMING TN THFE UTPUT WIRK ARFA
BR 3
PYT . CARDOUT , WRKPUNCH
BR 3
ce COUNTyMAX TEST FNE NUMAERQ A LINFS PRINTF)
RE SKIP
MVI CNTRL,X'40" CARRIAGE CONTROL AR SPACE ONE LINF
AEFIRE PRINTING - SEr P o233 2pS
AP COUNT,, ORF JACKRIMENT LINF COUNTER Y ONF
3AL 5, FUTPRT
RR 3
MVI CANTRL X" 4D
7AP CUOUNT,CLEAR CLFAR CNT 2
BAL Sy PUTPRT
R HEADRTN
PUT PRINTER) WRKPRT
MVC WRKPRT, CLEARPRT CLFAR PRINT ARtA
3R 5
MVI CNTRLX*FL? SKIP T CHANNFL INT
MvC WARKPRIT+#32(T) ,HEANINS MIOVE HEAGTIIS TN WD®C ARFEA
RAL 5+ PUTORT
BR 3
CJECT
%% SPECIAL RIUTINFS %%
ALY, VAN INPUT QJTOUT FRRIP HAS OICUXEL = 03 FNDED
BR 14 -
- %x&X COINSTANTS-ACCUMALATHRS=VIRKING ST 2AGE &%¢
SPACE 2
% HALF WRD ALTIGNMENT %
s OH
% FULL WORD ALIGNAEMT &%
ns or .
nsS 18F
oC Feor
% DWRLF WOIRN ALISNMENT %%
DS on
SPACL ?

5
72

1

NAME 10 OP 16 OPERAND

*

*

MAX
CLEAR
ANS
CURDT
*
COUNT

.ONE

*
SWITCH
*

HEADING
x

*
*
oc
nC

ne
nC

[

WRKREAD
COFLDL
COFLD?

CDFLD3

WRKTP [N
TPFLD1
TPFLD2

WRKDSKIN
DKFLD1
DKFLD2
DKFLD3

*
WRKPUNCH
PUFLD1
PUFLN2
PUFLD3

WRKTPOUT

"~ TPFLD1A

TPFLD2A

WRKDSKOU

DKFLD1A

*% NO ALIGNMENT *x
* CONSTANTS =

DC X*1050C* MAXIMUM NUMBER OF LINES PER PAGE
nC X1 0C?
DS cL3 © WEEKLY OR DAILY RUN
s cLé : CURRENT DATE
* COUNTERS #
D PL2'0" LINE COUNTEP
DC pll'
* SWITCHES *
oC X100t ONE RBYTL CAN REPRESENT MANY SWITCHES
% HEADINGS *
nC CYHEADING®
* EDIT WORDS %
* ACCUMULATORS *

INVOICE DESCRIPTIVE COMMENTS
STATEMENTS DEFINE ACCUMULATORS AS ZLRO
STATEMENTS CONSTANTS AITH A GDID SIGN

FILE
STATEMENTS
STATEMENTS

* WIRKING STORAGE #

STATEMENTS
SPACE 2

#% LITFRALS *%
LTORS -
EJECT .

x£% [NPUT/OUTPUT WIRK AREAS ##x
SPACE 2

% [NPUT WORK AREAS #%
ns acL80
DS cL20
ns cL40
DS cL20
SPACE 2
DS 0C150
DS cL2s
oS cL2s
SPACE 2
DS ocLs0
DS cL20
ns cL20
DS cL10
SPACE 2

%% QUTPUT WORK AREAS #%
DS 0CL80
DS cL20
DS CL40
DS cL20
SPACE 2
DS 0cLs0
DS cL2s
DS cL2s
SPACE 2
DS ocLso
DS cL2s

PAGE

DKFLD1A
DKFLD2A

CLEARPRT
WRKPRT
CNTRL
PRT

*«

%*

TAPEIN
DISKIN

CARDIN

*
TAPEAUT

DISKAUT
CARDOUT

PRINTER

Ds
DS
SPACE
DC
DS
DS
DS
EJECT

SPACE
necsa

SPACE
ocs

SPACE
necs

SPACE

Dea
SPACF
Den
SPACE
DCA
SPACE
nce

END

1 NAME 10 OP 16 QOPERAND

CL25
CL25
2 .
c! 1

0CL133
cL1

CL132

*¥%x% DATA CONTROL BLOCKS %%

2

*% INPUT DC3S *x*
DSCRG=PSyMACRF=GM,NDNAMF=TAPZIN,
EODAD=ENDTAPE, SYNAD=ERRCR

2

DSORG=PS,MACRF=GM,DONAME=D] SKIN,
ENDAD=ENDNDISK, SYNAD=LRROR

2

DSCRG=PS yMACRF =3M, DONAME=CARDIN,
EQDPAD=ENDCARD,, SYNAD=FFROR, £ IPT=5KP,
RECFM=FRS,BLKSTZF=80,LRECL=2),BITFK=S,
BUFN=2,3UFL=30,BFALN=F

2

#% QUTPUT DCRS *x

NSCRG=PSyMACRF=2M, DNNAMF=TAPFIYT, SYNADI =2 IR
2

DSORG=P Sy MACRF =PV, IDNAMF =D SKBUT ,, SYNAL=CR2IR
2

DSTORG=PS 9y MACRF=PM, IDNAME=CARICUT, Sy A=K

PSyMACRF =M, NDONAME=PRINTR,AFTFK =S,
0=1,8UFL=133,8FALN=F,E£ROPT=ACC

PAGF

111. DESCRIPTION OF DATA SETS

The two'sources of information used to describe the data sets in the. example
program are the Data Definition (DD) statement and the Data Control Block
(DCB). The following are provided.
Data Definition Statements
A. The DD cards as they might be coded.
B. An example of the DD parameters chosen.
Data Control Blocks
A. The DCB's themselves are shown in the example program.
B. A chart is given of all of the DCB parameters showing
1. th.t each entry is in the example program.
2. Which entries were actually put in the DCB and which ones

were put in the DD card.

A. DATA DEFINITION STATEMENTS

1. INTRODUCTION

Of the various parameters available in the DD statement, some fall into the category
" of being "necessary to make the job run.” As an introduction to Operating System
coding, a good approach was to concern the programmer in depth, at least initially,
with only those options which he must include. This by no means indicates that the
many other options are not useful, or, as the programmers progress, necessary to
obtain optimum efficiency. However, as a basic introduction, in keeping with
the effort to give the programmer a feel for what can be included in a DD statement,
the following DD statements were given as examples of what is needed to complete
the description of the data sets used in the example program.

2. DATA DEFINITION CONTROL CARDS

I Output Data Sets

A. Disk

1.
//DISKOUT DD
/

//
//

2.
//DISKOUT DD
//

//
/Y

B. Tape
//TAPEOUT DD
//

//
//

C. Cod
//CARDOUT DD
/

//

Data set is catalogued

DSNAME=MASTER(+1), DCB=(, EROPT=SKP,RECFM=FBS,
BLKSIZE=250, LRECL=50, BFTEK=S, BUFNO=2, BUFL=250,
BFALN=F), SPACE=(TRK, (50, 10), RLSE),

VOLUME=REF=* DISKIN,DISP=(, CATLG)

Data set is passed

DSNAME=MASTER, DCB=(, EROPT=SKP,RECFM=FBS,
BLKSIZE=250, LRECL=50, BFTEK=S, BUFNO=2, BUFL=250,
BFALN=F), SPACE=(TRK, (50,10),RLSE),

VOLUME=REF=*,DISKIN, DISP=(, PASS)

DSNAME=DETAIL(+1), DCB=(, EROPT=SKP, DEN=2,
RECFM=FBS, BLKSIZE=250, LRECL=50, BFTEK=S,
BUFNO=2, BUFL=250, BFALN=F), UNIT=TAPE,
LABEL=(, SL,RETPD 0004), DISP=(, CATLG)

DSNAME=CARD, DCB=(, EROPT=SKP,RECFM=FBS,
BLKSIZE=80, LRECL=80, BFTEK=S, BUFNO=2, BUFL=80

BFALN=F), UNIT=PUNCH

D. Printer
//PRINTER DD DSNAME=REPORT, DCB=(, RECFM=FSA,BLKSIZE=133,

// LRECL=133), SYSOUT=A

If. Input Data Sets
A. Disk
//DlS_KlN DD DSNAME=MASTER(0), DCB=(, EROPT=SKP,RECFM=FBS,
// BLKSIZE=250, LRECL=50, BFTEK=S, BUFNO=2, BUFL=250,
// BFALN=F), UNIT=DISK,DISP=(OLD,CATLG)
B. Tape
'] . Dadtaset is catulogued.
//TAPEIN DD DSNAME=DETA|L(O) ,DCB=(EROPT=SKP, DEN=2,
// RECFM=FBS,BLKSIZE=250, LRECL=50, BFTEK=S,BUFNO=2,
// BUFL=250, BFALN=F), UNIT=TAPE, DISP=(OLD,CATLG)
2. Data set is not catalogued

//TAPEIN DD DSNAME=DETAIL,DCB=(, EROPT=SKP,DEN=2,RECFM=FBS,

// BLKSIZE=250, LRECL=50, BFTEK =S, BUFNO=2, BUFL=250,
/Y _ BFALN=F), UNIT=TAPE, DISP=(OLD,CATLG),
// VOLUME=SER=123456

C. Cad

//CARDINDD *

CARD DATA HERE

/%
/

1

3. EXPLANATION

Output Data Sets

A,

DISKOUT

When writing a new data set on disk, as done in the example program,
the SPACE parameter is included. In our example, we reserved 50 tracks
initially, specified that if there was insufficient space for the data set

on these 50 tracks, space was to be allocated in increments of 10 tracks
each. At the end of this step, if all of the space allocated was not used,
the unused tracks were to be released (RLSE) for use by other data sets.

Also specified was the request that the output MASTER(+1) data set be
placed on the same physical unit as MASTER(O) defined in the DD state-
ment DISKIN in this same job step. VOLUME=REF=* ,DISKIN

The disk output data set is to be made a new member of its data set.
Therefore, the disk data set name is MASTER(+1). At the completion of
this job step, it is to be catalogued. Since it is new, the first parameter
of the DISP (disposition) does not have to be specified since NEW is
assumed by default. When this data set is catalogued, it is automatically
made the most current generation or 'son'. Accordingly, its element is
changed from (+1) to (0} at disposition time and will be the input data
set the next time the job step is run. At this time its serial number is
recorded in the catalogue along with its element,

An additional DD statement is included for DISKOUT showing the parameters
required if this data set is not to be catalogued but instead passed to the
next job step where more processing can be done and then the disposition
specified. An example of where this method might be used is a job in which
the first job step creates a file on disk, passes it to the next job step, and
then this file is printed, possibly with some additional processing.

TAPEOUT

The tape output data set is also catalogued as described under the explana-
tion of DISKOUT. DETAIL(#1) is to have standard labels and a retention
period of 4 days.

CARDOUT

The parameters required to complete the DCB are shown. No disposition,
DISP, is necessary because the data set is new, and it is to be deleted at
the end of the job step.

12

PRINTER

For a file that is to be put on the printer, the DD parameter, SYSOUT,
is used to specify the standard output class. At the sequential scheduler
level, the UNIT parameter must be omitted if SYSOUT is specified.

Input Data Sets

A.

DISKIN

DISKIN is an OLD data set, for it was previously created. MASTER(0)
is the data set name under which the disk data set is now catalogued.
MASTER(0) indicates that the input should be the most current generation
of the data set. When the disposition is executed at the end of the step,
the generation number or 'element’ of this data set will become (-1),
indicating that it is now the 'father' version of the MASTER data set,

the 'son’ being the most current version.

At System Generation time the addresses of the disk units were all equated
to 'DISK'. Therefore, the DD statement does not have to specify a particu~-
lar device address, but may specify UNIT=DISK. In this way 'drive inde-
pendence' is obtained.

We complete the information needed for the DCB by specifying DCB=
(parameter list)., Note that in neither the DCB nor the DD statement is
the DEVD or type of device parameter specified. This omission is made
for an important reason, When the DCB is expanded, its length depends
upon the type of device specified. If no DEVD parameter is given, the
DCB is expanded to a maximum length. This is important when the data
set being defined is a printer because a printer DCB expands into a shorter
length than does a disk or tape device. Therefore, if a printer happened
to be 'down’, the printer data set could be temporarily written on disk or
tape only if the DCB expansion assembled in the program were large enough
to describe a disk or tape data set. Consequently, if you always allow the
maximum length of the DCB by omitting the DEVD parameter, you may
change the UNIT on the DD statement and be sure that the DCB is large
enough to handle the file description.

TAPEIN

DETAIL is the data set name of the input tape. This data set is also

catalogued. DETAIL is a generation data set and therefore the input
data set name is DETAIL(0). [t is important to note that the volume

serial number does not have to be specified if the data set is catalogued
because the serial number is kept by generation number in the catalogue
with the data set name. In addition to the DD example of TAPEIN as a
catalogued data set, another example is given of DETAIL as an uncata-
logued data set. In this case, the programmer would have to call for
the data set by serial number.

As with the disk data set, we do not call for a specific unit but say
UNIT=TAPE.

14

9l

4 €el l S 0V | {lwo }iwo Hwo | x€€1 *€E1 * VSd | ¥IINIYd Sd Wd | ¥3INIYd
4 |+08 X4 %S » dIS | dOuNd Hiwo ywo | « 08 * 08 + S84 [LNOQYVD Sd Wd | 1NOQ¥VD
«d4 |+ 0SC *C %S £ dAS | dOW3 {jwo jwo | x 0§ % 062 + S84 | LNOMSIA Sd Wd | 1NOXSIa
+d | %062 % C %S £ dJIS | YO¥N Hwo *NuZmo * 0S « 05T » S84 | INO3dVL Sd Wd | INO3dvL

4 08 4 S dJIS | Y0¥ | AIVDOANI 4wo 08 08 S84 | NIQ¥vD Sd WO | NIQIVD
+d | £06C +C *S * dAS | YO¥YI | ASIAAN3 jlwo |« 0§ * 06T + S84 NISIQ Sd WO NIXSIa
24 | 06T %2 %S d)S | YOu¥3 | 3dviaNd | Z=N3IA | = 0§ * 06C » S84 Ni3dvl Sd WO NI3dvl

N1V4Ng 14N9 [ONLNG | N3L49 | LdO¥I |AVNAS avao3d| aAid | 1031 [3ZISH18] WHDTY | IWVNAQ {DI0SA | 4DVW 824
2019
jusw uondp |aunnoy ojoq | 921A8Qq | pioosy EY4IS wioy aa uoypz © wiog jonu0Dy
~ubBi]y| yibusq *oN| *yosy | Joug 10443 J0 pug j0 yibuan 3o0ig | pioday swpp| |-1upbip _ [eX TN pjoQ)
siajing siou3 O/ 40 awpN adA) uondiinsaq §35 pioQ _ o/l JLIETIEING
Juswaypys QQ 404 43| ssajwpind sayPOIPUY 4
SOILSIYILOVIVHD 13S vivd
L
3
< E
% E
[a] ‘e
Z 23
o]
2 5g
o o3
= 22
; i
£ Tt
g cfe
= 832
P s
g acz
5 26
@ 0+ 0
[a) = £ = 7Y
e S0 B -
£ >:®
c =2 3
3 £ %%
o 6 &\
[i
A
L
2 5 ==
8§ £ 382
9F 2 L&
8 U Fue5

C.

IV. REGISTER CONVENTIONS

A. EXPANSION OF SAVE AND RETURN MACROS

+ Indicates Expansion
(PROG 1)

SAVE (14,12), ID
DS OH
STM 14,12,12(13)

The calling program must load register 13 with the address of its save area.
Therefore, when your program (the called program) issues the SAVE macro,
you are storing the calling program’s registers in the calling programs save
area. Note that the store multiple instruction uses register 13 as a base

register with a displacement of 12. One register needs 4 bytes of storage.

Calling program’s save area: 1 word = 4 bytes

SAVEAREA DS 18F SAVEAREA is 18 full words

WORD 1 WORD 2 WORD 3 WORD 4 WORD 5 WORD 6
Addr.Called Register 14 Register 15 Register O

Prog's Savearea

WORD 7 WORD 8 WORD 9 WORD 10 WORD 11 WORD 12
Register 1 Register 2 Register 3 Register 4 Register 5 Register 6
WORD 13 WORD 14 WORD 15 WORD 16 WORD 17 WORD 18

Register 7 Register 8 Register 9 Register 10
The called program issues the following instructions:

LA 5,SAVE
ST 5,8(13)

Register 11

Register 12

Save is the address of iic called program’s save area. This address is placed
in the third word afsthe calling program’s save area. Note that register 13
still has the address of the calling program’s save area and that register 13
is used as a base register in the store instruction above.

The called program issues the following instruction:

ST 13,SAVE+

17

This instruction places the contents of register 13 in the second word of
its (the called program's) save area. This is necessary because the called
program must reload register 13 with this address before it issues a return.

L 13,SAVE+4

RETURN (14,12)

LM 14,12,12(13) restore the registers
BR 14

The expansion of the RETURN macro indicates clearly why the address of
register 13, containing the address of the calling program's save area,
must be stored and then reloaded. As with the SAVE macro, register 13
is used as a base register. Note that the return branch is on the address
in register 14 which had been loaded by the calling program before the
called program was given control initially.

Note that if the calling program is not a program as we may normally

think of one, but is instead the control program, these conventions of
linkage must still be observed.

B. REGISTER RESTRICTIONS

There are five registers which should not be used by the problem program.
They are registers 0, 1, 13, 14, 15,

V. COMMUNICATION WITH THE OPERATOR

The three ways selected for communication with the operator are via the two macros,
WTOR (Write to Operator with Reply) and WTO (Write to Operator), and the PARAM
entry in the EXEC job control card.

A. WRITE TO OPERATOR WITH REPLY

NI ECB1,X'BF'
MSG1 WTOR 'GIVE CURRENT PROCESSING DATE',CURDT, 6, ECBI
WAIT ECB=ECBI
CURDT DS CLs
ECBI1 DC F'o'
The WTOR macro must specify:

1. The message to be written.

2. The storage location reserved by the program where the control program
is to place the answer.

3. The length of the answer.
4, The name of the Event Control Block (ECB) which the supervisor may use.
This ECB must be defined as a full word zero constant. Format of the

Event Control Block:

01 2 31

‘W .C Post Code |

After the WTOR is issued, the programmer must issue a WAIT, if his program logic depends
upon the reply. When the WAIT is issued, the supervisor sets bit zero of the ECB specified
to 1. When the action has occurred, the supervisor issues a POST which turns bit zero of
the ECB, the completion code to 1. The problem program is then given control. It is the
programmer's responsibility to be sure that the completion flag is zero before the WTOR

is issued again. An "And Immediate', NI , instruction before the WTOR will always
insure that the completion flag is zero.

19

B. WRITE TO OPERATOR

MSG2 WTO 'JULY 25 IS THE DATE'

In the expansion of this macro, the message in quotes is found at the address
MSG2+8. Therefore, if the programmer wanted to alter the message, he could
move info this address the new information. For instance, suppose you had the
current date in CURDT. To place this information in the message, you would
write as follows:

MVC MSG2+8(7), CURDT
MSG2 WTO l IS THE DATE’
C. PARAM

PARAM:='JULY 25'

The above would be written in the EXEC card. The PARAM entry may be up
to 40 characters. When the program is given initial control, Register 1 points
to the oddress of the parameter list. The parameter list has the address of the
data area where the control program has placed 'JULY 25',

- - --full word boundary

Parameter list
A A A : AAA=oddress of data area
i
Register 1
Pt half word boundary Data Area
¢ ¢ July 25 cc=count of characters
—_— - . (max 40)

The programmer would write as follows:

L 5,0(1) Load contents of Reg. 1 into Reg. 5
Reg. 5 now has address of data area
MVC CURDT, 2(5)

These instructions would place the information put in the PARAM entry info the
reserved core location CURDT.

VI. CONTROL CHARACTERS

Instead of using the CNTRL macro and PRTOV macro for direct printer control,
control characters may be used. One advantage of this is that it enables the
print file to be stored temporarily on disks and then later written on the printer
as a SPOOL operation, There are two choices available for control characters.

A. ASA
The example program used ASA control characters as follows:

blank Space one line before printing

0 Space two lines before printing
- Space three lines before printing
+ Suppress space before printing

1 Skip to channel 1

2-C Skip to channel N

When these characters are used the RECFM specnf’ ed in either the DCB or
DD statement must be 'FSA’.

Note that the ASA codes present one drawback in that they do not allow
spacing or skipping after print.

B. Machine Codes
To obtain space or skip after print, machine codes should be used.

The RECFM would then be 'FM!,

Hex. Operation

01 Write, no space

09 Write, space 1 after print

1] Write, space 2 ofter print

19 Write, space 3 after print

89 Write, skip to channel 1 after print
91 Write, skip to channel 2 after print
9 Write, skip to channel 3 after print
Al Write, skip to channel 4 after print
A9 Write, skip to channel 5 after print
Bl Write, skip to channel 6 after print
B9 Write, skip to channel 7 after print
Cl Write, skip to channel 8 ofter print
c9 Write, skip to channel 9 after print
D1 Write, skip to channel 10 ofter print
D9 Write, skip to channel 11 after print
El Write, skip to channel 12 ofter print

21

Vil. DOCUMENTATION

A. PROGRAM ORGANIZATION

The program example illustrates one suggested way to organize the various
sections of a program.

1. A TITLE card is used to
a. Identify the assembly listing.

b. Provide identity for the object deck from the name field of
the TITLE card.

2. HOUSEKEEPING should contain all of the necessary register set-up
including SAVE and base register allocation,

3. The MAIN LINE PROGRAM contains the basic logi > flow ending with
> RETURN.

4. SUBROUTINES may be either closed or open. A closed routine branches
on a register. An open routine branches to a specific address. GET and
PUT macro instructions are put under subroutines. The GET and PUT are
placed here so that, no matter how many different places in the program a
given file may be read or written, the macro is expanded only once.

5. SPECIAL ROUTINES may consist of SYNAD routines to handle 1/O errors.
In the example program ERROR is the SYNAD routine. It is suggested that
a common error routine be written for the installation as a whole which
can be inserted in each program with little, if any, modification.

6. CONSTANTS, ACCUMULATORS AND WORKING STORAGE is a general
division which can be further subdivided to suit the needs of the program.
It is suggested that all areas which need special alignment such as full or
half word be grouped together and labeled as such.

Accumulai‘ors, as a general rule, should be defined as zero with a good
sign. They may be grouped according to the level, be it minor, inter-
mediate or major (invoice, client, file). Each accumulator should be
followed by a comment which cleorly explains what it is used for even
though the name of the accumulator may be neumonic.

Switches may be grouped together. [t is suggested that bit switches be
used instead of byte swifches in order to conserve core. However, this
means that comment cards should explain specifically what each bit
represents.

22

7. INPUT AND OUTPUT WORK AREAS need to be grouped together.
Each work area should clearly indicate which DCB it applies to.

8. DCB's are the last division. They are organized by input and output.

The use of EJECT and SPACE instructions to the assembler help to organize the
source listing into a more readable format.

23

B. PROGRAM FOLDER

1. TABLE OF CONTENTS

A program folder should contain all of the information which is needed to
describe the program. Suggested contents are:

1. Brief program summary

2. Configurator

3. Layouts or formats of input and output records

4. A sample printout

5. A general block diagram

6. The source or assembler listing

7. A copy of the operator's instruction sheet

8. Samples of all job control cards

9. History of changes
The history of changes is a running documentary beginning with the original
programmer and date. As a change is made to the program, the name of the
programmer who made the change, the date, and a brief synopsis of the change

made is entered.,

The configurator is a handy way of giving a picture of the input and output units
used by the program. A configurator of the sample program is included in this paper.

24

e

A TN

-

2. CONFIGURATOR

Circle the appropriate direction and darken the arrow.

9 9 9
I I

Central
Processing Unit

Disk

Disk

25

Disk

Printer

Printer

C. NAMING CONVENTIONS

The method of naming jobs, programs and data sefs varies greatly from installation
to installation. With O/S 360 some way of relating jobs to job steps, and programs
and of relating DD statements to DCB's is not only helpful, but almost mandatory .
Within one installation there are many types of applications programmed for the
computer, i.e., PAYROLL, DEMAND DEPOSIT ACCOUNTING, SAVINGS.
These applications offer a natural way of organizing programs. For instance, a
program written for PAYROLL would begin with the key letters 'PAY",

There are three types of conirol cards needed--the JOB card, the EXEC card or
job step card, and the DD cards. In the card you need a name with a maximum
of 8 characters, which becomes the job name or step name. Since a step is part
of some job, it easily follows that the stepname should relate to the jobname.
The following is one suggested naming convention for JOB and EXEC cards:

JOB card
Application Job Number Step Number
PAY 1-F 0
DDA
SAV
Example: 1st job in payroll PAY10
2nd job in savings SAV20
11th job in demand deposits DDABO
EXEC card
Application Job Number Step Number
PAY 1-F 1-F
DDA
SAV
Example: 1st step in Ist job in payroll PAY11
3rd step in 2nd job in savings SAV23

15th step in 11th job in demand deposit DDABF

The name of the DD card must be specified in the DCB parameter, DDNAME.
Therefore, to simplify the naming process, it is suggested that the name of the
DD statement be the same as the ’
name of the corresponding DCB in the program.

Programs relate in most cases to one job step. Therefore, their names can relate
to the step name as follows:

26

Application Job Number Step Number neumonic

PAY 1-F 1-F
DDA
SAV
Example: the posting program which is used by the 1st step
in the 1st job in payroll
PAY11PST

the dividend program which is used by the 3rd step
in the 2nd job in savings
SAV23DIV
the statement program which is used by the 15th step
in the 11th job in demand deposit accounting
DDABFSTM

There is no attempt to relate these data set names to a specific job or program since
one data set may be used by many different jobs.

For temporary data sets a T prefix on the data set name helps to separate these data
sets from those which are permanent.

27

