
277-4287

'.I'HE EVOLUTION OF COMPLIERS

Miss Marilyn M. Jensen
IBM Corporation
3223 Wilshire Boulevard
Santa Monica, California 90406

IBM Cor/Jortttion. Technical Publications Dept., 112 E. Post Rciad. lf'/hite Plain.;. _\!. Y. 10601

November 15, 1966

A paper covering the evolution of compliers, with emphasis on
techniques for machine independent languages including Polish
notation, operations for handling. strings, use of pushdowns,
and scanning techniques. Introductions to the topics of re­
cursive subroutines, ALGOL, JOVIAL, SNOBOL, XTRAN, and
the heuristic complier is given. An extensive Bibliography is
included.

For IBM Internal Use Only

N

" " I
~
I'\)

CX>

"

I.

II.

TABLE OF CONTENTS

INTRODUCTION•.. Page 1

XTRAN Page 4

A.

B.

c.

D.

INTRODUCTION Page 5

PUSHDOWN STACKS. Page 8

STRING AND SYMBOL MANIPULATION Page 12

LANGUAGE 1. Page 18

E. LANGUAGE 2•..•...•.. Page 26

F. ALGORITHMS FOR POLISH NOTATION Page 32

G. LANGUAGE AMBIGUITY•....•.. Page 34

H. COMPILER LOGIC. Page 44

I. SWITCH METHOD/SINGLE ADDRESS
OUTPUT............................ Page 50

J. FORGING CODES AND ROUTINES. • Page 52

K. BACKUS NORMAL FORM Page 62

III. HUERISTIC COMPILERS•.... Page 63

A. INTRODUCTION. Page 64

B. INFORMATION PROCESSING
LANGUAGE-V Page 67

G. GOMIT•........ Page 70

D. SAINT•........................ Page 71

E. GIT•. Page 72

F. LINE BALANCING Page 73

IV. SYMBOL MANIPULATNE COMPILERS .•••.. Page 75

v.

A. ALGOL............................. Page 76

B.

c.

D.

JOVIAL. Page 82

SNOBOL.. • Page 89

NELIAC•...•..•... Page 93

BIBLIOGRAPHY ..•.•......•...•.•....•.•.•. Page 94

A.

B.

SUGGESTED READINGS .•............. Page 95

REFERENG ES•..•.•......•. Page 110

INTRODUCTION

Definition

The routine which accepts a set of symbolically coded instructions,
translates them into a machine language, ·and at the same time also
assigns either symbolic or regional addresses to absolute machine
addresses is c_alled an assembly routine. It may or may not allow
for macro instructions. The assembler helps with the symbology
problem confronting the programmer, expands the number of
apparent operati6ns available from the machine and eases the chore
of as signing storage locations.

An extension of the assembly technique is the compiling routine. A
compiler permits more complex macro instructions than an
assembler, and often excludes .machine instructions, even in
symbolic form from the language which it can accept. While the
assembler generally deals with each instruction independently of all
others, the compiler attempts to capitalize on the information which
is contained in the structure or logic of the problem. The context
in which each instruction is nested is important. Commonly, a
compiler is language or problem-oriented in that it accepts as input
the language and operations or a particular class of problems.

List Processing Languages

The allocation of storage space even with sophisticated automatic
coding languages can be a major difficulty, because many times it is
impossible to foresee how much information will be produced or have
to be stored at each phase -of the rc;mtine. The concept of list stores
and list processing languages was developed in order to surmount
such difficulties. ."List" is used in the conventional sense to
designate a linear sequence of pieces of information which for some
reason are to be associated. The length of a list is not necessarily
fixed. This implies a capability for inserting or deleting an entry
anywhere alCing.the list. Such a list is frequently called pushdown.
If the only entry point is at the top, an entry on a list may be the
name of a sub-list. The sub-list in turn may reference another
sub-list. Such a collection of lists and sub-lists is called a list
structure.

List processing languages permit such operations as 1) Insert an
entry on a list, 2) Delete an entry on a list, 3) Create a list,
4) Destroy a list, 5) Coalesce or concatenate a list, and 6) Search
a list for a given symbol. They are sometimes called symbol
manipulating languages, and include LISP, and the family of
Information Processing Languages, IPL-V being the best known.

2

Such languages facilitate storage allocation and give complete
freedom for development and use of recursive subroutines.

All of the List Processing Languages employ pushdown stores or
stacks to hold the return address and the parameters used by a
subroutine. If, during the execution of a first subroutine, a second
subroutine is entered, the return address and parameters of the
second are simply pushed down on those of the first. In this manner,
the latter are preserved and pop up upon completion of the second
routine and return to the first. When the stack has sufficient
capacity, subroutines can be nested to any deptp and used recursively.

Complier Concepts

One of the basic concepts employed when writing a compiler is that
information which is phased for further use when translating can be
conveniently kept in a stack. A stack is distinguished from other
types of tables by the fact that only the item at the top of the stack,
the youngest item, is important at any given time. A second_ concept
implemented is that comparison of adjacent operator propert1es
provides a valuable criterion, and no more than this is needed to
correctly interpret any formula. The third technique is that
parentheses can be treated as operators with priorities, thus
enhancing the algorithm.

Roughly, a compiler will scan a long expression, left to right or
right to left, until some operation is found which can be perfo~med
regardless of what will occur in the remainder of the expression.
This operation is discovered through a force table or force codes.
As soon as an operation is found which can be performed regardless
of future input, it is accomplished. Meanwhile, the unused portion
of the formula is retained in the stack. The compiler must now be
able to switch back and forth discover which operators can be
forced and what is available within the stack.

Compiler Construction

Compilers allow the programmer to write the problem solution in
broad source statements, i. e. macro instructions. These
statements are analyzed by the compiler which in turn generates
the necessary symbolic instructions. The segment of a compiler
which interprets a macro instruction and develops the required
symbolic instruction sequence is called the macro generator. For
each macro instruction included in a given compiler language, there
is a separate macro generator. The entire complex of macro
generators provided in a compiler is in only o_n~ section of that .
compiler. The generators are used in a specific phase of the entire
translation process. From this point the final portion of a compiler
performs the same functions as any other assembly program. Every
compiler includes an assembly process to affect final conversion to
machine language.

3

II. XTRAN

4

A. INTRODUCTION

History

As the complexity and quantity of machine applications have increased,
problem oriented programming languages have become more
popular. FORTRAN and ALGOL for scientific formula oriented
programs, and COBOL for business type problems are being used
more widely than ever before. It is only natural then that attempts
have been made toward a problem oriented approach to compiler
writing, especially when we consider the magnitude of the job of
efficiently writing a compiler. XTRAN is a language that was
developed by the IBM Corporation for use by the Programming
Systems Department. The XTRAN language exists in a slightly
different form for different machines. Therefore, the following
discussion will not deal with an official version of the language,
but instead, general concepts and techniques used.

String Techniques

In FORTRAN, the basic element dealt with is the formula. In
XTRAN we are concerned with the sequence of the characters called
the string, which must be broken down and analyzed to such an
extent that linkages to closed subroutines can be generated by a
sub-sequent program called the macro expander program. For the
7090 the output of XTRAN must be such that the macro expander will
be able to generate a TSX followed by an appropriate number of PZE
instructions which would cause the desired subroutine linkages to
be formed.

What types of operations can we expect XTRAN to perform on strings?
One useful bit of information about a string during analysis would be
its length or number of symbols called the NORM. Consequently
one operation found in XTRAN is NORM (ST, 1) which would compute
the NORM of the string named ST and store the result in location 1.
Another operation is used to isolate the end symbol of the string in
order to analyze it. Further operations remove a symbol from the
string, insert a symbol in a string, join two strings together or find
the first occurence of a symbol in a string.

Compilation

One of the most important aspects of XTRAN is that it is a language
that can be used to compile itself. The approach taken can be to
write a few basic XTRAN operations in the machine symbolic
language and after these are assembled and debugged write more
powerful operations in XTRAN. The language will generate a set
of symbolic instructions which can be reassembled with the prior

5

version of the language and included in the new language. XTRAN
has the ability to scan _source statements and compile itself in
FORTRAN" in say the 7040 -- then, if someone wants a FORTRAN
compiler for the 1440, XTRAN does not have to be rewritten for it~
Only the macro expander for the 1440 to take the output of XTRAN
must be written in order to generate the desired linkages. What
we have· in XTRAN then is a truly general purpose compiler writing
program.

High-and Low-Level Languages

Before commencing with a definition of XTRAN some terminology
should be clarified. When considering high-and low-level languages,
the low-level language is close to the machine language and would ·
be similar to 1401 or 1440 SPS. A high level (or higher level)
language is more removed from machine language and would
encompass such languages as COBOL, FORTRAN, and ALGOL.

Functions and Procedures

Consider the mathematical computation: XNEW = 1/2 (A/XOLD +
XOLD). This is the appropriate mathematical format for expressing
the function XNEW. The proper format for the function XNEW as
stated in the FORTRAN language would be XNEW =1. /2.* (A/XOLD +
XOLD). A language which has only procedures will express this
same function as TEMP 1 = A /XOLD; TEMP 2 = TEMP 1 + XOLD;
XNEW = T~MP 2/z. In the latter procedural language as soon as
the value was produced, a place had to be generated for it to be
stored.

Functions are rules for producing a particular value. 1/2 (A/XOLD +
XOLD) was a function of XNEW expressed in the correct mathematical
notation. A procedure differs from a function in that no value is
produced. A typical example of a procedure would be R = S. In
FORTRAN the value of S is placed in a location that is labeled R.
No new value has been produced and the old value of S has not changed.

Prefix, Index, and Suffix Notation

All of the notations that we have used to this point, have been of the
type infix. Infix notation means that the operator is included between
or inside the two operands. Infix notation would include the value
A+ B. Prefix notation has its operator preceding the two values, or
operands. An example of addition of two values expressed in prefix
notation would be + AB. The third type of notation that is used is
suffix. The suffix notation has the operator following the two
operands. An example would be AB+.

Further examples of infix notation would be TEMP 1 A/XOLD and

TEMP 2 = TEMP 1 + XOLD. Prefix notation is similar to a three
address machine language. The earlier two infix statements would
be expressed in the following manner: I A, XOLD, TEMP 1 states
that A should be divided by XOLD and placed in TEMP storage
location l; and+ TEMP 1, XOLD, TEMP 2 states that TEMP
storage 1 should be added to XOLD and the result placed in TEMP
storage lo cation 2. ·

Language Ambiguity

For procedures, there is little difference between prefix and infix
notation, however, this is not true of functions. Since infix is not
completely specified it requires rules of ·precedence. Prefix
notation is specified, and this is called Polish or Parenthesi.., __ _
free notation. ·

Functional notation is found many times in the form of a prefix, for
instance: F(A, B); G(X, Y. Z); or R{S, T(M, N). T). With funC:tional
notation operators may not be binary and they do not refer necessarily
to functions or procedures.

Polish Notation

Let us consider a further example in prefix notation,· the math·
function: Y=S/T(A/X+X). A mathematician working with this
formula would know what rules of precedence are-needed iri. order
to compute the correct result. However, the computer must be
given additional information. Therefore, ,Polish notation or
parenthesis-free notation is used. The one rule in using Poli.sh
notation is that the operand always has its two addresses immediately
to the right. The preceding math statement would be revised to:
Y=*/ST+ /AXX. Since the operand always has its two addresses
immediately to the right, the first operand in the scan fr,om .1.eft to
right to be performed would be /ST. Here S would be divided by T
and a temporary value would be placed in this area, TEMP 1.
Scanning again from left to right the next group of values that has
an operand with two addresses to the right is /AX therefore, X
divided by A will be the next computation performed. After /AX
has been accomplished, two addresses now follow the+, i.e.,
+TEMP 2 X. The third operation would be to add TEMP 2 'to X.
Two addresses, TEMP 1 and TEMP 2 now follow the original
asterisk. TEMP 1 and TEMP 2 are multiplied in order to compute
the value Y.

6 7

B. PUSHDOWN STACKS

Consider the function (A+ B) and infix notation (+ AB) in Polish
notation. Within infix notation equally simple examples can be
given such as (A+ B * C) which in Polish notation would be expressed
as (+A* BC). Again in infix (Y=Z + R) would be expressed in
Polish as (=Y + ZRh_ It becomes more complicated when taking the
example: [fB-C)*4J * [X-Y+TI . This would have to be expressed
in Polish notation as **=BCA-X1-YT. The scan may be performed
from right to left. (See Figure 1). When the operator is seen, it is
combined with the two names on the right, producing a new name
which is the name of the result, or the scan can be made from left
to right, where after finding two names without an intervening OP
Code the combination would be made with the preceding OP Code.
In implementing a right to left scan of the example **-BCA-X'tYT
with one pushdown and output on every operator, we would have
TEMP 1 containing the calculation of Y to the power T; TEMP 2
containing the value X - TEMP l; TEMP 3 containing the value
B - C; and TEMP 4 containing TEMP 3 multiplied by A; and TE~.rp 5
containing the product of TEMP 4 {which contains the results of
B - C multiplied by A) and of TEMP 2 (which contains the results of
X - Y to the T power).

Stack

w
or **-BCA-X1YT

Output

'f'Y,T,T1

*T3 ,A, T 4

Figure

8

If the implementation was from left to right TEMP 1 would include
the result of B-C; TEMP 2, the product of TEMP 1 and the value A;
TEMP 3, the value of Y to the T power; and TEMP 4 would contain
the value X-TEMP 3. (See Figure 2). In the first phase of the
operation, from bottom to top of the list, an**- wo~ld have been
pulled into our operator list. In the corresponding operand list
reading from bottom to top, appear (((which are the separators for
the operators, followed by Band C. Once two operators are
adjacent the last operator in the list which was a minus can be
performed, thus causing the operation of B-C stored.in TEMP 1.

Phase 2 has the operator stack containing ** with the operand stack
containing ((TEMP 1 and A. Once again, two operands have been
entered into the operand stack without separators. Therefore, the
last operator in the operator stack is associated with the last two
operands and the calculation of multiplying A by TEMP l is performed.
TEMP 2 is created and put into the operand stack.

In Phase 3, reading from bottom to top, the operator stack contains
*-f, and the operand stack has (T2(X(YT. Since two operands are
not separated, the operation of Y raised to the T power can be
performed.

The operator stack has in the fourth phase an *- with the operand
stack of (T2(XT3. X-T3 is performed to create T4.

Only the * remains in the operator stack in phase 5, with (T2 followed
by T4 in the operand stack. T2 can then be multiplied by T4 and
in the final phase, the operator stack would be empty and the
operand stack holding T5.

**-BGA-XfYT

9

Figure 2

**-BCA-XtYT

Phase 1 Phase 2 Phase 3 Phase 4

Op. Operand Op. loper and O_E_. O_p_erand O_p_. O_p_erand

T

y

c (T3

B A x x
- (T1 .,.. ((

Tz I: I Tz

10

Phase 5

loP. Operand

T4

1.1
Tz

Phase 6

Op. I Oneran_Q

Right to Left and Left to Right Scans

It should be noted at this point that in the left to right scan of
Figure 2 the output number of ('s in the stack is equal to the order
of the operator. In the right to left scan the order of the operators
are kept wlth the operators in the operator stack. Where the
operand is added, a check must be made to see whether or not there
are enough to satisfy the top operator.

11

C. STRING AND SYMBOL MANIPULATION

Definition

By the term symbol we mean a character, an atom, a basic element,
such as A,+, or $. A string is an ordered sequence of symbols
such as A+B*X-{Y+Z). String literals tend to be notative, such as
F(ABC) or S(3,ABC) or JOE S (3,ABC).

REMNS

One requirement of any string manipulative program would be to
remove and insert operations. Let us take the following example:

A*B-R/S

T 1 - R/S

Tl= T2

T3

In order to remove and insert operations it is convenient to express
this with one statement in a compiler language. In XTRAN the
statement is in the following format: REMNS(STA, N,SYA).

REMNS represents the phrase REmove N Symbol; ST A, the name of'
the STring; N, the position in the string; and SYA where it is to be
stored after removal. This is termed functional notation.

A string is expressed in XTRAN with format: S(N,_Sl,S2,S3_. .• SK*_).
All N symbols are unconditionally a part of the string and will continue
to be until the next) is met. As an example, the string
(93, RX)ABCDE). This string includes N which is 3 symbols, being
RX and } and, according to the definition, the values through E.
This string is terminated by the right parenthesis following the
letter E.

Strings are assembled and held in main memory through dynamic
storage allocation. (See Figure 3). Main memory might contain,
as an example, two words JOE and FREE, with an additional area
called the string area. The string header is JOE. In the address
portion of JOE is the location of the first piece _of string which is.
2, 000. FREE has all locations that are not bemg used by an active
string.

The string words are also divided into two portions. At location
2, 000 exists a value X with an address of the next value of the
string, which is 1, 000.

12

At location 1000 the string value Y has its pointer at 3000, and at
3000 value Z, pointer of zero. The string might be expressed
as S(O,XYZ).

NORM

An additional value that would be required for string manipulative
procedures would be the NORM of a string, which is the number of
symbols in the string.· A NORM word is always present in any
string definition. The NORM word is divided into two sections.
The right half is the pointer to the end of the string, and the left
half contains the NORM value. The address of the NORM word of the
string is in the string header.

Main Memory

JOE

ITl
FREE

CCI

Figure 3

Memory Map

String Area

y 3000

x 1000

x 0

Unary and Binary Operators

Location
1000

Location
2000
Location
3000

Only unary operators, i. e., one operator per value have been
discussed. However, in many calculations, binary operators are
also present. An example would be: A*(-B). Here two operations
are required for B. First of all B must be set to a negative value
and secondly this negative value of B must be multiplied with A.

Consider another example: (A*(-B))*(-(X-Y)). Expressed in Polish
notation, the formula would be: **A-B--XY. The first level of
operations would be to find the value X- Y. Within the same
operational level, B must be set to a negative value. The second
level of operations would multiply A times the negative value of B
and set the value of X-Y to its negative form. The third operation

13

would be to multiply the first value by the second value, i. e. ,
multiplying A-B and the negative value of X-Y.

Using parentheses, the formula would be expressed as:
((A-B))-(-(XY})). Or, in a slightly different manner:
((A, -(B)), -(-(X, Y))).

A third way of expressing the same equation would be to substitute
the letter F for the*• G for the binary minus, and H for the unary
minus. Completing the substitution we would have the formula:
F(F(A,H(B)},H(G(X, Y))).

Functions and Procedures

Symbol manipulative procedures or routines may be divided into
two types, those of functions and procedures. As defined earlier,
functions are rules for producing a particular value, and a
procedure differs from a function in that no value is produced.
(See Figure 4). Functions in the symbol manipulation routines are
contatenate, norm, get n-th symbol, first occurrence of symbol,
and strings identical. Procedures are free string, remove n-th
symbol, insert, add symbol to list, push, replace n-th symbol,
replace symbol by symbol, string assign, set pointer, and sequence.

14

Figure 4

Symbol Manipulation Routines

The following prefixes will distinguish the type of value which a name represents:

ST
SY
I or N
L

FUNCTIONS

Representation

CONG AT
(STA,STB)

NORM (ST)

GET NS (ST, N)

FOS (ST,SY)

ST!D (STA,STB)

string name
symbol name
integer name
statement name (label)

Concatenate

Norm

Type of Value
Produced

String

Integer

Get n-th symbol Symbol

First occurrence Integer
of symbol

Strings
identical

Boolean

Description

Produces a string which is STB
concatenated to the end of STA

Produces an integer which is
equal t<> the number of symbols
in ST

Produces a symbol which is the
.n-th symbol of ST

If SY is in ST, the value produced
is an integer equal to the position
which the fir st SY occupies.

Otherwise the value is zero

If STA and STB are identical
a true value is produced
otherwise a false value.

Example

JOE= S(O,AB)
SAM= S(O, XYZ)
CONCAT(JOE, SAM)
produces the string
S(O,ABXYZ)

ANN = S(O, RST)
NORM(ANN) produces
the integer 3.

BOB= S(O,MNXY)
GETNS(BOB, TWO)
produces the symbol N

JOE= S(O,RMQZMY)
SYM is a location
containing the symbol
M. FOS(JOE, SYM)
produces the integer 2.

PROCEDURES

Call Name Description

FREE (ST) Free string Free ST.

REMNS (ST, N, SY) Remove n-th symbol Set SY equal to the n-th
symbol of ST. Remove
the n-th symbol of ST.

INSRT (ST, I, SY) Insert Insert SY in ST between the
i-th and (i+l)th symbols, so
that SY becomes the (i+ l)st
symbol of ST.

ADDSL (ST, SY) Add symbol to list Add SY to the end of ST

PUSH (ST, SY) Push Add SY to the beginning
of ST.

REPNS (ST,N,SY) Replace n-th symbol Replace then-th symbol of
ST by SY.

REPLS (ST, SYA, SYB) Replace symbol
by symbol.

STASN (STA, STB) String assign

Call Name

POINT (ST, I, PT) Set pointer

SEQ (PT,SY,L) Sequence

Wherever SYA occurs in
ST, replace it by SYB.

Set STB equal to STA

Description

Set pointer PT to point to
the i-th symbol of ST.

Set SY equal to the symbol

Example

BOB = S(O, MNXY). REMNS(BOB,
TWO, SYA) will cause the symbol N
to be stored in SY A c+nd will change
BOB to S(O, MXY).

ANN= S(O, RSTW), SYL contains the
symbol L. INSRT (ANN, THREE, SYL)
will change ANN to S(O, RSTLW).

<.D

SAM= S(O,XYZ). SYA contains the
symbol A. ADDSL(SAM, SYA) will
change SAM to S(O, XYZA).

SAM= S(O,XYZ). SYA contains the
symbol A. PUSH (SAM, SYA) will
change SAM to S(O,AXYZ).

JOE = S(O, BXRS). SYQ contains the
symbol Q. REPNS(JOE, TWO, SYQ)
will change JOE to S(O, BQRS).

BOB = S(O, RMRSTRQ). SYR contains
the symbol R. SYM contains the
symbol M..REPLS(BOB, SYR, SYM)
will change BOB to S(O, MMMSTMQ).

JOE= S(O,XYZ). SAM= S(O,AB).
STASN (JOE, SAM) will change SAM to
S(O, XYZ) and leave JOE unchanged.

Example

that PT is pointing at. Advance PT
to the next symbol in the string.
If PT was past the last symbol
in the string, transfer to L.

D. LANGUAGE ONE

Introduction

A very simple language such as an SPS assembly, where there are
no macros, is certainly efficient and straight forward. By having
only procedures available a one-for-one assembly can be assumed.
For instance, to express the function NORM{ST) in Language One
would require an OP Code of FUNCL with an address of norm,
followed by an OP Code of PAR with an address of ST, and an
additional OP Code PAR followed by the address N, as in Figure 5.

Figure 5

Operation Address

FUNCL NORM-

PAR ST

PAR N

If we wish to express the function, REPlace N Symbol, the OP Code
of FUNCL would appear with an address of REPNS followed by three
parameters for OP Codes with the addresses being respectively ST,
N, and SY. (See Figure 6).

Figure 6

Operation Address

FUNCL REP NS

PAR ST

PAR N

PAR SY

18

Programs in Language One

Examples of programs written in Language One, the scan, and a
description of the boot strap procedure appear in Figures 7, s- and 9.
The symbols mean following: colon, a label; comma, a parameter;
), a parameter; {, a procedure; a semi-colon, noise; and , and)
are interchangeable as several labels are possible.

Figure 7

Examples of Programs in Language

FOS {ST, SY, I)

NORM (ST, IA); ASSIGN {ONE, I); LC: GETNS (ST, I, SYA);

EQUAL (SYA, SY, B); CONDTRA (B, LA); EQUAL {IA, I, B);

CONDTRA {B, LB); ADD (ONE, I, I,); GO TO {LC);

LB: ASSIGN (ZERO, I}; LA: RETURN (DUMMY);

SQUARE ROOT

ASSIGN (A, XOLD); LB: DIV (A, XOLD, TA); ADD {TA, XOLD, TB);

DIV {TB, TWO, XNEW); SUB (XOLD, XNEW, TC); ABS (TC,_ TD);

LESS (TD, EPSILON, TE); CONDTRA (TE, LA); ASSIGN (XNEW, XOLD);

GO TO (LB); LA: STOP (IDENT);

19

START

LA

LB

COLSR

LPRSR

COMSR

LC

LEND

Figure 8

Scan for Language

FREE (NAMST);

INPUT (SRCST, LEND);

NORM (SRCST, TA);

TRAEQ (TA, ZERO, LA);

REMNS (SRCST, ONE, CURSY);

TRAEQ (CURSY, BLKSY, LB);

TRAEQ (CURSY, SCLSY, LB);

TRAEQ (CURSY, COLSY, COLSR);

TRAEQ (CURSY, LPRSY, LPRSR);

TRAEQ (CURSY, COMSY, COMSR);

TRAEQ (CURSY, RPRSY, COMSR)_;

ADDSL (NAMST, CURSY);

GOTO (LB};

CONCAT (COLST, NAMST, NAMST; GO TO {LC);

GONCAT (LINKST, NAMST, NAMST); GO TO {LC);

GONCAT (GOMST, NAMST, NAMST);

OUTPUT {NAMST);

FREE (NAMST);

GO TO (LB);

: STOP (ID ENT);

20

Where:

SRCST - Source string

LEND= Label, end of file routine

GURSY = Current symbol

BLKSY = Blank symbol

SCLSY = Semi-colon

COLSY - Colon

LPRSY = Left parenthesis

RPRSY = Right parenthesis

1.

2.

3.

4.

Figure 9

Bootstrap Procedure

Write "basic' subroutine in machine language.

Create macros which are calling sequences to
these subroptines.

Additional subroutines can now be written using
these macros. As each subroutine is written,
a macro can be created for it.

Scan can now be written with macros, one per
card. Assembly deck must include the macro
definitions, and the subroutines. Output of this
assembly will be the compiler in machine
language.

At this point the following problem could be worked: write replace
symbol REPLS (ST, SYA, SYB) using the functions of NORM,
REMNS, ADDSL, PUSH, FREE, CONCAT, POINT, SEQ, and
INSR T. (See Figure 9A).

21

Figure 9A

REPLS (ST,SYA,SYB~

LA SET STR=ST

LB

POINT (ST, (FOS(STR, SYA)), PT) SET POINT TO FIRST OCCUR

SEQ (PT, SY, LB)

INSRT (ST, (FOS(STR, SYA}), SYB) INSERT B

REMNS {ST, (FOS(STR,SYA});.SYA} REMOVE A

SET STR=PT

TRALA

END

Balancing Parenthesis

Consider the problem of balancing parentheses on input. Add to the
·beginning and to the end of the· string any require<l pa~e:ntheses to
make matched pairs with the minimum number of add1tiqns.
Figure 10 illustrates one solution, with the block diagram of Figure 11.

22

Ll

L2

L3

L4

SET

SET

SET

SET

POINT

SEQ

SET

POINT

SEQ

SET

SET

SET

SET

POS

TRATRUE

NEG

TRATRUE

ADDSYL

POINT

SEQ

SET

TRA

Figure 10

Insert Parenthesis

STI+ST

ST2+ST

STR=STl

STL=ST2

(ST 1, FOS(STR, SYRP}, PTR}

(PTR, SYR, Ll6

STR=PTR

(ST2,FOS(STR, SYLP). PTL) 2

(PTL,SYL,Lll) 2

STL=PTL 2

L=PTL 3

R=PTR 3

I=R-L 3

I,B 3-

B,L6 3

I,B 3-

B,L4 3

(STA,SYLP) 4

{ST 1, FOS(STR, SYRP}. PTR}- 5

(PTR,SYR, Ll6j 5

STR=PTR 5

L3 5

21

Figure 11

Insert Required Parenthesis

L6 TRA Ll 6
@Find (9 Add)

Lll ADDSYL (STA,SYLP) 11 next
(to STB

POINT (ST 1, FOS(STR, SYRP, PTR) 12

SEQ (PTR,SYR,Ll7) 12 Initialize

SET STR=PTR 12

TRA Lll 12 (!) Find (f)
right)

Ll6 POINT (ST2, FOS(STL, SYLP, PTL) 16 Last?

SEQ (PTL,SYL, Ll7) 16

SET STL=PTL 16 ® Find
left (

@

ADDSYL (STB, SYRP) 20 Last?

TRA Ll6 20

Ll7 SET L=PTL 17 ®
Compare

SET R=PTR 17
FOS

SET I=R-L 17

POS I,B 17 © R(L © R)L
Add one (0. K.

TRATRUE B,Ll8 17 to STA· check
next set

NEG I, B 17

TRATRUE B,Ll 9 17

Ll9 ADDSYL (STA,SYLP) 19

ADDSYL (STB,SYRP) 19

LIB CONCAT (STA, ST) 18

CONCAT (STA,STB) 18

SET ST=STA 18

HALT
24

18 25

E. LANGUAGE TWO

While Language One has only procedures ·with the functional notation,
Language Two has both functions and procedures with functional
notation. Figure 12 is an example of a program written in Language
Two.

Figure 12

Examples of Programs in Language 2

FOS (ST ,SY' I)

ASSIGN (ONE,!);

LC: CONDTRA (EQUAL(GETNS(ST,I).SY},LA};

CONDTRA (EQUAL(NORM(ST}, I)~LB);

ASSIGN (ADD(ONE,I),I); GO TO (LC};

LB: ASSIGN (ZERO, I); LA: RETURN (DUMMY);

SQUARE ROOT

ASSIGN (A, XOLD};

LB: ASSIGN (DrV(ADD(DIV(A, XOLD), XOLD), TWO), XNEW);

CONDTRA (LESS(ABS(SUB{XNEW, XOLq), EPSILON), LA);

ASSIGN (XNEW ,XOLD); GO TO {LB); LA: STOP (!DENT};

Polish Notation

All examples in this sectionwi12 be done in Polish or (Parentheses­
free) notation which, by the way, is used for the B5000. Polish
notation is a method of expression which was developed by
Jan Lukasiewicz, a Polish mathematician. Since "Polish" is--much
easier to say than the mathematician's name, his method of notation
has been dubbed "Polish".

26

Instead of writing A+B, the notation would be +AB. A+B+C would be
transformed to ++ABC, where A+B is executed first and the quantity
A+ B is added to C as a second operation.

The hierarchy of operations is: exponentiation, denoted as an arrow
pointing upward; multiply and divide; and add and substract. The
example A+(B*C) would be written as +A*BC.

Consider the formula: HB-C }*A}*(X-(YtT)). This would be
expressed in Polish notation as **-BCA-.X.tYT. Performing a
right to left scan to find the order of operations, the first operation
the machine would perform is raise Y to the T power and place it in
TEMP 1.

The second is to substract TEMP 1 from X and store it in TEMP 2.
The third operation substracts C from Band places it in TEMP 3.
The fourth phase will multiply A and TEMP 3 and place the product
in TEMP 4. The fifth is to multiply TEMP 3 and TEMP 4 and place
the product in TEMP 5. The output as expressed in machine
lan~age is shown in Figure 13.

Figure 13

1' Y,T,Tl
X,Tl,T2
B,C,T3

* T3 1 A, T4
* T4, T3, T5

Figure 14 illustrates the same solution, with the stack activity.

Figure 14

tY,T,Tl -X,Tl,T2 -B,C,T3 *T3,A,T4 *T4,T3,T5

27

In using a left to right scan, the pushdown storage is represented
in Figure lS with two pushdown stacks.

Figure lS

Operator Operand Operator Operand
1:

LJ w
4:

~ lJ (
2

-C, B, Tl -T3,X, T4

Operator Operand Operator Operand
2: w I f 1

I
S:

lJ lE_J
*A,Tl,T2 *T4, T3, TS

Operator Operand Operator Operand
3: lJ w·,u U

fT,Y,T3

Using a more complex problem a transformation into Polish will
be accomplished (Figure 16) and the two types of stack analysis will
be performed. They are: 1) the right to left analysis as shown in
Figure 17, and 2) the left to right analysdt\ usin~!wo pushdown Jll
stacks, in Figure lS. The problem is: ti;- *(B-D.f f!l-5!]- ~/(y-z~ *(L-M)

28

L

M

CD

CD

®

©

©
©
~

fiJ

®

®

Figure 16

Figure 17

B A

R D Ts T

y x s T4 T4 T4 T1

z T2 T3 T3 T3 T3 T3 Ts

T1 T1 T1 T1 T1 T1 T1 T1 T9

® ® © © (£) (j) ® ® @

L-M=T 1 (-L,M,T1)

Y-Z=T 2 (-Y,Z,T2)

X/T2=T3 (/X, T2, T3)

R-S=T4 (-R, S, T4)

B-D=T5 (-B,D,Ts)

A*Ts:=T6 (*A, Ts, T6)

T6*T4=T7 (*T6• T4, T1)

TrT3=Ts (-T7, T3, Ts)

Ts*T1=T 9 Answer (*Ts, Tl, T 9)

29

Figure 18

*-**A-BD-RS /x-yz-LM

Left to right (2 pushdowns).

D z

B S y

Ts

A x x

Tz Tz T6

T4 T4 T4

lJlJ
* *
* * * * I I

* * * * * * *

30

M

L

Ts
T7 T7

T9

* *
IC

© B-D=T 1 (-D, B, T1)

© Ti*A=Tz (*T1,A, Tz)

@ R-S=T3 (-S,R, T 3)

@ T3*Tz=T 4 (*T3, Tz• T4)

® Y-Z=Ts (-Z,T,T5)

(6) X/T5=T6 (/T5,X, T6)

(i) T4-T6=T7 (-T6,T4,T7)

@ L-M=Tg (-M, L, Tg)

@ Tg*T 7=T 9 (*Ts• T7• T9)

From the preceding example it is seen that two types of algorithms
are necessary: One is an algorithm for scanning algebraic
expressions in Polish notation and the other an algorithm for
scanning functional notation.

31

F. ALGORITHMS FOR SCANNING

Right to Left Scan - Algebraic Expression

A right to left scan must:

1) Add operands to stack;

2) When an operator is encountered, output the operator, the
two operands on top of the stack and a generated temporary,
remove the two operands from the top of the stack, and put the
GT on the stack.

Left to Right Scan - Two Pushdowns - Algebraic Expression

When an operator is encountered, it is added to the operator stack
and a separator placed on the operand stack. When an operand is
encountered, it is entered in the operand stack. Whenever an
operand is added to the operand stack (this would happen when a
generated temporary is added to the stack, as well as when an
operand is encountered in the source program), the stack should
be checked for TWO adjacent operands on top. If there are none,
the scan is continued. If there are, the operator on top of the
operator stack is outputted along with the two operands on the top
of the operand stack and a generated temporary. The operator
and the operands that were output from the stacks, and the separator
are removed. The generated temporary is added to the operand
stack.

Left to Right Scan - One Pushdown - Algebraic Expression

Add the operators and operands to stack. Whenever an operand is
added, a check is made for TWO adjacent operands on top; if not,
the scan is continued. If there are, the TWO operands and the
operator on top of the stack and a generated temporary are outputted.
The two operands and operator are removed and the generated
temporary added to the stack.

Right to Left Scan - Functional Notation

Place)s and operands in stack. When a (is encountered, this means
the name in front of it is an operator or a function. This operator
should be outputted, along with all the operands down to the first)in
the stack. A generated temporary should also be outputted. The
operands and the) should be removed from the stack, and the generated
temporary added to it.

32

Left to Right Scan - One Pushdown - Functional Notation

Add all operators, (s, and operands to the stack as they are
encountered. When a) is encountered, output the operator which
is below the highest (in the stack and a11 the ·operands in the stack
above it. Also output a generated temporary. Remove the operator
and all the operands that were outputted from the stack, as well
as the (that separated them. Add the generated temporary to the
stack.

Left to Right Scan - Two Pushdowns - Functional Notation

When an operator is encountered, recognized by the fact that it is
followed .by a left parenthesis,' add it to the operator stack and place
a (separator in the operand stack. When_an operand is encountered,
add it to the operand stack. When a) is encountered, output the
operator that is on top of the operator stack, all the operands from
the operand stack down to the first and a generated temporary. -
Remove all of these items outputted from the stacks as well as the
top-most (from the operand stack. Add the generated tempora-ry
to the operand stack.

The Burroughs' B5000 uses Polish notation with a right operator
instead of a left, i. e. , suffix notation. For· instance, e'xternally
a value might be expressed as ({b-c)*a)*(yf\;)). Expressed in
Polish notation with a suffix operator, this value would be:
bc-a*xytf-*.

33

G. LANGUAGE AMBIGUITY

Introduction

Consider each of the following three examples. Examine for
ambiguity.

For a*(-b) there are two operators and two operands. The hierarchy
is not clear as to which operation should take precedence. a*(-b+r)
is a value which may also be expressed as *a-br. Here no ambiguity
exists, for b can very easily be subtracted from rand "a" multiplied
by the product. The last example is a*(-b-d). In Polish notation,
this would be: *a--bd, and once again a hierarchial ambiguity exists.

Subscripts

One possibility for eliminating ambiguity would be to add subscripts
to the operators. Our last example would be expressed then as:
-J2,A-2- l BD

To use a more complex example, consider the following: (A*(-B))*(4-Y)).
In Polish notation the formula would be expressed with subscripts
as **A- lB-1-XY. If then, by simple substitution, an F represented
the *, a G the - , and H the - 1, the following would result:
F(F(A,H(B)),H(G(X, Y))). If the normal operands of+, -, *, /, as
well as subscripted operators are eliminated, an input statement
would be similar to R(S, T(M, N), Q).

R(S, T{M, N), Q) as an input string could be processed in a manner
similar to Figure 19.

Figure 19

Right To Left Scan

M

N s

T1

Q Q

T2
TM,N,Tl RS,T,Q,T2

34

With a right to left scan, }Q)N and M would appear in the stack. At
this point, TM, N, T 1 would be outputed. Dur~g the sec~md phase
.the stacker would contain)QT 1 S, and would require o~tputmg of
RS, T 1, Q, T 2 . In the third phase T 2 would be alone m the stack.

Figure 20 illustrates the same problem with a left to right scan
with two pushdown stacks.

Figure 20

Left to Right Scan

Operator Operand Operator Operand Operator Operand

i I I r I lJ I ~I I LJ I I
liJ IJJ R LU ~

TN,N\,T 1 RO,T1,S,.T2

In phase one the operator stacker would contain RT, and the operand
stacker (S{MN, with an output of T N,M, T 1. The second phase would
have an R in the operator stack, and an operand stack of {S T 1 and Q,
and output of R Q, T1 , S, T 2• In the last phase the operator stack is
empty and the operand stack contains T2.

A further example of elimination of all normal operators sucp. as
+, - , / and * would be: F{G(H, M), L, B(X), R(F, T, V, Q)). The two
solutions to this problem include both types of scans; left to right
with the two pushdown stacks , one for the operator and one for the
operand (Figure 21) and the right to left scan (Figure 22). For both the
output is written and included in functional notation.

35

Figure 21

Left to Right Scan

Q

v

T

s

x

M T2

H L L

,G B T1 R T1

F F F

2 3

G M,H,T 1

2 B X,T2

3 R S,T,V,Q,T3

4 F Tl'L,T2 ,T3 ,T 4

36

F

4

T3

Tz
L

5

Figure 22

Right to Left Scan

F(G(H, M), L, B(X), R(S, T, V, Q))

R to L

R

2 B

3 G

4 F

s

T

v x

Q

) T

2

S,T,V,Q,Tl

X,T2

H,M,T 3

T3,L,T 2 ,T 1,T 4

H

M

L

T

T

3 4

37

Review of Polish Notation

Polish notation with left. to right scan will be implemented in the
following example: (((A*(B-D))*(R-S))-(X/(Y-Z})*(L-M)).
The pushdown at the end of each output is shown along with the
outputed functional notation required in Figure 23.

Figure 23

{~•(B-oij • (i-@ -~/(y-z)j •(L-M)1
Right Polish, L·~R scan.

ABD-* RS-* XYZ-/ - LM-*

I 1 IJ] I 1 lj
~

s Ts

:J
M

Tl R x x L

A Tz T4 T4 T7 7
•_J

2 3 4 s 6 7 8 9

-D,B,T 1

2 *T 1,A, T 2

3 -S,R, T 3

4 *T2 ,T3'T4

s -Z,Y,Ts

6 /TS ,X, T 6

7 -T6,T4,T7

8 -M,L,T 8

9 *Ts,T7,T9

38

l ·1

w
10

Scan for Language Two

Since Language Two is a- higher level language than Language One,
a scan for the former can be readily implemented in the latter.
Figure 24 is an example of such a scan.

START:

LA:

LB:

COLSR:

LPARSR:

Figure 23

Scan For Language Two
(written in Language One}

FREE {NAMST);

INPUT (SCRST, LEND);

NORM (SCRST, TA);

TRAEQ (TA, ZERO, LA);

REMNS {SCRST, ONE, CURSY);

TRAEQ {CURSY, BLKSY, LB);

TRAEQ (CURSY, SCLSY, LB);

TRAEQ {CURSY, COLSY, COLSR);

TRAEQ {CURSY, LPRSY, LPARSR);

TRAEQ (CURSY, COMSY, COMSR);

TRAEQ (CURSY, RPRSY, RPARSR);

ADDSL (NAMST, CURSY);

GO TO (LB);

CONCAT (COLST~ NAMST, NAMST);

OUTPUT (NAMS'I): FREE (NAMST);

GO TO {LB);

PUSH (FUNCST, LPRSY);

PUSH (PARST, LPRSY);

CONCAT (NAMST, FUNCST, FUNCST);

39 l

COMSR:

RPARSR:

LD:

LF:

LE:

LI:

FREE (NAMST; GO TO (LB);

NORM (NAMST, TA);

TRAEQ (TA_,_ ZERO, LB);

CONCAT (NAMST, PARST, PARST);

PUSH (PARST, COMSY);

FREE (NAMST);

GO TO (LB);

NORM (NAMST, TA);

TRAEQ (TA, ZERO, LD);

CONCAT (NAMST. PARST, PARST);

PUSH (PARST, COMSY);

FREE {NAMST);

FREE {WSTA);

REMNS (FUNG ST, ONE, SY A);

TRAEQ-(SYA, LPRSY, LE);

ADDSL (WSTA, SYA)i

GO TO (LF);.

CONCAT (LINKST, WSTA, WSTA);

OUTPUT (WST A);

FREE (WST A);

REMNS (PARST, ONE, SYA);

REMNS (PARST, ONE, SYA);

TRAEQ (SYA, LPRSY, LG);

TRAEQ (SYA, COMSY, LH);

ADDSL (WSTA, SYA);

40

LH:

LG:

LJ:

LEND

GO TO {LI);

CONCAT (COMST, WSTA, WSTA);

OUTPUT (WST A);

FREE (WSTA);

GO TO (LI);

CONCAT (COMST, WSTA, WSTA);

OUTPUT (WST A);

FREE (WST A);

NORM {FUNCST, TA);

TRAEQ {TA, ZERO, LJ);

GENT (SYA);

PUSH (PARST, SYA);

PUSH (PARST, COMSY);

ADDSL (WSTA, SYA);

CONCAT (RESST, WSTA, WSTA};

OUTPUT (WST A);

FREE (WST A);

GO TO (LB);

RESTEMP (DUMMY};

GO TO (LB);

STOP (!DENT);

41

In order to further clarify Language Two, it will be used in the last
example of this section showing the contents of the main string, the
functional strings, the parameter strings, and the output at each of
the five stages in Figure 25. The example is:
L: AB(DE(M, NT1)2, FG(RQ3)4)5;

Figure 25

L: AB(DE(M, NT)-FG(RQ));

..Name String Fune. Strin_g Parameter Str. Output
1 NT D -iLABEL~ L 1 E M

((
A (
B
(

-
2 FREE D..,

lt
' -..lFUNCLtDE

E> Tl iPARI- NT
(-tPARI- M
A ..fRES r Tl
B
((

3 RQ F (
G .
(T1
A (
B
(

4 FREE e ~
(4FUNCI.}FG

1PARf- RQ .
-IRESr Tz T2 .

B

j_1
T1 { (

5 FREE FREE FREE ~FUNCL~AB
-tPARf- T2
1PARt Tl

I I
--~--

42

Language Three

Language Three uses an infix notation. Having the statement
X = A*(B+R)/Q, in XTRAN, the equal sign is replaced by a OE'- •

This is the type of notation that is used for XTRAN on the 7090, .
1620, 1401 and 1410. In ALGOL a statement similar to the followmg
three will exist:

1. L:X~ A*(X- Y):

2. IF A J B, THEN Xllf-Y; S~T.

3. IF B THEN E l• ELSE E2; E3.

The last statement will be executing either E1 and E3 or E2' E 3 .

At this point, a similarity between the statements used in XTRAN and
those used in ALGOL can be recognized. ·

XTRAN is a dialect of ALGOL •. Almost all languages, FORT~N,
COBOL and ALGOL use an infix notation so that each operator is
unique, thus eliminating ambiguities.

43

H. COMPILER LOGIC

Generally, there are five phases to compilers. They are:

Phase 1 - HTR - Hardware To Reference

Phase 2 - Pre-scan

Phase 3 - Scan

Phase 4 - Macro expander

Phase 5 - Assembly program

Phase 1 - Hardware To Reference·, converts the external
representation to the internal rP.presentation. With the example
A*B, referring the Dictionary of Internal Identifiers for Symbols
(Figure 26) a transformation is made into 178 52 180. The internal
representation has 0 through 177 as operators, 178 through 239 as
alphabetic characters, 240 through 254 as integers, and 1, 000
through 4, 999 as names. Before leaving the HTR phase, consider
a more complex example that can be followed through the subsequent
phases. The example: RSA. LA. RB. UP. RSA would be translated
as: 214 218 178. LA would be translated as 80; RB as 214 180;
and UP as 35. Therefore, leaving the hardware to reference phase
would be the string of numbers: 214 218 178 80 214 180 35.

Phase 2 - The pre-scan converts the names to single integers and
also eliminates ambiguity within parenthesis. 214 218 178 would,
in this phase, be grouped together and given an arbitrary number,
such as 1, 000. 214 180 would also be grouped together and given
another arbitrary number such as 1001. The string 1000 80 1001 35
would have been developed.

Phase 3 initiates another scan; Phase 4 is the macro expander which
includes such things as multiply; and Phase 5, the final assembly.

44

Figure 26

Dictionary of Internal Identifiers for Symbols

I for Internal Internal External
Symbol Representation Representation

000 .NUL.
001 .COMMENT.
001
002 .ARRAY.
003 .SWITCH.
004 . !NIT.
004 • INITIAL.
004 . INITIALIZE.
005 . SWITCHV AR.
008 .REAL.
009 . INTEGER.
009 .SYMBOL.
010 . LOGICAL.
010 .BOOL
011 .STRING.
016 .SC.
019 .COL.
019 .LAB.
022 .TLAB.
024 .THEN.
027 .STEP.
028 . WHILE.
029 . TILL.
030 .REPEAT.
032 (
034 .LB.
035 .UP.
036 . BEGIN.
045 .UM.
045 . UMIN.
046 .AB.
048 +
050 . DEFINE.
051 .MD.
052 * 054
055
064
065 .RB.
066)
069 .END .
070 . XB.

45

- 7090 XTRAN

Comment

Null sy:rn)Jol
Comment symbol
Comment symbol
Declaration
Declaration
Declaration
Declaration
Declaration
Type declaration
Type declaration
Type declaration
Type declaration
Type declaration

Type declaration
Semicolon
Colon
Colon

Until

Left parenthesis
Left bracket
Exponentiation
Left brace
Unary minus

Absolute value

Modulo

Right bracket
Right parenthesis
Right brace

\

I for Internal Internal External I for Internal Internal External
Symbol Representation Representation Comment Symbol _Representation Representation Comment

073 .BLANK.· Blank 128 .THENA.
073 Blank 129 .CM.
073 • AN. Blank 130 .F .
074 . PROCEDURE. 131 .P.
075 .OP. Operation 132 .N.
075 .OPOP. 133 .x.
076 .LC. Location 134 .XB.
076 .LCOP. 135 .A.
077 .RETURN. Return 136 .c.
077 .RTN. Return 137 . YIELDS.
080 .LA. Left assign 138 . YIELDSA.
080 .AS. Left assign 139 .OTHERW.
082 Relational 139 . OTHERWISE.
083 .UE. Relational 140 .FORA.
084 . GT. Relational 141 .FORB .
085 .GE. Relational 142 .FORC.
086 . LT. Relational 143 .FWHILE .
087 . LE. Relational 144 .INFOR .
096 . NOT. Logical I 145 .LOOPE .
097 .OR. Logical I 146 .PAR.
098 .LOG*. Logical I 147 .RES.
098 .AND. Logical I 148 .PL.
099 . IDENTICAL. Logical I 149 .FL.
099 . IDENT. I 150 .SWIL.
099 .IDT. Logical I 151 .SWM.
102. .IMPLIES. Logical I 152 .AST.
102 .IMP. Logical I 153 .TATS.
104 .COMPA. I 154 .SWAIL.
105 .COMPUTE. I 155 .ATL.
112 .GOTO. I 156 .DLAB.
112 .GO TO. I 157 • YLB.
112 .GO. l 158 .YXB.
114 .FOR. I 159 . YF.
115 . IF. I 160 . YP.
116 • PARSEP. Parameter Separator I 161 .DLA .
116 .PSEP. Parameter Separator I 162 .ILA.
117 .ELSE. I 163 .SDLA.
119 . LOOP. I 164 .SILA .
119 .DO. 178 A
121 .RA. Right assign 180 B
121 $ Right assign 182 c
121 .EQCO. Right as sign 184 D
125 .BSOS. Begin SOS 186 E
126 .ESOS End SOS 188 F
127 .MACSEP. Macro Separator 190 G
127 .MSEP. Macro Separator 192 H

194 I
198 J

46 47

I for Internal Internal
Symbol Representation

200
202
204
206
208
210
212
214
218
220
222
224
226
228
230
232
240
241
242
243
244
245
246
247
247
249
255

48

External
Representation Comment

K
L
M
N
0
p
Q
R
s
T
u
v
w
x
y
z
0
1
2
3
4
5
6
7
8
9
.EOP. (End of Program)

1620 Scan

The 1620 scan is from left to right. The formula A+B*X+Y appears
in the first phase with the operand stack containing AB, the operator
stack+*. This will output the statement: *X, B, T 1. The termination
of the second phase finds the operator stack with+, and the operand
stack A Tl• with output of+ Ti. A, T2. The third phase would have
in the operator stack+ and the operand stack T 2 Y, and would have
outputed +Y, T 2 , T 3 .

Figure 27

1:

*X,B,T 1 +Y,T 2 ,T 3

49

I. SWITCH METHOD/SINGLE ADDRESS OUTPUT

Taking the formula X+Y+Z+R*S+B; the following output would be
derived, turning a switch on if there is something in the accumulator,
and a switch off if there is nothing in the accumulator. Initially,
nothing is in the accumulator (See Figure 28). The operand stack
would contain XY with a + in the operator stack. Output from this
phase would be CLAX,ADDY.

The second phase would hold Z in the operand stack, + in the
operator stack with the switch ON. The output is ADD Z.

The third phase contains R in the operand stack with + and * in the
operator stack. Since the switch is ON, the output would be STO T 1
which stores T 1 in the bottom of_ the operand stack.

During phase 4 the operand stack holds T 1 RS and in the operator
stack+* with the accumuiator switch OFF. The output is
Cl.AR MULT Sand the switch is turned ON.

For phase 5 only T 1 will appear in the operand stack and + in the
operator stack. Output would be ADD T 1 with the switch turned ON.

The last phase would have B in the operand stack and + in the operator
stack. Output is ADD B with the switch ON, STO.

50

1:

OFF

4·

OFF

Figure 28

Operand Operator Operand Operator Operand Operato:i;

ll~J1 11_+ y ,. 1 ! \ i y

I j' *
x z R d +

CLAX ON ADD Z ON STO Tl
ADDY

Operand Operator Operand Operator Operand Operator

s

11

5: 6:

R * I 1 li r 1 11 1

Tl 11 + I I Tl 1 i I ~~\
CLAR ON ADD Tl ON ADD B
MULT S STO •••

51

J. FORCING CODES AND ROUTINES
Figure 29

Forcing Table
Introduction

The 162.0 XTRAN Compiler uses the technique of forcing tables for
compilation purposes. Since the hierarchy of operators must be Left Right Force Left Right Force
free of all ambiguities, one method of elimination would be placing Operator Value Value Code Operator Value Value Code
a numeric value on each operator and devising a rule for for_cing
the operator. For instance, assigning the value of 10 to+ and 5 to * + 10 10 .COMPUTE.
for the example X+Y*Z with the pointer at*• the multiplication would
not be forced. 10 10 .COMPA.

In the example X * Y + Z the multiplication should be forced and in * 5 5 . WHILE.
X + Y + Z all should be forced.

5 5 . IF. 0 0 11
These rules could be condensed into the single statement of: force
the operator if the right value of PR is greater than or equal to the ~ 5 4 .THEN. 0 60 12
less value of ~L· By consulting a predetermined forcing table similar
to Figure 29, ambiguities would be eliminated from the language. 12 12 .TRENA. 60 0 13

Forcing routines are included in Figure 30. -1- 12 12 .ELSE. 60 60 14

<: 12 12 .N. 2 0 16

2. 12 12 [49 0 18

.> 12 12 J 0 49 0

s. 12 12 .A. 2 0 2

.OR. 20 20 .c. 2 0 2

.AND. 15 15 .F. 50 0 21

1L 4 0 2 .P. 50 0 22

.NOT. 14 0 2 . YF. 50 0 23

{- 60 59 3 . YP. 50 0 24

50 49 25

.GOTO. .CM. 0 50 0

50 6 .FOR. 0 0 36

50 0 .FORA. 59 0 37

l 65 0 6 .FORB. 49 0 38
52 53

Left Right Force
Operator Value Value Code Operator

J 0 65 0 .FORC.

60 60 7 .LOOP.

name

Figure 30

Forcing Routines

Left Right
Value Value

60 0

60 60

0 0

Force
Code

41

45

0

Force Code 4 (for :)

STO:

STN:

STP:

Force Code 5 (for GOTO)

STO:

STN:

Force Code 1 (for binary operators) STP:

STO: cx 1 N ! <f'L t.J~ 'f
6

R ~~ (Original string)

(New string)

(Output string}

STN: <><.! Tj ~~ ~ .;i,.

STP: -f '\"L ~ tJi, fJ.,_, T·,

Replace tJ i f L b~ Tj in the string.

Force Code 2 (for unary operators)

STO: °' 1 t(ll N1 ~A~ 'x.Ol.

STN: ""-!Ti 'f'A~ e><.~

STP: -{'PL ~ Ni, Tj

Replace ~L N
1

b.....
1
Tj in the string.

Force Code 3 (for t:-)

STO~ °'J NJ. '('L ..i.,, ~R ..,._;/.

STN: « 1 N;. \(\~~ rx,. ~

STP: ~ {' l I- N 1 'tJ ~

Remove 1\1 1 ~ L from the string.

54

Force Code 6 (for (and {)

STO: °' 1 '\' L N 1. 'f' ,6({ 0(,1.

STN: ""'1 fl}Ato<:;t

STP: nothing

Remove ~ L and If' R from the string, outputs nothing; moves pointer
back one.

Force Code 7 (for ;)

STO: O(! f\1 1 'ft..~~ fl.!<R <::x.'3

STN: °'-1 ?<-.. f~R .,,,._.a-

STP: nothing

Remove N1 l{'L from the string.

Force Code 8 (for COMPUTE)

STO~

STN:

STP: 55

Force Code 9 (for COMPA)

STO:

STN:

STP:

Force Code 10 (for WHILE)

STO:

STN:

STP:

Force Code 11 (for IF)

STO: ~i 'fL --~ -{'ti~ """< 3

STN: o<i ~;i 'f"~t\ r:><..3

STP: nothing

Remove f' L from string.

Force Code 12 (for THEN)

STO: ~ 1 N 1 {'L o< ;t ..ft\R 0(3

STN: oc- 1 (-Li THf~-~ ~ ;i f~i': ?'\ .3

STP: i '-(IL. r Nt., (..,.Li

-J THENf- is TRA toM;if fJ 1 is false.

Replace N 1 l{l l by &Lj THENA in string.

56

Force Code 13a (for THENA when 't> ~is ELSE)

STO: <>< 1 GL: 'fL -tJ i '-f'6~ -:X.;i

STN: <>'\ J [,..L..) \f'~K =. .,._

STP: i T1-Ae, i-- (... /..... '-L • ___ , i) J

-I T.LAB ~ me.ans TRA to ~L j with the label G L; attached to the
location following the TRA instruction.

Replace b L; fL. N1 by' L.) in the string.

Force Code 13b (for THENA when 'fl~ is not ELSE but ;,1 , etc.)

STO: c<. i (;..L ~ N 1 '1'6 R '>< .;i.

STN: ~ 1 N 1 'fb.~ ""'- ::z.

STP: ~ L.A8t'U6Li

Removet.L; <f'L from string.

Force Code 14b (for ELSE when"fl? is not THEN)

STO: 0(1 t;..L: ..PL NL "'c.~ '=><..;i,.

STN: ro< 1 N 1 'f o< AR ~

STP: ~ LA 8f L \-- ~L ,•

Remove GL.· lf' from the string.
I L

57

Illustrative Solution

Consider the problem of:

COMPUTE A~A+B1'2 WHILE A< 100

with a general form of:

COMPUTE£.._ WHILE C

A folution for the problem by developing a forcing table (Figure 31),
applicable codes (Figure 32) follows. An example for purposes of
proof is also included as Figure 33.

COMPUTE

WHILE

COMP A

Force Code 8 - COMPUTE

r N ..f l
STO: ~ I ..,. L '.! • ~ ;I..

STN: O(' I

STP: ..J LABEL r 6.L 1

Figure 31

~orce Table

LV RV

0 60

60 59

60 60

Figure 32

Force Codes

Replacef L with 'l-; COMP A

58

FC

8

10

9

Force Code 9 - COMPA

STO: °'<", N 1 -t"L fJor. ~Ro-.~

STN: r.><: 1 ik <><~

STP: -l COMPA#-

STP: 1 t._t N~,k.1 1
RemovefL.N, N-' from string.

Force Code 10 - WHILE

STO: !Xi l'J, -PL N.;. +11.. '='<or.

STN: ""<" 1 Al 4'~ f p, =...,:i.

STP: none

Removes N
1

..f, from string.

Figure 33

Proof

COMPUTE A~A+Bf2 WHILE A<lOO;

General form: COMPUTE ~WHILE C

59

COMPUTE A~A+Btz WHILE A(100; ~ LABEL~GL1

GL1 C_DMPAA~A~Btz WHILEA<100; H~ B,2,T1

GL 1 COMPAA~A+T 1 WHILEA(lOO; ..\ +t A,T1 ,T2

GL l £.QMPA A-Tz WHILE A(100;

GL l COMPA T 2 WHILE A(100;

-I

-i~\- A,T 2

l(l- A,100,T3

-lCOMPAI- T 3 ,GL l

~ COMPA~ will generate coding to test T 3 and branch to GL 1 if true,

i.e. TRATRUE T3,GL l·

XTRAN Compiler

With this background, an exerpt from an EXTRAN compiler may
be examined in Figure 34. ·

Figure 34

Excerpt From XTRAN Compiler

SWITCH BRANCH~ (LCVOl, LCV02, LCV03, LCV04, LCV05, ... ,

LCV50);

Ll GETXT (SR, LA);

ADDSL (WST, SR);

LS NWST~ NORM (WST);

IF. NWST< 3 THEN GOTO Ll;

IF PTR< 3 THEN PTR~3;

IF PTR) NWST THEN GOTO Ll;

L6 SL~GETNS (WST, PTR-2);

SR~GETNS (WST, PTR);

60

IF IMIN i SL

THEN GOTO LCVOO $~LSE LVSL ~ LV (i;:LJ
IF IMIN {SR

r ,
THEN RVSRt-0 ELSE RVSR ~RV L SR _I

IF LVSLS,. RVSR

THEN CVSL ~ CV [SL]

ELSE CVSL ~O;

IF CVSL = 0 THEN GOTO LCVOO;

GOTO BRANCH [CVSL] ;

61

K. BACKUS NORMAL FORM

John Backus, who wrote the first FORTRAN, developed a method
of expression called Backus Normal Form. This mode of expression,
or alphabet, is used in ALGOL~ The alphabet BNF is probably the
most exciting development in metalanguages today_ (a metalanguage
is a language to describe another language).

Since the syntax of ALGOL is defined in BNF, the symbol definition
should be examined. The alphabet of BNF consists of:

() class of objects

: : = defined

/ or

So that a statement would ta.Ice the following formats:

(letter) : : = AjBjCf D •.. jz

(operator)

<operand)

= = + 1-1<. I flt-
: = {letter> j <operator) (operand) (operand)

(expression): : = <operan<i)

The syntax of ALGOL, expressed in BNF, would be of the format:

(name)

(legit)

· = (letter)l(nam~[<1etter) I (digit3

· = (letter)!\digit)

<name) · = (letter/I \name) digit)

(operand) : · = <letter) f <function)

~unction): · = (letterJ (\list))
~ist) · = (operan~I \listj, \operand)

62

III. HEURISTIC COMPILERS

63

A. INTRODUCTION

Need

During the past decade there has been enormous progress in the
development of higher level programming languages for instructing
computers. Through the development of FORTRAN and ALGOL,
COBOL, and the list processing languages of IPL and COMIT, the
labor of programming has been reduced several orders of magnitude.

Yet, programming a computer to perform a complex task, is still
very much more intricate and tedious than instructing an intelligent
and trained human being for the same task. The intelligent and
knowledgeable human does not have the literalness of mind that is so
characteristic of the computer, and so exasperating in a programmers
interaction with it. He supplies facts from his own store of knowledge
that his instructor neglected to give him. Given statements of
objectives and broad functional terms he can apply to his problem
solving powers to filling in the details of method. Meaning and intent
are interpreted when he is confronted with the vagueness and
informality of natural language.

Experiments in heuristic compilers are. aimed at further bridging the
gap between the explicitness of existing computer programming
languages and the freedom and flexibility of human communication.

Definition

Intelligent problem solving, whether by man or by machine, implies
selective rather than iust rapid behavior. Humans achieve this
selectivity through heuristics.principals that, on the average contribute
to a reduction of search for problem solving. Heuristic programming

then, is the construction of computer problem solving programs
whose behavior is similarly organized.

Implications

There are several implications of the definition of heuristic
programming that should be noted: a concern with exploiting partial
information in a problem situation where there is no guaranteed way
of using that information to find a best solution; preparing a
procedure (expressed as a computer program) to make effective use
of this partial information; and it is a body of knowledge built up
through experience with specific examples lacking as yet an
underlying analytical framework.

Using these implications as a guide, a definition of heuristic
programming could be: many decisions which are made in an
environment which may be characterized by: 1) lack of a feasible

64

guaranteed method of reaching the best solution; 2) a description of
the solution in terms of acceptability of characteristics; and 3)
sufficiently many possibilities to make complete trial and error
infeasible. Heuristic programming is concerned with constructing
decision paradigms (computer programs) emphasizing the use of
selectivity rather than computational speed.

Applications

A heuristic program has been prepared to balance production of
assembly lines in a factory. Balancing the line is the act of assigning
jobs to workers, so that a given production rate can be met with
minimum men. The Behavioral Theory of the Firm Project at
Carnegie Institute of Technology is developing a simulation of the
price and quantity decisions of a department store buyer; a heuristic
program is now being prepared to simulate investment activitie~
under a trust fund; and while no formal result has yet been published,
two separate attempts to construct heuristic programs for the
job-shop scheduling problem are under way.

Design Representation

One distinction between the restricted, relatively simple task of
"coding" and the more difficult task of "programming" is that the
latter may encompass the selection or design of an appropriate
problem representation, and the former does not. Consideration
must be given to the requirements in the design or selection of a
representation, and what is needed to give the heuristic compiler
the capability and capacity to grapple with such design and Sfi:ll_ection
tasks.

Designing a suitable representation, is in _effect finding an.
isomorphism. A description was defined in terms of certain elements,
relations between elements and pr.ocesses. The programmer has to
find a set of elements, relations and processes defined in a heuristic
compiler that are isomorphic with the required elements, relations
and processes (i.e., the proper sub-set).

Ill-structured Problems

An ill-structured problem has generally three characteristics;
(1) many of the essential variables are not. numerical at all, but
symbolic (2) the goal is vague and non-quantative, and (3} computational
algorithms are not available.

Allocating marketing expenditures among sales and promotional
efforts, preparing a compiler for business applications, playing chess,
are ill-structured, if not perverse, problems.

65

~urrently researchers are studying human methods of dealing with
ill-structured problems. Theorm proving in geometry, chess,
human discrimination, learning, human concept formation and
lan~_a?e translation are all being observed. These problem solving
activities have been called "heuristic problem solving", to emphasize
the importance of principles or rules of thumb that tend to discover
acceptable solutions more efficiently in most cases than do exhaustive
methods.

Pre-structuring

Present digital computers require an explicit statement of the
procedure to be carried out and of the data to be processed. But
at any state in developing a heuristic procedure, knowledge of the
problem itself is incomplete. Methods of describing the problem
and procedures for solving it demand easy revision of both procedures
and data.

The common answer to this dilemma is to pre-structure the problem
environment, and then within the resulting and often stringent
requirements, produce a solution procedure. The danger of this,
however, lies in the loss of flexibility thus introduced.

Language Characteristics

Certain requirements for a language to express ill-structured
problems are; 1) freedom from memory allocation problems;
2) the ability to define and redefine complex concepts; 3) to make
use of these concepts by name in defining further concepts; 4) the
ability to express concepts which are not meaningful until some
problem solving has occurred; 5) the ability to introduce useful
notations; 6) the ability to associate information in an easily
recoverable manner; and 7) the ability to change sections of the
decision process independently without problems of interrelations
with other sections.

A number of computer languages have been developed which begin to
provide some of this desired freedom. The IPL series, LISP,
FOR TRAN, and COMIT, exemplify this approach to computer
utilization.

The specific features of the IPL series include: (I) organization
of storage into list structures; (2) use of the description processes
to associate with structures new information or to delete previously
associated information; and (3) hierarchial nature of control which
allows for both a natural hierarchial organization and specification
of the processes, and for recursive definition.

66

B. INFORMATION PROCESSING LANGUAGE V

Introduction

IPL-V is designed for list processing and symbol manipulation, the
fifth of a series of languages. Its heavy use is among scientists
in the fields of artificial intelligence and simulation of cognitive
processes.

Compiler Capabilities

The compiling routines of IPL-V accepts the task of writing heuristic
programs on the basis of certain information provided to it. The
routines differ with respect to their methods of formulating or
representing the problem, for each uses a different state language.
At present, three compiling routines exist: 1. the SDSC (U 140),
DSCN (Ul34}. and General Compiler {Ul35).

The SDSC Compiler (State DeSCription) accepts as an input a
description of the contents of the relevant computer cells before
and after the routine to be completed has been executed. It produces
an IPL-V routine that will transform the input state description
into the output state description.

The DSCN Compiler (DeSCriptive Name) employs as its input an
imperative sentence definition of the routine to be compiled. DSCN
produces an IPL-V routine that is a translation, in the interpretive
language, of that definition.

The third compiler, the General Compiler, is an executive routine
that can use the SDSC, the DSCN and other sub-routines. The input
information can be stated in any form of several representations,
i. e., those appropriate to SDSC or DSCN, and selects sub-routines
to produce the desired IPL-V code.

From a logical standpoint the Heuristic Coder could be described as
a single program whose executive routine is the General Compiler
and which contains the SCSC compiler and the DSCN compiler as
sub-routines.

IPL-V Features

In the IPL-V language cells may have lists associated with them, and
the primitive processes find their operands in a communication cell
and its related list. The communication cell is also called an
accumulator because it has many of the functions of the accumulator
in a standard computer. Processes with the exception of tests,
place outputs in the accumulator and in its pushdown lists. Tests in

67

IPL-V record their result by placing a plus or minus in a special cell
called the Signal Cell.

Lists in the IPL-V memory may have description lists associated with
them. A description list consists of pairs of symbols in which the
first symbol of each pair designates an attribute, the second symbol
designates the value of that same attribute. The value may be a
simple symbol, or it may be itself a-list.

Values of attributes of objects may themselves have descriptions.
Representations of routines or programs in memory will take the
form of description lists, each routine having one or more of the
attributes of IPL name, IPL definition, functional description, state
description and flow diagram. The values of these attributes will
themselves be described, or have description lists associated with
them.

The SDSC Compiler

A computer routine can be defined by specifying the changes it produces
in the storage location it affects, or by specifying the before and after
conditions of these storage registers. A definition of this kind is not
univocal. There will generally be many programs not all equally
efficient or elegant that will do t;he same work, and the SDSC Compiler
attempts to find one to accomplish a given task.

The DSCN Compiler

Instead of specifying the before and after condition of the computer
cells a routine is designed in terms of a function it performs. The
DSCN Compiler searchs a list of available (compiled) routines to
find one whose DSCN in as similar as possible to the DSCN of the
routine to be compiled. Secondly, an analysis is performed to transfer
the compiled routine that has been found into the new routine. When
the compiler finds differences, it searches for an operator relevant
to removing the differences, and the resulting program will be identical
with that obtained by the SDSC Compiler.

The General Compiler

The General Compiler is an executive routine whose task is to compile
a routine from information in any of the forms already described
(SDSC and DCSN). It takes as its input the name of the routine to
be compiled. Associated with this name (on its description list) is
the information to be used on the compiliation.

68

A ROUTINE is a description list containing values of some subset of
the following attributes:

1. IPLN, IPL Name (X25). The value of this attribute is a
description list that names a region and a location in the
region.

2. JDEF, IPL-V definition (X22). The value of this attribute
is list of IPL-V instructions. Each is in the form of a
description list which describes the corresponding IPL-V
word that defines the IPL-V routine with specified names.

3. DSCN, DeSCriptive Name (X20). This is an imperative
sentence encoded as a list structure that describes the
process assigned by .I'DEF.

4. SDSC State DeSCription (X240). The value of this attribute
is a list structure that describes the state of the IPL
computer before and after the routine in question has been
executed. Only changes are mentioned explicitly.

5. FLWD FLoW Diagram (X267). This is a list structure
that gives a flow diagram corresponding to the JDEF, or
job definition.

6. ASOJ ASsOciated J Definition (£3). The value of this
attribute is the IPL name of a routine associated in a
manner to be described later with a given routine.

A compiled routine is a routine that has its JDEF, or an IPL-V
definition. The problem of compiling a routine can be stated as
follows: Given a routine without a JDEF (the present object or
definition) find the corresponding routine with the JDEF (the goal'
object), where "corresponding" means that the compiled routine
has the same SDSC, or DSCN, as the given routine.

69

C. COMIT

COMIT is a problem oriented language for symbol manipulation,
especially designed for dealing with strings of characters. Facilities
are available for easy re-arrangement, insertion or deletion of
characters of strings, and complex searches involving pattern­
matching in terms of incomplete descriptions of in terms of context.
A facility for dictionary lookup and flexibility input and output
facilities are provided.

COMIT was originally designed for mechanical translation and
linguistic research to provide the linguist who had no previous
programming training with immediate access to a computer. It is
based on Chomsky notation that is familiar to linguists, with a number
of additional features added making it a useful and convenient
programming language. COMIT is not a language in which one
"programs in English"--it is a highly abbreviated notation.

The COMIT system, as implemented for the IBM 709 and 7090,
consists of about 16, 000 instructions. It compiles the source
program into an internal language which then runs interpretively at
a high level. This program was SHARE distributed in September 1961,
and was programmed at the Massachusetts Institute of Technology by
a joint effort of the Research Laboratory of Electronics Mechanical
Translation Group and the Computation Center.

70

D. SAINT

Introduction

The IBM 7090 was programmed to solve elementary symbolic
integration problems at approximately the level of a good college
freshman. "SAINT", an acronym for Symbolic Automatic INTegrator,
performs indefinite integration, and definite and multiple integration
when these are trival extensions of indefinite integration. It uses
many of the methods and hueristics of students attacking the same
problems.

Pattern Recognition

Pattern recognition plays an important role, for it consumes much
of the program and programming effort. It is used frequently and
with great variety in determinations involving standard forms,
algorithm-like and hueristic transformations, and relative cost
estimates. Finally, it consumes much of the time in solving
integration problems.

71

E. GIT

GIT, an acronym for Graph Isomophism Tester, has been written
in the COMIT language described in Section C. The graph isomorphism
problem may be stated as follows: Given two direct line graphs
determine whether or not they are isomorphic, and if they are,
specify a transformation carrying the first graph into the second.

The problem of ascertaining whether a pair of directive line graphs
are isomorphic is one for which no efficient algorithmic solution is
known. Because a straight forward enumerative algorithm might
require 40 years of running time on a high speed computer to compare
2-15 node graphs, a more sophi::;ti.s;_ated approach is required. The
Graph Isomorphism Tester incorporates a variety of processes that
attempt to narrow down the search for an isomorphism with no one
scheme relied upon exclusively for a solution. The problem is
designed to avoid excessive computation along fruitless lines.

Another program of the same type has been written at the Harvard
University Computation Lab and is a more generalized version of the
same graph isomorphism problem. Its' quite similar in approach
to GIT and it has been implemented with the 7090 assembly language
rather than COMIT.

72

F. LINE BALANCING

Introduction

A hueristic program for assembly line balancing has been developed.
The assembly line balancing problem, like many combinatorial
problems, has not been solved in a practical sense by advanced
mathematical techniques, and this approach does not guarantee an
optimum solution. The ultimate measure of a hueristic program is
whether it provides better solutions more quickly and/or less
expensively than other methods.

Problem Definition

Given a production rate (or equivalently, a cycle time) the minimum
number of work stations {or operators) consistent with the time in
ordering, constraints of the product should be developed. The
assembly line balancing problem concerns a set of elemental tasks
where each requires a known operation time per unit of product
independent of when performed, and where partial ordering exists.

A optimum of solution of the problem consists of an assignment of
elemental tasks to work stations so that each task is assigned to one
and only one work station; the sum of the times of all tasks assigned
to anyone station does not exceed some pre-set maximum of cycle
time; the generated stations can be ordered such that the partial
orderings among tasks are not violated; and the number of work
stations is minimized.

Some difficulties associated with line balancing are determination
before solution the minimum number of operators, minimization of
the variation in work load among stations in evaluating possible
solutions; and juxtaposition of a zoning constraint. (Zoning is the
division of the set of elemental tasks into overlapping subset
corresponding to physical constraints on the assembly operation).

Zoning of an assembly line may be determined by the position of the
product on the conveyer, the layout of the production facility, or
both.

Hueristic Procedure

The hueristic procedure for assembly line balancing is:

a) Repeated simplification of the initial problem. This is
accomplished by grouping adjacent elemental tasks into
compound tasks.

73

b) Solution of the simpler problems created by assigning
tasks to work stations at the least complex level possible.
The compound tasks are broken into their elements only
when required for solution.

c) Smoothing the resulting balance. Tasks are transferred
among work stations until the distribution of assigned
time is relatively even.

Regrouping Procedures

Five regrouping procedures were used in the hueristic line balancing
procedure: direct transfer, trading, sequential grouping, completing
grouping and exhaustive grouping. Direct transfer was limited to
two component involvements. This method transferred elements
from one component to the other and by this means reduced the number
of men required by a straightforward totaling of whole men. Trading
also applied only to two components and assumed that direct transfer
had been attempted without success. Trading regrouped by shifting
an element larger than the acceptable limit from one component in
~xchange for smaller elements (in a set relationship with the first
element shifted) from the other component. Sequential grouping is
exploited for several components, and its procedure is to construct
an acceptable work station from the front of the given group of
components.

The remaining two regrouping procedures, complete grouping and
exhaustive grouping attempt to completely solve the remaining sub­
problems, and are "last ditch" methods at any particular level. Complete
grouping attempts to construct work stations until all task elements
are grouped from the front and (if required) the back of the component
group. If at any time the method cannot construct the station (i. e. ,
the remaining elements total less than can be handled by the remaining
men) the method fails. Exhaustive grouping generates all possible
first work stations, then all possible work stations following for each
of the first stations. The comparatively large amount of effort
required to do an exhaustive grouping dictates that this procedure be
used when only two men are assigned.

Conclusion

The hueristic line balancing procedure is not economically competitive
when measured against the dollar-per-hour cost of line balancing by
the industrial engineer, but a true evaluation of the method should
consider: the possibility of averaging fewer men required along the
line, the value of quick production of balances at a large number of
production rates; and the value of releasing industrial engineers to
do other, more creative analytic work.

74

IV. SYMBOL MANIPULATIVE LANGUAGES

75

A. ALGOL

ALGOL was designed by an international committee. It is a language
for use in scientific type problems hence would compete with FORTRAN.
It was designed to have all the features that a user might want, and
practical considerations of implementation were not given much
weight. This contrasts with FORTRAN, which was designed with the
IBM 704 in mind, and which had artificial restrictions so that efficient
object code could be produced. (ALGOL was designed with fast
compilation in mind, but with little emphasis on efficient object
programs.)

The first version of ALGOL was produced in 1958 and the second in
1960. The 1960 version had the more extreme features, and it is this
version that will be discussed.

Although IBM is not producing any ALGOLs, it is of concern in
competitive situations. Burroughs, CDC, UNIVAC, and RCA are all
producing ALGOLS (none of these contain all the features of ALGOL).
ALGOL is very popular at universities, with Duke, Michigan, and
Princeton all having ALGOLS. The languages MAD , JOVIAL, NELIAC,
and XTRAN are all similar to 58 ALGOL. The "intellectuals" support
ALGOL. Many articles concerning it appear in the literature. It is
especially popular in Europe, since the universities are rriore
influential there. McCracken is publishing an "Introduction to ALGOL"
which should increase its popularity here. Much of the published
literature is difficult to follow, but this probably will not be true. of
McCracken's book.

One of the reasons that IBM is not implementing ALGOL is that
SHARE seems content with FOR TRAN, which is being constantly improved.
(IBM did cooperate with SHARE in producing a large part of an ALGOL
compiler for the 709/7090). Both IBM and its customers have a large
vested interest in FOR TRAN because of existing compilers and library
programs. {Our competitors pru:iuce FORTRAN compilers also). However,
pressure will probably continue because ALGOL is more powerful
than any existing or proposed FOR TRAN.

In looking at ALGOL, two aspects should be borne in mind. The first
concerns its more standard features, which in many cases are
extremely desirable, and the second its rather extreme features,
which tend to make it impractical.

There are three forms of the .ALGOL language. The reference
language is the one used in most publications, and the one we will
use. The hardware language is one that each manufacturer determines
is to be used on his equipment. The publication language allows things

76

like putting subscripts below the line and exponents above the line.
We will not discuss this.

ALGOL uses a number of spedal operators such as GOTO, IF, THEN,
DO. These are to be considered as though they were single "Characters.
Ahardware implementation might be to use an "escape symbol" such
as a period, which would be keypunched as . GOTO. .IF. . THEN. . DO.
This paper will use underlines, although in the journals they are
indicated by boldface. Similar to these are symbols such as
which might be keypunched as . GE. . LE. . GT. This is different
than the reserved word idea used in COBOL. With the scheme
mentioned in THEN, GE, etc. can be used freely as names in the
program. The only restrictions on names are for a group of eight
commonly used mathematical functions such as sin, sqrt, etc.

Operators are in general not ambiguous in ALGOL. For assignment
the := is used, reserving the symbol = for equality. For example,
A:=B means to take the value of Band store it in A, while IF A=B has
the obvious meaning. F(X) means to execute the function F using X as
an argument. On the other hand, the Ith element of an array A is
indicated by A [i]. FORTRAN has ambiguities in it, and consequently
the compiler is slowed down by it.

Statements are punched in free form in ALGOL. There is no concern
with card columns, blanks, or continuation cards. A semicolon is
used to indicate the end of a statement. Also statements may be
grouped to form compound statements by preceding them by BEGIN
and following them by END. An example might be BEGIN A:=B+C;
X: =Y; M: =N-1 END. BEGIN can be thought of as [and END as~ •
Any number of statements can be included in a compound statement,
and a compound statement can be placed anywhere in the program that
a statement is called for. Hence comp0'.1nd statements can be nested
inside compound statements without any restriction as to depth of
nesting. ·

There is an IF THEN ELSE statement. It has the form: IF Boolean
expression THEN Statement ELSE Statement. If the Boo!ean expression
is true, the· statement follow mg the THEN is executed; if it is false,
the statement following the ELSE is executed~ The program, in either
case, proceeds to the next statement. An example follows:
IF A=B THEN BEGIN X: =R; S:=T END ELSE Q:=L;

The iterative type statement in ALGOL is the FOR statement.
Examples will illustrate it. --

77

FOR I: = 1, 5, 12, 13, 152 DO Statement. The statement following the
'I>O'Will be executed five tlmes, the first time I will have the value 1,
tli'e second time 5, the third time 12, etc.

FOR I: = 1 STEP 2 UNTIL 50 DO Statement. The statement following
tne!>O wilfl:>eeXecuted repeatecil.y with I taking on the values
1, 3~, 7, ••• 49. (This is quite similar to the FORTRAN DO.)

FOR I: = It 1 WHILE A J 0 DO State~ent, This statement will be
executed repeatedly until tnecondition A) 0 becomes false, each time
it is executed the value of I will be increased by I. {For this example
to make sense, I should have been assigned a value before this
statement is reached in the execution of the program.) Finally, all
three of these types can be combined into one FOR statement. The
following example illustrates: --

FOR I:= 1,4, 6 STEP 1 UNTIL 9, 15 WHILE A=B, 22 DO Statement.
Tlie'"statement Will'De executed with I takmg on the va!Ues 1, 4, 6, 7,
8, 9 and :repeatedly for the value 15 until A=B becomes false, and
then finally for the value 22.

The following FOR statement is permitted:

FOR I: = 10 STEP -1 UNTIL 5 DO Statement. This statement will be
executed for""""I7!0, 9~. 6~ in that order.

All of these examples can be generalized by replacing any of the
numbers used by any arithmetic expression. The index does not have
to be an integer quantity. - As an example: '

FOR I: = M STEP J-K UNTIL N DO Statement -- -- ---
There are several comments to be made about this example. It is
permissible for the statement following the DO to change the values
of J and K so that the incrementing constant would have to be
recomputed each time through the loop. It may happen that J-K may
change sign as the statement is executed. In view of the previous
examples, this makes for a rather involved situation for determining
when the program is to leave the loop. This is carefully defined in
ALGOL, but it makes a quite unusual loop.

Variables are declared in ALGOL in a manner similar to that used in
'FORTRAN IV. For example:

REAL, X, Y, Z

INTEGER A, B, I, Q

78

This states that the names X, Y, and Z refer to quantities which can
take on as values any real number; these would normally be represented
in floating point in the object program. The names A, B~ I, and Q
would take on only integer values.

ALGOL also allows Boolean variables; these are variables that can
take on only two values, true or false, and can then be used in an IF
statement. An example: --

BOOLEAN D

D: = A=B

IF D THEN ...

D will have the value true if A=B, otherwise it will have the value
false. The IF statement will take the appropriate branch depending
on the valueC>l' D.

Arrays have few restrictions in ALGOL. Any number of subscripts
are allowed, each subscript can be any integer expression, and
subscripts can themselves be subscripted. An example:

.A ~+·J, M G, 7] +T] will pick out an element from a two dimensional
array named A in the following manner. It will compute B+J for the
first subscript. For the second subscript it will find the appropriate
number from the M array and add the value of T to it.

Arrays are declared in the following manner:

ARRAY A [-2:7, 4:i] This states that the first subscript of the A
array may take on values -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 and the second
subscript may take on values 4, 5, 6, 7, and 8. Hence fifty locations
will be reserved for this array. Note that negative and 0 values for
the subscript are permitted, unlike FORTRAN.

A switch in ALGOL is a collection of labels the programmer may
wish to branch to. It is declared as illustrated in the following example:

~WITCH x:=A,B,C,D

GO TO X [3];
The GO TO will transfer to C, which is the third label in the
declaration.

79

Certain problems arise when a program is segmented, and different
~ections are coded by different programmers. ·The concept of blocks
1s used by ALGOL to handle this. A block is any compound statement
which contains declarations. These must occur at the beginning of
the block. The following example will illustrate some of the ideas
used:

P: BEGIN REAL A, B

Q: BEGIN REAL A,C, OWN REAL Q

END

END

We have a block within a block. The variable C has meaning here
only inside the inner block. In addition, if the program leaves this
block and later returns, the value of C will not have been preserved.
The storage location that is used could have been used by other parts
of the program. C is called a local variable in the inner block. The
same statements apply to B except that they apply to the outer block,
which, if course, includes the inner block. B is called global in the
inner block. There really are two different variables represented by
the name A in this example. The A in the outer block cannot be
referred to in the inner block because A in the inner block refers to
the A deelared there. D is defined as an OWN variable. This means
that its value will be preserved after leaving the inner block, and will
have this value when the program later returns to the inner block.

Subroutines are called procedures in ALGOL. They are normally
written in the program that uses them. The following example
illustrates:

PROCEDURE Q(X, Y, Z); X:=Y+Z;

X: = R; Q(A, B,C); Y:=T;

The procedure declaration defines the procedure. Later in the program,
the procedure is called as indicated in the second statement on the last
line. This is executed as A: = B+C;

80

One of the rather extreme features in ALGOL, which is very costly
to implement is called the copy rule. Normally when a subroutine is
executed the values of the parameters are computed, and these are
furnished as input to the subroutine. The copy rule states that the
procedure should be executed as though the instructions to produce the
parameter were copied into the procedure. As example illustrates:

PROCEDURE P(K,M); FOR I STEP 1 UNTIL 10 DOK:= K+M;

If this procedure is called by the statement P(J, I 'tz), the compiler
must produce instructions to execute the procedure as though the
statement following the DO read J: = J+I1'2.

If this procedure rule is not desired, variables\may be defined with
the declaration VALUE which means the arguments will be computed
and the results of the computation will be furnished to the subroutine.

Recursive procedures are permitted in ALGOL. This means that the
definition of a procedure may call the procedure that is being defined.
An example follows:

PROCEDURE x(A,B); A:=B+X: X(R,S);

ALGOL allows dynamic storage allocation.
illustrates:

BEGIN REAL A, B, C, INTEGER M, N

J: = l; I: = l;

L: M: = J+3; N:=I+Z;

BEGIN ARRAY A U:M, l:N]

END

J: = J+3; I: = I+7; GO TO L;

The following example

Note that every time the inner block is entered, the program must
reserve a different amount of storage for the A array. This feature
is implemented on the compiler IBM produced for SHARE.

81

B. JOVIAL

Introduction

JOVIAL, Jules Own Version of the International Algebraic Language,
is based upon ALGOL-58. It was designed by the Systems Development
Corporation to provide a flexible and readily understandable language
for programming large scale computer-based command control
systems. It is a procedure oriented language and at the present time
there are compilers written for the IBM 7090, the IBM AN/FSQ31
and the closely related AN/FSQ-32, the IBM AN/FSQ-7, the Philco
2000 and tre CDC 1604. The 7090, 2000 and 1604 compilers have
been made available through the computer users of SHARE, TUG, and
CO-OP. The JOVIAL compilers are written and maintained almost
entirely in JOVIAL. They consist of two main parts: first, a
Generator which transforms JOVIAL programs into Intermediate
Language; second, a Translator which further transforms them into
machine language. Translators ordinarily incor:porate a completed
symbolic assembly phase. Compilers for the Q-7, the 2000 and the
1604 use essentially the same common Generator and Intermediate
Language, thus one Generator and three Translators were produced.
JOVIAL compilers range in size from 50 to 60 thousand machine
instructions, require about 5 man years of work to write a new
tran,slator and get a compiler running on a new machine.

Statements

It is convenient to recognize three classes of statements in JOVIAL:
Simple statements which express primitive data processing action,
complex statements which incorporate simple or compound stet ements
within them, and compound statements which group together while
strings of statements - simple, complex or compound. The compou~d
statement is made up of a series of simple statements and enclosed m
between the BEGIN and END brackets. --- --
The NAME statement is a statement, label the same as the label
in an SPS program. In write-ups of the JOVIAL language, IDENTIFIERS
and NAMES are synonymous. The JOVIAL NAME is an arbitrary
though usually mnemonic alphanumeric symbol, at least two characters
long, which may be punctuated for readibility by the ' ~ark. N_AMEs
serve to identify the elements of the JOVIAL program information
environment - that is, statements, switches, procedures, items,
array items, tables, string items and files. Except for context
designed statement names all JOVIAL names must be declared, either
explicitly in the program or implicitly in the Compool or in the
procedure library. (A Compool is a library of system environment
declarations and storage allocation parameters). A NAME is needed
only when the statement is to be executed out of sequence.

82

The ASSIGNMENT statement assigns the values specified by a formula
to be value designated by the variable. The two functions of this
statement are data manipulation and arithmetic. It takes the form
a= b $where= sign is called the assignment separator.

The EXCHANGE statement exchanges the value designated by a pair
of variables. The effect of an EXCHANGE statement on either of the
variables involved is as if each has been assigned the value designated
by the other. Consequently, the rules of ASSIGNMENT pertain and
both variables must be of the same type: numeric, literal, status or
'.Boolean. The statement is of the form a = = b $ where = = is called
the exchange separator. As with all other statements it must be
followed by a dollar sign.

There are two types of TRANSFER statements: the unconditional
statement is a GOTO x $. There are no spaces between the two words
and the translator will substitute an unconditional branch. The
conditional transfer statement is an IF where the value to be tested
appears after the statement. If the IF statement is true, the next
statement is executed. If the statement is false, the next statement
either compound or simple is bypassed. An example is:

BRCH.

STEFi.

STEPZ.

IF ALFA EQ BETA$

GOTO STEP2 $

ALF A=GAMMA+ DELTA

DIFF=GAMMA-DELTA

A LOOP statement is a complex statement consisting of a list of FOR -
clauses which establish the LOOP counters, and a simple or compound
statement, which forms the repeatedly - executed body of the loop.
The LOOP statement may contain from one to three FOR statements.
The one factor FOR statement defines a constant and gives it a value.
Example: FOR I = 23 $. The statement would be initialized by setting
I = to 0, and after each repetition I must be set to I + 1. The test for
the maximum I would be made by the programmer. The two factor FOR
statement sets the initial value of I and specifies the increment value,
for example FOR I = 0, l $. In this case, I will initially be 0 and
incremented by l each time. The test for the final value of I would
be included by the programmer. The three factor FOR statement
specifies the initial value, the increment value and the test value,
i. e., FOR I= 0, 1, 9 $. The initial value is 0, the increment value
is + 1 and the loop would be terminated when I exceeds 9. The test
is automatically included by the processor. Decrementation as well
as incrementation is possible. Example: FOR I= 9, - l, 0.

83

OPEN OUTPUT or OPEN INPUT statement puts the particular device
being called into ready status. After this statement a number of ··
output s~atements or input statements can be executed, bringing in
or reading out data. The' last statement to be executed in the sequence
of OUTPUT and INPUT statements must be SHUT OUTPUT or SHUT
INPUT.

A ARITHMETIC statement will contain any combination of the normal
arithmetic functions. Parenthesis are used to determine order of
operation. JOVIAL and FORTRAN both use the same set of symbols to
denote arithmetic operations.

The CONTROL statement has four variations. The unconditional
branch is a GOTO n, where n is a statement number. In JOVIAL
the n would refer to a NAME statement. The computed GOTO would
branch to some statement depending upon the value of the constant
being tested. It takes the form GOTO (n1 , n , •.• , Ilu), I. If I were
1 the program would branch to n 1, if I were t the program would
branch to the fourth value in the parenthesis. The IF statement tests
th_e value of an expression or a variable and depending upon the value,
will branch to one of three places that was specified in the statement.
The form ?fa s~atemen~ is IF (a) n1, n2, n3 where n 1 is the statement
~ranch to lf (a) lS negative, n2 is branched to, if (a) is-= to 0, and n3
is branched to if (a) is positive.

The DO st~tement is the one used in looping. The starting value, final
value and increment values are given in the statement, similar to the
three factor FOR statement. Decrementation, however, is not
permitted: The format is DO - I= n 1, n 2 , n 3 • n 3 may be omitted if
the value is 1. The statement number after the DO is the last statement
of the DO to be executed. The tests for the increment is automatically
inserted by the processor after the last statement.

The SPECIFICATION is a non-executable statement, for it just
reserves space and does not generate any machine instructions. An
example of this is the DIMENSION statement which sets aside core
storage, where DIMENSION A (20) will reserve enough storage to
contain 20 floating point data words.

The I/O statements are of the form of what actually is to be
accomplished. To read card, READ is specified. The unit does not
have to be placed in ready status £!.rst.

Constants

A fixed point number in FORTRAN is so designated because it is an
integer (no decimal point may appear) and the variable name begins
with the letters I - N. In JOVIAL there must be a space followed by
an A after the item name. After the A the number which specifies the
number of positions in the constant is given and then an S or U for

84

Signed or Unsigned. An example would be SUM A7S.

A floating point constant in FORTRAN is designated by the letter
with which the constant begins. It may not begin with the letters
I through N for they are reserved for fixed point numbers unless,
of course, a TYPE statement is used within the FORTRAN IV program.
The number must contain a decimal point and may be in the E notation
{. 32E 12). In JOVIAL a floating point number has an F after the item
name - example SUM F.

Dual constants appear in JOVIAL and the same value is set up in each
half of the item. A "D" comes after the item name, n which specifies
the sum of the positions in each constant, S or U for signed or
unsigned and+ or =n for the number of fractional bits, example:
SUM D6 S+2. .

Status constant is in the mnemonic label which denotes one of the
values of the status item. The form is V (GOOD), where GOOD
refers to the status of sum item.

The literal constant is either in Hollerith in which case it is preceded
by an Hor in standard transmission code in which case it is preceded
by a "T". Standard transmission code is the octal representation of the
constant in the machine. Example: 44H (THIS IS A LITERAL CONSTANT
IN HOLLERITH CODE) 56P (THIS IS A LITERAL CONSTANT ,IN
STANDARD TRANSMISSION CODE).

Figure 35
Sample of a JOVIAL Program

Summing Ten Floating Point Numbers

START JOK 1.

TABLE NUMBR R 10 $

BEGIN

ITEM BB F $

BEGIN 3. 0 6. 10. 2 0. 0 20. 0 1.23. 08 0. 32 12. 0

IE-2 5. 0 END

END

85

ITEM SUMF $

STEP!. SUM = 0. 0 $ "INITIALIZE SUM"

STEP2. FOR I= ALL (BB)$

SUM+ BB (I)$ "COMPUTE SUM"

TERM $

Explanation of Jovial Program

The program must begin with a START card and end with a TERM$
card. TERM must have a $termination separator following it. The
program name which is optional in the START statement must be
followed by a (.)which is a statement na.ine separator.

Table declaration encompasses NUMBR which is the name of the
table. R signifies that this is a rigid (fixed) length ("V" would signify
variable), and 10 is the actual length of the table. The table declaration
must be followed by a$ which terminates the declaration.

The composition of the table must be defined between BEGIN and END
statements.

Item declaration declares item comprising the entry in the table. In
this case the item is identified as BBF. This means that it is a
floating point. Once again the $ terminates the declaration.

The BEGIN and END statements define the parameter list which
comprise the table and the first ten entries of the item BBF.

Statement name - STEP 1. must be followed by a (.) which is the
statement name separator. The statement sets SUM = to 0. 0. The
"COMMENT" tells the processor to ignore what comes next but
print it on the program listing.

STEP 2. I is the index. The loop will be accomplished ten times
sjnce the statement says FOR ALL (BB). Since the order of taking
the sum is unimportant ALL may be used rather than another type
of FOR statement. Included with the example is an example of the
same program written in FORTRAN. This can be used as a
comparative tool in evaluating the language of JOVIAL•

86

c

103

Figure 36

Sample of FORTRAN Program

PROGRAM TO SUM 10 FLOATING POINT NUMBERS

DIMENSION BB(10)

SUM= 0. 0

DO 103, I = 1, 10

SUM = SUM+ BB(I)

PAUSE

END

Additional Language Specifications

The statements to this point have been kept on a fairly simple level.
In order to evaluate all of the ramifications of JOVIAL, however,
additional specifications of the language should be perused.

Regarding the processing of clauses, strings of JOVIAL symbols,
(i.e., delimiters, identifiers and constants) form clauses such as
item tlescriptions which describe values; variables which designate
vahies; and formulas which specify values. In general, symbols may
be separated by comments or by an arbitrary number of blanks.
However, no separation is needed when one or both of the signs so
joined is a mark.

Clauses are combined with certain delimiters to form declarations
and statements which are classified as sentences of JOVIAL.
Statements assert actions that the program is to perform (normally
in th~ sequence in which they are listed) and declarations describe the
information environment in which the actions are to occur.

In JOVIAL, values other than those denoted by constants or used only
as intermediate results, or for controlling loops must be formally
declared as items: simple items, array items, table items or
string before they can be referenced. When not a part of a table
declaration, an item declaration defines a simple item with a single
value. A mode declaration starts a new normal mode for the implicit
declaration of all subsequently referenced (and otherwise undefined)
simple items. An array declaration describes the structure of a

87

collection of similar item values and also provides a means of
identifying this collection with the single item named. In this '31.anner,
arrays of any number of dimensions may be declared.

Functional modifiers facilitate the manipulation both of larger data
element~ (entries and tables) and the smaller data elements (segments
of machme language symbols representing item values). A brief
description of each modifier will suffice. The NENT modifier is a
vital parameter in table processing of Number of ENTries. The
functional modifier NENT allows this unsigned integral value to be
designated for rigid length table. The NWDSEN modifier is another
parameter in table processing and this is the amount of storage
~llor.ated to a tab~e e:itry and thus to the entire table. This unsigned
~tegral value_ which is constant throughout the execution of the program
is expressed in the Number of WorDS or registers per ENtry.
NWDSEN is needed in executive programs that do dynamic storage
allocation. The ALL modifier creates a loop with an undefined
direction of processing. The ENTRY modifier allows an entry to be
treated as a single value represented by a single composite machine
language symbol.

The BIT and BYTE modifiers are worthy of mention because of System
360. The BIT modifier allows any segment of the BIT string
representing the value of any item to be designated as an unsigned
integral variable. Similarly, the BYTE modifier allows any segment
of the BYTE string representing the value of any literal item to be
designated as a literal variable. The MANT and CHAR modifiers
are involved with floating point machine language symbol representation,
and by using them, either component of any floating point item can be
designated as a fixed point variable. The least significant bit of any
loop counter or floating-or-fixed-point item can be designated as a
Boolean variable: True, if it represents a magnitude of one and false
if it represents a magnitude of zero by the ODD modifiers.

Summary

JOVIAL is a general purpose procedure-oriented are largely computer
independent programming language, derived from ALGOL 58 with the
major extensions of: input-output notation, a more elaborate
description capability, the ability to manipulate fixed-point numeric
values, and the ability to manipulate symbolic and other non-numeric
values including machine language symbol segments.

Some thirty computer installations have received JOVIAL compilers
through the users group of SHARE, TUG and CO-OP, and has been
adopted by the Navy Command Systems Support Activity as the interim
standard programming language for Navy Strategic Command Systems ..

88

C. SNOBOL

Strings and String Names

The basic data structure in SNOBOL is a string of symbols, where
names (a string of numerals and/or letters with medial periods) are
assigned to strings for reference. The string named LINE. 1 may
have the contents: TIGER, TIGER, BY MY BED.

String Formation

The string name LINE. 1 with the above contents is formed by the rule:
LINE. 1 = "TIGER, TIGER, BY MY BED" where the quotation. marks
specifies the literal contents. Any symbols except quotation marks can
be placed within the quotation marks.

Strings can also be formed by concatenation. The rule: "TIGER,
TIGER, 11 "BY MY BED" will produce the same results as the earlier
example.

Previously named strings can be used to form new ones, using the
rule, EXAMPLE = LINE. 1 forms a string, EXAMPLE, with the same
contents as the string LINE. 1. Literals and named strings can be
used in formation, similar to:

LINE. 1 = "TIGER, TIGER, BY MY BED"

LINE. 2 = "IN YOUR SHADES OF BLACK AND RED"

LINE. 3 = "NEVER WILL I SLUMBER THROUGH, "

LINE. 4 = "WHEN I TURN MY GAZE ON YOU. "

TEXT LINE. 1 11
/

11 LINE. 2 11
/

11

LINE . 3 11 / 11 LINE. 4 will form a composite

string with slashes separating the lines in a

conventional manner.

The spaces between string names and literals serve as break
characters for distinguishing the elements to be concatenated, with
one space required for separation.

In forming the string, the string itself may be used. After performing
the two rules:

89

NUMBER= 11 6 11

!\1UMBER = l'HJMBER NUMBER ''0";

the string, NUMBER, will contain the literal 11 660".

Pattern Matching

To determine whether the string, LINE. 1 contains the literal "TIGER"
the rule would qe: LINE. 1 "TIGER". This is similar to a formation
rule, but without the equal sign. LINE. 1 is scanned from left for
an occurence of the five literals "TIGER" in succession. A pattern
matching rule may succeed or fail. If LINE. 1 is formed in the
~revious example, the scan would be successful, and scanned string
is not altered. The pattern may be specified by the concatenation of
a number of literal and string names: TEXT LINE. 1 11

/
11 LINE. 2

specifies the scan of a string· named TEXT for an occurence of the
contents of the LINE. 1, immediately followed by the literal 11

/
11 and

in turn, immediately followed by the contents of the string LINE. 2.

String Variables

If it is required to know whether a string contains one sub-string
~ollowe_d by another, but with the second sub-string not necessarily
rmmed1ately after the first, a string variable is introduced to permit
this. The rule: LINE. 1 "TIGER" *FILLER* "BED" is of this kind.
The question is whether LINE. 1 contains "TIGER" followed by "BED"
with perhaps something between. The symbols *FILLER* represents
a string variable which takes care of this "something". If LINE. 1 is
formed as we have previously shown, the scan would be successful.

A string variable may be any string name bounded by asterisks. A
by-product of matching a pattern containing a string variable is the
formation of a new string that has the name furnished between the
asterisks of the string variable.

Replacement

In this string LINE. 2 it is desired to replace "HUES" by "SHADES".
This would be accomplished by: LINE. 2 "HUES" "SHADES". This
scans LINE. 2 for the occurence "HUESu, and if the scan is successful
"HUES" is replaced by "SHADES". LINE. 2 will then become "IN '
YOUR HUES OF BLACK AND RED".

If the sc_an fails, the string being scanned is not altered. Any string
formed is a result of a successful pattern match of a string variable
on the left side of the equal sign and can be used in the replacement
on the right side. Thus: LINE. 1 "BY" *FILLER* "BED" = FILLER,
would result in the deletion of "BY" and "BED" from LINE. 1.

90

Rules

A rule may consist of four parts, separated by a blank in the
following order:

I. A ST_RING to be manipulated, i. e. STRING REFERENCE:

2. A LEFT SIDE specifying a pattern;

3. An EQUAL SIGN;

4. A RIGHT SIDE specifying a replacement.

The string reference is mandatory, while the rest of the rule parts
may be absent, depending upon the particular rule. "GO TO" consists
of a slash followed by one or mo:r;e of the following parts:

1. An unconditional transfer which has the form (BA).
Upon the completion of the statement the next statement
to be executed is the statement with the label BA.

2. A conditional transfer on failure has the form F(BB).
If the statement fails the statement with the label BB
is to be executed next.

3. A conditional transfer on success has the form S(BC).
Transfer is made to BC on succes·s1.

Arithmetic

~imple Arithmetic may be performed on strings whose contents are
mt_egers .. L = C+X would form the string named L containing the
arithmetic sum of the contents of strings C and X.

Indirectness

Indirectness is accomplished in SNOBOL by writing$ sign in front of
the string name. If the string FACTOR contains the literals "SUM"
writing$ FACTOR is the same as writing "SUM".

Input/Output

Input and Output are accomplished by the use of the two commands
READ and PRINT following the string references SYS. · '

91

Language Extension

Additional features are being planned for in SNOBOL in the near
future, including extended input/output facilities consistent with the
string orientation.

92

D. NELIAC

Introduction

The NELIAC compiler, sponsored primarily by the Navy Electronic
Laboratory, was started in July 1958 and completed within the
following six months. Three special characteristics of NELIAC
should be recognized: NELIAC compilers are self-compilers; most
NELIAC compilers have been kept relatively short and simple; most
NELIAC compilers have compiling speeds of many thousands of
computing words per minute. A programmer familiar with the
language can read, understand and improve any given compiler, and
can recompile a true version of a compiler quite cheaply, since some
recompile in less than a minute.

Operators

The NELIAG language is based upon the use of 25 symbolic operators,
including punctuation, arithmetic, and relational symbols. Meanings
are ascribed to these operator symbols on the basis of Current
Operator-Operand-Next Operator combination. The use of symbolic
operators reduces the number and complexity of rules which must
be kept in mind reduces the problems of documentation. The language
includes the ability to handle bits within computer words, to treat
input/output without direct format statements, to insert machine
language and to address computer language memory directly.

93

V. BIBLIOGRAPHY

94

A. SUGGESTED READINGS

The Computer Journal - British Computer Society Ltd.

April 1958

October 1958

January 195 9

July 1959

January 1960

July 1960

October 1960

January 1961

April 1961

"The Autocode Programs Developed for the
Manchester University Computers - Brooker
pp. 15-21

"Further Autocode Facilities for the Manchester
(Mercury) Computer," pp. 124-127

"Deuce Interpretive Programs" - Robinson,
pp. 172-175

"The Pegasus Autocode" - Clarke & Felton,
pp 192-195

"Algorithms for Formula Translation" - Cleave,
pp. 53-54

"Intercode; a Simplified Coding Scheme for Amos" -
Berry, pp. 55-58

"A Translation Routine for the Deuce Computer, "
pp. 76-84

"A Function Interpretive Scheme for Pegasus"
Hornsby, p. 174

"An Introduction to Algol 6011 - pp. 67-74

"The Deuce Alphacode Translator," pp. 98-106

"An Assembly Program for a Phrase Structure
Language," pp. 168-174 (List Structures - Basis
for Syntax-Directed Compilers) - Brooker & Morris

"Some Proposals for Realization of a Certain Assembly
Program" Brooker & Morris, pp. 220-231

"Compiling Techniques for Algebraic Expressions" -
Huskey, pp. 10-19

"Atoms and Lists" - Woodward & Jenkins, PP.· 47-53
(LISP)

95

October 1961

January 1962

April 1962

July 1962

January 1963

"Nebula: A Programming Language for Data
Processing"- Braunhultz, Fraser & Hunt, pp. 197-211

"Improving Problem-Oriented Language by Stratifying
It" - Basley, pp. 2 17 -22 1

"ABS12 Algol: An Extension to Algol 60 for Industrial
Use" - Hockney, pp. 292-300

"Principles & Problems of a Universal Computer­
Oriented Language" - Bagley, pp. 305-312

"ALP: An Autocode List - Processing Language,"
pp. 28-32

"Trees and Routines" - Brooker, Morris & Rohl,
pp. 33-47

"Current Developments in Commercial Automatic
Programming" d"Agapeyeff, pp. 107-111

"FACT - Clippinger, pp. 112-118

"Operating Experience with Algol 60" - Dijkstra,
pp. 125-126

"Report on the Elliott Algol Translator" - Hoare,
pp. 127-129

"Implementation of Algol 60 for the English Electric
KDF9" - Duncan, pp. 130-131

"Operating Experience with Fortran" - Glennie,
pp. 132-134

"A Proposed Target Language for Compilers on
Atlas" - Curtis & Pyle, pp. 100-106

"The Realization of Algol Procedures and
Designational Expressions" - Watt, pp. 332-337

"A Hardware Representation for Algol 60 Using
Creed Teleprinter Equipment" - Gerard & Sambles,
pp. 338-340

"Input and Output for Algol 60 on KDF9" - Duncan,
pp. 341-344

"The Elliott Algol Input/Output System" - Hoard,
pp. 345-348

96

Journal of the ACM

1960

1959

1958

1957

April 1961

January 1962

April 1962

July 1962

October 1962

"Input Output Buffering and Fortran" - Ferguson,
pp. 1-9

"A Fortran Compiled List-Processing Language" -
Gelerntner, Hansen, Gerberich, pp. 87-101

"Three Levels of Linguistic Analysis in Machine
Translation", Zarechnak, pp. 24-32

"The Share 709 System"
Introduction -- pp. 123-127
Program & Modification -- pp. 128-133
Machine Implementation of Symbolic

Programming - - pp. 134-140
I/O Translation -- pp. 141-144
I/O Buffering -- pp. 145-151
Supervisory Control -- pp. 152-155

"Language Translation" - Brown, pp. 1-8

"Standardized Programming Methods and Universal
Coding" - Saul Gorn, pp. 254-273

"System Handling of Functional Operators" - Lombardi,
pp. 168-185

"A General Translation Program for Phrase Structure
Languages," pp. 1-10

"Mathematical Structure of Non Arithmetic Data
Processing Procedures" - Lombardi, pp. 136-159

"Structure and Use of Algol 60" - Bottenbruch,
pp. 165-221

"An Algorithm for Translating Boolean Expressions" -
Arden, Galler, Graham, pp. 222-239

"Two Families of Languages Related to Algol" -
Ginsburg & Rice, pp. 350-371 ·

"A Method for Obtaining Specific Values of Compiling
Parameter Functions" - Peterica, pp. 379-386

"A Translator-Oriented Symbolic Language Programming
Language" - A. A. Grau, pp. 480-487

97

January 1963

April 1963

"On the Ambiguity of Backus Systems" - Cantor,
pp. 477-479

"Some Recursively Unsolvable Problems in Algol­
Like Languages" - Ginsburg & Rose

"Theorem-Proving on the Computer" - Robinson,
pp. 163-174

"Operations Which Preserve Definability in Languages" -
Ginsburg & Rose, pp. 175-195

"Detection of Generative Ambiguities in Context-Free
Mechanical Languages" - Gorn, pp. 196-208

98

Communications of the ACM

August 1958

~f-Dtember 1958

October 1958

February 1959

March 1959

June 1959

July 1959

August 1959

September 1959

October 1959

November 1959

"The Problem of Programming Communication with
Changing Machines" - Ad Hoc Share Committee on
Univ. Lang., pp. 12-18 (A Proposed Solution)

Part II of above, pp. 9-16

"Proposal for an Uncol" - Conway, pp. 5-8

"Recursive Subscriptions Compilers and List-Type
Memories" - Carr, pp. 4-5

"Possible Modifications to the International
Algorithmic Language" - Green, pp. 6=8

"The Arithmetic Translator Compiler for the IBM
Fortran Automatic Coding System" - Sheridan,
pp. 9-21 {704)

"Signal-Corps Research and Development on Automatic
Programming of Digital Computers" - Luebbert &
Collom, pp. 22-27

"From Formulas to Computer Oriented Language" -
Wegstein, pp. 6-7

"A Checklist of Intelligence for Programming Systems" -
Bemer, pp. 8-13 (very good)

"Handling Identifiers as Internal Symbols in Language
Processors" - Williams, pp. 21-24

"On Gat and the Construction of Translators" - Arden &
Graham, pp. 24-26 (650)

"Proposal for a Feasible Programming System" -
Phil Basley, pp. 7-9

"Remarks on Algol and Symbol Manipulation" -
Green, pp. 25-27

"An Algeb ... aic Translator" - Kanner, pp. 19-21

"Sale, A Simple Algebraic Translator for Engineers" -
Brittenham, Clark, Koss & Thompson, pp. 22-24

"Runcible - Algebraic Translation on a Limited
Computer" - Knoth, pp. 18-20

99

December 195 9

February 1960

March 1960

April 1960

May 1960

June 1960

July 1960

"A Technique for Handling Macro-Instructions" -
Greenwald, pp. 21-22

"A Proposed Interpretation in Algol" - Irons & Acton,
pp. 16-19

"Sequential Formula Translation" - Samelson &
Bauer, pp. 76-82 (Concept of a pushdown list in compiling)

"Goding Isomorphisms" - Lynch, p. 84)

"An Algorithm Defining Algol Assignment Statement" -
Floyd, pp. 170-171

Papers from ACM Conference on Symbol Manipulation
"Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I" -
John McCarthy, p. 184

"Symbol Manipulation by Threaded Lists" -
Alan J. Perlis & Charles Thornton, p. 195

"An Introduction to Information Processing
Language V" Allen Newell & F. Tonge, p. 205

"Syntactic and Semantic Augments to Algol" -
Joseph W. Smith p. 211

"Symbol Manipulation in Xtran" - Julien
Green, p. 213

"Macro Instruction Extensions of Compiler
Languages" M. Douglas Mcllroy, P. 214

"Proving Theorems by Pattern Recognition, I" -
Hao Wan p. 220

"Report on the Algorithmic Language Algol," pp. 299-314

"Compiling Connectives" - Swift, pp. 345-346

"Conversion Between Floating Point Representations" -
Perry, p. 352

"Combining Algol Statement Analysis with Validity
Checking pp. 418-419

"Programming Compatibility in a Family of Closely
Related Digital Computers" - Leubbert, pp. 420-429

100

August 1960

September 1960

November 1960

December 1960

January 1961

"Neliac - A Dialect of Algol" - Huskey, Halstead &
MacArthur, pp. 463-467

"A Short Study of Notation Efficiency" - Smith,
pp. 468-474 (Notes on bit-code to accommodate
Algol set)

"An Introductory Problem in Symbol Manipulation
for the Student" - Rosin, pp. 488-489 (Uses Mad)

"Comments from a Fortran User" - Blatt, pp. 501-506
(Critical comments on original 704 Fortran)

"Trie Memory" - Fredkin, pp. 490-499 (special
memory arramgenent (tree-structure) for storing
list data}

"Compilation for Two Computers with Neliac" -
Masterson, pp. 607-610

"A Method for (the} Overlapping and Erasure of
Lists" - Collins, pp. 655-658

Papers Presented at the ACM Compiler Symposium
"A Basic Compiler for Arithmetic Expressions"
H. D. Huskey and W. H. Wattenburg, p. 3

"Recursive Processes and Algol Translation" -
A. A. Grau, p. 10

"Use of Magnetic Tape for Data Storage in
the Oracle-Algol Translator" - H. Bottenbruch,
p. 15

"The Clip Translator" - Donald Englund &
Ellen Gla rk, p. 19

"GL-1, An Environment for a Compiler" -
T. E. Cheatham, Jr., G. O. Collins, Jr., &
G. F. Leonard, p. 23

"The Internal Organization of the Mad
Translator" - B. W. Arden, B. A. Galler,

R. M. Graham, p. 28

"Madcap: A Scientific Compiler for a
Displayed Formula Textbook Language" -
Mark B. Wells, p. 31

101

February 1961

March 1961

April 1961

June 1961

"The Use of Threaded Lists in Constructing
a Combined Algon and Machine-Like Assembly
Processor" - A. Evans, Jr., A. J. Perlis,
and H. Van Zoeren, p. 36

"An Algorithm for Coding Efficient
Arithmetic Operations" Robert W. Floyd,

p.42

"A syntax Directed Compiler for Algol 60" -
Edgar T. Irons, p. 5 1

"Thunks" - P. Z. Ingerman, p. 55

"Dyn~ic Declarations" - P. Z. lngerman,
p. 59

"Allocation of Storage for Arrays in Algol 60" -
Kirk Sattley, p. 60

"Comments on the Implementation of
Recursive Procedures and Blocks in Algol 60" -
E. T. Irons & W. Feurzeig, o. 65

"Compiling Techniques for Boolean Expressions
a·nd Conditional Statements in Algol 60" -
H. D. Huskey & W. H. Wattenburg, p. 70

"The Slang System" - R. A. Sibley, p. 75

"Two Aubroutines for Symbol Manipulation with an
Algebraic Compiler" - Carr & Hanson, pp. 102-103
(It & Gat 650)

"An Alternate Form of the 'Uncol' Diagram" - Harvey
Bratman, p. 142

"A Generalized Technique for Symbol Manipulation
and Numerical Calculation" - D. T. Ross (MIT), pp.
147-150 (Lists)

"On the Compilation of Subscripted Variables" -
Nather, pp. 169-170 {Fortran)

"Algol Confidential" - Knoth & Merner, pp. 268-271

"Logic Structure Tables" - Cantrell, King & King,
pp. 27 1-275

102

July 1961

August 1961

September 1961

October 1961

"An Algorithm for Equivalence Declarations"
{in Mad) - Bruce V. Arden, pp. 310-313

''Some Basic Terminology Connected with Mechanical
Languages and Their Processors" - Saul Gorn,
pp. 336-339

"An IR Language for Legal Retrieval" - Kehl, Horty,
Bacon & Mitchell, pp. 380-388

"Use of MOBL in Preparing Retrieval Programs" -
Hoffman & Opler, pp. 389-391

"A Syntactical Chart of Algol 1960," . 393

"Manipulation of Algebraic Expressions" - Rom,
pp. 396-398 {Subroutines written in FAP as Fortran
subroutines)

Papers Presented at the ACM Storage Allocation
Symposium ...

·"Discussion One: Toward a Defm1tion of
the Storage Allocation Problem, p. 416

"Discussion Two: Preplanned vs. Dynamic
Storage Allocation Techniques, p. 416

"A Preplanned approach to a
Storage Allocation Compiler" -
Robert W. 0 'Neill, p. 417

"The Case for Dynamic Storage
Allocation" - Burnett H. Sams,
p. 417

"A General Formulation of Storage
Allocation" - A. E. Roberts, Jr., p. 419

"Problems of Storage Allocation in a
Multiprocessor Multiprogrammed System" -
R. J. Maher, p. 421

"Program Organization and Record Keeping
for Dynamic Storage Allocation" - Anatol
W. Holt, p. 422

"Dynamic Storage Allocation for an
Information Retrieval System" - Burnett
H. Sams, p. 431

103

November 1961

December 1961

February 1962

"Dynamic Storage Allocation in the Atlas
Computer, Including an Automatic Use of
a Backing Store" - John Fothingham, p. 435

"Experience in Automatic Storage Allocation" -
George 0. Collins, Jr., p. 436

"A Storage Allocation Scheme for Algol 60"
M. Jensen, P. Mandrup, P. Naur, p. 441

A Semi-Automatic Storage Allocation
System at Loading Time" - William P.
Heising & Ray A. Larner, p. 446

"Techniques for Storage Allocation
Algorithms" - J. E. Kelley, Jr., p. 449

"Core Allocation Based on Probability" -
Bernard N. Riskin, p. 454

"Stochastic Evaluation of a Static Storage
Allocation" - Leo J. Cohen, p. 460

"Some Proposals for Improving the Efficiency of
Algol 60" - Stachy & Wilkes, pp. 488-496

"Low Level Language Subroutines for Use Within
Fortran" - Barnett, pp. 492-499 (symbol manipulation,
etc.)

"Smalgol-61," pp. 499-503 (An Algol for small
computers)

"An Engineering Application of Logic Structure
Tables," pp. 516-520 (With reference to a program
for translation of table to a machine language prog).

"Specification Languages for Mechanical Languages
and Their Processors - A Baker's Dozen" - Saul
Gorn, pp. 532-541 (Includes a large bibliography)

"Algol Primer: An Introduction to Algol" - Schwarz,
pp. 82-95

"Surge" A Recoding of the Cobol Merchandise Control
Algorithm" - Longo, pp. 98-100 (A different type of
commercial compiler)

"A Neliac-Generated 7090-1401 Compiler" - Watt &
Wattenburg, p. 101

104

March 1962

May 1962

"Automatic Programming Language Translation
Through Syntactical Analysis" - Ledley & Wilson,
pp. 145-155

"An Evaluation of Autocode Reliability" - Ellis,
pp. 156-158 (Rapid write)

"On a Floating Point Number Representation for
Use with Algorithmic Languages" - Grau, p. 160

"Knotted List Structures" - Weizenbaum, pp. 161-164

"Initial Experience With an Operating Multiprogramming
System" - Landis, Manos & Turner, p. 282

Cobol Papers
"W'-Jy Cobol?" - Joseph F. Cunningham, p. 236

"Basic Elements of Cobol 61 11
- Jean

E. Sammet, p. 237

"Cobol and Compatibility" - A. Lippitt,
p. 254

"Interim Report on Bureau of Ships Cobol
Evaluation Program" - Milton Siegel and
Albert F. Smith, p. 25 6

"Syntactical Charts of Cobol 61" - Richard
Berman, Joseph Sharp and Lawrence Sturges,
p. 260

"A Report Writer for Cobol" - W. L.
Donally, p. 261

"The Cobol Librarian" - W. Hicks, p. 262

"Modular Data Processing Systems Written
in Cobol" - J. C. Emery, p. 263

"Floating Point Arithmetic in Cobol" -
0. Kesner, p. 269

"Guides to Teaching Cobol" - I. Greene, p. 272

"An Advanced Input-Output System for a
Cobol Compiler" - C. A. Bouman, p. 273

"An Introduction to a Machine-Independent
Data Division" - J. P. Mullin, p. 277

105

June 1962

July 1962

September 1962

October 1962

December 1962

"Cobol Matching Problems" - J. W. Mullen,
p. 278

"Report on the Algorithmic Language Fortran II" -
Rabinowitz, pp. 327-336

"A Redundancy Check for Algol Programs" -
Thacher, pp. 337-342

"Analytic Differentiation by Compi ter" - Hanson,
Caviness, Joseph, pp. 349-355

"Communication Between Independently Translated
Blocks" - Wegner, pp. 376-380

"On Translation of Boolean Expressions" -
Bettenbruch & Grau, pp. 384-386

"A Machine Program for Theorem Proving" - Davis,
Logerann & Loveland, pp. 394-396

"Fortran for Business Data Processing" - Robbins,
pp. 412-414 (Uses character & bit manipulation
subroutines)

"Current Status of IPL-V for the Philco 2000" -
Shaffer, p. 479

"Tall, A List Processor for the Philco 2000 Computer" -
Feldman, pp. 484-485

"On the Nonexistence of a Phrase Structure Grammer
for Algol 60," p. 483

"Implementing a Stack" - Baecker, pp. 505-506

"Input Data Organization in Fortran" - Yarbrough,
pp. 508-509

"Syntactic Analysis by Digital Computer" - Barnett &
Futrelle, pp. 515-525 (Shadow)

"On the Ambiguity of Phrase Structure Languages" -
Floyd, p. 526

"Mechanical Pragmatics: A Time-Motion Study of a
Miniature Mechanical Linguistic System" - Saul
Gorn, pp. 576-590

106

January 1962

"Compiling Matrix Operation" - Galler & Perlis,
pp. 590-599

"Pracniques - Character Manipulation in 1620
Fortran II" - Vasilakos, p. 602

"Fixed-Word Length Arrays in Variable Word­
Length Com"Q11ters" - Sonquist, p. 602 (1401)

IR-Oriented Languages
"Discussion - The Pros and Cons of a
Special IR Language, p. 8

· 1comments 11 - Jean E. Sammett, p. 8

"Pro A Special IR Language" -
Herbert Ohlman, p. 8

"Comments" - H. G. Bohnert, p. 10

"Information Structure for Processing and
Retrieving" - Robert A. Colilla and
Burnett H. Sams, p. 11

"An. Information System With the Ability
to Extract Intelligence from Data" -
T. L. Wang, p. 16

"Comit as an IR Language" - Victor H.
Yngve, p •. 19

"Language Problems Posed by Heavily
Structured Data" - Robert F. Barnes, p. 28

"Translation of Retrieval Requests Couched
in a 'Semi-formal' English-Like Language" -
T. E. Cheatham, Jr., and S. Warshall,
p. 34

"Use a Semantic Structure in Information
Systems" - J. D. Sable, p. 40

"A Survey of Languages and Systems for
Information Retrieval" - Assembled by
Mandalay Grems, p. 43

"Machine Language Paper: A String Language for
Symbol Manipulation Based on Algol 60 11

- J. H.
Wegstein and W. W. Youden, p. 54

107

January 1963

February 1963

March 1963

April 1963

May 1963

June 1963

July 1963

"Algol Revised Report - Supplement to th:; Algol 60
Report," pp. 1-17

"Suggestions on Algol 60 (Rome)," pp. 20-23

"Character Manipulation in Fortran" - Lewis, p. 65

"Toward Better Documentation of Programming
Languages'':

Intro. - Yngve & Samrre tt, p. 76
Algol - Naur, p. 77
Cobol - Cunningham, p. 79
Comit - Yngve, p. 83
Fortran - Heising, p. 85
IPL-V - Newell, p. 86
Jovial - Shaw, p. 89
Neliac - Halstead, p. 91

"Survey of Programming Languages and Processors,"
p. 93

"Note on the Nonexistence of a Phrase Structure
Grammar for Algol 60" - Brown, p. 105

"Recol - A Retrieval Command Language,"
pp. 117-122

"A Suggested Method of Making Fuller Use of Strings
in Algol 60" - Shoffner & Brown, pp. 169-171

Full issue on Sorts

"Core - The Cornell Computing Language" - Conway
& Maxwell, pp. 317-320

"The External Language Klipa for Ural-2 Digital
Computer" - Greniewski & Turski, pp. 321-324

"Description - Automated Descriptive Geometry" -
Kliphardt, pp. 336-339 (Fortran-Coded Subroutines)

"A Syntactic Description of BC Neliac" - Huskey,
Love, Wirth, pp. 367-374

"The Linking Segment Subprogram and Liking Loader" -
McCarthy, Corbato & Daggett, pp. 391-395

108

"Design of a Separable Transition Diagram
Compiler" - Conway, pp. 396-408

Computers and Automation - "A History of Writing Compilers" -
D. E. Knuth, December 1962

109

B. REFERENCES

ELBOURN, R. D., and WARE, W. H.

The Evolution of Concepts and Languages of Computing
Procedures of the IRE /1962/pp. 1059-1066.

FARBER, D. J., GRISWOLD, R. E., and POLONSKY, I. P.

SNOBOL, A String Manipulation Language

Journal of the ACM Volume II/No. 1/Jan 1964/ pp. 21-30.

GAIFMAN, H.

Dependency Systems and Phrase Structure Systems

Rand Corporation, Santa Monica, California/ P-2315 I
May 22, 1961/ 64 pp.

GARWICK, J. V.

GARGOYLE, A Language for Compiler Writing

Communications of the ACM Volume 7 / No. 1/ January 1964/
pp. 16-20.

HALSTEAD, M. H.

NELIAC

Communications of the ACM Volume 6/ No. 3/ March 1963/
pp. 91-92.

HARPER, K. E.

Dictionary Problems in Machine Translation

The Rand Corporation, Santa Monica, California/
May 29, 1961/P-2327 I 15 pp.

KEPLER, J. F.

XTRAN: A New Approach to Compiler Writing

TIE 6208-0128; August 7, 1962/ 10 pp.

110

KNUTH, D. E.

A History of Writing Compilers

Computers and Automation Dec/1962

LIND, J. H.

Implementation of List Structures

IBM SRI Term Project No 6-35 / 33 pp.

MARON, M. E.

A Logician's View of Language Data Processing

The Rand Corporation, Santa Monica, California/
April 24, 1961/ P-2279/44 pp.

NEWELL, A.

Documentation of IPL-V

Communications of the ACM Volume 6/No. 3/March 1963/
pp. 86-89

NEWELL, A.; SHAW, J. C.; and SIMON, H. A.

Report on a General Problem Solving Program fo·r a Computer

Information Processing: Proc. Internat. Conf. Information
Processing

pp. 256-264, Paris: UNESCO, 1960

ROSIN, R.

Translation of Artificial Languages by Compiler Programs

The Rand Corporation, Santa Monica, California/P-1771,
September 3, 1959/ 13 pp.

SCHWARZ. A.

An Introduction to ALGOL

Communications of the ACM, February 1962/Volume 5/No. 2

111
\

SHAW, C.

A Specification of JOVIAL, Communications of the ACM

Volume 6/No. 12/ December 1963, pp. 721-735.

SHAW, C.

JOVIAL and Its Documentation, Communications of the ACM

Volume 6/ No. 3/ March 1963/ pp. 89-91

SIMON, H. A.

Experiments with a Hueristic Compiler

Rand Corporation, Santa Monica, California/P-2349/
June 30, 1961/85 pp.

SIMON, H. A.

Experiments with a Hueristic Compiler

Journal of the ACM October 1963/Volume 10/No. 4/pp. 493-506

SIMON, H. A.

The Hueristic Compiler

The Rand Corporation, Santa Monica, California/
Memorandum RM-3588-PR-May 1963/125 pp.

SLAGLE, J. R.

A Hueristic Program that Solves Symbolic Integration

Problems in Freshman Calculus

Journal of the ACM/October 1963/Volume 10/No. 4/pp. 507-520

TONGE, F. M.

Summary of a Hueristic Line Balancing Procedure

Rand Corporation, Santa Monica, California/P-1799/
September 18, 1959 / 44 pp.

112

TONGE, F. M.

The Use of Hueristic Programming in Management Science

A Survey of the Literature

Management Science/Volume 7 /No. 3/April 1961/pp. 231-237'

UNGER, S. H.

GIT, A Hueristic Program for Testing Pairs of Directed

Line Graphs for Isomorphism

Communications of the ACM Volume 7 /No. 1/January 1964/
pp. 26-34

YNGVE, P.H.

CO MIT

Communications of the ACM Volume 6/No. 3/March 1963/
pp. 83-84

ZIEHE, T. W. and MARKS, S. L.

The Nature of Data in Language Analysis

The Rand Corporation, Santa Monica, California/January 17, 1961/
P-2197/16 pp.

Programming Systems Briefing - Assemblers and Compilers

IBM Corporation/April 1962/R25-1672-0

Report on the Algorithmic Language ALGOL 60, Communications of the

ACM/May 1960/Volume 3/No. 5

Structure and Use of ALGOL 60, Journal of the ACM, April 1962/

Volume 9/ No. 2.

"Compiling Techniques"

Teaching Notes, Howard Edelson, SRI

"Compiling Techniques"

Class Notes of Edith Taggert, Robert Long, and Marilyn Jensen, SRI

113

