
Z77-3014

lf§©WOOTI©mJ1]
TIOOW@JY3I~t!J~lf rnIDOO
§~©WLA\00®§

A SURVEY OF SORTING TECHNIQUES

Miss Marilyn M. Jens en .
IBM Corporation
3223 Wilshire Boulevard
Santa Monica, California

July 18, 1963

A paper concerning the range of sorting lechniques available
for the Phase I internal sort. The discussion encompasses
straight and von Neumann merging; simple, centered, and
binary inserting; exchanging two methods of radix sorting;
counting; address calculating; linear, quadratic, cubic,
n-degree, and replacement selecting; and tree and forest
sorting. Advantages and disadvantages of each method are
evaluated, with examples of existing programs of
implementation furnished.

Far IBM Internal Use Only

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

STRAIGHT AND VON NEUMAN MERGING

SIMPLE, CENTERED, AND BINARY INSERTING

EXCHANGING

RADIX SORTING

COUNTING

ADDRESS CALCULATING

LINEAR,QUADRATIC,CUBIC,N-DEGREE AND REPLACEMENT SELECTING

TREE AND FOREST SORTING

CONCUJSION

BIBLIOGRAPHY

TOTAL NUMBER OF PAGES

iii

1

2

2

3

4

5

6

6

6

8

10

11

11

Introduction

A number of internal sorting techniques will be presented in
an elementary manner. Hopefully, the reader may gain an appreciation
of the diversity and growth of sorting techniques that have been develop­
ed. This paper is, therefore, offered as a supplement to "Sorting
Methods for IBM Data Processing Systems" for the neophyte, and as a
bibliographical guide to the experienced Systems Engineer in search of
more detailed and specific information.

Once an appreciation and knowledge of the magnitude of alter­
native sorting techniques is realized, the Systems Engineer will be able
to more effectively guide and counsel the customer in making modifications
of existing sorting programs, or designing new ones.

A program for sorting a file stored on one or more magnetic
tape reels can be divided into three separate and distinct phases. Phase
1 accomplishes the original distribution and internal sort. The group
of input records are sorted internally in some manner to produce a single
block of sequenced records. Phase 2 consists of a merge. The groups of
records on one tape, produced by Phase 1, are merged to produce a single
tape reel with all of the records in the requested sequence. Phase 3,
the final merging, is a collating run which ultimately produces the
single sequenced file.

This paper will limit its concern to a survey of the techniques
available for the Phase 1 internal sort. The discussion will encompass
straight and von Neumann merging; simple, centered, and binary inserting;
exchanging; two methods of radix sorting; counting; address calculating;
linear, quadratic, cubic, n-degree, and replacement selecting; and tree
and forest sorting. Advantages and disadvantages of each method are
evaluated, with examples of existing programs of implementation furnished.

One notable exception to the following discussion of internal
sorting techniques is the Al-l>R sort, for it is applicable only to
associative memory devices.

Straight and von Neumann Merging

Merging has been defined as the producing of a single sequence
of items, ordered according to some rule (that is, arranged in some pre­
determined sequence) from two or more sequences previously ordered
according to the same rule, without changing the items in size, structure,
or total number.

Two methods of internal merging are used in sorting: the
straight internal merge and the von Neumann, or natural, merge. The
straight internal merge uses fixed length strings. Alternating between

two work areas, the merge will build up sequenced strings of 2,
4, 8, 16, ...• n records until the last merge produces the sequenced
file (i.e. a single string). The leading item of each string is
compared, and the lowest placed in the output area and the next
sequential record of the string furnishing the output record is analyzed.
This record is compared with the other string, the lowest being placed
in the output area. The procedure is continued until both strings are
exhausted. When exhaustion occurs, two new strings are entered into
the work area to be merged.

The von Neumann, or natural, merge takes full advantage of
all ordering existing in the original file. The strings are not re­
stricted to a fixed length, as in the straight internal merge, and the
number of passes required to sort a given file is dependent upon the
number of strings that exist in the file. For a file in correct sequence
one pass is required to check for the desired ascending (descending)
sequence.

The principle of the von Neumann merge is quite simple. Two
strings are merged into the receiving area until one string suffers a
step-down (i.e. a descending (ascending) break in an ascending (descend­
ing) ordering). At this point, the sort will commence extracting from
the step-down string, and pull from the remaining (second) string until
it, too, suffers a step-down. This condition is termed the "double­
step-down" and will terminate the formation of the string. The formu­
lated string will then be written as output, and two more strings brought
in and processed in a like manner. Sort 90 for the IBM 7070 uses this
method for sequencing files.

Both types of merge are very fast. The number of passes re­
quired to sort by merging is related to the number of natural sequences
existing in the file, and not the number of items. But, conversely, the
number of items of input does have a direct effect upon the number of
operations that are required to complete a pass. Concerning the von
Neumann method, difficulties arise because both initiating areas or
streams of input must be monitored for identification of step-down records.
Also, the receiving areas must be large to accommodate variable string
length. And, if the total number of strings of input data is more than
half the number of records in the file, the von Neumann merge saves no
passes over a straight internal merge.

Sort 90 for the IBM 7070 uses merging in each of the three
stages of the sort program.

Simple, Centered, and Binary Inserting

Insertion is analagous to the method many people use to arrange
their bridge hand. They will pick up two cards, sequence them, and pick
up the third. This card is then inserted in the proper slot while cards
one and two are eased to the left or right to make room for the third.
The procedure is continued until all thirteen cards are arranged in the
player's hand.

The following methods of sorting utilizing this principle will
be discussed: Simple Insertion, Centered Insertion, and Binary Insertion.

Simple insertion consists of building up the final sequenced
file one record at a time by determining where in a partial file each
record should be inserted, and moving all succeeding records to make
room for it. Sort III for the IBM 650 uses insertion for the internal
sort and follows with merging onto tapes.

Centered insertion initiates the sequencing by checking the
center of the partially constructed file. If the control word is high­
er, the search continues in the upper half of the file until a lower
control work is detected. The old records are moved up to provide for
insertion; the new record is inserted, and the next control word to be
sequenced is analyzed. The technique of central insertion is superior
to simple insertion, for only one half of the table need by searched to
sequence.

Binary insertion inspects the control word of the record
nearest the middle of the partial file. If the test indicates the
location is in the first half of the partial file, the control word of
the record nearest the quarter point of the partial file is next in­
spected. This method reduces considerably the number of control words
that must be inspected if the total number of records is large. The
insertion of the new record into the partial file is identical to
centered insertion.

The principle of binary insertion can be applied to a binary
search for the 1311 without the scan feature. In most cases, the binary
search will be completed in a shorter length of time than by scanning.

The major disadvantage of binary insertion is the size of
program. Evaluating the insertion techniques as a group, the degree of
entropy (i.e. lack of organization) of the original file is quite signi­
ficant. A low degree of entropy will not reduce the number of searches
required, but the amount of record movement will be proportional to the
degree of entropy. The number of record movements is roughly proport­
ional to the square of the total number of records in the file. And
finally, the record length is important because of the character trans­
fer rate involv~d in the number of records to be moved.

Exchanging

The technique of exchanging to accomplish sorting is executed
in the following manner. A comparison is made between the first two
control words, and they are exchanged if out of sequence. Comparison
is then made of the second and third control words and exchanged if
necessary. Each adjoining pair of records in the file is successively
listed and exchanged if out of sequence. The process is continued until
the file is in sequence, which is signalled by a pass that requires no
exchange.

Counting

Counting as a method of sorting is accomplished in the follow­
ing manner. Each record is read into memory. After it has been read,
its control field is compared with the control fields of each of the
other records already in memory. For each comparison in which the new
record is equal to or greater than the other, an accumulator which will
be associated with the new record is increased by one. For each com­
parison in which the new record is less than the other, the accumulator
associated with the other record is increased by one. After the last
record has been processed, each accumulator contains the total number
of records lower than the record associated with the accumulator. Sub­
sequent pass(es) would be required to call out and arrange the records
into the desired output sequence.

Counting is most effective when processing a small file.

Address Calculating

Address calculation is most feasible in a random access system.
For each item to be sorted, the location in fhe file is determined by a
linear sort equation of the form y = a + bx. The record is place there
if the location is empty. If another record is there, a search is made
to find the closest empty storage area to the calculated address. The
record at the calculated address, together with any (and all) contiguous
records are moved so that the record to be filed may be entered in the
appropriate sequence into the file.

The address calculation method of sorting places records directly
into their proper relative position within the file, and the entire file
is in correct relative order just after the last record is inserted.
In addition, the file requires only simple processing {i.e. packing)
before being transferred to output devices. This is probably the fast-
est method of sorting a medium size file of small to medium size records.
Finally, the programming is quite simple, taking about two hundred
program steps to sort.

The disadvantages are linked to the amount of storage available.
If the density of the file exceeds the forecast, a great deal of execution
time is spent in re-allocating and re-distributing the partial file.
Estimates of internal file capacity required range from 20-150% in excess
of the file to be sorted to produce an efficient sorting function.

Linear. quadratic, Cubic, n-degree, and Replacement Selecting

A number of variations are grouped under the general method
called selecting: linear, quadratic, cubic, n-degree, and replacement
selecting.

1see "Address Generation for the IBM 1405" TIE Order Number 6207-0002
for a detailed description of the analysis required to develop the
linear functions.

The number of passes required to complete the sort is equal
to the distance {which is measured by the number of records) which
separates the record the greatest distance in a higher order position
from its final position in the lower order. Exchanging takes advant­
age of any lack of entropy in the original sequence, and timing is de­
pendent upon the expected number of passes and the expected number of
exchanges.

Radix Sorting

The term "radix" is derived from the fact that this method of
sorting requires as many storage areas as the radix {base) of the
numbering system used. Two methods of Radix sorting will be discussed:
Binary Radix operating on the base of two, and Digital Radix, operating
on the base of ten.

Digital Radix Sorting Method 1, is just like punched card sort­
ing. Each item (or record) is dispersed to one of ten storage areas or
bins, representing the digits 0-9. The number of passes depends upon
the number of control word digits. This is an exceptionally fast method
of sorting, but the amount of memory required is prohibitive.

Digital Radix Sorting, Method 2, is identical in operation to
Method 1 with the following exceptions. The first pass scans the low
order digit of the control field, and makes a distribution count for
storage allocation. The second pass sorts the record by the low order
digit of the control field into its assigned bin and scans the next
higher order digit for the distribution count. At the end of the pass,
the storage bins are re-allocated, and the sorting procedure is re­
presented until the last digit is sorted. The number of passes re­
quired to sort using this method is equal to(N + 1), when (N) is equal
to the number of digits contained in the control field.

Binary Radix sorting is the method employed by the IBM 709 and
7090. The concept is similar to the Digital Radix Method in that two
areas are aet aside for 0 and 1. These areas are contiguous in storage,
thus giving the required two areas for each record, but the length of
only one file rather than two. {By making the area continuous, only
one file length is required since the data can be only 0 or l~) The
method of sorting is somewhat analogous to block sorting or punched
card equipment, for the zero and one quantities are manipulated within
the internal file range.

The length of the control word is important in evaluating this
sorting method, for the number of passes is dependent upon it. The
degree of entropy of the original file has no significance, because the
sequence is lost after the first pass. The number of records in the
file has importance too, for the number of records which must be moved
is proportional to the products of the number of records in the file
and the number of digits contained in the control word.

To accomplish linear selection, the record with the lowest
control word is selected and placed in the first record storage position
by the first pass. The second pass operates in the same manner on the
second (n) record and places the second (n) lowest in the second (n) slot.
The storage area is compared in turn with each of the remaining records,
and if the control field of any record is low, the storage area is re­
placed. That is, the storage area is replaced only when the control
field of the new record is lower than the control field of all previous
records.

At the end of each pass, the lowest control field and record
of that pass is in the storage area. It is then transmitted to the out­
put area, and cancelled on the input tape in order to insure that it will
not be selected again. The process is repeated until an output group
of a convenient size is developed at which time it is written, and the
process continued until the last record has been sorted and written.

Linear selecting requires a considerable amount of record
movement. For example, a file of five hundred records in reverse se­
quence would require 124,750 interchanges to complete the sort. And there
is no way to take advantage of any original ordering,

Quadratic selecting has, as its first step, a counting of the
n input records. The n input records are then split into fil sections
of \[Il records or to the nearest integer. Linear selection is then
applied to each of the fi1 sections. '{il will contain the control field
and address of the record of the data record lowest in its section.
Linear selection is then applied to the {It areas, with a quadratic
storage area receiving the lowest control field and accompaning address
or record. This method saves considerable time in selecting sub~equent
records since an initial linear pass need be made only over that one of
the \fil sections which contributed the last low item to the quadratic
output area.

The Minneapolis Honeywell 800 Sort utilizes the quadratic
selection method for its internal sorting.

Cubic and N degree selecting employ the same techniques as
linear and quadratic selecting, and only the power changes.

Replacement selecting may be linear, quadratic, cubic, or n
degree. Each new record is read into an input area, replacing the
low record after each selecting pass, thus permitting a newly read
record to be eligible for selection. This technique requires more
compares over non-replacement selecting, for each record to ~e placed
in storage must satisfy two conditions: 1) itis lower than t~ con­
trol field in the associated linear storage area, and 2) it is equal or
higher than the control field of the previous high control field of the
record last transmitted to the output area.

Tree and Forest Sorting

Tree sorting can be more readily understood by examining the
following example

Sequence of
Numbers

u

17

15

2

24

w

18

8

72

4

9

4 L

AU

Resulting
Tree

The first control number of the input string is termed the
root. There is one and only one root for a tree, so that for any node
(number) n, there exists only one path which begins at the root and ends
at n.

For every sequencing, the high number is placed· to the right
and the lower number to the left of an existing node. In order to make
a meaningful sequence of nodes, a left address, right address, and
back address is assigned to each item.

Location Item Left Address Right Address Back Address

A 12 B c

B 2 D A

c 17 E G A

D 10 I B

E 15 c

F 18 G

G 24 F H c

H 72 G

I 8 K J D

J 9 I

K 7 L I

L 4 K

By computer examination of the example string it is found that
location B contains the lowest item since it does not have a left address.
D is then examined, found to have a left address I, which in turn has a
left address of K, which has a left address of L. L does not have a left
address, therefore, it is the next higher record, building the sequenced
string 2, 4.

L has no address other than the back address, which is added to
the sequence 2, 4, 7. In like manner 8, 9, 10 are picked in sequence from
locations I, J, D. Since D has already been picked, this signals the end
of sequencing of the left branch of the tree. The right branch is then
sequenced by the same method.

The address of the root point is the only parameter with which
the system grows and picks. Therefore, it is possible to have two trees
growing without interfering with each other. A multi-tree system is
termed a forest. Items with the S?IDe control word are accumulated as
they are placed on a tree. At no time is it necessary, then, to store
the same key twice.

As a system, tree or forest sorting has a speed comparable to
a merge. In addition, insertions are made very easily.

Conclusion

This paper has concerned itself with a brief survey of the
major sorting techniques for computers.

In answer to the question "Which method is superior?", there
is no single answer. Each method must be considered and evaluated in
terms of the specific machine configuration, the speed of input and out­
put devices, the record length and size of the control word, and the
state of-organization of the input data.

Every Systems Engineer must be aware of the multiple internal
sorting techniques in order to more effectively guide customers in mak­
ing modifications to existing sorts, and in designing special purpose
programs.

BIBLIOGRAPHY

Bell, D. A.: The Principles of Sorting, Computer Journal, Vol. 1,
pp. 71-77, July, 1958.

Bose, R. C. and Nelson, R. J.: A Sorting Problem, Journal of ACM,
Vol. 9, pp. 283-296, April, 1962.

Douglas, A. S.: Techniques for the Recording of, and Reference to Data
in a Computer, Computer Journal, Vol. 2, pp. 1-9, April, 1959.

Flores, I.: Analysis of Internal Computer Sorting, Journal of ACM, Vol.
8, pp. 41-80, January, 1961.

Flores, I.: Computer Time for Address Calculation Sorting, Journal of
ACM, Vol. 7, pp. 389-409, October, 1960.

Friend, E. H.: Sorting on Electronic Computers, Journal of ACM, Vol. 3,
pp. 134-168, July, 1956.

Gotlieb, C. C.: Sorting on Computers, Connnunications of ACM, Vol. 6,
pp. 194-201, May, 1963.

Hall, M. H.: A Method of Comparing the Time Requirements of Sorting
Methods, Communications of ACM, Vol. 6, pp. 259-263, May, 1963.

Hibbard, T. N.: Some Combinatorial Properties of Certain Trees with
Applications to Searching and Sorting, Journal of ACM, Vol. 9,
pp. 13-28, January, 1962.

Hidebrandt, P. and Isbitz, H.: Radix Exchange - An Internal Sorting
Method for Digital Computers, Journal of ACM, Vol. 6, pp. 156-
163, April, 1963.

Isaac, E. J. and Singleton, R. C.: Sorting by Address Calculation,
Journal of ACM, Vol. 3, pp. 169-174, July, 1956.

McCracken, D. and Weiss, H. and Lee, T.: Programming Business
Computers, John Wiley & Sons, Inc., New York, 1959.

Nagler, H.: Amphisbaenic Sorting, Journal of ACM, Vol. 6, pp. 459-468,
October, 1959.

Windley, P. F.: Trees, Forests, and Rearranging, Computer Journal,
Vol. 3, pp. 84-88, July, 1960 .

.....•• Sorting Methods for IBM Data Processing Systems, IBM Corporation,
Form Number F 28-8001

