LY21-0050-0
File No. S34-36

Licensed Material
Property of IBM

=
Ly
o
.
Y

SSP LOGIC

———— eeeaa——. S ——

g —— - — LY21-0050-0
e —— —
- @ CeEs SSEE. SaEen .
- o R ————— File No. S34-36
O —p—

B g p—

e R —

Licensed Material
Property of IBM

IBM System/34
System Support Program
Logic Manual: System
Program Number 5726-SS1

SYSTEM

"SSP LOGIC

First Edition (December 197_7)

This edition applies to version 01, modification 00 of the |BM System/34 System
Support Program Product (Program Number 6726-SS1) and to all subsequent versions
and modifications until otherwise indicated in new editions or technical newsletters.
Changes are periodically made to the information herein; before using this publication,
refer to the latest /BM System/34 Blblmgraphy, GH30-0231, for the editions that are
applicable and current.

Requests for coples of 1BM publications should be made to your IBM representatuve or
the IBM branch office serving your locality.

A Reader’s Comment Form is provided at the back of this publication. If the fbrm has
been removed, address your comments to IBM Corporatnon Publications, Department
245, Rochester, anesota 55901,

© Copyright International Business Machines Corporation 1977

Licensed<Material;Property of IBM

This logic manual is designed to aid I1BM support personnel
in maintaining the 1BM System/34 by serving as a recall
mechanism and guide to program listings. This manual does
not contain directions for programming or operating the
system.

Note: The System Support Program Product is documented
by two manuals: this manual and /BM System/34 System
Support Program Logic Manual: Data Communications,
LY21-0051.

The SSP (System Support Program Product) provides the
programming support necessary to start the system, process
commands, start a job, run a job, and terminate a job, Its
functions include:

® Main storage IPL

® Command processing

® |[njtiator

® Allocate

® Open

® Data management

® Diskette end of volume

® Keysort

® Spool intercept

® Spool print writer

® Close

® Termination

® System service programs

® System maintenance programs

® Qverlay linkage editor

® System utility programs

Preface

This manual describes the SSP modules by providing:
® A system flow overview of the entire SSP.

® An overview of each of the primary components of the
SSP.

® A detailed description including, as required: a descrip-
tion of the function, a HIPO diagram, and a logic flow

diagram for each function contained within the SSP.

® Significant data areas, as required. For data areas not
described in this manual, see the Data Areas Handbook.

Note: The arrowheads (§») that occasionally appear in
the HIPO extended descriptions are provided to help you
line up the descriptions with their respective module
references.

RELATED PUBLICATIONS

This publication references the following publications:

® /BM System/34 System Data Areas and Diagnostic
Aids, LY21-0049

® /BM System/34 System Support Reference Manual,
SC21-5155

® /BM System/34 System Support Program Logic Manual:
Data Communications, LY21-0051

® /BM System/34 Overlay Linkage Editor Reference
Manual, SC21-7707

Licensed Material—Property of IBM

Licensed Material—Property of IBM

PART 1 INTRODUCTION
INTRODUCTION., ...ttt ennnnn 0-1

PART 2. SYSTEM SUPPORT PROGRAM PRODUCT

CHAPTER 1. STARTING THESYSTEM. 1-1
INTRODUCTION. ittt it sttt s ens o ne s 1-1
Main Storage Initial Program Load ({PL). 11
System Configuration (8CNFIG) 1-2
Rebuild VTOC Format 1°s. . . . v« v v v v v e vt v v e v v s v 1-2
METHOD OF OPERATION.t ittt i en e ne s 1-3
PROGRAM ORGANIZATIONt ie e v v e 1-22
CHAPTER 2. PROCESSINGCOMMANDS 21
INTRODUCTION. s i ittt it vttt s e s s annns 2-1
Command Processor . . .« v v v v v v v v e v n e v e nn e 21
2 001U (=T O 21
Signon. . .. it i i e i e e e e e e 21
ProcessControlCommands v v v v v v v v o v e un 2-3
Job Initiation and Work StationRelease 2-3
High-Level Aids and Task-to-Task Communications Router. .2-3
Inquiry Menu Option Processorand Resume 26
Special Command Processor. « . v« v v v v v v v v n e 26
Command Processor/Work Station Data Management
Interface v v i v i it i i e e i e 2-6
ConsoleManagement. v v v v v v et v n s nnosons 2-7
Command Processor Cleanup v v v v v v o v a0 v v 0w 2-7
Password SeCUrity. . . « v v v v v v v it e e e e e e 2-7
I/OErrorRecovery . . . o v v v v vt v e ot v s v s o nunns 2-8
METHOD OF OPERATION. ittt vt v v a e s e 2-9
PROGRAM ORGANIZATION vn e 2-77
CHAPTER 3. STARTINGAJOBcce0cueun 341
INTRODUCTION. e e 3-1
3 F R € o 3-1
Reader/Interpreter Function 3-1
Disk File Initialization Function 3-3
Program Initialization Function. 3-3
Allocatettt ittt e e i e e 34
Normal Allocate. . . . v v v v v v v v et v e s st s o nesnn 34
Special Allocate, C et i e e e e e e e 3-5
Deallocate oo v v vv i vnn C e e e 3-5
Open.......... C e e e e et e 3-5
CommonOpen 1 (#DMOP)o vt v v v vnns 3-6
. Disk Open (#DD10OP, #DD20P)t 3-6
Work Station Open (#WDOPN) e e e 3-6
Diskette FileOpen (#DROP) vt v 3-7
Common Open 2 (#DMOF} e e 3-7
Printer Open (within #DMOF)o v v v v n v 37
METHOD OF OPERATION. et e e e 39
PROGRAMORGANIZATION vt i i i v avann 3-33
CHAPTER 4, RUNNING AJOB.ttt vt v v nnas o 4-1
INTRODUCTION. . . . ittt ittt et ettt o ae v aad 4-1
Disk DataManagement. . o v v v v v v v o v o v oo ot o a o0 o o 4-1
Consecutive Access Method v v v v v v v v v o v v v o 4-1
Direct AccessMethod v v v i v ot v e anas s 4-1
Indexed Random AccessMethod 4-4

Contents

Indexed Sequential AccessMethod. 4-4
Indexed Sequential/Random Input Access Method. 4-5
Description of Access Method Drivers v v v v v 0w 0w s 4-5
Sector Data Management to Disk (#DDSM) 4-8
Data Transfer Modes — LocateandMove 4-8
Diskette Data Management (#DRDM)o v v v v s 4-9
Diskette End of Volume (#DRNV}. oo v i v v v 4-9
Sector Data Management to Diskette (#DRSM). 4-10
Printer DataManagement v v v v v vt o b v v 0 b a 4-10
Work Station Management. . . . v v v v o v v vt 0 v e vt e oo 4-10
Work Station DataManagement. 4-11
KeysOrt. o v v v vt e et e it e e e et e e e 4-12
Spool Intercept v v i i s e e e e e 4-15
Spool PrintWriter. v v it it i e it e st e e e 4-16
METHOD OF OPERATION. vt it e i e e s 417
PROGRAMORGANIZATION i v et v e e e e 4-36
CHAPTERS5. TERMINATINGAJOB. 00t 5-1
INTRODUCTION. e e e e e 5-1
[0 o T 5-1
CommonClose (#DMCL)t 5-1
Printer Close (within #DMCL). v v v v v v v n 5-1
Work Station Close (within #DMCL). 5-1
Binary Synchronous Communication Close (#8SCL). 5-3
Diskette Close (#DRCL) v v v v it et v e v e e s 5-3
DiskClose (#DDCL) vt v v vt e vt it e e e e r 5-3
Termination o v vt v s it it i e e e 5-3
Step Termination . . . v v v v v v v vt et e e e e e 5-3
JobTerminationttt innenenan 5-3
Abnormal Termination. v v v v v v v et v e w e 5-4
Termination Interface v v vt v v vt e n st e 5-4
METHOD OF OPERATION. v i vt i it i ittt n e e a s 5-6
PROGRAMORGANIZATION vt i i et i i v e v 5-12

PART 3. SPECIAL FUNCTION PROGRAMS

CHAPTER 6. SYSTEM SERVICEPROGRAMS 6-1
INTRODUCTION. i ittt ittt et e et v e e e 6-1
Librarian Facilities . . .« v . v v v i v i v i i e e e e 6-1

Finda LibraryRoutine. 6-1

Single Name FindRoutine.o v v 6-2

Librarian FindRoutine. v it i i i e v v, 6-2

Source Library GetRoutine. v v v i i i 6-2

Library RecordPut. v v i i i v e s i i e v e 6-3

Library Sector Get/Put. vt i v i i it e 6-3
Library Member Protection v vt v v v v 6-3
Active Format 1 Area AccessRoutineo v v v v v v vt 6-5
Cross-Reference Resolver v v v vttt v v e v n v 6-5
Duplicate Key Display Routine v v v evaven 6-6
Print Image Verify Routine v i it i v v vn vt v 6-6
Disk VTOCRead/Write v v v v v v v s v s nos nnonnns 6-7
Diskette VTOCRead/Write v v v v v v v v v v a v o v us 6-7
Message Retrieve e e e e e et e e 6-8
SYSIN it it et e e e 6-8
SYSLIST.......... . e e e e e s 6-9
SYSLOG.......... e e ettt e e 6-9
History File Put. e e s et et e e e e e e 6-10
Supervisor Task Attach Transient (#SVAT) 6-11

Supervisor Task Detach or Change Origin Point (#SVAU). . . .6-11

Licensed Material—Property of IBM

Change Pointof Origin. 6-11

Detach Task v v v v v ot et e et s oo s s e a e 6-11
Syntax Checker (FUSYX) v v vt i v v it ie v v a e us 6-12
Information Retrieval (#SVINF) 6-12
Data Management Task Transfer Control (#SVTTC). 6-12
Snap Dump (#SVDMP). i e e e e 6-13
METHOD OF OPERATION.ttt vt i v s et e e ns 6-14
PROGRAMORGANIZATION ., v i i v it e nnnn 6-53
DATAAREAS ittt tn e et aaras 6-69
Finda Library Parameter List. v v v v v v v v v v v 6-69
System Find Parameter List ¢ . v v v v v v v v v v v v 6-69
Librarian Find Parameter List. v e v v v v 0 o0 v 6-72
Source Library Get Parameter List v v v v v v v v vt 6-74
AFA AccessParameter List . » . . v v v v v o v v n o v 0w v uun 6-76
Duplicate Key Display Parameter List 6-77
Supervisor Task Attach Parameter List.o 0 . 6-78
Supervisor Task Attach Error ReturnCode 6-80
Syntax SpecificationModule, 6-80
VerbRecord —VERB v v vt vt v it v v o s aena 6-81
Parameter Records . . v . o v o v v v vt v s o v s s ot ot o 6-81
Positional Parameter Record — POSIT . ,o v v a s 6-81
Keyword Parameter Record— KEYWD 6-83
Substitution Table —SUBEN v v v oo 6-83
Valid Combination Record v v v v v v v e vt v e on s 6-85
Syntax Checker Communication Table — USCTABLE. 6-87
Syntax Checker Parameter List v 0o v v v v v 6-90
CHAPTER 7. SYSTEM MAINTENANCE PROGRAMS. 71
INTRODUCTION. ittt ittt ettt e an e 741
METHODOF OPERATION. it i vt e vt s s n s e o e 7-2
PROGRAMORGANIZATIONttt vt e s s e ans 7-12
CHAPTER 8. OVERLAY LINKAGEEDITOR. 81
INTRODUCTION. ittt i ittt e st s e s 8-1
Compiler Entry ¢ i it it ittt st s aa o s oo 8-1
Input for CompilerEntry oo v it v e v 8-1
Output from Compiler Entry v v v v v i vt v v v oo 8-1
UserEntry v o i i vt s it e ittt it ee s 8-5
InputforUserEntry v v v v vt o vt e v neanonnonn 8-5
OutputfromUser Entry v v v vttt i vt neano e 8-5
Overlay Linkage Editor Phases and Routines 8-5

Minimum Storage Requirements00 v oo 8-5
METHOD OFOPERATION. vt i ittt vt e e a 8-7
PROGRAM ORGANIZATION e e e e L...824
DATA AREAS it it et i e it en i nnnens 8-29
Overlay Linkage Editor Common (LOMMON) 8-29
Verb List (OVERBS) v vt v v v i v e e . 8-29
Segment ListEntries o v vt ittt i i i i 8-29
Overlay FetchRoutine. v v 0 v v v n v s843
HowtoFindanOverlay oo i v vt i v e nenn 8-44

PART 4. SYSTEM UTILITY PROGRAMS

CHAPTER 9. BACKUP LIBRARY UTILITY ($BACK). 9-1
INTRODUCTION, e e e e e e 9-1
METHODOF OPERATION. vt v i v i e i a s 9-2
PROGRAMORGANIZATIONcvvvvnvnn 9-6
CHAPTER 10. BASIC EXCHANGE UTILITY ($BICR)10-1
INTRODUCTION.t ittt it ittt et i v aens 10-1
METHODOFOPERATION. e vt vt i v e 10-5
PROGRAMORGANIZATIONt vvn v nns 109
DATAAREASt vennenn e 10-11
BICCVLST Verb List. e e 10-12
vi

CHAPTER 11. BUILD MENU UTILITY ($BMENU) 11-1
INTRODUCTION. vttt ittt i e i s et s st nnnns 11-1
METHOD OF OPERATION. ¢t ittt e vt et v s v 11-2
PROGRAM ORGANIZATION i vttt v i an e 11-6
CHAPTER 12. ALTERNATE SECTOR REBUILD

UTILITY($BUILD) . . . vttt i vt ettt s aasennns 12-1
INTRODUCTION. it it it et s s o s e et cnenn 1241
METHOD OF OPERATION.t v v it et et et n e 12-2
PROGRAMORGANIZATION . . . vt v h it v e v et onns 12-5
CHAPTER 13. DISK COPY/DISPLAY UTILITY

(BCOPY) . . it ittt et i te e et nnnnsansanens 131
INTRODUCTION. it ittt ettt m v s v s asns 131
METHOD OF OPERATION. i i it i it e i e n 13-3
PROGRAMORGANIZATIONttt vn v 13-14
DATAAREASt i ittt it vt et n s enss 13-20
Verb Lists — PYZVL1,PYZVL2,PYZVL3 13-20
$COPY Common Communication Area— $CCCA 13-20
Embedded Format 1.ttt 13-26
CHAPTER 14. FILE DELETE UTILITY ($DELET) 141
INTRODUCTION. . . . v i vttt s et s v et s n s s annos 141
METHOD OFOPERATION.t i i v e vt v et s e ns 14-2
PROGRAMORGANIZATION ittt i it e vnas 14-6
CHAPTER 15. DISKETTE COPY UTILITY ($DUPRD) 15-1
INTRODUCTION. i it ittt et s et in s sans 1581
METHOD OF OPERATION.t ittt i vttt e e n s 15-2
PROGRAMORGANIZATION . . ¢ v v v v ve v v v e nn e 156
CHAPTER 16. FILE BUILD UTILITY ($FBLD)16-1
INTRODUCTION. . . v it vttt v e it et s s n s nnn 16-1
METHOD OF OPERATION.t v ittt i v v e aans 16-2
PROGRAMORGANIZATIONt v ittt v s e nnnn 164
CHAPTER 17. HISTORY FILE DISPLAY UTILITY

BHIST). . v v it it it et vt ettt ae s osan e 171
INTRODUCTION. v s v e v e e vttt v s n o nsnass 1741
METHODOFOPERATION. . . . vttt v vt e s v i nnanns 17-3
PROGRAMORGANIZATIONttt et v nnnnann 17-6
CHAPTER 18. DISKETTE LABELING AND

INITIALIZATION UTILITY (BINIT) 181
INTRODUCTION. et e et e e e e e 18-1
METHOD OF OPERATION. C e et 18-2
PROGRAMORGANIZATIONot it v vt n s e nas 18-5
DATAAREAS 00 P 18-6
VERBSUVE, VERBSVE, and VERBSE Verb Lists. 18-6
CHAPTER 19. VTOC DISPLAY UTILITY ($LABEL) 1941
INTRODUCTION. . . . v vt it vttt et n e n e 1941
METHOD OFOPERATION. ¢t i e vt vt s n s onnns 19-2
PROGRAMORGANIZATIONttt evnaanns 19-6
CHAPTER 20. RELOAD LIBRARY UTILITY ($LOADI). . .20-1
INTRODUCTION. . . . i ittt ettt i e vt naannn s 201
METHODOFOPERATION. vt vt v v e e . 20-2
PROGRAMORGANIZATION it vt v i it an e 20-6
DATAAREAS © v nnnn et e e s 20-7

. .20-7

$LOADI Communication Area e

Licensed Material—Property of IBM

CHAPTER 21. LIBRARY MAINTENANCE UTILITY CHAPTER 26. WORK STATION CONFIGURATION

(BMAINT) ittt it ittt enrorannees 211 (BSETCF)t tii ittt venarvnossenes 261
INTRODUCTION.t i v vttt i i s es e annenns . 2141 INTRODUCTION. creans Cesae s 26-1
METHOD OF OPERATION. ceisean ... 214 METHOD OF OPERATION. Pt e e . 0262
PROGRAM ORGANIZATION, e ee. 2122 PROGRAM ORGANIZATION e ee. 266
DATAAREAS it 2132
Library Common Area — CNTLBMSG. 2132 CHAPTER 27. SCREEN-FORMAT GENERATOR -

UTILITY ($SFGR) . . . ot vt vt i v it nsennnnenn 2741
CHAPTER 22, MESSAGE BUILD UTILITY ($MGBLD). . . .22-1 INTRODUCTION, . . . v v v vt i v n e v o v nosss 27
INTRODUCTION. . . . o vt vt i it e nn i nnas e ea 224 METHOD OFOPERATION. cvvvv v e v ..273
METHODOFOPERATION. v ve v v n e . 222 PROGRAM ORGANIZATION¢ccvevvennn 27-8

PROGRAMORGANIZATION o000t .226
CHAPTER 28. COMMAND PROCESSOR PROCEDURE

CHAPTER 23. DISK REORGANIZATION UTILITY ERRORUTILITY (S$CPPE) vt vvnn v e vans, 281
(SPACK/SFREE)0v0vun e < 8 | INTRODUCTION. e e e . 0281
INTRODUCTION. Ceee e Cee e 2341 METHODOFOPERATION. vt vt v e v e n v v 28-2

METHOD OFOPERATION. v v v v v e v s ..232 PROGRAM ORGANIZATION T, .284

PROGRAMORGANIZATION cevves..235

DATAAREAS e e .. 236 APPENDIXES

FRETBTEbIB . .o oo vvneienennonenennenss 236
' APPENDIX A. DIRECTORY.0ucvvuensna.. Al
CHAPTER 24, SECURITY FILE'UTILITIES241

INTRODUCTION. Cr e s et 2441 APPENDIX B. LIST OF ACRONYMS AND

METHOD OF OPERATION. v v v v v e v e ns 24-2 ABBREVIATIONSt tnivnereares.sB1
PROGRAM ORGANIZATION e Y ..249

CHAPTER 25. FILE RENAME UTILITY (SRENAM)25-1

INTRODUCTION. , tes et e e es 02641

METHODOFOPERATION. vin e 25-2

PROGRAM ORGANIZATION vesere. 265

vii

Licensed Material—Property of IBM

viii

Licensed Material—Property of IBM

How to Use This Manual

Diagram numbers are assigned by chapter (for example, all diagrams in chapter 1 are
numbered 1.nn). Any diagram with a zero preceding the first period (Diagram 0.1, for
example) is a table of contents diagram for the SSP. Similiarly, any diagram with a zero
following the first period is a table of contents diagram for its respective chapter. Each
entry in a table of contents diagram identifies a particular input — process — output type
of diagram. The input — process — output diagrams describe functions and are found in
the Method of Operation section of each chapter of this manual.

Licensed Material—Property of IBM

Licensed Material—Property of IBM:

The main objective of the HIPO method of diagramming is to
improve communication procedures and techniques through
the effective use of functional operation diagrams.

HIPO, hierarchy plus input — process — output, is a method
of graphically describing internal function by structuring a
presentation from general to detailed levels in a set of
method-of-operation diagrams.

A visual table of contents is prepared for each set of func-
tional diagrams. It shows:

® The structural relationships of the diagrams
® The contents of each of the diagrams

® A legend applying both to the individual function dia-
gram and the total presentation

Each set of functional diagrams contains a visual table of
contents, one or more overviews, and a number of low level
diagrams showing the implementation and/or design of a
function. The implementation of a major function can
extend through many modules or routines.

Module 1 Module 2 Module 3
FUNC
A
A A

A specific module might support parts of many functions.
Sometimes these functions are not even related.

Module 2
B
B+C

Functional Diagram Techniques

Someone who must modify an existing function, add a new
function, test for regression, or fix the system must know:

® How the function is performed

® What other, perhaps nonrelated, functions use the same
code

Graphic Content: The graphic content is determined by

the situations shown,

The table of content diagrams act as introductions to the
functions and directors to the low level, detailed diagrams.

Contents 9 5 8
=== 6.==== v
2=c= 7=

T8 = || 3 @ 6|7 9
4--=z 9=z

5.—-z 10.7Z

——— — a—

xi

Licensed Material—Property of I1BM

The low level diagrams contain unit level information (that
level of information reflecting the actual workings of the
system). Each low level diagram is arranged to best show:
® A process that supports the function being described

® Results of the process

® Requirements for processing

Stated graphicélly:

Input Process

R

Output

To tie together the program organization and functional
areas, the function diagrams use cross-references from one
area to another and to the listings.

Functional Descriptions

Listings Routines

Xii

Informational Content: Functional diagrams should discuss
/'nputs; process, and results. For the sake of clarity, these
elements are presented in a normal reading sequence. Sim-
ple boxes are used to block off these three major areas of
the diagram.

The picture area of the diagrams contains as few words as
possible. There are two reasons for this:

® When the picture becomes cluttered with text, it loses
some value as a recall mechanism.

® The degree of difficulty of maintaining the diagrams
increases with increased number of words in the picture
area.

_ In the diagrams, functions are related by cross-references to

the module(s) supporting those functions. The description
box of the diagram includes the references of the module(s)
associated with the implementation steps that support the
function.

Licensed Material—Property of IBM

OUTPUT

INPUT I Jr PROCESS
ﬂ
DESCRIPTION ',\3"88?,‘,‘\‘?
(1 = - — = — - —— - — PHAS1
— — - _
PHAS2

J— —_—___ —_—
4] —= -

Process steps 1 and 2 are performed.in PHAS1.

Before step 3, passing of control is implied by the horizon-
tal line through the routine column. Steps 3 and 4 are per-
formed in PHAS2,

Licensed Material—Property of 1BM

Legend: .

- Control flow (leads the

reader through the process)

:> Data flow
1

Reference block

xiii

xiv

Licensed Material—Property of IBM

Part 1. Introduction

Licensed Material—Property of 'IBM . '

Licensed Material—Property of IBM

This program logic manual provides diagnostic information
and serves as a recall mechanism for the IBM programming
representative working on a System/34 problem, HIPO and
control flow diagrams help guide the programming repre-
sentative to the proper module on microfiche, If a main
system module is not causing the problem, the directory

in Appendix A can help locate additional information in
this manual and on microfiche.

Figure 0-1 is an overview of the logic documentation avail-
able for System/34. It lists the major components of each
PLM.

Figure 0-2 shows the system control flow and major divi-
sions of the SSP. Part 2 of the manual follows the same
major divisions as shown in this diagram.

Introduction

Diagram 0.1 is an overview of the SSP. Within this over-
view are overviews of the system service programs, the sys-
tem maintenance programs, the overlay linkage editor, and
the utility programs. '

Information presented in this manual, accompanied by
information in the Data Areas Handbook, is used to inter-
pret main storage dumps. Appropriate module listings on
microfiche are then consulted as necessary to initiate a
circumvention to the program problem and to write an
APAR. The Data Areas Handbook can then be used to
help apply the program temporary fix.

Introduction 0-1

Licensed Material—Property of IBM

1BM System/34 System Data Areas and
Diagnostic Aids Handbook, LY21-0049

System overview
Data areas
Diagnostic aids

1/0 controllers
Troubleshooting aids
Work station utility

1BM System/34 System Support Program Logic
Manual: System, LY 21-0050

IBM System/34 System Support Program Logic
Manual: Data Communications, LY21-0051

Component/Fu nction Diagram Chapter Component/Function Diagram Part
Starting the system 1.0 1 Binary synchronous 1 1
Processing commands 2.0 2 communications -
Starting a job 3.0 3 MULTI-LEAVING remote 2 2
Running a job 4.0 4 job entry utility
Terminating a job 5.0 5 Data communications A-1 App. A
System service 6.0 6 print utility -

programs
System maintenance 7.0 7

programs
Overlay linkage 8.1,8.2 8

editor
System utility 9.0 9 through 28

programs

IBM System/34 Utilities Logic Manual,
LY21-0563

IBM System/34 RPG I/ Logic Manual,
LY21-0565

Component/Function Diagram Chapter

Work station utility 1-1 1
Screen design aid 21 2
Data file utility 3-1 3
Source entry utility 4-1 4
Sort 5-1 5

Component/Function Figure Part
Compiler phase flow 11 1
‘Object program flow 21 2

1BM System/34 Basic Assembler and
Macro Processor Logic Manual,
LY21-0569

Component/Function Figure Chapter

Assembler 1-2 1
Macro processor 2-2 2

Figure 0-1. System/34 Logic Documentation Overview

0-2

Licensed Material—Property of IBM

Starting

the
System IPL
Workstation - Display
C d M; Station
Processor
Job Control
Processing OCL trom display station batch m Batch Job Procedures
Commands <,L
)C Messages Prompts, Respansas ()
AV
SYSIN Initiator
Keyboard ocL . Messages & Responses
SYSIN K-
Reader/ SYSLOG
Interpreter
Source
SYSIN .
Fi's
K——— viee K——
ocL! Prompts,
Responses N N——1
Disk $SOURCE
. Procedure on <:_—_ Source
Starting Library Library
a c/o MSG MBRS, S
Job User PGMS
K | Object
Library
i N—— Hi
Active F1's Fills::‘ry
— eV) Put
Pro:gram $WORK u
Initiation Local .
:“m Task
* Work
W
—_—::> Active 1
Fl's
$SOURCE, Device
$SWORK Allocate
Pointers
Open]
Data
Management F_
. User
Running Program
a
Job SYSLIST
. ’ Termination
Active F1's ~ Close [
. F1's & F5
Step <'
Terminating Termination
a
Job
Keysort
Job
Termination
Control Flow
Data Flow

Figure 0-2. System Contro! Flow Overview

Licensed Material—Property of IBM

Introduction 0-3

System

Support
Progrem
Product

L

|

|

Starting the
System

(Diagram 1.0}

Command
Processor

(Diagram 2.0)

Starting a Job

{Diagram 3.0}

Running a Job

(Diagram 4.0)

Terminating
alJob

{Diagram 5.0)

1

[

l

|

1

Perform Router Perform Sign-on Command Job Initiator and High-Level Aids
Function Function Processing Work Station and TTC Router
Overview Release Overview
(Diagram 2.1) (Diagram 2.2) (Diagram 2.3) (Diagram 2.18) {Diagram 2.21)
Inquiry Menu Special CP/WSDM Console Management Perform Command Perform Password Perform 1/0
Option Processor Command Interface Overview Processor Security Error
and Resume Processor Cleanup Function Function Recovery
Overview
(Diagram 2.22) {Diagram 2.25) (Diagram 2.26) (Qiagram 2.27) (Diagram 2.31) (Diagram 2.32) (Diagram 2.33}
Main Storage Perform System Rebuild VTOC
IPL Overview Configuration Format 1's
Function
(Diagram 1.1) (Diagram 1.5) {Diagram 1.6)

r

B

Perform Initiator
Function

(Diagram 3.1)

Allocate
Overview

(Diagram 3.2)

Open Disk, Diskette,
Printer, Work Station
and Data Commu-
nications DTFs

(Diagram 3.6)

Diagram 0.1 (Part 1 of 6). Functional Overview

0-4

Licensed Material—Property of IBM

Perform Disk Data

Management
Function

(Diagram 4.1)

Disk Data

Function

Perform Sectorized

Management

{Diagram 4.2)

Perform Diskette
Data Management
Function

{Diagram 4.3)

Perform Diskette
End of Volume

(Diagram 4.4)

Write Printer Data

(Diagram 4.5)

Perform Work
Station Data
Management
Function

(Diagram 4.6)

Sort Index Entries
for Indexed Disk
File

(Diagram 4.7)

Perform Spool
Intercept
Function

(Diagram 4.8)

Print Records
From Spool File

(Diagram 4.9)

Close Disk, Diskette,
Printer, Work Station
and Data Communi-

cations DTFs

(Diagram 5.1)

Terminate Job
Step and Job
as Required

(Diagram 5.2)

Diagram 0.1 (Part 2 of 6). Functional Overview

Licensed Material-Property of IBM

Introduction

0-5

System Service
Programs

System Service
Programs Overview

(Diagram 6.0)

Find Requested

Find Directory

Find Requested

Retrieve Requested Put Record
Library Entry Library Directory Record to Library
Entry
(Diagram 6.1) (Diagram 6.2) (Diagram 6.3) (Diagram 6.4) (Diagram 6.5)

Get or Put
Library Sector

Perform Library
Member Protection

Access Active

Perform Cross

Display Duplicate

Format-1 Area Reference Key Information
Function Resolver
Function
{Diagram 6.6) (Diagram 6.7) (Diagram 6.8) (Diagram 6.9) {Diagram 6.10)
Verify Print Process Disk VTOC Process Diskette Retrieve Perform SYSIN
Image Read/Write Request VTOC Read/Write Requested Message Function
Request
(Diagram 6.11) (Diagram 6.12) (Diagram 6.13) (Diagram 6.14) (Diagram 6.15)

Perform SYSLIST
Function

(Diagram 6.16)

Perform SYSLOG
Function

(Diagram 6.17)

Put Records into
History File

{Diagram 6.18)

Perform Supervisor
Task Attach
Function

(Diagram 6.19)

Perform Supervisor
Task Detach
Function

(Diagram 6.20)

Perform Syntax Perform Perform Data Perform Snap
Checking Function Information Management Task Dump Function
Retrieval Transfer Control
Function Function
(Diagram 6.21) (Diagram 6.22) (Diagram 6.23) (Diagram 6.24)

Diagram 0.1 (Part 3 of 6). Functional Overview

0-6

Licensed Material—Property of IBM

System
Maintenance
Programs Overview

{Diagram 7.0)

Perform APAR
Utility Function

(Diagram 7.1)

Perform Dump
Utility Function

(Diagram 7.2)

Perform PTF
Installation
Function

(Diagram 7.3)

Perform Patch
Utility Function

(Diagram 7.4)

Perform Trace
Select Function

(Diagram 7.5)

Perform
ERAP Utility
Function

(Diagram 7.6)

Diagram 0.1 (Part 4 of 6). Functional Overview

Licensed Material—Property of IBM

Introduction

0-7

Overlay
Linkage
Editor

Compiler Entry Over-
view (Diagram 8.1)
or
User Entry Overview
(Diagram 8.2)

Compiler Entry
Phase

(Diagram 8.3)

Autolink Segment
List Build

(Diagram 8.4)

Cross-Reference
Segment List
Build

(Diagram 8.5)

Sort Autolink
Segment List

(Diagram 8.6)

Overlay Design

(Diagram 8.7)

Overlay Segment
List Build

{Diagram 8.8)

Storage Map
Phase

(Diagram 8.9)

Relocate, Resolve
Externs, and Build
Load Module Phase

(Diagram 8.10)

Library Control
Phase

(Diagram 8.11)

Error Routine

{Diagram 8.12)

Error Message
Print Phase

(Diagram 8.13)

User Entry
Phase 1

(Diagram 8.14)

User Entry
Phase 2

{Diagram 8.15)

User Entry
Phase 3

(Diagram 8.16)

User Entry
Phase 4

(Diagram 8.17)

Diagram 0.1 (Part 5 of 6). Functional Overview

0-8

Licensed Material—Property of IBM

System
Utility
Programs

System Utility
Programs Overview

{Diagram 9.0)

(Diagram 9.1)

(Diagram 10.1)

(Diagram 11.1)

(Diagram 12.1)

System Backup Basic Interchange Build Menu Rebuild Perform Copy
Display Alternate Utility Function
Sector

(Diagram 13.0)

Delete File

(Diagram 14.1)

Copy Diskette File

(Diagram 15.1)

Build File

{Diagram 16.1)

Display History
File

(Diagram 17.1)

Initialize
Diskette

(Diagram 18.1)

Display Disk/
Diskette VTOC

(Diagram 19.1)

Reload Library/
Pseudo IPL

{Diagram 20.1)

Library
Maintenance

{Diagram 21.0)

Build Message
Load Member

(Diagram 22.1)

Reorganize Disk
Files

(Diagram 23.1)

(Diagram 24.1)

(Diagram 25.1)

(Diagram 26.1)

Update Security Rename Disk Modify Build Display Process Error
File File Configuration Screen Format for SSP or Other PP
Record Procedure

(Diagram 27.1)

(Diagram 28.1)

Diagram 0.1 (Part 6 of 6). Functional Overview

Licensed Material—Property of IBM

Introduction

0-10

Licensed Material—Property of IBM

N

Part 2. System Support
Program Product

Licensed Material—Property of 1BM

Licensed Material—Property of IBM-

Introduction

The functions needed to start the system are:
® Perform initial program load (IPL)

® Perform system configuration

® Rebuild IPL format 1, if needed

MA(N STORAGE INITIAL PROGRAM LOAD (IPL)

System/34 initial program load (IPL) consists of two parts:
control storage IPL and main storage IPL.

The function of control storage IPL is to initialize main and
control storage common areas to a sufficient degree to
allow the control storage supervisor to operate. Control
storage IPL first loads control storage and performs a basic
system checkout of the processing unit and /O functions.
It then loads the control storage nucleus. After loading
the work station and printer control programs, control
storage IPL loads main storage IPL phase 1 (#MSNIP)

and the first two sectors of the configuration record into
the main storage transient area and passes control to
#MSNIP.

Main storage IPL completes initialization of the System
Support Program Product (SSP). Main Storage IPL con-
sists of three phases: main storage IPL phase 1 (#MSNIP),
phase 2 (#MSTWA), and phase 3 (#MSIPL). (See Figure
1-1 for main storage IPL logic flow.)

#MSNIP performs initial main storage IPL processing.
Its main functions are:

® [nitialize the system communication area

® Build the resident library format 1

® Determine defective main storage locations
® Initialize the transient/transfer contro! table

® Resolve disk addresses as needed (load and execute
#MAXRF)

Chapter 1. Starting the System

® Set the command processor task control block (TCB)
to reflect any defective 2K main storage blocks

® Increase assign/free area size to allow for main storage
allocation

#MSNIP passes control to #MSTWA,

#MSTWA performs phase 2 main storage IPL processing.
Its main functions are:

® |nitialize the transfer control table for resident routines

@ |[nitialize the task work area index

Initialize the terminal unit blocks

Initialize the task work area for each work station

o Build the device allocate table

® [nitialize command reject file data areas

Before it passes control to #MSIPL, #MSTWA updates the
instruction address register (IAR) in the request block {(RB)
stack to pass control to the command processor resident
router (#CPML) when IPL is completed.

#MSIPL controls final main storage IPL processing. The
main storage IPL phase 3 function uses additional main
storage IPL modules. They are: process overrides
(#MSRID), process overrides (#MSOER), spool file IPL
(#MSSP), input job queue IPL {(#MSJQ), and main storage
allocate (#MSSQS). The primary functions of main storage
IPL phase 3 are:

@ Perform main storage IPL sign-on

® Process override information if OVERRIDE-YES is
entered on the IPL sign-on display (#MSRID, #MSOER)

® |[nitialize the system print spool function if print spool is
supported (#MSSP)

Introduction 1-1

Licensed Material—Property of IBM

© |[nitialize the job queue if job queue is supported
(#MSJQ) ,

© Build the assign/free area (#MSSQS)
© Build the user main storage area (#MSSQS)
© Enable all system terminals

#MSIPL then calls the supervisor task attach transient
(#SVAT) to attach a TCB to run file rebuild (#MSBLD).
Control eventually passes to #CPML.

SYSTEM CONFIGURATION ($CNFIG)

System configuration is performed when the system is
initially installed or any time a system or feature change
requires reconfiguration. The configuration information is
saved in the configuration records. (See the Data Areas
Handbook for a description of the configuration records.)
The system user may override certain configuration options
at IPL (see #MSIPL) or alter the configuration of each work
station by using $SETCF.

System configuration is initiated with the CNFIGSSP
command following the initial RELOAD of the base system
support program to disk. (See /BM System/34 Program
Product Installation and Modification Reference Manual,
SC21-7689, for more information about the CNFIGSSP
procedure.)

CNFIGSSP loads and runs the system configuration pro-
gram ($CNFIG). The main functions performed by
$CNFIG are:

© Read, modify, and write system configuration records.

© Set values/parameters in the configuration records based
on operator responses to configuration prompts.

© Validate the operator’s input values and ensure system
operation.

© Set UPSI switches to control CNFIGSSP procedure flow.

1-2

. $CNFIG validates the operator’s responses to prompts and

updates the appropriate configuration record after each
configuration display is presented. After all operator
responses are processed, $CNFIG returns the updated
configuration records to disk and passes control to the
end-of-job transient ($EQJ).

REBUILD VTOC FORMAT 1'S

The rebuild VTOC format 1's routine (#MSBLD) examines
each format 1 in the disk VTOC to ensure that the pointers
accurately reflect the status of the data set contents. The
routine also checks the format 5 to ensure that disk reor-
ganization ($PACK or $FREE) was not previously
interrupted. ‘

#MSBLD is called by main storage IPL phase 3 (#MSIPL).
The system operator may request that #MSBLD not be run.
If run, the system operator directs #MSBLD to perform one
of the following:

© Delete all files in error

© Examine old files, as well as new

© Prompt on each file in error for retention or deletion

Licensed Material—Property of IBM

Method of Operation

This section contains functional diagrams for routines
needed to start the system. They are:

® Main storage IPL
® System configuration

® Rebuild VTOC format 1

Method of Operation 1-3

Licensed Material—Property of IBM

From: Control Storage IPL

INPUT ﬁ I r PROCESS ﬁ OUTPUT

Required system . Perform main storage IPL (Diagram 1.1))> Initial program
areas I I " load completed
Configuration :>. Perform system configuration . 7> Configuration
records I I (Diagram 1.5) : I records

Format 1 T—_———">@ Rebuild VTOC format 1 (Diagram 1.6) —> Format 1

To: Command Processor

Diagram 1.0. Overview of Starting the System

From: Control Storage IPL

INPUT I Jr PROCESS

Configuration ® Perform main storage IPL phase 1 Initial program
record processing (Diagram 1.2) " load completed

OUTPUT

System library ® Perform main storage IPL phase 2
directory processing (Diagram 1.3)

Required system @ Perform main storage IPL phase 3
areas processing (Diagram 1.4)

User options

To: Command Processor

Diagram 1.1. Overview of Main Storage IPL

1-4

Licensed Material—Property of IBM

From: Control Storage IPL

INPUT ! Jp PROCESS

CXR2 n Initialize system communication area ! SCA

OUTPUT &

Configuration record E Build resident library format 1 : Library format 1

Main Storage B Determine bad main storage locations . Transient table

Fixed Nucleus n Initialize transient/transfer control table Command
' processor TCB

Transient Area: E Resolve disk addresses as needed

#MSNIP Temporary assign/
Configuration B Set command processor TCB to reflect free area
record any bad 2K storage blocks

User Area Increase assign/free size to allow for main
storage allocation

System library
directory

To: Main Storage IPL Phase 2
#MSTWA (Diagram 1.3)

MODULE/
DESCRIPTION ROUTINE

Initialize system communication area (SCA) from configuration record information: #MSNIP
® Task work area (TWA) address. Disk 10S
® TWA size. #MSNIP
® Disk VTOC address.
® Disk VTOC size.
® Diskette VTOC work area disk address.
® Diskette VTOC work area size.
® Configuration record start address.
® History file start address.
® History file size.
® Release and modification level.
® Control storage configuration size.
® DUMP indicator.
® System configuration bytes.

P @ Communications configuration from UDT. . Disk 108 4
Resolve current history file pointer: ‘ #MSNIP
® Scan history file looking for file ID (X‘FE’) as start of history file sector. Disk 10S
® If history file current pointer found, put disk address in SCA (SCAHFCUR). #MSNIP
® |f history file current pointer not found, set history file error flag in SCA (SCAHFERR).

B Read system VTOC, first sector, to get library format 1. Disk 10S
Move library format 1 to nucleus. #MSNIP
Save spool buffer size.

1]

Diagram 1.2 (Part 1 of 2). Perform Main Storage IPL Phase 1 Processing
Method of Operation 1-5

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

n Count number of bad 2K blocks of main storage.
Assign save area for bad 2K block numbers.
Move bad 2K blocks to save area.

n Move dump SVC address into transient/transfer control table for each table entry.
Read in block (one track) of library directory sectors.

Look for name table entry in library directory.
_If name table entry found:
® Place SSN in transient table if necessary.
® Place SS in SCA (message member) if necessary.
® Build loader parameter list if necessary.
{f name table entry not found:
® Determine whether it is required by SSP.

B Resolve disk addresses by executing cross reference resolver.

ﬂ Determine whether any bad 2K storage blocks exist (SCA2KBAD).
Find task control block (TCB) address translate registers (ATRs).
Flagbad ATRs.

Set good ATR numbers in TCB.

Allocate temporary assign/free space for duration of main storage IPL.

Load and pass control to IPL phase 2 (¥ MSTWA).

#MSNIP

Disk 108

® |f required, call dump main storage transient task (9 control storage function) to abend system (MIC 249).

#MSNIP

#MAXRF

#MSNIP

Diagram 1.2 (Part 2 of 2). Perform MsinStorage IPL Phase 1 Processing
1-6

Licensed Material—Property of IBM

o~

From: Main Storage IPL Phase 1
-#MSNIP (Diagram 1.2)

INPUT I Jr PROCESS

XR2 n Initialize transfer control table for
(resident routines

ou

Load table
B Initialize task work area index
Main Storage

[E} initiatize terminal unit blocks

Transient Area: n Initialize task work area

#MSTWA
Configuration E Build device allocate table
record

B Initialize command reject file data areas

User Area

Transient table
SCA

ubDT

To: Main Storage IPL Phase 3
-#MSIPL (Diagram 1.4)

TPUT

Transfer control
table

TWA
System TUBs

Device allocate
table

DESCRIPTION

MODULE/
ROUTINE

n Scan load table built during directory scan by # MSNIP.

Load resident routines:

® Calculate next load address.

® |f request indicator byte (RIB) given, put its address in transfer control table.

® Call main storage relocating loader {control storage function) to load the resident routine.
Find space for command processor work area.

Build command processor image matrix and order index.

Reset task work area index to all available work space.

Reset task work area (first track) to binary zeros.

Find space for temporary work station queue (to be used during IPL).

Allocate space from TWA for command reject file.

If no space available for work station queues, call dump main storage/terminate task routine {control storage
function) to eliminate IPL procedure.

#MSTWA

Disk 108

#MSTWA

Diagram 1.3 (Part 1 of 2). Perform Main Storage IPL Phase 2 Processing

Method qf Operation 1-7

Licensed Material—Property of IBM

DESCRIPTION

MODULE/

B Build entries for diskette from unit definition table {UDT) information.

Build communication entries from communication configuration record information.
Initialize command reject file data areas.
Build and queue error recovery blocks (ERB) for disk and diskette.

Load and pass control to main storage IPL phase 3 (#MSIPL).

ROUTINE
Read terminal information blocks into work area. Disk 10S
Initialize terminal unit blocks (TUB) based on system configuration record information: #MSTWA
® Set work station ID.
® |Initialize common TUB fields.
® Set system printer TUB address in SCA.
® Set task work area address.
n Allocate work space in task work area.
Write work station configuration record to disk. Disk 10S
Initialize local area of task work area. #MSTWA

Diagram 1.3 (Part 2 of 2). Perform Main Storage IPL Phase 2 Procsssing

1-8

Licensed Material—Property of 1BM

From: Main Storage IPL Phase 2
-#MSTWA (Diagram 1.3)

p INPUT I rPROCESS p OUTPUT

Main Storage i n Perform main storage IPL sign-on) . Initial sign-on

n Process override information if necessary Structured user
Transient Area: area
#MSIPL Initialize system print spool function
#MSRID :) Spool file and
#MSOER n Complete nucleus initialization : buffer pool
#MSSP : : : !
#MsJQ ‘ Initialized main
#MSSQs storage nucleus

User Area

SCA

TUBs

TCBs

User options

To: Command Processor Resident Router
-#CPML (Diagram 2.1)

‘ . MODULE/
DESCRIPTION ROUTINE
Post task control block (TCB) for request-enter sign-on. #MSIPL
Search terminal unit block (TUB) chain for system and alternate consoles.
Check system console for errors.
If no system console errors, simulate REQ-ENT request.
Wait for console input.
If request-enter is from console, process REQ-ENT request. #CPTC
If request-enter is not from console: #MSIPL
©® Build assign accept/input parameter list.
® Accept input from console. #WDDA
® |f alternate console, enable request-enter and call request enter transient (¥ CPTC). #MSIPL
® |f master console, call sign-on transient (# CPON) to process sign-on information.
© Prompt for file rebuild options. . : # MSRID
Check for override request-entered at sign-on.
Build override format index: #MSRID
® Read override format index from disk. Disk 10S
® Build in-core format index. #MSRID

Diagram 1.4 (Part 1 of 6). Perform Main Storage IPL Phase 3 Processing

Method of Operation 1-9

Licensed Material—Property of IBM

DESCRIPTION

 MODULE/

Build work station data management parameter list to prompt for print spooling disk parameters:
— Spool file size.

— Reformat spool file at IPL.

— Disk A or disk B reference.

ROUTINE
Prompt for general system parameters:
® [ssue invite to display unit. . #WDDA
P ® Build output work station data management parameter list. #MSRID

® Prompt for: #DWDM

— Date,

— Single program mode.

— Console status,

— Command language.
® Build input work station data management parameter list. #MSRID
® |ssue call to work station 1/0 to accept input. #WDDA
©® Set appropriate system communication area (SCA) indicators for answers to general system prompts. #MSRID
Prompt for work station data management options (transient or resident).
Call transient # MSOER to prompt for job queue and spool parameters.
Ensure that job queue is configured before issuing prompt for job queue parameters. #MSOER
Build output parameter list for work station data management to prompt for:
® Job queue size,
® Job queue reformat.
® Job queue start.
Display prompts. #DWDM
Build work station data management parameter list to accept answers to prompts. #MSOER
Issue call to work station 1/0 for accept-input. #DWDM
Check job queue size. #MSOER
Set appropriate SCA indicators for answers to job queue prompts.
Display prompt for: #DWDM
® Cancel spool?
® Cancel job queue?
® Delete spool file?
® Delete job queue?
Build parameter list to accept answer to prompt. #MSOER
Issue call to work station 1/0 for accept-input. #DWDM
If cancel spool — yes, return to #MSRID #MSOER
If cancel spool — no:
® Build work station data management parameter list to prompt for:

— Resident spool writer.

— Spool writer priority.

— Intercept buffer size.

— Spool writer buffer size.
® Display prompts. #DWDM
® Build input parameter list. #MSOER

P @ issue call to work station 1/O for accept-input. #DWDM

® Ensure legitimate answers to prompts and set appropriate system indicators. #MSOER
[)

Diagram 1.4 (Part 2 of 6). Perform Main Storage IPL Phase 3 Processing
1-10

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE
® |ssue a call to work station 1/O to display prompts. #DWDM
® Build an input parameter list. #MSRID
® |ssue a call to work station 1/0 for accept-input. #DWDM
® Ensure legitimate answers to prompts and set appropriate system indicators. #MSOER
Return to #MSRID
Build a work station data management parameter list to prompt for performance parameters: #MSRID
® Work station queue space size.
® Assign/free request size.
® Trace buffer size.
Issue call to work station 1/O to issue prompts. #DWDM
Build input parameter list. #MSRID
Issue call to work station 1/O for accept-input. #DWDM
Ensure legitimate answers to prompts and that enough main storage space exists. #MSRID
Set appropriate system indicators for prompt answers.
Return control to #MSIPL.
Build second TUB for command processor. #MSIPL
Log control storage processor errors.
Put system date in configuration record:
© Read configuration record from disk. Disk 10S
® Update configuration record. #MSIPL
® Write configuration record back to disk. Disk 10S
Change command language for command processor to native/English if necessary: #MSIPL
® Find command processor router routine — # CPRT (command processor load module).
® #CPRT contains commands to be changed. Start control address of # CPRT indicates start of command
table. Each entry is 14 bytes long.
® Retrieve commands from the message member (##MSG2).
® Update commands as required.
Ensure that spool is on system (SCAMSPOL) and job queue is on system (SCAMJOBQ).
Calculate size of spool buffer pool.
Assign spool buffer pool space.
Save pool size and writer buffer size.
Set up spool intercept function:
® Find spool intercept routine (#SPINT). #MASFN
® Assign space to load #SPINT. #MSIPL
® | oad #SPINT using main storage relocating loader — SVC 52 (control storage function).
n Call main storage allocate transient (#MSSQS) to resolve main storage areas.
Assign storage for work station queue space: #MSSQS
® Free work station queue space assigned for IPL sign-on.
® Assign work station queue space for system operation.
Build system queue space (control storage microcode function).

Diagram 1.4 (Part 3 of 6). Perform Main Storage IPL Phase 3 Processing

Licensed Material—Property of IBM

Method of Operation 1-11

MODULE/

DESCRIPTION ROUTINE
Build user main storage area: #MmSsas
© Use last FQE accessed to find first 2K block of user main storage following assign/free area.
® Chain user main storage 2K blocks together, excluding any bad 2K blocks.
©® Clear 2K blocks to binary zeros as blocks are added to chain.
© Check for the following conditions:

— Any bad 2K main storage blocks (SCA2KBAD).
— Insufficient region size (SCADRGSZ2).
— Maximum nucleus size exceeded,
® Build error message parameter list, including error message identification code (MIC).
® |ssue error message. : #CMCU
Return control to #MSIPL. #MSSQS
Put up sign-on display screen: #CPON
® Set IPL sign on code (CPCODE).)
® Display sign on screen.
Clean up any outstanding invites on other terminals: #MSIPL
® Examine TUBs.
® |f work station TUB, enable system request.
® |f console, signed on console and issue invite.
® Stop outstanding invites. #CPTC
Get JCB space (JCB will be used to attach file rebuild (# VSBLD)). #MSIPL
Build attach parameter list.
Indicate file rebuild called (SCAMBLD).
Indicate IPL sign-on complete (SCAMIPL).
Call attach transient (# SVAT) to attach #MSBLD.
Perform command processor resident functions (# CPML) until # MSBLD is finished.
Call spool file IPL (#MSSP) to allocate and format spool file and spool buffer pool.
If spool not supported (SCADSSPR), go to no #MSSP
If delete or cance! request (SCADSSPR):
® Read VTOC to find file to delete. #CSVF
P @ Build file specification block (FSB). #CAS1
® Delete file.] #CAD1
® Set flag to 00 (SCADSSPR). #MSSP
® Goto no
Check for existing #SPOOL.1 file:
® Build disk VTOC read/write parameter list.
® Read disk VTOC. #CSVF
If #SPOOLA1 file found:
® Read #SPOOL1 master index from disk. #DWDM
® If no entries on print queue or request to delete file (SCAMCRAN): #MSSP
— Read VTOC to find file to delete. #CSVE
— Build file specification block (FSB). #CAS1
— Delete file. #CAD1

Diagram 1.4 (Part 4 of 6). Perform Main Storage IPL Phase 3 Processing
1-12

Licensed Material—Property of IBM

MODULE/

return to # MSIPL.

DESCRIPTION ROUTINE
Allocate primary print spool file: #MSSP
@ Set up special allocate DTF to allocate space for size given in IPLWKSIZ.
® Allocate file space. #CAS1
® |f file space not available, decrease file size by six blocks and attempt to allocate. If minimum size (12 blocks) #CMCU

is not available, issue message, SPOOL NOT SUPPORTED THIS IPL, and go tone
Format print spool file:
® Calculate maximum file size. #MSSP
@ Calculate size of each extent.
® (Calculate index size.
® Set up fields to indicate number of index entries needed for primary file and extents.
@ Format master index and chain index entries together.
® Write index entries out to print spool file. Disk 10S
® Write master index out to first sector of primary spool file.
Set address of #SPOOL1 in SYSCOM. #MSSP
Update master index:

P © Find extents (#SPOOL2-6). #CSVF
® Find highest spool jobname. #SPQMG
© Update master index with new information. #MSSP
0 Write master index back to primary spool file. Disk 10S

Format buffer pool by calculating number of intercept buffers. #MSSP
Look for job-in-process or active bits on in spool queue and set off if found. #SPQMG

@ Call input job queue IPL routine (# MSJQ) to format input job queue. #MSSP
If job queue not supported (SCADSSJQ), return to #MSIPL. #MSJQ
|f delete or cance! request (SCADSSJQ):
® Build file specification block (FSB). #CAS1
® Deallocate existing #JOBQ file. #CAD1
-® Return to #MSIPL. #MSsJQ
Check for existing #JOBQ file:
® Build VTOC read/write parameter list.

O Read disk VTOC. #CSVF

B 1f#JOBQ found: #MSJQ
® Read first sector of #JOBQ file to check for data. Disk 10S
® |f no data exists or reformat request: #MSJQ

— Build FSB. #CAS1
— Deallocate JOBAQ file. #CAD1
Allocate #JOBQ file: #MSJQ
© Build DTF with #JOBQ file information.
© Allocate #JOBQ file. #CAS1
If not enough space available for # JOBQ file requested: #MSJQ
©® Decrease file size by 2 blocks and attempt to allocate.
® |f minimum size (4 blocks) is not available, issue message, INPUT JOBS NOT SUPPORTED THIS IPL, and #CMCU

Diagram 1.4 (Part 5 of 6). Perform Main Storage IPL Phase 3 Processing

Method of Operation 1-13

Licensed Material—Property of IBM

MODULE/

DESCRIPTION ROUTINE
Format JOBQ file entries:
® Set up |0B with attributes for #JOBQ file. #MSJQ
® Write formatted sectors to disk. Disk 10S
Update SCA with #JOBQ file address. #MSJQ
Return to #MSIPL.
If stop system command, call #CPTC to #MSIPL
set IPL processing complete (SCAMIPLC). #CPTC
Pass control to #CPML. #MSIPL

Diagram 1.4 (Part 6 of 6). Perform Main Storage IPL Phase 3 Processing

1-14

Licensed Material—Property of IBM

From: CNFIGSCP Procedure

INPUT I [PROCESS

Main Storage ‘ n Perform preliminary processing Configuration
- records

OuUTPUT

E Process configuration menu

Transient Area i JcB

Process attachment parameters

User Area: : UPS!
$CNFIG n Process general system parameters

B Process additional system parameters
Configuration

records B Process general print parameters

User-entered Process spool parameters
parameters :

E Process performance parameters
SCA

B Process program additions parameters
JCB

: m Perform final processing

To: Control Storage
End of Job ($E0J)

MODULE/

DESCRIPTION ROUTINE
n Prepare disk 10B to read configuration records from disk. $CNFIG
Perform read operation. Disk 10S
Open work station data management (WSDM) DTF. #DMOP
a Issue PUT to display configuration menu {(display 1). $CNFIG
Display configuration menu. #DWDM
Issue GET to accept operator replies. $CNFIG

» Retrieve operator response: #DWDM q

'“ option 1 {perform system configuration), set off display only switch (CNDSP). $CNFIG

If option 2 (perform limited configuration with reset), set off display only switch and go to ﬂ

If option 3 (perform limited configuration without reset), set off display only switch and go ton.
If option 4 (perform attachments change only), set off display only switch and go to B

I1f option 5 (only display configuration parameters), set on display only switch.

I response was not option 1 through 5, prepare operator prompt (?) and return toto redisplay
configuration menu.

Diagram 1.5 (Part 1 of 5). Perform System Configuration Processing (SCNFIG)

Method of Operation 1-15

Licensed Material—Property of I1BM

DESCRIPTION

MODULE/
ROUTINE

Prepare attachment parameters display (display 2).
0 Issue PUT to output display 2.

Display attachment parameters screen consisting of:
Unit address.

Device type.

Logical 1D.

Attribute.

Default PRT.

Prepare WSDM to retrieve operator replies.
Retrieve operator replies from screen.
If display only request (CNDSP), go ton.'

Validate operator replies:

Confirm unit addresses and device types.
Check logical ID format.

Check for duplicate ID.

Check attribute format.

Check attribute.

Check default printer logical ID format.
Check default printer assignment.

If errors detected, prepare operator error message and return tone.

Modify configuration record based on operator replies:
©® Set logical IDs.

® Set WS/PRT attributes.

® Set default printer logical IDs.

n Prepare general system parameters display (display 3).
0 Prepare WSDM DTF to output display 3.

Display configuration defaults consisting of:

® Date format .

©® Single program mode?

® Work station status after |PL.

® Command language.

" Prepare WSDM DTF to retrieve operator replies.

Retrieve operator replies from screen.

If display only request (CNDSP), go to B

Validate operator replies:

® Single program mode — Y or N,

Console mode after IPL — A or B,

[J
® Command language — A or B.
® Date format.

If errors detected, prepare operator error message and return ton eto redisplay with error message.

Modify configuration record based on operator replies.

$CNFIG

#DWDM

$CNFIG

#DWDM

$CNFIG

#DWDM

$CNFIG

#DWDM

$CNFIG

Diagram 1.5 (Part 2 of 5). Perform System Configuration Processing (SCNFIG)

1-16

Licensed Material—Property of IBM

. MODULE/
DESCRIPTION ROUTINE

B Prepare additional general system parameters display (display 4).] $CNFIG

0 Prepare WSDM DTF to output display 4.

Display configuration defaults consisting of: #DWDM
® Password security feature?
— Security officer ID,
— Security officer password.
— Security file size (1 to 14 blocks).
a. If PSF = No:
1. Put zero in configuration record as file size.
2. Delete security file if one exists.
b. If JOBQ = No, set zero in configuration record as job queue size.
® Job queue support?
— Job queue size (20 to 120 jobs).

Prepare WSDM DTF to retrieve operator replies. $CNFIG
Retrieve operator replies from screen. #DWDM
If display only request (CNDSP), go to [} $CNFIG

Validate operator replies:
® |f job queue yes, verify job queue size.
@ |f password security yes:

— Verify security file size.

- g — Allocate security file if size on.) . #CAS1
— Set officer ID in profile record. $CNFIG
— Set officer password.
— Write profile record to disk. Disk 10S
If errors detected, prepare operator error message and return toBOto redisplay with error message. $CNFIG

Modify configuration record based on operator replies:
® Set job queue size.
® Set security file size.

ﬂ Prepare general print parameters display (display 5).

o Prepare WSDM DTF to output display 5.

Display configuration defaults consisting of: #DWDM
® Standard forms ID.

® Lines per page (1 to 112).
® Print belt image.

® Print spooling? (Y ,N).

Prepare WSDM DTF to retrieve operator responses. $CNFIG
Retrieve operator replies from screen. #DWDM
If display only request (CNDSP), go to . $CNFIG

Validate operatér replies:

® Lines per page — 1to 112,

® Print beltimage — A, B,C, D, or E.
® Spool — YorN.

If errors detected, prepare operator error message and return to BOto redisplay with error message.

Diagram 1.5 (Part 3 of 5). Perform System Configuration Processing (SCNFIG)

Method of Operation 1-17

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

Modify configuration record based on operator replies:
® Set lines/page value in hexadecimal.
® Set print belt image in configuration record:
— Use system find to locate source library get (# MASYL).
— Use main storage relocating loader (SVC 52) to load #MASYL.
— Retrieve requested print belt member.
Convert to hexadecimal if necessary.
— Move image into configuration record.
® Check spool yes or no:
— If yes, set on spool indicator.
— If no, clear spool parameters in configuration record and go to .

I spool not specified (CNSPFLAG) go to[E}.
Prepare spool parameters display (display 6).

0 Prepare WSDM DTF to output display 6.

Display configuration defaults consisting of:
Resident spool writer (Y,N).

Spool writer priority (Y,N).

Autowriter (Y,N).

Spool intercept buffer size (1 to 8-1/2K).
Spool file size (12 to 192 blocks).

Spool writer buffer size (1 to 4-1/2K).

Prepare WSDM DTF to retrive operator replies.
Retrieve operator replies from screen.
If display only request (CNDSP), go to [E]).

Validate operator replies:

Resident spool writer — Y or N,

Spool writer priority — Y or N.

Autowriter — Y or N.

Spool intercept buffer size — 1 to 8 1/2 K segments.
Spool file size — 12 to 192 blocks.

Spool writer buffer size — 1 to 4 1/2 K segments.

If errors detected, prepare operator error message and return toOto redisplay with error message.

Modify configuration record based on operator replies:
® Set spool writer priority — yes or no.
® Set autowriter — yes or no.
©® Set spool intercept buffer size:
— Convert segments to sectors (2 sectors per 1/2 K segment).
— Put size in configuration record.
® Set spool file size:
— Convert blocks to hexadecimal.
— Putsize in configuration record.
® Set writer buffer size: Convert segments to sectors (2 sectors per 1/2 K segment).

n Prepare performance display (display 7).
Q Prepare WSDM DTF to output display 7.
Display configuration defaults consisting of:
® Display data management mode; A — transient, B — resident.

® Display station buffer size (6 to 16 1/2 K).
® System assign/free size (6 to 64 1/2 K).

$CNFIG

#MASYL

$CNFIG

#DWDM

$CNFIG

#DWDM

$CNFIG

#DWDM

Diagram 1.5 (Part 4 of 5). Perform System Configuration Processing (SCNFIG)

1-18

Licensed Material—Property of IBM

TN

DESCRIPTION

MODULE/
ROUTINE

Prepare WSDM DTF to retrieve operator replies.
Retrieve operator replies from screen.

If display only request (CNDSP) gc; ton.
Validate operator replies:

® Display data management mode.

® Display station buffer size — to 16 1/2 K segments.
® System assign/free size — 6 to 64 1/2 K segments.

If errors detected, prepare operator error message and return t°ﬂ° redisplay with error message.

Modify configuration record based on operator replies:
® Display data management mode.
® Work station buffer size:
— Convert to 1/4 K blocks.
— Convert to hexadecimal.
— Set size in configuration record.
® System assign/free size:
— Convert value to 1/4 K blocks.
— Convert value to hexadecimal.
— Set converted 1/4 K blocks value in configuration record.
a Prepare program additions display — display 8.
e Prepare WSDM DTF to output display 8.
Display configuration defaults consisting of:
® MRJE support? (Y,N).
® BSC support? (VY,N).
® OLE support (Y,N).
Prepare WSDM DTF to retrieve operator replies.

Retrieve operator replies from screen.

If display only request (CNDSP), go tone.

Validate operator replies (all replies must be Y or N).

If errors detected, prepare operator error message and return to a,eto redisplay with error message.
Modify configuration record based on operator replies (set flags for Y or N).

Move program addition flags to UPSI switch buffer (UPSI switches will be tested to direct the CNFIGSSP
procedure).

@ ¢ displey only (CNDSP), zero UPSI switch buffer.

Use information retrieval transient to set UPSI switches in job control block (JCB).
m If display only request (CNDSP), go toma.

Set on configuration complete flag (CONMCFGS).

Write modified configuration records to disk.
@ crose wsomorr.

Pass control to end of job transient (§EOJ).

$CNFIG

#DWDM

$CNFIG

#DWDM

$CNFIG

#DWDM

$CNFIG

Disk 10S

#DMCL

$CNFIG

Diagram 1.5 (Part 6 of 5). Perform System Configuration Processing (SCNFIG)

Licensed Material—Property of 1BM

Method of Operation 1-19

From: Main Storage IPL Phase 3
(#MSIPL) Process

m INPUT commressmac r PROCESS OUTPUT

Main Storage > n Check if disk reorganization was Rebuilt:
. : previously aborted B . VTOC format-1's
Fixed Nucleus format 5
Get user file specifications and #MSBLD
Transient Area : options requested

User Area: : a Read first (next) sector
#MSBLD : '
#MSBFL n Process VTOC format 1's
#MSBGL : :

B B Check for last sector

VTOC format 1's | BB sort file keys
format 5)

; Search format 1's to ensure that they
have appropriate latest date indicator

. B Collect unused disk space

To: Contro! Storage End-of-Job ($EQJ)

. MODULE/

DESCRIPTION ROUTINE
n Read Format 5. If disk reorganization ($FREE) was interrupted, complete it. #MSBLD

$FREE
n Get range of user file addresses. #MSBLD
Get operator responses.

Read first (next) sector in the user VTOC. Disk 10S
n Address format 1 entry: #MSBLD

If this entry is unused, go “’n@'

If the file is not new and the operator does not want the format 1 processed, go ton e

If the file is sequential or indexed, ensure that the record number reflects the number of records in the file.
If the file is indexed and the number of records was altered, reconstruct the index from the data records.

Clear the format 1 if the user requests that the file in error be deleted and if any of the following error
conditions exist:

latest date indicator is invalid.

disk reorganization utility ($FREE) could not successfully move this file.

record length exceeds 4096 bytes.

retention is other than temporary or permanent.

type is other than sequential, direct, or indexed.

Diagram 1.6 (Part 1 of 2). Rebuild VTOC Format 1's
1-20

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE
® file is indexed and key position and/or key length are invalid. #MSBLD
® file is indexed and the number of keys is not equal to the number or records.
® file extents are not commensurate with the user disk space or with each other.
0 If there is another format 1 entry in the current sector, go ton.
B Rewrite the sector into the VTOC. If there are more sectors in the VTOC, go toa. Disk 10S
B Load Keysort (#DDKAA). #MSBFL
0 Read first (next) sector in user VTOC. Disk 10S
e Address format 1 entry: |f the sort/merge bits are on, call # DDKAA to sort the keys. #MSBFL
#DDKAA
If there is another format 1 in the sector, go toﬂ e #MSBFL
Rewrite the sector into the VTOC. Disk 10S
If there are more sectors in the VTOC, go toﬂe. #MSBFL
Read first (next) sector in VTOC. Disk 108
@) Adaress first (next) format 1: #MSBGL
® |If this entry is unused or if a file with this same label has been processed, go toe.
® If other files in this sector have the same label, scan until all entries have been compared with the current entry.
® Scan the remaining sectors of the VTOC for a file with the same label as the current entry. For each file
with the same label, scan until all entries have been compared with the current entry.
@ If the current format 1 has a later date, set the latest date indicator in the format 1; otherwise, set binary zeros.
@ |If this is not the last entry in the current sector, go to
Rewrite the sector into the VTOC. Disk 10S
If there are more sectors in the VTOC, go to . #MSBGL
n Read the format 5. Disk 10S
Indicate that $FREE should recover all free disk space. #MSBGL
Rewrite the format 5. Disk 10S
Call disk reorganization ($FREE) which passes control to the end-of-job transient ($EQJ). #MSBGL

Diagram 1.6 (Part 2 of 2). Rebuild VTOC Format 1's

Licensed Material—Property of I1BM

Method of Operation 1-21

Program Organization

Figures 1-1 through 1-3 show the control flow required to
start the system.

1-22

Licensed Material—Property of IBM

Figure 1-1. Main Storage IPL Control Flow

Licensed Materiai—Property of IBM

Control
Storage
PL
Function
Disk 10S
Cross
Main Reference
Storage Resolver
IPL
Phase 1 {#MAXRF)
(#MSNIP)
Dump
Main
Storage
(svec22)
Disk 10S
. Main Storage
Main Relocating
Storage Loader
IPL
Phase 2 (sVC52)
(¥MSTWA)
Oump
Main
‘ " Storage
(svc22)
Command
Processor
Task Post
Processor
) (#CPTC) Sign-on
Transient
(#CPON)
Control
Storage
I —al) Transient
Scheduler
(#SVC 50} Main Storage Main Storage
IPL Override IPL Override
Processor w Processor
(#MSRID) {#MSOER)
Work
Station
o R
Management
(WDDA) Spool lnput
File Job Queue
IPL IPL
{#MSSP) {#msJQ)
Main
Stora
e G Disk
Phase 3 10s
(#MSIPL) Main Storage Command
Allocate Processor
Cleanup
- (#MssQs) (#CMCU)
Finda
Library
——) Entry
(#MASFN) Supervisor File
Task Attach Rebuild
M Troment
(#SVAT) (#MSBLD)
Message
Retrieve
(#MGRET)
Command
Processor
) Resident
Router
(#CPML}

Program Organization

1-23

CNFIGSSP
Procedure

Figure 1-2. System Configuration Logic Flow

1-24

Disk 108

Common
Open

(#DMOP)

System

Work Station

Data

Management
(#DWDM)

Configuration

($CNFIG)

Special
Allocate

(#cAs1)

Source
Library Get

(#MASYL)

Main Storage.

Relocating
Loader
- {SVC52)

NENERN

Common
Close

(#D™mCL)

}

End of Job
($EOQJ)
-Control Storage-

Licensed Material—Property of IBM

Main
Storage
IPL Phase-3

(#MSIPL)

Rebuild
VTOC
Format 1's
(Phase 1)
(#MSBLD)

SYSLOG

(#CLSG)

|1

Rebuild Not Requested w

Disk 10S

End-of-Job
($EOQJ)
-Control Storage-

S
r———

Compress Required m

Disk Reorga-
nization Utility

($FREE)

Rebuild VTOC
Format 1's
(Phase 2)

(#MSBFL)

Disk 108

Keysort

(#DDKAA)

Rebuild VTOC
Format 1's
(Phase 3)

(#MSBGL)

Disk 108

Figure 1-3. Rebuild VTOC Format 1’s Control Flow (#MSBLD)

Licensed Material—Property of I1BM

Disk Reorga-
nization Utility

($FREE)

End of Job
($EQJ)
-Control Storage-

Program Organization 1-25

1-26

Licensed Material—Property of IBM

Introduction

The functions needed to process commands are:

® Router

® Sign-on

® Process control commands

® Job initiation and work station release

® High-level aids and task-to-task communications router
® Inquiry menu option processor and resume

® Special command processor

® Command processor/work station data management
interface

® Console management
® Cleanup

® Password security

1/0 error recovery

COMMAND PROCESSOR

The command processor provides an operator interface for
display station and system operators to direct the System/
34 SSP in performing the operator’s tasks.

The command processor provides control over an operator’s
work session with the System/34 SSP by:

® Controlling the format of the display screen disp‘Iays
when the display station is not in use by an application
program.

® Providing an interface for operators to carry on a
dialogue with the System/34 SSP in order to submit
procedures and OCL statements for execution.

Chapter 2. Processing Commands

® Providing operator commands that are immediate com-
mands not requiring the initiator function for execution,

® Providing error messages and prompts to help the opera-
tor conduct a work session and log related information
to the system history file.

Figure 2-1 shows the functions provided by the command
processor.

Router

The command processor router function waits for events to
occur and routes control to the proper command processor
transient module to process the event.

Events that cause the router to gain control are:

® |[nvite op-end — an operator has pressed a command key
or entered a command or OCL statement.

® Attn post — an operator has requested the inquiry func-
tion by pressing the Attn key.

® Sys req post — an operator has pressed the System:
Request and Enter/Rec Adv keys to get a sign-on dis-
play or to change interfaces at the system console.

® Task-to-task communications post.

Sign on

Before beginning a work session, the operator must perform
a sign-on procedure. The sign-on procedure either initial-
izes a display station for entering commands and OCL, or
initializes the display station for acquisition by a user pro-
gram (standby mode). Only display stations in standby
mode can be acquired by user programs. In addition, the
sign-on procedure is used to validate the operator as an
authorized user (password security).

Introduction 2-1

Licensed Material—Property of IBM

Router

. Job Inquiry and CP/WSDM
Signon Initiation Resume Interface Cleanup
(3 a 9
. Special

High Console 1/0 Error

Commands . Command
Level Aids Management Recovery

Processor

Description:

The router determines which event to process and passes control to the appropriate command processor
function.

WA The sign-on function establishes the interface between the display station operator and the System/34 SSP.

The command function includes control commands for the display station and system operator, spool, and input
JOBQ.

The job initiation and display station release function provides for the initiation and termination of the scheduler.

The high level aids and task-to-task communications router function performs the system request, attention, and
help functions along with other task-to-task communications functions.

The inquiry menu option processor and resume function provide the operator the capability to interrupt a
currently executing program, initiate a new request, and later resume the interrupted program.

The special command processor function provides command key processing and other miscellaneous functions.

The command processor/work station data management function provides a common module to display several
system formats.

The console management function provides user and system tasks a method of writing a message to a display
station (or to the system console) and receiving a reply.

The cleanup function outputs error detected by the command processor, controls the format of the screen, and
outputs session history.

B B B BE O

The /O error recovery function allows 1/O devices to issue error messages to the system console and attempts
recovery from certain 1/O errors.

Figure 2-1. Command Processor Functions

2-2

Licensed Material—Property of I1BM

The command processor provides a Sign on display to the
operator to aid in the sign-on procedure. The Sign-on
display appears at a display station, follqwing IPL, when
the operator presses the System Request key followed by
the Enter/Rec Adv key, or whenever an operator signals
the end of a work session with the OFF command. All
operators including the system operator must perform
the sign-on procedure.

To perform the sign-on procedure, the operator must fill
in the necessary fields defined on the Sign-on display and
press the Enter/Rec Adv key.

Process Control Commands

The control commands provide an interface between the
display station and system operator and the System/34
system support program (SSP). Control commands are
immediate commands that do not require scheduler func-
tions for execution. .

Control commands are provided in two categories, display
station control commands and system console control com-
mands. Some commands, however, can be used at both the
display station and system console.

The following chart indicates which control commands can
be used at the display station, system console, or both.

System Console
Command

Command Display Station
Name Command

ASSIGN X
CANCEL X X
CHANGE X
CONSOLE—
HOLD X
IDELETE
JOoBQ

MENU

MODE

MSG
OFF
PRTY
RELEASE
REPLY
RESTART
START
STATUS X
STOP
TIME X
VARY

x

X

XXX X XXX

XXX XXX XXX

Figure 2-2 is a summary of control commands. It provides
a brief description of each command function, indicates
the processing modules used, and shows the diagram
number.

Refer to the System Support Reference Manual, and /BM
System/34 System Operator’s Guide, SC21-5158 for com-
mand formats and operating procedures.

Job Initiation and Work Station Release

The job initiation and work station release function receives
control from the resident router (#CPML) when the opera-
tor enters a procedure or an OCL statement while the dis-
play station is in command mode. The job start function is
responsible for:

® Starting the initiator (#CIML) to process the operator
entered procedure or OCL statement.

o Attaching a work station to an active multiple requester
terminal (MRT) task.

The release function receives control from the command
processor resident router (#CPML) when work station data
management posts the command processor to perform a
release. The release function is responsible for:

® Reestablishing the command interface at end-of-job for
a command work station.

® Reestablishing the standby interface at step or job end
for a data work station.

© Attaching the initiator to process the next job step when
a requester is released from a MRT task or a released
program task.

High-Level Aids and Task-to- Task Communications Router
The keys that invoke high-level aids are: the Attn key, the
Sys Req key and Enter key, and the Help key {(when in

operator error mode). The command processor receives
contro! whenever one of these keys is pressed.

Introduction 2-3

Licensed Material—Property of IBM

2-4

Command

ASSIGN

CANCEL

CHANGE

CONSOLE

HOLD

IDELETE

JOBQ

MENU

MODE

MSG

OFF

Function

Used by the system operator to temporarily exchange the IDs of two display
stations or two printer, or to temporarily assign a printer as the system
printer.

Used by the system operator to cancel any of the following:
® A specified job on the input job queue

All jobs on the input job queue

A specified job on the spool file

All jobs on the spool file

A currently executing job

Used by the display station operator to cancel a job on the input job queue.

Used by the system operator to change the following:

® The position of a job on the input job queue or the spool file
® The number of copies to be printed for a job on the spool file
® The forms number to be used for the job on the spool file

Used by the system operator to cause an alternative console to become the
system console.

Used by the system operator to temporarily prevent a specified job or all
jobs on the spool file from being printed.

Used by the system operator to specify whether informational messages
directed to the system console from a procedure should be automatically
responded to.

Used by the display station operator to specify whether informational
messages directed to the display station from procedures are to be
displayed.

Used by the display station operator to place a job on the input job queue.

Used by the display station operator to activate the menu function and to
display the specified menu.

Used by the display station operator to change from command mode to
standby mode or from standby mode to command mode.

Used by the system operator to send a message to all display stations or to
a selected display station or display station operator.

Used by the display station operator to send a message to the system console

or to a selected display station operator; or, when entered with no parameters,

to display any messages pending at the display station.

Used by the display station operator to terminate a display station session.

Figure 2-2 (Part 1 of 3). Control Command Summary

Licensed Material—Property of iBM

Module

#CCAS

#CCCM,
#CCJQ,
and
#CCCP

#CCJa
and
#CCGP

#CCCO

#CCHO

#CCID

#CcJa

#CCMU

#CCOF

#CCMG

#CCOF

Diagram

24

25

2.6

27

2.8

29

2.10

2.12

2.1

2.12

Command

PRTY

RELEASE

REPLY

RESTART

START

STATUS

Function

Used by the system operator to change the dispatching priority of a cur-
rently executing job.

Used by the display station operator to assign a priority to the next job run
from the display station or the next job placed on the input job queue.

Used by the system operator to release for printing either the entire spool
file, a job on the spool file, or all jobs on the spool file that were individually
held or that were placed on the spool file with PRIORITY-0.

Used by the system operator to do one of the following:

® Respond to all informational messages on the display screen

® Compress the display so that only messages still needing a response are
displayed

® Respond to an individual message

Used by the system operator to restart the printing of a job from the spool
file.

Used by the system operator to do one of the following:

® Start the printing of jobs from the spool file

® Allow the initiation of jobs from all display stations or from a specified
display station

® Start the running of jobs from the input job queue

® Resume the system activity that was stopped by a STOP SYSTEM
contro! command

- ® Resume the execution of a job, or all jobs, that were stopped by a STOP

JOB control command

Used by the system operator to display any of the following:

The entries on the spool file

© The status of jobs running on the system

® Any entries on the input job queue

® Status information about the display stations, printers, and the diskette
drive

Used by the display station operator to display any of the following:

@ Status of the display station session

® |nput job queue entries for jobs submitted from the display station by
the current display station operator

® Status of the display stations, printers and diskette drive

Figure 2-2 (Part 2 of 3). Control Command Summary

Licensed Material—Property of 1BM

Module

#CCPY

#CCHO

#CCRE

#CCRT
and
#CCRR

#CCRT,

Diagram

2,13

28

2.14

2,15

215

#CCRR,

and
#CCJS

#CCSM,
#CCSP,
#CCSW,
#CCSU,
#CCU2,
and
#CCSJ

#CCSS,
#CCSW,
#CCS2,
#CCS3,
#CCSs4,
and
#CCSJ

2.16

{ntroduction

2-5

Command Function Module Diagram
STOP Used by the system operator to do any of the following: #CCRT, 2.15
® Stop the printing of jobs from the spool file #CPTC,
® Stop the initiation of jobs from all display stations except the system #CCRR,
console, or stops the initiation of jobs from a specified display station and
® Stop the initiation of jobs from the input job queue #ccJa
® Begin an orderly shutdown of the system with or without a key sort
® Stops the execution of all jobs or a specified job
TIME Used by the system operator and the display station operator to display #CCTD 2.17
the time of day and the system date.
VARY Used by the system operator to change the status of the display sfation, a #CCAS 24

printer, the system printer, or the diskette drive from online to offline or

from offline to online.

Figure 2-2 (Part 3 of 3). Control Command Summary

The operator interrupts an executing program with the
Attn key. The inquiry display that results from the inter-
rupt allows the operator to: (1) resume the interrupted
program; (2) return to a command interface where he can
run another program; (3) cancel the interrupted program;
or, (4) set inquiry condition and resume.

The Sys Req key and Enter key allow the system operator
to switch the system console between work station mode
and system console mode.

The Help key displays a description of the flashing error
number that appears in the bottom left corner of the dis-
play screen.

When control is received from the task-to-task communica-
tions router, the command processor checks the event con-
trol mask (ECM) to determine if the call is due to an 1/0
error; if it is, control is given to I/O error recovery
(#SVERP). If the call was not due to an 1/O error, the
command processor checks a series of pending functions to
determine if control was received to process the functions.
The functions that can be performed are, release, console
SYSLOG, task suspend, stop system, and JOBQ detach.

Inquiry Menu Option Processor and Resume
The command processor inquiry menu option processor
and resume function allows the operator to interrupt exe-

cuting programs to submit new jobs or commands and then
later resume the interrupted program.

2-6

The inquiry menu processor receives contro! when the
operator selects an option from the inquiry menu. The
inquiry menu processor handles the RESUME, INQUIRY,
CANCEL, RELEASE, and inquiry condition options.

The resume function, initiated by command key 1 from
the command display, reattaches the terminal to the inter-

~ rupted program.

Special Command Processor

The'special cor’rjmand processor (#CPSP) handles router

~ accept errors and command key functions. It also receives

control when the Enter key is pressed (1) after a program
has released a display station at end of job, (2) after mes-
sages were displayed from the MSG command, or (3) after
a second level message was displayed at the system console.

Command Processor/Work Station Data Management
Interface

Command processor/work station data management inter-
face (#CPI0) is called with a RIB to indicate which type

of 1/0 is requested. #CPIO builds a parameter list and
passes control to work station data management (#DWDM).

Licensed Material—Property of 1BM

Console Management

Command processor console management provides a way
to route messages to the system console or work stations
and, if necessary, retrieve a response from the operator.

The main functions performed by console management are:

® Move message elements from the user’s system-log sec-
tor to the console system-log disk queue.

® Free system-log queue sector for reuse.

® Display messages at the system console.

® Perform End-of-Job processing for console management.

The work station logical 1/O interface provides logical /0
keyboard data management services for SYSIN and logical
SYSLOG/SYSLIST data management services.

The main data management services for SYSIN are:

® Save the user’s display screen.

o Display logical 1/0 interface at the display station.

® Process user response data from the keyboard.

The main data management services for SYSLOG/SYSLIST
are:

® Save the user’s display screen.

® Display the logical 1/0 interface.

® Display a message or halt on the display screen.
® Display second-level messages as required.

@ Process write to operator with reply (WTOR) and write
to operator without reply (WTO) messages.

® Retrieve and return responses to the user.
Console management normally returns control to the com-

mand processor mainline module (#CPML) and work station
logical 1/0 returns control to the calling program.

Command Processor Cleanup

The command processor cleanup routine provides cleanup
activity and screen control for the other command proces-
sor transient modules.

The functions provided by the cleanup routine are:
® Loginput area to the history file

® Retrieve messages by message identification code (MIC)
or retrieve messages from main storage and display to
specified display station

® | og messages to the printer when applicable
® Substitute data in message formats as required

® Place system console messages on the system console
queue

Password Security

Password security helps the System/34 user prevent unau-
thorized use of the system.

The user must request password security at system config-
uration time to invoke the password security function. If
the function is requested, system configuration routines
will:

® Allocate security file space and initialize it to binary
zero

o Build the master security officer record and write it to
the security file

® |nitialize the appropriate system configuration record
indicators

At IPL time, system communication area (SCA) is initial-
ized to indicate password security is active and security
initialization is required. When system configuration is
complete, the master security officer can sign on and
authorize other system users by using the security file
utility ($PROF) or the security file restore utility ($PRST).
The master security officer can also use $PROF to alter
fields within a particular security file record or prevent a
particular system user sign on.

Introduction 2-7

Licensed Material—Property of IBM

The security file contains information about system users
authorized to sign on the system. A record for each author-
ized user contains information such as:

© User ID

® Password

® Security classification

® Comments

The security sign-on check is performed by security file
data management (#PRSD). #PRSD is called by sign-on

(#CPON). #PRSD searches the security file for the user 1D
and verifies the associated password and classification.

1/0 Error Recovery

1/0 error recovery issues error messages, recognizes opera-
tor responses, and handles exception conditions. - The com-
mand processor serves as the interface between 1/0 error
recovery {(main storage) and the error recovery procedures
(control storage and main storage).

1/0 error recovery consists of:

® The error recovery router (#SVERP)

© The work station error message transient (#SVWER)

© The display station error recovery transient (#SVWSR)

® The display station error recovery for device not ready
transient (#SVNRY)

® The printer prepare transient for matrix printers
(#SVPRE)

® The command reject ready transient (#SVUR) and
routine (#SVRD)

2-8

The command processor initiates [/O error recovery when
the command processor error event control mask (ECM)
is posted by a control storage routine. The command
processor calls the 1/0 error recovery router (#SVERP),
which determines what 1/O error recovery functions are
required.

If an error message is to be displayed, #SVERRP calls the
1/O error message transient (#SVWER). For display sta-
tion errors, #SVERP:-calls display station error recovery
(#SVWSR); for all other 1/0 device errors, #SVERP passes
control to/é control storage transient.

Display Station Error Recovery

The display station error recovery transient (#SVWSR)
handles error-recovery for display station hardware and
program related errors. For device not ready errors,
#SVWSR calls the display station error recovery for device
not ready transient (#SVNRY). The command reject ready
transient (#SVUR) pushes/pulls the user task for #SVRD,
when required. The command reject ready routine
(#SVRD) processes command rejected records.

Licensed Material—Property of I1BM

Method of Operation

This section contains functional diagrams for the routines
needed to process commands. They are:

® Router
® Sign-on
® Command processing

® Job initiation and display station release

High level aids and task-to-task communications router

Inquiry menu option and resume processing

From: Main Storage IPL

INPUT I Jr PROCESS

Required system
areas

Sign-on (Diagram 2.2)

Router (Diagram 2.1)

Special command processing

Command processor/work station data management
interface

Console management
Command processor cleanup
Password security

1/0 error recovery

Work station error recovery

OUTPUT

Updated system
areas

Appropriate

Command Processing Overview {Diagram display

2.3)

Job initiator and work station release

overview (Diagram 2.18)

High level aids and task-to-task
communications router {Diagram 2.21)

Inquiry menu option processor and
resume overview (Diagram 2.22)

Special command processor (Diagram 2.25)

Command Processor/work station data
management interface {Diagram 2.26)

Console management overview {Diagram

2.27)

Command processor cleanup (Diagram 2.31)

Password Security (Diagram 2.32)

1/O error recovery (Diagram 2.33)

Diagram 2.0. Overview of Command Processor

To: Initiator Function

Method of Operation 2-9

Licensed Material—Property of IBM

From: IPL or Command Processor Transient

l r PROCESS

Main Storage n Wait for event to occur and rout control to
appropriate command processor transient

Transient Area: Process work station invite op-end

#CPRT
_or

#CPTC

User Area:
#CPML

System Queue
Headers

TCB chain

TUB chain

Menu Message
Member

To: Requested Command
Processor Transient

OUTPUT

Command parameter '_
list

Attach parameter
list

Cleanup parameter
list

Call to appropriate
transient

DESCRIPTION

MODULE/
ROUTINE

n Wait for event to occur.
If event is invite op-end, go to .
If event is high-level aids or task-to-task communications exit to #CPTC (Diagram 2.21).

Check for special routing conditions (preaccept):
® input not caused by Enter key.
® |nput only to cause screen restore or refresh,
® Input is release acknowledgement.

If any of the above conditions exist, exit to # CPSP.

If invite op-end:
® Build work station data management parameter list.
® Accept input data.
® Process specials (post accept):
— If input for sign on request, exit to sign on transient (# CPON).
— If input from status display and not |, exit to status transient (# CCSM).
— If console output, exit to console output transient (Logical 1/0 function — #CMCI).

#CPML

#CPRT

#DWDM
#CPRT

Diagram 2.1 (Part 1 of 2). Perform Router Function

2-10

Licensed Material—Property of I1BM

MODULE/

DESCRIPTION ROUTINE
® Process menu input (if applicable): #CPRT
— Build message retrieve parameter list.
— Convert input data to message identification code (MIC).
— Retrieve MIC and place in input buffer. #MGRET
— |f menu cancel request, exit to menu command processor (# CCMU). #CPRT
® Scan input:
— lIsolate verb and operand data.
— If input an inquiry menu option, exit to inquiry menu processor (#CP1Q).
— If input a command:
a. Verify that command allowed in present mode.
b. Build command transient parameter list in command processor work area.
c. Exit to command or function requested.
— If input a job request:
a. Ensure job initiation allowed at requesting work station.
b. If inquiry and job control block {JCB) and work station work area not allocated, link to #CPIQ to
allocate space (inquiry menu processing function).
c. If not multiple requester terminal (MRT), start initiator (job start function). #SVAT
d. 1f MRT and work station can be attached, attach terminal unit block (TUB) to task (job start function). #CPRT

If errors detected:
® Build #CMCU parameter list.
® Exit to cleanup (#CMCU) to display message (Diagram 2.31).

Diagram 2.1 (Part 2 of 2). Perform Router Function |

Method of Operation

Licensed Material—Property of I1BM

2-1

From: IPL or
Input Router (#CPRT)

INPUT I [PROCESS

(XR2 n Process test request SCA

OUTPUT

CP work area Process IPL special request TCB

Main Storage ’ Process sign-on information JCB

n Process security file information if Display
Transient Area: security in effect

#CPON Cleanup parameter
B create job control block (JCB) list

User Area:

B Process library information if library Menu parameter
User Program list

Process IPL information if IPL in
progress

TCB

SCA B Process menu display request if menu
System display name supplied

formats

Work station B Indicate work station signed on
configuration record

To: IPLor
Cleanup Routine (# CMCU)

: MODULE/
DESCRIPTION ROUTINE

n If test request call: #CPON
® Build JCB.
® Sign on work station.
@ Attach the initiator to run test request program.
® If job submission halted, issue error message.

If IPL special request, put up appropriate display (command or system). -
Verify USERID syntax and check that high-level dedication not in effect.

n Examine security file flag in system communication area (SCA) to determine if security in effect.

Retrieve user's security profile. #PRSD

Determine if: #CPON
® Security file was found.
® User ID in security file.
® Operator entered correct password.

If security information not correct, issue error message. #CMCU

Diagram 2.2 (Part 1 of 2). Perform Sign-on Function

2-12

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE
B ¢ data work station: #CPON
® Set up work station data management parameter list for standby display.
® |ndicate in terminal unit block (TUB) that work station signed on and in standby mode.
P ® Display standby screen. #DWDM
® |f messages pending for this display station, #CPON
display them. #CCMX
® | oad and pass control to cleanup routine (# CMCU). #CPON
If command work station:
® Assign job control block (JCB). #CPON
® Chain TUB to JCB.
® |nitialize JCB with work station configuration record and default values,
® Put printer ID in TUB.
B Determine if library name entered.
If library name not 0, set up library find parameter list.
Find specified library. #MAFLB
Move library format 1 address into JCB. #CPON
If library not found, issue error message. #CMCU
Determine if IPL in progress. #CPON
Move date into SCA if date specified.
Set system timer if time is valid.
Issue error message if invalid time entered. #CMCU
Indicate overrides in SCA if OVERRIDES=Y. #CPON
E Determine if menu specified.
Set up menu parameter list.
Build menu format index.
Ensure menu on. #CCMU
ﬂ Indicate display station signed on in TUB. #CPON
Put user ID in TUB and system date in JCB.
If IPL in progress, return to IPL procedure.
If not IPL, build work station data management parameter list.
Display requested screen: #DWDM
® Command Display.
® Menu display.
If messages pending for this display station, #CPON
P display them. #CCMX
If region size was bad, issue warning. #CPON
Load and pass control to the cleanup routine (#CMCU).

Diagram 2.2 (Part 2 of 2). Perform Sign-on Function

Licensed Material—Property of I1BM

Method of Operation 2-13

INPUT

From: Input Router (#CPRT)

TUBand UDT " >e

TCB, TUB, TCB :>o

Job queue '>0

TCB and TUB I ?o

Spool file |>o

TUB >o
] g

Menu message
member

I

Message text

-]
\

JCB, FSB,and TUB >

TUB, TCB,and JCB —___—— >e

Input parameter >e
1 {
TCB, TUB, and JCB >0

TUB, TCB, SCA, >0

and JCB I I

Time and date ®

3

Diagram 2.3. Overview of Command Processing

2-14

| r PROCESS
|

|

OUTPUT

Process ASSIGN or VARY command

> Updated TUB and

(Diagram 2.4)

Process CANCEL command (Diagram 2.5)

ubDT

> Updated TCB and

I JcB

Process CHANGE or JOBQ command

(Diagram 2.6)

Process CONSOLE request (Diagram 2.7)
Process HOLD or RELEASE command
(Diagram 2.8)

Process IDELETE request (Diagram 2.9)

Process MENU command (Diagram 2.10)

Process MSG command (Diagram 2.11)

> Updated job queue

Console screen

I display

> Updated spool

I file index

> Updated TUB
|

'>Requested menu

I "~ display

> Printed or

I displayed message

Process MODE or OFF command

>Updated JCB, FSB,

(Diagram 2.12)

Process PRIORITY command (Diagram 2.13)

Process REPLY command (Diagrara 2.14) :> User response

I and TUB

Updated JCB and

I TCB

Process START, STOP, or RESTART

command {Diagram 2.15)

Process STATWS command (Diagram 2.16) > Status display

Process TIME command (Diagram 2.17)

1
> Updated TCB, TUB,
I and JCB

>Time and date in
»
g command pro-
cessor work area

To: Cleanup Routine (#CMCU)

Licensed Material—Property of IBM

From: Input Router (#CPRT)

INPUT I r PROCESS

n Process ASSIGN command TUB

OUTPUT

CXR2
Parameter list Process VARY command ubT

Main Storage Cleanup routine
parameter list

Transient Area:
#CCAS

User Area

TUB chain
UDTs
TUBs

To: Cleanup Routine (#CMCU)

MODULE/
DESCRIPTION ROUTINE

n Determine if ASSIGN or VARY command entered. #CCAS
If VARY command, go tofZl}-
If operand one not PRT, check syntax and switch terminal 1Ds in terminal unit blocks (TUBs) if no érrors exist.
If operand one PRT:
® Syntax check operand two.

® Ensure operand two on TUB chain and printer.
® Indicate new printer in system communication area (SCA).

Issue error message if: #CMCU
® From terminal ID invalid .

® From terminal online,

® To terminal ID invalid.

® To terminal online.

® OQOperand one printer but operand two not printer.

Verify operand two: #CCAS
® Printer.
@ Diskette.
® Work station ID.

Verify operand one:
® ON.
® OFF.

Diagram 2.4 (Part 1 of 2). Perform ASSIGN and VARY Command Processing

Method of Operation 2-15

Licensed Material—Property of I1BM

MODULE/

DESCRIPTION ROUTINE
If work station ID: #CCAS
® \erify work'station on TUB chain.
® If VARY ON request:

— Check TUB and if work station offline, update TUB to indicate work station online.
— If work station already online, issue message. #CMCU
® |f VARY OFF request: #CCAS
— Check TUB and if work station online, update TUB to indicate work station offline.
— If TUB active, issue error message. #CMCU
— If work station already offline, issue message, .
— If ACE on command processor, complete queue, deque, and free it.
If VARY PRT request: #CCAS
® |f vary ON request:
— Check TUB and if printer offline, update TUB to indicate printer online.
> — If printer already online, issue message. #CMCU
® |f VARY OFF request:
— Check TUB and if printer online, update TUB to indicate printer offline. #CCAS
— If TUB active, issue error message. #CMCU
— If printer already offline, issue message.
If VARY Diskette request: #CCAS
® [fvary ON request:
— Check UDT and if diskette offline, update UDT to indicate diskette online.
— |f diskette already online, issue message. #CMCU
® |f VARY OFF request: #CCAS
— Check UDT and if diskette online, update UDT to indicate diskette offline.
#CMCU
#CCAS
— If diskette already offline, issue message. #CMCU
Build cleanup routine parameter list. #CCAS

Call and pass control to cleanup routine (#CMCU).

Note: |f errors occur, call #CMCU to issue error message.

Diagram 2.4 (Part 2 of 2). Perform ASSIGN and VARY Command Processing

2-16

Licensed Material—Property of 1BM

From: Input Router (#CPRT)

I r PROCESS

n Determine function requested TCB

OUTPUT

(XRZ
CP work area] B Process CANCEL JOBQ request Jce

Main Storage Process CANCEL PRT request CP work area

u Process CANCEL jobname request Cleanup routine
Transient Area: : parameter list

#CCCM
#ccJa

#CcCCP

User Area

TCB chain
TUB chain
TUB
TCB
JcB

To: Cleanup Routine (#CMCU)

MODULE/
DESCRIPTION ROUTINE
n Search for operand 1 in cancel command operand table: #ccem
® |f cancel JOBQ request go to.
® |f CANCEL PRT request, go to .
® |f CANCEL jobname, go to n
® |f inquiry, go ton e .
® |ferror, go to na .
Verify correct number of operands (if ALL, verify in console mode).
Load and pass control to input job queue transient (#CCJQ).
If jobname given: #ccJa
® | ocate specified jobname.
® Remove specified entry from job queue. FDIOS
® Chain specified entry to available queue.
® Set message identification code (MIC) to display cancel successful message. #ccia
® Call cleanup transient (# CMCU) and exit.
If ALL given:
® Remove all entries from job queue. FDIOS
® Chain all entries to available queue.
® Set MIC to display cancel successful message. #CcCla
® (Call cleanup transient (#CMCU) and exit.
Verify correct number of operands and in console mode.

Diagram 2,5 (Part 1 of 2). Perform CANCEL Command Processing

Method of Operation 2-17

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

Load and pass control to spool command — cancel transient (# CCCP).

If jobname given:

Locate specified jobname.

Ensure OK to cancel job.

Remove specified entry from print queue.

Chain entry to available queue.

Increment number of available spool file block-groups.
Call cleanup transient (#CMCU)} and exit.

If jobname not given, but ALL is specified:
® Remove all entries (not executing) from the print queue.
® Chain all entries to available queue.
® Increment number available spool file block-groups.
® Call cleanup transient (# CMCU) and exit.
n Locate jobname in task control block (TCB) chain.
Verify operand length is eight characters.
Ensure command issued from console.
o If no operand or 3 option, indicate 3 option in TCB.
If 2 option, indicate 2 option in TCB.
If D or DUMP option:
® Set dump indicator in TCB.
® Indicate 3 option in TCB.
If not cancelable and not inquiry cancel:
® [ndicate cancel pending in TCB.
® Enter job canceled MIC in JCB and indicate termination should display message.
® Call cleanup transient {# CMCU) to display cancel pending at system console and exit.
If job in termination and 2 option taken, pend cancel as if not cancelable.
Force TCB to call end of job.

If inquiry, exit to caller.

If cancel command, issue message to operator indicating job being canceled.

#CCCM

#CCCP

FDIOS

#CCCP

FDIOS

#CCCP

#CCCM

#CMCU

Diagram 2.5 (Part 2 of 2). Perform CANCEL Command Processing

2-18

Licensed Material—Property of IBM

From: Input Router (#CPRT) ’
: m OUTPUT

g INPUT . E r PROCESS
XR 2 - > W Determine function requested TCB chain
CP Work Area) E Process JOBQ command Job queue
Main Storage 3 Process CHANGE JOBQ request Spool file

Jce

Process CHANGE PRT request

Transient Area:
#ccJa

:: B Process CHANGE COPIES request
#CCHO :

B Process CHANGE FORMS request

User Area

TCB chain
TUB chain
Job queue
Spool file

JCB

To: Cleanup Routine (# CMCU)

MODULE/
DESCRIPTION ROUTINE

Search command routing code for requested function: #CccJla

® |f JOBQ command, go to
® |f CHANGE JOBQ request, go to [},

© If CHANGE PRT request, go to 4’ .

® |f CHANGE COPIES request, go to [}
@ |f CHANGE FORMS request, go toE.

E Ensure enough room exists on queue for new entry.

Ensure proc name parameter given.

Chain new entry to job queue. Disk 10S

Save any optional parameters supplied. #CcCJQ
Place jobname assigried to new entry in command processor work area.
Call cleanup routine (# CMCU), pass job name to # CMCU for display, and exit to #CMCU.

B Ensure job queue exists.:

Ensure jobname supplied exits. Disk 10S

Diagram 2.6 (Part 1 of 2). Perform CHANGE and JOBQ Command Processing

Method of Operation 2-19

Licensed Material—Property of IBM

MODULE/

Note: If error occurs, call #CMCU to issue error message.

DESCRIPTION ROUTINE
If second jobname (jobname1), chain jobname being changed behind jobname1. #ccJia
I1f second jobname not given or not found, chain jobname being changed to top of job queue. Disk 10S
Call and pass control to #CMCU.
n Ensure jobname specified and exists. #CCGP
Remove specified jobname from present position on print queue chain.
If second jobname (jobname1) given, chain jobname being changed behind jobname1on print queue and set Disk 108
priority of moved jobname equal to priority of jobname1.
If second jobname not given, chain jobname being changed to top of print queue (first on print queue) and
change priority to 5.
Call #CMCU to display message CHANGE COMMAND SUCCESSFUL and exit. #CCGP
B Ensure jobname specified and exists.
Ensure valid number of copies given.
Change number of copies in spool file index to new number specified. Disk 10S
Call #CMCU to display message CHANGE COMMAND SUCCESSFUL and exit. #CCGP
ﬂ Ensure jobname specified and exists. #CCJa
Ensure valid forms number supplied.
Change forms number in spool file index to new forms number supplied. Disk 10S
Call #CMCU to display message CHANGE COMMAND SUCCESSFUL and exit. #CCJQ

Diagram 2.6 (Part 2 of 2). Perform CHANGE and JOBQ Command Processing

2-20

Licensed Material—Property of IBM

From: Input Router (#CPRT)

INPUT I r PROCESS

XR2 > n Ensure console command request is valid TUB

OUTPUT

B Display console image on new console TUB chain
screen

Parameter list

Console screen

Main Storage
B Update old and new master console indicates display

B} '+ called by error recovery, rebuild console SCA
display and exit.

Transient Area:
#ccco

User Area

SCA
TCB
TuB
TUB chain

To: Cleanup Routine (#CMCU)

MODULE/
DESCRIPTION ' ROUTINE

m Locate command processor task control block (TCB) and master console terminal unit block (TUB). #CCCO

If security active on system (SCAMSEC), ensure command user security status is system operator or higher
(TUBOPSTS).

If inquiry active at terminal entering command (TUBINQ1 and TUBINQZ2}, issue error message (MIC 5635).
If work station not defined alternate console at configdration time (TUBACN) issue error message {(MIC 5636).
If current console does not have error indicator (TUB$ERR), issue error message (MIC 5638).

Assign space to retrieve screen image from command processor task work area (TWA).

Blank out assign/free area.

Build work station data management parameter list. #CCCO

Display blank console format. ’ #DWDM

Process system console image matrix: #CCCO
Find next image matrix entry requiring response.
Determine disk sector containing screen data line.
Read sector from TWA on disk.

Build work station data management parameter list.

Display appropriate 80-byte entry on new console screen. #DWDM

Repeat steps until all system console image matrix entries displayed. #CCCO
a Set off master console indication (TUBMCN) for old console TUBs.
Set on master console indication (TUBMCN) for new console.

Indicate new console in console mode (TUBMCNSL).

Diagram 2.7 (Part 1 of 2). Perform CONSOLE Request Processing

Method of Operation 2-21

Licensed Material—Property of 1BM

DESCRIPTION

MODULE/
ROUTINE

Turn off console check light.

Create command TUB and chain to console TUB.

Set up console TUB address in SCA (SCADMTUB).

Lock on to the TUB chain and free up the assign free space of the original console TUB.

Rechain any TUBs above the old console TUB to point at horizontal TUB.

Call error recovery transient to free up any resources associated with a job that was active at the original

system console.

Load and pass control to cleanup routine (# CMCU).

Note: If errors occur, call #CMCU to issue error message.

#Ccco

#SVERP

#CCCO

Diagram 2.7 (Part 2 of 2). Perform CONSOLE Request Processing

2-22

Licensed Material—Property of IBM

From: Input Router (#CPRT)

INPUT I r PROCESS OUTPUT

(XR2 n Determine function requested TCB chain

CP work area ﬂ Process HOLD command Spool file

Main Storage B Process RELEASE command

Transient Area:
#CCHO

User Area

TCB chain
TUB chain
Spool file

To: Cleanup Routine (#CMCU)

MODULE/
DESCRIPTION ROUTINE
n Search command routing code for requested function: #CCHO
® |fHOLD, go to .
® If RELEASE, go to [k}
E Check for jobname specified in command.
If jobname not specified:
® Set Q-held indicator in master index. Disk 10S
O Call cleanup routine (#CMCU) to issue message (HOLD COMMAND SUCCESSFUL) and exit. #CCHO
If jobname specified:
@ Set job ISIN held bit in spool file index to indicate specified jobname held. Disk 10S
® Call #CMCU to issue message (HOLD COMMAND SUCCESSFUL) and exit. #CCHO
Check for jobname specified in command.
If jobname not specified:
® Set off Q-held indicator in master index. Disk 10S
® Call #CMCU to issue message (RELEASE COMMAND SUCCESSFUL) and exit. #CCHO
If jobname specified:
© Set off job is in held bit in spool file index. Disk 10S
® Call #CMCU to issue message (RELEASE COMMAND SUCCESSFUL) and exit. #CCHO
1f ALLH specified:
® Set off job is in held bit in spool file index of all jobs currently held. Disk 10S
® Call #CMCU to issue message (RELEASE COMMAND SUCCESSFUL) and exit. #CCHO
Note: If error occurs, call #CMCU to issue error message.

Diagram 2.8. Perform HOLD and RELEASE Command Processing

Method of Operation 2-23

Licensed Material—Property of |IBM

From: Input Router (#CPRT)

INPUT l r PROCESS

Cxaz BB Process IDELETE request

Parameter list

Main Storage

Transient Area:
#CCID

User Area

TUB

To: Cleanup Routine (#CMCU)

OUTPUT

If OFF entered, indicate IDELETE off in TUB (TUBIDEL).

If ON or nothing entered, indicate IDELETE on in TUB (TUBIDEL).
Set up IDELETE successful message (MIC 5721).

Build cleanup parameter list.

Load and pass control to cleanup (#CMCU).

MODULE/
DESCRIPTION ROUTINE
Check parameter 1 for ON or OFF entered. #CCID
If parameter 1.not ON, OFF, or null, issue error message (MIC 5720). #CMCU
Find terminal unit block (TUB) address. #CCID

Diagram 2.9. Perform IDELETE Command Processing

2-24

Licensed Material—Property of IBM

From: Input Router (#CPRT)
or Sign-on Routine (# CPON)

INPUT I r PROCESS
CXR2

Parameter list n Process MENU request CP work area

OUTPUT

Main Storage Cleanup routine
parameter list

Transient Area: . TCB

#ccmu
TUB

User Area

Jcs

CP work area
TCB
TUB
JCB

To: Sign-on Routine (#CPON)
or Cleanup Routine (#CMCU)

. MODULE/
DESCRIPTION) ROUTINE

n Determine command entered. #CCMU
If cancel menu request (option 0):
® Build work station data management parameter list.
® Display command screen. #DWDM
® Set off menu active bit (TUB MENUA) in TUB. #CCMU
® Zero disk address in JCB. .
® |f menu from #LIBRARY, subtract 1 from user count.
® Exit. !
Find menu members: #MASFN
® Menu format member (ensure format valid SFGR format).
® Menu message member.
® Verify from same library.

P Retrieve message member: #ccMmu 4

® Set up job control block (JCB).
® Setup |OB.
® Read format member from disk. Disk 10S
® indicate menu active (TUBMENUA). #CCMU
® If menu was active, end previous menu.
If called from sign-on function, return control to sign-on routine (¥CPON).
If status active (TUBSTATA), pass control to status display (#CCSM) to end status.
If called by MENU command:
® Build work station data management parameter list.
® Display requested menu. #DWDM
® Pass control to #CMCU. #CCMU
Note: If errors oci:ur, call #CMCU to issue error message.

Diagram 2.10. Perform MENU Command Processing

Method of Operation 2-25

Licensed Material—Property of IBM

From: Input Router (#CPRT)

INPUT l r PROCESS OUTPUT

(XR2 n Ensure command validity and check TUuB

operand count
Parameter list . TCB
ﬂ Process system console broadcast message
Main Storage ' JCB
Process work station to system console
message SCA

Transient Area:
#CCMG n Process system console or work station to Displayed message
#CCMX specific work station message

Printed message
User Area B Display messages at work stations

TUB chain
TuB

TCB

JCB

Message text

To: Cleanup Routine (#CMCU) or
Command Processor Mainline (#CPML)

MODULE/
DESCRIPTION ROUTINE
n Check message command entered and issue error messages as necessary: #CCMG
® |f command invalid in console mode, issue message identification code (MIC) 5633.
® |f no messages to send, issue MIC 5634.
® |f message text missing, issue MIC 5628.
® |f message text longer than 60 characters, issue MIC 5627.
® |f message is being sent to a device other than a work station, issue MIC 5626.
® |f ALL invalid, issue MIC 5625.
® |f not enough assign/free space, issue MIC 5702.
® |f work station is offline, issue MIC 5623.
If error detected:
® Build cleanup routine (# CMCU) parameter list. _
® Display error message. #CMCU
I1f operand count zero, call message command show routine (# CCMX) to issue messages and go toa. #CCMG
Ensure room exists in message queue.
Build message in work area.
Locate users message queue sector. (TWA SVC 51},
Place message in users queue sector.

Diagram 2.11 (Part 1 of 3). Perform MSG C&mmand Processing

2-26

Licensed Material—Property of |IBM

N

MODULE/
DESCRIPTION ROUTINE
Write sector back to disk. (TWA access SVC 51). #CCMG
Return.
If spool inactive, system in single program mode, and log printer active, put message to printer. #CMCU
If unable to find space in user’s message queue, issue error message — MIC 5639 and exit to #CMCU. #CCMG
Sound alarm at each display station online. WSIOCH
Set up MESSAGE COMMAND SUCCESSFUL message — MIC 5632. #CCMG
Build cleanup routine (# CMCU) parameter list.
Display message MIC 5632. #CMCU
Ensure room exists in message queué. #CCMG
If unable to find space in console message queue, issue MIC 5629 and exit to #CMCU.
Build message in work area.
Locate message queue sector.
Place message in queue sector.
Update and writé sector back to disk.
Increment message queue count in SCA.
Post console SYSLOG (#CMCI).
Build cleanup routine (# CMCU) parameter list.
Display message — MIC 5632. #CMCU
n Search TUB chain for work station |D matching work station 1D entered (WS-ID). #CCMG
Search TUB chain for user 1D if user-1D given.
If no work station ID or user ID found to match, issue MIC 5630 and exit to #CMCU.
Save TUB address.
Initialize message queue sectors associated with specified work station if message count in TUB=zero.
Build message in work area.
Locate message queue sector. (TWA request SVC 51)
If no queue §pace available, issue MIC 5630 and exit to #CMCU.
Place message in queue sector.
Write queue sector back to disk. (TWA request SVC 51)
Increment message queue count.
If display station is online, sound alarm at display station. WSIOCH

Diagram 2.11 (Part 2 of 3). Perform MSG Command Processing

Licensed Material—Property of 1BM

Method of Operation

2-27

MODULE/

If user message queue empty:

Set indicator to restore command screen (TUBRST2) when enter key pressed.
Indicate message screen active and more messages to be displayed (TUBMSGA).
Load and pass control to CP mainline (#CPML).

DESCRIPTION ROUTINE
Build cleanup routine (#CMCU) parameter list. #CCMG
Display message MIC 5632. #CCMU

B Indicate message screen active (TUBMSGA). #CCMX
Reset broadcast message failure.
Determine TUB to use.

® Turn off light at display station. #DWDM
Set on initial call switch. #CCMX
Build work station data management parameter list and insert work station ID.
Put screen to proper terminal. #DWDM
Reset initial call switch. #CCMX
Check user message queue and if not empty:
® Find message queue sector. (TWA request SVC 51)
® Read message from disk.
® Decrement use count byte in message sector.
® Write updated message sector back to disk. (TWA request SVC 51)
® |ncrement message count on screen.
® Decrement message Q-count.
® Build work station data management parameter list.
® Output messages to proper terminal. #DWDM
® |f spool inactive, system in single program mode, and log printer active:

put message to printer. #CMCU

® Repeat until user message queue empty. #CCMX

Diagram 2.11 (Part 3 of 3). Perform MSG Command Processing

2-28

Licensed Material—Property of IBM

From: Input Router (#CPRT)

INPUT ' I r PROCESS mm

CXH2 ' n Determine function requested

Parameter list

Process MODE command

Main Storage . E Process OF F command

Transient Area:
#CCOF

User Area

CP work area
TuB
TCB

g OUTPUT ey

CP work area

TUB 1

Display

To: Cleanup Routine (# CMCU)

DESCRIPTION

MODULE/
ROUTINE

n Ensure terminal not in inquiry mode (TUBATTR4).
If menu active and menu from system library, subtract 1 from format 1 user count.

Search command routing code for requested function:
® 1f MODE command, go to [
® |f OFF command or if ERROR OFF command code, go to K34 .

1f work station in command mode (TUBATTR2):

If status active, call #CCSM to end status.

Indicate terminal in standby mode (TUBATTR2).
Set up work station data management parameter list.
Display standby screen.

Load and pass control to cleanup routine (# CMCU).

If work station in standby mode:

® |[ndicate terminal in command mode (TUBATTR2).
® Set up work station data management parameter list.
® Display command screen

® Load and pass control to #CMCU.

a Indicate terminal not signed on (TUBATTR1).

If OFF command from command work station:

® |f status active, call #CCSM to end status.

® [nitialize terminal unit block (TUB).

® |f job control block (JCB) pointed to by TUB:
— |If format 1 user count is 1, free format 1 for each file specification block (FSB).
— |f user count greater than 1, decrement user count by 1 for each FSB.
— Free each FSB.

#CCOF

#DWDM
#CCOF

#DWDM
#CCOF

Diagram 2.12 (Part 1 of 2). Perform MODE and OFF Command Processing

Licensed Material—Property of IBM

Method of Operation 2-29

MODULE/

DESCRIPTION ROUTINE
® Free job control block (JCB). #CCOF
® [nitialize local area to blanks.
® Read work station configuration record to obatin default library name. Disk 10S
® |f ERROR OFF, clear ERB and exit. #CCOF
® |Insert library name in work station data management parameter list. #DWDM
® Turn off the message waiting light.
® Display command work station sign-on display.
® [f test request call, set off test request and exit.
® |_oad and pass control to #CMCU. #CCOF
If OFF command from data work station:
® [nitialize TUB.
® Build work station data management parameter list.
® Display data work station sign-on display. #DWDM
@® Load and pass control to #CMCU. #CCOF

Note: If errors occur, call #CMCU to issue error message.

Diagram 2.12 (Part 2 of 2). Perform MODE and OFF Command Processing

2-30

Licensed Material—Property of IBM

From: Input Router (#CPRT)

n INPUT g I r PROCESS

CXR2 - n Process PRIORITY command ’ Parameter list

OUTPUT

for #CMCU

CP work area
JCB

Main Storage
TCB

Transient Area:
#ccpy

User Area

TUB

TCB

Jcs

To: Cleanup Routine (# CMCU)

MODULE/
DESCRIPTION ROUTINE
n Determine if command entered from console or work station (TUBATTR2). #CCPY

1f command entered from work station:
@ Set priority indicator in job control block (JCBDSCH2).
@® | oad and pass control to cleanup routine (#CMCU) to display message (PRIORITY ACCEPTED).

If command entered from console:

Ensure valid jobname supplied.

Find JCB for specified job.

Verify ON/OFF operand if supplied.

1f ON or not specified, set priority indicator in JCB (JCBDSCH2) and set TCB (TCBPRIOR) priority to high.
If OFF requested, set off priority indicator in JCB and set TCB priority to low.

Note: If errors occur, call #CMCU to issue error message.

Diagram 2.13. Perform PRTY Command Processing

Method of Operation 2-31

Licensed Material—Property of 1BM

From: Input Router (#CPRT)
1 INPUT e PROCESS &

A LN .

OUTPUT

4 Perform preliminary command processing User response

CXR2
CP work area

Main Storage

i
g
{
§
i TCB

Process | parameter if supplied

A Process C parameter if supplied TUB

-8 Process message |D parameter if supplied

Transient Area:

#CCRE i E Process response parameter if supplied

User Area

Console matrix

TCB

TUB

To: Cleanup Routine (#CMCU)

MODULE/
DESCRIPTION ROUTINE

Determine if status display on display screen (TUBATTR2). #CCRE
Issue error message if REPLY command and status display present (M1C 5616). , . #CMCU
Scan system console image matrix for message response from end of job (EOJ) (CMCISWH). #CCRE
If response from EQJ, put ** over message |Ds. #CMEJ
If no message ID entered (first parameter null) or message |D greater than two characters, issue error #CMCU
message (MIC 5617).

Determine if | parameter entered. If entered: #CCRE
© Scan image matrix for throw-response-away bit (CMCITHR).

@ © Indicate response given (CMCIREP).
O Put ** over message ID. #CMEJ
O Display successful message (MIC 5615). . #CMCU
© |If number of available lines is five or more, issue messages still pending. #CMCI
© Pass control to cleanup routine (# CMCU).

&Y 1f C parameter entered: #CCRE

] @ Rearrange matrix so all messages still in need of a response are at the end of the matrix. #CMEJ <4

© Roll down screen and clear rolled lines. #DWDM
O Display successful message (MIC 5615). #CMCU
O If number of available lines is five or more, issue messages still pending. : #CMCI
©® Pass control to cleanup routine (#CMCU).

Diagram 2.14 (Part 1 of 2). Perform REPLY Command Processing

2-32

Licensed Material—Property of I1BM

DESCRIPTION

MODULE/

ROUTINE
n Syntax check message 1D. #CCRE
Issue syntax error message (MIC 5617) if necessary. #CMCU
Search system console image matrix for message |D match. #CCRE -
Issue error message (MIC 5618} if no match found. #CMCU
If match found is throw-away-response, go to ne
B Blank out response data area. #CCRE
If nonresponse entered for operand 2 and, #CMCU
if SYSLOG halt, call #CCRS to handle second level message: #CCRE
® Read console image sector. #CCRS
® Extract MIC number from image.
P @ Retrieve second level message from user message member. #MGRET <4
® Display reply successful message. #CMCU
® Save console screen. #DWDM
© Display second level message.
P @ Indicate restore console interface on next keystroke. #CCRE d

® Pass control to cleanup routine (#CMCU).
If operand 2 is a response:
® Verify operand 2 length less than or equal to caller requested option length.
® [ssue invalid length message (MIC 5619) if necessary. #CMCU
® |fSYSLOG halt: #CCRE

— Verify option entered is permitted.

— lssue option response error message (MIC 5620) if necessary. #CMCU

— If response on, go to #CCRE
Handle response not previously processed: '
® Move response to task work area.
® Pass response to user.
® Post task complete.
® Pass control to #CMCU.
Note: If errors occur, call #CMCU to issue error message.

Diagram 2.14 (Part 2 of 2). Perform REPLY Command Processing
Method of Operation 2-33

Licensed Material—Property of IBM .

p INPUT

XR2
Parameter list

Main Storage

From: Input Router (#CPRT)

I r PROCESS

Determine function requested
Process START command

B Process STOP command

n Process RESTART command

Transient Area:

#CCRR
#CCRT

User Area

TUB chain
TCB chain
TCBs
TUBs

JCB
Syscom

OUTPUT ez

- Syscom

TCB

TUB

Jce

TCB chain

To: Cleanup Routine (#CMCU)

MODULE/
DESCRIPTION ROUTINE
‘Search for command in command routing code: #CCRT
® |f START command, go ton.
® |f STOP command, go to B
® |f RESTART command, go to n
E Search for operand 1 in start command table.
If operand 1 invalid, issue error message. #CMCU
If operand 1 is PRT or P, load spool transient (# CCRR): #CCRT
® If spool not supported or writer active, issue error message. #CMCU
® If writer not active: #CCRR
— Set forms number in class/page number area (BPCLSS) if form number given.
— Create job control block (JCB) for writer.
— Attach spool writer. #SVAT
— Issue start successful message (MIC 5664).
If operand 1 is WORKSTN or W: #CCRT
@ |f operand 2 is missing or invalid, issue error message (MIC 5667). #CMCU
P @ ifoperand 2is ALL: #CCRT <€
— Set start initiation flag in terminal unit block (TUB) for all work stations.
— lssue start successful message (MIC 5664). #CMCU

Diagram 2.15 (Part 1 of 3). Perform START, STOP, or RESTART Command Processing

2-34

Licensed Material—Property of 1BM

MODULE/
DESCRIPTION ROUTINE
@ |f operand 2 is work station ID: #CCRT
— Find specified work station on terminal unit block (TUB) chain.
— Set start initiation flag for that specific work station.
— lIssue start successful message (MIC 5664). #CMCU
If operand 1 is JOBQ or J, load job queue transient (#CCJS): #CCRT
® Ensure dedicated program not running or Job queue not empty. #CCJS
® |ssue error message if necessary. #CMCU
#CCJS
® Take first entry of job queue. Disk 10S
® |ndicate program to be loaded. #CCJS
® Find user library if given. #MAFLB
® Attach job. #SVAT
@ |f unable to attach job because resources not available: #CCJS
— Putentry back on top of queue. Disk 10S
— Return.. #CCJS
— lssue error message (MIC 5691). #cMmcu
® |f start successful, issue message (MIC 5685).
If operand 1 is SYSTEM or S: #CCRT
p @ If there are two operands, issue error message (MIC 5541). #CMCU
©® Verify that a start system can now occur, #CCRT
@ Set flag in SCA (SCAMALL) to indicate all initiation started.
© Restart spool writer and job queue if they were active at the time stop system was issued.
© Start work stations.
If operand 1 is JOB:
9 |f operand 2 is missing or invalid, issue error message (MIC 5567). #CMCU
© |f operand 2is ALL: #CCRT
— Find task control block (TCB) chain.
— Ensure task suspended by system operator.
— Set off suspended flag (TCBSDTSO).
— Resume user tasks.
— lssue start successful message (MIC 5664). #CMCU
© |f operand 2 is jobname: #CCRT
— Ensure valid jobname.
— Find task control block (TCB) for specified jobname.
— Ensure task suspended by system operator.
— Set off suspended flag (TCBSDTSO).
— Resume user task.
— Issue start successful message (MIC 5664). #CMCU
n» Search for operand 1 in stop command operand table. #CCRT
If operand 1 invalid, issue error message. #CMCU
If operand 1 is PRT or P, load spool transient (# CCRR): #CCRT
B © |fspool not supported or writer previously stopped, issue error message. #CMCU
@ Set stop writer flag (BPFLAG). #CCRR
® |ssue message Spool Writer Stopped (MIC 5663). #CMCU
If operand 1 is WORKSTN or W:) #CCRT
® |f operand 2 is m:ssing or invalid, issue error message (MIC 5667). #CMCU
® |foperand 2is ALL: #CCRT
— Set off initiation flag in TUB for all work stations.
— Issue stop successful message (MIC 5663). #CMCU
® |f operand 2 is work station 1D: #CCRT
— Find specified work station on TUB chain.
— Set off start initiation flag in TUB for specific work station.
— Issue stop successful message (MIC 5663). #CMCU

Diagram 2.15 (Part 2 of 3). Perform START, STOP, or RESTART Command Processing

Licensed Material—Property of IBM

Method of Operation

2-35

MODULE/

Note: If errors occur, call #CMCU to issue error message.

<4

DESCRIPTION ROUTINE
If operand 1 is JOBQ or J, load job queue transient (#CCJS): #CCRT
® Ensure dedicated program not running. #CCJS
® Indicate job queue stopped in SCA.

P @ Issue stop successful message. #CMCU
If operand 1 is SYSTEM or S: #CCRT
® Ensure stop all indication flag (SCAMALL) not already set.
® Set stop all indication flag (no new JOBQ or spool tasks will be started).
® Post for input op-end, all never ending programs that have an invite count of zero for shut down inquiry.
® Stop work stations. :
® If operand 2 is SORT, or not given, perform keysort on all files that have the sort or merge bits on in the #DDKAA

F1 (FIAMSORT, FIAMMRGE).
® |ssue stop successful message (MIC 5663). #CMCU
If operand 1 is JOB: #CCRT
® |f operand 2 is missing or invalid, issue error message (MIC 5667). #CMCU
® |foperand 2is ALL: #CCRT

— Find TCB chain.

— Set task suspended indicators (TCBSDTSO).

— Suspend user tasks.

— Issue stop successful message (MIC 5663). #CMCU
® |f operand 2 is jobname: #CCRT

— Ensure valid jobname.

— Find TCB for specified jobname.

— Set task suspended indicator (TCBSDTSO).

— Suspend user task.

— Issue stop successful message (MIC 5663). #CMCU

n Load and pass control to spool transient (# CCRR). #CCRT
Ensure spoo! supported. #CCRR
I1f spool writer active:
® Set page number to value given in operand 2 or set to zero if no operand supplied.
® Set flag (BPFLAG) to restart writer.
® Issue spool writer restarted message (MIC 5703). #CMCU
If spool writer not active: #CCRR
@ Set page number to value given in operand 2 or set to zero if operand 2 not supplied.
® Set flag (PBFLAG) to restart writer.
® Attach spool writer. #SVAT
® Issue restart successful message (MIC 5703). #CMCU

Diagram 2.15 (Part 3 of 3). Perform START, STOP, or RESTART Command Processing

2-36

Licensed Material—Property of 1BM

From: Input Router (# CPRT)

INPUT e F PROCESS 1 OUTPUT e
XR2 Perform preliminary STATUS command Command transient
(processing parameter list
Parameter list -
HEA Determine STATUS function requested | ucs
Main Storage i
| BB Process STATUS PRT request | Tus
Transient Area: ﬂ Process STATUS USERS request Status display
#CCSJ]
#ccsp { {8 Process STATUS JOBQ request SQE
#CCsuU :
#ccsw B Process STATUS WORKSTN request
#CCS4 k ¥
#CCSM i BB Process STATUS SESSION request
#CCSS ;
#CCS2
#CCS3
#CCU2
TCB chain
TUB chain
TuB
TCB
SCA
Jcs
CP work area
SQE
W bl wl o NRRAE R R, Pml&_dll: 1- '
To: Command Processor
Mainline (#CPML)
) MODULE/
DESCRIPTION ' ROUTINE
n Save portion of command processor work area in appropriate request block (RB). #CCSM
Examine command routing code (CPCODE) for end status request.
If end status request:-
© Find associated status queue element (SQE).
® |f SQE not found, exit program.
@ Free and dequeue SQE and exit.
If status not active, go to.
If status active:
® |f SQE not found, abnormally terminate status.
@ |f E page control character entered:
— Restore previously saved display if work station in console mode.
— Call console log processor if work station in console mode. #CMCI
— Return. #CCSM

Diagram 2.16 (Part 1 of 6). Perform STATUS Command Processing

Method of Operation 2-37

Licensed Material—Property of IBM

MODULE/

DESCRIPTION ROUTINE
— Display menu if menu active and work station not in console mode. #DWDM
— Display command display if menu not active and work station not in console mode.
— End status (TUBATTR2). #CCSM

— Dequeue and free SQE.
— Exit program.
® |f | page control character entered:
— Pass input information tp # CMCU for logging to history file.

— Goto a 0
® If other page control character entered:
— Determine which status was active in SQE (STATOPC):

— |fP,goto a .

- U, g0 tonl .

— IfJ, go toﬂ.

- IfAW, go toB .

— If S and page 1 or 2 to be displayed, pass control to #CCSS.

— 1f S and page 3 or 4 to be displayed, pass control tp #CCS3 e

— 1f none of the above, abnormally terminate status.

B Assign and queue an SQE.

Log input to history file. #CMCU
#CCSM

If work station in console mode, save console display. #DWDM

0 If no operand 1 given, go to. #CCSM

Search for operand 1 in operand table and check number of operands:
® |fPor PRT, go ton.

® 1f U or USERS, go to).

® IfJor JOBQ, go to[E.

® If Wor WORKSTN, go to [(}.

® 1f S or SESSION, go to [EA.

B Check if in console mode.
O restore crwRK.

Route control to #CCSP.

Ensure spool supported. : : . . #CCSP
Save portion of work area.

Assign space for |OB, FDT, and text sectors of format and execution time data area.
Free all but execution time data area.

Check if first call or F, R, or U page control character.

Read spool file master index. Disk 10S

Read entries from spool file.

Locate entries to display. #CCSP

Diagram 2.16 (Part 2 of 6). Perform STATUS Command Processing
2-38

Licensed Material—Property of IBM

DESCRIPTION

MODULE/

Free output area.

ROUTINE
Format entries to display. #CCsP
Set up work station parameter list to display entries.
Display spool print queue entries. #DWDM
Free output area. #CCSP
Restore work area.
Load and pass control to command processor mainline (#CPML).
n Check if in console mode. #CCSM
© restore cPwRK.
Route control to #CCSU.
Save portion of CPWRK area. #CCSU
Assign space for OB, Format FDT sectors, text sectors,‘a.nd execution time data areas; free all but
execution time data areas.
1f operand 2 given, start function with job specified by operand 2.
If R option, start with first TCB on TCB chain.
If U option, start with TCBTSKID specified in SQE (IDCURRENT).
If F or other option, start with TCBTSKID specified in SQE (IDFORW).
If no users active:
® |f status users was active, display user’s display with no jobs. #DWDM
® |f status users was not active, call #CMCU to display error message. #CCSU
Restore CPWRK.
Route control to #CCU2. #CCU2
Call message retrieve to retrieve translatable constants (if retrieve fails, use English version). #MGRET '
Save part of CPWRK. #CCU2
If JOBQ TCB exists and is requested, or if display is for page 1:
® |f operand 2 points to this task, display this TCB only.
® |f no operand 2, create this line.
Create lines until display is full or end of TCBs is reached beginning with TCB pointed to by #CCSU.
If end of TCBs is reached and no lines have been built, restart from first TCB and build lines.
If end of TCBs is reached and there are lines to be displayed, display them. #DWDM
Display first half of display (if this is automatic status update, display format that will not clear input areas).
Display second half of display.
Point SQE at next TCB. #CCU2

Diagram 2.16 (Part 3 of 6). Perform STATUS Command Processing

Method of Operation 2-39

Licensed Material—Property of IBM

DESCRIPTION

MODULE/

Assign space for 10B, FDT and text sectors of format, and execution time data area.
Call message retrieve to retrieve translatable constants.

Free all but execution time data area.

If operand 2 given, start function with work station given in operand 2.

If R control character, start with first TUB.

If U contro! character, start with current work station in SQE.

ROUTINE

Restore CPWRK. #CCU2
Exit program.

[Restore cPWRK. #CCSM
Route control to #CCSJ.
Ensure job queue supported. #CCSJ
Save portion of work area. #CCSM
Assign space for |I0B, FDT, AND text sectors of format and execution time data area.
Free all but execution time data area.
Check if first call and if forward (F), reset (R), or update (U) page control character entered: #CCSJ
® Ensure job queue supported. : :
© Read job queue file index sector. Disk 10S
@ |f status not active or R entered, set first entry on job queue as start of display. #CCSJ
O |f no page control character entered, assume forward (F) character and chain through queue to find entry Disk 10S

by position number.
Ensure queue not empty.
If job name given, find entry requested. #CCSJ
Read entry into buffer. Disk 10S
If command from work station, ensure user ID and work station ID match. #CCsJ
Format requested display in output buffer:
O |If work station request, work station {D and user ID must match.
© If system console request, format all input job queue entries.
Build work station data management parameter list.
Display job queue entries. #DWDM
Free output area and restore work area. #CCSJ
Load and pass control to #CPML.
i Restore CPWRK. #CCSM

Route control to # CCSW.
Save portion of work area. #CCSW

Diagram 2.16 (Part 4 of 6). Perform STATUS Command Processing

2-40

Licensed Material—Property of |1BM

MODULE/
DESCRIPTION ROUTINE

If F or other control character, start with forward work station in SQE. #CCSW

Build line of output for each device.

At end of page, display page (if automatic status, display format that does not clear input). #DWDM

Free output area. #CCSW
Restore work area.

Exit program.

Ensure not in console mode. #CCSM
Restore CPWRK.

Route contro! to #CCSS.

Save portion of work area. . #CCSS
If | option, start page 1.

If R option, start page 1.

If U option, start from current page pointer in SQE.
If F option, start from forward page pointer in SQE.
If start page = 2:

® Restore CPWRK.

® Route control to #CCSZO.

Assign space for |OB, format text and FDT sectors, and execution time data area.

Call message retrieve to retrieve translatable fields and place in transient area (if retrieve fails, use English version). #MGRET

Free all but execution time data area. #CCSS
Build page 1 information.

Set up SQE for current page = 1 and forward = 2.

Call work station data management to display page 1 (if automatic status, display format that will not clear #DWDM
input lines).
Free execution time data area. #CCSS

Restore CPWRK.

Exit program.

Q Save 30 bytes of CPWRK. #ccs2
Assign enough space for format FDT and text sectors, 0B, and execution time data area.

Call message retrieve to retrieve translatable fields and place in work area (if message retrieve fails, use English
version).

Free all but execution time data area.

Diagram 2.16 (Part 5 of 6). Perform STATUS Command Processing

Method of Operation 2-41

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE
Build page 2. #CCSs2
Set up SQE current = 2, forward = 3.
Call work station data management to display page 2 (if automatic status, display format that will not _clear #DWDM
input lines).
Restore CPWRK. #CCS2
Exit program.
Q Save 30 bytes of work area. #CCS3
| if U option, begin function with page in SQE.
If F option, begin with forward page in SQE.
If page 4, go toe.
Assign space for format FDT and text sectors, IOB, and execution time data areas.
Call message retrieve to retrieve translatable fields (if retrieve fails, use English verison). #MGRET
Free all but execution time fields. #CCS3
Build page 3 data.
Indicate in SQE forward page = 4, current = 3.
Call work station data management to display page 3 (if automatic status update, do not clear input lines). #DWDM
Restore CPWRK. #CCS3 -
Exit program.
e Assign space for format FDT and text sectors, |OB, and execution time data areas.
Store assign area address in WDRECA into CPWRK.
Call #CCS4 to build execution time data.
Build execution time data for page 4. #CCsa
" Free all but execution time data area. #CCS3
Point SQE forward to 1, current = 4.
Call work station data management to display format (if automatic status update, do not clear input lines). #DWDM
Exit program. : #CCS3
Notes:
1. Iferrors occur, call # CMCU to issue error message.
2. If SQE is new, dequeue and free SQE.

Diagram 2.16 (Part 6 of 6). Perform STATUS Command Processing

2-42

Licensed Material—Property of |IBM

From: Input Router (#CPRT)

INPUT I r PROCESS

<Xﬂ2 n Process TIME command .Time and date in

command processor
CP work area work area

OUTPUT

Main Storage Parameter list
for #CMCU

Transient Area:
#CCTD

User Area

To: Cleanup Routine (#CMCU)

MODULE/
DESCRIPTION ROUTINE
Initialize timer request block. #CCTD

Get time of day and date and place in command processor work area.
Build parameter list for # CMCU.
Pass control to #CMCU to display time and data.

Note: If errors occur, call #CMCU to issue error message.

Diagram 2.17. Perform TIME Command Processing

Method of Operation 2-43

Licensed Material—Property of IBM

From: Input Router (# CPRT)

INPUT l r PROCESS v OUTPUT

> Initiator start

Appropriate
display

Required system ® Perform job start function (Diagram 2.19)

areas

- @ Perform release function (Diagram 2.20)

To: Initiator (#CIML)

Diagram 2.18. Overview of Job Initiation and Work Station Release

2-44

Licensed Material—Property of IBM

From: Command Processor Input Router (#CPRT)

INPUT I r PROCESS

Main Storage Ensure job initiation allowed XR2--CP work area

OUTPUT

Attach work station to active MRT TUB
Transient Area: program if applicable

#CPRT TCB
B Start initiator if applicable
User Area Jcs

MRT data in MRT

CP work area data save area
JCB (WSWA)
TuB

TCB

TCB chain

Operator keyed data

To: Cleanup (#CMCU)

MODULE/
DESCRIPTION ROUTINE
n Call cleanup routine (#CMCU) to issue message: . #CPRT
® |finitiation stopped (TUBSTPJ), issue job initiation stopped by system operator error message (MIC 5534). #CMCU
® | terminal in console mode (TUBMCNSL), or if terminal is data terminal (TUBCMDT), issue command not
allowed error message (MIC 5539).
ﬂ Check procedure to see if it is for active multiple requester terminal (MRT) program. #CPRT

If not for MRT, go toB.

Ensure request valid:

® Inquiry requester not attempting to attach to a MRT waiting for resources.
® Inquiry requester not attaching to same MRT.

Calculate data input length and place in MRT.

Write input data to MRT data save area (WSWA).

Update MRT task control block (TCB) fields for active requester count, allocated work station count and task
invite count.

If MRT task can not handle another requester (TCBMRTMX), set TUBECM skip flag (TUB$SKIP) off.
Set MRT TCB address in requester TUB to designate ownership.
Build action control element (ACE).

Activate data mode in TUB.

Diagram 2.19 (Part 1 of 2). Perform Job Start Function

Method of Operation 2-45

Licensed Material—Property of 1BM

MODULE/

if attach fails, display error message.

DESCRIPTION ROUTINE
Post MRT task to accept input from new requester. #CPRT
Pass control to cleanup routine (#CMCU) to log input.
B Build initiator attach parameter list.
Activate data mode in TUB.
Pass control to supervisor task attach transient (#SVAT) to start initiator (#CIML). “#SVAT

Diagram 2.19 (Part 2 of 2). Perform Job Start Function

2-46

Licensed Material—Property of IBM

From: Command Processor Resident Routine (#CPML)

INPUT I r PROCESS OUTPUT

Main Storage Process release request JcB

TUB

Transient Area:
#CPTC Command display
or
User Area Standby display
or
Sign-on display

JCB
SCA
TCB
TuB
TUB chain

To: #CPML Via High Leve! Aids and
Task-To-Task Communications Router
(Diagram 2.21)

MODULE/
DESCRIPTION ROUTINE
n If termination cleanup required prior to release, call initiator with termination hook. ’ #CPTC
If test request, call #CCOF.
If no more job steps: #CPIO
O |nitialize TUB fields. #CPTC
0 |f restore not required invite display station for Enter key. #CPIO
® [|f any messages to be displayed, call #CCMX. #CPTC
® Display command interface.
® Post tasks which may want this display station.
® Return.
If more job steps:
@ If end of outermost procedure, setup hook for initiator to call termination (TUBABTRM).
® Start initiator. ‘
® |finitiator attach fails, set timer interrupt to retry in 2 seconds. #CPTC

® Return.

Diagram 2.20. Perform RELEASE Function

Method of Operation 2-47

Licensed Material—Property of IBM

From: Command Processor Resident Router (#CPML)

INPUT I r PROCESS

Main Storage n Process task-to-task communications ' TCB

OUTPUT

Process TUB for high level aids TUB
Transient Area:
#CPTC Route for pending system functions Screen save area

User Area Appropriate user
or system display

TCB

TUB

SCA

To: #CPML
MODULE/
DESCRIPTION ROUTINE
If 1/0 error, #CPTC
process it. #SVERP
If display static;n release, #CPTC

process it. (See Perform Release Function, Diagram 2.20.)

If system request,
process request. (See Process System Request Event, Diagram 2.30.)

If Attn key:
® If work station is:
— Not signed on.
— In test request mode.
— Not in data mode.
— Inquiry disabled.
— In command reject mode.
— Already in data mode escape.
— Running a program which is in termination,
then ignore Attn key.
® If the TCB address of the TUB is zero, pend the inquiry and retry.in 2 seconds. (Use control storage
routine, NUASGN.)
® |f the vertical hold or save/restore interlock is on, pend the inquiry and retry in 2 seconds (NUASGN).
@ |f the interrupted task is a SRT:
— If 1 option is pending, and if SQB count = 0, and if posted because of Attn key, then erase 1 option
pending and process inquiry. :
— |If S@B count = 4, post tasks waiting on disk enqueue.
" — If task owns interlocks, retry Attn key in 2 seconds (NUASGN); otherwise, suspend task.
— Build an inquiry TUB and work station work area.
— |If no resources are available, retry inquiry and go to o

Diagram 2.21 (Part 1 of 2). Perform High Level Aids and Task-to-Task Communications Router Functions

2-48

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE
® |f the Interrupted task is a MRT: #CPTC
— If display station not invited, retry inquiry.
— Indicate TUB to be skipped.
— Build inquiry TUB.
— If no resources available, retry inquiry.
— If implicit invite to TUB or if PRUF (put for read under format) invite, decrease requester and work
station count.
0 Swap the new TUB and the inquiry TUB: #CPIQ
Find the previous TUB on the TUB chain.
. Lock the TUB chain.
® Rechain the new TUB to the TUB chain.
® Unlock the TUB chain.
® Post other TUB users.
® |fa JCB exists:
— Free up JCB and FSBs chained to it.
— Free up WSWA.
« — Freeup TUB.
Save the work station display. #CPIO
If inquiry option 1 was pending, #CPTC
P process 1 option. Otherwise, #CPIQ
put up inquiry display. #CPIO
Return to caller. #CPTC
If Help key,
process. #WDDH
B} 1% console SYSLOG is pending, #CPTC
process it. #CMCI
If stop pending for any task, and if interlocks are now freed, suspend the task. #CPTC
If stop system is pending, and stop is complete, #CCRT
process the completed stop. #CPTC
If JOBQ detach is pending,
process next JOBQ task. . #CCJS

Diagram 2.21 (Part 2 of 2). Perform High Level Aids and Task-to-Task Communications Router Functions

Licensed Material—Property of I1BM

" Method of Operation 2-49

From: Input Router (#CPRT)

INPUT I PROCESS

TUB, TCB, SCA

OUTPUT =

Inquiry option — ‘>0 Perform inquiry menu processing function Menu or Command
I l (Diagram 2.23) display

TCB, JCB, and TUB 0 Perform resume function (Diagram 2.24) User display

To: Resident Router (#CPML)

Diagram 2.22. Overview of Inquiry Menu Option Processor and Resume

2-50

Licensed Material—Property of 1BM

From: Command Processor Input Router (#CMRT)

@ INPUT l r PROCESS

XR2 —=CPWRK N > n Process O option or error opcode TUB

OUTPUT

Main Storage : ‘ E Process 1 option or opcode requesting JcB
1 option

Transient Area: ' B IR} Process Options 2, 3, and 5 WSWA
#CPIQ ;
n Process 4 option - display

User Area

) B Process invalid option

To: #CPRT
: . MODULE/
DESCRIPTION ROUTINE
BB oequeue inquiry TUB and free. #cPiQ
Resume interrupted program. (See Resume Function, Diagram 2.25.)
E If second inquiry,
issue diagnostic. #CMCU
If task does not allow inquiry, issue diagnostic. #CPIQ
If task is not a MRT, and if the sector queue count is not O,
® Pend the inquiry.
® Resume the task.
Otherwise,
® |f the JCB and WSWA are already assigned,
— Go to
® Otherwise,
— Assign JCB and allocate WSWA.
— If no space, issue a diagnostic. #CMCU
® |f menu active and menu from #LIBRARY, increment format 1 use count. #CPIQ
@ [Initialize JCB and WSWA. #FDIOS
® Call RFINDLIB to #CPIQ
find each library in the FSBs. . $MAFLB
e Put up the command display. #CPIO
BB ¢ TUB and TCB = 0, the TCB is 8 MRT: 9o 1o R - #CPIQ
Indicate to restore command display at termination, and disable inquiry.

Diagram 2.23 (Part 1 of 2). Perform Inquiry Menu Function

Method of Operation

Licensed Material—Property of 1BM

2-51

DESCRIPTION

MODULE/
ROUTINE

If job is cancellable and not in termination, swap TUBs to remove inquiry:
Find the previous TUB on the TUB chain.

Lock the TUB chain.

Rechain the new TUB to the TUB chain.

Unlock the TUB chain.

Post other TUB users.

If a JCB exists:

— Free up JCB and FSBs chained to it.

— Free up WSWA,

— Freeup TUB.

@ Set up parameter list and pass contro! to #CCCM.

if job is in termination and a 2 option was taken, pend the cancel.

If job is not cancellable:
® Indicate 2 or 3 cancel in TCB.
® Process RESUME option (Diagram 2.25).

o Swap TUBs to free inquiry TUB:

Find the previous TUB on the TUB chain.
Lock the TUB chain.

Rechain the new TUB to the TUB chain.
Unlock the TUB chain.

Post other TUB users.

If a JCB exists:

— Free up JCB and FSBs chained to it.
— Free up WSWA.

— Free up TUB.

Indicate user display is not active.

If a 2 option was taken: :
® |f task is not in termination and if the MIC in the JCB is zero, move MIC 3721 to JCB.

If a 3 option was taken, indicate abnormal release in TUB.

If the program has released the display station,
process the release.

Set the no skip flag in TUB.
If an ACE exists on the complete queue,
® Requeue it, last-in-first-out, to the complete queue.
® Dispatch task.
Otherwise,
® Post TUB complete.
® Put release aid in TUB.
® Return to caller.
n If MRT or released work station, issue error.
Otherwise, set inquiry latch in JCB.
Process as option 0. (See Diagram 2.25.)

Build parameter list.

Pass control to #CMCU to issue error message.

#CPIQ

#CPTC

#CPlQ

Diagram 2.23 (Part 2 of 2). Perform Inquiry Menu Function

2-52

Licensed Material—Property of IBM

From: Command Processor Input Router (# CPRT)

INPUT mm ; l r PROCESS

XR2 n Process option O or resume interrupted TCB
: program :
CPWRK : JcB

OUTPUT

Main Storage TUB

TUB chain

Transient Area:
#cria - 1 User display

User Area

TCB
Jcs
TuB
TUB chain

To: CP Resident Router (#CPML)

_ MODULE/

DESCRIPTION ROUTINE
If status active, call #CCSM. #cpia
End status. ' #CCSM
If menu active and menu is from # LIBRARY, decrement user count on disk. #CPIQ
If not error resume: #CPIO
© Restore display. #CPIQ.

® Swap TUBs to free inquiry TUB:
— Find the previous TUB on the TUB chain.
— Lock the TUB chain.
— Rechain the new TUB to the TUB chain.
— Unlock the TUB chain.
— Post other TUB users.
— |f a JCB exists:
a. Free up JCB and FSBs chained to it.
b. Free up WSWA.
c. Freeup TUB.

If display station has been released, call #CPTC to release.

If MRT: .
@ |f implicit invite to TUB, or invite due to put for read under format:
— Add 1 to MRT REQ count.
— Add 1 to work station count.
® If requester count less than MRTMAX, set on no-skip bit.
® Have task dispatched.
® Return to caller.

If SRT:

@ |f printer readjustment for forms or image is required, assign an RB that causes the resumed task to call #CSIM.
@ Set off task suspend bit in TCB.

© |f suspended due to stop command or error suspend, bypass post; otherwise, post the task out of suspend.

Diagram 2.24. Perform Resume Function

Method of Operation 2-53

Licensed Material—Property of IBM

From: Command Processor Input Router
(#CPRT) Process

INPUT l Jr PROCESS

Main Storage n Process # CPRT accept errors System display

g OUTPUT

ﬂ Process EQJ release ‘ Parameter lists to
Transient Area: - other transients
#CPSP Process message enter

User Area n Process restore request

a Process command key request

TUB

| To: Command Processor Mainline (#CPML)

MODULE/
DESCRIPTION ROUTINE
n If #CPRT accept error: #CPSP
© |f sys request or inquiry in high level aid:
— Set sys request and inquiry to zero.
— Indicate that TUB.is invited.
— Retry accept. #CPRT
B If restore yes indicator on in TUB: #CPSP
® |f messages pending, display them. Otherwise: #CCMX
put up command display. #CPIO
or
#CPIiQ
B If messages active, process them. #CCMX
n If restore indicated in TUB: #CPSP
® [f console restore, restore console.
Handle messages: #CMCI
©® if work station: #CPIQ
— If status active, update status display. Otherwise: #CCSM
put up command display and post tasks requesting display station. #CPIO
Return to caller. #CPSP
B If command key 1 and if resume pending: #CPSP
©® Handle 0 option. : #CPIQ
If resume not pending: - #CPSP
® |ndicate key not valid. 4 #WDDH
If test request key: #CPSP
® |f signed on, indicate key not valid. Otherwise, #WDDH
attach test request. #CPON

Diagram 2.25. Perform Special Command Processing Function

2-54

Licensed Material—Property of IBM

From: CP task post processor (#CPTC)
or
Inquiry menu processor (#CP1Q)

INPUT I r PROCESS

me : Save work area in RB System display

OuUTPUT

CPWRK Set up work station data management
parameter list dependent on request code

XR2
C B Call work station data management
TuB
n Restore work area
Main Storage

SCA

Transient Area:
#CPIO

User Area

Request code

To: Calling Routine

MODULE/
DESCRIPTION ROUTINE
n Save 30 bytes of work area (starting at IOCODE) and use this area for work space. #CPIO

ﬂ If clear request, indicate clear opcode.
If invite request, indicate invite opcode.
If stop invite request, indicate stop invite opcode.
If save request, indicate save opcode.
If restore request, indicate restore opcode.
If none of the above, indicate put then invite request.
If not invite, turn off invite opcode.
Move work station ID to output area.
If console mode, set up console index.

if standby mode, set up standby index.

Diagram 2.26 (Part 1 of 2). Perform Command Processor/Work Station Data Management Interface Function

Method of Operation 2-556

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

If inquiry mode:
@ Create jobname and work station ID.
® |f MRT, set up MRT inquiry index and go toa. Otherwise, point to SRT inquiry index.
If 1QB count is not zero, indicate delayed option 1.
If noncancellable, indicate delayed option 2, 3, or 5.
If in termination, indicate a delayed option 2.
Pass control to #WDSM to display data.

If 1/O error, indicate hex FF in return 1/0 code.

If restore command reject, issue clear screen,
and try restore again.

B} Restore CPWRK from RB.

#CPIO

#DWDM

#CPIO

Diagram 2.26 (Part 2 of 2). Perform Command Processor/Work Station Data Management Interface Function

2-56

Licensed Material—Property of 1BM

From: Calling Program

INPUT ﬁ l r PROCESS ﬁ ! OUTPUT

Console SYSLOG . Perform console logical 1/0 (Diagram 2.28) System console

display

I I (Diagram 2.29)

System request >® Process system request event
indicator (Diagram 2.30)

queue element I display
User input area >® Pperform work station logical 1/0 Work station

Saved or restored
display

To: Calling Program

Diagram 2.27. Overview of Console Management

Method of Operation

Licensed Material—Property of IBM

From: Calling CP Transient

INPUT I r PROCESS

XR2 n Perform preliminary processing Console image
matrix

OUTPUT

Parameter list Move elements from SYSLOG queue
‘) to console disk queue System console
Main Storage display
g Display messages at system console

TUB

Transient Area:) n Perform console management end of job
#CMCI function as required
#CMCs
#CMEJ

User Area

Console SYSLOG
queue element

SCA, TUB, and TCB

TUB chain

User text

To: CP Mainline (#CPML)
or
Calling Program

MODULE/
DESCRIPTION : ' ROUTINE
n Check system communication area (SCA) error recovery procedure (ERP) indicator #CMCI
(SCAMERP) and if on, call control storage error handler (#SVER). #SVERP
Assign task work area space.
Find terminal unit block (TUB) for system console.
Enqueue the TUB on the console queue. #CMCI
P> I there are no more messages to be displayed, turn off light. WSIOCH 4
Determine if any elements on SYSLOG queue waiting to be moved from user SYSLOG sector to console #CMCI
SYS LOG disk queue.
Find space on SYSLOG disk queue if possible.
Move element from user SYSLOG sector to console SYSLOG disk queue. Disk 10S
Free up SYSLOG queue sector for reuse. #CMCI

Diagram 2.28 (Part 1 of 3). Perform Console Logical 1/0 Function

2-58

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

If queue full:

® Find unprocessed queue element with no wait indicator (CMCINOW) on.
® Dequeue element with no wait indication.

® Free queue sector for resue.

® Post calling program.

If IDELETE active at system console:

® Search for write to operator without reply (WTO) element in queue.

® |f WTO element found and space needed:
— Deallocate SYSLOG queue sector.
— Dequeue and free disk sector (FIFO).

if no WTOs to free and queue full, caller must wait for space.

B Find first queue element address.

Ensure enough lines available or can be rolled off screen to display new data.

If not enough screen lines or if no more elements on queue, and if console in console mode:

® Dequeue console queue resource.

@® |f EQJ response indication (CMCIEJR) on in console matrix, go to n;otherwise, exit to command
processor mainline (#CPML).

If this is a new console SYSLOG post: .

® Build work station data management parameter list.

® Sound audible alarm at console.

If console not in console mode, or if screen not available, exit to #CPML.

Load and pass contro! to console management second half (# CMCS).

Build work station data management parameter list to consolidate lines at bottom of screen that may be
overlaid.

Roll screen.

If message command queue element (CMCIMSG):

® Find proper message queue sector.

® Read in message sector.

® Update message sector to indicator sector available for reuse.

If user text sector:

® Assign message number.

@ Find user sector text.

® Read in text sector.

Generate message 1D for operator reply.

Increment message |D control counter byte (SCADMID#).

Build printer 10B if spool not active, system in single program mode, and log printer active.
Call work station input output control handler (WSIOCH) to print output data.
Set up console matrix entries associated with line on screen.

Save line to be displayed on screen in command processor task work area (TWA) line save area.

Build work station data management parameter list.

CMCI

WSIOCH

#CMCI

#CMCS

#DWDM

#CMCS

#CMCU

#CMCS

Diagram 2.28 (Part 2 of 3). Perform Console Logical 1/0 Function

Licensed Material—Property of 1BM

Method of Operation

2-59

MODULE/

DESCRIPTION ROUTINE
Put display to console display screen. #DWDM
Dequeue and free queue element just processed. #CMCS
Continue processing elements until queue is empty, screen is full, or element not yet placed in disk queue.

If queue empty, tt;rn off message light. WSIOCH
Exit: #CMCS
® Free up any assign/free area still owned.
® |f EOJ response indication (CMCIEJR) is on in console matrix, go to n; otherwise dequeue on console
SYSLOG queue, and exit to command processor mainline (CPML).
n Find command processor task work area (TWA). #CMEJ
Point at in-core matrix. |
Loop through matrix setting off EOJ bits (CMCIEJR).
Determine message 1D fields to be overlayed by ‘**'.
Build work station data management parameter list.
Put "**’ over message ID on console display screen. #DWDM
Exit to calling program. #CMEJ

Diagram 2.28 (Part 3 of 3). Perform Console Logical 1/0 Function
2-60

Licensed Material—Property of |BM

From: SYSIN (#CLSS), SYSLOG (#CLSG),
or SYSLIST (#CLST)

INPUT - g I r PROCESS ® 1 OUTPUT e
XR2 : n Accept input data from work station > User requested
C - keyboard data
Parameter list
‘ B Display output data at work station Work station
Main Storage display screen for SYSLOG display
B Display output data at work station
Transient Area: display screen for SYSLIST
#CMWI
#CMWO]
#CMLS
User Area
User input area i
JcB
TCB
TUuB
0] 0371 0 MR BN A ML PO vz p
To: Calling Program
MODULE/
DESCRIPTION ROUTINE
n Obtain task work area (TWA) space. #CMWI
Find requesting work station’s terminal unit block (TUB).
If user invite outstanding, wait for invite end.
If user display on screen:
@ Build work station data management parameter list to save user display .
P ® Save current format on screen. #DWDM <
Reset invite and SYSLIST screen active indication. #CMWI
If initial call for logical 1/0 interface:
® Retrieve user's initial record entered on command display (OCL or procedure statement). Disk 10S
® Return. : #CMWI
® OQutput user’s initial record to screen. #DWDM
If not initial call for logical 1/0 interface: #CMWI
® Build work station data management parameter list to output logical 1/0 display.
® Display logical 1/0 interface and wait for user’s response. #DWDM

Diagram 2.29 (Part 1 of 3). Perform Work Station Logical 1/0 Function

Licensed Material—Property of i1BM

Method of Operation 2-61

MODULE/

DESCRIPTION ROUTINE
Process user entered response data: #CMWI
® |f null data response, blank out input data area. :
® Move user response bytes into work station logical 1/0 data management input record area and then to

user’s area.
Roll user response lines off screen input area:
® Build work station data management parameter list with information to clear screen input area.
® Roll user entered data out of input area. #DWDM
Return control to SYSIN (#CLSS). #CMWI
If entry is from SYSLIST, go to [El. #CMWO
If write to operator without reply request, IDELETE active, and logical 1/0 display interface not active:
® Throw away informational message.
® Return to SYSLOG (#CLSG).
Wait for user 1/0O activity to finish. #CMWO
If user display active on screen (TUBUSUP):
® Save work station invite status.
® Build work station data management parameter list to save user’s display.
® Save user's display. #DWDM
#CMWO
® [ndicate user screen saved (TUBATTRS6).
If logical 1/0 interface not active on screen (TUBINPA):
@ |flogical I/0 interface previously displayed (TUBLIOS):
— Build work station data management parameter list to restore logical 1/0 display.
— Restore logical 1/0O screen. #DWDM
@ |[f logical I/O interface never active for this sign-on (TUBLIOS): #CMWO
— Retrieve user’s initial OCL or procedure statement. Disk 10S
— Build work station data management parameter list for initial logical 1/0 screen. #CMWO
— Display screen with first keyed record. #DWDM
If second level message to display (CMWO2ND): #CMWO
® Build work station data management parameter list.

'@ Display second level message. #DWDM
® Blank out response input area. #CMWO
® Read user’s option response. #DWDM
® Ensure response length valid. #CMWO
@ If response length error:

- Retrieve error message text. #MGRET
— Build work station data management parameter list. #CMWO
— Display error message. #DWDM
— Read user’s retry response.
@ Move good response to user area. #CMWO
® Verify user response valid:
— If write to operator without reply {(WTO), indicate no screen restore.
— |If other valid response, indicate to restore screen.
® |f restore requested:
— Build work station data management parameter list to restore user screen.
— Restore screen. #DWDM .
— Return to calling program. #CMWO
0 If call by WTO:
® Put out blank logical 1/0 screen.
® Build work station data management parameter list to display WTO message. #CMWO
® Display message. #DWDM
® Return to SYSLOG (#CLSG). #CMWO

Diagram 2.29 (Part 2 of 3). Perform Work Station Logical {/0 Function

2-62

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE
If call to display SYSLOG message, write to operator with reply (NTOR): # CMWO
@® |f SYSLOG halt and not WTO/WTOR:
— Build work station data management parameter list.
— Save screen.
— Sound audible alarm at work station. :
® Build work station data management parameter |l$t to dlsplay message.
@ Display halt/WTOR message. #DWDM
® |f WTO request, return to caller. #CMWO
@ Read user's response. #DWDM
P> @ Ensure response length valid. #CMWO
@ |f response length error:
— Retrieve error message text. #MGRET
— Display error messgge #DWDM
— Read user's retry response.
@ Move good response to user area. #CMWO
® Verify user response valid.
® Roll up WTOR response data. #DWDM
® (f restore indicated: #CMWO
— Build work station data management parameter list to restore screen saved.
— Restore user’s screen. #DWDM
— Return to calling program. #CMWO
I SYSLIST active on screen (TUBSYLST), go to[ER). #CMLS
Wait for user 1/0 activity to finish.
If user display active on screen (TUBUSUP):
® Save work station invite status.
@ Build work station data management parameter list to save user's display.
® Save user's display #DWDM
® Reset invite status (TUBATTR3). #CMLS
® |Indicate user screen saved (TUBATTRS).
If call by SYSLIST put:
@ |f SYSLIST screen inactive (TUBSYLST):
— Save logical 1/O screen if active. #DWDM
— Put out blank logical 1/0 screen.’
@ Build work station data management parameter list to d|splay SYSLIST message. #CMLS
® Display message. #DWDM
® Return to SYSLIST (#CLST) #CMLS
If call by SYSLIST get:
® Build work station data management parameter I|st to display message.
@ Display WTOR message. #DWDM
® Read user's response.
® Ensure response length valid. #CMLS
® [f response length error:
— Retrieved error message text. #MGRET
— Display error message. #DWDM
— Read user’s retry response.
® Move good response to user area. #CMLS
® Verify user response valid.
® Blank user response area. #DWDM
@ Return to calling program. #CMLS

Diagram 2.29 (Part 3 of 3). Perform Work Station Logical 1/0 Function

Licensed Material-QPropertyvof IBM

Method of Operation 2-63

From: Command Processor Wait Routine (# CPML}
F PROCESS peommmes

Main Storage i : il Process System Request and Enter

Transient Area:

#CPTC

User Area:

#CPML

System request

n OUTPUT cxzrzmres

Saved or restored
console display

Saved or restored
work station display

TCB chain

indicator

TCB

TuB

ccnis T mEA o aS
| To: Command Processor Wait Routine (#CPML)
MODULE/
DESCRIPTION ROUTINE
If IPL is in progress: #CPTC

O |f master console or alternative console, and not already signed on, call #CPTS. Display sign on. #CPTS

© Return to caller. #CPTC

If IPL not in progress:

© |f not signed on, call #CPTS. Display sign on. #CPTS

O |f console in error, call #CPER for error recovery.

If work station in console mode:

© |If error recovery busy, ignore system request.

O Issue stop invite to system console. #CPI1O

@ |f stop invite failed, ignore system request. #CPTC

© Issue save for console display. #CPI1O

O |f work station display was not previously saved: #CPTC
— Swap the TUBs. #CPIO
— Display the proper system display. #CPTC
— Return to caller. :

O If console mode was forced, issue clear unit 1/0 operation; #CPIO
otherwise, restore the saved display. #CPTC

O Swap the TUBs.

O If the work station was released, exit to #CPIQ.

O If a task was active, have it dispatched.

© If inquiry menu pending, process the inquiry.

If work station to console:

O |f vertical hold or save/restore interlock, pend the system request.

© |If TUB not owned by command processor, set TUB to be skipped.

© If TUB owned by command processor, issue stop invite. #CPIO

© Swap TUBs. #CPTC

© Save work station display. #CPI1O

O |f restore is required, restore console display; otherwise, put up console display. #CPTC

© Indicate to call #CMCI.

© Return to caller.

Diagram 2.30. Process System Request Event

2-64

Licensed Material-—Propert\f of IBM

From: Calling CP Transient

INPUT I r PROCESS

XR2 Process input data History file

OUTPUT

Parameter list) Process output data System console
display

Main Storage Process printer error
Work station display

Transient Area: Printed output

#CMCU
#CPER Console matrix

User Area

SCA

TUB

Console matrix

To: CP Mainline (#CPML)
or
Calling CP Transient

. MODULE/
DESCRIPTION ROUTINE
n If no input data and no output data to process, return to calling program. #CMCU
If no input data (CMCUINP = OFF), go to B .
If log input requested (CMCULOG):
@® Build history file put (# HFPUT) parameter list.
® Place’input data in history file. #HFPUT
® Build printer 0B if spool not active, system in single program mode, and log printer active. #CMCU
@ Call work station input output control handler (WSIOCH) to print input data. WSIOCH
® |f printer error, go to KA . #CMCU
If roll screen request (CMCUROL):
® Find terminal unit block (TUB) for terminal requesting roll.
® |f screen format is menu standby, command, inquiry, sign-on, or status (TUBATTR1):
— Build work station data management (WSDM) parameter list.
— Reinvite screen. i #DWDM
— Return to calling command processor transient. #CMCU
|f system console and in console mode:
® Build WSDM parameter list to consolidate lines at bottom of screen that will be overlaid.
® Roll screen. #DWDM

Diagram 2.31 (Part 1 of 2). Perform Command Processor Cleanup Function

Method of Operation 2-65

Licensed Material—Property of IBM

MODULE/

Find space in disk queue for message if possible.

Place message in disk queue sector.

Build console queue element. ’

Place queue element on console SYSLOG queue.
"Post console SYSLOG.

Issue reset operation to the printer through WSIOCH.

Reset any error condition indicators in printer TUB.

Return to calling program.

DESCRIPTION ROUTINE
@ Build WSDM parameter list for system console. #CMCU
® Modify system console display. #DWDM
@ Return to calling command processor transient. #CMCU

n If message identification code (MIC) number provided (CMCUMIC):
® Build message retrieve parameter list.

P O Retrieve message. #MGRET
If execution time data to be substituted in message (CMCUMSUB): #CMCU
©® Scan message looking for # signs.
® Substitute appropriate characters for # signs.

If in-core message to be displayed (output switch on and MIC number field=zero), move message to command

processor work area.

If log output request (CMCULOG):

©® Build history file put (# HFPUT) parameter list.

©® Piace input data in history file. #HFPUT

Find output terminal TUB address. #CMCU

If screen format is standby, command, Inquiry, menu, sign-on, or status (TUBATTR1 and TUBATTR2): #CMCU

® Build WSDM parameter list.

© Display messages. #DWDM

Build printer 0B if spool not active, system in single program mode, and log printer active. #CMCU

Call WSIOCH to print output data. WSIOCH

If printer error, or if console only bits, go to B #CPER

If request to show to console also (CMCUSWS): #CMCU

@ Find space in disk queue for message if possible.

@ Place message in disk queue sector.

©® Build console queue element.

® Place queue element on console SYSLOG queue.

® Post console SYSLOG.

If system console and in console mode (TUBATTR2):

® Build WSDM parameter Ilst to consolidate lines at bottom of screen that will be overlaid.

® Roll screen. #DWDM

® Build WSDM parameter list for system console. #CMCU

© Put appropriate screen to system console. #DWDM

@ Build printer 10B if spool not active, system in single program mode and log printer active. #CMCU

® Call WSIOCH to print data if |OB built.

® |f printer error, go to #CPER

Return to calling command processor transient module. #CMCU
B If printer error: #CPER

Diagram 2.31 (Part 2 of 2). Perform Command Processor Cleanup Function

2-66

Licensed Material—Property of 1BM

From: Calling Program

% INPUT ey I r PROCESS &

Parameter list i a Perform normal sign-on security check

Main Storage

Transient Area:
#PRSD

User Area

Security file
address
Security file
VvVTOC
Security file
data sector
User ID and
password
pointer

OUTPUT

(XR2

Parameter list
Completion
code
User security
class
1/0 area address

BTy R T RrTmres e twgory 4

To: Calling Program

DESCRIPTION

MODULE/
ROUTINE

n Check security initialization flag (SCAMSFLG); if not on, go toﬂ.
If user 1D and password are special values, and if the user is at the system console:
@ Permit sign-on.
® Set normal return code (PRSFNML).
@ Make current user master security officer.
® Return to calling program.
Build VTOC read parameter list.
P> Readsecurity file format 1 from VTOC.
If no security profile exists:
© Set security profile lost return code (PRSFLST).
® Return to calling program.
Initialize security data in system communication area (SCA).
B Initialize search buffer:
® Clear buffer to X‘FF'.
® Put user ID in first 8 bytes of each 64-byte record in search buffer.

Build disk 10B for security file disk scan operation.

Search security file for user ID.

#PRSD

@CSVF

#PRSD

Disk 10S

Diagram 2.32 (Part 1 of 2). Perform Password Security Function

Licensed Material—Property of 1BM

Method of Operation 2-67

DESCRIPTION

MODULE/
ROUTINE

If disk scan not successful or successful but desired record not in scan buffer:

@ Set not found completion code (PRSFRNF).
® Return to calling program.

If search successful-scan hit:($FDSCEQ) and record found in scan buffer:
® I incorrect password given:

— Set bad password completion code (PRSFBPW).

— Return to calling program.
® {f correct password given:

— Set normal completion code (PRSFNML).

— Move security class to output area.

— Return to calling program.

If 1/O error occurs on disk scan:
® Set I/0 error return code (PRSFIOR).
® Return to calling program.

#PRSD

Diagram 2.32 {Part 2 of 2). Perform Password Security Function

2-68

Licensed Material—-Property of IBM

From: Command Processor Mainline (# CPML)

INPUT sy I PROCESS ey — OUTPUT e

i M Scan ERB and TUB queue , : >! Message displayed

p Process 1/O error request] Response
B processed

XR1

TUB or ERB

W AT e SR o I AR Ty M

B Call appropriate /O transient

Main Storage

1/0O transient

| called
Transient Area: i
#SVERP - E
User Area { J,l
T —
To: (#CPML)
MODULE/
DESCRIPTION ROUTINE
i Scan the ERB and TUB chains to check for error conditions: #SVERP

O ERB busy on.
© ERB done off.
O /0 error flag on.

If not error conditions found, return to caller.

I request is for message at system console:
© Prepare space for message in console SYSLOG area on disk. #SVWER
© Build message in the command processor work area:

- Push current work area to disk.

— Get format line. #MGRE
— Getnom ge found m ge.
— Get message for MIC#.

® Write message buffer to history file and to console SYSLOG sector on disk. #HFPUT
© Place méssage on console SYSLOG queue. #SVWER
® Restore command processor work area. :

® Return to #SVERP.

® Go tofk}. #SVERP

If request is wait for response:

If work station error is being processed, pass control to #SVWSR (Diagram 2.35).

© |f 3 option taken, point task 1AR at the EOQJ SVC in system communications area.

® If D option taken, point task 1AR at the Dump SVC in the system communications area.
® Goto B

If request is purge message:

© Search the console SYSLOG queue for any 1/0 messages that have been built but not displayed; also
search display station matrix.

® Remove message, if found.

Diagram 2.33 (Part 1 of 2). 1/O Error Recovery

Method of Operation 2-69

Licensed Material—Property of IBM

'MODULE/

Go ton

DESCRIPTION RESPONSE
B If request is for 1/O error recovery: #SVERP
® Mark ERB as done.
@ |f work station error is being processed, pass control to #SVWSR (Diagram 2.35).
® |[f the ERB request was for printer error recovery:
— If the no response required flag (ERBMNRSP) in the prmter TUB ERB is on, #SVPRE
clear the error by issuing a clear command to the printer. Ptr IOCH
— If the no response required flag is off, and if the printer TUB is- for a display station printer: #SVPRE
a. Set forms length. : . Ptr IOCH
b. Set graphic error action.
c. Set forms width. :]
® |f other printer error, or other 1/0 device error is being processed, call applu:able control storage error #SVERP
recovery transient.
o

Diagram 2.33 (Part 2 of 2). 1/O Error Recovery

2-70

Licensed Material—Property of IBM

XR1

From: 1/O Error Recovery (#SVERP)

l r PROCESS

——— >4 [l o error recovery

TUB in error Handle error message sent

exception status

Main Storage

B Process message response

. n Process second error

Transient Area: ' B Process ready interrupt
#SVWSR

User Area

ERB control byte

To: #SVERP

OUTPUT

Operator message

Restored ERB

DESCRIPTION

MODULE/
ROUTINE

o)

n I called to do error recovery, determine class of error:
©® I resources temporarily unavailable:

If work station is not ready, exit to display station error recovery for device not ready (Diagram 2.36).
If error is read to unlocked keyboard by command processor:
a. Free TP buffer.

b. Post command processor.

c. Clear ERB.

d. Reset/invite keyboard.

e. Return to caller.

If device is in error mode or powered off:

a. Set hardware error.

b. Goto

If device is operational:

a. Set programming error.

b. Go toe.

® |f programming error:

Free TP buffer.

{f command processor caused error, reclassify error as hardware and go to ne
If user program caused error:

If TUB in error is being released, pend error until release has completed.
Suspend user task or pend suspension.

Recycle error if not already done.

. If programming error on master console, force console mode.

Set 2 and 3 options allowed.

Set up ERB to send message.

Return to caller.

am~p00pDe

#SVWSR

CPTC

#SVWSR

Diagram 2.34 (Part 1 of 4). Perform Display Station Error Recovery

Method of Operation

Licensed Material—Property of IBM

2-711

DESCRIPTION

MODULE/
ROUTINE

© f hardware error:
— Free TP buffer.
— |f error occurred while processing inquiry:

a. Recycle (save) error, if not already done.

b. Go tof&H

— |If TUB owned by user:

a. |f format has been put to TUB, go to‘e .

b. Otherwise:
© Clear ERB (ignore error).
® Return to caller.

~ |f TUB owned by command processor:

a. Recycle error if not already done.

b. If TUB is not signed on:
© Set informational message flag.
© If TUB is the system console:

— Set on console check.
— Clear ERB.
— Return to caller.
© Otherwise:
— Set up ERB to send message.
— Return to caller.

c. If TUB in error is not the system console:
© Set up ERB to send 1, 3 halt message.
© If TUB is an inquiry TUB, set up ERB to send 1, 2, halt message.
© Set up ERB fields to send message.
© Return to caller.

@ d. If console error is due to a recovery attempt, go to'

e. Otherwise: _ '
© Wait 7 seconds unless entered due to SYS/REQ sequence.

O Reset ERB and attempt to clear screen.
O ' If clear fails, go to@
O Otherwise:
— {f error occurred during IPL:
a. Set off console check.
b. Clear ERB.
c. Return to caller.
— If STATUS display was active at time of error:
a. Update or end STATUS.
= b. If update was performed, go to@ .
— Determine console mode at time of error:

a. Ifin forced console mode (error occurred while running user program):
© |f console screen was previously saved , restore console interface.
© Otherwise, put up console display and go to '}

b. If in console mode:

O Rebuild console display
© Go to D;))

c. Ifin command or other mode:

O Put up last system display.

] Goto-

— If recovery succeeded:
a. Set off console check.
b. If console mode was not forced, set up ERB to send message.
c. Otherwise, clear ERB.
d. Return to caller.
@ — If recovery failed:
a. Set up ERB to allow SYS/REQ.
b. Set on console check.
c. Free TP buffer.
d. Return to caller.

#SVWSR

#CCSM

#SVWSR

#CCCO

#SVWSR

Diagram 2.34 (Part 2 of 4). Perform Display Station Error Recovery
2-72

Licensed Material—Property of I1BM

DESCRIPTION

MODULE/
ROUTINE

B |If message sent does not require a response:
@ |nitialize ERB.
® Return to caller.

Otherwise:

® |f message was not due to a hardware error on the system console:
— Set waiting for response in TUBERPCT.
— Clear error aid (TUBERAID = 0).
— Return to caller.

® |f message was sent due to a hardware error on the system console:
— Put console TUB on vertical tubchain.
— Mark TUB as console mode forced.

- Gotone.

B If message response for a TUB owned by a user:
® Post TUB complete with error.
® If 2 option taken, unsuspend user task.
® |If 3 or D option taken, :
ABTRM the task and clear ERB.
® Return to caller.

If message response for a TUB owned by the command processor:
® |f option 1 taken:
— Clear ERB.
— Attempt to clear screen in error.
— If clear screen failed, return to caller.
Otherwise, try to put up last system display or, if status was active,
refresh STATUS display.
@ |f option 2 taken:
0 — Copy ERB of inquiry TUB to next TUB on horizontal chain.
Perform pseudo resume of interrupted task.
— Rechain interrupted TUB.
— Free inquiry JCB, WSWA, and TUB.
— Goto
@ |f option 3 taken:
— Sign off work station.
— Clear ERB.
— Return to caller.

n Set up ERB to get MIC.

Call control storage transient to get message I1D.

Go ton.
B If ready is pending, go to Ee

If ready function is in progress (reject and ready occurred while processing a previous reject):
® Post TUB complete in error.

® (Clear ERB.

® Return to caller.

Otherwise:
® Set ready in TUB.
® |f ready task not needed (TUBTCB not 0):
— PIQACE.
— Post TUB complete.
* — Return to caller.

SVWSR

#CCCM

#SVWSR

#CCSM

#SVWSR

#CPIQ

#SVWSR

#CCOF

#SVWSR

Diagram 2.34 (Part 3 of 4). Perform Display Station Error Recovery

Licensed Material—Property of IBM

Method of Operation

2-73

DESCRIPTION

MODULE/
ROUTINE

@ Otherwise: _
— |f command processor owns TUB:
a. If error occurred during Sys/req — Enter sequence:
® Set off reject/ready indicators.
® Set command processor aid to SYS/REQ.
® Clear ERB.
@ Return to caller.
b. Otherwise:
® |faread command was rejected:
— Reset TUB to invite status.
— Clear ERB.
— PIQACE.
— Post TUB invite complete.
— Return to caller.

o Build attach parameter list.
Attach ready task.
If attach was successful, clear ERB.
Otherwise, set ready pending.

Return to caller.

#SVWSR

#SVAT

#SVWSR

Diagram 2.34 (Part 4 of 4). Perform Display Station Error Recovery
2-74

Licensed Material—Property of i1BM _

From: Keyboard Work Station Error Recovery (#SVWSR), or
Work Station Data Management Modules

I r PROCESS

n Process reject in ready

INPUT OUTPUT

XR1 TUB fields

TUB in error excep- a Process ready call

tion status

Reject file

Build reject record header

XR2

n Write reject header and data

Work station data
management
parameter list

B Set waiting for ready

Main Storage

Transient Area:
#SVNRY

User Area:
#SVRD

To: Caller

' ‘ MODULE/
DESCRIPTION ROUTINE

n If processing a reject in ready function: #SVNRY
® Zero TUB completion code.
® Set up ERB to wait for ready.
® Free TP buffer if required.
® Return to caller.

If processing a ready call:
® |nitialize ERB.
® Perform ready function: #SVUR
— Push user and load #SVRD.
— Save invite status. #SVRD
Move all reject records for TUB to display screen via # DWDM.
Restore invite status and call #SVUR.
Pull user into main storage.) #SVUR

Diagram 2.35 (Part 1 of 2). Perform Display Station Error Recovery for Device Not Ready Function
Method of Operation 2-75

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

If command reject:
® Build command reject record header.
— Save the following fields which may be part of the reject header:
a. TUBCMND — command code.
b. TUBCMOD - command modifier.
c. TUBCOUNT - data transfer count.
d. Work station data management parameter list.
— Determine type of reject record:
a. If rejected command is invite/cancel:
@ Set header type as invite/cancel.
® Set record length equal to header length.
® Go ton.
b. If rejected command is read input or read screen go toin .
c. If rejected command is save table, save screen, restore table, or restore screen:
® |f required, recycle error.
@ Set header type to save/restore.
@ Set record length equal to header length.
® Save SS address of save restore area.
® Goto n .
d. If rejected command is output and not a restore operation:
® Recycle error if required.
® |f rejected command is to be saved as an output type 1:
Save TUBCTSAYV (saved input length).
— Set header type to output type 1.
Set length of record equal to header length plus length of data (TUBCOUNT).
— Goto .
® |f rejected command is to be saved as an output type 2:
— Set header type to output type 2.
— If indicators present, save indicators in reject header.

Determine if reject record is to be written:
® If reject is being recycled:
— Free up TP buffer if required.
Return to caller.
f reject command is read type:
Zero TUB completion code.
Go to B
If this is first command ;'eject, initialize reject file current sector and relative displacement.
Calculate space remaining in reject file.
If reject record will fit in file:]
— Update reject file current sector and relative displacement.
— Write out reject record header and any data.
— Post TUB complete.

[

B Set up ERB to wait for ready:
® [f first command reject, set up ERB to wait for ready.
® Free TP buffer if required.
® Return to caller.

— Set length of record equal to header length plus length of output data (WDOUTL).

#SVNRY

Disk 108

#SVNRY

Diagram 2.35 (Part 2 of 2). Perform Display Station Error Recovery for Device Not Ready Function
2-76

Licensed Material—Property of IBM'

Program Organization

Figures 2-3 through 2-32 show the control flow for the
command processor functions. They are:

® Router
® Sign-on

® Command processing

Job initiator

High level aids and task- to-task communications

Inquiry and resume

Special command processor

Command processor/work station data management

interface

Console management
Cleanup

Password security

Work station error recovery

Licensed Material—Property of IBM

Program Organization

2-77

RESIDENT ROUTER (#CPML)

&

L} Wait for Work

Event is:

INQ
SYS REQ
HELP
RELEASE
JOBQ EOJ
1/0 error
Stop pending
INQ 1 option
pending
Ready aid

Event is:

Name Purpose
#CCAS ASSIGN command processor
#CCCM CANCEL command processor

#CCHO CHANGE, HOLD, RELEASE spool commands
#ccla Input job queue transient

#CCJS Input job queue command processor
#CCMG MSG command processor

#CCMU MENU command processor

#CCOF OF F/MODE command processor
#CCPY PRTY command processor

#CCRE REPLY command processor
#CCRT STOP/START command processor
#CCSM STATUS command mainline
#CCTD TIME and date command processor
#CMCI Console management routine
#CMCU Cleanup routine

#CPIQ Inquiry menu processor

#CPML Wait routine

#CPON Signon transient

#CPRT Router/initiator routine

#CPSP Special command processor
#CPTC High-level aids and task-to-task
#SVERP 1/0 error recovery

#SVWSR Command reject processor
#WDDH Help key processor

Figure 2-3. Router Control Flow

2-78

|

©® |nvite op-end | I

INPUT ROUTER

#CPTC Transient Calls I

1/0 Error

INQ, SYS/REQ, REL

#SVERP il - I

JOBQ EOJ

Stop Processing il
Console/SYSLOG : ‘i

Inquiry 1 option pending S BRI
Help [#WDDH |

Ready aid -

#CPRT Transient Calls

OCL input

Signon data

SRR /CPON L R

Command data

© OFF, MODE

CCOF

® MENU

R /CCMU Rt i

® PRTY

® JOBQ, CHANGE

=] f=] (=] [=] =] = Y
ol |19] 191 |0
al 18] 12] 13
ol 2] 10] |<

® STATUS o

® TIME T

® CANCEL @{#CCCM }

® MSG ‘

® CONSOLE

® |DELETE sccio e

® REPLY [fCCRE [

® ASSIGN, VARY

® HOLD, RELEASE " " I

® STOP, START, B #/CCRT |eEm ‘
RESTART

Errors found #CMCU

Menu options inquiry BN /CPIQ

Miscellaneous input HCPSP

To:

Licensed Material—-Property of IBM

Password
Security
(#PRSD)
Command New Task
Processor Attach
Sign-on
Transient
(#CPON) (#SVAT)
Find a Library-
Routine
(#MAFLB)

Work Station

IPL Data Management
l — ——or— ———y
Input Router
(#CPRT) (Ao

MENU Command
Processor

(#ccmu)

LI

MSG Command
Processor

(#CCMX)

Cleanup
Routine

|

(#Ccmcu)

Figure 2-4. Command Processor Sign-on Control Flow

Program Organization 2-79

Licensed Material—Property of 1BM

Command
Processor
Input
Router

o #CPRT)

ASSIGN

Command Processor

(#CCAS)

Command
Processor
Input
Router
(#CPRT)

Cleanup
Routine

(#cmcu)

Figure 2.5. ASSIGN and VARY Command Processing Control Flow

CANCEL
Command
Processor

(#ccem)

—

Printer
.PRT Queue

(#CCCP)

Input
JOBQ Job Queue
) Transent p——p
(#ccJa)

Transient |

Figure 2-6. CANCEL Command Processing Control Flow

2-80

Cleanup
Routine

(#CcMcu)

Licensed Material—Property of 1BM

Command
Processor
Input
Router
(#CPRT)

———

Input
Job Queue
Transient

(#ccsa)

PRT

CHANGE
Spool Command
Routine

(#CCGP)

p—|

Figure 2-7. CHANGE and JOBQ Command Processing Control Flow

Command
Processor
Input
Router
(#CPRT)

Cleanup
Routine

(#cMmcu)

L————p

CONSOLE
Command
Processor

(#ccco)

S ——

Work Station
Data
Management

(#DWDM)

Cleanup
Routine

(#cMcu)

Figure 2-8. CONSOLE Command Procassing Control Flow

Program Organization

Licensed Materiail—Property of IBM

2-81

Command
Processor
Input
Router
(#CPRT)

_r

HOLD or
RELEASE
Spool Command
Routine
(#CCHO)

—d

Figure 2-9. HOLD and RELEASE Command Processing Control Flow

2-82

Command
Processor
Input
Router
(#CPRT)

———]

IDELETE
Command
Processor

(#ccib)

Cleanup
Routine

(#CMCU)

Figure 2-10. IDELETE Command Processing Control Flow

Licensed Material—Property of IBM

Cleanup
Routine

(#cMcu)

Sign-on
Routine
(#CPON)

(#CPRT)

Figure 2-11. MENU Command Processing Control Flow

Licensed Material—Property of IBM

Work Station
——— 0*®
Management
{(#DWDM)
MENU
Command
Processor
(#ccmu)
Single Name
(——— Find Routine
(#MASFN)
TM‘ Disk 10S
STATUS
Command
' ' Processor
(#ccsm)
Sign-on
(#CPON)
Cleanup
(#CMcCU)

Program Organization

2-83

Command
Processor
Input
Router
(#CPRT)

Display
‘ Message
" MSG MSG
Command Command
Processor h Show
Routine
(#CCMG) (#CCMX)
Print
Message
Cleanup Command
Routine Processor
Mainline
(#CMCU) (#CPML)

Figure 2-12. MSG Command Processing Control Flow

2-84

Licensed Material—Property of IBM

Work Station
Data
Management

(#DWDM)

L

Cleanup
Routine

(#CMCU)

Work Station
Data
~l Management
(#DWDM)
Command SIGN-OFF/ STATUS
Processor MODE Command
Input peesessss—————)»| Command ((E——| Mainline
Router Processor
(#CPRT) (#CCOF) (#Ccsm)
M Disk 108
Cleanup
Routine
(#cMcu)

Figure 2-13. MODE and OFF Command Ptbcesing Control Flow

Program Organization 2-85

Licensed Material—Property of IBM

2-86

Command
Processor
Input
Router
(#CPRT)

PRIORITY
Command
Processor

(#CCPY)

Cleanup
Routine

(#CMcu)

Figure 2-14. PRIORITY Command Processing Control Flow

Licensed Material—Property of IBM

Command REPLY
Processor Command
Input _» Processor
Router

(#CPRT) (#CCRE)

Console
Management
End of Job

{#CMEJ)

Work Station
Data
Management

(#DWDM)

REPLY

Second

Level Message

Handler
(#CCRS)

| —p

Message
Retrieve

(#MGRET)

Console
Data
Management

(#cmct)

Control Storage
Error Handler

(#SVER)

Cleanup
Routine

(#cmcu)

Figure 2-15. REPLY Command Processing Control Flow

" Licensed Material—Property of IBM

Program Organization

2-87

Command
Processor
Input
Router

(#CPRT)

Figure 2-16. START, STOP, and RESTART Command Processing Control Flow

2-88

START

and

STOP

Commands

Processor
(#CCRT)

START, STOP, and

RESTART Spool
Command
Processor

(#CCRR)

Attach
Transient

(#SVAT)

Job Queue
Start
Transient

(#ccJs)

Finda
Library

(#MAFLB)

_r

Cleanup
Routine

(#CMcU)

Licensed Material—Property of IBM

Work Station
Data
Management

(§OWDM)

STATUS
SESSION

STATUS
Command
Mainline

{#CCSS)

(#ccsm)

{sSTATUS

WORKSTN
included) STATUS
SESSION

Page 2

leccs2)

l

STATUS
SESSION

pem—) Poge 3

(#ccs3)

Command
Processor

Input STATUS
Router SESSION
(#CPRT) Je———— Paged

(#ccs4)

STATUS
WORKSTN

(#ccswh

STATUS
PRT

(#CCSPH

STATUS
USERS

{#ccsu)
Error

T

Cleanup CcP
Routine Mainline
(rcmev) {#cPML)

Figure 2.17. STATUS Command Processing Control Flow

Program Organization 2-89

Licensed Material—Property of 1BM

Command
Processor
Wait
Routine
(#CPML)

Command
Processor
Input
Router
(#CPRT)

TIME
Command
Processor

(#ccTD)

Cleanup
Routine -

(#cmceu)

Figure 2-18. TIME Command Processing Control Flow

Figure 2-19. Job Initiator Control Flow

2-90

Licensed Material—Property of I1BM

Command
Processor
Job Initiator
Function
(#CPRT)

Cleanup
Routine

{(#cmcu)

Start
Initiator

>

Supervisor
Task Attach
Transient

(#SVAT)}

Initiator
Mainline

(#cimL)

Figure 2-20. Release Control Flow

Licensed Material—Property of IBM

Work Station
System Data
_Display ~ Management
(#DWDM)
Command Command
Processor Processor
Resident s Relexse
Router
(#CPML) (#CPTC)
Supervisor
Interstep Task Attach
(G " ! Transiont
(#SVAT)
Termination Initiator
Transient Mainline
(#CTEI) (#CIML)

Program Organization

2-91

Error
_ YO Error m——p{ 770

(#SVERP)

Keyboard Work

e Not-Ready-to-Ready EEmEEPM f‘t:::v; rsrror

{#SVWSR)

WSDM Transient

m— e Koy ——p| Foutines

(#WDDH)

Console

_ Console SYSLOG - Management

(#cmen)

Sign-on Display

e s n-on Display ﬂ Writer

(#CPTS)
Inquiry Menu
Inquiry Option 1 Processor
h Ponding ==
(#CPIQ)
cp CP Task
Mainline ' . Post
Processor
(#cpmL) (#CPTC}

OFF Command

Processor
_Tes(Request Release ~

(#CCOF)
Message
_ Output Messages at ~ Command
Release Processor
(#CCMX)

New Task
‘ Attach to Initiator “ Attach
at Release

(#SVAT)

CP1/O

_ System Displays ~ Processor

(#CP10O}

STOP/START

—— s o5 S5tem)y o

(#CCRT)

JOBQ Command

JOBQ Detach -
(#CCIs)

Figure 2-21. High-Level Aids and Task-toTask Communications Control Flow Prog?am Organization

2-92

Licensed Material—Property of 1BM

Command
Processor
Input
Router.
(#CPRT)

Command
Processor

(> !nquiry

Menu
(#CP1Q)

B L T ATRERAA L

Find a Library
Routine

(#MAFLB)

LRl L

[EERTRREYT] Cancel (IR

CANCEL
Command
Processor

(#ccem)

k Release

Command
Processor
Task Post

(#CPTC)

Figure 2-22. Inquiry Menu Processing Control Flow

Work Station
Data
Management

(#DWDM)

Program Organization

Licensed Material—Property of IBM

2-93

Command

Command
Processor Processor
Input — Inquiry

Router
(#CPRT)

Figure 2-23. Resume Function Contro! Flow

2-94

" —)
Readjust

Printer
Image Verify
Routine

(##CSIM)

Work Station
Data

Licensed Material—Property of |BM

Management
Menu
(#crPiQ) (#DWDM)
Command
Processor
— ReleascmmmmmmmmPP»| Task Post
(#CPTC)
Command
Processor
Resident
Router
(#CPML)

Accept Error

CP1/0

Display System Processor
* Displays *

(#CP10)

Message
L Display Messages IEJP) gﬁ,":;:::rd
(#CCMX)

Console
_ Console SYSLOG # Management

(#cmcel)

cP : CP Input Special Inquiry

Mainline ” Processor 0 Key d Key 1 w Menu
Router Processor [Command Key Processor

(#CPML) (#CPRT) (#CPSP) (#criQ)

STATUS
Restore Status Mainline
F Display »

(#ccsm)

WsDM
Transient

r Command Keys » Routines

" (#WDDH)

Sign-on

NN Test Request ”

(#CPON)

Figure 2-24. Special Command Processor Control Flow

Program Organization 2-95

Licensed Material—Property of IBM

Sign-on

Work

Station

Data

Management
(#DWDM)

Crr——(
(#CPON)
Command
Processor
Task Post re—>
Processor]
(#CPTC) Command
Processor/
Work Station
Data ([se——])>
Management : '
Interface
Command : (#cP10)
Processor
Inquiry Menu ()
Processor
(#CPI1Q)
Special
Command
Processor earess—
(#CPSP)

Figure 2-25. Command Processor/Work Station Data Management Interface Control Flow

2-96

Licensed Material—Property of IBM

Calling
Command
Processor
Transient

~

Console

Management l

(#CMCI)

[Gu—)>

Control
Storage

Error Handler

(#SVER)

|

Work Station
Data

Console

Management

Second Half
(#cmces)

Management
(#DWDM)

Cleanup
Routine

(#CMCU)

End-of-Job
Response

Handler
(#CMEJ)

(111

—)

Command

Processor

Mainline
(#CPML)

Figure 2-26. System Console Logical 1/0 Interface Control Flow

Licensed Material—Property of IBM

Program Organization

2-97

SYSIN

(#CLss)

Work Station

SYSIN

Data Management
(#Ccmwi)

SYSLOG
(#CLSG)

- — —or— — — G ———————)

SYSLIST
{(#cLST)

Work Station
SYSLOG/SYSLIST
Data Management
(#CMWO, #CMLS)

[G——z]>

Work Station

Data

Management
(#DWDM)

(— Error

Figure 2-27. Work Station Logical 1/0 Interface Control Flow

Message
Retrieve

(#MGRET)

Command
Processor
Wait
Routine
(#CPML)

(————])

Command
Processor
System
Request
(#CPTC)

Sign-on
Display
Writer

(#CPTS)

(>

Work Station
Data
Management

(#DWDM)

Figure 2-28. System Request Processor Control Flow

2-98

Work Station
I0CH

-Control Storage-

Licensed Material—Property of I1BM

Message
Retrieve
(#MGRET)
History
I File Put
(#HFPUT)
Calling Console '
Command Management
Processor m Cleanup
Transient
(#CMmcu)
Work Station
Data
(e Management
(#DWDM)
Work Station
o
(WSIOCH)
-Control Storage-
Command -
Processor
Mainline
(#CPML)

Figure 2-29. Cleanup Routine Control Flow

Program Organization 2-99

Licensed Material—Property of 1BM

Sign-On

(#CPON)

Figure 2-30. Password Security Control Flow

Command
Processor

Display Station
Error Recovery

Disk VTOC
Read/Write
, (@CSVF)
Password
——— Security
(#PRSD)
Disk
M fos
) Build Error
<¢eeeese———] Message
Transient
(#SVWER)
‘Error Printer
Recovery ——— Prepare
rﬁ Router _
(#SVERP) (#SVPRE)

(see Figure 2-32)

Figure 2-31. 1/O Error Recovery Contl_'ol Flow

2-100

Licensed Material—Property of |1BM

If First Command Reject:

Command
Processor

—

Error
Recovery
Router

[#SVERP)

If Additional Command Rejects:

Display Station
Error Recovery

(#SVWSR)

Command
Processor
or
User
Program

—)

If Ready Call Either:

Work Station
Data
Management

Disptay Station
Error Recovery

Command
Processor

(#CPTC)

Display Station
Error Recovery
For Device
Not Ready
(#SVNRY)

Or:

Display Station
Error Recovery

(#SVWSR)

Attaches as
a Task
|- — —

e =

b

User
Program

Command
Reject
Ready
Routine
{#SVRD)

>

Work Station
Data
Management

)

Display Station

Error Recovery

for Device

Not Ready
(#SVNRY)

Figure 2-32, Display Station Error Recovery Control Flow

Licensed Material—Property of IBM

for Device

Not Ready
(#SVNRY)
Command Command
Reject Reject
Ready m Ready
Transient Routine
(#SVUR) (#SVRD)

Program Organization 2-101

2-102

Licensed Material—Property of IBM

Introduction
The functions needed to start a job are:

® |[nitiator
— Reader/interpreter
— Disk file initialization
— Program initialization

® Allocate
— Normal allocate
— Special allocate
— Deallocate

® Open
— Common-1
— Disk
Work station
Diskette
— Common-2
— Printer
— Data communications

|

INITIATOR

The initiator performs three functions:
o Reader/interpreter

o Disk file initialization

® Program initialization

The reader/interpreter function reads, diagnoses, and inter-
prets operational control language (OCL) statements sup-
ported by the system. The reader/interpreter function

uses the initiator mainline phase, OCL statement processors,
and error handler phase. For improved performance and
better diagnostics, the mainline module performs more than
one function. The reader/interpreter function checks each
statement for valid parameters and stores appropriate data
for use by the system in processing jobs. If an invalid
parameter is encountered, the initiator error handler rou-
tine is called to issue the proper message identification
code (MIC).

Chapter 3. Starting a Job

The disk file initialization function prepares disk files for
program processing. Information provided by the FILE
OCL statements is used to build the disk file format 1's.
When file initialization is complete, control is returned to
the interpreter mainline to read and process the next OCL
statement.

The program initialization function performs the steps
required to load and pass control to the program specified
on the LOAD OCL statement. The requested program may
reside in the designated user library, and if used, this library
is searched first for the program. If the requested program
is not in the designated user library, the system library is
used. If the program requires source {program products),
the program initialization function allocates and opens the
required work files. The program initialization function

is completed by calling the supervisor attach transient
which loads and passes control to the requested program.

Reader/Interpreter Function

The initiator mainline module (#CIML) is loaded by either
the command processor (when starting a new job), step ter-
mination (when starting a new step within a job), or release
(when returning to a procedure from a multiple requester
terminal (MRT) program or a released program). It is
loaded into the user area at main storage logical address
X'C800°. The first sector of #CIML is the initiator work
area (IWA). The mainline program follows the IWA and
starts at main storage logical address X'C900’.

The initiator mainline (#CIML) calls SYSIN (#CLSS) to
read a statement. #CIML then performs preliminary syntax
checking of the statement and, if necessary, encodes the
parameters.

Introduction 3-1

Licensed Material—Property of IBM

If the statement format is: // VERB
KEYWORD1-PARM1,KEYWORD2-PARM2,000 #CIML
encodes the statement in the initiator work area before
calling the appropriate statement processor. The encoded
statement format is:

A|lB|] € | DIE| F | eee]| G

where: A is control bit 1*

B is the length of parameter 1

C is parameter 1

D is control byte 2

E is the length of parameter 2

F is parameter 2

G is the end of encoding indicator (X'FF’)
*Each keyword is assigned a unique control byte

Hexadecimal Hexadecimal
Control Control
Byte Keyword Byte Keyword
01 NAME 10 USER1
02 LABEL 11 USER2
03 - DISP 12 LINES
04 UNIT 13 FORMSNO
05 DATE 14 COPIES
06 RECORDS 15 DEFER
07 LOCATION 16 ALIGN
08 RETAIN 17 SPOOL
09 BLOCKS 18 PRIORITY
0A PACK 19 DEVICE
0B SOURCE 1A MRTMAX
oc INLIB 1B SIZE
oD OUTLIB 1C NEP
OE PROGRAM1 1D OFFSET
OF PROGRAM2 1E DATA
1F SYMID
20 REQD
21 RESTORE
22 LINE
23 RELEASE
24 PRINT
29 MEMBER
2A FORMAT

In the above example, if KEYWORD1 has a control byte of
X'01" and KEYWORD2 has a control byte of X'02’, the
encoded statement is:

01 | 05 | PARM1 | 02 [05 | PARM2 | e®o | FF

All syntax and punctuation checking is done by #CIML.
The statement processor modules use the encoded state-
ments in the indicator work area to check parameter
validity and process the parameters.

3-2

.Based on the verb found in the statement, the appropriate

initiator routine (statement processor) is loaded at main
storage logical address X'F800’ and given control (see Fig-
ure 3-2 for initiator logic flow).

The initiator error handler (#CIER) is called to handle
errors detected by #CIML or the statement processor
modules. #CIER is loaded at main storage logical address
X'F800’, It checks the error code placed in the initiator
work area by the calling routine. #CIER matches the
error code to a message identification code (MIC) and
issues the proper message.

If no errors are detected by the statement processor, con-
trol returns to #CIML via a branch instruction to read the
next statement. '

The statement processors are not concerned with continua-
tion statements. #CIML reads statements until all continua-
tion statements are read and then calls the appropriate
statement processor. For example, if the following OCL
statements are entered:

(1) // LOAD #RPG

(2) // COM‘PILE SOURCE-PROG1 ,
(3) //INLIB-LIBT,

(4) //OUTLIB-LIB2

(5) // RUN

the LOAD statement processor (#CILD) is called after
statement (1) is read. The COMPILE statement processor
(#CICM), however, is not called until statements (2)
through (4) are read by #CIML. The RUN statement
processor (#CIRN) is called after statement (5) is read.

When a LOAD statement is received, a find is performed for
the module in the library. If itis not found, an error mes-
sage is issued, thus providing early diagnostics. On previous
systems, the module was not found until the RUN state-
ment was read. If the module is found, the directory entry
is saved in the initiator work area for use by the RUN state-
ment processor to load the requested module.

When a FILE statement is received, its syntax is completely
checked. All file initialization (such as checking the disk
VTOC) is performed at the time the FILE statement is
received, thus providing early diagnostics. Takinga 1
option allows the user to reenter the statement if necessary.

Licensed Material—Property of 1BM

When a RUN statement is received, #CIRN overlays the
mainline module since the user’s program is about to
receive control and no more OCL statements need to be
read. #CIRN processes the RUN statement, performs all
program initialization (such as checking for source and
setting up SWORK and $SOURCE files), and finally calls
the supervisor attach transient (#SVAU) to load and pass
control to the requested program.

System Interlocks

The System/34 multitask environment requires system
interlocks to prevent the simultaneous use of certain system
resources by two or more active tasks.

The interlocks are:

® |[nitiation/termination

® VTOC (includes main storage F1's)

® Format5b

© Program dedication interlock

® Procedure name

o History file

® Console SYSLOG

The initiator obtains these resources by setting the inter-
locks in the TCBs. For locations of the interlocks, see Task
Control Block and Queue Header Area in the Data Areas
Handbook.

Disk File Initialization Function

After the initiator mainline file routine (in #CIML) processes
the file statement and builds the format 1, control is passed
to the initiator mainline file initialization routine (also in
#CIML).

The file initialization routine examines the format 1 built
by the file statement processor and if the unit specified is

diskette, file initialization merely moves the format 1 to the
active format 1 area (AFA).

If the unit specified in the file statement is disk, the file
initialization routine examines the file specification block
(FSB) chain. If the file is already on the FSB chain, the
format 1 for that file is used. If RETAIN-J was specified
on the file statement, the file initialization routine either
creates a new format 1 for the file or uses the RETAIN-J
format 1 created by a previous step. If the file is being
used by another task, and the file is sharable, the existing
format 1 is used.

The initiator VTOC routine (#CIVT) is called if the file.is
not on the FSB chain, not retain J, and not being used by
another task. #CIVT examines the disk VTOC trying to
locate the file. If the file is found in the VTOC, the VTOC
format 1 is added to the format 1 chain and a new FSB is
added to the FSB chain. If the file is not found in the
VTOC, an indicator in the previously built format 1 is set,
indicating a new file, and this format 1 is added to the FSB
chain.

When file initialization is complete, control is returned to
the initiator mainline to read the next OCL statement.

Program Initialization Function

The RUN statement processor {#CIRN) is called when the
initiator mainline encounters the RUN statement. #CIRN
coordinates the program initialization function.

After placing the program date in all new disk format 1s,
#CIRN examines the directory information placed in the
initiator work area (IWA) by the LOAD statement proces-
sor. If the requested program requires source information,
#CIRN calls the allocate function to allocate $SOURCE,
S$WORK, and $WORK2 files as required. After the files
are allocated, #CIRN calls the disk open transient to open
the files.

If a COMPILE statement was entered, #CIRN calls SYSIN
to read source statements from the keyboard and then
calls disk data management to place the statements in the
$SOURCE file. A compiler information block (CIB) is
then built in the assign/free area. File information such as
begin extent, end of data, and device code is placed in the
CIB for use by the compiler.

Introduction 3-3

Licensed Material—Property of 1BM

If the requested program is part of a procedure, the proce-
dure parameter save area (PPSA) contains pointers needed
to continue with the next step after the requested program
finishes processing. For this reason, #CIRN writes the
PPSA buffer in the PPSA on disk to save the information
for future use.

All required disk files are enqueued and work stations
acquired. The requester work station is released if an
ATTR statement with RELEASE-YES was specified.

The last step performed by the program initialization func-

tion is to load and pass control to the supervisor attach
transient (#SVAU). #SV AU ensures that there is enough
main storage space available to prevent the requested pro-
gram from being permanently swapped out when it is
loaded. After ensuring that another task will not be per-
manently swapped out, #SV AU loads and passes control
to the requested program.

ALLOCATE
Allocate consists of three functions:

® MNormal allocate controls the assignment of disk space,
devices, and disk files to the user program. Normal
allocate is the only allocate function that can be called
by a nonprivileged user.

® Special allocate allows a privileged user to allocate disk
files without file OCL statements.

® Deallocate allows a privileged user to deallocate printer
and disk files. The process is similar to file deallocation
at step termination time. Deallocate also allows freeing
part of a file's disk space.

Normal allocate, special allocate, and deallocate are main
storage transients and each is called by an SVC command
with a different request indicator byte {(RIB).

Input to the allocate function is passed by way of preopen
DTFs. See the Data Areas Handbook for a description of
preopen DTFs. In addition to the normal DTF fields,
special allocate and deallocate use additional fields in the
preopen disk DTF. The special allocate fields overlay the
normal disk DTF fields starting at label 3F1INXR. The
deallocate DTF is based on a closed disk DTF. A single
request byte at label DTFSR2 (request byte 2) of the
special allocate DTF specifies the desired deallocate opera-
tion. [f part of a file's disk space is to be freed, the new
end extent can be specified in the DTF.

3-4

Normal Allocate

When allocate is required, the user program passes control
to the allocate mainline transient (#CAML).

#CAML processes each preopen DTF in the chain that is
not conditioned off by UPSI. [f a diskette file is to be
allocated or if keysort is required, #CAML passes control
to the allocate push/pull transient, #CAPS (see Figure 3-3
for normal allocate control flow).

#CAPS determines which allocate functions are required.

If diskette allocate (#CAR1) or keysort interface (#CAKS)

is required, #CAPS pushes a portion of the user area for use
by #CAR1 or #CAKS. All normal allocate modules except
#CAR1 and #CAKS are main storage transients.

#CAKS, keysort interface, runs in the first 2K of user
storage. When keysort is required, allocate push/pull
(#CAPS) pushes the user program to disk and loads
#CAKS into the first 2K of a 14K region. #CAKS then
loads the keysort program into the remaining 12K of
user area.

#CAR1, the diskette allocate module, runs in the first 4K
of user storage. When diskette files are allocated, allocate
push/pull (#CAPS) pushes the user program to disk, sets
up a 4K region, moves the diskette DTF to the beginning
of the user area, and loads #CAR1. After diskette files
are allocated or keysort runs, control returns to #CAPS.,
#CAPS pulls the user program back from disk to main
storage and updates the necessary DTFs.

#CACM is called if data communications DTFs are to be
allocated. #CAPT is called if printer DTFs are to be allo-
cated. #CAF1 is called if new disk files are to be allocated.

#CAF2, the find disk space transient, is called by #CAF1 to
find space in the format 5 area.

#CAF3, the load to old disk file allocate transient, is called
by #CAF2. Ifload to old but not new disk file allocate is
requested, #CAF3 is called by #CAML, #CACM, #CAPT, or
#CAPS (see Figure 3-3).

Control is returned to the user program after all devices
and files are allocated.

Licensed Material—Property of IBM

Special Allocate

A privileged user can allocate a disk file without supplying
an OCL statement by passing control to special allocate
(#CAS1). See Figure 3-4 for special allocate logic flow.

#CAS1 builds and queues a format 1 and a file specification
block (FSB) for each disk file to be allocated. If any files
were successfully processed to this point, special allocate —
first pass (#CAS2) is called. '

#CAS2 performs first pass processing of all preopen disk
DTFs in the chain. If keysort is required, #CAS2 passes
control to the allocate push/pull transient (#CAPS).

#CAPS performs the same function as for normal allocate.
If new or load to old disk files require allocation, #CAPS
passes control to new file allocate (#CAF1). If only load
to old disk files need allocation, #CAPS passes control
directly to load to old disk file allocate (#CAF3).

#CAF1 and #CAF3 may, if #CAPS was not used, be called
directly by #CAS2.

Control is returned to the user program after requested disk
files are allocated.

Deallocate

When a privileged user requests the deallocate function,
control passes to deallocate premainline (#CAD1). (See
Figure 3-5 for deallocate logic flow.)

#CAD1 performs first pass processing of all DTFs in the
chain. [f the deallocate request is for a nondisk device,
#CAD1 deallocates the device and returns directly to the
user program. |If keysort is required, #CAD1 passes control
to the allocate push/pull transient (#CAPS).

#CAPS perform the same function as for normal allocate.
When used for deallocate, however, #CAPS calls deallocate
mainline (#CAD2).

#CAD2 continues processing DTFs, freeing file space, and
deallocating files as required. If format 5s are to be
updated, #CAD2 passes control to the free format 5 space
transient (#CAD3).

#CAD3 updates the format 5s as required and returns con-
trol to the user program. If #CAD3 is not required, #CAD2
returns control to the user program.

OPEN

The purpose of open is to prepare for the transfer of data
to and from the program’s files by:

® [nitiating all necessary DTF fields in preparation for
data transfer

® Assign buffers and 10Bs for data transfer

® Prepare the device for 1/0 operations to a new data
file

The open function is performed by two common open
transients (#DMOP and #DMOF) and the necessary device
oriented open transients:

Disk Open - #DD10P and #DD20P
Work Station Open #WDOPN

Diskette Open #DROP

BSC Open #BSOB

All open modules are transients and reside as load modules
in the system library. The open function is initiated by
issuing an SVC with the open RIB (X'02'} and index regis-
ter 2 pointing to the first DTF on the DTF chain. The SVC
processor loads the first common open module (#DMOP).

To improve system performance, the device oriented mod-
ules are designed to be called only once for each DTF
chain. Thus, each module performs its functions for all
required DTFs on the chain. It searches through the DTF
chain to find all DTFs of its device type that are to be
opened.

Note: See the Data Areas Handbook for a description of
disk, diskette, and printer preopen and postopen DTFs.

Introduction 3-5

Licensed Material—Property of IBM

Common Open 1 (#DMOP)

The first common transient (¥DMOP) searches the DTF
chain and flags DTFs to be opened. For open to be per-
formed, a DTF must have a valid.device type, it must be
allocated, the UPSI setting must be correct, and it must
be in a preopen state. #DMOP will then call one of the
following open transients:

® #DD10P if a disk DTF is on the DTF chain
® #WDOPN if a work station DTF is on the DTF chain

® #DMOF if neither a disk DTF nor a work station DTF
is on the chain

Input to #DMOP is a chain of preopen DTFs addressed by
XR2. These DTFs were created and chained when the pro-
gram was compiled or assembled. XR2 points to the first
DTF on the chain. This DTF contains a pointer ($DFCHB)
to the second DTF, the second DTF to the third, and so on
(see Figure 3-1).

Output from #DMOP is a chain of DTFs with an indicator
in each showing which DTF to open.

Disk Open (#¥DD10P, #DD20P)

The device oriented function for disk consists of two tran-
sients — #DD10P and #DD20P. Input to each is the
address of the first DTF on the forward chain in register 2.
Each of these modules must loop through the entire DTF
chain and process all disk DTFs which need to be opened.
Control is passed to #WDOPN if a work station DTF is
present on the DTF chain or to #DMOF if not.

The first module of disk open (#DD10P) performs the
diagnostic checking to ensure access to the requested file
is allowed under the specified access type. If an error is
found, the proper MIC number is established and the
SYSLOG routine called to display the error message. In
addition, this module initiates the DTF for all access
methods other than normal disk processing. For dummy
open DTFs, it provides information about the file within
the DTF. For ZPAM and ISR, it initiates the DTF and
loads the necessary data management within the user-pro-
vided area.

3-6

The second module (#DD20P) formats the necessary con-
trol blocks (DTF, 10Bs, master index, high key buckets)
and the buffer areas. The 10Bs and buffer areas are first
formatted based upon the access being consecutive/direct/
indexed and normal/SIAM. Then the remaining DTF fields
are calculated to allow data management to begin process-
ing. Finally, if opening an indexed file, the master index
area is initialized and the high key buckets are established,
if requested.

Work Station Open (#¥WDOPN)

The work station open routine is called by common open
(#DMOP) or disk open (#DD20P). Open passes the address
or the first DTF on the chain in XR2. The DTF may be
chained to other DTFs that are not work station DTFs,

#WDOPN'’s primary function is to place the format indexes
the user requires into the user area for use and reference by
the work station data management at execution time.

Chained DTFs may be used to open one or multiple format
load members. If only one format load member is to be
opened, only one DTF in the chain may contain the name
of the format load member; the balance of the DTFs must
have blanks in the $WSFMTN field. If multiple format
load members are being opened, the SWSINXA field must
contain the same address. This is true if the DTFs are
chained or multiple open calls are performed to open the
multiple format load members.

#WDOPN places format indexes after the indexes previously
placed in the user-supplied area. #WDOPN also checks pre-
viously opened format indexes to ensure duplicate format
names have not been opened. If a duplicate is found, a
halt is issued. If the format load member is not found or
the load member found is not a format load member, a
halt is also issued.

Licensed Material—Property of 1BM

Diskette File Open (#DROP)

When a diskette file DTF is encountered by a call to the
open routine, the diskette open transient module is called.
Open reads the active format 1 image corresponding to the
file to be processed. Open then formats the DTF to its
postopen status, formats the |0B and prepares the input/
output buffers for processing the file. Information from
the preopen DTF is saved in the active format 1 image so
the DTF can be restored to its preopen state by Close.

The postopen DTF serves as the interface between diskette
data management and the calling program, the 10B furnishes
the interface between data management and diskette |0S
that performs the physical disk seek, read and write
operations.

The calling program must supply a main storage area for
diskette data management and put the address of the start
of this area into the preopen DTF. Open then loads
diskette data management at this location.

For output files, the open routine calls diskette 10S to
write an internal control record into the first data sector
of the file, if necessary. For input files containing the
internal control record, the internal control record is read
and placed at the beginning of the input buffer,

For exi.sting files, the open routine performs diagnostics to
ensure the file organization and access type are compatible.
The record length specified in the DTF is checked to ensure
it is the same as that from the data set label. However, if
the calling program places X'FFFF’ in the preopen DTF
record length field, the open routine will place the data set
label record length into the postopen DTF.

Common Open 2 (#DMOF)

The second common transient (#DMOF) is called after the
DTFs to be opened are flagged by #DMOP and after all disk
and work station DTFs are open. #DMOF first calls the
proper device oriented open transients to open all remain-
ing DTFs. #DMOF then creates a backward chain of DTFs
just opened.

Input to #DMOF is a chain of DTFs with some open and
others not open. Output is a chain of postopen DTFs with
the last DTF containing a pointer (SDFCHA) to the next to
last DTF opened. In this manner, the DTFs are chained
back to the first DTF opened (see Figure 3-1).

#DMOF also contains all logic needed to open a print file.

Printer Open (within #DMOF)

The printer open logic is called for any print file to be
opened. The print file may be printed directly to a 5211

or a 5256 printer, or, if spooling is active, it may be spooled
for later printing. Input to printer open is XR2 pointing to
the printer DTF to be opened.

It first performs all diagnostic checking on the file, and if
an error is found, it issues the proper MIC through the use
of SYSLOG. If no errors are found, space within the
assign/free area is obtained for the printer OB and the 0B
is initialized. Then the remaining fields within the DTF are
initialized to allow data transfer. Finally, a format com-
mand and a forms feed command are issued to the printer.
This establishes the proper printer control for the program
and positions the carriage on line one of a new page.

Introduction 3-7

Licensed Material—Property of IBM

Input Processor Output

XR2 _ XR2
E Address of Address of Return to
nter ' .
the First P the Last Caller
From User DTF DTF
Program
i OTFr
DTF3 :_ DTF3
DTF2 %' L — DTF2/>
DTF1 DTF1/>
Forward DTFCHB /(DTFCHA | Backward
Chain of Chain of
DTFs to #DMOP! Opened
be Opened >] DTFs
AFA —> ara
g/]
___'/ _—/
Formatted
Unformatted Disk File
Disk File (index and
data)
__/
Legend: .
Control flow Data flow Address pointer

t Figure 3-6 shows the interrelationship of the transient open modules.

Figure 3-1. Open Main Control and Data Flow

3-8

Licensed Material—Property of IBM

Method of Operation

This section contains functional diagrams for routines
needed to start a job. They are:

@ |nitiator

o Normal allocate
© Special allocate
© Deallocate

© Open disk, diskette, printer, work station, and data
communications DTFs

From: Step Termination or
Command Processor

F PROCESS ewermreemosme FERINrSY EOUTPUT Somi
Required system o >° Perform initiator function (Diagram 3.1) > Initialized files and
areas H H program

_:>° Allocate overview {Diagram 3.2)
Preopen DTFs >0 Open disk, diskette, printer, and work > Postopen DTFs

station data communications DTFs
{Diagram 3.6)

4
i

'

To: User Program

Diagram 3.0. Overview of Starting a Job

Method of Operation 3-9

Licensed Material—Property of I1BM

From: Step Termination or Command Processor
or Release

INPUT ‘ I Jr PROCESS

OUTPUT sy

Main Storage n Perform preliminary OCL statement IWA
processing

Initiator Diskette AFA

Work Area {IWA) Process FILE statement format 1

B Perform appropriate OCL statement Disk AFA format 1

processor function

Initiator
Mainline (#CIML)

Format 1 chain

Procedure n Handle error conditions as needed
Parameter
Save Area FSB chain
buffer (PPSA)

and FSB
Keyboard/
Source SYSIN $SOURCE
Mainline
(#CLSS) $WORK
Initiator/ $WORK 2

SYSIN
Routines

Statements in
$SOURCE

Keyboard or Enqueued files
procedure
members

® Source
statements

FSB chain

AFA format 1

chain

VTOC format 1

Disk VTOC

SCA

JCB

Acquired work
stations

To: User Program

MODULE/

DESCRIPTION ROUTINE
Initialize fields to begin processing next statement. #CIML
Read record from keyboard or procedure member and place in buffer. #CLSS
If statement begins with *, read next statement. ’ #CIML

If statement does not begin with // it is assumed to be procedure call; go to n e
Scan statement for verb.

Search verb table for verb.
If verb found in table, go tone.

Diagram 3.1 (Part 1 of 11). Perform Initator Function

3-10

Licensed Material—Property of I1BM

DESCRIPTION

MODULE/
ROUTINE

e If encoding required switch in verb table is not on, go to nG
Find keywords in keyword table and place their control bytes in encoding area.

Move parameter and length to encoding area.

@ fvervisFiLE, oo [E.

If any errors detected, set error code in IWA and go to n
O Fetch appropriate statement processor {relocating loader SVC 52) and go to .
Check switch in IWA to ensure FILE statement follows LOAD statement.

Scan encoded parameters in IWA and go to appropriate processing routine (within #CIML):
Name and label parameter.

Date parameter.

Pack parameter.

Retain parameter.

Unit parameter.

Records parameter.

Blocks parameter.

Location parameter.

Disp parameter.

If no label parameter specified, substitute name parameter for label and place in format 1 area.

Ensure:

Name parameter specified.

No diskette parameters on disk file statement.
No disk parameters on diskette file statement.
No DISP parameter specified with RETAIN-J.

Ensure duplicate name not in file specification block (FSB) chain.

Search FSB chain for file with same unit, label, and date (if specified).

If requested file already on FSB chain:

® Point new FSB at format 1.

® Add new FSB to chain.

® Return to to read next OCL. statement.

If unit specified on file statement is diskette:
® Add new FSB to chain.

® Move format 1 to AFA format 1 area.

® Return to n to read next OCL statement.

If file not on FSB chain and RETAIN-J specified on file statement:
® Create new disk AFA format 1.

® Add FSB to chain.

® Return ton to read next OCL statement.

If file being used by another task and can be shared:
® Add new FSB to chain (FSB points to found format 1).
® Return to nto read next OCL statement.

If file not on FSB chain, not RETAIN-J, and not being used by another task:
® Call initiator VTOC routine.

o Set up fetch parameter list to give control to Include Statement Processor (#CIIC) and go ton Q

#CIML

Diagram 3.1 (Part 2 of 11). Perform Initator Function

Licensed Material—Property of IBM

Method of Operation 3-11

MODULE/

Check that ATTR statement is not between LOAD statement and RUN statement.
if system is in single program mode, return to n

Scan encoded parameters in IWA and go to appropriate routine (in #CIAT):

® Priority parameter.

® MRTMAX parameter.

® NEP parameter.

® Release parameter.

Set priority and MRTMAX in TCB.

Set NEP in JCB.

Set release indicator in IWA.

If any errors detected, set error code in IWA and go to n

Return tonto read next statement.

DESCRIPTION ROUTINE

e ® ook for file in disk VTOC. #CIVT
® Iffile not found in disk VTOC, g0 to EA) -
® Compare format 1 buiit from file statement with VTOC format 1 just read. #CIML
® |f not right one, go to o to see if another file exists in VTOC with same label. #CIVT
® Add VTOC format 1 to format 1 chain. #CIML
® Add new FSB to FSB chain.

Q ® |ndicate in format 1 that file is new (file not on FSB chain, AFA format 1 chain, or in VTOC). #CIVT
® Add format 1 built from file statement to format 1 chain. #CIML
® Add new FSB to FSB chain.

If any errors detected, set error code in IWA and go to .
Return tonto read next OCL statement.
B * or ** Statement Processor #CIMS
or
Scan SYSIN buffer for first nonblank character after * or ** and if character not quotation mark {‘message’), #CIM2
3] 3 [A)
Scan SYSIN buffer for second quotation mark {end of message).
Place start of message and message length in SYSLOG parameter list.
Call SYSLOG to display message to work station if //* or system console if //** and go toae. #CLXS

% Convert message identification code (MIC) from EBCDIC characters to packed decimal ahd place in message #CIMS
retrieve parameter list. or

#CIM2

Call SYSLOG to display message to work station if //* or system console if //**, #CLXS

e If any errors detected, set error code in IWA and go to n #CIMS
or

‘Return tonor termination to return to command mode. #CIM2

ATTR Statement Processor #CIAT

Diagram 3.1 (Part 3 of 11). Perform Initator Function

3-12

" Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE

COMPILE Statement Processor #CICM
Check that COMPILE statement follows LOAD statement.

Check directory entry in IWA to see if source required.

If no source required, go ton. . #CIER

Check for second COMPILE statement in this step.. #CICM

Scan encoded parameters in IWA and go to appropriate routine (in #CICM):
® SOURCE parameter.

INLIB parameter (find library on disk).

OUTLIB parameter (find library on disk).

MRTMAX parameter (save in compiler information block).

NEP parameter (save in CIB).

Find source member and save information about it in IWA.
Move compiler information block (CIB) to assign/free area and save CIB address in JCB.
If any errors detected, set error code in IWA and go to n :

Return tonto read next statement.

DATE Statement Processor #CIDT

If not beginning of session, go toae (beginning of session is time between sign-on and first load
statement received).

If session data already specified (in JCB), go toBG.
@ creck that DATE statement follows LOAD statement.
Check for second date statement in this step.
Q Scan input buffer for date, remove delimiters and add zeros if required.
Put date in year-month-day and packed format.
Put date in JCB.
If any errors detected, set error code in IWA and go to n

Return tonto read next statement or call termination to return to command mode.

FORMS Statement Processor #CIFM
Scan encoded parameters in IWA and go to appropriate routine (in #CIFM):
® LINES parameter.

® FORMSNO parameter.

Set lines/page in JCB if specified.

Set forms number in JCB if specified.

If any errors detected, set error code in IWA and go ton.

Return ton to read next statement or call termination to return to command mode.

Diagram 3.1 (Part 4 of 11). Perform Initator Function

Method of Operation 3-13

Licensed Material—Property of IBM

DESCRIPTION

MODULE/

If this is a MRT., go to [E] @)

Save parameters in PPSA buffer.
If not MRT, save parameters in PPSA buffer.

Save information from job control block (JCB) in PPSA:
® Message member addresses.

® Current library.

® UPSI switches.

Use task work area routine to write PPSA buffer to PPSA (to inform that, _If active function, this procedure is

now active).
Update current PPSA tag in JCB.
If any errors detected, set error code in IWA and go ton.

Return toto read next statement.

ROUTINE
IMAGE Statement Processor #CliM
Call TWA (SVC 51) access to read work station configuration record.
If first parameter is HEX or CHAR, go to‘e.
Find source member name on statement.
Search system library for source member. #MASYG
Read first statement.
Ensure first statement: #ClImM
® Begins with //.
® Verb is IMAGE.
® First parameter is HEX or CHAR.
e Convert length in source get/SYSIN buffer to binary.
Read print belt image into configuration record buffer. #CLSS
Write updated work station configuration record from config record buffer to configuration record on disk. # MZrSYG
If any errors detected, set error code in IWA and‘go to n #CHm
Return tonto read next statement or termination to return to command code.
INCLUDE Statement Processor #CliC
if next level of procedure parameter save area (PPSA) not in main storage, use task work area routine to
retrieve it.
Find procedure name on statement. i
Find procedure in user library or system library. #MASFN
Save start sector, end sector, and record length of procedure in procedure parameter save area buffer. #cCliC

Diagram 3.1 (Part 5 of 11). Perform Initator Function

3-14

Licensed Material—Property of IBM

MODULE/

Ensure program will fit in user area:
® Convert the program size to 2K blocks and store it in the IWA.
® Compare the program size to the user area size in the SCA.

DESCRIPTION ROUTINE

MRT Procedure Processor #CIMT
o Check that MRT procedure call is not between LOAD and RUN statements.

Use task work area (TWA) (SVC 51) access routine to write data {if any) from OCL statement to TWA.

Search TCB chain to see if MRT is already active.

If MRT is found, go to Be

Create new JCB using system configuration record information. Disk 10S

o toa 0 #CIMT
e Check if MRT is waiting for resources and if so, set waiting indicator in JCB.

Build ACE and queue it to work station IOCH queue or TCB complete queue.

Post work station controller or post the MRT.
@ If any errors detected, set error code in IWA and go to n

Return tonif initiating new MRT, go to detach routine #SVAU if attached to existing MRT.

LIBRARY Statement Processor #CILB

Check that LIBRARY statement is not between LOAD and RUN statements.

Scan encoded parameters in IWA encoding area and go to name parameter routine.

Find specified user library and put library format 1 address in parameter list. #MAFLB

Find file specification block (FSB) for this library in library FSB chain. #CiLB

Set on library statement bit in FSB.

I1f in a procedure, go to ﬂ@

Set on session library bit in FSB.
@ set tibrary format 1 address in JCB.

If any errors detected, set error code in IWA and go to n .

Return ton or termination to return to command mode.

LOAD Statement Processor #CILD

Check for second LOAD statement in this step.

Syntax check program name.

Search current user library (if any) and system library for specified program. #MASFN

Save directory information in IWA. #CILD

Diagram 3.1 (Part 6 of 11). Perform Initator Function

Licensed Material—Property of |1BM

Method of Operation 3-15

DESCRIPTION

MODULE/

If not in single program mode, and if spool is supported, return ton or to termination to return to command

mode.
Ensure that first parameter is CRT or PRINTER.

Ensure second parameter (if any) is EJECT or NOEJECT.

ROUTINE

Set appropriate indicators in IWA and JCB: #CILD

© Program has utility control statements (JCB).

® NEP program (JCB).

@ Load statement received this session (JCB).

® Load statement received this job (JCB).

® [oad statement received this step (IWA).

® |nitiator in intra mode (JCB).

® Statement processors should not call termination (IWA).

If this is a MRT program, set up indicators to initiate the MRT. #CILM
@ If any errors detected, set error code in IWA and go to n #CILD

Return tonto process next statement.

LOAD — MRT Routine #CILM

Check that MRT program is not being loaded from keyboard.

Check that MRT program is not being loaded from the job queue.

If not MRT procedure set MRTMAX in TCB to zero, indicate program is SRT, and go toﬂ @

Set MRTMAX in TCB to value in directory information (IWA) — MRTMAX was X‘FF’ when procedure

first entered.

If number of requestors not greater than MRTMAX, go toﬂ@.

Calculate number requesters over MRTMAX.

Find same number (over MRTMAX) TUBs on chain attached to this MRT and set off no skip bit (indicates

requester not active but waiting to attach to MRT).

If errors detected, set error code in IWA and go to n

Go ton to process next statement.

LOCAL Statement Processor #CILC

Scan encoded parameters in IWA and go to appropriate routine {in #CILC):

® OFFSET parameter.

® DATA parameter.

Use task work area (TWA) access routine to read in local area from TWA.

Move data at specified offset into local area buffer and use TWA access to write buffer to disk.

If errors detected, set error code in IWA and go to n

Go to{@l§ to process next statement or call termination to return to command mode.

LOG Statement Processor #CILG

Diagram 3.1 (Part 7 of 11). Perform Initator Function

3-16

Licensed Material—Property of IBM

MODULE/
DESCRIPTION : ROUTINE

Set SYSLOG indicator in SCA. #CILG
Set eject/noeject indicator in SCA (default is eject).
If any errors detected, set error indicator in IWA and go ton.

Go ton or termination to return to command mode.

MEMBER Statement Processor #CIMM

Scan encoded statement in IWA and go to appropriate routine (in #CIMM):
® Program 1 parameter.

® Program 2 parameter.

® User 1 parameter.

® User 2 parameter.

Search current user library and then system library for requested member. #MASFN

Set relative disk address for message member and library format 1 address in JCB. #CIMM
If any errors detected, set error code in IWA and go to n

Return to nor termination if return to command mode.

PAUSE Statement Processor #CIPS
Call SYSLOG to issue PAUSE message. #CLXS
Return ton to process next statement. #CIPS
PRINTER Statement Processor #CIPR

Ensure PRINTER statement follows LOAD statement.
Set up default printer specification block (PSB).

Scan encoded parameters in 1WA and go to appropriate routine (in #CIPR):
LINES parameter.

FORMSNO parameter.

COPIES parameter.

DEFER parameter.

ALIGN parameter.

SPOOL parameter.

PRIORITY parameter

DEVICE parameter.

NAME parameter.

Check PSB to see if name specified.

Search PSB chain for duplicate name.

If device not specified, set default in PSB.

Add new PSB to chain.

If errors detected, set error code in IWA and go ton.

Return toto process next statement.

Diagram 3.1 (Part 8 of 11). Perform Initator Function
Method of Operation 3-17

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE

REG/ION Statement Processor #CIRG
Check that REGION statement is not between LOAD and RUN statement.
Scan encoded parameters in IWA and go to size parameter routine.

Set region size in JCB.

If any errors detected, set error code in IWA and go ton.

Return tonto process next statement.

RUN Statement Processor #CIRN
Ensure that LOAD statement preceded RUN statement.
Get program date from job control block (JCB) and place in all new disk F1's.

Check F1's and file specification blocks (FSBs) to ensure no other task is creating a file with the same label and
date.

Bind resources needed by the program:
® Enqueue all disk files.

® Acquire all required work stations. #DWDM

If requested program is part of a procedure, call task work area (TWA) access routine (see Contro/ Storage Logic #CIRN
Manual) to write procedure parameter save area (PPSA) buffer to PPSA sector in TWA on disk.

Check directory information in initiator work area (IWA) to determine if program requires source; if no go
~H@

Check if file statements provided for $SOURCE, $WORK, and $WORK2 files:

® Allocate files for which file statements are provided. #CAML
® Return. #CIRN
® Allocate files for which file statements are not provided. #CAS1
® Return. #CIRN
Open $SOURCE, $WORK, and $WORK2 files. #DMOP
Return. #CIRN

If compile statement received:

® Read source statements from source member. #SYSG
® Return. #CIRN
® Write source statements to $SOURCE file. #DDDM
[

Return. _ #CIRN

If compile statement not received:

® Read source statements from keyboard. #CLSS
® Return. . #CIRN
® Write source statements to $SOURCE file. . #DDDM
® Return. #CIRN
Close $SOURCE, $WORK, and $WORK2 files. #DDCL
o If the requested program must be loaded from the system console, ensure that the requester is the system console. #CIRN

Check for an active dedicated program; if one is found, issue an error message.

If this is a dedicated program, ensure that no other tasks are active; if other tasks are active, issue an error
message.

Diagram 3.1 (Part 9 of 11). Perform Initator Function

3-18

l.icensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

If this is a high level dedicated program, ensure that the requester is the only signed on command display station;
if another command display station is signed on, issue an error message.

If RELEASE-YES was requested, then release the requester display station.

If any errors detected, set error code in IWA and go to n

Load the requested program into user area of main storage and pass contro! to it.
SWITCH Statement Processor

If SWITCH statement follows LOAD statement, check if SWITCH statement previously specified for step.
Scan SWITCH parameter in SYSIN buffer for proper characters (ones, zeros, and Xs). °
Set on or off appropriate UPS!I switches in JCB.

If any errors detected, set on error code in IWA and go ton .

Return tonor termination to return to command mode.

SYSLIST Statement Processor

If parameter is not CRT or OFF go to‘.@.

If CRT specified, set indicator in JCB to X'EEEE'.

If OFF specified, set indicator in JCB to X'0000’.

Go to Be
@ If parameter is work station printer ID, go ton‘.m.

If parameter is PRINTER, get printer 1D from requester TUB. (If MRT or job queue printer is system printer.)
m Find TUB containing printer ID and ensure it is printer TUB.

Set printer ID in JCB.
0 If any errors detected, set error code in IWA and go ton.

Return tonor termination to return to command mode.

WORKSTN Statement Processor

Check that WORKSTN statement follows LOAD statement.

Scan encoded parameters in IWA and go to appropriate routine (in # CIWK):

® REQD parameter.

® RESTORE parameter.

® UNIT parameter.

® SYMID parameter.

® PRINT parameter.

Check work station block (WSB) to ensure unit specified.

Find TUB with specified work station ID and place address in WSB.

#CIRN

#DWDM

#CIRN

#SVAU

#CISW

#CISL

#CIWK

Diagram 3.1 (Part 10 of 11). Perform Initator Function

Method of Operétion

Licensed Material—Property of IBM

3-19

DESCRIPTION

MODULE/
ROUTINE

Check WSB chain for duplicate SYMID or unit.

If print parameter not specified, set default address in WSB:
® |f MRT or job queue, use system printer.

® |f not MRT or job queue, use configured printer.

Add WSB to chain.

If any errors detected, set error code in IWA and go to n

Return tonto process next statement.

n Search error table for requested error code (in IWA) and place message identification code (MIC) and options in
SYSLOG parameter list.

If error code not found, issue disaster error (MIC 300).
If name field should be displayed, move name to SYSLLOG parameter list and go to no

If only error should be displayed, go to no

If not in procedure, go t°n°-

Set off retry option (option 1) in SYSLOG parameter list (not allowed in procedure).
If in batch job, go to no
Display heading and statement in error.
6 Display error message.
If O or 1 option taken, go tonto read next statement.

If 2 option taken, call termination.

#CIWK

#CIER

#CLXS

#CIER

Diagram 3.1 (Part 11 of 11). Perform Initator Function

3-20

Licensed Material—Property of IBM

From: User Program

INPUT r PROCESS OUTPUT

Required system Perform normal allocate function > Allocated DTFs,
areas (Diagram 3.3)] files, and
ﬂ devices
Perform special allocate function Allocated disk
{Diagram 3.4)] I I files
Perform deallocate function > Updated DTF,

format 1, and
format 5s

(Diagram 3.5) j‘

To: User Program

Diagram 3.2. Overview of Allocate

Method of Operation 3-21

Licensed Material—Property of IBM

From: User Program

INPUT I r PROCESS

CXRZ
DTF chain
CIOBs and Buffers

Main Storage

Transient Area:
#CAML
#CAF1
#CAF2
#CAPT
#CAMG
#CAPS
#CAF3
#CACM

User Area:

#CAKS
{or)

#CAR1

User Program

System Control K
Blocks: i
AFA F1's i
PSB

FSB

JCB .
TCB 5
TuB

SCA ;
Device table b
CsB §
AQE

Disk Areas:
® F1's
® F5

s OUTPUT

allocate:
® Qid disk files Chain of allocated
® Diskette device DTFs

® Work stations
® Special DTFs (XFH
(Restored by

transient return)

n Perform first pass processing of all DTFsand f— > <XR2

E Allocate diskette file

a Keysort nonshared indexed files used with
indexed access method . Allocated Files

n Allocate communications lines : Allocated Devices
B Allocate printers
B Allocate new disk files

Format new and load to old files. Update
active F1'sand VTOC F1

“ To: User Program

DESCRIPTION

MODULE/
ROUTINE

If disk DTF:
® |f old disk file:
— Complete AFA format 1.

— Assign high key bucket if indexed file.

n Process each preopen DTF in chain not conditioned off by UPSI. #CAML

Diagram 3.3 (Part 1 of 4). Perform Normal Allocate Function

3-22

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

- If not load to old, indicate file allocated in DTF and FSB.
— Indicate in FSB and RB if keysort required.

® |f new disk file:

Indicate new file to allocate in RB.

— Turn on new file switch in DTF.

Update AFA format 1.

Assign high key bucket if required.

If diskette DTF:

® Indicate diskette in use in JCB,

® Allocate device.

® Set on allocate request bit in RB.

If work station or special DTF, set on allocated bit in DTF.
Return toand repeat steps until all DTFs processed.

If diskette allocate or keysort requested in RB, go to@.

If communications lines, call communications allocate (# CACM) and go to m

If printers to be allocated, call print allocate (#CAPT) and go to .

If new disk files to allocate, call new disk file allocate (# CAF1) and go to

If load to old files to allocate, call load to old disk file allocate (¥ CAF3) and go to §j

If no allocate requests, return to user program.
0 Call allocate push/pull transient (# CAPS) and pass control to it.

if diskette file allocate request bit on in RB:

® Push user program to disk and set up 4K region in user area.

® Move DTF to start of user area. ‘
® Load diskette allocate (#CAR1) after DTF in user area and go to ¥4

@ if return from #CAR1, restore user region and pull user program from disk.
If keysort request bit on in RB:

® Push user program to disk and set up 14K region in user area.
® | oad keysort interface (# CAKS) into first 2K of user area.

® Go toa.

e If return from #CAKS, restore user region and pull user program from disk.
If request for communications lines, load #CACM and go to n
If request to allocate printers, load printer allocate transient (# CAPT) and go toE.
If requested to allocate new disk files, load # CAF1 and go toﬁ.
If requested to allocate load-to-old disk files, load #CAF3 and go to .
Return to user program.
a If first time allocate or requested in DTF, perform diskette prepare function.

Find AFA format 1.

— If load to old, set load to old to do bit in request block (RB) and set new creation date.

#CAML

#CAPS

#CSVI

#CAR1

Diagram 3.3 (Part 2 of 4). Perform Normal Allocate Function

Licensed Material—Property of IBM

Method of Operation 3-23

DESCRIPTION

MODULE/
ROUTINE

Check pack parameter against volume ID of mounted diskette.
Determine if specified file exists.

If allocating new diskette file:

® Delete all expired files.

® Ensure clean pack if requested in DTF.
® Allocate new file following existing files.
@ Set creation date to proper date.

® Set expiration date.

If allocating existing diskette file:
® For Add files:
— Ensure last {or only) diskette volume of file inserted.
— Ensure last active file on diskette is add file.
— Ensure expired files (other than add file) are deleted.
® For input files, ensure first volume of multi-volume file inserted.
® For existing file with RETAIN specified, set new expiration date.

Return to n@
n Check file specification block (FSB) for files requiring keysort.

Fir files requiring keysort:

Update VTOC F1 to allow for keysort failures.

Load and pass control to keysort Modules. (See Keysort.)

Return here after keysort complete. '

If duplicate keys returned from keysort, issue halt.

If keysort functioned satisfactorily, reupdate VTOC F1 to turn off failure indication.

Return to ne

K3 /¢ sscorsoLc:

Allocate line.

Load data management task.

Update DTF, CSB, and JCB.

Set allocated bit in DTF.

If printers to be allocated, call print allocate (# CAPT) and go to B

If new disk files to allocate, call new disk file allocate (# CAF1) and go toﬂ.

If load to old files to allocate, call load to old disk file allocate (# CAF3) and go to .
If no allocate requests, return to user program.

>

Search printer specification block (PSB) chain for matching DTF name.
If match found, locate TUB with same work station ID as in PSB.
If match not found, build default PSB.

If output spooled:
® [ndicate spool intercepting in PSB, DTF, and TUB.
® Set allocated bit in PSB and DTF.

If output not spooled:

Put device code in DTF.

Set allocated bit in PSB and DTF.

Save TUB and PSB address in DTF.

Set check forms/image in PSB.

Set call forms/image transient in request block (RB).

#CAR1

#CAKS

#CSVF

#CSDK

#CAKS

#CSDK

#CSVF

#CAKS

#CACM

Diagram 3.3 (Part 3 of 4). Perform Normal Allocate Function

3-24

Licensed Material—Property of 1BM

MODULE/

Return to calling module.

DESCRIPTION ROUTINE
If needed, do forms/image processing. #CSIM
I request to allocate new disk files, load #CAF1 and go to [LX. #CAPT
If request to allocate load to old disk files, load # CAF3 and go to .
{3 For each new disk DTF: #CAF1
© Setup DTF to indicate:
— Minimum and maximum sectors needed.
— Spindle desired.
— Location desired.
@ Count VTOC F1's needed.
Read format 5. Disk 10S
__ Check if enough VTOC F1 space, and call find disk space transient module (#CAF2): #CAF1
GD? 9 |f requested space is available: #CAF2
— Update format 5 to indicate space taken. Disk 10S
— Place return code in DTF. #CAF2
— Pass control to #CAF3.
9 |f requested space is not available:
— Place return code in DTF to indicate no space available.
— Set wait or halt bitin DTF.
— Pass control to #CAF3.
If #CAF2 found no space: #CAF3
© Halt if dedicated system or program. «
O Wait for space in format 5, reread format 5, call #CAF2, and go to .
If #CAF2 found space:
© Format file: Disk 10S
— Write X‘FF’s to index if indexed file.
— Write X'40's to data area if direct file or X'00’ if not direct P or T file.
O Save start and end of data and start and end of index in DTF. #CAF3
O [fPorT file, write format 1 to VTOC. Disk I10S
O Set allocated bit in DTF and FSB. #CAF3
Return to user program.
Note: Allocate messages, except duplicate key and diskette message, are provided by # CAMG, which interfaces #CAMG
to SYSLOG (duplicate key messages issued by #CSDK and diskette messages issued by #CAR1).
If allocate message or halt:
O Build SYSLOG parameter list with program data:
— File name.
— File label.
— Forms number.
— Work station ID or communication line number as required.
@ Call SYSLOG to issue message/halt.
® Call end of job transient when 2 option taken to halt. #CLXS
#CAMG

Diagram 3.3 (Part 4 of 4). Perform Normal Allocate Function

Method of Operation 3-25

Licensed Material—Property of IBM

From: User Program

fp INPUT e I r PROCESS

"5- ; Build and place on queue a format 1 and

FSB for each file to be allocated

OuUTPUT

XR2

CXRZ

Chain of allocated
DTFs

' Allocate old files and prepare to allocate
new and load to old files

EDTF chain

{0B and Buffers

Allocated disk
files

Main Storage E Keysort nonshared indexed files accessed

by indexed sequential access method

B BB Ailocate new and load to old disk files

Transient Area:
#CAS1
#CAF1
#CAF2
#CAF3
#CAPS
#CAS2

e

User Area:

o EACERE e

User Program

T

FSB
AFA F1
VTOC F1
F5

T s

To: User Program

MODULE/

DESCRIPTION ROUTINE
4 Process each preopen disk DTF requiring special allocate.) #CAS1

Build format 1 and FSB:

© If file specification block (FSB) exists (file statement specified) build format 1 into FSB format 1.

© |f no FSB for requested file, assign area and build format 1 from DTF information.

© Create or update FSB.

@ Create or update AFA format 1.

© IfPorT file notin AFA or not on FSB chain, search VTOC for file by label (and date if specified). #CSVF

[]

Return. #CAS1

If any file successful, call #CAS2 to do the following for each successful DTF:
© |fdisk DTF: #CAS2
— Complete AFA format 1.
— Assign high key bucket if indexed file.
— Ifload to old, set load to old to do bit in request block (RB) and set new creation date.
— If not load to old, indicate file allocated in DTF and FSB.
— Indicate in FSB and RB if keysort required.

Diagram 3.4 (Part 1 of 2). Perform Special Allocate Function

3-26

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE

® |{ new disk file: #CAS2
— Indicate new file to allocate in RB.
— Turn on new file switch in DTF.

Update AFA format 1.

Assign high key bucket if required.

If keysort is needed, call allocate push/pull transient (# CAPS) and pass control to it.
From this point, special allocate functions same as normal allocate.
Use Diagram 3.3, enter at neand continue to end.

n Special allocate functions same as normal allocate for new or load to old disk file allocate.

Use Diagram 3.3, enter atﬂ and continue to end.

Diagram 3.4 (Part 2 of 2). Perform Special Allocate Function
Method of Operation 3-27

Licensed Material—Property of IBM

From: User Program

i r PROCESS oo

XR2 > n Perform first pass processing

CDTF chain (closed) Keysort nonshared indexed files used with
) indexed access method

Main Storage

Update format 5s

Transient Area:
#CAD1
#CAD2
#CAPS
#CAD3

User Area:

User.Program

DTF
FSB
AFA F1

........

To: User Program

@ OUTPUT

DTF

AFA F1

VTOC F5

DESCRIPTION

MODULE/
ROUTINE

n Check DTF device code. If not disk, deallocate device and return to user program.

Check each DTF for keysort request:

® Search file specification block (FSB) for name match.

® |f keysort requested:
— Indicate keysort request in FSB and request block (RB).
— Goto B : .

@ ~ssion vTOC format 1 butfer.
Set format 1 interlock.
If free disk space request:
® Ensure nonshared file.
® Ensure valid end of file extent.
® |fignore format 5 processing bit not on in DTF, set on bit in RB to handle F5's.
If file delete request, indicate in DTF to delete as scratch file.
If file deallocate request:

® Update last date indicator for new files or old S files.
® Write active format 1 to VTOC for P and T files.

#CAD1

#CAD2

#CSVF

Diagram 3.5 (Part 1 of 2). Perform Deallocate Function

3-28

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE

I1f S file and ignore format 5 processing bit not on in DTF, set on bit in RB to handle F5s. #CAD2
Note: Only deallocate function allowed for shared files.
I handle F5s bit on in RB, load #CAD3 and go to [EY.

Return to user program.

E If keysort request bit on in RB: #CAD1
® Call allocate push/pull transient (#CAPS) and pass control to it.
® Push user program to disk and set up 14K region in user area. #CAPS
® Load keysort interface (# CAKS) into first 2K of user area.
® From this point, keysort functions same as for normal allocate. #CAKS

Use Diagram 3.3 and enter at E

At end of keysort operation, return to this diagram at @

Enqueue format 5 interlock at 3 level. #CAD3
Read VTOC F5 from disk and write to buffer. Disk 10S
Process each DTF, determining start and end extents to be freed. #CAD3

Add or merge format 5 entries in buffer as required.

Issue message if: .
@ Part of area already free.
® Format 5 too fragmented to use.

Write updated buffer out to VTOC F5. Disk 10S

Return to user program. #CAD3

Diagram 3.5 (Part 2 of 2). Perform Deallocate Function
Method of Operation 3-29

Licensed Material—Property of |1BM

From: Calling Program

I r PROCESS

XR2 Prepare to open DTFs XR2

OUTPUT

(DTF (preopen) Open disk DTF DTF)

Main Storage B Open work station format load member DTF 10B

n Prepare to open other DTFs 1/0 buffer

Transient Area:
#DMOP B oren diskette DTF AFA format 1
#WDOP
#DROP A open printer DTE
#DMOF
#DD10P Open data communications DTF
#DD20P
#BSOB u Chain opened DTFs together

User Area

User Program

AFA format 1

To: Calling‘ Program

MODULE/
DESCRIPTION ROUTINE
n Check DTF for valid device type. - #DMOP

If device invalid, call SYSLOG to issue error message.
Mark all DTFs to be opened by setting switch in DTF.

If not end of DTF chain:
® Point to next DTF.
® Return to [}

@ Foint o first DTF on chain.
® [f disk DTF, indicate disk open required.
® |f work station DTF, indicate work station open needed.

Point to next DTF and repeat above, until end of chain is reached.

Determine next transient to call:

® | disk open required, go to ['4.

® |f work station'open needed, go to .
® Otherwise, go to n

Diagram 3.6 (Part 1 of 3). Open Disk, Diskette, Printer, Work Station and Data Communications DTFs
3-30

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

B3 Perform all diagnostic checking of DTF.
If error found, call SYSLOG to issue error message.
If dummy open, initiate all required DTF fields.

For ZPAM and ISRI, complete DTF and load required data management into user area if required. (Relocating
loader SVC 52).

Apportion |0Bs and buffer area as needed.
Complete all DTF fields as required.
If requested, build master track index.
Build high key bucket if needed.
If work station open needed, go to E
Qtherwise go to n
X} Check DTF for valid device code.
If user library assigned, scan library directory for format load member name specified in DTF.
If no library assigned, or if load member not in library, scan system library for format load member.
If format load member found:
© Ensure load member created by $SFGR and total sectors greater than zero.
@ Read format load member index.
© Count number of format index entries.
© |If format index entry count exceeds maximum defined in DTF, call SYSLOG to issue message.
® |f previous format load member opened, ensure no duplicate format names exist.
® |f no errors found:
— Move format indexes to location specified in DTF.

— Update index address and number of index entries in job control block (JCB).

?,T to open next DTF or chain together opened DTFs.

When all work station DTFs are open, go to
Point to first DTF on chain:

© |f printer DTF, go to .

© If diskette DTF, go to [}

© |f data communications DTF, go to {ZA.
)

en

If special DTF, indicate DTF opened.

e Point to next DTF on chain: —
© If end of chain reached, go to .

® if not end of chain, go to n@

B Update active format 1.

Ensure file properly allocated.
Initialize DTF to postopen status.
For existing files:

©® Ensure file organization and access method compatible.
©® Supply, or check record length.

#DD10OP

#DD20P

Disk 108

#DD20P

#WDOPN

Disk 10S

#WDOPN

Disk 108

#WDOPN

#DMOF

#DROP

Diagram 3.6 (Part 2 of 3). Open Disk, Diskette, Printer, Work Station and Data Communications DTFs

Method of Operation 3-31

Licensed Material—Property of IBM

DESCRIPTION

VMODULE/
ROUTINE

Build and initialize 10Bs:
© For output files, write internal control record if required.
O For input files, read first data area and set internal control record and/or track alignment indicators in DTF.
© For basic exchange files, determine if full track 1/O possible.
Initialize DTF end of file field.
Update DTF next record pointers and/or prime buffer for add file.
Format 10B to postopen status for processing data:
© For full track 1/0 requests, adjust to read or write to track boundary.
O For basic exchange output file, clear output buffer.
Process diagnostic errors.
Load either diskette data management or sector data management to diskette (SVC 52) into user area if required.
Go to {,.43 @to open next DTF or to chain together opened DTFs.
Perform all diagnostic checking.
If error found, call SYSLOG to issue error message.
Obtain space within assign/free for 10B.
Initialize 10B.
Initialize all required DTF fields.

Issue format and skip to line one command to printer.

Route printer 10Bs to work station 1/O control handler (WSIOCH) or to spool intercept routine (#SPINT).

@to open next DTF or to chain together opened DTFs.
Open data communications DTF (Diagram 1.1 in SSP Logic: Data Communications).
Go to@to open next DTF or to chain together opened DTFs.

58 Build backward chain to include all opened DTFs.

Return to calling program.

#DROP

Diskette 10S

#DROP

#DMOF

WSIOCH

#DMOF

#BSOB

#DMOF

Diagram 3.6 (Part 3 of 3). Open Disk, Diskette, Printer, Work Station and Data Communications DTFs

3-32

Licensed Material—Property of IBM

Program Organization

Figures 3-2 through 3-6 show the logic flow of functions

needed to start a job. They are:

Initiator
Normal allocate
Special allocate
Deallocate

Open

Licensed Material—Property of IBM

Program Organization

3-33

3-34

Command Processor
or

Step Termination
or

Release

Verb Module

Called

For Each " #CIMS
_swtemmm /e #oIM2

: // ATTR #ICIAT

Initiator // COMPILE #CICM
Mainline // DATE #CIDT
// FILE #CIVT

(#cImL) // FORMS #CIFM
// IMAGE #ClIM

// INCLUDE #ClIC

(if MRT) #CIMT

// LIBRARY #CILB

// LOAD #CILD

(if MRT) #CILM

// LOCAL #CILC

/! LOG #CILG
// MEMBER #CIMM

// PAUSE #CIPS

// PRINTER #CIPR

// REGION #CIRG

// SWITCH fiICISW

mAfter Each gy /I SYSLIST #CIsL

Module ™ // WORKSTN #CIWK

RUN Statement
Processor

(#CIRN)

Supervisor
Attach
Transient
(#SVAU)

Figure 3-2. Initiator Control Flow

Licensed Material—Property of IBM

Initiator
Error Handler

(#CIER)

Requested User
Program

Keysort
User If Interface
Program — Keysort —
(#CAKS)
Allocate
Push/Pull
(#CAPS)
Diskette
<4)
Diskette
(#CAR1)
Allfzx:éte Communicator
Mainline T—— 1f Communications Allocate
Lines
(#CAML) {(#CACM)
Printer
1 Allocate
Printers “
(#CAPT)

User
Program

S el 7 gy, (Y

- |f Load to
- Old Files

New Disk File
Allocate

(#CAF1)

Find Disk
Space

(#CAF2)

EER TR

Load to Old

Disk File

Allocate
(#CAF3)

Figure 3-3 (Part 1 of 2). Normal Allocate Control Flow

Program Organization 3-35

Licensed Material—Property of IBM

From: Allocate Routines

Message 1§ 2
Routine F . - EQJ
(#CAMG) Option

To: Allocate Routines

Figure 3-3 (Part 2 of 2). Normal Allocate Control Flow

3-36

Licensed Material—Property of IBM

User
Program
Special
Allocate
-Initial
Phase-
(#CAS1)
If Any
Files)
Successful Special
Allocate
-First Pass-
(#CAS2)

Else

User
Program

If Keysort

F Required

Figure 3-4. Special Allocate Contro! Flow

>

Allocate Keysort
Push/Pull Interface
(#CAPS) (#CAKS)
New Disk
File
New
1}
Dick Files N> Allocate
(#CAF1)
Find Disk
Space
(#CAF2)
Load to Old
Disk Files
Load to Old
Disk File
Allocate
(#CAF3)

Licensed Material—Property of IBM

Program Organization

User

Program
Allocate) Keysort
If Keysort ENENNNMP) Push/Pul | (EEEEENNNNEEN| Intrface
(#CAPS) (#CAKS)
Deallocate
Premainline
(#CAD1)
Deallocate Free F5
)) oo If Request to
_ If Disk Files “ Mainline h . - Space
(#CAD2) Free Format 5s (#CAD3)
User
Program

Figure 3-5. Deallocate Control Flow

3-38

Licensed Material—Property of IBM

User
Program

Common
Open 1

(#DMOP)

3

Disk
Open

(#DD10OP)

|f Work Station
DTF but No Disk

DTF

If No Work Station
DTF and No Disk

Disk
Open

(#DD20P)

—

If No Work

Station DTF

Station
Open
(#WDOPN)

J—

Common
Open 2

(#DMOF)

'— If Diskette
DTF

If Data

DTF

1see Diagram 1.1 in SSP Logic: Data Communications

Figure 3-6. Open Control Flow

Licensed Material—Property of IBM

h Communications -

DTF

[

Diskette
Open

(#DROP)

BSC
Openl

(#8508B)

Program Organization

3-39

3-40

Licensed Material—Property of IBM

Introduction

The functions that might be used to run a job are:
© Disk data management

® Sector data management to disk

o Diskette data management

© Diskette end of volume

o0 Sector data management to diskette
@ Printer data management

© Work station data management

o Keysort

© Spool intercept

o Spool print writer

DISK DATA MANAGEMENT

Disk data management functions are performed by a mod-
ule (#DDDM) that resides in the system nucleus. Figure 4-9
shows #DDDM control flow.

When the user program requests data management services,
the request is passed to the router routine. The router,
which is part of the disk data management module, deter-
mines and passes control to the proper data management
module.

If disk data management is requested, control is passed to
the main driver routine within #DDDM. The main driver
routine examines the first attribute byte in the disk DTF to
determine the access method requested.

The proper access method driver receives control from the
main driver routine. The driver examines the operation
code in the disk DTF to determine which base function or
subroutine to call. Figure 4-1 shows the base functions
and subroutines used by the various access methods.

Chapter 4. Running a Job

The base functions, in conjunction with appropriate sub-
routines, perform the requested disk |/O operation. Figure
4-2 shows the subroutines used by the four base functions.
The actual 1/0 operation is performed by disk 10S within
control storage.

Control is returned to the user program by way of the main
driver. Subroutines return control to the base function that
called them; base functions return control to the access
method driver that called the base function; drivers return
control to the main driver and thus control is returned to
the user program.

Consecutive Access Method

Figure 4-3 shows the control and data flow in a disk data
management operation using a consecutive access method.
Data and logic could flow in either or both directions,
depending on whether the operation is a retrieval, an
update, or an addition of records. Disk data management
gets each record from the data buffer or places it in the
next adjacent location in the data buffer. When disk data
management has filled or emptied the data buffer {(a block
of records has been processed), the disk 1/O supervisor is
called to transfer data between the data buffer and the disk.

Control information passes from the calling routine to
disk data management through the disk DTF block. Con-
trol information passes between disk data management
and disk 10S through an |OB (see Data Areas Handbook).

Direct Access Method
Input

For an input operation, the calling program passes a relative
record number to data management which converts it to a
disk address and locates the record in the data 1/0O buffer
(see Figure 4-4). On input, if the record is not in the data
1/0 buffer, disk data management calls disk 10S to read the
disk sectors containing the records into the data 1/0 buffer.
Disk data management places the address of the record in
the DTF. The calling program may retrieve the record
directly from the data 1/0 buffer.

Introduction 4-1

Licensed Material—Property of IBM

Base Function / Subroutine Name

X PUTD (put data—base function)

X GETD (get data—base function)

X PUTI (put index—base function)

X GET! (get index—base function)

X SRGPI (get/put I/O interface—subroutine)

X SRUKE (check update key error—subroutine)

X SRNIE (get next index entry—subroutine)
Driver _ Driver Name
CONDRYV X | X Consecutive Driver
DIRDRV X | X Direct Driver
IRADRV X X X X X Indexed Random Driver
ISQDRV X X X X X X Indexed Sequential Driver

Figure 4-1. Base Functions/Subroutines Used by Access Methods

Base Function Name

X PUTD (put data—base function)

X GETD (get data—base function)

X PUTI (put index—base function)
X GETI (get index—base function)

Subroutine Subroutine Name
SRRTS X | X Convert RRN to SSSD
SRGPI X X | X | X {X Get/put 1/0 interface
SRF1G X X Get format 1 values
SRF1P X X Update format 1 values
SRMOV X Move data to 1/0 buffer

Figure 4-2. Subroutines Used by Base Functions

4.2

Licensed Material—Property of IBM

Logical 1/0 Physical 1/0
Input Data Processor Data Processor
Processor Areas (Main Storage) Areas (Control Storage) Output
Calling - XR2 Disk Data XR1 Disk
Program Management 108
(#DDDM)
{consecutive
access
methods—
drivers,
base func-
tions, and
DTF :> subroutines) 10B : P
Qutput or Update > J‘>(
Data
Buffer
(one o
block of Disk File
< Input records)
Legend: /—\
Control Flow Data Flow Address Pointer
Figure 4-3. Consecutive Processing
Logical 1/0 Physical 1/0
{nput Data Processor Data Processor
Processor Areas (Main Storage) Areas (Control Storage) Output
Calling Disk Data |) Disk
Program XR2 Manage- XR1 108
ment
(#DDDM)
Postopen
B
DTF ——"> 10)
Key or Direct and ;_,> Scan, Load, or Add
Record Indexed Index Disk
Number :',> Random Buffer k Retrieve File Index
Storage Access
Area Methods
Data Disk
: Buffer < File
A\
Legend:

~=>

Control Flow

Data Flow

Figure 4-4. Direct and Indexed Random Processing

77N

Address Pointer

Licensed Material—Property of IBM

Introduction 4-3

Update

When updating a record, disk data management retrieves
the record as described in the previous paragraph and passes
control to the calling program. After the calling program
has updated the record, disk data management receives the
address of the updated record, moves the record to its orig-
inal position in the data 1/0 buffer, and calls disk 10S to
write the data 1/0 buffer. Any retrieved records may be all
blanks (as formatted by allocate) and be updated.

Output

For an output operation, disk data management receives
the address of the record, moves the record to its location
in the data 1/0 buffer, and calls disk 10S to write the data
buffer. Internally, each writing of an output record is
immediately preceded by a retrieval of that same record.

Indexed Random Access Method
Input

The calling program passes a key value to disk data manage-
ment in the key/storage area (Figure 4-7). Disk data
management uses the SCAN function to search for the key
in the index on the disk. The sector(s) containing the
requested logical record are read into the data /O buffer.
The address of the record in the data /O buffer is passed
to the calling routine via the DTF. The calling routine

can then obtain the record directly from the data 1/0
buffer.

Update

When updating a record, the calling program must first
retrieve (input) the record as described in the previous
paragraph. After the calling program has updated the
record, an update operation can be performed. At this
time, disk data management receives the address of the
updated record, ensures that the key value has not been
changed, moves the record to its original position in the
data 1/0O buffer, and calls disk 10S to write the data I/0O
buffer. The index is not changed. Each writing of an
updated record must be immediately preceded by the
input of that same record.

4.4

Add

When adding a record to a file, disk data management
receives the address of the record and searches the index
area on disk to see if the key of the record to be added
already exists in the index. If the key is a duplicate, an
error completion code is returned to the calling routine
and the record is not added. For add and output opera-
tions, disk data management moves the record to the
data 1/0 buffer and builds an index entry in the index
buffer. When either the index buffer or the data I/0O
buffer must be written to disk, disk 10S is called.

Indexed Sequential Access Method

Disk data management processes indexed sequential files
only in ascending key sequence, normally starting with

the lowest key in the index (or the lowest key within spec-
ified limits) and processing each record in the primary part
of the file (Figure 4-5).

Input

Sequential input is accomplished by consecutive reference
to each index entry and a retrieval of its associated record.
If the requested record is not in the data /O buffer, disk
data management calls disk 10S to read the disk sectors
containing the record. When the last index entry in the
index buffer has been processed, disk data management
calls disk 10S to read the next sector of index.

Update

When updating a record, the calling program must first
retrieve {input) the record as described in the preceding
paragraph. After the calling program has updated the
record, an update operation can be performed. At this
time, disk data management receives the address of the
updated record, ensures that the key value has not been
changed, and moves the record to its original position

in the data 1/O buffer. Each update operation should be
immediately preceded by a retrieve of that same record.
When the last record in the data !/O buffer has been pro-
cessed, disk data management calls disk 10S to write the
data 1/O buffer to disk if it contains any updated records.
The index buffer is not rewritten.

Licensed Material—Property of IBM

Logical 1/0 Physical /0
Input Data Processor Data Processor
Processor Areas (Main Storage) Areas (Control Storage) Output
Calling Disk Disk
Program XR2 Data XR1 10s
Manage-
ment
DTF — 108 —">
Current/
Last Key :>
Hold Area
) : Add
Index Disk
buffer : Retrieve File Index
H‘ing/Low (Indexed
Limits ——"> sequential
Area_ access
(Optional) methods)
Data Buffer DfSk
et | File
NS - 1

Figure 4-5. Indexed Sequential Processing

Add

When adding a record to a file, disk data management
receives the address of the record and compares its key to
the current key and last key values to ensure that the key
is in ascending sequence and does not already exist in the
file. If the key is not in sequence or is a duplicate, an error
completion is returned to the calling routine and the record
is not added. For add and output operations, disk data
management moves the record to the data 1/0 buffer and
builds an index entry in the index buffer. When a buffer

is filled with added records or index entries, or when an
input request follows an add operation, disk data manage-
ment calls disk 10S to write the buffer(s) to disk.

Indexed Sequential/Random Input Access Method

Three types of input operations are performed by the
indexed sequential/random input access method. The user
may issue a random get and from that point go either for-
ward or backward to sequentially access disk storage.

For a random get operation, $F1KAD contains the address
where the record key is located. Record retrieval is the
same as for an indexed random input operation.

Get forward is another possible operation. Record
retrieval is the same as for an indexed sequential input
operation, The record is the next record relative to the
last get operation.

Get backward is the third possible operation. Record
retrieval is the same as for an indexed sequential input
operation. The record is the previous record relative to
the last get operation.

Description of Access Method Drivers

Consecutive Driver

Input: For consecutive input, a relative record number is
internally generated, (open initializes this DTF field

($F1RRN) to X‘0’) and this record is retrieved using the
get data base function. Then the relative record number

- is bumped by one and control is returned to the user. The

only valid completion code other than normal (X'40')
and 1/0 error (X'41') is end of file (X'42’). The retrieved
record is located in the 1/0 buffer and the DTF field
$F1WKB points to the leftmost byte of the record.

Introduction 4-5

Licensed Material—Property of IBM

The user’s 1/0 buffer must be large enough to contain a
complete logical record (having worst-case sector boundary
alignment) since this operation functions in locate mode.

Output: For a consecutive output operation, the DTF
field $F1WKB must contain the leftmost address of the
logical output record. The put data base function is called
to move the record to the 1/0 buffer and write the buffer
to disk when necessary. Multiple moves may be required
to move the record to the /O buffer since it is not neces-

- sary to have on |/O buffer equal to or larger than the
record length. The DTF field $FINXR is used to determine
the location for each output record. The only completion
code other than normal and /O error is end of extent
(X'70").

Add: An add operation functions similar to an output
operation,

Update: Consecutive update first checks to ensure that the
previous operation was a get. If this check fails, a comple-
tion code of X'45' is set to indicate an update operation
was not preceded by a get. When a valid update operation
is determined, the internal relative record number is decre-
mented by one to point to the last record retrieved and the
record is put to the 1/0 buffer and disk if necessary.

Special Considerations for Consecutive Processing: When
SIAM is specified, the 1/O buffer is written and/or read for
every operation performed. When doing an update opera-
tion, the 1/0 buffer is reread between the get and put
operations. Therefore the user must move the retrieved
record out of the I/0 buffer prior to doing the output
portion of his update.

Direct Driver

Input: When doing a direct input, the caller must have
the relative record number of the requested record in the
record address area (8F1KAD), pointed to by the DTF.
$F1KAD must contain the address of an area 3 bytes in
length if the RRN is a binary value or 10 bytes long if the
RRN is a decimal value.

4-6

A check is made to see if the requested record is in the
present I/O buffer. In any case, once the record is in the
buffer, it is located via $F 1WKB and control is passed
back to the calling routine with a normal completion

code of X‘40’, The only other return code from direct
input {except for 1/0 error) is X'44’, record out of extent.
All direct input operates in locate mode thus requiring
that the user’s 1/O buffer be large enough to contain at
least one complete record with worst case sector boundary
alignment. ‘

Update: Direct update first ensures that the previous
operation was a get and then the updated record is moved
to the 1/0 buffer and written to the disk if necessary. The
same restriction holds true for direct as for consecutive
update. (See Special Considerations for Consecutive
Processing.) A possible return code from direct update
operations is X'45’, update before input.

Special Considerations for Direct Processing: Only three
operations are supported for direct processing. They are
the input, update and output op codes. Since a direct file
is considered to be full of blank records at allocation time,
a user may not add to a direct file. The output operation
forces an input followed by an update with data in manage-
ment. Direct processing always computes the N-byte in
the OB upon entry to any operation to enable dynamic
blocking during processing. The N-byte is computed to
be the value of the leftmost byte of the block length
($F1BKL) minus one.

Indexed Random Driver

Input: Indexed random input obtains the key of the
requested record from the addressed location in $F1KAD.
The key is compared to the prime key bucket to see if the
record is in the prime portion of the index. If the requested
key is higher than the prime bucket, the key does not exist
in the prime area so a check is made against the overflow
bucket. Again if the compare is high, the key does not
exist in the overflow and a return code of X'44’ is set indi-
cating no record found. [f the key is found to possibly
exist in the prime index, a scan is issued with an argument
of high or equal. If the scan returns a high or no hit value,
the scan starts over in the overflow area with an equal only
argument. If the scan of the prime returns an equal indi-
cator, the record has been found and the RRN is retrieved
from the index buffer and the associated data record is

also retrieved. When the scan of the overflow area returns
an equal found, the RRN is retrieved from the index buffer
and then the associated data record is retrieved. If the
scan of the overflow yields a no hit value, a return code

of X'44' is set indicating no record found.

Licensed Material—Property of IBM

When a scan equal is returned from the scan function,
and the RRN has been located, the RRN value is con-
verted to an SSSD value and that sector is read into the
data 1/0 buffer. Then the record is located in the I/O
buffer and the leftmost address returned by way of
$F1WKB, along with a completion code of X‘40°. The
only return code other than normal from indexed random
input is record not found (X'44’).

Add: Indexed random add expects the address of the key
for an add record to be in the DTF at $F1KAD. The first
step of the add operation is to scan the prime and overflow
area if necessary to see if the key already exists. If the key
is found to already exist in either the prime or overflow
area, a return code of X’60’, duplicate add attempted, is
set and control returned to the caller. If the key is not
found, the add operation may continue. $F1WKB must
contain the leftmost address of the record to be added.

A check is made to ensure that the record will fit in the
data area on disk. If it will not fit, a return code of X'70’
is set indicating end of extent. If the record will fit in the
extent, the record is moved to the I/0O buffer and written
to disk if necessary. Next the index entry is built. A
check is made to ensure that the index entry will fit in the
index extent. If it will not fit, a return code of X'70’ is
set indicating end of extent and control is returned to the
user. If it will fit, the index entry is moved to the index
1/0 buffer and written to disk. The add key is compared
against the overflow key bucket and if the new key is
higher, the new key is moved to the overflow key bucket.
The SSSD of the new key in the overflow key bucket is
also moved to the format 1.

Output: Indexed random output first moves the data
record from the work buffer (SF1WKB) to the data I/O
buffer, and write it to disk if necessary. Next an index
entry is built and moved to the index 1/0 buffer and writ-
ten to disk if necessary. No key sequence checking is
done and no checks are made to ensure that duplicate
records are not put to the file.

Update: Indexed random update first ensures that the key
of the record being updated is the same as the key of the
last record retrieved. |If not an update key error (X'50’)

is set and control returned to the caller. A check also
ensures that the previous operation was a get. If not, error
X'45" update before input is set and control is returned

to the caller. If all is well up to here, the updated record is
moved from the record buffer to the 1/0 buffer and writ-
ten to disk. The same restriction holds true for indexed
update as did for consecutive update (see special considera-
tions for consecutive processing).

Special Considerations for Indexed Random Processing:
When doing index random output, it is possible to put
duplicate keys to a file. When processing under indexed
random input, and duplicate keys do exist, only the first
key entry is accessible. When doing adds to a file, the sort
and merge bits in the F1 are set as follows:

Higher Lower
Than Than
Prime Prime
Higher
Than No
OVFL Setting Merge
Lower Merge
Than +
OVFL Sort Sort

Indexed Sequential Driver

Input: When doing indexed sequential input, the first
record retrieved is the first index entry followed by each
record, by key sequence in the index. The first thing
that is checked is to see if processing is within limits. All
indexed sequential processing is processed as though
limits are specified. If limits are not specified, the limits
are set to the start and end of the file. When end of file
is reached and limits are specified, the open limits tran-
sient may be called to set net limits. This transient call
is made only if a get request is received and the comple-
tion code contains a X'42’, end of file.

Update: Processing for update must be preceded by an
input of the same record. The record key is checked to
ensure that it has not been updated. If it has been updated,
the return code is set to X'50’, update key error. The data
is moved from the record buffer to the data 1/O buffer,

and written to disk if necessary.

Add: When doing an indexed sequential add, you must
first read the first record past the location into which
you want to add. The following example explains this
procedure.

Introduction 4-7

Licensed Material—Property of IBM

If the file you are adding to contains keys 1, 2, 5, 10, 20
and 50, and you wish to add record key 3. You must first
read records 1, 2, and 5. At this point you may add rec-
ords 3 and 4, in that order. If you wish to add record key
17, you must continue reading up to record 20. At this
point you may add records 11 through 19. If you wish to
add records greater than key 50, you must read to end of
file and at that point you may add as many records as there
is room in the file. Remember that each add must be in
ascending order by key.

Special Considerations for Indexed Sequential Processing:
Indexed sequential add operations may not be processed
under a file sharing environment. When processing a file
containing random adds and the index has not yet been
sorted, you do not have access to the records in the over-
flow area (added records).

Indexed Sequential/Random Input Driver

This access method supports only input operations. Three
types of input may be specified.

© Random get — X80’ op code
The record key must be at the address contained in
$F1KAD. The retrieval of this record is the same as
any indexed random input operation.

© Get forward — X'84' op code
This operation is the same as any indexed sequential
input operation. The next key, relative to the last get,
is retrieved. ‘

© Get backward — X'82' op code
This operation causes the previous record, relative to
the last get, to be retrieved.

Each successive get is based on the last get operation,
except for a random get which only gets the record
requested. If the first operation is a get forward, the rec-
ord referenced by the first index entry is the first record
in the file to be retrieved. A return code of X'42’ is issued
whenever end of file is reached, either forward or back-
ward. A X'44'is set if a random get cannot be found.

4-8

SECTOR DATA MANAGEMENT TO DISK (#DDSM)

Sector data management resides in the system library and

is loaded by disk open. It is provided for user and SSP
functions which require movement of considerable amounts
of data to or from disk. Sector data management utilizes a
single input/output buffer which is filled by a single read
operation, or written to disk with a single write operation.
Sector data management operates with no consideration of
logical record length.

Data Transfer Modes — Locate and Move

The base functions of #DDDM execute in one of two
modes of operation: locate mode and move mode.

In locate mode, a record is not moved after the data
management module places it in the data /O buffer.
Instead, the address of the record is placed in the DTF,
and the calling program retrieves the record directly from
the data 1/0 buffer.

In move mode, the base function routines in #DDDM
receives records from a calling program in an area {(work
buffer) that is separate from the data I/0 buffer. In all
output operations, the record is received from the calling
program’s output area. The base function routine moves
the resident portion of the record from the work buffer,
calls disk 10S to write the data 1/O buffer, then moves
the remaining portion from the work buffer.

For writing data to disk, data management operates in
move mode.

For reading data from disk, data management operates
in locate mode.

Double Buffering

Consecutive input and consecutive output files can use

double buffering. In double buffering, one buffer twice
the size of the specified block length is used.

Licensed Material—Property of |BM

DISKETTE DATA MANAGEMENT (#DRDM)

Diskette data management resides in the system library and
is loaded by diskette open. Data management is capable of
processing System/32 created, System/34 created, and basic
data exchange files.

Five access types are provided:
1. Put basic record (PBR)

2. Get basic record (GBR)
3. Put system record (PSR)
4. Getsystem record (GSR)
5. Add system record (ASR)

Basic data exchange files can be described as unspanned
fixed length logical records of length less than or equal to
sector size with a fixed physical record size equal to the
sector size (sector size is 128 bytes or 256 bytes). Physical
records may be blocked. Data management ensures that
logical records of less than sector size are properly padded
with binary zeros on output and that the logical records are
properly deblocked on input.

System files can be described as blocked/spanned fixed-
length records in fixed-length blocks. Records can span
sector and volume boundaries. Record length must not
exceed 4K (4096 bytes). Block length {physical 1/O buf-
fer size) should be a multiple of the diskette sector size and
equal to or greater than the record length. For diskette 1,
a block length of 3-1/4K (3328 bytes), which equals one
diskette track, should be used if possible for standard for-
mat diskettes. For extended format diskettes, ideal buffer
size is 4K (4096 bytes), which is equal to the extended
format diskette track size. For diskette 2D, a block length
of 6-1/2K (6656 bytes) should be used for standard format
diskettes and a block length of 8K (8192 bytes) should be
used for extended format diskettes.

Either move or locate mode can be used for output as well
as input. Using move mode, records are moved by data
management between the physical input/output buffer and
a logical record area provided by the calling program. Using
locate mode, the physical 1/0 buffer is shared by data
management and the calling program, with a record pointer
to the leftmost byte of each input or output record set by
data management in the DTF at $11TWKB. When using
locate mode for output, record size should be a multiple

of 128 and may not span 1/0 buffers.

If a block length (physical 1/0 buffer size) is equal to the
size of a track and track 1/0 is requested by the calling
program, data management will operate with full track
1/0 requests and may process only part of the 1/0 buffer
on the first call. Using move mode, track alignment is
transparent to the calling program.

Using track 1/0 with locate mode, the calling program
must be able to process a partial 1/0 buffer (as small as
128 bytes). For input files, diskette data management
places the partial buffer of data within the last part of the
input buffer and sets a pointer ($11TWKB) to the first byte
of valid data. For output files, diskette open sets this
pointer indicating to the calling program where data should
begin within the partial buffer. If the initial buffer size
($11BKL) which is calculated by open causes a record to
span the 1/0 buffer, the calling program must block or
deblock the record.

After the first partial buffer is processed by diskette data
management, by calling diskette 10S to write or read data,
$11WKB is restored to point to the first byte of the 1/0
buffer, and /0 buffer size ($11BKL) is restored to equal
one track (3328, 4096, 6656, or 8192 bytes).

DISKETTE END OF VOLUME (#DRNV)

The end of volume transient routine is normally called by
diskette data management after the last sector of data on a
diskette has been processed. ’
For input files, the data set label is rewritten to the diskette
VTOC if the expiration date has been changed.

For output or add files, the data set label is written to the
diskette VTOC, with a volume sequence number and an
indication that the file is continued to another diskette.

A diskette insert message is issued for the system operator
and processing is suspended.

When a new diskette is inserted and ready for input files,
EOV calls VTOC read/write to search the diskette VTOC
for a data set label corresponding to the file being pro-
cessed. When it is found, the volume sequence number is
checked. The DTF and OB are then updated and process-
ing continues.

Introduction 4-9

Licensed Material—Property of IBM

When a new diskette is inserted and ready for output files,
EOV ensures that the diskette contains no active files. In
doing so, expired files may be deleted. The file being pro-
cessed is allocated at the beginning of the diskette data
area and processing continues,

EOV occurs without the calling progrém regaining control.
An indicator is set to let the calling program know that a
volume transition has occurred.

In case of a permanent diskette write error during data out-
put, diskette data management calls close to issue an error
message which has a continue option. If continued, the file
'being written is cut off at the end of the last good block of
data written and end of volume is called to continue the file
to another diskette.

SECTOR DATAMANAGEMENT TO DISKETTE (#DRSM)

Sector data management resides in the system library and is
loaded by diskette open. Sector data management is capable
of processing System/32 and System/34-created files. It is
provided for System/34 SSP functions which require move-
ment of considerable amounts of data to or from diskette.
Sector data management uses a single input/output buffer
which is filled by a single read operation, or written to
diskette with a single write operation. Sector data manage-

ment operates with no consideration of logical record length.

PRINTER DATA MANAGEMENT

Printer data management is an SSP function that is part of
disk data management. While in use, printer data manage-
ment resides in the system nucleus of main storage along
with disk data management, work station data management,
and printer 108S. '

Printer data management’s main function is to convert user
print requests within the printer DTF to printer IOB
requests to be passed to the printer 10S.

Printer data management uses move mode to transfer data
from a user-supplied logical data area into a physical data
area. The data is then printed from the physical data area,
also referred to as the 1/0 buffer.

When the printer data management module (#DPDM}) is
entered, the completion code ($PRCMP) is set to X'40’ to
indicate normal completion.

Printer data management then moves the skip and space
values from the DTF to the IOB ($10BPSPA).

If print is requested in the DTF, the data to be printed is
moved from the user supplied logical buffer into the physi-
cal buffer. Also, the data string length is moved into the
printer IOB ($IOBPLNG), and a print indication is set in
the 10B control byte ($IOBPCTL).

DTF attribute byte three (SPRAT3) is tested to see if forms
alignment is requested and print spool is not active. If both
conditions are met, the printer alignment transient (#DPAL)
is called to supply forms alignment information to the sys-
tem operator. After the system operator aligns the forms,
#DPAL returns control to the user program.

The prepare print buffer supervisor call instruction is
issued. This SVC inserts printer control codes into the
print buffer to effect the requested skip and space opera-
tions; it also maintains a record of the current line number
in the printer 10B,

Printer data management moves the current line number
from the 10B ($10BPCLN) to the DTF ($PRCLN), and
checks for page overflow. If overflow has occurred, the
overflow completion code (X‘48’) is set in the printer DTF
(SPRCMP).

Printer 10S is then entered. Upon return from [0S, printer
data management waits until the contents of the print buf-
fer have been moved to the printer. Then the |OB status byte
($10BPSTA\) is checked for a permanent error. If a perma-
nent error has occurred, the DTF completion code
($PRCMP) is set to X'41’. Control is then returned to the
user.

WORK STATION MANAGEMENT

Work station management allows the application program-
mer to present data on a display screen by providing only a
string of data fields. The data is displayed on the screen

in predefined format. Conversely, on input, the formatted
data is taken from the display screen and returned to the
user as a string of data fields. All device-dependent control
characters, orders, constants, and field attribute characters
are inserted or deleted by work station management. The
work station management component is made up of two
parts: a screen format generator routine and a data manage-
ment routine.

Licensed Material—Property of 1BM

WORK STATION DATA MANAGEMENT

Work station data management is a supervisor routine
which runs as a subroutine under the user task and controls
all 1/0 requests to the work stations. Work station data
management is composed of a nucleus resident mainline
module and transient routines. The transient routines pro-
cess requests not handled by the mainline routine.

Two versions of the work station data management are
used. Either a main storage resident version or a transient
version can be used. :

An SVC is issued by the application program for work sta-
tion data managementservices. Address of the work station
or printer DTF is in index register 2 (XR2).

When the work station data management mainline module
is entered, a series of diagnostic checks is made on the
request. If terminal errors are encountered, the task is ter-
minated with the appropriate termination code. If less
serious errors are found, control is returned to the applica-
tion program with a return code in the DTF. The symbolic
terminal name is resolved into a terminal unit block (TUB)
address. If the operation is a:

® Puyt: The format index is scanned for the disk address
of the requested format, and the text and field descrip-
tor table (FDT) is read into the data communications
buffer area. The application data and the FDT are
scanned, inserting the data in the appropriate place in
the text stream. If any indicators are specified for over-
rides in the FDT, the indicators are checked as each field
is processed. The |OB in the TUB is marked for a put
operation and if the request is for a put-wait, a wait is
issued on the TUB. When the wait is satisfied, or
immediately for a put-no-wait, control returns to the
application program by way of the instruction address
register (IAR).

® /nvite input: The invite bit in the work station 10B is
set on and control returns to the user by way of the
IAR.

® Acceptinput: The invite input count (TCBINVCT) is
checked for zero or no outstanding invites. If this is the
case, control returns to the application program with the
appropriate return code, If (TCBINVCT) is nonzero, a
general wait is issued. When the wait is satisfied, the
address of the completed IOB is in XR1. (f TUBIIS is
on, the input is in response to an explicit invite input,
and the data is read into the user program record area. |f
TUBIMI is on, this is data with a program request. If the
program is an MRT, MRTMAX is checked to see if this
request will exceed the maximum number of requesters.
If the limit has been reached, the noskip bit is set off in
the TUB and the wait reissued. |f not, the data is moved
to the user area and control passed to the application
program.

® Get: The invite bit is set on in the IOB and a wait on
the 0B takes place. Upon completion of the wait, the
data is read into the user’s record area and control
returns to the application program.

® Stop invite input: The terminal unit block is checked to
see if the invite operation had ended. If it has completed,
the application is notified by way of a return code that
the stop invite failed and the data is available. If the
invited TUB is incomplete, the invite is canceled and the
user is notified that the operation was successful.

® Pyt overrides: This operation is handled the same as a

put, with the exception that only the FDT is read into
the data communications buffer. The text stream is
constructed from the fields that have indicators specified
for overrides, using the appropriate indicator settings.
Only the fields or attributes using overrides is sent to the
display.

® Acquire terminal: The request is diagnosed, and if valid,

#WDDQ attempts to attach the specified work station to
the user program. If the work station is unavailable, the
application has the option of enqueing the work station.
If the option is not specified, a return code notifies the
application that the acquire has failed for that reason.

If the work station is available, it is attached to the
application. A stop invite is issued and control returns
to the user.

Introduction 4-11

Licensed Materiai—Property of IBM

® Release terminal: A call is issued for transient #WDDG
which dequeues the TUB from the application program.
If the application is an MRT program with more request-
ers queued (MRTMAX exceeded), the next queued
requester will be posted complete. The released termi-
nal unit block is then passed to the command processor.

® Get terminal attributes: A call is issued for transient
#WDDQ which will build, in'the application program
record area, a series of data bytes describing the follow-
ing attributes of the specified work station:
— Allocation status
— Screen/printer
— Screen size

Online/offline

® Save, restore, print, roll, erase, or clear: #WDDB builds,
in the data communications buffer, a data stream to exe-
cute the various commands.

KEYSORT

The function of keysort is to arrange indexed disk file
index entries in ascending order based on the key portion
of the index.

Figure 4-6 is an overview of the keysort program. Index
entries are sorted to produce an ordered index.

The keysort user must provide a 12K-byte area in main
storage. Figure 4-7 shows how this area is used.

F1 Image

sSSP [PLIST . PLIST
Calling > Keysort P
Program F1 Image
\
A
(g) ‘u?’
I
Keysort : l
Area l |
|
\ | |
¥
H
> x
1
Unordered v ; {
Index 1 = }
|
Keysort S~ A e al
K
Workfile::>~_// NTTT T T T T T T -
Legend:

Control Flow

Data Flow

Figure 4-6. Keysort Program Overview

4-12

Licensed Material—Property of IBM

Ordered
> _’/K"‘_ Index

—

The user must also provide a 12-byte keysort parameter Displacement
list with XR2 pointing at the list. The parameter list is

formatted as follows: 6
0 LISTID DKACB 1
2 F1 image 3
4 KS partition size 5
6 Ret cond byte keylength 7
8 Duplicate key 9
10 Return to keysort 11

The first 6 bytes are set by the calling program and the
last 6 are set by the keysort program.

The parameter list fields are defined as follows:

Displacement Length Description

Length Description

1

Return Condition Byte:

Condition Byte bit 0 is on.

0 1 Parameter list ID, C'K".
7
1 1 Duplicate key action control
' byte (DKACB): 8-9
® Bit 0 (X'80’') — Activates
duplicate key checking. 10-11

® Bit 1 (X’40') — Activates
detail duplicate key com-
unication (if bit O also on).

® Bits 2-7 — Reserved (must
be 0).

2-3 - 2 Pointer to beginning of format 1
image in translatable storage.

4-5 2 Keysort partition size (bytes).

Licensed Material—Property of IBM

1

2

Bit 0 (X'80') — Duplicate
key detail return.

Bit 1 (X'40’) — Duplicate
key summary return,

Bit 2 (X'20') — System
error return.

Bit 3 {(X'10') —1/0 error
within index.

Bit 4 (X'08’) — /O error on
work file —index scrambled.

Bits 5-7 — Reserved.

Note: The remainder of the list is set only if the Return

Key length.

Pointer to beginning of dupli-
cate key.

Address in keysort to return to
after detail duplicate key pro-
cessing by calling program,

Introduction 4-13

After a special return to the calling program for detail

duplicate key processing occurs, the calling program may or

may not return to keysort. If the calling program does not

return, the index is invalid. If the calling program does

return, the duplicate key is retained and processing con-

#DDKAA

tinues according to the current duplicate key action control

byte.

A system error special return is triggered when problem

#DDKAB

#DDKAC

determination is made by keysort. This condition may

result from an invalid parameter list, an invalid format 1

field, or a processing error by keysort.

All keysort 10Bs are constructed so.that Disk 10S will not
issue |/O error messages. Permanent disk 1/0 errors fall in

one of three categories during keysort: .

1. Those occurring within the index.

#DDKAD
#DDKAZ
#DDKEP
#DDKLL

#DDKSS

2. Those occurring on the keysort work file after the

Index has been partly altered.

3. Those occurring on the keysort work file where

the Index has not been altered.

#DDKWG
#DDKWP

#DDK1A

An 1/0 error in category 1 results in bit 3 of the return

condition byte being set and a final special return to the

calling program.

#DDK1E

#DDK1G

An 1/0 error in category 2 results in bit 4 of the return

condition byte being set and a final special return to the

calling program.

#DDK1R

#DDK2A

An 1/0 error in category 3 results in keysort automatically

restarting and performing the indicated sort and/or merge

#DDK2E

without using a work file, This category does not cause a

special return,

Logging duplicate key messages, when necessary, is the

#DDK3A

#DDK3E

responsibility of the calling program because no single set

of options and resultant actions satisfies the requirements

- of all calling functions.

#DDK3P

#DDK3W

Module Name

The modules that make up the keysort program are:

Function

Keysort control (including common)
Set preliminary internal values
Design sort

Auto-allocate work file

End of assignment phase

End of pass

Three-phase sort control
Sort-in-place

Deblock from work file

Block for work file

Phase 1 control

Phase 1 internal sort (repl/sel)
Deblock and degap from input
Read input

Phase 2 control

Phase 2 intermediate merge
Phase 3 control

Phase 3 final merge

Block and regap for output

Write output

Figure 4-12 shows the control flow between keysort pro-
gram modules. Refer to this figure when using the keysort

diagram.

Licensed Material—Property of IBM

SPOOL INTERCEPT

Spool is an optional feature that intercepts system printer
commands and places them on disk storage, creating a print
queue, When requested, the spool writer retrieves records
from the spool queue and outputs them to the system
printer.

The spoo! intercept routine resides in the system nucleus
portion of main storage. Intercepted print lines are com-
pressed to remove strings of more than three blanks. This
compressed data along with line control information is
then written to the spool file.

User Program Printer Data

___.:\‘/ Management
(requestfor [Y bocemmemeee e ::>
printer 1OS) Printer 10S

Spool
Intercept

The spool file resides on disk and is made up of a primary
file and up to five equal size extents. The primary file,
allocated at IPL time, contains information about the
spool file entries as well as data areas for the compressed
print records. The spool file extents are allocated sep-
arately, and only when the primary file and all previously
allocated extents become filled. The size given for the
spool file at system configuration time is the size of the
primary file in number of blocks.

When space is no longer available in the spool file, the error
message SPOOL FILE IS FULL is issued. The system
operator can display the print queue to determine if the
print writer can be started to remove entries from the print
queue to free up space in the spool file. The SPOOL FILE
IS FULL message can be responded to with a retry option
when spool file space is available. If there are no com-
pleted entries, the existing spool file is not large enough

to accept more records. A CONTINUE option will close
the-spool file, post the print writer to indicate print output
exists, and issue another halt indicating the spool intercept
routine is waiting for the spool writer to complete. When
the writer completes and the last halt is responded to,
spool intercept attempts to obtain file space again and con-
tinue processing.

Licensed Material—Property of |IBM

O

Spool
Print
Queue

{

Introduction

4-15

SPOOL PRINT WRITER

The spool print writer runs in main storage to print output
from the print queue. The writer is loaded only when
output exists to be printed and remains in main storage
only while printing entries from the print queue. The
writer operates as a utility program, independent of the
rest of the system, and requires an 8K-byte user partition,
An optional autowriter feature exists which causes the print
writer to be loaded without operator command whenever
output exists in the print queue. If the autowriter feature
is not selected at system configuration time, the operator
must issue a START PRT command to initially evoke the
print writer.

Command Processor|

— U

Spool Print Commands Printed
Print —— Spool Print Writer Output
Queue and Data

\/

Once the START PRT command is issued, the writer
prints until the queue is empty or a command issued. If
the command issued is STOP PRT, the message WRITER
STOPPED is displayed and end of job called.

After data has been printed from the spool file, the disk

space is freed up. The free entry is placed on the available
queue to allow reuse by spool intercept.

Licensed Material—Property of IBM

Method of Operation ® Work station data management function
This section contains functional diégrams for routines used 9o Keysort function
to run a job. They are:

© Spool intercept function

© Disk data management functions

® Spool print writer function
© Sectorized disk data management functions
® Diskette data management functions

© Diskette end of volume function

@ Printer data management function

From: Calling Program

w INPUT | PROCESS mememmaem

Disk file >° Perform disk data management function
: (Diagram 4.1)

function (Diagram 4.2)

Unordered index >0 Sort index entries for indexed disk file

(Diagram 4.7)

>0 Perform sectorized disk data managemenJ

=

Diskette file

9
o0
<
o
3
E-N
(]
==

AT I 3 VADIATTS O MR . 3 | s A VR AR PR RS 1ot

Perform diskette end of volume function
{Diagram 4.4)

Diskette file

) Logical 1/0 area : > Write printer data (Diagram 4.5)

¥ i i

I : Perform work station data management

}} function (Diagram 4.6)

: Spool request Perform spool intercept function

H (Diagram 4.8) i
Spool print queue E‘ Print records from spool file

: : ! (Diagram 4.9)

i ¢

To: Calling Program or
Control Storage End-of-Job Transient ($EQJ)

Diagram 4.0. Overview of Running a Job

Method of Operation 4-17

Licensed Material—Property of IBM

From: Calling Program

1 INPUT e . I r PROCESS

<XFH ‘ n Determine file type and access method

OUTPUT

» CXRz
TcB Read or write disk data CDTF
anz Update DTF

DTF

1/0 buffer

Main Storage

System Nucleus:

#DDDM

© Main Driver
Access
Drivers
Base
Functions
Subroutines

User Area

User Program

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
Enter disk data management from calling program. . #DDDM
Ensure DTF is open. Router
Inspect DTF device code ($F1DEV) to determine data management type requested.
If disk data management, call main driver (MAINDRV).
Do sector enque for add operation.
Inspect DTF attribute bytes to determine access method requested. MAINDRV
Call driver corresponding to requested access method (Figure 4-8).
Inspect DTF operation code ($F10PC) to determine base function to call (Figure 4-8). Appropriate
Driver
Call appropriate base function.
Determine subroutines to call {(Figure 4-8). Appropriate
Base Function
Update 10B for |0S use.
Do sector enque when necessary for update.

Diagram 4.1 (Part 1 of 2). Perform Disk Data Management Functions

4-18

Licensed Material—Property of IBM

MODULE/
DESCRIPTION

ROUTINE
éa|| disk 10S to perform read/write operation. SRGPI
Do sector deque for update. Disk 10S
Set completion code in DTF. Appropriate
Driver
Update DTF pointer.
Do sector deque for add operation.
Return control to user program. MAINDRV

Diagram 4.1 (Part 2 of 2). Perform Disk Data Management Functions

Method of Operation 4-19

Licensed Material—Property of IBM

From: Calling Program

I r PROCESS

<XR2 - n Prepare to read or write disk data XR2
DTF a Process block of data (DTF>

Main Storage Update DTF

OUTPUT meusex

10B

User Area: 1/O Buffer
#DDSM ’ :

Disk File

Disk file

To: Calling Program

: MODULE/
DESCRIPTION ROUTINE
Execute initialization routine and prime buffer for input or add files. #DDSM
Update DTF record pointers for current record or block.
Check for end of data: If end of input data, return to caller.
a Read or write complete 1/O buffers.
Issue SVC instruction for disk 10S services. Disk 10S
a Set appropriate completion code in DTF. #DDSM

Return control to user program.

Diagram 4.2, Perform Sectorized Disk Data Management Function

4-20

Licensed Material—Property of IBM

From: Calling Program

e INPUT e I r PROCESS

CXR2 - n Prepare to read or write diskette data

OUTPUT

DTF ﬂ Process record or block of data

Main Storage a Update DTF

User Area: 1/O Buffer
#DRDM
or

#DRSM

Diskette File

Diskette File

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
j Execute initialization routine and prime buffer for input or add files. #DRDM
Update DTF record pointers for current record or block. #DI:;M
Check for end of data:
® If end of input data, return to caller.
® If end of volume, set attribute bit and ca.ll close.
3 Block or deblock records between work buffer and 1/0 buffer {move mode).
Locate input data or location for output data within 1/0O buffer (locate mode).
Read or write complete 1/0 buffers.
Issue SVC instruction for diskette 10S services. Diskette 10S
Restore pointers and data areas after first 1/O operation on full track request. #DRDM
Set appropriate completion code in DTF or initiate end of volume as requested. #D;rSM
Return control to user program.

Diagram 4.3. Perform Diskette Data Management Functions
Method of Operation 4-21

Licensed Material—Property of I1BM

From: Close Diskette (#CRCL)

l r PROCESS

Ensure proper diskette is inserted

INPUT OUTPUT

XR1
CTCB
XR2
Core

Main Storage

Update required areas

Process diagnostic errors

Transient Area:
#DRNV

1/O Buffer

AFA format 1

User Program
__________ Diskette file
User Area:
#DRDM
or
#DRSM

AFA format 1

Diskette file

To: Diskette Data Management Diagram
(# DRDM or #DRSM) or # DRCL

MODULE/
DESCRIPTION ROUTINE
n Issue task work area (TWA) request (SVC 51) to write one sector of 1/0 area to disk. #DRNV
If output operation, write VTOC to diskette. #CSVI
Return. #DRVN
Issue insert next volume message. : . #CLXS
Return. ’ #DRNV
Read VTOC of next volume. #CSVI
Check volume 1.D. #DRNV
Setup /0 buffer to read diskette VTOC format 1's.
Set up system date information for deleting expired files.
Read diskette data set labels from VTOC. ' #CsvI
If output file, ensure diskette contains no active files. #DRNV

Diagram 4.4 (Part 1 of 2). Perform Diskette End of Volume Function (EOV)

4-22

Licensed Material—Property of I1BM

' MODULE/
DESCRIPTION ROUTINE

Initialize multivolume indicator and enter volume number. #DRNV
If input file, check volume sequence number, and if required, check creation date.
Update DTF and 1OB for new volume.
Issue TWA request (SVC 61) to restore sector back to 1/O area in core.
Exit to diskette data management, or if an error occurred in flushing final buffer, return to diskette close.

B Process diagnostic errors at time they are discovered by calling SYSLOG routine (#CLXS).

Diagram 4.4 (Part 2 of 2). Perform Diskette End of Volume Function (EOV)

Method of Operation 4-23

Licensed Material—Property of IBM

From: Calling Program

E r PROCESS

<XR2 {—— >H§ BB set completion code

DTF i | B3 Move skiP/SPACE to 108

Main Storage B Set up physical buffer

System Nucleus: / Issue prepare print buffer SVC
#DDDM
Disk
Data ; i i

management 4 P m Enter printer I10S

d Check for page overflow

#DPDM - Set completion code
Printer 4 '
Data

management

ot

IPTR
Printer
108

s R R <

User Area

User Program

T g ey R R T T LA

[/
{
i
5
{
{
-3
!
{

Logical 1/0 area

W

R T i at)

R AR e e | SR

&- S Y APV 5 % L BR Mrn,

To: Calling Program

OUTPUT =

MODULE/
DESCRIPTION ROUTINE
| Set normal completion code (X‘40°) in DTF. '#DPDM
Move skip and space values from the DTF to the 10B.
55 If print requested in DTF:
©® Move logical buffer into physical buffer.
© Move data string length to 10B.
© Set print indication in OB control byte.
If page alignment is requested, set up to issue forms alignment message. #DPAL
Print the line. WSIOCH
Return to user when O option is selected. #DPAL

Diagram 4.5 (Part 1 of 2). Write Printer Data

4-24

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE

B Issue prepare print buffer SVC 26. #DPDM
Move current line number from {OB to DTF.

If page overflow has occurred, set overflow completion code in DTF.

A Frint the tine; WSIOCH
or
Write the line to the spool file.) #SPINT
Wait until contents of print buffer has been moved to printer. #DPDM

If permanent error occurs, set permanent error completion code in DTF.

Return to user.

Diagram 4.5 (Part 2 of 2). Write Printer Data

Method of Operation 4-25

Licensed Material—Property of IBM

From: Calling Program

I r PROCESS

(:XR2 ; : | oTR:

s OUTPUT

; ; . Return code
DTF : ; Process requested operation B Effective input
‘ g length
Main Storage " i B Return to calling program : : Record area
5 : : . address
System Nucleus: ‘) . TUB address
#DWDM : : '
#WDDA*

Transient Area:
#WDDB
#WDDC
#WDDQ
#WDDG
#WDDH
#WDDK
#WDDO
#WDDP
#WDAF

&

b
P
¥
b

TS oty

User Area

g

User Program

T s

*1f work station
data management
is not nucleus
resident, #WDDA
operates as a
transient.

T]

1
'

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
BAE |f status inquiry request: #DWDM
© Set return code to reflect outstanding invites, op-ended invites, and STOP system in effect. #WDDG
© Return to calling program.
If accept input request: #DWDM
© Wait ‘any’. #WDDG
® Read data into user’s area. WSIOCH
©® Move user's parameter list back into DTF. #WDDG
© Return to calling program.
Call #WDDA. #DWDM
If status inquiry op code: #WDDA
© Set return code to reflect outstanding invites, op-ended invites, and STOP system in effect. #WDDG
® Move user’s parameter list back into DTF.
©® Return to calling program.

Diagram 4.6 (Part 1 of 3). Perform Work Station Data Management Function

4-26

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE
n Validate symbolic terminal name provided by user with operation. #WDDA
If get attributes request: #WDDG
® Determine if display or nondisplay. #WDDQ
® Display screen size.
® Determine attachment type.
@ Determine if online or offline.
® Determine allocation status of work station.
® Determine invite status.
® Determine inquiry mode.
@ Goto .
If acquire op-code: #WDDA
® Diagnose acquire terminal request. #WDDQ
® Set work station ownership to requesting task.
® If work station available, stop invites.
® Go toa.
Check that user owns requested work station. #WDDA
If get operation:
® Ensure that work station is online. #WDDG
® Wait for IOB completion.
® |f function key, call # WDDH.
® |f Print key, call #WDDK: #WDDH
— Determine printer to be used. #WDDK
— Attach Print key task (#WDDP) #SVAT
— Allocate buffer and read screen. #WDDK
— Write data to swap area.
— Post #WDDP:
a. Wait for post from #WDDK. #WDDP
b. Read data from disk. FDIOS
c. Allocate printer; if not successful, call SYSLOG.
d. Print screen. #DPDM
e. Gotoend of job. #WDDP
— Call #WDDH to display error message stating that print was scheduled. #WDDK
O |f low-level Help key or other function key, ‘ #WDDH
issue write error message. WSIOCH
@ |f high-level Help key and if user owns work station, assign new TUB. #WDDH
® Retrieve help text. #MSGRE
® |ssue message. #WSIOCH
@ |f user, free new TUB. #WDDH
® Call WSIOCH to read data. #WDDG
® Read data into user's record area. WSIOCH
I release request: #WDDA
® |f release single requester terminal (SRT) request, set off SRT release requester indicator in TUB. #WDDG
® |f release multiple requester terminal (MRT) request, set off waiting on MRTMAX.
® |f non-MRT release request, indicate RIB released by non-MRT.
® Goto B
If terminal invited: #WDDA
© Stop invite. #WDDB
® |f necessary, set cancel command in TUB.
If stop invite op-code, #WDDA
give return code. #WDDB

Diagram 4.6 (Part 2 of 3). Perform Work Station Data Management Function

Licensed Material—Property of iBM

Method of Operation 4-27

MODULE/

DESCRIPTION . ROUTINE
If special request, do one of the following: ’ #WDDA
® Roll request. #WDDB
® Clear request.
® Reset request.
® Erase request.
® Restore request.
® Save request.
® |f print request:

— Use user’s DTF if possible. #WDDC

' — Push user. #WDAF
» — Read screen into user area. #WDDC
— Print screen. #DPDM

— Pull user. #WDAF

If put request: ’ #WDDA

® Conditionally assign work station queue space for text stream and format.
® |f assign fails:

— |If work station queue space is greater than text stream and format, unconditionally assign work station #WDAF
queue space.
— If work station queue space is less than text stream and format, push user.

® Read format and build text stream: #WDDA
— Find format index entry corresponding to format.
— Ensure that format entry is valid.

P ® Read field descriptor table and text from disk. FDIOS
® |f put override, call # WDDO. #WDDA
® Format output data. #WDDA/

#WDDO

Process override of:

Screen S specifications.
Blinking display .
Blinking cursor.

Sound audible alarm.
Reset keyboard.

Insert cursor.

Bypass field.

Detail field definition D specification.
Nondisplay field.
Reverse image field.
High intensity field.
Blinking field.
Underscore field.
Output field.

Process suppress invite indicator.
|f erase or put override not in operation:
® Process erase indicator.

® Process put override indicator.

Scan for more output data.

#WDCP

Output data to work station. WSIOCH

If user was pushed, #WDDA

P pull user. #WDAF
B Move user’s parameter list back into DTF. #WDDA/
#WDDQ/

Return control to calling program. #WDDG

Diagram 4.6 (Part 3 of 3). Perform Work Station Data Management Function

4-28

Licensed Material—Property of 1BM

From: Calling Program

I r PROCESS

CXR2 n Call assignment modules
Parm List
(F1 Image

Main Storage

E Execute assignment phase
B Execute three phase sort

n Execute sort-in-place

B Execute merge

ﬂ Perform housekeeping

User Area:
Calling Program

(see Figure 4-13)

Index area

Overflow index area

OUTPUT

XR2

EParm List

F1 Image

Ordered index

To: Calling Program

DESCRIPTION

MODULE/
ROUTINE

n Call modules used during assignment phase (phase 0):
Three phase Sort Control (# DDKLL).

Set Preliminary Internal Values (# DDKAB).
Design Sort (# DDKAC).

Auto Allocate Work File (# DDKAD).

End of Assignment Phase (# DDKAZ).

Initialize common.
Obtain index information from format 1 image.

Design sort operation based on external parameters:

Determine block size for input, work, and output areas.
Determine size of record storage area (RSA).

Determine number of records to fit in RSA.

Determine order of merge for intermediate and final merge passes.
Decide if work file is needed.

if work file is needed, attempt to allocate space.
If in debug mode, issue problem determination and debug information.

If sort not indicated, go toa.

If work file not allocated, go ton.

#DDKAA

#DDKAB

#DDKAC

#DDKAD

#DDKAZ

#DDKAA

Diagram 4.7 (Part 1 of 3). Sort Index Entries for Indexed Disk File

Licensed Material—Property of IBM

Method of Operation 4-29

MODULE/

DESCRIPTION ROUTINE
Pass control to #DDK1A (phase 1). #DDKLL
Indicate phase 1 entered. #DDK1A
Pass control to # DDK1E.
Allocate main storage for 1/O buffers and record storage area (RSA). #DDK1E
Read index entries. #DDK1G
and
#DDK1R
Disk 10S
Sort index entries into strings. #DDK1E
Write intermediate strings of index entries to disk work file. Disk 10S
Return. #DDK1E
Determine validity of phase 1 execution. #DDKEP
Determine if number of strings small enough to go to phase 3. If yes, skip phase 2. #DDKLL
Indicate phase 2 entered. #DDK2A
Pass control to # DDK2E (phase 2).
Allocate main storage for |/O buffers. #DDK2E
Read intermediate strings of index entries from work file. #DDKWG
Disk 108
Merge strings of index entries together. #DDK2E
Write intermediate strings of index entries to work file. #DDKWP
Disk 10S
Determine validity of phase 2 execution, #DDKEP
Determine if number of strings small enough to go to phase 3. If no, repeat phase 2. #DDKLL
Indicate phase 3 entered. #DDK3A
Pass control to # DDK3E (phase 3).
Allocate main storage space for 1/O buffers. #DDK3E
Read intermediate strings of index entries from work file. #DDKWG
Disk 10S
Merge strings of index entries together. #DDK3E
P Write final sort output back to index. #DDK3P
and
#DDK3W
Disk 10S
Goto a(to determine if merge is required). #DDKAA

Diagram 4.7 {Part 2 of 3). Sort Index Entries for Indexed Disk File

4-30

Licensed Material—Property of IBM

MODULE/

DESCRIPTION ROUTINE
n Pass control to # DDKSS (Sort in Place). #DDKAA
Assign main storage area for sort.) #DDKSS

Perform sort in place using quick-sort.

Manage index segments entering record storage area (RSA).

Call disk 10S to move index entries between disk storage and main storage. Disk 10S
When sort is complete, determine if merge (# DDKMM) is required. #DDKSS
|f merge not required, go to B #DDKAA

B Reset sort, merge, and sort-in-place bits in format 1 image.
Update last primary index entry point in format 1 image.
If error return code, update parameter list.

Return to calling program.

Diagram 4.7 (Part 3 of 3). Sort Index Entries for Indexed Disk File
Method of Operation 4-31

Licensed MateriéI—Property of 1BM

From: Printer 10S

m INPUT l r PROCESS OuUTPUT

<XR1 - n Perform first time initialization and Printer IOB

allocate file space as required

{e]:]

(for #SPINT) Move print data and line control #SPOOL1
information to buffer

File index TCB

(for #SPDPQ)) a Write buffer to spool file if buffer is full

SFD

Disk [input to
TCB E Perform spoo! intercept EOQJ function 10B #SPCLO]
(for #SPALC)

(xaz : B3 urdate printer 108

Buffer
SFD
(for #SPDPQ)

Main Storage

System Nucleus:
#SPINT

Transient Area:
#SPALC
#SPCLO
#SPDPQ

User Area

User Program

Printer |OB
#SPOOL1
TCB

SFD

To: Calling Program

MODULE/

DESCRIPTION ROUTINE
n If first time call of this task, pass control to spool allocate (SPALC). #SPINT
Check if first time for this task to call spool allocate. #SPALC

1 first time, go to [} Y. 1 not first time, go ™ 1[5

Assign and initialize task, spool file description (SFD), disk 10B, and buffer. Store SFD in task control
block (TCB).

Diégram 4.8 (Part 1 of 2). Perform Spool Intercept Function

4-32

Licensed Material—Property of 1BM

MODULE/
DESCRIPTION ROUTINE
@ Search spool file master index for available spool file space. Disk 10S
® £ block groups available in #SPOOL1-#5POOLE, g0 to K (). ASPALC
® |f all extents are not allocated, go to@.
© Otherwise, issue SPOOL FILE FULL message with: #CLXS
— Two option (control cancel) — call end of job routine (¥CTEI). #SPALC
— One option (retry) — try to find space again by going to ne
— Zero option (proceed) — call spool file close (#SPCLO), post writer, halt, and try again to find space by
going to e
@ Attempt to allocate additional disk space for spool file. #CAS1
Q If no disk space available, issue NO DISK SPACE message and go to n@to try again. #SPALC
e If first time, update data area sectors, master index, SFD, and disk |0OB. #SPDPQ
Chain index entry to queue. Disk 10S
Return. #SPDPQ
If not first time, update master index, SFD, and disk 10B. #SPALC
Chain data-only index to queue. Disk 10S
Return. #SPALC
If buffer space available, move entire print record to buffer and go to ,42 . #SPINT
Move as much of print record to buffer as space permits.
Write buffer to spool file to free buffer space. Disk 10S
If at end of spool block group, go to B @to allocate additional disk space. #SPINT
Move remaining print record to buffer.
n Mark intercepted print OB complete (X'40’). #SPINT
Return to calling program.
B} ca!l spool file close (#SPCLO). Terminator performs this function. #CTEPR
Set end of file indicator. #SPCLO
Write last record from buffer to disk. Disk 10S
Update master index. #SPCLO
If spool file close called by spoo! allocate, return to m @
Free SFD, disk 108, and buffer.
Return to calling program.

Diagram 4.8 (Part 2 of 2). Perform Spool Intercept Function

Licensed Material—Property of I1BM

Method of Operation 4-33

From: Command Processor

INPUT I r PROCESS OUTPUT

(XR1 n Determine if output exists #SPOOL1

10B B Get spool file entry specified QFD
(XRZ Print data from spool file Format 1's
TCB n Free up available spool! file space Format §

Main Storage ~ Master Index

System Nucleus Buffer

Transient Area: Printed Output
#SPDAL

User Area:
#SPWRT
#SPQMG

SYSCOM —
#SPOOL1 — QFD

SFD — TCB ~
Disk 10S

VTOC — Format 1's

Format 6

To: Control Storage End of Job
Transient ($E0J)

MODULE/
DESCRIPTION ROUTINE
n Read master index to see if output exists. #SPWRT
Disk 10S
If queue is empty, call EOJ. #SPWRT
If STOP PRT command issued, call end of job transient.
Allocate printer if necessary. #CAPT
Return. #SPWRT
If printer not available, halt and allow options to either wait for the printer or cancel, #CLXS
Set up queue file description (QFD) to indicate entry specified: : #SPWRT
® First entry on queue.
® Next entry on queue.
® Stopped entry.
Call spool queue manager (#SPQMG) to get entry specified. #SPQMG

Diagram 4.9 (Part 1 of 2). Print Records From Spool File ,

4-34

Licensed Material—Property of IBM

MODULE/

DESCRIPTION ROUTINE

Read master index to get address of queues using IOB provided. Disk 10S

Based on QFD flag byte, search print queue for one of the following:

® First on queue (class).

® Next on queue (class).

® Stopped entry.

If entry found: #SPQMG

® Place spool file address (SSSD) of entry in QFD.

® Return control and specific entry (in disk buffer) to spool writer (#SPWRT), go to a

If specific entry not found:

® Set on end-of-file/not found indicator (QFDEF) in QFD.

® Return to spool writer (#SPWRT).

® Call EQJ. #SPWRT

K cail spool file get. #SPWRT
Retrieve first print line. Disk 10S
Return. #SPWRT
If forms change required, halt to allow operator to change forms. #CSIM
Return. #SPWRT
Issue separator page halt if first time or if forms change message was issued. #CSIM
Return. #SPWRT
Print separator pages if requested. WSIOCH
Return. #SPWRT
Perform page alignment if necessary. #CLXS
Return. #SPWRT
Fill 512-byte print buffer in system nucleus with print data. Disk 10S
Call printer 10S. #SPWRT
Print the line from the buffer. WSIOCH
If multiple copies requested and entry printed out: #SPWRT
® Reset spool file description (SFD) to get first record in file.
® Return to start of.

n After all copies are printed, free up this entry and chain it from print queue to available queue. Disk 10S
Return. #SPWRT
Read spool file master index. Disk 10S
If extent empty: #SPWRT
® Update master index. Disk I10S
® Return. #SPWRT
® Free spool file extent. #CAD1
Go toto get next entry. #SPWRT

Diagram 4.9 (Part 2 of 2). Print Records From Spool File

Licensed Material—Property of IBM

Method of Operation 4-35

Program Organization

Figure 4-7 shows the main storage map for keysort.

Figures 4-8 through 4-14 show the control flow of func-

tions used to run a job.

Phase 0

(assignment
phase) Phase 1 Phase 2 Phase 3 Sort-In-Place Merge
#DDKAA #DDKAA #DDKAA #DDKAA #DDKAA #DDKAA
#DDKLL #DDK1A #DDK2A #DDK3A #DDKSS #DDKSS
#DDKAB #DDK1G #DDKEP #DDKWG #DDKEP #DDKWG
#DDKAC #DDK1R - #DDKLL - #DDKWP- #DDKLL p #DDK3P
#DDKAD #DDK1E #DDK2E #DDK3W
#DDKAZ #DDK3E
Work Work Output
Buffer Buffer Buffer
(out) {out) Output
Buffer
Input Work Work
Buffer Buffer Buffer
(IN1) (IN1) Active
12K Record
Work Work Area
" Buffer Buffer
Record (IN2) (IN2) Work
Storage Buffer
Area Work Work (IN1)
Buffer Buffer
(IN3) (IN3)
Work Work
Unused Buffer Buffer
(IN4) (IN4) Work
Buffer
Work ‘Segment (IN2)
Unused Unused Boundary
Area List

Figure 4-7. Keysort Main Storage Map

4-36

Licensed Material—Property of 1BM

Calling
Program

sve
RIB-X"13’

sve
Controller

Router
(BEGIN)

Figure 4-8. Disk Data Management Control Flow

User
Program

Other
Data

Management
Modules

—p

Data

Management

Router
(#DDDM)

Main
Driver

< R T T

Figure 4-9. Diskette Data Management Control Flow

#DRDM

Diskette Data Management
or

#DRSM

Sector Data Management

Licensed Material—Property of I1BM

Attribute I
Bytes I
(DTF) |
Drivers |
® Consecutive I CONDRYV |
® Direct " pIRDRV
® |ndexed Random I IRADRV
® Indexed Sequential | 1SQDRV . |
| Subroutines
l ® Convert RRN to SSSD I
(SRRTS)
® Get/Put 1/O Interface |
Operation (SRGPI)
Code ® Get Format-1 Values I
(DTF) (SRF1G)
® Update Format-1 Values
(SRF1P) |
® Move Data to 1/O Buffer
{SRMOV} |
@ Check Update Key Error
Basa Functions | (SRUKE) |
j ® Get Next Index Entry
Put Index Put Data {SRNIE} |
(PUTI) (PUTD) ® Enque Format-1 Area
(SRENQ)
Get Index Get Data ® Deque Format-1 |
(GETI) (GETD) {SRDEQ) |
S S ——
Diskette

108

Program Organization 4-37

User
Program

Data Management
Router Routine

Disk Data Management
(#DDDM)

Printer Data Management
(#DPDM)

Forms

Alignment

Transient
(#DPAL)

Figure 4-10. Printer Data Management Control Flow

4-38

Printer 10S
(IPTR)

Spool
Intercept

Printer IOCH
(Control Storage)

Licensed Material—Property of 1BM

Calling
Program

Data
Management
Router

(#DDDM)

Work Station
Data
Management
Router
(#DWDM)

Work Station
Data
Management

(#WDDA)

End-of-Job
($E0J)
-Control Storage-

I

Work

Station

IOCH

-Control Storage-

<z

Work Message
Station Retrieve
Data -
Management
Get (#MGRET)
Attributes
Transient
(#WDDC) Spool
Intercept
(#SPINT)
WDDM 1/0
Transient
(#WDCP)

Figure 4-11. Work Station Data Management Contro! Flow

Licensed Material—Property of IBM

Program Organization

4-39

Set
Preliminary
Internal
Values

(#DDKAB)

Design
Sort

(#DDKAC)

Auto-
Allocate
Work File

(#DDKAD)

Keysort
Control

(#DDKAA)

Three Phase
Sort Control

(#DDKLL}

End of
Assignment
Phase

(#DDKAZ)

Merge-Primary
and Overflow

{(#DDKMM)

Sort-in-Place

{#DDKSS)

Figure 4-12. Keysort Control Flow

4-40

Deblock and Block and
Degap from Regap for
tnput) ouvu
{#DDK1G) (#DDK3P}
Phase 1 Phase 1
Control Internal
<) Sort
(#DDK1A) (#DDK1E)
End of Deblock
Phase from Work
File
(#DDKEP) (FDDKWG)
Phase 2 Phase 2
Control Intermediate
) Veroe
(#DDK2A) (#DDK2E)
End of Block for
Phase Work File
{#DDKEP) (#DDKWP)
Deblock
from Work
File
(#DDKWG)
Phase 3 Phase 3
Control Final
e Merge
(#DDK3A) (#DDK3E)
Read Input Write
Output
(#DDK1R) " (#DDK3w}
End of
Phase
EOJ

(#DDKEP)

Licensed Material—Property of IBM

Printer
108
(IPTR)

Spool
Intercept
(#SPINT)

~

Spool
Allocate
(#SPALC and #SPDPQ)

—

Full Spool
File

(printer end of job)

x>

(#SPCLO) |

Figure 4-13. Spool Intercept Contro! Flow

Licensed Material—Property of 1BM

Program Organization

4-41

4-42

Spool
Or Intercept
(if autowriter)

Command
Processor

Spool Print

Writer [G——)>

(#SPWRT)

Spool Queue
Manager
(#SPQMG)

End-of-Job
Transient

Figure 4-14. Spool Print Writer Control Flow

Licensed Material—Property of IBM

Introduction

The functions that may be needed to terminate a job are:
® Close common

® Close printer

® Close diskette

® Close disk

@ Step termination

® Job termination

® Abnormal termination

CLOSE
The purpose of close is to:
® Complete the processing of data in the output buffers.

® Extract data from DTF blocks so the data set label can
be updated to reflect the current status of the file.

® Restore all opened DTFs to a preopen status.
The close function is performed by the common close
transient (#DMCL) and the necessary device-oriented

close transients:

#DDCL
#DRCL

Disk close
Diskette close

#DMCL removes the DTFs from the backward chain and
then calls the appropriate device-oriented close transients.

All close modules are transients and reside as load modules
in the system library. The close function is initiated by
issuing an SVC with the close RIB (X’03’) and with regis-
ter 2 pointing to the DTF chain. The SVC processor will
load the common close module (#DMCL) which, in turn,
will call the appropriate device oriented close modules as
needed.

Chapter 5. Terminating a Job

To improve system performance, each of the device
oriented modules are designed to be called only once for
each DTF chain. Thus, each module will perform its func-
tions for all required DTFs on the chain. It will search
through the DTF chain to find all DTFs of its device type
to be closed.

Common Close (#DMCL.)

The common close transient (#DMCL) unchains the DTFs
from the backward chain and then calls the appropriate
device-oriented close transient. The disk close transient
is called after all other DTFs are closed if a disk DTF is
present,

Input to common close is a chain of postopen DTFs
addressed by index register 2. XR2 contains the address
of the first DTF to be closed.

Output from common close is a preopen DTF for each
file closed. Common close returns control to the calling
program or to the disk close transient (see Figure 5-2).

Printer Close (within #DMCL)

The device oriented close function for the printers {within
#DMCL) completes the processing of data in the print
buffers, restores the DTF to a preopen status, and frees
space for the printer IOB within the assign/frée area. Con-
trol is passed to the next close transient or the calling
program,

Work Station Close (within #DMCL.)

The device-oriented close function for work stations (within
#DMCL) indicates the work station file is closed by setting
off the file allocated bit (X'04’) in DTF attribute byte two
($DFAT2) and setting off the file opened bit (X'01) in
DTF attribute byte two.

Introduction 5-1

Licensed Material—Property of I1BM

Input Data Areas Processor Output Data Areas

XR2 XR2
: Address of ~ H Address Of Lt Return to
the First the Last
From Calling DTF DTF
Program
DTF 1 DTF 1
DTF 2 54> DTF 2/>
DTF 3 B DTF 3/>
i | — A
DTFn 1 | #DMCL! _DTFn | :
Backward I—STFCHB _l-/ ‘ r—DTF H 7 Forward
Chainof [~ — =] L~ "1 chain of
DTFs to ' r>| | Closed
beClosed |____ __ __ | a ' e] DTFs
Data Buffer
Data Buffer
Index Buffer :> :> and Index
Buffer Output
Data Set Data Set
Label in —— > —— > Labelin
Main Storage Main Storage
Legend:
Main Logic Flow Data Flow Address Pointer

1 Figure 5-2 shows the interrelationship of the transient close modules

Figure 5-1. Close Input and Output Data Areas

5-2

Licensed Material—Property of IBM

Binary Synchronous Communication Close (#B8SCL)

When a binary synchronous communication (BSC) DTF is
encountered in a call to common close, the following is
performed:

® A call to close (X’'22’) is indicated in the BSC DTF
operation code field, $DFOPC.

® Areturn code (X'00’) is set in the communications spec-
ification block (CSB) return code filed CSBDRTNC.

® A task-to-task communication supervisor call is issued
to indicate a close request to the BSC system task.

Control is then returned to common close (#DMCL) to
close any other DTFs on the chain.

Diskette Close (#DRCL)

When a diskette DTF is encountered in a call to common
close, the diskette close transient module is called. For out-
put files, close updates the end of data pointers in the
active format 1 image. The data set label is written into

the diskette VTOC. The DTF is restored to its preopen
state and may be allocated and opened again for further
processing.

For input files, the data set label is rewritten in the diskette
VTOC if the expiration date was changed.

Disk Close (#DDCL)

The device-oriented close function for disk completes the
processing of data in the output buffers, updates the data
set label (in main storage) to reflect the current status of
the file, and restores the DTF to a preopen status. This
transient must then loop through the entire DTF chain to
locate any other disk DTFs that are open. Control is
returned to the calling program when processing is
complete.

TERMINATION

When a job step or job is ended, there is a considerable
amount of cleanup activity to be performed before process-
ing can continue, Termination performs these functions.

Step Termination

Step termination provides a means of terminating the cur-
rent program at the end of a job step and preparing the sys-
tem to accept another program for execution.

Step termination performs the following functions:

® Terminate the User Program
Step termination gets control from the user program
when the user program has finished executing. Since
control is not returned, step termination ensures that
all user files are closed. Termination is then loaded
into the user area in main storage.

® Terminate the User Files
All files used by the user program are processed. This
may involve such operations as updating the disk VTOC
and readying the format 1 for keysort.

® Reset the System
Resources are freed up, pointers updated, switches
updated, and necessary system data areas are reinitial-
ized so the system is ready to accept another program
for execution.

© Pass on Control .
Control is given to the initiator to enable the next step
of the task to be processed.

Job Termination

Job termination is used to prepare the system to process
new jobs.

Job termination performs the following functions:

® Terminate the User Files
This involves such operations as updating the format 5
label and deleting the active format 1.

® Terminate the Task
If required, the terminal associated with the task is
freed. The task control block and job control block
are then freed and reset respectively. Various pointers,
switches, and necessary system data areas are reinitial-
ized so the system is ready to execute more tasks.

® Pass on Control

Control is given to the command processor to enable
more tasks to be processed.

Introduction 5-3

Licensed Material—Property of iBM

Abnormal Termination

Abnormal termination allows the user to stop processing at
other than normal termination points.

Abnormal termination performs the following functions:
® Any remaining steps in the job are flushed.

® Files are not closed and, therefore, are left in one of

the following conditions:

— Shared files contain all updates or adds made prior
to the abnormal termination.
Nonshared files contain all updates made prior to the
abnormal termination.
Any adds made to nonshared files do not remain in
the file (VTOC extents are not updated).
New files are removed from the VTOC.

Termination Interface

The termination interface transient (#CTEIF) is called in
one of four ways (see Figure 5-3).

© Supervisor (abnormal termination with a dump request).

The control storage end-of-job transient ($EJ1) calls
#CTEIF.

© Command processor (abnormal termination due to a 2
or 3.option to an inquiry or CANCEL request). The
command processor calls #CTEIF.

© User program (normal termination). The user program
calls #CTEIF at step termination and job termination
time.

o SYSLOG (3 option to halt).

Termination Interface (#CTEIF) is the main interface

between the program requesting termination functions and

the termination processor (#CTEPR). #CTEIF performs
initial termination, Its primary job is to:

® Set termination indicators

® Call termination user interface (#CTEGU) to get user
into main storage

o Call common close (#DMCL) to ensure user files are
closed (normal termination)

o Wait for any active |OBs to complete
© Remove I0Bs that have not started from the queue

5-4

® Call termination communication interface (#CTECM) if
communication is supported

® (Call the attach transient (#SVAU) if no communication
interface is required

#SV AU loads and passes control to the termination proces-
sor (#CTEPR).

If a SYSLOG 2 option is taken, the user program terminates
and continues on to the next job step.

Termination processor (#CTEPR) performs the three termi-
nation functions: step termination, job termination, and
abnormal termination. #CTEPR isloaded (by #SVAU) into
14K of main storage starting at logical address X"C800°’.

The last 3K of #CTEPR contains the link edited modules,
error recovery block cleanup for I/0 SYSLOG (#SVERJ),
command processor console SYSLOG EOJ message cleanup
(#CPEJM), disk VTOC read/write (@CSVF) and termination
keysort (#CTEKS).

The disk VTOC read/write routine is used by the termina-
tion processor to update the VTOC format 1.

The termination keysort routine determines if keysort
activity is required and, if needed, loads keysort control
(#DDKAA) into main storage. #DDKAA is loaded over
the first 12K of #CTEPR (#CTEKS and @CSVF are in the
remaining 2K). When keysort completes, #CTEKS returns
#CTEPR to its original 14K area. The left side of the fol-
lowing diagram illustrates main storage usage when termi-
nation is processing and keysort is not required. The right
side illustrates main storage usage when termination is
using keysort.

Main Storage

0 |
Termination | Keysort
User 25 Processor I Control F\B
Area (#CTEPR) } (#DDKAA)
11K {
#CPEJ j|
#SVERJ - : 12K
Disk VTOC | Disk VTOC
Read/Write l Read/Write
(@CSVF) (@CSVF)
Termination I Termination
Keysort I Keysort
(#CTEKS) | (#CTEKS)
14K

Licensed Material—Property of IBM

The step termination function of #CTEPR is initiated at
the end of each LOAD-RUN sequence within a procedure,
Its primary job is to:

® Process files, utilizing disk and diskette VTOC read/
write and keysort control (#DDKAA) when needed

® Process library format 1’s and file specification blocks
® Process source entry utility chain

® Performs clean up activity for spool function utilizing
spool file close (#SPCLO)

® Free up allocated resources

® Free work station control blocks

® Release all data work stations for this task

® Reinitialize data areas as required

® RUN OXREF program (#MAXRF) as needed

® Clean up control storage SYSLOG halts (#SVERJ)

® [oad the initiator (#CIML) into main storage

The job termination function of #CTEPR is initiated when
the last step of a procedure completes processing or a load-
run sequence completes processing outside a procedure. At
job termination time, step terminate logic executes fol-
lowed by job termination logic to:

® Process J type files

® Ensure work station control blocks are free

° 'Revlease all work stations for this task
® Free task work area control blocks

® Detach task control block

® Release user main storage

® Pass control to command processor

The abnormal termination function of #CTEPR is initiated
when a 3 option is taken to a halt, the CANCEL command
is received, or a program check with a dump request is
encountered. The program requesting the abnormal ter-
mination function sets on the abnormal termination bit in
its TCB. Abnormal termination executes step termination
and job termination logic except that records added to files
under certain conditions remain in the file. After the task
is detached, the command processor is given control.

Termination User Interface (#CTEGU) is a main storage
transient called by #CTEIF if the user program is pushed
out of main storage and must be pulled back in.

Termination Communications Interface (FCTECM) is a
main storage transient called by #CTEIF if a communica-
tions interface is required. [ts main functions are:

® Call BSC to perform final cleanup for the user task

® Dequeue and free the communication specification
blocks (CSBs)

® Call the attach transient (#SVAU) to load in, and pass
control to, the termination processor (#CTEPR)

Introduction 5-5

Licensed Material—Property of IBM

Method of Operation

This section contains functional diagrams for routines
needed to terminate a job. They are:

® (Close disk, diskette, printer, work station and data
communications DTFs (Diagram 5.2)

® Termination function (Diagram 5.4)

From: Calling Program

INPUT I r PROCESS OUTPUT

Postopen DTFs >® Close disk, diskette, printer, work station, ™ > Closed DTFs

and BSC DTFs (Diagram 5.1)

Required system ® Terminate iéb step and job as required ‘_—_‘:> Updated system
areas (Diagram 5.2) areas

To: Initiator or
Command Processor

Diagram 5.0. Overview of Terminating a Job

5-6

Licensed Material—Property of IBM

From: Calling Program

I r PROCESS

n Prepare to close DTFs

OUTPUT

XR2 XR2

DTF (postopen) Close diskette DTF

DTF (preopen)

Main Storage K} ciose disk DTF

AFA format 1

Files and Buffers

Transient Area:

#DMCL
#DDCL
#DRCL
#DRNV

User Area

User Program

AFA format 1 -

To: Calling Program

' : ' . : MODULE/
_DESCRIPTION o ROUTINE
BB i diskette DTF, go o[, . | #DMCL

Determine device type to unchain.
Remove all DTFs from backward chain.
o Determine device type to close.

If work station DTF:

® |ndicate DTF not allocated.

© [ndicate DTF not open.

® Repeat steps until all work station DTFs are closed.

If binary synchronous communication (BSC) DTF:

Indicate a close call in BSC DTF operation code.

Set return code in the communications specification block (CSB) return code field.
Point XR1 at CSB.

Issue task-to-task communication SVC to indicate a close call to the BSC system task.
Repeat steps until all BSC DTFs are closed. :

If disk DTF, go to [E}.

Diagram 5.1 (Part 1 of 2). Close Disk, Diskette, Printer, Work Station and Data Communications DTFs
Method of Operation 5-7

Licensed Material—Property of IBM

MODULE/

Restore DTF to preopen status.
Repeat steps until all disk DTFs are closed.
Return to calling program.

00000

DESCRIPTION ROUTINE
@ If not last DTF on chain: #DMCL
© Point to next DTF on chain.
O Return to@ .
If printer DTF to close:
© |ssue quiesce to printer to ensure completion of all 1/O events. WSIOCH
© Return DTF to preopen status. #DMCL
© Free |OB space in assign free area (SVC 07).
O Return tof3 ¥
If last DTF closed, return to caller.
1 Check file status to select appropriate close function: #DRCL
O |f input file or locate mode output file, go toe.
@ If final output move mode file, go to‘?.
O |f output error caused end of volume, continue with G
@ Issue permanent diskette output error message and initiate end of volume. #CLXS
Call diskette 10S. #DRCL
Write final output buffer to diskette if necessary. Diskette 10S
If error, and error recovery can not be accomplished, go to@. #DRCL
@ Update fields in active format 1 for last (or only) volume of file.
Restore DTF to preopen status.
Write data set label into VTOC on diskette. #CSVI
If end of volume, call open next diskette volume (# DRNV). #DRCL
If last (or only) volume, return to to unchain diskette DTFs.
Close all disk DTFs: #DDCL
O |f data buffer must be written, write it to disk. Disk 10S
If indexed access, flush index buffer.
Update format 1 in main storage. #DDCL

Diagram 5.1 (Part 2 of 2). Close Disk, Diskette, Printer, Work Station and Data Communications DTFs

5-8

Licensed Material—Property of |IBM

From: Supervisor, Command Processor, or
User Program

INPUT I r PROCESS ouTPUT

me "> Provide initial interface for termination (xm
(TCB Terminate job step TCB
JCB Terminate job CJCB
Main Storage n Perform abnormal termination when Active format 1
necessary
VTOC format 1
Transient Area:
#CTEIF, VTOC format 5
#CTEGU
and TWA
#CTECM
BSC DTF
User Area:
#CTEPR " ACE
#CPEJ .
_#SVERJ__ PPSA
[@CSVF
I and :
L #CTEKS
' (link edited) |
_____ —

Active format 1
VTOC format 1
VTOC format 5
SYSCOM

AQE

FSB

TUB

TWA

WSB

ACE

PsB

CSB

sQaB

RB

CiB

PPSA

To: Initiator or
Command Processor

MODULE/
DESCRIPTION ROUTINE

Indicate in the task control block (TCB): #CTEIF
® Task is in termination.
® Task is not cancelable.
® Task is not inquirable.

Diagram 5.2 (Part 1 of 3). Perform fermination Function

Method of Operation 5-9

Licensed Material—Property of I1BM

DESCRIPTION

MODULE/
ROUTINE

Pull the user program into main storage when required.
Return.

P Close all user files when required.
Purge/qqiesce ACEs from system queues.

If communication systems in use:
® Terminate tasks as required.
© Dequeue and free communication specification blocks (CSB) (use control storage dequeue and free functions).

Load and pass control to termination processor (# CTEPR) (use attach transient).

For job step termination, determine if keysort required (#CTEKS link edited with #CTEPR).
Disk file (not diskette).

Indexed unordered load file.

T, P, or J type file.

Keysort bit on in format 1.

Keysort not previously run for this task.

If keysort is required:

® Update AFA format 1 to indicate keysort running.

® | oad keysort control (#DDKAA) over first 12K of #CTEPR and pass control to it.

® After keysort completes; set off keysort running indicator in AFA format 1, reload #CTEPR, and pass
control to it.

® Return.

Clean up console SYSLOG queue (#CPEJ link edited with #CTEPR).
Perform error recovery block cleanup for I/0 SYSLOG (#SVERJ link edited with #CTEPR).

Process diskette files: :

® Free active format 1 block (use control storage free function).
® Dequeue FSB from chain (use control storage free function).

® Free FSB in assign/free area (use control storage free function).

Process disk files:

® Update VTOC format 1's and format 5s as needed (use @CSVF — link edited with #CTEPR).
Maintain latest date indicator for T and P type files.

Dequeue active format 1's as required (use control storage dequeue function).

Free active format 1 block in assign/free area if required {use control storage free function).
Free high key bucket area in assign/free area for indexed files (use control storage free function).

Process SEU member chain.
Process work stations:
® Release work stations (except requestors)
® Dequeue allocation queue element {AQE) for printer terminal unit blocks (TUB).
® Free work station specification blocks (WSB) (use control storage free function).
Process printer specification blocks (PSB).
Update job control block (JCB) as required.
Reinitialize data areas as required.

Deallocate all devices in device allocate table owned by task.

If spool intercept being used, perform necessary spool cleanup.

#CTEGU

#CTEIF

#DMCL

#CTEIF

#CTECM

#SVAU

#CTEKS

#CTEPR

#CPEJ

#CTEPR

@CSVF

#CTEPR

#DWDM

#CTEPR

#SPCLO

Diagram 5.2 (Part 2 of 3). Perform Termination Function

5-10

Licensed Material—Property of IBM

MODULE/

DESCRIPTION ROUTINE
Return. #CTEPR
Update spool file extents if necessary (SCA byte SCADCFG1). #CTES
Return. #CTEPR
Run cross reference resolver (# OXREF) program if needed. #MAXRF
Load initiator mainline {(#CIML) over #CTEPR in main storage and pass control to it. #CTEPR

a During normal job termination, perform the following:

® Update format 5 and delete active format 1 for J type files. Disk 108
® Free control blocks for file FSBs and active format 1's for J type files. #CTEPR
® Ensure control blocks for terminal WSB'’s and PSB's are free. #DWDM
© Free task work area (TWA) control blocks. #CTEPR
© Detach TCB, release users main storage, and reset swap area (control storage detach function. #SVAU
® Release the requester’s terminal. #DWDM
® Free compiler information block (CIB) if necessary. #CTEPR
©® Pass control to command processor.

n If abnormal termination, perform job termination logic and:
® For old nonshared disk files (P or T type):
— Reset to zero, data area where new records added.
— Put X'FF's in index overflow area where new record indexes were added.
® For S type files, file remains on VTOC.

Pass control to command processor.

Diagram 5.2 (Part 3 of 3). Perform Termination Function

Method of Operation 5-11

Licensed Material—Property of I1BM

Program Organization

Figures 5.2 and 5.3 show the control flow required to

terminate a job.

Usér
Program

Diskette
<$¢mmm) O F’
Common (#DRCL)
' . Close
(#DMCL)
Disk
Close
(#DDCL)

F—

Diskette
End-of-Volume

(#DRNV)

Figure 5-2. Close Control Flow

5-12

Licensed Material—Property of IBM

Supervisor
(abnormal
termination —
dump request)

s———m—>

End of Job
Transient
($EJ1)

Control Storage

Command Processor
{cancel)
or
User Program
{normal termination)
or
SYSLOG
(3 option to halt)

Termination

User

Interface
(#CTEGU)

(—-1

Termination
interface

(#CTEIF)

Common Close

(#DMCL)

Termination
Processor

(#CTEPR)

Error Recovery
Block Cleanup
for 1/0 SYSLOG

(#SVERJ)
Console SYSLOG
Cleanup

(#CPEJ)
r Disk VTOC—=

Read/Write I

(@CSVF) 1
—and— I
Termination
Keysort l
(#CTEKS)

L ———_J

T O RN AR

Termination

Communication

Interface
(#CTECM)

R NS A R

Spool Intercept
File Close

(#SPCLO)

Spool File

Extents

Update
(#CTES)

Work Station

Data

Management
(#DWDM)

Diskette VTOC
Read/Write

(#csvl)

Keysort
Contro!

(#DDKAA)

Initiator (end of step)

or

Command Processor
{end of job or abnor-
mal termination)

Figure 5-3. Termination Control Flow

Program Organization

Licensed Material—Property of IBM

5-13

5-14

Licensed Material—Property of IBM

Part 3. Special Function Programs

Licensed Material—Property of I1BM

Licensed Material—Property of IBM

Introduction

The system service functions are:

Librarian facilities

Library member protection

Active format 1 area access routine
Cross reference resolver

DL.JpIicate key display routine
Print image verify routine

Disk VTOC read/write

Diskette VTOC read/write

Message retrieve

System input (SYSIN)

System list (SYSLIST)

System log (SYSLOG)

History file put

Supervisor task attach

Supervisor task detach

Syntax checker

Information Retrieval

Data management task transfer control

Snap dump

Chapter 6. System Service Programs

LIBRARIAN FACILITIES

System programs and user programs are stored in a man-
ner that makes them readily accessible to the system
user. The programs are stored in libraries on disk and
are called library members. Library members can be
executable load modules (O-modules), procedures
(P-modules), subroutines (R-modules), and source state-
ments (S-modules).

The librarian facilities provide a way to locate and access
library members. The librarian facility programs are:

® Find alibrary routine (#MAFLB)
® Single name find routine (#MASFN)

o Librarian find routine (SMAFND)

°

Source library get routine (#MASYG) or (#MASYL)

Library record put routine ($MAPUR)

Library sector get/put routine (SMAPGS)

Find a Library Routine

The find-a-library transient (#MAFLB) finds a library by
name. Given an 8-byte library name, it returns the 2-byte
address of the format 1 for the named library. Zero is
returned if the library does not exist. The library format
1 address must be passed to librarian access routines when
accessing members in libraries other than the system
library or the designated user library.

#MAFLB finds or builds the format 1 for the requested
library in the active format 1 area (AFA). #MAFLB does
not enqueue the requested library. However, if the
requested library is not being used by the calling task,
#MAFLB does chain the requested library’s format 1 to
the caller’s job control block (JCB) with a library file
specification block (FSB) and increment the use count

in the format 1. This ensures the existence of the
requested library for the duration of the job step.

Introduction 6-1

Licensed Material—Property of IBM

XR2 must contain the address of the leftmost byte of

a 10-byte parameter list (see Figure 6-27). The first 8
bytes must contain the library name. On input, the last 2
bytes must be zero, or must contain the address of the JCB
to be used by the command processor when building the
JCBs.

Single Name Find Routine

The single name find transient (#MASFN) finds a specified
library member by searching first in a user library, then in
the system library. The user library may be the designated
user library (from the LIBRARY statement) or another
user library. The search may be restricted to only the user
library or only the system library.

On a regular call, #MASFN returns 17 bytes of the direc-
tory entry (bytes 10 through 26) and indicates if the mem-
ber was found in the user library or the system library.
When #MASFN is called with a request to build the loader
parameter list, the first 10 bytes of the loader parameter
list are returned. The user must set the last 2 bytes (the

. load address) of the loader parameter list. The load
address can be set with the system find parameter list
macro ($FNDP). ‘

#MASFN enqueues the library directory for the duration
of the search.

When the requested member is not found, #MASFN
returns the parameter list unchanged or issues an error
message and terminates if building the loader parameter
list.

The parameter list is 18 bytes for a regular call or 12 bytes
for a loader call. XR2 must point to the leftmost byte.

If the system find include version (@MASFN) is link-
edited to another module, the load request is not sup-
ported. The link-edited module must have addressability
to the nucleus and must provide a buffer.

6-2

Librarian Find Routine

The librarian find routine (SMAFND) locates directory
entries by full or partial name. The caller provides a
buffer, specifies the library to search, gives the member
type or types, and gives the member name or partial
name and length. On each call, SMAFND returns the
address in the buffer of the next directory entry meeting
the criteria or indicates that no more members meet the
specified criteria. The caller may update the found
directory entry and then have SMAFND write the
updated directory entry back to disk.

The library to search is specified by giving the library
format 1 address (returned by #MAFLB) or by giving
zero and indicating the designated user library (library
from the LIBRARY statement) or the system library or
both. [f both are given, the designated user library is

* searched first for any member meeting the specified

criteria. Only if no members are found is the system
library searched. The searched return indicator is set to
indicate if the member was found in the designated user
library or the system library. $MAFND enqueues the
library directory on the first call and dequeues it on the
last call.

$MAFND may be executed as a transient version
{SMALFN) or loaded into the caller’s area. XR2 must
contain the address of the leftmost byte of a 24-byte
parameter list {see Figure 6-30). The transient version
requires a 25-byte work area following the parameter list.

Source Library Get Routine

The source library get transient (#MASGT) retrieves
source or procedure members from a library one record
per call. If requested, #MASGT finds the member and
updates the parameter list for a get or returns a not found
indicator. The caller specifies the library to search.

For each call, the next record is expanded into the caller’s
record buffer. If the actual record length is less than the
record buffer, the record is transferred intact and the
buffer is padded with blanks. If the actual record is longer,
it is truncated and a truncate indicator is set. If requested,
the last nonblank character in the record will be indicated.
An EOF indicator is set when the last record is returned.

Licensed Material—Property of IBM

The caller must provide a record buffer and an 1/0 buffer
of at least one sector. XR2 must contain the address of
the leftmost byte of a 19-byte parameter list (see Figures
6-31 and 6-32). The source library get transient requires
a 15-byte work area following the parameter list. The
source library get routine include version (#MASYL), may
be link-edited with or loaded by other modules to retrieve
requested library members. It does not, however, support
the find request function.

Library Record Put

The library record put routine (SMAPUR) places source or
procedure records into a specified library in compressed
format. The records must be from 40 to 120 bytes in
length.

The library control block (LCB) must be supplied by the
caller as a parameter list. XR2 must point to the leftmost
byte. (See the Data Areas Handbook for the LCB format).

The caller’s first call to $SMAPUR must be an open request
for the output library. If the open is successful, the caller
makes one put request call for each record. After the last
record, the caller must call SMAPUR with a close request.

For the open request, SMAPUR calls the library open/close
routine (SMACOM or $MALCO). For each put request,
SMAPUR moves the record to the caller-supplied 1/0
buffer, compressing the record in the process. When the
I/0 buffer is full, it is written to the library. If available
library space is exceeded, SYSLOG (#CLSG) is called to
issue a message. In responding to the message, the opera-
tor can either cancel the job, or accept the partial member
that was written. If the operator accepts the member as
written, SMAPUR closes the library with the partial
member and indicates to the caller that the member has
been closed. For the close request, SMAPUR closes the
output library by calling library open/close (SMACOM or
$MALCO).

The library control block (LCB) must be supplied by the
caller as a parameter list. XR2 must point to the leftmost
byte. (See the Data Areas Handbook for the LCB format.)

Library Sector Get/Put

The library sector get/put routine (SMAPGS) retrieves
members from or places members into a specified library.
Members are accessed in block or sector mode without
checking content.

When $MAPGS is called, the user must request either a get
or a put operation.

If a get is requested, the user may first request that the
single name find routine (#MASFN) locate the specified
member. If #MASFN cannot find the member in the
system or user libraries, the completion code (LCBCOMP)
is set to indicate this fact and control returned to the
calling program. If the find is successful, SMAPGS calls
disk 10S to read the requested sectors into a user provided
1/0 buffer. Several calls to disk 10S may be required to
read the entire member unless the 1/0O buffer is large
enough for a single read operation. The successful com-
pletion bitin LCBCOMP is set after each read. After the
entire member is retrieved, a bit in the completion code
(LCBCOMP) is turned on to notify the user.

If a put is requested, the caller of SMAPGS can request
the library open/close routine (SMACOM or $MALCO) to
open the specified library. When the iibrary is open,
$MAPGS is called with a put request and then $MAPGS
calls disk 10S to write the member sectors from the user
supplied 1/O buffer into the specified library. On the last
put call, after the entire member is written to the library,
$MACOM or $MALCO is called to close the library.
Control is then returned to the calling program.

The library control block (LCB) must be supplied by the
calling program as a parameter list. XR2 must point to
the leftmost byte. (See the Data Areas Handbook for the
LCB format.)

LIBRARY MEMBER PROTECTION

The library member protection routine (MAMPM) is a
refreshable transient. #MAMPM has two functions:

@ Prevent source entry utility (SEU) tasks from updating
a library member if that member is currently being
updated.

@ Prevent initiation of an SEU task when an SEU user is
inquiring into SEU

To perform these functions, #MAMPM builds an SEU
member chain. If either condition occurs, the SEU task is
immediately canceled. Otherwise, an element is added to
the chain.

Introduction 6-3

Licensed Material—Property of IBM

When the library member protection routine (¥MAMPM)
is called, it enqueues the SEU member chain queue header
at level 3. This provides #MAMPM exclusive use of the
member chain for the entire duration of the program.
#MAMPM then assigns space to the assign/free area for the
member chain element it plans to build (see Figure 6-1).
This area is then added at the end of the member chain.

Next, the member chain element is built by retrieving the
fields that are contained in the element. The task control
block (TCB) address of the user task is obtained and moved
to the member chain element. Also moved into the mem-
ber chain element is the terminal 1D, obtained from the
terminal unit block (TUB). The terminal ID is also put
into the 2-byte field at the end of the single name find
parameter list. Single name find (#MASFN) is then called
to find the member from the specified library. If the find is
successful, the sector address of the member is moved into
the member chain element. If the find is not successful, a
null member address of zeros is moved into the member
chain element. This indicates that a new member is being
created by the user. The chain is then searched. The ter-
minal ID of the task is compared with the terminal ID

of each element on the chain. |f a match occurs, it indicates
that the same user has made an inquiry back into SEU. A
message is then displayed to the user through SYSLOG,
and the user task is cancelled. Next, the member address
in the member chain element is compared with the mem-
ber address in each block of the chain. The only valid
match is if the member address is zero, otherwise, it indi-
cates that another SEU user is updating that member. The
type and name of the member along with a message is
displayed to the user through SYSLOG, and the user task
is terminated. If an error occurs, the member chain ele-
ment is freed from the member chain during termination.
If the chain is searched and the end is reached without
error, the member chain queue header is dequeued and
control is returned to the user.

The single name find parameter list (see Figure 6-28) with
an additional 2-byte area for terminal ID must be supplied -
by the calling program. XR2 must point to the leftmost
byte of the list.

System Communications Area

Assign/Free Area

SCADSEU@ _L\ Member chain
- SCADSEUQ L
Member SSS
‘ TCB Address
; L AQE ' Terminal ID
¥ AQE
¥ AQE f
AQE

Figure 6-1. SEU Member Chain

6-4

Licensed Material—Property of IBM

ACTIVE FORMAT 1 AREA ACCESS ROUTINE

The active format 1 area access routine (#CSAF) is a
transient used to manage requests for get and put of for-
mat 1 blocks in the active format 1 area (AFA).

#CSAF suppofts the following functions:
® Get by label

@ Get by name

® Get by address

® Put

#CSAF examines the function byte in the user provided
AFA access parameter list to determine the service
requested (see Figure 6-33).

If the get label request is for unit F1, #CSAF searches the
AFA chain for a format 1 with the specified label. When
found, #CSAF places the format 1 address in the para-
meter list. The request may be further qualified by date
and ID verify. Date verify compares the creation date in
the format 1 to the date in the caller’s parameter list. ID
verify causes the allocation queue element (AQE) chain
associated with the format 1 to be searched for at least
one AQE containing the current task control block (TCB)
address. *If the caller requests a move, #CSAF places the
format 1 in the caller’s /O area. The parameter list return
code is updated when the operation is completed. Control
is returned to the calling program.

If the request is get label for unit |1, #CSAF searches the
file specification block (FSB) chain pointed to by the job
control block (JCB). The FSB contains a pointer to an
associated format 1. #CSAF examines each format 1 for
the specified label and unit. The request may be further
qualified by date verify. If the caller requests a move,
#CSAF places the format 1 in the caller’s 1/O area. The
parameter list return code is updated and control is
returned.to the calling program.

If the request is for get name, #CSAF searches the file
specification block (FSB) chain pointed to by the job
control block (JCB) for the specified name. The FSB
contains the format 1 address. If the format 1 contains
the correct unit field, #CSAF places the format 1 address
in the caller’s parameter list. If the caller requests a move,
#CSAF places the format 1 in the caller’s 1/0 area. The
parameter list return code is updated and control returned
to the calling program.

If the request is for get by address, #CSAF moves the
format 1 at the specified address to the caller’s 1/0 area.

If the request js for put format 1, #CSAF replaces the
format 1 in the AFA, at the address specified in the caller’s
parameter list, with the format 1 in the caller’s 1/O area.

XR2 must point to the leftmost byte of the user-provided
AFA access parameter list (see Figure 6-33).

CROSS-REFERENCE RESOLVER

The cross-reference resolver routine (#MAXRF) places
loader information in the where-to-go (WTG) table. With-
out a WTG table, the caller of an SSP module must first
call system find to build a loader parameter list, then call
the loader to load the module. If the caller supplies a WTG
table, the call to system find is eliminated. #MAXRF also
fills in format index tables in SSP modules.

#MAXRF is run any time SSP load members in the system
library are moved. This may be after RELOAD, system
library compress, or replacement of an SSP load member.

#MAXRF reads the system library directory and builds a
resident table of all SSP load modules. Each entry contains
the second through fifth character of the name, the disk
address, the number of text sectors, the RLD displacement,
a WTG table indicator, and a format index table indicator.
#MAXRF builds a main storage format index from the
index sectors of the command processor screen format
modules.

#MAXRF then uses information from the resident table to
find and read the last four text sectors of each module
with a WTG or format index table. #MAXRF calculates
the end of the module by using the number of text sectors
and the RLD displacement. For each module in the WTG
table, #MAXRF searches the resident table for a matching
entry. If a match is found, the loader information is moved
from the resident table to the module’s WTG table. If a
match is not found, loader data for the no-op routine
(#MANORP) is placed in the WTG table. When executed,
#MANORP issues the error message. For each module with
a format index table, #MAXRF uses the module’s format
index table displacement to get information from the main
storage format index to the format index table. The last
four text sectors are then written back to their original
location on disk.

Introduction 6-5

Licensed Material—Property of 1BM

The format index table and WTG table must be the last
bytes in the module. Each must be preceded by X'FFFF’.
If both are present, the format index table must precede
the WTG table.

Each entry in the WTG table is 9 bytes, in the format
CCCCSSSnR:

CCCC = second through fifth character of called
module name

SSS = disk address of called module

n = number of text sectors

R = RLD displacement

#MAXRF
loads these

Each entry in the format index table is 9 bytes, in the
format DDSSSfnll: »

DD = displacement into format index sectors
SSS = disk address of screen format
f =number of FDT

n = number of text sectors

Il =input length of screen

#MAXRF
loads these

DUPLICATE KEY DISPLAY ROUTINE

The duplicate key display routine (#CSDK) is a transient
that display the duplicate key and returns the operator-
selected option to the calling program.

When #CSDK is called, the user must supply a where-to-go
table specifying #CSDK, an 80-byte message buffer area,
and the duplicate key halt parameter list. The calling pro-
gram, by way of the parameter list, provides pointers to the
key and message build buffer (see Figure 6-34 for the
duplicate key display parameter list format). #CSDK calls
SYSLOG (#CLSG) to output a message indicating a dup!i-
cate key was found in the specified file. The operator
must indicate whether the key is to be displayed in
EBCDIC or converted to hexadecimal notation. After the
operator responds to the message, #CSDK moves the dupli-
cate key to the message build buffer and calls #CLSG to
display the key and the options specified in the duplicate
key display parameter list. When the operator responds,
the requested option is placed in the parameter list and
control returned to the calling program.

XR1 must point to the leftmost byte of the user-provided
parameter list for duplicate key display.

6-6

PRINT IMAGE VERIFY ROUTINE

The printer image verify routine (#CSIM) is a transient
program that has four functions:

© Set the print image

® Set the forms number

® |ndicate page separator information for spool
® Set lines per page

#CSIM processes all printer specification blocks (PSBs}
associated with the calling task. Multiple printers may be
processed with one call to #CSIM.

The PSB contains a flag byte, forms number, and lines-
per-page fields used by #CSIM. #CSIM scans the PSB
chain associated with the calling task and performs the
following functions:

© /mage processing: 1f the PSB flag byte indicates pro-
cessing is required, #CSIM compares the current print
image to the work station configuration record. If they
do not match, SYSLOG displays a message to the
operator. The operator, after changing the print belt,
replies to the message. #CSIM then sets the new print
image into the printer control unit.

© Forms processing: |f the PSB flag byte indicates forms

processing is required, #CSIM compares the current
forms number in the TUB to the PSB forms number.
If they do not match, SYSLOG displays a message to
the operator. The operator, after changing the forms,
replies to the message. #CSIM then sets the new forms
number into the printer terminal unit block (TUB).

® Spool separator page processing: 1f the calling task is

spool, #CSIM prompts the operator to indicate if
separator pages are required. If the operator’s reply is
option 1, #CSIM updates the PSB flag byte to indicate
separator pages are required.

® [Lines per page processing: |f the PSB flag byte indicates

lines per page processing is required, #CSIM sets the lines
per page from the PSB into the printer control unit.

No caller parameter list is required to execute #CSIM. The
PSB, however, must be initialized when #CSIM is called
(see Data Areas Handbook for PSB format).

Licensed Material—Property of IBM

DISK VTOC READ/WRITE

The disk VTOC read/write routine is supplied in two
versions. #CSVF is a transient, and @CSVF is designed to
be link-edited with system routines that address the
nucleus,

Disk VTOC read/write performs three major functions:
® Format 1 read

o Format 1 write

o Existence test

The program calling disk VTOC read/write must supply a
parameter list with leftmost byte address in XR2 (see the
Data Areas Handbook for disk VTOC read/write parameter
list format).

Disk VTOC read/write examines the function byte in the
parameter list to determine the service requested:

© Format 1 read: disk VTOC read/write uses the scan
function of disk 10S. A scan mask containing the
requested label, and the date as an option, is passed to
disk 10S by way of a pointer in the IOB. When the
format 1 is located in the VTOC, disk 10S places the
sector number in the 10B and disk VTOC read/write
reads the sector containing the format 1 into the data
area. The format 1 is then moved from the data area to
the calling program'’s 1/0 area and control returns to the
caller.

There are four types of format 1 read requests:
— Read next

— Read next same label

— Read specific

— Read by sector displacement

Format 1 read request processing varies depending on
the type of request. The caller also has the option of
requesting a date verify. Date verify uses a scan mask
containing the label and date. This allows the caller to
select a specific file from a group of files with the same
label. Without date verify specified, the format 1 with
the latest date is selected. If the format 1 read request
is:

— Read next, the parameter list displacement byte is
tested for a first request. If it is the first request,
the scan starts at the first sector in the VTOC format
1 area. If it is not the first request, the parameter
list sector number is incremented and the scan
started in the next sector. The scan is for the next
logical format 1 in the VTOC and no compare for
label or date is made.

— Read next-same label, processing is the same as a
read next request except the scan mask is set up to
compare on a specified label.

— Read specific, the scan starts at the VTOC format 1
area beginning. The scan is for a format 1 containing
the specified label and optional date.

— Read by sector displacement, the disk sector
specified in the parameter list is read and the format
1 at the specified displacement moved to the caller’s
1/0 area.

® Format-1 write: disk VTOC read/write uses disk 10S
to read the sector specified in the parameter list. The
format 1 in the caller’s 1/0 area is moved into the sector
just read from disk. Disk 10S is called again to write the
updated sector back to disk.

© Existence test: processing is the same as format 1
read-read specific processing except the format 1 is not
moved into the caller’s 1/0 area. The sector/displace-
ment and the return code are updated in the parameter
list.

Figure 6-13 shows disk VTOC read/write control flow.

DISKETTE VTOC READ/WRITE

Diskette VTOC read/write is transient and consists of three
modules. The mainline module (#CSV1) process the
requests and routes control to the two conversion modules
(#CSVJ and #CSVK) as required.

Introduction 6-7

Licensed Material—Property of IBM

Diskette VTOC read/write performs three major functions:
® Convert format 1's and header 1's

® Prepare diskettes for processing

® Format 1 read/write

The program calling diskette VTOC read/write must supply
a parameter list with the leftmost byte address in XR2

(see the Data Areas Handbook for diskette VTOC read/
write parameter list format).

#CSVI examines the function byte in the parameter list
to determine the service requested:

® Convert header 1’s: #CSVJ reads the diskette VTOC,
converts the header 1’s to format 1’s and places the
format 1's into a diskette VTOC area on disk. Subse-
quent diskette format 1 read/write requests access this
area on disk.

® Convert format 1’s: #CSVK reads the diskette VTOC
area on disk, converts the format 1s to header 1's and
places the header 1's into the diskette VTOC on diskette.

® Prepare diskette: #CSV| issues a recalibrate request for
the diskette. The volume label is read and verified. The
volume label and physical attributes are placed into the
system communication area (SCA). A 4-byte lock
number is also placed into the SCA and written on the
diskette. #CSVJ is then called to create the diskette
VTOC area on disk (convert header 1’s function).

® Format-1 read: The diskette format 1 in the diskette
VTOC area on disk (placed on disk by #CSVJ) is read
the same as by the format 1 read function of disk
VTOC read/write. Latest date processing, however, is
not supported. (See format 1 read function in
Diagram 6.12.)

® Format-1 write: This function is identical to disk VTOC
read/write, #CSVF. (See format 1 write function in
Diagram 6.12.)

® Existence test: The check for the existence of a
specific format 1 is performed the same as by disk
VTOC read/write, #CSVF. (See existence test func-
tion in Diagram 6.12.)

Figure 6-14 shows diskette VTOC read/write control flow.

6-8

MESSAGE RETRIEVE

The message retrieve routine (#MGRET) is a transient that
locates the message text of a specified message identifica-
tion code (MIC).

#MGRET ensures a valid message member specification by
checking the message retrieve parameter list for valid
indicators and the message member pointer in the appro-
priate communication region for a nonzero SSS (see the
Data Areas Handbook for message retrieve parameter list
format). Disk 10S is then called to locate the message
member sector by scanning the message member for the
sector identified by a MIC greater than or equal to the one
requested. #MGRET locates the desired message by read-
ing the message member sector, looking for the specified
MIC. When the message is found, #MGRET blanks the
caller’s buffer, places the message in the buffer, and places
the message text length in the parameter list. If an error is
detected, the error MIC is placed in the parameter list.
Upon completion, control is returned to the calling
program.

Figure 6-15 shows the control flow for the message
retrieve routine.

SYSIN

SYSIN performs two major functions:

©® Retrieve records from the keyboard

® Retrieve records from library procedure members

Records retrieved from the keyboard are returned directly
to the calling program. If records are retrieved from a
procedure member, SYSIN performs:

® Substitution (#CLPR or #CLSB)

o [f statement processing consisting of:
— Existence testing (¥CLF X, #CLSM, #CLAC, or
#CLBL)
— Character string comparisons (#CLSS)

The SYSIN mainline module (#CLSS) uses the above
routines to perform the various functions performed when
SYSIN retrieves library procedure members. (See Figure
6-16 for SYSIN control flow.)

When a user program requests SYSIN services, the SYSIN
Load Transient (#CLSN) is loaded into the transient area.
#CLSN then loads and passes control to #CLSS at location
X'DDO00’ (logical address).

Licensed Material—Property of IBM

When the initiator is processing, #CLSS is link-edited with
the initiator. A 2K block of main storage starting at
X'F800’ (logical address) is reserved by #CLSS to handle
the SYSIN routines used to process procedure members.
This 2K block of main storage may also be used by the
initiator to handle OCL statements, and history file put
(@HFPUT).

The SYSIN calling program must place the leftmost byte
address of the SYSIN parameter list in XR2 (see Data
Areas Handbook for SYSIN parameter list format).

The history file put routine (@HFPUT) and the source
library get routine (#MASYL) are link-edited with the
SYSIN mainline module. #MASY L retrieves procedure
records and @HFPUT places records in the history file.

SYSLIST

SYSLIST provides a means of printing or displaying system
output to the user. SYSLIST executes as either a transient
or a loadable module.

The SYSLIST transient interface consists of the following:

® #CLST: SYSLIST printer transient. This module is
always loaded first on every transient call to
SYSLIST.

® #CLSC: SYSLIST work station transient.

® SLIST: SYSLIST macro that provides linkage to the
transient module (#CLST).

The loadable SYSLIST interface consists of the following:
® #CLSP: Loadable SYSLIST printer module.
® #CLSW: Loadable SYSLIST work station module.

® SLSTL: SYSLIST load macro that loads either
#CLSP or #CLSW into the specified user load
area.

The SYSLIST printer modules (#CLST and #CLSP) list
system output on the system or specified work station
printer. The SYSLIST work station modules (#CLSC and
#CLSW) list system output on the work station display
screens.

Two types of system output are listed by SYSLIST: Type
1 output comes from a message member and Type 2 output
comes from a system program.

When the SYSLIST transient is called, the user must supply
a SYSLIST parameter list with the leftmost byte address

in XR2. Control is then passed to #CLST via the SLIST
macro. If the display screen is to be the SYSLIST device,
#CLST transfers control to #CLSC, which-is loaded in the
transient area.

When loadable SYSLIST is called, the user must supply a
SYSLIST parameter list with the leftmost byte address in
XR1. Control is passed via a branch to the specified user
load area. Prior to passing control, the user must have
executed macro SLSTL, to load the proper module into
the load area.

The SYSLIST parameter list may be in one of two formats:
TYPE 1 or TYPE 2. (See the Data Areas Handbook for
SYSLIST parameter list formats.)

SYSLOG

SYSLOG provides a method for printing or displaying
messages.

Messages are printed only if the system is in single program
mode and the printer is the SYSLOG device and not busy.

Six types of messages may be displayed on the work station
or operator’s display screen. The six message types are:

® Typel: Messages from a message member without
a response

® Type 1R: Messages from a message member with a
data response

® Type2: Messages from a user program without a

data response

® Type 2R: Messages from a user program with a data

response
® Type 3: Messages from a user program with a
format line request
® Typed: Messages from a message member with 8

bytes of data inserted at the beginning of
the message '

The SYSLOG mainiine module {#CLSG) can be called by
way of the SYSLOG push/pull transient {#CLXS).

Introduction 6-9

Licensed Material—Property of 1BM

When loaded into the transient area, #CL XS pushes 10K
of user program from main storage to disk. It then loads
#CLSG into main storage at location X‘C900’ (logical
address). #CLXS also moves the parameter list, ATR,
SSN of #CMWO and, if the message type is 2, 2R, or 3,
the message from the transient area to the first sector of
the user area just cleared.

#CLSG uses printer 10S (IPTR) to output messages to the
printer and uses the command processor (#CMWO) to
output messages to the display station display screen.

History file put (@HFPUT) and message retrieve
(@MGRET) are link edited with #CLSG. @MGRET is
used to retrieve type 1, 1R, and 4 messages from the
proper message member. @HFPUT is used to log messages
and responses to the history file when requested.

The caller of SYSLOG must supply a parameter list with
XR2 containing the leftmost byte address (see the Data
Areas Handbook for the SYSLOG parameter list format).

If option 3 (cancel request) is returned to SYSLOG in
response to a message, #CLSG calls the end-of-job transien
(#CTEI) to terminate the job. #CLSG returns control to
#CLXS. If #CLXS is called by #CLSG, it is to move the
SYSLOG parameter list'back to the transient area and to
pull the 10K of user main storage previously pushed to

disk back into the user area. If an option response or data
response was received, #CLXS passes the response to the
caller. If the option is D, a main storage dump is performed.

HISTORY FILE PUT

History file put documents information such as OCL and
utility control statements entered by the system operator,
error messages, and operator responses.

History file put exists either as a transient (#HFPUT)
which executes in the transient area or as a link-edit

module (@HFPUT) along with the user program and

branched to by user program request.

The history file is not a data file but is located in the
system area on disk. (See the Data Areas Handbook for
history file description and format.) Entries are placed in
each sector of the history file, one after another, until the
point is reached where the next entry would extend
beyond the sector. In this case, the next entry is placed in
the following sector and the current sector pointer is
updated. When the point at which there is no following
sector is reached, the entry is placed in the sector at the
beginning of the file. This condition is known as wrap-
around. The entry last placed in the history file is the
current entry.

The system communication area (SCA) contains the history
file status:

® SCAHIST: history file beginning sector address

© SCAHFSIZ: history file size in sectors
® SCAHFCUR: history file sector containing current
entry
® SCASYS1: error condition if SCAHFERR set
If the SCAHFERR bit is not set in SCASYS1, #HFPUT
{or @HFPUT) reads the history file status from the SCA
to determine the history file start address, the history file
size, and the address of the current entry. #HFPUT uses
this information to read the sector containing the current
entry from disk and places it into the history file 1/0
buffer. Next, #HFPUT removes all trailing blanks from
the input text, and moves the text into the history file
data buffer. Additional information about the entry is also
placed in the history file data buffer: the terminal identi-
fier is read from the terminal unit block (TUB), the user
identification is read from the job control block (JCB) or
terminal unit block (TUB), the job identification is read
from the JCB, the current time is extracted from the sys-
tem timer routine ($TOD), and control bits are set
indicating if the entry was broadcast and if the entry was
displayed to the operator.

The completed entry is moved into the history file 1/0
buffer immediately following the previous current entry.
If the new entry will not fit into the current sector, it is
placed into the next sector, and the SCA current sector
address is updated. A maximum of four lines of equal
length may be placed into the history file on each call.
Disk 10S writes the entry from the history file buffer to
the history file on disk.

Licensed Material—-Property of IBM

The history file put routine caller must provide a 10-byte
parameter list with XR2 containing the leftmost byte
address. (See the Data Areas Handbook for the history
file put parameter list format).

SUPERVISOR TASK ATTACH TRANSIENT (#SVAT)

The supervisor task attach routine (#SVAT) is a transient
used to attach a new task to the system.

$SVAT assigns the task control block (TCB) to run the new
system task. The number of 2K main storage blocks
required to start the new task is then calculated. This is
the largest program size required to load the program
mainline or the size required to execute the program.

If enough main storage and swap area are available to run
the task, #SVAT assigns a request block {RB), action
contro! element (ACE) — if required, and swap area. All
necessary fields in the TCB are initialized to start the task.
The new TCB is then placed on the swap-in-queue with the
dispatching address pointing to the bootstrap code in the
RB.

Input to the supervisor attach transient is the attach para-
meter list supplied by the calling program. XR1 contains
the address of the leftmost byte of the attach parameter
list (see Figure 6-35 for the format and content of the
parameter list).

Output from #SVAT is the new TCB placed on the swap-in
queue. XR1 contains either the address of the new task’s
TCB or the value of the error return code.

After execution, #SVAT returns control to the calling

program or to a transient pointed to by the attach
parameter list.

SUPERVISOR TASK DETACH OR CHANGE ORIGIN
POINT (#SVAU)

The supervisor task detach or change origin point routine
(#SVAU) is a transient used to:

® Change a task’s point of origin

® Detach a task from the system

Change Point of Origin

A task’s point of origin within main storage may be
changed upon request. When control is passed from the
scheduler to the user program or from the user program to
the scheduler, a task’s location in main storage may
require changing.

#SVAU determines if enough main storage space is avail-
able to load the requested program. The old swap area on
disk is freed if enough main storage area exists and the old
swap area is larger than the required swap area. The old
swap area is also freed if the required swap area is smaller
than the old swap area and the task is in termination.

All main storage assigned to the task, except the first 2K
bytes, is then freed. The bootstrap code used to start the
task is moved to the first 2K byte area and control passed
to the program indicated in the attach parameter list.

Detach Task

The task detach function is called when a task goes to end
of job.

#SVAU frees the task’s main storage area and swap area on
disk. The task's request blocks (RBs) and job control
block (JCB) are then freed if required. Finally, the task
control block (TCB) is freed. When the detach function is
complete, control is returned to the dispatcher {control
storage) and the transient area is freed.

Input to the supervisor detach and change origin point
transient is the attach parameter list supplied by the calling
program. XR1 contains the address of the leftmost byte
of the attach parameter list. (See Figure 6-35 for the for-
mat and content of the parameter list.)

Output from #SVAU is a new point of origin for the task or,
if requested, the task is detached from the system.

If an error condition is encountered while executing

#SVAU, the error return code is placed in XR1 and
returned to the calling program.

Introduction 6-11

Licensed Material—Property of I1BM

SYNTAX CHECKER (#USYX)

The syntax checker (#USYX) performs the following
functions:

® Checks for a valid verb in a control statement

® |ndicates in the communication table the parameters
specified in the control statement

® Checks that parameter values are valid

® Places parameter values (or values that are to be
substituted for parameter values) in the communication
table

® Checks that parameters are used in valid combinations

® Indicates in the communication table any syntax errors

The syntax checker consists of a single phase, #USY X,
that resides in the system library.

Input to the syntax checker consists of:

® Syntax checker parameter list

® Verb list

® Communication table

® Syntax specification module

® Control statement

Note: The syntax checker parameter list, communication
table, and syntax specification module are described in the
Data Areas section of this chapter.

When the syntax checker is called:

® The calling utility places the address of the syntax
checker parameter list in register 2

® The syntax checker parameter list indicates the
address of the verb list and communication table

® The communication table specifies the name of the

syntax specification module to load from the system
library

6-12

Output consists of the communication table returned to
the calling utility with the following information:

® Parameters found in the control statement
® Parameter values
® Syntax errors that were detected

The syntax checker requires 4.5K bytes of main storage
for program execution plus space for the syntax specifica-
tion module, if required. :

INFORMATION RETRIEVAL (#SVINF)

The information retrieval transient (#SVINF) is invoked by
the $INFO macro instruction in the user’s program.
#SVINF provides the user with the ability to access certain
fields within privileged control blocks (JCB or TCB) or the
local area on disk.

The user provides a parameter list which specifies the
operation to be performed (get or put) and the data area
to be used for communication between the user and the
transient.

When #SVINF receives control, XR2 contains the address
of the parameter list. #SVINF determines whether the
user is permitted to access the field. If the user is not
permitted to access the field, a 3 option only SYSLOG
message is issued.

DATA MANAGEMENT TASK TRANSFER CONTROL
(#SVTTC)

Data management task transfer control (#SVTTC) controls
communication between user programs and the communi-
cations data management task.

Licensed Material—Property of IBM

SNAP DUMP (#SVDMP)

The snap dump transient (#SVDMP) provides a formatted
main storage dump when it is invoked by the $SNAP
macro in the user program. The user either dumps the
entire region of main storage, or specifies storage limits
for the dump in a parameter list:

Byte Description

0 Flag

1-2 Low storage address
3-4 High storage address
5-8 Dump identifier

Introduction 6-13

Licensed Material—Property of IBM

Method of Operation

This section contains functional diagrams of the system
service functions. They are:

Find a library routine

Single name find routine

Librarian find routine

Source library get routine

Library record put routine

Library sector get/put routine
Library member protection

Active format 1 area access routine
Cross reference resolver

Duplicate key display routine

Print image verify routine

Disk VTOC read/write
Diskette VTOC read/write
Message retrieve

SYSIN

SYSLIST

SYSLOG

History file put
Supervisor task attach
Supervisor task detach
Syntax checker
Information retrieval

Data management task transfer control

Snap dump

Licensed Material—Property of IBM

From: Calling Program
a INPUT ;

Library name

i q
Library format 1 >0

| q
Library name >°
Library member °

Record

:

Library member

Member element

‘M

AFA format 1

Module loader
information

Format 1

Printer specification -]
block
| Disk vTOC - °

Diskette VTOC

Message member

Input from
keyboard

Message member

Message data

History file data

Attach
parameter list

Attach
parameter list

Statements to
analyze

[

> Format 1 address

: >Parameter list

> Requested record

Library member
'_ * > Library member
> SEU member chain

Find requested library (Diagram 6.1)

==

Find directory entry (Diagram 6.2)

]

Find requested library directory entry
(Diagram 6.3)

Library directory

[e]

Retrieve requested source or procedure
record (Diagram 6.4)

Put record to library {Diagram 6.5)

Get or put library sector (Diagram 6.6)

Perform library member protection
function (Diagram 6.7) P

Perform active format 1 area access function AFA format 1
(Diagram 6.8) ﬂ ﬂ

Perform cross reference resolver function .> Updated WTG table
(Diagram 6.9) il

Display duplicate key information > Duplicate key
(Diagram 6.10) 7 message

. > Updated printer
specifications

~— > Disk VTOC

T

> Requested message

J> Processed record

Verify print image (Diagram 6.11)

Process disk VTOC read/write request
(Diagram 6.12)

Process diskette VTOC read/write request Diskette VTOC

(Diagram 6.13)

Retrieve requested message (Diagram 6.14)

i

#

Perform SYSIN function (Diagram 6.15)

Perform SYSLIST function (Diagram 6.16) Printed or

disptlayed output

> Printed or

displayed output

Perform SYSLOG function (Diagram 6.17)

Put records into history file (Diagram 6.18) Updated history

file

Perform supervisor task attach function
(Diagram 6.19)

New TCB on swap
in queue

Perform supervisor task detach function Detached task

(Diagram 6.20)

Perform syntax checker function
(Diagram 6.21)

Updated
communication table

Perform information retrieval function

Requested field
moved

OUTPUT cmamsmmzy

Diagram 6.0 (Part 1 of 2). Overview of System Service Programs
Method of Operation 6-15

Licensed Material—Property of IBM

>. Perform data management task transfer > Control is
control function (Diagram 2.23) I transferred

TCB

INPUT (continued) 1 PROCESS (continued) OouTPUT (conti‘nued)

User parameter ® Perform snap dump function (Diagram 2.24) Formatted main

list l | storage dump

To: Calling Program
Method of Operation

Diagram 6.0 (Part 2 of 2). Overview of System Service Programs

6-16

Licensed Material—Property of 1BM

From: Calling Program

INPUT I I PROCESS

XR2 “ n Locate requested library and set up for Formét 1 address

OUTPUT

Find a Library JCB

Parameter
FSB

Main Storage

AFA format 1

Transient Area:
#MAFLB

User Area

User Program

Library name
SCA
JCB

FSB
AFA
VTOC

To: Calling Program

MODULE/
DESCRIPTION ROUTINE

Check if requested library name is #LIBRARY. #MAFLB

If yes:
O Get #LIBRARY format 1 address from system communications area (SCA).
® Return to caliing program.

Search active format 1 area (AFA) for requested library.

If requested library in AFA:

® |flibrary format 1 on job control block (JCB) library file specification block {FSB) chain, only return format 1
address.

® |f library format 1 not on library FSB chain, build library FSB, chain FSB to JCB, increment use count in
format 1, and return format 1 address.

® Return to calling program.

Search VTOC for requested library (disk VTOC read/write, @CSVF, is link edited with # MAFLB). @CSVF

If requested library in VTOC: #MAFLB
Build library format 1 in AFA.

Build library FSB and chain to JCB.

Set format 1 use count to 1.

Return format 1 address to calling program.

If requested library can not be found:
® Set format 1 AFA address in parameter list to zero (calling program must handle error).
® Return to calling program.

Diagram 6.1. Find Requested Library

Method of Operation 6-17

Licensed Material—Property of IBM

From: Calling Program

m INPUT I I r PROCESS

XR2 ff— E n Locate requested library directory entry Parameter list

OuUTPUT

System Find
Parameter

Main Storage

Transient Area:
#MASFN

User Area

User Program

JCB

SCA
#LIBRARY
format 1
User library
format 1

To: Calling Program or SYSLOG

MODULE/
DESCRIPTION ROUTINE
n Move parameter to transient area. #MASFN
Determine if user library to be searched.
If user library, search user library directory for requested entry (scan read). Disk 10S
Search system library directory if n not to be skipped, B entry not in user Iibrary,a user library skipped,
or n user library not designated or given (scan read).
If user call:
® |f requested entry found: #MASFN
— Move requested directory data from scan buffer to output parameter.
— |If requested move format 1 address of library member is found in parameter list start address
field (SFNDDF1F):
a. Move output parameter to caller’s area.
b. Return to calling program.
® |f requested entry not found:
— Leave unchanged parameter list in caller’s area.
— Return to calling program.
If loader call:
® |f requested entry found:
-~ Move loader information from directory entry to parameter list.
— Move parameter to caller’s area.
— Return to calling program.
® |f requested entry not found:
— Display name of member not found. #CLXS
> — Issue halt. #CLSG

Diagram 6.2. Find Directory Entry
6-18

Licensed Material—Property of IBM

From: Calling Program

g INPUT s s I r PROCESS

XR2 ‘ Locate requested library directory entry

Librarian Find
Parameter

Main Storage

Transient Area:
$MAFND!

User Area

User Program:
$MALFN1

Library
Jcs
TCB

OUTPUT

Caller’s buffer
Parameter list

Lib}ary directory

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
Determine if SMAFND executing in user area or transient area and set up code accordingly. $MAFND

or

Determine library to search: MALFN

® Specified library.

® Designated user library.

0 System library.

® Designated user library, then system library.

Enqueue library directory to be searched on the first call scan library directory to first requested member. Disk 10S

Read library directory into caller’s buffer.

Search library directory for match on type and name (full or partial name). $SMAFND
or

If requested entry found, update parameter list to point to found entry in caller’s buffer. $MALFN

When at buffer end:

® Write caller’s buffer back to directory on disk if write switch on in parameter list. Disk 10S

® Goto SMAFND
or

If directory entry not found: $MALFN

® Update parameter list to indicate requested library directory not found.

® Set end of file (EOF) switch.

® Goto

1$MAFND may execute in transient area or user area (SMALFN).

Diagram 6.3 (Part 1 of 2). Find Requested Library Directory Entry

Licensed Material—Property of I1BM

Method of Operation 6-19

MODULE/
DESCRIPTION ROUTINE
o Terminate program: $MAFND
® Perform cleanup. or
Dequeue library directory on last call (EOF on single name call without write). $MALFN

Move parameter back to user area.
Return to calling program.

Diagram 6.3 (Part 2 of 2). Find Requested Library Directory Entry

6-20

Licensed Material—Property of IBM

From: Calling Program

INPUT I i r PROCESS =

>) n Get requested source or procedure record

OUTPUT mmﬂzﬂ

H

XR2 Parameter list

Source Library
Get Parameter

Requested record
in caller’s record]
buffer

Main Storage

Transient Area:
#MASGT

User Area:
#MASYL

Library directory

Library member

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
n If get first request, perform first time processing. #MASGT
or
If find request (# MASGT only): #MASYL
® Find requested library member. #MASFN
® |f not found, return not found indicator. #MASGT
® Set parameter list for get first. or
#MASYL
If get first request or reprime request, read requested record into 1/0 buffer. Disk 10S
If next record to be retrieved:) #MASGT
® Blank record buffer. or
® Read another buffer if at end present buffer. #MASYL

® Expand record and move record from 1/0 buffer to caller's record buffer.
1f record larger than caller’s record buffer:

® Truncate record.

® Set truncated record bit in parameter list.

If record smaller than caller’s record buffer, pad remaining space with blanks:
If requested, indicate start of blanks with X‘FF’.

When last record returned, set on EOF bit.

When finished processing present record:

® Update parameter list.
® Return to calling program.

Diagram 6.4. Retrieve Requested Source or Procedure Record

Method of Operation 6-21

Licensed Material—Property of |IBM

From: Calling Program

INPUT I r PROCESS

XR2 n Put source or procedure member into LCB

requested library
Library Control Library source or
Block procedure member

OUTPUT

Main Storage

User Area:
#MAPUR

Record

Caller's buffer

To: Calling Program or SYSLOG

MODULE/

DESCRIPTION ROUTINE
n Check library control block (LCB) for library open request. $MAPUR
If open request, open requested library and return to caller. $MACOM
$MALCO
Compress record and move record from user’s buffer to 1/O buffer. $SMAPUR
When 1/O buffer full, write buffer to requested library. Disk 10S
Update LCB to indicate number library member sectors available. $MAPUR

If not enough library member sectors available, issue appropriate message. #CLXS

If close request, close library to update library directory and return to caller. $MACOM
$Mf\rLCO

Diagram 6.5. Put Record to Library
6-22

Licensed Material—Property of IBM

From: Calling Program
;] g PROCESS

L e D 1A AW

XR2

Library Control | B3 Put member into library

Block

Library member

Main Storage
User Area:
$MAPGS

Library directory

e T e Y

Library member

Caller's buffer

00 WL S TR ATMRY. 6B 0 92 W0 L AALFBAIY Y.

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
Check get/put bit (LCBGTPT) to determine operation requested. $MAPGS
If put request, go to .
{f requested, find requested library member. #MASFN
If program temporary fix (PTF) added to module, retrieve PTF information. $MAPTF
Read requested library member and place in user provided 1/O buffer. Disk 10S
Return. $SMAPTF
P> When entire member is retrieved: $MAPGS q
© Update library control block (LCB).
® Return to calling program.
¥4 |1 open bit (LCBOPEN) on, open requested library and return to caller. #MACOM
or
$MALCO
Write library member from user provided 1/O buffer to specified library. Disk 10S
When entire member written to library: $MACOM
O Close library if requested. or
$MALCO
P o update LCB. $MAPGS =]
O Return to calling program.

Diagram 6.6. Perform Library Sector Get/Put Function
Method of Operation 6-23

Licensed Material—Property of IBM

From: Calling Program

= INPUT ey E Jf PROCESS

XR2 ‘ . n Build new member chain element and Parameter list
‘ : add to chain
Parameter list ‘ SEU member chain

OUTPUT

Main Storage ‘ Member chain
element

Transient Area: » SCA
#MAMPM i

User Area

User Program

TCB address
Terminal iD
SEU member chain

To: Calling Program or SYSLOG

MODULE/
DESCRIPTION ROUTINE
Enqueue source entry utility (SEU) member chain queue header. #MAMPM
Add new member element to chain.
Using parameter list information, search specified library for requested member. #MASFN
Build member chain element from: #MAMPM
© Task control block (TCB) address.
© Terminal ID in terminal unit block (TUB).
O [f #MASFN found specified member, library directory member address (SSS).
O If # MASFN did not find specified member, member address of zeros.
Add terminal ID to end of parameter list.
Search member chain for matches on terminal ID and member address.
If matches {except for member address of zeros), cancel job and display appropriate error messages. #CLXS
If no matches, dequeue SEU member chain queue header and return to calling program. #MAMPM

Diagram 6.7. Perform Library Member Protection Function

6-24

Licensed Material—Property of IBM

From: Calling Program

INPUT I r PROCESS

XR2

OUTPUT

n Process requests for Get and Put of format 1
blocks in AFA

AFA format 1

AFA access
parameter list

User’s 1/O area

AFA access
parameter list

Main Storage

Transient Area:
#CSAF

User Area

User Program

JcB
AFA format 1
User’s 1/0O area
AQE chain

FSB

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
n Determine function requested by, caller. #CSAF

If get-by-label request for unit F1:
® Search AFA chain for format 1 with specified label (date and ID may also be given).
® Move format 1 to caller’s 1/0 area.

|f get-by-label request for unit 11:
® Scan FSB chain and examine the associated format 1’s.
® |f format 1 contains correct unit and label, place format 1 address into caller’s parameter list {date verify may

also be given).
® Move format 1 to caller’s 1/O area.
If get-by-name request:
® Search FSB chain for specified name (FSB contains address of format 1).
® |f format 1 contains correct unit, place format 1 address into caller’s parameter list.
® |f requested, move format 1 to caller's 1/O area.
If get-by-address request, move format 1 at specified address to caller’s 1/O area.
If put request, move format 1 in caller’s 1/O area into AFA format 1 specified in caller’s parameter list.

Update return code in parameter list.

Return to calling program.

Diagram 6.8. Perform Active Format 1 Area Access Function

Method of Operation 6-25

Licensed Material—Property of IBM

From: Calling Program

INPUT : l r PROCESS =

Main Storage : n Place module loader information in . Library member
) where-to-go table, or fill in format
index table

OouTPUT

User ‘Area:
#MAXRF

Library directory

Library member

SCA

To: Calling Program or EQJ or
SYSLOG ({if error)

MODULE/
DESCRIPTION ROUTINE
n Get address of # LIBRARY from .system communication area {SCA). \ #MAXRF
Read system library directory. Disk 10S
Build resident table of all SSP load modules (O-type). #MAXRF
Build main storage format index.
For each entry in the resident table with the where-to-go (WTG) or format index table indicator on, read the Disk 10S
last four text sectors of corresponding library member.
If module has a WTG table, search resident table for match with WTG table entries. #MAXRF

If match found, move loader data from resident table into WTG table:
® SSS disk address.

® Number of text sectors.

® RLD displacement.

If no match, move loader data for no-op module {#MANOP) into WTG table (see note).

If module has a format index table:
® Use displacement to get corresponding entry from the main storage format index.
® Move fields from main storage format index to the module’s format index table:
— S§SS disk address.
— Number of FDT.
— Number of text sectors.
Input length of screen.

Note: #MANOP is executed when unresolved module is called. #MANOP issues halt by way of SYSLOG.

Diagram 6.9 (Part 1 of 2). Perform Cross Reference Resolver Function

6-26

Licensed Material—Property of IBM

DESCRIPTION MODULE/

ROUTINE
If WTG table or format index table is invalid (no delimiter of X'FFFF’: #MAXRF
© Display module name. #CLXS
@ Prepare to read next module. #MAXRF
@ |f during IPL, issue system error.
When all WTG table references and format index table entries are processed, write last four sectors of module Disk 10S
back to original location on disk unless no changes were made.
When all modules processed, return to calling program or EOJ as requested. #MAXRF

Diagram 6.9 '(Part 2 of 2). Perform Cross Reference Resolver Function

Method of Operation 6-27

Licensed Material—Property of IBM

From: Calling Program

INPUT I r PROCESS

me > n Display duplicate key message and pass

operator response to calling program
Parameter list

Main Storage

Transient Area:
#CSDK

User Area

User Program

TCB

RB

Format 1
Message build
buffer

To: Calling Program

n OUTPUT

Parameter list
(selected option)

Message

MODULE/
DESCRIPTION ROUTINE
n Save duplicate key display parameter list address and program mode regisier setting. #CSDK -

Display duplicate key found message and specify file name. #CLXS

Place operator selected option in SYSLOG parameter list.

Retrieve operator selected option from SYSLOG parameter list: #CSDK

® (option = display key in EBCDIC.

® 1 option = display key in hexadecimal notation.

Move key to message buffer area (if hexadecimal notation request, convert first).

Output duplicate key message to system console. #CLXS

Place operator selected option in SYSLOG parameter list.

Retrieve operator selected option from SYSLOG parameter list and place in duplicate key message parameter #CSDK

list (flag byte).

Return to calling program.

Diagram 6.10. Perform Duplicate Key Display Function

6-28

Licensed Material—Property of IBM

From: Calling Program

INPUT g I r PROCESS »

. ‘

; Set print image

E Set forms number

3 OUTPUT

Print image

Main Storage

Forms number ?

Transient Area:
#CSIM Spool separator

page indicator

Indicate separator page information for
spool

User Area

Lines per page

. n Set lines per page

User Program

PSB

s

JcB
TuB
PsSB

To: Calling Program

MODULE/
DESCRIPTION ROUTINE

Read work station configuration record. Disk 10S

Read current printer image.

Compare current print image to work station configuration record. #CSIM

If images do not match: #CLXS

® Qutput change printer image message to operator.

© Place operator selected option in SYSLOG parameter list.

If option 1 (image change request), change image in printer control unit. #CSIM

@ Make current printer image equal to work station config record. WSIOCH
Compare forms number in printer specification block (PSB) and terminal unit block (TUB). #CSIM

If forms numbers do not match: #CLXS

® Output change forms message to operator.

© Place operator selected option in SYSLOG parameter list.

If option 1 (forms number change), set forms number in TUB. #CSIM
Bl check spoot indication in TCB.

1f spool:

® Output spool separator page message to operator. #CLXS

@ Place operator selected option in SYSLOG parameter list.

If option 1 (separator pages requested), update PSB flag byte. #CSIM
n Check lines per page flag in PSB.

If lines per page flag on, send lines per page to printer control unit. WSIOCH

After all PSBs on chain are processed, return to calling program. #CSIM

Diagram 6.11. Perform Printer Image Verify Function

Method of Operation 6-29

Licensed Material—Property of I1BM

From: Calling Program

2 INPUT ez T r PROCESS mmmrrossrmross-resmerermpros n OUTPUT exrms——earm

CXRZ . g Parameter list

Parameter list : ! : User 1/0 area

Main Storage 4 § Process Format 1 write request ; Disk VTOC

2 n Process existence test request
Transient Area: ?
#CSVF

User Area:
@csvF1

Disk VTOC
User 1/0 area
SCA

TCB

RB

IR . Rt

e S Y

i

TN AN ST oA T TP ol .3, A puA ShEs T TI. # W A A T QR FNS TG e TNt w3 LT

" To: Calling Program

MODULE/
DESCRIPTION ROUTINE

Examine function byte in parameter list: #csvF1
© |f format 1 read request, go to .
9 |f format 1 write request, go to

© |f existence test request, go to '4} .

H Determine type of format 1 read request:
© Read next:
— Examine parameter list to determine if this is first request.

{f first request, start scan at first VTOC format 1 area sector. Disk 10S
If not first request, increment sector number in parameter list and start scan in next sector.

— Read sector identified by disk 10S. #CSVF
©® Read next-same label:

— Set up scan mask to compare on specified label.

— Perform same steps as for read next.
Q@ Read specific:

— Set date indicator scan if requested.

— Scan VTOC format 1's. Disk 10S

If requested VTOC format 1 found or read by sector displacement:) #CSVF
O Place sector/displacement of format 1 in parameter list.
® Read format 1 into data area.

© Move format 1 to caller’s 1/0 area.

1Link-edit version is @CSVF.

Diagram 6.12 (Part 1 of 2). Process Disk VTOC Read/Write Request

6-30

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE

If request not found, set request not met return code in parameter list. #CSVF
Return to calling program.

a Set up |OB to read sector specified in parameter list.

® Read specified sector from disk. Disk 10S
Move format 1 from caller’s |/O area into sector just read. #CSVF
Write sector with updated format 1 back to disk. Disk 10S
Return to calling program. #CSVF

n Perform read specific processing but do not move format 1 into caller’s 1/0 area.

Return to calling program.

Diagram 6.12 (Part 2 of 2). Process Disk VTOC Read/Write Request
Method of Operation 6-31

Licensed Material—Property of I1BM

From: Calling Program

i ¢ PROCESS =

XR2 > [l Determine function requested

Parameter list Process convert request

o7

Z
°
c
—-

Main Storage £ Process prepare request

5 TN e R SRR RIS 3 .

: n Process format 1 read request

Transient Area:
#CSVI
#CSVJ N _
#CSVK g Process existence test request

B Process format 1 write request

User Area

User Program

SCA

TCB

JCB

Diskette VTOC
area on disk
User 1/O area
Diskette VTOC

BTGt AT ORI A 521 SRS = 1N TRV T I 535, PRI OAE TGS -

X0 TR A T R T G St e

IR O, ¢ S A 0 IS ™ D N T v

To: Calling Program

OUTPUT

Diskette VTOC
Parameter list
User 1/O area

Disk VTOC

<

MODULE/
DESCRIPTION ROUTINE

Examine function byte in parameter list: #CSVI

O |f convert request, go to .

O If prepare request, go to@.

© If format 1 read request, go to.

O |f format 1 write request, go to Bl

O If existence test request, go to ;
|72 If request for header 1’s convert:

© |nitialize diskette 0B for read operation and disk I0B for write operation. #CSVJ

O Read header 1's from diskette. Diskette 10S

© Convert header 1's to format 1's. #CSVJ

© Write format 1 to disk. Disk 108

© Return. #CSVJ

If request for format 1 convert: #CSVI

© Verify lock sector. #CSVM

O Initialize disk 10B for read operation, and diskette |I0OB for write operation. #CSVK

® Read format 1 from diskette format 1 area on disk.’ Disk 10S
B> © Convert format 1 to header 1. #CSVK

© Write header 1 to diskette. Diskette 10S

© Return. #CSVK

Diagram 6.13 (Part 1 of 2). Process Diskette VTOC Read/Write Requests

6-32

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE
B Initialize diskette 10B for read operation. #CSVI
Read diskette volume label. Diskette 10S
Perform recalibrate if necessary.
Verify volume label format. #CSVI
Put volume label and physical attribute byte in SCA.
Create diskette lock sector.
Build diskette VTOC area on disk. #CSVJ
nl Determine type of format 1 read request: #VSVI
® Read next:
— Examine parameter list to determime if this is first request.
— |If first request, start scan at first VTOC format 1 area sector. Disk 10S
— If not first request, increment sector number in parameter list and start scan in next sector.
® Read next-same label: #CSVI
— Set up scan mask to compare on specified label.
— Perform same steps as for read next.
® Read specific:
— Set date indicator scan if requested.
— Scan VTOC format 1's. Disk 10S
If requested VTOC format 1 found or read by sector displacement: #CSVI
® Place sector/displacement of format 1 in parameter list.
® Read format 1 into data area. Disk 10S
® Move format 1 to caller’s 1/O area. #CSVI
If request not found, set request not met return code in parameter list.
Return to calling program.
B Set up I0B to read sector specified in parameter list.
Read specified sector from disk. Disk 10S
Move format 1 from caller’s 1/O area into sector just read. #CSVI
Write sector with updated format 1 back to disk. Disk 10S
Return to calling program. #CSVI
ﬂ Perform read-specific processing but do not move format 1 into caller’s 1/O area.
Return to calling program.

Diagram 6.13 (Part 2 of 2). Process Diskette VTOC Read/Write Requests

Licensed Material—Property of IBM

Method of Operation 6-33

From: Calling Program

I r PROCESS

CXR2 n Retrieve message text for requested MIC : Caller’s buffer

OUTPUT

containing
Parameter list . : requested message
' text
Main Storage

Parameter list

Transient Area:
#MGRET

User Area

User Program

Message member
Caller’s buffer
address

MIC

Message member SSN
Communication
regions

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
n Ensure valid message member:) #MGRET
® Check message retrieve parameter list for valid indicators.
® Check message member pointers in appropriate communication region for nonzero SSN.
Scan message member for sector identified by message identification code (MIC) greater than or equal to one Disk 10S
requested. ’
Find desired message by reading message member sector, looking for requested MIC. #MGRET

Blank caller’s buffer.

Place requested message in buffer,

Place message length in parameter list.

If error condition detected, return error MIC in parameter list.

Return contro! to calling program.

Diagram 6.14. Perform Message Retrieve Function

6-34

Licensed Material—Property of IBM

From: Initiator or Calling Program

I r PROCESS

CXR2 | : Load SYSIN if not already in main storage [PPSA

OUTPUT

SYSIN If input from keyboard, retrieve record ‘ . Processed record
parameter list andgo to M. :

History file
Main Storage a Perform SYSIN mainline processing

Procedure n Perform substitution to first blank past

Parameter character

Save Area

buffer (PPSA) B Determine necessity for |F statement
and processing; if required: '

SYSIN mainline m

(#CLSS) Perform active procedure

existence tesying
SYSIN routines: m Perform blocks existence testing

zg::gf Perform file existence testing

#CLFX
#CLPR
#CLSB

#CLSM . Set return code and return to
calling program

ﬂ Perform switch and member existence
testing

Task work area
JCB

To: Calling Program

MODULE/
DESCRIPTION ’ ROUTINE
n Push out one track of user main storage to make room for # CLSS and 2K area for SYSIN routines. #CLSN
Load SYSIN mainline (#CLSS) into main storage area just cleared (X‘DD00’).
Pass control to #CLSS. |
B Call command processor {#CMWI) to accept input from keyboard. #CLSS
If log to printer, call SYSLOG (#CLSG) to print keyboard input.
Move input record to user’s buffer.
Output records to history; file if log bit on in SYSIN parameter list operation code. ' @HFPUT
Pull user program back into main storage if previously pushed out to disk. #CLSN
Go to .

Diagram 6.15 (Part 1 of 4). Perform SYSIN Function

Method of Operation 6-35

Licensed Material—Property of IBM

MODULE/ .

Type7 ?L'dsp,Ing’?
Type9 - ?Mxxxx?
Type 10 ?M'xxxx,dsp,Ing'?

® Typel ?#?

® Type2 ?#R?

® Type3 ?#R‘msgid’?
® Typed ?#'default’?
® Type5 ?#T'default’?
®. Type8 7?R?

® Type6 ?WS?

[]

[]

)

|f substitution required, go ton .
Look for // blank in each procedure statement.

e if // blank found, determine keywork:
IF.

ELSE.

CANCEL.

RETURN.

RESET.

Nonkeyword.

IF statement — |f the |F expression conditions are met, blank out IF keyword and expression and continue
processing. |f expression not met, set switch TSSSW4 and read another record into input buffer.

Search character string for / or — character:
® |f /, perform character string comparison.
® |f —, perform existence testing:
— For active procedure existence test, go to .

— For blocks existence test, go tom.
— For file existence test, go to [s18 .

For switch and member existence test, go to B .

Otherwise, read next record and ignore entire record with ELSE,

CANCEL keyword — If IF statement just processed (check TSSSW5) set TSSSW6 which causes EQJ transient
($EJ1-control storage) to be called.

RETURN keyword — If IF statement just processed, {check TSSSW5) set TSSSw7 which causes same function
as end-of-file processing.

RESET keyword — Set TSSSW14.

If TSSSW5 on, IF statement just processed. Since another IF expression may follow, return to Be to
continue processing. :

When all IF expressions processed, go to Bto substitute remainder of record.

ELSE keyword — If previous |IF statement invalid (check TSSSW4), blank out ELSE keyword and process record.

DESCRIPTION ROUTINE
Call source get (#MASYG)k to retrieve record from procedure library and place in input buffer. #CLSS
Move characters one at a time from input buffer to output buffer looking for question mark (?).
If ? found, perform character substitution by checking proper syntax.
If syntax error, call SYSLOG (#CLXS).
Determine type substitution required: #CLSS

Diagram 6.15 (Part 2 of 4). Perform SYSIN Function

6-36

Licensed Material—Property of I1BM

MODULE/

DESCRIPTION ROUTINE
When record with substitution, IF, and ELSE processing complete and in user’s output buffer. #CLSS
® Write record to history file if log bit on in SYSIN parameter list (use @HFPUT which is link edited with
#CLSS).
® Pull user program back into main storage. #CLSN
® Return control to calling program. . #CLSS
n Perform actual substitution: #CLPR

® Type 1 — parameter passed to procedure indicated by number is substituted. |f no parameter passed, pass
null to output buffer.

® Type 2 — R indicates parameter required. Thus if no parameter passed, operator prompt is ENTER
MISSING PARAMETER. Response is saved in procedure save area as parameter (up to 8 characters).

® Type 3 — R indicates parameter required. User message is displayed to operator. Response saved in
procedure save area as parameter.

® Type 4 — Default value enclosed in quotation marks used as parameter.
® Type 5 — Default value used but T indicates parameter is temporary. Procedure parameter save area not
updated with default value.
® Type 8 — Prompt for up to 8 characters but result not saved in PPSA.
® Type 6 — Substitute work station ID. #CLSB
® Type 7 — Substitute requested displacement and length from local area.
® Type 9 — Substitute characters from user 1 message member indicated by MIC number X XXX.
® Type 10 — Substitute from MIC with specified displacement and length.
If non blank character found, set internal switch. #CLSS

If blank found, nonblank switch on, and substitution only to first blank past character, return to caller.
Otherwise, move character to output buffer. Repeat until all characters substituted.

When record substituted, output to history file. @HFPUT

B When |F statement processing necessary, perform steps m ,m , and [sY88-as required. #CLSS
When | F statement processing not necessary, perform substitution to end of statement.

When |F statement evaluated, return to n

B check for quote mark following dash. #CLAC
If quote found, there is list of procedure names to check. If no quote, only one procedure name.
Move procedure name characters to scan mask (8 characters maximum).

If active procedure found, set SSSTRVE switch.
If error detected, call SYSLOG (#CLXS) to display error message.

Return to #CLSS on ARR.

B check for 1 to 5 valid digits after BLOCKS-. #CLBL
If digits valid, convert EBCDIC digits to hexadecimal notation.

Set up disk 10B to read F5 area (first 5 sectors of VTOC).

Read format 5 area from disk. Disk 10S

Check for available blocks. : #CLBL
® Save first format 5s size and address.
® Search format 5s for first format 5 that fits blocks requested.
® |f space found, set SSSTRVE switch.

Diagram 6.15 (Part 3 of 4). Perform SYSIN Function
Method of Operation 6-37

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

5C

If error detected, call SYSLOG (#CLXS) to output error message.
Return to #CLSS on ARR.

Check for quote mark following -.

If quote found, indicates file existence test with file name and date.
Perform syntax checking.

Determine if disk or diskette to be checked.

If diskette:
® Allocate diskette device.

Call diskette VTOC read/write (#CSVI) to perform existence test.

[]
® |f specified file found, set SSSTRVE switch.
® Deallocate diskette device.

If disk:

® (Call disk VTOC read/write (# CSVF) to read VTOC.

® |f specified file found, set SSSTRVE switch.

If error detected, call SYSLOG (#CLXS) to display error message.
Return to #CLSS on ARR.

Check for quote mark following -.

If quote found, indicates library name follows library member name.

Perform syntax checking.

Find specified library.

If library found, find specified library member.

If library and member found, set SSSTRVE switch.

1f SWITCH keyword, perform switch existence test:

©® Compare UPSI switch with SWITCH keyword.

® |f compare ok, set SSSTRVE switch..

If error detected, call SYSLOG (#CLXS) to display error message.

Return to #CLSS on ARR.

If successful operation set return code of X‘40’ in parameter list.

If /* in first two positions of keyboard record, set return code of X'50’ in parameter list.

Return contro! to calling program.

#CLBL

#CLFX

- #CLSM

#MAFLB

#MASFN

#CLSM

#CLSS

Diagram 6.15 (Part 4 of 4). Perform SYSIN Function

6-38

Licensed Material—Property of IBM

From: Calling Program

2 INPUT rememmrmssecmsy | PROCESS mum OUTPUT m

CXR2 S- f Print or display specified message Printed output
SYSLIST :

parameter list
(170-byte buffer)

Screen display

e T @ P AT NN (R

Main Storage

T

Transient Area:
#CLST
#CLSC

R B F el e e

User Area

User Program

JCB
User message buffer
Message member

A TN MR o AT, B

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
Check SYSLIST indicator (JCBDSLST) and if null (X'0000°), return to calling program. #CLST

If parameter list is type 1 (output from message member):

© Check parameter list for message member to use.

O Retrieve message from message member and place in SYSLIST message buffer (170 byte buffer supplied #MGRET
by the user).

If parameter list is type 2 (output from program), the user’s message is already in the SYSLIST message buffer. #CLST
Check SYSLIST indicator (JCBDSLST) to determine SYSLIST device.

If SYSLIST device is printer (not X’0000’ or X'EEEE’):

P @ Alliocate printer. #CAPT 4
© Build print buffer from user supplied buffer. #CLST
© Skip to new page if requested in parameter list. WSIOCH
@ Print message from print buffer.
@ Space according to value in parameter list (0 to 3).
© Skip to new page if within six lines of page size value in JCB (JCBDLNPG).
9 Return. ' #CLST

I1f SYSLIST device is display screen (X'EEEE'):
© Build command processor parameter list around message in SYSLIST buffer.
© Display message on screen. #CMLS

Return control to calling program. #CLST

Diagram 6.16. Perform SYSLIST Function
Method of Operation 6-39

Licensed Material—Property of IBM

From: Calling Program

INPUT I r PROCESS OUTPUT

CXR2 Print or display requested message Screen display

SYSLOG Printed message
Parameter List

History file
Main Storage

TCB

Transient Area:
#CLXS

Main Storage:
#CLSG

Command Processor
(responses)

JCB

SCA

To: Calling Program or
Job Terminated

MODULE/
DESCRIPTION ROUTINE
n If SYSLOG push/pull transient called by user: #CLXS
® Move SYSLOG parameter list from calling program to parameter list buffer in transient area.
® If type 2, 2R, or 3 message required, move message from calling program to message buffer in transient area.
® Push 10K of main storage (user area) to disk.
® Move parameter list buffer and message buffer (if used) to main storage area just cleared (X'C800' — X‘C8FF’).
® |oad SYSLOG mainline (#CLSG) into main storage area (at X‘C900°).
Build format line (if requested) and log to history file (history file put — @HFPUT link edited with #CLSG). #CLSG
If type 1, 1R, or 4 message, move message from message member (message retrieve — @MGRET link edited
with #CLSG) to main storage save area.
If type 2, 2R, or 3 message :
® Message is in main storage save area.
® | og message to history file (@HFPUT).
Display message (format line and text line) on system operator display screen or work station display screen as #CMWO
requested. and
. #CMCI
If system in single program mode and printer is SYSLOG device, also print message as well as display it. WSIOCH
| f data response required, log message and response to history file (@HFPUT). #CLSG

Diagram 6.17 (Part 1 of 2). Perform SYSLOG Function

6-40

Licensed Material—Property of 1BM

MODULE/
DESCRIPTION ROUTINE

If option response to message: #CLSG
® Display and print (if print conditions met) valid option taken by operator.
® |f 3 option taken, call end of job transient (#CTEI).

® |f D option taken, return to #CLXS.

1f. SYSLOG push/pull transient called by #CLSG:
Move SYSLOG parameter list from main storage to parameter list buffer in transient area. #CLXS
Pull main storage area back from disk.

If option response taken by operator, pass response to calling program.
I1f option response was D, dump main storage and call EQJ transient.

|f data response required, pass response to calling program.

Return control to user program.

Diagram 6.17 (Part 2 of 2). Perform SYSLOG Function
Method of Operation 6-41

Licensed Material—Property of |1BM

From: Calling Program

INPUT I r PROCESS

XR2 n Put records into history file History file

OUTPUT

CParameter list . Parameter list

Main Storage

Transient Area:
#HFPUT

User Area:
@HFPUT!

JCB
SCA
TUuB
History file

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
Lock the history file. #HFPUT -
Obtain history file controls from system communication area (SCA):
® History file start sector address.
® History file size.
@ Current entry sector address.
Read current sector(s) from history file and place in history file 1/0 buffer. Disk 10S
0 Remove trailing blanks from input record. #HFPUT

Place record in history file data buffer.

Place additional information about record in history file data buffer:
® User ID.

® Job identifier.

® Terminal ID.

® Broadcast or display indicators.
® Entry length.

® Time of day.

Move completed entry from history file data buffer to history file 1/0 buffer placing new entry immediately
after previous current entry.

1History file link edit version.

Diagram 6.18 (Part 1 of 2). Perform History File Put Function
642

Licensed Material—Property of |1BM

MODULE/
DESCRIPTION ROUTINE
If new entry overflows into next sector, update current sector address in SCA. #HFPUT
If more input for history file, return to neand repeat process {maximum of 4 lines may be presented to
history file at one call).
Write current sector(s) from 1/0 buffer to history file on disk. Disk 10S
Unlock and dequeue the history file. #HFPUT
Place return code in history file parameter list.
Diagram 6.18 (Part 2 of 2). Perform History File Put Function
Method of Operation 6-43

. Licensed Material—Property of IBM

From: Calling Program

INPUT I r PROCESS

CXFH n Assign new task control block New TCB placed

OUTPUT

on swap-in-queue

Supervisor Task Determine main storage requirements
Attach Parameter Request block (RB)
List Assign and initialize areas needed to start

new task Action control
Main Storage element (ACE)
n Place new task control block on swap-in-

queue Swap area

Transient Area:
#SVAT Process attach error conditions if necessary

User Area B Terminate program

Attach parameter
list

Main storage
space

JCB, SCA, TCBs,
and TUB

To: Calling Program, New Task, or
Next Transient

MODULE/
DESCRIPTION ROUTINE
n Use control storage assign function to assign task control block (TCB) to run new task. #SVAT

If unable to get TCB space, go toﬂwith $ATERRO4 return code.

Initialize all TCB fields to zero.

Calculate logical program begin number and place in TCB (TCBBEGL).

Calculate logical start address. (This would be link edit address if module was link edited to 2K-byte boundary.)

Calculate number of 2K-byte main storage blocks required to start task (TCBMSSIZ). (This is the largest
program size to load program mainline or program size to execute.)

Make all address translation register (ATR) values serial from logical zero to new tasks begin address.
Ensure tasks main storage requirements do not exceed currently available main storage.

Calculate maximum active swappable region in system {excluding attach or task).

If insufficient swappable storage exists and task is swappable, go toB with SATERRO1 return code.

If task is nonswappable and storage requirements may disable another task, go tonith $ATERRO3
return code.

Diagram 6.19 (Part 1 of 2). Perform Supervisor Task Attach Function (#SVAT)

6-44

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

B If no terminal unit block (TUB) associated with attach request, but job control block {JCB) address (JCB®@)
passed in attach parameter list (used by spool writer and batch job queue attach requests):
® Allocate one-track work station work area (WSWA) on disk.
® |f allocate not successful, go to Bwith $ATERRO7? return code.
® Move allocated WSWA address into TCB.
If TUB associated with attach request:
® |Indicate TUB owned by new task.
® Use control storage assign function to assign action control element (ACE) to new task.
® |f assign fails, go toﬂwith $ATERROS return code.
® Use control storage queue function to place completed ACE on tasks TCB complete queue.
Use control storage assign function to assign request block (RB) in order to start new task.
I£ assign fails, go to [with SATERROS return code.
Allocate required disk swap area.
If swap area not available, go tonith $ATERROG return code.
Assign task ID if not passed in attach parameter list.
If SYSIN data available, use control storage task work area (TWA) function to put SYSIN data in WSWA.
If job name to be assigned, use control storage time-of-day function to place time in JCB.
n Move system loader parameter list from attach parameter list to task — start bootstrap code.
Move bootstrap code to assigned RB.
Use control storage queue function to place new TCB on swapin queue.
Use control storage stack manipulation function to unstack RB from chain.
B oealtocate WswA (i any).
Use control storage free function to free ACE, RB, and TCB (if any).
Put error code in XR1 (format is 00X X, where XX is error code).
Return to calling program.
ﬂ Store passed XR2 address.
Get current TCB address.
Update RB.
If attach failed, return to calling program with error return code.

If attach worked, and if next transient address (SATSSSN) given, pass control to next transient.

If attach worked, exit transient area.

#SVAT

Disk 10S

#SVAT

Diagram 6.19 (Part 2 of 2). Perform Supervisor Task Attach Function (#SVAT)

Method of Operation 6-45

Licensed Material—Property of I1BM

From: Calling Program

INPUT mm : I r PROCESS ==

CXFH : n Perform preliminary processing and

determine requested function
Supervisor task .
attach Parameter Detach task from system if requested
list)
: a Change task’s point of origin if requested
Main Storage

n Process error conditions if needed

Transient Area: .‘ - a Terminate program
#SVAU : ;

User Area

Attach parameter
list

RB

To: Calling Program or
Next Transient

OUTPUT mmmm

Changed point
of origin

—Oor —

Detached task

Deallocate all push elements for current TCB:
® Use contro! storage free function to free push element.
® Deallocate track on disk.
Calculate old swap size in tracks and place value in TCB@INL2.
If request to detach task from system, go to E
If request to change task’s point of origin, go to .
E Use control storage free function to free all assign free queued areas for task being detached.
Use control storage free page function to free user main storage area.
Deallocate task’s swap area on disk.
1f no terminal unit block (TUB) associated with task and job control block (JCB) address not zero:
© Use control storage free function to free JCB.

® | not request to detach batch job, deallocate work station work area (WSWA).

Post command processor to restart batch job queue.

MODULE/
DESCRIPTION ROUTINE
M Calculate maximum swappable active region size not including this task and store value in TCB@INL1. #SVAU

Diagram 6.20 (Part 1 of 2). Perform Supervisor Task Detach or Change Org Point Function (#SVAU)

6-46

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

Use control storage dequeue function to dequeue this task control block (TCB) from all system queues.

Post command processor for stop system request.

Go toato terminate program.
a Calculate program size in number of blocks required to load program and place value in TCB@INL3.
Calculate required disk swap area size and place track size in TCB@INL4.
If not enough main storage space available to load task, go tonwith $ATERRO1 return code.
If task not swappable:
® I task initiation will disable active task, go to [with SATERRO3 return code.
® |f task will not leave at least 14K bytes main storage available, go tonwith $ATERRO2 return code.
If larger disk swap area needed or task initiation and swap area larger than needed:
® Deallocate old swap area on disk {Size in TCB@INL?2).
® Allocate new swap area on disk (size in TCB@INL4).
® |f allocate not successful, allocate old swap area back and go ton with $ATERRO6 error code.
Use control storage free page function to free all main storage except first 2K bytes associated with task.
Move bootstrap code to first 2K-byte area.
n Store callers address recall register {ARR).
Put error code in XR1 (format is 00XX, whereXX is error code).
Return to calling program.
B Store new instruction address register (IAR) value.
Store new XR1 value (RB address in XR1).

If request to change tasks point of origin, pass control to program specified in attach parameter list.

If request to detach task;, pass control to the dispatcher (control storage).

Use control storage free function to free all request blocks (RBs) associated with task and free this tasks TCBs.

#SVAU

Diagram 6.20 (Part 2 of 2). Perform Supervisor Task Detach or Change Org Point Function (#SVAU)

Licensed Material—Property of I1BM

Method of Operation

6-47

From: Initiator

INPUT | r PROCESS

CXFIZ Read control statements Updated

OUTPUT

communication
Syntax checker Analyze verbs table:
parameter list ® Parameters
Process parameters if parameters exist found in
: control
n Perform end-of-statement check statements
Parameter

Transient Area B Return control to calling program values
Syntax errors
User Area: detected

#USYX

Main Storage

Verb list

Communication
table

Syntax
specification module

Control
statement

To: Calling Program

MODULE/
DESCRIPTION ROUTINE
n Retrieve heading inserts. #MGRET
Load calling program’s syntax specification module: #FUSYX
® Find module. #MASFEN
® Use main storage relocating loader to load module into main storage. #USYX
Put control statement into internal buffer:
® |f user providing input, copy it.
® Read control statement if not user provided. #CLSN
Ensure input starts with // #USYX

Skip over blanks.
Collect characters until blank encountered (verb is characters collected).
Ensure verb corresponds to name field of verb entry in specification module.

If verb in list of verbs currently acceptable, copy verb number from verb entry in specification module and
place in communication table at USCTVRBN.

Initialize internal pointers.

Diagram 6.21 (Part 1 of 2). Perform Syntax Checking Function (#USYX)

6-48

Licensed Material—Property of I1BM

DESCRIPTION

MODULE/
ROUTINE

B Check if parameters specified.
Set scan terminator as comma, hyphen, or blank.
Collect characters preceding terminator to form parameter.

If scan terminated by hyphen:

® Indicate parameter is keyword.

® Ensure keyword entry has corresponding field name in specification module.
® Save keyword entry attributes.

If scan terminated by comma or blank:

® Indicate parameter is positional.

® Ensure positional parameter entry exists in specification module.
® Save positional parameter entry attributes.

Ensure parameter not already encountered. .

e Verify parameter values:
® |f parameter attribute is numeric:
— Ensure value is numeric.
— Retain character format.
— Convert value to 3-byte signed binary field.
® |f parameter attribute is a date:
— Ensure format is acceptable.
— Ensure month, day, and year characters are numeric.
— Convert date to packed YYMMDD format.
® |f parameter attribute is a label, ensure first character of value is alphabetic.
® |f parameter attribute is a quoted string:
— Ensure all quotes are paired.
— Ensure first and last characters of value are quotes.
® Else parameter value is a string.

If required, place verified parameter value in caller’s output area.

Continue processing until all parameters analyzed.

n Point to parameter entries one at a time.

If required parameter not in input, set appropriate error condition in communication table.
Verify parameter combinations if VALCM records exist:
® |f parameter appeared in input, ensure parameter must not be missing.
® |f specified parameter must have specific value, ensure value is correct.
® Set appropriate error condition in communication table as necessary.
B Update communication table.
Set return code as required.

Copy updated communication table into caller’s area.

Pass control back to calling program.

If required, a specific parameter value causes placement of a one, two, or 3-byte value in caller’s output area.

If optional parameter with default and value not in input, go to °to verify default value, then return here.

#USYX

Diagram 6.21 (Part 2 of 2). Perform Syntax Checking Function (#USYX)

Licensed Material—Property of 1BM

Method of Operation

6-49

From: User Program

INPUT - : I r PROCESS OUTPUT

> n Process user parameter list Requested field

moved

(XR2
User parameter list E Get JCB address
3 option only
Main Storage - B BB Perform PUT or GET SYSLOG message

Transient Area:
#SVINF

User Area

To: User Program

MODULE/
DESCRIPTION ROUTINE
n Move parameter list to transient area. #SVINF
Verify fields in parameter list:
® If local request, check for valid entries in offset and length fields.
® |finvalid entry found, issue 3 option only message. . #CLSG
If parameter list contains a terminal ID, get the JCB address from that work station’s TUB. #SVINF

Otherwise, get JCB address from the TCB.

B If put request:
® (f update UPSI switch request, move value to JCBDUPSI.

® |f update language compiler byte request, move value to JCBDLANG.

® |f update program message member one address request, move value to JCBDPRG1.
® |f update program message member two address request, move value to JCBDPRG2.
® |f update local area on disk request, move value to WSWA on disk.

® |f update user message member one address request, move value to JCBDUSR1.
{f get request:

If return date format request, move value from JCBDSCH1.

If return program date request, move value from JCBDPDAT.

If return session date request, move value from JCBDDATE.

If return UPSI switch value request, move value from JCBDUPSI.

If return inquiry byte value request, move value from JCBDSCH2.

Diagram 6.22. Perform Information Retrieval Function

6-50

Licensed Material—Property of IBM

From: User Program

INPUT I r PROCESS

XR2 n Process communications request CSB

OUTPUT

gDTF ﬂ Process return code Control transferred
(CSB
TCB

Main Storage

Transient Area

Resident Area:
#SVTTC

User Area

To: User Program

MODULE/
DESCRIPTION ROUTINE
n If the data communications task has been terminated, return to caller. #SVTTC

Otherwise, post the data communications task for execution.

Increment the calling task’s nonswap count to ensure that it is not swapped until the data communications task
has retrieved internal data.

Wait for a return post from data communications:
® |f return code from data communications task is hex 01, go ton.
® |f return code from data communications task is hex 02:
— Call the transient addressed in the CSB.
— Goto n .
® |f return code from data communications task is hex 00, return to caller.

Diagram 6.23. Perform Data Management Task Transfer Control Function

Method of Operation 6-51

Licensed Materia!—Property of IBM

From: User Program

I r PROCESS

XR2 Dump main storage according to user Formatted main
(parameter list storage dump
Parameter list

OouTPUT

Main Storage

Transient Area:
#SVDMP

User Area

To: User Program

MODULE/
DESCRIPTION ROUTINE
E Move parameter list to temporary area. #SVDMP

Initialize work area.
Calculate dump limits.

If limits invalid:

® |ssue error message. #CLSP
® Return to caller.

Get headings messages for dump header. #SVDMP
Blank buffer.

Set up buffer for SYSLIST.

Move all timits information to header.

0 Set up line of dump.

Print line of dump. #CLSP

1 more lines to dump, go to [€Y. #SVDMP
Free buffer area.

Return to user program.

Diagram 6.24. Perform Snap Dump Function

6-52

Licensed Material—Property of IBM

Program Organization

Figures 6-2 through 6-26 show the contro! flow of the
system service functions.

Calling

Program Find a Library

Routine
(#MAFLB)

| pisk vToc |
| Read/write |
|_(ecsvF) |

Figure 6-2. Find a Library Contro! Flow

Program Organization 6-53

Licensed Material—Property of IBM

Calling
Program

Single Name
Find Routine
(#MASFN)

Error

SYSLOG

(#CLSG)

Figure 6-3. Single Name Find Routine Control Flow

Calling
Program

_— Librarian Find
Routine

($MAFND
or
$MALFN)

Figure 6-4. Librarian Find Control Flow

6-54

Licensed Material—Property of |BM

Disk 108

Disk 108

Calling
Program Source Library
Get Routine
(#MASGT) Disk 10S
or
(#MASY L)

Figure 6-5. Source Library Get Routine Control Flow

Open/Close
Routine

($SMACOM
or

$MALCO)

Calling

Program | | /0rary Record
Put Routine

1@_# ($MAPUR)

L

Error

Disk 108

SYSLOG

(#CcLSG)

Figyre 6-6. Library Record Put Routine Control Flow

Program Organization 6-55

Licensed Material—Property of IBM

Open/Close
Routine
($MACOM

Calling
Program

or
$MALCO)

Library Sector
Get/Put Routine

($MAPGS)

Disk 10S

Single Name
Find Routine

(#MASFN)

Figure 6-7. Library Sector Get/Put Routine Control Flow

6-56

Single Name
Find Routine
(#MASFN)

Calling
Program
Library Member
Protection Routine

ﬁ H#MAMPM)

Error

SYSLOG

(#CLSG)

Figure 6-8. Library Member Protection Control Flow

Licensed Material—Property of |BM

Calling
Program

Active Format 1
Access Routine
(#CSAF)

Figure 6-9. AFA Access Routine Control Flow

Calling
Program

[EEa——

Cross Reference
Resolver
(#MAXRF)

Module Not in
'Resident Table

EOJ

SYSLOG

(#CLSG)

Figure 6-10. Cross Reference Resolver Control Flow

Licensed Material—Property of 1BM

Disk 108

no-op Routine

(#MANOP)

Prograrm Organization

6-67

Calling
Program

Calling
Program

Figure 6-12. Print |mage‘Verify Routine Control Flow

6-58

‘Figure 6-11. Duplicate Key Display Control Flow .

Duplicate Key
Display Routine
(#CSDK)

SYSLOG

(#CLSG)

Print Image
Verify Routine
(#csim)

SYSLOG

(#CLSG)

Licensed Material—Property of IBM

Disk 10S

Printer 10S

($IPTR)

Calling
Program

Disk VTOC
Read/Write
(#CSVF)
or
(@CSVF)

<msmcesssmm)| 0isk 105

Figure 6-13. Disk VTOC Read/Write Control Flow

Calling
Program

[

Diskette

VvTOC

Read/Write
(#Csvi)

Figure 6-14. Diskette VTOC Read/Write Control Flow

@EEmEmm—p>| Dk 0s , °

Diskette VTOC

~ Read/Write ”
Transient Load 2

(#CsSVJ)

Diskette VTOC
| o0Vt]
Transient Load 3

(#CSVK)

|[EEEENEP»| Diskette 105 ”

Program Organization 6-59

Licensed Material—Property of IBM

Calling
Program

.Figure 6-15. Message Retrieve Control Flow

6-60

Message Retrieve
(#MGRET)

Licensed Material—Property of IBM

Disk 10S

Calling
Program

Initiator

SYSIN Load
Transient

(#CLSN)

SYSIN
Mainline

(#CLSS)

SYSLOG

(#CLXS)

Figure 6-16. SYSIN Control Flow

Licensed Material—Property of IBM

Source Get
Procadure Dsts ENNEENCRENESPEREED> (FMASYL)
Keyboard Dats IENNENESEEENERNEIE Command
Processor
Keyboard D.M.
- (#¥cmwi)
Blocks " :
I . Existence Test
(#CLBL)
Disk 10S
Active
“ Procedure -
Existence Test . EE——
(#CLAC)
Allocate
Diskette
(#CAR1)
File Existence Diskette
w Test vToc
Read/Write
(#CLFX) (#csvi)
Disk VTOC
Read/Write
(#CSVF)
Substitution
G U
{#cLsB)
SYSLOG
{#CLXS)
-To Prompt User-
SYSIN
m Prompt/
Substitution
(#CLPR)
History File
gamp T
(@HFPUT)
System Find
(#MASFN}
Switch &
Member
Existence Test
(#CLSM)
Library Find
PRSI Error Condition EEE (#MAFLB)

Program Organization

6-61

Message
Retrieve
(#MGRET)

SYSLOG

{(#cLxs)

Calling
Program

Message
Retrieve
(#MGRET)

?

If Type 1 Parameter

SYSLIST
{printer)
(#CLST)

g
4

SYSLIST CRT or 0 Option to MIC 3701

SYSLIST
(CRT)
(#cLsc)

Printer
Allocate
(#CAPT)

Printer
108
(IPTR)

Command
Processor
(#CMLS)

SYSLOG

(#CLXS)

Note: Whenever SYSLIST (transient) is called, #CLST is loaded into the transient area first.

Figure 6-17. Transient SYSLIST Contro! Flow

6-62

Licensed Material—Property of IBM

Calling
Program

If
TCBRTUB =
X'0000°

or
SYSLIST =
Off

or
SYSLIST =
Printer

If
SYSLIST =
CRT

Massage
Retrieve
(#MGRET)

Message
Retrieve
(#MGRET)

SYSLOG
(#CLXS)

SYSLIST

(printer)

(#CLSP)

0 Option to MIC 3701

SYSLIST

(CRT)

(#CLSW)
SYSLOG
(#CLXS)

Note: The SLSTL macro loads either #CLSP or #CLSW into the user specified area.

Figure 6-18. Loadable SYSLIST Control Flow

Licensed Material—Property of IBM

Printer
Allocate
(#CAPT)

Printer
108
(IPTR)

Command
Processor
(#CMLS)

Program Organization

6-63

Calling
Program

SYSLOG

Figure 6-19. SYSLOG Control Flow

Calling
Program

Figure 6-20. History File Put Control Flow

6-64

Push/Pull
Transient
(#CLXS)
Command
Processor
SYSLOG ~ (#CMWO)
Mainline (#cMmcl)
(#CLSG)
Printer 10S
Message (IPTR)
Retrieve
(@MGRET)
End-of-Job
i e O — ™
History Option
File Put (#CTEI)
(@HFPUT)
History File Put
(#HFPUT) Disk 108
or
(@HFPUT)

Licensed Material—Property of 1BM

Free

[$as————) Function
Supervisor -Control Storage-
Task Attach
Transient
(#SVAT) Assign

Function
-Control Storage-

Queue/Dequeue
Function
-Control Storage-

|

Task Work
Area Function
-Control Storage-

Time-of-Day
Function
-Control Storage-

|

Stack
Manipulation
Function
-Control Storage-

Figure 6-21. Supervisor Task Attach Function Control Flow (#SVAT)

Program Organization 6-65

Licensed Material—Property of IBM

Supervisor

Task Detach
or Change Org
Paint

(#SVAU)

Free
Function
-Control Storage-

|

Free Page
Function
-Control Storage-

Queue/Dequeue
Function
-Control Storage-

|

Enable

Transient

Area

-Control Storage-

Load ATRs
Function
-Control Storage-

|

Get Page
Function

-Control Storage-

Figure 6-22. Supervisor Task Detach or Change Origin Point Function Control Flow (#SVAU)

6-66

Licensed Material—Property of IBM

Calling
Program

- =

C——

Figure 6-23. Syntax Checker Control Flow {#USYX)

User
Program

Figure 6-24. Information Retrieval Control Flow

Message
N
Checker (#MGRET)
(#USYX)
System
_ Find
(#MASFN)
SYSIN
(#CLSN)
SYSLOG
(#CLSG)
Y
Information SYSLOG
Retrieval ———>
Transient
(#SVINF) (#CLSG)
End-of-Job
Transient
(#CTEI)

Program Organization

Licensed Material—Property of IBM

6-67

User
Program

N R 1B hex1E

Data
Management
Task Transfer
Control
(#SVTTC)

e —

! See 18M System/34 System Support Program Logic Manual:

Figure 6-25. Data Management Task Transfer Control Flow

User
Program

Snap Dump
Transient
(#SVDMP)

E——
G —

Figure 6-26. Snap Dump Control Flow

6-68

Intertask
Communication

Data Communications, LY 21-0051.

Licensed Material—Property of I1BM

>

G ———

Data
Communications
Taskl

SYSLIST

{#CLSP)

Data Areas

FIND A LIBRARY PARAMETER LIST

The find a library parameter list is a 10-byte parameter
required when the find a library routine (¥MAFLB) is
called. The caller of #MAFLB places the address of the
leftmost byte of this parameter list in XR2.

Figure 6-27 shows the format and contents of the para-
meter list.

Displacement of

Leftmost Byte Length
in Hexadecimal Label in Bytes Description
0 FLBNAME 8 Library name
8 FLBF1A 2 Address of
F1in AFA

Figure 6-27. Find a Library Parameter List

SYSTEM FIND PARAMETER LIST

The system find parameter list is required when single
name find routine (#MASFN) is called. The caller of
#MASFN places the address of the leftmost byte of the
parameter list in XR2.

Figure 6-28 shows the format of the system find para-

meter list for input. Figure 6-29 shows the two formats
(loader and user) for output.

Data Areas 6-69

Licensed Material—Property of |IBM

Displacement of

Leftmost Byte

in Hexadecimal

0

A

A

Label
$FNDDTYP
$FNDMLD8
$FNDMSB8
$FNDMSRC
$FNDMPRC
$FNDDNMS
$FNDDOPR
$FNDMSYS
$FNDMLDR
$FNDMUSE
$FNDMULB
$FNDMRF1
$FNDDF1A

$FNDDLDA

Length
in Bytes

1

Figure 6-28. Single Name Find Input Parameter List

6-70

Licensed Material—Property of |IBM

Description

Library type

X'08’ Load module

X'04' Subroutine’

X’02’ Source module

X'01’ Procedure

Member name

Operation switches

X80’ Search system library only
X‘40’ Build loader parm list only

X'20’ Search user library only

X‘10’ Search user library in SFNDDF1A

X'08’ Return library F1 address
Library format 1 address

Load address

Displacement of
Leftmost Byte Length
in Hexadecimal Label in Bytes Description

(Loader Format)

11

$FNDDADR
$FNDDNOS
$SFNDDLNK
$FNDDSCT
$FNDDRLD
$FNDDTNS

$FNDDLDA

$FNDDADR
$FNDDNOS
$FNDDLNK
$FNDDNST
$FNDDSCT

$FNDDF1F

$FNDDRLD
$FNDDCRS
$SFNDDATT

$FNDDMRT

$SFNDDREL
$FNDDTOT
$FNDDCOM
$FNDMSYR

$FNDMUSR

Figure 6-29. System Find Output Parameter List

3

1

(User Format)

3

Licensed Material—Property of I1BM

.Library disk address

Number of text sectors
Link edit address

Start address

RLD displacement
Total number of sectors

Load address

Library disk address

Number of text sectors or record length
Link edit address

Number of statements (S or P)

Start address (0 modules)

Format 1 address of the library in which
the member was found (if requested)

RLD displacement (0 modules)
Program size-sectors (0 modules)
Member attribute bytes

Type O — MRTMAX count

“Type P — X'FF’ MRT

Module release level
Module size in sectors
Completion code
X’‘80" Found in sys lib

X'40" Found in user lib

Data Areas 6-71

LIBRARIAN FIND PARAMETER LIST

The transient version (SMAFND) requires a 25-byte work
area following the parameter list.

The librarian find parameter list is a 24-byte parameter

required when the library find routine (SMAFND or Figure 6-30 shows the format and contents of the para-
$MALFN) is called. The caller of $SMAFND or $SMALFN meter list.

places the address of the leftmost byte of this parameter

in XR2.

Displacement of
Leftmost Byte
in Hexadecimal Label
0 LFDDTYPE
1 LFDDNAME
9 LFDDFUNC
LFDMWRTS
LFDMTYPO
LFDMTYPR
LFDMTYPS
LFDMTYPP
A LFDDFNC2
LFDMSYSL
LFDMUSEL
B LFDDREPL
LFDMFNDS
LFDMFTBS
LFDMEOFS
LFDMWTBS
LFDMSYSR
LFDMUSER

LFDMFND1

Lig partial name, eighth byte is length of name

Length
in Bytes Description
1 Library type
8 Member name or partial name!
1 Function byte
X‘80" = Write buffer after find
X'08’ = Load module find
X'04' = Subroutine member find
X’02' = Source member find
X'01’ = Procedure member find
1 Function Byte 2
X80 = Search system library
X'40’ = Search designated user library
1 Reply byte

X80’ = Found a member

X‘40" = Member found in this buffer
X'20' = No more members

X'10' = Previous buffer written
X'08’ = Found in system library
X‘'04’ = Found in designated library

X'01" = Found member in current library

Figure 6-30 (Part 1 of 2). Librarian Find Parameter List

6-72

Licensed Material—Property of |1BM

Displacement of
Leftmost Byte
in Hexadecimal

c

10
12
13

16

Label

LFDDLBF1

LFDDIRPT

LFDDBUF@

LFDDBUFS

LFDDIOBS

LFDDNSEC

Length
in Bytes

2

Figure 6-30 (Part 2 of 2). Librarian Find Parameter List

Licensed Material—Property of IBM

Description

F1 address of library to search (if 0,
check LFDMSYSL and LFDMUSEL)

Address of found directory entry
Address of caller’s buffer

Buffer size in sectors

Save area for SSS

Number of sectors in member

Data Areas

6-73

SOURCE LIBRARY GET PARAMETER LIST

The source library get parameter list is a 19-byte parameter
required when the source library get routine (#MASGT or
#MASYL) is called. The parameter list has two formats.
Figure 6-31 shows the format of the input parameter list,
used when a find is requested. Figure 6-32 shows the
format of the output parameter list, used when the caller
requests a get.

The caller of #MASGT or #MASY L must place the address
of the leftmost byte of this parameter in XR2. The tran-
sient version (#MASGT) requires a 15-byte work area
following the parameter list.

Displacement of

Leftmost Byte Length
in Hexadecimal Label in Bytes Description

0 GETDFNCT 1 Function byte (input options)
GETMFIND X80’ Find request
GETMFRST X'40" Get first
GETMNEXT X'20’ Get next

1 GETDTYPE 1 Member type
GETMSRCE S — Source
GETMPROC P — Procedure

2 GETDNAME 8 Member name

A GETDLBF1 2 F1 address of library to search; if O,

search system library

Cc GETDADDR 2 Record buffer address

E GETDSIZE 1 Buffer size in bytes

F GETDFCT2 1 Function byte 2
GETMSOBK X'20 Retdrn start of blanks indicator

in record buffer (X'FF’)

GETMREPR X’10" Reprime request

10 GETDIOBF 2 Read source buffer

12 GETDBFSZ 1 Buffer size in sectors

Figure 6-31. Source Library Get Input Parameter List (find format)

6-74

Licensed Material—Property of IBM

Displacement of

Leftmost Byte

in Hexadecimal

0

10

12

Label

GETDREPL

GETMTER

GETMTRNC

GETMNFND

GETMEOF

GETDSSS

GETDEND

GETDBNOW

GETDBEND

GETDLGTH

GETDADDR

GETDSIZE

GETDCOMP

GETDIOBF

GETDBFSZ

Length
in Bytes

1

Figure 6-32. Source Library, Get Output Parameter List (get format)

Licensed Material—Property of I1BM

Description

Reply byte (output options)

X*08' Terminal error

X'04' Truncated record

X'02’ No find

X‘01" End of file

Sector address processing now

Sector address of last record

Address of byte in 1/0 buffer to process

Address of last byte in |/O buffer to
process

Record length

Record buffer size
Record buffer address
Completion switch
1/0 buffer address

1/0 buffer size

Data Areas 6-75

AFA ACCESS PARAMETER LIST

The AFA access parameter list is required when the active
format 1 area access routine (#CSAF) is called. The caller
of #CSAF places the address of the leftmost byte of the
parameter list in XR2.

Figure 6-33 shows the format of the AFA access parameter
list.

Displacement of
Leftmost Byte Length
in Hexadecimal Label in Bytes
0 AF1DFNCT 1
AF1MREAL
AF1MVFID
AF1MGTLB
AF1MGTAD
AF1MGTNM
AFIMTPUT
AF1MDATE
AFTMF1MV
1 AF1DRTRN 2
AF1MNORM
AF1MINVD
AF1IMNTMT
3 AF1DF1PT 3
6 AF1DNMLB 8
E AF1DUNIT 1 |
AF1MF1
AF1MI1
AF1TMNU
F ' | AF1DDATE 3

12 AF1DIOAR 3
Figure 6-33. AFA Access Parameter List

6-76

Licensed Material—Property of IBM

Description

Function byte

X'80" Real 1/0O area address
X'40’ Verify ID

X,20" Get by label

X’10’ Get by address
X'08' Get by name

X'04' Put request

X'02’ Verify date request
X'01" Move F1 to user 1/O area
Return code

X’40’ Good completion
X‘41' Invalid request
X’44' Request not met
Pointer to format 1
Format 1 name or label
Unit

X'00’ Disk unit

X'10’ Diskette unit |
X'FF’ No unit specified
Date

User 1/0 area address

DUPLICATE KEY DISPLAY PARAMETER LIST

The duplicate key display parameter list is required when
the duplicate key display routine (#CSDK) is called. The
caller of #CSDK must place the address of the leftmost
byte of the parameter list in XR1.

Figure 6-34 shows the format of the duplicate key halt
parameter list.

Displacement of

Leftmost Byte Length
in Hexadecimal Label in Bytes
0 DKHDFLAG 1
DKHMKEYR
DKHMMSGR
DKHMPROC
DKHMRTRY
DKHMCNCL
DKHMTER1
1 DKHDKEYA 2
3 DKHDMSGA 2
5 DKHDCOMP 4
9 DKHDMICN 2
B DKHDF1AD 2

Figure 6-34. Duplicate Key Display Parameter List

Licensed Material—Property of IBM

Description

Flag byte

X'80" Key address real
X‘40' Message addr real
X‘08’ Option 0

X'04’ Option 1

X'02’ Option 2

X'01’ Option 3

Key address (left byte)

Message address (left byte)

Component 1D
MIC number

Format 1 address

Data Areas

6-77

SUPERVISOR TASK ATTACH PARAMETER LIST

The task attach parameter list is a 16 byte parameter
required when the supervisor task attach transient
(#SVAT) or the supervisor task detach transient (#SVAU)
is called. The caller of #SVAT or #SVAU places the
address of the leftmost byte of the parameter in XR1.

Figure 6-35 shows the format and contents of the

parameter list.
Displacement of
Leftmost Byte
in Hexadecimal Label
0 $ATLOAD
1 SATFLAG
$ATCREAT
$ATREAL

SATTUBAS
$SATNONAM

$ATDATA
$ATPRIV
$SATNSWAP
$ATERPRM
SATINIT
$ATSPOOL
$ATBATCH
2 | $ATMSSIZ
3 $ATPRIOR

4 $ATTUB®@

Length
in Bytes

1

1

Figure 6-35 (Part 1 of 2). Supervisor Task Attach Parameter List

6-78

Licensed Material—Property of IBM

Description

Loader parameter list offset
First flag byte offset

X'80’ = Create new TCB
X'40" = Real link address

X‘20' = on = TUB address
off = JCB address

X'10' = on = Do not assign job name
off = Assign job name

X‘08' = Put data in session work area
X'04’ = Task privileged
X'02' = Not swappable
X"01 ’ = Free attach parameter list
Start Initiator
Start Spool
Start Batch
Number of 2K main storage blocks
Priority of new task

TUB address

Displacement of

Leftmost Byte

in Hexadecimal
4

6

B
Cc

E

Label
$ATICB@
$ATSSSN
$ATFLAG!1
$ATRFRSH
$ATCOMON
SATAKINT
$ATINCJC
SATSYSTK
$SATTSKID
SATDATA@

SATLENG

Figure 6-35 (Part 2 of 2). Supervisor Task Attach Parameter List

Licensed Material—Property of IBM

Length
in Bytes

2

4

Description

JCB address

SSSN value of next transient
Second flag byte

X'80' = Refresh

X'40Q' = Program has Common
X‘20’ = Attach Initiator
X‘10' = Increment job count
X'08’ = Attach system task
Task 1D of attached task
Address of data to put

Length of attach parameter list

Data Areas

6-79

SUPERVISOR TASK ATTACH ERROR RETURN CODE

Supervisor task attach supplies an error return code in XR1
if the task attach function is not successful. The format of
the error code in XR1 is 00XX, where XX is the error
return code. Figure 6-36 shows the format and contents
of the error return code.

Label XX Description

$ATERRO1 X‘01° Not enough storage space

$ATERRO2 X‘02' Task nonswappable and not enough
storage space ‘

$ATERRO3 X‘03° Task nonswappable and storage
requirements will disable task

$ATERRO4 X'04’ Assign failure on TCB

$ATERROS X’'05’ Assign failure on RB

$ATERRO6 X’'06° Allocate failure for swap area

Allocate failure for work station
work area

$ATERRO7 X'07'

SATERRO8 X‘08' Assign failure for ACE

Figure 6-36. Supervisor Task Attach Error Return Codes

6-80

SYNTAX SPECIFICATION MODULE

The syntax specification module is used by the syntax
checker (#USY X) to determine if the control statement
passed is valid. Each utility has its own syntax specification
module that resides in the system library. Figure 6-37 lists
the syntax specification modules.

Syntax Specification
Utility Module Name
Library maintenance $MASPC
Basic data exchange $BITAB
Disk copy/display $COTAB
File delete $DETAB
Diskette copy $DUTAB
History file display $HISTAB
Diskette labeling and initialization $SINTAB
VTOC display $LABTB
Create message member $MGTAB
Set $SETSM
File build $FBTAB
Disk compress $PAKTB
Menu build $BMTB
Display format generator $SFTB

Figure 6-37. Syntax Specification Modules

Licensed Material—Property of IBM

The USCTMODN field of the communication table passed
by the calling utility contains the specification module
name, and the USCTSSMP field contains the specification
module address. The specification module is loaded fol-
lowing #USY X in main storage or at the address specified,
and consists of one or more control statement syntax
specifications as shown in Figure 6-38.

There is one control statement syntax specification for
each possible control statement for the utility.

Verb Record

0 to 64 Parameter Records (positional,

Control keyword, or both)
Statement
Syntax 0 to 64 Substitution Tables as

.Specification Required to Define Parameter Values

Valid Combination Records as
Required to Define the Acceptable
Combinations of Parameter Values
Verb Record
0 to 64 Parameter Records
0 to 64 Substitution Tables
Valid Combination Records

Note: The format and contents of the verb record, para-

meter records, substitution tables, and valid combination
records, are included in this Data Areas section.

Figure 6-38. Syntax Specification Module

Displacement of

Leftmost Byte

in Hexadecimal Label
0 VRBDHEAD
1 VRBDVBID
2 VRBDNAME
A VRBDNEXT
C VRBDVALC

Figure 6-39. VERB Verb Record

VERB RECORD — VERB

The verbrecord is a 14-byte record in the control statement
syntax specification that contains the name and numeric
identifier of a control statement verb. The first verb is at
the main storage address specified in USCTSSMP and the
current verb record is at the address specified in
USCTVRB@. When a control statement is read by the
syntax checker (#USYX), this record is checked to deter-
mine if the verb passed matches the verb of this verb
record. |f not, the VRBDNEXT fields contains the
address of the next verb record to check.

Figure 6-39 shows the format and contents of the verb
record.

PARAMETER RECORDS

There are two types of parameter records; positional and
keyword. Parameter records follow the verb record in the
control statement syntax specification. After the verb
record for the control statement has been determined, the
parameter records indicate the valid parameters and para-
meter values for the control statement.

POSITIONAL PARAMETER RECORD — POSIT

The positional parameter record, POSIT, is a 13-byte or
21-byte record that contains information for a single
positional parameter. The USCTPOS® field of the
communication table contains the address of the current
record. Figure 6-40 shows the format and contents of the
positional parameter record.

Length
in Bytes Description
1 Constan"c Vv
1 Verb ID, X'01’ to X'FF’
8 Verb name
2 Pointer to next verb record
2 Poiﬁter to a set of valid combination

records (VALCM)

Data Areas 6-81

Licensed Material—Properfy of IBM

Displacement of

Leftmost Byte
in Hexadecimal

0

Figure 6-40. POSIT Positional Parameter Record

6-82

Label

POSDHEAD

POSDPSID

POSDNAME

POSDIND1

POSDRESV

POSDATTR

POSDMINM

POSDMAXM

POSDOUT@

PASDSIZE

POSDDEFL

POSDDEFV

Length
in Bytes

1

Licensed Material—Property of 1BM

Description

Constant P

Unique ID for this record
X‘01' to X‘FB’

Position number of the parameter in
this control statement

Parameter flag

O=optional parameter
1=required parameter

Reserved
Attribute

L=label

Z=partial name

N=numeric characters

C=numeric characters to be
converted to binary

S=string of characters except
blank, comma, and hyphen

Q=character string optionally
enclosed in single quotes

D=date format

Minimum parameter value
Maximum parameter value
Displacement of leftmost byte of
parameter value in output area of

communication table (USCTPOUT)

Length of parameter value in output area
of communication table (USCTPOUT)

Default length

X‘08'=default length
X‘00'=no default

Default value for parameter
(optional field)

KEYWORD PARAMETER RECORD — KEYWD

The keyword parameter record, KEYWD, is a 22-byte or
30-byte record that contains information for a single
keyword parameter. The USCTKEY@ field of the com-
munication table contains the address of the current
record. Once a keyword parameter has been found in the
control statement, the parameter records are scanned to
find the matching keyword parameter record. When a
match is found, the keyword parameter record indicates
where the value should be placed in the output area
(USCTPOUT) of the communication table.

Figure 6-41 shows the format and contents of the keyword

parameter record.

Displacement of
Leftmost Byte

in Hexadecimal Label

0 KEYDHEAD
1 KEYDKYID
2 KEYDNAME
A KEYDIND1

B KEYDRESV
Cc KEYDATTR
D KEYDMINM
10 KEYDMAXM

Figure 6-41 (Part 1 of 2). KEYWD Keyword Parameter Record

SUBSTITUTION TABLE — SUBEN

A substitution table is an 18-byte table that consists of a
3-byte header record and one or more 15-byte entry

records. A substitution table specifies a parameter that
should have a value substituted for it in the output area
(USCTPOUT) of thé communication table and the value that
should be substituted. From 0 to 64 substitution tables

can follow the last parameter record in a control statement
syntax specification.

Figure 6-42 shows the format and contents of a header
record. Figure 6-43 shows the format and contents of an
entry record.

Length
in Bytes Description
1 Constant K
1 Unique number for this record
X'01'" to X‘FB’
8 Parameter keyword
1 Parameter flag
O=optional parameter
1=required parameter
1 Reserved
1 Attribute
L=label v
Z=partial name
N=numeric characters
C=numeric characters to be
converted to binary
S=string of characters except
blank, comma and hyphen
Q=character string enclosed in
single quotes
D=date format
3 Minimum parameter value
3 Maximum parameter value

Data Areas 6-83

Licensed Material—Property of |1BM

Displacement of
Leftmost Byte
in Hexadecimal

13

14

15

16

Figure 6-41 (Part 2 of 2). KEYWD Keyword Parameter Record

Displacement of
Leftmost Byte

0

Label

KEYDOUT@

KEYDSIZE

KEYDDEFL

KEYDDEFV

Label

SBTDHEAD

SBTDSBID

SBTDREST

Figure 6-42, SUBEN Substitution Table Header Record

6-84

Licensed Material—Property of IBM

Length
in Bytes

Length
in Bytes

1

1

Description

Displacement of leftmost byte of
parameter value in output area
(USCTPOUT) of communication table

Length of parameter value in
communication table

Default length

X'08'=default length -
X‘00"=no default

Default value for parameters
(optional field)

Description
Constant S

Unique number of parameter record
associated with its substitution table

Substitution value flag

1=only the specific values in the
substitution table entries are
meaningful

O=specific values in the substitution
table entries are not all of the
meaningful values

Displacement of Length

Leftmost Byte Label in Bytes
0 _ SBEDHEAD 1
1 SBEDRCID 1
2 SBEDSUBS 3
5 SBEDATTR 1
6 SBEDOUT®@ 1
7 SBEDSIZE 1
8 SBEDVALU 8

Figure 6-43. SUBEN Substitution Table Entry Record

VALID COMBINATION RECORD

The valid combination record, VALCM, isa 7-, 10-, 13-,
16-, 19-, 22-, 25-, or 28-byte record used to determine if
the parameters and/or parameter values are used in valid
combination in the control statement. The VRBDVALC
field of the verb record (VERB) contains the address of the
set of valid combination records.

Figure 6-44 shows the format and contents of a valid
combination record.

Licensed Material—Property of I1BM

Description

Constant E

Unique number for this record
X'01" to X'FF'

Substitution value

Attribute

L=label

Z=partial name

N=numeric characters

C=numeric characters to be
converted to binary

S=string of characters except
blank, comma, and hyphen

Q=character string enclosed in
single quotes

D=date format

Displacement of leftmost byte of
substitution value in output area of

syntax checker communication table

Length of substitution value in
communication table

Real value of parameter as it would
appear in the control statement

Data Areas

6-85

Displacement of
Leftmost Byte

in Hexadecimal Label
0 VALDHEAD
1 ' VALDRCID
VALDCOMP
VALDNMBR
4 VALDENT1
5 VALDNXT1

Length
in Bytes Description
1 Constant C

1 ID of a parameter record associated
with this record

1 Indicator for complemented entries; that
is, parameter flag meaning or value is
compliemented

1 Number of entries
1 Parameter value flag

X'FE'=parameter must not be
present

X'FD'=parameter is required and some
value must be specified

X'FC'=parameter is ignored

X‘FB’ to X'01'=substitution table
entry that contains the
parameter value

2 Pointer to another valid combination
record, or X'FFFF’ indicating the end
of the set of valid combinations

Note: Any pair of the following fields may appear (VALDEnR with VALDXn) in the valid combination record as needed to

describe the valid parameter combinations.

7 VALDENT2

8 VALDNXT2
A VALDENT3
B VALDNXT3
D VALDENT4
E VALDNXT4
10 VALDENT5
1 VALDNXTS
13 VALDENT6

Figure 6-44 (Part 1 of 2). VALCM Valid Combination Record

6-86

1 Same as VALDENT1
2 Same as VALDNXT1
1 Same as VALDENT1
2 Same as VALDNXT1
1 Same as VALDENT1
2 Same as VALDNXT1
1 Same as VALDENT1
2 ‘ Same as VALDNXT1
1 Same as VALDENT1

Licensed Material—Property of IBM

—

Displacement of

Leftmost Byte Length
in Hexadecimal Label in Bytes
14 VALDNXT6 2
16 VALDENT? 1
17 VALDNXT? 2
19 VALDENTS8 1
1A VALDNXTS8 2

Figure 6-44 (Part 2 of 2). VALCM Valid Combination Record

SYNTAX CHECKER COMMUNICATION TABLE —
USCTABLE

The syntax checker communication table, USCTABLE, is

a table indicated by the utility that calls the syntax checker
(#USY X). The first 2 bytes of the syntax checker para-
meter list passed by the utility contain the address of the
communication table.

The communication table is returned to the utility to
indicate the following control statement information:

@ Errors that were detected
@ Parameters specified

Figure 6-45 shows the format and contents of the
communication table.

Licensed Material—Property of IBM

Description

Same as VALDNXT1
Same as VALDENT1
Same as VALDNXT1
Same as VALDENT1

Same as VALDNXT1

Data Areas

6-87

Displacement of

Leftmost Byte

in Hexadecimal

0

6

8

Note:

8

9

Label
USCTRES1

USCTOUTL

USCTINBP
USCTRES2

USCTINBL
USCTSSMP

USCTMODN

USCTERRT

USCTERRC

USCTERRP
USCTVRBN
USCTPARF

USCTPARL

Length in
Bytes in
Decimal

2

8

1

2

Figure 6-45 (Part 1 of 2). USCTABLE Syntax Checker Communication Table

6-88

Licensed Material—Property of 1BM

Description
Reserved

Length of output area
{from X‘'00" to X'FF’)

Address of input buffer
Reserved

Length of input buffer
(from X'00’ to X'78’)

Address of syntax specification module

Syntax specification module name

The syntax checker overlays the USCTMODN field with the following 8 bytes.

Reserved
Completion code

X'FFFF'=no errors

X’FFFE'=statement continued

X’nnnn’ =error, where nnnn is the
message identification code
(MIC) that is issued

Address of the first byte of the field in -
the area of error

Hexadecimal constant associated with
the control statement verb

Hexadecimal constant ID of the first
record after the verb record

KEYNUM of last (current) POSIT or
KEYWD record processed

Displacement of Length in

Leftmost Byte Bytes in
in Hexadecimal Label Decimal Description
10 USCTPMAP 8 Indication of parameters specified in
the control statement
18 USCTCNTL 8 Control area to allow syntax checker to
be reentrant with area subdivided as
follows:
USCTVRB®@ 2 Main storage address of current verb
record
USCTPOS@ 2 Main storage address of current
POSIT record
USCTKEY®@ 2 Main storage address of current
KEYWD record
2 Reserved
20 USCTERNM 8 Contains from one to eight characters
for insert into error message when
USCTERRC contains a MIC
28 USCTPOUT 0 Output area for the syntax checker that
to contains the parameter values specified
255 on the control statement or values

" substituted for the parameter values

Figure 6-45 (Part 2 of 2). USCTABLE Syntax Checker Communication Table

Data Areas 6-89

Licensed Material—Property of IBM

SYNTAX CHECKER PARAMETER LIST

Each time the syntax checker (#USY X) is called, register 2
must contain the address of a 6-byte parameter list that
indicates the (1) address of a communication table, (2)
address of the verb list to use, (3) name or address of the
specification module, and (4) source of input. There is one
parameter list for each verb list that can be passed.

Figure 6-46 shows the general format and contents of a
parameter list.

Displacement of Length
Leftmost Byte Label in Bytes Description
0 USCTMP 2 Address of communication table
2 VBLSTP 2 Address of verb list
4 ENTERD 1 Specification module information
X'00’=Load the specification module
named in the communication
table
X'01'=Do not load a specification
module
The address of a supplied
specification module is in the
communication table
5 ENTRY 1 Control statement input information

X'00'=Read a control statement from
the sysin device

X'01'=The communication table
indicates the address of the
control statement

X'02'=The statement being scanned
is continued from a previous
statement

X'04'=Synonyms (more than one
form) for verb names
permitted

Figure 6-46. Syntax Checker Parameter List

6-90

Licensed Material—Property of IBM

Chapter 7. System Maintenance Programs

Introduction

The System/34 diagnostic aids that execute in main storage
are:

® APAR ($FEAPR)

® Dump ($FEDMP)

® Program temporary fix installation program ($FEF1IX)
® Patch (SFEPCH)

® Trace select (SFETRC)

® Error recording analysis procedure ($ERAP)
Introductory information about the diagnostic aid pro-
grams (their functions and how to run them) is contained
in the Data Areas Handbook.

SFEAPR, SFEDMP, $FEFIX, $FEPCH, and $FETRC

each require 14K bytes of main storage for program
execution.

Introduction 7-1

Licensed Material—Property of IBM

Method of Operation

This section contains function diagrams for the diagnostic
aids, They are:

® APAR utility (Diagram 7.1)

® Dump utility (Diagram 7.2)

® PTF installation function (Diagram 7.3)
® Patch utility (Diagram 7.4)

® Trace select function (Diagram 7.5)

® ERAP utility (Diagram 7.6)

From: Initiator

INPUT ﬁ I r PROCESS ﬁ

Data from >. Perform APAR utility function '> File(s) on diskette
APARFILE I {Diagram 7.1)

Data for system _I—__—__-‘—J>. Perform dump utility function

OUTPUT

—

)> Printed or

" displayed data

dump (Diagram 7.2)

Library member >® Perform PTF installation function

and PTF I I (Diagram 7.3)

Disk or diskette >® Perform patch utility function

data I (Diagram 7.4)

Data for trace >. Perform trace select function
select l I (Diagram 7.5)

1/0 counter tables >® Perform ERAP utility function

and logging tables (Diagram 7.6)

{7

Modified library
Module

Modified data

> Updated control
store trace options

> Formatted tables
on display station
or printer

To: Control Storage End-of-Job
Transient ($E0J)

Diagram 7.0. Overview of System Maintenance Programs

7-2

Licensed Material—Property of IBM

——

From: Initiator

INPUT I r PROCESS

Main Storage n Prompt for optional data areas

Build APARFILE index
Transient Area
Verify dump area

User Area:
$FEAPR £} create APARFILE

B Create optional files if requested
Dump area
Configuration record ﬂ Terminate program
PTF log
Trace file
Task work area
History file
Input JOBQ
Spool files
Disk VTOC

To: Control Storage End-of-Job

Transient ($E0J)

g OUTPUT

APARFILE on
diskette

If requested:

TWAFILE on
diskette
HISTFILE on
diskette
JOBQFILE on
diskette
SPOLFILE on
diskette
VTOCFILE on
diskette

Task work area (TWA).
System trace file.
System history file.
Input JOBQ. '
Spool files.

Disk VTOC.

Build index record containing size and record offset within APARFILE of system data areas to be included.
Write index record as first record of APARFILE.

Read first sector of main storage dump area from disk.
Check dump validity flag (SCADPIND) in SCA to determine dump validity.
Write system area data to APARFILE:

Disk dump area.

Configuration record.

#LIBRARY PTF log.
Trace file (if requested).

B Create optional files on diskette if requested:
History file (HISTFILE).

® |nput JOBQ (JOBQFILE).

® Spool files (SPOLFILE).

® Disk VTOC (VTOCFILE).

B Pass control to end of Job control storage transient ($EQJ) to terminate program.

MODULE/
DESCRIPTION ROUTINE
n Issue prompt for additional system areas to be copied to diskette: $FEAPR

Diagram 7.1. Perform APAR Utility Function (SFEAPR)

Licensed Material—Property of IBM

Method of Operation 7-3

From: Initiator

INPUT = —— I rPROCESS . T OUTPUT

Main Storage - n Read control statements and determine Printed or
function requested ' displayed data

Transient Area ’ List main storage or control storage areas
if requested

User Area:
$FEDMP List disk storage areas if requested
$FESTR ‘
$FEIOP : n List configuration record, trace file, or
$FEDSK . : PTF log if requested
$FESYS . :
$FECRT i B List I/0O processor storage area if requested

ﬂ Terminate program
Control statements

APARFILE

Disk storage area:
Main storage
dump
Control storage
dump
Configuration
record
PTF log
Trace file
1/0 controller
dump area

To: Control Storage End-of-Job
Transient ($EQJ)

MODULE/
DESCRIPTION ROUTINE

Use syntax checker (#USYX) to read and check control statements. $FEDMP
If verb is DUMP, save keyword information.

If requested function is:
® Dump main storage or control storage areas, go to .

® Dump selected disk storage areas, go to.
® Dump configuration record, trace file, or PTF log area, go ton .
® Dump I/0 controller storage area, go toB.

I verb is END, go to [}

B Initialize display screen, printer, APARFILE, and disk as required. $FESTR

Display summary of storage dump information.

Diagram 7.2 (Part 1 of 2). Perform Dump Utility Function ($FEDMP)
7-4

Licensed Material—Property of IBM

DESCRIPTION

MODULE/
ROUTINE

(3]
(A

om

If output to printer specified:
® Prompt for type of storage dump and address limits.
® Dump requested main storage or control storage area to printer.

® Prompt for another storage area to dump and if E entered, return toto read another control statement.

If output to display screen:

® Display first segment of main storage or control storage and TCB address of abnormally terminated task.
® Accept user request to display other portions of storage.

® |f E entered, return to nto read another control statement.

Initialize display screen, printer, diskette, and disk fields as required.
Prompt for disk or diskette sectors to be displayed/printed.

Ensure valid prompt response given.

If character E response, go tonto read next control statement.
Read data from disk or diskette.

Output disk or diskette sectors requested:

@ |f output to display screen specified, put data to screen and roll screen up or down as requested.
® |f E entered, go to to accept new address or end display.

® |f output to printer specified, dump requested sectors to printer.

® Go toeto accept new address or end dump. ’

Initialize display screen, printer, APARFILE, and disk as required.

If list configuration record request:

® Read configuration record.

® Format configuration record for output to printer or display screen.
©® Display or print selected fields from system configuration record.

If list trace file request:

Retrieve trace file data.

Format trace file data for output to printer or display screen.

|f output to printer, start output with oldest sector entry.

If output to display screen, start display with last set of entries and accept roll up and roll down keys to
display additional entries.

'If list PTF log request:

if input is disk, prompt for library name; otherwise, process # LIBRARY.

Read PTF log.

Format PTF log data for output to display screen or printer .

If output to display screen, start display with first set of 40-byte PTF log entries and accept roll up and
roll down keys to display additional entries.

@ (f output to printer, start output with first PTF log entry.

When requested dump complete, return tonto read another control statement.
Initialize disk, APARFILE, and printer as required.

Prompt for 1/O controller storage dump area to output to printer; if character E entered, return toto read
another control statement.

Read data from selected device storage dump area.
Output selected device dump area data to printer.

When requested 1/O processor storage dump complete, go toeto prompt for another dump request or end
display.

Pass control to end-of-job transient ($E0J) to terminate program.

$FESTR

$FECRT

$FESTR

$FEDSK

$FECRT

$FEDSK

$FESYS

$FEIOP

$FEDMP

Diagram 7.2 (Part 2 of 2). Perform Dump Utility Function ($FEDMP)

Method of Operation

Licensed Material—Property of IBM

7-5

From: Initiator

l r PROCESS

Main Storage . BB Perform PTF utility initialization

Process HDR statement
Transient Area

a Process PTF statement

User Area: ‘
$FEFIX n Process DATA statement

B Process END statement
Control statements: J
® HDR : B Terminate program
® PTF
© DATA
® END

Library members

OUTPUT

Modified library
modules

Updated PTF log

To: Control Storage End-of-Job

Transient ($E0J)

MODULE/
DESCRIPTION ROUTINE
m Allocate work file space. $FEFIX
Determine SYSLOG device option.
Read control statement from SYSIN device and go to appropriate processor:
© |f HDR statement, go to E
@ |f PTF statement, go to a
© |f DATA statement, go to n
® |f END statement, go toﬂ.
Syntax check HDR statement:
©® |f checksum not found (HDR statement blank), indicate field developed patch (ZAP) and save first four
characters of system date and a ‘5’ for the PTF ID.
@ |f checksum found, ensure PTF ID valid.
Return tonto read next control statement.
E Syntax check PTF statement.
If library parameter other than # LIBRARY given, find address of library format 1. $MAFND
Locate library module specified.
Read module from library and place in work file (if not already there). Disk 10S
If module has overlays: $FEFIX
© Scan'root RLDs to find RLD end, overlay table address, and number of root RLD sectors.
© |f overlay request, read overlay table from module root and process any errors.

Diagram 7.3 (Part 1 of 2). Perform PTF Instaliation Function (SFEFIX)

7-6

Licensed Material—Property of IBM

MODULE/
DESCRIPTION ROUTINE

Store module information in PTF table. $FEFIX
Return tonto read next control statement.
n Syntax check DATA statement.
Read area to be patched in from work file.
Delete RLDs in patch area.
Merge RLDs from DATA statement into module RLDsf
Insert patch data.
Write patch data and RLDs back to work file.
Return tonto read next control statement.
E Syntax check END statement.

Set on SYSIN end of file.

B Log PTF (module name and ID — use system date and a 5 if ZAP) for each module. SMAPTF

Set on PTF applied indicator in module directory entry. $FEFIX
Transfer updated modules from work file back to library.

Pass control to end-of-job transient ($EOJ) to terminate program.

Diagram 7.3 (Part 2 of 2). Perform PTF Installation Function ($FEFIX)

Method of Operation 7-7

Licensed Material—Property of IBM

From: Initiator

I r PROCESS

n Read control statements

INPUT

Main Storage

Transient Area

B Prompt for sector address

User Area:
$FEPCH 3 pisolay data
$FEDSK
$FECRT B Modify data if requested

B Terminate program

Control statements

Disk or diskette
data

Initialize fields with keyword information

OUTPUT

Displayed prompt

Displayed data

Modified data

To: Control Storage End-of-Job
Transient ($EOQJ)

DESCRIPTION

MODULE/
ROUTINE

n Use syntax checker (#USYX) to read and check control statements.
Save keyword information if verb is PATCH.
If END statement is read, go tonto terminate program.
Initialize display screen, diskette, and disk fields as required.
Prompt for disk/diskette sector to be patched.
Ensure valid prompt response given.
If character E response, go tonto read next control statement.
Read data from disk or diskette.
n Display disk/diskette sector requested:
® Put data to display screen.
® Roll screen up or down as requested.
® |f character E entered, go to to prompt for new sector address.
©® Update data area with modified data.

B Write modified data back to disk/diskette.

Return to to prompt for new sector.

u Pass control to end-of-job control storage transient ($EQJ) to terminate program.

$FEPCH

$FEDSK

$FECRT

$FEDSK

$FEPCH

Diagram 7.4. Perform Patch Utility Function (SFEPCH)

7-8

Licensed Material—Property of I1BM

From: Initiator

I rPROCESS

Main Storage n Get current trace indicators and prompt for Updated control
modifications store trace options

OUTPUT

Transient Area Update trace indicators

User Area: n Prompt for disk logging options
$FETRC

n Update disk 1ogging indicators

Control store trace B Terminate program
transient parameter
list

To: Contro! Storage End-of-Job
Transient ($EOJ)

MODULE/
DESCRIPTION ROUTINE
n Call control store trace transient to determine events now being traced. $FETRC

Display current trace options and prompt for new options.
Scan CRT buffer for new trace options just entered.
Update trace control store transient parameter list with new options.

Call control store trace transient to set new events to be traced.

a Prompt for:

® Start logging to disk .
® Stop logging to disk.
® No change.

n 1f STOP option, set stop logging indicator.
IfSTART option:
® |f old trace file exists, destroy it.
® Create new trace file with specified size.
® Obtain area in nucleus for disk logging I0B.

Call control store trace transient to set new disk logging options for START or STOP request.

a Pass control to end-of-job control storage transient ($EQJ) to terminate program.

Diagram 7.5. Perform Trace Select Function (SFETRC)

Method of Operation 7-9

Licensed Material—Property of IBM

From: Initiator

INPUT I r PROCESS

Main Storage n Prompt for device Displayed prompts

OuUTPUT

Prompt for desired output Formatted tables
Transient Area on display station
Format 1/O counter table, error counter or printer
User Area: table, and error history table for specified
$ERAP device
$ERAO
$ERCO n Reset error counter table or 1/O counter
$ERCA table if requested '
$ERDO :
$EREO B Terminate program
$ERO1
$ERO2
$ERS0

SCA

1/0 counter tables
Error counter
tables

Error history
tables

To: Control Storage End-of-Job
Transient ($EQJ)

, MODULE/
DESCRIPTION ROUTINE

n Issue prompt for device or end program: $ERAP
End.

All. .
Main store processor.
Control processor.
Disk.

Diskette.

Line printer.

Work station controller.
Display stations.

Serial matrix printer.
BSC.

If more than one device of a certain type, issue prompt for that specific device.
If end option taken, go to.

Issue prompt for desired output:
® Display. : :
® Print.
® Print and reset error counter table.
® Print and reset I/O counter table.

Diagram 7.6 (Part 1 of 2). Perform ERAP Utility Function

7-10

Licensed Material—Property of 1BM

MODULE
DESCRIPTION O]

If print selected, prompt for desired printer. $ERAP
If display or print, go to .

If reset, go ton .

Format 1/O counter table, error counter table, and error history table for specified device. $ERAO
$ERCO
$ERCA

If C entered, go to [l $ERDO
$EREO

n Format error counter table and reset, or format 1/O counter table and reset. $ERO1
$ERO2

cowo[El. $ERSO

B Pass control to control storage end-of-job transient ($EOJ — control storage). $ERAP

Diagram 7.6 (Part 2 of 2). Perform ERAP Utility Function
Method of Operation 7-11

Licensed Material—Property of IBM

Program Organization

Figures 7-1 through 7-6 show the control flow of the sys-
tem maintenance programs.

- APAR
Initiator Utility
Function ($FEAPR)

End-of-Job
($EQJ)
-Control Storage-

Figure 7-1. APAR Utility Control Flow ($FEAPR)

7-12

Licensed Material—Property of IBM

Initiator
Function
Disk : Storage
I . Dump ' . Display
($FEDSK) ($FECRT)
Storage Storage
I Dump | . Display
Dump ($FESTR) ($FECRT)
Utility i
($FEDMP)
System
Areas
Dump
(SFESYS)
1/0
Processor
il A 1
($FEIOP)
End-of-Job
($EQJ)

-Contro! Storage-

Figure 7-2. Dump Utility Control Flow ($FEDMP)

Program Organization 7-13

Licensed Material—Property of I1BM

7-14

Initiator
Function

Program

Temporary
Fix Utility
(SFEFIX)

)

PTF Log
Handler

(SMAPTF)

End-of-Job
($SEOQJ)
-Control Storage-

Figure 7-3. Program Temporary Fix Utility Control Flow {$FEFIX)

Licensed Material—Property of IBM

Initiator
Function

Patch
Utility
($FEPCH)

End-of-Job
($EOJ)
-Control Storage-

Disk

> Dump

($FEDSK)

Storage
Display
($FECRT)

Figure 7-4. Patch Utility Control Flow ($FEPCH)

Licensed Material—Property of IBM

Program Organization

7-15

7-16

Initiator
Function

>

Trace
Select
($FETRC)

Trace

Transient
(CXTRACE)
-Control Storage-

End-of-Job
($EOJ)
-Control Storage-

Figure 7-5. Trace Select Control Flow ($FETRC)

Licensed Material—Property of IBM

Initiator

Function
Disk
(SERAOQ)
Display Station and
EEa———| S:ri2| Matrix Printer
($ERCO)
Work Station
ﬁr Controller
($ERCA)
Diskette
ERAP ($ERDO)
Utility
($SERAP) Line Printer
($EREOQ)
Control Processor
($ERO1)
Main Storage
GNP Processor
($ERO2)
B8SC
($ER80)
End-of-Job
($E0QJ)

-Control Storage-

Figure 7-6. ERAP Utility Control Flow ($ERAP)

Program Organization 7-17

.Licensed Material—Property of IBM

7-18

Licensed Material~Property of IBM

Introduction

The overlay linkage editor enables the user to manually
determine overlays for programs. An automatic determina-
tion of overlays is also provided.

The overlay linkage editor can be entered two ways:
directly from a language processor (compiler), or as a user-
called program. The functions and method of operation

is different depending on whether the entry is compiler or
user entry.

COMPILER ENTRY

When entered directly from a compiler, the overlay link-
age editor can perform either or both of the following
functions:

® (Catalog an object module as a subroutine member in
the library on disk.

@ Link object modules into an object program and catalog
the program as a load member in the library on disk.

INPUT FOR COMPILER ENTRY

Input to the overlay linkage editor is in the SWORK file on
disk. Each record in SWORK is 64 bytes long (Figure 8-1).
The first record must -be the options record; object modules
follow the options record.

Chapter 8. Overlay Linkage Editor

Each object module consists of external symbol list (ESL)
fields (packed five to a 64-byte, S-type record) and text
records. An END record follows the object modules. A /*
record must be the last record in the compiler output.

Options Record: The options record tells the overlay
linkage editor what functions to perform. The options
record must be the first record in $WORK. Figure 8-1
shows the format of the options record.

Object module: The object module consists of ESL fields
packed into S-type records, text records, and an END
record. Each 64-byte, S-type record can contain up to
five 12-byte ESL fields. The S-type record must be
X’0000’ after the ESL fields.

Object modules are described in the System/34 Overlay
Linkage Editor Reference Manual, SC21-7707.

OUTPUT FROM COMPILER ENTRY

Output from the overlay linkage editor is specified by the
options record in $WORK. The object module in $WORK
can be cataloged into the library as a subroutine member.
If link-editing is specified, a load module is built from the
input object module. The load module is then cataloged
into the library as a load member.

A storage map and cross-reference list is printed unless the
options record specifies otherwise (Figure 8-25).

Introduction 8-1

Licensed Material—Property of IBM

Object Module

12 6 7 9 10 1" 12 13 14 15 16 17 2425 3233 40 41 64
B |OPTNS | Attributes | Main | Object | Load |Reserved | Flag | Link Subroutine | User Load Reserved
Storage | Module | Module Byte | Address | Member Library |Member
Size : Library Name| Name | Library Name
1 2 3 14 15 26 27 38 39 50 51 62 63 64
ESL ESL ESL ESL ESL . ,
§ | Lengthl | gioig | Field | Field | Field | Fieta | X000
4 ~N
s
s ~N
Ve ~
- - ~
N
b - ~N
TTTTd Hex! H
NAME | X'00° [Start L:: W | cat Module Name
Address 9
1 6 7 8 9 10 1" 12
Options Record iqpr | ASSM _ ;
NAME X'01 Address 0-0 Entry Point
6 10 12
ESL Input ! 789
Records
NAME X'02' Subtype X'00's' External Reference
3 Text Records 1 6 7 8 9 12
Subtype Meaning
X'00" External Reference to Module Name
X'03 Weak External Reference to Module Name
END Record X'06' Conditional External Reference to Module Name
X'80 External Reference to Entry Point
/*Record - X'83 Weak External Reference to Entry Point
b B| X02' Subtype Length X'00’ Common Area
1 6 7 Ef 9 1 12
Subtype Meaning
X'04' Global Common
X'05 Local Common
T Length-1 Assm Addr | Text RLD
1 2 3 4 5 64
E | Start Addr Not Used
1 2 3 4 64
/o Not Used
1 2 3 64

Figure 8-1. Input For Compiler Entry

Licensed Material—Property of IBM

<

$WORK
Obiject
Modules

-
Library

Subroutine
Members

N~ —

Compiler Entry

Modules

Catalog Object

Load Module

Link Object Modules and
Subroutine Members Into

Catalog L.oad Module

End of Job

Figure 8-2. Overview of Overlay Linkage Editor Compiler Entry

Licensed Material—Property of IBM

<

Library
Subroutine
Members

~———
<>
$SOURCE

Load
Module

—
<>

Library
Load
Member

~—

Introduction

8-3

12 67 9 10 11 12
B | OTPNS | Attributes | Main | Object | Load
Storage | Module| Module
Size
13 14 15 1617 24 25 32
Reserved |Flag | Link Subroutine User
Byte | Address | Member Library
Library Name| Name
33 40 41 64
Load Reserved
‘Member

Library Name

Attributes: This 3 byte field describes the linked object
program built by the overlay linkage editor.

Byte 7

Bit 0 On -SSP module; Off — not SSP module
1 Privileged module (O-only), proc with data

(P-only)

Not inquirable mode

SFGR format load member

Source required

Not base SSP module

PTF applied {cannot be assigned through overlay

linkage editor)

7 Module has overlays

S WN

Dedicated mode

1 NEP module

2 Module has OXRF format index table

3 Load module only from system console

4 Cannot load program with a LOAD statement
5 Program common

6 Program with utility control statements

7 Module has OXRF where-to-go table

$WORK2 file required
1 Do not swap this task

2 High level of dedication
3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved

Figure 8-3 (Part 1 of 3). Options Record

"8-4

Main storage size: This is the amount of main storage (in
1/4K increments) needed for object program execution.
Example: X'12'=18 (X’12’) X 256 (1/4) = 4608 bytes

Object module: This byte specifies the disposition of
the object module in $WORK.

Bit O Reserved
1 Reserved
2 Reserved
3 Reserved
4 Reserved
5 Catalog as subroutine member (RETAIN — R)
in library
6 Catalog as subroutine member (permanent

entry) in library
7 Reserved
If bits 0 — 7 are all zero, there is no object module

Load module: This byte specifies the disposition of the
linked object program and the type of printed output
from the overlay linkage editor.
Bit 0 Reserved
1 Reserved
2 Reserved
3 Reserved
4 Reserved
5 Do not print storage map
6 Do not print cross-reference list

7 Catalog program into object library
If bits 0 — 7 are all zero, there is no linked output. If
neither object nor load module is specified, load is
cataloged.

Flag Byte: This byte passes general information to the
overlay linkage editor.

Bit 0 Reserved

Reserved

Reserved

Generate RLDs

Print messages

Reserved

Catalog as a load member (RETAIN — R) in
library

7 Link edit address in byte 15 and 16

oD WN =

Link Address: These 2 bytes specify a link-edit address.
If bit 7 of the flag byte is not on, the overlay linkage
editor links the load module to address X'0000".

Figure 8-3 (Part 2 of 3). Options Record

Licensed Material—Property of IBM

Subroutine Member Library Name: If an object module
is requested (see bits 5 and 6 of the object module field),
it is cataloged as a subroutine member in this library. If
this field is blank, the default is CIBOTLB (compiler
information block output library — from the COMPILE
OUTLIB OCL statement).

User Library Name: If a load module is requested (see
Load module and Flag Byte fields), the user subroutine
members used to create the load module are found in
this library. A subroutine name beginning with a #
causes the overlay linkage editor to search #LIBRARY .
If the field is blank, the default is CIBOTLB (compiler
information block output library — from the COMPILE
OUTLIB OCL statement).

Load Member Library Name: If a load member is
requested (see Load module and Flag Byte fields), it is
cataloged as a load member in this library, If this field
is blank, the default is CIBOTLB (compiler information
block output library — from the COMPILE OUTLIB
OCL statement).

Figure 8-3 (Part 3 of 3). Options Record

USER ENTRY

The overlay linkage editor can be loaded by using a LOAD
#OLINK OCL statement. The user must supply control
statements.

INPUT FOR USER ENTRY

Input for the user entry is described in the Overlay Linkage
Editor Reference Manual.

OUTPUT FROM USER ENTRY

Output of the overlay linkage editor for user entry is an
object program cataloged as a load member in the library.

A storage map and cross-reference list are printed depend-
ing on the MAP parameter of the OPTIONS statement.

OVERLAY LINKAGE EDITOR PHASES AND
ROUTINES

The overlay linkage editor consists of the following phases
and routines:

® Compiler entry phase (#OLYNX)

® User entry phase 1 (#OLINK)

® User entry phase 2 (#OLI1)

® User entry phase 3 (#0L12)

® User entry phase 4 (#OLI3)

e Autolink segment list build (#OLAF)
® Cross-reference segment list build (fOLAH)
@ Sort autolink segment list (#OLAJ)
® Qverlay design (#OLAP)

® Qverlay segment list build (#OLAR)
® Storage map phase (#OLAT)

® Relocate, resolve EXTRNSs, and build load module
phase (#OLBE)

® Library control phase (#OLBO)
® Specification module for the syntax checker (#OLISP)
® Error message print phase (#OLMSG)

® Error routine (fOLER)
Minimum Storage Requirements

The overlay linkage editor requires 14K of main storage for
execution.

Introduction 8-5

Licensed Material—Property of I1BM

User Entry

<>

—— JWORK
Keyboard :> Subroutine

Members
Read OCL Statements, : ~——_
Control Statements, and $SOURCE

TEEEE——— N . -
" Subroutine Member(s) :> Preauto Link
Segment List

> ~—

Procedure
Member

AN

Link Subroutine Members <

Into Load Module

— 3SOURCE
Load

Modules

Library
Subroutine
Members

AN

Catalog Load
Module

Library
Load
Member

End of Job

Figure 8-4. Overview of Overlay Linkage Editor User Entry

8-6

Licensed Material—Property of IBM

Method of Operation

The overlay linkage editor can be entered in two ways:

® Diagram 8.1 shows an overview of the compiler entry.
® Diagram 8.2 shows an overview of the user entry.

Diagrams 8.3 through 8.17 show the functions of the over-
lay linkage editor.

Method of Operation 8-7

Licensed Material—Property of 1BM

From: Compiler

. INPUT i _ I ?PROCESS OUTPUT

Main Storage 7 n Catalog object modules as subroutine Disk:
: members ® $SOURCE —

} load modules
Transient Area _ a Link object modules and subroutine and segment
- members into load modules lists
User Area: : Library —
(see Figure 8-5)| | B Catalog load modules as load members subroutine and
i load members
$WORK —

Disk: object modules
@ $WORK — !

object modules
® Library —

subroutine

modules

To: Control Storage End-of-Job
Transient ($E0J)

Diagram 8.1. Overview of Overlay Linkage Editor Compiler Entry

From: User Entry

1 INPUT resommmsme-wmy I J PROCESS s —— OUTPUT &

Main Storage ' n Read control statements . , Disk:
i : ! © $WORK —

; ; B Link object modules and subroutine : object modules

Transient Area ; ‘ members into load modules ' ¢ ©® $SOURCE —

¢)) segment lists

User Area: i H Catalog load modules as load members : : and load modules f
(see Figure 8-6){ : : ‘ Library — '

load members

Control statements

Disk:
® Control state-

ments in
procedure
library
Library —
subroutine
members

To: Control Storage End-of-Job
Transient ($E0J)
Diagram 8.2. Overview of Overlay Linkage Editor User Entry

- 8-8

Licensed Material—Property of 1BM

From: Compiler

INPUT I r PROCESS mmemareoerrmsmmsrrms

BN Get SWORK and $SOURCE
file information

OUTPUT e

T T

Storage:
LOMMON

Main Storage

E3 initialize LOMMON

Transient Area

User Area:
#OLYNX

ER Move data from $WORK to LOMMON

. n Store next $WORK sector

$WORK —
OPTNS data and
object modules

B Exit dependent upon request

To: Library Control Phase (# OLBO) or
Autolink Segment List Build (#OLAF)

MODULE/
DESCRIPTION ROUTINE
n Get $WORK and $SOURCE file information from compiler information block. #OLYNX
E Initialize 800-byte work area used by OLE routines (LOMMON).
[E} Read OPTNS and name ESL records.
Put records in LOMMON.
n Put relative number of next available $WORK sector in LOMMON.
B If object module to be cataloged as subroutine member, go to library control phase (#OLBO).
If not, go to autolink segment list build (#OLAF).
Issue error messages as needed. #OLER

Diagram 8.3. Compiler Entry Phase (#OLYNX)
Method of Operation 89

Licensed Material—Property of IBM

From: — Compiler Entry Phase (# OLYNX)
— User Entry Phase (#OLINK)
— Library Control Phase (#OLBO)

l r PROCESS

Main Storage n Identify additional modules Disk:
® $SOURCE —
) Find subroutine members referenced by autolink segment
Transient Area EXTRNs list
$WORK —
User Area: . ’ B Build autolink segment list object modules
#OLAF :

INPUT

OUTPUT

: n Write text to disk Storage:
: ® | OMMON
Disk: i E Compress autolink segment list
® $SOURCE ~ f

preautolink

segment list

$WORK —

object modules

Library —

subroutine

members
Storage:
® | OMMON

To: Cross Reference Segment
List Build (#OLAH)

: MODULE/
DESCRIPTION ROUTINE
n Read external segment list for eaqh object module in $WORK to determine if any additional EXTRNSs required. #OLAF
Find additional modules (subroutine members) referenced by EXTRNS. $MALFN
Put subroutine members in $WORK on disk. #OLAF
a Scan modules for EXTRNs.
Assign EXTRN numbers to segments found {duplicate segments are given same number).
Place all EXTRN segment elements in autolink segment list.
-‘Write object module text records back to $WORK as they are encountered.
Place an E in first byte of last text record of each module.
B Delete all duplicate EXTRN numbers.
Delete all but one COMMON entry from autolink segment list.
Issue error messages as needed: .) #OLMSG
® |f message to be printed, use (#OLMSG).
® [f message to be displayed, use (#OLER). #OLER

Diagram 8.4. Autolink Segment List Build (#OLAF)

8-10

Licensed Material—Property of IBM

From: Autolink Segment List Build (#OLAF)
INPUT s T —

OUTPUT peeesvaes

b e

I r PROCESS

Main Storage ! n Read records from $SOURCE v Disk:
| ; : ® $SOURCE —
B Build cross-reference segment list : : cross segment
Transient Area ; list and
: : autolink segment
User Area: : : list
#OLAH : ‘ !

Storage:
o LOMMON
Disk:
@ $SOURCE —
autolink
segment list
and preautolink
segment list

Storage:
© LOMMON

To: Sort Autolink Segment List

(#OLAJ)
MODULE/
DESCRIPTION ROUTINE
Read records from autolink segment list in $SOURCE. #OLAH
Build cross-reference segment list containing module name, followed by an entry point, followed by modules
referencing entry point.
Scan autolink segment list for modules with EXTRNSs.
Add EXTRNs to cross-reference segment list after either module name or entry point.
Issue error messages as needed: . #OLER
@ |f message is to be displayed, use # OLER.
® |f message is to be printed, use #OLMSG. #OLMSG

Diagram 8.5. Cross-Reference Segment List Build (#OLAH)

Method of Operation 8-11

Licensed Material—Property of IBM

From: Cross-Reference Segment List Build

(#OLAH)
T H rPROCESS

‘ n Sort autolink segment list

OUTPUT

Disk:

® $SOURCE —
sorted segment

list

Main Storage

Transient Area

User Area:
#OLAJ

Storage:
® LOMMON

Disk:
9 $SOURCE —
autolink

segment list

Storage:
6 LOMMON

To: Overlay Design (#OLAP)

MODULE/
DESCRIPTION : ROUTINE

Group autolink segment list elements into sublists by: #OLAJ
Common area (uses only largest common area on autolink segment list).
Root mainline.

Zero priority elements.

Elements used by zero priority elements.

Category.

User overlay.

Issue error messages as needed. #OLER

Diagram 8.6. Sort Autolink Segment List (# OLAJ)

8-12

Licensed Material—Property of IBM

From: Sort Autolink Segment List (# OLAJ)

I r PROCESS

Main Storage n Calculate storage requirements Disk:

® $SOURCE —

8 Produce overlays if required sorted segment
Transient Area list

OuUTPUT

User Area: Storage:
#OLAP ® LOMMON

Disk:

® $SOURCE —
sorted segment
list

Storage:
® L OMMON

To: Overlay Segment List Build

(#OLAR)
MODULE/
DESCRIPTION ROUTINE
n Accumulate total storage size used by all segments in sorted segment list. #OLAP
Compare accumulated storage size to total usable storage size available to determine if overlay required.
Determine overlay structure dependent on storage size available.
Identify duplicate or unused elements that can be eliminated based on overlay structure.
Issue error messages as needed.) #OLER

Diagram 8.7. Overlay Design (#OLAP)

Method of Operation 8-13

Licensed Material—Property of IBM

From: Overlay Design (#OLAJ)

m INPUT : = I r PROCESS

Main Storage) Disk:

i © $SOURCE
Assign addresses — Sorted
Transient Area . A segment list
Build text) — Overlay
User Area: . segment list

#OLAR ® 3$WORK

— Test records

OUTPUT m=aacwsmm

Disk: - ’ Storage:
©® $SOURCE : : ® | OMMON
— Cross-
reference
segment
list
Sorted
segment
list

Storage:
® | OMMON

To: Storage Map Phase (#OLAT)

: MODULE/
DESCRIPTION ROUTINE

n Read data into main storage from sorted segment list and cross-reference segment list. #OLAR
Reformat data to build overlay segment list.
B Assign addresses to each module and EXTRN entry in overlay segment list.
B Build object text for:
" @ OQOverlay fetch routine.

® Overlay fetch table.
® Overlay transfer vectors.

Issue error messages as needed. #OLER

Diagram 8.8. Overlay Segment List Build (# OLAR)
8-14

Licensed Material—Property of IBM

Main Storage

From: Overlay Seg

faar ety .

Transient Area

User Area:

ment List Build (#OLAR)

I r PROCESS

> Format output ' Disk:

n OUTPUT

O $SOURCE:
Print Headings : — Cross-
' reference
a Print map and cross-reference segment list
' — Overlay

#OLAT Print messages : “ segment list

. Printer:
Disk: Storage map
® $SOURCE:) . . Cross-reference
— Cross- list
reference Messages

segment list
— Overlay
segment list

Storage:
© LOMMON

To: Relocate, Resolve Externs,
and Build Load Modules Phase
(#OLBE)

MODULE/
DESCRIPTION ROUTINE

n Format output according to option selected — output contains: #OLAT
© Storage map.
@ Cross-reference list.
® Messages.
Output heading to printer.
B Read overlay segment list.

Print entry for each common area and module including cross-reference and entry point.

n Print informational messages and error messages (if any) according to option selected.

Issue error messages as needed. #OLER

Diagram 8.9. Storage Map Phase (#OLAT)
Method of Operation 8-15

Licensed Material—Property of IBM

From: Storage Map Phase (#OLAT)

I r PROCESS

n Read overlay segment list

INPUT

Main Storage

3 Build EsL table
Transient Area

Relocate object modules
User Area:

#OLBE B} Write load module to $SOURCE

ﬂ Store overlay disk addresses
Disk:
® $SOURCE:
— OQverlay
segment list

B Store fetch table address

® 3$WORK
— Sorted
object text

Storage:
® LOMMON

To: Library Control Phase
(#0OLBO)

OUTPUT

Disk:
® $SOURCE:
— Load module

Storage:
® | OMMON

DESCRIPTION

MODULE/
ROUTINE

n Read data into main storage from overlay segment list.
Build ESL table entry for each external reference in overlay segment list.
a Read object module for each overlay.

Place RLDs in buffer to be written to load module.

Adjust and place text records addresses in buffer to be written to load module.
n Place RLDs and text record addresses in load module.

Write load module to $SOURCE.
B Put relative disk address of each overlay into overlay fetch table in root phase.
E Put overlay fetch table address following last RLD in root phase.

Issue error messages as needed:

® If message is to be displayed, use # OLER.
® |f message is to be printed, use # OLMSG.

#OLBE

#OLER

#OLMSG

Diagram 8.10. Relocate, Resolve EXTRNSs, and Build Load Module Phase (#OLBE)

8-16

Licensed Material—Property of IBM

From: Compiler Entry Phase (# OLYNX) or
Relocate, Resolve EXTRNSs, and Build Load Modules Phase (#OLBE}

I r PROCESS

" >8 BB Determine output

a Catalog modules

INPUT m OUTPUT &

Disk:
O Library:
— Subroutine
members
— Load
members

Main Storage

Transient Area

a Pass control to appropriate module

User Area:
#0LBO

Storage:
© LOMMON

Disk:
® $WORK
— Object
modules
® $SOURCE
— Load module

Storage:
® LOMMON

To: End-of-Job Transient ($EQJ) or
Autolink Segment List Build (#OLAF)

' MODULE/
DESCRIPTION ROUTINE
n Check LOMMON to determine if object module or load module to be cataloged in system library. #0LBO
Create entry for module in library directory containing: $MAPGS
® Module type.
© Name.
@ Relative sector address.
® OQOther library directory information.
Branch to autolink segment list build (# OLAF) if user program requests that object module cataloged be #0OLBO
linked into load module.
Otherwise pass control to end-of-job transient ($E0J).
Issue error messages as needed; if message is to be displayed, use # OLER. #OLER

Diagram 8.11. Library Control Phase (#OLBO)

Method of Operation 8-17

Licensed Material—Property of IBM

From: Caller

m INPUT L i rPROCESS g : poamy m OUTPUT m

Main Storage — . Retrieve error code ’ Display screen
. ; message

: B Build parameter list
Transient Area :

- Display messages
User Area:

#OLER n Pass control to appropriate module

ARR:
@ Error Code

To: Caller -or-
End-of-Job Transient ($EQJ)

MODULE/
DESCRIPTION ROUTINE
B Address recall register (ARR) contains address of error code used as displacement into error table. #OLER

#l Build and pass parameter list to SYSLOG.

E Display messages on SYSLOG device. #CLSG

n If option 3 response to error, # CLSG passes control to end-of-job transient ($EOJ). #OLER

I1f option 0, 1, or 2 response to error, control returns to caller.

Diagram 8.12. Error Routine (#OLER)

8-18

Licensed Material—Property of IBM

From: Autolink Segment List Build (#OLAF)

INPUT I r PROCESS - ey m OUTPUT

Main Storage ' —— Print messages | Printer:

O Message

Pass control to appropriate module
Transient Area

User Area:
#OLMSG

Disk:
® 3$SOURCE
— Segment
lists

Storage:
o LOMMON
® LOWORK

To: — Cross-reference Segment
List Build (#OLAH)
— Sort Autolink Segment List
(#OLAJ)
— Error Routine (# OLER)

MODULE/
DESCRIPTION ROUTINE
n Print message on system printer. #DPDM
Exit to error routine (#OLER) for terminal errors. #OLMSG

Exit to sort autolink segment list (# OLAJ) if message 3109 or 3111 issued.

Otherwise exit to cross-reference segment list build (#OLAH).

Diagram 8.13. Error Message Print Phase (#OLMSG)

Method of Operation 8-19

Licensed Material—Property of IBM

From: Caller

P INPUT sy E [PROCESS

Main Storage I, Allocate and open $WORK and $SOURCE Storage:
; ® LOMMON
: E Initialize LOMMON ® Syntax checker
Transient Area * _ communication
B Load syntax checker and error routine table

OUTPUT

User Area: i)
#OLINK) n Read control statements

B Check for syntax errors

Disk or Keyboard:
© Control
statements

To: User Entry Phase 4

(#0OL13)
MODULE/
DESCRIPTION ROUTINE
AR Allocate SWORK and $SOURCE files. #OLINK
Open $WORK and $SOURCE files.
§2§ Initialize 800-byte work area used by overlay linkage editor routines (LOMMON).
EXH Load syntax checker (#USYX) to compare control statement parameters with #OLISP module.
Load error routine (# OLER) to display error messages (if any).
Read control statements:
Q@ // PHASE #OLI1
9 //OPTIONS
P © //MODULE #0LI2 4
© // GROUP #0LI3
© // CATEGORY
© // EQUATE
© //END
3 Syntax check control statement parameters. #USYX
Issue error messages as needed; if message is to be displayed, use #OLER. #OLER

Diagram 8.14. User Entry Phase 1 (#OLINK)

8-20

Licensed Material—Property of I1BM

From: User Entry Phase 1 (#OLINK)

p INPUT ‘ H r PROCESS

b 5

— ' Process valid control statements

5 OUTPUT m

Main Storage Storage:

: OPTIONS © LOMMON
: PHASE
Transient Area
User Area:
#0OLI1
Storage:
® Syntax checker
communication
table:
— OPTIONS
— PHASE
o o
To: User Entry Phase 1
(#OLINK)
MODULE/
DESCRIPTION ROUTINE
AM Retrieve OPTIONS and PHASE data from syntax checker communication table. #OLI1
Put data in LOMMON.
Issue error messages as needed; if message is to be displayed, use #OLER. #OLER

Diagram 8.15. User Entry Phase 2 (#0OLI1)

Method of Operation 8-21

Licensed Material—Property of IBM

From: User Entry Phase 1 (#OLINK)

INPUT I r PROCESS

Main Storage n Process valid control statements Disk:
MODULE ® 3WORK

— Subroutine
Transient Area n Find and copy modules to $WORK - member(s)

OUTPUT

. User Area:
#0LI2

Storage:

® Syntax checker
communication
table:
— MODULE

Disk:
® |ibrary
— Subroutine
member(s)

To: User Entry Phase 1

(#OLINK)
MODULE/
DESCRIPTION ROUTINE
n Retrieve names of modules to be included in load module from syntax checker communication table. #0LI2
Find modules to be included and put modules in $WORK on disk. $MALFN
Issue error messages as needed: #OLER
® |f message is to be displayed, use # OLER.
® |f message is to be printed, use #OLMSG. #OLMSG

Diagram 8.16. User Entry Phase 3 (#0L12)
8-22

Licensed Material—Property of IBM :

From: User Entry Phase 1 (#OLINK)

I r PROCESS

Main Storage n Process valid control statements Disk:
CATEGORY ® $SOURCE
GROUP — Segment
Transient Area EQUATE lists

® SWORK

OUTPUT

User Area: Process valid END statement
#0OLI3 ‘E’ (end) record

Storage:

® Syntax checker
communication
table:
— CATEGORY
— GROUP
— EQUATE

To: Autolink Segment List Build

(#OLAF)
MODULE/
DESCRIPTION ROUTINE
Bl Process valid CATEGORY, GROUP, or EQUATE control statement: #0LI3
® Retrieve control statement data from syntax checker communication table.
® Build preautolink segment list.
B Retrieve END statement from syntax checker communication table.
Perform final write to $WORK and $SOURCE.
Pass control to autolink segment list build (#OLAF).
Issue error messages as needed; if message is to be displayed, use #OLER. #OLER

Diagram 8.17. User Entry Phase 4 (#OL13)

Method of Operation 8-23

Licensed Material—Property of IBM

Program Organization

The overlay linkage editor is divided into self-overlaying
routines. The sequence in which routines are loaded and
which routines are used depends on whether the compiler
entry or the user entry is used and which functions are
required. Figures 8-5 and 8-6 are the storage maps for the
compiler entry and user entry overlay linkage editor
modules,

Figures 8-7 and 8-8 show the overlay linkage editor compiler
entry and user entry control flow.

8-24

Licensed Material—Property of IBM

sSSP
LOMMON W
Common Area
¢ #OLYNX Load Module
Compiler Access
Method
S~ —
-~ ~
~ _~
#OLYNX T -l T~
~ -~ ~—
~ -~
S~~~ -~ — ~~ —
#OLBO +~ — T~
~ ~ - ~ ~
] 256 Bytes
=~ —_ ~ — -
#OLAF
#OLAR
#OLER #OLAH
J #OLAJ
#OLAP
#OLAT
#OLBE
A " #OLER
~ - —~ - #OLMSG
~ ~
~ - -
~— -~
~ —~
-~ ~ -~ =~
~
\ \
\ -
~
—
~
S~

Figure 8-5. Compiler Entry Storage Map

Licensed Material—Property of IBM

Program Organization 8-25

SsP

LOMMON
Common Area

#OLINK Load Module

Compiler
Access Method
— g \\
~— ~—
#OLINK ~~— T~
~— — ~ —_
— ~
- — ~ —~ — - .
#OLISP ~ —
\\ ~ —
T~ —~ ~—~ ~
™~ - —_ ~ — ~]— —_ : ~ _
1/0 Area ~ ~ _ T~ ~A#OLAF— — — L "~ —
-~ —~ #OLAJ T
—~ \\\ \ #OLER 4OLAP #0LBO
#OLINK R HOLAT #OLAR
Work A #OLBE
ork Area #OLMSG
= ~
~ - ~ —_
~ ~ .
~ ~
#OLI1
#OLI2
#OLI3
#USY X
—
~—
\ \ -
—~ b #OLER
\ —_
~— —
—
~
~—
~
~—

Figure 8-6. User Entry Storage Map

8-26

Licensed Material—Property of 1BM

Compiler

Entry

Compiler If Request to Catalog Module Library

Entry as a Subroutine Member Control

Phase Phase
{#OLYNX) (#OLBO)

If Link Requested

Autolink
Segment End-of-Job
List Build ($E0J)
-Control Storage-
(#OLAF)

If Error Message to Print

Cross Error
Reference Message
Segment Print
List Build Phase
(#OLAH) (#OLMSG)
Sort
Autolink
Segment
List
(#OLAJ) From Caller
Overlay Error
Design Routine.
(#OLAP) (#OLER)
Overlay To Caller
Segment
List Build
(#OLAR)
Storage
Map Phase
(#OLAT)

Relocate, Resolve
Externs, and
Build Load
Module Phase
(#OLBE)

Figure 8-7. Overlay Linkage Editor Compiler Entry Control Flow

Program Organization- 8-27

Licensed Material—Property of IBM

8-28

User

Entry
1/ PHASE or User
// OPTIONS Entry
EEE—— Phase 2
(#oLI1)
User User
Entry // MODULE Entry
Phase 1 EEEE— Phase 3
(#OLINK) (#0LI2)
// GROUP, // CATEGORY, User
/] EQUATE, or // END Entry
Phase 4
(#0L13)

From
Caller

Error
Routine

(#OLER)

Autolink Error
Segment If Error Message to Print Message
List Build Print
Phase
{#OLAF) (#OLMSG)
Cross Storage
Reference Map
Segment Phase
List Build
(#OLAH) (#OLAT)
Sort Relocate, Resolve
Autolink Externs, and
Segment Build Load
List Module Phase
(#OLAJ) (#OLBE)
Overlay Library
Design Control
Phase
(#OLAP) (#0LBO)
Overlay
Segment End-of-Job
List Build ($EOJ)
-Control Storage-
(#OLAR)

Figure 8-8. Overlay Linkage Editor User Entry Control Flow

Licensed Material—Property of IBM

To
Caller

Data Areas

This section describes the data areas that pass information
between routines of the overlay linkage editor.

OVERLAY LINKAGE EDITOR COMMON (LOMMON)

The overlay linkage editor common area (Figure 8-9)
passes control information between the various routines.
Most of LOMMON is initially set to zero by user entry
phase 1 (#OLINK) or compiler entry phase (#OLYNX).

VERB LIST (OVERBS)

OVERBS is a list of constants passed to the syntax
checker (#USYX) each time the syntax checker is called
by #OLINK. The third and fourth bytes of the syntax
checker parameter list contain the address of the verb
list. Figure 8-10 shows the format and contents of the
verb list.

SEGMENT LIST ENTRIES

The various routines of the overlay linkage editor build
a series of segment lists. These segment lists are built in
the $SOURCE work file {Figure 8-11).

Each entry is 16 bytes long. The format of entries varies
between and within segment lists, depending on the type of
entry. (See Figures 8-17 through 8-22 for segment list for-
mats.) All data fields in the segment list entries are not
used for all types of entries, the column heading Applies to
Segment Type in each segment list indicates which types of
entries contain the data. Figure 8-17 contains a list of all
the segment types.

Data Areas 8-29

Licensed Material—Property of IBM

Displacement of Length in Routines that

Leftmost Byte Bytes in Change Data
in Hexadecimal Label Decimal Description (#OLxxx)
0 LORTYP : 1 Object module information YNX, BO

X'80" = Reserved
X'40' = Reserved
X'20' = Reserved
X'10" = Reserved
X'08' = Reserved
X'04' = Catalog the object module as a
subroutine member with a
RETAIN-R (replace) in the
library
X'02' = Catalog the object module as a
“subroutine member with a
RETAIN-P {permanent) in
the library
X'01" = Reserved

If this byte is X'00’, there is no object

module
1 LOOTYP 1 Load module information INK, YNX, 12,
13, AT
X'80" = Reserved
X'40" = Reserved
X'20’ = Reserved
X'10’ = Reserved
X'08' = Reserved
X'04' = No storage map option
X'02' = No cross-reference list option
X'01' = Catalog the load module as a load
member in the library
X'00’ = Do not catalog the load module
(If neither an object or a load
modaule is specified, a load mem-
ber is cataloged)
2 LOSWT1 1 Overlay linkage editor switch 1 INK, YNX, AF,
11,12, 13

X'80 = Segment list is in $SOURCE
X'40' = User call

X'20' = User specified overlays
X"10' = Entry point to be resolved
X'08' = Groups in segment list
X’'04’ = Reserved

X'02' = Print messages

X’01’ = Retain-R (replace)

Figure 8-9 (Part 1 of 5). Common Area (LOMMON)

8-30

Licensed Material—Property of IBM

Displacement of
Leftmost Byte Bytes in
in Hexadecimal Label Decimal
3 LOSWT2 1
4 LOUSLB 2
6 LOSYLB 2
8 LORLIB 2
A LOOLIB 2
c LONOVL 1
D LOEND@ 2
F LOCRSZ 2
1" LOOVNO 2
13 LOFTBL 2
15 LOAUTO 2
17 LOXREF 2
19 LOSORT 2
1B LOOVER 2
1D : LOLIMT 2
1F LOWKCS 2
21 LOLCSB 3

Figure 8-9 (Part 2 of 5). Common Area (LOMMON)

Length in

Description
Overlay linkage editor error switch

X80’ = System category calls another
category

X'40" = DTF in last 1K of storage

X'20’ = All elements in group are category
1-7

X’'10’ = No module for group element

X'08' = Entry point not in common program

X'04’ = Entry on options not found
X'02’ = Storage size on options statement
X'02' = Program will not fit

X’'01" = Terminal error

User library format 1 address

System library format 1 address

Subroutiﬁe member library format 1 address

Load member library F1 address

Number of overlays

End of storage address

Actual storage size for storage map execution
Low, high system overlay numbers
Displacement of overlay fetch table

Relative entry number of auto segment list

Relative entry number of cross-reference
segment list

Relative entry number of sort segment list
Relative entry number of overlay segment list
Relative entry number of last delimiter

Relative sector number of the next sector in
$WORK

Sector address of data start

Licensed Material—Property of |1BM

Routines that
Change Data
(#OLxxx)

AF, AH, AJ, AR,
AT, 11, YNX .

INK, YNX
INK, YNX
INK, YNX
INK, YNX
AP

INK, YNX
AP, YNX, BO
AR

AR

13

AF, BE

AH, BE
AJ, AP, BE
AR, BE

13, 12, INK,
YNX, AF, AR

INK, YNX, BE

Data Areas 8-31

Displacement of
Leftmost Byte
in Hexadecimat

24

25
2B
2D

2D

2E
30
31

33

34

35

Label

LOLHDR

LOLNAM
LOLLCS
LOLTXS

or
LOLCAT

LOLLEA

LOLRLD

LOLSCA

LOLCSZ

LOATB1

LOATB2

Length in
Bytes in

Deci

1

mal Description

Library type; R (subroutine) or O (load
member)

Module name

Sector address of library entry

Number of text sectors in load member

Overlay category of subroutine member
X'00’ = Root category
X'01’ through X'7E’ = Overlay category

value
Link edit addresses
RLD displacement

Start control address

Main storage size in hexadecimal (in 1/4 K
increments)

1st attribute byte

X'80" = SSP module

X'40’ = Privileged module — O only
X'40' = Do not log OCL — P only
X'20' = Non-inquirable module

X'10' = SFGR format load module — O only

X’10’ = Procedure with data — P only
X'08’ = Source required

X'04’ = Non-base SSP module

X'02' = PTF applied bit

X'01’ = Module has overlays

2nd attribute byte

X'80’ = Dedicated module
X‘40' = Never-ending program module

X'20' = Module has OXRF format index

table

X’10’ = Module can only be loaded from

system console

X’'08’ = Cannot load program via // LOAD

X'04’ = Program common

X'02' = Program with utility control
statements

X'01’ = Module has OXRF WTG table

Figure 8-9 (Part 3 of 5). Common Area {(LOMMON)

8-32

Licensed Material—Property of IBM

Routines that
Change Data
(#OLxxx)

INK, YNX, BE

IN1,YNX, [2,BO
BO
BE, BO

YNX

INK, YNX, AR, I1

BE

YNX, 12, AJ, AR

INK, YNX, 11, BO
11, 12, AF,

R/O BE, BO,
YNX, AJ

11,12, AF,
R/O BE, BO,
YNX, AJ

Displacement of
Leftmost Byte
in Hexadecimal

36

37

38

3A

3B

3D

5C

5E

5F

5F

61

62

63

69

69

6E

73

Label

LOATB3

LOMRTX

LoJcB@

LOLLVL

LOLTSC

LOWORK

LOCZER
LOCONE
LOCHFF
or
LOCM1
LOSCAT
LOERCD

LOENTR

LOERR

LOAF

LOAH

LOAJ

Length in
Bytes in
Decimal

1

30

5

5

Figure 8-9 (Part 4 of 5). Common Area (LOMMON)

Licensed Material—Property of IBM

Description

3rd attribute byte

X’'80" = $WORK2 file required
X'40' = Do not swap this task
X’20’ = High level of dedication

X'10’ = Reserved
X'08' = Reserved
X'04' = Reserved
X'02’' = Reserved
X'01' = Reserved

MRTMAX

JCB address

Release level

Total sector count

Phase work area

Note: The phase work area can be used
by each phase. Information can be
passed from one phase to the next in this
area, but the phase work area is not to be
used for passing information from one
phase to phases that are two or three

loads away.
Constant of zero
Constant of one
Constant X'FFFF’
Constant of minus one
System category
Error code

Entry point name

#OLER error code
Load list for #OLAF
Load list for #OLAH

Load list for #OLAJ

Routines that
Change Data
(#OLxxx)

IN1, IN2, AF,

BE, BO, YNX,
Al

YNX, 11, BO

YNX, 11, AT

IN1, INK, YNX

YNX, BE

any

INK, YNX
INK, YNX
INK, YNX
INK, YNX
AH

AT, AF

INK, i1, AH,
YNX

YNX

AF

AF

Data Areas

8-33

Displacement of
Leftmost Byte
in Hexadecimal

78

7D

82

87

8c

91

96

9C

AD
AE
CE

EE

109
124
14D
203
288

320

Label

LOAP

LOAR

LOAT

LOBE

LOBO

LOER

LOMS

LOSWT3

LOEND

LOIOBS

Loiosw

LOCAMS

LOCAMW

LODTFP

CAM

LOPRCA

LOPIOA

LOPHSE

Length in
Bytes in
Decimal

6

6

17
32
32

27

27

41
182
132
152

{variable)

Figure 8-9 (Part 5 of 5). Common Area (LOMMON)

8-34

Description

Load list for #OLAP
Load list for #OLAR
Load list for #OLAT
Load list for #OLBE
Load list for #OLBO
Load list for #OLER
Load list for #OLMSG

Flag byte: X’80' = RLDs for load member

End of LOMMON
10B for $SOURCE
I0B for $WORK

$SOURCE CAM (compiler access method)
contro! block

$WORK CAM control block
DTF for printer

Start of CAM

Printer logical record
Printer physical area

phase area

Licensed Material—Property of IBM

Routines that
Change Data
(#OLxxx)
AF

AF

AF

AF

AF

INK, YNX

AF

INK, YNX, MSG,
AT

Displacement of
Leftmost Byte

0

1

6

7

$SOURCE

Preautolink
Segment List
(Figure 8-12)

Autolink
Segment List
(Figure 8-13)

Cross-reference
Segment List
(Figure 8-14)

Sort Segment
List
(Figure 8-15)

Overlay
Segment List
(Figure 8-16)

Length in
Label Bytes
OVERBS 1

1

Figure 8-10. OVERBS Verb List

Segment List Entry Types

00

01

02

03

04

05

06

0B

ocC

oD

OE

OF

FE

FF

Module name

Entry point
EXTRN

Weak EXTRN
Global common
Local common
Conditional EXTRN
EQUATE entry
Transfer vector

Reference a previous name
or entry point

GROUP entry
CATEGORY entry
Nulled entry

End of segment list

Figure 8-11. Segment Lists in $SOURCE and Segment List

Entry Types

Licensed Material—Property of IBM

Description

PHASE verb ID
OPTIONS verb ID
MODULE verb ID
GROUP verb ID
CATEGORY verb 1D
EQUATE verb ID
END verb ID

X'FF’ end of verb list

Data Areas

8-35

Displacement of
Leftmost Byte
in Hexadecimal

l15ee Figure 8-11

0

0

E

Applies to
Segment
Type

OE, OF

OE, OF, 0B
OE

OE

OE

OE, OF

OE

OE, OF

OE

OE, OF
OE, OF, OB
0E

OE

0E

2 pisplacement within $SOURCE .

Figure 8-12. Preautolink Segment List

8-36

Length
in Bytes

1

Description

Bits 0-3 = Reserved

Bits 4-7 = segment type!

Group number

Category override number

Work area — original category
Reserved

Bit 7 = User area specified for module

Reference number — pointer to module
element in autolink segment list!

Reference number — pointer to lead
element in last overlay?

ESL sequence number
Module name
Reserved

Module element pointer (moved from bytes
6 through 7)

Reserved

Licensed Material—Property of IBM

Routines that
Change Data
(#OLxxx)

13

AF

AJ

AF

AF

AJ

AF

Displacement of Applies to
Leftmost Byte Segment
in Hexadecimal Type
0 -
00

01, 02, 03,
04, 05

02,03

00, 01

00, 01, 02,
03

00

00
02, 04,05

00
All

1 00, 01, 02,
03

2 00
2 01
2 00
3 00

00

00
00
00
00

see Figure 8-11

Length
in Bytes Description
1 This byte indicates the following
X'80’ = Reserved
X'80" = Entry point or references an
entry point
X'40" = Resolved to module and/or entry
X'40’ = This module or entry point has an
EXTRN referencing it
X'20" = Work area must be OFF at phase
end
X'20’ = Used — do not place in structure
X'10’ = Calls a user routine or requires a
“transfer vector
X'10’ = Delete this element when com-
pressing list
X'10" = Module already placed in root
Bits 4-7 = Segment type’
1 Category
2 $WORK address of object code
2 Entry displacement from start of module
1 Number of entry points
1 Module information

X'80’ = Module requires boundary
alignment

X'40' = Module calls a user routine
X'20’ = Module has |/0 dependency
X’10’ = Module already in an overlay

X'10" = Substructure pointer aIready built

Figure 8-13 (Part 1 of 2). Autolink Segment List

Licensed Material—Property of I1BM

Routines thét
Change Data
(#OLxxx)

AF

AF

AF

AF

AF

AJ

AF

AF

Al
AF

AF, AH

AF
AF

AH

AH

AH
AH
A

Al

Data Areas

8-37

Displacement of
Leftmost Byte
in Hexadecimal

4

6

c

E

Applies to
Segment

Type
00

00, 01, 02,
03, 04

00, 01,02,
03, 04, 05

00, 01, 02,
03, 04,05

00

00

00

Length
in Bytes

2

2

Figure 8-13 (Part 2 of 2). Autolink Segment List

Displacement of
Leftmost Byte
in Hexadecimal

0

1

1See Figure 8-11

Applies to
Segment
Type

00, 01, 0D
00, 01

00,01,0D
00, 01,0D
00, 01, 0D

00, 01, 0D

Length
in Bytes

1

Figure 8-14 (Part 1 of 2). Cross-Reference Segment List

8-38

Description
Object code length

Reference number — pointer to equal ESL
number in autolink segment list

ESL number

ESL name

Reference number — pointer to equal 00
type in cross-reference segment list

Work area

Reserved

Description
This byte indicates the following
X'80’ = Reserved
X’40" = Reserved
X'20’ = Reserved
X'10’ = Reserved

Bits 4-7 = Segment type!

Category

Licensed Material—Property of IBM

Routines that
Change Data
(#OLxxx)

AF

AF

AF

AF, INK

AH

Al

AH

Routines that
Change Data
(#0Lxxx)

AH
AH
AH
AH
AH

AH

Displacement of Applies to Routines that

Leftmost Byte Segment Length Change Data
in Hexadecimal Type in Bytes Description (#OLxxx)
2 00, 01 2 Entry point displacement from start of AH
module
4 00 1 Work area = number of entry points on AH

original category

5 — 1 This byte indicates the following:
00 X'80’ = Module requires boundary AH
alignment
oD X'80' = Categories make this call a AH
potential program failure
00 X'40' = Module calls a user routine AH
00 X'20' = Module has 1/0 dependency AH
00 X’10" = Work area — OFF at end of phase AH
00 X'08’' = Work area — OFF at end of phase AH
00 X'04’ = No reference made to this AH
module
01 X’04’ = Same name as module name AH
00, 01 X'02' = Duplicate name AH
00, 01 X'01’ = Start control label AH
6 00 2 Location of object text in $WORK AH
{(X'FFFF’ = nontext)
8 00, 01, 0D 2 ESL number AH
A 00, 01, 0D 6 Module or entry point name AH

Figure 8-14 (Part 2 of 2). Cross-Reference Segment List

Data Areas 8-39

Licensed Material—Property of IBM

Displacement of Applies to
Leftmost Byte Segment
in Hexadecimal Type
0 -
oc
oc
00, 02, 04,
05, 0C
00, 02, 04,
05, 0C
1 00, 02
1 00, oC
2 00
2 oc
3 -
00
00
00
00
00
3 oc

!See Figure 8-11

Figure 8-15 (Part 1 of 2). Sort Segment List

8-40

Length
in Bytes Description

1 This byte indicates the following:
Bits 0-3 = Set of modules already summed
X'40Q’ = Set of modules contains a boundary

alignment module

Bit 0-3 = Reserved
Bits 4-7 = Segment type’

1 Category

1 Overlay number

1 Number of entry points this module

1 Number of entry points this overlay

1 This byte indicates the following:
X'80" = Module requires boundary

alignment
X'40" = Module calls a user routine
X’'20’ = Module has 1/0 dependency
X'20" = Work area
Bits 4-7 = Reserved
1 Overlay area used by this set of modules

at execution time

Licensed Material—Property of I1BM

Routines that
Change Data
(#OLxxx)

AP

AP

AJ

AJ

AJ
AP
AJ

AP

Al

Al
AJ
AP
Al

AJ

Displacement of
Leftmost Byte
in Hexadecimal

4

E

E

Figure 8-15 (Part 2 of 2). Sort Segment List

Applies to
Segment
Type

00, 04, 05
oc

00

02

00, 02, 04, 05

00

ocC

00

02
ocC
02, 04, 05, 0C

00

Length
in Bytes

2

Description

Length of object area associated with this ESL
Length of object area for this overlay candidate
Reference number — pointer to equal module
Pointer to module

ESL number

Pointer to module name element in cross-
reference list

Pointer to next set of modules in same
overlay

Chain to substructure referencing this
module

Chain to other substructure and module
Chain to last previous transfer vector element
Reserved:

Boundary alignment adjustment factor

Licensed Material—Property of IBM

Routines that
Change Data
(#OLxxx)

Al

AP

AJ

Al

Al

AJ

AP

AJ

AJ
AJ
Al

AP

Data Areas

8-41

Displacement of
Leftmost Byte
in Hexadecimal

ee Figure 8-11

0

c

E

Applies to

Segment Length
Type in Bytes
- 1
02

00, 02, 04, 05

00, 02, 04, 05 1
00, 02, 04, 05 2
00, 04, 05 . 2
02 2
00 2
00 2
02 2
00, 02, 04, 05 2
00 2
02 1
00 2
02 2
00, 02, 04, 05 2

Figure 8-16. Overlay Segment List

8-42

Description
This byte has the following meaning:

X'80’ = Work area = resolve to transfer
vector

Bits 4-7 = Segment type!
Overlay number
Object time address for this ESL
Object time length for this ESL
Corresponding module type ESL number
Address of module’s first transfer vector
$WORK location of object text
3-byte RLD object time address for this ESL
ESL number
Pointer to equal 00 type in cross-reference
segment list. X'FFFF’ designates overlay
fetch routine
Relative entry point position
Overlay size — first 00 type of overlay only
Pointer to 00 type entry in sort list

Reserved

Licensed Material—Property of IBM

Routines that
Change Data
(#OLxxx)

AR

AR
AR
AR
AR
AR
AR
AT
AR
AR

AR

AR
AR
AR

AR

OVERLAY FETCH ROUTINE

The overlay fetch routine is added to the root segment of
every program that has overlays. It is built by routine
#OLAR. When an overlay segment is needed during pro-
gram execution, the overlay fetch routine is called. It
fetches overlay segments from access devices and places
them in the overlay regions in main storage. Bits are set
in the overlay fetch table telling which overlay region is
used. The fetch table contains one 7-byte entry for each
overlay in the program. Figure 8-17 shows the overlay
fetch table entry format.

The overlay fetch routine requires three parameters as input:

1. Overlay number (1 byte)
2. Entry address of the overlay (2 bytes)
3. Return address from the overlay (2 bytes)

A transfer vector is built for each overlay in an object pro-
gram. Transfer vectors provide input parameters for the
overlay fetch routine. Overlay Linkage Editor routine
#OLAR builds transfer vectors. Figure 8-18 shows the
format of transfer vectors.

The overlay fetch routine checks to see if the requested
overlay segment is already in main storage. If it is, the
routine-branches to the entry address of the overlay; if
not, the overlay fetch table entries are checked to see if
they use the same main storage. |f they do, the overlay
is flagged as not being in main storage.

After the overlay fetch routine checks all entries in the
overlay fetch table, it sets the overlay-in-storage bit in the
overlay fetch table entry for the requested overlay. The
overlay fetch routine then loads the overlay segment and
branches to its entry address.

Relative | Number of | Main RLD| Flag
Sector | Sectors of | Storage Byte
Address | Text Load

Address

0 1 2 3. 4 5 6

Bytes Contents

0-1 — Relative sector address of the overlay seg-
ment. This is the number of sectors past
the SSS@ of the root segment of the over-
lay program as given in the object library
directory entry for the program.

2 — Number 6f sectors of text in the load
module. (Does not include the number
of related RLD sectors.)

3-4 — Relative main storage load address of
where the overlay segment is to be placed
in main storage by the system loader.
(Relative to the end of the supervisor

address.)
5 — RLD start displacement
6 — Flag byte — used at execution time by

the root segments overlay fetch routine.
X’'80" . OQverlay in storage

X'60’ System overlay area (category
values 1,2,3,5,6,and 7)

X’40’ Coresident area {user 1/0-inde-
pendent modules, category values
8-126)

Xf20' System overlay area (category
value 4)

X’10" User overlay area (user |/O-depen-
dent modules, category values

8-126)

X'0OF’ Reserved

Figure 8-17. Overlay Fetch Table Entry Format

Data Areas 8-43

Licensed Material—Property of |BM

B OVFR

DC XL1'NN’
number

ST OVFRS1,ARR Save the return address
Call the overlay fetch routine

One byte containing the overlay

Two-byte entry address

3. Mark off every 7-byte entry in the overlay fetch
table until the last entry is reached. The last entry
is X'FF’ (see Figure 8-20).

4, Number each entry left to right, starting with 1.
Each entry refers to an overlay (see Figure 8-20).

5. Look at the seventh byte in each entry. This is the
flag byte. The first bit will be on for every overlay

DC AL2 (entry)

Figure 8-18. Transfer Vector Format

HOW TO FIND AN OVERLAY

When a process check occurs, the followin

determine which overlays are in main storage and where

in storage at the time of the dump (see Figure 8-20).

6. Compare the numbers you gave the overlays in
storage at the time of the dump with the number
of the overlays in the storage usage map (Figure
8-19). This gives the names and addresses of the
segments within the overlays that were in storage
at the time of the dump (see Figure 8-20).

g steps can

to find them.

1. Locate the address of the overlay fetch routine on
the storage usage map of the source listing (Figure
8-19).

2. Locate the overlay fetch table in the storage dump
(see Figure 8-20). The overlay fetch table is 120
bytes past the start address of the overlay fetch
routine. [t can be obtained by this hexadecimal
formula: Address of overlay fetch routine +X'78' =
overlay fetch table.

OVERLAY LINKAGE EDITOR STORAG: USAGE MAP AND CROSS REFERENCE LIST

START OVERLAY CATEGORY NAME AND CODE LENGTH REFERENCED BY
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DECIMAL
0000 128 AAMOS oop7 215
AAMEQS
OVLFRTN olllL 273
v 20 AASO0O0 0274 634 AAMOS
AASEOOQ
u 20 AAS100 o115 277 AAMOS
AASELQ
u 20 AAS400 o12c 300 AAMOS5
AASE40
u 20 AAS800 0221 545 AAMOS
AASEBD
u 20 AAS500 0342 834 AAMOS
AASESQ
0600 & S 3 AAMW] 0oa7 167 AAS800 AAS4Q0 AASLI0Q AAMOS
06A7 4 S 3 AAWG 0247 679 AASB800 AASS500 AASOOO0 AAMOS
0600 5 S 4 AAW2 0163 323 AASS00 AAS400 AASODQO AAMOS
0600 6 S 6 AAWL 0239 569 AASSO0 AASOO0 AAMOS
0839 6 S [AAWY 0090 157 AAS400 AAS100 AAMOS

SYS-3130 I AalS MODULE®S MAIN STORAGE SIZE IS
2560 DECIMAL
SYS=3131 [0004 IS THE START CONTROL ADDRESS OF THIS MODULE
SYS$S-3132 I THE NONOVERLAY MAIN STORAGE SIZE IS
4700 DECIMAL
SYS5-3134 1 AA1LS MODULE IS CATALOGED AS A LOAD MEMBER
#LIBRARY IS THE LIBRARY NAME
24 TOTAL NUMBER OF LIBRARY SECTORS

Figure 8-19. Storage Usage Map and Cross-Reference List

8-44

Licensed Material—Property of 1BM

DATE 77/04/25

Start Address of Overlay
Fetch Routine

Length of Overlay Fetch Routine
Including Overlay Fetch Table
and Transfer Vectors

Overlays in Main Storage at
Time of Dump (Figure 8-26)

TCB~-3F68 IAR-0B70 ARR-0ADS XR1-2720 XR2-0500 PMR-00 PSR-04
ADDR 00 Q4 os oc 10 14 18 1C
[e]e]e]s) 34080023 C2020002 C2010028 C0O87017A CO870185 COB70190 CO8701A6 CO870198
0020 €0B70024 F40004D% 0D34C402 CLCLE2F) FOF040DS CS5E64040 CILLE6F4 40DSCS5E6
0040 34C40300 CS5€634C4 02004040 4040404) 40404040 40404040 404040 40404040
0060 40404040 40404040 40404040 4040404) 40404040 4040406 40606050 40404040
OUPLICATE LINES SAME AS A3DOVE
00co 40404040 40404040 40404040 40404043 40404001 lGUOZJJ?QEEZBQCZ 01000774
DOEOD 04717402 66740814 C20201DA 6C027502 7COT76D2 02717602 735F0076 T7IDOOLLF
o100 B8B8B006F2 102A6C00 3A067402 “ED20273 B96006F2 10038880 06E20207 BDFFOODO
0120 0139c202 ﬁl7ZBABO 0676026D F4N15201 7508&4FT5 0471C201 0028C202 00D23510
0140 014CO0FF FFQ23004 04000606 0010401'3:1E 03040200 BF.'?*%O‘I.DMJZUOAD lCE%DBO&
0160 02004210IgOOF0406 00#564&% 13020600 h324g%15 D;JLOODﬁlgaFF3BOB 0146C087
o180 aoorotoz2 04360801 46C08700 D7Dl061A|34080[66 cosr10007 02020434 080146C0
ala0 81000702 03243608 0146C087 00070302‘04340801 46C08700 07040600|34080166
olco cosrooo7 0406A136 080146C0 87000705 0600P608 0146C08T 00ODT0606 04360601
01ED 46C08700 D7DbDB!9l03050605 0404040% 04803304 04631207 07070707 07040304
0200 34080249 4C090902 570C0202 S7025A3) 0C0218F2 8104C0O87 00003D00 0223F281
0220 04C08701 C08701D2 30000239 F28104C0O 87018C3D 00G24&44F2
0240 8104C08B7 0404CI1Cl E2FOFOF0O 40D6D3C4 D603C440 40404040
0260, 40404040 4040404) 40404040 404064040 40404040 40404040
DUPLICATE LNNES SAME AS A30VE
Start Address of Entry Point of

Overlay Number 1
(from Figure 8-25)

Overlay Number 1

Figure 8-20 (Part 1 of 3). Sample Core Dump

Start of Overlay Fetch Routine

X'00D7’
x/0078"
x'014F’

Overlay
Fetch Table

Last
Entry

Transfer
Vectors

Licensed Material—Property of IBM

*s 000BeoKBoovsos ss0sscssconccrse?

“s000b0000eDeAASOI0 NEW AAW4G NEW®
*eDeeEWeDao *
. .
* sesscseeBesPas

¥seesevesBoseessDocKeasae coconet
$eeeZeeToassstKesemaZososeSevcsest
eoeBessBooKoos

*seoBossesces Gososn

%o secescecsvecesscscscesscs csect?
Tosenessset=csessvcccscelessocece®
*ePesesssoseePes svscecePrescsccet

%o ePeserevsrsoPocssncscssPosscncst

¥oeePoesssccvsse?essscssscsPosccnet

%o e seesevscecsnesscsensssec?

#. 000 coseseses seselescvncescele®

*soveGrecse2ecscaKoosoZeeooescneel®

$esesessenchessAASO00 OLDOLD *
* *
Data Areas 8-45

8-46

TCB=-3F68 IAR-0B70 ARR~0ADS XR1-2720 XR2-0500 PMR-00
ADDR 00 [+ 13 o8 oc 10
0460 40404040 40404040 40406040 40404043 40404040
0480 0904D10OC 0204D104 D43D0O004 92F2810% CO8701B1
04A0 0004ABF2 8104C087 00003D0O0 04B3F281 04COB700
04C0 C08704C4 F4000404 CLCLE2F1 FOFD40D5 CSE6D6DI
Q4EQ 40404040 40404040 40404040 4040404) 40404040
DUPLICATE LINES SAME AS A50VE
0580 40404040 40404040 40404040 40404003 05040204
0;10 80340504 02040704 DBOBOBO7 04FF404) 40404040
0sco 40404040 40404040 40404040 4040404) 40404040
[1-130) 02000000 00010000 03040404 0404040% 04803304
0600 34080620 4C091306 2A1C0906 3409F401 04064C09
0620 04040C1 CIN¥6F440 DSCSE6CL CLE2FOF) FO40D5CS
0640 40404040 40404040 404D4040 4040404) 40404040
DUPLYCATE LINES SAME AS ABOVE
o820 40404040 40404040 40404040 40404042 40404040
0840 08631C09. 0B6D09K4 D104D64C 0909086) 0C020863
as60 40D5C5E6 00000008 00000000 D000404) 40404040
[o]:3:10] 40404040 40404040\40404040 40404043 40404040
DUPLICATE \LINES SAME AS ABOVE
08c 40404040 40404040 4004040 40404040 40404006
Start Address of Entry Point of

Overlay Number 6

Overlay Number 6

Figure 8-20 (Part 2 of 3). Sample Core Dump

PSR-04

14
406404040
30000490
00300004
€4404040

40404040

08070407
40604040
404064040
04631207
0906340C
E6404040

40404040

40400603
o8bs5c087
©0404040

406404040

D3C40305

TCB-3F68 [AR-0B70 ARR-DAD5 XR1-2720 XR2-0500 PMR~DO PSR-04

ADDR 0o
08EOQ 20050404
0900

04 [o}:} oc 10

123

18
40403408
F28104C0O
BEF28104
40404040

40404040

04070408
40404040
40404040
07070707
02062408
40404040

40404040
C4340808
00004040
40404040

40404040

0404A0402

18

1C
04C34C09
87000030
c08701D0
40404040

40404040

FEBDBOBO
40404040
404040E2
07040304
3sco8702
40406040

40404040

594C0913

C1C1E6F9

40404040

40404040

80808080

1c

0402FF00 03040404 0404040% 04803304 04631207 07070707 07040304

DUPLICATE LINES SAME AS ASOVE

Figure 8-20 (Part 3 of 3). Sample Core Dump

- Licensed Material—Property of IBM

FFFFFFFF FFFFFFFF FFFFFFFF FEFFFFFC FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

* ceel ¥
*seJdesetoMoeses2evovovosccesvonee?®

*s 0020000000 0002000000 ssse0000ns®

*o00DbeesAAS 100 NEWOLD *
* .
* sesecevsssesvesce®
%o eevcsssscense *
* S

%o o0evescrssssescrcscrnsccssssecet

%o eee senssevsstese sesscscservse’
*, AAW4 NEWAASDIOO NEW *
* *
b OLDssee ont*
%o eeve 0400s see secceNavee AAWOS
* NEWooooseooos *
* *
* OLDevosroscee®

%ceescs0ceescscsosvscecsscvsccee?

*s 000000 cccscrssvessvscscccsccoce?

Part 4. System Utility Programs

Licensed Material—Property of IBM

System utility programs are supplied by IBM as part of the
SSP. When a system utility program is run, OCL statements
identify the program and supply to the SSP any informa-
tion that it requires about the program. Diagram 9.0 shows
the functions performed by the system utility programs.

From: Initiator
INPUT ﬁ PROCESS ﬁ OUTPUT
Disk data ® Perform system backup (Diagram 9.1))> Data saved on
I I I' diskette
Input file Perform basic interchange utility function > Output file

Input menu data

Alternate

sector data I

Input file

VTOC and

volume label I I

Diskette files

System library

| q
History file e

i q
Diskette > []

| (
Volume label ———————>e
and VTOC I l
Systemlibrary __—_———_—>®
on diskette I I
R e —)
directories, and
librarian files I l

M text >e

statements I I
Disk VTOC and :: >e

files I I

Security profile >e

Disk VTOC >
Communication/ :>

work station
configuration
record

Display screen : >e

format data

(Diagram 10.1)

)> Menu screen format

Build menu display (Diagram 11.1) -
load member

> Updated alternate
sector data

P, Copied fite

Rebuild alternate sector data
(Diagram 12.1)

Perform copy utility function
(Diagram 13.0)

— > Updated VTOC
and volume label

Delete file (Diagram 14.1)

Copy diskette file (Diagram 15.1) Copied diskette

files

Perform file build function (Diagram 16.1) New disk file

-U;

Display history file (Diagram 17.1) .> History file display

Initialize diskette (Diagram 18.1) > Initialized diskette
|

Display disk/diskette VTOC j> Displayed or

(Diagram 19.1) I printed information

Perform reload library/pseudo IPL function System library

(Diagram 20.1) I I on disk

Perform library maintenance function > Libraries,

(Diagram 21.1) directories, and
librarian files

Build message load member (Diagram 22.1) > Message load

I member

Reorganize disk files (Diagram 23.1) Reorganized VTOC

and files

Perform security profile utility function

(Diagram 24.1) I I
l (4

Updated security
profile

Rename disk file (Diagram 25.1) > New file name

Modify communication/work station
configuration record (Diagram 26.1)

Updated

configuration
record

Build display screen format (Diagram 27.1) :> Display screen

format

Process error for SSP or other. PP
procedure (Diagram 28.1)

To: Control Storage End-of-Job
Transient ($EOQJ)

Diagram 9.0. Overview of System Utility Program

Licensed Material—Property of 1BM

Introduction

The backup library utility ($BACK) copies the entire sys-
tem library (#LIBRARY) to one or more diskettes. When
the library is copied to the diskettes, library members are

shifted to remove gaps (unused space between members

is collected at the end of the library).

The compressed library on diskette is in the following
order:

Reload IPL program ($LOADI) — 30 sectors

® Reload format load module (##FLOD) — 5 sectors
o S$LOADI heading messages — 4 sectors

® Nucleus initialization program {$MSNIP) — 6 sectors
© System configuration records (2) — 2 sectors

® | ibrary control sector (LCS) — 1 sector

® Reload communication area (at X'CQ’ into LCS)

® System library directory (addresses updated)

® System library members (compressed)

The backup library utility is called by the BACKUP proce-
dure or appropriate OCL statements. (See System Support

Reference Manual for information about calling $BACK.)
The main functions involved in executing $BACK are:

® Call the library directory compactor (SMACMP) to
compress the library member directory.

® Allocate and open the backup file on diskette.

Chapter 9. Backup Library Utility ($BACK)

® Create strings of bits in main storage (matrix) repre-
senting library members as they appear on disk.

® Copy the reload library utility load module ($LOADI)
from disk to diskette.

® Copy reload screen format load module (##FLOD) and
$LOADI level 1 messages from disk to diskette.

0 Copy main storage nucleus initialization program
(SMSNIP) from disk to diskette.

® Copy the two configuration records and the library con-
trol sector (LCS) from disk to diskette.

® Update the library directory entries’ sector addresses
to reflect the compressed library and copy the library
directory to di<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>