oo
iy
o
~
s
5
N
O
-

File No. S34-36




SC21-7751-3

File No. S34-36

IBM System/34
Interactive Communications Feature
Reference Manual
Program Number 5726-SS1



Fourth Edition (January 1982)

This is a major revision of, and obsoletes, SC21-7751-2 and Technical Newsletter
SN21-8154. This manual has been changed extensively. A new chapter has been
added to describe BASIC support for SSP-ICF, the manual has been reorganized,
and the coding examples and return codes description have been completely
rewritten.

This edition applies to release 8 of the IBM System/34 System Support Program
Product (Program 5726-SS1) and to all subsequent releases until otherwise
indicated in new editions or technical newsletters.

Changes are periodically made to the information herein; changes will be reported
in technical newsletters or in new editions of this publication.

Use this publication only for the purposes stated in the Preface.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979, 1980, 1982



This manual is intended primarily for application
programmers who must write interactive
communications programs. The manual also contains
information for System/34 system programmers and
host system programmers. This manual serves as both
a reference manual and a programmer’s guide, giving
detailed reference material as well as concepts,
programming considerations, and examples.

Before reading this manual, you should be familiar with
System/34 programming terminology, particularly work
station programming, and you should be able to
program in whatever language you intend to use. In
some instances, you must also be familiar with the
terminology of the remote system. The terms introduced
in this manual are defined in the glossary.

This manual contains the following chapters:

« Chapter 1. Introduction to Interactive Communications,
which describes interactive communications in
general.

« Chapter 2. Interactive Communications Programming,
which gives an overview of interactive
communications programs and how they are
constructed and run.

« Chapter 3. Interactive Communications Programming
with Assembler, which describes the assembler
programming support for interactive communications.

« Chapter 4. Interactive Communications Programming
with BASIC, which describes the BASIC programming
support for interactive communications.

« Chapter 5. Interactive Communications Programming
with COBOL, which describes the COBOL
programming support for interactive communications.

« Chapter 6. Interactive Communications Programming
with RPG I, which describes the RPG Il programming
support for interactive communications.

o Chapter 7. The Intra Subsystem, which provides
programming information for using the Intra
subsystem to communicate with programs in the
same system.

Preface

« Chapter 8. The BSCEL Subsystem, which provides
programming information for using the BSCEL (BSC
equivalence link) subsystem to communicate with
application programs on another System/34 and
other BSC systems.

« Chapter 9. The BSC CCP Subsystem, which provides
programming information for using the BSC CCP
subsystem to communicate with System/3 Model 15
CCP application programs.

« Chapter 10. The BSC CICS Subsystem, which
provides programming information for using the BSC
CICS subsystem to communicate with CICS/VS
application programs.

o Chapter 11. The BSC IMS/IRSS Subsystem, which
provides programming information for using the BSC
IMS/IRSS subsystem to communicate with IMS/VS
IRSS application programs.

o Chapter 12. The BSC 3270 Support Subsystem,
which provides programming information for using
the 3270 BSC support subsystem to communicate
with CICS/VS, IMS/VS, or CCP application programs
using 3270 BSC protocols.

« Chapter 13. The Finance Subsystem, which provides
programming information for using the Finance
subsystem to communicate with the 3601 Finance
Controller and devices attached to the 3601, and the
3694 Document Processor.

o Chapter 14. The SNA Peer Subsystem, which
provides programming information for using the SNA
peer subsystem to communicate with other
System/34s.

« Chapter 15. The SNA Upline Facility Subsystem,
which provides programming information for using
the SNA upline facility (SNUF) subsystem to
communicate with IMS/VS and CICS/VS application
programs in SNA networks.

Note: Throughout this manual, the term remote system
refers to the system or device with which the
System/34 is communicating. When the Intra
subsystem is being used, remote system refers to the
same System/34 because the Intra subsystem is used
to communicate with another program on the same
system.



HOW TO USE THIS MANUAL

Read Chapter 1, Introduction to Interactive Communications for a general description
of the interactive communications feature.

l

Read Chapter 2, Interactive Communications Programming for a description of the tasks
you need to do to use the interactive communications feature.

Read one of the following chapters for a description of how you can use your
programming language to write a program that uses the interactive communications
feature.

Chapter 3, Interactive Communications
Programming with Assembler

Y
Chapter 4, Interactive Communications
Programming with BASIC

Y
Chapter 5, Interactive Communications Programming
with COBOL

)

Y
Chapter 6, Interactive Communications
Programming with RPG Il

<

Read How to Write a Program That Uses the Intra Subsystem in Chapter 7.

|

— Read the appropriate subsystem chapter for a description of how to configure your
subsystem, for the procedures for programming your subsystem, and for a continuation
of the programming example in Chapter 7.

l

The appendixes contain charts and aids for use with the interactive communications
feature. For example, Appendix F contains planning charts to help you configure your
subsystem.




PREREQUISITE PUBLICATIONS

The following manuals should be read, or the equivalent
knowledge obtained, before reading this manual:

« IBM System/34 Introduction, GC21-5153
« IBM System/34 Planning Guide, GC21-5154
» Data Communications Concepts, GC21-5169

The following manuals must be used in conjunction with
this manual:

+ IBM System/34 System Support Reference Manual,
SC21-51565

« IBM System/34 RPG Il Reference Manual, SC21-7667

« IBM System/34 Basic Assembler and Macro Processor
Reference Manual, SC21-7705

« IBM System/34 COBOL Reference Manual,
SC21-7741

« IBM System/34 BASIC Reference Manual, SC21-7835

RELATED PUBLICATIONS

« IBM System/34 Installation and Modification Reference
Manual, SC21-7689

« IBM System/34 Data Communications Reference
Manual, SC21-7703

« IBM System/34 System Data Areas and Diagnostic
Aids Manual, LY21-0049

« IBM System/34 Operator's Guide, SC21-5158

+ IBM System/34 3270 Device Emulation Program
Product User’s Guide, SC21-7868

« Systems Network Architecture Reference Summary,
GA27-3136

« 3270 Information Display System Components
Description Manual, GA27-2749

« IBM System/3 CCP Messages Manual, GC21-5170

« IBM System/3 Communications Control Program
System Reference Manual, GC21-7620

« CICS/VS Messages and Codes Manual, SC33-0081

« Advanced Communications Function for VTAM
(ACF/VTAM) System Programmer’s Guide,
SC38-0258

« IMS/VS Advanced Function for Communications,
SH20-9054

« IMS/VS Version 1 Installation Guide, SH20-9081

o Customer Information Control System/Virtual Storage
3790 Guide, SC33-0075

« CICS/VS System Programmer’s Reference Manual,
SC33-0069

« CICS/VS Application Programmer's Reference Manual
(Command Level), SC33-0077

Notes:

1. This manual contains several references to an SNA
3270 subsystem and to 3270 device emulation.
These topics apply only to the 3270 Device Emulation
Program Product, and are described in the 3270
Device Emulation User’s Guide.

2. The System/34 application programmer might be
concerned with line protocols and internal subsystem
logic. The line sequences and control flows for each
operation are documented in the subsystem chapters
of the IBM System/34 Interactive Communications
Feature Program Logic Manual, LY21-0581.



vi

This page is intentionally left blank.



CHAPTER 1. INTRODUCTION TO INTERACTIVE
COMMUNICATIONS
Structure of the Interactive Communications
Feature . e e e e e e e e e e e
Sessions and Transactnons
Storage Requirements

CHAPTER 2. INTERACTIVE COMMUNICATIONS
PROGRAMMING
Configuring the Interactive Communications
Environment . . .
Enabling the Subsystem
SESSION OCL Statement
Issuing Interactive Communications Operations
Starting a Session . . . . . . . . . ..
Acquire Operation
Evoke Operation
Performing Input and Output
Put Operation
Invite Operation .
Accept Operation . . . . . . . . ..
Get Operation
Performing Other Operations
Request to Change Direction Operation
Negative Response Operation
Fail Operation
Cancel Operation .
Set Timer Operation
Get Attributes Operation .
Pass-Through Operations
Ending a Session ..
Put End of Transaction Operatlon ..
Release Operation
End of Session Operation .
Note About Ending an Acquired Session . . . .
Checking Return Codes
Major Codes . .
Minor Codes . . . . . . . .
Remote Initiation of Procedures . . e e e e
Writing Procedures to be Started by Incomlng
Procedure Requests R
Special Considerations
Disabling the Subsystem .
Interactive Communications Programming
Techniques
Session Types
IDs . . . . . . ...
SRT and MRT Program Consnderatlons
Interprogram/ Interprocedure Communication . . . .
Read Under Format . . . . .

INNNI?)'?)MMNM
O WWOWONNNOPW

MNP?NN
PN ey
—_-—_00

Contents

CHAPTER 3. INTERACTIVE COMMUNICATIONS
PROGRAMMING WITH ASSEMBLER
Macroinstructions .
$DTFW . . . . .
$WSIO
$EVOK
Assembler Operations Summary Chart . . . .
Return Codes . . .
Interactive Communications Assembler Subroutmes
Coding Examples

CHAPTER 4. INTERACTIVE COMMUNICATIONS
PROGRAMMING WITH BASIC
Beginning a Session . . . . . . . . ..
OPEN Statement Examples
WRITE Statement Format . ..
Beginning a Program or Procedure at the Remote
System
Sending Program Data with the Evoke Operation . .
Sending Data . e
Receiving Data
Notes About Receiving Data . . .
Checking Return Codes
Ending a Communications Transaction
Ending a Session .
Other SSP-ICF Operatlons You Can Do
Asking for a Change in Transmission Direction .
Using SSP-ICF and Work Station Timer Operations .
Sending a Negative Response
Sending a Fail Operation
Issuing a Cancel Operation
Using Pass-Through Operations
BASIC Operations Summary Chart . . .
Note About Writing BASIC Programs for SSP-ICF .
Coding Examples

CHAPTER 5. INTERACTIVE COMMUNICATIONS
PROGRAMMING WITH COBOL

File Definition . . . . . . . . . . . . . . . . . ..
ASSIGN Clause ..
ORGANIZATION Clause . . . . .
FILE STATUS Clause
ACCESS MODE Clause
CONTROL-AREA Clause

Formats .
Procedure/ Program Initiation (Evoke)
Transmit Data
Request to Change Direction . . . . .
Set Timer Interrupt Value
Send Negative Response
Cancel
Fail . . . . . . . ... e e e e e e e e
End of Session . . . . . . . . . . ..
Pass-Through Support

Contents

gaaaaaaaaaaaaaaaq
OO DEWWWNNN ==

vii



HOW TO WRITE PROGRAMS THAT USE THE

Work Station Operations . . . . . . . . . . . . .. 5-7
ACQUIRE . . . . . . . . . .. ... ... 5-7 INTRA SUBSYSTEM . . . . . . . . . ... ... 7-10
READ . . . . . . . ..o 5-8 Configuration Parameters . . . . . . . . . . . . 7-12
WRITE . . . . . . . . . .. s 5-9 How to Write a BASIC Program that Uses the
DROP . . . . . . . . ..o 5-9 Intra Subsystem . . . . . . . . . . ... L. 7-13
COBOL Operations Summary Chart . . . . . . . . . 5-10 OCL Statements . . . . . . . . . . . . . . .. 7-13
Return Code Processing . . . . . . . . . . . . .. 5-11 Data Flow and Operations . . . . . . . . ... 714
Coding Examples . . . . . . . . . . ... .. . . 5-12 How to Check Return Codes with BASIC . . . . . 7-20
: How to Write a COBOL Program that Uses the
CHAPTER 6. INTERACTIVE COMMUNICATIONS Intra Subsystem . . . . . . . . . .. . ... 7-22
PROGRAMMING WITHRPGH . . . . .. ... .. 6-1 OCL Statements . . . . . . . . . . . . . . .. 7-22
File Description Specification . . . . . . . . e 6-1 File Control for Program A and Program B . . . . . 7-24
Formats . . . . . . . . .. .. PR 6-2 Data Division (File Section) for Program Aand B . . 7-26
Evoke . . . . . . . .. Lo 0oL, 6-3 Working Storage for Program B . . . . . . . . . 7-28
TransmitData . . . . . . . . . . ... . ... 6-4 Display Information for Program A . . . . . . . . 7-28 -
Request to Change Direction . . . . . . . . . . . 6-5 Data Records for Program A . . . . . . . 7-30
Set Timer Interrupt Value . . . . . . . . e 6-5 Data Records for Program B . . . . . .. . . .. 17-30
Send Negative Response . . . . . . . . . . .. 6-6 Data Flow and Operations . . . . . . . . . . .. 7-32
Fail . . . . . . . . .00 6-7 How to Check Return Codes with COBOL . . . . . 7-38
Cancel . . . . . . . . ... 6-7 How to Write an RPG Il Program that Uses
Endof Session . . . . . . . . . . . ... ... 6-7 the Intra Subsystem . . . . . . . . . . . .. .. 7-40
Pass-Through Formats . . . . . . . . . . . .. 6-7 OCL Statements . . . . . . . . . . . . .. .. 7-40
WORKSTN Operations . . . . . . . . . . . . ... 6-8 Program Indicators . . . . . . . . . . . . . .. 7-44
ACQ (Acquire) . . . . . . . . . .o 6-8 Data Flow and Operations . . . . . . . . . . .. 7-46
REL (Release) . . . . . . . . . . .. .. ... 6-9 How to Check Return Codes with RPG Il . . . . . 7-50
NEXT . . . . . . . . . e e 6-10 Screen Format and Program Listings . . . . . . . . . 7-52
READ . . . .. . . . . .o 6-11 Screen Format Listing . . P 7-52
RPG Cycle Input . . . . . . . . . . .. ... . 6-11 BASIC Program Listing . . . . . . . . . .. . . 7-53
RPG Il Operations Summary Chart . . . . . . . . .. 6-12 COBOL Program Listing . . . . . . . . . .. . . 7-56

Return Code Processing
INFSR Coding Consnderatlons ......

RPG Il Status Value . . . . . . . . . . . . . ... '

RPG Il Programming Considerations . . . . . . . . .
Continuation Lines on the File Specification
SRT and MRT Program Considerations . . . . . .
End of File Considerations . . . . . . . . . . . .
Release Considerations . . . . . . . . . . . . .
Restrictions for WORKSTN Files . . . . . . . . .
Input and Qutput Considerations . . . . . . . . .

RPG Il Program Listing
INTRA SUBSYSTEM RETURN CODES ........
Major Code 00 . . . . .
Major Code O1 . . . . .
Major Code 02 . . . . .
Major Code 03 . . . . .
Major Code 04 . . . . . e e e e e e .
Major Code 08-34 . . . . . . . . . . . . . ..
MajorCode 80 . . . . . . . . . . .. ... -
Major Code 82 . . . . . . . .. e e e e

Coding Examples . . . . . . . . . . . . . . ... 6-24 Major Code 83 . . . . . e e e e e e e e 7-92

CHAPTER 7. THE INTRA SUBSYSTEM . . . . . . .. 71 CHAPTER 8. THE BSCEL SUBSYSTEM . . . . . . .. 8-1

Setting Up the Intra Subsystem . . . . . . . . . . . 7-1 Setting Up the BSCEL Subsystem . . . R 8-3
Display 1.0 Subsystem Member Configuration . . . 7-2 Display 1.0 Subsystem Member Conflguratnon R 8-4
Display 2.0 Common SSP-ICF Parameters for Display 2.0 Common SSP-ICF Parameters for Each

Each Subsystem . . . . . . . . . .. 7-3 Subsystem . . . . . . .. ... oo 8-5
Display 3.0 General Subsystem Parameters R 7-4 Display 3.0 General Subsystem Parameters 8-6
Starting and Ending the Intra Subsystem . . . . . . 7-5 ‘Display 4.0 Line Information for SSP-ICF Subsystem 8-7
Starting Intra Subsystem Applications . . . . . . . . 7-5 Display 5.0 BSC General Subsystem Parameters | 8-8
SESSION OCL Statement . . . . . . e e 7-5 Display 5.1 BSC General Subsystem Parameters Il . 8-10
Procedure Requests . . . . . . . . . . . . . .. 7-6 Display 6.0 BSCEL Subsystem‘Parameters . . . . 8-12
Operation Considerations . . . . . . . . . . . . .. 7-6 Starting and Ending the BSCEL Subsystem . . . . . . 8-13
Acquire Operation . . . . . . . . . . . . ... 7-6 Starting BSCEL Subsystem Applications . . . . . . . 8-13
Evoke Operations . . . . . . . . . . .. e 7-6 SESSION OCL Statement e e 8-13
Put Operations . . . . . . . . . e e e e e 7-7 Incoming Procedure Start Requests . . . . . . . . 8-16
Input Operations . . . . . . . . . . . . . ... 7-7 Operation Considerations . . . . . . . . . . . . .. 8-17
Request to Change Direction Operation . . . . . . 7-7 Acquire Operation . . . . . . . . . . . . ... 8-17
Negative Response Operation . . . . . . e 7-8 Evoke Operation e e e e e e e 8-18
Cancel Operation . . . . . . . . . . . . . ... 7-8 Put Operations . . . . . . . . . . . .o ... 8-19
Fail Operation . . . . . . . . . . . . . . ... 7-8 Input Operations . . . . . . . . . . . . . . .. 8-20
Release Operation . . . . . . . . . . . . . .. 7-9 Request to Change Direction Operation . . . . . . 8-20
End of Session Operation . . . . . . . . . . .. 7-9 Release Operation . . . . . . . . . . . . . .. 8-21
Get Attributes Operation. . . . . . . . . . . . . 7-9 End of Session Operation . . . . . . . . . . . . 8-21
Set Timer Operation . . . . . . . . . . . . .. 7-9 Get Attributes Operation . . . . . . . . . . . . . 8-21
Pass-Through Operations . . . . . . .. . . . . 7-9 Set Timer Operation . . . . . . . . . . . . .. 8-21

viii



Programming Considerations
Online Messages
Data Formats
3740 Multiple Files .. . . . . .
Using Switched Lines
3740 Data Entry System Considerations

BSCEL Commands
*ACQ Command
*REL Command
Procedure Start Request . . . . . . . . . . . ..
*EOX Command

HOW TO WRITE PROGRAMS THAT USE

THE BSCEL SUBSYSTEM . . . . . . . . . . . ..
Configuration Parameters
OCL Statements
Other Applications for BSCEL

BSCEL SUBSYSTEM RETURN CODES . . . . . . . .
Major Code 00 .
Major Code 01 .
Major Code 02 . . . . . . . . . ..
Major Code O3 . . . . . . . . . . . . ... ..
Major Code 04 . . . . . . . . . . . . ... ..
Major Codes 08-34 . . . . . . . .
MajorCode 80 . . . . . . . . . ..
Major Code 81
MajorCode 82 . . . . . . . . . .. ...
MajorCode 83 . . . . . . . . . .. ... ..

CHAPTER 9. THE BSC CCP SUBSYSTEM . . . . . . .
Setting Up the CCP Subsystem . . . . . . . . . ..
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameter for Each
Subsystem
Display 3.0 General Subsystem Parameters
Display 4.0 Line Information for SSC-ICF
Subsystem
Display 5.0 BSC General Subsystem Parameters |
Display 5.1 BSC General Subsystem Parameters |l
Display 10.0 BSC Multipoint Session Addresses .
Display 11.0 BSC CCP Subsystem Parameters . . .
CCP Generation . . .
CCP Assignment Set Considerations
Starting and Ending the CCP Subsystem . .
Starting CCP Subsystem Applications
SESSION OCL Statement
Incoming Procedure Start Requests . . . . . . . .
Operation Considerations . . . . . . . . .
Acquire Operation
Evoke Operation
Put Operation . . . . . . . . . . . . .. ...
Input Operations
Request to Change Direction Operation
Release Operation . . . . . . . .
End of Session Operation
Get Attributes Operation . . . . . .
Set Timer Operation
Programming Considerations
CCP Commands
Messages From CCP
Using Switch Lines
HOW TO WRITE PROGRAMS THAT USE
THE CCP SUBSYSTEM
Configuration Parameters
OCL Statements e e
Changes for the Programming Example

Remote Procedure Start Request Example

CCP SUBSYSTEM RETURN CODES . . . . . . . . . 9-41
Major Code OO . . . . . . . . . . . .. 9-43
Major Code O1 . . . . . . . . . . . . . . ... 9-45
Major Code 02 . . . . . . . . . . . . . . ... 9-46
Major Code 03 . . . . . . . . . . . .. ... 9-48
Major Code 04 . . . . . . . . . . . .. ... 9-49
Major Codes 08-34 . . . . . . . . . . . ... 9-49
MajorCode 80 . . . . . . . . . . . . ... 9-51
MajorCode 81 . . . . . . . . . . . . . ... 9-54
MajorCode 82 . . . . . . . . . . . ..o 9-59
MajorCode 83 . . . . . . . . . . . ... 9-66

CHAPTER 10. THE BSC CICS SUBSYSTEM . . . . . 101

Setting Up the BSC CICS Subsystem . . . . . . . . 10-2
Display 1.0 Subsystem Member Configuration . . . 10-2
Display 2.0 Common SSP-ICF Parameters for

Each Subsystem . . . . . . . . . . . . . .. 10-3
Display 3.0 General Subsystem

Parameters . . . . . . . . . . . ... ... 10-4
Display 4.0 Line Information for the SSP-ICF

Subsystem . . . . . . . . . . . . .. ... 10-5
Display 5.0 BSC General Subsystem Parameters | 10-6
Display 5.1 BSC General Subsystem Parameters || 10-7
Display 7.0 Subsystem Interactive Destination

Messages . . . . . . . . . ... 10-8
Display 10.0 BSC Multipoint Session Addresses . . 10-8

CICS/VS Configuration Considerations . . . . . . . . 10-9

Starting and Ending the CICS Subsystem . . . . . . 10-12

Starting CICS Subsystem Applications . . . . . . . 10-13
Incoming Procedure Start Requests . . . . . . . 10-15

Operation Considerations . . . . . . . . 10-16
Acquire Operation . . . . . . . . . . . . .. 10-16
Evoke Operations . . . . . . . . . . . . . .. 10-17
Put Operations . . . . . . . . . . . . .. .. 10-18
Input Operations . . . . . . . . . . . . . .. 10-19
Get Attributes Operation . . . . . . . . . . 10-19
Set Timer Operation . . . . . . . . . . . .. 10-19
Release Operation . . . . . . . . . 10-19
End of Session Operation . . . . . . . 10-19

Programming Considerations . . . . . . . . . . . 10-20
Performance Considerations . . . . . . . . . . 10-20
Security Considerations . . . . . . . . . . . . 10-20

CICS/VS Messages . . . . . . . . .« . . . . .. 10-21
Using Switched Lines . . . . . . . . .. 10-22

HOW TO WRITE PROGRAMS THAT USE TH

CICSSUBSYSTEM . . . . . . . . . . . . .. 10-32
Configuration Parameters . . . . . . . . . . . 10-33
OCL Statements . . . . . . . . . . . . ... 10-35
Changes for the Screen Format . . . . . . . . 10-36
Changes for the Programming Example . . . . . 10-37
Remote Procedure Start Request Example . . . . 10-40

CICS SUBSYSTEM RETURN CODES 10-41
Major Code 00 . . . . . . . . . . .. 10-43
Major Code O1 . . . . . . . . . . . . . ... 10-44
Major Code 02 . . . . . . . . . .. 10-45
Major Code 03 . . . . . . . . . .. 10-46
Major Code 04-34 . . . . . . . . . ... .. 10-47
MajorCode 80 . . . . . . . . . . . . ... 10-49
Major Code 81 . . . . . . . . . .. . . ... 10-51
MajorCode 82 . . . . . . . . . .. ... .. 10-53
MajorCode 83 . . . . . . . . . .. ... .. 10-58

Contents  ix



CHAPTER 11. THE BSC IMS/IRSS SUBSYSTEM
Setting Up the IMS/IRSS Subsystem . . . . . . . .
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameters for Each
Subsystem . . . . . . . . ..o
Display 3.0 General Subsystem
Parameters . . . . . . . . . . . . ... ..
Display 5.0 BSC General Subsystem Parameters |
Display 7.0 Subsystem Inactive Destination
Message . . . . . . . . . . .. ...
Display 12.0 BSC IMS/IRSS Subsystem PTERMs
Setting Up the IMS/VS System . . . . . . . . . ..
Starting and Ending the IMS/IRSS Subsystem
Starting IMS/IRSS Subsystem Applications
SESSION OCL Statement . . . . . . . . . . .
Incoming Procedure Requests
Operation Considerations . . . . . . . . . . . ..
Acquire Operation . . . . . . . . . .. . ..
Evoke Operations . . . . . . . . . . .. . ..
Put Operations . . . . . . . . . . . .. ...
Input Operations . . . . . . . .. ... ...
Release Operation . . . . . . . . . . . . ..
End of Session Operation
Get Attributes Operation. . . . . . . . . . ..
Set Timer Operation . . . . . . . . . . . ..
Programming Considerations
IMS/VS System Messages
IMS/VS Commands
DataBlocks . . . . . . . . . .. . .. ...
Error Blocks Received by System/34
HOW TO WRITE PROGRAMS THAT USE
THE IMS/IRSS SUBSYSTEM
Configuration Parameters
OCL Statements . . . . . . . . . . . . ...
Changes for the Screen Format . . . . . . . .
Changes for the Programming Example
Remote Procedure Start Request Example . . . .
Inquiry Application Example
IMS/IRSS SUBSYSTEM RETURN CODES . . . . .
Major Code 00 . . . . . . . . . . . .. ...
Major Code O1 . . . . . . . . . . . .. ...
MajorCode 02 . . . . . . . . . . . .. ...
Major Code 03 . . . . .
Major Code 04 . . . . . . . . . . . . .. ..
Major Codes 08-34 . . . . . . . . . . . . ..
MajorCode 80 . . . . . . . . . . . .. ...
MajorCode 81 . . . . . . . . . . . .. ...
MajorCode 82 . . . . . . . . . . . . . ...
MajorCode 83 . . . . . . . . . . . ..

CHAPTER 12. THE BSC 3270 SUPPORT

SUBSYSTEM . . . . . . . .. . ..o 121
Setting Up the 3270 Subsystem . . . . . . . . . . . 12-2
Display 1.0 Subsystem Member. Configuration . . . 12-2
Display 2.0 Common SSP-ICF Parameters for Each
Subsystem . . . . . . . . .. ..o 12-3
Display 3.0 General Subsystem Parameters 12-4
Display 4.0 Line Information for SSP-ICF
Subsystem . . . . . . . . ... 12-5
Display 14.0 3270 Subsystem General Parameters 12-5

Display 15.0 BSC 3270 Subsystem Device Parameters 12-6

Host System Configuration . . . . . . . . . . . .. 12-8
Starting and Ending the 3270 Subsystem . . . . . . . 12-8
SESSION OCL Statement . . . . . . . . . . . .. 12-9
Operation Considerations . . . . . . . . . . . .. 12-1
Acquire Operation . . . . . . . . . .. . .. 12-11
Evoke Operations . . . . . . . . . . . .. .. 12-12
Put Operations . . . . . . . . . . . . . . .. 12-13
Input Operations . . . . . . . . . . . . . .. 12-13
Release Operation . . . . . . . . . . . . .. 12-15
End of Session Operation . . . . . . . . . .. 12-15
Get Attributes Operation . . . . . . . . . . .. 12-15
Set Timer Operation . . . . . . . . . . . .. 12-15
Host System Status Information . . . . . . . . . . 12-16
Considerations for Host Systems Using VTAM 12-17
Considerations for IMS/VS Hosts . . . . . . . . . 12-18
System/34 Programming Considerations . 12-18
IMS/VS Generation Considerations . . . . . . . 12-21
Startup for IMS/VS . . . . . . . . .. ... 12-21
IMS/VS Message Formatting Services
Considerations . . . . . . . . . . . . . .. 12-22
IMS/VS Programming Considerations . . . . . . 12-22
Coding Example . . . . . . . . . . ... .. 12-23
Considerations for Host Systems Using CCP 12-28
CCP Assignment Set Considerations . . . . . . 12-28
Startup for CCP . . . . . . . . . . . . ... 12-28
SigningOntoCCP . . . . . . . . . .. ... 12-29
New CCP Applications . . . . . . . . . . .. 12-29
CCP Applications That Use DFF . . . . . . . . 12-30
Programming Considerations for CCP Application
Programs . . . . . . .o e e e 12-30
_Coding Example . . . . . . .. ... ... 12-31
Considerations for Host Systems Using CICS/VS . . 12-38
Newly Developed CICS Applications . . . . . . 12-38
Existing CICS Applications That Do Not Use
BMSMaps . . . . . . . . . . ..o 12-39
CICS Applications That Use BMS Maps . . . . . 12-40
General Program Flow . . . . . . . . . . .. 12-43
CICS System Generation Considerations . . . . . 12-45
Startup for CICS/VS . . . . . . . e e 12-46
Sample Programs . . . . . . . . . . . . . .. 12-46
3270 SUBSYSTEM RETURN CODES . . . . . . . 12-51
Major Code 00 . . . . . . . . . . ... ... 12-53
Major Code 02 . . . . . . . . . . . . .. .. 12-54
Major Code 03 . . . . . . . e e e e 12-55
Major Codes 04-34 . . . . . . . . . . . . .. 12-56
MajorCode 80 . . . . . . . . . . . .. ... 12-58
MajorCode 82 . . . . . . . . . . . .. .. 12-60
MajorCode 83 . . . . . . . . . .. .. ... 12-65



CHAPTER 13. THE FINANCE SUBSYSTEM . . . . .
Setting Up the Finance Subsystem . . . . . e
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameters for
Each Subsystem . . . . . . . . . . ... ..
Display 3.0 General Subsystem Parameters
Display 3.1 SDLC General Subsystem
Parameters . . . . . . . . .. ... L. L.
Display 4.0 Line Information for SSP-ICF
Subsystem . . . . . . . ... 0oL
Display 17.0 Finance Subsystem Parameters . . . .
Starting and Ending the Finance Subsystem L.
Enable Procedure . . . . . . . . . . . ... ..
Disable Procedure . . . . . . . . . . . . ..
Starting Finance Subsystem Applications . . . . . .
Session OCL Statement . . . . . . . . . . ..
Incoming Procedure Requests . . . . . . . . .
Operation Considerations . . . . . . . . . . . ..
Acquire Operations . . . . . . . . . . . . ..
Put Operations . . . . . . . . . . . . . ...
Input Operations . . . . . . . . . . ... ..
Release Operations . . . . . . . . . . .. ..
End of Session Operation . . . . . . . . . ..
Get Attributes Operation . . . . . . . . . . ..
Set Timer Operation . . . . . . . . . . . ..
Transmitting an Operational Diskette Image . NN
Encryption/Decryption Subroutines . . . . . . . .
SUBR30 for RPG Il . . . . . . . . . . .. ..
SUBR31 forCOBOL . . . . . . . . . .. ..
#SBDE for Assembler . . . . . . . . . . . ..
3601/4701 and 3694 Programming Considerations
Control Fields and Indicators . . . . . . . . ..
Message Types . . . . . . . . . . . .. ..
Responses . . . . . . . . . . . . . .. R
3694 Program Considersions . . . . . . . . . . .

HOW TO WRITE PROGRAMS THAT USE THE FINANCE

SUBSYSTEM . . . . . . . . . . . . ... ..
Configuration Parameters . . . . . . . . . . .
OCL Statements . . . . . . . . . . . . ...
Programming Examples for Program B . . . . .

FINANCE SUBSYSTEM RETURN CODES
Major Codes 00-03 . . . . . . . . . . ..
Major Codes 04-34 . . . . . . . . . . .. -
Major Code 80 . . . . . . . . . . . . .. ..
Major Code81 . . . . . . . . . . . . .. ..
Major Code 82 . . . . . . . . . e e e e
MajorCode 83 . . . . . . . . . . . . .. ..

CHAPTER 14. THE SNA PEER SUBSYSTEM .
Setting Up the SNA Peer Subsystem . .-. . . . . .
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameters for Each
Subsystem . . . . . . . ... ... L.
Display 3.0 General Subsystem
Parameters . . . . . . . . . . . . ... ...
Display 3.1 SDLC General Subsystem Parameters
Display 4.0 Line Information for SSP-ICF
Subsystem . . . . . . . . ... L. ..
Display 13.0 SNA Peer Subsystem Parameters . . .
Disk Space Requirements . . . . . . . . . .
Switched Line Considerations . . . . . . . .
Starting and Ending the SNA Peer Subsystem
ENABLE Procedure . . . . . . . . . e
DISABLE Procedure . . . . . . . . . . . . ..

13-6

13-6

13-7

13-9

13-9
13-11
13-12
13-12
13-12
13-13
13-13
13-14
13-14
13-14
13-14
13-14
13-14
13-15
13-17
13-17
13-21
13-23
13-24
13-24
13-25
13-29
13-30

13-31
13-32
13-33
13-34
13-40
13-42
13-44
13-46
13-49
13-52
13-56

141
14-1
14-2

14-3

14-6
14-7
14-9

14-10

14-13
14-13
14-15
14-16

SESSION OCL Statement . . . . . . . . . . .
Incoming Procedure Requests . . . . . . . . .
Operation Considerations . . . . . . . . . . . ..
Acquire Operation . . . . . . . . . . .. -
Evoke Operation . . . . . . . . . . .. ...
Put Operations . . . . . . . . . . . . . ...
Input Operations . . . . . . . . . . . .. ..
Request to Change Direction Operation . . . . .
Fail Operation . . . . . . . . . . . . . ...
Release Operation . . . . . . . . . . . . ..
End of Session Operation . . . . . . . . . . .
Get Attributes Operation . . . . . . . . . . ..
Set Timer Operation . . . . . . . . . . . ..
HOW TO WRITE PROGRAMS THAT USE THE PEER
SUBSYSTEM . . . . . . . . . .. . ... ..
Configuration Examples . . . . . . . . . . ..
OCL Statements . . . . . . . . . . .. R
PEER SUBSYSTEM RETURN CODES . . . . . . .
Major Code 00 . . . . . . . . . . . ..
Major Code O1 . . . . . . . . . . . .. ..
Major Code 02 . . . . . . . . . . . . .. ..
Major Code O3 . . . . . . . . . . . .. L.
Major Codes 04-34 . . . . . . . . . . . ...
Major Code 80 . . . . . . . . . . . .. ..
MajorCode 81 . . . . . . . . . . . . . ...
MajorCode 82 . . . . . . . . . . . .. ..
Major Code 83 . . . . . . . . . ... L. L.

CHAPTER 15. THE SNA UPLINE FACILITY
SUBSYSTEM . . . . . . . . . ... .. .....
Setting Up the SNUF Subsystem . . . . . . . R
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameters for Each
Subsystem . . . . . . . . .. L. ..
Display 3.0 General Subsystem
Parameters . . . . . . . . . . . ... L.
Display 4.0 Line Information for SSP-ICF Subsystem
Display 7.0 Subsystem Inactive Destination
Messages . . . . . . . . . . . ... ...
Display 8.0 SNA Upline Subsystem Parameters | . .
Display 9.0 SNA Upline Subsystem Parameters ||
Display 9.1 SNA Upline/3270 Station Parameters
Disk Space Requirements . . . . . . . . . ..
Setting Up the Host System . . . . . . . . . ..
Starting and Ending the SNUF Subsystem . . . . .
Starting SNUF Subsystem Applications . . . . . .
SESSION OCL Statement . . . . . . . . . ..
Incoming Procedure Start Requests . . . . . . .
Operation Considerations . . . . . . . . . . .
Acquire Operation . . . . . . . . e e
Evoke Operation . . . . . . . . . . . . . ..
Put Operations . . . . . . . . . . . . . ..
Input Operations . . . . . . . . . . . .. ..
Request to Change Direction Operation . . . . .
Release Operation . . . . . . . . . . . . ..
Negative Response Operation . . . . . . . . .
Cancel Operation . . . . . . . . . ..
End of Session Operation . . . . . . . . . . .
Get Attributes Operation . . . . . . . . . . ..
Set Timer Operation . . . . . . . . . . . ..
Switched Line Considerations . . . . . . . . .
Programming Considerations . . . . . . . . . . .
Chains . . . . . . . .. ... R
Function Management Headers . . . . . . . . .
Half-Duplex Flip-Flop Protocols . . . . . . . .
Session Restart and Recovery . . . . . . . . .

14-16
14-16
14-17
14-17
14-17
14-18
14-18
14-19
14-19
14-19
14-20
14-20
14-20

14-21
14-22
14-23
14-24
14-26
14-29
14-32
14-34
14-35
14-37
14-39
14-42
14-47

15-1
15-1
15-2

15-3

15-4
15-5

15-6
16-6
15-8
15-9
15-10
15-11
15-11
16-12
15-12
15-14
15-15
15-15
15-15
15-16
15-17
15-18
15-18
15-18
15-19
15-19
15-19
15-19
15-20
15-23
15-23
15-25
15-26
15-27

Contents  xi



VTAM/NCP Considerations . . . . . . . . . . . . 15-28

IMS/VS Considerations . . . . . . . . . . . .. 15-32
IMS/VS Generation Considerations . . . . . . . 15-32
Terminal Response Mode . . . . . . . . . .. 15-34
Evoke End of Transaction . . . . . . . . . . . 15-35
IMS/VS Ready to Receive Option . . . . . . . 15-36
IMS/VS Message Format Services . . . . . . . 15-36
IMS/VS Message Headers . . . . . . . . .. 15-37
Procedure Start . . . . . . . . . . . . ... 15-37
IMS/VS Commands . . . . . . ... . ... 15-38
IMS/VS Security . . . . . . . . . . ... .. 15-38
Error Handling . . . . . . . . . . . ... .. 15-38

HOW TO WRITE PROGRAMS THAT USE

THE SNUF SUBSYSTEM . . . . . . . . . . .. 15-39
Configuration Parameters . . . . . . . . . . . 15-40
OCL Statements . . . . . . . . . . . . . .. 15-42
Changes for the Screen Format . . . . . . . . 15-43
Changes for the Programming Example for CICS . 15-44
Changes for the Programming Example for IMS .  15-47

Remote Procedure Start Request Example for IMS 15-52
Remote Procedure Start Request Example for CICS  15-53
Terminal Response and Non-Terminal Respons Mode

Example forIMS . . . . . . . . .. ... 15-54
CICS/VS Considerations . . . . . . . . . .. .. 15-56
CICS/VS System Programming . . . . . . . . 15-56
Evoke End of Transaction . . . . . . . . . . . 15-57
Security . . . .. ... oL L oo 15-57
SNUF SUBSYSTEM RETURN CODES . . . . . . . 15-58
MajorCode 00 . . . . . . . . . . ... ... 15-60
Major Code 01 . . . . . . . . . . ... ... 15-65
MajorCode 02 . . . . . . . . . . . ... .. 15-68
MajorCode 03 . . . . . . . . . . . . . ... 15-72
Major Codes 04-34 . . . . . . . . . . .. .. 15-73
MajorCode 80 . . . . . . . . . . . .. ... 15-75
MajorCode 81 . . . . . . . . . . . . .. .. 15-77
MajorCode 82 . . . . . . . . . . ... ... 15-80
MajorCode 83 . . . . . . . . .. ... 15-85
APPENDIX A. SUMMARY CHARTS . .. .. ... A-1
Return Code Summary Chart . . . . . . . . . . .. A-1
Input/Output Operations Summary Chart . . . . . . . A-7

APPENDIX B. SNA PASS-THROUGH SUPPORT . . . B-1
BASIC, COBOL, and RPG |l Pass-Through

Programming . . . . . . . . . . ..o B-2
$SPTINV . . . . . .o B-2
$SPTPUT . . . . . . . . . .o B-3

Basic Assembler Pass-Through Programming . . . . . B-4
Define . . . . . . . . . . ... ... B-4
Get . . . . . . .. B-5
Invite . . . . . . . L Lo oL B-6
Accept . . . . . . L L. Lo o B-7
Put . . . . . . .. B-8
Command . . . . . . . . . .. ... B-10

SNA Input/Output Area . . . . . . . . . .. ... B-12

SNA Operations . . . . . . . . . . . . . ... .. B-13

SNA Completion Codes . . . . . . . . . . . . .. B-15

i

SNACommands . . . . . . . . .. ... .... B-18
Bid . .. . ... B-18
Cancel . . . . . . . . . ... ... ... B-18
Chase . . . . . . . . . . ... ... B-19
Logical Unit Status . . . . . . . . . . .. ... B-19
Quiesce at End of Chain . . . . . . . . . . . .. B-19
Quiesce Complete . . . . . e e e e e e e B-19
Ready to Receive . . . . . . . . . . .. . ... B-19
Release Quiesce . . . . . . . . . . . .. ... B-19
Request Recovery . . . . . . . . . . . .. .. B-19
Request Shutdown . . . . . . . . . . . . ... B-20
Set and Test Sequence Numbers . . . . . . . . . B-20
Shutdown . . . . . . . .. L. B-20
Shutdown Complete . . . . . . . . . . .. .. B-20
Signal . . . . . . ... o000 B-20

APPENDIX C. BSC TO SNA MIGRATION . . . . . . . C-1

IMS/VS Considerations . . . . . . . . . . . ... c-1
Uninvited Data . . . . . . . . . . .. e Cc-1
End of Transaction Operations . . . . . . . . . . C-2
BATCH Parameter on the SESSION OCL

Statement . . . . . . . . . .. ... .. .. C-2
Converting IMS/IRSS Programs to SNUF
Programs . . . . . . . . . . .. ... .. C-3

System/34 Conversion Considerations . . . . . . . . Cc-4

CICS/VS Considerations . . . . . . . . . . . ... c-4

APPENDIX D. DEBUGGING INTERACTIVE

COMMUNICATIONS PROGRAMS . . . . . . . .. D-1

Status Displays . . . . . . . . . . . . . .. ... D-1
Subsystem Status . . . . . . . . .. ... L. D-2
Session Status . . . . . . . . . ... ... L. D-4
Work Station Operation Code Modifiers . . . . . . D-6
Work Station Operation Codes . . . . . . . . . . D-6

Debug Facility . . . . . . . .. .. e D-7
ICFDEBUG Procedure . . . . . . . . . . . . .. D-7
Debug File Information . . . . . . . . . . . .. D-8
Printing the Debug File . . . . . . . . . . . .. D-10
Displaying the Debug File . . . . . . . . . . .. D-11

APPENDIX E. SSP-ICF INSTALLATION VERIFICATION E-1
Session Parameter Descriptions . . . . . . . . . E-5

APPENDIX F. PLANNING CHARTS FOR

CONFIGURING SUBSYSTEM . . . . ... ... .. F-1
APPENDIX G. THE DEFINELU PROCEDURE oo . G
GLOSSARY . . . . . .. e, H-1
INDEX . . . . . . .. . . . e X-1



Chapter 1. Introduction to Interactive Communications

"The System/34 interactive communications support allows distributed
processing to be implemented on System/34. The interactive communications
support is designed to be easy to learn and use. It is provided as a feature of
the System/34 System Support Program Product.

The interactive communications feature includes support for
program-to-program communications using BSC and SNA as well as
communications between programs within the same system. The feature also
allows programs on other systems to initiate System/34 procedures and allows
System/34 programs to initiate programs or procedures on other systems
without remote system operator intervention. These other systems include
System/3, System/370, and System/34. To facilitate incoming procedure
requests, the interactive communications support can maintain a connection on
a communications line when no System/34 application program is active.

Past communications support required that the application program control the
format of the data passed on the communications line. This meant that the
programmer required familiarity with the line protocol (BSC, for example).
Above the BSC or SDLC line protocol can be another level of protocols (IRSS
or SNA) with still other control programs such as IMS, CICS, VTAM, and CCP
above them. The interactive communications feature isolates the application
program from all these levels of protocol, thereby simplifying the effort
required to write System/34 application programs that use communications.

Previous System/34 data communications support (RPG BSC support, MRJE,
and SRJE) is designed primarily for batch communications. The interactive
communications feature is designed primarily for interactive communications.
Interactive communications differs conceptually from batch communications in
that in interactive communications, the sequence of events is not necessarily
predetermined; either program can logically start, alter, or stop the
communication. In addition, batch communications is characterized by the
transfer of large quantities of data in one direction, whereas interactive
communications usually consists of a brief exchange of data (such as an
inquiry and a response).

Introduction to Interactive Communications  1-1



1-2

The application programming interface to the interactive communications
feature is provided via enhancements to the assembler macroinstructions, the
BASIC work station support, the COBOL work station support, and the RPG Il
work station support. This interface shields the application program from most
of the differences in communications protocols and remote communications
support. With proper design, a user can develop programs for an existing BSC
network and then move them to an SNA network without changing the
communications code within the application program.

Because the interactive communications feature uses work station support,
programmers familiar with work station operations will require very little
training to successfully write programs that use the interactive communications
feature. Also, many of the options (such as read under format and local data
area) available for work station programming are also available for
communications. The same statements that control input and output for
display stations can also be used for communications. An inquiry program, for
example, can receive input from either a display station or a remote program as
a result of a single input operation.

STRUCTURE OF THE INTERACTIVE COMMUNICATIONS FEATURE

The interactive communications feature consists of interactive communications
data management, specific subsystem support for communicating with different
systems, and interrupt handlers.

Data Management

T ——
(1]
icati Interactive Interrupt
Application . _ e D . Subsystem P p
Communications Handler

Interactive communications data management is the interface between an
application program and the subsystem. Interactive communications data
management is similar to work station data management; application
programs perform interactive communications operations in the same way
that they perform work station operations.




Because communications can occur with different systems and each has
different protocols, a subsystem, designed for a specific remote system,
isolates most system-dependent considerations from the application
program. The following subsystems are provided:

Subsystem Communicates With

Intra Other programs in the same System/34

BSC Equivalence Link  System/34, System/32, and others

BSC CCP System/3 Model 15 CCP

BSC CICS. CICS/VS (BTAM)

BSC IMS/IRSS IMS/VS via IRSS (BTAM)

BSC 3270 IMS/VS, CICS/VS, and System/3 CCP
Finance 3601 Finance Controller and

3694 Document Processor
SNA Peer System/34
SNA Upline Facility CICS/VS or IMS/VS
SNA 3270 IMS/VS and CICS/VS

An interrupt handler is the interface between the subsystem and the
communications hardware. A BSC interrupt handler controls
communication on the line for the BSC subsystems. (The BSC 3270
support subsystem has a different BSC interrupt handler than the one
that supports the other BSC subsystems.) For the SNA subsystems, an
SDLC task controls communication on the line. The SDLC task could be
primary or secondary SDLC, .or both. The SNA Upline Facility (SNUF)
subsystem requires an SNA task, which is the interface between the
subsystem and the SDLC task. The Intra subsystem has no interrupt
handler because the Intra subsystem does not use a communications line.

"The SNA 3270 subsystem is not described in this manual because it is not supported
by SSP-ICF. It is supported by the 3270 Device Emulation Program Product, and it is
described in the 3270 Device Emulation User’s Guide.

Introduction to Interactive Communications



SESSIONS AND TRANSACTIONS

S/34 Application

Operation

Acquire a session

When using the interactive communications feature, each application program
communicates through a session using a transaction. A session is a logical
connection or pipeline to the remote system. A transaction is the
communications between the System/34 application program and another
application program. A session must exist before a transaction can take place.

Sessions are defined at both systems during configuration. The connection
allowing these sessions is established when the subsystem is started (enabled).
A session can then be started by a System/34 application program or by a
remote application program. Depending on how the session was started, the
characteristics of the session are different.

If a System/34 program requests (acquires) a session, the session is called an
acquired session. When the System/34 application program acquires a session
from the subsystem through interactive communications data management (not
illustrated), the subsystem assigns or reserves a session for that application
program. An indication (return code) is then given to the application program
indicating the success or failure of the acquire.

S/34 Subsystem Remote Subsystem Remote Application

Return Code

S/34 Application

Session acquired

After the session has been started, communications with the remote
application can begin. The System/34 application program requests the
subsystem to start the remote application and thereby begin a transaction with
that application program.

S/34 Subsystem Remote Subsystem Remote Application

1-4

Operation

Acquire a session

Start program A

Return Code

A

Session acquired

> » Start program A —}———1»- Program A starts

Transaction started Acknowledgement

A

successfully




S/34 Application

The transaction remains active as long as communication between the two

application programs continues. Either program can end the transaction.

S/34 Subsystem

Operation

Acquire a session

Start program A

End the transaction

S/34 Application

Return Code

Session acquired -

e

Remote Subsystem

-4——— Transaction started <¢————————— Acknowledgement

successfully

e

%

<LStart program A ——————Program A starts

Remote Application

<T—_.

Transaction ended
successfully

>

Program A ends

When the transaction ends, the session still exists. The System/34 application
program can start another transaction on the same session, and can continue

to request transactions consecutively until all desired transactions are complete
and the session is ended by either application program.

S/34 Subsystem

Operation

Acquire a session

Start program A

End the transaction

Start program B

End the session

P

Return Code

Session acquired

.

Remote Subsystem

Remote Application

- Start program A

successfully

2

e

-——1— Transaction started <¢—————————— Acknowledgement

|

e

- Program A starts

- Program A ends

D

>

Transaction ended
successfully

-

—- Start program B

-
>

Transaction started -

Acknowledgement

successfully

|

<

—————»> Program B starts

End the transaction

Transaction ended -

Session ended

Introduction to Interactive Communications 1-5



S/34 Application

An acquired session remains active for as many transactions as desired until
the application program requests that it be terminated (or an error causes the
session to be abnormally terminated).

A session can also be started by an incoming procedure request. For this type
of session, an application sends a specially formatted message to the
System/34 subsystem requesting that a procedure be started. As a result, an
application program on the System/34 begins running and communication
between the two applications can begin.

Program C starts

S/34 Application

S/34 Subsystem Remote Subsystem Remote Application
rStart PROCC, - < Send procedure
which runs start message for
program C PROCC

When a session is started by an incoming procedure request, the transaction
begins when the session begins. The transaction ends whenever either
program requests an end of transaction. The session consists of only one
transaction and ends when the transaction ends.

S/34 Subsystem Remote Subsystem Remote Application

Program C starts J————Start PROCC, -

Send procedure
start message for
PROCC

which runs
program C

End the transaction

Transaction and =

session ended

STORAGE REQUIREMENTS

1-6

To use any of the interactive communications feature subsystems that require a
communications line, you must have a minimum of 64 K bytes of main storage;
if you use only the Intra subsystem, however, the minimum is 48 K bytes of
main storage. To make full use of the capabilities of the interactive
communications feature, such as multiple concurrent sessions, or to improve
performance, you should have at least 96 K bytes of main storage. Specific
information on main storage and secondary storage requirements of the
interactive communications feature is available in the Planning Guide and the
subsystem chapters of this manual.




Chapter 2. Interactive Communications Programming

This chapter describes the elements of interactive communications
programming that concern the application programmer. These elements are:

« Configuring the interactive communications environment
« Enabling the subsystem

« SESSION OCL statement

« Issuing interactive communications operations

« Starting a session

« Performing input and output

« Performing other operations

« Checking return codes

« Ending a session

« Remote initiation of procedures

« Disabling the subsystem

Interactive Communications Programming  2-1



The following illustration shows the hierarchy of levels that exist during normal
operation of System/34 interactive communications programs. Each of these
levels is described in more detail later in this chapter.

- Subsystem enabled
— Program started with an associated SESSION OCL statement

— Session acquired

"“ — — n — Data sent and received

End of transaction issued

— Session released

— Program terminated

L— Subsystem disabled

n Before any interactive communications programs begin-sessions, a
subsystem configuration must be enabled. Certain configuration
parameters can be modified during the enable. The enabled configuration
remains active until it is disabled. \

n Associated with each session to be started by the program is a SESSION
OCL statement. This statement defines subsystem-dependent
parameters as well as the session ID and location name (described later
in this section) associated with the session. The parameters remain in
effect until the program terminates.

Within each application program, sessions can be started (acquired). A
session allows communication between the System/34 application
program and its subsystem. The session remains active until it is
released.

n Within each session, transactions can be started (evoked) to allow
communications with the remote application. Transactions are started by
evoking a remote application program. Communication between the two
programs continues until an end of transaction occurs.

Within each transaction, data can be sent and received by the program.

Each level can occur repeatedly within the next higher level. For example,
multiple sessions can be acquired and released within the same program, and
multiple programs can be run without disabling and reenabling the subsystem
configuration.

Transaction started (remote program evoked)



Levels 2, 3, and 4 are specifically for acquired sessions. Sessions started by
incoming procedure requests do not require SESSION OCL statements, cannot
be acquired, and cannot evoke transactions. These functions are performed by
the remote application with its procedure start request. In this case, the
remote application fulfills the role of a display station operator.

The connection between the levels is maintained by several parameters. The
subsystem configuration name identifies the particular subsystem configuration.
The ENABLE procedure specifies the subsystem configuration name to be
enabled. The location name, specified during configuration, is included on the
SESSION OCL statement to identify the location being referenced. Also
specified on the SESSION OCL statement is the symbolic session ID. This is
the same session ID specified when the session is acquired by the application
program. Thus, the configuration can be changed without affecting the
application program.

CONFIGURING THE INTERACTIVE COMMUNICATIONS ENVIRONMENT

The first step in preparing to run interactive communications programs is
configuration. During system configuration, you specify whether you want
interactive communications in your system. If you do, you must run a special
interactive communications procedure called CNFIGICF. This procedure
prompts you for the subsystem types (CCP, for example) and for specific
parameters for each subsystem type. You can define multiple configurations of
each type, each identified by a unique name. The details, including the
prompts and parameter descriptions, are described in the appropriate
subsystem chapter later in this manual.

Interactive Communications Programming  2-3



2-4

. ENABLING THE SUBSYSTEM

To run an application program that uses interactive communications, you must
activate (enable) the particular subsystem configuration that you want to use.
An application program that uses interactive communication can be loaded
before the subsystem is activated, but no sessions can be started. The Peer
subsystem also allows enabling of a specific location. See Chapter 14 for
details.

An ENABLE procedure activates the subsystem and allows some modification
of configuration variables. The ENABLE procedure performs the following
functions:

+ Determines whether the line requested is available.

« Loads and attaches the subsystem if it is not already active.

+ Loads and attaches any other required tasks (BSC or SNA and SDLC) if
they are not already active.

« Assigns storage for required data areas and buffers.

After the subsystem is enabled, programs can begin using that subsystem.
You can enable a subsystem by having the ENABLE procedure automatically
run after IPL. See the Installation and Modification Reference Manual for a
description of how to specify a procedure to be run automatically after IPL.

Note: If a subsystem is enabled, procedures that require a dedicated system,
such as COMPRESS, cannot be run.



The format of the ENABLE procedure command is:

IBRARY SHOW .
ENABLE name , %mBT;a;e] » line number , I‘|Q§HOW] ,[locatlon]

name: Specifies the member name of the subsystem configuration to be
enabled.

library name: Specifies the name of the library that contains the specified
subsystem configuration. The default is #LIBRARY.

line number: Specifies the number of the communications line for which this
subsystem is to be enabled. This parameter can be omitted for the Intra
subsystem.

SHOW /NOSHOW: Specifies whether subsystem configuration parameters are to
be displayed before the subsystem is enabled. If SHOW is specified, they are
displayed, and some of the configuration parameters can be changed.

location: Specifies the name of the remote location to be enabled. Location
name can be specified only if the subsystem being enabled is a Peer
subsystem. This name must have been specified as a remote location name
during subsystem configuration.

Interactive Communications Programming 2-5



2-6

SESSION OCL STATEMENT

Each program that acquires an interactive communications session must have a
SESSION OCL statement associated with that session.!” SESSION OCL
statements are similar to WORKSTN OCL statements and must appear
between the LOAD and RUN statements. The SESSION statement references
the subsystem configuration that the application program uses and the ID of
the session to be acquired.

Each subsystem has its own specific parameters on the SESSION OCL
statement.

The format of the SESSION OCL statement is:

// SESSION LOCATION-name,SYMID-session-id
E)ptional subsystem-dependent parameters]

LOCATION: Specifies the location name associated with this session. The
location name is defined during subsystem configuration, and refers to the
name of the remote location with which communication is to take place.

SYMID: Specifies the symbolic ID of the session with which this OCL
statement is associated. The symbolic ID must be two characters, with the
first character numeric (0 through 9) and the second character alphabetic (A
through Z, #, $, or @). This is the same ID that the application program uses
when referring to this session. This ID is the equivalent of a symbolic display
station ID as specified on the WORKSTN OCL statement. This parameter has
no default.

The optional subsystem-dependent parameters are described in each of the
subsystem chapters.

"If the program is a BASIC program and the subystem is Intra, Peer, or CCP, a
SESSION statement might not be required. See Chapter 4, Interactive Communications
Programming with BASIC for more information.



ISSUING INTERACTIVE COMMUNICATIONS OPERATIONS

Interactive communications data management has a set of operations to
establish and control sessions and transactions. The following sections include
a general description of each operation. The operations are issued differently in
BASIC, COBOL, and RPG Il than they are in assembler. For more details on
how to use these operations, see the programming language chapters. For
specific subsystem considerations about each operation, see the chapter on the
pertinent subsystem.

Each language chapter also contains a language summary chart that lists all the
operations that are valid for that language and indicates all the subystems for
which each operation is valid. The chart also shows the operation codes
(mnemonics) that must be coded in that language to perform the operations.
You will probably want to refer to one of these language summary charts when
you are coding a program in a particular language and subsystem.

Appendix A contains a different type of operations summary chart. The

Input /Output Operations Summary Chart shows all of the operations (for all the
languages) as input, output, or combined input/output operations, and
indicates in which subystem each operation is valid.

STARTING A SESSION

After the subsystem has been enabled, communications can be started. Two
operations are required to begin communicating:

. Acquire, to start the session

. Evoke, to start the transaction

Acquire Operation

The acquire operation establishes a session. Associated with the acquire is a
session ID (corresponding to the SYMID parameter given on the SESSION
OCL statement) that identifies this session. When the acquire operation
completes successfully, a session with this ID exists. Communication with the
remote system might or might not have been started (depending on the
subsystem), but the session is reserved for this program.

Interactive Communications Programming  2-7



2-8

Evoke Operation

The evoke operation starts a procedure or an application program on the
remote system and, thereby, begins a transaction. An evoke can occur only
after a session has been acquired, but multiple evokes can be issued in each

‘session if the previous transaction has ended before the next evoke is issued.

Several types of evokes can be issued:

« Evoke issues an evoke operation and then waits until the remote system
acknowledges the operation. The issuing application program can then
begin transmitting data.

« Evoke then invite issues an evoke followed by an invite. The invite enables
the remote application program to send data first for this transaction. (See
Invite Operation later in this chapter.) Control is returned to the issuing
application program without waiting for completion of the evoke.

« Evoke then get issues an evoke and then waits for input from the evoked
application. (See Get Operation later in this chapter.)

« Evoke end of transaction issues an evoke and then ends the transaction.
This means that no further communication takes place between the issuing
program and the evoked program. See the special considerations in Remote
Initiation of Procedures later in this chapter if you will be using evoke end of
transaction to initiate a System/34 procedure.

Associated with each evoke is an evoke parameter list, which contains the
procedure name, library name, password, and user ID associated with the
program to be evoked. The evoke operation can optionally include data to be
sent to the remote application. See Remote Initiation of Procedures later in this
chapter for more information about evoking System/34 procedures.

The evoke operation can include a function management header. See Chapter
15 for a description of function management headers.



PERFORMING INPUT AND OUTPUT

After the session and transaction have been established, input and output
operations can be performed. The following operations are available for
performing input and output:

« Put, to send records
« Invite, to allow input and accept, to obtain invited input

« Get, to request input

Put Operation

The put operation passes data from the issuing program to the remote
application program. The following types of put operations can be issued:

« Put issues a put to the subsystem and returns control to the application
program without waiting for the operation to complete. If multiple put
operations are issued, the current put operation is not started until the
previous put operation is complete. If the previous put operation failed, the
current put is not performed and the application program is informed via the
appropriate return code.

« Put then invite issues a put followed by an invite. The invite allows the
remote application program to begin sending data on this session. (See
Invite Operation later in this chapter.) Control is returned to the vapplication
program without waiting for the remote system to send the data.

« Put then get issues a put operation and then waits for the remote
application program to send data. (See Get Operation later in this chapter.)

« Put end of chain or put end of file issues a put operation that indicates to
the remote system that this is the last record in a group of data. The put
end of chain operation is used for the Intra, SNUF, and Peer subsystems.
The put end of file operation is used for the BSC subsystems. Control is
returned to the user program after the remote system acknowledges receipt
of the end of chain, or after end of file is sent by the BSC interrupt handler.
The put end of file and put end of chain operations translate to the same
operation code (and are issued the same way in BASIC, COBOL, and RPG Il
programs); therefore, these operations need not be recoded when going
from BSC to SNA or vice versa. See Appendix C for more information
concerning BSC to SNA migration.

Interactive Communications Programming



¢ Put function management header issues a put, put then invite, or put then get
operation and indicates to the remote application program that a function
management header is included in the data. Put function management
header is valid only for the Intra and SNUF subsystems.

« Put end of transaction issues a put operation and then indicates to the
remote application program that this transaction is ended and no more
communication will take place between the two applications. Control is
returned to the user program after the remote system acknowledges receipt
of the end of transaction.

Invite Operation

The invite operation asks for input data, but the issuing program receives
control without waiting for the input. To obtain the data, the user program
must subsequently issue an accept or get operation. The invite operation can
be issued alone or as a modifier with an evoke, put, cancel, negative response,
or request change direction operation. If the invite operation is issued as a
modifier for an operation that is not supported by a subsystem, the invite is
ignored.

Accept Operation

The accept operation allows the issuing program to obtain data from any
previously invited program or display station, to allow new requesters, or to
check whether the timer has expired (see Set Timer Operation later in this
chapter). If data is available from more than one display station or program,
the data received by the program is the data from the first display station or
program that sent it. An accept to receive data should be issued only after a
previous invite or set timer request; however, if the program is a MRT NEP, an
accept without a previous invite or set timer request allows the program to
wait for a new requester.

Get Operation

The get operation provides the issuing program with data from a specific
program. The issuing program receives control when data is available. The get
operation differs from the accept operation in that the get operation is directed
to a specific program (or display station), whereas an accept operation allows
input to be obtained from any previously invited session or display station.



PERFORMING OTHER OPERATIONS

Most programs can be written using only the previous input and output
operations. However, if additional functions are required, the following
operations are available:

+ Request to change direction
« Negative response

« Fail

» Cancel

« Set timer

« Get attributes

« Pass-through operations

Request to Change Direction Operation

The request to change direction operation indicates that the issuing program
wants to transmit data. The operation can only be issued by a program that is
receiving. The request to change direction operation has two forms: request to
change direction then invite and request to change direction then get. After
issuing either operation, the issuing program should continue to receive data
until it receives a return code indicating that the remote program is ready to
begin receiving. The issuing program can then begin sending data.

A user program that receives a request to change direction is notified via a
return code following a put operation. (See Checking Return Codes later in this
chapter for a description of return codes.)

Negative Response Operation

The negative response operation sends a negative response to the remote
application. A negative response indicates that the application program
detected something wrong with the data received. The response can include
eight characters of sense information to inform the remote system of the
reason for the negative response. The negative response operation can be
issued alone or with a get or invite. The negative response operation should
be used only when receiving data from the remote program.

A user program that receives a negative response is notified via a return code
following a put operation. (See Checking Return Codes later in this chapter for
a description of return codes.) The only valid response to a negative response
is a cancel.

Interactive Communications Programming



2-12

Fail Operation

The fail operation indicates to the remote program that an abnormal c;)ndition
has occurred within the application program. The fail operation can be issued
while the program is sending or receiving. If a program issues a fail operation
while sending, it indicates that the data just sent was in error. All data sent
before the fail operation is transmitted to the receiving program, and a return
code indicating the fail is given to the receiving program. If a program issues a
fail operation while receiving, it indicates that the data received was in error.
The subsystem discards all subsequent data until the transmitting subsystem
acknowledges receipt of the fail operation. In either case, the program that
issued the fail operation must transmit, and the program that receives the fail
return code must receive. If both programs issue a fail operation
simultaneously, the program that was receiving will be successful and must
transmit. The program that was transmitting will receive an unsuccessful return
code and must begin receiving. No data can accompany the fail operation.

Cancel Operation

The cancel operation sends a cancel command to the remote program. The
cancel command indicates to abnormally end this group (chain) of data records
and to disregard previous records in this group (all records sent since the
previous end of chain). The cancel operation can be issued alone or with an
invite or a get. The cancel operation should be issued only while transmitting
data. A cancel operation does not end a session; recovery from a cancel
operation depends on the subsystem.

A user program that receives a cancel is notified via a return code. (See
Checking Return Codes later in this chapter for a description of return codes.)

The cancel and negative response operations can be considered as a pair.
Cancel is the appropriate response when a negative response is received.
However, if the transmitting program discovers an error, cancel can be sent
without first receiving a negative response.



Set Timer Operation

The set timer operation specifies an interval of time (in hours, minutes, and
seconds) to wait before issuing a timer expired return code. The issuing
program continues to execute, and all operations are valid during the time
interval. When the time interval expires, the issuing program receives a return
code from an accept operation indicating that the time interval has expired.
The session or work station ID field is not changed when the accept- operation
for the timer has completed.

The set timer operation can be useful in retrying other operations that fail
because of a temporary lack of resources. To do this, issue the set timer
operation and then continue to do accepts until the timer expires. The accepts
allow the program to continue to receive input from other programs and display
stations while waiting for the timer. Only one time interval can be maintained
for a program. If a previous set timer operation has been issued and has not
yet expired, the old time interval is replaced by the new interval. If you are
using RPG Il or the BASIC $$TIMER operation, at least one requester or
acquired device must be attached to the program before the program issues
the set timer operation.

Interactive Communications Programming 2-13



Get Attributes Operation
The get attributes operation returns status information about a specific session
to the issuing program. The status information includes the session status, the
invite status, and the 8-character location name (specified during configuration)
associated with this session. '
The session status is one of the following:
« The session has a SESSION OCL statement but has not yet been acquired.

« The session has been acquired.

« The session is an evoked session; that is, a procedure start request has
been issued by the remote system, and the transaction has not yet ended.

The invite status is one of the following:
« This session has not been invited.
« This session has been invited, but no data has been received.

« This session has been invited, and data is ready.

Pass-Through Operations

Pass-through operations (either pass-through put or pass-through invite) are
issued for a pass-through session with either the SNUF subsystem or the Intra
subsystem. Pass-through operations indicate that data management and the

subsystem are not to translate the user program data stream (including SNA
control information), but are to pass it to the user program. The pass-through

support is described in Appendix B.



ENDING A SESSION

When all required communications are complete, the session can be ended.
Depending on whether the session is an acquired session or was started by an
incoming procedure request, the following operations either end the session or
pass it on to the next step in the job:

« Put end of transaction
« Release
« End of session

The following sections describe the effect of these operations.

Put End of Transaction Operation

A put end of transaction operation can be issued by either program. This
operation always ends the transaction. If it is issued for a session started by
an incoming procedure request, put end of transaction also ends the session.

Release Operation

The release operation is an attempt by the issuing program to terminate
communication with the session. Release performs two different actions
depending on the type of session:

« If the session was acquired by the issuing program, the release operation
requests the subsystem to end the session. If the release operation was
successful (return code less than 0402), the session is terminated. If the
release operation was not successful, the end of session operation can be
issued to terminate the session. The same or another session can then be
acquired. (See Acquire Operation earlier in this chapter.)

« If the session was started by an incoming procedure request and the issuing
program is an MRT program, the release operation passes the session to
the next step in the procedure. The SSP then executes any further OCL in
the procedure.

« If the session was started by an incoming procedure request and the issuing
program is an SRT program, the release is delayed until the issuing program
terminates. However, any subsequent operations by the issuing program to
the session result in an error return code indicating that communications is
being attempted to a released requester (return code 2800). After the
issuing program terminates, the session is passed to the next step in the
procedure.

Note: A release for an acquired session can be performed only if no

transaction is active; that is, end of transaction has been successfully sent or
received.

Interactive Communications Programming



End of Session Operation

The end of session operation terminates a session. End of session can also be
issued after a session that was started by an incoming procedure request
receives an end of transaction return code (see Special Considerations in this
section). The end of session operation frees that session for subsequent
procedure start requests. If the end of session is not used, the session
remains allocated until the job terminates. End of session can also be issued
after an error resulted from the previous operation.

The end of session operation always terminates the session and gives a normal
completion returﬁ code.
|

When end of session is issued for a session, one of the following occurs:

« If no transaction is active and no error occurred, the session is terminated
normally.

« If a transaction is active or an irrecoverable error occurred during the
‘session, the session is terminated abnormally.

If the procedure was started by an incoming procedure request, all subsequent
job steps run without a requester whether the session ended normally or
abnormally. If the session ended abnormally, a return code of 8158 is placed
in the OCL condition code (CD) for the job. You can prevent the subsequent
job steps from running by adding the following OCL statement to each job
step: ’

// IF ?2CD?/8158 CANCEL
For more information on the IF statement, see the SSP Reference Manual.
If the end of session operation is issued for a session that does not exist or is

not being used by the issuing program, no session is terminated; however, a
normal return code is given to the issuing program.



Note About Ending an Acquired Session

You should end a session by using either the release operation or the end of
session operation before your terminate your program. If you do not end the
session, the system will end it when your program ends. If an error occurs
while the system is ending the session, your program cannot handle the return
code. A message is displayed on the system console, and the operator must
handle the error.

Use the end of session operation if you want the session ended and do not
want to check the session status. A normal completion return code is issued
to your program regardiess of whether the session ended normally or
abnormally, and, although a message is displayed on the system console, no
operator intervention is required.

Use the release operation if you want your program to check whether the
session ended normally or abnormally.

Interactive Communications Programming 2-17



CHECKING RETURN CODES

After each operation, a return code is passed to the application program. This
return code should be checked by the program to determine the status of the
operation just performed, and to determine which operation should be
performed next. Each code returned to an assembler program is 2 bytes long
and in binary form. Each code returned to a BASIC, COBOL, or RPG I
program is 4 bytes long and in hexadecimal (EBCDIC) form.

Every return code has four digits, and consists of two parts: a major code (2
digits), and a minor code (2 digits). The major code identifies the general
condition for a group of return codes, and is usually sufficient to determine the’
action to be taken. The minor code identifies the specific condition and
indicates the specific action that should be taken next.

Usually, the application program can determine what action to take by checking
the major code only. Most programs might check only a few minor codes for
specific conditions that might occur in that particular application or
communications configuration. At a minimum, when the code is returned as a
result of an input operation, it should be checked to see if the last of the 4
digits is even (bit 7 is off). This check determines whether an input operation
is allowed as the next operation.

The description of each return code that is valid for a subsystem is contained

in the chapter describing that subsystem. (If the code can be issued by more

than one subsystem, its description occurs in more than one chapter and may

vary from one chapter to another.) A summary chart in Appendix A shows all

the return codes, and indicates all the subsystems for which each code is valid.
Major Codes

All major codes that represent normal or output exception conditions have

values less than 0800, and those that represent error conditions have values

equal to or greater than 0800. This division enables the application program to

make a quick comparison to determine the type of action required.

The main groups of major return codes are:

« Operation was completed successfully (00xx, 01xx, 02xx)

« Successful operation, but no data was received (03xx)

« Output exception occurred (04xx)

« Subsystem error occurred; session has been terminated (80xx)

+ Nonrecoverable session error occurred; session has been terminated (81xx)

« Acquire operation failed; session was not started (82xx)

« Session error occurred; recovery might be possible (83xx)



Minor Codes
The minor part of a return code identifies the specific condition within the
general condition identified by the major part of the code. Some examples of
the minor codes are:

« Some data was received on an input operation (xx01)

« End of transaction indication was received (xx08)

Invalid evoke operation was issued (xx29)
« Maximum number of sessions are already active (xxA8)

Some return codes occur in pairs: one resulting from an input operation, and
the other resulting from an output operation. The purpose of each pair is to
help determine, during a combined input/output operation, which part of the
operation the error occurred in. For example, the return codes 8183 and 8184
are valid for most of the subsystems. Both codes indicate that an MLCA
controller check occurred: 8183 indicates the check occurred on an output
operation, and 8184 indicates the check occurred on an input operation. If
8184 was returned after a put then get operation, the put portion worked
correctly and the error occurred during the get portion of the combined
operation.

Interactive Communications Programming  2-19



2-20

REMOTE INITIATION OF PROCEDURES

If you expect to have procedures initiated on the System/34 from remote
locations, you must have the subsystem enabled before the remote request
arrives. You can enable the subsystem by having a procedure automatically run
following IPL. (See Enabling the Subsystem earlier in this chapter for more
information.) '

To initiate procedures on the System/34, the remote application (if not on
another System/34 with the interactive communications feature) must send a
procedure start request. The procedure start request, sent by the remote
system, initiates a session and starts a System/34 procedure by evoking the
first program in that procedure. There are four types of procedure start request
statements:

« *EXEC
o *EXEX
« *EXNC
o *EXNX

Note: If the system attempting to start a procedure on the System/34 is
another System/34 with the interactive communications feature, the remote
program can issue an evoke operation instead of these procedure start
requests.

The format of each of these procedure requests is:

*EXxx procedure Eiata or parameterg Eser icﬂ

Eibrary namﬂ E)assword] Eecord Iengtlﬂ E)Iock lengtlﬂ

Eecord separatoﬂ [l:l ] [ ﬁ ] [l)\l( ]

The procedure name must begin in position 7 and must be separated from the
data and parameters by one or more blanks. The parameters following the
password are valid for the BSCEL subsystem only.

The data and parameters are considered to be everything from the first
nonblank character following the procedure name through position 127, and are
available as data to the application program or as positional procedure
parameters.

The user id begins in position 128, the library name begins in position 136, and
the password begins in position 144; the password must be 4 bytes long. If a
library is not specified, #LIBRARY is assumed. The user id, library name, and
password fields are positional and must be padded on the right with blanks if
any field follows. If the System/34 does not use security, then the user ID and
password are not required.



The remaining parameters are used with the *EXEC and *EXNC procedure start
requests for the BSCEL subsystem. Parameters specified with the procedure
start request are used for the session being started instead of parameters
specified during subsystem configuration or with the ENABLE procedure.

The record length is the maximum user record length (4-digit decimal,
right-justified). The record length begins in position 148.

The block length is the length of the block of data records to be transmitted or
received (4-digit decimal, right-justified). The block length begins in position
152. If the block length is 0000, data records will not be blocked.

The record separator is the hexadecimal value for the record separator
character. The record separator character begins in position 156. If you specify
00, no record separator character is used.

| is the indicator for ITB mode. The indicator is in position 158. If you specify
I, ITB mode is used (ITB characters are used to separate data records in a
block). If you specify N, ITB mode is not used.

CT is the indicator for blank compression or blank truncation. This indicator is
in position 159. If you specify C, blank compression is used. If you specify T,
blank truncation is used. If you specify N, no blank compression or blank
truncation is used.

X is the indicator for transparency. This indicator begins in position 160. If you
specify X, data is transmitted in transparent mode. If you specify N, data is
transmitted in nontransparent mode.

Interactive Communications Programming

2-21



If a parameter is blank, the parameter specified during configuration or when
the subsystem was enabled is used. For example:

Use the value specified
during configuration

or enable.
1 7 128 136 144 148 152 15§ 160
XEIC] JPROCH I«ﬁu, BT
HERRREA ||
E 4 [ . — L
— Use a record separator
character of 1E for
this session.
Use a record length
of 128 for this
session.
1 7 ] 128 136 144 148 152 156 160
XEICT PRIO[CAT PAIRMIT. P ¥ / N
L | Iy Il

Do not use transparency

for this session. For all
' other parameters, use

the value specified

during configuration

or enable.

See Data Formats in Chapter 8 for more information about blocking, record
separators, ITB characters, and blank truncation and compression.

2-22



The record containing the procedure start request can end with the last usable
character. For example, if no parameter is required after the library name and
the library name is 4 bytes long, the record could be 139 bytes long; if a
6-character procedure name is the only field sent, the record can be 12 bytes
long. Depending on the subsystem, procedure start requests longer than 147
bytes could cause errors. The BSCEL subsystem accepts procedure start
requests up to 160 bytes long.

7 128 136 144 148 152 156 160
KE ICA y 2
—on-—P[ [ | ——J
XEIC CA PARMLI, 20 [1/ /1 1IS3HIIDL] | JULTBLL | | PX[3IA0[0[8I0/05H00IGNNIN
l ENENRRNRNNEERERNNI | L i
BS(;EL
Parameters

The *EXEC statement requests that a procedure be started and that a session
be held with a program in the procedure.

The *EXEX statement requests that a noncommunicating procedure be started;
a program within that procedure can, however, request that a session be
started. See Special Considerations later in this chapter for more information.

The *EXNC and *EXNX statements are valid only with the BSCEL subsystem.
These statements serve the same functions as *EXEC and *EXEX respectively,
except that no messages generated during program initiation are sent to the
remote system. The *EXNC and *EXNX statements are normally used by‘ a
device, such as a 3741, that wants to start a procedure on the System/34 but
cannot process messages.

Note: Because some systems (for example, the 3741) cannot transmit records
longer than 128 bytes, the BSCEL subsystem allows a procedure start request
to be broken into two records. The first record has the same format as
described previously through column 127. If a second record is required to
include the user ID, library name, password, and/or BSCEL parameters, the
first record must contain a C in column 6. The user ID begins in column 7 of
the second record, the library name begins in column 15, and so on. Column
128 of the first record and columns 1 through 6 of the second record are
ignored.

If you are communicating between System/34s, the evoke operation causes
the subsystem to build and send the procedure start request. The receiving
subsystem handles the request and, if the procedure was coded to accept data
(PDATA-YES), passes any data to the started program on its first input
operation. An evoked System/34 application program can perform an input or
output operation as its first interactive communications operation. See the
following paragraph, Writing Procedures to be Started by Incoming Procedure
Requests, for more information.

Interactive Communications Programming

2-23



2-24

Writing Procedures to be Started by Incoming Procedure Requests

When writing procedures that are to be started by incoming procedure
requests, keep several considerations in mind. ‘

No SESSION OCL statement is allowed for sessions that are started by
incoming procedure requests. If the program that the procedure runs acquires
any sessions, SESSION OCL statements must be included for them.

If data is to be sent with an SRT procedure start request, PDATA-YES must
be specified on the COPY utility control statement for SMAINT when the
procedure is created, or the prompt for data on the end of job option menu
(PROGRAM DATA IN INCLUDE STATEMENTS) must be answered yes when
using SEU. MRT procedures always allow data. If data is sent with the’

~ procedure start request and the program is not prepared to receive it, the data

is treated as procedure parameters. This could result in error messages,
because only 11 parameters are allowed, each 8 characters long and separated
by commas.

An SRT program started by an incoming procedure start request can do an
output operation as the first operation. When doing an output operation first,
consider the following items:

« The session ID for the session to which the output operation is sent must
be ¥b (blanks).

« If data was sent with the incoming procedure start request, the data is lost.
« If the incoming procedure start request was an end of transaction, the
requester is released, and any data the SRT program sends with the output

operation is lost.

A procedure started by an incoming procedure request has all the capabilities
of other procedures. For example, the procedure has:

« Access to and update of its own local data area
« Full IF statement capability
« Ability to place jobs in the input job queue

« Ability to evoke other jobs (which could initiate communication back to the
system that started the job)

« Ability to change the user library for requesting procedures and programs

« Full OCL substitution capability



The only restriction is that functions that display screen formats to the
requester cannot be included in the procedure. These are:

« // PROMPT
« // MENU

o« /1

« SEU

« SDA

-« DFU

« BASIC

Interactive Communications Programming 2-25



2-26

Special Considerations

The following chart and notes describe what happens when a program is
started with end of transaction (by *EXEX, *EXNX, or evoke end of
transaction). ’

SRT
PDATA-YES PDATA-NO MRT
Data include with | Data passed to Procedure runs Data passed to program’
the request program’ without requester?®
No data included |Procedure runs without |Procedure runs Session ID and no data
with the request |a requester® without a requester® |passed to the program?

' After the program performs its initial input operation to receive the data, the SSP

frees the session. All subsequent job steps run without a requester. (No subsequent steps can exist
in an MRT procedure.) The program receives a return code indicating new requester and
end of transaction (0118) on its initial input operation. If the program is coded in RPG Il, the
program should issue a release or end of session operation to free the entry in the internal
table of IDs for the WORKSTN file.

2The conditions are the same as those in Note 1, but no data is passed to the program with
the initial input operation.

3If the program issues an initial input operation for the work station file, a return code
indicating no invites outstanding (1100) is given to the program. If the program is an RPG Il
program, this return code sets on the end of file condition, which terminates the program if
the work station file is the primary file.




DISABLING THE SUBSYSTEM

To terminate a subsystem, the DISABLE procedure must be run. The Peer
subsystem allows disabling of a specific location. See Chapter 14 for details.
When a disable is requested for a subsystem configuration, the following
functions are performed:

« If no active sessions are using this subsystem, the subsystem configuration
is disabled, and the main storage being used is freed. If this subsystem is
not active on any line, the subsystem is terminated; any interrupt handler
(BSC or SNA and SDLC) is also terminated if it is not currently in use.

« If active sessions are using this subsystem, a message is issued to the

system operator with the following options:

— Hold the disable. New sessions are prevented from being started and,
when all sessions complete, a normal disable occurs.'

— Retry the disable. Check again for any active sessions.

— Cancel active sessions and disable. Active sessions are immediately
terminated, and the disable is performed. »

— lIgnore the disable request. The DISABLE procedure is canceled and must
be run again when a disable is desired.

« If a disable is pending or in progress, a message is issued to the system
operator. The message indicates either that the disable request is not
allowed, or that the operator can request an immediate disable or wait for
the current disable to complete.

The format of the DISABLE procedure is:
DISABLE name , Iocation]

name: Specifies the member name of the subsystem configuration to be
disabled.

location: Specifies the name of the remote location to be disabled. The SNA
location can be specified only if the subsystem being disabled is a Peer
subsystem. This name must have been specified as a remote location name
during subsystem configuration.

"When a disable is held, each successful operation will receive a major return code
“indicating that a disable is pending (02).

Interactive Communications Programming 2-27



2-28

INTERACTIVE COMMUNICATIONS PROGRAMMING TECHNIQUES

Before writing programs that issue interactive communications operations, you
should understand the work station file operations and how they relate to
display stations and sessions.

Session Types

On a System/34, there are two ways to configure a display station: (1)
command mode (that is, jobs can be initiated from the display station), and (2)
data mode (that is, a program must acquire the display station before an
operator can interact with an application).

As indicated in.Chapter 1, there are two types of sessions: (1) an acquired
session, and (2) a session initiated via an incoming procedure start request. An
acquired session has many of the attributes of a data mode display station,
and likewise the session started by an incoming procedure request has many
of the attributes of a command mode display station.

An acquired session, like an acquired data display station, is active only for the
duration of the program that acquired the session, or until that program issues
a release or end of session operation. A session started by an incoming
procedure request, however, can exist for the duration of an entire job, which
can consist of many steps (programs). The parallel between this type of
session and a command display station is that either can serve as a requester
for multiple programs. You can take advantage of this parallel by breaking the
procedure into simpler logical units of work (programs). As with a command
display station, the session serves as a requester for the next job step
whenever the previous job step ends or releases the session. The session is
terminated when the job ends or when any program issues an end of
transaction or an end of session operation. After the session is terminated, the
remaining job steps, if any, run without a requester.



IDs

Most work station file operations require a symbolic ID to direct the data
management to the program or display station for which the output operation
is intended. The ID is a 2-character field that corresponds to the following
naming conventions:

« If the ID is bb (two blanks) and if the program is an SRT program, the
operation is directed to the program’s requester (either the display station or
the session that requested the start of the procedure). This ID is invalid if
the program is an MRT program or has no requester. b is a valid ID for an
accept operation or set timer operation. RPG, however, requires a nonblank
ID for any output or timer request.

« If the ID is nn (where nn is from 00 through 99), the operation is directed to
a session.

« If the ID is na where n is from O through 9 and a is not numeric), the
operation is directed to an acquired session with the corresponding SYMID
value from the SESSION OCL statement.

« If the ID is ax (where a is not numeric and x is any character), the operation
is directed to a display station whose physical ID is ax or to the display
station with the corresponding SYMID value on the WORKSTN OCL
statement.

On returning to the application program following a work station file operation,
data management returns an ID with one of the following values:

« An ID of ax, which represents the physical ID of a display station or the ID
of a display station with the corresponding SYMID value on the WORKSTN
OCL statement.

« An ID of nn, which represents the physical ID assigned by data
management to a session that was started by an incoming procedure
request.

« An ID of na, which represents an acquired session with the corresponding
SYMID value on the SESSION OCL statement.

The ID field is unchanged by data management for an input operation whose

return code indicates that no invites are outstanding or that the time interval
has expired.

Interactive Communications Programming

2-29



©2-30

SRT and MRT Program Considerations

The concept of SRT and MRT programs applies to interactive communications

programs as well as to other display station programs. An incoming procedure
request is treated as a requester just as if a display station were requesting the
procedure.

Programs that are coded as SRT programs that want to handle only display
station requesters can prevent programs from inadvertently requesting the
program by modifying the OCL for that procedure. The IF EVOKED OCL test
can be used to determine whether the procedure request was the result of an
incoming procedure start request or an EVOKE OCL statement. The IF
EVOKED OCL test can also be included in a MRT procedure, but the test is
performed only for the original requester.

If an MRT program is to be started by a session, be certain the MRTMAX
parameter is large enough. If the maximum number of requesters is already
attached to the program, the incoming procedure request is queued until the
program releases one of its active requesters. This queuing could result in
unacceptable delays.

An SRT program can have only one requester but can acquire more display
stations and sessions. The acquired display stations and sessions can be
released explicitly within the program, but the requester is not completely
released until the program ends.

A requester can be released before the program begins if RELEASE-YES is
specified on the ATTR OCL statement. MRT programs can release requesters
within the program. MRT programs should release the display stations and
sessions when processing completes or they will remain attached to the
program until it ends.



Interprogram/Interprocedure Communication

Program information can be passed from program to program and from
program to procedure within a work session (from display station sign on to
display station sign off or for the duration of an evoked session). A full screen
of information or an entire transaction record can be passed from program to
program using the read under format technique. The work station local data
area and user program switches (UPSI) can also be used to pass up to 256
bytes of data or switches from program to program or from program to
procedure. This can be done by using the programming language and OCL
support provided to access and update these areas.

If an application is written as a series of related programs, the local data area
or UPSI can be used to control program flow for a given procedure. An
example of this would be the execution of a nested procedure based on
program logic. Assume that at some point a program determines that the next
procedure to be executed is one named SPECIAL. To run this procedure, the
program first reads the local data area. This ensures that the areas that are not
to be changed by the program will retain their values. Next, the program
moves the literal SPECIAL into a field that is located (for this example) in the
first seven positions of the program-defined local data area buffer. The
program then calls the appropriate subroutine to write the program data area to
the work station local data area. When the program ends, the OCL is read. If
the next statement is // INCLUDE ?L'1,7°?, the next procedure executed will
be the procedure named SPECIAL.

Interactive Communications Programming  2-31



2-32

Read Under Format

A read under format allows one program in a procedure to display a format
and a subsequent program in the procedure to read.it. The first program
displays the format using a normal output operation ($$SEND, or without
suppressing input) and then goes to end of job or releases the display station
or session. While the second program is initiating, the operator keys
information into the displayed format, or the remote program sends data. The
input information is then sent to the second program. This technique can be
effective in hiding the program load time because it can be overlapped with the
input operation.

Read under format can also be used with sessions started by incoming
procedure requests. In this case, one program step in the procedure invites the
session for input and then releases it. The process of initiating the next
program step is overlapped with data arrival on the invited session.

The following steps occur in a read under format:

1. With a normal output operation, the first program displays a format at
the work station or invites a session.

2.  The first program either ends if the program is an SRT program or
releases the requester if the program is an MRT program.

3. The second program is initiated. (Data cannot be passed to the second
program from an INCLUDE OCL statement.)

4. The second program performs a normal input operation as the first
operation.



Chapter 3. Interactive Communications Programming with Assembler

The interactive communications portion of an assembler program consists of
preparing data for transmission, processing data that was received, using
macroinstructions to define control blocks and perform operations, and
checking and reacting to the return codes. Because the data preparation and
processing vary greatly by application, those functions are not described in this
chapter.

MACROINSTRUCTIONS

To assist the assembler language programmer in writing interactive
communications programs, the following macroinstructions are provided as part
of the Basic Assembler and Macro Processor Program Product:

+ $DTFW (define an interactive communications DTF)
« $WSIO (perform an interactive communications operation)
« $EVOK (define an evoke parameter list)

The $DTFW and $WSIO macroinstructions are also used for work station input
and output. The $ALOC, $OPEN, $CLOS, and $DTFO macroinstructions are
also required for interactive communications programs. The WS-Y and
FIELD-Y parameters must be specified on the $DTFO macroinstruction; the
other macroinstructions remain unchanged.

The ICRTC-Y parameter must be specified on the $DTFO macroinstruction to
generate the labels for the interactive communications return codes.

The following sections describe the $DTFW, $WSIO, and $EVOK
macroinstructions as used for interactive communications only. More
parameters and operations are available on $DTFW and $WSIO for display
station input and output; for the complete description, see the Basic Assembler
Reference Manual. Each description includes an example or examples of
correctly coded macroinstructions. For examples of how macroinstructions can
be used with specific subsystems, see the appropriate subsystem chapter.

The $DTFW and $WSIO macroinstructions define and modify fields in the

work station DTF. The complete format of the DTF, including field labels is in
the Data Areas and Diagnostic Aids Manual.

Interactive Communications Programming with Assembler  3-1



3-2

$DTFW

The following is the format of the $DTFW macroinstruction as used to
generate an interactive communications DTF:

EILENAME 00000000
[1abel] $DTFW [NAME- { pryg— }] [, UPSI- { gpit UPS|}]
] [ (2]
[ > CHAIN {DTF st ] L™ { gt e
bb ' 0000 '
[ » TERMID- {session id }] ETlDTAB- session id table address}]

[’ENTLEN' le ngth}] [TNUM {number of entnes}] [ HALTS- {N}]

NAME: Specifies the file name associated with this DTF. Interactive
communications data management does not use this name. If this parameter is
not specified, FILENAME is assumed.

UPSI: Specifies a string of eight binary digits used to condition the opening of
this DTF. When the corresponding bits are on in the switch (as specified in the
SWITCH OCL statement), the DTF is opened. For example, to test bits O, 3, 5,
and 7, you would code UPSI-10010101. If this operand is omitted, zeros are
assumed, and no test is done.

CHAIN: Specifies the address of the next DTF in the chain. If this parameter is
omitted, hex FFFF is assumed, and the chain is ended.

INLEN: Specifies, in decimal, the maximum amount of input data that the user
program is prepared to receive. This number must not be greater than 65535.
Note that although the macroinstruction allows any value up to 65535, the
subsystem restriction is 4075 for all BSC and SNA subsystems and 40952 for
the Intra subsystem. If this parameter is omitted, zeros are assumed, and no
data can be transferred unless this field is modified (by the $WSIO
macroinstruction).

TERMID: Specifies the ID of the session to communicate with. This ID must
be the same as that specified on the SESSION OCL statement if this session is
acquired as a SRT. If this parameter is omitted, blanks are assumed, but
communications on the session can still take place normally if this program is
evoked remotely. Data management assigns an ID to the session with the
remote program that evoked this program, and places that ID in this field
(SWSNAME).



TIDTAB: Specifies the address of the session and work station 1D table.
Programs that support multiple display stations and sessions typically want to
maintain a list of IDs and associated status indicators. By specifying the
TIDTAB, TNUM, and ENTLEN parameters, an area is reserved for this list.
During open, the ID of the session or display station that requested the
program is placed in the first 2 bytes of the first entry in the list. In addition,
the first 2 bits of the third byte are set on. For each WORKSTN and SESSION
OCL statement, an entry is created with each SYMID for the first 2 bytes. The
first bit of the next byte is set on if REQD-YES was specified; the second bit
is set off. The table must be large enough to contain each of these IDs plus
enough additional entries up to the MRTMAX value. After open is complete,
the user program must maintain the list. If an end of session operation is
issued or if a return code of hex 80 or 81 is received, interactive
communications data management places zeros in the first 2 bytes and the
first 2 bits of the third byte in the appropriate entry. The first 2 bytes and the
first 2 bits of the third byte must be set to zeros before the DTF is opened. If
this parameter is omitted, zeros are assumed, and no table is built.

ENTLEN: Specifies, the decimal length (in bytes) of each entry in the session
and work station ID table. If the TIDTAB parameter was specified, ENTLEN
must be specified and should be 3 or greater.

TNUM: Specifies the number of entries in the session and work station ID
table. The TNUM value should be greater than or equal to the maximum
number of concurrent active sessions and attached display stations. If the
TIDTAB parameter was specified, TNUM must also be specified.

HALTS: Specifies whether interactive communications data management
should halt for any permanent communications error (major return code greater
than or equal to hex 80). If Y or YES is specified, data management issues a
system message that allows the operator the option of returning control to the
user program with a permanent error return code or ending the job. If N or NO
is specified, data management logs an informational message to the system
console, and the user program receives control with the permanent error return
code.

Example

The following example shows a DTF that can be used for multiple sessions.
This DTF is part of a DTF chain; the next DTF is a printer DTF. Any permanent
communications errors result in a system message.

ICDTF1 $DTFW CHAIN-PRTDTF, INLEN-256,
HALTS-Y )

The examples shown later in this chapter under $WSIO use this DTF.

Interactive Communications Programming with Assembler

3-3



3-4

$WsSIO

The following is the format of the $WSIO macroinstruction, as used to perform
interactive communications operations:

[labei] swsio [DTF-abel] [,OUTLEN-length] [, INLEN-tength]
[, RcAD-address ] [,TERMID-id] [,OPM-modifier]

[Lopccode] [, PL@-address]

DTF: Specifies the address of the leftmost byte of the DTF. This is the label
specified on the $DTFW macroinstruction. If this parameter is omitted, the
address of the DTF is assumed to be in index register 2.

OUTLEN: Specifies, in decimal, the length of the data in the buffer pointed to
by the RCAD parameter. If this parameter is omitted, the field in the DTF
remains unchanged. This parameter is used only for output operations;
however, the DTF field it modifies is also used for input operations. Therefore,
whenever the output operation follows an input operation, this parameter
should be specified.

INLEN: Specifies, in decimal, the maximum amount of input data that the user
program is prepared to receive. This number must not be greater than 65535.
Note that although the macroinstruction allows any value up to 65535, the

subsystem restriction is 4096 for all BSC and SNA subsystems and 40952 for
the Intra subsystem. If this parameter is omitted, the DTF remains unchanged.

RCAD: Specifies the address of the leftmost byte of the user program logical
record buffer. This parameter must be specified in the first $WSIO issued that
requires a record area. Thereafter, if the operand is omitted, the DTF remains
unchanged. If the buffer is also to be used for display station input, it must be
on an 8-byte boundary.

TERMID: Specifies the 2-character ID of the session for which this operation
is intended. This ID should be the same as the SYMID on the corresponding
SESSION OCL statement for acquired sessions or the same as the ID returned
in the DTF following the initial accept operation for a remotely started session.
The ID should be specified in a program that has multiple sessions and/or
display stations to assure that the operation is issued to the correct location. If
this operand is omitted, the DTF remains unchanged. Following each accept
operation, data management returns the ID of the session from which data
was received in this field (SWSNAME).



OPM: Specifies the operation modifier to be associated with this operation. If
this parameter is omitted, the DTF remains unchanged. The following list
shows the valid modifiers for sessions and their descriptions:

Modifier

FMH

ZERO

PTH

Description

Indicates that a function management
header is with the data associated
with the evoke. This modifier is valid
only with the evoke operation for the
SNUF or Intra subsystems.

Resets the operation modifier to
be no modifier.

Indicates that the specified
operations (either GET or PTI)
is a pass-through operation.

OPC: Specifies the operation desired. If this parameter is omitted, the DTF
remains unchanged. For a chart of all the valid assembler operations and the
operation codes that can be specified in this parameter, see Assembler
Operations Summary Chart later in this chapter.

©

Interactive Communications Programming with Assembler 3-5



3-6

The get attributes (GTA) operation returns status information about a specific
session. If the session is active or a SESSION OCL statement exists for the ID
(TERMID) specified, the first 10 bytes of the record area (RCAD) are as
follows:

Position Value Meaning

1 A Session not yet acquired
C Session is an acquired session

Session is an evoked session

2 N Input not invited for this session

1 Input invited for this session,
but no input is available

(0] Invited input is available
for this session

3-10 name Location name (specified during
configuration and on the
SESSION OCL st.atement)

Note: If the ID for the operation is not that of a session, the format of the
attribute information is somewhat different. See the Basic Assembler Reference
Manual for the format of attribute data for display stations.

The set timer (STM) operation specifies an interval of time to wait before
issuing a timer expired return code. The first 6 bytes of the user record area
specify the time interval in the format hhmmss, where hh is hours, mm is
minutes, and ss is seconds. A timer expired return code is returned on the first
accept following expiration of the timer. The TERMID returned with the timer
expired return code has no meaning. If a set timer operation has been issued
and has not yet expired, the old value is discarded and the new interval is set.

PL@: Specifies the address of an associated evoke parameter list. This is the
label on the $EVOK macroinstruction. This parameter must be specified on the
first evoke, and remains unchanged if not specified thereafter.

The following chart shows the operation codes and the corresponding
parameters on the $WSIO macroinstruction. An R indicates the parameter is
required, O indicates optional, | indicates ignored, and the X in the OPM
column indicates that ZERO must be specified; even though a parameter is
required, it does not have to be specified if the parameter was previously
specified and the value is the same.



DTF OUTLEN |INLEN RCAD TERMID OPM OPC

AClI o) | R R | |

ACQ (0] | I | R |

CAN o} | | | R X
CANG 0] | R R R X
CANI 0] | | | R X
EOS (0] | [ | R X
EVE 0] R’ | R? R 03
EVG 0] R’ R R? R 03
EVI (0] R’ | R? R 03
EVK o} R’ | R? R (o8
FAIL 0] 0] | (0] R X
GET (0] | R R R o’
GTA (0] | | R* R I

INV (0] | | | R o’
NRP 0] 0O | 0Os R X
NRPG 0] 0s R R R X
NRPI (0] os | 0® R X
PEC 0] R | R? R X
PEF 0] R’ | R? R X
PEX 0] R i R? R X
PFM (0] R | R R X
PFMG 0] R R R R X
PFMI (0] R | R R X
PTG 0] R R R? R X
PTI (0] R’ | R? R o7
PUT 0] R | R? R o’
RCDG 0] | R R R X
RCDI 0] ! | | R X
REL (0] | | | R |

ST™M 0] | | R® | |

bo.v B v B v B v B « B B« B « b o [ « [« [ o B v B o B v B i o i o [ « o o i « s » [ v [t v [t w B v S B w i o i o

'If zero, no data accompanies the request, and the RCAD value is ignored.
2Only required if the OUTLEN value is not zero.

3An OPM-FMH can be specified on all evoke operations. FMH indicates that a
function management header is in the record area pointed to by the RCAD
parameter. If OPM is not FMH, it must be ZERO.

4The record area must be at least 10 bytes long.

5Up to 8 bytes of negative response information can be sent. Therefore, the
OUTLEN parameter gives the length and, if it is not zero, the RCAD parameter
gives the address of the leftmost byte of the information to be sent.

5The RCAD parameter points to a 6-byte zoned decimal field that specifies
the timer value being set in the format, hhmmss.

7OPM-PTH can be specified.

Interactive Communications Programming with Assembler

3-7



Examples

The following are examples of the $WSIO macroinstruction. All use the DTF
as defined in the $DTFW example shown previously.

The following example issues an acquire for session 1S.

BEGIN $WSIO DTF-ICDTF1,0PM-ZERO,OPC-ACQ,
TERMID-1S

The following example evokes a transaction on the session that was acquired
and then waits for input. The evoke parameter list begins at label EVKLST (and
is shown in the $EVOK example later in this chapter). INLEN is not specified,
because it was specified on the $DTFW macroinstruction.

EVOK $WSIO DTF-ICDTF1,0PC-EVG,
PLa-EVKLST,RCAD-INBUFF

The following example puts data to the session and transaction previously
begun. The data is 256 bytes long and is stored at label OTBUFF.

OTPT $WSIO DTF-ICDTF1,RCAD-OTBUFF,
OPC-PUT,OUTLEN-256

$EVOK

The $EVOK macroinstruction builds a parameter list to be associated with an
evoke operation. The label on this macroinstruction should be the label
specified on the PL@ parameter of the $WSIO macroinstruction. The following
is the format of the $EVOK macroinstruction: '

EQU
[1abel] sEVOK [V-{ALL}] [, PNAME-address]
DC

[, LNAME-address ] [, U1D-address]

[, PWORD-address]

V: Specifies the type of expansion for the parameter list. If EQU is specified,
only the displacement labels are generated, and all other parameters are
ignored. If DC is specified, only the parameter list is generated. If ALL is
specified, both the labels and the parameter list are generated. If this
parameter is omitted, DC is assumed. A $EVOK that includes the equates
must be specified once and only once within a program.

PNAME: Specifies the address of the first character of the name of the remote
procedure to be evoked. The procedure name must be followed by blanks up
to the 8-character length of the field. If this parameter is omitted, an address
of hex FFFE is assumed, and no procedure name is passed on the evoke.



LNAME: Specifies the address of the first character of the library name
associated with the procedure. The library name must be followed by blanks
up to the 8-character length of the field. If this parameter is omitted, an
address of hex FFFE is assumed, and no library name is passed on the evoke.

UID: Specifies the address of the first character of the user ID. The ID must
be followed by blanks up to the 8-character length of the field. If this
parameter is omitted, an address of hex FFFE is assumed, and no user ID is
passed on the evoke.

PWORD: Specifies the address of the first character of the password. The
password must be followed by blanks up to the 8-character length of the field.
If this parameter is omitted, an address of hex FFFE is assumed, and no
password is passed on the evoke.

Examples
The following example shows a $EVOK macroinstruction as used by the evoke
operation shown in a $WSIO example earlier in this chapter. The procedure
name stored as ICPROC is started from the library ICLIB.
EVKLST $EVOK V-ALL,PNAME-ICPROC,
LNAME-ICLIB,UID-S341ID,
PWORD-PASS
The following example is a second evoke parameter list for the same program.
The procedure name stored as R3PR in ICLIB is started on a system that does

not require security.

EVKL2 $EVOK V-DC,PNAME-R3PR,LNAME-ICLIB

Interactive Communications Programming with Assembler  3-9



ASSEMBLER OPERATIONS SUMMARY CHART

The following chart shows all the operations that are valid for assembler, their

operation codes, and all the subsystems for which each operation is valid. An

x in a subsystem column indicates that the system supports the operation. A -
indicates that the subsystem does not support the operation.

For a description of each of these operations (except GTA and STM), see

Chapter 2.
Communications Subsystem
Operation
Assembler Operation Mnemonic Intra BSCEL CCP CICS IMS 3270 Finance Peer SNUF
Accept input ACI X X X
Acquire ACQ X X
Cancel CAN X - - - - - - - X
Cancel then get CANG X - - - - - - - X
Cancel then invite . CANI X - - - - - - - X
End of session EOS X X X X X X X X X
Evoke EVK bs X X X X x2 - X X
Evoke end of transaction EVE X X - X X - - X X
Evoke then get EVG x X X X x2 - X X
Evoke then invite EVI X X X X X x2 - X X
Fail FAIL X - - - - - - X -
Get ) GET X X X X X X X X X
Get attributes GTA X X X X X X X
Invite INV X X X X X X X
Negative response NRP X - - - - - - - X
Negative response then get NRPG X - - - - - - -
Negative response then invite NRPI X - - - - - - -
Pass~-through put PUT? X - - - - - - -
Pass-through put then invite PTI? X - - - - - - - X
Pass-through invite INV? x - - - - - - - X
Put PUT X X X X X - X X
Put end of file/chain PEF/PEC X X x bs - X x b's X
Put end of transaction PEX X X - X X - - X X
Put then get PTG X X X X X X X X X
Put then invite PTI X X X X X X X X X
Put FMH PFM X - - - - - X - X
Put FMH then get PFMG X - - - - - X - X
Put FMH then invite PFMI X - - - - - X - X
Release REL X X X X X X
Request to change direction then RCDG X X X - - - -
get
Request to change direction then RCDI X X X - - - - X X
invite
Set timer STM X X X X X X X X X

'Valid only when OPM-PTH is specified with the $WSIO macro.
2valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the HOSTNAME
parameter on the SESSION statement is CICS or IMS.




RETURN CODES

Whenever an interactive communications operation is issued (using the $WSIO
macroinstruction), the next instruction should check the return code. The return
code indicates the result of the operation and/or the status of the session or
transaction. For general information about return codes, see Checking Return
Codes in Chapter 2.

Each return code contains two parts (a major code and a minor code), and at
least the major code should be checked. The major code is located at offset
$WSRTC in the DTF, and the minor code is at offset $WSRSIQ in the DTF.
For a description of each return code that can be returned for a subsystem,
refer to the last section of that subsystem chapter. A chart in Appendix A
shows which codes are valid for each subsystem.

Interactive Communications Programming with Assembler 3-11



INTERACTIVE COMMUNICATIONS ASSEMBLER SUBROUTINES

Because of the additional capability and flexibility available in the assembler
‘interactive communications support, you might want to write subroutines for
high-level language programs. The considerations and restrictions for writing
interactive communications subroutines must be carefully observed to make

this approach feasible. The recommended approach is to write a complete
program in assembler, and then use the Intra subsystem to communicate to

the high-level language program. If, however, you use an assembler
subroutine, keep the following considerations in mind:

« All input operations should be done in the same place, that is, either the
subroutine or the main program. If there is a work station file in the main
program, input should be done in the main program. Any input that is done
in the subroutine should include thorough error recovery; the subroutine
must also consider the effects of errors and.exceptions on the main
program.

« The subroutine cannot issue a release or end of session operation, unless
the DTF is in the subroutine; that is, the main program has no work station
file.

« The DTF must reside in a portion of the program that is not overlaid.

« If the subroutine and the main program both have a work station file, the
format member name ($WSFMBR) in the subroutine DTF must be set to
blanks before the DTF is opened.

CODING EXAMPLES

The following program is a sample interactive communications program written
in assembler language. This program acquires a session with the remote
system and sends a request. The program receives the data, saves it in a disk
file, and then releases the session. Presumably a subsequent job or job step
processes the data from the disk file. The SESSION OCL statement, assuming
all subsystem-dependent parameters were configured correctly, would be:

// SESSION LOCATION-RW34PC,SYMID-1S



IEM

1BM System/34 Basic Assembler Coding Form

Gx21-9279-
Printed in U.8.A.

PROGRAM KEYING GRAPHIC l l | race | or L ]
PROGRAMMER an INSTRUCTIONS | CHARACTER l I I CARD ELECTRO NUMBER I
STATEMENT
Name Operation Oporand Romarks Seauence
123 456 7 8]oh011 1213 14[15{16 17 16 19 20 21 22 23 24 26 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 BS 56 57 58 59 60 61 62 63 64 65 06 67 00 69 7071 72 73 74 76 76 77 78 79 80 81 62 83 64 85 86 87]ef80 90 91 92 93 94 9596

ElQ |

1]

[T
o lae

[T

0 e 3 el a¢io¢ pie] i 9] 0 o oo b 3 o il
ol P 1 [ | il
ll*l LILIO/CIA ‘E O/PEIN| [TME| [DITIF '}s ]ﬁ
M -
(3¢ 3¢ 3¢ e wi2e a2 ¢ el o e e el | 3903 W o ot e3¢ ol
LiolC - DIKIDITIF ]L C F|
D[T[F[- 11 EN [FILE
WK w4 o Eacalon 1] a3 ¢ o o e o o e et o] ok 2 e
1 JHEREREN TTIT 1 jHRNNAREEER
(W ACQUTRE IFLE ESSITIOIN [AIND] E[VO[KE [TIRE| [REM TE~£H§C Cl
& 11 ] |
a6 1 ot oo 9 a3 | oo oo o o o e o ok o ] o _v_.*!!l o | |
AICIQIULIRIE] | [$MWSITIo [O[T[F-(T|CIDIT]F], [TIE[RMID-[2[S!, j0PC|-|ACIE) ACIQUIIRE] SIEISISITIOIN
- LT [ [$MSIRTICIC l),'sl' - ICIHE
N D101 J IIF
{EIVIOKE HEH —z%i, L0/~ [EIVIKILISTT], [TEIRMI(D- 115 EIVIOKE] [T/ NSIACTTITION|
Tl 1 ISmSIRITICIC], X[RI2D ], X[ 1@l HECIK] |F BEESIETM
NIE EINIDISIE|S) HGETuREG EIS[SITION!

123 456 789 101112131415161718 19 20 21 22 23 24 26 26 27 26 29 30 31 32 33 34 36 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 65 56 57 58 5960 61 62 63 64 66 66 67 68 69 70 71 72 73 74 T8 76 77 78

90 8102 83 84 85 86 8788

90 91 92 93 94 05 98

IBM

1BM System/34 Basic Assembler Coding Form

GX21-9279
Printed in US.A.

EN

HE

PROGRAM xaviNg aRAPHIC [ T TJeam 2 o U j
PROGRAMMER lnrl INSTRUCTIONS | CHARACTER l I I CARD ELECTRO NUMBER —I
STATEMENT
Name Operation Operand Remarks Sequence
129 456 s 8000111213 14{15]18 17 18 19 20 21 22 23 24 28 26 27 26 29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 48 49 60 81 52 3 64 66 50 b7 58 59 80 81 67 63 64 65 068 6/ 68 69 7071 72 7 74 75 76 77 78 79 80 81 62 83 84 85 86 87]aglew 90 91 92 93 94 9596|

P

SIUL

W

O

]
ml
=]

oo |

DK

==

Fi

S T lIalwn

L X

I
XA NA

K
K3

i

X

pa]]

E

Sis|

J;QHJ I

bér

£

EE
11

123456 7 8910111213 14151617 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 56 56 57 58 5960 61 62 63 64 65 66 67 66 69 70 71 72 73 74 76 76 77 78 7980 81 82 83 84 85 66 8758 8 90 91 92 93 94 95 9

Interactive Communications Programming with Assembler

3-13




GX21-9278-

IBK IBM System/34 Basic Assembler Coding Form Printed in U.S.A.

s

PROGRAM KEYING GRAPHIC ] I L l'mx 2 oF |+

PROGRAMMER l DATE INSTRUCTIONS | CHARACTER l | L l CARD ELECTRO NUMBER
STATEMENT
Neme Operation Operand Remarks Sequence
12345 6 7 890011 12131415116 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 36 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 65 56 57 58 59 60 61 62 63 64 65 66 67 68 69 707 72 73 74 75 76 77 76 79 80 81 B2 63 84 85 86 87]ag8Y 90 91 92 93 94 9598

SIS Fl- cl-1e STION | IUEI l

piice
B

F- PRINT [SIEIS €
J Li0S

“%I_)! X )Gr

1]

0o Cclio IC
—
+)
nl{=Juv]ia]

s (3 [0
=

-

T
[
[}
(723
—t

|
[k

743
3
i
]
>
=l
]
i

]
Y
[
il
X
1
|
&)
=
.
[
D
(72
=

C \

ﬂ,—: 0 -] T

T AL . HE 3 M LTS
T%I - |- -Iv rﬁ REEEE

] [T T 1T T

m)|
0
R
e
=
N
[
fale=)
0
m

=

WLl N

T
EV

]
0y
v
=)

tmmn
>
)

123456 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 47 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 5960 61 62 63 64 66 66 67 68 69 70 71 72 73 74 7576 77 78 7980 81 62 83 84 85 85 8760 $9 90 91 92 93 94 95 96

Gx21-9278-
IB}% 1BM System/34 Basic Assembler Coding Form Printed in US.A.
b
PROGRAM | xevine [ anaenic T 11 pace Ll or U
PROGRAMMER I DATE | INSTRUCTIONS Icuum:u I I | I CARD ELECTRO NUMBER
STATEMENT
Name Operstion Operand Remarks Sequence
2 5 6 7 8|9 101112 13 14|16}16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5) 52 53 54 65 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74 75 76 77 78 79 B0 81 62 83 84 85 86 87|69 90 91 92 93 94 95 96|

ool
XL

e

[
0

“
)
=
Y
|
W

XL
CIL

N
_%

|
OO

)
ESI=
T
72
=
=
e

(=3

m
()

I
OK)

123456 7 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3¢ 35 36 37 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 §5 56 57 56 5960 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 7980 81 82 83 84 85 56 8780 80 90 91 92 93 94 95 96




Chapter 4. Interactive Communications Programming with BASIC

To use the BASIC language with the interactive communications feature, do
the following:

« Configure and enable the subsystem. (These operations are described in the
appropriate subsystem chapter.)

« Begin a communications session by opening an SSP-ICF file.

« Begin a program or procedure at the remote system and start a
communications transaction. (If you are using the Intra subsystem, the
program or procedure being started is in the same System/34.)

« Send or receive data.

« Check return codes.

« End the communications transaction.

« End the communications session.

The operations you do to process data before it is sent and after it is received

are the same as the operations. you do when you are not using data

communications. Therefore, these operations are not described in this manual.

Only the operations you need for interactive communications are described

here. Interactive communications operations are a lot like work station
operations.

Interactive Communications Programming with BASIC  4-1



4-2

BEGINNING A SESSION

To begin (acquire) a session, use the OPEN statement to open the SSP-ICF file
you are using for this session. Each OPEN statement begins one session
between your program and the remote system. If your program is evoked by
an incoming procedure start request, no session ID or location name is needed
on the OPEN statement.

The following is the format of the OPEN statement and a description of each
SSP-ICF parameter. See the BASIC Reference Manual for a description of
other OPEN statement parameters.

=gession 1D

=current WSID$ | , RECL=record length”
, LOC=location name

»

. .. WS
OPEN #file-ref: SESSlON}

EXIT line reference
[,OUTIN] [,INTERNAL] [,SEQUENTIAL] [lOERR line reference]

Parameter Meaning

WS or SESSION Input is either from a work station or an
SSP-ICF session, and output is to either a
work station or an SSP-ICF session.

ID The 2-character identifier for the session
being started. This is the same as the
identifier (SYMID) on the SESSION OCL
statement. If you do not enter a session
ID or if the program is evoked by the
remote system, the current value of
WSID$ is the session ID.

LOC The name of the remote location you will
be communicating with during this
session. If you enter a location name, a
SESSION OCL statement is not required
for the Intra (unless you need to specify
BATCH-YES on the SESSION statement),
Peer, or CCP subsystems.

a RECL The length of the longest record (or
system message) you expect to transmit
or receive. A system message is 75 bytes
for the Intra subsystem.

Note: If you enter a LIBR or KEYS parameter in the OPEN statement, they are
ignored.



OPEN Statement Examples

Example 1:

OPEN #1: "SESSION,ID=1S,RECL§5" IOERR ICEERR

An example SESSION OCL statement for this OPEN statement is:

// SESSION LOCATION-lNTRA,SYMI}-1S,BATCH—YES
Example 2:

OPEN #1: "SESSION,RECL=255" IOERR ICFERR (Evoked Program)
A SESSION statement is not required for the evoked session; however, an
evoked program can begin (acquire) sessions once evoked. In this case, a
SESSION statement may be required for each additional session that the
evoked program begins.
n Open interactive communications file #1.
u In the first example, the session ID is 1S. In the second example, the ID
is set to the current value of WSID$ when your program is evoked by the
remote system. The value in WSID$ is set by SSP-ICF and BASIC.

The maximum record length that can be sent or received is 255 bytes.

n The program goes to ICFERR if an error occurs.

Interactive Communications Programming with BASIC  4-3



4-4

WRITE STATEMENT FORMAT

The following is the format of the WRITE statement and a description of the
SSP-ICF FORMAT parameter. See the BASIC Reference Manual for a

description of other WRITE statement parameters.

) , USING fline reference}
WRITE #file-ref [ 4

character-exp

[
MAT array name) | , {MAT array name). ..
variable variable

FORMAT format name] :

FORMAT is the name of the format for the SSP-ICF operation. See BASIC
Operations Summary Chart later in this chapter for a list of the operations you
can use with the FORMAT parameter. Any of the operations beginning with $$
can be used.

The WRITE statement is used in many of the examples that follow.



BEGINNING A PROGRAM OR PROCEDURE AT THE REMOTE SYSTEM

To begin a program or procedure at the remote system, and start a
communications transaction, use the WRITE statement to do one of the
following evoke operations. See WRITE Statement Format in this chapter for
the format of the WRITE statement.

« $$EVOKNI performs an evoke operation, which begins a program or
procedure at the remote system.

« $$EVOK performs an evoke then invite operation, which begins a program or
procedure at the remote system and tells the remote system to transmit

first.

o $$EVOKET performs an evoke end of transaction operation, which begins a
program or procedure at the remote system, and then ends the

communications transaction.

If your program is evoked by an incoming procedure start request, you do not
use the evoke operation since your program is started by the remote system.

With an evoke operation you must send the following parameters:

Positions

1 through 8

9 through 16

17 through 24

25 through 32

33 through xxxx

Meaning

The name of the program or procedure to be
started (left-justified)

The password you use to sign onto the
remote system (left-justified)

The user ID you use to sign onto the remote
system (left-justified)

The name of the remote system library that
contains the program or procedure to be
started (left-justified)

User data or positional procedure
parameters; leading blanks are ignored.

If a field is not used, enter the correct number of blanks for the unused field.

Interactive Communications Programming with BASIC

4-5



The following is an example of starting a program or procedure at the remote
system.

1]

A

30 WRITE #1,USING 40 FORMAT “$$EVOK'': "BASICR",PASS$, USERIDS$, &
&"#LIBRARY",”"ICFPROG,USERLIB" I0ERR ICFERR

40 FORM 4*C 8,C 20 4 '

B B

Write data to interactive communications file #1 using the FORM
statement at line 40.

Begin the procedure BASICR, which is in #LIBRARY.

(- I~ B -

The password and user ID needed to sign onto the remote system.

The BASIC program (ICFPROG) to be called by the procedure BASICR is
in the user library (USERLIB).

B O

Send four fields of 8 characters each (evoke parameters).

Send 20 bytes of positional parameters.

If an error occurs during the WRITE operation, the program goes to
ICFERR.

[~



Sending Program Data with the Evoke Operation

Data sent with the evoke operation consists of either parameters to be used by
the evoked procedure, as shown in the previous example, or data to be used
by the evoked program. If you send procedure parameters, answer no to the
prompt PROGRAM DATA IN THE INCLUDE STATEMENTS on the end of

the job option menu of the SEU procedure or specify PDATA-NO on the
COPY control statement for SMAINT. If you send program data, answer yes to
the SEU prompt for program data or specify PDATA-YES on the COPY control
statement. See Writing Procedures to be Started by Incoming Procedure
Requests in Chapter 2 for more information.

BASICR Procedure: You cannot use the BASICR procedure if you send
program. data with the evoke operation, because this procedure expects
procedural parameters. The following is an example of a procedure that can be
used when program data is sent:

// LIBRARY NAME-#BLLIB

// MEMBER PROGRAM-#BL#M1,PROGRAM2-#BL#M2,USER1-#BL#M1

// LIBRARY NAME-user library——Jf]]

// REGION SIZE-BASIC region size—J}

// LOAD #BLSIC

// INCLUDE procedure member—E}

// RUN

// BASIC MEMBER-name,LIBRARY -user library WORKAREA-size,STATUS-Y or N

// END a a

You must supply the information for the following parameters:

Enter the name of the current user library.

(~ I -

Enter the BASIC region size (24 to 64).

a

Enter the procedure name to be included. If there is no procedure name
to be included, you can delete this statement.

Enter the name of your BASIC program.

I >

Enter the name of the library that contains your BASIC program.

Enter the size of the work area needed for your program.

-]

Enter Y if you want status information printed. Enter N if you do not
want status information printed.

Interactive Communications Programming with BASIC



4-8

SENDING DATA

To send a data record to a remote system or program, use the WRITE
statement and one of the following send operations. See WRITE Statement
Format in this chapter for the format of the WRITE statement.

« $$SENDNI performs a put operation, which sends one record to the
program or procedure at the remote system.

o $$SEND performs a put then invite operation, which sends one record to the
program or procedure at the remote system and tells the remote system to
transmit.

o $$SENDE performs a put end of file operation, which ends the file when you
use BSC. It performs a put end of chain operation, which ends the chain
when you use SNA.

o $$SENDET performs a put end of transaction operation, which ends the
‘ program or procedure at the remote system.

o $$SENDNF performs a put function management header operation, which
sends one record containing a functior, management header to the remote
system. The $SSENDNF operation is valid with the Finance, Intra, and
SNUF subsystems only.

o $$SENDFM performs a put function management header then invite
operation, which sends one record containing a function management
header to the remote system and tells the remote system to transmit. The
$$SENDFM operation is valid with the Finance, Intra, and SNUF subsystems
only.

For example, the following WRITE statement is used to send one data record:

A A A

36 WRITE #1, USING 40‘,’ FORMAT “$$SEND"": DATA$‘ IOERR ICFERR
40 FORM C 255
e e/

Write to interactive communications file #1 using the FORM statement at
line 40.

Send the data record in DATA$ and tell the remote system to transmit.

Ba =2

If an error occurs, the program goes to ICFERR.

The length of the data record in DATAS is 255 bytes.



RECEIVING DATA

To receive a data record, use the READ statement to get the data record from
an SSP-ICF session. If you precede the READ statement with a WAITIO
statement, the program waits until data is available from any work station or
SSP-ICF session. If you do not precede the READ statement with the WAITIO
statement, the program waits until data is available from the work station or
SSP-ICF session corresponding to the file number entered in the OPEN
statement. The WAITIO statement also sets the intrinsic function FILENUM to
the file reference of the communications session from which data is to be read.

For example, the following READ and WAITIO statements read one data
record into the variable DATAS.

30 WAITIO IOERR/ICFERR
40 READ #FILENUM, USING 50: DATAS IOERR ICFERR
50 FORM V 255

The WAITIO statement at line 30 causes the READ statement at line 40
to read data from any work station or SSP-ICF session. Without the
WAITIO statement at line 30, the READ statement waits until data is
available from the work station or SSP-ICF session assigned to the file
reference (#FILENUM) specified in the READ statement, then reads the
data into DATAS$.

n The intrinsic function FILENUM contains the file reference of the work
station or session from which the data is to be read.

Up to 255 characters are read into the variable DATA$.

n Use the V parameter on the FORM statement if you do not know the
length of the data record received.

For example, the following statements read a system message, which can
be up to 80 characters, into the variable MESSAGES$:

40 IF ERR=70 THEN&
&READ #1,USING “"FORM V 80': MESSAGES$ IOERR ICFERR

Q If a system message is received (ERR=70), then read the message
into MESSAGES$.

@ Up to 80 characters of the system message are read.

Interactive Communications Programming with BASIC

4-9



4-10

Notes About Receiving Data

1.

You should use EOF with the READ statement to test for an end of
transaction received from the remote system (SSP-ICF return code xx08).
If you want to do another evoke operation before you close the
communications file, use another READ statement with the EOF clause
before you do the evoke operation.

You can use the STOPS intrinsic function to test for a major return code
of 02 (subsystem disable pending). If STOP$ equals Y, a 02 major return
code has been issued to your program indicating that a system shut
down has been requested; if not, STOP$ equals N.

The READ statement does an SSP-ICF get operation. And the WAITIO
statement followed by the READ statement does an SSP-ICF accept
operation. See Chapter 2 for more information about the get and accept
operations.



CHECKING RETURN CODES

You should use the IOERR parameter on all READ, REREAD, WRITE, OPEN,
CLOSE, or WAITIO statements to check the status of the input or output
operation. Use the RETCODES$, ERR, or FILE intrinsic function to determine the
execution status of the last operation. The meaning of the intrinsic functions
are:

« RETCODES$ contains the status of the last SSP-ICF operation. The status
tells whether the operation was successful or unsuccessful and gives you
additional information about the results of the operation.

« ERR contains the meaning of the error for the last unsuccessful BASIC
operation.

« FILE indicates only that the last operation was either successful or
unsuccessful. If FILE is O, the operation was successful; if file is 1, the
operation was unsuccessful.

The value in RETCODES is the 4-digit (major and minor) SSP-ICF return code.
These codes are described in each subsystem chapter. A summary chart in
Appendix A shows all of the return codes and shows which return codes are
valid for each subsystem. For general information about return codes, read
Checking Return Codes in Chapter 2.

The value in ERR depends upon the SSP-ICF return code in RETCODE$ as
shown in the following chart. Use this chart to determine the SSP-ICF return
code that corresponds to the ERR value. Then see the description of the
SSP-ICF return code in your subsystem chapter.

For an example of how to check return codes, see How to Write a BASIC
Program that Uses the Intra Subsystem in Chapter 7.

Interactive Communications Programming with BASIC  4-11



RETCODE$ ERR

RETCODE$ ERR

RETCODE$ ERR

' Value Value Value Value Value Value
(ICF) (BASIC) | (ICF) (BASIC) | (ICF) (BASIC)
0000 0 0212 0 8192 55
0001 0220 70 8193
0003 0221 8194
0004 0228 8195
0005 0230 8196
0007 0231 8197
0008 0238 8198
000C 0300 0 8199
0010 69 0301 819A
0012 0 0302 71 819B
0020 70 0303 54 819C
0021 0308 819D
0028 0310 73 819E
0030 0402 71 819F
0031 0411 70 81A3
0038 0412 71 81B5
0100 68 0800 0 81B6
0101 1100 64 81B8
0103 2800 55 81B9
0104 3401 55 81BA
0105 8081 55 81BC
0107 8082 820A 55
0108 8083 820D
010C 8084 8213 72
0118 80BD 8215
0200 o 8136 55 821E 55
0201 8137 8233
0203 8183 8236
0204 8184 8281
0205 8185 72 8282
0207 8186 8283
0208 8187 55 8285 72
020C 8191 8286




RETCODE$ ERR RETCODE$ ERR RETCODE$ ERR
Value Value Value Value Value Value
(ICF) (BASIC) | (ICF) (BASIC) | (ICF) (BASIC)
8288 72 82B0 55 832A 7
8289 55 82B1 72 832B

828A 82B2 832C

828B 82B3 832D

828C 82B4 832E

828D 82BB 55 832F

828E 82BC 8330 72
828F 830B 71 8331

8290 830D 8332

8291 830E 8333

8293 8313 8334

8296 8314 8336

8297 8315 8338

829B 8316 8339

829F 8317 833C

82A0 8319 70 8383

82A1 831A 8384

82A2 831B 72 8385

82A5 831C 70 8386

82A6 831D 71 8391

82A7 72 831E 8392

82A8 831F 8397

82A9 55 8320 8398

82AA 72 8322 8399

82AB 8323 839A

82AC 8324 839B

82AD 8326 839C

82AE 55 8327 83A7

82AF 8329 83B0

Interactive Communications Programming with BASIC  4-13



ENDING A COMMUNICATIONS TRANSACTION

Befpre you end yoUi' pfbgram, you must end the communications transaction
by using the $$SENDET or $$EVOKET operation with the WRITE statement, or
the remote system must end the transaction. For example:

i your program is done transmitting data, use the $$SENDET operation to
tell the remote system that you have no more data to send.

« If your program is receiving data, check for an end of transaction received
from the remote system to determine when the remote system is done
transmitting (see Receiving Data in this chapter).

« If you want to start a program or procedure at the remote system and then

end the transaction, use the $$EVOKET operation. For example:

— Your program starts program A at the remote system and sends data to
program A.

— Program A stores the data on disk.

— When your program is done sending data to program A, your program
uses the $$SENDET to end program A.

— Your program then uses the $$EVOKET operation to start program B at
the remote system.

— Program B processes the data that program A stored on disk previously.

Once the transaction has ended, you can end the session or start another
transaction with this or another session.

The following statement sends an end of transaction and, therefore, tells the
remote system that this is the end of this communications transaction:

30 WRITE #1, FORMAT ""$$SENDET"': IOERR ICFERR

See Ending a Session in Chapter 2 for more information about ending a
transaction.



ENDING A SESSION

To end a session with a remote system, use the CLOSE statement, or use the
$$EOS operation followed by the CLOSE statement. See Ending a Session in
Chapter 2 for more information about ending a session.

Note: The $$REL operation cannot be used with BASIC; however, the CLOSE
statement is the same as the $$REL operation.

The CLOSE statement ends the session and closes the communications file.
All transactions with the program at the remote system must be complete

before you end the session.

For example, this CLOSE statement closes (releases) the SSP-ICF session for
file #1:

99 CLOSE #1: I0ERR ICFERR

If an error occurs when closing the session, your program goes to ICFERR,
and BASIC issues a $$EOS operation to end the session.

Interactive Communications Programming with BASIC ~ 4-15



OTHER SSP-ICF OPERATIONS YOU CAN DO

The following are optional operations you can do with SSP-ICF. Use the
WRITE statement to do these operations. See WRITE Statement Format in this
chapter for the format of the WRITE statement.

.« Ask for a change in transmission direction
+ Use SSP-ICF or work station timer operations

» Send a negative response to the remote system (used only with the Intra
and SNUF subsystems)

« Send a fail operation (used only with the Intra and Peer subsystems)

« Cancel a group (chain) of data records (used only with the Intra and SNUF
subsystems)

« Use pass-through operations (used only with the Intra and SNUF
subsystems)

Asking for a Change in Transmission Direction

If your program is receiving data, you can ask the remote system to stop
sending so your program can send data. To ask for a change in the direction
of transmission, use the WRITE statement to do a request to change direction
operation ($$RCD). After you issue the $$RCD operation, your program must
continue to receive data until an end of transaction or change of direction
indication is received from the remote system. There are no parameters or
data needed with the $3RCD operation. See Request to Change Direction
Operation in Chapter 2 for more information about this operation.

For example, this statement asks the remote system to stop sending so that
your program can send data:

30 WRITE #1,FORMAT “$$RCD": IOERR ICFERR

Using SSP-ICF and Work Station Timer Operations

To use the SSP-ICF and work station timer, use the $$TIMER operation or the
TIMER intrinsic function to set the timer, and use the WAITIO statement to
determine when the time has ended. Return code 0310 (RETCODES$) or 73
(ERR) is returned when the time has ended.



Example of Using the $$TIMER Operation

If you use the $STIMER operation, a work station or session must be attached
to your program before you can set the time.

You specify the time in hours, minutes, and seconds in the format:
hhmmss
For example:

K¥—o030 A$= "013000"
040 WRITE #1,USING 50,FORMAT "“$$TIMER": A$ IOERR ICFERR

050 FORM C 6—}
060 WAITIO 10ERR TIME

:
910 TIME: IF ERR <> 73 THEN GO TO ICFERR

The timer is set to 1 hour, 30 minutes, and 00 seconds.

There are 6 characters used to set the time (hhmmss).

If an 1/0 error occurs when the WAITIO statement is executed, go to
TIME and check for the timer return code.

a

If the return code does not indicate that the timer expired (ERR is not
73), go to ICFERR. If the return code does indicate the time expired,
perform operations based upon the reason for the time-out. For
example, display a message indicating that the remote system did not
respond within the time allowed.

Interactive Communications Programming with BASIC  4-17



Example of Using the TIMER Intrinsic Function

If you use the TIMER intrinsic function to set the timer, a work station or
session does not have to be attached to the program; however SSP-ICF must
be active. To set the timer, use the TIMER intrinsic function in the format:

TIMER(time$), where time$ is the time in the format "hhmmss’’. For example:

030 TIME=TIMER("013000"")
040 IF TIME=1 THEN PRINT "SSP-ICF IS NOT ACTIVE” ELSE WAITIO |OERR TIME1
. e, e’ . v o

4]

910 TIME1: IF ERR<>73 THEN GOTO ICFERR
h—v'-—d

The timer is set to 1 hour, 30 minutes, and 00 seconds.

If SSP-ICF is not active, the timer is not set and TIME is set to 1. If
TIME is 1, print a message.

(~ I -

H

If TIME is O, the timer is set and the WAITIO statement is executed.

If a return code is returned when the WAITIO statement is executed, go
to TIME1 and check the return code.

]

If the return code does not indicate that the timer expired (ERR is not
73), go to ICFERR. If the return code does indicate the time expired,
perform operations based upon the reason for the time-out. For
example, display a message indicating that the remote system did not
respond within the time allowed.



Sending a Negative Response

To tell the remote system or program that your program found something
wrong with the data it received (to send a negative response), use one of the
following operations. Both types of negative response operations are for the

Intra and SNUF subsystems only. See Negative Response Operation in Chapter
2 for more information.

« $$NRSPNI performs a negative response operation, which transmits a
negative response to the remote system or program.

« $$NRSP performs a negative response then invite operation, which transmits
a negative response and tells the remote system or program to transmit.

Optional sense data can be sent with the negative response. The following is
the format of the data:

Data Positions Meaning

1 through 8 The sense data transmitted with the negative
response. The sense data must begin with
10xx, 08xx, or 0000 (for the Intra and SNUF
subsystems). All other positions are user
defined.

For example, the following statements send a negative response with the
sense data 08008000:

20 SENSE$="08008000"

30 WRITE #1,USING 40,FORMAT “$$NRSPNI"": SENSE$ IOERR ICFERR
40 FORM C 8

Interactive Communications Programming with BASIC  4-19



4-20

Sending a Fail Operagion

To tell the remote system that your program detected an abnormal condition
(for example, received incorrect data), use the $$FAIL operation. The fail
operation does not need any parameters, and no data can be sent with the fail
operation. The fail operation is used only with the Intra and Peer subsystems.
See Fail Operation in Chapter 2 for more information. ’

For example, the following statement sends a fail operation to SSP-ICF:

30 WRITE #1,FORMAT “"$$FAIL": IOERR ICFERR

Issuing a Cancel Operation

To cancel a group of records, use one of the following cancel operations. The
cancel operation does not need any parameters or data. The cancel operation
is used only with the Intra and SNUF subsystems. See Cancel Operation in -
Chapter 2 for more information.

« $$CANLNI performs a cancel operation, which cancels the current group
(chain) of data records.

« $$CANL performs a cancel then invite operation, which cancels the current
group of data records and allows the remote system or program to transmit.

For example, the following statement cancels the current chain of records:

30 WRITE #1,FORMAT "“$$CANL": IOERR ICFERR

Using Pass-Through Operations

Pass-through operations are used only with the Intra and SNUF subsystems.
See Appendix B for a description of pass-through operations.



BASIC OPERATIONS SUMMARY CHART

The following chart shows the valid BASIC operations for each subsystem. An
x in a subsystem column indicates the subsystem supports the operation. A -

indicates the subsystem does not support the operation.

Communications Subsystem

Operation

BASIC Operation Mnemonic Intra BSCEL CCP CICS IMS 3270 Finance Peer SNUF
Accept input WAITIO!
Acquire OPEN X
Cancel $SCANLNI - - - - - - - X
Cancel then invite $$CANL - - - - - - - X
End of session $$EOS X x X X X X X
Evoke $SEVOKNI X X x2 -
Evoke end of transaction $$SEVOKET - - -
Evoke then invite $$SEVOK X x2 -
Fail $SFAIL - - - - - - -
Get READ
Invite® x
Negative response $SNRSPNI - - - - - - -
Negative response then invite $ENRSP — - - - - - -
Pass-through put then invite $SPTPUT X - - - - - - - X
Pass-through invite $SPTINV X - - - - - - - X
Put $SSENDNI X x x X - X X
Put end of file/chain $$SSENDE X X X - X X X X
Put end of transaction $$SSENDET X X - X X - - X X
Put FMH $SSENDNF X - - - - - X - X
Put FMH then invite $$SSENDFM X - - - - - X - x
Put then invite $SSEND X X X X x X X X x
Release CLOSE X X X X X X
Request to change direction then $$RCD X - - - - X

invite
Set timer $$TIMER? X X x X X X X X x

'Valid only when followed by a READ operation.
2yalid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the HOSTNAME
parameter on the SESSION statement is CICS or IMS.
3valid only when used with another operation or by using a $$SEND operation with a record length of 0.

4The timer can also be set by the TIMER intrinsic function.

Interactive Communications Programming with BASIC

4-21




4-22

* NOTES ABOUT WRITING BASIC PROGRAMS FOR SSP-ICF

1.  You can use the WSID intrinsic functlon to determine the ID of the most
recently accessed sessnon For example

40 WAITIO IOERR ICFERR
50 A$=WSID$

The value of A$ is the ID of the last SSP-ICF session accessed by the
WAITIO statement.

2.  You can use the FILENUM intrinsic function to determine the file
reference of the most recently accessed session.

3.  You should use the EXIT or IOERR parameter on all SSP-ICF I/0
statements. See Checking Return Codes in this chapter for more
information.

4. You can use the ATTRIBUTES$ intrinsic function to determine the status
of a session. See the BASIC Reference Manual for a description of the
ATTRIBUTES$ intrinsic function.

5. Do not use PAUSE, BREAK, PRINT, INPUT, LINPUT, or TRACE in an
evoked program (by a remote procedure start request) to put information
on the display station screen.

CODING EXAMPLES

See How to Write Programs that Use the Intra Subsystem for an example of
how to write a BASIC program that uses the Intra subsystem. The same
programming example described in the Intra chapter is shown in the other
subsystem chapters if any changes are needed to allow communications with
that remote system.



Chapter 5. Interactive Communications Programming with COBOL

The interactive communications portion of a COBOL program consists of
preparing data for transmission, processing data that was received, using the
predefined formats and work station operations to perform communications
operations, and properly handling return codes. Because the data preparation
and processing vary greatly by application, those functions are not described in
this manual. The processing of interactive communications operations is very
similar to that for work station operations. The file used is a TRANSACTION
file, the input operations are identical, and the output operations are performed
via formats. TRANSACTION file programming considerations are in the COBOL
Reference Manual.

FILE DEFINITION
The TRANSACTION file must be defined by a SELECT statement in the
FILE-CONTROL paragraph. Only one TRANSACTION file is allowed per
program. The format of the SELECT statement for a TRANSACTION file using
interactive communications is:
SELECT file-name
ASSIGN TO assignment-name
ORGANIZATION IS TRANSACTION
[FILE STATUS IS data-name-1 [,data-name-4]]

[ACCE§S MODE 1S SEQUENTIAL]

[ CONTROL-AREA IS data-name-5].

Interactive Communications Programming with COBOL  5-1



ASSIGN Clause

The ASSIGN clause associates the TRANSACTION file with devices through
the use of the assignment-name. Assignment-name has the following
structure:

type.[ name ]
name-formats

The value for each field is as follows:
Type: WORKSTATION

Name: 1- to 8-character name that specifies the external
name of the SFGR generated load member that contains
the screen formats. This field is not required if
the file is to be used with sessions only.

Formats: A two-digit numeric value that is equal to or
or greater than the number of formats in the
SFGR load member referenced in the name field.
The maximum value and the default value for the
number of formats is 32. This field is not
required if the file is to be used with sessions
only.

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical structure of a file.
TRANSACTION organization signifies user-controlled input and output of
records.

FILE STATUS Clause

The FILE STATUS clause allows you to monitor the execution of input and
output operations from or to a file. The FILE STATUS area consists of a
2-byte COBOL return code (data-name-1) and a 4-byte IBM file status code
(data-name-4) that contains the interactive communications return code. The
interactive communications return code consists of two 2-byte return codes
resulting from TRANSACTION file processing (a major and minor return code).

5-2



ACCESS MODE Clause

The ACCESS MODE clause must always be SEQUENTIAL for TRANSACTION
files.

CONTROL-AREA Clause

The CONTROL-AREA clause specifies the 12-byte data item that receives
feedback information after each TRANSACTION file input operation. The third
and fourth characters of this area contain the symbolic ID of the session or
display station from which input was obtained. The symbolic ID must be
defined as a 2-byte alphanumeric data item. The remainder of the characters
contain information céncerning display stations only, and are described in the
COBOL Reference Manual. For an example of how to code this control area,
see the sample programs at the end of this chapter.

FORMATS

Access to some of the functions of interactive communications in COBOL is
provided by predefined formats. These formats are used in the same way that
display screen formats are used for work station operations; that is, they are
issued by the FORMAT option of the WRITE statement. The predefined"
formats are not identical to display screen formats, however, because the
predefined formats are recognized by data management, making it unnecessary
to separately store and process the formats via a screen format generator. The
predefined format names should not be used in any display screen format
members. The following sections describe the available formats and the
operations they perform. For more detail on the operations that these formats
perform, see the operation descriptions in Chapter 2.

For more information on how to issue these formats, see the WRITE statement
description later in this chapter.

Interactive Communications Programming with COBOL  5-3



5-4

Procedure/Program Initiation (Evoke)

To start a remote procedure or program (transaction), the evoke operation is
used.

Three formats are provided for evoking a transaction:

« $$EVOKNI performs an evoke operation.

« $SEVOK performs an evoke then invite operation.

« $$EVOKET performs an evoke end of transaction operation.

Each evoke request can be accompanied by several parameters; the first four
form the evoke parameter list. All the parameters must be defined by the
application program in the output area for the evoke formats. All values in

these fields must be character values. If a field is not used, space must still be
reserved for it in the output area.

Size Description

8 The name of the remote procedure to be evoked
8 The password sent to the remote systenri

8 The user ID sent to the remote system

8 The library name containing the remote procedure
20 Reserved

4 Length, in decimal, of user data, if any

XXXX User data or positional procedure parameters



Transmit Data
Four formats are provided for transmitting a record:
« $$SENDNI performs a put operation.
« $$SEND performs a put then invite operation.

« $$SENDE performs a put end of file operation for BSC or a put end of chain
operation for SNA.

« $$SENDET performs a put end of transaction operation.
« $$SENDNF performs a put function management header operation.

« $$SENDFM performs a put function manangement header then invite
operation.

The transmit requests require two fields in the output area.

Size Description
4 Length, in decimal, of the user data’
XXXX User data to be transmitted

Request to Change Direction
The $$RCD format is used for a request to change direction operation. This
format has no output data associated with it.

Set Timer Interrupt Value

The $STIMER format is used for a set timer operation. The following output
data is required with the format.

Size Description

6 Interval of time to be set. The time should
be specified in hours, minutes, and seconds
(hhmmss).

'An output length of zero for $$SEND performs an invite operation. An output
length of zero is allowed for $$SENDE and $$SENDET, because the end of
chain/file and end of transaction can be sent without data.

Interactive Communications Programming with COBOL

5-5



5-6

Send Negative Response
Two formats are provided for sending a negative response:
« $SNRSPNI performs a negative response operation.
« $SNRSP performs a negative response then invite operation.
The negative response operations can be used only for the Intra or SNUF
subsystems. The negative response format can optionally have the following
two fields in the output area: '

Size Description

1 Length of sense data (must be O or blank if no sense
data, or 8 if sense data is present)

8 The sense data to be sent with the negative response

Note: The sense data is user-defined, but the first four characters must be
10xx, 08xx, or 0000.

Cancel
Two formats are provided for issuing a cancel operation:
o $BCANLNI performs a cancel operation.
« $$CANL performs a cancel then invite operation.
The cancel formats are valid only for the SNUF and Intra subsystems. These
formats have no output data associated with them.

Fail
The $SFAIL format is used to issue a fail operation. This format has no output
data associated with it. The $$FAIL format is valid only for the Intra and Peer
subsystems.

End of Session
The $$EOS format is used to issue an end of session operation. This format
has no output data associated with it.

Pass-Through Support
Two formats ($$PTPUT and $$PTINV) are provided for pass-through

operations. These formats and a complete description of pass-through support
are contained in Appendix B.



WORK STATION OPERATIONS

Several of the existing work station operations are used for interactive
communications operations. They are: '

« ACQUIRE
« READ
« WRITE
« DROP
A description of these operations as they are used for interactive
communications follows.
ACQUIRE

The ACQUIRE statement acquires the specified session for the TRANSACTION
file.

If a literal is specified for the session ID, it must be a 2-character
alphanumeric literal with the first character numeric; if an identifier is specified,
it must refer to a 2-character alphanumeric data item with the first character
numeric. The session ID must correspond to the SYMID parameter specified
on a SESSION OCL statement. The file name must refer to a TRANSACTION
file.

The format of the ACQUIRE statement is:

literal

ACQUIRE {identifier

} FOR file-name

Interactive Communications Programming with COBOL 5-7



READ

The READ statement performs either a get or accept operation depending on
the TERMINAL option. If the TERMINAL option is specified, a get operation is
performed for the session specified. If the TERMINAL option is not specified
and only one session or display station is attached to the file, a get operation
is performed for that session or display station. If the TERMINAL option is not
specified and multiple sessions and display stations are attached, an accept
operation is performed.

A NO DATA option is available on the READ statement that allows execution
of another statement if data is not available for the READ statement.

Also available is an AT END option. This option allows a statement to be
executed when the READ statement is issued with no invited display stations

or sessions.

The format of the READ statement is:

READ file-name RECORD

[InTo identifier-1] [TERMINAL IS {ide"“ﬁer 2}]

literal-1

[M) DATA imperative-statement-ﬂ

[AT END imperative-statement-2]

For more information on the READ statement, see the COBOL Reference
Manual.



WRITE

The WRITE statement requests one of the formats to be performed. The
FORMAT option specifies the name of the format. The record name specifies
the output area that contains any of the information required with the format.
The TERMINAL option can be used to specify a particular session. If the
TERMINAL option is not used, the operation is performed for the session or
display station associated with the last READ or WRITE.

The format of the WRITE statement is:

WRITE record-name [FROM identifier-1]

FORMAT IS |.dent|f|er-2
| — literal-1

—

TERMINAL |s{if"e"tiﬁe”3}]

literal-2
[~ INDICATOR
INDICATORS identifier-8
| INDIC

DROP

The DROP statement issues a release operation for a particular session. The
name of the TRANSACTION file associated with this session must be
specified. If a literal is specified for the session ID, it must be a 2-character
alphanumeric literal with the first character numeric; if an identifier is specified,
it must refer to a 2-character alphanumeric data item with the first character
numeric. The session ID must correspond to the SYMID parameter specified
on a SESSION OCL statement.

The format of the DROP statement is:

literal
identifier

DRQP { } EFROM file-name

All acquired sessions are automatically released when the application program
terminates normally.

Interactive Communications Programming with COBOL



COBOL OPERATIONS SUMMARY CHART

The following chart shows the: valid COBOL operations for each subsystem. An
X in a subsystem column indicates the subsystem supports the operation. A -
indicates the subsystem does not support the operation.

Communications Subsystem
Operation
COBOL Operation Mnemonic Intra BSCEL CCP CICS IMS 3270 Finance Peer SNUF
Accept input’ READ
Acquire ACQUIRE
Cancel $$SCANLNI - - - - - - -
Cancel then invite $$SCANL - - - - - - -
End of session $$EOS X X X X X X X
Evoke $SEVOKNI x x2 -
Evoke end of transaction $SEVOKET X - - - X
Evoke then invite $$EVOK X X X X x x2 - x x
Fail $SFAIL x - - - - - - X -
Get' READ X x X x X X X X
Get attributes?® ACCEPT X X X X X X X X x
Invite* X X X X X X X X
Negative response $SNRSPNI X - - - - - - - X
Negative response then invite $SNRSP X - - - - - - - X
Pass-through put then invite $SPTPUT X - - - - - - - X
Pass-through invite $SPTINV X - - - - - - - X
Put $$SENDNI X X X X - X X
Put end of file/chain $$SSENDE X X X - X X X X
Put end of transaction $$SSENDET X X - X X - - X x
Put FMH $SSENDNF X - - - - - X - X
Put FMH then invite $$SENDFM X - - - - - X - X
Put then invite $$SEND X X X X X X X x X
Release CLOSE X X X X X X
Request to change direction then $$RCD X - - - - X
invite
Set timer $$TIMER X X X X X X X X X
'"The READ statement performs either a get or an accept input operation, depending on whether the TERMINAL option is
specified and depending on the number of sessions acquired.
2Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the HOSTNAME )
parameter on the SESSION statement is CICS or IMS.
3Valid only when the ATTRIBUTE-DATA keyword is used on the ACCEPT statement.
“Valid only in conjunction with another operation or by using a $$SEND with a record length of 0.




RETURN CODE PROCESSING

Following each operation, a return code consisting of a major code and a minor
code is given to the user program in the IBM-extended FILE STATUS area. In
addition, a COBOL return code is given in the FILE STATUS field identifying
the status of the operation. The following list shows the COBOL file status
values as returned in the appropriate FILE STATUS data field.

if

Use this list to determine the SSP-ICF return code (or group of return codes,
the major portion of the code is followed by xx) that corresponds to the file
status value. Then see the description of the SSP-ICF major code in your
subsystem chapter. (For example, the 02xx group below is described in each
subsystem chapter in the Major Code 02 box description, which applies to all
the return codes beginning with 02.) All of the return codes that are valid for
your subsystem are described in that chapter. A summary chart of all the
codes for all the subsystems is in Appendix A.

Return Code

Groups COBOL File Status
00xx, 03xx, 0800 00
01xx 01
02xx ‘ 9A
04xx 9l
1100 10
2800 9E
3401 9G
80xx 30
81xx 92
82xx 9C
83xx 9N

Interactive Communications Programming with COBOL 5-11



CODING EXAMPLES

See How to Write Programs that Use the Intra Subsystem in Chapter 7 for an
example of how to write a COBOL program that uses SSP-ICF and the Intra
subsystem. The programming example described in the Intra chapter is also
shown in each of the other subsystem chapters with the changes needed to
allow communications with that remote system.



Chapter 6. Interactive Communications Programming with RPG I

The interactive communications portion of an RPG |l program consists of
preparing data for transmission, processing data that was received, using the
predefined formats and existing work station operations to perform
communications operations, and properly handling return codes. Because the
data preparation and processing vary greatly by application, those functions are
not described in this manual. The processing of interactive communications
operations is very similar to that for work station operations. The file used is a
WORKSTN file, the same input operations used, and the output operations are
performed via formats.

FILE DESCRIPTION SPECIFICATION

When using RPG Il for interactive communications, the file description
specification must be completed. This specification should contain the same
information as you would code for a WORKSTN file. The description of how
to fill out the file description specification for a WORKSTN file is in the RPG I
Reference Manual.

File Description Specifications

File Type Mode of Processing File Addition/Unondiened
File Designation Length of Key Field or = Extent Exut Number of Toacks
End of Fe of Record Address Field @ for DAM for Cyhinder Overflow
Filename Pa— Record Address Type < Symbolic g :‘_ias:; 21" Numbiee of | stent:
Type 9! F_-Ic Device Device 3 al .
File Format ™ Organization or g ] Rewind
" S 5 Additional Area 5 - Storage Index ‘F e
@ = - $ il
Q 3| Block Record x|E|overtion thaicatorf 2 Condition
& SIS @G| Langth | Lengn sls Key Freid | & urug,
e Slo 2 % % X Starting  |W Continuation Lines 2| ue
€ Sla| |ef= = Location | | 5 S
N S|a |wi< External Record Name K Option Entry < «
s16]7 8 9 1011 1213 14 is]relt7]18]s 122 23 24 26 26 5 4
6F"" szgl_r____ 27”3303!2&#_3%&.3_7‘:18 40‘![‘243!44546474849502_&53545&;%2&&606!67636465666/0969]0“I7H'M
Flrlceltiel | Iclp 8 WORISTN ]
F
M 2 1
. 1NFDls| RECD| | ]
F
INF[SR E' S 14
I3
FMTis o INIE '
G I ]

Interactive Communications Programming with RPG Il 6-1



6-2

FORMATS

To assist in coding interactive communications operations in RPG Il, predefined
formats are provided. These formats are used in the same way that display
screen formats are used. They are not identical, however, because the
interactive communications formats are recognized by data management,
making it unnecessary to separately store and process the formats via a screen
format generator.

Note: Some of the formats have data fields associated with them. Space for
these fields, in the locations described, must be reserved even if the field is

not explicitly coded. All values in these fields must be character values.

The following sections describe the available formats.



Evoke

Three formats are provided for evoking a transaction:
« $SEVOKNI performs an evoke operation.
« $$EVOK performs an evoke then invite operation.
« $$EVOKET performs an evoke end of transaction operation.
Each evoke request has several parameters associated with it; the first four
parameters form the evoke parameter list. These parameters are defined as
fields for the evoke formats.

Location Description

1-8 The name of the remote

procedure to be evoked

(left-justified)

9-16 The password sent to the
remote system (left-justified)

17-24 The user ID sent to the
remote system (left-justified)

25-32 The library name containing
the remote procedure
(left-justified)

33-52 Reserved

53-56 Length, -in decimal, of user
data, if any (right-justified)

57 -xxxx User data or positional
procedure parameters

et T .
IBM e rvicns s s coporion RPG OUTPUT SPECIFICATIONS Pt OSA
12 S.A.
Program Keying Graphic Card Electro Number Program 75 76 77 78 79 80
Programmer l Date Instruction Key Page of . e
o) £
=15
W8 ISpace]  Skip Output Indicators Zero Balances " X = Remove
5 E Field Name Commes] toprim _ |MSPIR ] 7| pussion |4 g
S|= or Y = Date i
Filename ZlEle], EXCPT Name Yes Yes 1 Al Field Edit User
,§ or HaHE And  And ¢ End Yes o 2 B | K(zezme " | Defined
Li Record Name = U] Position o es 3 c|tL
ine g DJE|L § g g S| in No No M ol wm Suppress
- alofo] & | < 85| outeut |5
olr s b 3 “AUTO £] 2| Record  |& Constant or Edit Word
~Ino i = Sl 123 456 7 8 910111213 14151617 18 19 20 21 2223 24 *
3 4 567 8 9 101112 13)14)15|16[1718]19 20]21 22|23(24|25|26 |27 |28] 20 30|31} 32 33 34 35 36 37 40 41 42 43[44[45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74
ol'] JollICIFITILIE
L | K| I SHEVOK!”
0|3 ""'\_ ~ 7
o 3 ['ICR I
0|4 \ 7/
0 L2] [N XHKIL
oL *USERPKGH)
24| 1'US 4
ols| |O| VT /
30| [MICIFILIT
0)7 (o] 5' 6 \ L 0 7
ofs Ly 7
o 66| [NIINQ JALBHAL
ole| lo
11o0] |o|

Interactive Communications Programming with RPG Il  6-3



Transmit Data

Four formats are provided for transmitting a record:

« $$SENDNI performs a put operation.

« $$SEND performs a put then invite operation.

« $$SENDE performs a put end of file operation for BSC or a put end of chain

operation for SNA.

« $SSENDET performs a put end of transaction operation.

o $SSENDNF performs a put function management header operation.

« $$SENDFM performs a put function management header then invite

operation.

Each transmit request has two fields associated with it.

Location Description

1-4 Length, in decimal, of the
user data’

B-xx User data to be transmitted

6-4

IB M I1nternational Business Machines Corporation

RPG OUTPUT SPECIFICATIONS

GX21-9090-4 UM/050°
Printed in US.A.

00| [>=| |

Program Keying Graphic Card Electro Number , m . Program 75 76 77 78 79]30
’ age o o
Programmer [ Date Instruction Key
0 5
tj i Output Indicators Zero Balances " _ | X = Remove
e E Sosce] S i Field Name Commas | ™o priny___| N Sion | CR PusSin | o o
3 or Yes Yes 1 Al ¥ = Date User
Filename = g | 1 EXCPT Name Fiold Edit | i eg
& t £ And  And End Yo No 2 B Klz-20r0
= or >Rl ]|< | Position No You 3 ClL|  suppress
Line § Record Name olelL] 8 g 3| in = No No 4 0| M
- alolo] 3 | < g § Output |5 i
olR H 5 3 *AUTO £|2| Record 1 Constant or Edit Word
nOo W) @] 1 2 3 456 7 8 9 1011 121314151617 1819 2021 22 23 24
4 slef? a 9 1011 12 13f1afisli6]17)18]19 20|21 22|23|24|25]28 27 |28] 28| 30|31} 32 33 34 38 36 37 41 42 43]44[45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 83 €9 70]71 72 73 ¢
' CIFILIL

olofololo]o]~
olQololo]o]-

'An output length of zero or blanks for $$SEND performs an invite operation.
An output length of zero or blanks is also allowed for $$SENDE and $$SENDET,
because the end of chain/file and end of transaction can be sent without data.




Request to Change Direction
The $$RCD format performs a request to change direction operation. This
format has no fields associated with it.

Set Timer Interrupt Value

The $$TIMER format performs a set timer operation. The following field is
required with this format.
Location Description

Interval of time to be set. The time should be
specified in hours, minutes, and seconds (hhmmss).

1-6

Note: The $$TIMER format cannot be issued unless at least one requester or
acquired device is attached to the program.

To check that the time has ended, use a READ operation not preceded by a
NEXT operation. The NEXT operation causes input to come from a specified
session (not the timer) during the READ operation (see NEXT and READ later in
this chapter for more information about these operations).

RPG OUTPUT SPECIFICATIONS

nternational Business Machines Corporation

GX21-9090- UM/050°
Printed in U.S.A.

12 75 76 77 78 79 80
Program Keying Graphic Card Electro Number D] Program
: Page of :
Programmer Date Instruction | g —
= .
O G|space|  Skip Output Indicators Commas | 2er0 Batances | “C T T T - Remove
o &" Field Name 1o Print Plus Sign |5 g =
E * or Yes Yes 1 A9 |Y=Date Iy
Filename I EXCPT Name Yes No 2 B | K Field Edit] .~ .
T|als|s _ Defined
Line or M i End No Yes 3 c | L |Z= Zero
Record N [JLILIES And And «| Position No No 4 oM™ Suppress
g cord Name Han M
$ gl § < [3
.g alolo] €| & |5 5 5 S| Output |3 Constant or Edit Word
5 o[r e <) z z *AUTO £|2| Recora |3
a
- A D e 123 45 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24
3 4 5 7 8 9 10 11 12 13|14[15[16{17{18]19 20|21 22|23{24[25|26 |27{28{29]|30 (31|32 33 34 35 36 37]38 40 41 42 434445 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74
01

TCFAILE | |E 3

-

=)
IS
O|0fO0|O0|O|O|O |

Interactive Communications Programming with RPG ||

6-5



Send Negative Response
Two formats are provided for sending a negative response:
« $SNRSPNI performs a negative response operation.
. $$NRSP performs a negative response then invite operation.
The negative response formats can be used only for the Intra or SNUF
subsystems. The negative response format can have the following two fields
associated with it:

Location Description

1 Length of sense data (must be 0 or blank indicating
no sense data, or 8 if sense data is present)

2-9 The sense data to be sent with the negative response

Note: The sense data is user-defined, but the first four characters must be
10xx, 08xx, or 0000. ‘

RPG OUTPUT SPECIFICATIONS

GX21-9090- UM/050°

IERT Printed in U.S.A.
ESFETE international Business Machines Corporation
- 12 75 76 77 78 79 80
Program Keying Graphic Card Electro Number e ED o Program
Programmer Date Instruction Key — Identification
T
o _ gsw:e Skip Output Indicators Fiold N Commas z,,&%:,i:‘,:m NoSign | CR | - | X = Remove
@l iel lame Plus Sign 5.9=
S 2 or Yes Yes 1 A [g]Y=Dae |,
Filename NEHE EXCPT Name Yes ' No 2 B | K Field Edit| p e oo
Line or = 21ote End No Yes 3 C | L {Z= Zero
Record Name | & 1=t~ Aoa A &| Position No No 4 D™ Suppress

& =lo]EfL] o § 2l in «

E Alo[o] £ | & |5 3 8 g Output | 3 Constant or Edit Word

5 olr LN I 2 2 *AUTO £12) Record |@

* A ) e © 1.2 3 456 78 9 101112131415 1617 1819 20 21 22 23 24 *
3456789|0|||2|3|l|516|7‘8|92ﬂ212_2_|'232‘752627qnw:ﬂ’%}%%ﬁ33738E40‘14243“64647434950_5112_2__53"_5:15556575559503162536‘5586676869707'7?7374
[ o
of2f |O
bl JelLCIFTILE 9 .
el o 4 [6$NRSA
ols| |o NBDE:E
e 9 ["paLlddds’
07| |o
ol8| {O

6-6




Fail

The $$FAIL format is used to issue a fail operation. This format has no fields
associated with it. The $$FAIL format is valid only for the Intra and Peer

subsystems.

Cancel

Two formats are provided for issuing a cancel operation:
o $SCANLNI performs a cancel operation.
« $$CANL performs a cancel then invite operation.

The cancel formats are valid only for the SNUF and Intra subsystems. These
formats have no fields associated with them.

End of Session

The $$EOS format is used to issue an end of session operation. This format
has no fields associated with it.

Pass-Through Formats

Two formats ($$PTPUT and $$PTINV) are provided for pass-through
operations. These formats and a complete description of pass-through support

are in Appendix B.

Interactive Communications Programming with RPG Il  6-7



WORKSTN OPERATIONS

Several of the existing WORKSTN operations are used for interactive
communications operations. They are:

« ACQ (acquire)
« REL (release)
« NEXT

« READ

« RPG cycle input

ACQ (Acquire)

The ACQ operation acquires the session specified by the 1D (literal or variable)
in factor 1. If the session is available, ACQ obtains it for this program. Factor
2 specifies the name of the WORKSTN file from the file description
specification.

If the session cannot be acquired, an error occurs. If an indicator is specified
in columns 56 and 57 for this operation, the indicator is set on and the next
calculation step is executed. If no indicator is specified, the program halts,
unless the INFSR subroutine is specified in the program. If the INFSR
subroutine is specified, the subroutine receives control. See Return Code
Processing later in this chapter for more details on error handling.

IEM RPG CALCULATION SPECIFICATIONS GX21-8083 UM/050°
*% International Business Machines Corporation Printed in U.S.A.
Program Keying Graphic Card Electro Number L2 Program 75 76 77 78 79 80
Programmer 10.(. Instruction Key P-ge[D of -
c ],; Indicators Result Field Resulting
& Indicators
3 z I T e Arithmetic
3 S And And 81z | Plus [Minusf 2ero
g § % Factor 1 Operation Factor 2 g = Compare Comments
o el Name | Lengtn 3| SIT T3]
s o £ < [Cookup(Factor 2y
« -
. (e ¢7§ - f 2 ; 3 ; High | Low [Equal|
s|e 8lol10ff12131af1s|16{17[18 19 20 21 22 23 24 25 26 27 8 20 30 31 32{33 34 35 36 37 38 39 40 41 42[43 44 45 48 47 48]49 50 51[52[s3]54 55)68 57|58 59)60 61 62 83 64 €5 68 67 68 60 70 1 72 73 4
ofhl e n ‘L s]l c RPGEEMA
012 |C I OIR|-
QONCEETED SISINT al | lrclelr 914
of4| [cl
ofs| |c

6-8




REL (Release)

The REL operation issues a release for the session specified in factor 1 (literal
or variable). Factor 2 specifies the name of the WORKSTN file from the file
description specification.

If an error occurs on the attempt to release the session, the indicator specified
in columns 56 and 57 is set on and the next calculation step is executed. If no
indicator is specified, the program halts, unless the INFSR subroutine is
specified in the program. If the INFSR subroutine is specified, the subroutine
receives control. See Return Code Processing later in this chapter for more
details on error handling.

IEM RPG CALCULATION SPECIFICATIONS GX21-9003- UM/060°
% International Business Machines Corporation Printed in US.A.
12
Program Keving Graphic Card Electro Number progam (B8 IL78.78 80
Programmer l Date Instruction [y Page of ificati
. Indi : Resulting
c 5 nleron Resuit Field Indicators
HE B e ]
s “ inus|
g § H And And Factor 1 Operation Factor 2 £ f Compare = Comments
Line |Fls & Name Lmﬁgngn
E 3 : § -2 | [Lookup(Factor 2)i
2|8 S ¥ H &2 [Wig ] Low [aual
3 4 s|e|7 sfsjrohijr2hr3fiars 17118 19 20 21 22 23 24 26 26 27 28 29 30 31 32|33 34 35 36 37 38 39 40 41 42]43 44 45 48 47 4849 50 55|56 57|88 S9[60 61 62 63 64 65 66 67 88 69 70 71 72 73 74
‘Il l]lo ‘xlgf ol [ frdelzh )
of2| |l | okl [T
oplid | 1B NILD gl | Ixiclelzle 99
ofs] |cl
ols| lc|

For more specific information about the release operation, see the appropriate
subsystem chapter.

Interactive Communications Programming with RPG Il 6-9



NEXT

The NEXT operation code forces the next input to the program to come from
the session specified in factor 1 (literal or variable). Factor 2 contains the name
of the WORKSTN file for which the operation is requested.

If NEXT is specified more than once between input (READ or primary file input)
operations, only the last operation has any effect.

If an error occurs on the NEXT operation, the indicator in columns 56 and 57 is
set on and the next calculation step is executed. If no indicator is specified,
the program halts, unless the INFSR subroutine is specified in the program. If
the INFSR subroutine is specified, the subroutine receives control.

See Return Code Processing later in this chapter for more details on error

handling.
IEM RPG CALCULATION SPECIFICATIONS GX21-9003. UM/050"
% International Butiness Machines Corporation 12 FPrinted in U S.A.
Program Keying Graphic Card Electro Number Program 75 76 77 78 79 80
" P: f e l I
Programmer I Date Instruction Key o °
. . Resulting
c I§ Indicators Result Field Indicators
Sz I I e ‘Arithmetic
= A A S| [ Plus [Minus{ Zero
s § % Factor 1 Operation Factor 2 3% Compare Comments
tne |15 & Neme | Length |3 13 [T> 27 <2[1-7]
E :. "l . £ | [Cookup(Factor 2|
{rq g - f 2z § g E4 High | Low |Equal
34se1a9|ou121:14'5wnvamzom222324252527m29303|32%:4353&373&3940"4243«45434743495051 3|54 55|56 57|58 59)60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
of1] e ' ! NIEIX FITILIE
o2 fe HOR- <
o[ e SISNTD et [TICFIILE &)
0f4 C]
ofs| e
ole| |c]

6-10




READ

The READ operation requests input from any display station or session (accept
operation) or, when used with the NEXT operation, from a specific display
station or session (get operation). If the NUM field on the file description
specification is 1, the READ does a get operation. If a NEXT operation has
been executed since the last READ, the READ does a get to the session
specified by the NEXT operation. If no NEXT has been executed since the last
READ, the READ does an accept. Factor 2 contains the name of the file from
which a record should be read.

If an error occurs during the READ operation, the indicator in columns 56 and
57 is set on. If no indicator is specified, the program halts, unless the INFSR
subroutine is specified in the program. If the INFSR subroutine is specified,
the subroutine receives control. See Return Code Processing later in this
chapter for more details on error handling.

Columns 58 and 59 can contain an indicator to be set on when the end of file
condition occurs. The end of file condition occurs for a session when an
accept is issued with no outstanding invites. (See End of File Considerations
later in this chapter for more information.) The end of file indicator is not set
on when an end of transaction occurs. The INFDS must be checked to
determine the end of a transaction.

IEM RPG CALCULATION SPECIFICATIONS GX21-9093 UM/050°
k internatfonal Business Machines Corporstion Printed in US.A.
1.2
Frogram Keying Graphic Card Electro Number . Program 75 76 77 18 79 80
Programmer I Date Instruction Key age of W I | l I I
- Indicators R : Resulting
c 5 esult Field ——
3 z I I . Alvithnr::;ic
— And And LT[ Plus |Mi 2Zero
2 3 % Factor 1 Operation Factor 2 é = Compare Comments
une [Pz & Name Lenvm,%wz‘-z
g §=~ - o 3 E12 [Cookup(Factor 20
(e i 2 2 3 t4 High | Low |Equal
3 & 567 sf9frof11)12|1314|15]18|17]18 19 20 21 22 23 24 25 26 27|28 29 30 31 32|33 34 35 36 37 38 39 40 41 42]43 44 45 48 47 48]49 50 51{52]5.]54 5556 57|38 5960 €1 62 63 64 €5 66 67 68 60 70 11 72 73 74
ol
= IMCFlLiLE
of2| |
of3| Ic|

RPG Cycle Input

The RPG program cycle includes a step to read a record from the primary file.
If the primary file is a WORKSTN file, the input operation performed is an
accept. The detail of the RPG program cycle is in the RPG Il Reference Manual.
Specifically, a section on WORKSTN file input processing describes the details
of the cycle as it affects WORKSTN files.

Interactive Communications Programming with RPG Il 6-11



RPG Il OPERATIONS SUMMARY CHART

The following chart shows the valid RPG Il operations for each subsystem. An
X in a subsystem column indicates that the subystem supports the operation.
A - indicates that the subsystem does not support the operation.

Communicaﬁons Subsystem
Operation
RPG 1l Operation Mnemonic Intra BSCEL CCP CICS IMS 3270 Finance Peer SNUF
Accept input’ READ X X X X
Acquire ACQ x X X X
Cancel $$CANLNI X - - - - - - -
Cancel then invite $$SCANL X - - - - - - -
End of session $SEOS X X X X X X X X
Evoke $SEVOKNI X X x X x x3 -
Evoke end of transaction $SEVOKET X X - X X - -
Evoke then invite $$EVOK x X x X X x3 -
Fail $SFAIL X - - - - - - X -
Get! ’ READ
Invite? X X X X X X X X X
Negative response $SNRSPNI X - - - - — - -
Negative response then invite $SNRSP X - - - - - - -
Pass-through put then invite $SPTPUT x - - - - - - - X
Pass-through invite $SPTINV X - - - - - - - X
Put $$SSENDNI X X X X - bs X
Put end of file/chain $$SENDE X x x - X X X x
Put end of transaction $$SENDET X X - X X - - X x
Put FMH $SSENDNF X - - - - - x - X
Put FMH then invite $$SENDM X - - - - - X - X
Put then invite $$SEND X X X X X X X X X
Release REL X X X X X X X
Request to change direction then $$RCD X - - - - X
invite
Set timer $$1]MER x X X X X X X X X

'If the NEXT operation is executed before the READ operation, the READ operation is a get; otherwise, the operation is an accept
input.

2valid only when used with another operation or by using a $$SEND operation with a record length of 0.

3valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the HOSTNAME
parameter on the SESSION statement is CICS or IMS.




RETURN CODE PROCESSING

Folilowing each operation, a return code that indicates the results of the
operation is issued.

The exception/error processing subroutine (INFSR) and error indicators in
columns 56 and 57 of the WORKSTN operation codes (REL, ACQ, NEXT, and
READ) allow the programmer to control the program logic if errors occur during
WORKSTN file processing. The WORKSTN file information data structure
(INFDS) contains status information that the program can check to determine
what type of exception or error occurred. Using the information in the INFDS,
the program can then determine which conditions to handle in the INFSR

subroutine.
File Description Specifications
F File Type Mode of Processing File Addition/Unordered
File Designation Length of Key Field or Extent Exit Number of Tracks
a2 -
o of Fie of Record Address Field o for DAM for Cyhinder Overflow
Record Address Type | . |&| Nameot Number of Extents
| Sequence S . Symbolic a3 .
Filename i o Dy orFie Device Dovice 3| LabelExi -~
File Format ganization or g e Rewind
’ 5 L - Storage Index
Line w E 5 Additional Area 5 Fite
Q 3| Block Record x[E[overttow tndicator| 2 Condition
g Sls @G| Length | Length HE Koy Fiaid | £ ULue,
= Qe 3 -3 [ Starting | Continuation Lines 2| uc
£ Slal (o= 3 <5 Location | | > 5
& 2la |wi External Record Name K Option Entry I <
3 4 51617 8 9-10 11 12 13 14115]16]17 Il“ﬂ?‘ 22&22&2‘27”3@ 3'2”&‘;”’ 40 41 42 43 44 45 46 ‘7“‘9&2“ 52 {53] 55 56 57 S8 59 |60 61 62 63 64 65]|66(67168 69]70}71 7273 74
. m B ERREERE EARE iis SR
ol2| |FITICFITILE] | |C ORK/S| |
ofa| |F KriNE 051 NE0|DS
ofe| |F v
ofs| |¢ 10 MWS|LD
ols| [F TINFISR| [EIRRS VB
IEM RPG INPUT SPECIFICATIONS Gx21.9088.4 UM 050"
¥R International Business Machines Corporation ) Printed in U.S.A
1
Program Keying Graphic Card Electro Number P*D]ol Program 75 76 77 78 79 80
Programmer Date Instruction Key )
I 5 External Field Name . Field
= Field Location Indi
Filename 3 Record Identification Codes Py < ndicators
- 7 . 2 ; 2|
1 Record Name |5 s 3 B From To 5 RPG 2 ls 5 K
o 2], g 8| FieldName | 2 |2 2| 2 Zero
Line ¢ e EN ] s 5|3 Data Structure < 21z ¢ M
5 HA S - Zlol% N HRHAS % 3 |€ 2] & |Pus
S Dota TR é 5|3 Position (£ S 8| Position |= g g Position | £ S g HE £ S|EE]l o Blank
s £ N ] ]
el B e HHE 3[5)3 HEH 3[SIE|RIE] O | cenen | LA EH
3 4 sl6|7 8 9 1011 12i3phafishie|17{18 19 20|21 22 23 24|25|26 |27 |28 29 30 31 35 36 37 45 46 47]48 49 5Su 51]52|53 54 55 56 57 58|59 60]61 62|63 64]65 66|67 68169 70|71 72 73 74
o1
IITNEloIDIS| Dis| [ 1] | LT
2
o2] |1 STATT jsiriatuls|
o] |x 2/3{ | |24 MalsiclaD
o4 T 2] 1NC|aD
o] Jr LOTLEETT]

If neither the INFSR subroutine nor error indicators are specified, an error is
handled by the RPG Il error handling routine, which causes a program to halt.
The operator must choose the appropriate option.

The INFDS data structure, if specified, contains the return code identifying the
exception or error that occurred. The INFDS also contains status information
on normal conditions as well as exceptions or errors. The information in the
INFDS is updated for each operation. If an exception or error occurs, the
programmer can use the INFDS information to determine the cause and to
control the resulting program logic.

Interactive Communications Programming with RPG Il 6-13



The following chart and  description show the steps in processing return codes.

Update *STATUS
and return code
in INFDS

Status
less than

Error
indicator
specified in cols
56 & 57

No

INFSR
specified

No

Yes

Set on
indicator

Continue

Execute
INFSR
subroutine

Yes

RPG 11 error handling
(program halts). If
INFSR called by
EXSR, returns to next
sequential instruction.

Factor 2
blank on
ENDSR

Go to point in
RPG Il cycle
specified by
factor 2 entry
on ENDSR

*GETIN (Beginning of next cycle)
*DETC (Detail calculations)
*CANCL (Cancel program)



When an operation is completed the status information (*STATUS and
the return code) is updated in INFDS.

If the condition is normal, the next instruction in the RPG program is
executed.

If the condition is an exception or error (*STATUS greater than 99), a
check is made to see whether an indicator was specified in columns 56
and 57 of the calculation specification for a READ, ACQ, REL, or NEXT
operation.

If an indicator was specified, that indicator is set on, and the next
instruction in the RPG program is executed. In this case, if the INFSR
subroutine is to be executed, an EXSR operation can be issued.

If no indicator was specified, a check is made to see whether an INFSR
was specified. If not or if factor 2 on the ENDSR is blank, RPG issues a
halt on the system console.

If INFSR was specified and factor 2 of the ENDSR is not blank, control is
passed to the point specified by factor 2 on the ENDSR. Factor 2 can be
*GETIN to go to the beginning of the next input cycle, *DETC to perform
detail calculations, *CANCL to cancel the program, or a variable that
contains one of these values.

Interactive Communications Programming with RPG ||

6-15



INFSR Coding Considerations

If an INFSR subroutine is coded, return codes 80xx and 81xx should be
handled. If any of these codes occur, the INFSR subroutine should issue a
release operation to the display station or session. This clears the RPG internal
table entry for that display station or session and allows that entry to be used
by a subsequent requester. For the session errors mentioned above, an end of
session operation ($$EOS) can also be issued.

The return code indicating timer expired (code 0310) causes the INFSR
subroutine to be executed. If the set timer operation ($$TIMER) is Gsed, be
sure to check for this return code.

When the INFSR subroutine is specified for the WORKSTN file, any exception
error encountered for that file causes the INFSR subroutine to be executed.
Therefore, if operations are issued from the subroutine to the WORKSTN file
that can cause exceptions or errors, be careful to code the subroutine to
prevent loops. An advisable technique is shown as follows:

RPG CALCULATION SPECIFICATIONS Gxa1.9083. UMog0*
Ig%% International Business Machines Corporation : ' 2 -
Program Keying Graphic Card Electro Number Program 75 76 77 78 79 80
Programmer I Date Instruction Key Fooe of ificati
c 5 Indicators Result Field :‘:;':::fs
S I l " ‘Arithmetic
2 & S|Z [ Plus [Minus| Zero
2 g % And And Factor 1 Operation Factor 2 3 ; Compare Comments
e |82 S Name  |Length ;§1>z1=2
ne e 3 g - £ | [Cookup(Factor 2)is
HEEE 3 5 &|2[Figh | Low [Equa
345Géﬂ9101'12‘3|4|516|7|8|920212123242523272829303'323334353337383940‘|‘243«‘5‘3474849505""' 54 55156 5758 59)60 61 62 63 64 66 66 67 68 69 70 71 72 73 74
TT ISR ERRSU 111
T [ 19
of2 el [ [ 512 FIAC|T2
ol el 11151 T0 IEND'S
ol4] |c
ols| e E ["KGETIN' FACTIZ
ofe] Je | [ |
o7l fe ilsls|ule] Irlelcio[vielriyl lo|pieirialt]ijoju
ols| |c] _
olo| ||
o ¢ ENDS TAG
11 ]¢ SETOF %ﬂ
T Je ENDSRIFACTZ I

Indicator 50 is set on whenever the INFSR subroutine (ERRSUB) is entered for
the first time. If any errors occur in ERRSUB that would cause the subroutine
to be reentered, the subroutine exits to the RPG error handler (factor 2 is
blanks). The error handler displays the appropriate error message. If the
operations issued in the subroutine do not cause exceptions or errors, the
subroutine exits to the start of the RPG cycle.

PN



RPG Il STATUS VALUE

The following shows the *STATUS values as returned in the RPG Il INFDS for
each major and minor return code. Use this list to determine the SSP-ICF
return code or group of codes that corresponds to the *STATUS value. Then
see the description of the major and minor return codes in your subsystem
chapter. All of the return codes that are valid for your subsystem are described
in that chapter. A summary chart in Appendix A shows which codes are valid
for each subsystem.

Return Codes
Major Minor *STATUS
00, 01, 02 {All (except 10) 00000
00, 02 10 01321
03 00 01311
03 01, 02, 03 01299
03 08 01275
03 10 01331
04 02, 11, 12 01299
08 00 01285
1 00 00011
28 00 00000
34 01 01201
80, 81, 83 |All 01251
82 All 01281

Note: RPG |l performs additional error checking before passing a request to
data management. If an error is found, the status value is updated, and the
return code field remains unchanged.

Interactive Communications Programming with RPG Il  6-17



RPG Il PROGRAMMING CONSIDERATIONS

When writing interactive communications programs in RPG Il, keep the
following considerations in mind:

Continuation lines on the file specification
« SRT and MRT considerations

« End of file considerations

« Release considerations

« Restrictions for WORKSTN files

Input and output considerations
Information on these and other considerations for WORKSTN file programming
is in Chapter 13 of the RPG Il Reference Manual.

Continuation Lines on the File Specification

The following continuation options can be coded on the file specification for
WORKSTN files:

« NUM

« SAVDS
« IND

« SLN

« ID

« INFSR
« INFDS

« FMTS



NUM

The NUM continuation option is used to specify the maximum number of
display stations and sessions that can be attached to the file at one time. This
number should include the number of requesters as specified by the MRTMAX
parameter plus the number of display stations and sessions that the program
acquires at a time. The number of display stations and sessions specified by
the MRTMAX parameter are reserved for requesters and the remaining display
stations and sessions can be acquired. For example, if the MRTMAX is 4 and
the NUM value is 5, only one session can be acquired at a time. The number
specified must be right-justified in columns 60 through 65.

Note: Even if the program is an SRT program, a NUM value of 2 (or more)
must be specified if the program also acquires any sessions or display stations.

SAVDS

IND

The SAVDS continuation option specifies the name of a data structure that can
be saved and restored for each display station and each session in this file.
This data structure cannot be a display station local data area, and it cannot
contain a compile-time array or a preexecution-time array.

Note: Only one copy of the data structure is available at a time; for example, if
a program receives input from a session, only the data structure for the session
is available; the data structure for the display station is not available. The only
SAVDS available is that of the display station or session from which the last
input came. Therefore, you should not use this data structure to save the ID of
a display station for which an interactive communications request has been
made.

The IND continuation option specifies the indicators associated with each
display station and session that are to be saved and restored. The indicators
numbered 01 through the number specified by the IND value are saved. The
entry must be right-justified in columns 60 through 65.

Note: Only one copy of the indicators is available at a time; for example, if a
program receives input from a session, only the indicators for the session are
available; the indicators for the display station are not available. The only IND
available is that of the display station or session from which the last input
came.

Interactive Communications Programming with RPG Il

6-19



6-20

SLN

ID

The SLN continuation option is used to specify the starting line number for
display screen formats. The SLN option does not apply to sessions.

The ID continuation option specifies the name of a 2-character field to contain
the ID of the current display station or session. Following input operations, the
field contains the ID of the display station or session from which the input was
received. Any output operations are directed to the display station or session
whose ID is in the field. Thus, by changing the contents of the field, the
output can be directed to any session or display station. A session ID must be
numeric-alphabetic (for example, 1S); a display station ID must be
alphabetic-numeric (for example, W1).

INFSR

The INFSR continuation option specifies the name of a subroutine to be used
for exception/error handling. Return Code Processing earlier in this chapter
describes INFSR in more detail.

INFDS

The INFDS continuation option specifies the name of a data structure to
contain information concerning exceptions and errors. Return Code Processing
earlier in this chapter describes INFDS in more detail.

FMTS

The FMTS continuation option specifies the name on the display screen format
load member containing the formats for this program. The name entered in
this option is used to override the name normally assumed by the RPG ||
compiler (the program name followed by FM). If the only formats used in the
program are the interactive communications formats, *NONE must be specified
for this parameter.



SRT and MRT Program Considerations

An SRT program can have only one requesting display station or only one
requesting session. SRT programs can acquire multiple sessions or display
stations, using the ACQ operation. If an SRT program acquires any display
stations or sessions, the NUM value on the file description specification must
reflect the maximum number of concurrently attached sessions and display
stations (all those that are acquired plus one requester).

An MRT program can have multiple requesting display stations and/or
sessions. The first requester of an MRT program causes the program to be
loaded and initiated. Each succeeding requester attaches to the program at the
beginning of an input cycle or when a READ operation is performed. The
program is notified of the new requester via a return code on the input
operation. MRT programs can also acquire additional display stations and
sessions. The NUM value on the file description specification must include the
maximum number of requesters plus the number of sessions and display
stations that are acquired and that are active simultaneously.

End of File Considerations

The effects of end of file on the program depend on whether the file is a
demand file or a primary file.

- End of file for a demand or primary file occurs only on an input operation (not
preceded by a NEXT operation) and only when no display stations or sessions
have been requested for input; that is, there are no outstanding invites. (This
second condition could occur because no invites were issued or because all
display stations and sessions have been released.) If the program has the NEP
attribute, the previous two conditions must be satisfied and the system
operator must have entered the STOP SYSTEM command.

For primary WORKSTN file, an end of file condition sets on the LR indicator,
and the program goes to end of job.

For a demand WORKSTN file, an end of file condition sets on the indicator in
columns 58 and 59 of the READ operation that detected the end of file. This

" indicator can be the LR indicator, or the program can set on the LR indicator
later.

Interactive Communications Programming with RPG Il  6-21-



6-22

Release Considerations

A release can be performed explicitly by using the REL operation (described
earlier in this chapter) or by coding an R in column 16 of the output
specifications. If a format name is specified in the same specification that
contains an R in column 16, the format is displayed or the interactive
communications operation is performed before the display station or session is
released. If a program terminates before releasing any display stations or
sessions, they are automatically released.

If a session was acquired, the release terminates that session. If a display
station was acquired, the release places the display station in standby mode.

If the session was started by a remote request or a display station requests the
program, the release passes the session or display station on to the next step
in the procedure. If the program is an MRT program, the session or display
station is released immediately. If the program is an SRT program, the session
or display is released when the program terminates. If the program is the last
step in the job, the display station returns to the command display or the
session is terminated when the program ends.

Restrictions for WORKSTN Files

The following restrictions apply to using a WORKSTN file in an RPG |l
interactive communications program:

« WORKSTN file programs cannot be run from the input job queue, and
cannot be initiated by an EVOKE OCL statement.

« The WORKSTN file must be specified as a combined file (capable of both
input and output).

« |If the WORKSTN file is specified as a primary file, no secondary files are
allowed in the program.

o Only one WORKSTN file is allowed per program.

« A program cannot contain a KEYBORD, CRT, or CONSOLE file if it contains
a WORKSTN file.

« Control level indicators, match field values, and look-ahead fields are not
allowed.

« The first page indicator (1P) is not allowed.



Input and Output Considerations

Considerations for when output can be sent and what input operations are
required depend on whether the communication is with a display station or
session that is acquired or is a requester.

When a requester (either a display station or a session) attaches to a program,
the first operation is an input operation. The input operation fills in the ID field,
which is used to direct subsequent operations to the appropriate session or
display station. If data accompanied the request, the data is passed to the
program on this first input operation; if no data accompanied the request, a
blank record is passed to the program. If the program is an SRT program,
output to the requester may precede input; however, if output precedes input,
data with the request is lost. This is accomplished by placing the requester’s
ID or blanks in the ID field and performing output as the first operation to the
file. (See Writing Procedures to be Started by Incoming Procedure Requests in
Chapter 2 for other considerations.)

When a session or display station is acquired, the next input operation
retrieves a blank record. If an output operation (any put or evoke with data) is
performed in the same cycle as the acquire, the next input operation retrieves a
data record.

Interactive Communications Programming with RPG II  6-23



CODING EXAMPLES

See How to Write Programs that Use the Intra Subsystem in Chapter 7 for an
example of how to write an RPG |l program that uses SSP-ICF and the Intra
subsystem. The programming example described in the Intra chapter is also
shown in each of the other subsystem chapters with the changes needed to
allow communications with that remote system.

6-24



Chapter 7. The Intra Subsystem

The Intra subsystem provides distributed data processing support to users of
the System/34 SSP by providing an interactive interface between application
programs on the same System/34. The Intra subsystem can support multiple
application programs communicating concurrently.

The Intra subsystem allows System/34 application programs to initiate
procedures on the same system. Some System/34 security options are
supported.

The Intra subsystem is useful for several types of applications. Some of these
are:

« To test new interactive communications applications without using a
communications line. You might have to make some coding changes before
actually running the program. In particular, the return code checking might
need to be modified.

« To allow the same program to make inquiries into both the local and remote
systems.

When figuring the number of concurrent sessions, be aware that each Intra
session with an active transaction counts as two sessions (one for each
program) against the system maximum of 100 sessions.

SETTING UP THE INTRA SUBSYSTEM

The SSP procedures CNFIGSSP and INSTALL are used to include the
interactive communications feature and Intra subsystem support on the
System/34. The general interactive communications support is included when
it is requested on the appropriate CNFIGSSP prompt. The Intra subsystem
support is copied to the system library when the appropriate responses to the
INSTALL procedure prompts are taken. The CNFIGSSP and INSTALL
procedures, with their displays and related responses, are described in the
Installation and Modification Reference Manual.

After the Intra subsystem has been installed, the CNFIGICF procedure is used
to define the subsystem support. The operation of the CNFIGICF procedure is
also explained in the Installation and Modification Reference Manual. Before
running ‘the CNFIGICF procedure, however, you should fill out a planning chart
for each subsystem that you want to define. Copies of the planning chart for
each subsystem are available in Appendix F of this manual and in the
Installation and Modification Reference Manual. The following sections explain
how to fill out the planning chart for the Intra subsystem.

The Intra Subsystem ‘7-1



Display 1.0 Subsystem Member Configuration

1.0

Subsystem Member Configuration

1.  Subsystem configuration member name (8 characters) e o e e
2.  Subsystem library name (8 characters) o o e
Select:
1. Create new member 4. Delete a member
2. Edit existing member 5. Review a member

3. Create new member from existing member
3.  Enter selection:  ________
Existing member name: o _ _
b. Existing member library name: . _

b

Subsystem configuration member name: Specify a name for this configuration
of the subsystem. This name is used to store the member in a library, and is
referenced in the ENABLE and DISABLE procedures.

Library name: Specify the name of the library in which the configuration is
stored or to be stored. The default is #LIBRARY, however, you should
probably store the configuration in a user library.

Enter selection: Specify one of the five options: (1) create a new member, (2)
edit an existing member, (3) create a new member from an existing member,
(4) delete a member, or (5) review a member without changing it.

Existing member name: This prompt appears if option 3 was selected. Specify
the name of the existing subsystem configuration member that is to be used to
create the new member. The existing member remains unchanged.

Existing member library name: This prompt appears if option 3 was selected.
Specify the library name where the existing member resides.




Display 2.0 Common SSP-ICF Parameters for Each Subsystem

2.0 Common SSP-ICF Parameters for Each Subsystem

1. SSP-ICF common queue space: (2 - 42 K)
2. Define the subsystem type:

1 Intra 2 BSC IMS/IRSS
3 BSCEL 4 BSC CICS

5 BSC CCP 6 SNA Upline

7 SNA Peer 8 BSC 3270

9 SNA 3270 10 Finance

=1

SSP-ICF common queue space: Specify the size, in multiples of 2 K bytes, of
the common queue space. The common queue space requirements for each

configuration of the Intra subsystem enabled are 32 bytes.

The common queue space value specified for the first subsystem that is

enabled becomes the size of the common queue space. Be sure that the value
specified for common queue space size takes into account the requirements of

any other subsystem that might be active concurrently.

The size of the common queue space plus the total subsystem queue space of

all the enabled Intra subsystem cannot exceed 42 K bytes.
The default common queue space size is 4 K bytes.

Define the subsystem type: Specify a 1 for the Intra subsystem.

The Intra Subsystem

7-3




Display 3.0 General Subsystem Parameters

General Subsystem Parameters

Liotation name: (8 characters) . _ .
Subsystem queue space: (0-40 K)
Subsystem support swappable: (0-No 1-Yes)

7-4

Location name: Specify up to 8 characters for the name of the location
associated with this configuration. The location name is used in some
displayed message texts, and must be coded on the SESSION OCL statement.
The location name refers to the name of the location with which
communications is to take place. If you do not enter a location name, the
system uses the subsystem configuration member name for the location name.

Subsystem queue space: Specify the size, in multiple of 2 K bytes, of the
subsystem queue space. The subsystem queue space requirements for each
configuration of the Intra subsystem enabled is:

S=L,+L,+..+L

where:
S = number of bytes required for the subsystem queue space
L = maximum record length for each acquired session

The size of the common queue space plus the total subsystems queue space
of all the enabled Intra subsystem cannot exceed 42 K bytes.

The default subsystem queue space size is 4 K bytes. If the subsystem queue
space is set to O K bytes, the common queue space is used. In this case, the
subsystem requirements must be added to the common queue space
requirements.

Subsystem support swappable: Specify whether you want the subsystem to be
swappable. Consider the total system performance, the size of the subsystem,
and the amount of user main storage when determining whether you want the
subsystem swappable. The Intra subsystem requires 2 K bytes of main
storage.




STARTING AND ENDING THE INTRA SUBSYSTEM

The ENABLE procedure is the means of starting the Intra subsystem on the
System/34. The ENABLE procedure associates the subsystem with a particular
configuration.

The DISABLE procedure stops the subsystem. When a disable is performed,
the Intra subsystem no longer handles application program requests.

The formats of the ENABLE and DISABLE procedure commands are in
Chapter 2.

STARTING INTRA SUBSYSTEM APPLICATIONS

System/34 Intra subsystem applications can be started by a display station
operator entering a procedure command or by a request from another
application program. Procedures that are started by a System/34 operator
must have a SESSION OCL statement for each session to be started. The
following sections describe the SESSION OCL statement and the procedure
start requests.

SESSION OCL Statement

The format of the SESSION OCL statement for the Intra subsystem is:

// SESSION LOCATION-name , SYMID-session-id

[orren {3)]

LOCATION: Specifies the location name associated with this session. The
location name is defined during subsystem configuration, and refers to the
name of the location with which communication is to take place.

SYMID: Specifies the symbolic ID of the session with which this OCL
statement is associated. The symbolic ID must be two characters, with the
first character numeric (O through 9) and the second character alphabetic (A
through Z, #, $, or @). This is the same ID that the application program uses
when referring to this session. This ID is the equivalent of the symbolic display
station ID as specified on the WORKSTN OCL statement. This parameter has
no default. K

BATCH: Specifies whether batch-oriented operations (request to change
direction, negative response, cancel, and function management header
operations) can be issued for this session. YES indicates that they can be
issued; NO indicates that they cannot, and is the default.

Note: If the application program is a BASIC program, the SESSION statement
is not required unless you need to specify BATCH-YES.

The Intra Subsystem



Procedure Requests
For application programs to initiate procedures on the System/34, the program
must issue an evoke operation. The subsystem then starts the System/34
application and communications can begin.

OPERATION CONSIDERATIONS

The following sections describe the operations supported by the Intra
subsystem. A complete chart of all the interactive communications operations
and the subsystems that support them is in each language chapter. The chart
also shows the keyword or format name used to code the operation. More
information about how an operation is coded is also described in the
appropriate programming language chapter.

Whether an operation completes successfully or unsuccessfully, a return code
is given to the application program. All of the return codes that are valid for
the Intra subsystem are described at the end of this chapter. A summary chart
in Appendix A lists all the return codes and the subsystems for which they are
valid.

Acquire Operation

The acquire operation establishes a session. Associated with the acquire is a
session ID (corresponding to the SYMID parameter on the SESSION OCL
statement) that identifies this session. When the acquire operation completes
successfully, a session with this ID exists.

Evoke Operations

The evoke operation ($$EVOK, $$SEVOKNI, or $SEVOKET) initiates a procedure.
For an evoke operation with procedure parameters and data specified, the total
length of the procedure name, parameters, and data cannot exceed 120 bytes.

When security is active, the subsystem compares the user ID from the evoke
operation with user ID specified at sign on to the display station running the
application program. If the IDs are the same, further security checking is
bypassed.

The evoke operation with the function management header modifier (assembler
only) is valid only if BATCH-YES was specified on the SESSION OCL
statement of the program that acquired the session. See Chapter 15 for a
description of function management headers.



Put Operations

The put operation ($$SEND, $$SENDNI, $$SENDE, or $$SENDET) sends a
record to the other application program. Put operations are valid only during a
transaction.

Put function management header is valid only if BATCH-YES was specified on
the SESSION OCL statement for the program that acquired the session. Any
put function management header operation causes the receiving program to get
a return code indicating that a function management header is included with
the record. The Intra subsystem does not check the format or contents of
function management headers. See Chapter 15 for a description of function
management header operations. (Function management headers have no
particular use in the Intra subsystem environment, but are supported for
compatability with the SNUF subsystem.)

Input Operations

The input operations for the Intra subsystem are invite, get, and accept. The
invite operation can be issued only as a combined operation with a put or
evoke operation ($$SEND, $$EVOK) in BASIC, COBOL, and RPG Il. Assembler
language users can issue an invite operation explicitly. Either a get or invite
operation signals the subsystem to obtain data on the session for the
application program. A get operation causes the application program to wait
for the data to be available. When a program issues an invite operation, it
receives the data with the next accept operation. The accept operation allows
data from any previously invited session.

Request to Change Direction Operation

The Intra subsystem allows a request to change direction operation ($$RCD)
only during a transaction and only when the issuing program is receiving. If the
issuing program is receiving data, the operation results in a return code being
given to the other application program for the next output operation. If the
issuing program is not r