sysTem. 322

IBM System/32
System Control Programming
Reference Manual

m/32

2/

£
7
.

!

MS VS

e’

i

GC21-7593-4
File No. $32-36

Progriam Number
5725-5C1 - - ,

e e hmane

- e

IBM System/32
System Control Programming
Reference Manual

Page of GC21-7593-3
Issued 22 November 1978

*By TNL: GN21-7993

Fourth Edition (May 1977)

This is a major revision of, and obsoletes, GC21-7693-2 and Technical Newsletter
GN21-7879. Changes or additions to the text and illustrations are indicated by a vertical
line to the left of the change or addition. Significant additions are in Part 5, System
Configurations, Modification, and Installation; these additions include system control
programming support for three program products: FORTRAN !V, Basic Assembler, and
the File Conversion Utility. In addition, system control programming now supports the
1255 Magnetic Character Reader attachment, Word Processing Communications utility,
overlay linkage editor, and queued job stream. Enhancements to system control pro-
gramming include the compress function of $MAINT utility program (CONDENSE
procedure), the Queued Job Stream Card-to-Library utility program ($QJOB), and the
JOBSTR and APCHANGE procedures. A new appendix, Appendix H, System Sharing,
has been added showing examples of sharing a System/32 and the procedures
recommended for each method. Miscellaneous changes and additions are not extensive.

This edition applies to version 6, modification 0 of IBM System/32 (Program 5725-SC1),
IBM System/32 Utilities Program (Program Products 5725-UT1 and 5725-UT2), |IBM
System/32 RPG Il {Program Product 5725-RG1), IBM System/32 FORTRAN IV
(Program Product 5725-FO1), IBM System/32 Basic Assembler (Program Product
5725-A81); and to all subsequent versions and modifications unless otherwise indicated

in new editions or technical newsletters. Changes are periodically made to the infor-
mation herein; before using this publication in connection with the operation of IBM
systems, refer to the latest /BM System /32 Bibliography, GC20-0032, for the editions that
are applicable and current.

This publication contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of indi-
viduals, companies, brands, and products. All of these names are fictitious and any .
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental. Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to your
IBM representative or the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader’'s Comment Form at the back of this publication to make comments about

this publication. If the form has been removed, address your comments to IBM
Corporation, Publications, Department 245, Rochester, Minnesota 55901. IBM may
use and distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright Internationai Business Machines Corporation 1975, 1976, 1977

This reference manual provides system programmers with
information needed to establish administrative and operat-
ing procedures for an IBM System/32. Information is pro-
vided for programmers to run application programs on IBM
System/32 and use the system procedures and utility pro-
grams provided with IBM System/32.

This manual contains: »

® A summary of IBM System/32 aperation control language
(OCL) statements and a detailed description of each OCL.
statement

® A general description of IBM System/32 system procedures
and a detailed description of each procedure. A detailed
description of the.command statements that evoke the
procedures and a summary of command statement
formats

@® A description of how to use OCL statements to create
data files and run application programs. An example of
how to use OCL statements and procedures to run

applications

® A description of each system utility program provided
with IBM System/32 and a description of associated
utility control statements

® A description of how to create, install, and modify 1BM

Preface

Appendixes describe:

The relationship of disk records, blocks and sectors

Decimal and hexadecimal conversion
® Diskette data formats for IBM System/32
® The IBM service procedures

® The OCL and utility control statements contained in the
system procedures '

Standard characters for IBM System/32 printers

Polling and address characters for IBMSystem/32
tributary stations

® System sharing examples
A glossary at the back of the manual defines data processing

terms used in the manual. New terms in the manual are
italicized the first time they are used.

Note: This manual follows the convention that ~e means
he or she.

Prerequisite Publication

1BM System/32 Introduction, GC21-7582, provides an over-
view of the system and its character istics

Related Publications

IBM System/32 Operator’s Guide, GC21-7591, provides
detailed instructions for operating IBM System/32

IBM Diskette General Information Manual, GA21-9182 ,
describes the diskette data format for basic data exchange

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

IBM System/32 SCP Command Statement Reference
Summary, GX21-7687, provides a brief description and
the format of command statements used for system
functions.

Word Processor/32 Installation and Procedures Manual,
SH30-0114, provides instructions for installing the Word
Processing/32 Program Product and shows basic typing and
-work flow procedures for various applications of the
program product.

Titles and abstracts of related publications are listed in the
IBM System/32 Bibliography, GC20-0032.

LIST OF ABBREVIATIONS AND ACRONYMS
HOW TO USE THIS MANUAL
PART 1. OCL STATEMENTS

INTRODUCTION TO OCL STATEMENTS .
What is OCL. .

OCL Statements and the Job

System Configuration

CODING OCL STATEMENTS
Types of Information Conveyed in OCL Statements
~ ldentifiers
Parameters .
General OCL Coding Ru!es
Continuation .
Comments

OCL STATEMENT TABLES .

OCL STATEMENT DESCRIPTIONS
COMPILE Statement
DATE Statement
FILE Statement .

FORMS Statement
IMAGE Statement
INCLUDE Statement
LOAD Statement

LOG Statement .
MEMBER Statement
PAUSE Statement
RUN Statement .
SWITCH Statement .
SYSLIST Statement
COMMENT Statement
/* {(End of Data) Statement
/] * Message Statement

PART 2. PROCEDURES .

INTRODUCTION TO PROCEDURES

1BM SCP Procedures

Creating a Procedure

Evoking a Procedure
Keyboard Entry of the INCLUDE Statement
Using a Command Key .
Evoking a Procedure from Another Prooedure
Procedure Execution

Procedure Parameters .
Modifying a Procedure Job Stream .
Substitution. Expressmns .
Conditional Expresions: IF and ELSE

Example of Procedure Coding
FILEBKUP Procedure
FILEBKUP Parameters

Xi

xiii

-

HbHWW

o~NOOOOTGTOI M

©

15
16
17
23
24
26
27
28
29

30
31
32
32
33
33

888BY

40
42
43
43

44
47
52
52
53

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

1BM SCP COMMAND STATEMENTS

I1BM SCP PROCEDURE DESCRIPTIONS
ALTERBSC Procedure .
ALTERBSC Command Statement Format
ALTERBSC Parameters
ALTERSDL Procedure . .
ALTERSDL Command Statement Format
ALTERSDL Parameters
APCHANGE Procedure

APCHANGE Command Statement Format .

APCHANGE Parameters
APCHANGE Examples

BACKUP Procedure .
BACKUP Command Statement Format .
BACKUP Parameters

CATALOG Procedure
CATALOG Command Statement Format
CATALOG Parameters .

COMPRESS Procedure
COMPRESS Command Statement Format
COMPRESS Parameters

CONDENSE Procedure .

CONDENSE Command Statement Format
CONDENSE Parameters

CONVERT Procedure
CONVERT Command Statement Format
CONVERT Parameters .

COPYI1 Procedure .

COPY11 Command Statement Format
COPY11 Parameters
COPYI1 Example

CREATE Procedure .
CREATE Command Statement Format
CREATE Parameters
CREATE Example .

DATE Procedure .
DATE Command Statement Format .
DATE Parameters

DELETE Procedure
DELETE Command Statement Format
DELETE Parameters
DELETE Example

DISPLAY Procedure
DISPLAY Command Statement Format
DISPLAY Parameters
DISPLAY Example .

FROMLIBR Procedure .

FROMLIBR Command Statement Format
FROMLIBR Parameters
FROMLIBR Examples .

HISTORY Procedure
HISTORY Command Statement Format
HISTORY Parameters

INIT Procedure .

INIT Command Statement Format
INIT Parameters
INIT Examples

Contents

55

61
62
62
62
63

65
65
65
66
67
67
67
68
68
68
68
69
69
69
69
69
69
70
70
70
7
7
71
72
72
72
73
73
73
74
74
74
74
75
75
75
76
76
76
77
78
79
79
79
80
80
80
80
81

" Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

JOBSTR Procedure
JOBSTR Command Statement Format
JOBSTR Parameters -
JOBSTR Example

LINES Procedure .
LINES Command Statement Format
LINES Parameters

LISTLIBR Procedure
LISTLIBR Command Statement Format
LISTLIBR Parameters
LISTLIBR Examples

LOG Procedure .
LOG Command Statement Format
LOG Parameters

ORGANIZE Procedure

ORGANIZE Command Statement Format 4

ORGANIZE Parameters
ORGANIZE Examples

OVERRIDE Procedure .
OVERRIDE Command Statement Format
OVERRIDE Parameters

REBUILD Procedure
REBUILD Command Statement Format
REBUILD Parameters

RELOAD Procedure .
RELOAD Command Statement Format
RELOAD Parameters

REMOVE Procedure
REMOVE Command Statement Format
REMOVE Parameters
REMOVE Examples

RENAME Procedure
RENAME Command Statement Format
RENAME Parameters . . .

RENAME Example .
RESTORE Procedure

RESTORE Command Statement Format
RESTORE Parameters
RESTORE Examples

SAVE Procedure .
SAVE Command Statement Format .
SAVE Parameters
SAVE Examples

SET Procedure .

SET Command Statement Format
SET Parameters .

SPECIFY Procedure .
SPECIFY Command Statement Format .
SPECIFY Parameters

STATUS Procedure .

STATUS Command Statement Format
STATUS Parameters

SYSLIST Procedure .
SYSLIST Command Statement Format
SYSLIST Parameters

TOLIBR Procedure .

TOLIBR Command Statement Format
TOLIBR Parameters

TRANSFER Procedure .

TRANSFER Command Statement Format
TRANSFER Parameters
TRANSFER Examples

vi

82
82
82
84
85
85
85
85
86
86
87
87
87
87
88
88
88

. 89

90
90
90
91
91
91
92
92
92
93
93
93
94
94
94
94

94.1
94
95
95
95
96
96
96
97
97
97
98
99
99

100
101
102

102

102

103

103

103

104

104

105

105

106

107

PART 3. USING OCL STATEMENTS AND
PROCEDURES.

CREATING DISK AND DISKETTE FILES ..
Disk File . .

Obtaining Space for a Frle

Describing a File

Diskette File .

Offline Multivolume Flle .
Purpose of Offline Multivolume F|Ies
Creating an Offline Multivolume File
Readng an Offline Multivolume File
Offline Multivolume File Restrictions and

Considerations .

CREATING AND USING MESSAGES
Messages .

Creating a Message Source Member
Creating a Message L.oad Member
Specifying the Message Load Member

- Retrieving the Messages

Retrieving Messages by Using the Message OCL
Statement . .
Retrieving Messages by Usmg Your Program
Restrictions on Retrieving Messages

LOADING AND RUNNING PROGRAMS

I1BM Programs .

Object Programs Using One Drsk Frle

Object Programs Using More Than One Disk Frle

Object Programs Using One Disk File and External
Indicators

OCL AND PROCEDURE EXAMPLE
PART 4. SYSTEM UTILITY PROGRAMS e

INTRODUCTION TO THE SYSTEM UTILITY
PROGRAMS . . . e .

Writing Utility Control Statements

Rules for Coding Utility Control Statements .

Conventions for Describing Utility Control Statement
Formats

UTILITY PROGRAM DESCRIPTIONS L.
$BACK—Backup Library Utility Program

$BACK Utility Control Statement Format

$BACK OCL Sequence .
$BICR—Basic Data Exchange Utility Program

$BICR Utility Control Statement Formats

$BICR Parameters

$BICR OCL and Utility Control Statement Sequence .

$BICR Example .
$BUILD—Alternate Sector Rebuuld Utrhty Program
Bypass Unreadable Data
Correct Unreadable Data .
$BUILD Utility Control Statement Format
$BUILD OCL Sequence .
$CNVRT—Convert Diskette Header Label Ut|I|ty
$CNVRT Utility Control Statement Format
$CNVRT OCL Sequence

109

111
111
11
111
112
113
113
114
115

115

119
119
119
120
121
121

121
122
122

123
123
123
123
124
125
129
131

131
131

134

135
136
136
136
137
137
138
138
139
139
141

141

141

141

142
142
142

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$COPY—Disk Copy/Display Utility Program 142 An Example of Creating a Message Source and Load
$COPY Utility Control Statement Formats .. . 143 Member206
$COPY Parameters- 145 An Example of Assrgnmg a Command Key to a :
$COPY Parameter Summary . . . 148 Procedure 207
$COPY OCL and Utilitv Contrnl Statement Sequence . 151 $PACK—Disk Reorganrzatlon Utrlrty Program 208
$COPY Examples 185 $PACK Utility Control Statement Format 208
$DELET—File Delete Utility Program 156 $PACK OCL Sequence 208
$DELET Utility Control Statement Formats . . . 156 $QJOB—Queued Job Stream Card-to-Lrbrary Utrlrty
$DELET Parameters . . . L 157 Program 209
$DELET Parameter Summary . 158 ~ $QJOB Utility Control Statement Format 209
$DELET OC! and Utility Control Statement Sequence 159 $QJOB OCL Sequence 209
$DELET Examples . . . - 159 $REBLD—Rebuild Data File Utrlrty Program 210
$DUPRD—Diskette Copy Utility Program -« . . . 159 $REBLD Utility Control Statement Format. . . . 210
$DUPRD Utility Control Statement Formats . . . 160 $REBLD OCL Sequence . . L2
$DUPRD Parameters . . B [-¢] $RENAME—RENAME Data File Utrlrty Program Lo.o.o2m
$DUPRD Parameter Summary N .. . 160 $RENAM Utility Control Statement Format . . . 211
$DUPRD OCL and Utility Control Statement $RENAM Parameters21
Sequence . . T o1 $RENAM OCL and Utility Control Statement
$DUPRD Examples ..t 18 Sequence 2M
$FREE--Disk Reorganization Utrhty Program 161 $RENAM Examples. 21
$FREE Utility Control Statement Format 162 $SETCF—Set Utility Program 212
$FREE Parameters 162 Set the System Environment 2121
$FREE OCL and Utility Control Statement Set the BSC Environment | . 213
Sequence - .+ .+ o« o« « « « 162 Override BSC Specifications . .~ 215
$FREE Exampleso1821 Set the SDLC Environment 216
$HIST—History File Display Utrlrty Program 1622 Specify SDLC Specifications 218
$HIST Utility Control Statement Formats162.2 Set Functionstobe Traced. 220
$HIST Parameters . . . 163 $STATS—Status Display Utility Program. 222
$HIST OCL and Utility Control Statement Sequence . 163 $STATS Utility Control Statement Format 222
$HIST Examples 183 $STATSOCL Sequence 222
$INIT—Diskette Labeling and Imtralrzatron Utrlrty .

Program, 164) PART 5. SYSTEM CONFIGURATION, INSTALLATION,
Initialize (FORMAT and FORMATZ) 164 ANDMODIFICATION 223
Delete (DELETE) : 165 :

Rename (RENAME) 165 INTRODUCTION TO SYSTEM CONFIGURATION, :
Diskette Defects Encountered During Processmg . . 165 INSTALLATION, AND MODIFICATION 225
$INIT Utility Control Statement Formats 166
$INIT Parameters 166 SYSTEMCONFIGURATION 227
$INIT Parameter Summary . . s . 167 Diskettes Required 227
$INIT OCL and Utility Control Statement Sequence . 168 Information Required 228
$INIT Examples 168 System ConfigurationSteps 230
‘$SLABEL—VTOC Display Utrllty Program L. ... 189 Backup of ConfiguredSCP. 231
Sample VTOC Displays. 169 Backup of Program Products 232
$LABEL Utility Control Statement Formats ... 172 System Configuration Error Messages. 232
$LABEL Parameters 172 System Configuration Summary 233
$LABEL OCL and Utility Control Statement .
Sequence 173 SYSTEMINSTALLATION 235
$LOAD—Reload Lrbrary Utrlrty Program 173 DiskettesRequired 235
Inquiry Option 174 Information Required 235
Offline Option . . so. . . . 176 System Installation Steps . . . 236
$LOAD Utility Control Statement Format 176 Calculating the Number of Backup Drskettes Ftequrred
$LOAD OCL Sequence. . - 176 for the System 238
$MAINT-Library Maintenance Utrlrty Program . . . 176 System Installation Summary e e e ... 239
System Library File (#LIBRARY) 177 ’
Allocate Function 179 PROCEDURES USED FOR SYSTEM CONFIGURATION
Copy Function 180 _ ANDINSTALLATION 24
Delete Function. 199 APPLYPTF Procedure . . . 21
Compress Function 202 APPLYPTF Command Statement Format 24 |
$MGBLD—Create Message Member Utllrty Program . . 203 APPLYPTF Parameters. 242
$MGBLD Utility Control Statement Format . . . 203 CNFIGSCP Procedure. . . . co. .. 242
$MGBLD Parameters 203 CNFIGSCP Command Statement Format . ¥
$MGBLD OCL and Utility Control Statement Prompted Parameters for CNFIGSCP. 243
Sequence . . e e e e 204 INSTALL Procedure 246
Message Source Member e e e e 204 INSTALL Command Statement Format .o . . 246
INSTALL Parameters that are Not Prompted 246
Prompted Parameters for INSTALL 247

vii

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

PROGRAM PRODUCT INSTALLATION AND
VERIFICATION
Program Product Installation
To Install a Program Product .
To Create a Backup Copy of a Program Product.
Program Product Installation Verification
SEU Installation Verification .
RPG Il Installation Verification .
FORTRAN IV Installation Verification .
Basic Assembler Installation Verification
FCU Installation Verification .

SYSTEM MODIFICATION
Library Requirements
Deleting From the Library . .
Determining Space Available in the lerary
Determining Space Available on the Disk.
Selecting Members to Delete
Deleting Members
RELOAD Display .
If Values in the RELOAD Dlsplay are Correct
If Values in the RELOAD Display are to be Changed

VERSION UPDATE INSTRUCTION
SUMMARY .

APPENDIX A. RECORDS, BLOCKS, AND SECTOR
CONVERSION.

Records to Blocks Conversion for Dtsk .
Determining the Number of Sequential or Direct Flle
Determining tne Number of Blocks in a Sequential

or Direct File

Determining the Number of Blocks inan Indexed Flle .

Disk Sector Number to Block Number Conversion .
Disk Block Number to First Sector in Block Conversion

APPENDIX B. HEX AND DECIMAL CONVERSION .
Hexadecimal to Decimal Example.
Decimal to Hexadecimal Example.

APPENDIX C. DISKETTE FORMATS AND DISKETTE
DATA FILES
Diskette Formats
Diskette Data Files . .
Basic Data Exchange Files .
System Files .

APPENDIX D. IBM SCP SERVICE PROCEDURES

APAR Procedure .
APAR Command Statement Format .
APAR Parameters

BUILD Procedure .
BUILD Command Statement Format
‘BUILD Parameters .

DUMP Procedure .
DUMP Command Statement Format .
DUMP Parameters

" PATCH Procedure . .
PATCH Command Statement Format
PATCH Parameters .

TRACE Procedure
TRACE Command Statement Format
TRACE Parameters .

viii

249
249
249
250
251
251
253
256
261
264 1

265
265

. 266.1

267
267
268

. 268.1
. 268.1

269
270

- 2721

273
273

273
273
274
274

275

276
276

277
277
277
277
278

279
280
280
281
281
281
281
281
282

282

283
283
283
284
285
285

APPENDIX E. 1BM SCP PROCEDURE CONTENTS .

ALTERBSC .
ALTERSDL .
APAR . .
APCHANGE .
APPLYPTF
BACKUP .
BUILD
BWSUD
BWSUR
CATALOG
CONFIGSCP. .
COMPRESS . ' .
CONDENSE .
CONVERT
COPY11
CREATE .
DATE.
DCYRINT
DELETE .
DISPLAY
DUMP
FROMLIBR .
HISTORY
INIT
INSTALL
JOBSTR .
LINES
LISTLIBR
LOG

MRJE
ORGANIZE .
OVERRIDE .
PATCH
REBUILD
RELOAD
REMOVE
RENAME.
RESTORE
SAVE

SET
SETMICR
SPECIFY
STATUS .
SYSLIST .
TOLIBR .
TRACE
TRANSFER

APPENDIX F. IBM SYSTEM/32 CHARACTERS .

APPENDIX G. POLLING AND ADDRESSING
CHARACTERS FOR SYSTEM/32 TRIBUTARY
STATIONS.

EBCDIC .

ASCli .

287
287
287
287
287
288
289
289
289
289
289

295
295
295
295
295

295
296
296

297
297
297
298
208
299
299
299
209
300
300
300
300
300
301
301
301
301
301
302
302
302
302

. 302

. 302.1
303

305
... 3M

311
312

APPENDIX H. SYSTEM SHARING .
An Approach to System Sharing
Considerations for System Sharing

Disk Space

Interaction Among Users

Naming Conventions

Time Requirements .

Individual Responsibilities . . .
Suggested System Sharing Methods . . .

Procedures for Getting On and Off the System .

Examples of System Sharing
Installation Considerations .

GLOSSARY

INDEX

313
313
313
314
314
314
315
315
315
315
319
320

325

331

Page of GC21-7693-3

Issued 22 November 1978

By TNL: GN21-7993

This‘ page intentionally left blank

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

List of Abbreviations and Acronyms

The following abbreviations and acronyms are used in the
text of this manual.

BSC) Binary synchronous communication

BSCA Binary synchronous communications
adapter

CE Customer engineer

DTF Define the file

EBCDIC Extended binary coded decimal inter-
change code

1/0 Input/output

10B Input/output block

10S Input/output supervisor

IPL Initial program load

K 1024 bytes

MiIC ’ Message identification code

MICR Magnetic ink character reader

MRJE MULTI-LEAVING remote job entry

MRJE/WS MULTI-LEAVING remote job entry
work station

OoCL Operation control language

PID Program information department

PLCA Program level communication area

PTAM Pseudo tape access method

PTF Program temporary fix

RIB Request indicator byte

SCA System communication area

SCP System control programming

SDLC Synchronous data link control

‘SIS Scientific instruction set

SNA Systems network architecture

svC Supervisor call

SWA Scheduler work area

VvTOC Volume table of contents

xi

Page of GC21-7593-3 ‘
Issued 22 November 1978
By TNL: GN21-7993

How to Use This Manual

This manual has five parts. Part 1 describes operation control language (OCL) state-
ments. Part 2 describes system procedures and command statements. Part 3
describes the OCL and procedures to use applications. Part 4 describes system
utility programs. Part 5 describes system configuration, installation, modification,
and program product installation. : :

Part 1

Refer to part 1 if you want to know:

@ What an OCL statement is

® What each OCL statement is used for and when it is needed

Where each OCL statement is placed in relation to others

How each statement must be coded -

What each statement must contain

Part 2 |

Refer to part 2 if you want to know:

@ Whata procedure is

® Whata commaﬁd statement is and how it is used

® How to create, evoke, or modify a procedure

@ What procedures are supplied with |1BM System/32 and the function of each

® The format and contents of the command statements that evoke the procedures
supplied with IBM System/32

Part 3
Refer to part 3 if you want to know:
® How to use OCL to build disk files and to load and run programs

L qu to use OCL and procedures to perform applications

xiii
3

" Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Part4

Refer to part 4 if you want to know:

® What system utility programs are supplied with IBM System/32 system control programming
° Whth the function of each utility program is

® What OCL statements and utility control statements are necessary to load and
run each utility program

Part5
Refer to part 5 if you want to know about:

® Configuration and installation of IBM System/32 system control programming at
initial system installation or subsequent system update

® Installing 1BM System/32 program products (and verifying that they are installed
correctly)

® Modifying an installed system by deleting o_erta"in system control programming
components or program product functions from the library
Reader’s Comments

If you find an error, please tell us about it by using the Reader’s Comment Form at
the back of this publication.

xiv

Part 1

OCL Statements

- OCL Statements 1

Introduction To OCL Statements

WHAT IS OCL?

The IBM System/32 system control programming (SCP) controls program execution.
The SCP must be in main storage before your programs can be run. It is located on
the disk and is brought into main storage by a process called initial program load (IPL),
which is performed by the operator after the system power is turned on.

Operation control language (OCL) is your means of communicating with the SCP.

Every job requires OCL statements identifying a job and describing that job’s require-.
ments to the SCP. OCL statements for a job can be stored together as a set, calleda
procedure, and can be stored in and evoked from the system library.

The system library is contained in a disk file named #LIBRARY. Besides areas
required by the SCP, the system library contains:

® [oad members: A load member is a collection of instructions that can be loaded
directly into main storage for execution.

® Procedure members: A procedure member is a collection of related OCL state-
ments. Procedures can also contain utility control statements, statements required
by the system utilities (see index'entry: writing utility control statements for more
information. on utility control statements).

® Source members: A source member is a collection of records used as input to a
program. For example, RPG 1l specifications and sort sequence specifications can
be stored in source members. Source members cannot, however, contain data to
be processed.

® Subroutine members: Subroutine members contain subroutines that can be com-
bined with user and system control programs for execution.

You can enter OCL statements in two ways: (1) key OCL statements to create a
procedure stored in the library, then evok_gwthe entire procedure when those OCL
statements are required; (2) key the OCL statements at the time the system requires
them. :

Introduction to OCL Statements 3

OCL STATEMENTS AND THE JOB

To run a job, the necessary OCL statements must be supplied from the keyboard or
called from the system library. To-call OCL statements {procedures) from the system
library, enter an INCLUDE OCL statement. A simplified form of the INCLUDE
statement is called a command statement. Command statements make it easier to
call procedures (see index entry: command statements).

When system utility programs (programs that perform a variety of routine tasks to
keep the system and files in order) are to be run, utility control statements may be
needed in addition to OCL statements. Utility control statements pass information,
such as filenames, to utility programs. Utility control statements can be included
with OCL statements in procedures.

OCL statements, utility control statements (when required), and data, form the
job stream.

SYSTEM CONFIGURATION

IBM System/32 system control programming runs on all models of System/32
and is compatible with all available System/32 features.

-

Coding OCL Statements

TYPES OF INFORMATION CONVEYED IN OCL STATEMENTS

OCL statements contain two types of information, an jdentifier and parameters.
An identifier distinguishes one OCL statement from another; a parameter supplies
information to a program. Figure 1 shows the general form of OCL statements.

—

// IDENTIFIER Parameter-1,Parameter-2,...,Parameter-n

Figure 1. General Form of OCL Statements

Identifiers
Every OCL statement except a command statement requires a statement identifier.
A command statement uses a procedure name. Command statements are discussed

in Part 2 of this manual.

- Most OCL statements begin with //. OCL statement identifiers that require // are:

COMPILE FORMS LOAD PAUSE SYSLIST
DATE IMAGE LOG RUN * (message)

FILE INCLUDE MEMBER SWITCH,
For example, in the statement |
// LOAD $COPY
the statement identifier is LOAD.
Identifiers that do not require // are:
* (comment)
/* (end of data)
For example, in the statement
* END OF JOB

~

the statement identifier is *. Because // does not precede the *, the * indicates the
statement is a comment. (// * at the beginning of a statement indicates the state-
ment is a message.)

Also, // is not required with a command statement (a simplified form of the INCLUDE
OCL statement).

Coding OCL Statements

Parameters

Parameters are either symbolic or keyword parameters. In the following statement,
SCOPY is a symbolic parameter—the name of a system utility program:

// LOAD $COPY

NAME-COPYIN, UNIT-F1, and LABEL-filename are keyword parameters in the
following statement:

/! FILE NAME-COPYIN,UNIT-F1,LABEL-filename

A keyword parameter contains a keyword (NAME, UNIT, and LABEL are the key-
words in the preceding OCL statement) that distinguishes the parameter from other
parameters, just as statement identifiers distinguish one OCL statement from
another. In addition to a keyword, a keyword parameter usually contains a va/ue
(COPYIN and F1, are values in the preceding sample OCL statement).

GENERAL OCL CODING RULES

OCL statement formats described in this manual can include special characters,
such as //, and words written in capital letters, such as the FILE statement param-
eter, LABEL. These special characters and words must be entered exactly as shown
in the statement descriptions given in this manual. Words written in lowercase
letters, such as filename, represent information that you must supply. OCL state-
ments cannot exceed 120 characters, except the FILE statement. (See Continua-
tion description on the following page.)

Additional coding rules are:

® The first character (* or /) of an OCL statement must be keyed in position 1.
For example, // must be entered in positions 1 and 2.

® One or more positions must be blank between the // and the statement identifier.
For example:

// LOAD
n=

® One or more positions must be blank between the statement identifier and the
first parameter. For example:

// LOAD $COPY
/] * 6666

® [f you need to include more than one parameter, use a comma to separate them.

No blanks are allowed within or between parameters. Anything following the
first blank after a parameter is considered a comment (see index entry: comments).

® |f you are writing keyword paramaeters, place the keyword first and use a hyphen
(-) to separate the keyword from the value.

Continuation

Expressing a single statement in two or more records is called continuation. The
only OCL statement that can use continuation is the FILE statement. {See index
entry: // FILE statement for a description of FILE statements.)

A record can consist of a maximum of 120 characters, including blanks and commas,
when expressing an OCL statement. Because of the many parameters possible in
FILE statements, FILE statements can be composed of more than one record to
express a single FILE statement. All other OCL statements must not exceed one
record.

Rules for using continuation are:

® Place a comma after the last parameter in every record except the last. The
comma, followed by a blank, tells the system that the statement is continued
in the next record.

® Begin each new record with // in positions 1 and 2.

® Leave one or more blanks between the // and the first parameter in the record.

In the first of the following two examples of continued FILE statements, five
records are used to express a single FILE statement. In the second example, two
records express one FILE statement.

Example 1:
// FILE NAME-TRANS,
/! UNIT-F1,
1/ LABEL-TRANS1,
/! RECORDS-225,
/! RETAIN-T
Example 2:

// FILE NAME-TRANS,UNIT-F1,LABEL-TRANSI,
// RECORDS-225,RETAIN-T

Coding OCL Statements 7

Comments
Comments can contain any character but should not contain a question mark (?).
The question mark has a special meaning in procedures and certain control state-

ments. Any combination of valid characters can be included in the following
places:

® Following the * on the OCL comment statement.
*THIS IS AN EXAMPLE OF A COMMENT STATEMENT

In the example above the comment is THIS IS AN EXAMPLE OF A COMMENT
STATEMENT.

® After the last parameter in a statement or in an OCL record that is continued
{continuation is described in the preceding paragraph). Leave one or more blanks
between the last parameter and your comment.

// LOAD $COPY LOAD THE DISK COPY UTILITY

In this example the comment is after the fast parameter. The comment is
LOAD THE DISK COPY UTILITY.

In the following example, the comments are in an OCL record that is continued:

// FILE NAME-TRANS,UNIT-F1,LABEL-TRANST, COMMENT A
// RECORDS-225,RETAIN-T COMMENT B

® After the identifier on statements without parameters. Leave one or more blanks
between the identifier and your comments.

// RUN RUN THE DISK COPY UTILITY
The comment here is RUN THE DISK COPY UTILITY. ,
® After an identifier where parameters are optional, such as on a command state-
ment (see index entry: command statement), leave a blank after the identifier,
code a comma, leave a blank after the comma, and enter the comment.

/' INCLUDE PROC , MAIN PROCEDURE

The comment here is MAIN. PROCEDURE.

OCL Statement Tables

The following two tables are intended for quick referencing. The tables are: table
of OCL statements (Figure 2) and table of parameters (Figure 3).

The table of OCL statements (Figure 2) gives the identifier, function, placement, and
restrictions for each OCL statement.

The table of parameters (Figure 3) describes the contents (identifier and related par-
ameters) of the OCL statements.

When using Figure 3, remember that words written in lowercase letters, such as file-
name or value, require information you must supply, depending on the functions
you want the statement to perform. Refer to Figure 3 to determine which param-
eters are valid. Keyword parameters that are capitalized must be coded along with
the appropriate keyword value.

If you are not familiar with an entry, or you do not know when to use or omit it,
refer to the proper statement in the next section, OCL Statement Descriptions.

OCL Statement Tables 9

10

Statement

Function

Placement in Job Stream

Restrictions on Use

// COMPILE

// DATE

// FILE

// FORMS

// IMAGE

// INCLUDE

// LOAD

// LOG

// MEMBER

Tells the system the
source program to
be compiled

Supplies the system
with a date, which
is given to disk files
being created and
printed on printed
output

Supplies file informa-
tion to the system

Instructs the system
to change the number
of lines printed per
page

Tells the system to re-
place the print belt
image area with char-
acters keyed in or read
from a member in the
source library

ldentifies the proce-
dure member to be
merged into job stream

Identifies the program
to be run

Instructs system to
start or stop printing
OCL statements and
messages on the printer,
and whether to skip to
line 1 of the next page
at end of job

Identifies the message
load member from
which messages come

Figure 2 (Part 1 of 2). Table of OCL Statements

Must follow LOAD state-
ment and precede the
RUN statement

Must follow LOAD state-
ment and precede RUN
statement except for per-
forming an IPL, when it
must precede the first
LOAD statement

Must follow LOAD state-

ment and precede the RUN

statement

Can be placed anywhere

among the OCL statements

Can be placed anywhere

among the OCL statements

Can be placed anywhere

among the OCL statements

Must precede the RUN
statement

Can be placed anywhere'

among the OCL statements

Can be placed anywhere

among the OCL statements

Only one DATE state-
ment is allowed between
a LOAD and a RUN
statement

Mandatory if the print
belt was changed

Can include sixteen
levels of nested
procedures

Required in the job
stream for the program
to be run. Only one
LOAD per RUN

Statement

Function

Placement in Job Stream

Restrictions on Use

// PAUSE

// RUN

// SWITCH

// SYSLIST

* Comment

/*

// * Message id
or
‘message’

Figure 2 (Part 2 of 2). Table of OCL Statements

Tells the system to
stop so that the
operator can perform
a function. Operator
must indicate when

program is to continue.

Indicates the end of
the OCL statements
for a program and
tells system to run

~ the program

Sets one or more
external indicators
on or off or to leave
the indicator as it is

Changes the output

medium (printed copy

or display on the dis-
play screen) or speci-
fies that output be
neither printed nor
displayed

Explains the job;
does not affect the

program in operation

Indicates the end of a

data file read from the

keyboard

Indicates a message
to be displayed to
the operator

Can be placed anywhere
among the OCL statements

Must be the last OCL
statement within the
set of OCL statements
for each job

Can be placed anywhere
among the OCL statements
Can be placed anywhere

among the OCL statements

Can be placed anywhere

among the OCL statements

Last record of an input
data file

Can be placed anywhere
among the OCL statements

Required in the job

stream for the program

to be run

Only one SWITCH
statement is allowed
between a LOAD and
a RUN statement

The * must be in
position 1

Not recognized in a
procedure

OCL Statement Tables

1

12

Statement Parameter - Meaning of Parameter

// COMPILE SOURCE-name Name of source program

// DATE mmddyy or System date or date for a particular job within
yymmdd or a set of statements (job date)
ddmmyy mm =month dd=day vyy=year

// FILE (Disk)

/! FILE (Diskette)

NAME-filename or
NAME-COPYIN
or

NAME-COPYO
UNIT-F1
LABEL-filename
RECORDS-number or
BLOCKS-number
LOCATION-blocknumber
RETAIN-S

or

RETAIN-T

or

RETAIN-P
DATE-mmddyy or
DATE-ddmmyy or
DATE-yymmdd
NAME-filename

UNIT-11

LABEL-filename

Figure 3 (Part 1 of 3). Table of Parameters

Note: Use yymmdd format if you are creating
basic data exchange format diskettes to use
with other systems,

Name the program uses to refer to the file

For certain utility program, names the input
file when used with the LABEL parameter

For certain utility progra‘ms, names the output

file when used with the LABEL parameter-

Location of the file is, or will be, the disk. If
the parameter is not specified, default is F1

Name you specify to identify the file on the
disk

Amount of space needed on the disk for a file
Number of the block where the file begins or
will begin

Scratch file

Temporary file

Permanent file

Date the file was created

Name the 'program uses to refer to the file
Location of the file is, or will be, a diskette

Name you specify to identify the file on the
diskette

Statement

Parameter

Meaning of Parameter

// FILE (Diskette)
(continued)

// FORMS

// IMAGE

// INCLUDE

// LOAD

// LOG

// MEMBER

RETAIN-retention-days

DATE-mmddyy or
DATE-ddmmyy or
DATE-yymmdd
PACK-vol-id
LINES-value

HEX

or

CHAR

or

MEM or MEMBER

number

name

procedure-name

procedure parameters

program-name

CRTor .
PRINTER

EJECT or
NOEJECT

PROGRAM1-name

PROGRAMZ2-name

Figure 3 (Part 2 of 3). Table of Parameters

The number of days a file is retained before it
expires. Maximum is 998. If 999 is specified
the expiration date is set to a value that cannot
be met and the file is considered permanent

Date the file was created

Volume identification of the diskette

Number of lines to be printed per page
Characters that follow are in hexadecimal form
Characters that follow are in EBCDIC form

Characters that are identified as HEX or CHAR
and located in a source member in the library

Number of characters

Name of the library source member that con-
tains the print belt image characters

Name that identifies the procedure member in
the library

Parameters (as many as 10) to be used by the
procedure

Name of program to be loaded from the library

Use only the display screen for logging. Use the
printer and the display screen for logging

Skip to line 1 of the next page at end of job.
Do not skip to line 1 of the next page at end of
job

Name of load member used for program product
level 1 messages. If O is specified, the member
name is cleared

Name of load member used for program product

level 2 messages. If O is specified, the member
name is cleared

OCL Statement Tables

13

Figure 3 (Part 3 of 3). Table of Parameters

Statement Parameter Meaning of Parameter
// MEMBER USER1-name Name of load member used for user program‘s
(continued) level 1 and OCL message statements. If O (zero)
is specified, the member name is cleared
USER2-name Name of load member used for user program’s
level 2 messages. If 0 (zero) is specified, the
member name is cleared
// PAUSE none
// RUN none
// SWITCH nnnnnnnn where n See index entry: // SWITCH statement
canbe 0, 1, 0or X
// SYSLIST CRT Use the display screen for SYSLIST output
PRINTER Use the printer for SYSLIST output. (The
printer is assigned during IPL.)
OFF Ignore request for SYSLIST output
* Comment none
/* none
// * message id msg-id The identification of a message in the assigned
or USER1 message member
‘message’ '
‘message’ A character string that is the actual message

(The character string must be enclosed in
single quotes.)

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

OCL Statement Descriptions

In this section, each OCL statement is described separately. The following informa-
tion is given for each statement:

® |ts function

® |ts placement in relation to other statements and the circumstances under which
it is needed

® |ts format

® |ts contents (the parameters that can be used with it)

COMPILE Statement

Function The COMPILE statement identifies the library member that contains the source program to be
compiled. A source program is a collection of statements, such as RPG Il specifications, that can
be translated into an object program. An object program is a program that can be loaded into

" main storage and run. Object programs are stored in the library as load members. Source programs
are stored in the library as source members.

Placement The COMPILE statement must be within the set of OCL statements that apply to the compila-
tion. The COMPILE statement must follow the LOAD statement and precede the RUN state-
ment. |f the source program to be compiled follows the RUN statement in the- jobstream, the
COMPILE statement must not be used. ,

Format // COMPILE SOURCE-name

Contents . SOURCE: This parameter specifies the name of the source member that contains the source pro-
gram to be compiled.

Example The following sample COMPILE statement tells the system that the source member with the
name PROGS3 is the name of the program to be compiled. (LOAD loads the RPG I compiler
program and RUN executes the RPG Il compiler program.) For additional information about
how to compile an RPG || program, see index entry: OCL (operational control language) in the
IBM System/3 RPG 11 Reference Manual, SC21-7595.

// LOAD #RPG

// COMPILE SOURCE-PROG3
// RUN

OCL Statement Descriptions 15

DATE Statement

Function

Placement

Format

Contents

Example

16

A DATE statement establishes the system date if it is given after IPL and before the first LOAD
statement. If a DATE statement is not given during IPL, the system date remains unchanged from
what it was set to by a previous DATE statement, DATE procedure, or SET procedure (see index
entries: DATE procedure and SET procedure).

A DATE statement between the LOAD and RUN statements (see index entries: // LOAD state-
ment and // RUN statement) changes the job (program) date, but only for the program being run.
When the program ends, the program date is reset to the system date. If a DATE statement is not
given between LOAD and RUN, the system date is used as the program date.

The date established for the program is used to determine file retention periods for diskette
files (see the RETAIN parameter for diskette files under index entry: // FILE statement) and
is printed on printed output. 'The data is also used for the creation date of the disk or diskette
files created by the program.

A DATE statement can be given after IPL and before a LOAD statement. It can also be included
anywhere within the OCL statements for a given program, provided it follows the LOAD statement
and precedes the RUN statement. Only one DATE statement can be given between a LOAD and a
RUN statement.

// DATE mmddyy or yymmdd or ddmmyy

The system date can be in either of three formats: month-day-year (mmddyy), year-month-day
(yymmdd) or day-month-year (ddmmyy). However, you must use the current system date format.
The STATUS procedure (see index entry: STATUS procedure) can be used to determine the
current format.

Note: Use yymmdd format if you are creating basic data exchange format diskettes to use with
other systems. The SET, procedure can be used to change the system date and the system date
format.

Month, day, and year must each be 2-digit numbers, but leading zeros in month and day can be
omitted when punctuation is used. The date can be entered with or without punctuation. For
example, July 24, 1975 could be specified in any one of the following ways:

7-24-75 mm-dd-yy
75-7-24 yy-mm-dd
24-7-75 dd-mm-yy
072475 mmddyy
750724 yymmdd
240775 - ddmmyy

In the punctuated form, any characters except commas, quotes, numbers, and blanks can be used as
punctuation.

The DATE statement for the day of July 1, 1975 could be : // DATE 07-01-75 or // DATE 7-1-75.

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

FILE Statement

Function The FILE statement supplies the system with information about disk and diskette files. The system
uses this information to read records from and write records on the disk and diskettes.

Placement A FILE statement is used for each new disk or diskette file that a program creates, and for each
of the existing disk or diskette files that a program uses. The FILE statement must follow the
' LOAD statement and precede the RUN statement.

CAUTION
Be careful when using files during inquiry. (See index entry: inquiry interrupt.)

Format // FILE parameters

Contents - The contents section of the FILE statement description is divided into two sections, one section
for files on the disk and one section for files on diskettes.

Contents of FILE Statemeni for Disk Files

All of the parameters aré keyword parameters (keywords are in capital letters), as follows:

® NAME-filename {in program)

® UNIT-F1

® LABEL-filename (on the disk)

® RECORDS-number or BLOCKS-number

® | OCATION-block number

® RETAIN-T or RETAIN-S or RETAIN-P

® DATE-mmddyy or DATE-ddmmyy or DATE-yymmdd

The NAME parameter is always required. The others are required only under certain conditions.
NAME: The NAME parameter is always required. It tells the system the name that the program

uses to refer to the file. The filename can be any combination of characters (numeric, alphabetic,
and special) except commas, single quotes {’), and blanks. The question mark (?), slash (/), and
hyphen (-) should not be used in filenames because they have special meanings in procedures

(see index entry: procedure parameters). The flrst t character of a filename must be alphabetlc,
#,$, or @. The number of characters in a fllename must not exceed elght ‘

UNIT: The UNIT parameter tells the system whether the file is .Qn', the disk or on a diskette. The
code for the unit parameter on a FILE statement for the disk is F1. This keyword and value need
not be specified for a disk file because F1 is the default value for UNIT parameter.

OCL Statement Descriptions 17

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

18

LABEL: The LABEL parameter tells the system the name by which a file is identified on the
disk. If the file is being created, the filename supplied in the LABEL parameter is used to identify
the file on the disk. If the LABEL parameter is omitted from a disk FILE statement, the filgname
from the NAME parameter is used. |f a program refers to an existing file by a filename that differs
from the filename by which the file is identified on the disk, a LABEL parameter must be
supplied. The filename can be 'any combination of characters (numefic, alphabetic, and special),
except commas, single quotes (') and blanks. The question mark (?), slash (/), and hyphen (-)
should not be used in filenames because they have special meanings in procedures (see index entry:
procedure parameters). The first character must be alphabetic, #, $, or @. The number of
characters must not exceed eight.

RECORDS or BLOCKS: The RECORDS or BLOCKS parameter tells the system the amount of
space needed on the disk for a file being created. (See Appendix A for determining the number of
records or blocks.)

When using the BLOCKS keyword, the number of disk b/ocks needed for the file is specified.
There are 2560 bytes in 1 disk block—1 block = ten 256-byte sectors. A sector is the smallest
quantity of information that can be read from or written to the disk in one read/write operation.
Disk blocks available to the user vary with disk size (one megabyte = one million bytes):

3.2 Megabyte Disk 5.0 Megabyte Disk 9.1 Megabyte Disk 13.7 Megabyte Disk
1248 blocks 1968 blocks 3576 blocks 5376 blocks

#LIBRARY, the name of the file containing the system library, must be included in the user
blocks available. You can use the CATALOG command statement (see index entry: CATALOG
command statement) to determine the number of disk blocks actually available for other files.

When using the RECORDS keyword, the approximate number of records for the file must be
specified. The total space allocated is rounded up to the next block, allowing space to accom-
modate at least the number of records indicated. The smallest allocatable unit is one block. For
example, if you specify ten 50-byte records, 2560 byies (one block) are allocated.

If the RECORDS parameter is used, the number can be up to six digits long. If the BLOCKS
parameter is used,the number can be up to four digits long.

Either of these two keywords, RECORDS or BLOCKS, can appear in the FILE statement, but
not both. The keyword must be followed by a number indicating the amount of space needed.

LOCATION: This parameter tells the system the number of the block where a file begins.

LOCATION can be used for allocating new output files and identifying existing input files. The
keyword for the parameter is LOCATION. A valid entry for LOCATION must meet two require-
ments. It must be:

® Greater than the sum of 17 plus the number of blocks used by #LIBRARY, and

® Less than or equal to the following values as determined by the disk size:

3.2 Megabyte Disk 5.0 Megabyte Disk 9.1 Megabyte Disk 13.7 Megabyte Disk

1265 1985 ' 3593 5393

LOCATION is required in only two cases:

You are creating another version of an existing file. To create such a file, a file that has the same
name and size (RECORDS or BLOCKS) as an existing file, you must specify a location that is
different from the location of the existing file(s) of the same name and size. The creation date of
the new file must also be different from the creation date of any existing file of the same name
and size.

You are writing over an existing file. To write over, or overlay, an existing file you must specify
the name of the existing file, its size (RECORDS or BLOCKS) when it was created, and its loca-
tion. (The LOCATION number can be up to four digits long.) A different creation date, taken

from the current job date, will exist for the new file.

Note: Use LOCATION with caution. Three procedures—the COMPRESS, RESTORE, and
APCHANGE —change file locations. Both the COMPRESS procedure and the RESTORE procedure
move files from previous locations on the disk to new locations, thereby invalidating LOCATION
parameters specified before the COMPRESS or RESTORE procedure was run. These three
procedures do not display a message to notify the operator of the new locations. (For more
information on the COMPRESS, RESTORE, and APCHANGE procedures, see index entries:
COMPRESS procedure, RESTORE procedure, and APCHANGE procedure.) To determine the
current location of a file, use the CATALOG procedure (see index entry: CATALOG procedure).

The APCHANGE procedure contains an option that changes file locations, also invalidating
LOCATION parameters.

RETAIN: The RETAIN parameter classifies files as scratch, temporary, or permanent.

The keyword for the parameter is RETAIN. It must be followed by a code that indicates the
classification of the file. The codes are:

Code Meaning

S Scratch file

T Temporary file
P Permanent file

A scratch file can be used only by the program creating it, and does not exist after the
program that created it has ended.

A temporary file is usually used more than once. The area containing a temporary file can be
given to another file only under one of the following conditions:

® A FILE statement containing the RETAIN-S parameter is supplied for the temporary file to

identify the file as a scratch file, which will not exist after the program has ended.

® Another file with the same LABEL name is loaded into the area occupied by the temporary

file, changing only the data. The RECORDS or BLOCKS and LOCATION parameters must
be provided and must be the same as the original file.

® The DELETE procedure is used to delete the file.

The area containing a permanent file cannot be used for any other file until the DELETE proce-
dure is used to delete the permanent file (see index entry: DELETE procedure).

OCL Statement Descriptions 19

20

The system supports up to 200 permanent or temporary files at any one time on the disk
(199 user files plus the system file #LIBRARY).

A disk file is classified as scratch, temporary, or permanent when it is created. If the RETAIN
parameter is omitted from the FILE statement when the file is created, the file is assumed to be a
temporary file.

The RETAIN parameter can be omitted when accessing an existing file. If an existing permanent
file is referenced by a FILE statement with RETAIN-T, it will remain a permanent file, If an
existing temporary file is referenced by a FILE statement with a RETAIN-P, it wili remain a
temporary file. No message is issued by the system to reflect the above situations. However, a
message is issued if an existing permanent file is referenced by a FILE statement with RETAIN-S,
If processing is continued, the file remains permanent.

DATE: The DATE parameter identifies the creation date of the file. Though the date is not used
when creating a file, it is used to ensure that the proper version of a file is referred to. When a file
is created on disk, its LABEL name and creation date are written on the disk as identification. The
job (program) date is the date used. More than one file can be given the same name. However, the
creation dates of these files must be different. To refer to such a file, you can use its name and
date, its name and location on disk, or its name and size if the size is unique. If neither the date
nor the location is given, the file having the latest date is the one automatically referred to.

The date can be entered in one of three forms: month-day-year (mmddyy), day-month-year
(ddmmyy) or year-month-day (yymmdd). However, the form chosen must conform to that of
the current system date format,

Sample FILE Statement for a Disk File

A program is creating a disk file; therefore, it must have a FILE statement. Assume the following
facts about the file:

©® The name the program uses to refer to the file is TRANS

. ® The name of the file on the disk is TRANS1

The file is to be saved for use at the end of the month but it can be deleted at the first of the
next month

® The file contains 225 records
® The system is to choose the disk area to contain the file
A FILE statement that could be entered to define the file is:

/I FILE NAME-TRANS,UNIT-F1,LABEL-TRANS1,
// RETAIN-T,RECORDS-225

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Contents of FILE Statement for Diskette Files

AII of the parameters are keyword parameters, which follow (keywords are in capital letters):
® NAME-filename (in program)

® UNIT-I

® LABEL-filename {on diskette)

¢ RETAIN-retention-days

® DATE-mmddyy or DATE-ddmmyy or DATE-yymmdd

e PACK-vol-id

The NAME and UNIT parameters are always required. The others are required only under cer-
tain conditions. '

NAME: The NAME parameter is always needed. It tells the system the name that the.
program uses to refer to the file.

The keyword for the parameter is NAME. It must be followed by the filename used by the pro-
gram. The filename can be any combination of characters (numeric, alphabetic, and special)
except commas, single quotes ('), and blanks. The question mark (?), slash (/), and hypen (-)
should not be used in filenames because they have special meanings in procedures (see index
entry: procedure parameters). The first character of a filename must be alphabetic, #, $, or @.
The number of characters in a filename must not exceed eight.

UNIT: The UNIT parameter tells the system whether the file is on the disk or on a diskette.

The code for the UNIT parameter on a FILE statement for the diskette is 11. This keyword and
code must be specified on a diskette FILE statement. |f omitted, the UNIT parameter will de-
fault to disk.

LABEL: The keyword for the parameter is LABEL. It must be followed by the name of the file
on the diskette. The filename can be any combination of characters (numeric, alphabetic, and
special) except commas, single quotes ('), and blanks. The comma, single quote (’), question
mark (?), slash {/), and hyphen (-} should not be used in filenames because they have special
meanings in-procedures (see index entry: procedure parameters). The first character must be
alphabetic, #, $, or @ The number of characters must not exceed eight.

The LABEL parameter tells the system the name by which the file is identified on a diskette. If
the file is being created, the name supplied in the LABEL parameter is used to identify the file
-on a diskette. If the LABEL parameter is omitted from a diskette FILE statement, the name
from the NAME parameter is used. If the file is an existing file, a LABEL parameter is required
when the name the program uses to refer to the file differs from the name with which the file is
identified on a diskette.

If multiple files are to be created on a single diskette, each file LABEL must be
unique. Dupilicate file labels on the same diskette are not permitted.

OCL Statement Descriptions 21

22

RETAIN: The RETAIN parameter specifies duration—the number of days a file is to be retained.
It is used to compute an expiration date. Whenever RETAIN is given for a file, the system deter-
mines the expiration date of the file by adding to the job (program) date the number of days spe-
cified by the RETAIN parameter. The RETAIN parameter can be from 0 to 999. When creating a
new file, if RETAIN is di_ah‘itted, 1 is assumed. If up to 998 is specified, the file is retained for this
number of days, if 999 is specified, the file is considered permanent but can be deleted by the
DELETE procedure (see index entry: DELETE procedure). ’ ’

When creating a diskette file, the system writes the expiration date of the file in the same format
as that of the current system date. If an existing nonpermanent diskette file is referenced by a
FILE statement with a RETAIN parameter, the expiration date of the file is changed to the date
determined by the RETAIN parameter. The new expiration date is written in the format of the
current system date regardless of the format of the file creation date. .

If an existing permanent diskette file is referenced by a FILE statement with a nonpermanent
RETAIN parameter, an error message is issued. If you decide to continue processing after the
message is displayed, the file remains as a permanent file.

Whenever the system is creating a file on a diskette or adding to an existing file on a diskette, ali
files on the diskette whose expiration dates were met and all files with blank (hex 40s)
expiration dates are deleted automatically. When the expiration dates are checked for having
been met, each expiration date is checked for the international format (yymmdd). If an expira-
tion date is not in the international format, it is assumed to be in the same format of the system
date. [f the expiration date for a diskette file is not in the international format and is not in the
format of the system date, the expiration date may be misinterpreted by the system and the file
might be deleted before the expiration date is actually met.

When a new file is created ona diskette, the new file starts at the first available sector beyond
the last unexpired existing file.

DATE: The DATE parameter is the creation date of an existing file. It is used to ensure that
the proper version of a file is referred to. The.format specified must be the same as the format
of the creation date of the diskette file referred to.

Note: When a file is created on diskette, its label, filename, expiration date, and creation date
(job date) are written on the diskette as identification. The job (program) date is the date
described under DATE statement (see index entry: // DATE statement). This date can be in
one of three formats: month-day-year (mmddyy), day-month-year (ddmmyy), or year-month-
day (yymmdd). However, the creation date of each file on a diskette must be in the same for-
mat as every other creation date on the diskette, or the file might be deleted before the intended
expiration date. ’ :

PACK: A PACK parameter is required when creating a file or adding to a file on a diskette.
The PACK pérarpet"er- provides the system the volume identification (vol-id) of the diskette
associated with this FILE statement. The vol-id is put on the diskette (pack) by the INIT
procedure (see index entry: /NIT procedure). PACK must be followed by the vol-id of the
diskette associated with this file. The vol-id can be any combination of six or less alphameric

characters.

The PACK parameter vol-id will be compared with the vol-id of the inserted diskette. If they
are unequal, a message is displayed to the operator who then has the option to continue pro-
cessing (ignore vol-id), to insert the correct diskette, or to cancel the job.

FORMS Statement

Function

Placement
Format

Contents

Example

If the PACK parameter is not supplied on the diskette FILE statement for an output file or when
adding to a file, an error message is displayed to the operator with a cancel option only.

The PACK parameter is not required for a diskette input file; however, it is recommended that
you ensure that the proper diskette is inserted.

Sample FILE Statement for a Diskette File

Assume the following facts about a file to be created on a diskette.

@ The program that creates the file refers to the file as TRANS

® The‘name of the file once itison a diskette will be TRANS1

@ The file is to be saved for use at the end of the month but can be deleted the first of the next
month. There are seven days left in the month

® The file contains 225 records
@ The file will be on the diskette identified by 666666
The FILE statement for the file could be:

// FILE NAME-TRANS,UNIT-11,LABEL-TRANS1,
// RETAIN-8,PACK-666666

The FORMS statement changes the number of lines that the printer will print per page. This
number of lines is effective until another FORMS statement or LINES procedure or SET proce-

dure is used (see index entries: L/NES procedure and SET procedure) or an RPG | program’ spe-
cifies some other number. - During IPL the number of lines per page is set to the value existing in
the system configuration record. ' '

The FORMS statement can be placed anywhere among the OCL statements.

’ // FORMS LINES-value

L/NES: Value is used to indicate the number of lines per page. The maximum number of lines
that can be specified per page is 84. The value specified must not exceed two digits. The
LINES parameter remains in effect until a SET procedure (see index entry: SET procedure) is
used to change the variable, another FORMS statement is received, an IPL is performed, ora 3
option (immediate cancel) is taken in response to a message. If a line counter specification is
used in an RPG Il program, it remains in effect only for the duration of that program.

The printer will skip (overflow) to a new page when six less than the number of lines specified
are printed. For example, if LINES-84 is specified, the printer skips to a new page after printing
line 78. If LINES-6 is specified, there would be one line printed per page. When five or less
lines are specified, there is printing on every line (no overflow).

Note: RPG il programs can specify their own overflow rules to override the values specified in a
// FORMS statement.

The following statement tells the system that the forms length is 50 lines per page:

// FORMS LINES-50 :
OCL Statement Descriptions 23

IMAGE Statement

Function

Placement

Format

Contents

24

To operate correctly, the printer requires that the characters matching those on the print belt be
in a special area of main storage called the print belt image area. When one print belt is replaced
for another with different characters, the contents of the print belt image area must also be
changed.

The IMAGE statement instructs the system to replace the contents of the print belt image area
with the characters indicated by the statement.

The characters can be entered from the keyboard or read from a source member in the library on
disk. The effect of the IMAGE statement is temporary and the system print belt image is returned
to the print belt image area during IPL. The SET procedure can also change the print belt image
(see index entry: SET procedure).

The IMAGE statement can appear anywhere among the OCL statements.

/! IMAGE parameters

The IMAGE statement tells the system either:

® The new print belt characters are to be read from the keyboard, or

® The new print belt characters are to be read from a source member in the library.

Characters from the Keyboard

To indicate that the new print belt characters are to be entered from the keyboard, use the follow-
ing parameters:

CHAR or HEX: Use the word CHAR to indicate that the characters are in alphameric form. Use

the word HEX to indicate that the characters are in hexadecimal form. (See Appendix F for the
hexadecimal form of standard characters.)

Note: Two characters, the reverse slash (\) and the grave accent (') are not on the keyboard but
are on the print belt. If these characters are to be entered from the keyboard, all characters must
be entered in hexadecimal form.

Number: The number parameter must be used with HEX and CHAR. This parameter is the
number of characters following the IMAGE statement (after the IMAGE statement is entered,
the entry of the characters is prompted for). This number must not exceed 384 when the char-
acters are hexadecimal, 192 and characters are alphameric.

Following are the rules for entering the new characters from the keyboard:

© The characters must begin in position 1

® Consecutive positions must be used and characters must be entered in the sequence in whlch
they appear on the new print belt

The sequence for entering characters on the 48-character print belt is:

1234567890#@/STUVWXYZ&,%JKLMNOPQR-$*ABCDEFGH!+.’

The sequence for entering characters on the 48-character FORTRAN (48HN) print belt is:
1234567890=)/STUVWXY Z&,(JKLMNOPQR-$*ABCDEFGHI+.’

The sequence for entering characters on the 64-character print be!f is:
1234567890#@/STUVWXYZ&,%JKLM NOPQR-$*ABCDEFGHI+."¢<(|1);71_>?:=""

The sequence for entering characters on the 96-character print belt is:

1234567890#@/STUVWXYZ&,%JKLMNOPQR—$*ABCDEFGHI+.’
¢[(11)%%;_°?2:=""+ §abcdefghi® *gjkimnopqr®Lstuvwxyz

Note: The question mark (?) has a special meaning in procedures, therefore if you use a
procedure to enter the // IMAGE statement you must use the HEX form for all characters.

® A line must be filled before characters can be continued on the succeeding tine (beginning in
position 1 of the new line)

Characters from Source Member in the Library

MEM,name or MEMBER ,name may be entered to indicate that new print belt characters are to

be read from a source library member. Name identifies the source member containing the

characters.

In the following example, the name parameter indicates that the characters are to be found in a
source member named BELT48:

// IMAGE MEM,BELT48

A /[IMAGE statement specifying the format as either hexadecimal (HEX) or alphameric (CHAR)

and specifying the number of characters in the source member is required as the first record
within the source member, Because BELT48 is the source member that contains the image of
the standard 48-character print belt, BELT48 contains the following:

// IMAGE CHAR, 48

1234567890#@/STUVWXYZ&,%JKLMNOPQR-$*ABCDEFGHI+.’

OCL Statement Descriptions

26

Examples

INCLUDE Statement

Function

Placement
Format

Contents

26

The IMAGE statements in Examples A and B tells the system that the new characters are to be
entered from the keyboard. The HEX parameter in example A indicates that the new characters
are in hexadecimal form; the number parameter indicates that there are 128 positions containing
the new characters.

Example A
// IMAGE HEX,128

In example B, the new characters entered from the keyboard are alphameric. The number param-
eter indicates that there are 48 positions containing the new characters.

Example B

// IMAGE CHAR,48

The INCLUDE statement identifies the procedure member containing the OCL to be merged into
the job stream, and any utility contro! statements (see index entry: writing utility control state-
ments) to be merged into the job stream. The INCLUDE statement also enables you to pass par-
ameters to the identified procedure member. In effect, the INCLUDE statement causes system
input to come from a procedure. See index entry: procedures for more information on procedures.

The INCLUDE statement can be placed anywhere within a set of OCL statements.

// INCLUDE procedure-name parameters

The // and the INCLUDE can be omitted. Procedures are usually evoked by command statements.
Command statements consist only of the procedure name followed by the parameter values to be
passed to the procedure.

The // with only the procedure name {no INCLUDE statement identifier) is also allowed. How-
ever, if the procedure name is the same as an OCL statement identifier or is |F or ELSE, then

// INCLUDE must be present. For example, if the procedure name is LOAD, then the following
format is correct:

// INCLUDE LOAD parameter(s)

Procedure-name: The procedure name is the name of the procedure member to be merged into
the job stream.

Example

An INCLUDE statement

Parameters: Parameters may or may not be required, depending on the particular included pro-
cedure they are passed to. Parameters are separated by commas. A parameter can be omitted.
See the example that follows. The parameters required for |BM-supplied procedures are found in
Part 2 of this manual.

The parameters can be any combination of characters except question marks, commas, quotation
marks (single and double), slash (/), hyphen (-), or blanks. The number of characters per param-
eter must not exceed eight. The number of parameters must not exceed ten per INCLUDE
statement.

Parameters passed in an INCLUDE statement must be interpreted by the procedure (see index
entry: modifying a procedure job stream).

In the following example, parameter number 2 was omitted. JOE and SAM are two parameters
that will be interpreted by the PAYROLL procedure:

// INCLUDE PAYROLL JOE, ,SAM

in the following example, procedure FILE1 is included between the LOAD and RUN statements
and the name of the file (WEEKLY) is being passed to the procedure. Procedure FILE1 contains
only the FILE statements necessary to execute the program PAYROLL.

// LOAD PAYROLL
FILE1 WEEKLY
/I RUN

Assuming that PAYROLL requires only two FILE statements and the procedure FILE1 contains
these two FILE statements, the effect of the preceding three OCL statements would be the fol-
lowing sequence of OCL statements entered into the system:

// LOAD PAYROLL

Merged into the job stream f// FILE LABEL-WEEKLY,...
in place of the INCLUDE | // FILE...

statement

LOAD Statement

Function

Placement

Format

Contents

Example

// RUN

The LOAD statement identi)‘ieg the program to be exécuted.

The LOAKD statement must be the first statement in a set of statements for a program.
// LOAD program-name

Program-name: The program-name parameter is the name of the program to be loaded.

In the following sample LOAD statement, $COPY is the symbolic parameter that identifies the
Disk Copy/Display Utility Program:

/I LOAD $COPY

OCL Statement Descriptions 27

LOG Statement

Function

Placement

Format

Contents

Example

28

The LOG statement tells the system where to display messages and OCL statements and whether
to skip to line 1 of the next page at end of job.

Note: The LOG statement can be used to tell the system to display OCL statements and messages
on the printer as well as on the display screen. IPL assigns only the display screen for displaying
messages and OCL statements.
The LOG statement can be used anywhere within the set of OCL statements for a program.
// LOG CRT L,EJECT
or or
PRINTER ,NOEJECT
Parameter Meaning
CRT Use only the display screen.
PRINTER Use the printer and the display screen.

EJECT Skip to line 1 of the next page at end of job. EJECT is assumed if neither EJECT
nor NOEJECT is specified.

NOEJECT Do not skip to line 1 of the next page at end of job.

The following example specifies that messages and OCL statements are to be displayed on both
the display screen and the printer, and that EJECT is assumed:

// LOG PRINTER

MEMBER Statement

Function

Placement

Format

Contents

The MEMBER statement allows the user to identify the message load member from which messages
are to come.

There are four types of message load members: PROGRAM1, PROGRAM2, USER1, and USER2,
PROGRAM is used by IBM program products to assign names to associated message load members.
USER means that the messages are for user-generated programs and OCL statements.

Level 1 messages are 40 characters in length and do not give the detail found in level 2 messages
which can be 200 characters in length. A level 2 message can be displayed only after the level 1
message of the same MIC (message identification code) is issued. (See index entry: $SMGBLD
utility program for a description of creating a message load member.)

The MEMBER statement can be placed anywhere among OCL statements.
// MEMBER parameters
All the parameters are keyword parameters (keywords are in capital letters) as follows:

PROGRAM1-name The name of the load member used for IBM program product level 1
messages. Each IBM program product has its own set of names for related
message load members.

If 0 (zero) is specified for name, the system will not look for requested
PROGRAM1 messages but will display a message indicating that the
requested message was not found.

PROGRAM2-name The name of the load member used for IBM program product ievel 2
messages. Each IBM program product has its own set of names for related
message load members.

1f O (zero) is specified for name, the system will not look for requested
PROGRAM2 messages but will display a message indicating that the
requested message was not found.

USER1-name The name of the load member used for level 1 and OCL statement messages
for a program supplied by the user. ’

If O (zero) is specified for name, the system will not look for requested
USER1 messages but will display a message indicating that the requested
message was not found.

USER2-name The name of the load member used for level 2 messages for a program
supplied by the user.

1¥ 0 (zero) is specified for name, the system will not look for requested

USER2 messages but will display a message indicating that the requested
message was not found.

OCL Statement Descriptions 29

Examples

PAUSE Statement

Function

Placement
Format

Contents

RUN Statement

Function
Placement

Format

Contents

30

The MEMBER statement is in effect until the user enters another MEMBER statement or an IPL
is performed. At IPL, the member names are cleared.

After an included procedure is executed, the load member names are reset to the names used when

the INCLUDE statement was read. The following is an example of a MEMBER statement used with

an included procedure.
ProcedUre A

// MEMBER USER1-JOE
// INCLUDE B
/] * 6666

Procedure B

//. MEMBER USER1-SAM
/1 * 7777

// LOAD PAYROLL

// RUN

When the MEMBER statement is executed in procedure A, the message associated with MIC 6666
comes from the message load member named JOE. The message associated with MIC 7777 in

. procedure B comes from the message load member named SAM.

The PAUSE statement causes the SCP to suspend processing. It usually is used to give the opera-
tor time to insert a diskette. A message telling the operator which diskette to insert usually
precedes a PAUSE statement. '

When ready, the operator can restart the SCP by taking the 0 (zero) option to continue. The
SCP then continues reading the OCL statements that follow the PAUSE statement.

The PAUSE statement can be placed anywhere among the OCL statements.
// PAUSE

None

The RUN statement indicates the end of the OCL statements for a program. After the system

~ reads the RUN statement, it executes the program named in the LOAD statement.

A RUN statement is needed for each of the programs the system will run. {n the job stfeam, it
must be the last statement within the set of OCL statements for each job.

// RUN

None

SWITCH Statement

Function

Placement

Format

Contents

Example

The SWITCH statement sets one or more external indicators on or off. If a switch statement is
used to set an indicator on, the indicator remains on until:

@ Another SWITCH statement sets it off,
® A system IPL is performed (turns all indicators off), or
® A user program sets the indicator off.

Note: if an IBM SCP procedure sets a switch, at the end of the procedure the switch is restored
to its original setting.

The SWITCH statement can be placed anywhere among the OCL statements for a job. However,
only one SWITCH statement is allowed between a LOAD and a RUN statement.

// SWITCH indicator settings
Indicator settings: The indicator settings parameter consists of eight characters, one for each of

the eight external indicators (U1-U8). The first, or leftmost, character gives the setting of indicator
U1; the second character gives-the setting of U2; and so on.

The parameter must always contain eight characters. For each indicator, one of the following
characters must be used:

Character Meaning

0 Set the indicator off

1 Set:the indicator on

X Leave the indicator as it is

// SWITCH 1X0110XX

The example shown causes the following results:

Indicator Result
U1 Set on
U2 Unaffected
U3 Set off
U4 Set on
us | Set on
ué Set off
U7 Unaffected
us Unaffected

OCL Statement Descriptions 31

SYSLIST Statement

Function

Placement
Format

Contents

Example

Comment Statement

Function

Placement

Format

Contents

32

_The SYSLIST (system list) statement changes the method for listing output. Output can be listed

on the printer or on the display screen, or specified not to be listed at all.
The SYSLIST statement can be placed anywhere among OCL statements.
// SYSLIST parameter

The parameter can be:

Parameter Meaning

CRT Display output on the display screen.
Note: |f CRT is specified on a SYSLIST statement, the RO LL?Y without the
SHIFT key (roll up) must be pressed after each system list output record is
displayed to advance to the next record.

PRINTER Print output on the printer. (The printer is assigned during 1PL.)

OFF Do not list output.

The following is an example of assigning the printer for listing output:

// SYSLIST PRINTER

Comment statements are usually used to explain the purpose of the OCL statements and utility
control statements stored in a procedure. (See index entries: writing utility control statements
and procedures for a description of utility control statements and procedures.) Commentsin a
procedure are displayed when the procedure is displayed. Comments are not displayed when the
procedure is being executed.

Comment statements ¢an be placed anywhere among the OCL statements, except between |F and
ELSE expressions. {See index entry: parameters, statement for statement parameter rules of
the IF and ELSE expressions.)

* comment

Comment statements must contain an asterisk (*) in position 1. The text of the comment itself
can be any combination of words and characters except the question mark. Because the question
mark (?) has a special meaning in procedures (see index entry: procedure parameters) and certain
contro! statements, comments should not contain a question mark.

/* End of Data Statement
Function
Placement

Format

/] * Message Statement
Function

Placement

Format

Contents

Example

/¥ statements indicate the end of data files entered from the keyboard.
A /¥ statement must be the last record of an input data file.
/*

Note: An end of data statement is not recognized in a procedure.

The message statement provides a means of displaying messages to the operator from a proéédure‘
The message statement can be placed anywhere among OCL statements.

// ™ msg-id or ‘message’

The parameter can be in either of two forms:

msg-id This is the identification of a message in the USER1 message member specified on
the // MEMBER OCL statement (one to four numerics). (See index entry:
// MEMBER statement for a description of the USER1 message member.)

‘message’ A character string enclosed by single quotation marks is the actual message. Ary
character can be used in the character string except a single quote or a sirigle
question mark (?). (See index entry: substitution in procedures for the use of the
question mark in an OCL message statement.) The maxirnum number of characters
in the character string is 120 characters minus the OCL statement characters {//, *,
‘. and blanks) not included in the actual message. However, when the message is
displayed on the display screen, only the first 40 characters of the character string
are displayed. When the message is printed, all characters in the charactér string
are printed.

The message is always displayed to the operator when the statement is processed in the job stream.

in the following example, the message statement would very likely be followed by a PAUSE
statement to allow the operator to change the diskettes: '

// * 'INSERT THE PAYROLL MASTER DISKETTE’

OCL Statement Descriptions 33

34

Part 2

Procedures

“Procedures 35

36

Introduction to Procedures

A procedure is a set of related OCL statements and, possibly, utility control state-
ments (see index entry: writing utility control statements for a description of utility
control statements). A procedure is stored in the system library as a procedure mem-
ber. Each procedure, and thereby each procedure member, must have a unique name.
This name is the name by which a procedure is evoked.

One procedure can cause more than one job to be run. That is, a single procedure
may contain more than one LOAD statement and RUN statement (see index
entries: // LOAD statement and // RUN statement).

The ability to store sets of frequently used OCL statements and utility control state-

ments makes it possible to avoid recoding and rekeying the statements each time they
are required.

Introduction to Procedures 37

[l

Page of GC21-7593-3
Issued 22 November 1978

By TNL: GN21-7993 .
1BM SCP PROCEDURES

The following list of names ideniifies the procedures supplied with IBM System/32
system control programming to provide you with an easy method of using system

functions.
ALTERBSC CREATE LINES RESTORE
ALTERSDL DATE - LISTLIBR SAVE
APCHANGE DELETE LOG SET
BACKUP DISPLAY - ORGANIZE SETMICR
CATALOG FROMLIBR OVERRIDE SPECIFY
COMPRESS HISTORY REBUILD STATUS
CONDENSE INIT RELOAD SYSLIST
: CONVERT JOBSTR REMOVE TOLIBR
I COPYI1 RENAME TRANSFER
Notes:

1. The ALTERSDL and SPECIFY procedures are intended for data communi-
cation programming that uses SDLC (synchronous data link control). The
ALTERBSCand OVERRIDE procedures are intended for data communication -
programming that uses BSC (binary synchronous communications). Data
communication programming using SDLC and BSC is described in the /BM
System/32 Data Communications Reference Manual, GC21-7691.

2. The SETMICR procedure is used with the 1255 Magnetic Character Reader
attachment and is described in /BM System/32 1255 Magnetic Character
Reader Reference and Logic Manual, GC21-7692.

IBM also provides SCP service procedures to help you and IBM service personnel
solve system problems that may arise. The service procedures provided are:

APAR DUMP TRACE
BUILD PATCH

The service procedu‘res are described in Appendix D. Three other procedures,
APPLYPTF, CNFIGSCP, and INSTALL, are part of the installation steps des-
cribed in Part 5.

Some of the IBM SCP proéedures cail_ and use othér 1BM SCP procedures that you
cannot evoke directly. Though you cannot evoke these procedures directly, their
names may appear on listings you request.

You can create your own procedures to use in addition to those provided by IBM.
The information contained in this part of the manual, Part 2, will help you create
and evoke your own unique procedures as well as use those provided by IBM.

CREATING A PROCEDURE

A procedure can be created and stored in the library by keying statements from the
keyboard and using the SMAINT utility program (see index entry: $MAINT utility
program) or another program such as the Source Entry Utility (described in /BM
System/32 Utilities Program Product Reference Manual~Source Entry Utility,
SC21-7605). An existing set of OCL statements and utility control statements can
be read from a diskette to the disk by using one of the procedures or utilities
described in this manual. ' ‘

EVOKING A PROCEDURE
Procedures can be evoked in three ways:
® By keying an INCLUDE OCL statement (command statement)
® By using a command key

® By calling a procedure from another procedure

Keyboard Entry of the INCLUDE Statement

A procedure usually is cailed by a simplified form of the INCLUDE OCL statement
known as a command statement. Command statements are formed by deleting the
// and INCLUDE from the format of INCLUDE statements. That is, the general for-
mat of a command statement is:

Procedure name Parameter-1,Parameter-2,...Parameter-n

A command statement can begin in any position—a command statement does not
have to begin in position 1.

For example, keying
PAYROLL

and pressing the ENTER key is sufficient to call a procedure named PAYROLL, pro-
vided no parameters need to be passed to the procedure.

For a description of the other two formats permitted for an INCLUDE OCL state-
ment, see index entry: // INCLUDE statement.

Note: The // and INCLUDE cannot be omitted from the INCLUDE statement if you

want to evoke a procedure whose name is |F, IFT, IFF, ELSE, RETURN, or CANCEL,
or if the procedure name is the same as an OCL statement identifier.

Introduction to Procedures 39

Using a Command Key

The command key is another way of evoking a procedure. By pressing the CMD
key in response to READY and then an upper or fowercase assigned command key
{the command keys are the 12 keys in the top row of the typewriter keyboard).
You can request one procedure for each uppercase key and one procedure for each
lowercase key. Therefore, you can request 24 procedures using command keys,
(see Assigning Command Keys following). The procedure can then be evoked by
pressing the ENTER key.

Note: Command keys can be used to evoke OCL statements in the same way they
can be used to evoke procedures.

When you request a procedure by pressing a command key, the procedure name
(and any parameters previously specified for that procedure) is displayed on the
display screen. For example, if you are requesting a previously created PAYROLL
procedure and PAYROLL has no parameters specified for it, the procedure name
appears on the display screen as:

PAYROLL

The display screen cursor would be positioned at the second position after PAY-
ROLL. If no parameters are required, pressing the ENTER key evokes the PAY-
ROLL procedure. |f parameters are to be entered, you must key them before
pressing ENTER.

Assigning Command Keys

If you wish to request a procedure by pressing a command key rather than keying
in the command statement each time for commonly used procedures, you must
create a message source member, a level 2 message load member named ##MSG3;
use the CREATE procedure or the $MGBLD utility program to put the load
member into the library; and then perform an initial program load (IPL).

The message source member contains a message control statement and a message
text statement for the message load member ##MSG3. (See index entry: message
source member for a description of message control statements and message text
statements for assigning a command key to a procedure.)

Command Key Message Identification Codes

The message load member (##MSG3) must contain one or more of the following
twenty-four message identification codes (MICs). The MICs are shown with the data
characters on the corresponding command keys. ‘

MiC

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

Command Key
(Lowercase)

1

2

{minus)

MiIC

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

' Command Key

{Uppercase)

@
#

»

{
)

_ (underscore)

+

For example, if the command key message load member contains a MIC of 0010
and the COPY11 command statement as text, COPY11 is executed after the CMD key

and the 0 data key are pressed.

Introduction to Procedures

a1

42

Evoking a Procedure from Another Procedure

A procedure requested by a command statement (INCLUDE OCL statement) or a
command key can also request another procedure. For example, suppose a procedure
named PAYROLL contains, besides other OCL statements, a TAXES command state- .
ment, and the procedure named TAXES contains a DEDUCT command statement.
Both the TAXES procedure and the DEDUCT procedure are called and executed
when the operator enters the PAYROLL command statement.

PAYROLL calis

PAYROLL TAXES DEDUCT
Procedure Procedure Procedure
/...
/...
TAXES calls//...

/...

/l...

DEDUCT calls //...

/...

A procedure evoked by another procedure is called a nested procedure. In the pre-
ceding example TAXES and DEDUCT are nested procedures.

A nested procedure normally returns to the procedure that called it. That is:

PAYROLL calls

PAYROLL TAXES DEDUCT
Procedure Procedure Procedure
/...
/...
TAXES calls // ...

/...

/...

DEDUCT calls // ...

/...

N —_——em

/...
Wi ——
/...

The preceding example contains three levels of procedures: the first level contains
PAYROLL, the second contains TAXES, and the third contains DEDUCT. One
level can contain more than one command statement, but a maximum of 16 levels of
procedures is allowed in one job stream.

Procedure Execution
When a procedure name is recognized by the SCP the following action occurs:

1. The procedure member corresponding to the procedure name is found in the
library. ‘

2. The OCL statements, utility control statements, and/or nested procedures are
read, one statement at a time, by the SCP. Parameters are substituted for sub-
stitution variables (see index entry: modifying a procedure job stream), \F and
ELSE expressions are processed (see index entry: modifying a procedure job
stream), and the resultant OCL and utility control statements from the original
procedure and any nested procedures are executed as a normal job stream.

PROCEDURE PARAMETERS

Some procedures require parameters when the procedures are requested, other pro-
cedures do not. A maximum of 10 parameters can be passed when evoking a pro-
cedure. Most parameters passed to procedures are positional parameters. A posi-
tional parameter is a parameter that, whenever it appears in a statement, must appear
in the same position in relation to other parameters in the statement. If a valid
positional parameter is omitted from a statement requesting a procedure but a
following parameter is used, a comma must indicate the position reserved for the
omitted parameter.

For example:
// INCLUDE PROCEDUR FILEA, NO

FILEA is the first parameter, the second parameter is omitted, and NO is the third
parameter. A fourth parameter, XYZ, is omitted, but is not indicated by a comma
because it was the last parameter.

Some parameters have defaults. A default is a parameter that is substituted for an
omitted parameter. You can write defaults in your procedures (see index entry:
modifying a procedure job stream). Defaults are underlined when shown in com-
mand statement formats in this manual.

The comma, single quote ('), question mark (?), slash (/), and hyphen {-) have
special meanings in procedures and in OCL and utility control statements (see index
entry: writing utility control statements for information on utility control state-
ments) and should not be used in parameters for a procedure. The ?, /,’and - should
not be used in any control statement unless the format of the statement given in
this manual indicates that one or more of the symbols is required. (For example,
OCL and utility control statements begin with //; a hyphen is required to separate
keywords and values in keyword parameters.)

Note: If sequence numbers are used on procedure statements, the sequence numbers

are considered comments and the rules for coding comments apply. (See index entry:
comments, rules for using.)

Introduction to Procedures

44

Modifying a Procedure Job Stream

Within a procedure member, special kinds of expressions can modify the job stream
generated when the procedure is invoked. The two types, called substitution
expressions and conditional expressions, can be used to substitute values in the

~ generated job stream and to conditionally generate OCL and utility control

statements. Following are detailed descriptions of substitution and conditional
expressions and exampies of how they are used.

Substitution Expressions

Substitution expressions within a procedure allow the programmer to substitute
information in the statements generated when the procedure is run. Substituted
values can be:

® Passed to the procedure as positional parameters on the command statement
that invoked the procedure

® Supplied by the operator in response to prompts issued from within the
procedure :

Following are descriptions of each of the substitution expression formats that can
be used in a procedure member.

Note: In the following forms of substitution, the n can be any number between
01 and 11 (the leading zeros can be dropped). The first 10 parameters on the
statement that evokes the procedure are positional. Only 10 parameters can be
passed; the eleventh must be supphed by default (for example, ?11,Fl| LEIN'7) or
prompting (for example, ?11R?).

Substitution
Format Meaning
m? Substitutes the value of the nth positional parameter. If the nth

parameter is not defined, no value is substituted. For example, a
procedure member contains the following statement:

// * "23? WAS DELETED’

If the third parameter is not defined (that is, it was not specified on
the command statement and was not assigned a value by a previous
statement within this procedure), the following statement is
generated:

I/l **WAS DELETED’

If the value of the third parameter is FILEX the following statement
is generated:

// * ‘FILEX WAS DELETED’

Substitution
Format

n'default’?

nT'default’?

Page of GC21-7593-3

Issued 22 November 1978

By TNL: GN21-7993

Meaning

th h

Substitues the value of the n"'' positional parameter; or, if the nt
parameter is not defined, permanently assigns a default value to the
parameter, and then substitues the value. ‘default’ specifies the
permanent default value. If the default value is assigned, subsequent
references to the nth parameter within the procedure member use
that same default value. For example, a procedure member contains
the following statement:

// FILE NAME-?2FILEIN"?

If the second parameter was not defined, the following statement is
generated:

// FILE NAME-FILEIN

Subsequent references to the second parameter use FILEIN. For
example, if the next or succeeding statement is:

// FILE NAME-X,LABEL-?2?

the following statement is generated:

/I FILE NAME-X,LABEL-FILEIN

Substitutes the value of the nth positional parameter; or, if the nth

parameter is not defined, temporarily assigns a default value to the
parameter, and then substitues that value. This expression format

is the same as ?n’‘default’? except T means temporary and ‘default’
specifies the temporary default value. A temporary default value is
used only for the current substitution expression. For subsequent
references to the nth parameter within the procedure, the parametér
is undefined. For example, a procedure member contains the
following statement: ‘

{/ FILE NAME-22T'WEEKLY"?

If the second parameter was not defined, the following statement is
generated:

// FILE NAME-WEEKLY

Introduction to Procedures

45

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

a6

‘Substitution
Format

nR‘msg-id"?

nR?

Meaning

th h

Substitutes the value of the n*'' positional parameter; or, if the nt
parameter is not defined, displayes a message from the USER1
message member and waits for the operator to enter from the key-
lboard the value to be substituted. Subsequent references to the. nth
parameter within the procedure member use the value entered by the
operator. R indicates that an operator’s reply is required if the
parameter is not defined. Msg-id identifies the MID of the message to
be displayed if the nth parameter is not defined. For example, a
procedure member contains the following statement:

// FILE NAME-?2R’'6666"?

If the second parameter is not defined, the following message
(message 6666 from the USER1 message member) is displayed:

ENTER NAME OF THE REQUIRED INPUT FILE

The operator then enters the word PAYROLL from the keyboard,
and the following statement is generated:

// FILE NAME-PAYROLL

Subsequent references to the second parameter use PAYROLL.

th h

Substitues the value of the n"'' positional parameter; or, if the nt
parameter is not defined, displayes a system message (ENTER
MISSING PARAMETER) and waits for the operator to enter the
value to be substituted. Subsequent references to the nth parameter
within the procedure member use the value entered by the operator.
R indicates that an operator’s reply is required if the parameter is
not defined. For example, a procedure member contains the
following statement:

PAYROLL WEEKLY,?1R?

If the first parameter is not defined, ENTER MISSING PARAMETER
is displayed. The operator then enters the word SALARY from the
keyboard, and the following statement is generated:

PAYROLL WEEKLY SALARY

Note: Within the procedure member named PAYROLL, references
to the second positional parameter use the word SALARY.

Page of GC21-7693-3
issued 22 November 1978
By TNL: GN21-7993

Substitution
Format Meaning
?R? Displays a system message (ENTER REQUIRED PARAMETER),

and waits for the operator to enter the value to be substituted from
the keyboard. R indicates that an operator reply is required. For
example, a procedure member contains the following statement:

// FILE NAME-?R?
When the statement is being generated, ENTER REQUIRED
PARAMETER is displayed. The operator then enters the word
INFILE, and the following statement is generated:

// FILE NAME-INFILE

Introduction to Procedures 48,1

This page intentionally left blank

Substitution
Format Meaning

?R? Displays a system message (ENTER REQUIRED PARAMETER),
and waits for the operator to enter the value to be substituted from
the keyboard. R indicates that an operator reply is required. For
example, a procedure member contains the following statement:

// FILE NAME-?R?

When the statement is being generated, ENTER REQUIRED
PARAMETER is displayed. The operator then enters the word
INFILE, and the following statement is generated:

// FILE NAME-INFILE

Conditional Expressions: |F and ELSE
Conditional expressions are used among OCL statements to modify procedures. There
are two types of conditional expressions: |F expressions and ELSE expressions.
IF Expression
The IF expression can only be used in a procedure {(can be anywhere in the procedure).
The IF expression tests to find out whether a condition is as specified (true or false);
if it is as specified, the statement parameter is executed; if not, the SCP goes to the
next statement in the procedure.
There are three formats of the IF expression:
// |F Condition-parameter Statement-parameter
// IFT Condition-parameter Statement-parameter

/! IFF Condition-parameter Statement-parameter

IF or IFT means that if the condition is true, the statement is to be executed. IFF
means that if the condition is false, the statement is to be executed.

Introduction to Procedures 47

48

Condition Parameter: There are two types of condition parameters: existence testing and

comparison.

The existence testing parameter is a keyword parameter. The keywords and mean-

ings are:

Keyword

BLOCKS-value

DATAI1-‘name,date’
or DATAIl1-name

DATAF 1-'name,date’

or DATAF1-name

SOURCE-name

LOAD-name

PROC-name

SUBR-name

SWITCH1-0

SWITCH1-1

Meaning

Is the available disk file space equal to or greater
than the value specified?

Is there a file on the diskette with the name and creation
date (optional) as specified?

Is there a file on the disk with the name and creation date
(optional) as specified?

Is there a source member of the specified name in the
library? ‘

Is there a load member of the specified name in the
library?

Is there a procedure member of the specified name in the
library?

Is there a subroutine member of the specified name in the
library?

Is SWITCH1 a O (off)?

Is SWITCH1 a 1 (on)?

{(SWITCH2 through SWITCHS8 can also be tested)

The comparison parameter format and meaning is:

Format

parameter1/parameter2

Meaning

Is parameter 1 equal to parameter2? (Each param-
eter has a maximum length of eight characters.)

Statement Parameter: The statement parameter of the IF expression can be an OCL state-
ment, (except the comment statement or end-of-data statement) a utility control
statement, another |IF statement, or a part of an OCL or utility control statement
(continuation). Drop the initial // of OCL and utility control statements used as

statement parameters.

Also allowed in the statement parameter of the |F expression are the keywords
CANCEL and RETURN. The meaning of these two keywords are:

CANCEL Cancel the job and return to the keyboard for the next OCL
statement.

RETURN Encountered in a first level procedure causes an immediate return
to the keyboard for the next OCL statement. Encountered in a
nested procedure causes an immediate return to the calling
procedure for the next OCL statement.

The following example shows two levels of procedures, PAYROLL (first level) and
TAXES (second level). The TAXES procedure represents a nested procedure that
contains the keyword RETURN in a conditional expression.

In this example, the keyboard entry is PAYROLL. PAYROLL contains an optional
parameter ALLTAX which is not specified so that the conditional expression is
executed and the keyword RETURN is encountered. RETURN encountered in a
nested procedure causes a return to the calling procedure (PAYROLL). The remain-
ing OCL statements in the TAXES procedure are not executed. The example:

Keyboard PAYROLL TAXES
Entry {first level) {second level)
PAYROLL —// ...
/...
TAXES 21?2/ ...
/...

// TFF ?21?2/ALLTAX RETURN
nN...

/. " ...

...

Introduction to Procedures 49

50

If the ALLTAX parameter was specified in the keyboard entry, the RETURN key-
word in the conditional expression would not be encountered, all OCL statements
in the TAXES procedure would be executed, and then processing returns to the
PAYROLL procedure. For example:

Keyboard PAYROLL TAXES
Entry (first level) {second level)

PAYROLL [ALLTAX]—// ...

/nN...

TAXES —— // . ..
/...
/! II;F ?21?/ALLTAX RETURN
/...

/" ~—//

- ..

Examples of the |F Expression: Following are some examples of the IF expression.
@ Existence testing

// \FF DATAF1-21? CREATEF1

This expression checks to see if the file label substituted for parameter 1 is on the
disk. If it is not, the condition is satisfied and the CREATEF1 procedure is evoked.
If the file is on the disk, the condition is not satisfied and the next statement or
expression in the procedure is read; CREATEF 1 is not executed.

® Comparison
// IF 21?/PAYROLL PAYROLL "

This expression says that if the first parameter'on'the'statement that evokes the
procedure is PAYROLL, then evoke the procedure named PAY ROLL,; otherwise,
go to the next statement or expression in the procedure An expression equiva-
lent to the preceding comparlson example is: :

/Il IF PAYROLL/?1? PAYROLL L

® There can be more than one IF ¢ expressmn on a line. A Ime isa maximum of 120
characters. : :

// IF PROC-PAYROLL1 IF SWITCH3-1 PAYROLL -

This expression says that if the procedure member PAYROLL1 is in the pro-
cedure library, and if UPSI (user program status indicator) switch 3 is on (1),
then the procedure PAYROLL is evoked. If the procedure PAYRQOLL1 is not
in the procedure library, or if the UPSI switch is not on, the expression is
ignored and the procedure PAYROLL is not evoked. -

ELSE Expression

The ELSE expression requires the IF express:on and the following restrictions
apply:

® The ELSE expression must immediately follow the IF expression. The ELSE
expression is ignored if it does not immediately follow an IF expression.

® Comments cannot be entered between the IF expression and the ELSE expres-
sion. The ELSE expressmn is ignored if comments are entered between the IF
expression and the ELSE expression.

For example:
/\/ %F 7071/ RETURN
JELSE! DELETE P17

The example tests whether the first pai'.ameter in the statement that evoked the pro-
cedure is a null entry. A null entry is an entry that contains no value. In the statement

NAME PARM1, PARM3

the second parameter is a null entry.

Introduction to Procedures

The |F and ELSE statements in the preceding sample say: if the first parameter

in the statement that evoked the procedure is a null entry, RETURN to the previous
procedure if this is a nested procedure or to the keyboard if this procedure is not
nested; if the first parameter in the statement is not a null entry, evoke the DELETE
procedure to delete the file specified by the first parameter.

The ELSE expression can be used with all forms of the IF expression (IF, IFT, and
IFF).

There can be only one ELSE expression per line and it must be the first expression
in that line. An IF expression can follow an ELSE expression in a conditional
statement. For example:

/| I 1L
il

S
Z
S 2[217l/NEAREND PIAYRIOILLL [YIEAREND!
LSIE! PAVIROL EKILY L

In this example, if parameter 1 was passed by the statement that evoked the pro-
cedure, the file specified by the parameter would be deleted by the DELETE
procedure. If the second parameter is a blank, the PAYROLL procedure is not
evoked. If the second parameter is YEAREND, YEAREND is passed to PAY-
ROLL and the PAYROLL procedure is run. If the second parameter is neither

a blank nor YEAREND, the parameter WEEKLY is passed to PAYROLL and
PAYROLL is run. '

PIAYRIOIL
E

I

—

= |fTI['

]

RSN
[l Do i
= —

Al oo
> TINImN
]

I~

EXAMPLE OF PROCEDURE CODING
FILEBKUP Procedure
Note: This is an example of a user coded procedure not provided with the SCP.

The FILEBKUP procedure copies a file from the disk onto a diskette. The following
is the command statement format:

FILEBKUP filename-1 vol-id |/11ename-2
] Jfilename-1

This procedure demonstrates conditional operator prompting for required parameters,
and conditional building of a file statement LABEL parameter.

The prompting text is stored in the procedure rather than in a user library member.

OCNOOAR WN -

FILEBKUP Parameters

Filename-1 This is a required parameter. It is the name of the disk file to be
. copied.

Vol-id This is a required parameter. It is the volume identification of the
diskette.

Filename-2 This is an optional parameter. If entered, it becomes the name of
' the file on the diskette. If omitted, the disk and diskette file names
are the same.

If either or both of the required parameters (filename-1 and vol-id)
were entered with the command, the procedure assumes that
filename-2 was intentionally omitted; the procedure defaults to
filename-1.

If no parameters were entered with the command, the procedure
assumes that the optional filename-2 parameter may be desired; the
procedure prompts for filename-2.

The statements for the FILEBKUP procedure example are shown here with each
statement numbered for reference to the corresponding explanation:

/| ¥ |' FIXILEBKUP! [X9] EX ' |
/\/1 T 11020/0 TF] 21212071 [TF] (2130217 B ' ENTER [YE!S| [Tjo] [NLTEER! [DEISIK FITILE EL'
/L ITR IR TFL 17121211 [T 232/ |'IPRESIS| ENTIER [FIOR SAME AS DISKE_ E LIABEL"
A/ TE P/ TR 22/ @F 2R I 2ALR?2/YES 'ENTER! DISKETTE FIILE UABEL!'
/\/! TF RIUL?/YES| TIF ?RR?/ ¥ 'PIARAMETER B loMITTED-PROC [CANCELED!"

/ %ﬁ ?[44?//VES [TF 7317/ ICANCE[L
/\/| TF| P42 'ENTER [VH [SKI|' FTILE [LABEL!

/I/1 [TF[[7[AR[?//] B¢ | PIRRAMETER! |1 OMITTEED-PROIC CAM:ELED‘

/| TTF Pel/ c&PrF 1

/I/| [LF| 2?2/ 'ENTER [THE DISKIETTE OLUME D'

/\/| [TF! 712R1?/| ¥ ' PIARAMETER! 2| [OMITTIED|-PROC| [CANCELED!"

//| [TF] 7217/ CA}NCEL 0

/l/| ILIGAD [$CiOP,

/|/ IFTILEE] INAME-ICOPNIN,, [UNBEIL- 717
FITLIE] INIAMEL-ICOPIYI0, UNIT —Il,PACK'7Z7,RET IN-9199

/\/| TF 7137/ LIABEL- 717}/ Ll

/\/| TIFF] 123121/ ILABEIL|-|71312 L

1/ RUN | T
COPNIFILE |ouTPNIT-DITISK L]

/| EIND L1 |

The following procedural comment informs the operator of the system activity:

1. [/l W TTFIUERKUP! TS EXECUTING'|

The statements 2 through 6 prompt the operator for filename-2 if all three parameters
were omitted. Statements 2 and 3 display the prompting text. Statement 4 halts
the machine after issuing the system message ENTER MISSING PARAMETER.
When parameter number 11 is coded as required, the machine stops for key entry.

introduction to Procedures

53

ooewN

//%l L2/ MF PRI/ TIF 73171/ ¥ [ENTER VIES] [TIo[ALTER] DISKETTE [FIT|LE '
/\/ 21?1/l TF 1?22/ [TIF 21371/ 'PREISIS] ENT FIORR| SAME DISK| [FITILE L
/\/ AL/ T 722/ TIFL 213121/ [TFL PURI/|YES Bk [* ENTER| DISKETTE [FIL '
/\/ ?W1?)/IYES| [TF! [?13R1?)/] B ' PARAMETIER! [3| [OMITTED-PROIC| [CANCELLED]"

/// ?[417l/NES] TF 731/l ICANCEN I | |

Parameter 11 cannot be passed in a command statement: 10 is the maximum
number of parameters allowed in a command statement. However, a procedure
can supply an eleventh parameter by default, or prompt the operator for the
eleventh parameter. The IF expression in statement 4 is equated to YES so that
prompting for filename-2 will occur if .the operator enters YES. If the operator
responds to statement 4 with YES, then statement 5 must have a name entered.

If statement 5 receives a null response from the operator, who presses only the
ENTER key, the message PARAMETER 3 OMITTED-PROCEDURE CANCELED .
is displayed and statement 6 cancels the procedure.

The statements, 7 through 12, prompt the operator for filename-1 and vol-id if they
were omitted when the command was entered. Statement 7 displays the prompt
ENTER THE DISK FILE NAME. Statement 8 or 11 issues the system message
ENTER MISSING PARAMETER below the prompt coded in statement 7 or 10,
respectively, and then halts the machine for operator key entry. Statement 9 or 12
executes the CANCEL function, similar to statement 6.

7. YVLITF 211/ b [MENTEER! [THE! IDTISK] [FTLE Lﬂﬂ L'

8. |/[/| TIF| AR/ ¥ |' PARAMETER| [1] OMITTEED}-PIROIC! [CANCELED!'
°0 [/ ?711]?1/| ICANCEL]

10. {/i/} TIF| 22i?l/ 'ENTER [THE! DISKIETITIE] VIOILIUME! |ID]*

1. |/|/] IOF] [?)2IR1?/| B¢ |* PARAMETER] [2/ IOMITTIED/-|PROC, ICANCELED]
12. |//| [T Rl2]?2)/] ICIANCEL 2D L

The next statements, 13 through 20, build the OCL for execution:

[

13. [/] {‘L:IOIAD BClopy] | | I
14. |/I/] [FITILE] NAME-/CIOPN TN, [LABEIL/-[?I1[?

If the operator omits filename-2, the disk file name is also used for the diskette file
name:

[
~2
N
-~

15. [/I/] FIILIE] NAME]-ICIOPIOL,JulNIT]- [T, PIACK-[?121?] RETATIN-598L,
16. |///1 TF] [21377/1 IUNBEILI-?a17] | \ TULLLT

S axi

S

If the operator enters filename-2, it becomes the diskette file name: -

17. [/ TR 237 ICABELL- 730
18. |/|/| RUN R

19. |///| [COPNIFIZILEl OUTPNITI-DISK
20. |///| END L] i

The COPYO file statement, statement 15, is incomplete; continuation is shown by
the comma following the RETAIN-999 parameter. Depending on the absence or
presence of filename-2, either parameter statement 16 or 17 selects the LABEL
parameter. '

IBM SCP Command Statements

Each IBM SCP procedure can be evoked by a command statement. Figure 4, is a
table showing the formats of the command statements that evoke the IBM SCP
procedures. (See Appendix D for the format of the command statements that
evoke the IBM service procedures.)

Figure 4 is meant for quick ref;rence. It shows the procedure name and parameters
(if any) in each command statement. For more information about each of the com-
mand statements shown and for a description of the procedures they evoke, see
IBM SCP Procedure Descriptions, following Figure 4.

Note: The following command statements are intended for data communications
programming using either BSC (binary synchronous communications) or SDLC
(synchronous data link control):

® ALTERBSC and OVERRIDE using BSC

® ALTERSDL and SPECIFY using SDLC

® MRJE using BSC

® BWSUR and BWSUD using SDLC

® DCPRINT using either BSC or SDLC output

Data communication programming that uses BSC or SDLC is described in /BM
System /32 Data Communications Reference Manual, GC21-7691.

e e 3] (e 1} e {1}] e {57}
e {1 o) e £

e e][5] e {3
[SLlNE- { }] [.TEST- {;}] [,TONEf {;}]

APCHANGE [blocks][,fnename [,CLEAR:]]

‘ Note: At least one parameter must be given in éach ALTERBSC, ALTERSDL, and
APCHANGE command statement.

. retention-days ,fi|éname
BACKUP volid, |] [L 1BR ARY]

BWSUD stuname,host

BWSUR sluname
Figure 4 (Part 1 of 5). IBM SCP Command Statement Formats

I1BM SCP Command Statements 55

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

56

ALL 1
CATALOG [filename] I:_FJ]

COMPRESS

CONDENSE
CONVERT

COPYI1 [ALL],vol-id,[DELETE],[PRESERVE] ["1‘“'""” of °°'°'es}
or e

mmddyy
COPYI1 filename, | ddmmyy ,voI-id,,[PRESERVE][

yymmdd

,number of copies
)

CREATE sourcename [, REPLACE]

mmddyy
DATE { ddmmyy
yymmdd

DCPRINT [filename]

F1 SCRATCH | [,mmddyy
DELETE filename, ["] REMOVE ddmmyy
- ERASE ,yymmdd

", mmddyy
DISPLAY filename ddmmyy
__,yymmdd '
or
Cmmddyy
DISPLAY filename, | ddmmyy | ,RECORD,value-1 [,value-2]
| yymmdd
» ADD
1:| retention-days| ,vol-id
SOURCE AR
PROC filename-1 I1/ =
FROMLIBR library-name, | LOAD ;l library-name],[ﬁ]
SUBR ST blocks
LIBRARY \}'[T]_ ['8]
\ — 1
\ S
\ .
\
[,ADD]
or -
[ADD ,
SOURCE '/: retention-days | ,vol-id
FROMLIBR { A"‘_“'[“e'A""}, LOAD l :'-'ename'z} [—'—1 |
y ' SuBR | LDame Al
LIBRARY. v P | [blocks
_ \ Tll.8
\Ls
\
\
[,ADD]

Figure 4 (Part 2 of 5). IBM SCP Command Statement Formats ‘

ALL
VIEWED

HISTORY [
NOLIST

|

INIT [vol-ld
system-date

]

JOBSTR % fller:ame; , [procedurename, [M

[

numbe
LINES [QQ

' 500

]

JPROC
,LOAD
,SUBR

LISTLIBR DIR

or

LISTLIBR DIR,SYSTEM

or

name ALL
ALL

d

filename i
for TDISKPR1 |

LISTLIBR {

CRT
LOG [PRINTE

MRJE [

ORGANIZE filename-1,
or-

ORGANIZE filename-1, |

number of records

library-name

JEJECT
" ,NOEJEC

LRESET
‘NORESET
,RENAME
" owner-id ,DELETE
_w] ,FORMAT
FORMAT2

)
|

SOURCE

LIBRARY

}

]

number of blecks
for PDISKPU1

umber of blocks

umber of blocks n
" | for PDISKPR1

n
' [for TDISKPR1

] I]

“mmddyy I

ddmmyy | ,F1 filename-2, | S | [,position,character]

| yymmdd P

Cmmddyy] tention-d

ddmmyy] . [11] ,vol-id, [:e entio ays] [,position,character]
_yymmdq —

Figure 4 (Part 3 of 5). 1BM SCP Command Statement Formats

IBM SCP Command Statements 57

58

Page of GC21-7693-3
Issued 22 November 1978
By TNL: GN21-7993

c
P | AA
OVERRIDE [ADDR-in] | LINE-< R SWTYP- ¢ MA
s MC
T

Note: At least one parameter must be given in each OVERRIDE command statement.

REBUILD
‘ ‘ mmddyy X
,filename
RELOAD [vol-id] ddmmyy [#UBRARY]
yymmdd —
library-name
REMOVE name, ALL
ALL
RENAME filename-1,filename-2 | ,ddmmyy
. Yymmdd
: i mmddyy
RESTORE [ALL], [fg'ggx;ge J ddmmyy
J ,yymmdd
or » -
mmddyy
. RECORDS,value-1
RESTORE f . ' .
. ilename-2, | ddmmyy [BLOCKS,value-Z]
yymmdd '

SAVE [ALL], [lftention-davs] [file:\:;ge-ﬂ vol-id

retention-days mmddyy
SAVE filename-2, | 1 ddmmyy | ,vol-id
ADD yymmdd

MDY ;,mmddyy
SET [value], [source-name], | DMY ,ddmmyy
YMD ,Yyymmdd

Note: At least one parameter must be given in each SET command statement.

SETMICR CYCLE- [;J

Note: The SETMICR command statement is used with the 1255 Magnetic Character
Reader attachment and is described in /BM System/32 1255 Magnetic Character
Reader Reference and Logic Manual, GC21-7692.

Figure 4 {Part 4 of 5). IBM SCP Command Statement Formats

Page of GC21-7593-3
issued 25 November 1977
By TNL: GN21-7939

C
. P AA
SPECIFY [ADDR-nn] ,LINE- s SWTYP- < MA [,ID-nnnnn]
T MC

Note: At least one parameter must be given in each SPECIFY command statement.

STATUS
PRINTER
SYSLIST | CRT
OFF
mmddyy
TOLIBR filename, [Ll] , | ddmmyy | [,REPLACE]
yymmdd
mmddyy ,-
TRANSFER filename-1, [11], | ddmmyy | ,ADD, filename-2 1\ 1o te]
filename-1
yymmdd

or

mmddyy

_ value-1,va|ue-2] ,RECORDS,value-3
TRANSFER filename-1, [11], | ddmmyy ,[__NOADDI'[[,BLOCKS,valueA :I
yymmdd

or

mmddyy retention-days
TRANSFER filename-1,F1, | ddmmyy | ,vol-id [’1 v]
yymmdd

Figure 4 (Part 5 of 5). IBM SCP Command Statement Formats

IBM SCP Command Statements 59

60

This page intentionally left blank.

IBM SCP Procedure Descriptions

This section describes all IBM SCP procedures supplied with 1BM System/32 SCP to
provide you with an easy method of using system functions. This section does not
include the service procedures. The service procedures are described in Part 5 and in
Appendix D.

The following information is given for each 1BM SCP procedure:

® The function of the procedure
® The format of the command statement that evokes the procedure

® A description of the parameters of the command statement used to evoke the
procedure

Examples are given for many of the command statements.

In the descriptions of command statement formats and parameters, capitalized words
and letters, numbers, special characters, brackets, and braces have special meanings.
Capitalized expressions must be entered as they appear in the descriptions. Some-
times numbers or nonalphabetic characters may appear in a capitalized expression—
such numbers and characters must also be entered as they are shown. Words and
expressions that are not capitalized must be replaced with a value that is appropriate
to your job. The values you can use are listed in the parameter descriptions.

Brackets ([]) shown in command statement formats and parameters are not part of
the parameters. Brackets can have two meanings: they can indicate that you can
omit the parameter enclosed in brackets, and they can mean that if you use an expres-
sion enclosed in brackets, you must choose one of the values shown. For example,

mmddyy

ddmmyy

yymmdd
means that you need not give a date (the date parameter is optional), but if you
choose to give a date, it must be in one of the three formats shown: mmddyy,
ddmmyy, or yymmdd. '

Underlining identifies default values. A default value is a value that is automatically

substituted for an optional parameter that is omitted. For example, | |11 | means that

if neither 11 nor F1 is specified, F1 is used. F1

Braces ({ }) indicate that you must choose one of the values enclosed by the braces.

For example, in the expression [PARM-}A}] , the braces indicate that if you choose
|8

to enter the parameter, you must specify either A or B.

Note: In the preceding table (Figure 4) and in the descriptions that follow, the
command statement formats often indicate that commas are required to separate
parameters that are optional, whether the optional parameters are entered or not.
Commas outside the brackets indicate positional parameters. The commas are
shown in this manner to remind you that if a positional parameter is omitted, a
comma must be entered in its place when another parameter is entered in a posi-
tion that follows the position reserved for the omitted parameter.
IBM SCP Procedure Descriptions

61

ALTERBSC PROCEDURE

The ALTERBSC procedure alters the following BSC (binary synchronous communi-
cations) items:

item Parameter
Bits per second (bps) rate BRATE
Modem clocking CLOCK
Debug facility DEBUG
Error retry count ERC
Standby line SLINE
Modem test TEST
Non-USA TONE

Additional BSC items that can be altered are included in the OVERRIDE procedure.
(See index entry: OVERRIDE procedure.) To identify the current values in these
parameters, use the STATUS procedure. (See index entry: STATUS procedure.)

The ALTERBSC procedure evokes the $SETCF utility (see index entry: $SETCF
utility program).

Note: The ALTERBSC procedure is intended only for data communications pro-
gramming that uses BSC. For background information on binary synchronous
communications, see General Information—Binary Synchronous Communications,
GA27-3004. For information on data communications programming, see /BM
System/32 Data Communications Programming Reference Manual, GC21-7691.

ALTERBSC Command Statement Format

e [{1 s 1} e (1] o 5]
e {11 o 1] o £

Note: Though each individual parameter is optional, at least one parameter must be
specified. If a parameter is omitted and there is no default, the previous value is re-
tained. If DEBUG-Y is specified, the system TRACE procedure (see index entry:
TRACE procedure) is replaced by the BSC trace function. These options will remain
in effect until changed by another ALTERBSC command statement, except the pa-
rameter DEBUG-Y, which is reset by IPL or by the TRACE procedure.

ALTERBSC Parameters

Parameter Meaning
BRATE-F Use the full rated speed of the modem.
H Use only half the rated speed of the modem.
CLOCK-Y The System/32 must provide the programmed clocking facility.

N Modem has the clocking facility.

ALTERBSC Parameters (continued)

Parameter

DEBUG-Y
N

ERC-number
A

SLINE-Y

TEST-Y

TONE-Y

Notes:

Meaning

Built-in debug facility is required, BSC trace requested.
Built-in debug facility is not required, BSC trace not requested.

Error retry count. The standard number of retries provided is
seven (the default number); if more than seven are desired, enter
a number up to 255. Valid numbers are 7 through 255.

Switched standby line is used for a point-to-point line.
The nonswitched line is used.

IBM modem is being used. Automatic wrap test includes modem
testing when a permanent error occurs unless the user program

specified a permanent error indicator for the BSC file.

Non-IBM modem is being used. Automatic wrap test does not
include modem testing.

Non-USA special tone is required for manual answering and auto-
matic answering.

Non-USA special tone is not required for manual answering and
automatic answering.

1. If the SLINE-Y parameter is specified, then the line type (LINE) in the OVER-
RIDE procedure automatically defaults to a point-to-point switched line

{LINE-S).

2. If the SLINE-N parameter is specified, then the line type (LINE) in the OVER-
RIDE procedure automatically defaults to the line type specified in the user program
source statements (LINE-R).

ALTERSDL PROCEDURE

The ALTERSDL procedure alters the following SDLC (synchronous data link con-
trol) items in the system configuration record.

Item Parameter
Bits per second (bps) rate BRATE
Modem clocking CLOCK
Debug facility DEBUG
Standby line SLINE
Modem test TEST
Non-USA TONE

Additional SDLC items that can be altered are included in the SPECIFY procedure.

(See index entry:

SPECIFY procedure). To identify the current values in these

parameters, use the STATUS procedure. (See index entry: STATUS procedure).

IBM SCP Procedure Descriptions—ALTERSDL

63

The ALTERSDL. procedure evokes the $SETCF utility (see index entry: $SETCF
utility program). .

Note: The ALTERSDL procedure is intended only for data communications pro-
gramming that uses the SDLC. For background information on synchronous data
link control, see IBM Synchronous Data Link Control General Information,
GA27-3093. For information on data communication programming, see /BM
System /32 Data Communication Reference Manual, GC21-7691.

ALTERSDL Command Statement Format

e [oure.{11] v {3 forms (3]
e {1} {3}]Frove)]

Note: Though each individual parameter is optional, at least one parameter must be
specified. If a parameter is omitted, the previous value is retained. If DEBUG-Y is
specified, the system TRACE procedure (see index entry: TRACE procedure) is
replaced by the SDLC trace function. These options will remain in effect until
changed by another ALTERSDL command statement, except the parameter
DEBUG-Y, which is reset by IPL or by the TRACE procedure.

ALTERSDL Parameters

Parameter Meaning
BRATE-F Use the full rated speed of the modem.

H Use only half the rated speed of the modem.
CLOCK-Y The System/32 must provide the programmed clocking facility.

N Modem has the clocking facility.
DEBUG-Y Built-in debug facility is required, SDLC trace requested.

N Built-in debug facility is not required, SDLC trace not requested.
SLINE-Y Switched standby line is used for a point-to-point line.

N The nonswitched line is used.
TEST-Y IBM modem is being used. Automatic wrap test includes modem
testing when a permanent error occurs.
N Non-1BM modem is being used. Automatic wrap test does not

include modem testing.

TONE-Y Non-USA special tone is required for manual answering and auto-
matic answering.
N Non-USA special tone is not required for manual answering and

automatic answering.

Notes:

1. If the SLINE-Y parameter is specified, then the line type (LINE) in the SPECIFY
procedure automatically defaults to a point-to-point switched line (LINE-S).

2. If the SLINE-N parameter is specified, then the line type (LINE) in the SPECIFY
procedure automatically defaults to a point-to-point nonswitched line (LINE-P).

APCHANGE PROCEDURE

The APCHANGE procedure reorganizes the library and data file area on disk in
order to create usable space for adding library members from a diskette file. 1t also
determines whether or not adequate data file space is available for use by the
application program. .

The functions of the APCHANGE procedure are:

® Reorganize the disk data file area by collecting unused space on the disk and
making this space available at the end of the disk data file area.

® Determine whether the disk data file space is adequate for use by the application
program.

® Delete non-SCP members and reorganize the library by collecting unused space
between library members and making this space available at the end of the last
active library member sector.

® Copy library members from a diskette file into the library.

The APCHANGE procedure evokes the $PACK utility to reorganize the disk and
the SMAINT utility to delete library members, reorganize the library, and copy the
library members from a diskette file into the library.. (See index entries: $PACK
utility program and SMAINT utility program.)

The APCHANGE procedure is especially useful when a System/32 is in a system
sharing environment. See Appendix H, System Sharing, for a description of system
sharing.

APCHANGE Command Statement Format
APCHANGE [blocks:l [,fnename[,cn_EAR]J

Note: At least one parameter must be specified on the APCHANGE command.

APCHANGE Parameters

blocks Number of blocks of disk data file space that must be available for
use by an application’s data files. Data file space is reorganized
first and then tested for availability.

Note: When this parameter is specified, files are moved from
current locations to new locations. If the LOCATION parameter
on a FILE statement is specified for a file that has been moved
by the APCHANGE procedure, that location is no longer valid
because the file location has changed. To determine the new
location of the file, use the CATALOG procedure; this shows the
file location in the VTOC entry. Forinformation on the
LOCATION parameter and the CATALOG procadure see mdex
entries: FILE statement and CATALOG procedure

IBM SCP Procedure Descriptions— APCHANGE

66

filename Name of the diskette file that contains the library members to be
copied into the reorganized library.

CLEAR Specifies'that all non-SCP library members are to be deleted from
the library and the library is to be reorganized. When the CLEAR
parameter is specified, the filename parameter must also be
specified.

APCHANGE Examples

The following example reorganizes the disk, determines whether 200 disk blocks of
data file space are available, reorganizes the library, and copies the library members
that are contained in the diskette file, APPFILE, into the library:

APCHANGE 200,APPFILE
The following example reorganizes the disk, determines whether 125 disk blocks of
data file space are available, deletes all non-SCP library members, reorganizes the

library, and copies the library members that are contained in the diskette file,
FORTAPP, into the library:

APCHANGE 125,FORTAPP,CLEAR

BACKUP PROCEDURE

BACKUP creates a diskette file that contains:

1. A stand-alone program that can change the directory and library size (for more
information about changing directory and library size, see index entry:
RELOAD procedure).

2. The reorganized library contents—unused space between members is collected
at the end of the library.

To return the reorganized library to the disk, an IPL must be performed from the

- diskette(s) containing the backed up library, or the RELOAD procedure must be
used (see index entry: RELOAD procedure). The vol-id of the first diskette con-
taining the library becomes the vol-id of the disk file during the RELOAD operation.

The BACKUP procedure evokes the $BACK utility (see index entry: SBACK utility

. program).

Note: To determine the number of diskettes required to contain the library, see
index entry: calculating the number of backup diskettes required for the system.

BACKUP Command Statement Format

BACKUP vol-id, I:

BACKUP Parameters

vol-id

~ retention-days
1

iy

filename

#LIBRARY

retention-days filename
1 ALIBRARY

Volume identification of the diskette(s). One to six alphameric
(alphabetic or numeric) characters. ' '

Note: When several diskettes are required for the BACKUP

" procedure and each diskette has a unique volume identification,
the volume identification of the first diskette is the vol-id param-
eter you must specify for the BACKUP procedure. The vol-id
parameter from the BACKUP procedure is used as the PACK
parameter in the // FILE OCL statement for the backup library
utility program ($BACK). When this program compares the
PACK parameter with the volume identification of the second
and succeeding diskettes, there is an error message (1493) if they
are not equal. However, the system ignores the error and con-
tinues processing if you select option 0. ' ‘

Length of the retention period (0 to 999 days) for the diskette
file. The default is one day.

Note: A retention value of 999 makes a diskette file a perman-
ent file. : e :

Specifies the name of the single file that is created on the
diskette(s). ' '

#LIBRARY is the name assigned to the created diskette file.

IBM SCP Procedure Descriptions—BACKUP

67

CATALOG PROCEDURE

The CATALOG procedure lists the disk or a diskette VTOC (volume table of contents)
or a VTOC entry on the display screen or printer if either is assigned for listing from
the system (see index entry: SYSLIST procedure). The disk VTOC contains an entry
for each file on the disk, and a diskette VTOC contains an entry for each file on the
diskette. Each VTOC entry identifies the related file by name, creation date, and
location. :

The CATALOG procedure evokes the $LABEL utility. A description of the VTOC
display is provided in the description of SLABEL (see index entry: $LABEL utility
program).

CATALOG Command Statement Format

ALL 1
CAT — !
ALOG [filename] !:,f_]_J
CATALOG Parameters

ALL Display all labels in the VTOC on the specified unit.

filename Specifies the particular file whose VTOC information is to be displayed.
If more than one file exists with the specified filename, the VTOC in-
formation for all those files will be displayed.

11 Display the diskette VTOC.

F1 Display the disk VTOC.

COMPRESS PROCEDURE

The COMPRESS procedure causes all free space on the disk, except free space within
the library file, to be put into a single area by copying each file as close to the library
as possible. If the COMPRESS procedure does not go to normal end of job, it must
be reissued immediately and go to normal end of job before any other jobs are run.

This procedure evokes the $PACK utility (see index entry: SPACK utility program).

Note: If LOCATION was specified in the FILE statement (see index entry: FILE
statement) for a file moved by the COMPRESS procedure, the LOCATION specified
is not valid after the COMPRESS procedure moves the file. Use the CATALOG
procedure (see index entry: CATALOG procedure) to display the VTOC entries
for files moved by COMPRESS to determine the new locations of the files.

Page of GC21-75693-3.
Issued 22 November 1978
By TNL: GN21-7993

COMPRESS Command Statement Format

COMPRESS

COMPRESS Parameters

None

CONDENSE PROCEDURE

The CONDENSE procedure collects all unused space between library members and
makes this space available at the end of the last active library member (the |ibrary
member area cannot be greater than 2867 blocks). To do this, the procedure moves
all library members as close as possible to the beginning of the library member area.’

When new library members are placed in the library, they are placed after the last
active library member sector. Therefore, gaps or unused space are left in the library
whenever either a library member is deleted or a library member is replaced by a
member that requires a greater number of sectors. The CONDENSE procedure
makes all unused space available for additional library members.

The CONDENSE procedure evokes the SMAINT utility program (see index entry:
SMAINT utility program).

Note: If a permanent disk error occurs while the CONDENSE procedure is
executing, thereis no error recovery. The library must be reloaded from diskette
{see index entry: RELOAD procedure).

CONDENSE Command Statement Format

CONDENSE

CONDENSE Parameters

None

CONVERT PROCEDURE

The CONVERT procedure converts the diskette header labels that were created
prior to version 5 to a version 5 format.

" Note: Unpredictable results may occur if diskette files with version 5 format header
labels are processed by a preversion 5 SCP. A diskette file created by the SMAINT
utility program (FROMLIBR procedure) in version 5 of the SCP, for example, cannot
be used as input to the SMAINT utility program (TOLIBR procedure) in version 4

* of the SCP. -

The CONVERT procedure evokes the $CNVRT utility (see index entry: $CNVRT
utility program).

IBM SCP Procedure Descriptions—CONVERT 69

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

CONVERT Command Statement Format

CONVERT

CONVERT Parameters

None

COPY!1 PROCEDURE

The COPY'11 procedure causes all files on a single diskette or an individual file on a
single diskette to be copied to one or more output diskettes. A work space large
enough to contain the file(s) to be copied must be available on the disk. Files from the
, copied diskette are placed contiguously on the receiving diskette(s). The receiving
diskette(s) must be in the same format (512-bytes per sector extended format or
128-bytes per sector basic data exchange format) as the diskette being copied.

COPY 11 can be used to create a backup diskette file or to gather all unused space on
‘ an input diskette into a single free-space on the output diskette(s).

Important diskettes with permanent files are the diskettes normally copied. Because
* diskettes can develop surface irregularities as they undergo the wear of continued
use, it is a good idea to copy your important files soon after they are created.

COPY 11 evokes the SDUPRD utility (see index entry: $DUPRD utility program).

70

.

Page of GC21-7593-3.

Issued 22 November 1978

By TNL: GN21-7993

COPYI11 Command Statement Format

Use Format
Copy all diskette COPYI1 [&] ,vol-id, [DELETE] , [PRESERVE]
files to one or more . ‘
. ,number of copies
output diskettes 1
Copy specific diskette mmddyy
file to one or more COPYI1 filename, | ddmmyy | ,vol-id ,, [PRESERVE]
output diskettes yymmdd
[,number of copies:l
L

COPY |1 Parameters

ALL

filename
-mmddyy
or
ddmmyy
or
yymmdd

vol-id

DELETE

PRESERVE

Indicates that all files on the diskette are to be copied to one or more output
diskettes. -

Name of the single file to be copied to one or more output diskettes.
Creation date of the input file. This date must be in the same format as
that of the input file. This date is used to verify that the correct file

is on the input diskette. (The creation date of the output file will be
the same as that of the input file.)

Volume label of output diskette(s); one to six alphameric characters.

Any expired file will not be copied. (DELETE can be specified only when
ALL is specified.)

Note: If a multivolume file exists on the diskette, the DELETE parameter
is ignored. '

Indicates that for each file copied, the end of extent is preserved at the
same relative displacement past the end of data on the output diskette(s)

" as it was on the input diskette.

number of
copies
1

COPY11 Example

Specifies the number of output diskettes to be copied from one input

diskette. The value specified can be 1 through 99. 1 is the default.

In order to copy the file entitled PAYROLL (dated October 14, 1974) onto a diskette
’with a volume identifier of VOL001, you could enter:

COPY11 PAYROLL,101474,VOL001

Note: In the preceding example, PAYROLL is not a multivolume file. If PAYROLL
were a multivolume file, a separate COPY|1 command statement would be required
for each diskette of the file.

1BM SCP Procedure Descriptions—COPY |1

n

72

CREATE PROCEDURE

The CREATE procedure creates a message load member from a message source
member. A message load member contains messages that can be retrieved by user or
{BM programs. (For information on how to create a message source member, see
Message Source Member and An Example of Creating a Message Source and Load
Member under index entry: SMGBLD utility program.) The CREATE procedure
evokes the SMGBLD utility (see index entry: $MGBLD utility program).

CREATE Command Statement Format

CREATE sourcename [,REPLACE]

CREATE Parameters

sourcename Name of the existing source member that contains a control state-
ment and message text statement(s)

REPLACE Message load member to be created to replace an existing message
load member that has the same name

DATE PROCEDURE

The DATE procedure sets either the system date or the job (program) date. If the
DATE command statement is given after an IPL and before a LOAD statement, the
system date is set to the date specified. If the DATE command statement is given
between the LOAD and RUN OCL statements in a job stream, the program date is
set to the date specified and reset to the system date after the program ends.

The date established for the system or a program is printed on printed output and
is used to determine file retention periods for diskette files (see the RETAIN param-
eter for diskette files under index entry: // FILE statement).

The function of the DATE procedure is identical to that of the // DATE statement
(see index entry: // DATE statement).

DATE Command Statement Format
DATE mmddyy

ddmmyy
yymmdd

DATE Parameters

mmddyy Month-day-year
ddmmyy Day-month-year
yymmdd Year-month-day

Note: You must use the current system date format. Use yymmdd format if you
are creating basic data exchange format diskettes to use with other systems. The
SET procedure can be used to change the system date format (see index entry:
SET procedure). The STATUS procedure can be used to determine the current
date format (see index entry: STATUS procedure).

IBM SCP Procedure Descriptions—DATE 73

74

DELETE PROCEDURE

The DELETE procedure causes the space occupied by the named diskette or disk

file(s) to be made available. It also provides the option of erasing the contents of a
data file. The system file #LIBRARY cannot be deleted with this procedure. This
procedure evokes the SDELET utility (see index entry: $DELET utility program).

DELETE Command Statemerit Format

SCRATCH ,mmddyy

DELETE filename, [F‘] . | REMOVE | | .ddmmyy

DELETE Parameters

filename

F1

SCRATCH

REMOVE

ERASE ,yymmdd

Name of the file to be deleted from the disk or diskefte(s). ALL

‘cannot be used as a filename.

The file to be deleted is on the disk.

The file to be deleted is on one or more diskettes. If the file is a
multivolume file, you are prompted to insert the required diskettes,

If the file is on a diskette, the expiration date is changed to the cur- -
rent job date. If the file is on the disk, the VTOC entry for the file

is removed.

The VTOC entry for the file is removed.

ERASE Requests elimination of all data in the deleted file by replacing all
bytes within the physical extents of the file with binary zeros. Also
removes the VTOC entry for the file.

mmddyy Creation date of the file to be deleted. This date must be in the same
ddmmyy format as the system date if the file is on the disk; it must be in the
yymmdd same format as the creation date of the diskette file if a diskette file

is being deleted. You can use the STATUS command statement to
display the system date and the CATALOG command statement to
display creation dates of disk and diskette files (see index entries:
CATALOG procedure and STATUS procedure).

Note: If no date is specified and more than one file with the given
filename exists on the disk, the operator will have the option to
either delete all of the files named by filename or to cancel the job.

DELETE Example

To delete the diskette file JOE (dated September 13, 1974) you could enter the

following:

DELETE JOE, REMOVE,091374

DISPLAY PROCEDURE

The DISPLAY procedure causes all or part of a disk file to be listed on the display
screen or on the printer, depending on which is being used to display output (see
index entry: SYSL/ST procedure).

This procedure evokes the $COPY utility (see index entry: SCOPY utility program).

Note: If you use DISPLAY to list a disk segment of an offline multivolume file (see
index entry: offline multivolume file), the list will include variable system data.

DISPLAY Command Statement Format

Use

Display a file

Display records
by relative
record number

Format

DISPLAY filename

DISPLAY filename,

[,mmddyy
,ddmmyy
_,yvmmdd

["mmddyy

L yymmdd

ddmmyy | ,RECORD,value-1 [value-2]

IBM SCP Procedure Descriptions—DISPLAY

75

76

DISPLAY Parameters

filename

mmddyy
ddmmyy
yymmdd

RECORD

value-1

value-2

DISPLAY Example

Name of the file to be displayed or printed.

Creation date of file to be displayed or printed. If date is not
specified, then the filename with the most recent date is displayed
or printed.

The records from the file are to be displayed or printed based on
their relative record number.

Number of the first record to be displayed or printed. Valid for
sequential, indexed, and direct files.

Number of the last record to be displayed or printed. Valid for
sequential, indexed, and direct files. If value-2 is omitted, the listing
continues until end of file is reached.

To display or print the first one hundred records of the most recent file created
with the name JOE, you would enter:

DISPLAY JOE,, RECORD,1,100

FROMLIBR PROCEDURE

The FROMLIBR procedure creates a file from members contained in the library, or
adds library members to a file created from library members, Files created by the
FROMLIBR procedure can be processed by the TOLIBR procedure (see index entry:
TOLIBR procedure) to place members back in the library.

The FROMLIBR procedure evokes the SMAINT utility (see index entry: SMAINT
utility program).

Note: I you use the FROMLIBR procedure to copy library members from the
library to a file, you can copy the members from the file back to the library only by
using the TOLIBR procedure or $MAINT.

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

FROMLIBR Command Statement Format

Use Format

SOURCE
Copies a non-SCP PROC ocC
library mem- FROMLIBR library-name, | LOAD ,| filename-1 ,
ber or adds a SUBR library-name
non-SCP library LIBRARY _—
member to a
sequential file.
ADD
retention-days | ,vol-id
/ 1
[u
F1
VNP ,blocks
\\ 118
\v{S
‘\
[ADD]
Use Format
= 7
Copies or adds SOURCE
/ all non-SCP PROC filename-2
members, or FROMLIBR {name,ALL} , LOAD l:name jl .
copies or adds ALL SUBR —_—
all non-SCP LIBRARY
members hav- — .
ing names
beginning
with name.
{ADD

/ J retention-days| ,vol-id

'\\\ | p | [blocks
VI |8
1

IBM SCP Procedure Descriptions—FROMLIBR 77

78

FROMLIBR Parameters

library-name

name,ALL

ALL

SOURCE
PROC
LOAD
SUBR

LIBRARY
filename-1

filename-2

F1

retention-days

1

Name of the non-SCP library member being copied from the library.
All non-SCP members with names beginning with the indicated char-
acters are to be copied. Up to seven characters can be used. Example:
PAYR,ALL refers to non-SCP members having names that begin with
PAYR.

All non-SCP members are copied from the library.

Note: All non-SCP members include |BM-supplied non-SCP members
{such as program product members) as well as members you have
created.

Source members are copied.

Procedure members are copied.

Load members are copied.

Subroutine members are copied.

All types of members (SOURCE,PROC,LOAD and SUBR) are
copied.

Name of the file being created. If the filename is not specified, the
name specified for library-name is assumed.

Name of the file being created. If not specified, name is assumed.

If ALL is specified (all non-SCP members are copied from the library)
and filename-2 is not specified, you are prompted for filename-2.

Output file to be created on the diskette.

Output file to be created on the disk.

Length of the retention period (0 to 999 days) for the diskette
file. 1f 11 is specified or assumed and retain is not given, default

is one day.

Note: A retention value of 999 makes a diskette file a permanent
file. Retention cannot be specified if ADD if specified. ADD can-
not be specified if retention is specified.

Permanent retention on disk.

Temporary retention on disk.

Scratch retention on disk.

Page of GC21-7593-3

Issued 25 November 1977

By TNL: GNZ1-7939

ADD Add library member(s) to an existing file that contains library
.members.

Note: When adding a member to a disk file, the file must contain
enough unused space to hold the member. When adding a member
to a diskette file, the file must be the last active file on the diskette.
Retention cannot be specified if ADD is specified. ADD cannot be
specified if retention is specified.

vol-id Diskette volume label. One to six alphameric characters.
blocks Number of blocks to allocate for the output file. lgnored if ADD is
8 specified (see preceding description of ADD). Default is eight blocks.

FROMLIBR Examples

To copy the payroll application source programs to diskette, all beginning with the
characters PAY, you would specify:

FROMLIBR PAY ALL,,,,,VOLOO1

A sequential system file on diskette named PAY containing the payroll application
programs and procedures would be created.

To add all library members whose names begin with the characters PA to a diskette
file named PAYSAVE you would specify:

FROMLIBR PA ALL,LIBRARY,PAYSAVE, ADD,PACKID

HISTORY PROCEDURE

The HISTORY procedure lists the contents of the history file on the display screen
or on the printer, depending on which is listing output (see index entry: SYSL/ST
procedure). Recorded in the history file are the QCL statements, utility control
statements, and procedures executed by the SCP; all messages issued; and all user
responses to messages and prompts. The entire history file (ALL parameter) can be
displayed, just the entries previously displayed to the operator (VIEWED parameter),
or none of the entries (NOLIST parameter). Items previously displayed to the
operator consist of items such as OCL statements and messages that were logged
(displayed) as they were entered or issued {see index entry: LOG procedure). The
file may be cleared after listing (RESET parameter).

Any messages issued when BSC is active will not be recorded in the history file.

This procedure evokes the $HIST utility (see index entry: $HIST utility program).

HISTORY Command Statement Format

ALL
HISTORY | VIEWED ['::((E)iEELET]
NOLIST f—

IBM SCP Procedure Descriptions—HISTORY

79

Page of GC21-7593-3 .
Issued 25 November 1977
By TNL: GN21-7939.

HISTORY Parameters

ALL The entire contents of the history file will be listed including OCL state-
ments in procedures. If ALL is not specified, only items previously

* . : displayed to the operator are displayed.
\/IEWED Only the items previously displayed to the operator are listed.

‘NOLIST The history file is not displayed. This parameter may be used with the
RESET parameter to clear the history file.

RESET The history file will be cleared after it is displayed.

NORESET The history file will not be cleared.

INIT PROCEDURE

' ';'If'he INIT procedure prepareé (initializes) a diskette for use. It does this by perform-
ing some or all of the following functions:

® Writing sector addresses on the diskette

® Checking for defective tracks

® Assigning new track numbers when a track has a defecti\)e sector
® Writing a name on each diskette to identify the diskette

® Formatting track 0

This procedure evokes the $INIT utility (see index entry: $/INIT utility program).

INIT Command Statement Format

,RENAME
,DELETE
,FORMAT

INIT vbl-id , |owner-id
system-date OWNERID
,FORMAT2

80.

INIT Parameters

vol-id

system-date

owner-id

RENAME

DELETE

Page of GC21-7603-3
Issued 25 November ‘1977
By TNL: GN21-7939

If specified, it consists of one to six alphameric characters. The
vol-id is left-adjusted and padded with blanks when placed in the
volume label. When DELETE is specified, vol-id is checked for a
match. If no value is specified, the system date is used as a default
value.

Up to eight alphameric characters can be specified. These are
left-justified and padded with blanks in the owner identification.
field of the volume label of the diskette. |f owner-id is omitted
and RENAME, FORMAT, or FORMAT2 is specified, owner-id is
written as OWNERID.

Allows the diskette to be renamed (vol-id and owner-id). Files
and their labels are not affected.

Deletes active files, thereby freeing up space on the diskette (initial-
izes track O on the diskette).

I1BM SCP Procedure Descriptions—HISTORY 80.1

This page intentionally left blank

80.2

INIT Parameters

vol-id If specified, it consists of one to six aiphameric characters. The

system-date vol-id is left-adjusted and padded with blanks when placed in the
volume label. When DELETE is specified, vol-id is checked for a
match. If no value is specified, the system date is used as a default

value.
owner-id Up to eight alphameric characters can be specified. These are
OWNERID left-justified and padded with blanks in the owner identification

field of the volume label of the diskette. |If owner-id is omitted
and RENAME, FORMAT, or FORMAT?2 is specified, owner-id is
written as OWNERID.

RENAME Allows the diskette to be renamed (vol-id and owner-id). Files
and their labels are not affected.

DELETE Deletes active files, thereby freeing up space on the diskette (initial-
izes track O on the diskette).

IBM SCP Procedure Descriptions—INIT 81

82

FORMAT

FORMAT2

INIT Examples

Formats the entire surface of the diskette in the 128-bytes per
sector basic data exchange format (see Appendix C). Tracks are
renumbered for each track with a surface defect. If track O (index
track) or more than 2 tracks have defects, the diskette is not
initialized and no label of any kind is written (the diskette is not
usable). '

Note: 1f FORMAT is specified for one diskette in a multivolume
file, it must be specified for all diskettes in the file.

Formats the surface of the diskette in the extended format.
Extended format diskettes have eight 512-byte sectors per data
track. The index track is formatted into twenty-six 128-byte
sectors; the data tracks are 1 through 74. Position 76 of the
volume label (VOL1) contains a 2 if a diskette is formatted in
512-byte data sectors. The physical record length field (position
34) of the data set labels also contains a 2 if the diskette is for-
matted in 512-byte data sectors. (The formats of the diskette
volume labels and data set labels are given in the /BM Diskette
General Information Manual, GA21-9182—also see Appendix C
of this manual.) However, diskettes formatted in 512-byte data
sectors cannot be used for basic data exchange files.

Tracks are renumbered for each track with a surface defect. If
track O (index track) or more than 2 tracks have defects, the
diskette is-not initialized, and no label of any kind is written
(the diskette is not usable).

Notes:

1. If FORMAT?2 is specified for one diskette in a multivolume
file, it must be specified for all diskettes in the file.

2. If adiskette read error occurs on a FORMAT2 diskette, you
cannot correct the bad sector. You can either rerun the job
using a different diskette or retry the same diskette.

To place a volume identification of 934613 and an owner identification of
JOESDISK on a diskette you would enter:

INIT 934613,JOESDISK

RENAME is the default and the diskette would be labeled (volume label) but not
initialized. An example of initializing follows:

INIT 843163, FORMAT

JOBSTR PROCEDURE
The JOBSTR procedure transfers, to the System/32 library, a job stream that
contains procedure and source members created either on a diskette or on cards.

included in the JOBSTR procedure is an option you can specify to execute a
procedure and then save or delete that procedure from the library.

JOBSTR Command Statement Format

filename | SAVE ,number of records
JOBSTR ; . } , | procedurename, [N—OSAVE] 500

JOBSTR Parameters

filename ~ Name of the basic data exchange diskette file that contains
the job stream. '

Indicates that the job stream is on cards.

Note: If neither the filename parameter nor the * parameter
is specified, you are prompted for the parameter.

procedurename Name of the procedure to execute.

SAVE Saves the procedure named on the procedurename
parameter in the library.

NOSAVE Deletes the procedure named on the procedurename
parameter from the library.

number of records Specifies the number of records that thé disk file is to

500 contain when the job stream is transferred from diskette.

The system uses a temporary disk file to transfer the job .
stream from diskette to the library. The number of records
must be specified if the input file has more than the 500
record default.

The JOBSTR procedure evokes the queued job stream card-to-library utility program
($QJOB) for job stream input on cards. For job stream input on diskette, the
JOBSTR procedure evokes the $BICR, SMAINT, and $DELET utility programs

(see index entries: $B/CR, SMAINT, $DELET utility program).

The job stream you create can consist of multiple procedure or source members.
Each procedure or source member must begin with a COPY statement and end with
a CEND statement. The format of the COPY statement is:

4

where name is the member name and P or S indicates procedure member or source
member. :

// COPY NAME-name,LIBRARY-

IBM SCP Procedure Descriptions—JOBSTR

84

The format of the CEND statement is:
// CEND

The CEND statement is valid only as the last statement for a procedure or source
member. It is not valid within a procedure or source member.

The /* statement must be the last statement in a job stream created on cards. This
statement must immediately follow the last CEND statement.

A job stream created on diskette must be in 128-bytes-per-sector basic data exchange
format and the record length must be between 40 and 120.

A diskette file could contain the following job stream:

// COPY NAME-P1,LIBRARY-P

/I CEND
// COPY NAME-P2,LIBRARY-P

// CEND
// COPY NAME-S1,LIBRARY-S

// CEND

The job stream is transferred to the System/32 library when the JOBSTR command
statement is entered. For a diskette file, JBS, that contains the previous job stream
you could enter:

JOBSTR JBS

and the procedure members {P1 and P2) and the source member (S1) would be
placed in the system library.

Enter JOBSTR JBS,P2 and the procedure members (P1 and P2) and the source
member {S1) are placed in the system library; procedure P2 is executed and then
saved (SAVE is the default when omitted).

Enter JOBSTR JBS,P2,NOSAVE and the procedure members (P1 and P2) and the
source member (S1) are placed in the system library; procedure P2 is executed and
then deleted from the library.

JOBSTR Example

The foliowing example shows a job stream created on either diskette or cards. The
statements are numbered to correspond to the explanations following:

@ // COPY NAME-JOBSTRM,LIBRARY-P

@ FORTC PROG1
@ FORTG PROGH1

@ i data
® r
@ FORTC

@ % — source statements
/*
;REMOVE PROG1,LOAD
RPG PROG
@ // CEND

// COPY NAME-PROG1,LIBRARY-S

// CEND
1. COPY statement indicating a procedure member named JOBSTRM.
Steps 2 through 8 — Contents of prbcedure member JOBSTRM.
2. Command statement to cbmpile a FORTRAN program from a source member.
3. Command statement to load and run the compiled FORTRAN program.
4. Data used as input to the program.
5. Indicates the end of data for the program.

6. Command statement to load and run the FORTRAN compiler with source
statements in the job stream.

7. Indicates the end of the source statements.

8. Command statements in the job stream.

9. Indicates the end of the procedure member.

10. Source member to be moved to the source library.

Note: A job stream on cards must contain a /* statement after the CEND
statement.

IBM SCP Procedure Descriptions—JOBSTR

85

86

LINES PROCEDURE

The LINES procedure provides a means of modifying the printer lines per page.
This procedure contains a FORMS OCL statement (see index entry: // FORMS
statement).

LINES Command Statement Format
number
LINES 66

LINES Parameters

number Specifies the number of lines to be printed per page. The value specified
can be 1 through 84.

Note: See index entry: // FORMS statement for the way the value
specified determines the actual number of lines printed per page.

66 The default value for number is 66.

LISTLIBR PROCEDURE

The LISTLIBR procedure allows you to list the contents of the system Iibrary‘.
Either directory entries or contents of individual members can be listed.

This procedure evokes the SMAINT utility (see index entry: SMAINT utility
program). ’

Note: If the display screen is used for listing the library, only the first 40 bytes

of each LISTLIBR output line are displayed. To ensure that all the information in
a library member or directory entry is listed, use the printer to list the output. You
can use the STATUS procedure (see index entry: STATUS procedure) to determine
where system output is currently listed (that is, what the current SYSLIST assign-
ment is); and the SYSLIST procedure (see index entry: SYSL/ST procedure) to
change the current SYSLIST assignment.

LISTLIBR Command Statement Format

Use Format
SQURCE
. . ,PROC
E;rﬁ:::)c:y entries are to LISTLIBR DIR | LOAD
' ,SUBR
,LIBRARY
System information is to be LISTLIBR DIR,SYSTEM
listed from the directory.
SQURCE
. . library-name ,PROC
;,'b’at“’ me";'?ers and ‘hlf" LISTLIBR <nameALL ° |,LOAD
irectory entries are to be ALL SUBR

listed.

LISTLIBR Parameters
DIR
library-name

name,ALL

ALL
SYSTEM

SOURCE

PROC

LOAD

SUBR

LIBRARY

,LIBRARY

Directory entry is to be listed.
Name of library member to be listed.

Specifies the characters that the library member names to be listed
begin with. Up to seven characters can be used.

Specifies that all members of the specified type(s) be listed.
System information in the library directory. Valid with DIR only.

Source directory entries, if DIR is specified; otherwise, indicates contents of
source member(s). ‘

Procedure directory entries, if DIR is specified; otherwise, indicates
contents of procedure member(s).

Load directory entries, if DIR is specified; otherwise, indicates con-
tents of load member(s).

Subroutine directory entries, if DIR is specified; otherwise, indicates
contents of subroutine member(s).

All types of directory entries (SYSTEM, SOURCE, PROC, LOAD,

and SUBR), if DIR is specified; otherwise, indicates contents of all
member types (SOURCE, PROC, LOAD, and SUBR).

IBM SCP Procedure Descriptions—LISTLIBR

87

LISTLIBR Examples

To list the procedure member JOE, you would enter:

LISTLIBR JOE,PROC

To list all procedure members which have names beginning with PA, you would

enter:

LISTLIBR PA,ALL,PROC

To list the source, procedure, load, subroutine, and system directories, you would

enter:

LISTLIBR DIR,LIBRARY

LOG PROCEDURE

The LOG procedure specifies where messages and OCL statements are to be displayed
(on the display screen only or on the display screen and the printer), and specifies
whether to skip to line 1 of the next page at end of job. The LOG procedure per-
forms the same function as the LOG OCL statement (see index entry: //LOG

statement).

LOG Command Statement Format

CRT EJECT
LOG [PRINTER:I |:,NOEJECT1|

LOG Parameters
CRT

PRINTER

EJECT

NOEJECT

88

Display messages and statements on the display screen.

Print messages and statements and display them on the display screen.
Note: When the BSCA is active, the messages are not printed.

Skip to line 1 of next page at end of job.

Do not skip to line 1 of next page at end of job.

ORGANIZE PROCEDURE

The ORGANIZE procedure performs one of the following functions:

® Copies a disk file to another area on the disk

® Copies a disk file to another area on the disk and deletes specified records

® Copies a disk file to a diskette

@ Copies a disk file to a diskette and deletes specified records

If the input file is sequential, the output file is sequential. However, if reorganizing
a sequential input file, records must be specified for deletion. 1f the input file is

indexed, the output file is indexed, and the data records in the output file are in the
same sequence as the keys in the index. A direct input file cannot be reorganized.

The ORGANIZE procedure evokes the $COPY utility (see index entry: $COPY
utility program).

ORGANIZE Command Statement Format

Use Format

Reorganize [mmddyy | X

a disk file ORGANIZE filename-1, | ddmmyy | ,F1,filename-2, | S | [,position,character]
as another yymmdd P

disk file. - -

Reorganize

[mmddyy |
1

a disk file ORGANIZE fitename-1, {ddmmyy | , [_!_1_] wvol-id, [retention-dayi} [,position,character]

as a diskette
file.

yymmdd

ORGANIZE Parameters

filename-1 Name of the disk file to be reorganized (and name of the diskette
file created if reorganizing as a file on diskette).

mmddyy The creation date of the input file. If this parameter is omitted,

ddmmyy the most recently created file with the name specified in filename-1

yymmdd is the one that is reorganized.

F1 The disk will contain the reorganized copy.

1 The diskette will contain the reorganized copy. Defaultis I1.

filename-2 Name of the disk file to contain the reorganized copy.

vol-id Identifies the diskette by volume label. One to six alphameric

characters. Valid only if 11 is specified.

IBM SCP Procedure Descriptions—ORGANIZE 89

I Temporary retention on the disk.
S Scratch retention on the disk.
P Permanent retention on the disk.

retention-days Number of days (0 to 999) in the retention period for the diskette
1 file. Defaultis 1.

an——

Note: A retention value of 999 makes a diskette file a permanent
file.

Note: If the input file is sequential, then record deletion must be
specified.

position Requests deletion of records having. a specified character (character)
in the position specified. Position can be any position in the record
(first position is 1, second 2, and so on) to a maximum of 999. These
records will not be copied to the reorganized file.

- character ~ Character can be any one of the standard characters, or the three
characters Xdd, where X is constant and dd is the hexadecimal
equivalent of the character. Records containing the specified
character in the position specified by the position parameter are
not copied to the reorganized file. See the note in the position
parameter.

ORGANIZE Examples

~ To reorganize the mdexed file, PAYROLL, into a permanent disk file called PAYR,
you could enter: .

ORGANIZE PAYROLL,,F1,PAYR,P

To reorganize the file called JOE and place the organized copy (except records con-
taining‘a D in'record position 13) on diskette volume 123456, you could enter:

ORGANIZE JOE,,,123456,999,13,D

- In the preceding example neither F1 nor 11.is spe(:nfned'm the third parameter, so

the default is 11.. Also, the file i is to be retamed permanently, SO retentlondays 999
is specified. S :

Note: A date is not specified in either of the two preceding examples. Consequently,
if more than one file named JOE or PAYROLL exists on the disk, the most recently
created of the files named JOE or PAYROLL will be reorganized.

OVERRIDE PROCEDURE

The OVERRIDE procedure is used to override BSC parameters.

Item Parameter
Tributary station address ADDR
Line type _LINE
Switch type SWTYP

Additional BSC items that can be altered are included in the ALTERBSC procedure
(see index entry: ALTERBSC procedure). To identify the current values in these
parameters, use the STATUS procedure. (See index entry: STATUS procedure.)

The OVERRIDE procedure evokes the $SETCF utility (see index entry: $SETCF
utility program).

Note: The OVERRIDE procedure is intended only for data communications pro-
gramming that uses BSC. For background information on binary synchronous
communications, see General Information—Binary Synchronous Communications,
GA27-3004. For information on data communications programming, see /BM
System /32 Data Communications Reference Manual, GC21-7691.

OVERRIDE Command Statement Format

C

P AA
OVERRIDE [ADDR-n] | LINE-< R SWTYP- < MA

S MC

T
Notes:
1. Though each individual parameter is optional, at least one parameter must be

specified.

2. To reset the ADDR parameter to the addressing characters specified by the user
program specifications, reenter a valid OVERRIDE command omitting the
ADDR parameter. The addressing characters then default to the user program
specifications.

OVERRIDE Parameters

ADDR-nn Hexadecimal equivalent of one of the pair of tributary station
addressing characters. See Appendix G for the System/32
tributary station polling and addressing characters. Defaults to
the user program specifications.

LINE-C CDSTL (connect data set to line) switched line {(World Trade only)
P Point-to-point nonswitched line.
R Line type specified in the user program source statements.
S Point-to-point switched line.
T Tributary station on multipoint line.

I1BM SCP Procedure Descriptions—OVERRIDE

92

SWTYP-AA If switched line (LINE-C or LINE-S) is specified and the modem is
in auto-answer mode, then the System/32 automatically answers

the call. :

MA If switched line {(LINE-C or LINE-S) is specified, then the Syste?n/32
operator manually answers the call.

MC If switched line (LINE-C or LINE-S) is specified, then the System/32

operator manually initiates the call.

Notes:

1. If LINE-C or LINE-S is specified, the SWTYP parameter must
be specified.

2. If the SWTYP parameter is specified, then LINE-C, or LINE-S
must be specified. However, if the line type was set previously
to a switched line (LINE-C or LINE-S), then the line type does
not have to be respecified.

3. If the line type is LINE-R, then both the line type and switch
type are determined from the user program source statements
and neither line type nor switch type is required.

4. If LINE-Por LINE-T is specified, then the switch type (SWTYP)
automatically defaults to O (zero).

5. The line type defaults to the line type specified in the user
program source statements (LINE-R) if the standby line (SLINE)
is specified in the ALTERBSC procedure as SLINE-N.

6. The line type defaults to a point-to-point switched line (LINE-S)
if the standby line (SLINE) is specified in the ALTERBSC
procedure as SLINE-Y.

REBUILD PROCEDURE

The REBUILD procedure allows you to restore system information related to output
" files being processed at the time of a system failure, such as one caused by a power

failure or inadvertent IPL. The REBUILD procedure must be the first procedure
run after a system failure, otherwise the information will not be restored. The
information restored by REBUILD is essential if you want to obtain data contained
in output files being processed at the time of the system failure.
The REBUILD procedure evokes the SREBLD utility program. -For a more complete
description of the function of REBUILD, see index entry: $REBLD utility program.

REBUILD Command Statement Format

REBUILD

REBUILD Parameters

None

REMOVE PROCEDURE

- The REMOVE procedure deletes the specified library member(s), unless they are
SCP members. The space that was occupied by the deleted members can be used
for new members, provided there are not active members physically located after
the deleted ones in the library. If active members are located after deleted mem-
bers you can use the CONDENSE procedure to relocate these active members and
combine all unused space at the end of the library (see index entry: CONDENSE
procedure). '

This procedure evokes the SMAINT utility (see index entry: SMAINT utility
praogram). ’

REMOVE Command Statement Format

SOURCE

library-name ,PROC
REMOVE < name,ALL ,LOAD
ALL SUBR

,LIBRARY

REMOVE Parameters"
library-name Name of the non-SCP library member to be deleted.

name,ALL Beginning characters of names of non-SCP members to be deleted.
Up to seven characters can be used.

ALL Remove all non-SCP members of the specified type or all types.
SOQURCE Remove non-SCP source membér(s).

PRdC Remave non-SCP procedure member(s).

LOAD Remove non-SCP load member(s).

'SUBR Remove non-SCP subroutine member(s).

LIBRARY Remove non-SCP members of all member t\)pes (SOURCE, PROC,

LOAD, and SUBR).

1BM SCP Procedure Descriptions—REMOVE

93

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

REMOVE Examples

To delete the non-SCP procedure member named JOE from the library, you would
enter:

REMOVE JOE,PROC

To deleté the non-SCP members in the library that are named SAM, you would
enter:

REMOVE SAM,LIBRARY

To delete all non-SCP members in the library beginning with characters PAY, you
would enter:

REMOVE PAY,ALL,LIBRARY

RENAME PROCEDURE
The RENAME procedure changes thie name of an existing data file on disk. All of the
other file attributes such as file location, creation date, file type, file length, and file
retention remain unchanged.
This procedure evokes the SRENAM utility (see index entry: $RENAM utility
program).

RENAME Command Statement Format

;,mmddyy

RENAME filename-1,filename-2 | ,ddmmyy
,yymmdd

RENAME Parameters
filename-1 Current name of the file.

filename-2 New name of the file.

mmddyy Creation date of the disk file. If not specified, the last file created with the

ddmmyy name given in filename-1 will be renamed.
yymmdd

RENAME Examples
To .rehame a data file from JOE to JOHN, enter:

RENAME JOE JOHN

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

To rename a data file from JOE which was created on 2/10/78 to JOHN and there exists
on the disk more than one file by the name of JOE, enter:

RENAME JOE,JOHN,021078
Note: The filename-2 parame{er must not be the name of an existing file on disk at the time
$RENAM is evoked.
RESTORE PROCEDURE

The RESTORE procedure restores on the disk a diskette file that was copied from
the disk by one of the following:

® the ORGANIZE procedure (see index entry: ORGANIZE procedure)
® the SAVE procedure (see index entry: SAVE procedure)
® the $COPY utility (see index entry: $COPY utility program)

The RESTORE procedure can also be used to restore to the disk one or all of the
entire group of files previously saved by a SAVE ALL request.

When only one file is to be restored, you can change the space allocation of the disk
file by specifying the RECORDS or BLOCKS parameter in the RESTORE command
statement. If the diskette file size was increased, beyond the original file capacity,
the RECORDS or BLOCKS parameter must be used.

A RESTORE request reconstructs a file on the disk with the same attributes, except
location (see index entry: FILE statement for a description of the LOCATION
parameter), that the file had before it was copied to the diskette.

Messages to insert a tiiskettg for multivolume files are automatically displayed as
required, with appropriate label and volume-sequence-number checking.

This procedure evokes the $COPY utility (see index entry: $COPY utility program).

IBM SCP Procedure Descriptions—RENAME 94:1

94.2

This page intentionally left blank

Page of GC21-7593-3

Issued 22 November 1978

By TNL: GN21-7993

RESTORE Command Statement Format

Use
Restore all
previously
saved files.
Restore a
previously
saved single
file.
RESTORE Parameters
ALL
filename-1
#SAVE
filename-2
mmddyy
ddmmyy
yymmdd

RECORDS

value-1

BLOCKS

value-2

Format
‘ . . ,mmddyy
filename-1
RESTORE [ALL] ,l: } ,ddmmyy
— #SAVE yymmdd
mmddyy L
. : RECORDS, value-1
RE - ’ A ’
STORE filename-2, ddmmyy [BLOCKS, value-2 :I
yymmdd

All data files previously saved are to be restored to the disk.
Name associated with the entire set of files previously saved on
the diskette by the SAVE (SAVE ALL) procedure. #SAVE is the
default.

Name of the single diskette file that is to be restored to the disk.

Creation date of the diskette file.

Requests that the disk file be made large enough to contain the
number of records indicated by value-1.

Specifies the number of records that the disk file is to accommodate.

Requests that the disk file be made large enough to contain the
number of blocks indicated by value-2,

Specifies the number of blocks that the disk file is to accommodate.

~ Note: When restoring a file-and there already exists a file on the fixed disk with the same

name but with a different creation date and different number of blocks or records allocated,

then the BLOCKS or_RECORDS parameter should be used in the RESTORE procedure.

RESTORE Examples

To restore all files previously saved by a SAVE procedure, you would enter:

RESTORE

To restore a file named JOE that was saved or organized on a diskette, you would

enter:

RESTORE JOE,,RECORDS,300

In the preceding example, RECORDS requests that the restored file be large enough
to contain 300 records.

I1BM SCP Procedure Descriptions—RESTOFié

95,

SAVE PROCEDURE

The SAVE procedure causes (1) a single disk file or all disk files to be copied to
diskette(s) or (2) a single disk file to be added to a file saved previously on diskette(s).
Sequential, indexed, and direct disk files can be copied to diskette(s) by SAVE, and
can reside on diskette(s) as single volume or multivglume files. Sequential, indexed,
and direct disk files can also be added to files saved previously and can reside as

single volume or multivolume files. Messages to insert a diskette are given to the
operator whenever a SAVE request causes a multivolume diskette file to be created
or extended (added to)- ' "

This procedure evokes the $COPY utility (see index entry: $COPY utility program).

Note: If, after saving a file by copying it to diskette(s), you delete the original file -
from the disk, the file on the diskette(s) becomes the master copy of the file.

SAVE Command Statement Format

Use Format

Save all disk files on SAVE [ALL] , [retention-days:l , [filename-1] vol-id

diskette A #SAVE

Save one disk file on retention-days | ,|{ mmddyy

diskette, or add a SAVE filename-2, 1 ddmmyy | ,vol-id
disk file to a file ADD yymmdd

saved previously

SAVE Parameters
ALL Requests that all data files on the disk be copied to diskette.
The diskette should not contain any active files.
filename-2 Name of one file on the disk to be saved. ‘The diskette file will
have the same name.
retention-days Number of days (0 to 999} the diskette file is to be retained.
A Default is 1.
Note: A retention value of 999 makes a diskette file a perman-
ent file. '
ADD ‘ Single disk file is to be added to a file previously saved on
diskette.
filename-1 Name associated with the entire set of saved files. #SAVE is the
#SAVE default value.
mmddyy Creation date of the disk file. If not specified, the last file
ddmmyy created with the name given in filename-2 is saved.
yymmdd B

vol-id Volume label of diskette. One to six alphameric characters.

RESTORE Command Statement Format

Use Format

Restore all filename-1 ,/mmddyy

previously RESTORE [ALL] , ,ddmmyy

. ~—==] ' | #SAVE
saved files. — ,yymmdd
Restore a mmddyy
. . RECORDS, value-1

RESTOR f - ! !

prevuou'sly ORE filename-2, ddmmyy [BLOCKS, value-2]

saved single yymmdd

file.

RESTORE Parameters

ALL All data files previously saved are to be restored to the disk.

filename-1 Name associated with the entire set of files previously saved on ‘

#SAVE the diskette by the SAVE (SAVE ALL) procedure. #SAVE is the
default.

filename-2 ~ Name of the single diskette file that is to be restored to the disk.

mmddyy Creation date of the diskette file.

ddmmyy

yymmdd

RECORDS Requests that the disk file be made large enough to contain the
number of records indicated by value-1.

value-1 Specifies the number of records that the disk file is to accommodate. '

BLOCKS Reguests that the disk file be made large enough to contain the
number of blocks indicated by value-2.

value-2 Specifies the number of blocks that the disk file is to accommodate.

Note: When restoring a file and there already exists a file on the fixed disk with the same
name but with a different creation date and different number of biocks or records allocated,
then the B LOCKS or RECORDS parameter should be used in the RESTORE procedure.

RESTORE Examples
To restore all files previously saved by a SAVE procedure, you would enter:
RESTORE

To restore a file named JOE that was saved or organized on a diskette, you would
enter:

RESTORE JOE,,RECOR DS,300

In the preceding example, RECORDS requests that the restored file be large enough
to contain 300 records.

IBM SCP Procedure Descriptions—RESTORE

98

SAVE PROCEDURE

The SAVE procedure causes (1) a single disk file or all disk files to be copied to

dlSk%tte(S) or {2 a single disk file tc be added to a file saved previously on diskettels),

Sequential, indexed, and direct disk files can be copied to diskette(s) by SAVE, and
_can reside on diskette(s) as single volume or multivolume files. Sequential, indexed,
and direct disk files can also be added to files saved previously and can reside as
single volume or multivolume files. Messages to insert a diskette are given to the
operator whenever a SAVE request causes a multivolume diskette file to be created -
or extended (added to).

This procedure evokes the SCOPY utility (see index entry: $COPY utility program).

Note: If, after saving a file by copying it to diskette(s), you delete the original file
from the disk, the file on the diskette(s) becomes the master copy of the file.

SAVE Command Statement Format

Use Format
Save all disk files on retention-days filename-1 .
SAVE | ALL ! vol-id
diskette [] [_] l:ﬁAVE :l
Save one disk file on retention-days | , | mmddyy
diskette, or add a SAVE filename-2, 1 ddmmyy | ,vol-id
disk file to a file ADD yymmdd
saved previously
SAVE Parameters
ALL Requests that all data files on the disk be copied to diskette.

The diskette should not contain any active files.

. filename-2 Name of one file on the disk to be saved. The diskette file will
have the same name.

retention-days Number of days {0 to 999) the diskette file is to be retained.
A Default is 1.

P

Note: A retention value of 999 makes a duskette filea perman-

ent file.
ADD Single disk file is to be added to a file previously saved on
diskette.
filename-1 Name associated with the entire set of saved files. #SAVE is the
#SAVE default value.
mmddyy. - Creation date of the disk file. 1f not specified, the last flle
ddmmyy ’,'created with the name given in filename-2 is saved.
yymmdd
‘ vol-id Volume label of diskette. One to six alphameric characters.

SAVE Examples

To save all files for a period of seven days on a diskette labeled 345678, you could
enter:

SAVE ALL,7,#SAVE,345678
or
SAVE ,7,345678
‘ To save a file named JOE (created on November 12, 1974) and to add this file to
an existing diskette file named JOE (with a volume identification of 654321), you

could enter:

SAVE JOE,ADD,741112,654321

SET PROCEDURE
The SET procedure establishes the following system environment items:
® Number of lines printed per page
@ Print belt image
@ System date format
@ System date
The item(s) specified is placed in the library in the system configuration record,
which defines system characteristics, and remains unchanged until a subsequent
SET procedure js executed.
This procedure evokes the $SETCF utility (see index entry: $SETCF utility
program).
SET Command Statement Format
MDY ;mmddyy
SET ([value] , [source-name] , | DMY ,ddmmyy

YMD yymmdd

Note: Though each individual parameter is optional, at least one parameter must
be specified. ‘ ‘

IBM SCP Procedure Descriptions—SET

100

SET Parameters

value

source-name

MDY
DMY
YMD
mmddyy
ddmmyy

yymmdd

The number of lines that are to be printed per page. The maxi-
mum number of lines that can be specified is 84, minimum value
is 1.

Note: See index entry: // FORMS statement for the way the
value specified determines the actual number of lines printed per
page.

Name of the library source member containing the print beit
image to be used by the system. The contents of the source

member is described in the IMAGE statement (see index entry:
IMAGE statement).

Note: BELT48, BELT48HN (FORTRAN), BELT64, and BELT96
are library source members. The source-name parameter is either

BELT48, BELT64, BELT96, or BELT48HN when specifying the
print belt image to be used by the system. :

Specifies system date format to be month-day-year.
Specifies system date format to be day-month-year.
Specifies system date format to be year-month-day.
Specifies the system date in mqnth-day-year format.
Specifies the sYstem date in day-month-year format.
Specifies the system date in year-month-day format.

Note: Use yymmdd format if you are creating basic data exchange
format diskettes to use with other systems.

SPECIFY PROCEDURE

The SPECIFY procedure alters the following SDLC (synchronous data link control)
items in the system configuration record.

Item Parameter
SDLC station address ADDR
Line type LINE
Swi‘tch type SWTYP
ldentification data ID

Additional SDLC items that can be altered are included in the ALTERSDL procedure.
(See index entry: ALTERSDL procedure.) To identify the current values in these
parameters, use the STATUS procedure. (See index entry: STATUS procedure.)

The SPECIFY procedure evokes the $SETCF utility (see index entry: $SETCF
utility program).

Note: The SPECIFY procedure is intended only for data communications program-
ming that use SDLC. For background information on synchronous data link con-
trol, see IBM Synchronous Data Link Control General Information, GA27-3093.
For information on data communications programming, see /BM System/32 Data
Communications Reference Manual, GC21-7691.

SPECIFY Command Statement Format

g AA
SPECIFY [ADDR-nn] ,LINE- S SWTYP- MA JAD-nnnnn
T MC

Note: Though each individual parameter is optional, at least one must be specified.

IBM SCP Procedure Descriptions—SPECIFY 101

102

SPECIFY Parameters

ADDR-nn A two-character hexadecimal SDLC address.

LINE-C CDSTL (connect data set to line) switched line (World Trade only)
P Point-to-point nonswitched line.
S Point-to-point switched line.
T Tributary station on multipoint line.

SWTYP-AA If switched line {LINE-C or LINE-S) is specified and the modem
is in autoanswer mode, then the System/32 automatically answers
the call.

MA If switched line (LINE-C or LINE-S) is specified, then the
. System/32 operator manually answers the call.
MC 1f switched line (LINE-C or LINE-S) is specified, then the

System/32 operator manually initiates the call.

ID-nnnnn A five-character hexadecimal number used as an exchange of

identification between the host system and the System/32 SDLC
station. Valid characters for this parameter must be from 0-9 and
A-F. The characters specified are converted to hexadecimal charac-
ters by the system. If the |D parameter is not specified the default
is 00000.

Notes:

1.
2.

1f LINE-C or LINE-S is specified, the SWTYP parameter must be specified.

If the SWTYP parameter is specified, then LINE-C or LINE-S must be specified.
However, if the line type was set previously to a switched line (LINE-C or
LINE-S), then the line type does not have to be respecified.

. |f the SWTYP parameter (MA or MC) is specified on a switched line, a message

is displayed that indicates a manual answer or a manual call is required. If the
SWTYP parameter (AA) is specified on a switched line, no message is displayed.

. If LINE-P or LINE-T is specified, then the switch type (SWTYP) automatically

defaults to 0 (zero).

. The line type defaults to a point-to-point nonswitched line (LINE-P) if the

standby line (SLINE) is specified in the ALTERSDL procedure as SLINE-N,

. The line type defaults to a point-to-point switched line (LINE-S) if the standby

line (SLINE) is specified in the ALTERSDL procedure as SLINE-Y.

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

SYSLIST Command Statement Format

PRINTER
SYSLIST | CRT
OFF
SYSLIST Parameters
PRINTER Selects the printer for system list output
CRT Selects the display screen for system list output

Note: If CRT is specified, the ROLL?T without the SHIFT key
(roll up) must be pressed after each system list output record
is displayed to advance to the next record.

OFF Suppresses system list output

TOLIBR PROCEDURE

The TOLIBR procedure copies into the library either a disk or diskette file contain-
ing one or more library members. Any number of library members can be contained
in a data file to be copied into the library by TOLIBR.

All sector mode files to be copied by TOLIBR must have been created either by the
SMAINT utility or by the FROMLIBR procedure (see index entries: SMAINT
utility program and FROMLIBR procedure).

Each library member in a record mode file that is to be copied by TOLIBR must
begin with a COPY statement and end with a CEND statement. The format of
the COPY statement, where name is the member and P or S indicates procedure
member or source member, is: '

// COPY NAME-name,LIBRARY- {;}

The format of the CEND record is: // CEND. COPY and CEND statements are
automatically inserted in members created by $SMAINT. You must insert them
in members that were not created by SMAINT.

If a file to be copied by TOLIBR is a record mode diskette file in 128-bytes per
sector basic data exchange format (see Appendix C), the TRANSFER procedure
(see index entry: TRANSFER procedure) must be used to copy the file to disk
before TOLIBR can copy the file to the library.

Note: In record mode TOLIBR can copy only records from 40 through 120 bytes
in length.

The TOLIBR procedure evokes the SMAINT utility.

I1BM SCP Procedure Descriptions—TOLIBR 103

104

TOLIBR Command Statement Format

TOLIBR filename, I-

TOLIBR Parameters

filename
F1

11

mmddyy
ddmmyy
yymmdd

REPLACE

- - rmmddy_/—l
F11 +] démmyy | [REPLACE]

Ul yymmdd

Name of the file containing the member(s) to be copied in the library.
The file is on the disk.
The file is on a diskette.

Specifies the creation date of the file containing the membep’(s) to be
copied. If date is not specified, the filename with the most recent
date is copied to the library.

Replace the library member specified, if one exists.

If REPLACE is not specified, members are placed in the library
until a duplicate is found, at which time the system displays a
message telling the operator that a duplicate exists. In response to
the message, the operator can either cancel the job or continue
processing. If the job is continued, the new member replaces the
existing member in the library. 1f other duplicates are found dur-
ing the job, then existing members are automatically replaced and
no messages are displayed regarding the duplicate members.

If REPLACE is specified, new members replace existing duplicate
members in the library, and no messages regarding them are displayed.

TRANSFER PROCEDURE

The TRANSFER procedure moves files between the disk and diskettes that have
data in the 128-bytes per sector basic data exchange format. (See Appendix C for
information on the 128-bytes per sector basic data exchange format.) TRANSFER
can:

® Add a diskette file that is in the 128-bytes per sector basic data exchange format
to an existing sequential disk file

® Convert a basic data exchange diskette file to a disk sequential or indexed file

® Convert a disk file to a basic data exchange diskette file (Basic data exchange
files are sequential files.)

Note: Because TRANSFER only moves files between the disk and basic data

‘exchange formatted diskettes, TRANSFER cannot be used to move files between

the disk and diskettes that have data recorded in 512-byte sectors (extended format).

If the diskette format is not known, you can use the CATALOG procedure to list .
the diskette VTOC. This listing shows whether the format is 128- or 512-byte.

sectors. “ :

When a basic data exchange diskette file is added to an existing disk sequential

file, the record length of the disk file is used for all records added to the file. When
a basic data exchange diskette file is converted to a disk sequential or indexed file,
records are placed in the disk file sequentially, using the record length of the disk-
ette file.

A disk file to be converted by TRANSFER to a basic data exchange diskette—always
sequential—can be a sequential, indexed, or direct file. If the record length of the
disk file is greater than 128 bytes all records are truncated to 128. '

For an example of converting a source member or a procedure member to a diskette
file in 128-bytes per sector basic data exchange format, see index entry: source
member to basic data exchange diskette file and procedure member to basic data
exchange diskette file. :

The TRANSFER procedure evokes the $BICR utility (see index entry: S‘BICR
utility program).

TRANSFER Command Statement Format

Use Format

Transfer file from ‘—mmddyy- X filename-2 |-

diskette to an exist-- TRANSFER filename-1, [_ll] .| ddmmyy | ADD, |filename-1 [,date]

ing disk file ' yymmdd

Transfer a file —mmddyy— . | value-1,value-2 | | RECORDS,value-3
from diskette to TRANSFER filename-1, [11],| ddmmyy [,[NOADD], .BLOCKS value-4

a new disk file ‘ yymmdd

Transfer a file ; , | mmddyy .| ,retention-days

from disk to TRANSFER filename-1,F1, .| ddmmyy | ,vol-id

diskette | yymmdd A

1BM SCP Procedure Descriptions—TRANSFER 105

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

TRANSFER Parameters

filename-1

F1

mmddyy
ddmmyy
yymmdd

ADD

fiIename-Z

date

NOADD

value-1

value-2

RECORDS,
value-3

106

Name of the file being transferred. If a new file is being created,
" a1

~ifind e Filamama,
THCHIAI G

it assumes the namc specified by
A basic data exchange diskette file is being transferred to a disk
sequential or indexed file.

A disk file is being transferred to basic data exch.ange diskette file.

Creation date of the file being transferred. If the file being trans-
ferred resides on disk and no date is specified, then the filename
with the most recent date is transferred to diskette.

Note: Use yymmdd format if you are creating basic data exchange
format diskettes to use with other systems.

Records in a diskette file are added to, the records in an existing
disk sequential file. The first record from the diskette file is placed
after the last record existing in the disk file.

Name_df the existing disk file to which a basic data exchange disk-
ette file is to be added. Filename-2 is valid only if ADD is speci-
fied. If filename-2 is omitted, defaults to filename-1.

Creation date of an existing disk file. Date is valid only if ADD is
specified. The date must be given in one of the following formats:
mmddyy, ddmmyy, or yymmdd.

The basic data exchange diskette file being transferred will become
a new disk file with filename-1 as the filename. NOADD is assumed
whenever a file is transferred from diskette to disk.

Key length for a disk indexed file that is being created. Value-1
can be 1 through 29. It must be specified with value-2, and the
sum of value-1 and vaiue-2 must not exceed the record length + 1.

The start position of the record keys for an indexed disk file that

is being created. Value-2 can be 1 through 128, it must be specified
with value-1, and the sum of value-2 and value-1 must not exceed the
record length + 1.

Specifies that the disk file being created be large enough to contain
the number of records specified by value-3.

Note: Either REC_OR DS, value-3 or BLOCKS,value-4 (see follow-
ing) is required if (1) a multivolume file is being transferred, or
(2) the created disk file is to be larger than the file being transferred.

TRANSFER PROCEDURE

The TRANSFER procedure moves files between the disk and diskettes that have
data in the 128-bytes per sector basic data exchange format. (See Appendix C for
information on the 128-bytes per sector basic data exchange format.) TRANSFER
can:

® Add a diskette file that is in the 128-bytes per sector basic data exchange format
to an existing sequential disk file

® Convert a basic data exchange diskette file to a disk sequential or indexed file

® Convert a disk file to a basic data exchange diskette file (Basic data exchange
files are sequential files.) ,

Note: Because TRANSFER only moves files between the disk and basic data
exchange formatted diskettes, TRANSFER cannot be used to move files between
the disk and diskettes that have data recorded in 512-byte sectors {(extended format).
If the diskette format is not known, you can use the CATALOG procedure to list
the diskette VTQC. This listing shows whether the format is 128- or 512-byte
sectors.

When a basic data exchange diskette file is added to an existing disk sequential

file, the record length of the disk file is used for all records added to the file. When
a basic data exchange diskette file is converted to a disk sequential or indexed file,
records are placed in the disk file sequentially, using the record length of the disk-
ette file.

A disk file to be converted by TRANSFER to a basic data exchange diskette—always
sequential—can be a sequential, indexed, or direct file. If the record length of the
disk file is greater than 128 bytes all records are truncated to 128.

For an example of converting a source member or a procedure member to a diskette
file in 128-bytes per sector basic data exchange format, see index entry: source
member to basic data exchange diskette file and procedure member to basic data
exchange diskette file.

The TRANSFER procedure evokes the $BICR utility (see index entry $BICR
utility program).

TRANSFER Command Statement Format

Use

Transfer file from

diskette to an exist-

ing disk file

Transfer a file
from diskette to
a new disk file

Transfer a file
from disk to
diskette

Format
mmddyy filename-2
TRANSFER filename-1, [11] ,| ddmmyy | ,ADD, |filename-1 [date]
yymmdd
—mmddy\;— value-1,value-2 | |, RECORDS,value-3
TRANSFER filename-1, [_Il] ,| ddmmyy ,[NOADD], ' , ,BLOCKS,vatue-4
uymmdd
mmddyy ,retention-days
TRANSFER filename-1,F1, | ddmmyy | ,vol-id
yymmdd A

IBM SCP Procedure Descriptions—=TRANSFER 107

TRANSFER Parameters

filename-1

F1

mmddyy
ddmmyy
yymmdd

ADD

filename-2

date

NOADD

value-1

value-2

" RECORDS,
value-3

108

Name of the file being transferred. If a new: file is being created,
it assumes the name specified by filename-1.

A basic data exchange diskette file is being transferred to a disk
sequential or indexed file.

A disk file is being transferred to basic data exchange diskette file.

Creation date of the file being transferred. If the file being trans-
ferred resides on disk and no date is specified, then the filename
with the most recent date is transferred to diskette.

Note: Use yymmdd format if you are creating basic data exchange
format diskettes to use with other systems.

Records in a diskette file are added to the records in an existing
disk sequential file. The first record from the diskette file is placed
after the last record existing in the disk file.

Name of the existing disk file to which a basic data exchange disk-
ette file is to be added. Filename-2 is vaiid only if ADD is speci-
fied. If filename-2 is omitted, defaults to filename-1.

Creation date of an existing disk file. Date is valid only if ADD is
specified. The date must be given in one of the following formats:
mmddyy, ddmmyy, or yymmdd.

The basic data exchange diskette file being transferred will become
a new disk file with filename-1 as the filename. NOADD is assumed
whenever a file is transferred from diskette to disk.

Key length for a disk indexed file that is being created. Value-1
can be 1 through 29, It must be specified with value-2, and the
sum of value-1 and value-2 must not exceed the record length + 1.

The start position of the record keys for an indexed disk file that

is being created. Value-2 can be 1 through 128. It must be specified
with value-1, and the sum of value-2 and value-1 must not exceed the
record length + 1.

Specifies that the disk file being created be large enough to contain
the number of records specified by value-3.

Note: Either RECORDS, value-3 or BLOCKS, value-4 (see follow-
ing) is required if (1) a multivolume file is being transferred, or
(2) the created disk file is to be larger than the file being transferred.

BLOCKS, Specifies that the disk file being created be large enough to contain
value-4 the number of blocks specified by value-4..

Note: Either BLOCKS,value-4 or RECORDS,value-3 (see preced-
ing) is required if (1) a multivolume file is being transferred, or

(2) the created disk file is to be larger than the file being transferred.

vol-id Volume identification for the created basic data exchange diskette
file. One to six alphameric characters.

retention-days Number of days (0 to 999) the created basic data exchange diskette
1 file is to be retained. Default is 1.

Note: A retention value of 999 makes a diskette file a permanent
file.
TRANSFER Examples

In order to add a diskette basic data exchange file named JOE to an existing disk file
named JOE, you could enter:

TRANSFER JOE,, ADD

In order to create a disk sequential file named JIM from diskette basic data exchange
file named JIM, you could enter:

TRANSFER JIM

In order to create a diskette basic data exchange file named JON on a diskette with
vol-id of 888777 from a disk file named JON, you could enter:

TRANSFER JON,F1,,888777,30

IBM SCP Procedure Descriptions—TRANSFER

109

110

Part 3

Using OCL Statements and Procedures

Using OCL Statements and Procedures 111

Page of GC21-7593-3

Issued 22 November 1978

By TNL: GN21-7993

Creating Disk and Diskette Files

DISK FILE
Creating a disk file requires that:
® Disk space be available to hold the file

® The file be described to the SCP

Obtaining Space for a File

The CATALOG procedure (see index entry: CATALOG procedure) can be used

to determine how much space is available on the disk and where available space is.

Space to be allocated to a file must be contained in a single continuous area on the

disk. If enough space is available for a file but is not contained in a single continuous
area (for example, part of the available space is at one location on the disk and the

rest of the space is at another Iocatlon) you can use the COMPRESS procedure

(see index entry: COMPRESS procedure) to collect all available space inito one area

at the high end of the disk. The $FREE (disk rearganization utility) program can also be
used to move all data files to the high end of the disk, thus, collecting all available space
into one area at the low end of the disk (between the library and the data files).

if the space required by a file is not available on the disk, you can do one of the
following:

® Use the CATALOG procedure to see which files are currently on the disk and
use the DELETE procedure (see index entry: DELETE procedure) to delete any
unneeded files, thereby making disk space available for new files.

® Use the SAVE procedure (see index entry: SAVE procedure) to copy. from the
disk to diskette(s) one or more files that are not needed for the next job. Then,
to make space available for new files, use the DELETE procedure to delete the
original files. When they are needed, you can return the cobied files from disk-
ette(s) to the disk by using the RESTORE procedure (see index entry: RESTORE
procedure).

Note: After you delete the original files from the disk, the diskette(s) contain the
master copies. You can use the COPY |1 procedure (see index entry: COPY/1 pro-
cedure) to create a backup copy of the files you moved to diskette(s).

Describing a File

Use a FILE statement to describe a file to the SCP (see index entry: // FILE state-
ment). The NAME parameter of the FILE statement must identify the file to the
program creating the file. The LABEL parameter assigns a name for user identifica-
tion of the file on the disk, regardless of the name a program uses to refer to the
file. If the LABEL parameter is omitted from a FILE statement, the name specified
by the NAME parameter identifies the file on the disk. Assign names that are re-
lated to file contents or to application programs using the files, to make the files
easy to identify by programmers and operators. :

Crﬁaﬁnﬁ Disk and Diskette Files-

111

112

Either the RECORDS or BLOCKS parameter must be used to define the size of a
file, but both parameters cannot be specified for one file. {f RECORDS is specified

the system calculates the number of blocks required to contain the file (see Appendix

£ LI) ey [i
A). 1§ BLOCKS is used, the system reserves the number of blocks specified. For an

indexed file the number of blocks specified is apportioned between index areas and
data areas.

Note: If RECORDS is specified, the number of records actually allocated may be
larger than the number requested. The system allocates disk space in blocks and
always rounds up to the next whole block if part of a block is required.)

The LOCATION parameter specifies the block location-where the file will begin. If
LOCATION is not used, the system places the file as close to the library as possible.

The RETAIN parameter classifies a file according to its retention status. Permanent
files (RETAIN-P) remain on the disk until you delete them by using the DELETE
procedure (or $DELET utility program—see index entry: $DELET utility program).
A classification of RETAIN-P protects a file from being deleted accidentally.
Temporary files (RETAIN-T) are usually used more than once. You can free the
space used by a temporary file at any time by changing its classification to
RETAIN-S, which identifies the file as a scratch file. Scratch files do not exist after
the job in which they are created ends.

Three disk work files called $WORK, $WORK2, and $SOURCE are created auto-
matically by the System/32 SCP for programs that require this work space. These
files are scratch files (with a file size of 24 blocks each), used by source programs to
generate an object program. If you need to change the file size, or if you want to
create the files yourself, you can enter three FILE statements, one for SWORK, one
for SWORK2, and one for $SOURCE, with the RECORDS or BLOCKS parameter
to define the file size. You can determine if your program needs space allocated for
the disk work files by looking at the library directory entry. A field (ATTRIBUTES)
contains two bytes of attributes; the first byte has bit 4 on (set to 1) if a program
requires that SWORK and $SOURCE be allocated; the second byte has bit 3 on (set
to 1) if a program requires that SWORK2 be allocated. (See index entry: /library
directory entry for a description of the information contained in library directory
entries.)

The disk VTOC can contain up to 200 permanent or temporary files at any one time
(199 user files plus the system file #LIBRARY). You can use the CATALOG procedure
to determine the number of permanent and temporary files currently on the disk. {For
more information, see index entry: CATALOG proceciure.)

DISKETTE FILE

You must use a FILE statement to describe each diskette file you want created. The
FILE statement for diskette files is described in detail under index entry: // FILE
statement. Diskette files are created by IBM system utility programs, described in
Part 4, or by offline multivolume file processing. Diskette files created by system
utility programs cannot be processed as offline multivolume files, and offline multi-
volume files cannot be processed by the system utility programs except by $DUPRD.
The following paragraphs concern using the utility programs to create and process.
diskette files. For a discussion of offline multivolume file processing, see Offline
Multivolume File which follows,

112

Creating Disk and Diskette Files

DISK FILE
Creating a disk file requires that:
® Disk space be available to hold the file

® The file be described to the SCP

Obtaining Space for a File

The CATALOG procedure (see index entry: CATALOG procedure) can be used

to determine how much space is available on the disk and where available space is.

Space to be allocated to a file must be contained in a single continuous area on the

disk. If enough space is available for a file but is not ¢ontained in a single continuous
area (for example, part of the available space is at one location on the disk and the

rest of the space is at another location), you can use the COMPRESS procedure

{see index entry: COMPRESS procedure) to collect all available space into one area

at the high end of the disk. The $FREE (disk reorganization utility) program can also be
used to move all data files to the high end of the disk, thus, collecting all available space
into one area at the low end of the disk (between the library and the data files).

if the space required by a file is not évaﬂable on the difsk,fyou can do one of the
following: , :

@ Use the CATALOG procedure 1o see which files are currently on the disk and
use the DELETE procedure (see index entry: DELETE procedure) to delete any
unneeded files, thereby making disk space available for new files.

® Use the SAVE procedure (see index entry: SAVE procedure) to copy from the
~ disk to diskette(s) one or more files that are not needed for the next job. Then,
to make space available for new files, use the DELETE procedure to delete the
original files. When they are needed, you can return the copied files from disk-
ette(s) to the disk by using the RESTORE procedure (see index entry: RESTORE
procedure).

Note: After you delete the original files from the disk, the diskette(s) contain the
master copies. You can use the COPY11 procedure (see index entry: COPY/1 pro-
cedure) to create a backup copy of the files you moved to diskette(s).

Describing a File

Use a FILE statement to describe a file to the SCP (see index entry: // F/LE state-
ment). The NAME parameter of the FILE statement must identify the file to the
program creating the file. The LABEL parameter assigns a name for user identifica-
tion of the file on the disk, regardless of the name a program uses to refer to the
file. If the LABEL parameter is omitted from a FILE statement, the name specified
by the NAME parameter identifies the file on the disk, Assign names that are re-
lated to file contents or to application‘pregl’,ams using the files, to-make the files
easy to identify by programmers-and operators. -

Creating Disk and Diskette Files 113

114

Either the RECORDS or BLOCKS parameter must be used to define the size of a

file, but both parameters cannot be specified for one file. If RECORDS is specified
the system calculates the number of blocks required to contain the file (see Appendix
A). {f BLOCKS is used, the system reserves the number of blocks specified. For an
indexed file the number of blocks specified is apportioned between index areas and
data areas.

Note: |1f RECORDS is specified, the number of records actually allocated may be
larger than the number requested. The system allocates disk space in blocks and
always rounds up to the next whole block if part of a block is required.

The LOCATION parameter specifies the block location where the file will begin. If
LOCATION is not used, the system places the file as close to the library as possible.

The RETAIN parameter classifies a file according to its retention status. Permanent
files (RETAIN-P) remain on the disk until you delete them by using the DELETE
procedure (or $DELET utility program—see index entry: $DELET utility program).
A classification of RETAIN-P protects a file from being deleted accidentally.
Temporary files (RETAIN-T) are usually used more than once. You can free the
space used by a temporary file at any time by changing its classification to
RETAIN-S, which identifies the file as a scratch file. Scratch files do not exist after
the job in which they are created ends.

Three disk work files called $WORK, $WORK?2, and $SOURCE are created auto-
matically by the System/32 SCP for programs that require this work space. These
files are scratch files (with a file size of 24 biocks each), used by source programs to
generate an object program. If you need to change the file size, or if you want to
create the files yourself, you can enter three FILE statements, one for SWORK, one
for SWORK2, and one for $SOURCE, with the RECORDS or BLOCKS parameter
to define the file size. You can determine if your program needs space allocated for
the disk work files by looking at the library directory entry. A field (ATTRIBUTES)
contains two bytes of attributes; the first byte has bit 4 on (set to 1) if a program
requires that SWORK and $SOURCE be allocated; the second byte has bit 3 on (set
to 1) if a program requires that SWORK2 be allocated. (See index entry: /ibrary
directory entry for a description of the information contained in library directory
entries.)

The disk VTOC can contain up to 200 permanent or temporary files at any one time
(199 user files plus the system file #LIBRARY). You can use the CATALOG procedure
to determine the number of permanent and temporary files currently on the disk. (For
more information, see index entry: CATALOG procedure.)

DISKETTE FILE

You must use a FILE statement to describe each diskette file you want created. The
FILE statement for diskette files is described in detail under index entry: // FILE
statement. Diskette files are created by IBM system utiiity programs, described in
Part 4, or by offline multivolume file processing. Diskette files created by system
utility programs cannot be processed as offline multivolume files, and offline multi-
volume files cannot be processed by the system utility programs except by $DUPRD.
The following paragraphs concern using the utility programs to create and process
diskette files. For a discussion of offline multivolume file processing, see Offline
Multivolume File which follows.

Before a diskette can contain any files, it must be initialized. That is, it must be
examined for bad tracks, and formatted control information required by the system
must be recorded on the diskette. You can use the INIT procedure {see index entry:
INIT procedure) to initialize diskettes.

Note: If a job will require a number of diskettes, initialize all required diskettes that
have not been initialized before you begin the job. If ali diskettes are initialized in
advance, you will not have to interrupt or cancel the job in order to initialize a disk-
ette when another diskette is required.

If the file you want to create is to be placed on a diskette that already contains files
(but does not contain part of an offline multivolume file), use the CATALOG proce-
dure (see index entry: CATALOG procedure) to determine how much space is avail-
able on the diskette. The available space is unused space following the last active file
currently on the diskette. (Files added to a diskette always follow active files already
on the diskette.)

If a diskette lacks space for a new file, you can do either of the following:

1. Allow the file to become a multivolume file; use the diskette to start the file.
When diskette space expires, the system requests another diskette to continue
the file. A description of multivolume files follows.

2. Use the COPY 11 procedure to rearrange the active files and to delete the
expired files, leaving space for a new file at the end of the diskette. (For
more information, see index entry: COPY/1 procedure.)

If multiple files are to be created on a single diskette, each file LABEL must be
unique. Duplicate file labels on the same diskette are not permitted.

For the operator’s convenience, write in the space provided on the diskette envelope
the name of each file contained on the diskette. You may also want to store with
the diskettes the listings created by the CATALOG procedure to help identify which
files are on which diskettes. The diskette VTOC can contain up to 19 active files.

OFFLINE MULTIVOLUME FILE

Each diskette is a volume of storage. A multivolume file is a diskette file residing on
more than one diskette, or expanded from one diskette to more than one diskette.
Muitivolume files can be created by the system utility programs or by the offline
multivolume function of the SCP. These two kinds of files cannot be processed
interchangeably. Files created and processed by the offline multivolume function
are called offline multivolume files.

Purpose of Offline Multivolume Files

Many jobs process files that exist entirely on the disk. However, you may have a
job requiring more file space than the disk currently has available. The last file to
be allocated, for example, may need 200 blocks of disk space when only 95 are
available. If you reduced the BLOCKS parameter specification on the FILE state-
ment to 95, problems would occur in the job after the 95 blocks were filled. A
solution would be to use the DELETE and COMPRESS procedures to free up disk
space. (See index entries: COMPRESS procedure and DELETE procedure.)

Creating Disk and Diskette Files

115

116

Using an offline multivolume file would be another solution. It allows you to
allocate the last file, even though the disk does not have enough space for the
entire file.

Offiine multivolume file processing uses all available disk space (up to the max-
imum allowed—see Offline Multivolume Restrictions and Considerations) as an
intermediate work area for processing a file a portion at a time. Offline multi-
volume processing moves a file, a portion at a time, from the allocated disk extent
to an output diskette, or from diskettes to the allocated disk extent, for processing.

The portion of an offline multivolume file, moving in this manner from and to the
disk, is called a file segment. File segments are stored on diskettes, one segment
per diskette.

Creating an Offline Multivolume File

You can evoke offiine multivolume file processing by entering a FILE statement
specifying the same NAME given in a FILE statement for a disk file, and i1 for
UNIT. Suppose, for example, you want to allocate the file described by the fol-
lowing FILE statement, but 200 blocks of available space do not exist on the disk:

// FILE NAME-PAYMSTR,UNIT-F1,BLOCKS-200,RETAIN-T

If 95 blocks of disk space are available, enter the following two FILE statements
to allocate and process PAYMSTR as an offline multivolume file:

/!l FILE NAME-PAYMSTR,UNIT-F1,BLOCKS-95,RETAIN-S
// FILE NAME-PAYMSTR,UNIT-11,RETAIN-20,PACK-666666 v

As PAYMSTR is processed, records are placed in the 95-block extent on the disk.
When all 95 blocks are full, the system issues a message requesting the operator to
insert a diskette for output. After the diskette is inserted, the system copies the
records from the disk extent to the diskette. The disk extent is then reused, with
the next record being written at the beginning of the extent. When the extent is
again full, the system requests another diskette. This process, writing PAYMSTR
in file segments of 95 blocks, continues until the job ends. The'system writes the
remaining records {(whether or not it fills the 95-block extent) on a diskette at the
end of the job.

Note: The offline multivolume function saves the file during job processing. This
is different from the SAVE procedure which, being issued after job processing,
copies the file from the disk onto a diskette, thus creating a backup file.

After the job ends, PAYMSTR resides only on diskettes. The 95-block disk extent
contains a copy only of those records in the last file segment. If you want a backup
copy of an offline multivolume file, you can use the COPY!1 procedure (see index
entry: COPYIT procedure) to copy, one at a time, each of the diskettes composing
the file.

Reading an Offline Multivolume File

In the example below, the offline multivolume file PAYMSTR will be read, a segment
at a time, from diskettes into a disk extent named PAYMSTR:

// FILE NAME-PAYMSTR,UNIT-F1,BLOCKS-95,RETAIN-S
// FILE NAME-PAYMSTR,UNIT-11,PACK-666666

PAYMSTR file segments were defined previously as being 95 blocks long because
PAYMSTR was created with 95-block segments (see the FILE statement example
under Creating an Offline Multivolume File).

Offline Multivolume File Restrictions and Considerations
Restrictions

® Use the same NAME on both the disk and the diskette FILE statement when
you are creating an offline multivolume file. The LABEL parameters can be
different. For example:

// FILE NAME-PAYMSTR,UNIT-F1,LABEL-TEMP,BLOCKS-95
// FILE NAME-PAYMSTR,UNIT-11,LABEL-PAY01,PACK-666666

The resulting offline multivolume file will be named PAYO01.

® Use BLOCKS, not RECORDS, to specify segment size on the disk FILE state-
ment for an offline multivolume file. Any block size, from one block to the
maximum 95 blocks or 118 blocks allowed, can be used if space is available.

® BLOCKS - 95 blocks (basic data exchange format diskette) or 118 blocks {(extend-
ed format diskette) are the maximum allocations for offline multivolume disk file
segments. For offline processing, the biock value for a given format equals the
data area of one diskette. To use diskettes efficiently, the number of blocks allo-
cated should be as close to 95 or 118 as possible, but can never exceed the format
maximum.

Note: Though diskettes can be initialized in either of the basic data exchange for-
mat or the extended formats, you cannot create an offline multivolume file using
these formats interchangeably. Either format can be used to create an offline
multivolume file, but all diskettes for a file must have the same format.

® To process an offline multivolume file after it is created, you must allocate a disk
extent at least equal in size to the extent defined when the file was created. The
disk extent size however, must not exceed the size of the maximum allocations
for offline multivolume disk file segments (95 or 118 blocks). If you do not
remember or do not have a record of the number of blocks allocated originally,
you can run the CATALOG ALL, |1 procedure (see index entry: CATALOG
procedure) using the offline multivolume diskette. The disk extent is indicated
in the column titled NUMBER OF BLOCKS IN OFFLINE MV FILE found on
the CATALOG procedure printout.

@ A multivolume file created by a system utility cannot be processed as an offline
multivolume file. Utilities that create diskette files cannot process offline multi-
volume files.

Creating Disk and Diskette Files

117

118

Restrictions (continued)

® To maintain offline multivolume file support, the INQUIRY/OFFLINE option
must be selected whenever using the RELOAD procedure (see index entry:
RELOAD procedure).

® Offline multivolume files cannot be used in the same program with the
following:

Shared 1/0 data management

BSC (binary synchronous communications support)

— SDLC (synchronous data link control) support

Data recorder attachment support

— Word processing support

1255 Magnetic Character Reader attachment support

® The same file cannot be processed twice during one job as an offline multivolume

file, but more than one file can be processed as an offline multivolume file during
one job.

® Offline multivolume files cannot be processed while running an inquiry program.

(For more information on inquiry programs see index entry: $LOAD utility
program),

® Offline multivolume files must be sequential files. They can be processed by con-

secutive output, input, update, and add access methods. They cannot be processed
by indexed or direct access methods.

® Offline multivolume files must be written to diskettes containing no active files.

Therefore, be sure the diskettes you use (for output or add offline mutlivolume
files) have been initialized before you begin the job. You can use the INIT pro-
cedure (see index entry: /NIT procedure) to initialize the diskettes. ‘

® Active files cannot be written to a diskette containing part of an offline multi-
volume file.

® When adding file records to an offline multivolume file, you must add the new file

records to the end of the file. Suppose, for example, you have an offline multivolume
file: diskettes A, B, and C. Diskette C is the end of the file.

For an add operation, the system displays the message: CONTINUE WHEN PROPER
DISKETTE INSERTED. After diskette C is inserted, the system transfers the
records to the disk extent; processes the file records, and adds new file

records to the file extent until it is full. The system displays the same message again:
CONTINUE WHEN PROPER DISKETTE INSERTED for the output operation.
After you insert the diskette, the system writes the disk file extent back onto a
diskette.

Creating and Using Messages

MESSAGES

Message text can be retrieved from a message load member in the library and dis-
played on the display screen or printed. There are two levels of messages: level 1
and level 2. Level 1 messages are a maximum of 40 characters long and level 2
messages are a maximum of 200 characters long. A level 2 message is an extension
of a level 1 message that further describes the error. A level 2 message can be
displayed only after the level 1 message of the same MIC (message identification
code) is issued.

User messages are created and used by doing the following:
1. Creating a message source member.

2. Creating a message load member.

3. Specifyiﬁg the message load member.

4, Retrieving the messages.

Creating a Message Source Member

The first entry in the source member must be the message control statement, which
specifies the name of the message load member to be created and whether it is a first
or second level message load member. The message text statement consists of the
MIC and the text (actual message). For a detailed description of the message control
statement and the message text statement, see index entry: message source member.
Once the message source member statements have been defined, the message source
member is put into the library by either using the SMAINT utility program or the
Source Entry Utility Program Product.

The following is an example of a message source member called USERM1:

USERMSG, 1 Message Control Statement
1234 THIS PROCEDURE RUNS THE PAYROLL PROGRAM
1235 THE INPUT IS IN A DISKETTE FILE.

1236 INSERT DISKETTE NUMBER 123456.

MIC and Message
Text Statements

Creating and Using Messages 119

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Using SEU

To put a message source member called USERM1 into the library using SEU, key
SEU USERM1,S and the message source member statements you have defined. The
entries for the message source member USERM1 would be:

SEU USERM1,S Source Member Name

USERMSG, 1
1234 THIS PROCEDURE RUNS THE PAYROLL PROGRAM. Messa.‘ e Source Member
1235 THE INPUT IS IN A DISKETTE FILE. g

1236 INSERT DISKETTE NUMBER 123456.

For further information on using SEU, see iBM System /32 Utilities Program Product
Reference Manual Source Entry Utility, SC21-7605.

Using the SMAINT Utility

The following OCL is needed to put the message source member, USERM1, into
the library using SMAINT:

// LOAD SMAINT
// RUN

// COPY FROM-READER,LIBRARY-S,NAME-USERM1,TO-F1,RETAIN-P,RECL-45
USERMSG, 1

1234 THIS PROCEDURE RUNS THE PAYROLL PROGRAM. Message Source Member
1235 THE INPUT IS IN A DISKETTE FILE. :

1236 INSERT DISKETTE NUMBER 123456.

// CEND

// END

Source Member Name

CREATING A MESSAGE LOAD MEMBER

120

To create a message load member named USERMSG from the above source
member (USERM1), use the CREATE procedure by entering:

CREATE USERM1

Once this is done, your messages 1234, 1235, and 1236 are ready to be used by the
message OCL statement or your program. For more information on the CREATE
procedure, see index entry: CREATE procedure. ‘

3

Creating and Using Messages

MESSAGES

Message text can be retrieved from a message load member in the library and dis-
played on the display screen or printed. There are two levels of messages: level 1
and level 2. Level 1 messages are a maximum of 40 characters long and level 2
messages are a maximum of 200 characters long. A level 2 message is an extension
of a level 1 message that further describes the error. A level 2 message can be
displayed only after the level 1 message of the same MIC {message identification
code) is issued.

User message;, are created and used by doing the following:
1. Creating a message source member.

2. Creating a message load member.

3. Specifying the message load member.

4, Retrieving the messages.

Creating a Message Source Member

The first entry in the source member must be the message control statement, which
specifies the name of the message load member to be created and whether it is a first
or second level message load member. The message text statement consists of the
MIC and the text (actual message). For a detailed description of the message control
statement and the message text statement, see index entry: message source member.
Once the message source member statements have been defined, the message source
member is put into the library by either using the SMAINT utility program or the
Source Entry Utility Program Product.

The following is an example of a message source member called USERM1:

USERMSG, 1 Message Contro! Statement
1234 THIS PROCEDURE RUNS THE PAYROLL PROGRAM.
1235 THE INPUT IS IN A DISKETTE FILE.

1236 INSERT DISKETTE NUMBER 123456.

MIC and Message
Text Statements

Creating and Using Messages 121

Using SEU

To put a message source member called USERM1 into the library using SEU, key
~ T

CELI LIGERAT © and tha maeeana eniirna mamhar etatamante unai hava doafina ha 5
SEv Voo s s anG e MESSGGE SCUYCE MEMBeTY STaidment YU nave GeTine ne

entries for the message source member USERM1 would be:

SEU USERM1,S
USERMSG, 1

1234 THISPROCEDURE RUNS THE PAYROLL PROGRAM. Message Source Member
1235 THE INPUT IS IN A DISKETTE FILE. g

1236 INSERT DISKETTE NUMBER 123456.

Source Member Name

For further information on using SEU, see /1BM System/32 Utilities Program Product
Reference Manual Source Entry Utility, SC21-7605.

Using the SMAINT Utility

The following OCL is needed to put the message source member, USERM1, into
the library using SMAINT:

// LOAD $MAINT
// RUN

// COPY FROM-READER,LIBRARY-S,NAME-USERM1,TO-F1,RETAIN-P,RECL-45
USERMSG, 1

1234 THIS PROCEDURE RUNS THE PAYROLL PROGRAM. Message Source Member
1235 THE INPUT IS IN A DISKETTE FILE.

1236 INSERT DISKETTE NUMBER 123456.

// CEND

// END

Source Member Name

CREATING A MESSAGE LOAD MEMBER

To create a message load member named USERMSG from the above source
member (USERM1), use the CREATE procedure by entering:

CREATE USERM1

Once this is done, your messag‘es 1234, 1235, and 1236 are ready to be used by the
message OCL statement or your program. For more information on the CREATE
procedure, see index entry: CREATE procedure.

122

SPECIFYING THE MESSAGE LOAD MEMBER

Message load members PROGRAM1 and PROGRAM2 are used by IBM program
products to assign names to associated message load members. In order to retrieve
the messages you have created, you must specify which message load member they
are in with the MEMBER OCL statement. In our example, the message load
member was a first level message load member named USERMSG. To specify this
message load member, the MEMBER statement would be:

// MEMBER USER1-USERMSG

For more information on the MEMBER statement, see index entry: // MEMBER
statement.

RETRIEVING THE MESSAGES

After the messages are placed in a message load member and the load member is
specified by the MEMBER OCL statement, messages can be retrieved by using
either the message OCL statement (//*) or your program.

Retrieving Messages by Using the Message OCL Statement

To retrieve the first message from the message load member USERMSG as shown
in the previous example, the following message OCL statement would be used:

/1 * 1234

This would cause the first message (THIS PROCEDURE RUNS THE PAYROLL
PROGRAM.) to appear on the display screen.

The following is an example of a procedure {named PAYROLL) that would use the
messages in the previous message source member example (USERMSG):

// MEMBER USER1-USERMSG
/1 1234

/l * 1235

// 1236

// PAUSE

// LOAD PAYROLLI1

// RUN

When this procedure is run, the following messages would appear on the display
screen:

THIS PROCEDURE RUNS THE PAYROLL PROGRAM.
THE INPUT IS IN A DISKETTE FILE.

INSERT DISKETTE NUMBER 123456.

ACTION SCP 1162 CRPS OPTIONS (0)?_
PAUSE—-WHEN READY, ENTER 0 TO CONTINUE

Creating and Using Messages 123

A PAUSE statement normally follows the message statement if an operator
response is required. The PAUSE statement causes the SCP to suspend processing,
allowing the operator time to perform the action required in the message. For more
information on the PAUSE statement, see the index entry: // PAUSE statement.

Retrieving Messages by Using Your Program

You can retrieve some messages through your program. For information on how to
do this and what messages canriot be retrieved, see the /BM System/32 RPG I/
Reference Manual, $C21-7598.

RESTRICTIONS ON RETRIEVING MESSAGES

A level 2 message can only be displayed immediately after the level 1 message if
the same MIC has been issued. Since processing is not stopped when you retrieve
a message using OCL, level 2 messages ‘cannot be used. This is true even when a
PAUSE staternent is used. This restriction is not always true when messages are
retrieved by your program. For more information, see the /BM System/32 RPG 11
Reference Manual, SC21-7595.

124

Loading and Running Programs

1BM PROGRAMS

Many IBM programs require only one command statement or two OCL statements
(LOAD and RUN OCL statements).

The following two examples show the statements needed to load and run two iBM
programs, one requiring a command statement and the other requiring two OCL
statements.

e The CREATE command statement (see index entry: CREATE procedure) evokes
the SMGBLD utility program:

CREATE MSG1234

® The foliowing two OCL statements load and run the $STATS utility program
{see index entry: $STATS utility program):

// LOAD $STATS
// RUN

OBJECT PROGRAMS USING ONE DISK FILE

To load and run an object program that uses one disk file, a FILE OCL statement is
required in addition to the LOAD and RUN statements. The NAME parameter is
always required in the FILE statement, and the RECORDS or BLOCKS parameter
is required for a disk output file. (See index entry: // FILE statement for a com-
plete description of FILE statements.)

For example, to load and run the object program PROG1, which uses the disk file
NAMEADD, the following OCL statements are required:

// LOAD PROG1
// FILE NAME-NAMEADD
/l RUN

OBJECT PROGRAMS USING MORE THAN ONE DiSK FILE

One FILE statement is required for each file used by a program (see index entry:
/! FILE statement for a complete description of FILE statements).

Two disk files are named in the following sequence of OCL statements, an input file
(INPUTF) and an output file (QUTPUTF):

// LOAD PROG1

// FILE NAME-INPUTF

// FILE NAME-OUTPUTF,BLOCKS-10,RETAIN-P
/' RUN

Loading and Running Programs 125

The first FILE statement contains information needed to refer to the data in the disk
file INPUTF. The second FILE statement contains information needed to create the
disk output file OUTPUTF.

OBJECT PROGRAMS USING ONE DISK FILE AND EXTERNAL INDICATORS

The SWITCH OCL statement (see index entry: // SWITCH statement) is used to set
external indicators (U1-U8 on RPG Il specification sheets) on or off. External indi-
cators are used to regulate processing.

In the following example, a program (PROG2) is being run using one existing disk
file (INVMSTR), an inventory master file.

// LOAD PROG2

// FILE NAME-INVMSTR

// FILE NAME-NEWMSTR,BLOCKS-50
// SWITCH 1XXXXXXX

// RUN

In the example, the SWITCH statement specifies that the first external indicator (U1)

must be turned on before the program (PROG2) creates the file (NEWMSTR). Only
one external indicator is used: U1.

126

OCL and Procedure Example

This section illustrates some of the uses of OCL and command statements through
an example of a series of jobs.

The main program is INVUPD (inventory update). INVUPD reads the file named
INVTRANS (inventory transactions), updates the file named INVMSTR (inventory
master), and prints a report. If INVTRANS is not on the disk, the COPYTRAN
procedure is evoked to copy the transactions from a diskette to the disk. After the
INVUPD program is run, SWITCH1 is checked by an IF expression to determine
whether or not the user wants the COPYINV procedure run. The COPYINV
procedure copies the updated INVMSTR to diskette.

The OCL and command statements for these jobs are shown in Figure 5. The sets
of statements are numbered to correspond to the explanations following.

OCL and Procedure Example

127

128

0) O

O®

®\®

-// LOAD $MAINT
// RUN
// COPY NAME-INVUPD,LIBRARY-P,FROM-READER,TO-F1

// LOAD iNVUPD
// FILE NAME-INVTRANS,UNIT-F1
// FILE NAME-INVMSTR,UNIT-F1

// RUN

// CEND
// END

// LOAD $MAINT
// RUN
// COPY NAME-COPYTRAN,LIBRARY-P,FROM-READER,TO-F1

// LOAD $COPY

// * ‘INSERT DISKETTE 888888 *INVTRANS™

// PAUSE

// FILE NAME-COPYIN,UNIT-11,LABEL-INVTRANS,PACK-888888
// FILE NAME-COPYO,UNIT-F1,LABEL-INVTRANS

// RUN

// COPYFILE OUTPUT-DISK

// END

// CEND
// END

// LOAD $SMAINT
// RUN
// COPY NAME-COPYINV,LIBRARY-P,FROM-READER,TO-F1

// LOAD $COPY

// ¥ 'INSERT DISKETTE 666666 “INVMSTR ™’

// PAUSE

// FILE NAME-COPYIN,UNIT-F1,LABEL-INVMSTR

// FILE NAME-COPYO,UNIT-11,LABEL-INVMSTR,RETAIN-45,PACK-666666
// RUN :

// COPYFILE OUTPUT-DISK

// END

// CEND
// END

// LOAD SMAINT
// RUN
// COPY NAME-INVUPDAT,LIBRARY-P,FROM-READER,TO-F1

// |FF DATAF1-21? COPYTRAN
// INVUPD

// 1F SWITCH1-1 COPYINV
// CEND
// END

/1 SWITCH 1XXXXXXX

INVUPDAT INVTRANS

Figure 5. OCL and Command Statement Example

10.

11.

12.

The procedure INVUPD (10) is cataloged in the library as a procedure member.

Note: The sets of statements, 1-4, show // CEND and // END utility control
statements. The // CEND utility control statement identifies the end of a
source or a procedure member being put into the library. A source or a
procedure member statement is preceded by a // COPY utility control state-
ment and followed by a // CEND utility control statement. The // END
utility control statement indicates the end of utility control statements for a
utility program. The // END statement must be the last utility control state-
ment entered for that utility program.

The procedure COPYTRAN (8) is cataloged in the library as a procedure
member.

The procedure COPYINV (12) is cataloged in the library as a procedure
member.

The procedure INVUPDAT (7, 9, 11) is cataloged in the library as a procedure
member.

/1 SWITCH 1XXXXXXX is entered on the keyboard. This sets U1 of SWITCH
to a 1 (refer to explanation 11 following) without changing any of the other 7
switches.

INVUPDAT INVTRANS is entered on the keyboard. The procedure INVUPDAT
is evoked.

The first statement of the INVUPDAT procedure is the {FF (if false) statement.
This statement checks to see if the file identified by the first parameter
{INVTRANS) in the command statement entered on the keyboard exists on

the disk. in this example, assume that there is no existing INVTRANS disk file.
Therefore, the COPYTRAN procedure is evoked in order to copy the INVTRANS
diskette file to disk. (If INVTRANS was aiready on the disk, the statement
would not have been false and COPYTRAN would not have been evoked.)

The COPYTRAN procedure evokes the SCOPY utility program. it also tells the
operator to insert the diskette: ‘INSERT DISKETTE 888888 *INVTRANS™,
After the operator has inserted diskette 888888 and replied to the PAUSE, the
SCOPY utility copies the INVTRANS file to the disk.

The INVUPD procedure is evoked.
The INVUPD procedure loads and runs the inventory update program (INVUPD).

After the INVUPD program has been run, SWITCH1 is checked by an IF state-
ment in order to determine if the procedure COPYINYV should be evoked. In
this example, SWITCH1 was set to 1. Therefore, the |F statement is satisfied
and the COPYINV procedure is evoked. (If SWITCH1 had not been 1,
COPYINV would not have been evoked.)

The COPYINV procedure evokes the $COPY utility program. 1t also tells the
operator to insert the diskette: ‘INSERT DISKETTE 666666 “INVMSTR™’,
After the operator has inserted diskette 666666 and replied to the PAUSE, the
SCOPY utility copies the INVMSTR to diskette.

OCL and Procedure Example

129

After the last procedure (COPYINV) is run, the system returns to a ready status
(awaits keyboard entry).

Once the procedures are cataloged (steps 1 through 4 in the example), the entire job
can be evoked anytime by two statements (steps 5 and 6).

130

Part 4

System Utility Programs

System Utility Programs = 131

132

Introduction to the System Utility Programs

IBM System/32 system control programming includes a group of utility programs
that reside on the disk. These programs do a variety of jobs, from preparing the
disk and diskettes for use to maintaining the system library.

WRITING UTILITY CONTROL STATEMENTS

Most of the utility programs require utility control statements. You must provide
them. Utility control statements give the utilities information about the output you
want and the way in which you want a utility to perform its function. The utilities
read these statements from procedures and from the keyboard. Utility control
statements must be the first input read by a utility if the utility requires control
statements. A // END utility control statement must be the last control statement
entered for a utility if control statements are used.

Every control statement is made up of an identifier and parameters. The identifier

is a word that identifies the control statement. It is always the first word of the state-
ment. Parameters are information you are supplying to the utility. Parameters are
either positional or keyword.

A positional parameter, whenever it appears in a statement, must appear in the same
position in relation to other parameters. For example:

// INCLUDE PROCEDUR FILEA,YES,NO
FILEA is the first parameter, YES is the second parameter, and NO is the third para-
meter, If you omit the second parameter (a valid positional parameter), a comma
must indicate the position reserved for the omitted parameter. For example:

// INCLUDE PROCEDUR FILEA,,NO

A keyword parameter contains a keyword that distinguishes the parameter from
other parameters. For example:

// FILE NAME-COPYIN,UNIT-F1,LABEL-PAYROLL
NAME-COPYIN, UNIT-F1, and LABEL-PAYROLL are keyword parameters in the
preceding statement. COPYIN, F1, and PAYROLL are the values supplied by the
parameters to the utility.
RULES FOR CODING UTILITY CONTROL STATEMENTS

The rules for coding utility control statements are:

1. Statement identifier. // in positions 1 and 2, followed by a blank, must precede
the statement identifier. Do not use blanks within the identifier.

2. Blanks. Use one or more blanks between the identifier and the first parameter.

Introduction to the System Utility Programs 133

134

Statement parameters, Keyword parameters can be in any order; but positional
parameters must be in the same order. Use a comma to separate one parameter
from another. Use a hyphen (-) within each keyword parameter to separate the
keyword from the information you suppily. Do not use blanks between param-
eters; do not use blanks within a parameter unless the parameter contains a

value enclosed by single quotation marks (for example, ‘CONSTANT VALUE’).

The following is an example of a utility control statement:

// COPY11 NAME-JOE,PACK-123456

The statement identifier is COPY!1. The parameter keywords are NAME and PACK.
The information supplied by the parameters is JOE and 123456.

4.

// END control statement. This utility control statement indicates the end
of utility control statements for a utility. An end control statement must be
the last contro! statement entered for a utility if utility control statements
are used. A // END control statement cannot contain other statement in-
formation such as a comment or a sequence number. Only // END is valid.

Continuation. Some utility control statements can be expressed in two or
more records. A record can consist of a maximum of 120 characters, includ-
ing blanks and commas, when expressing a utility control statement. A
utility control statement can be continued if statement parameters are
entered.

Rules for using continuation are:

® Place a comma after the last parameter in every record except the last. The
comma, followed by a blank, tells the system that the statement is contin-
ued in the next record.

® Begin each new record with // in positions 1 and 2.

® Leave one or more blanks between the // and the first parameter in the
record.

The following is an example of a continued utility control statement:

// TRANSFER ADD-NO,
// KEYLEN-5,
// KEYLOC-3

Page of GC21-7693-3

Issued 22 November 1978

By TNL: GN21-7993

Utility Program Descriptions

Th_is section describes each utility program provided with IBM System/32. The
following information is given for each utility:

® The function of the utility
® The format of the related utility control statement(s)
® A description of the parameters in the related utility control statement(s)

® The sequence of the OCL and utility control statements required to evoke the
utility

Examples are given for many of the utilities.

CAUTION : »
When a program that allows an inquiry request is interrupted, the execution of that
program is suspended, permitting the execution of other programs. However, if
these other programs alter the status of the system or the status of files, the effect
may be abnormal termination of the interrupted program or erroneous results when
the interrupted program regains control. If you are using inquiry, do not change
any files that were being used by the interrupted (rolled-out) program. System/32
system control programming does not always check for duplicate file labels in the
inquiry and interrupted programs. For example, program X is interrupted while it
is processing file A. Records in file A are then deleted using inquiry. A return to
program X will cause unpredictable results.

The system and disk oriented functions listed below have the potential for such
abngrmal termination and erroneous results when executed in an inquiry mode:

® An inquiry request cannot be used to execute the foilowing utilities:

Utility Function(s)

$BACK Back up library

$LOAD Reload library
$PACK Compress file space
$REBLD ' Rebuild VTOC
$SETCF Reconfigure system
$BUILD _Rebuild alternate sector
$FREE Compress file space

® An inquiry request cannot be used to run the following utilities to perform the
listed functions:

Utility Function(s)
$COPY Restore all/save all files
$DELET Delete all files

Utility Program Descriptions

135

.Page of GC21-7693-3
Issued 22 November 1978
By TNL: GN21-7993

® An inquiry request cannot be used to run the following utilities to process active

files:
Utiiity Function(s)
$BICR Transfer active file
$COPY Save/organize active file
$DELET Delete active file
| $RENAM Rename data files

® An inquiry request can be used to run the following utilities to perform the
following functions, but a warning message will be issued when the function is

requested:
Utility Function(s)
$COPY Display active file
$LABEL Catalog all/active file

$BACK—-BACKUP LIBRARY UTILITY PROGRAM

The $BACK utility atllows the user to copy and reorganize the entire system library
to a diskette file. ~

When the library is copied to the diskette(s), library members are shifted to remove
gaps between them—unused space between members is collected at the end of the
library. The output diskette(s) must not contain active files.

More than one diskette may be required to contain the system library. When this
situation arises, the operator is automatically instructed to insert another diskette
if it is required, after which processing resumes.

To determine the number of backup diskettes required to contain the library, see
index entry: calculating the number of backup diskettes required for the system.
To reconstruct a library on the disk that was backed up on (copied to) diskettes,
you can use the RELOAD procedure {see index entry: RELOAD procedure) or
perform an IPL from the diskette(s) containing the copy of the library. (See /BM
System/32 Operator’s Guide, GG21-7591, for a step-by-step description of how to
reload the library.) The vol-id of the first (or only) diskette containing the library
becomes the vol-id of the disk file during the reload operation.

$BACK is evoked by the BACKUP procedure (see index entry: BACK! UP procedure).

$BACK Utility Control Statement Format

Utility control statements are not used.

$BACK OCL Sequence
// LOAD $BACK

/! FILE NAME-#LIBRARY,UNIT-I1,....
// RUN

136

$BICR—BASIC DATA EXCHANGE UTILITY PROGRAM

This utility provides a means of converting a disk file to a basic data exchange file
on a diskette, of converting a diskette basic data exchange file to a sequential or
indexed disk file, and of adding a basic data exchange file to a sequential disk file.
All diskette files that are input for $BICR must be in the 128-bytes-per-sector basic
data exchange format {see Appendix C); all diskette files created by $BICR are in
the basic data exchange format.

In adding a basic data exchange diskette file to an existing disk file, the records in
the diskette file are truncated or padded with hex zeros {hex 00) to conform to
-the record length of the disk file. In creating a new disk file from a basic data
exchange diskette file, the record length of the disk file is set to that of the diskette
file. In creating a new basic data exchange diskette file from a disk file, the record
length of the diskette file is set to that of the disk file or to 128, whichever is
smaller.

$BICR processes records sequentially during file conversion. If input for $BICR is
an indexed disk file, records are read sequentially by key. $BICR is evoked by the
TRANSFER procedure and JOBSTR procedure (see index entries: TRANSFER
procedure and JOBSTR procedure).

$BICR Utility Control Statement Formats

Use Control Statements
To create a diskette [// TRANSFER]
basic data exchange // END

file from a disk file or
convert a diskette
basic data exchange
file to a disk sequen-

tial file
To add the data in a // TRANSFER ADD-YES
basic data exchange // END

diskette file to a disk
sequential file

To create an indexed // TRANSFER ADD-NO,KEY LEN-value, KEYLOC-value
file on the disk from // END

a diskette basic data

exchange file

Utility Program Descriptions—$BICR 137

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993
$BICR Parameters

ADD-YES Specifies that when converting a basic data exchange diskette
’ file to a disk file, the records in the diskette file are to bhe added

a ais CLiL L GV T

to an existing sequential disk file.

The first record in the diskette file will be placed after the last
record in the disk file. If a multivolume file is being converted,
records will be added to the disk file until the end of either the
diskette file or the disk file is reached. However, for both multi-
volume diskette files and single volume diskette files, the add
operation is not started unless the diskette file or file segment
on the diskette currently in the diskette drive will fnt into the
space is available in the disk file.

If ADD-YES is not specified, ADD-NO is assumed.

ADD-NO Indicates that when copying a diskette basic data exchange
file to the disk, a new disk file is to be created.

KEYLEN-value Defines the length of the record keys when an indexed file is to
be created on the disk. Value can be from 1 through 29.

Note: KEYLEN must be specified with KEYLOC, and the sum
of their values must not exceed record length plus 1.

KEYLOC-value Specifies the start position of the record key in the records.
Value can be from 1 through 128.

Note: KEYLOC must be specified with KEYLEN, and the sum
of their values must not exceed record length plus 1.

$BICR OCL and Utility Control Statement Sequence

// LOAD $BICR

// FILE NAME-COPYIN,UNIT- ::11 ,LABEL-from-filename,...
[// FILE NAME-COPYO,UNIT- ::11 ,LABEL-to-filename,...]
// RUN

[// TRANSFER...]

/! END

Notes:

1. If a new disk file is to be created from a multivolume diskette file, then the COPYO
FILE statement must be given, and the required RECORDS or BLOCKS parameter
must be large enough to contain the entire diskette file.

2. If a new disk file (with space requirements of a nonmultivolume diskette file)
is to be created, do not specify the COPYO FILE statement. ,

3. If a new disk file larger than the diskette file is to be created, then the COPYQ-
FILE statement must be specified with the required RECORDS or BLOCKS
parameter.

4. If a file is being created on diskette, the COPYO FILE statement with a PACK

’ parameter is required.

138

$BICR Example

In order to create a basic data exchange diskette file (JOEB1) from a disk file (JOE),
you could enter:

// LOAD $BICR

// FILE NAME-COPYIN,UNIT-F1,LABEL-JOE

// FILE NAME-COPYO,UNIT-11,LABEL-JOEB1,PACK-9
// RUN

// TRANSFER

// END

$BUILD—ALTERNATE SECTOR REBUILD UTILITY PROGRAM

This utility program allows you to display and correct data on the disk after a disk
error occurs.

When a disk read or write error occurs, the data is written to an alternate sector.
Disk alternate sectors are sectors reserved for use in place of defective disk sectors.
The $BUILD utility program searches the alternate sectors of the disk for data that
was unreadable because of a read/write error. Each sector containing unreadable
data is printed, along with the sector logically preceding and the sector logically
following it in the file.

The data is displayed on the display screen and by the printer in both character and
hexadecimal format, as shown in Figure 6. The data is displayed in character format
on the first line. If the character cannot be displayed, it is replaced by a blank. The
data is also displayed in hexadecimal form on the second and third lines. The left
hex digit of each byte is on the second line and the right digit is below it on the
third line. :

Utility Program Descriptions—$BUILD 139

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

PRINTER OUTPUT:

ALTERNATE SECTOR REBUILD UTILITY DATE XX/XX/XX

S$5-00656 FILENAME=-#L IBRARY
SECTOK EEFURE 3AD JDATA
leceseaselOe e00elUsscscses3UenccensetUccncencse5000ccncecbdVecnccseelOevnvvecel0ccncseeeT0c0ercealO0cecccenlllovecsael20ecensly

22 L E "2 "2 2 "2 "2 " o2 2 J 2

BU30U3BTEOFVU00U333Cs03E30C8ULCE31303000393CU03731F8L003732FB000393DF88003732FBB003732FBA003735F8A3034F85003838003831303320350F863|
LAS5150D94216F 15030150 3307000728453 7C15935014F4E222014F44249C1593F2T0D14F4A224D14F4C213014F4C212006B215C15155E151315251C067027A5

Ll3leaveseel4Uceeeeeel5Unecesealblnvecceel7VeccocselBlocceseslIVecseees200encccee2l0sceeces220csevasev2300nceces23000cceeel50aes256
2t P 2 T [4 £ 0 2 > 2 v ¢ E 2 + K "p "2

J3b2U350F053035FU300U393E30362035334340034343F340034343035F81023436003537C0G38F8000393£3033203403C35F80C8343D035C8373D35C337F800039
25100651218D767210C15933525100682C06AC3696ACI65016465D06821C0065TEF068T0012C27FC159355251C76A9C5572740T0ED26T012FDT67012F276C159]
$5-03657 FILENAMc—#LIDRAKY
SECTUR wITd AU DATA
leveseselOcesesssellesnseeselloseesesestleeseseee50s0c000scbdlenssccsceTDecccesseBloccoecoasTUevsceeell0ecnsenellOccceeeelllonaesld
2 SYLL F 2 0 3 3 hd 2
FBUOEEDCOO300A300830C3C8000802C80A30013003000308340F0COFOF30086C0OF15200003F00C00F300030039000300B9000B00B0OC300038000BCEOCUEOULFO0S

216233365412E42224825070400080123510141338E13323C04FC64E4F5222900205C03408034212361345238C0005122C123C16C05C142AC182607u44005210C

13lececeel®Uesensesl50oconcesltCoevasenlTUsrecceeldleeeesenldD
= v

ves00002000veacee2l00evesss22000s0s042300ssseee2300eceseea250essa256
4 2 s : h : 3

2 B 2 :
QU0B3B0C500030032C0b0F 84£U03003900090008000E720F905G0FB0800700F8110000000DOBIVIDIDTOOCV03900031013001742F917423100F103000C800300)
1220C100T0444238C12632752105235C052C061C 1424900206486273886D0221CC01C2FOLC20C11B1C5142248C0001307510190F202A0F10363605155070C510
$5-00658 FILENAME- #LIBRARY
SECTUR AFTER BAD DATA
lesesosslOsessrese2Ucsacnovre3Uencnoseatleoncasae50scncnnsabloosnsnccallcnsssecaBlocacnaseIlocsnoaclO0snssanallOsanceasl20onanal28
1220C10070444238C12682752105238C052C061C142A900206A86273886D0221CC0O1C2F01C20C11B1C5142245C0001307510190F202A0F10363605155070C510
FFECCFFFFFFFFFFCCFRRFFFRFFFFFFCCFFFCFFFCFFFCFFFFFFCFFFFFCFFCRFFFCCRFCFCFFCRCCEFCRCFRFFFFRCFRFFFFFFFFFFFCFEFCFCFRFRFFFFFFFRFFCFFF
66633666666666633666666666666633666366636663666666366666366366663366363663633663636666666366666666666663666363666666666666663666

13lececeeltVeosceeelb00e0eseelb0cncecacl70sccncesldlocccnselFVecceees200a0sases2l0cesenss220n02000e2300es0000230000s000250004256
SYM 555S

£ED4400000000000EEEE EE EEEEEEEE EELE EEEEEE EEEEEE CECEEE EEEEEEEEEEELEEEEEEEEEELEECEEEEEEERELELEEEEECEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEE

284000000000731122

DISPLAY SCREEN OUTPUT:

~
ABCDEFGHI JKLMNOPQR STUVWXY
CCCCECCCCCCCCCCDDDDDDDDDDDDDDDDEEEEEEEEE
123456789ABCDEF0123456789ABCDEF0L2345678
COL=00001 $5-03741 FILENAME-HEXFILE

\. J

Figure 6. Example Output of a Disk Sector with Character and Hexadecimal Printout

After the unreadable data is displayed, you have two options:
® Bypass the data
® Correct the data

$BUILD is evoked by the BUILD procedure (see index entry: BUILD procedure).

140

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Bypass Unreadable Data

If you wish to bypass the data, press the ENTER key on the keyboard. The $BUILD
utility then searches for the next alternate sector with unreadable data. The next
time $BUILD is evoked, the bypassed sector is displayed again.

Correct Unreadable Data

In order to correct the data, use the keyboard function keys to display the portion
of the bad sector that you wish to correct. After the display is shifted to the desired
position, place the cursor on either the character data line or the hexadecimal data
line. Type the desired data over the unreadable data. The display screen provides
the following information to help you correct the data:

® The displacement into the record (in decimal) of the character pointed to by the
cursor: COL=00001 on the displayv screen in Figure 6

® The sector number: SS-03741 on the display screen in Figure 6

® The filename: FILENAME-HEXFILE on the display screen in Figure 6

After you have keyed all your corrections, if any, for a bad sector, press the REC ADV
(record advance) key. The corrected sector will be rewritten to the disk, and $BUILD
will search for other bad sectors. The next time $BUILD is evoked, the corrected

sector will not be displayed.

Note: If you press the ENTER key after keying corrections, the corrected sector

is not rewritten to the disk. If you cannot correct the data and wish to copy the
data from a backup copy, advance the cursor in any position in the bad sector and
press REC ADV, which removes the indication of bad data and permits you to copy
the file from the diskette.

$BUILD Utility Control Statement Format

Utility control statements are not used.

$BUILD OCL Sequence
The following entries are needed to load and run the program:

// LOAD $BUILD
// RUN

Utility Program Descriptions—$BUILD 141

142

$CNVRT—CONVERT DISKETTE HEADER LABEL UTILITY

The $CNVRT utility program converts the diskette header labels that were created
prior to version 5 to a version 5 format.

Note: Unpredictable results may occur if diskette files with version 5 format header
labels are processed by a preversion 5 SCP. A diskette file created by the SMAINT
utility program (FROMLIBR procedure) in version 5 of the SCP, for example, can-
not be used as input to the SMAINT utility program (TOLIBR procedure) in version
4 of the SCP. '

$CNVRT is evoked by the CONVERT procedure (see index entry: CONVERT
procedure).

S$CNVRT Utility Control Statement Format

Utility control statements are not used.

$CNVRT OCL Sequence
// LOAD $CNVRT
// RUN

$COPY-DISK COPY/DISPLAY UTILITY PROGRAM
The disk copy/display utility has several uses:

® Copy an entire file from the disk to diskette(s), from diskette(s) to the disk, or
from the disk to another location on the disk to:

1. Provide a duplicate of a file

Note: |f, after copying a file. to a diskette you delete the original file from
the disk, the file on the diskette becomes the master copy of the file.

2. Move a file to a larger disk area

® Delete records from a file (selected records are omitted from the copy; the ori-
ginal remains unchanged).

® Copy a portion of a file; you have the option of deleting selected records from
the copy.)

® Copy all data files (except #LIBRARY) on the disk to diskette(s) to create a
backup copy of the files or to obtain more space on the disk; or, restore pre-
viously copied files from diskette(s) to the disk.

® Copy an indexed file putting the records in key order (reorganize the file) to
improve the performance, in some cases, of programs that use the file. Selected
records can be deleted from the copy.

Bypass Unreadable Data

If you wish to bypass the data, press the ENTER key on the keyboard. The $BUILD
utility then searches for the next alternate sector with unreadable data. The next
time $BUILD is evoked, the bypassed sector is displayed again.

Correct Unreadable Data

In order to correct the data, use the keyboard function keys to display the portion
of the bad sector that you wish to correct. After the display is shifted to the desired
position, place the cursor on either the character data line or the hexadecimal data
line. Type the desired data over the unreadable data. The display screen provides
the following information to help you correct the data:

® The displacement into the record (in decimal) of the character pointed to by the
cursor: COL=00001 on the display screen in Figure 6

® The sector number: SS-03741 on the display screen in Figure 6

® The filename: FILENAME-HEXFILE on the display screen in Figure 6

After you have keyed all your corrections, if any, for a bad sector, press the REC ADV
{record advance) key. The corrected sector will be rewritten to the disk, and $BUILD
will search for other bad sectors. The next time $BUILD is evoked, the corrected

sector will not be displayed.

Note: If you press the ENTER key after keying corrections, the corrected sector

is not rewritten to the disk. If you cannot correct the data and wish to copy the
data from a backup copy, advance the cursor in any position in the bad sector and
press REC ADV, which removes the indication of bad data and permits you to copy
the file from the diskette.

$BUILD Utility Control Statement Format

Utility control statements are not used.

$BUILD OCL Sequence
The following entries are needed to load and run the program:

// LOAD $BUILD
// RUN

Utility Program Descriptions—$BUILD 143

144

$CNVRT-~CONVERT DISKETTE HEADER LABEL UTILITY

The SCNVRT utility program converts the diskette header labels that were created
prior to version 5 to a version 5 format.

Note: Unpredictable results may occur if diskette files with version 5 format header
labels are processed by a preversion 5 SCP. A diskette file created by the SMAINT
utility program (FROMLIBR procedure) in version 5 of the SCP, for example, can-
not be used as input to the SMAINT utility program (TOLIBR procedure) in version
4 of the SCP.

$CNVRT is evoked by the CONVERT procedure (see index entry: CONVERT
procedure).

$CNVRT Utility Control Statement Format

Utility control statements are not used.

$CNVRT OCL Sequence
// LOAD $CNVRT
// RUN

$COPY—DISK COPY/DISPLAY UTILITY PROGRAM
The disk copy/display utility has several uses:

® Copy an entire file from the disk to diskette(s), from diskette(s) to the disk, or
from the disk to another location on the disk to:

1. Provide a duplicate of a file

Note: If, after copying a file to a diskette you delete the original file from
the disk, the file on the diskette becomes the master copy of the file.

2. Move a file to a larger disk area

® Delete records from a file (selected records are omitted from the copy; the ori-
ginal remains unchanged).

® Copy a portion of a file; you have the option of deleting selected records from
the copy.

® Copy all data files (except #LIBRARY) on the disk to diskette(s) to create a
backup copy of the files or to obtain more space on the disk; or, restore pre-
viously copied files from diskette(s) to the disk.

® Copy an indexed file putting the records in key order {reorganize the file) to
improve the performance, in some cases, of programs that use the file. Selected
records can be deleted from the copy.

® Add a disk file to an existing diskette file.

® Display all or part of a file (either on the display screen or printer, depending on
the current SYSLIST assignment—see index entries: STATUS procedure and
SYSLIST procedure) ta check records for errors.

$COPY is evoked by the DISPLAY, ORGANIZE, RESTORE, and SAVE procedures
(see index entries: DISPLAY procedure, ORGANIZE procedure, RESTORE proce-
dure, and SA VE procedure).

Notes:
1. If you use $COPY to list a disk segment of an offline multivolume file (see index
entry: offline mulftivolume file), the listing will include variable system data.
2. $COPY can copy a diskette file only if the file was copied to the diskette(s) by
$COPY.
$COPY Utility Control Statement Formats

The different uses of $COPY require different utility control statements.

Utility Program Descriptions—$COPY 145

Use

Copy an
entire
file

Copy a
portion
of afile

Copy all
data files on
the disk to
diskette, or
restore pre-

Control Statements

// COPYFiLE OUTPUT-DISK [,DELETE-"position,c'naraCtEf']

// COPYFILE OUTPUT-DISK [,DELETE-‘position,character’] [,REORG. {:"(_'(E’.S}

[~// SELECT KEY,FROM:-‘key’ 7]
// SELECT KEY,FROM-‘key’, TO-'key’

// SELECT RECORD,FROM-number

// SELECT RECORD,FROM-number, TO-number
// SELECT PKY,FROM-‘key’

// SELECT PKY,FROM-'key’

| // SELECT PKY,FROM-'key’, TO-'key’
// END

-

// COPYALL TO- {::11}

// END

viously copied

files from
diskette to
the disk

Copy a
sequential
or direct
file to an
indexed file

Add a

disk file to
an existing
diskette file

Display an
entire file

Display
part of
a file

146

// COPYFILE OUTPUT-DISK [,DELETE-’position,character‘]
// KEY LENGTH-value-1,POSITION-value-2

// END
// COPYADD
// END
FOUTPUT-PRINT
/I COPYFILE | oUTPTX-PRINT
// END
-
OUTPUT-PRINT .. h
// COPYFILE | QUTPTX-PRINT [,DELETE-‘posutlon,character]

// SELECT KEY,FROM-key’

// SELECT KEY,FROM-'key’, TO-'key’

// SELECT RECORD,FROM-number

// SELECT RECORD,FROM-number, TO-number
// SELECT PKY,FROM-‘key’

// SELECT PKY,FROM-‘key’, TO-'key’

// END

$COPY Parameters

COPYFILE Statement

The COPYFILE statement specifies copy, display, and reorganize.

OUTPUT-DISK

OUTPUT-PRINT

OUTPTX-PRINT

DELETE-position, character’

REORG-NO

REORG-YES

The file or a portion of the file is copied from disk
to diskette, from diskette to disk, or from one area
to another on the disk.

The entire file or only part of the file is displayed
in EBCDIC character format.

Note: If the display is on the display screen, all
lines are truncated to forty (40) characters.

The entire file or only part of the file is displayed
in EBCDIC character format and in hexadecimal
format.

Note: If the display is on the display screen, all
lines are truncated to forty (40) characters.

This parameter is optional except when REORG-
YES is specified for a sequential file. It means
delete all records with the specified character in
the specified record position. Character can either
be one of the standard characters (see Appendix F.
IBM System/32 Characters for the standard charac-
ter and its hexadecimal equivalent) or the three
characters Xdd, where X is constant and dd is the
hexadecimal equivalent of any character. Position
can be any position in the record (the first position
is 1, second is 2, and so on) to a maximum of 999.

Records are copied the way they are organized in
the original file. REORG-NO is assumed if the
REORG parameter is not specified.

REORG-YES can be specified:

® \When copying an indexed file from the disk, in
which case the records are to be copied in the
same order as their keys appear in the index.

® When copying a sequential file to a sequential
file. The DELETE parameter—see the descrip-
tion preceding—is required when REORG-YES
is specified for a sequential file.

Utility Program Descriptions—$COPY

147

148

SELECT Statement

The SELECT statement specifies which part of a file is to be copied or displayed.
The SELECT statement is not valid for a COPYALL request.

KEY
or,FROM-’key’
PKY

KEY

PKY

or,FROM-"key’, TO-"key"

For indexed files only. Copy or display
only part of a file—from the record iden-
tified by the specified key to the end of
the file (including the record with the
specified key).

Note: You can specify the SELECT KEY
or SELECT PKY parameters to select
records from a diskette file only if the
records in the diskette file are in ascend-
ing key order. An organized diskette file
consists of records in ascending key order
and is created in either of the following
ways:

® Specify the REORG parameter on the
COPYFILE statement as REORG-YES.
The file copied to diskette is then an
organized diskette file.

® Use the ORGANIZE procedure to
create an organized diskette file.

In addition, the organized diskette file
must not have records added to it.

If you select records from an indexed
file to copy or display, and those
records are not in ascending key order,
the results are unpredictable.

This note also applies to the following
description of the KEY or PKY (FROM
and TO keys) parameters.

For indexed files only. Copy or display

- only part of a file—from the record iden-

tified by the specified FROM key to the

- record identified by the specified TO key

(including the two records with the speci-
fied keys).

Note: To copy or display only one record,
make the FROM and TO keys the same. |If
the specified record key does not exist, no
records are copied or displayed.

RECORD,FROM-number

RECORD,FROM-number, TO-number

KEY Statement

Copy or display only part of a file—from
the record identified by the specified record
number to the end of the file (including the
record identified by the specified number).

Copy or display only part of a file—from
the record identified by the FROM record
number to the record identified by the
TO record number (including the two rec-
ords identified by the FROM and TO
record numbers).

Note: To copy or display only one record,
make the FROM and TO numbers the same.
If the specified record number does not
exist, no records are copied or displayed.

The KEY statement specifies the length and position of record keys for a file. The
statement is used to create an indexed file from a sequential or direct file. When the
KEY statement is used, both the LENGTH and POSITION parameter must be speci-
fied and the sum of their values must not exceed record length plus 1.

LENGTH-value-1

The LENGTH parameter specifies the length of the key in

bytes. Value-1 can be any number from 1 through 29.

POSITION-value-2

The position specifies the position of the key

in the records. This position is the leftmost byte
of the key. Value-2 can be any number from 1

through 999.
COPYALL Statement

The COPYALL statement specifies that all data files on the disk (but not
#LIBRARY) be copied to diskette(s), or specifies that files previously copied

be restored from diskette(s) to the disk.

o {::11}

COPYADD Statement

Specifies that the disk (F1) or a set of diskettes (1) is to con-
tain the copy.

The COPYADD statement requests addition of a disk file to an existing diskette file.
The disk file is added to the diskette file so that restoring the extended file creates a
single disk file. The user must specify on the COPYIN file statement the name of
the file to be added and on the COPYO file statement the name of the file to be

extended.

Utility Program Descriptions—$COPY

149

$COPY Parameter Summary
OUTPUT and OUTPTX Parameters (COPYFILE)

These parameters specify whether you want to copy or display data files.

Copying a File: The parameter OUTPUT-DISK means the file is to be copied. $COPY
can copy a file from the disk to diskette(s), from diskette(s) to the disk, or from
one area on the disk to another area on the disk. Data files copied to and from
diskette(s) are system files (see Appendix C).

In copying a disk file to diskette(s), the disk file is, in effect, dumped onto disk-
ette(s), so that when it is copied back to the disk, its original format (filename, file
size, retention) is retained, unless the original format is overridden by the appropri-
ate parameter(s) (LABEL, BLOCKS or RECORDS, RETAIN) on the COPYO

file statement. For example, the RECORDS or BLOCKS parameter might have to
be specified for the disk file if records have been added to the diskette file.

The OCL load sequence for the $COPY program indicates (1) the name and unit of
the file being copied, and (2) the name and unit of the copy being created. if the
file is to be created on the disk, then the size of the file can be specified.

Displaying Files: OUTPUT-PRINT means the file is displayed in EBCDIC character
format, and OUTPTX-PRINT means the file is displayed in hexadecimal format.

The $COPY program uses as many lines as it needs to display the contents of a
record (100 characters per line are printed; if the display screen is used, only the
first 24 characters of each record are displayed). After displaying the last record,
the program prints a message stating the number of records displayed. Characters
that have no graphic display symbol (unprintable characters) are displayed as two-
digit hexadecimal numbers in over-and-under format.

The following examples show the hexadecimal numbers in over-and-under format
of an unprintable character (B6) for both parameters:

ABCDEF J12345

B OUTPUT-PRINT

6
ABCDEF J 12345
CCCCCCBDFFFFF OUTPTX-PRINT
1234566112345

Records from indexed files are displayed in the order of the records, unless you
specify SELECT KEY and/or SELECT PKY and/or REORG-YES. For each
record, the program displays the record key followed by the contents of the record.

Records from sequential, indexed, and direct files on diskette are displayed in the order
they appear in the file. For each record, the program displays the relative record num-
ber for sequential and direct files, or the record key for indexed files followed by the
contents of the record.

150

DELETE Parameter (COPYFILE)

The $COPY program can omit records of one type while copying or displaying a single
file.

The form of the parameter for omitting records is DELETE-"position,character’. Char-
-acter is the character or hexadecimal equivalent (Xdd) that identifies the records.
Position is the position of the character in the records. For example, the parameters
DELETE-'100,XE2' and DELETE-"100,S’ would yield the same results. (See
Appendix F, /IBM System/32 Characters, for the character and its hexadecimal
equivalent.)

REORG Parameter (COPYFILE)

In copying or displaying an indexed file, the program can reorganize the file so that
the records in the data portion are in the same order as their keys in the file index.
The REORG parameter tells the program whether or not to reorganize the file. The
file can be reorganized while it is being copied from F1 to either 11 or F1.

SELECT KEY and SELECT PKY Parameters

The SELECT KEY and SELECT PKY parameters are used to select records from
an indexed file to copy or display part of that indexed file. The SELECT PKY
parameter applies to an indexed file that contains packed keys.

When you specify. either of these parameters to select records from a diskette file,

the records in the diskette file must be in ascending key order. To put the records

in ascending key order, you can either specify the REORG parameter on the

COPYFILE statement of $COPY as REORG-YES (to organize the diskette file

while it is being copied from disk), or you can create an organized diskette file using

the ORGANIZE procedure. Either way, the organized diskette file should not have
- records added to it.

If you select records from an indexed file to copy or display, and those records are
not in ascending key order, the results are unpredictable.

Related parameters of SELECT KEY and SELECT PKY are the FROM and TO
parameters. If none of the keys in the file index begin with the characters indicated
in the FROM or TO parameters, the program uses the key beginning with the next
higher characters than in the FROM parameter and the key beginning with the next
lower characters than in the TO parameter.

The TO parameter can be omitted. When this is done, the program uses the last key
in the index as the TO key.

There may be fewer characters in the FROM or TO parameter than are contained in
the actual keys.

For example, assume that the following are consecutive record keys in an index:
A0999, A1000, A1010, A1040, A1500, A1510, A1690, and A1955. The parameters
FROM-'A10’ and TO-'A15’ refer to record keys A1000, A1010, A1040, A1500, and
A1510.

If you want to copy or display only one record, make the FROM and TO keys the
same.
Utility Program Descriptions—$COPY 151

152

SELECT RECORD Parameter

This parameter is used to copy or display a portion of a file. This parameter uses rela-
tive record numbers to identify the records to be copied or displayed.

Relative record numbers identify a record’s location with respect to other records in
the file. The relative record number of the first record is 1, the number of the second
record is 2, and so on.

The related parameters are FROM and TO. The FROM parameter (FROM-number)
gives the relative record number of the first record to be copied or displayed. The

TO parameter (TO-number) gives the number of the last record to be copied or dis-
played. Records between those two records in the file are also copied or displayed.

For example, the parameters FROM-1 and TO-30 mean that the first thirty records
(1-30) in the file will be copied or displayed.

You can omit the TO parameter. If you do, the program uses the number of the last
record in the file as the TO number. If you want to copy or display only one record,
use the same number in the FROM and TO parameters.

TO Parameter (COPYALL)

This parameter specifies whether diskette or disk will contain the copy. 11 and

F1 are the only values allowed. When |1 is specified, all data files on the disk are
copied to the same number of files on one or more diskettes. When F1 is specified,
all files previously copied to diskette(s) are restored to the disk from the diskette(s).

Copying All Disk Files: The output of $COPY when copying all disk data files to diskette
is: Files on one or more diskettes which had no active files on them. Each diskette
file contains information about the file as it appeared on the disk. The set of files is
associated with a name of #SAVE unless a different name was specified via the
LABEL parameter in the COPYO file statement.

Restoring Disk Files: When restoring ail previously saved files to the disk, you can specify
the name associated with the diskette files (if the name #SAVE was not used) via
the LABEL parameter on the COPYIN file statement.

To restore only one file from diskette(s) containing all files previously copied from
the disk, you must specify the name of the file to be restored on the COPYIN file
statement, and you can specify a name for the new disk file on the COPYO file
statement.

$COPY OCL and Utility Control Statement Sequence

When copying, reorganizing, or displaying files, the user must (1} describe the disk
files being copied or displayed and (2) describe the file being created. To do this,
the following OCL statements are needed:

// LOAD $COPY 1

// FILE NAME-COPYIN |:,UNIT- {ﬁ-}],LABEL-ﬁIename

// FILE NAME-COPYO,UNIT-I1,LABEL-filename [,RETAIN- {"’te“m"'days}]

1
,PACK-vol-id
or
// FILE NAME-COPYO [,UNIT-ﬂ] ,LABEL-filename [, {
I
,RETAIN- < P
S

RECORDS-number
BLOCKS-number

//' RUN
/I COPYALL...
or
// COPYADD
or
// COPYFILE...
// SELECT...
[// KEY...]
// END

Utility Program Descriptions—$COPY 153

154

Statement Entry

// LOAD
$COPY

// FILE

NAME-COPYIN

F1
UNIT- {” }

LABEL-filename

/l FILE

NAME-COPYO

F1
UNIT {”}

LABEL-filename

RECORDS-number

I:{BLOC KS-number

T

RETAIN-< P
S

or

[retention-days]
1

PACK-vol-id

Meaning

Name of disk copy/display program.

Name $COPY uses to refer to the file to be copied,
reorganized, or displayed.

Identifies either the disk (F1) or a diskette (11) as con-
taining the file to be copied.

Name by which the file to be copied is identified. This
parameter must be used to specify the name associated
with the entire set of files copied when the COPYALL
statement is used to copy from diskette.

Name $COPY uses to refer to output file being created.
(This OCL statement is not needed for displaying a file.)

Sbecifies location of output file: disk (F1) or diskette
{11).

Name by which output file is to be identified. This param-
eter must be used to specify the name associated with the
entire set of files being copied when the COPYALL state-
ment is used to copy to diskette.

Size of output file‘ expressed either as number of records
(RECORDS) or number of disk blocks (BLOCKS). Used
only when copying individual files to the disk.

Retention designation of the disk output file: T is tem-
porary, P is permanent, S is scratch.
Retention designation of diskette output file expressed in

number of days. Default is one day.

The diskette volume label. Meaningful only if the unit
designation is I1.

$COPY File Retention Summary

The effect that the RETAIN parameter retention code (P, T, or S) has on the
retention of a disk file for the $COPY program depends on whether:

® The file is an input file or an output file
@ The file is on disk or diskette

Each file that exists on disk has a record in the VTOC of system information
describing the file, such as filename, file date, file organization, and retention
code. This record is calied a VTOC format 1. A disk VTOC format 1 has a
retention code of either P {permanent) or T (temporary).

A file being processed by a program must also have a format 1 in the SWA
(scheduler work area). The SWA format 1 is created by the FILE statement. A
SWA format 1 has a retention code of P, T, or S.

For a file existing on disk (input file), the SWA format 1 is the same as the existing
VTOC format 1; therefore, the retention code is the same unless it is modified by
the RETAIN parameter in the FILE statement for the input file (COPYIN). For

a file being created on disk (output file), the retention code is specified in the
RETAIN parameter (or defaults to T if that parameter is not used) for the output
file (COPYO).

The SWA format 1, with a retention code of P or T, becomes the VTOC format 1

at the end of the job. The SWA format 1, with a retention code of S, is deleted at
the end of the job. Therefore, a file with an SWA format 1, with a retention code of
S, exists only during job execution. If an SWA format 1, with a retention code of

S, identifies a file in the VTOC with a retention code of T, the VTOC format 1 is
also deleted. '

Note: 1f both the SWA format 1 retention code for the disk input file and the SWA
format 1 retention code for the disk output file have a retention code of S, neither
file will exist at the end of the job.

In the following examples, which summarize the results of the RETAIN parameter
on the VTOC format 1 retention code, the // FILE statement named COPYIN
identifies the input file (file being copied) and COPYOQ identifies the output file
(file being created).

Utility Program Descriptions—$COPY 155

156

Example 1: Existing Disk File

The RETAIN parameter is optional in the FILE statement that describes the input
file, COPYIN. However, if you are accessing a temiporary file and want to delete
that file at the end of the job, include the RETAIN parameter with a retention code
of S. The SWA format 1 modifies the VTOC format 1 for that file and the VTOC
format 1 is deleted at the end of the job. Otherwise, the input file retention code is
not altered in the VTOC format.1. The following summary shows the effect of the
RETAIN parameter retention code on the SWA format 1 for a disk input file:

VTOC Format 1 RETAIN Parameter | SWA Format 1
Retention Code for on COPYIN FILE Retention Code for
Disk Input File Statement Disk Input File

P P P

P T P

P s P

T P T

T T T

T S S

Example 2: Disk to Disk

If the input file, identified by the FILE statement named COPY N, resides on disk,
and the output file, identified by the FILE statement named COPYO, will reside on
disk, the SWA format 1 for the output file becomes whatever is specified in the
RETAIN parameter as shown in the following summary:

SWA Format 1 RETAIN Parameter SWA Format 1
Retention Code for on COPYO FILE Retention Code for
Disk Input File Statement Disk Output File

J P P

P T T

P S S

T P P

T T T

T 'S S

S P p

S T T

S S S

Note: The retention code of the input file does not change unless you also code
the RETAIN parameter for COPYIN as shown in example 1.

Example 3: Diskette to Disk

If the input file, identified by the FILE statement named COPY N, resides on disk-
ette, the SWA format 1 retention code for this file is the SWA format 1 retention
code of the disk file from which it was created. The output file, identified by the
FILE statement named COPYO, will be recreated on disk. The following summary
shows the effect of the RETAIN parameter on the SWA format 1 retention code
for the output file:

SWA Format 1 RETAIN Parameter SWA Format 1
Retention Code for on COPYO FILE Retention Code for
Diskette File Statement Disk Output File

P P P

P T P

P S P

T P P

T T T

T S T

S -] P

S T T

S S T

$COPY Examples
Copy all disk files to diskette(s):

// LOAD $COPY

// FILE NAME-COPYIN,UNIT-F1

// FILE NAME-COPYO,UNIT-I11,LABEL-#SAVE,PACK-vol-id
/I RUN

// COPYALL TO-I11

/I END

Copy a diskette file (JOE) to a disk file (JOEF):

/!l LOAD $COPY

// FILE NAME-COPYIN,UNIT-11,LABEL-JOE

/I FILE NAME-COPYO,UNIT-F1,LABEL-JOEF,BLOCKS-100,RETAIN-P
// RUN

// COPYFILE OUTPUT-DISK

/I END

Print from the diskette file JON all records with keys from ADAMS to BAKER:

// LOAD $COPY

// FILE NAME-COPYIN,UNIT-11,LABEL-JON
// RUN

// COPYFILE OUTPUT-PRINT

// SELECT KEY,FROM-'ADAMS’, TO-'BAKER’
// END '

Utility Program Descriptions—$COPY

157

Copy back to the disk the entire set of files previously copied from the disk to
diskette(s):

~s s

// FILE NAME-COPYIN,UNIT-11,LABEL-#SAVE
// FILE NAME-COPYO

/l RUN

// COPYALL TO-F1

// END

$DELET—FILE DELETE UTILITY PROGRAM
The $DELET program frees the space occupied by existing files for use by new files.
The space is freed in the following ways:

SCRATCH Changes the diskette file(s) expiration date to the current job date.
For disk file(s), SCRATCH removes the VTOC entry.

REMOVE Removes the VTOC entry with the option of erasing the contents of
the named file(s) on the disk or diskette by overwriting with binary
Zeros.

If you want to delete more than one file, additional control statements must be used.
The end statement (// END) must follow the last SCRATCH or REMOVE statement.

You can delete permanent disk data files only by using the $DELET program. The
system file #LIBRARY cannot be deleted.

$DELET is evoked by the DELETE procedure and JOBSTR procedure (see ikndex
entries: DELETE procedure and JOBSTR procedure).

$DELET Utility Control Statement Formats
Use Control Statements

Scratch the VTOC // SCRATCH UNIT-{::11},LABEL-fiIename [,PACK-voI-id]
entry for the
named file // END
F1 mmddyy
Scratch the VTOC // SCRATCH UNIT-{ " } ,LABEL-filename,DATE-{ ddmmyy EPACK-vol-id]
entry for the yymmdd
named file iden-
tified by the spe- // END
cified creation
date

158

Page of GC21-7593-3)
Issued 22 November 1978
By TNL: GN21-7993

$DELET OCL and Utility Control Statement Sequence

To initiate the $DELET program through OCL, the following is required:

// LOAD $DELET

// RUN F1 filen ,DATE- (mmddyy
// SCRATCH UNIT- LABEL- 4 'ename ddmmyy o [,PACK-vol-id]
: 11 ALL
X yymmdd
and/or .
o ,DATE- (mmddyy)
F1 filename ,DATA- JNO .
/I REMOVE UNIT- {l } }» ,LABEL-{ ALL } ddmmyy [{YESHEPACK-vol-ld]
yymmdd

// END

$DELET Examples

In order to remove the VTOC entry JOE (created October 14, 1974) on the disk, you
could enter:

// LOAD $DELET

// RUN :
// SCRATCH UNIT-F1,LABEL-JOE,DATE-101474
// END

In order to remove and erase all files named JON on the disk, you would enter the
following:

// LOAD $DELET

// RUN

// REMOVE UNIT-F1,LABEL-JON,DATA-YES
// END

~ $DUPRD-DISKETTE COPY UTILITY PROGRAM

The diskette copy program copies a single file on a diskette or all files on a diskette

to one or more output diskettes to provide a duplicate of the file(s). When an entire
diskette is copied, unused space on the input diskette can be gathered together into a
single free space on the output diskette(s). The output diskette(s) must be in the same
format (512-bytes per sector extended format or 128-bytes per sector basic data exchange
format) as the diskette being copied.

'Diskettes with permanent files are the diskettes normally copied. Because diskettes
can develop surface irregularities as they undergo the wear of continued use, it is a

good idea to copy your important@files soon after they are created.

$DUPRD is evoked by the COPY |1 procedure (see index entry: COPY/1 procedure).

Utility Program Descriptions—$DUPRD 159

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$DUPRD Utility Control Statement Formats

Use Control Statement

' - YES
Copy all files on a // COPYI11 NAME-ALL,PACK-vol-id [,DELETE- {NO }]
diskette to one or ! -
more output diskettes

PRESERVE- {T“%S} .COPIES- {';“"‘be’ of °°"'es}

// END

Copy one fileona // COPYI1 NAME-filename PACK-vol-id [,PRESERVE- { YN%S}}
diskette to one or -

more output diskettes .[,COPIES- { :;umber of copies}:l

// END

$DUPRD Parameters

160

NAME-ALL Requests that all-files on a diskette be copied to one or more
output diskettes.

NAME-filename Specifies the name of the single file on a diskette that is to
be copied to one or more output diskettes.

PACK-vol-id Identifies the output diskette(s).

DELETE-YES Indicates that no expired files on the input diskette are to
‘ be copied. The DELETE parameter is valid only with
NAME-ALL.

Note: If a multivbldme ﬁle' exists on the input diskette, the
DELETE-YES parameter is ignored.

DELETE-NO Indicates that expired files on the input diskette are to be copied
to the new diskette(s). The DELETE parameter is valid only
with NAME-ALL. If the DELETE parameter is not specified,
DELETE-NO is the default. '

PRESERVE-YES Indicates that the end of‘ éxteht‘ for ea(."h file copiéd is to be
preserved at the same relative displacement past the end of
data on the output diskette(s) as it was on the input diskette.

PRESERVE-NO Indicates that the end of extent for each file is not to be
: preserved. If the PRESERVE parameter is not specified,
PRESERVE-NO is the default.

Specifies the number of output diskettes to be copied
from one input diskette. If the COPIES parameter is not
specified, 1 is the default. The maximum number of
copies allowed is 99.

COPIES-{?umber of coples}

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$DUPRD Parameter Summary
NAME Parameter
There are two types of NAME parameters:

NAME-ALL and NAME-filename.

The NAME-ALL parameter indicates that all files on the inserted diskette are to be

copied to one or more output diskettes. The NAME-filename parameter specifies the name
of the single file that is to be copied from one input diskette to one or more output
diskettes.

When all files or asingle file on a diskette are copied, the input(and output diskettes
may differ in the volume identification and alternate track information. |f NAME-
ALL s specified, the DELETE parameter can be used.

The diskettes that are being copied can contain basic data exchange files or system

files (see Appendix C). The diskette(s) to contain the copy must not contain active

files if all files on a diskette are being copied, or if the file to be copied is part of

a multivolume file. For either NAME-ALL or NAME-filename, if a diskette to be
- copied is a portion of a multivolume file, only that one portion of the multivolume

file will be copied.

To perform the copy, $DUPRD requires enough space on the disk to contain the
data being copied. $DUPRD copies the file or diskette to the disk, then displays

a message telling the operator to insert the diskette that is to contain the copy.

For each copy that is specified in the COPIES parameter, a message tells the operator
to insert another diskette. After transferring the copy from the disk to each output
diskette that is inserted, SDUPRD execution is complete.

PACK Parameter

The PACK parameter supplies the volume identification (vol-id) of the output disk-
ette. The PACK parameter is always required.

DELETE Parameter

The DELETE parameter can be used if NAME-ALL is specified. DELETE-YFS
specifies that expired files on the input diskette are to be deleted. (Space between
files is eliminated; the files are physically contiguous on the new diskette.) How-
ever, if a multivolume file exists on the input diskette, the DELETE-YES parameter
is ignored. DELETE-NO specifies that expired files on the input diskette are to be
copied. DELETE-NO is the default.

Utility Program Descriptions—$DUPRD 160.1

Page of GC21-7593-3
issued 22 November 1978
By TNL: GN21-7993

PRESERVE Parameter

PRESERVE-YES indicates that for each file copied, the end of extent is preserved

at the same relative displacement past the end of data on the output diskette(s) as

it was on the input diskette. PRESERVE-NOQ indicates that the end of extent for each file
is not to be preserved. PRESERVE-NO is the default.

COPIES Parameter

The COPIES parameter specifies the number of output diskettes to be copied
from one input diskette. The maximum number of copies is 99. COPIES-1 is the
default.

160.2

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$DUPRD OCL and Utility Control Statement Sequence
To initiate the diskette copy program, the following OCL is required:

// LOAD $DUPRD

// FILE NAME-COPY{1,UNIT-I1,...
// RUN

// COPYI...

// END

$DUPRD Examples

Copy all files on a diskette to the diskette with a vol-id of 123456.

// LOAD $DUPRD

/! FILE NAME-COPYI1,UNIT-I1

/[RUN

// COPY11 NAME-ALL,PACK-123456
// END

Copy a file on a diskette (with filename of JIM and creation date of 01-02-75) to
another diskette (with vol-id of 345678).

// LOAD $DUPRD

/! FILE NAME-COPY1,UNIT-11,DATE-010275
// RUN

// COPY11 NAME-JIM,PACK-345678

// END

: $FREE--DISK REORGANIZATION UTILITY PROGRAM

The $FREE utility program causes all free space on the disk, except free space within
files and the system library, to be accumulated into a single area. The location of the
area of free space depends upon the parameters specified in the $FREE utility control
statement.

$FREE cannot be run while in inquiry mode.

If a system failure occurs during the running of $FREE, $FREE must be run again to ensure
the integrity of data on the disk. If the disk VTOC is to be displayed, run the SLABEL
utility program. If $FREE must be run, the following message appears as part of the
information displayed by $LABEL:

$FREE MUST BE RUN BEFORE INFORMATION CAN BE OBTAINED FROM
THIS FILE.

$FREE must then be the next program run. No other program except $LABEL should be
run until $FREE completes. ‘ ’

Note: Because files are physically moved by $FREE, the locations specified by LOCATION
parameters in FILE statements for the moved files (see index entry: // F/LE statement)

will not be valid. To determine new file locations after using $FREE, use the SLABEL
utility or CATALOG procedure to dispiay the disk VTOC.

Utility Program Descriptions—-$DUPRD" 161

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

162

$FREE Utility Control Statement Format

w Y1

r £1 s
// COMPRESS [FREE- {;‘I’(‘;‘;{

$FREE Parameters

FREE- {hIOC‘iIVH} The FREE parameter specifies the direction in which the free space
is to be accumulated.

P

® FREE-LOW specifies that free space is accumulated at the lowest
available block numbers on the disk; that is, the free space imme-
diately following the system library.

® FREE-HIGH specifies that free space is accumulated at the highest
available block numbers on the disk. FREE-HIGH is the default.

$FREE OCL and Utility Control Statement Sequence

To initiate the $FREE program through OCL, the following is required:

// LOAD $FREE

// RUN
' LOW-

[// CQMPRESS [FREE- {HIGH}]]
// END

Page of GC21-7593-3
Issued.22 November 1978
By TNL: GN21-7993

‘$FREE Examples

To accumulate the free space on disk at the high block location addresses, use any of the
following examples. They all accomplish the same logical results.

// LOAD $FREE
/I RUN
// END

or

//- LOAD $FREE
// RUN
/! (one of the following:)
COMPRESS
COMPRESS FREE-HIGH
// END

Note: The same results can also be obtained with the following example:

// LOAD $PACK
// RUN

or :
// COMPRESS comimand statement

To accumulate the free space on disk at the low block location addresses (between
#LIBRARY and data files), use the following example:

// LOAD $FREE

// RUN

// COMPRESS FREE-LOW
// END

Utility Program—$FREE 162.1

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

162.2

$HIST—HISTORY FILE DISPLAY UTILITY PROGRAM

The $HIST utility program lists, according to the current SYSLIST assignment {sce
index entry: SYSLIST procedure), the contents of the HISTORY file. The HISTORY
file is an area on the disk reserved for collecting information such as OCL statements
entered, utility control statements entered, error messages displayed, and the opera-
tor’s response to each error message. Thus, the contents of the HISTORY file allows
you to trace the sequence of events leading to current system status.

Because the HISTORY file is limited in size to thirty-nine 256-byte sectors, the num-
ber of events reflected in the HISTORY file at a particular time varies with the length
of entries in the file. Once the file is filled, each new entry causes the oldest entry to

be dropped from the file. When the file is listed, the oldest entry is displayed or printed
first, and the most recent entry is displayed or printed last.

$HIST is evoked by the HISTORY procedure (see index entry: HISTORY procedure).

$HIST Utility Control Statement Formats

Use Control Statement
Display only previously [// DISPLAY]
displayed HISTORY // END

file data

List complete conténts // DISPLAY ALL
of HISTORY file (includ- // END '

ing items not previously

displayed)

-

$DUPRD Parameter Summary
NAME Parameter

There are two types of NAME parameters:

NAME-ALL and NAME-filename.

The NAME-ALL parameter indicates that all files on the inserted diskette are to be

copied to one or more output diskettes. The NAME-filename parameter specifies the name
of the single file that is to be copied from one input diskette to one or more output
diskettes.

When all files or asingle file on a diskette are copied, the input and output diskettes
may differ in the volume identification and alternate track information. |f NAME-
ALL is specified, the DELETE parameter can be used.

The diskettes that are being copied can contain basic data exchange files or system
files (see Appendix C). The diskette(s) to contain the copy must not contain active
files if all files on a diskette are being copied, or if the file to be copied is part of

.a multivolume file. For either NAME-ALL or NAME-filename, if a diskette to be
copied is a portion of a multivolume file, only that one portion of the multivolume
file will be copied.

To perform the copy, SDUPRD requires enough space on the disk to contain the
data being copied. $DUPRD copies the file or diskette to the disk, then displays

a message telling the operator to insert the diskette that is to contain the copy. .

For each copy that is specified in the COPIES parameter, a message tells the operator
to insert another diskette. After transferring the copy from the disk to each output
diskette that is inserted, SDUPRD execution is complete.

PACK Parameter

The PACK parameter supplies the volume identification (vol-id) of the output disk-
ette. The PACK parameter is always required.

DELETE Parameter

The DELETE parameter can be used if NAME-ALL is specified. DELETE-YES
specifies that expired files on the input diskette are 16 be deleted. (Space between
files is eliminated; the files are physically contiguous on the new diskette.) How-
ever, if a multivolume file exists on the input diskette, the DELETE-YES parameter
is ignored. DELETE-NO specifies that expired files on the input diskette are to be
copied. DELETE-NO is the default. '

Utility Program Descriptions—$DUPRD 163

PRESERVE Parameter

PRESERVE-YES indicates that for each file copied, the end of extent is preserved

at the same relative displacement past the end of data on the output diskette(s) as

it was on the input diskette. PRESERVE-NO indicates that the end of extent for each file
is not to be preserved. PRESERVE-NO is the default.

COPIES Parameter

The COPIES parameter specifies the number of output diskettes to be copied
from one input diskette. The maximum number of copies is 99. COPIES-1 is the
default.

$DUPRD OCL and Utility Control Statement Sequence
To initiate the diskette copy program, the following OCL is required:

// LOAD $DUPRD

// FILE NAME-COPYI1,UNIT-11,...
// RUN

// COPYI...

// END

$DUPRD Examples

Copy all files on a diskette to the diskette with a vol-id of 123456.

// LOAD $DUPRD

// FILE NAME-COPYI1,UNIT-11

// RUN

// COPY11 NAME-ALL,PACK-123456
// END

Copy a file on a diskette (with filename of JIM and creation date of 01-02-75) to
another diskette (with vol-id of 345678).

// LOAD $DUPRD

// FILE NAME-COPYI1,UNIT-11,DATE-010275
// RUN

// COPY11 NAME-JIM,PACK-345678

// END

164

Delete (DELETE)

If the DELETE option of $INIT is requested, the operator is notified via the display
screen when any active files exist on the inserted diskette. If active files do exist,
the job can be canceled or the files can be deleted. If the DELETE option is taken,
the VTOC for the diskette is set to indicate that one file, DATA, occupies tracks
1-73, and DATA is empty. The vol-id specified with the DELETE option is com-
pared with the vol-id in the diskette volume label on track 0. They must be identi-
cal for deletion to occur. The owner-id information specified with the DELETE
option is not compared to information in the volume label.

Rename (RENAME)

If the RENAME option is chosen instead of FORMAT, FORMAT2, or DELETE,

only the volume label (track Q) is changed. The vol-id and owner-id fields are replaced
by the contents of the PACK and ID parameters, respectively. These parameters are
specified with the RENAME option. If a new vol-id is not specified, the system date
is used. |f owner-id is not specified, OWNERID is used.

Diskette Defects Encountered During Processing

If the system encounters diskettes with physical defects during output operation,
the following information will apply.

If a defect is discovered while a job is being processed, the system will make one or
more attempts (called retries) to read or write the bad sector. |f the retries are not
successful and the program is creating output to diskette, the file is closed at the
beginning of the operation during which the error occurred, and normally at the
start of a track. The operator is notified that the diskette contains a defect and is
given the option of inserting another diskette and continuing the operation (which
will result in a multivolume file) or terminating the job and restarting with an error-
free diskette. “ ' ' .

To restore to full use, the diskette should be initialized; however, if the initialization
process results in discovery of more than two defective tracks, the diskette is unusable.

Utility Program Descriptions—$INIT 165

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$INIT Utility Control Statement Formats

The utility control statement for $INIT functions must appear in the order shown:

Use

Initialize a
diskette

Delete files
on a diskette

po-

Rename a
diskette -
// END
SINIT Parameters
UIN Statement

Control Statement

FORMAT

number
. 4 ,RECL- !
1 omormon. {fOMAT L [necy (i)
// VOL [PACK-vol-id][,ID-owner-id
stem date ||,OWNERID
// END)
number |
// UIN OPTION-DELETE [,RECL- {w }]

7/ VOL[PACK-vol-i ,ID-owner-id'I
system date | |, OWNERID |

// END

// UIN OPTION-RENAME [:.RECL- {"“’“b"'}]]

7/ VOL [PACK-vol-id] [,ID-owner-i
system date | | OWNERID

080

l The UIN statement specifies which $INIT option is selected and the record length

the header labels contain.

OPTION- { FORMAT }

FORMAT2

OPTION-DELETE

OPTION-RENAME

number
l RECL- { 060 }

VOL Statement

Initializes a diskette as a basic data exchange format
diskette (FORMAT) with 128-byte data sectors or as
an extended format diskette with 512-byte data sectors
(FORMAT2). For more details on FORMAT and FOR-
MAT2, see index entry: /N/T command statement.

Deletes files on a diskette.

Renames a diskette. RENAME is the option selected
if no option is specified. :

Specifies the record length to be inserted into the header
labels (HDR1 and DDR1). 080 is the default.

The VOL statement provides information to be written in the volume label.

PACK-vol-id
system date

ID-owner-id
OWNERID

166

The PACK parameter specifies the vol-id. If the PACK
parameter is not used, the system date is the default.

The ID parameter specifies information for the
owner-id field of the volume label. If the ID param-
eter is not used, OWNERID is the default.

$INIT Parameter Summary

OPTION-

FORMAT
FORMAT2

OPTION-DELETE

OPTION-RENAME

neot. {

number
080

},

}

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

If FORMAT or FORMAT2 is specified, the initializa-
tion function of $INIT is selected. The initialization
function of $INIT formats and tests a diskette. Track
0 is built or rebuilt and tested for defects. If any
defects are found on track 0, the diskette is unusable.

Tracks are tested through attempts to write IDs and
records consisting of 128 bytes (FORMAT) or 512
bytes (FORMAT?2) of hex E5 on the tracks. If a de-
fect is found within a track, the entire track is marked
defective (track IDs all hex FF) and an alternate is
assigned. If more than two bad tracks are found, the
jobis terminated and the diskette is not usable.

Tracks are initialized by writing sectors of blanks on

all data tracks (1-74). During initialization the VTOC
is set to indicate that one file, DATA, occupies tracks
1-73, and DATA is empty. The vol-id and owner-id
fields of the volume label (track 0) are replaced by the
vol-id and owner-id given in the PACK and ID param-
eters, respectively (see following). If neither param-
eter is used, the system date and OWNERID are written
in the vol-id and owner-id fields, respectively.

For more details on FORMAT and FORMAT2, see
index entry: /NIT command statement. A descrip-
tion of diskette formats is in Appendix C.

The DELETE function deletes files from a diskette by
setting the VTOC to indicate that one file, DATA,
occupies the entire diskette, and DATA is empty.

The RENAME function places the vol-id specified in
the PACK parameter (see following), or the system
date, if PACK is not used, in the vol-id field of the
volume label (track 0). The vol-id is left-adjusted
and padded with blanks. If the 1D parameter is used
(see following), as many as 14 characters of owner
identification information, left-adjusted and padded
with blanks, are placed in the owner-id field of the
volume label. If the ID parameter is not used,
OWNERID is placed in the owner identification field.

Specifies the record length contained in the HDR1 and DDR1
header labels. 080 is the default. The m_aximum‘ number of
128-byte sectors (FORMAT) is 128. The maximum number
for 512-byte sectors (FORMAT2) is 512. This is also true
when using OPTION-DELETE. When using OPTION-

- RENAME, RECL is ignored. |f RECL-080 is entered or

RECL is allowed to vdefault, the record length is inserted into
the header labels as 4 080. Otherwise the record length is
inserted as 00nnn, where nnn is the number entered.

Utility Program Descriptions—$INIT 167

Page of GC21-75693-3
Issued 22 November 1978
By TNL: GN21-7993

PACK-vol-id During initialization (FORMAT or FORMAT2) $INIT

system date writes the vol-id specified by the PACK parameter in.
the volume label of the diskette being initialized. The
vol-id can be as many as six alphameric characters.
The system date is written if the PACK parameter is
not specified.

In the DELETE function, the vol-id specified or system
date must be equal to the vol-id existing on the inserted
"diskette, or the DELETE function is not performed.

In the RENAME function, the vol-id specified or the
system date is written in the volume label of the
inserted diskette.

|D-owner-id The 1D parameter specifies owner information to be
OWNERID written in the volume label to further identify a disk-

ette. As many as 14 characters can be specified. Any
combination of characters except single quotation marks
('), commas, and leading or embedded blanks can be
specified. If the ID parameter is not used, OWNERID

is written in the owner-id field of the volume label.

Owner identification information is strictly for the
user. It is not used by the system to verify that the
appropriate diskette is being used for a job.

$INIT OCL and Utility Control Statement Sequence

To initiate the $INIT program through OCL, the following is required:

// LOAD $INIT

// RUN
FORMAT ' number
FORMAT2 ,RECL- { }]

// UIN OPTION- DELETE [080
RENAME

PACK-vol-id }[,ID-owner-id
[” voL [slstem date][,OWNERID]]
// END

168

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

S$INIT Examples
In order to name a diskette JIM, you could enter:

// LOAD $INIT
// RUN

// VOL PACK-JIM
// END

To initialize to 128-byte data sectors, test for bad tracks, name the diskette APRO,
and insert an owner identification of FRANT, you would enter:

// LOAD $INIT

// RUN

// UIN OPTION-FORMAT

// VOL PACK-APRO,ID-FRANT
// END

Utility Program—$INIT 168.1

168.2

This page intentionally left blank

$HIST OCL and Utility Control Statement Sequence

To initiate the $HIST utility program through OCL, the following is required:

// LOAD $HIST
// RUN
[// DISPLAY...]
// END

$HIST Examples
Display only previously displayed HISTORY file data: g

// LOAD $HIST
// RUN
// END

Display the entire HISTORY file:

// LOAD $HIST
// RUN
// DISPLAY ALL
// END

Display the entire HISTORY file and remove all entries after the file is shown:
// LOAD $HIST
// RUN

// DISPLAY ALL,RESET
// END

Utility Program Descriptions—$HIST 169

170

SINIT-DISKETTE LABELING AND INITIALIZATION UTILITY PROGRAM

$INIT, which is evoked by the INIT procedure (see index entry: /NIT procedure),
performs three functions:

® |Initializes (formats) diskettes
® Deletes files from diskettes

® Renames diskettes by changing volume label information

Initialize (FORMAT and FORMAT2)

To initialize a diskette, $INIT formats the diskette as a basic data exchange diskette
with twenty-six 128-byte sectors per data track or as an extended format diskette
with eight 512-byte sectors per data track (see the description of FORMAT2 under
index entry: /NIT command statement).

During the initialization process, the diskette is checked for active files. If one or
more active files exist on the diskette, the operator is notified via the display screen
to cancel the job or continue. If the operator continues the job, active files are
deleted and the remainder of the diskette is checked for defective tracks. If no
active files are found on the diskette, $INIT checks for defective tracks, marking
(flagging) any defective tracks found.

If track O or more than two other tracks are found to be defective, the operator is
notified via the display screen and initialization is terminated by $INIT. Otherwise,
if one or two bad tracks are found, their addresses are preserved in the ERMAP field
on track O (see The /BM Diskette General Information Manual, GA21-9182).

To complete initialization, all data sectors (tracks 1-74) on the diskette are written
with 128-byte or 512-byte sectors consisting of blanks. The vol-id and owner-id
fields in the volume label on track O are replaced by the PACK and ID parameter
values, respectively (the parameters are described with the other $INIT parameters).
If the PACK parameter is not specified, the system date is used. If the ID parameter
is not specified, OWNERID is used.

The VTOC is initialized to indicate that one file, DATA, occupies tracks 1-73, and
DATA is empty.

Notes:

1. All diskettes for a multivolume file must be initialized in the same format; all
diskettes in the file must be in the 128-bytes-per-sector basic data exchange
format or the 512-bytes per sector extended format.

2. If adiskette read error occurs on a 512-bytes-per-sector diskette, you cannot
correct the bad sector. You can either rerun the job using a different diskette
or retry the same diskette.

Delete (DELETE)

If the DELETE option of $INIT is requested, the operator is notified via the display
screen when any active files exist on the inserted diskette. |f active files do exist,
the job can be canceled or the files can be deleted. If the DELETE option is taken,
the VTOC for the diskette is set to indicate that one file, DATA, occupies tracks
1-73, and DATA is empty. The vol-id specified with the DELETE option is com-
pared with the vol-id in the diskette volume label on track 0. They must be identi-
cal for deletion to occur. The owner-id information specified with the DELETE
option is not compared to information in the volume label.

Rename (RENAME)

If the RENAME option is chosen instead of FORMAT, FORMAT2, or DELETE,

only the volume label (track 0) is changed. The vol-id and owner-id fields are replaced
by the contents of the PACK and ID parameters, respectively. These parameters are
specified with the RENAME option. If a new vol-id is not specified, the system date
is used. If owner-id is not specified, OWNERID is used.

Diskette Defects Encountered During Processing

If the system encounters diskettes with physical defects during output operation,
the following information will apply.

If a defect is discovered while a job is being processed, the system will make one or
more attempts (called retries) to read or write the bad sector. If the retries are not
successful and the program is creating output to diskette, the file is closed at the
beginning of the operation during which the error occurred, and normally at the
start of a track. The operator is notified that the diskette contains a defect and is
given the option of inserting another diskette and continuing the operation (which
will result in a multivolume file} or terminating the job and restarting with an error-
free diskette.

To restore to full use, the diskette should be initialized; however, if the initialization
process results in discovery of more than two defective tracks, the diskette is unusable.

Utility Program Descriptions—$INIT 171

172

S$INIT Utility Control Statement Formats

The utility control statement for $INIT functions must appear in the order shown:

Use

Initialize a
diskette

Control Statement

FORMAT r number
- ,RECL-
// UIN OPTION {FORMAW} [{c@g }]

// VOL [PACK-vol-id] [,ID-owner-id
system date ||,OWNERID

Delete files
on a diskette

Rename a
diskette

// END
mbe
// UIN OPTION-DELETE [,RECL- {gléo ’}]
// VOL[PACK-vol-id] [,ID-owner-id
system date | [, OWNERID
// END

/I UIN OPTION-RENAME [,RECL- {"“mbef}ﬂ

080

[// voL [PACK-vol-id [}ID-owner-i
system date | | OWNERID

~// END

SINIT Parameters

UIN Statement

The UIN statement specifies which $INIT option is selected and the record length
the header labels contain.

FORMAT2

OPTION- {FORMAT } Initializes a diskette as a basic data exchange format

OPTION-DELETE

OPTION-RENAME

RECL- { number }

080
VOL Statement
The VOL statement

PACK-vol-id
system date

ID-owner-id
OWNERID

diskette (FORMAT) with 128-byte data sectors or as
an extended format diskette with 512-byte data sectors
(FORMAT2). For more details on FORMAT and FOR-
MAT?2, see index entry: /INIT command statement.

Deletes files on a diskette.

Renames a diskette. RENAME is the option selected
if no option is specified.

Specifies the record length to be inserted into the header
labels (HDR1 and DDR1). 080 is the defauit.

provides information to be written in the volume label.

The PACK parameter specifies the vol-id. If the PACK
parameter is not used, the system date is the default.

The ID parameter specifies information for the
owner-id field of the volume label. If the ID param-
eter is not used, OWNERID is the default.

SINIT Parameter Summary

OPTION-

FORMAT
FORMAT2

OPTION-DELETE

OPTION-RENAME

RECL- {

number
080

|

|

f FORMAT or FORMATZ2 is specified, the initializa-
tion function of $INIT is selected. The initialization
function of $INIT formats and tests a diskette. Track
0 is built or rebuilt and tested for defects. If any
defects are found on track 0, the diskette is unusable.

Tracks are tested through attempts to write IDs and
records consisting of 128 bytes (FORMAT) or 512
bytes (FORMAT2) of hex Eb on the tracks. If a de-
fect is found within a track, the entire track is marked
defective (track I1Ds all hex FF) and an alternate is
assigned. 1f more than two bad tracks are found, the
job is terminated and the diskette is not usable.

Tracks are initialized by writing sectors of blanks on

all data tracks (1-74). During initialization the VTOC
is set to indicate that one file, DATA, occupies tracks
1-73, and DATA is empty. The vol-id and owner-id
fields of the volume label (track 0) are replaced by the
vol-id and owner-id given in the PACK and ID param-
eters, respectively (see following). If neither param-
eter is used, the system date and OWNERID are written
in the vol-id and owner-id fields, respectively.

For more details on FORMAT and FORMAT?2, see
index entry: INIT command statement. A descrip-
tion of diskette formats is in Appendix C.

The DELETE function deletes files from a diskette by
setting the VTOC to indicate that one file, DATA,
occupies the entire diskette, and DATA is empty.

The RENAME function places the vol-id specified in
the PACK parameter (see following), or the system
date, if PACK is not used, in the vol-id field of the
volume label (track 0). The vol-id is left-adjusted
and padded with blanks. If the ID parameter is used
(see following), as many as 14 characters of owner
identification information, left-adjusted and padded
with blanks, are placed in the owner-id field of the
volume label. If the ID parameter is not used,
OWNERID is placed in the owner identification field.

Specifies the record length contained in the HDR1 and DDR1
header labels. 080 is the default. The maximum number of
128-byte sectors (FORMAT) is 128. The maximum number
for 512-byte sectors (FORMAT?2) is 512. This is also true
when using OPTION-DELETE. When using OPTION-
RENAME, RECL is ignored. |f RECL-080 is entered or
RECL is allowed to default, the record length is inserted into
the header labels as B 080. Otherwise the record length is
inserted as 00nnn, where nnn is the number entered.

Utility Program Descriptions—$INIT

173

174

PACK-vol-id

system date

|D-owner-id
OWNERID

During initialization (FORMAT or FORMAT?2) $INIT
writes the vol-id specified by the PACK parameter in
the volume label of the diskette being initialized. The
vol-id can be as many as six alphameric characters.
The system date is written if the PACK parameter is
not specified.

In the DELETE function, the vol-id specified or system
date must be equal to the vol-id existing on the inserted
diskette, or the DELETE function is not performed.

In the RENAME function, the vol:id specified or the
system date is written in the volume label of the
inserted diskette.

The 1D parameter specifies owner information to be
written in the volume label to further identify a disk-
ette. As many as 14 characters can be specified. Any
combination of characters except single quotation marks
("), commas, and leading or embedded blanks can be
specified. If the ID parameter is not used, OWNERID

is written in the owner-id field of the volume label.

Owner identification information is strictly for the
user. It is not used by the system to verify that the
appropriate diskette is being used for a job.

Page of GC21-7593-3

Issued 25 November 1977

By TNL: GN21-7939

CAUTION

When a program that allows an inquiry request is interrupted, the execution of that
program is suspended, permitting the execution of other programs. However, if
these other programs alter the status of the system or the status of files, the effect
may be abnormal termination of the interrupted program or erroneous results when
the interrupted program regains control. If you are using inquiry, do not change
any files that were being used by the interrupted (rolled-out) program. System/32
system control programming does not always check for duplicate file labels in the
inquiry and interrupted programs. For example, program X is interrupted while it
is processing file A. Records in file A are then deleted using inquiry. A return to
program X will cause unpredictable results.

The system and disk oriented functions listed below have the potential for such
abnormal termination and erroneous results when executed in an inquiry mode:

® An inquiry request cannot be used to execute the following utilities:

Utility Function(s)

$BACK Back up library

$LOAD Reload library

SMAINT All except LISTLIBR and FROMLIBR

$PACK Compress file space .
$REBLD Rebuild VTOC

$SETCF Reconfigure system

$BUILD Rebuild alternate sector

® An inquiry request cannot be used to run the following utilities to perform.the
listed functions:

Utility Function(s)
$COPY " Restore all/save all files
$DELET Delete all files

® An inquiry request cannot be used to run the following utilities to process active
files:

Utility Function(s)
$BICR Transfer active file
$CcorPY Save/organize active file

$DELET Delete active file

° An inquiry request can be used to run the following utilities to perform the
fpllowing functions, but a warning message will be issued when the function is
requested:

Utility Function(s)
$COoPY Display active file
$LABEL Catalog all/active file

Utility Program Descriptions—$LOAD

175

176

Offline Option

For a description of how offline multivolume files are processed, see index entry:
offline multivolume file.

$LOAD Utility Control Statement Format

Control statements are not used.

$LOAD OCL Sequence

// LOAD $LOAD
// FILE NAME-#LIBRARY,UNIT-11

// RUN

SMAINT—LIBRARY MAINTENANCE UTILITY PROGRAM

$MAINT is evoked by the APCHANGE, CONDENSE, FROMLIBR, JOBSTR,
LISTLIBR, REMOVE, and TOLIBR procedures (see index entries: APCHANGE
procedure, CONDENSE procedure, FROMLIBR procedure, JOBSTR procedure,
LISTLIBR procedure, REMOVE procedure, and TOLIBR procedure). SMAINT
has four major functions:

® Allocate. Specifies or changes the size of the library file (#LIBRARY).

® Copy. Copy
1. Places library members in the library
2. Duplicates library members within the library
3. Copies library members to a file on the disbk or on a diskette
4, Displays or prints the contents of the library or directory

® Delete. Removes library members by deleting them.

® Compress. Removes unusable space within the library.

All functions of SMAINT and the related utility control statements are described in
. detail after the following general description of the library.

UNIT F1 for disk VTOC displays.

DATE The current system date in the current format.

FILE NAME The name of the file described by the VTOC entry.
FILE DATE The creation date of the file described.

RECORD COUNT The number, in decimal, of records currently contained

by a file. A VTOC entry for the library file, #LIBRARY,
is shown in the preceding sample display. Because
#LIBRARY is not a data file, no record count is

given.

RECORDS AVAILABLE The number, in decimal, of records for which there is
still room in a file. A VTOC entry for the library file,
#LIBRARY, is shown in the preceding sample display.
Because #LIBRARY is not a data file, no record count
is given. o

RETAIN TYPE - The retention classification of a file: P for permanent,
T for temporary.

FILE ORG File organization: S for sequential, | for indexed
sequential, D for direct, P for pseudo tape.

RECORD LENGTH The length, in decimal number of bytes, of the records
in a file. A VTOC entry for the library file, #LIBRARY,
is shown in the preceding sample display. Because
#LIBRARY is not a data file, the record length
given in the sample dispiay is 00.

FILE LOCATION The decimal block number of the beginning of data in
a file. :
KEY LENGTH Decimal length of the keys in an indexed file.

KEY LOCATION The position, in decimal, of the rightmost byte of the
: key in the records in an indexed file.

CREATION FORMAT The format in which a file was created, either BLOCKS
or RECORDS. :

UNITS ALLOCATED The number, in decimal, of biocks or records allocated
for a file.

Note: If the RECORDS parameter was used to allo-
cate space, the number shown might be greater than the
number requested, because the system allocates space

in blocks and rounds up to the next higher block when-
ever part of a block is required.

Utility Program Descriptions—$LABEL 177

178

Diskette VTOC

DISKETTE DISPLAY DATE - (DATE)
PACK - INVTRY ID - JONES

SPACE AVAILABLE ON THIS PACK IS 1861 BLOCKS - EACH 128 BYTES

FILE FILE FILE FILE
NAME - DATE LENGTH TYPE

KRCINV 01/17/75 30 SYSTEM
TEMPRM 01/24/75 33 SYSTEM
¥k ¥END OF VTOC DISPLAY#®sdokk

DATE

PACK

SPACE AVAILABLE

FILE NAME
FILE DATE

FILE LENGTH

RECORD FILE EXPIRATION MVF " SEQUENCE
. LENGTH LOCATION DATE FILE NUMBER
37 27 PROTECT
20 57 PROTECT

The current system date in the current format.

The volume identification given in the diskette volume

label. The volume label for 128-bytes per sector basic
data exchange format diskettes is described in the /BM
Diskette General Information Manual, GA21-9182. See
also Appendix C of this manual.

The owner identification given in the diskette volume
label. The volume label for 128-bytes per sector basic
data exchange format diskettes is described in the /BM
Diskette General Information Manual, GA21-9182. See
also Appendix C. '

The number, in decimal, of 128-byte or 512-byte
sectors available on the diskette. The number
represents space following the last active file on the
diskette. If all files were removed, using the DELETE
procedure or the $DELET utility program, the head-
ing THERE ARE NO FILES PRESENT ON THIS
PACK appears and the VTOC display ends.

The name specified when the file described was created.
The creation date of the file described.

The number, in decimal, of 128-byte or 512-byte
sectors contained in a file.

Note: If the file was created by the $COPY utility
{see index entry: $COPY utility program) and the
record length of the file is 128 bytes or less, a sector
of control information is inserted at the beginning

of the file. This sector of control information
increases the FILE LENGTH by one. When the file

is returned to the disk, the control information is
dropped and record count returns to the original
number.

NUMBER OF BLOCKS
IN OFFLINE MV FILE

Allocate Function

~ Allocate Uses

® Specify library size
L] In;:rease library size

® Decrease library size

Allocate Control Statement Formats

Use Control Statement .

Specify library // ALLOCATE LIBRSIZE-number
size
Increase library //- ALLOCATE INCREASE-number
size
Decrease library /! ALLOCATE DECREASE-number
size

Allocate Parameters

LIBRSIZE-number Specifies the size of the library in number of blocks (1 block =
ten 256-byte sectors)

INCREASE-number Increases the library size by the number of blacks indicated

DECREASE-number Decreases the library size by the number of blocks indicated

Allocate OCL and Utility Control Statement Sequence

// LOAD $MAINT
// RUN

// ALLOCATE...
// END

Note: Within any one run of the SMAINT utility program (that is, for any one

// LOAD $MAINT and // RUN sequence), you cannot increase, then decrease, then
increase the library size, whether you use the INCREASE and DECREASE key-
words or the LIBRSIZE keyword to change the library size.

Utility Program Descriptions—$MAINT

179

Page of GC21-7593-3
Issued 22 November-1978
" 'By TNL:"GN21-7993

Allocate Examples

In order to set the library size at 1000 blocks you would enter:

// LOAD $MAINT

// RUN

// ALLOCATE LIBRSIZE-1000
// END

In order to increase the library size by 10 blocks you would enter:

// LOAD $MAINT

// RUN

// ALLOCATE INCREASE-10
// END

In order to decrease the library size by 3 blocks you would enter:

// LOAD $MAINT

// RUN

// ALLOCATE DECREASE-3
// END

Copy Function
Copy Uses

Reader-to-Library ® Add a procedure or source member to the library, or
replace a procedure or source member in the library.
When $SMAINT OCL statements are entered into the system
from the keyboard, reader refers to the keyboard. If a pro-
cedure calls SMAINT copy function, reader refers to the
procedure itself. The member to be copied to the library
is then all statements following the COPY statement until
a CEND statement is encountered.

Library-to-Library ® Copy a member from the Iibrary to the library, chang-
ing the name of the member.

® Copy a member having a certain name or all members
having the name.

® Copy members, either of a specified type or of all types,
that have names beginning with certain characters.

® Copy members, either of a specified type or of all types,
omitting members that have a certain name or have
names beginning with certain characters, or omitting
all SCP members (SCP members are library members
of any type, provided with and used by the SCP).

Library-to-File ® Copy a member from the library to a file,
(record mode or

sector mode) ® Copy a member having a certain name or all members
having the name.

180

Note: The $LOAD utility provides the only method whereby you can change the

size of the library directory (alter the space allocated to it) and the size of the HISTORY

file. ‘When using the $LOAD utility program (or the RELOAD procedure) however, be aware
that library members that exist on the disk but do not exist in the backed up library will be
lost when the backed up library is returned to the disk. If you have added library members
to the disk since the library was backed up and you want to save those members, use the
FROMLIBR procedure to copy them before executing RELOAD or $LOAD, then

use TOLIBR to place them in the backed up library after it is reloaded. (You might

have to increase the size of the backed up library in order to have room for the
additional members.) For information on FROMLIBR and TOLIBR, see index

entries: FROMLIBR procedure and TOL/BR procedure.

Inquiry Option

Certain programs can be interrupted while they are being processed. A request for
interruption is called an inquiry request (made by pressing the INQ key on the key-
board and choosing the 1 option). Programs are usually interrupted to permit another
program to run. Control is then returned to the first program.

The inquiry interrupt involves three steps:

1. When a program that can be interrupted recognizes an jnquiry request (the
INQ key was pressed and the 1 option chosen}, a rollout routine moves
the interrupted program from main storage to the disk.

Note: If an inquiry request is made during execution of certain system pro-
grams, the inquiry display is delayed until the system programs are completed.
When the system programs are completed, the inquiry display appears.

2. The program for which the interrupt was requested must be loaded normally
using the keyboard. The interrupting program can be any type. This interrupt-
ing program cannot be interrupted, but can be canceled.

Note: The printer does not skip to line 1 of the next page at the end of an
interrupting program.

3. After the interrupting program is executed, a roll in routine moves the inter-
rupted program back into main storage. The interrupted program begins
execution at the point of interruption and terminates in a normal manner.

If the inquiry option is selected, the SCP allocates a rollout area on the disk to con-
tain programs that can be rolled out from main storage. If the inquiry option is not
selected, the inquiry interrupt itself is allowed, but attempts to perforrh the rollout
routine are bypassed.

Notes:
1. If the operator presses the INQ key after pressing the STOP key, and the IPL
~ diskette switch is on, the system displays the contents of main storage on the

display screen, beginning with the main storage address specified by the data
switches on the CE control panel. To terminate the display and continue '
processing, the operator can press the START key. '

2. The inquiry option is inactive if data communications or the data recorder is
being used.

Utility Program Descriptions—$LOAD 181

182

CAUTION

When a program that allows an inquiry request is interrupted, the execution of that
program is suspended, permitting the execution of other programs. However, if
these other programs alter the status of the system or the status of files, the effect
may be abnormal termination of the interrupted program or erroneous results when
the interrupted program regains control. If you are using inquiry, do not change
any files that were being used by the interrupted (rolled-out) program. System/32
system control programming does not always check for duplicate file labels in the -
inquiry and interrupted programs. For example, program X is interrupted while it
is processing file A. Records in file A are then deleted using inquiry. A return to
program X will cause unpredictable results.

The system and disk oriented functions listed below have the potential for such
abnormal termination and erroneous results when executed in an inquiry mode:

® An inquiry request cannot be used to execute the following utilities:

Utility Function(s)

$BACK Back up library

$LOAD Reload library

SMAINT All except LISTLIBR and FROMLIBR
$PACK Compress file space

$REBLD Rebuild VTOC

$SETCF Reconfigure system

$BUILD Rebuild alternate sector

® An inquiry request cannot be used to run the following utilities to perform the
listed functions:

Utility Function(s)
$CcorPY Restore all/save all files
$DELET Delete all files

® An inquiry request cannot be used to run the following utilities to process active
files: : ‘

Utility Function(s)

$BICR Transfer active file
$COPY Save/organize active file
$DELET Delete active file

® Aninquiry request can be used to run the following utilities to pérform the
following functions, but a warning message will be issued when the function is
requested:

Utility Function(s)
$COPY Display active file
$LABEL Catalog all/active file

Offline Option

For a description of how offline multivolume files are processed, see index entry:
offline multivolume file.

$LOAD Utility Control Statement Format

Control statements are not used.

$LOAD OCL Sequence

// LOAD $LOAD
// FILE NAME-#LIBRARY,UNIT-I1

// RUN

SMAINT—-LIBRARY MAINTENANCE UTILITY PROGRAM

SMAINT is evoked by the APCHANGE, CONDENSE, FROMLIBR, JOBSTR,
LISTLIBR, REMOVE, and TOLIBR procedures (see index entries: APCHANGE
procedure, CONDENSE procedure, FROMLIBR procedure, JOBSTR procedure,
LISTLIBR procedure, REMOVE procedure, and TOLIBR procedure). SMAINT
has four major functions:

® Allocate. Specifies or changes the size of the library file (#LIBRARY).

® Copy. Copy

1.

2.

3.

4.

Places library members in the library
Duplicates library members within the library
Copies library members to a file on the disk or on a diskette

Displays or prints the contents of the library or directory

® Delete. Removes library members by deleting them.

® Compress. Removes unusable space within the library.

All functions of SMAINT and the related utility control statements are described in
detail after the following general description of the library.

Utility Program Descriptions—$MAINT

183

184

System Library File (#LIBRARY)
Location

The library is the first file on the disk immediately following the reserved fixed area

of the disk.
J
Fixed #LIBRARY ' DATA
Area FILE
AREA

1
The boundaries of the library at any one time are fixed, though they can be changed
by a BACKUP and RELOAD sequence (see index entries: BACKUP procedure and
RELOAD procedure), and by ALLOCATE, a function of SMAINT (see index entry:

ALLOCATE). :
Contents
Reserved | Disk Error Directory | Rollout : Scheduler | Additional] Library
Area Volume Logging Area Area | Work Main Stor-| Members
Label Area (Optional)] Area age Dump
(VvOL1) . i (SWA) Area

Disk volume label (VOL1): The volume label is 256 bytes long and contains owner
identification information and system control programming information regarding
the disk.

Error Logging Area: The error logging area is a variable number of sectors used for
recording hardware and hardware-related system errors. The error logging area is
assigned by the SLOAD utility.

Directory area: The directory area contains system information, recorded and maintained
by $MAINT, and the library directory. The library directory contains an entry for
each member in the library. Each entry describes the corresponding library member
and identifies its location. $MAINT places an entry in the directory each time it
places a member in the library, and deletes an entry each time it deletes a member.
The size of the library directory can be changed by the $LOAD utility (see index
entry: $LOAD utility program). However, the size of the directory is restricted to
a maximum of 256 sectors. :

Rollout area: A rollout area is allocated only if inquiry support and offline multivolume
file support is selected (INCLUDE INQUIRY/OFFLINE? = YES on the RELOAD
display—see index entry: RELOAD display). For a description of the inquiry
option and offline multivolume files, see index entries: inquiry option and offline
multivolume file.

Scheduler work area (SWA): The SWA is a 170-sector area reserved for use by
components of the system control program.

Additional main storage dump area: This area is set aside for the 24K and 32K (K = 1024
bytes) main storage systems.

Library members: The library can contain load members, procedure members, source
members, and subroutine members. Member names can be any combination of
characters (numeric, alphabetic, and special) except commas, periods, single guotes
('}, blanks, question marks (?), slash (/), and hyphen (-). The question mark (?),
stash (/), and hyphen (-) have special meanings in procedures (see index entry:
procedure parameters) and in certain control statements and should not be used in
member names. The first character of a member name must be alphabetic (includes
#,$, and @), and the number of characters in a member name must not exceed eight.

Organization of Library Members within the Library

Members are stored in the library serially; that is, a 20-sector member occupies 20
consecutive sectors.

New library members are placed in the library just as records are placed in an indexed
file; that is, they are placed after the last active member, and their physical order in
the library reflects the sequence in which they were entered.

When members are deleted from the library, only the space after the last active
member is made available for new members. This means that if you copy a group
of new members into the library, then later delete these same members before
adding more, the space they occupied in the library is unavailable for adding other
new members.

Gaps can occur in the library either when a member is deleted or when a member is
replaced by a member that requires a different number of sectors, because sectors
between members are unusable. If the number of unusable sectors becomes high,
the library member area can be compressed by either the CONDENSE procedure, a
BACKUP and a RELOAD sequence, or the APCHANGE procedure.

When a library is compressed, members are moved as close as possible to the
beginning of the library member area so that no gaps are between the members.
All unused space is collected into one free area at the end of the library.

To provide as much space as possible within the prescribed limits of the library, the

system compresses procedure and source members by removing all duplicate blanks.
When the members are retrieved, the blanks are reinserted.

Utility Program Descriptions—$MAINT 185

Allocate Function

Allocate Uses
(] Specify library size
® Increase library size |

® Decrease library size

Allocate Control Statement Formats

Use Control Statement
Specify library - // ALLOCATE LIBRSIZE-number
size ‘ '
Increase library // ALLOCATE INCREASE-number
size
Decrease library // ALLOCATE DECREASE-number
size .

Allocate Parameters

LIBRSIZE-number Specifies the size of the library in number of blocks (1 block =
ten 2566-byte sectors)

INCREASE-number Increases the library size by the number of blocks indicated

DECREASE-number Decreases the library size by the number of blocks indicated

Allocate OCL and Utility Control Statement Sequence

/' LOAD $MAINT
// RUN

// ALLOCATE...
// END

Note: Within any one run of the $MA|NT utility program (that is, for any one

// LOAD $MAINT and // RUN sequence), you cannot increase, then decrease, then
increase the library size, whether you use the INCREASE and DECREASE key-
words or the LIBRSIZE keyword to change the library size.

Procedure Restrictions

If nested procedures are used, information contained in the scheduler work area can
become invalid when a source library is reorganized or changed in size. Therefore, if a
procedure is used to reallocate or reorganize libraries, any further procedures contained
within that nested procedure should not be called from the source library that is being
reallocated or reorganized.

186

® Print members, either of a specified type or of all types, omitting members that
have a certain name or have names beginning with certain characters, or omitting
all SCP members:

S
P name
// COPY FROM-F1,LIBRARY- g ,NAME- {characters.ALL}
ALL
name
TO-PRINT,OMIT- {characters.ALL
SYSTEM

® Print the directory entries for members of a certain type:

// COPY FROM-F1,LIBRARY- /NAME-DIR,TO-PRINT

DO v W

® Print all directory entries and system information from the directory area:
- // COPY FROM-F1,LIBRARY-ALL,NAME-DIR,TO-PRINT
® Print the system information in the directory area:

// COPY FROM-F1,LI BRARY-éYSTEM,NAM E-DIR, TO-PRINT

® Print directory entries, either for members of a specified type or for all members,
omitting entries for members that have a certain name or names beginning with
certain characters, or omitting all entries for SCP members:

S
» P
// COPY FROM-F1,LIBRARY-< O ,NAME-DIR, TO-PRINT,
: R
ALL
name
OMIT- < characters.ALL
SYSTEM

Note: If the display screen and not the printer is used to list library members or
directory entries, only the first 40 bytes of each output line are displayed. To en-
sure that all the information in a library member or directory entry is listed, assign
the printer to list the output. You can use the STATUS procédure (see index entry:
STATUS procedure) to determine where system output is currently listed (that is,
 what the current SYSLIST assignment is); you can use the SYSLIST procedure

- {see index entry: SYSLIST procedure) to change the current SYSLIST assignment.

Utility Program Descriptions—$MAINT

187

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Copy Parameters

FROM-READER The member to be placed in the library is to be read
(entered) from the keyboard or from a procedure that
invokes the SMAINT copy function.

FROM-F1 Library members are located in the library.

FROM-DISK Input is from a file on either the disk or a diskette. A
FILE statement is required to identify the file.

LIBRARY-S The specified member(s) is a source member.

LIBRARY-P The specified member(s) is a procedure member.

LIBRARY-O The specified member(s) is a load member.

LIBRARY-R The specified member(s) is a subroutine member.

LIBRARY-ALL ® For copying library-to-file in record mode, specifies

source (S) and procedure (P) members.

® For printing from the directory area, specifies that
system information as well -as directory entries are to
be printed.

Note: For all uses of copy except the two just listed,

specifies that all member types (S, P, O, and R) are
involved.

188

® Print directory entries, either for members of a speci-
fied type or for all members, omitting entries for mem-
bers that have a certain name or have names beginning
with certain characters, or omitting all entries for SCP
members.

Note: If the display screen and not the printer is used to

list library members or directory entries, only the first 40
bytes of each output line are displayed. To ensure that

all the information in a library member or directory entry

is listed, assign the printer to list the output. You can use

the STATUS procedure (see index entry: STATUS procedure)
to determine where system output is currently listed (that is,
what the current SYSLIST assignment is); and the SYSLIST
procedure (see index entry: SYSL/ST procedure) to change
the current SYSLIST assignment.

Copy Control Statement Formats

Reader-to-Library: Control statements required for adding or replacing a procedure or
source member are:

RETAIN-P
,NAME-name, TO-F1 [——-] ,RECL-number

S ,RETAIN-R

P
// COPY FROM-READER,LIBRARY- %
Library member (blanks are removed from statements before the statements are.
put in the library, and reinserted for printing)
// CEND Must always follow the procedure or source statements being placed
in the library.
Library-to-Library: Control statements depend on the function required.
® Copy a member from the library to the library, changing the name of the member:

" // COPY FROM-F1,LIBRARY-

NAME-name, TO-F1,NEWNAME-name |-BETAIN-P
,RETAIN-R

DO OvW!w

® Copy a member having a certain name or all members having the name:

R ,RETAIN-R

s
P
// COPY FROM-F1,LIBRARY-20 ,NAME-name, TO-F1 ['BE-IAL'\‘—"-’} NEWNAME-name
ALL

Utility Program Descriptions—$MAINT 189

190

® Copy members, either of a specified type or of all types, that have names begin-
ning with certain characters:

/l COPY FROM-F1,LIBRARY- ,NAME-characters.ALL,

T O OTWwW

ALL

,RETAIN-P
TO-F1 [_—RETAIN-R:\ ,/NEWNAME-characters

® Copy members, either of a specified type or of all types, omitting members that
have a certain name or have names beginning with certain characters, or omitting
all SCP members:

S
, P name
// COPY FROM-F1,LIBRARY- g ,NAME- {characters.ALL} s
ALL
name
TO-F1 [’E—g‘ﬁ—:‘s—g:‘ ,NEWNAME-characters,OMIT- < characters.ALL
! SYSTEM

Library-to-File, Record Mode: Control statements depend on the function required.

Note: Source or procedure members (record mode) copied from the library to a
file must be converted to a basic data exchange diskette file by the TRANSFER
procedure if the diskette file is to be used as input to other systems.

® Copy or add a library member to a file:

,RECL-number

// COPY FROM-F1,TO-DISK,FILE-filename {,ADD-YES ‘ } JNAME-name,

LIBRARY- {ﬁ}

® Copy or add a member having a certain name or both members—two permitted
types—having the name:

. ,RECL-number
// COPY FROM-F1,TO-DISK,FILE-filename {,ADD-YES } JNAME-name,
S
LIBRARY-< P
ALL

® Copy or add members, either of a specified type or of all (two) permitted types,
that have names beginning with certain characters:

,RECL-number

Y FROM-F1,TO-DISK FILE-i
// COP ROM-F1,TO-DISK,FILE-filename {,ADD-YES

} ,NAME-characters.ALL,
S
LIBRARY-< P
ALL

® Copy or add alllmembers of the two permitted types except SCP members:

,RECL-number

'ADD-YES } ,NAME-ALL,

// COPY FROM-F1,TO-DISK,FILE-fiIename{
LIBRARY-ALL
® Copy or add members, either of a specified type or of all (two) permitted types,

omitting members that have a certain name or have names beginning with certain
characters, or omitting all SCP members:

. ,RECL-number name
// COPY FROM-F1,TO-DISK,F|LE-f||ename{’ADD_YES } JNAME- {characters.ALL}
) name
LIBRARY-} P ,OMIT- < characters.ALL
{ALL SYSTEM

Library-to-File, Sector Mode: Control statements depend on the function required.
® Copy or add a library member to a file:
// COPY FROM-F1,TO-DISK,FILE-filename,NAME-name,

LIBRARY- [ADD-YES]

IO vw!;

® Copy or add a member having a certain narhe or all members having the name:
// COPY FROM-F1,TO-DISK,FILE-filename,NAME-name,
S
P
LIBRARY-< O >[,ADD-YES]
R

ALL

Utility Program Descriptions—$MA|NT 191

192

® Copy or add members, either of a specified type or of all types, that have names
beginning with certain characters:

// COPY FROM-F1,TO-DISK,FILE-filename, NAME-characters.ALL,

s
P
LIBRARY-< O [ADD-YES]
R
ALL

® Copy or add all members except SCP members:

// COPY FROM-F1,TO-DISK,FI LE-fiIename,NAME-ALL,

LIBRARY-ALL [,ADD-YES]

® Copy or add members, either of a specified type or of all types, omitting mem-
bers that have a certain name or have names beginning with certain characters,
or omitting all SCP members:

// COPY FROM-F1,TO-DISK,FILE-filename,

s
ALL ; P name
NAME- < name LIBRARY-C O »,OMIT- { characters. ALL > [ADD-YES]
characters.ALL R SYSTEM
ALL

® Copy or add all members (SCP and non-SCP) that have had a PTF applied to them,
with the option to omit specified members or all SCP members:

ALL
// COPY FROM-F1,TO-DISK,FILE-filename, NAME-< name
characters.ALL

S
P name :
LIBRARY-< O ,LPTF-YES |,OMIT- ¢ characters.ALL [,ADD-YES]
R SYSTEM
ALL

File-to-Library: Control statements depend on the function required.

® Copy a member or members from a file to the library:

RETAIN-P A
// COPY FROM-DISK,TO-F1 [,_—_—RETAIN-RiI ,FILE-filename

® Copy a member that has had a particular PTF applied to it, from a file to the
library:

,RETAIN-P .
// COPY FROM-DISK,TO-F1 [,__RETNN-R] ,FILE-filename,PTF-number

© Copy a member or members from a file to the library, omitting members that do
not presently exist in the library.

// COPY FROM-DISK,TO-F1 ['-————RETA'N'P

,RETAIN-R] ,FI LE-fu!e’name,OMiT-N EW

Note: $MAINT can copy a sector mode file to the library only if the file was copied
from the library by SMAINT. See the preceding description, Library-to-file, Sector
Mode and index entry: TOL/BR procedure.

Library-to-Printer: Control statements depend on the function required.

@ Print a member having a certain name or all members having the name:

S
P

// COPY FROM-F1,LIBRARY- < O > NAME-name, TO-PRINT
R

ALL

® Print all members of é certain type:

// COPY FROM-F1,LIBRARY- /NAME-ALL,TO-PRINT

O T W

® Print members, either of a specified type or of all types, that have names begin-
ning with certain characters:

//. COPY FROM-F1,LIBRARY- ,NAME-characters. ALL, TO-PRINT

T30 YW

ALL

Utility Program Descriptions—$MAINT

193

194

® Print members, either of a specified type or of all types, omitting members that
have a certain name or have names beginning with certain characters, or omitting
all SCP members:

S
P name
// COPY FROM-F1,LIBRARY- g /NAME- {characters.ALL} ,
ALL
name
TO-PRINT,OMIT- {characters.ALL
' SYSTEM

® Print the directory entries for members of a certain type:

// COPY FROM-F1,LIBRARY- ,NAME-DIR,TO-PRINT

IO TW;W

® Print all directory entries and system information from the directory area:
// COPY FROM-F1,LIBRARY-ALL NAME-DIR,TO-PRINT
® Print the system information in the directory area:
// COPY FROM-F1,LIBRARY-éYSTEM,NAME-DIR,TO-PRINT
® Print directory entries, either for members of a specified type or for all members,

omitting entries for members that have a certain name or names beginning with
certain characters, or omitting all entries for SCP members:

S
// COPY FROM-F1,LIBRARY-< O > ,NAME-DIR,TO-PRINT,
R
ALL
name
OMIT- < characters.ALL
SYSTEM

Note: If the display screen and not the printer is used to list library members or
directory entries, only the first 40 bytes of each output line are displayed. To en-
sure that all the information in a library member or directory entry is listed, assign
the printer to list the output. You can use the STATUS procedure (see index entry:
STATUS procedure) to determine where system output is currently listed (that is,
what the current SYSLIST assignment is); you can use the SYSLIST procedure

(see index entry: SYSL/ST procedure) to change the current SYSLIST assignment.

LINK ADDR

RLD DISP

ENTRY ADDR

PROG SIZE

LEVEL

Page of GC21-7593-3

tssued 25 November 1977

By TNL: GN21-7939

A program temporary fix (PTF) has been applied to this program.

This is a load member containing overlays.

Reserved.

Reserved.

This program reads source itself. The member can contain a COMPILE
statement (see index entry: // COMPILE statement) and a no-source-

required attribute (bit 4 of byte 0 off—0).

This program requires that SWORK?2 be atlocated.

This SCP member has been translated from English into another
language.

This program requires that a new load address be calculated at load time to
ensure that it is placed in main storage at a point beyond its own common
region. ‘ ’

This program reads utility control statements.

This program contains a where-to-go table. It is used by the

transient cross reference resolver program (#OXRF).

For load members only. The main storage address, in
decimal and hexadecimal, assigned to the member when
it is linked in main storage with other load members.

For load members only. Displacement, in decimal and
hexadecimal, of first RLD (relocation dictionary) in

member in first sector containing RLDs.

For load members only. Main storage address, of entry
point of member in decimal and hexadecimal.

For load members only. Decimal and hexadecimal num-
ber of sectors required to run the program contained in
the member.

® Release level of the system programs.

® For user’s programs, this can be assigned by the overlay linkage
editor.

® For source and procedure members, the release level when the
members were created.

® RPG load members have a level number or zero.

Utility Program Descriptions—$SMAINT

195

Copy Examples
Library-to-Library: The following is an example of a library-to-tibrary copy.
Copy aload member presently named ACCT in order to give it a new name, ACCT1:

// LOAD $MAINT

// RUN

// COPY FROM-F1,LIBRARY-O,NAME-ACCT,TO-F1,NEWNAME-ACCT1
// END

Library-to-File: The following examples demonstrate copying from the library to a file.

Copy a procedure member named PAYROLL in sector mode {hexadecimal format,
compressed data) to a disk file named PAY that is 30 sectors long and is to be re-
tained permanently:

// LOAD $MAINT

// FILE NAME-PAY,UNIT-F1,BLOCKS-3,RETAIN-P

// RUN

// COPY FROM-F1,TO-DISK,FILE-PAY NAME-PAYROLL,LIBRARY-P
// END

Copy a source member named SAM in record mode (expanded format, includes
blanks) with a record length of 80 to a disk file named BOB that is 20 sectors long
and is to be retained only temporarily:

// LOAD $MAINT

// FILE NAME-BOB,UNIT-F1,BLOCKS-2,RETAIN-T

// RUN ‘

// COPY FROM-F1,TO-DISK,FILE-BOB,RECL-80,NAME-SAM,LIBRARY-S
// END

Copy a source member or procedure member named SAM in record mode (expand-
ed format, includes blanks) with a record length of 80 to a disk file named BOB
that is 20 sectors long and is to be retained only temporarily. Then using the
TRANSFER procedure, convert the disk file named BOB to a basic data exchange
diskette file named BOB, on a diskette with a vol-id of 111222 and a retention
period of 30 days:

// LOAD $MAINT ,

// FILE NAME-BOB,UNIT-F1,BLOCKS-2,RETAIN-T

// RUN

// COPY FROM-F1,TO-DISK,FILE-BOB,RECL-80,NAME-SAM,LIBRARY-S
// END

TRANSFER BOB,F1,751215,111222,30

Notes:

1. The date format on the TRANSFER procedure must be in yymmdd format if
you are creating basic data exchange diskette files to use with other systems.

2. Source or procedure members (record mode) copied from the library to a file
must be converted to a basic data exchange diskette file by the TRANSFER
procedure if the diskette file is to be used as input to other systems.

196

ADD-YES

NEWNAME-name

NEWNAME-characters

OMIT-name

OMIT-characters.ALL

Record Mode: Record mode is specified by the RECL
parameter used with the TO-DISK parameter (each is
described in a preceding paragraph). Record mode can
be specified only for source and procedure members.
Source and procedure member copies made in record
mode are preceded by a // COPY utility control state-
ment and followed by a // CEND utility control state-
ment. (The format of the // COPY utility control state-
ment is:

// COPY NAME-name,LIBRARY- {2} where name is

the member name and P or S indicates procedure or source
member. The format of the // CEND utility control state-
ment is // CEND.) The member itself is in expanded for-
mat; that is, the data is not compressed—all blanks are
included.

Sector Mode: The TO-DISK parameter without the
RECL-number parameter specifies sector mode. A sector
mode copy can be specified for any type (load, procedure,
source, or subroutine) of library member. In sector mode,
copies are in hex format and consist of control informa-
tion and PTF (program temporary fix) numbers for any
PTFs that have been applied to a member, followed by
the member as it exists in the library.

Add library member(s) to an existing file that contains
library members. If ADD-YES is not specified,
ADD-NO is assumed.

Notes:

1. When adding a member to a disk file, the file must con-
tain enough unused space to hold the member. When
adding a member to a diskette file, the file must be the
last active (unexpired) file on the diskette.

2. The RECL parameter (described in preceding paragraph)
is not allowed if ADD-YES is specified. The record
length is determined by the record length of the exist-
ing file. The record length of the existing file also de-
termines whether a member is added in record or sec-
tor mode. If the record length of the existing file is
40 to 120, the source or procedure member is added
in record mode. If the record length of the existing
file is 32, the member is added in sector mode.

Name desired for a new member(s). Valid only for a
library-to-library copy.

Beginning characters (maximum of seven) of the name

desired for a new library member(s). Must be the same
number of characters as specified in the NAME-charac-
ters. ALL parameter described in a preceding paragraph.

Omit the entry specified by name.

Omit all entries whose names begin with the specified
characters (maximum of seven characters).

Utility Program Descriptions—SMAINT

197

198

OMIT-SYSTEM

OMIT-NEW
FILE-filename

PTF-YES

PTF-NO

PTF-num ber

Omit all SCP members.

Omit copying all members that do not presently exist in
the library.

The name of the file given on the OCL FILE statement
referring to the input or output file.

Specifies that only members that have had a PTF applied
to them are to be copied to the file. Valid only when
copying in sector mode from the library to a file:
FROM-F1,TO-DISK.

The members that have had a PTF applied to them have
no particular significance. They are copied if the name
is the same as the specified name. If the PTF parameter
is not specified, the default value is PTF-NO.

Only the member(s) with the specified PTF log number
(00001 through 65535) are selected from the file and
copied to the library. The PTF keyword having a numeric
value is only valid when copying in sector mode from file
to library: FROM-DISK,TO-F1.

Copy OCL and Utility Control Statement Sequence

// LOAD $MAINT

[/ FILE ...] A FILE statement is required only if copying TO-DISK or
FROM-DISK; that is, from the library to a file, or from a file
to the library.

// RUN
// COPY ...
// END

Using the Copy Function

Naming Library Members: Considerations that apply to naming library members are:

® The first character of each member name must be alphabetic, #, $, or @. Member
names can be any combination of characters (numeric, alphabetic, and special)
except commas, periods, single quotes ('), blanks, question marks (?), slash (/}, and
hyphen (-). The question mark (?), slash (/), and hyphen (-} have special meanings
in procedures (see index entry: procedure parameters) and in certain control
statements and should not be used in member names. The names of all IBM-sup-
plied SCP load and subroutine members begin with a pound or dollar sign (# or $).
Therefore, to avoid possible duplication, do not use a pound or dollar sign as the
first character in names you assign.

® A name can be from one to eight characters long.

® ALL, DIR, and SYSTEM must not be used as member names. They have specnal
meanings in the LIBRARY, NAME, and OMIT parameters.

® Members of the same type cannot have the same name, but members of different
types can. For example, two procedure members cannot have the same name,
but a procedure member and a source member can have the same name.

Utility Program Descriptions—$MAINT 199

200

Printing from the Library: Library members can be printed by using a library-to-printer

request. When the statements are printed, blanks are reinserted into statements
contained in source and procedure members. Load and subroutine members are

printed in hex format.

Library-to-printer requests can also be used to print system information contained
in the library directory area and to print directory entries. Figure 7 shows a sample
printout of system information contained in the library directory area. Figure 8
shows the information given in a printout of a directory entry. The figure is followed

by an explanation of the fields shown.

SYSTEM INFORMATION 0L-01-75

START SECTOR OF LIBRARY

END SECTOR OF LIBRARY

TOTAL NUMBER OF LIBRARY BLOCKS
START SECTOR OF DIRECTORY

END SECTOR OF DIRECTORY

DIRECTORY SECTORS

ACTIVE DIRECTORY ENTRIES

AVAILABLE DIRECTORY ENTRIES

START SECTOR, INQUIRY/OFFLINE AREA
END SECTOR OF INQUIRY/OFFLINE AREA
START SECTOR OF SCHEDULER AREA

END SECTOR OF SCHEDULER AREA

STARf SECTOR OF LIBRARY MEMBERS
END‘SECTDR OF LIBRARY MEMBERS
ACTIVE LIBRARY MEMBER SECTORS
AVAILABLE MEMBER SECTORS

NEXT AVAILABLE MEMBER SECTOR

184/00B8
5600/15E0
542/021E
184/00B8
243/00F3
60/003C
345/0159
292/0124
244/00F4
363/016B
364/016C
533/0215
534/0216
5600/15E0
1943/0797
2549/09F5

3052/0BEC

Note: The first of the two numbers given in the column at the right is a decimal
number, the second is hexadecimal. (In the example 184/00B8, 184 is the decimal

value of hexadecimal 00B8.)

Figure 7. Sample Printout of System Information

LIBRARY DIRECTORY MM DD YY

TYPE NAME START ADDR TOTAL NUM TEXT/RECURD ATTRIBUTES LLINK ADDR RLD DISP ENTRY ADDR . PROG SIZE LEVEL
X member dec/hex dec/hex dec/hex 2 bytes dec/hex dec/hex dec/hex dec/hex n
Figure 8. Information in Printout of Library Directory Entry

Following is an explanation of the fields shown in Figure 8.
TYPE Type of library member described by the entry:
S source member
P procedure member
0] load member
R subroutine member
NAME Name of the library member.
START ADDR Sector number of the first sector of the member in both
decimal and hexadecimal.
TOTAL Total number of sectors in the member, in decimal and
hexadecimal.
NUM TEXT/RECORD For source and procedure members, record length of the
member, given in decimal and hexadecimal. For load
- members, the number of text sectors contained in the
member, excluding RLDs—relocation dictionaries—which
are the part of a load member used for adjusting main
storage addresses when the member is moved to main
storage. {For subroutine members, blank.)
ATTRIBUTES Two bytes, 16 bits, of attributes giving detailed charac-
teristics of the member.
Bit Meaning When On (1)
Byte O:
0 This member is an SCP member. This bit is used to prevent SCP members
from being deleted or removed.
1 Reserved.
2 Reserved.
3 Reserved.
4 This program requires that $WORK and $SOURCE be aliocated. $SOURCE

must be filled from the keyboard, a source member, or an inline source from
a procedure (queued job stream). :

5 This SCP module is not part of the basic SCP system.

Utility Program Descriptions—$MAINT

201

202

LINK ADDR

RLD DISP

ENTRY ADDR

PROG SIZE

LEVEL

A program temporary fix (PTF) has been applied to this program.

This is a load member containing overlays.

Reserved.

Reserved.

This program reads source itself. The member can contain a COMPILE
statement (see index entry: // COMPILE statement) and a no-source-

required attribute (bit 4 of byte 0 off—0).

This program requires that SWORK?2 be aliocated.

This SCP member has been translated from English into another
language. '

This program requires that a new load address be calculated at load time to
ensure that it is placed in main storage at a point beyond its own common
region.

This program reads utility control statements.
This program contains a where-to-go table. It is used by the

transient cross reference resolver program (#OXRF).

For load members only. The main storage address, in
decimal and hexadecimal, assigned to the member when
it is linked in main storage with other toad members.

For load members only. Displacement, in decimal and
hexadecimal, of first RLD (relocation dictionary) in

member in first sector containing RLDs.

For load members only. Main storage address, of entry
point of member in decimal and hexadecimal.

For load members only. Decimal and hexadecimal num-
ber of sectors required to run the program contained in
the member.

® Release level of the system programs.

® ' For user’s programs, this can be assigned by the overlay linkage
editor.

® For source and procedure members, the release level when the
members were created.

® RPG load members have a level number or zero.

Copy Examples
Library-to-Library: The following is an example of a library-to-library copy.
Copy a load member presently named ACCT in order to give it a new name, ACCT1:

// LOAD $SMAINT

// RUN , :

// COPY FROM-F1,LIBRARY-O,NAME-ACCT,TO-F1,NEWNAME-ACCT1
// END

Library-to-File: The following examples demonstrate copying from the library to a file.

Copy a procedure member named PAYROLL in sector mode (hexadecimal format,
compressed data) to a disk file named PAY that is 30 sectors long-and is to be re-
tained permanently:

// LOAD $MAINT ‘
// FILE NAME-PAY,UNIT-F1,BLOCKS-3,RETAIN-P
// RUN
// COPY FROM-F1,TO-DISK,FILE-PAY,NAME-PAYROLL,LIBRARY-P
// END

Copy a source member named SAM in record mode (expanded format, includes
blanks) with a record length of 80 to a disk file named BOB that is 20 sectors long
and is to be retained only temporarily:

// LOAD $MAINT

// FILE NAME-BOB,UNIT-F1,BLOCKS-2,RETAIN-T

// RUN _

// COPY FROM-F1,TO-DISK,FILE-BOB,RECL-80,NAME-SAM,LIBRARY-S
// END

Copy a source member or procedure member named SAM in record mode {expand-
ed format, includes blanks) with a record length of 80 to a disk file named BOB
that is 20 sectors long and is to be retained only temporarily. Then using the
TRANSFER procedure, convert the disk file named BOB to a basic data exchange
diskette file named BOB, on a diskette with a vol-id of 111222 and a retention
period of 30 days:

/l LOAD $MAINT

// FILE NAME-BOB,UNIT-F1,BLOCKS-2,RETAIN-T

// RUN

// COPY FROM-F1,TO-DISK,FILE-BOB,RECL-80,NAME-SAM,LIBRARY-S
// END A

TRANSFER BOB,F1,751215,111222,30

Notes: -

1. The date format on the TRANSFER procedure must be in yymmdd format if
you are creating basic data exchange diskette files to use with other systems.

2. Source or procedure members (record mode) copied from the library to a file
must be converted to a basic data exchange diskette file by the TRANSFER
procedure if the diskette file is to be used as input to other systems.

Utility Program Descriptions—$MAINT 203

Copy ali members named PAYDAY in sector mode to a disk file named PAYROLL
that is 60 sectors long, starts at location 1500, and is a temporary file:

// LOAD $MAINT

// FILE NAME-PAYROLL,UNIT-F1,BLOCKS-6,LOCATION-1500,RETAIN-T
// RUN

// COPY FROM-F1,TO-DISK,FILE-PAYROLL,NAME-PAYDAY,LIBRARY-ALL
// END

Copy source and procedure members named PAYDAY in record mode with a record
length of 120 to a disk file named PAY that is 80 sectors long and is to be retained
permanently:

// LOAD $MAINT

// FILE NAME-PAY,UNIT-F1,BLOCKS-8,RETAIN-P

// RUN

// COPY FROM-F1,TO-DISK,FILE-PAY ,RECL-120,NAME-PAYDAY,
LIBRARY-ALL

// END

Copy in sector mode all members whose names begin with a dollar sign ($). Copy
the members to a file named UTIL that has a retention period of 90 days and is on
a diskette whose vol-id is UTILITY:

/I LOAD $MAINT

// FILE NAME-UTIL,UNIT-11,RETAIN-S0,PACK-UTILITY

// RUN

// COPY FROM-F1,TO-DISK,FILE-UTIL,NAME-$.ALL,LIBRARY-ALL
// END

Copy all source and procedure members whose names begin with the characters RPU,
in record mode, with an 80-byte record length. Copy the members to a disk file
named RPSD that is 50 sectors long and is classified as a permanent file:

// LOAD $MAINT

// FILE NAME-RPSD,UNIT-F1,BLOCKS-5,RETAIN-P

// RUN

// COPY FROM-F1,TO-DISK,FILE-RPSD,RECL-80,NAME-RPU.ALL,
LIBRARY-ALL

/{ END

Copy in sector mode all members whose names begin with the characters PA, omit-
ting members whose names start with PAY. Copy the members to a disk file named
- PAYR that is 60 sectors long and is classified as a temporary file:

// LOAD $MAINT ,

/I FILE NAME-PAYR,UNIT-F1,BLOCKS-6,RETAIN-T

// RUN

// COPY FROM-F1,TO-DISK,FILE-PAYR,NAME-PA.ALL,LIBRARY-ALL,
OMIT-PAY.ALL

// END

204

Message Text Statement

The format of the message text statement is:
MIC Text

® MIC (message identification code). The MIC must be specified as a 1 to 4 charac-
ter decimal number from 0 to 9999 and must be left-justified within the first
four positions of the message text statement. The MIC must be in ascending
order, relative to the MIC for the preceding message text statement, or the same
MIC specified on consecutive message text statements to concatenate the text
area. The number of statements that can be concatenated is restricted to the
minimum number required to specify up to 200 characters of message text area.

The MICs for the command keys are listed with the corresponding data

characters:
Command Key Command Key
MiC (lowercase) MiCc (uppercase)
0001 1 0013 |
0002 2 0014 @
0003 3 0015 #.
0004 4 0016 $
0005 5 " 0017 %
OOQG 6 0018 -
0007 7 0019 &
0008 8 0020 *
0009 9 0021 {
0010 0 | 0022 -)
0011 - (minus) . 0023 _ {underscore)

0012 = 0024 +

® Text (text area of the message text statement). The text area of each message
text statement starts at position six and extends to the end of the message text
statement (length of statement depends on record length of message source
member). The text for a message is the series of characters from the start of the
text area to the last nonblank character of the text area for the MIC. If text can-
not be contained on one message text statement, it can be continued on following
message text statement(s) specifying the same MIC. The text area on following
statement(s) is appended to the text area of the preceding statement before trail-
ing blanks for the total text specified are dropped. A message text of one blank
will be generated for a message text statement containing a blank text area.

Utility Program Descriptions—$MGBLD 205

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Comment Statement (Optional)
The format of the comment statement is:

* ..comment ...

Comment statements must have an * as the first character. Comment statements
can be interspersed with the message text statements. These statements, intended to
provide additional information about the message, do not become part of the mes-
sage load member.

An Example of Creating a Message Source Member and Load Member

Assume that you want to enter from the keyboard into the library a message source
member named USERMI. See the reader-to-library copy function of SMAINT (see
index entry: SMAINT utility program). For more examples see index entry:
creating and using messages.

USERMSG, 1 A message control statement, USERMSG is the load-name and
1 is the message level.

1235 ENTER TODAY'S DATE. and 1236 are MICs. The message text

1234 ENTER YESTERDAY'S DATE. (Message text statements; 1234, 1235,
1236 ENTER TOMORROW'S DATE. (follows the MICs.

* THE ABOVE MESSAGES ARE FOR PROGX. iA comment statement.

To create a message source member named USERMI from the above statements, you
would enter on the keyboard:

// LOAD $MAINT

// RUN

// COPY FROM-READER,LIBRARY-S,NAME-USERMI,TO-F1,RETAIN-P,RECL-45
USERMSG;,1

1234 ENTER YESTERDAY'S DATE.

1235 ENTER TODAY'S DATE.

1236 ENTER TOMORROW'S DATE.

* THE ABOVE MESSAGES ARE FOR PROGX.

// CEND

// END

To create a message load member named USERMSG from the above source member
(USERMI), you could use the CREATE procedure (see index entry: CREATE pro-

cedure), entering:

CREATE USERMI

206

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

An Example of Assigning a Command Key to a Procedure

Assume that you want to enter from the keyboard into the library a message source
member named JOE with the following statements. See the reader-to-library func-
tion of SMAINT. (See index entry: SMAINT utility program.) Assume also that
you want command key 1 to represent the CATALOG command statement and
command key 2 to représent the DATE command statement. Then when you need
to execute one of these two procedures you can press the CMD key, the upper or
lower case assigned key, and the ENTER key, instead of entering the command state-
ment for commonly used procedures. '

##WSG3,2 A message control statement; ##MSG3 is the load-name and 2
{ is the level of load member being created (see index entry:
command keys, assigning).
0001 CATALOG ALL,F1 Message text statements; 0001 and 0002 are the
0002 DATE 12/19/75 command key MICs. The message text follows
the MICs and represent procedures.

To create a message source member named JOE from the above statements, you
enter on the keyboard:

// LOAD $MAINT

// RUN

// COPY FROM-READER,LIBRARY-S,NAME-JOE,TO-F1,RECL-120
##MSG3,2

0001 CATALOG ALL,F1

0002 DATE 12/19/75

// CEND

// END

To create a message load member némed ##MSG3,2 from the source member (JOE),
you can use the CREATE procedure. (See index entry: CREATE procedure.) The
CREATE procedure entry from the keyboard is:

CREATE JOE

Now you must perform an IPL (initial program load).

Utility Program Descriptions—$MGEBLD 207

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$PA_CK—DISK REORGANIZATION UTILITY PROGRAM

$PACK reorganizes the disk so that all free space on the disk is collected in one area at the
high end of the disk. The reorganization is accomphshed by successuvely moving each
data file as closely as possible to the library.

If a file is being moved to a space that is smaller than the file, $PACK must over-

fay portions of the file in the process of moving it. Consequently, $PACK takes spe-

cial precautions to ensure that data is not lost if a system failure occurs while $PACK
is being used. If it is possible that data may be lost after such a failure, SPACK must

be the first program run, except for SLABEL (see index entry: $LABEL utility pro-

gram), after successful restart of the system.

To determine if $SPACK must be rerun after a system failure occurred while $SPACK
was being used, evoke the SLABEL utility to display the disk VTOC. If data integ-
rity on the disk was unaffected by the system failure, each VTOC entry is displayéd.
If there is a chance that data may be lost from a file, instead of that file’s label being
displayed, the following message is displayed on the display screen:

$PACK MUST BE RUN BEFORE INFORMATION CAN BE OBTAINED FROM THIS FILE.

$PACK is evoked by the COMPRESS procedure and APCHANGE procedure (see
index entries: COMPRESS procedure and APCHANGE procedure).

Note: Because files are physically moved by $PACK, the locations specified by
LOCATION parameters in FILE statements for the moved files (see index entry:

// FILE statement) will not be valid. To determine new file locations after using
$PACK, use the SLABEL utility or CATALOG procedure to display the disk VTOC.

To accumulate the free space at the low end of the dlsk see $FREE——DISK Reorganization
Utility Program.

$PACK Utility Control Statement Format

Because $PACK always reorganizes the disk in the same manner, utility control state-
ments are not used.

$PACK OCL Sequence

// LOAD $PACK
// RUN

208

Delete Examples
Delete a non-SCP source member named PAYROLL:
// LOAD $MAINT
// RUN
// DELETE LIBRARY-S,NAME-PAYROLL
// END
Delete all non-SCP members whose names begin with the characters INV:
// LOAD $MAINT
// RUN
// DELETE LIBRARY-ALL,NAME-INV.ALL
// END
Delete all non-SCP procedures:
// LOAD $MAINT
// RUN
// DELETE LIBRARY-P,NAME-ALL
// END '
Compress Function
Compress Use
Compress the library member area by collecting all unusable space into one area at
the end of the last active library member sector.
Compress Restrictions
The following restrictions apply to using the compress function:
® The library member area cannot be greater than 2867 blocks.
® |f a permanent disk error occurs while the compress function is executing, there
is no error recovery. The library must be reloaded from diskette (see index
entry: RELOAD procedure).

Compress Control Statement Format

// COMPRESS

Compress Parameters

None

Utility Program Descriptions—$MAINT

209

210

Compress OCL and Utility Control Statement Sequence

// LOAD $MAINT

// RUN

// COMPRESS

// END

$MGBLD—-CREATE MESSAGE MEMBER UTILITY PROGRAM

The $MGBLD utility program creates a message load member in the library. A mes-
sage load member is the special type of library load member from which the SCP

retrieves the text associated with the message identification code (MIC) specified by
a calling program.

$MGBLD is evoked by the CREATE procedure (see index entry: CREATE

procedure).

$MGBLD Utility Control Statement Format

// MGBLD SOURCE-sourcename [scp- { YES}} [REPLACE- { YES}]

$MGBLD Parameters

SOURCE-sourcename

YES

SCP- NO

REPLACE-

YES
NO

NO NO

Specifies the name of the library message source member
that contains the message control statement and message
text statements (MIC and text) required to create a mes- -
sage load member. See Message Source Member following
for information about message control statements and
message text statements.

If YES is specified, the message ioad member created is
identified as an SCP member and cannot be deleted by
the REMOVE procedure (see index entry: REMOVE
procedure).

If NO is specified, the message load member is not identi-
fied as an SCP member. NO is the default.

If YES is specified, the message load member replaces an
existing member with the same name.

If NO is specified, an existing member with the same
name is not replaced. An error message is displayed if
an attempt is made to replace a member. NO is the
default.

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$REBLD OCL Sequence

// LOAD $REBLD
// RUN

$SRENAM-—RENAME DATA FILE UTILITY PROGRAM
The $RENAM utility program changes the name of a specified data file from its created

name to the name supplied by the utility control statement or by the RENAME command
statement. No other attribute of the selected file can be changed.

$RENAM Utility Control Statement Format

mmddyy
// RENAME LABEL-filename-1,NEWLABEL-filename-2 | ,DATE- { ddmmyy
yymmdd
SRENAM Parameters
LABEL-filename-1 Specifies the file name to be changed. A file by this name must exist

on disk prior to evoking SRENAM.

NEWLABEL-filename-2 Specifies the name of the file after being renamed.

mmddyy
DATE-{ ddmmyy Creation date of the disk file. When the file specified by
yymmdd the LABEL parameter is part of a group of files with like

names but different creation dates, the DATE parameter
permits selection of a specific file. If the DATE parameter

$RENAME OCL and Utility Control Statement Sequence

// LOAD $RENAM

// RUN mmddyy
// RENAME LABEL-filename-1,NEWLABEL-filename-2 | ,DATE-< ddmmyy

yymmdd
// END

Note: Muitiple RENAME statements may be entered before the END statement.

SRENAM Examples
Change the name of a disk file named OLD to NEW.
// LOAD $RENAM
// RUN

// RENAME LABEL-OLD,NEWLABEL-NEW
// END

Utility Program Descriptions—$SETCF 211

Page of GC21-7593-3
.= Issued 22 November 1978
By TNL: GN21-7993

Change the name of a disk file named A created on 10/17/78 to B when more than one file
exists with the name A. ’

// LOAD $RENAM

// RUN

// RENAME LABEL-A,NEWLABEL-B,DATE-101778
// END

$SETCF—SET UTILITY PROGRAM
$SETCF is used to change the following items:
® System environment
® BSC environment
® SDLC environment
@ Override BSC specifications
® Specify SDLC specifications
® Trace functions

® MICR document movement

When the system is created for the first time (the initial IPL), values for these items
are recorded in the system. These values can be changed by $SETCF. If a value is
never changed, it retains its original status. If an item is changed, the new value is
reflected in subsequent IPLs until the item is changed again (except for the DEBUG-Y
parameter which is reset by each IPL or by the TRACE procedure).

$SETCF is evoked by the SET, ALTERBSC, ALTERSDL, OVERRIDE, SPECIFY,
TRACE, and SETMICR procedures (see index entries: SET procedure, ALTERBSC
procedure, ALTERSDL procedure, OVERRIDE procedure, SPECIFY procedure,
and TRACE procedure).

Note: The SETMICR procedure is used to modify the method of moving MICR
documents through the 1255 Magnetic Character Reader attachment for diagnostic
purposes. For further information on the SETMICR procedure and the 1255
Magnetic Character Reader, see /BM System/32 1255 Magnetic Character Reader
Reference and Logic Manual, GC21-7692.

D212 it

Page of GC21-7693-3
Issued 22 November 1978
By TN L: GN21-7893

Set the System Environment
The following system environment items can be defined by $SETCF:
® BSC

e SDLC

Number of lines printed per page

Print belt image

System date format

System date

Utility Program Descriptions—$SETCF 2121

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Utility Control Statement Format for Setting the System Environment

: , YES MDY
// SETCF [LINES-number] [,IMAGE- ,FORMAT- < DMY
NO YMD

Note: Though each individual parameter is optional, at least one parameter must
be entered.

Parameters for Setting the System Environment

LINES-number Specifies the number of lines to be printed per page. The value
specified can be 1 through 84.

Note: See index entry: // FORMS statement fof the way the
value specified is used to determine the actual number of lines
printed per page.

IMAGE-YES The print belt image is to be modified to reflect a changed print:
belt. An IMAGE OCL statement (see index entry: // IMAGE
statement) identifying the new image must precede the accom-
panying // RUN statement if IMAGE-YES is specufled ina
// SETCF statement.

IMAGE-NO The print belt image is not to be modified. IMAGE-NO is the
default value if IMAGE-YES is not specified.

FORMAT-MDY System date format is to be month-day-year.
FORMAT-DMY System date format is to be day-month-year.
FORMAT-YMD System date format is to be year-month-day.

Note: Use yymmdd format if you are creating basic data ex-
change format diskettes to use with other systems.

OCL and Utility Control Statement Sequence for Setting the System Environment

// LOAD $SETCF
[// DATE...]

Note: If a date is given, it becomes the system date.
[// IMAGE..]

Note: If a print belt image is specified by $SETCF, it becomes the image set by
IPL. If an image is specified by the // IMAGE OCL statement and not by $SETCF,
the image is established only until the next IPL is performed, at which time a differ-
ent image may be specified for the system.

// RUN
// SETCF ...
// END

212.2

Comment Statement (Optional)
The format of the comment statement is:
* ...comment ...

Comment statements must have an * as the first character. Comment statements
can be interspersed with the message text statements. These statements, intended to
provide additional information about the message, do not become part of the mes-
sage load member.

An Example of Creating a Message Source Member and Load Member

Assume that you want to enter from the keyboard into the library a message source
member named USERMI. See the reader-to-library copy function of SMAINT (see
index entry: SMAINT utility program). For more examples see index entry:
creating and using messages.

USERMSG,1 A message contro! statement, USERMSG is the load-name and
1 is the message level.

1234 ENTER YESTERDAY’S DATE. (Message text statements; 1234, 1235,
1235 ENTER TODAY'S DATE. and 1236 are MICs. The message text
1236 ENTER TOMORROW’S DATE. follows the MICs.

* THE ABOVE MESSAGES ARE FOR PROGX. %A comment statement,

To create a message source member named USERMI from the above statements, you
would enter on the keyboard:

// LOAD $MAINT

// RUN

// COPY FROM-READER,LIBRARY-S,NAME-USERMI,TO-F1,RETAIN-P,RECL-45
USERMSG,1

1234 ENTER YESTERDAY'S DATE.

1235 ENTER TODAY'S DATE.

1236 ENTER TOMORROW'’S DATE.

* THE ABOVE MESSAGES ARE FOR PROGX.

// CEND

// END

To create a message load member named USERMSG from the above source member
(USERMI), you could use the CREATE procedure (see index entry: CREATE pro-

cedure), entering:

CREATE USERMI

Utility Program Descriptions—$MGBLD 213

214

An Example of Assigning a Command Key to a Procedure

Assume that you want to enter from the keyboard into the library a message source
member named JOE with the following statements. See the reader-to-library func-
tion of SMAINT. (See index entry: SMAINT utility program.) Assume also that
you want command key 1 to represent the CATALOG command statement and
command key 2 to represent the DATE command statement. Then when you need
to execute one of these two procedures you can press the CMD key, the upper or
lower case assigned key, and the ENTER key, instead of entering the command state-
ment for commonly used procedures.

##MSG3,2 A message control statement; ##MSG3 is the load-name and 2
is the level of load member being created (see index entry:
{command keys, assigning).
0001 CATALOG ALL,F1 (Message text statements; 0001 and 0002 are the
0002 DATE 12/19/75 command key MICs. The message text follows
the MICs and represent procedures.

To create a message source member named JOE from the above statements, you
enter on the keyboard:

// LOAD $MAINT

// RUN

// COPY FROM-READER,LIBRARY-S,NAME-JOE, TO-F1,RECL-120
##MSG3,2

0001 CATALOG ALL,F1

0002 DATE 12/19/75

// CEND

// END

To create a message load member named ##MSG3,2 from the source member (JOE),
you can use the CREATE procedure. (See index entry: CREATE procedure.) The
CREATE procedure entry from the keyboard is:

CREATE JOE

Now you must perform an IPL (initial program load).

$PACK—-DISK REORGANIZATION UTILITY PROGRAM

$PACK reorganizes the disk so that all free space on the disk is collected in one area at the
high end of the disk. The reorganization is accomplished by successively moving each
data file as closely as possible to the library.

If a file is being moved to a space that is smaller than the file, $SPACK must over-

lay portions of the file in the process of moving it. Consequently, SPACK takes spe-
cial precautions to ensure that data is not lost if a system failure occurs while $PACK
is being used. If it is possible that data may: be lost after such a failure, SPACK must
be the first program run, except for $LABEL (see index entry: $LABEL utility pro-
gram), after successful restart of the system.

To determine if SPACK must be rerun after a system failure occurred while $PACK
was being used, evoke the SLABEL utility to display the disk VTOC. |f data integ-
rity on the disk was unaffected by the system failure, each VTOC entry is displayed.
If there is a chance that data may be lost from a file, instead of that file’s label being
displayed, the following message is displayed on the display screen:

$PACK MUST BE RUN BEFORE INFORMATION CAN BE OBTAINED FROM THIS FILE.

$PACK is evoked by the COMPRESS procedure and APCHANGE procedure (see
index entries: COMPRESS procedure and APCHANGE procedure).

Note: Because files are physically moved by $PACK, the locations specified by
LOCATION parameters in FILE statements for the moved files (see index entry:

// FILE statement) will not be valid. To determine new file locations after using
$PACK, use the SLABEL utility or CATALOG procedure to display the disk VTOC.

To accumulate the free space at the low end of the disk, see $FREE—~DISK Reorganization
Utility Program.

$PACK Utility Control Statement Format

Because $PACK always reorganizes the disk in the same manner, utility control state-
ments are not used.

$PACK OCL Sequence

/l LOAD $PACK
// RUN

Utility Program Descriptions—$PACK 215

216

$QJOB—QUEUED JOB STREAM CARD-TO-LIBRARY UTILITY PROGRAM

The $QJOB utility program transfers a job stream containing procedure and source
members created on cards to the System/32 library. $QJOB may be evoked by the
JOBSTR procedure (see index entry: JOBSTR procedure}).

The job stream you create on cards can consist of multiple procedure and source
members. Each procedure and source member must begin with a COPY statement
and end with a CEND statement. The last record in your card deck must be a /*
statement and must immediately follow the last CEND statement.

The format of the COPY statement is:

/! COPY NAME-name,LIBRARY- {P}
S

The name is the member name, and P or S indicates a procedure member or a
source member.

The format of the CEND statement is:
// CEND

The CEND statement is not valid within a source or procedure member. It is valid
only as the last statement for the source or procedure member.

A job stream created on cards could contain the following statements:
// COPY NAME-P1,LIBRARY-P

// CEND
// COPY NAME-P2,LIBRARY-P

// CEND
// COPY NAME-S1,LIBRARY-S

// CEND
/*

$QJOB Utility Control Statement Format

Utility control statements are not used.

$QJOB OCL Sequence

The following entries are required to load and run the program:

// LOAD $QJOB
// RUN

$REBLD—REBUILD DATA FILE UTILITY PROGRAM

For each file on the disk, a corresponding format 1 record exists. A format 1 record
contains system information that describes a file. $REBLD is used to restore, in the
disk VTOC, format 1 records for disk output files that were being processed when a
system failure occurred—a failure caused, for example, by a power failure or inadver-
tent IPL. When $REBLD is used after a system failure, the output files are closed
and the format 1 records are written to the disk VTOC, allowing the data that was
written to the files prior to the system failure to be accessible to the user. In effect,
by restoring format 1 records to the VTOC, $REBLD restores data files that

might otherwise be lost. If SREBLD is not used after a system failure, certain out-
put files may not be accessible to the user.

Note: SREBLD must be the first program run after a system failure unless the
system failed while the $PACK utility was being used (see index entry: $PACK
utility).

$REBLD searches the scheduler work area in the library for format 1 records that
are opened or opened and closed but not written to the disk VTOC. When such a
format 1 is found, a check is made to determine if the format 1 is for an input file

or for an output file. If the format 1 is for an input file, it is updated to a completed
status and written to the disk VTOC as in normal end-of-job processing. If the for-
mat 1 is for an output file, another check is made to determine the file organization.

Sequential file The logical end of file is made equal to the physical end of file.
and The format 1 is updated to a completed status and written to
Pseudo tape file the disk VTOC via normal end-of-job processing.

Indexed file The last indexed entry is checked for a valid data record. If
not valid, the previous indexed entry is checked, and so on,
until an indexed entry with a valid data record is found. The
format 1 is updated to a closed status. The keys are sorted
and the format 1 is writien to the disk VTOC via normal
end-of-job processing.

Direct file The format 1 is updated to a completed status and written to
the disk VTOC via normal end-of-job processing.

Add and update files are treated as output files. $REBLD restores only temporary
(RETAIN-T) and permanent (RETAIN-P) files. Scratch files (RETAIN-S) are not
restored,

As SREBLD runs, messages are issued giving the labels, filenames (from // FILE
statements), creation dates, crganization (sequential, indexed, direct, or pseudo
tape) of files restored, and the key of the last valid record for indexed files. {f no

files required restoring, a message to that effect is issued. $REBLD is evoked by
the REBUILD procedure (see index entry: REBUILD procedure).

$REBLD Utility Control Statement Format

Utility control statements are not used.

Utility Program Descriptions—$REBLD 217

$REBLD OCL Sequence

// LOAD $SREBLD
// RUN

$RENAM-—-RENAME DATA FILE UTILITY PROGRAM
The $RENAM utility program changes the name of a specified data file from its created

name to the name supplied by the utility control statement or by the RENAME command
statement. No other attribute of the selected file can be changed.

$RENAM Utility Control Statement Format

mmddyy
// RENAME LABEL-filename-1,NEWLABEL-filename-2 | ,DATE- < ddmmyy
yymmdd
SRENAM Parameters
LABEL-filename-1 Specifies the file name to be changed. A file by this name must exist

on disk prior to evoking SRENAM.

NEWLABEL-filename-2 Specifies the name of the file after being renamed.

mmddyy
DATE-{ ddmmyy Creation date of the disk file. When the file specified by
yymmdd the LABEL parameter is part of a group of files with like

names but different creation dates, the DATE parameter
permits selection of a specific file. |f the DATE parameter
is omitted, the file with the most recent date is renamed.

SRENAM OCL and Utility Control Statement Sequence

// LOAD $RENAM

// RUN mmddyy
// RENAME LABEL-filename-1,NEWLABEL-filename-2 | DATE-< ddmmyy

yymmdd
// END

Note: Multiple RENAME statements may be entered before the END statement.

$RENAM Examples
Change the name of a disk file named OLD to NEW.
// LOAD $RENAM
// RUN

// RENAME LABEL-OLD,NEWLABEL-NEW
// END

218

Change the name of a disk file named A created on 10/17/78 to B when more than one file
exists with the name A. '

// LOAD $RENAM

// RUN

// RENAME LABEL-A,NEWLABEL-B,DATE-101778
// END

$SETCF—SET UTILITY PROGRAM
$SETCF is used to change the following items:
@ System environment
® BSC environment
® SDLC environment
® Override BSC specifications
® Specify SDLC specifications

® Trace functions

® MICR document movement

When the system is created for the first time (the initial IPL), values for these items
are recorded in the system. These values can be changed by $SETCF. |f a value is
never changed, it retains its original status. If an item is changed, the new value is
reflected in subsequent IPLs until the item is changed again (except for the DEBUG-Y
parameter which is reset by each IPL or by the TRACE procedure).

$SETCF is evoked by the SET, ALTERBSC, ALTERSDL, OVERRIDE, SPECIFY,
TRACE, and SETMICR procedures {see index entries: SET procedure, ALTERBSC
procedure, ALTERSDL procedure, OVERRIDE procedure, SPECIFY procedure,
and TRACE procedure). '

Note: The SETMICR procedure is used to modify the method of moving MICR
documents through the 1255 Magnetic Character Reader attachment for diagnostic
purposes. For further information on the SETMICR procedure and the 1255
Magnetic Character Reader, see /BM System/32 1255 Magnetic Character Reader
Reference and Logic Manual, GC21-7692.

Utility Program Descriptions—$SETCF 219

Set the System Environment
The following system environment items can be defined by $SETCF:
e BSC
® SDLC
® Number of lines printed per page
® Print belt image
® System date format

® System date

Utility Control Statement Format for Setting the System Environment

YES MDY
// SETCF [LINES-number] [,IMAGE- ,FORMAT- < DMY
NO YMD

Note: Though each individual parameter is optional, at least one parameter must
be entered.

220

Parameters for Setting the System Environment

LINES-number

IMAGE-YES

IMAGE-NO

FORMAT-MDY
FORMAT-DMY

FORMAT-YMD

Specifies the number of lines to be printed per page. The value
specified can be 1 through 84.

Note: See index entry: // FORMS statement for the way the
value specified is used to determine the actual number of lines
printed per page.

The print belt image is to be modified to reflect a changed print
belt. An IMAGE OCL statement (see index entry: // IMAGE
statement) identifying the new image must precede the accom-
panying // RUN statement if IMAGE-YES is specified in a

// SETCF statement.

The print belt image is not to be modified. IMAGE-NO is the
default value if IMAGE-YES is not specified.

System date format is to be month-day-year.
System date format is to be day-month-year.
System date format is to be year-month-day.

Note: Use yymmdd format if you are creating basic data ex-
change format diskettes to use with other systems.

OCL and Utility Control Statement Sequence for Setting the System Environment

// LOAD $SETCF
[// DATE...]

Note: If a date is given, it becomes the system date.

[// IMAGE ..]

Note: If a print belt image is specified by $SETCF, it becomes the image set by
IPL. If an image is specified by the // IMAGE OCL statement and not by $SETCF,
the image is established only until the next IPL is performed, at which time a differ-
ent image may be specified for the system.

// RUN
// SETCF ...
// END

Utility Program Descriptions—$SETCF

221

222

Example of Setting the System Environment

Replace the current print belt image with the image contained in the source mem-
ber named BELT:

// LOAD $SETCF

// IMAGE MEM,BELT
// RUN

// SETCF IMAGE-YES
// END

Set the BSC Environment

The following BSC (binary synchronous communications) items can be set by
$SETCF:

® Bits per seconds rate (bps)
® Modem clocking
7 ® Debug facility
® Error retry count
® Standby line
® Modem test

® Non-USA tone

Note: The items listed are all related to data communications programming that
uses BSC. For background information on binary synchronous communications,
see General Information—Binary Synchronous Communications, GA27-3004.

For information on data communications programming, see /BM System /32
Data Communications Reference Manual, GC21-7691.
SETB Utility Control Statement Format for Setting the BSC Environment

Use the SETB utility control statement to set the BSC environment:

e {5 s {1 oo e
e {5 o (] e £

For an explanation of the SETB parameters, see AL TERBSC Command Statement
Format.

Note: Though each individual parameter is optional, at least one parameter must
be specified.

If a parameter is omitted, the previous value is retained until a default value is given
(except for the DEBUG-Y parameter which is reset to DEBUG-N by each IPL or by
the TRACE procedure). If DEBUG-Y is specified, the system TRACE procedure
(see index entry: TRACE procedure) is replaced by the BSC trace function.

Parameters for Setting the BSC Environment

Parameter Meaning
BRATE-F Use the full rated speed of the modem.
H Use only half the rated speed of the modem.
CLOCK-Y The System/32 must provide the programmed clocking facility.
N Modem has the cIocking facility.
DEBUG-Y Built-in debug facility is required, BSC trace is requested.
N Built-in debug facility is not required, BSC trace is not requested.
ERC-number Error retry count. The standard number of retries provided is
seven (the default number); if more than seven are desired, enter
7 a number up to 255. Valid numbers are 7 through 255.
SLINE-Y Switched standby line is used for a point-to-point line.
N The nonswitched line is used.
TEST-Y IBM modem is being used. Automatic wrap test includes modem

testing when a permanent error occurs, unless the user program
specified a permanent error indicator for the BSC file.

N Non-1BM modem is being used. Autematic wrap test does not
include modem testing.

TONE-Y Non-USA special tone is required for manual answering and auto-
. matic answering.
N Non-USA special tone is not required for manual answering and

automatic answering.

Notes:

1. If the SLINE-Y parameter is specified, then the line type (LINE) in the // SETR
utility control statement automatically defaults to a point-to-point switched line
(LINE-S). '

2. If the SLINE-N parameter is specified, then the line type (LINE) in the // SETR
utility control statement automaticaliy defaults to the line type specified in the
user program source statements (LINE-R).

Example of Setting the BSC Environment
Change the current BSC error retry count to 10:
// LOAD $SETCF
// RUN

// SETB ERC-10
// END '

Utility Program Descriptions—$SETCF 223

224

Override BSC Specifications

The following BSC (binary synchronous communications) specifications can be
overridden by $SETCF:

® Tributary station address

® |ine type

® Switch type

Note: The items listed are all related to data communications programming that
uses BSC. For background information on binary synchronous communications,
see General Information—Binary Synchronous Communications, GA27-3004. For

information on data communications programming, see /BM System/32 Data
Communications Reference Manual, GC21-7691.

Utility Control Statement Format for Overriding BSC Specifications

)

w

C
AA
// SETR [ADDR-nn] | ,LINE- ZR SWTYP- < MA
MC

T

Notes:

1. Though each parameter is optional, at least one parameter must be specified.

2. To reset the ADDR parameter to the addressing characters specified by the user
program specifications, reenter a valid // SETR control statement omitting the
ADDR parameter. The addressing characters will default to the user program
specifications.

Parameters for overriding BSC specifications:

ADDR-nn Hexadecimal equivalent of one of the pair of tributary station
addressing characters. See Appendix G for the System/32
tributary station polling and addressing characters.

Defaults to-the user program specifications.

LINE-C CDSTL (connect data set to line) switched line (World Trade only)
P Point-to-point nonswitched line.
R Line type specified in the user program source statements.
S Point-to-point switched line.
T Tributary station on multipoint line.

SWTYP-AA If switched line (LINE-C or LINE-S) is specified and the modem is
in auto-answer mode, then the System/32 automatically answers
the call.
MA If switched line (LINE-C or LINE-S) is specified, then the System/32
operator manually answers the call.
MC If switched line {LINE-C or LINE-S) is specified, then the System/32
operator manually initiates the call.

Page of GC21-7593-3

Issued 22 November 1978

By TNL: GN21-7993

Introduction To System Configuration, Installation, and Modification

System/32 programs are supported through the distribution of sequentially
numbered versions or modifications. A version replaces an entire program; a
modification generally replaces only the changed portions of a program. Each pro-
gram has a version number and a modification level associated with it.

A release is a group of programs made available at the same time. Release generally
refers to the period of time for which it is supported; however, a release may consist
of programs with a different version/modification level identification. For example,
release 2 of SCP and program products may include three programs designated
version 02 modification 00, and one program designated version 01, modification 00.

The initial availability of a program is usually called version 01, modification 00.
Each subsequent modification raises the modification level by one. Each version
raises the version number by one and resets the modification level to zero.

Versions and modifications are made available in one of two ways. Some are sent
automatically by the program library to all users, and all others are sent when
ordered by the user. In the latter case, ordering instructions are sent to users by
the program library.

The vérsion number and modification level of each program is indicated on the
machine readable material and in the documentation sent with the program from
the program library. In cases where a version number or modification level is
skipped, the documentation from the program library notes such action.

This part includes:

® How to configure and load System/32 system control programming and related
PTFs (program temporary fixes), whether you are foading your initial version of
the system control programming or a subsequent version

@ How to install a system containing System/32 system control programming and
selected System/32 program products and applications, together with related

PTFs

® How to install individual System/32 program products and related PTFs and
verify the correct installation of System/32 program products :

® How to rhodify your system by deleting system control programming compon-
ents and/or program products from the library so that you have more disk space

available for other library members or for data files)

® . A version update instruction summary

Note: Installing the word processing program product is described in the Word Processor/32
Installation and Procedures Manual, SH30-0114.

introduction to System Configuration, Installation, and Modification

225

Three SCP procedures are described in this part: »CNFIGVSCP, INSTALL, and
APPLYPTF. The formats of the command statements that evoke these procedures
are:

SC1nn
APPLYPTF RG1nn JALL
UT1nn .ptf lognumber
UT2nn ,OLD
FO1nn -
. AS1nn

"~ CNFIGSCP

INSTALL [DFU] [,SEU] [,SORT] [,RPG]
[LFORT] [,FCU] [,ASM]

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

System Configuration

This section describes how to configure and load both your initial version and
subsequent versions of System/32 system control programming. This section also
describes how to apply any required PTFs to the System/32 SCP and to the program
products you intend to install with the SCP. (Installation of program products with
the SCP is described in the next section, System Installation.)

DISKETTES REQUIRED

The diskettes required to perform system configuration are:

® PID (program information department) distribution diskettes, called SCP disk-
ettes. These diskettes contain the following:

1-2 System control programming.

3 Optional SCP support for data communications, RPG, and data
recorder attachment!.

4 Optional SCP support for 1255 Magnetic Character Reader attachment?,
FORTRAN IV, basic assembler!, overlay linkage editor!, and queued job
stream!.

{5] Optional SCP support for word processing communications utility
and word processing, which includes the mag card attachment, dual
case keyboard and display, and half line space printing.

® PID distribution diskettes containing any program products ordered.

® Diskettes on which a backup of the system control program can be made. They
are called backup diskettes. The number of backup diskettes depends on the
optional SCP support you require.

® Backup diskettes for each program product ordered.

To determine the number of diskettes required by a program product, see index entry:
backup copy of a program product.

Note: Your IBM service representative can tell you if there are any PTFs applicable
to your version of the SCP, or to your version of any program products. If there are
PTFs, make arrangements with IBM to have the PTF diskette available when you con-
figure and load your SCP. The PTF diskette contains all applicable PTFs.

! If you install the optional SCP support for this function without reconfiguring your system, you
must also install message member MSGMBR, which is on the fourth PID diskette, and then do
another IPL for the system.

System Configuration 227

228

INFORMATION REQUIRED

During the configuration of the SCP, you will be prompted for the following
information:))

Print belt image for your system.

Number of printed lines per‘page.

The date format you will be using.

Is SCP support for data communications desired?

If your response is YES you are prompted for the following:
— 1s BSC support desired?
— |Is MRJE support desired?

If your response is NO to both the BSC support and the MRJE support you are
prompted for:
— Is batch work station support desired?

By specifying BSC support, MRJE support, or batch work station support (SDLC)
the following initial configuration options are set for you:

~ Line rate will be full.

— Standby line option is NO.

Error retry count is 7. (Set only for BSC and MRJE support.)

Debug option is NO.

After initial configuration options are set, you are prompted for World Trade answer
tone.
— Is World Trade answer tone required?

The line type option for BSC, MRJE and batch work station support (SDLC)
follows. You respond with a character C, P, R, S, or T to indicate the following:

Cc CDSTL (connect data set to line) switched line (World Trade only).

Point-to-point nonswitched line.

R The line type specified in the user program source statements. (Line
type R does not appear for SDLC—batch work station support.)

S Point-to-point switched line.

T Tributary station line on multipoint.

e

If your response for the preceding line type option is either a C or an S (switched
line), the prompt for the switched line type option appears. You respond with one
of the following sets of characters:

AA The System/32 automatically answers the call. The modem must also
be in autoanswer mode.

MA The System/32 operator manually answers the call.

MC The Syétem/32 operator manually initiates the call.

The final two prompts for BSC, MRJE, and batch work station support (SDLC)
are: (' ‘

— Does the modem perform clocking?

— Is an IBM modem installed?

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

® |s SCP support for RPG desired?

If your response is YES, you are prompted for the following:
— |s data communications support for RPG desired?

® |s SCP support for the data recorder attachment desired?

® |s SCP support for word processing desired?

If your response is YES, you are prompted for the following:
— Is SCP support for word processing communications utility desired?

If your response for word processing support is YES, you are prompted for the
following: '
— Select country code
Options are:

01 =USA

02 = United Kingdom

03 = Germany & Austria

04 = France (AZERTY)

05 = Italy

06 = Denmark

17 = France (QWERTY)

Enter a two-character country code
Options: (01, 02, 03, 04, 05, 06, 17)

® |s SCP support for 1255 Magnetic Character Reader attachment desired?
® 15 SCP support for FORTRAN IV desired?’
® |5 SCP support for basic assembler desired?’

If your response is YES, you are prompted for the following:

— Are SCP base assembler macros desired?

‘— Are SCP BSC assembler macros desired?

— Are SCP scientific macros desired?
® s SCP support for overlay linkage editor desired?!

® |s SCP support for queued job stream desired?

® |s there a PTF master diskette? -

See index entry: CNFIGSCP procedure for the prompted parameter information
you supply in step 10 of the System Configuration Steps.

Using the information supplied to the prompts, an SCP is built that contains the
support that you request. |f a PTF diskette is available, the PTFs are applied to
the SCP on the disk. i

1When you specify SCP support for either basic assembleror FORTRAN IV, SCP support for the
overlay linkage editor is also provided. The prompt for SCP support for the overlay linkage
editor does not appear.

System Configuration 229

Page of GC21-7593-3
Issued 25.November 1977
By TNL: GN21-7939

SYSTEM CONFIGURATION STEPS
CAUTION
The system configuration steps remove the current library (if any) from the
disk. Save all library members you want to retain (see index entry: FROMLIBR
procedure) before executing the system configuration steps. When installing
version updates, if IBM program products are installed on the system, remove
the IBM program products.

The program products can be removed by entering the following appropriate com-
mands for the program product you have installed:

SEUDRORP (if SEU is installed)
DFUDROP (if DFU is installed)
SORTDROP (if SORT is installed)
RPGDROP (if RPG is installed)
FCUDRORP (if FCU is installed)
FORTDRORP (if FORTRAN |V is installed)
ASMDRORP (if basic assembler is installed)
fhe system configuration steps are:

1. Set the IPL switch (on the CE control panel) to DISKETTE and set the IMPL
switch (on the CE control panel) to DISK.

2. Insert the first PID SCP diskette.

3. Press the LOAD key on the 'operator panel. The following example display

appears:

S ™~
---) LIBRARY DIRECTORY SECTORS = 0037 .
INCLUDE INQUIRE/OFFLINE = NO
TOTAL LIBRARY BLOCKS = 0281
. J

230

The preceding values displayed are those of a sample PID diskette. If an error
message is displayed, see index entry: system configuration error messages.

If you want a smaller library, you must decrease the number of directory
sectors and library blocks allocated. If you want a larger library, you should
now allocate enough directory sectors and library blocks to contain the pro-
gram products, the SCP, and any other programs. See index entry: RELOAD
display, for a description of how to change the number of allocated directory
sectors and library blocks. See index entry: /ibrary requirements, to deter-
mine the number of directory sectors and library blocks required by the SCP
and the program products.

If any error messages are displayed, see index entry: system configuration error
messages.

If no error messages are displayed, press the ENTER key to copy the SCP to
the disk.

When the following display appears, remove the first PID SCP diskette and
insert the second PID SCP diskette.

INSERT DISKETTE WITH FILE LABEL-#LIBRARY
DATE-XX/XX/XXy SEQUENCE NUMBER-02
————— > PRESS ENTER KEY AFTER INSERTING
WARNING-LIBRARY MAY BECOME UNUSABLE
IF CORRECT VOLUME NOT INSERTED

To copy the second PID SCP diskette to the disk, press the ENTER key.

System Configuration 230.1

This page intentionally left blank

230.2

XFER-Y Each execution of the XFER instruction is to be traced.

Executions of the XFER instruction are not to be traced.

12

OCL and Utility Control Statement Sequence for Setting Functions to be Traced

// LOAD $SETCF
// RUN

// TRACE ...

// END

Example of Setting the Functions to be Traced

Trace evocations of the wait function:

// LOAD $SETCF
// RUN
// TRACE WAIT-Y
// END

OCL and Utility Control Statement Sequence for Modifying MICR Document Movement

// LOAD $SETCF
// RUN
// SETR cvcus-{:l}

// END

$STATS—STATUS DISPLAY UTILITY PROGRAM
$STATS displays current system information on the display screen, and prints it, if
the printer is assigned for logging (see index entry: LOG procedure), so that you
can determine whether or not certain items need to be changed for a job. A detailed
description of the information displayed by $STATS is given with the description of
the STATUS procedure, which evokes 8STATS. (See index entry: STATUS
procedure.)

$STATS Utility Control Statement Format

Utility control statements are not used.
$STATS OCL Sequence

/I LOAD $STATS
// RUN

Utility Program Descriptions—$SETCF 231

This page intentionally left blank.

232

Part b

System Configuration, Installation, and Modification

System Configuration, Installation, and Modification 233

- 234

Introduction To System Configuration, installation, and Modification

System/32 programs are supported through the distribution of sequentially
numbered versions or modifications. A version replaces an entire program; a
modification generally replaces only the changed portions of a program. Each pro-
gram has a version number and a modification level associated with it.

A release is a group of programs made available at the same time. Release generally
refers to the period of time for which it is supported; however, a release may consist
of programs with a different version/modification level identification. For example,
release 2 of SCP and program products may include three programs designated
version 02 modification 00, and one program designated version 01, modification 00.

The initial availability of a program is usually called version 01, modification 00.
Each subsequent modification raises the modification level by one. Each version
raises the version number by one and resets the modification level to zero.

Versions and modifications are made available in one of two ways. Some are sent
automatically by the program library to all users, and all others are sent when
ordered by the user. In the latter case, ordering instructions are sent to users by
the program library.

The version number and modification leve! of each program is indicated on the
machine readable material and in the documentation sent with the program from
the program library. In cases where a version number or modification level is
skipped, the documentation from the program library notes such action.

This part includes:

® How to configure and load System/32 system control programming and related
PTFs (program temporary fixes), whether you are loading your initial version of
the system control programming or a subsequent version

@ How to install a system containing System/32 system control programming and
selected System/32 program products and applications, together with related

PTFs

@ How to install individual System/32 program products and related PTFs and
verify the correct installation of System/32 program products

® How to modify your system by deleting system control programming compon-
ents and/or program products from the library so that you have more disk space

available for other library members or for data files

® A version update instruction summary

Note: Installing the word processing program product is described in the Word Processor/32
Installation and Procedures Manual, SH30-0114.

Introduction to System Configuration; Installation, and Modification

235

236

" Three SCP procedures are described in this part: CNFIGSCP, INSTALL, and

APPLYPTF. The formats of the command statements that evoke these procedures
are:

SC1nn
APPLYPTF RG1nn JALL
UT1nn .ptf lognumber
UT2nn ,OLD
FO1nn -
AS1nn

CNFIGSCP

INSTALL [DFU] [,SEU] [,SORTI] [,RPG]
[LFORT] [,Fcul {,AsM]

System Configuration

This section describes how to configure and load both your initial version and
subsequent versions of System/32 system control programming. This section also
describes how to apply any required PTFs to the System/32 SCP and to the program
products you intend to install with the SCP. (Installation of program products with
the SCP is described in the next section, System Installation.)

DISKETTES REQUIRED

The diskettes required to perform system configuration are:

® PID (program information department) distribution diskettes, called SCP disk-
ettes. These diskettes contain the following:

1-2 System control programming.

3 Optional SCP support for data communications, RPG, and data
recorder attachment? .

4 Optional SCP support for 1255 Magnetic Character Reader attachment?,
FORTRAN IV, basic assembler! , overlay linkage editor!, and queued job
stream®.

[5] Optional SCP support for word processing communications utility
and word processing, which includes the mag card attachment, dual
case keyboard and display, and half line space printing.

® PID distribution diskettes containing any program products ordered.

® Diskettes on which a backup of the system control program can be made. They
are called backup diskettes. The number of backup diskettes depends on the
optional SCP support you require.

® Backup diskettes for each program product ordered.

To determine the number of diskettes required by a program product, see index entry:
backup copy of a program product.

Note: Your IBM service representative can tell you if there are any PTFs applicable
to your version of the SCP, or to your version of any program products. If there are
PTFs, make arrangements with IBM to have the PTF diskette available when you con-
figure and load your SCP. The PTF diskette contains all applicable PTFs.

Lis you install the optional SCP support for this function without reconfiguring your system, you
must also install message member MSGMBR, which is on the fourth PID diskette, and then do
another IPL for the system.

System Configuration 237

INFORMATION REQUIRED

During the configuration of the SCP, you will be prompted for the following
information:

® Print belt image for your system,

® Number of printed lines per page.

® The date format you will be using.

® |s SCP support for data communications desired?!

If your response is YES you are prompted for the following:
— 1{s BSC support desired?
— Is MRJE support desired?

If your response is NO to both the BSC support and the MRJE support you are
prompted for:
— Is batch work station support desired?

By specifying BSC support, MRJE support, or batch work station support (SDLC)
the following initial configuration options are set for you:

— Line rate will be full.

— Standby line option is NO.

Error retry count is 7. (Set only for BSC and MRJE support.)

Debug option is NO. ’

[

After initial configuration options are set, you are prompted for World Trade answer
tone. '
— |s World Trade answer tone required?

The line type option for BSC, MRJE and batch work station support (SDLC)
follows. You respond with a character C, P, R, S, or T to indicate the following:

C CDSTL (connect data set to line) switched line (World Trade only).

P Point-to-point nonswitched line.

R The line type specified in the user program source statements. (Line
type R does not appear for SDLC—batch work station support.)

S Point-to-point switched line.

T Tributary station line on multipoint.

If your response for the preceding line type option is either a C or an S (switched
line), the prompt for the switched line type option appears. You respond with one
of the following sets of characters:

AA The System/32 automatically answers the call. The modem must also
be in autoanswer mode.

MA The System/32 operator manually answers the call.

MC The System/32 operator manually initiates the call.

The final two prompts for BSC, MRJE, and batch work station support (SDLC)
are:

— Does the modem perform clocking?

— Is an I1BM modem installed?

If SCP support for word processing communications utility is required, you must also specify SCP

support for data communications.
238

Is SCP support for RPG desired?

If your response is YES, you are prompted for the following:
— |s data communications support for RPG desired?

Is SCP support for the data recorder attachment desired?

Is SCP support for word processing desired?

1f your response is YES, you are prompted for the following:
— s SCP support for word processing communications utility desired??

If your response for word processing support is YES, you are prompted for the
following:
— Select country code
Options are:
01 =USA
02 = United Kingdom
03 = Germany & Austria
04 = France (AZERTY)
05 = ltaly
06 = Denmark
17 = France (QWERTY)

Enter a two-character country code
Options: (01, 02, 03, 04, 05, 06, 17)

Is SCP support for 1255 Magnetic Character Reader attachment desired?
Is SCP support for FORTRAN IV desired?!

Is SCP support for basic assembler desired?!

If your response is YES, you are prompted for the following:

— Are SCP base assembler macros desired?

— Are SCP BSC assembler macros desired?

— Are SCP scientific macros desired?

Is SCP support for overlay linkage editor desired?!

Is SCP support for queued job stream desired?

Is there a PTF master diskette?

See index entry: CNFI!GSCP procedure for the prompted parameter information
you supply in step 10 of the System Configuration Steps.

Using the information supplied to the prompts, an SCP is built that contains the
support that you request. If a PTF diskette is available, the PTFs are applied to
the SCP on the disk.

Yhen you specify SCP support for either basic assembler or FORTRAN IV, SCP support for the
overlay linkage editor is also provided. The prompt for SCP support for the overlay linkage
editor does not appear.

2When you specify SCP support for word processing communications utility, you must also specify SCP

support for data communications.

System Configuration

‘239

SYSTEM CONFIGURATION STEPS
CAUTION
The system configuration steps remove the current library (if any) from the
disk. Save all library members you want to retain (see index entry: FROMLIBR
procedure) before executing the system configuration steps. When installing
version updates, if IBM program products are installed on the system, remove
the IBM program products.

The program products can be removed by entering the following appropriate com-
mands for the program product you have installed:

SEUDROP (if SEU is installed)
DFUDRORP (if DFU is installed)
SORTDROP (if SORT is installed)
RPGDROP (if RPG is installed)
FCUDROP (if FCU is installed)
FORTDROP (if FORTRAN IV is installed)
ASMDROP (if basic assembler is installed)
The system configuration steps are:

1. Set the IPL switch {on the CE control panel) to DISKETTE and set the IMPL
switch (on the CE control panel) to DISK.

2. Insert the first PID SCP diskette.

3. Press the LOAD key on the operator panel. The following example display

appears:
f ™
~-~Y LIBRARY DIRECTORY SECTORS = 0033 N\
HISTORY FILE SIZE DESIRED = 0255 e NG~ .
INCLUDE INQUIRY/OFFLINE? = No = Decimal
TOTAL LIBRARY BLOCKS - 0239 =]
. J

240

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Procedures Used For System Configuration and Installation

APPLYPTF PROCEDURE

The APPLYPTF procedure applies PTFs to the SCP and program products in the
library. Itis called by the CNFIGSCP procedure during system configuration, or
directly, by the APPLYPTF command.

PTFs applied by the APPLYPTF procedure are read from the PTF diskette. If you

apply SCP PTFs and you are not installing a new version of System/32, then you

must make sure that your PTFs are placed on your tailored system SCP diskettes.

This is done by the following:

1. Apply the PTFs

2. Use the BACKUP procedure

3. Use the RELOAD procedure

The BACKUP procedure is used to obtain system diskettes that include the applied
- PTFs. The RELOAD procedure is used to maintain the correct library size. (See

index entries: RELOAD procedure and BACKUP procedure.)

Note: Your PID SCP diskettes do not contain the applied PTFs.

The APPLYPTF procedure evokes the SMAINT utility (see index entry: SMAINT

utility program).

APPLYPTF Command Statement Format

SC1inn
ot | [
nn
APPLYPTF .ptf lognumber
UT2nn OLD
FO1nn ——
AS1nn

Procedures Used for System Configuration and iInstallation 241

242

- APPLYPTF Parameters

SCinn PTFs to change the SCP and SCP support for word processing are
applied; nn is the version number of the system.

RG1nn PTFs to change the RPG |l program product are applied; nn is the
version number of the program product.

UT1nn PTFs that change the IBM System/32 utilities program product
(DFU/SEU/Sort) are applied; nn is the version number of the
utilities program product.

UT2nn PTFs to change the IBM System/32 File Conversion Utility (FCU)
program product are applied; nn is the version number of the
program product.

FO1nn PTFs to change the FORTRAN IV program product are applied;
nn is the version number of the program product.

AS1nn PTFs to change the basic assembler program product are applied;
nn is the version number of the program product.

OoLD Apply only those PTFs from the PTF file that match the PTF
members currently in the library. Any PTF members that do not
currently exist in the library are not applied from the PTF file.

ALL Apply all PTFs from the selected PTF file.

ptf Apply only the PTF corresponding to this number. This number

log is the PTF log number and is indicated on the cover letter for each

number PTF. It is also indicated in the PTFXREF source member on each
PTF diskette. To list the contents of this source member, enter
the TOLIBR procedure (TOLIBR PTFXREF) and the LISTLIBR
procedure (LISTLIBR PTFXREF). The ptf log number must be
five digits (leading zeros are required).
CNFIGSCP PROCEDURE

The CNFIGSCP procedure is used for system configuration. It is distributed with

each version of the system on an SCP diskette and is removed from the library after

system configuration is complete. The CNFIGSCP procedure prompts you for the

information it requires to build an SCP that contains the support you request. The

information you supply to the prompts is recorded in the system. The system that
you create, using the CNFIGSCP procedure, can be modified by using the $SETCF
utility program as your requirements change.

The CNFIGSCP procedure evokes the SMAINT and $SETCF utilities (see index
entries: SMAINT utility program and $SETCF utility program).

CNFIGSCP Command Statement Format

CNFIGSCP

To make your backup copy of the SCP, you must initialize two to five diskettes
{number used depends on the optional SCP support you require). Use the INIT
procedure (see index entry: /NIT procedure) to do this. The diskettes can be
initialized with the same volume identification, or each diskette can have a unique
volume identification, The volume identification of the first diskette is the volume
identification you must specify for the BACKUP procedure or error message 1493
appears when the second diskette is inserted. Take option 0 to continue processing.

After the diskettes are initialized, copy the SCP onto the diskettes. Use the BACK-
UP procedure (see index entry: BACKUP procedure) to make the backup copy.

Backup of Program Products

Before you install the selected program products and application programs with your
configured SCP, apply any necessary PTFs to the program products you intend to
install, and create a backup copy of each program product that you use.

Before a PTF can be applied to a program product, the program product must be
in the library on the disk, See index entry: program product installation for a
description of how to copy a program product to the library. After a program
product is in the library, use the APPLYPTF procedure (see index entry: APPLY-
PTF procedure) to apply any necessary PTFs to the program product.

Create a backup copy of each program product after all PTFs, if any, are applied.
See index entry: backup capy of a program product for a description of how to
create a backup copy of a program product. The backup copies of the program
products are then used during system installation to create the unique system you
want to use. '

Note: Even if no PTFs are applied, it is recommended that you make a backup
copy of the program product PID distribution diskettes and use that copy when
installing the program products with the SCP. The PiD diskettes should be safely
stored until the next version from PID is distributed.

System Configuration Error Messages

Several error messages are passible during system configuration.

INVALID VTOC/LIBRARY FOUND

Save all of the disk data files if you have not already done so (for information on
how to save the disk data files, see index entry: SAVE procedure). After the files
are saved, go back to system configuration Step 1.

If you have already saved, or if you do not want to save your data files, the follow-
ing action deletes them and corrects the INVALID VTOC/LIBRARY error:

CAUTION

The following action deletes all data files from the disk.

® Hold down the SHIFT key and press the DUP key.

® Key a hyphen (-), then a plus (+); press the REC ADV key and check the display
for any other error messages, If there are none, go to system configuration Step 5.

System Configuration 243

= INPUT

TOO MANY BLOCKS REQUESTED or INSUFFICIENT AVAILABLE SPACE

Perform the action for the INVALID VTOC/LIBRARY FOUND message, described
in the preceding paragraphs, or go to system configuration Step 5 and decrease the

library size.

Other Error Messages

Other system configuration error messages probably are the result of a mistake made
in system configuration Step 5. Return to Step 5 and adjust the directory sector
and library block allocations. Press the ENTER+ key after each entry for Step 5.
Continue making entries for Step 5 until the error messages no longer appear. Then
go to System Configuration Step 7.

SYSTEM CONFIGURATION SUMMARY

PiD SCP diskettes
PID program product diskettes
PTF diskette (if necessary)

Initialized diskettes for backup
copy

244

——— PROCESS

D ® System configuration steps
@ SCP backup

® Program product backup

— OUTPUT

® Configured SCP on disk with

PTFs applied (if necessary)

Configured SCP backup copy
diskettes

PID SCP diskettes

Program products on disk with
PTFs applied (if necessary)

Program product backup copies
with PTFs applied {if necessary)

PID program product diskettes

PTF diskette (if used)

System Installation

This section describes how to install program products and application programs
with your configured SCP to create the unique system you want.

DISKETTES REQUIRED
The diskettes required for system installation are:

® Diskettes containing the SCP backup copy created by system configuration, as
described in the preceding section.

® Diskettes containing backup copies of the program products you want to install
with necessary PTFs included, or PID program product diskettes if backup
copies are not available. Creation of program product backup copies should
always be performed as part of system configuration, as described in the preced-
ing section.

® Diskettes containing application programs you want to install.

® Backup diskettes onto which you can copy your entire system after it is
installed.

INFORMATION REQUIRED

If you intend to change the size of your current library during step 1 of System
Installation, decide now exactly how many directory sectors and library blocks you
want. See index entry: system modification for a description of library require-
ments in directory sectors and library blocks. You should also be familiar with the
RELOAD display and how to change it. See index entry: RELOAD display.

To complete system installation you must use the information printed from the

system directory during System Installation Step 6. See index entry: printing from
the library for a description of the system directory information that is printed.

System iInstallation 245

246

SYSTEM INSTALLATION STEPS

1. Insert the first SCP backup diskette created during the system configuration
steps described in the preceding section. Enter the RELOAD command state-
ment (see index entry: RELOAD procedure). When the following display
appears, check the values displayed and change them, if necessary. See the
preceding description of /nformation Required for index entries to determine
and change the values displayed.

r)
---> LIBRARY DIRECTORY SECTORS = 0033
HISTORY FILE SIZE DESIRED = 0255~
INCLUDE INQUIRY/OFFLINE? = YES ::§‘~Dechna
TOTAL LIBRARY BLOCKS = 0239——””—‘
_ J

Note: The values shown in the preceding display are sample values only.

2. When the following display appears, insert the second SCP backup diskette.

o N
INSERT DISKETTE WITH FILE LABEL-#LIBRARY
DATE-XX/XX/XXs; SEQUENCE NUMBER-02
————— > PRESS ENTER KEY AFTER INSERTING
WARNING-LIBRARY MAY BECOME UNUSABLE
IF CORRECT VOLUME NOT INSERTED
. D,
3. When the following display appears, press the LOAD key.
r ™
RELOAD COMPLETE - REMOVE LAST
DISKETTE AND IPL FROM DISK
. J

When the LOAD key is pressed, the following display appears:

~ ~

dikk INITIAL PROGRAM LOAD COMPLETE soksksk
DATE XXXXXX
LINES 33

ENTER COMMAND

<-READY

When the ENTER COMMAND message appears, enter the DATE command
statement (see index entry: DATE procedure) to set the system date to the
current date.

If you want to have any application programs on the backup copy of this
system, they should be installed at this time. Library members of your
application programs can be copied into the library using the TOLIBR pro-
cedure (see index entry: TOL/BR procedure). The letter accompanying
each IBM Industry Application Program describes how to put these programs
onto the system. Refer to that letter for installation instructions for an IBM
Industry Application Program.

Enter the INSTALL command statement. The parameters you enter depend
on the program products you want to install. See index entry: /INSTALL
procedure for a description of the command statement parameters.

After the INSTALL command statement is entered, you are prompted for the
diskettes that contain the program products to be installed. The diskettes you
insert must be either the program product backup diskettes or, if backup copies
are not available, the PID program product diskettes.

After the INSTALL procedure is completed, the system prints system directory
information. You will need this information for step 7. If you are not familiar
with the kind of information in the system directory, see index entry: printing
from the library.

Note: After the INSTALL procedure is completed, it is deleted from the
library. It remains on the PID SCP diskettes and the SCP backup copy created
in system configuration.

You are prompted to initialize the number of diskettes needed to back up
the system. See Calculating the Number of Backup Diskettes Required for
the System, which follows, for a description of how to determine the number
of diskettes you must initialize. If they are already initialized, you do not
have to initialize them again. Otherwise, initialize them now.

Note: The diskettes initialized in this step are only renamed, they are not
formatted. That is, the effect is that of the INIT procedure with the RENAME,
not the FORMAT or FORMAT2, parameter specified. If active files are on

the diskettes to be initialized, they will be deleted (INIT procedure with
DELETE parameter specified). For a description of the INIT procedure, see
index entry: /NIT procedure.

As initialized diskettes are inserted, the system, composed of SCP, program
products, and application programs, is copied on them. The final message will
be SYSTEM INSTALLATION COMPLETE. If you want additional unique
systems, repeat the system installation steps 1 through 7 as often as necessary.

System Instailation 247

248

CALCULATING THE NUMBER OF BACKUP DISKETTES REQUIRED FOR THE SYSTEM

To determine the number of diskettes required to make a backup copy of a system,
you need system directory information. If you are installing a system, this informa-
tion is printed at system installation, step 6. If you are modifying the system, you

can have the system directory information printed by using the LISTLIBR procedure
or the SMAINT utility program (see index entries: L/STL/BR procedure and SMAINT
utility program—a sample of the information printed is given under index entry: print-
ing from the library).

After printing the system directory information, determine the number of backup
diskettes you need by following these steps:

1. Add decimal 23 to the decimal number of active directory entries.

2. Divide the result of step 1 by 11, rounding to the next highest number if you
have a remainder, to determine the number of active directory sectors.

3. Add the result of step 2 to the decimal number of active library member sec-
tors to determine the total library sectors referred to in the chart following
step 4.

4, Use the result of step 3 and either table 1 or table 2 to determine the number
of diskettes needed to contain your system. Use Table 1 for basic data ex-
change diskettes (128 bytes per sector). Use Table 2 for extended format
diskettes (512 bytes per sector).

Table 1. Basic Data Exchange Diskettes Table 2. Extended Format Diskettes
{128 bytes per sector) (512 bytes per sector)

Total Total

Library Diskettes Library Diskettes

Sectors Required Sectors Required

906 1 1128 1

1868 2 2312 2

2830 3 3496 3

3792 4 4680 4

4754 5 5864 5

5716 6 7048 6

6678 7 8232 7

7640 8 9416 8

8602 9 10600 9

9564 10 11784 10

10526 1 12968 11

11488 12 14152 12

12450 13 15336 13

13412 14 16520 14

14372 15 17704 15

Page of GC21-7593-3
fssued 25 November 1977
By TNL: GN21-7939

Program Product Instaliation and Verification

PROGRAM PRODUCT INSTALLATION

The following list of IBM System/32 program products shows the diskette volume
identification for each program product:

IBM System/32 Diskette

Program Product Volume Identification

Data File Utility (DFU) ~ PPUTIL

Source Entry Utility (SEU) PPUTIL

Sort PPUTIL

File Conversion Utility (FCU) FCUFCU

RPG Il RPGRPG (distributed on two diskettes,
each with the same vol-id)

Basic Assembler PPASM

FORTRAN IV PPFORT

The method for installing these program products individually and creating a backup
copy of each is described here.

To Install a Program Product

1. If RPG 11, basic assembler, or FORTRAN 1V is to be installed, the SCP support
for these program products must also be installed. First, insert the SCP diskette
that contains the SCP support for the program product you are installing, and then
enter the CNFIGSCP command statement. Answer the prompts according to the
SCP support you need for the program product you will install in step 3.

2. Insert the appropriate PID program product diskette for the command to be
entered in the following step (some program products may require more than
one diskette).

3. Enter the TOLIBR command statement where the filename parameter is the
identifier of the function being installed:

DFU Data File Utility

SEU Source Entry Utility
SORT. Sort

RPG - RPG I

FCU File Conversion Utility
ASMCOMP Basic Assembler

FORTRAN FORTRAN IV

‘Note: For a description of the TOLIBR procedure, see index entry: TOLIBR
procedure.

Program Product Installation and Verification 249

4, Enter nameLOAD (DFULOAD, SEULOAD, SORTLOAD, and RPGLOAD) for
each function(s) being installed. This step does not apply to the FCU, ASM,
and FORT functions. These three functions are completely installed in step 3.

5. If RPG Il is being installed, message 1485 (END OF RD VOLUME—INSERT NEXT
DISKETTE) appears after the first diskette is read. When the message appears,
remove the first diskette, insert the second, and select option 0 to continue.

6. Apply any required PTFs to the program products you install. See index entry:
APPLYPTF procedure.

To Create a Backup Copy of a Program Product

After a program product is installed, create a backup copy by following these two steps:

1. Initialize a diskette(s) with the appropriate volume identification to contain the
copy.

Function to be Copied Volume ldentification

DFU/SEU/Sort PPUTIL (one diskette)

RPG It RPGRPG (two diskettes)

FCU FCUFCU (one diskette)

Basic Assembler PPASM (one diskette)

FORTRAN IV PPFORT {(one diskette)

Note: Use the INIT procedure to initialize diskettes—see index entry: /INIT
procedure.

2. Enter nameSAVE for each installed function to be saved, such as:

DFUSAVE
SEUSAVE
SORTSAVE
RPGSAVE
FCUSAVE
ASMSAVE
FORTSAVE

250

PROGRAM PRODUCT INSTALLATION VERIFICATION

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

You can verify the installation of SEU, RPG I, basic assembler, FORTRAN 1V, and

FCU.

SEU Installation Verification

1. Starting in column 1, key: SEU SEUTEST, R. Press the ENTER key. The

display screen will appear as follows.

r

00%L 0 A096 0001.00

ENTER/UPDATE STATEMENT NUMBER:

L

0001.00

2. Starting in column 1, key: THIS WILL VERIFY THAT SEU IS INSTALLED.

The display screen will appear as follows.

r ™\
039 0 A096 0001.00 s
THIS WILL VERIFY THAT SEU IS INSTALLED_
ENTER/UPDATE STATEMENT NUMBER 0001.00
\. J
3. Press the ENTER key. The display screen will appear as follows.
f N
001 0 A096 0002.00 S
ENTER/UPDATE STATEMENT NUMBER: 0002.00
.

Program Product Installation and Verification . . 261

252

4,

Press the SELECT FORMAT command key. Key an F, then press the ENTER
key. The display screen will appear as follows.

001 F K005 0002.00 s

ENTER/UPDATE STATEMENT NUMBER: 0002.00

Press the REC ADV key. The display will flash and appear as follows.

)
PRESS _ERROR RESET KEY TO CONTINUE
SEU 1002
FILENAME (POS 7-14) IS INVALID OR
SPECIFIED IMPROPERLY.
. J

Press the ERROR RESET key and then the EOJ command key. The end of
job options are displayed and the screen will appear as follows.

2

RETURN TO PROCESSING--NO EOJ

END OF JOB--NO ADDITIONAL OPTIONS

END OF JOB WITH LISTING

END OF JOB WITH SERIALIZATION

END OF JOB WITH LIST AND SERIALIZATION
ND OF JOB OPTION:

mpwWNEO

Key a 2 and press the ENTER key. The statement you entered in step 3
(THIS WILL VERIFY THAT SEU IS INSTALLED) is printed if SEU is
properly installed.

Enter the REMOVE command statement to remove from the library the
member created to verify the SEU installation:

REMOVE SEUTEST,SOURCE

Prompted Parameters for CNFIGSCP

Belt Image Option

48 Sets the print belt image and its number of characters in the system config-
48HN uration record, a record in the library directory that defines the system in
64 terms of its components. A length of 48, 48HN, 64, or 96 can be entered.
96

Note: The serial printer requires a response of 64, the dual case keyboard
requires a response of 96, and the special 48-character print belt requires
a response of 48HN.

All remaining prompts and responses will be logged to the system printer.
Number of Lines Per Page Option
1to 84 Sets the number of printed lines per page.
Note: The value commonly used is 66.
Date Format Option
YMD Sets the system date format in the system configuration record: enter
MDY year-month-day (YMD), month-day-year (MDY), or day-month-year (DMY).
DMY
Notes:
1. Use yymmdd format if you are creating basic data exchange format disk-
ettes to use with other systems.
2. Select the date format option to coincide with the format selected for the
preceding version. Otherwise, there is a possibility that the date depend-

ent output from an RPG |l object program, using the UDAY, UMONTH,
and UYEAR reserved fields, will be in error.

SCP Support For Data Communications

YES Data communication SCP support is copied.

NO Data communication SCP support is not copied.

BSC Support Option
YES Copies the optional BSC support.

NO BSC support is not copied.

MRJE Support Option
YES Copies the optional MRJE work station support.
NO MRJE work station support is not copied.

Procedures Used for System Configuration and Installation

253

254

Batch Work Station Support Option
YES Copies the optional Batch Work Station support

NO Batch Work Station support is not copied

SCP Support For RPG
YES Copies the optional SCP support for RPG.

NO RPG SCP support is not copied.

Data Communication Support for RPG
YES Copies the data communication RPG support.

NO Data communication support for RPG is not copied.

SCP Support For Data Recorder Attachment
YES Copies the optional SCP support for the data recorder attachment.

NO Data recorder attachment SCP support is not copied.

SCP Support For Word Processing
YES Copies the optional SCP support for word processing.

NO Word processing SCP support is not copied.

Word Processing Communications Utility Option
YES Copies the optional word processing communications utility support.

NO Word processing communications utility support is not copied.

SCP Support For 1255 Magnetic Character Reader Attachment

YES Copies the optional SCP support for the 1255 Magnetic Character Reader
attachment.

NO The 1255 Magnetic Character Reader attachment SCP support is not
copied.

uoIIBdI4LIBA PUR uOIIe|jeIsuf 19npold weibold

i:14

SYSTEM DATE

REGION

NN NN ——

W W

ACCOUNT
NUMBER

11243
11352
11836
12874
18274

23347
25521
26123
28622
29871

30755
31275
32457
37945 .

42622

ACCOUNT NAME

JONES HARDWARE
NU-STYLE CLOTHIERS
MIDI FASHIONS [INC
ULOOK INTERIORS
STREAMLINE PAPER INC

RITE-BEST PENS CO
IMPORTS OF NM
ALRIGHT CLEANERS
NORTH CENTRAL SUPPLY
FERGUSON DEALERS

FASTWAY AIRLINES
ENVIRONMENT CONCERNS
8 SOLE SILOS

HOFFTA BREAKS INC

EASTLAKE GRAVEL CO

INVOICE
NUMBER

27541
27987
15771
25622
29703

20842
29273
19473
17616
27229

26158
20451
27425
18276

16429

CASH RECEIPTS REGISTER

INVOICE
DATE

2/11/15
2/14/15
2/04/75
2709775
2721775

DATE PAID

2721775
2/25/75
271475
2723775
2733775

REGION TOTALS

2718715
2720715
2/07/75
2/05,75
2/19/15

2/20/75
2721715
2/23/15
2/22/75
2722715

REGION TOTALS

2/06/75
2/06/175
2/10/75
2/06/75

2/19775
2730775
2726775
2/23775

REGION TOTALS

2/05/15

27237175

REGION TOTALS

COMPANY TOTALS

AMOUNT
OWED

23.75
87.07
107.22
67495
274403

560.02
1584
797.40
46200
7597
6le91
19413.08
742672
2943
110.05
4Te23
929443
29437

29.37

2993190

DISCOUNT
TAKEN

11.93

l6e85

1685

33.717

AMOUNT

PALID

23.28
40430
105.08
67495
170455

406e.86
10.00
585447
462400
75497
6le91
14195435
725487
15.00
110435
47.23
898.15
2937

29437

29529473

PAGE

BALANCE EXCESS

DUE ODISCOUNT
4TeUT
1J1.10
148417
58U
200.00
205e8U

1.90
1443

l4e43 1«90

368440 1.9GC

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

"FORTRAN {V Installation Verification

"Sample program modules are provided with the IBM System/32 FORTRAN IV program

256

.sproduct. When FORTRAN IV was installed, these modules were loaded from the PID

program product distribution diskette (PPFORT) and are executed by entering the
command statement FORTSMPL. This command statement causes two FORTRAN [V
programs (KBINCO and SAMPLE) to be compiled, executed, and then deleted from
disk._ A program listing, compiler storage map, informational messages, overlay

linkage editor map, and the output of the sample program are printed on the printer.

Figure 9 shows an example of the printed output from the FORTSMPL procedure
using a 48-character FORTRAN print belt. Each compiler printed page heading

shows the current version number, modification number, date, and page number.
The sample includes:

The source module listing

The compiler storage map

B =

The informational messages

The overlay linkage editor map

()

The sample program output

Prompted Parameters for INSTALL
Diskette Volume ID
—————— Enter a name with a maximum of six characters. This name is placed
in the vol-id fieid on the diskettes if diskettes are initialized. It is also

used as the vol-id parameter when the system is copied to the backup
diskettes.

Diskettes to be Initialized

YES The diskette inserted is initialized using the vol-id specified. (After
each diskette is initialized, you are prompted to insert the next disk-
ette.

NO " No diskettes need to be initialized. The INSTALL procedure copies

the system onto diskettes that are already initialized. You are
prompted for these diskettes.

Procedures Used for System Configuration and Installation 257

This page intentionally left blank.

258

Program Product Installation and Verification

PROGRAM PRODUCT INSTALLATION

The following list of IBM System/32 program products shows the diskette volume
identification for each program product:

IBM System/32 Diskette

Program Product Volume ldentification

Data File Utility (DFU) PPUTIL

Source Entry Utility (SEU) : PPUTIL

Sort PPUTIL

File Conversion Utility (FCU) FCUFCU

RPG il RPGRPG (distributed on two diskettes,
each with the same vol-id)

Basic Assembier PPASM

FORTRAN IV PPFORT

The method for installing these program products individually and creating a backup
copy of each is described here.

To Install a Program Product

1. If RPG |1, basic assembler, or FORTRAN [V is to be installed, the SCP support
for these program products must also be installed. See index entry: system
installation .

2. Insert the appropriate PID program product diskette for the command to be
entered in the following step (some program products may require more than
one diskette).

3. Enter the TOLIBR command statement where the filename parameter is the
identifier of the function being installed:

DFU Data File Utility

SEU Source Entry Utility
SORT Sort

RPG RPG !l

FCU File Conversion Utility
ASMCOMP Basic Assembler

FORTRAN FORTRAN IV

Note: For a description of the TOLIBR procedure, see index entry: TOLI/BR
procedure.

Program Product Installation and Verification 259

4, Enter nameLOAD (DFULOAD, SEULOAD, SORTLOAD, and RPGLOAD) for
each function(s) being installed. This step does not apply to the FCU, ASM,
and FORT functions. These three functions are completely installed in step 3.

5. If RPG 11 is being installed, message 1485 (END OF RD VOLUME—INSERT NEXT
DISKETTE) appears after the first diskette is read. When the message appears,
remove the first diskette, insert the second, and select option 0 to continue.

6. Apply any required PTFs to the program products you install. See index entry:
APPLYPTF procedure.

To Create a Backup Copy of a Program Product

After a program product is installed, create a backup copy by following these two steps:

1. Initialize a diskette(s) with the appropriate volume identification to contain the
copy.

Function to be Copied Volume ldentification

DFU/SEU/Sort PPUTIL (one diskette)

RPG I RPGRPG (two diskettes)

FCU FCUFCU (one diskette)

Basic Assembler PPASM (one diskette) -

FORTRAN IV PPFORT (one diskette)

Note: Use the INIT procedure to initialize diskettes—see index entry: INIT
procedure.

2. Enter nameSAVE for each installed function to be saved, such as:

DFUSAVE
SEUSAVE
SORTSAVE
RPGSAVE
FCUSAVE
ASMSAVE
FORTSAVE

260

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Basic Assembler Installation Verification .

A sample program (ASSMPL), input data file (INPUT), and procedure (ASMSAMPL)
are provided with the IBM System/32 basic assembler program product. After basic
assembler is installed, by entering the command statement ASMSAMPL, you will be
prompted to insert the assembler program product diskette (PPASM).

ASMSAMPL
INSERT ASSEMBLER PROGRAM PRODUCT
DISKETTE. ‘

ACTION SCP 1162 CRPS OPTIONS O

PAUSE -— WHEN READY, ENTER O TO CONTINUE

The ASMSAMPL procedure will then copy to disk from diskette the ASSMPL source
program and the input data file. The ASSMPL program will then be assembled, link
edited, and executed.

()

ASSMPL WILL BE ASSEMBLED, LINKED,
AND EXECUTED. AT EXECUTION TIME A
FILE WILL BE READ AND PUT TO THE
PRINTER.

ASM PROCEDURE EXECUTING

MACRO PROCESSOR EXECUTING

N
After execution, the ASSMPL source, object, and load modules, the input data file,
and the ASMSAMPL procedure will be deleted from the disk.

The printed output from this verification sample is; a list of options, an external symbol
list, source statement list, cross reference list, overlay linkage editor map, and the
message THE ASSEMBLER SAMPLE PROGRAM IS EXECUTING PROPERLY. After
this message is printed, the display screen will display EOF ON SYSIN and will then
appear as below.

VERIFICATION IS COMPLETE. THE
FOLLOWING WILL NOW BE DELETED
ASSMPL SOURCE, OBJECT, AND LOAD
MODULE - THE INPUT FILE - AND
THE ASMSAMPL PROCEDURE.

REMOVE PROCEDURE EXECUTING

The following is an example of the source statement listing and the final printed
message of properly installed basic assembler program product.

Program Product Installation and Verification 261

[A14

ERR LOC OBUFCT CUDE

0800

0840 CO 87 0812

ASSMPL DISK FILE TO PRINTER (80/80

ADDR STMT

0001
0002

0812

22

24
25

29

35

40 =

41
42

51

61

LIST PROGRAM)

SOURCE STATEMENT

ICTL 1471
ISEQ 73,80
PRINT NOGEN'NODATA

&

R PR

ON THE

R B

P R TR

< g st s s e
sl e e el el e e

e e sl el fesfe e sl slesiesie s

PRINTER.

*PRINTER ERRUR®

= 'SYSIN ERRUR!

ASSMPL START x'uB00*

EXTRN #$CSIP
EXTRN #3$3DMC

VER XX MOD XX XX-XX-XX PAGE 3

oo stz o e 202 302 o8 302 s e 3 e fr e e sk s e o5z St ok
22 2l 32 35e sf e 3l sl ofe afe sl sl sfe sl se Sl ae e sje sl ot ofe e oo e slesle sfesf ok

THIS PRUGRAM READS A FILF FRDM THE DISK AND LLSTS IT

THERE ARE THREE PUSSIBLE MESSAGES ISSUED BY THIS PROGRAM:
MESSAGE
*EQOF ON®SYSIN'

MEANING

END OF FILE ENCOUNTERED FRUM OISK READ.
THE PROGLRAM ISSUES THE MESSAGE
AND GOES TO EUJ.

THERE rAS BEEN A PERMANENT PRINTER
ERROR. THE PROGRAM ISSUES THE
MESSAGE AND GUES TO END OF JORBe.

THERE HAS BEEN A PcRMANENT READ
ERROR. THE PROGRAM ISSUES THE
MESSAGE AND GUOES TO END OF JOBe

O A
ez e ot s

* PREPARE THE FILES FOR USE (DTFS ARE CHAINED)

$ALOC OTF-DSKOTF

$0PEN OTF-DSKDTF

ALLOCATE ALL FILES

OPEN ALL FILES

READ FROM SYSTEM SOURCE LIBRARY AND PRINT RECORDS UNTIL END OF FILE
REDAGN EQU =
* $GETD ACCESS-CGyDTF- LSKDTF,ERR SYSEREOF-EQF

$PUTP ODTF-PRTDOTF4ERR-PRNERRySPACEA-1¢PRINT-Y

REDAGN

BRANCH BACK AND READ AGAIN

00020000
00030000
00040000
00060000
00070000
00030000
CO090000
06100000
00110300
00120000
Cu130200
0U14C300
0U150000
60160009
03170300
00130000
06190000
00200009
00210000

00230900

0uU2500600
C026CJI00

00240J00

00300309

06320000

0u340009
0u350000
00300000

00380000

0049Cu0U

RPG Il Installation Verification

Sample programs are provided with the IBM System/32 RPG 1l program product.
After RPG Il is installed, these programs can be loaded from the PID program
product distribution diskette (RPGRPG) and executed by entering the command
statement RPGSAMPL.. This command statement causes three RPG [l and two
auto report programs to be compiled, executed, and then deleted from the disk.
The first RPG |l program prompts the operator as follows:

Operator
Prompt Response
KEY 123
DESC DRESS
VALUEA 10
VALUEB 30
VALUEC 20
KEY 124
DESC COAT
VALUEA 40
VALUEB 50
VALUEC 30

After the 10 fields are entered, the operator must press the CMD key and then the
/ key to indicate the end of input.

If RPG 11 is properly installed, printed output from the five sample programs is:

1. NO TRANSACTIONS LOADED
2 MASTERS LOADED

IBM SYSTEM/32

2. SYSTEM DATE SAMPLE UPDATE PROGRAM PAGE 0001

NEW NEW NEW
KEY DESCRIPTION VALUE A VALUE B VALUE C

NO TRANSACTION RECORDS ENTERED

IBM SYSTEM/32

3. SYSTEM DATE SAMPLE INDEXED FILE LISTING PAGE 0001
KEY DESCRIPTION VALUE A VALUE B VALUE ¢ ,J1%¢
123 DRESS 10 30 20 20
124 COAT 40 50 30 60
FINAL TOTAL 50 80 50 80

Program Product Installation and Verification

263

264

DATA FOR SAMPLE PROGRAM

11243JONES HARDWARE 27541021175

11352NU~-STYLE CLOTHIERS 27987021475
11886MIDI FASHIONS INC 15771020475
12874ULOOK [NTERIORS 25622020975

18274STREAMLINE PAPER INC29703022175
23347TRITE-BEST PENS CO 20842021875
25521 IMPORTS OF NM 292130220175
26723ALRIGHT CLEANERS 19473020775
28022NORTH CENTRAL SUPPLY1T7816020575
29871FERGUSON DEALERS 27229021075
30755FASTWAY AIRLINES 26158020675
31275ENVIRONMENT CONCERNS20451320675
324578 SOLE SILOS 27425021075
37945HOFFTA BREAKS INC 18276020675

42622EASTLAKE GRAVEL CO 16429020575

2375CASH
3707CASH
10722CASH
6795CASH
27403
1580
79740
46200CASH
7597CASH
6191CASH
74272CASH
2943
11005CASH
4723CASH

2937CASH

47

174

136
548
31
1593
924
152
124
1495
59
220
94

58

47

238

1193

1685

2328022175
4000022675
10508021475
6795022375
17055323075
1000022075
58547022775
46200022375
7597022275
6191022275
72587021975
1500023075
11005022075
4723022375

2937022375

FCU Installation Verification

Page of GC21-7593-3
Issued 25 November 197}7
By TNL: GN21-7939

Two sets of sample data files and conversion specifications are provided with the
I1BM System/32 FCU program product. After the FCU is installed, either set-of

data files and conversion specifications can be loaded from the PID program

product distribution diskette (FCUFCU) and executed by entering either of the
following command statements:

FCUSAMPL DP
FCUSAMPL WP

Entering FCUSAMPL DP does the following operations:

® | oads a sample sequential file and specification source member from the diskette

to disk.

® Executes the FCU specification phase to create a specification load member.

® Executes the FCU conversion phase to create an indexed sequential output file.

® Automatically deletes the FCUSAMPL DP procedure, the sample data files,the
specification statements, and the load module.

The following is an example of the printed output of a properly installed FCU

sample program.

FCU SPECIFICATION LISTING

0001
0002
0003
0004
0005
0006
0007
0008
0009

FIS

FOI 40 6
cep 1 1
ce 2 7
ce 3 N
cp 4 15
cp 5 19
cp 6 23
CcC

1

6U0
10p2
14p2
18P2
22P2
25P0

FOR MEMBER #FCUDP

NN EWUNO -

1
26
12
19

40

6U0
39U2
3202
13u2
2502
1100
40a

0305 SPECIFICATION LOAD MODULF CREATED

ACCOUNT NUMBER
CURRENT BALANCE
NEW CHARGES

PAST DUE AMOUNT
PAYMENTS

CREDIT LIMIT

1 *DELETE FIELD®

Procedures Used for System Configuration and Installation

DATE XX/XX/XX

00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
00100000

264.1

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939 ‘

264.2

FCU CONVERSION PHASFE PROCESSING MEMBER #PCuDP

RECORD KEY 113520
113520009000012176000000000126140024790

RECORD KEY . 118860
118860008000061735000020000417210083456

RECORD KEY 953210
953210005000011740001174000021500002150

RECORD KEY 233470
233470009000063785000040000175300041315

RECORD KEY 286220
286220005000067141006714100513400051940

‘RECORD KEY 825130

825130030000319667015795003117930473510

RECORD KEY 312750
312750009000077760005000000539970081757

RECORD KEY 324570
324570004000053200003261000291400043730

RECORD KEY 298710
298710009000042136004213600374910037491

RECORD KEY 437150
437150008000073191000040000000000033191

RECORD KEY 439370
439370008000009310000562000041300007820

RECORD KEY 451370
451370005000019717001971700223370022337

RECORD KEY 469180 .
469180010000068235000030000631940101429

RECORD KEY 583130
583130100000337415031147100573910083335

RECORD KEY 791190
791190008000021719002171900117450011745

RECORD KEY 913700
913700008000054973000040000741700089143

RECORD KEY 987160
987160008000001542000154200885850088585

RECORD KEY 307550
307550006000007816000781600635000063500

DATE XX/XX/XX

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN?21-7939

Entering FCUSAMPL WP does the following operations:

® L oads sample sequential and indexed data files and a specification source
member from the diskette to the disk.

® Executes the FCU specification phase to create a specification load module.

® Executes the FCU conversion phase to create a tabular document in a document
library.

® Automatically deletes the FCUSAMPL WP procedure, the sample data files, the
specification statements, and the load module.

Note: This sample requires that System/32 SCP Feature Number 6002 (word
processing support) and a 96-character print belt be installed.

The following is an example of the printed output of a properly installed FCU
sample program.

Procedures Used for System Configuration and Installation 264.3

Page of GC21-7593-3

Issued 25 November 1977

By TNL: GN21-7939

FCU SPECIFICATION LISTING FOR MEMBER #FCUW?P

0001
0002
0003
0004
0005
0006
0007
00n8
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

0305

264.4

FIs

FSI

FOL FCU WPSAMPLE

Q 1006TF110

CK 1 1 6U0

cs 10 1 6A 1 A
Cs 20 33 332 TITLES 2 A
CsS 30 22 31A 3 AP
C5 40 32 32A 4 AU
cs S0 7 21A NAMES 5 AP
CsS 60. 34 53A NSEW 6 AP
CS 70 S4 73Aa 7 AP
CS 80 74 75A STATES 8 A
CS 90 76 80QRA 9 A
[olo 10 A 13
CP1090 7 10pP«S 11 D2
ccC 12 A 18
CP116 23 25P0 13 DO
ATITLFS 7 71013

o1 Mre.

2 MSe

3 Mrse

ol Miss

«5 Dre

ANAMES 7101517

«MC% Mg

.O':’,: Qf::

ANSFEW 7101316

oNE * NEBE *

oMW % NW %

eSE * SE %

eSW *® SW %

ASTAT®S 7 81335

«0H "Ohio

«FL Florida

eAL Alabama

eGA Georgia

eLA Louisiana

«SC South Carolina

«MS Mississippi

oWV West Virginia

«MD Maryland

+IL Illinois

«DC De Ce

«KY Kentucky

SPECIFICATION LOAD MODULE CREATED

KEY FIELD
CHARGE #

TITLE

FIRST NAME
MIDDLE INITIAL
LAST NAME
STREET

CITY

STATE NAMFE

ZIP CODE
DOLLAF SIGN
CURRENT BALANCE
DOLLAR SIGN
CREDIT LIMIT

DATE XX/XX/XX

00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
00100000
06110000
00120000
00130000
00140000
00150000
00160000
00170000
00180000
00190000
00200000
00210000
00220000
00230000
00240000
00250000
00260000
00270000
00280000
00290000
00300000
00310000
00320000
00330000
00340000
00350000
00360000
00370000
00380000
00390000
00400000
00410000
00420000
00430000
00440000
00450000
00460000

FCU CONVERSION PHASE PROCESSING

NO 000001
Barbara
$ 800.

RECORD
118860

RECORD NO 000002
286220 Mre. Joseph A
3 500.

RECORD NO 000003
825130
5 3,000

RECORD N0 000004
324570 Mr. Robert J
£ 400

RECOKD NO 000005
469180 Miss Margaret
3 1,000.

(&)

RECORD NO 000006
913700 Mse. Janice L
$ 800.

RECORD NO 000007
9871€0 Mre Charles R
s -500.

RSCORD NO 000008
307550 Horace M De
I 600

FIELD 100

McGuire

Abruzzo

A-1 Used Cars

Dobbs

Moaroe

Comstock

McCall

Angelo

SuM =

MEMBER #FCUWP

470 Live Oak Place

3500 Gault Ocean Dr

200 SE 124 St.

Buttonwood Drive

9 Pine Tree Lane

Albany

New Orleans

Maywood

Rome

Sunny South

2637 Marion Dr Ellensbhuryg
669 W Campus Circle Williston
8150 Cypress QRoad Zverglades
10012.93 MAX 4735410

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

DATE XX/XX/XX

Georgia

Louisiana

Tllinois

Georgia

Alabama

D. C'

South Carolina

Florida

MIN =

Procedures Used for System Configuration and Installation 264.5

264.6

This page intentionally left blank

Page of GC21-7593-3
issued 22 November 1978
By TNL: GN21-7993

System Modification

Some members can be deleted from the system library to release library space for
other members or to make disk space available for data files by reducing the size
of the library. You can also delete program products from the library.

LIBRARY REQUIREMENTS

The library requirements of the minimum IBM System/32 system control program-
ming are fixed at 33 directory sectors and 239 total library blocks. Control storage
increment feature support adds four library biocks. Inquiry/offline support adds 11
library blocks to a 16K system (K = 1024 bytes), 14 library blocks to a 24K system,
and 17 blocks to a 32K system.

In addition to the preceding minimum SCP library requirements, the requirements for
DFU, SEU, SORT, FCU, RPG, FORTRAN 1V, and basic assembler program products
are shown in the following chart. The version 6 and version 7 columns show the
change (if any) in the requirements from the previous version.

Library Function Directory Sectors Library Blocks
Version 7 Version 8 Version 7 Version 8

DFU 4 4 36 36
SEU 4 4 38 38
SORT 5 5 34 34
FCU 4 4 42 42
RPG 1l 16 16 147 147
FORTRAN 1V 19 19 96 96
Basic Assembler 4 4 27 | 27

Use the following chart to determine how many directory sectors and library blocks
must be added for the program products and SCP support needed for your system.
If more than one type of support (program product and SCP) requires the same
module, you only need to add that module once.

System Modification 266

Page of GC21-7693-3
Issued 22 November 1978
By TNL: GN21-7993

N CE BT L BRI FIL P
—({m|w|o|a|m|mfo|~|w|o|m oo
) o (O~ (N = N
1-17m41|2231.5101l
A223611.71nw412231l5101-
9,
s
_\0 DDHD o
70, < m|<2|D| | Z o
u,\oQ \oO\QOUOAWNBEE < o|glE WO
(e7 i iile) D o Oz =
4] %2] 215 e | d <
S, ||| Jla|=i= |- N0 |m| =[O
(o) SlnlsS T T rlwl2|0lh o
2 SO |2 O (5] o2
s alp|EIS(o|Eia|a|QI=|o|IE(Z|E|R| 2|«
2 %@vb ol |0 |S|S S| |o|<|<|<|O| = |0
‘ ry
1,

266 - bR e

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Example:

A user required the SEU program product, data recorder support, word processing
support, and inquiry/offline support on a 16K system.

Directory Library

Sectors Blocks Library Function
33 239 , Minimum System/32 SCP
4 38 SEU
11 Inquiry/offline support on 16K
1 16 CARDIO (data recorder)
6 60 WPFILE (word processing)
20 MSGMBR (required by both word processing and

data recorder but needs to be added only once)
The total number of directory sectors is 44; the total number of library blocks is 384.

These totals are the minimum numbers of directory sectors and library blocks for
the requested system.

DELETING FROM THE LIBRARY
Before deleting members from the library, determine how much space is presently

available for new members, or how much disk space is available for additional data
files.

System Modification . 266.1

This page intentionally left blank

266.2

Page of GC21-7593-3
issued 22 November 1978
By TNL: GN21-7993

Determining Space Available in the Library

To determine how much space is available in the library, use the LISTLIBR proce-
dure or the copy function of the SMAINT utility to print the system information
from the directory area (see index entries: $MAINT utility program and LISTLIBR
procedure). The system information listed will specify the number of additional
entries the directory can contain (AVAILABLE DIRECTORY ENTRIES) and how
many sectors are available in the library for additional members (AVAILABLE’
MEMBER SECTORS).

Determining Space Available on the Disk

To determine how much space exists on the disk for additional data files, use the
CATALOG procedure or the $LABEL utility (see index entries: SLABEL utility
program and CATALOG procedure) to display the disk VTOC. Available disk space
is specified in every disk VTOC display.

Note: You can also use CATALOG or $LABEL to display all disk VTOC entries to
determine which files can be deleted (see index entries: $DELET utility program
and DELETE procedure). Use the COMPRESS procedure or $FREE utility (see in-
dex entries: $FREE utility program and COMPRESS procedure) to collect unused
disk space in one area.

To determine how much space will be available for user programs and data files, take
the total library requirements of your planned system and subtract this number from

the number of disk blocks on your system. (see index entry: J/ibrary requirements)

Note: Convert the sectors to blocks (1 block equals 10 sectors). If there is a
remainder, round off that remainder to the next whole number.

Disk blocks available on the IBM System/32 are:

1248 blocks on a 3.2 megabyte disk

1968 blocks on a 5.0 megabyte disk

3576 blocks on a 9.1 megabyte disk

5376 blocks on a 13.7 megabyte disk
Example: The library requirements of the minimum |BM System/32 system control
programming are 33 directory sectors and 239 library blocks. This totals 243 blocks
(33 sectors converted to blocks rounds to 4 blocks). A 3.2 megabyte disk system
leaves 1005 blocks available for user programs and data files.

1248 (blocks on a 3.2 megabyte disk)

-243 (total blocks library requirements)
1005 (total blocks available to the user)

System Modification 267

Selecting Members to Delete

. The following members can be deleted from the library without affecting other mem-
bers or SCP functions:

Name Member Type Description

##MSG1 0 (load) Level 1 error messages
##MSGA 0 (load) Level 2 error messages
Selected procedure P (procedure) Procedures

(see note)

Note: When you delete a library member, be sure not to delete a procedure within
a nested procedure(s) or a procedure called by all procedures. For example, #ERR
is a nested procedure available to all procedures for error detection. If ##MSG1
and/or ##MSG4 are deleted, there will be no message text when an error occurs.

In addition to deleting the preceding members you can delete inquiry/offline multi-
volume support and any program product installed on the system without affecting
‘other system functions. :

Deleting (or not including) inquiry/offline support {INCLUDE INQUIRY/OFFLINE?
= NO on the RELOAD display—see index entry: RELOAD display) saves 11 blocks
of library space on a 16K system, 14 blocks on a 24K system, and 17 blocks on a
32K system. Use the LISTLIBR procedure or the copy function of SMAINT to list
library directory entries to determine space gained by deleting procedure members,
#H#MSG1, and ##MSG4. See index entry: library requirements to see how much
space is ga'ined by deleting a program product.

Note: After deleting members, use the CONDENSE procedure to collect all available
space into one area at the end of the library.

268

Deleting Members

® ##MSG1, ##MSG4, and procedure members are deleted by using the delete func-
tion of SMAINT. See index entry: SMAINT utility program.

® Inquiry/offline support is deleted by specifying NO to the INQUIRY/OFFLINE
option of the RELOAD display. The RELOAD display is described in following
paragraphs. '

® Program products are deleted by entering a nameD ROP command statement for
each function to be deleted (DFUDROP, SEUDROP, SORTDROP, RPGDROP,
ASMDROP, FORTDROP, and/or FCUDROP). The procedures evoked by these
command statements are deleted from the system when the related program
product functions are deleted.

After you have deleted members, you can change space allocated to the library by
using the RELOAD display, described in the following paragraphs.

Notes:

1. Do not delete any procedure that is used by a procedure that you are not
deleting.

2. To gather the disk space created by deleting members from the library into one
usable area, you can use the CONDENSE procedure. See index entry: CONDENSE
procedure.

RELOAD DISPLAY

The RELOAD procedure (described under index entry: RELOAD procedure) is
used to perform an IPL from diskettes onto which the library was copied by the
BACKUP procedure (described under index entry: BACKUP procedure).
RELOAD creates a new library on the disk, but does not disturb data files on the
disk.

The RELOAD display appears when you insert the first backup diskette (for a
particular copy of the library) and enter the RELOAD command statement
(described under index entry: RELOAD command statement) or when you press
the LOAD key with the IPL switch on the CE control panel set to DISKETTE.

The RELOAD display shows the number of sectors allocated for the library
directory, indicates whether or not inquiry or offline multivolume files are
supported, and shows the total number of blocks allocated for the library (system
file #LIBRARY). A sample display follows:

{ '
————} LIBRARY DIRECTORY SECTORS = 0033
INCLUDE INQUIRY/OFFLINE? = NO
TOTAL LIBRARY BLOCKS = 0239
_ J

System Modification 268.1

This page intentionally left blank

268.2

000 TOTAL ERRORS FOR THIS COMPILATION

E STATEMENT ALLOCATIONS
5 =056A 4 =0583 3 =05Ca 2 =0654 10 =0693 20 =070F 30 =0747

OVERLAY LINKAGE EDITOR STORAGE USAGE MAP XX/XX/XX

START OVERLAY CATEGORY NAME AND CODE LENGTH
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DECIMAL
0800 o SAMPLE 0764 1892
0FSsC #UNITB

0908 #ERBUF

0884 #I0BUF

0F 64 0 aFDEOD 013D 317
1045 #MNTRY

10783 #SNTRY

107¢ HRNTRY

OF64 #D

1081 #RETRN

1084 DLDIRG

1084 RESUME

10A1 o aF081 0066 102
1005 #DED4

10F7 #DEDZO

1107 0 aFoIo 010F 271
11A1 HELST

1140 HELST2

118F #DERR

1172 #I0INT

1169 #I10COM

E J 118a #ENDEQ

11C5 HERREQ

11DE #OUTBL

1100 #INTBL

11EC #10323a

11ED #FLRP2

1216 4 aFovC 001C 28
1222 #FLOAT

1232 4 aFOVA 0007 7
1239 5 aFoB2 0134 314
1340 HFRET

13438 AFOB2A

12C0 aFo82s

1352 aFoBR2C

1373 5 aFoC3 00AD 173
1420 5 aFoBs 004E 78
146E 5 aF0D39 0018 24
1486 5 aF0OBA 001D 29
14A3 5 aFOCA 002B 43
14CE 6 aFoIC 00D3 211
1573 HERTST

15A1 6 aFoIB 0008 216
1679 6 aF0I3 ;) - 203
167F #FOI3A

1714 #FOI3

1744 6 aFovP 0019 25
1750 6 aFOBE 0038 56
1795 6 aFoD7 o12C 300
18C1 20 KBINCO 0103 467

Figure 9 (Part 3 of 4). FORTRAN IV Verification Sample Program Output

Program Product Installation and Verification 269

3130 I SAMPLE MODULE®S TOTAL MAIN STORAGE SIZE IS
4756 DECIMAL
3131 I 0800 IS THE START CONTROL ADDRESS OF THIS MODULE
3134 I SAMPLE MODULE IS CATALOGED INTO THE LIBRARY WITH THE FOLLOWING INFORMATION
19 TOTAL NUMBER OF LIBRARY SECTORS

SYSTEM/32 FORTRAN IV SAMPLE TEST CASE

e I
1 K 1
I-——-1-- -—— 1
I NI 1 2 3 4 S 6 7 8 9 10 I
1 1 - - I
I 11 1 O 0 0 0 o o 0 0 01
I 21 2 1 0 0 0 0 0 0 0 01
I 31 3 3 1 0 0 o 0 0 0 o1
E! J I 41 &4 6 4 1 0 0 0 0 0 01
I 51 5 190 10 5 1 0 0 0 0 01
I 61 & 15 20 15 6 1 0 0 0 01
I 71 71 21 35 35 21 7 1 0 0 01
I 81 8 28 56 10 56 28 8 1] 01
1 91 9 35 84 126 126 84 36 9 1 01
I 10 1 10 45 120 210 252 210 120 45 10 11
I 11 I 11 55 165 330 462 462 330 165 S5 11 I
112 1 12 66 220 495 792 924 192 495 220 66 1
113113 78 28 715 1287 1716 1716 1287 715 286 1
I 14 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 I
1 15 I 15 105 455 1365 3003 5005 6435 6435 5005 3003 I
I 16 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 I
1 17 1 17 136 680 2380 6188 12376 19448 24310 24310 19448 1
1 18 1 18 153 816 3060 B568 18564 31824 43758 48620 43758 I
I 19 I 19 171 969 3876 11623 27132 S0388 75582 92378 92378 I
I 20 1 20 190 1140 4845 15504 38760 77520 125970 167960 184756 1
I--=~1- 1

Figure 9 (Part 4 of 4). FORTRAN IV Verification Sample Program Output

270

Basic Assembler Installation Verification

A sample program (ASSMPL), input data file (INPUT), and procedure {ASMSAMPL)
are provided with the IBM System/32 basic assembler program product. After basic

assembler is installed, by entering the command statement ASMSAMPL, you will be

prompted to insert the assembler program product diskette (PPASM).

()
ASMSAMPL
INSERT ASSEMBLER PROGRAM PRODUCT
DISKETTE.
ACTION SCP 1162 CRPS OPTIONS O
PAUSE -— WHEN READY, ENTER O TO CONTINUE
\. I

The ASMSAMPL procedure will then copy to disk from diskette the ASSMPL source
program and the input data file. The ASSMPL program will then be assembled, link
edited, and executed.

ASSMPL WILL BE ASSEMBLED, LINKED,
AND EXECUTED. AT EXECUTION TIME A
FILE WILL BE READ AND PUT TO THE
PRINTER.,

ASM PROCEDURE EXECUTING

MACRO PROCESSOR EXECUTING

After execution, the ASSMPL source, object, and load modules, the input data file,
and the ASMSAMPL. procedure will be deleted from the disk.

The printed output from this verification sample is; a list of options, an external symbol
list, source statement list, cross reference list, overlay linkage editor map, and the
message THE ASSEMBLER SAMPLE PROGRAM IS EXECUTING PROPERLY. After
this message is printed, the display screen will display EOF ON SYSIN and will then
appear as below.

VERIFICATION IS COMPLETE. THE
FOLLOWING WILL NOW BE DELETED
ASSMPL SQURCE, OBJECT, AND LOAD
MODULE — THE INPUT FILE - AND
THE ASMSAMPL PROCEDURE.

REMOVE PROCEDURE EXECUTING

The following is an example of the source statement listing and the final printed
message of properly installed basic assembler program product.

Program Product Installation and Verification 271

(444

ASSMPL DISK FILE TO PRINTER (80/80 LI§T PROGRAM)

ERR LOC OBJUFCT CUDE

2300

03840 CO 87 0812

ADDR STMT

0001
0002

0812

22

24
25

29

35

40

42

51

61

SOURCE STATEMENT

ICTL 1,71
ISEQ 73,80
PRINT NOGEN+NODATA

= ON THE

THIS PROGRAM READS A FILE FROM THE DISK AND L

PRINTER

VER XX MOD XX XX=XX-XX PAGt 3

ISTS IT

THERE ARE THREE PUSSIBLE MESSAGES ISSUED 8Y THIS PRUGRAM:
2 MESSAGE
= YEOF ON SYSInW®

*PRINTER ERRUR?

'SYSIN ERRUR?

ASSMPL START X'uB8QO!'

cXTRN #$CSIP
EXTRN #$3DMC

MEANING
END OF FILE ENCCUNTEREU FRJUM DISK READ.
THE PROGRAM ISSUFS THE MESSAGE
AND GUES TO Eud.
THEPE AAS BEEN A PERMANENT PRINTER
ERROR. THE PROGRAM ISSUES THE
MESSAGE AND GUES TC END OF JDE.
THERE ~AS BEEN A PERMANENT REAY
FRROR. THE PROGRAM ISSUFES THE
MESSAGE AND GUES TO END 3F JGCe

© PREPARE THE FILES FOR USE (DTFS ARE CHAINED)

3ALOC DTF-DSKODTF

$0PEN DTF-DSKOTF

ALLOCATE ALL FILES

OPEN ALL FILES

* READ FROM SYSTEM SOURCE LIBRARY AND PRINT RECJORDS UNTIL END OF FILFE

41 REDAGN €QU =
* BGETD ACCESS-CSeUTF-LCSKDTF4ERR-SYSERyEUF-EQF

8

$PUTP DTF-PRTDTFSERR-PRNERReSPACEA-1+PRINT-Y

REDAGN

BRANCH BACK AND READ AGAIN

00020000
00030L0U
03040000
00062009
20070000
CJ0s0300
60090000
0C1382uCy
30113009
C312C000

20130300
0ul14Cu0u
Cul500609
GCUlu2000
0017G4CU
0U1300633
001903000
00232003
QU2i0c0u

00230300

Qu235600
Cu2oCJ00

00252404

CGo3033509

Gu320000

0U345300U
CJ353000
0J350000

003=Culo

2043CU0u

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Version Update Instruction Summary

The following instructions are intended to be used as a guide for installing a version
update on an IBM System/32. These instructions are a summary of the detailed
instructions that are presented in Part 5, System Configuration, Installation, and
Modification. Index entries follow each step for the detailed description.

Note: Your IBM service representative can tell you if there are any PTFs applicable
to your version of the SCP, or to your version of any program product. If there

are PTFs, make arrangements with your IBM representative to have the PTF
diskette available when you do your version update. The PTF diskette contains

all applicable PTFs. '

To install a version update on the IBM System/32 execute the following steps:

1. Print the system information from the system library to determine the total
number of library blocks, the directory size, and if you are using inquiry/
offline. Save the printed listing for step 6.

Enter: LISTLIBR DIR,SYSTEM
(See index entries: printing from the library and LISTLIBR procedure.)

2. Delete IBM program products that are installed on the system so that the
system contains only user programs. User programs are saved in step 3.

Enter the following appropriate command for the program product you
have installed:

SEUDROP (if SEU is installed)

DFUDROP (if DFU is installed)
SORTDROP (if SORT is installed)
RPGDROP (if RPG is installed)
FCUDROP (if FCU is installed)
FORTDROP (if FORTRAN 1V is installed)
ASMDROP (if basic assembler is installed)

(See index entry: deleting members.)

Version Update Instruction Summary 272.1

272.2

3. Save your user programs on a diskette file (filename used here is USERLIBR).
The USERLIBR file is restored to disk in step 9. '

a. Initialize enough diskettes to contain your user programs (vol-id used here
is USER).

* Note: FORMAT2 may require fewer diskettes.
Enter: INIT USER,,FORMAT2

Note: Files that are on the diskettes being initialized in this step are deleted,
so make sure these files are not needed. (See index entry: /NIT procedure.)

b. Usg the diskettes initialized in paft a of this step to save your user programs.
Enter: FROMLIBR ALL,LIBRARY,USER LiBR,,999,USER
(See index entry: FROMLIBR proceclure.)
Note: If you have not initialized enough diskettes, return to part a of this
step and initialize more diskettes (the diskettes already used in part b of this

step must be deleted.) (See index entry: /N/T procedure.)

4, List the disk VTOC and save this list to compare with the list that will bev
printed in step 10 to verify that no data files were lost.

Enter: CATALOG
(See index entry: CATALOG procedure.)
5. Save your data files on a diskette file.

a. Initialize enough diskettes to contain your data files (vdl-id used here is
DFSAVE).

Note: FORMAT2 may require fewer diskettes.
Enter: INIT DFSAVE, FORMAT2

Note: Files that are on the diskettes being initialized in this step are
deleted, so make sure that these files are not needed.

(See index entry: INIT procedure.)
b. Use the diskettes initialized in part a of this step to save your data files.
Enter: SAVE ALL,,,DFSAVE |
(See index entry: SAVE procedure.)
Note: If you have not initialized enough diskéttes, return to part a of this

step and initialize more diskettes (the diskettes already used in part b of this
step must be deleted.) See index entry: /NIT procedure.

. Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Install the version update of system control programming.
Enter: RELOAD
(See index entry: RELOAD procedure.)

Note: The values used on your last version for the RELOAD display are in
the list printed in step 1. These values may have to be increased if additional
optional functions or program products are being added on this version or if
the library requirements have increased from the last version (see index entry:
library requirements).

If inquiry/offline support was included on your last version, the list printed
in step 1 will include an inquiry/offline area.

When the message ENTER COMMAND appears, start the system
configuration.

a. Enter: CNFIGSCP
(See index entry: CNFIGSCP procedure.)

b. Follow the instructions on the display screen and respond to the prompts.

Note: If you have a PTF diskette, add the PTFs when prompted.
(See index entry: APPLYPTF procedure.)

¢. When the message SYSTEM CONFIGURATION COMPLETE REMOVE
DISKETTE AND IPL FROM DISK appears, ensure that both the IPL and
IMPL switches are set to DISK and press the LOAD key. The version up-
date is now loaded and the configuration is complete.

Install the program products that you wish to have on your system.

a. Enter: INSTALL [DFU] [,SEU] [,SORT] [,RPG] [,FCU] [,FORT]
[LASM]

(See index entry: /NSTALL procedure.)

b. Insert the PID program product diskette prompted for and follow the
instructional messages that are displayed.

c. When the prompt for the volume-id of the backup diskettes is displayed,
press the INQ key and select option 2. This terminates the INSTALL
procedure.

Note: If you have a PTF diskette, add the program product PTFs at this
time. '

(See index entry: APPLYPTF procedure.)

Version Update Instruction Summary 272.3

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

10.

1.

12

13.

2724

Insert the USER diskettes that were used in step 3 to restore user programs.
Enter: TOLIBR USERLIBR
(See index entry: TOL/BR procedure.)
List the disk VTOC and compare this list to the list printed in step 4.
Enter: CATALOG
(See index entry: CATALOG procedure.)
Note: If the lists are ‘the same (your data files were not affected by the ver-
sion update) go to step 12. If the lists are not the same go to step 11 to
restore your data files.
Restore all data files saved in step 5.
Enter: RESTORE
(See index entry: RESTORE procedure.)
Backup your complete system. The diskettes used in steps 3 and 5 are no
longer needed and may be used here (delete and rename them). (See index

entry: INIT procedure.)

a. Initialize enough diskettes to contain your complete system (vol-id used
here is SYSTEM).

Note: FORMAT2 may require fewer diskettes.
Enter: INIT SYSTEM, FORMAT2

Note: Files that are on the diskettes being initialized in this step will be
 deleted, so make sure that these files are not needed.

(See index entry: /NIT procedure.)
b. Use the diskettes initialized in part a of this step to back up your system.
Enter: BACKUP SYSTEM,999
(See index entries: Backup configured SCP and BACKUP procedure.)
Note: If you have not initialized enough diskettes, return to part a of this
step and initialize more diskettes (the diskettes already used in part b of
this step must be deleted). (See index entry: /NIT procedure.)

An individual backup copy of each program product may be made.

(See index entry: backup copy of a program product.)

UOI1BDI4I18 A PUE UOLIE|[RISU| 19NPO.g Welbolg

€Le

ASSMPL DISK FILE TO PRINTER

ERR LOC

0844

0840

W >
o

[o]
€D &
=

NABS

Ow32

OBJECT CODE

c2

co

c2

F2

02

87

G2

87

> 02

OBCa

0866

09

QECE

ADDR STMT

0221

08A5
08RA
CARA
oaRB
030A

0832
oBC3

63

64
65
68

83
84
85

94 %

96
97
98

122 =*

123
124
125
126
127

129
130

148
149
150

152

154

89 =

(80/80 LIST PROGRAM)

SOURCE STATEMENT VER XX MOD XX XX=XX-XX PAGE 4
* END OF FILE ON SYSIN
EOF LA EOFMSG,LOG
= $LUG EOF MESSAGE
B EOY INVALTO REPLYs TRY AGAIN

% ERROR ON DISK ReAD

SYSER LA SERMSG+LUG

&= $L0G DISK READ ERROR MESSAGE
J EQJ GO Ty £0J

* ERROR ON PRINTEK
PRNERR LA PERMSG,LOG
* $LUG PRINTER ERRGCR MESSAGE

= END OF JOB ROUTINE

E0J £EQU =
= $CLOS DTF-OSKDTF CLUSE ALL FILES
$E0Y END JOB

CONSTANTS AND DATA AREAS
#* DISK FILE TABLES ETC.

“SKOTF $DTFD ACCESS-CGyRECL-BOyWNAME-INPUTBLKL~-5129yI0AREA-TINEBUF,
= CHAIN-PRTDTFRCAD-INRCRD

BUFFER ANO WORK AREAS FOR DISK INPUT INTERFACE

INPUF EQU

108 oS cL22
INAREA™ DS 2CL256
INRCRD EQU :
DSKREC DS CL&0

= PRINT FILt TABLES ETC.
“RTDTF $DTFP RCAD-INRCRDs IOAREA-QUTPUTRECL-80

% RUFFER AND WORK AREAS FOR PRINTZR INTERFACE
OUTPUT EQU #
IUAREA DS CL146

+ SYSTEM LOG TABLES

#0FMSG HLMSG TYPE-2+SPACE~2sMSGLN-15+sMSGAD-EOFMGLC

00420000
00430000
0044GC300
00450000

00470000
00430000
004900CU
00500000

00510000
00520000
00530300

Qu550009
00560000
005700GCC
0035800600

00600000
20620000

00630000
00640000

2

£0660000
00670000
00680000
00690000
00700000
00710000

00730000
00740000

00760000
€0770000
00780000

00B0C0O00

X00820000

vit

ASSMPL DISK FILE TO PRINTER (80/80 LIST PROGRAM)

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

161 *ERMSG $LMSG TYPE-24SPACE-2¢MSGLN~159MSGAD-SFERMGC

168 FERMSG $LMSG TYPE-24SPACE-2+MSGLN-15+MSGAD-PERMGC

0BD3 175 EOFMGC EQU *®
0803 C506C640060540E2 0BEL 176 oc CL15*EQF ON SYSIN ¢

‘ 0BE2 178 SERMGC EQU =
08E2 E2E8E2C9D540C509 08F0 179 oC CLIS'SYSIN ERROR ¢

NB8F1 131 PERMGC EQU =
N8F1 D7D09C305E3(50940 OB3FF 132 DC CLLIS*PRINTER ERROR

184 # OFFSETS FOR ALL DTFS DEFINED IN THIS PROGRAM

136 = $DTFU DISK-Y4PRT-Y,FIELD-Y

492 % REGISTER LABELS
00N2 493 $OTF eQU 2

0002 494 SYS £QU 2

0002 495 LGG EQU 2

03800 497 END ASSMPL
TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY-- 0
TOTAL SEQUENCE ERRORS IN THIS ASSEMBLY-- Q

* THE ASSEMBLER SAMPLE PROGRAM TS EXECUTING PROPERLY.
* THIS IS THE PRINTED OUTPUT FROM THE LOAD MIODULE OF ASSMPL

B
=
=
-
=

Tt st 02 St e st o wabe e A
R R W

VER XX MOD XX XX=XX—-XX

PAGE

SYSIN PAKAMETER LIST POINTER
SYSLOG PARAMETER LIST POINTER

£00840000
x00860000

00880000
00890000

00910000
00920000

0094008360
00950000
00970060
00990000
01010000
01020060

010630000
01040000

91050000

FCU installation Verification
Two sets of sample data files and conversion specifications are provided with the
IBM System/32 FCU program product. After the FCU is installed, either set of
data files and conversion specifications can be loaded from the PID program

product distribution diskette (FCUFCU) and executed by entering either of the
following command statements:

FCUSAMPL DP
FCUSAMPL WP

Entering FCUSAMPL DP does the following operations:

® [oads a sample sequential file and specification source member from the diskette
to disk.

@ Executes the FCU specification phase to create a specification load member.
@ Executes the FCU conversion phase to create an indexed sequential output file.

® Automatically deletes the FCUSAMPL DP procedure, the sample data files,the
specification statements, and the {oad module.

The following is an example of the printed output of a properly installed FCU
sample program.

FCU SPECIFICATION LISTING FOR MEMBER #FCUDP DATE XX/XX/XX
0001 FIS 00020000
0002 FOI 40 6 1 00030000
0003 ce 1 1 6U0 1 1 6UQ ACCOUNT NUMBER 00040000
0004 ce 2 7 10p2 6 33 39vu2 CURRENT BALANCE 00050000
0005 cP 3 11 14p2 5 26 32U2 NEW CHARGES 00060000
0006 cp 4 15 18P2 3 12 13uU2 PAST DUE AMOUNT 00070000
0007 cp 5 19 22p2 4 13 25uU2 PAYMENTS 00080000
0008 cCP 6 23 25P0 2 7 11v0 CREDIT LIMIT 40090000
0009 cC 7 40 4oA 1 *'DELETE PIELD® 00100000

0305 SPECIFICATION LOAD MODULE CREATED

Program Product Instaliation and Verification

275

276

FCU CONVERSION PHA3R PROCE3SING MEMBER #FCUDP

RECORD KEY 113520
113520009000012176000000000126140024790

RECORD KEY 118860
118860008000061735000020000417210083456

RECORD KEY 953210
953210005000011740001174000021500002150

RECORD KEY 233470
233470009000063785000040000175300041315

RECORD XEY 286220
286220005000067141006714100519400051940

‘RECORD KEY 825130

825130030000319667015795003117930473510

RECORD KEY 312750
312750009000077760005000000539970081757

RECORD KEY 324570
324570004000053200003261000291400049730

RECORD KEY 298710
298710009000042136004213600374910037491

RECORD KEY - 437150
437150008000073191000040000000000033191

RECORD KEY 439370
439370008000009310000562000041300007820

RECORD KEY 451370

451370005000019717001971700223370022337

RECORD KEY 469180
469180010000068235000030000631940101429

RECORD KEY 583130
583130100000337415031147100573910083335

RECORD KEY 791190
791190008000021719002171900117450011745

RECORD KEY 913700
913700008000054973000040000741700089143

RECORD KEY 987160
987160008000001542000154200885850088585

RECORD KEY 307550
307550006000007816000781600635000063500

DATE XX/XX/XX

Entering FCUSAMPL WP does the following operations:

® |oads sample sequential and indexed data files and a specification source
member from the diskette to the disk.

® Executes the FCU specification phase to create a specification load module.

® Executes the FCU conversion phase to create a tabular document in a document
library.

® Automatically deletes the FCUSAMPL WP procedure, the sample data files, the
specification statements, and the load module.

Note: This sample requires that System/32 SCP Feature Number 6002 (word
processing support) and a 96-character print belt be installed.

The following is an example of the printed output of a properly installed FCU
sample program.

Program Product Instaliation and Verification 277

FCU SPECIFICATION LISTING FOR MEMBER #FCUWP DATE XX/XX/XX

0001 FIsS 00020000
0002 FSI 00030000
0003 FOL FCU WPSAMPLE 00040000
000y Q 100GTF110 00050000
N00S CcK 1 1 6U0 KEY FIELD 00060000
0006 Cs 10 1 6A 1 A CHARGE # 00070000
oon7 Cs 20 33 332 TITLES 2 A TITLE 00080000
oons Cs 30 22 31A 3 AP FIRST NAME 00090000
0009 Cs 40 32 322A 4 AU MIDDLE INITIAL 00100000
0010 Ccs 50 7 21A NAMES 5 AP LAST NAME 00110000
0011 Cs 60 34 53A NSEW 6 AP STREET 00120000
0012 CS 70 S4 73A 7 A P CITY 00130000
0013 CsS 80 74 75A STATES 8 A STATE NAMF 00140000
0014 CS 90 76 80A 9 A ZIP CODE 00150000
0015 cc 10 A 13 DOLLAR SIGN 00160000
0016 CP1090 7 10pPzs 1 D2 CURRENT BALANCE 00170000
0017 cC 12 A 1% DOLLAR SIGN 00180000
0018 .CP110 23 25P0 13 DO CREDIT LIMIT 00190000
0019 ATITLES 7 71013 00200000
0020 «1 Mr. 00210000
0021 «2 Mse 00220000
0022 «3 Mrse. 00230000
0023 «4 Miss 00240000
0024 «5 Dre. 00250000
0025 ANAMES 7101517 00260000
0026 e MC M) 00270000
0027 YA L 0 00280000
0028 ANSEW 7101316 00290000
0029 oNE % NE : 00300000
0030 oNW B ONW 00310000
0031 «SE * SE % 00320000
0032 «SW = SW 00330000
0033 ASTATES 7 81335 00340000
0034 «0H Ohio 00350000
0035 «FL Florida 03360000
0036 AL Alabama 00370000
0037 oA Georgia 00380000
0038 «LA Louisiana 00390000
0039 «SC South Carolina 00400000
0040 «MS Mississippi 00410000
0041 WV West Virginia 00420000
0042 «MD Maryland 00430000
00u3 «TL Illinois 00440000
004y «DC De Co 00450000
oous o XY Kentucky 00460000

0305 SPECIFICATION LOAD MODULE CREATED

278

FCU CONVERSION PHASE

RECORD NO
118860

000001

Barbara

3 800.

RECORD NO
286220 Mr.
3

RECORD NO
825130

000002
Joseph
500

000003

% 3,000

RECGRD NO
324570 Mre.
b3

RECOKD NO

000004
Robert
UOO.

000005

4569180 (iss Margaret

3

RECORD NO
913700 Ms.
)

RECOERD NO
987160 Mre.
£

RECORD NO
307550

1,000

000006
Janice
800,

000007
Charles
'300.

000008

Horace

F 600.

FIELD

100

PROCESSING

McGuire

A Abruzzo

A-1 Used Cars

2 Dobbs

£ Monroe

L Comstock

N McCall

De Angelo

SyM =

MEMBER #FCUWP

470 Live Oak Place Albany

3500 Gault Ocean Dr New Orleans
200 SE 124 St. Maywood
Rome

Buttonwood Drive

3 Pine Tree Lane Sunny South

2637 Marion Dr Ellensburg
669 W Campus Circle Williston
8150 Cypress =xoad Everglades
10012.93 MAX = 4735410

Program Product Instailation and Verification

DATE XX/XX/XX

Georgia

Louisiana

Illinois

Georgia

Alabama

De Coe

South Carolina

Florida

MIN =

279

This page intentionally left blank

280

APAR Parameters

vol-id Volume identification of the diskette to contain the two
files APARFILE and FIXDFILE.

object program name The name of the object program causing the program
check interrupt.

source program name The name of the source program from which the object
program causing the program check interrupt was
created.
BUILD PROCEDURE

The BUILD procedure helps you correct data on the disk if an error occurs during:
a disk read or write operation. The BUILD procedure evokes the $BUILD utility
program to display and print unreadable data so you can find and correct it. See
index entry: $BUILD utility program, for a description of how to display and
correct data after a disk read or write error occurs.

BUILD Command Statement Format

BUILD

BUILD Parameters

None

DUMP PROCEDURE

The DUMP procedure prints or displays information saved on the CE cylinder and
other protected sectors on the disk. This information, consisting of the contents
of main and control storage and the last 20 sectors recorded in the history file,
may have been saved because of a program check interrupt or may have been
saved because the RESET and then the CE START keys on the CE console were
pressed. '
DUMP also prints or displays the PTF (program temporary fix) log module and
system configuration record. If DISK is specified, selected sectors from the disk
(if F1) or a diskette (if 11) are displayed or printed. If MAIN, CONTROL,
HISTORY, PTF, CONFIG, or MICR are specified with 11, the specified items are

- printed or displayed from a diskette file created by the APAR command. (See
index entry: APAR procedure.) The sectors you select to print br display must be
entered as hexadecimal numbers.

The DUMP procedure evokes the $FEDMP utility program.

IBM SCP Service Procedures 281

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

DUMP Command Statement Format

3

PRINTER F1
CRT A1

The system status, system communication area {(SCA), program level

communication area (PLCA), DTFs (define the files) and 10Bs
{input/output blocks) are dumped; a prompt for main storage address
limits (a starting storage address and an ending storage address)
follows. After the selected area of storage is dumped, a new limits
prompt is issued. You have the END option (terminate the DUMP)
after each prompt for main storage limits. MAIN is the default.

The control storage direct area is dumped; a prompt for the control
store address limits follows. You can respond with the limits or END.

Dump the saved HISTORY file.

Dump the PTF log module.

Dump the system configuration record.

Selected sectors of F1 or 11 can be dumped. Prompts are issued for the
starting sector number and number of sectors to be dumped (must be

entered in hexadecimal). ‘At the completion of that dump, prompts are
issued for the next group of sectors. You can respond with the limits or

Dump the magnetic character reader controller storage area.

Output is on the printer. PRINTER is the default.

Output is on the display screen, 240 characters at a time. The key-
board function keys can be used to display different portions of the

The disk contains the information requested by the MAIN, CONTROL,
HISTORY, PTF, CONFIG, or DISK parameter. F1 is the default value.

MAIN
'CONTROL
HISTORY
DUMP PTF
CONFIG
DISK
MICR _
DUMP Parameters
MAIN
CONTROL
HISTORY
PTF
CONFIG
DISK
“END.
MICR
PRINTER
CRT
dump.
£l
11

282

The diskette contains the information requested by the MAIN,
CONTROL, HISTORY, PTF, CONFIG, or DISK parameter.

Example:

A user required the SEU program product, data recorder support, word processing
support, and inquiry/offline support on a 16K system.

Directory Library

Sectors Blocks
33 239
4 38
1
1 16
6 60
20

Library Function

Minimum System/32 SCP

SEU

Inquiry/offline support on 16K
CARDI!O (data recorder)
WPFILE (word processing)

MSGMBR (required by both word processing and
data recorder but needs to be added only once)

The total number of directory sectors is 44; the total number of library blocks is 384.
These totals are the minimum numbers of directory sectors and library blocks for

the requested system.

DELETING FROM THE LIBRARY

Before deleting members from the library, determine how much space is presently
available for new members, or how much disk space is available for additional data

files.

System Modification

283

284

Determining Space Available in the Library

To determine how much space is available in the library, use the LISTLIBR proce-
dure or the copy function of the $SMAINT utility to print the system information
from the directory area (see index entries: $MAINT utility program and LISTLIBR
procedure). The system information listed will specify the number of additional
entries the directory can contain (AVAILABLE DIRECTORY ENTRIES) and how-
many sectors are available in the library for additional members (AVAILABLE’
MEMBER SECTORS). ~/

Determining Space Available on the Disk

To determine how much space exists on the disk for additional data files, use the
CATALOG procedure or the $LABEL utility (see index entries: $LABEL utility
program and CATALOG procedure) to display the disk VTOC. Available disk space
is specified in every disk VTOC display.

Note: You can also use CATALOG or $LABEL to display all disk VTOC entries to
determine which files can be deleted (see index entries: $DELET utility program
and DELETE procedure). Use the COMPRESS procedure or SFREE utility (see in-
dex entries: $FREE utility program and COMPRESS procedure) to collect unused
disk space in one area.

To determine how much space will be available for user programs and data files, take
the total library requirements of your planned system and subtract this number from
the number of disk blocks on your system. (see index entry: library requirements)

Note: Convert the sectors to blocks (1 block equals 10 sectors). |f there is a
remainder, round off that remainder to the next whole number.

Disk blocks available on the IBM System/32 are:

1248 blocks on a 3.2 megabyte disk

1968 blocks on a 5.0 megabyte disk

3576 blocks on a 9.1 megabyte disk

5376 blocks on a 13.7 megabyte disk
Example: The library requirements of the minimum IBM System/32 system control
programming are 33 directory sectors and 239 library blocks. This totals 243 blocks
(33 sectors converted to blocks rounds to 4 blocks). A 3.2 megabyte disk system
leaves 1005 blocks available for user programs and data files.

1248 (blocks on a 3.2 megabyte disk)

-243 (total blocks library requirements)
1005 (total blocks available to the user)

Selecting Members to Delete

The following members can be deleted from the library without affecting other mem-
bers or SCP functions:

Name Member Type Description

##MSG1 0 (load) Level 1 error messages
##MSG4 0 (load) Level 2 error messages
Selected procedure P (procedure) Procedures

(see note)

Note: When you delete a library member, be sure not to delete a procedure within
a nested procedure(s) or a procedure called by all procedures. For example, #ERR
is a nested procedure available to all procedures for error detection. If ##MSG1
and/or ##MSG4 are deleted, there will be no message text when an error occurs.

In addition to deleting the preceding members you can delete inquiry/offline multi-
volume support and any program product installed on the system without affecting
other system functions.

Deleting (or not including) inquiry/offline support (INCLUDE INQUIRY/OFFLINE?
= NO on the RELOAD display—see index entry: RELOAD display) saves 11 blocks
of library space on a 16K system, 14 blocks on a 24K system, and 17 blocks on a
32K system. Use the LISTLIBR procedure or the copy function of SMAINT to list
library directory entries to determine space gained by deleting procedure members,
#H#MSG1, and ##MSG4. See index entry: library requirements to see how much
space is ga'ined by deleting a program product.

Note: After deleting members, use the CONDENSE procedure to collect all available
space into one area at the end of the library.

System Modification 285

286

Deleting Members

® HH#MSG1, #4#MSG4, and procedure members are deleted by using the delete func-
tion of SMAINT. See index entry: SMAINT utility program.

® Inquiry/offline support is deleted by specifying NO to the INQUIRY/OFFLINE
option of the RELOAD display. The RELOAD display is described in following
paragraphs.

@ Program products are deleted by entering a nameDROP command statement for
each function to be deleted (DF UDROP, SEUDROP, SORTDROP, RPGDROP,
ASMDROP, FORTDROP, and/or FCUDROP). The procedures evoked by these
command statements are deleted from the system when the related program
product functions are deleted.

After you have deleted members, you can change space allocated to the library by
using the RELOAD display, described in the following paragraphs.

Notes:

1. Do not delete any procedure that is used by a procedure that you are not
deleting.

2. To gather the disk space created by deleting members from the library into one
usable area, you can use the CONDENSE procedure. See index entry: CONDENSE
procedure.

RELOAD DISPLAY

The RELOAD procedure (described under index entry: RELOAD procedure) is
used to perform an IPL from diskettes onto which the library was copied by the
BACKUP procedure (described under index entry: BACKUP procedure).
RELOAD creates a new library on the disk, but does not disturb data files on the
disk.

The RELOAD display appears when you insert the first backup diskette (for a
particular copy of the library) and enter the RELOAD command statement
(described under index entry: RELOAD command statement) or when you press
the LOAD key with the IPL switch on the CE control panel set to DISKETTE.

The RELOAD display shows the number of sectors allocated for the library
directory, indicates whether or not inquiry or offline multivolume files are
supported, and shows the total number of blocks allocated for the library (system
file #LIBRARY). A sample display follows:

()

-——=> LIBRARY DIRECTORY SECTORS = 0033~
HISTORY FILE SIZE DESIRED = 9255 ~d .
INCLUDE INQUIRY/OFFLINE? = YES Decimal
TOTAL LIBRARY BLOCKS o= 0239
\ J

If Values in the RELOAD Display are Correct

If the values shown in the RELOAD display are not correct, see the following page
to change the values; otherwise, press the ENTER key (not the ENTER+ or ENTER—

key). The library is read from the diskette to the disk and the following display appears:

([)

INSERT DISKETTE WITH FILE LABEL-#LIBRARY
DATE-XX/XX/XX, SEQUENCE NUMBER-02
————— > PRESS ENTER KEY AFTER INSERTING
WARNING—LIBRARY MAY BECOME UNUSABLE
IF CORRECT VOLUME NOT+ INSERTED

The INSERT DISKETTE display always appears after a diskette is read to the
disk. When the display appears, remove the diskette and insert the next diskette
as indicated. When all the diskettes are read, the following display appears:

r)

RELOAD COMPLETE - REMOVE LAST
DISKETTE AND IPL FROM DISK

Remove the diskette, set the IPL and IMPL switches on the CE control panel to
DISK, and press the LOAD key. The following display appears:

skick INITIAL PROGRAM LOAD COMPLETE sk
DATE XXXXXX
LINES 33

ENTER COMMAND

<-READY

Enter a DATE command statement (see index entry: DATE procedure) or a SET
command statement (see index entry: SET procedure) if the date or number of
lines printed per page is to be changed.

System Modification

287

If Values in the RELOAD Display -are to be Changed
To change the values displayed, do the following:

® When the arrow is pointing to the first line (LIBRARY DIRECTORY
SECTORS):

1. If this line is correct, press the REC ADV key. The arrow and cursor
move to the second line.

2, If you want to change the first line, enter the change over the existing
data (you may omit leading zeros) and then press the ENTER+ key. The
arrow and cursor move to the second line.

Note: The formula for computing the number of entries the directory
can hold is number of directory sectors times 11 minus 23. A directory
entry is required for each member in the library.

3. If all lines of the display are now correct, press the ENTER key (not the ENTER+
or ENTER—key). Data is read from the diskette onto the disk, and the INSERT
DISKETTE display appears.

® When the arrow is pointing to the second line (HISTORY FILE SIZE DESIRED):

1. If this line is correct, press the REC ADV key. The arrow and cursor move
to the third line.

2. If you want to change the second line, enter the change over the existing
data (you may omit leading zeros) and then press the ENTER+ key. The
arrow and cursor move to the third line.

3. If all lines of the display are now correct, press the ENTER key (not the
ENTER+ or ENTER- key). Data is read from the diskette onto the disk,
and the INSERT DISKETTE display appears.

Note: HISTORY file size must be set within the range of 39-255 sectors.

288

@ \When the arrow is pointing to the third line (INCLUDE INQUIRY/OFFLINE?):

1.

I this line is correct, press the REC ADV key. The arrow and cursor
move to the fourth line.

If you want to change the third line, enter the change (YES or NO)
over the existing data and then press the ENTER+ key. The arrow and
cursor move to the fourth line.

Note: The inquiry/offline option requires a disk area in which to roll out
an interrupted program or to process an offline muitivolume file segment.
The size of this area is 11 blocks on a 16K system, 14 blocks on a 24K
system, and 17 blocks on a 32K system. This area must be represented
in the total number of library blocks if inquiry/offline support is included.

If all lines of the display are now correct, press the ENTER key (not the ENTER+
or ENTER~ key). Data is read from the diskette onto the disk, and the INSERT
DISKETTE display appears.

e If the arrow is pointing to the fourth line (TOTAL LIBRARY BLOCKS):

1.

If this line is correct, press the REC ADV key. The arrow and cursor
move to the first line.

{f you want to change the fourth line, enter the change over the existing
data (you may omit any leading zeros) and then press the ENTER+ key.

Note: The number of blocks assigned to the library must be sufficient to
contain the library directory and the disk area (rollout area) required by
inquiry/offline support, if it is included, as well as all library members.
You should also allow some space in the library for new members
because of the inconvenience of expanding the library once the remaining
disk space is allocated to data files.

I all lines of the display are now correct, press the ENTER key (not the ENTER+
or ENTER—key). Data is read from the diskette onto the disk, and the INSERT
DISKETTE display appears.

System Modification

289

290

~ Version Update Instruction Summary

The following instructions are intended to be used as a guide for installing a version
update on an IBM System/32. These instructions are a summary of the detailed
instructions that are presented in Part 5, System Configuration, Installation, and
Modification. Index entries follow each step for the detailed description.

Note: Your |BM service representative can tell you if there are any PTFs applicable
to your version of the SCP, or to your version of any program product. If there
are PTFs, make arrangements with your 1BM representative to have the PTF
diskette available when you do your version update. The PTF diskette contains

all applicable PTFs.

To install a version update on the IBM System/32 execute the following steps:

1. Print the system information from the system library to determine the total
number of library blocks, the directory size, and if you are using inquiry/
offline. Save the printed listing for step 6.

Enter: LISTLIBR DIR,SYSTEM
{See index entries: printing from the library and LISTL/BR procedure.)

2. Delete IBM program products that are installed on the system so that the
system contains only user programs. User programs are saved in step 3.

Enter the following appropriate command for the program product you
have installed:)

v'SEUDROP (if SEU is installed)

v DFUDROP (if DFU is instatled)

#'SORTDROP (if SORT is installed)

v RPGDROP (if RPG is installed)
FCUDROP (if FCU is installed)
FORTDROP (if FORTRAN iV is installed)
ASMDROP (if basic assembler is installed)

(See index entry: deleting members.)

Version Update Instruction Summary 291

292

3. Save your user programs on a diskette file (filename used here is USERLIBR).
The USERLIBR file is restored to disk in step 9. :

a.

Initialize enough diskettes to contain your user programs (vol-id used here
is USER).

Note: FORMAT2 may require fewer diskettes.
Enter: INIT USER, FORMAT2

Note: Files that are on the diskettes being initialized in this step are deleted,
so make sure these files are not needed. (See index entry: /NI/T procedure.)

. Use the diskettes initialized in part a of this step to save your user programs.

Enter: FROMLIBR ALL,LIBRARY,USERLIBR,,999,USER
(See index entry: FROML IBR pfocedure.)

Note: If you have not initialized enough diskettes, return to part a of this
step and initialize more diskettes (the diskettes already used in part b of this

* step must be deleted.) (See index_ entry: /NlTproceduré.) v

4, List the disk VTOC and save this list:to compare with the list that will be
printed.in step 10 to verify that no data files were lost.

Enter: CATALOG

.(See index entry: CATALOG procedure.)

b. Save your data files on a disketté file.

a.

Initialize enough diskettes to contain your data files (vol-id used here is
DFSAVE). :

Note: FORMAT2 may require fewer diskettes.
Enter: INIT DFSAVE, FORMAT2

Note: Files that are on the diskettes being initialized in this step are
deleted, so make sure that these files are not needed.

(See index entry: INIT procedure.)

. Use the diskettes initialized in part a of this step to save your data files.

Enter: SAVE ALL,,DFSAVE
(See index entry: SAVE procedure.)
Note: |f you have not initialized enough diskettes, return to part a of this

step and initialize more diskettes (the diskettes already. used in part b of thls
step must be deleted)- See mdex entry /NITprocedu‘_ Lo

Page of GC21-7593-3

Issued 25 November 1977

By TNL: GN21-7939

Load SCP support for data recorder attachment (the nested procedure name is -
CNFICDIO):

// LOAD $MAINT

// FILE NAME-CARDIO,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-CARDIO
// END

Load SCP support for word processing (the nested procedure name is CNFIGULF):

// LOAD $MAINT

// FILE NAME-WPFILE,UNIT-I1

// FILE NAME-WCFILE,UNIT-11

// RUN v

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-WPFILE
// COPY FROM-DISK,TO-F1,RETAIN-R,FILEWCFILE
// END

Set country code options for word processing (the nested procedure name is
CNFIGULF):

// LOAD $WPSET
// RUN
// CCnn
// END

Load OCL support for the 1255 Magnetic Character Reader attachment (the nested
procedure name is CNFIMICR):

// LOAD $MAINT

// FILE NAME-MICR,UNIT-11

// RUN

// COPY FROM-DISK, TO-F1,RETAIN-R,FILE-MICR
// END

Load SCP support for FORTRAN 1V (the nested procedure name is CNFIFORT):

// LOAD SMAINT

// FILE NAME-FORTRAN,UNIT-I1

// FILE NAME-OLE,UNIT-I1

// FILE NAME-COMNSUBR,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-FORTRAN
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-OLE

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-COMNSUBR
// END

{BM SCP Procedure Contents

293

294

Load SCP support for basic assembler (the nested procedure name is CNFIAMPR):

// LOAD $MAINT

// FILE NAME-OLE,UNIT-I1

// FILE NAME-AMMACO,UNIT-11

// FILE NAME-RPGSUBR,UNIT-I1

// FILE NAME-COMNSUBR,UNIT-I1

// FILE NAME-AMBSCA,UNIT-11

// FILE NAME-BSCALOAD,UNIT-11

// FILE NAME-BSCASUBR,UNIT-I1

// FILE NAME-AMSCNT,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-OLE

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-AMMACO
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-RPGSUBR
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-COMNSUBR
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-AMBSCA

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-BSCALOAD
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-BSCASUBR
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-AMSCNT

// END

Load SCP support for the overlay linkage editor {the nested procedure name is
CNFIOLED):

// LOAD $MAINT

// FILE NAME-OLE,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-OLE
// END

Load SCP support for queued job stream (the nested procedure name is CNFIQJOB):

// LOAD $MAINT

// FILE NAME-QJOB,UNIT-I1

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-QJOB
// END

Load SCP support for optional messages (the nested procedure name is CNFIMSGS):

// LOAD $SMAINT

// FILE NAME-MSGMBR,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-MSGMBR
// END

Apply PTFs to SCP and optional programs (the nested procedure name is
CNFIPTFS), see index entry: APPLYPTF procedure.

Remove the CNFIGSCP procedures from the library:

// LOAD $MAINT

// RUN

// DELETE LIBRARY-P,NAME-CNFI.ALL,RETAIN-S
// END

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

COMPRESS
// LOAD $PACK
// RUN
CONDENSE
// LOAD $MAINT
/I RUN
// COMPRESS
// END
CONVERT
// LOAD $CNVRT
// RUN
COPYI1
// LOAD $DUPRD

// FILE NAME-COPY|1[,DATE-date] ,UNIT-I1
// RUN
filename

. YES
// COPYI1 NAME- { ALL } JPACK-vol-id [,DELETE- {_N_g }jl

[,PRESERVE- {T\J%S}] [.comes. {?umber ofcopies}]

// END

CREATE

// LOAD $MGBLD
// RUN

YES
// MGBLD SOURCE-sourcename, REPLACE- { }

NO
// END

DATE

// DATE-date

DCPRINT

// LOAD $DCSUP

// RUN

[// COPYFILE NAME-filename,OUTPUT-PRINT]
[// GO})

[// END]

IBM SCP Procedure Contents 296

296

DELETE
// LOAD $DELET
// RUN

// SCRATCH LABEL-filename [,DATE-date] ,UNIT- {::11}

and/or
. YES F1
// REMOVE LABEL-filename, DATA- NO [,DATE-date] ,UNIT- "
// END ' -
DISPLAY

// LOAD $COPY

// FILE NAME-COPYIN,LABEL-filename [,DATE-date] ,UNIT-F1
// RUN

// COPYFILE OUTPTX-PRINT

{// SELECT RECORD,FROM-number-1 [,TO-number-2]]

// END

DUMP

// LOAD $FEDMP

/l RUN
[MAIN
CONTROL
HISTORY
//DUMP | LIST- { PTF EOUTmnz{E%$EEB}][JNmﬂ={
CONFIG
DISK
MICR
// END

F1
|

f]

FROMLIBR

// LOAD $MAINT

// FILE NAME-

}

F1

UNIT- {”

or, if ADD is specified,

/!l FILE NAME-

// RUN

filename-1
library-name-1
[fllename -2

name-1

// COPY FROM-F1,LIBRARY-

[filename-1 :I
FILE- Il.brary-name-1
filename-2

Lot]

name-1

// END

HISTORY

// LOAD $HIST
// RUN

[/ DIsPLAY [ALL]]

// END
// LOAD $HINT
// END

INIT

// LOAD $INIT
// RUN

// UIN OPTION-

[// VOL PACK-
// END

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

[filename-1] g If F1is

_Il‘brary-name-1 | RETAIN- T specified. ,blocks

[filename-2] -/ ,8
retention-days

_name-1 1 or

,PACK-vol-id

w

[,PACK-vol-id] ,UNIT-
N~

If UNIT-I1

]
]

library-name-1
name-1.ALL

|

,NAME- {

,E:UO‘UM

,TO-DISK,OMIT-SYSTEM [,ADD-YES]

If NOLIST is not specified

} If RESET is specified

FORMAT

FORMAT2(

DELETE
RENAME
vol-id

{

system date

owner-id
OWNERID

e famka]

IBM SCP Procedure Contents 297

INSTALL
(The following are some of the OCL. statements for INSTALL.)
Print System Directory:

// LOAD $SMAINT

// RUN

// COPY FROM-F1,TO-PRINT, LIBRARY SYSTEM,NAME-DIR
// END

Delete INSTALL procedures from tailored system:

/I LOAD $MAINT

// RUN

// DELETE LIBRARY-P,NAME-INST.ALL, RETAIN-S
/l END

JOBSTR
For card input

// LOAD $QJOB
// RUN

For diskette input:

// LOAD $BICR

// FILE NAME-COPYIN,LABEL-filename,UNIT-I1

// FILE NAME-COPYOQ,LABEL- filename, UNIT-F1 RECORDS-number
// RUN

// TRANSFER

// END

// LOAD $MAINT "
// FILE NAME-filename, UNIT-F1

// RUN ,

// COPY FROM-DISK,FILE-filename, TO-F1

// END

// LOAD $DELET

/l RUN

// REMOVE LABEL-filename,UNIT-F1
// END '

For exécuting a procedure if the procedure name i; specified:
// INCLUDE procedurename

For deleting the procedurenafne if the NOSAVE parameter is specified:
// LOAD $MAINT
// RUN

// DELETE NAME-procedurename, LIBRARY-P
// END

Appendix C. Diskette Formats and Diskette Data Files

Diskette data files for IBM System/32 reside on diskettes that are initialized in one
of two physical formats.

DISKETTE FORMATS

IBM System/32 processes diskettes that are initialized in either the 128-bytes per
sector basic data exchange format or the 512-bytes per sector extended format.
The INIT procedure and $INIT system utility can initialize diskettes in either
format. (See index entries: /N/T procedure and $INIT utility program.)

The sectors in track 0 (index track) of both formats are 128-bytes. Data sectors
on the 128-bytes per sector format diskette are also 128-bytes. Data sectors on
the 512-bytes per sector format diskette are 512-bytes.

DISKETTE DATA FILES

IBM System/32 creates and processes two kinds of diskette data files: basic data
exchange files and {BM System/32 system files.

Basic Data Exchange Files

Basic data exchange files can reside only on diskettes initialized in the 128-bytes
per sector format on tracks 1-73. These files can be used for exchanging diskettes
between systems or devices. See The /BM Diskette General Information Manual,
GAZ21-9182 for a description of the data set label fields.

Basic data exchange files are created by the TRANSFER procedure and $BICR
system utility. The copy of a diskette file created by the COPY |1 procedure or
$DUPRD utility is a basic data exchange file if the original diskette file is a
basic data exchange file. (For a description of the procedures and utilities just
mentioned, see index entries: COPY/1 procedure, TRANSFER procedure,
$BICR utility program, and $DUPRD utility program.)

Diskette Formats and Diskette Data Files 299

300

System Files

System files can reside on diskettes initialized in either the 128-bytes per sector
format or the 512-bytes per sector format on tracks 1-74. These files can be used
on the IBM System/32 only. See The /BM Diskette General Information Manual,
GA21-9182 for a description of data set label fields.

System files are created by the BACKUP, FROMLIBR, ORGANIZE, and SAVE pro-
cedures, and by the $BACK, $COPY, and SMAINT utilities. The copy of a diskette
file created by the COPY11 procedure or $DUPRD utility is a system file if the ori-
ginal diskette file is a system file. (For a description of the procedures and utilities
just mentioned, see index entries: BACKUP procedure, COPY |1 procedure,
FROMLIBR procedure, ORGANIZE procedure, SAVE procedure, $BACK utility

program, 8COPY utility program, $DUPRD utility program, and $SMAINT utility
program.) .

Page of GC21-7593-3)
Issued 22 November 1978
By TNL: GN21-7993

REMOVE

// LOAD $SMAINT

// RUN
s
library-name P
// DELETE NAME- name.ALL ,LIBRARY- (o)
ALL R
ALL
// END
RENAME

// LOAD $RENAM
// RUN

mmddyy
// RENAME LABEL-fiIename-1,NEWLABEL-fiIename-Z ,DATE- { ddmmyy

yymmdd
// END
RESTORE
// LOAD $COPY
filename-1
// FILE NAME-COPYIN,LABEL- < #SAVE [LDATE-date] ,UNIT-11
filename-2
' . ,RECORDS-value-1
// FILE NAME-COPYO[,LABEL-filename-2] {,BLOCKSvaIue2 }] [LUNIT-F1]
// RUN v

// COPYALL TO-F1
or

// COPYFILE OUTPUT-DISK,REORG-NO
// END

SAVE

// LOAD $COPY
// FILE NAME-COPYIN[,LABEL-filename-2] [,DATE-date] [,UNIT-F1]

' . filename-2
/I FILE NAME-COPYO | ,RETAIN- {;"“’"m“"’ays}] [LABEL- {ﬁlename—‘l} :
- #SAVE,

PACK-vol-id, UNIT-11

// RUN

/I COPYALL TO-I1
or

// COPYFILE OUTPUT-DISK,REORG-NO
or

/I COPYADD

// END

IBM SCP Procedure Contents 301

302

SET

// LOAD $SETCF |
[// IMAGE MEM,source-namel
[// DATE datel

/I RUN o |
o MDY | YES
/I SETCF [LINES-number] | ,FORMAT- {DMY { | | IMAGE- { }
umb ; 40 AMAGE- 1\ no
R YMD No
/l END ' -'
SETMICR

// LOAD $SETCF

// RUN
// SETR CYCLE- { ; }
// END

SPECIFY

// LOAD $SETCF

"// RUN
g AA
/I SETS [ADDR-nn] | LINE- ¢ ¢ SWTYP- { MA> | [,ID-nnnnn]
: MmC
T
// END
STATUS
// LOAD $STATS
// RUN
SYSLIST
PRINTER
// SYSLIST | CRT
OFF
TOLIBR

// LOAD $SMAINT

// FILE NAME-filename[,DATE-date] ,UNIT- {F1}
// RUN

// COPY FROM-DISK,FILE-filename, RETAIN- { },TO-F1
// END

nlvo

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

TRACE

// LOAD $SETCF
// RUN

ALL-Y
// TRACE WAIT-N ,FDIOS-Y ,CSFDIOS-Y ,PUSH-Y ,PULL-Y
WAIT-Y ,FDIOS-N ,CSFDIOS-N ,PUSH-N ,PULL-N
,DISABLE-Y ,ENABLE-Y [,QUEUE-Y ,LDCS-Y ,LOADER-Y
,DISABLE-N ,ENABLE:-N ,QUEUE-N ,LDCS-N ,LOADER-N

XIENT-Y XFER-Y
JXIENT-N ,XFER-N

// END

{BM SCP Procedure Contents 302.1

This page intentionally left blank

302.2

APAR Parameters

vol-id Volume identification of the diskette to contain the two
files APARFILE and FIXDFILE.

object program name The name of the object program causing the program
check interrupt.

source program name The name of the source program from which the object
program causing the program check interrupt was
created.
BUILD PROCEDURE

The BUILD procedure helps you correct data on the disk if an error occurs during
a disk read or write operation. The BUILD procedure evokes the $BUILD utility
program to display and print unreadable data so you can find and correct it. See
index entry: $BUILD utility program, for a description of how to display and
correct data after a disk read or write error occurs.

BUILD Command Statement Format

BUILD

BUILD Parameters

None

DUMP PROCEDURE

The DUMP procedure prints or displays information saved on the CE cylinder and
other protected sectors on the disk. This information, consisting of the contents
of main and control storage and the last 20 sectors recorded in the history file,
may have been saved because of a program check interrupt or may have been
saved because the RESET and then the CE START keys on the CE console were
pressed.

DUMRP also prints or displays the PTF {program temporary fix) log module and
system configuration record. If DISK is specified, selected sectors from the disk
(if F1) or a diskette (if 11) are displayed or printed. If MAIN, CONTROL,
HISTORY, PTF, CONFIG, or MICR are specified with |1, the specified items are
printed or displayed from a diskette file created by the APAR command. (See
index entry: APAR procedure.) The sectors you select to print or display must be
entered as hexadecimal numbers.

The DUMP procedure evokes the $F EDMP utility program.

IBM SCP Service Procedures 303

DUMP Command

DUMP

rMAIN

Statement Format

CONTROL

HISTORY
PTF , [P_ﬁlm&] [ﬂ}

CONFIG CRT A1
DISK
MICR

DUMP Parameters

MAIN

CONTROL

HISTORY
PTF

CONFIG

DISK

MICR
PRINTER

CRT

304

The system status, system communication area (SCA), program level
communication area (PLCA), DTFs (define the files) and 10Bs
(input/output blocks) are dumped; a prompt for main storage address
limits (a starting storage address and an ending storage address)
follows. After the selected area of storage is dumped, a new limits
prompt is issued. You have the END option (terminate the DUMP)
after each prompt for main storage limits. MAIN is the default.

The control storage direct area is dumped; a prompt for the control
store address limits follows. You can respond with the limits or END.

Dump the saved HISTORY file.

Dump the PTF log module.

e

Dump the system configuration record.

Selected sectors of F1 or 11 can be dumped. Prompts are issued for the
starting sector number and number of sectors to be dumb/ed {must be
entered in hexadecimal). At the completion of that dump, prompts are
issued for the next group of sectors. You can respond with the limits or
END.

Dump the magnetic character reader controller storage area.

Output is on the printer. PRINTER is the default.

Output is on the display screen, 240 characters at a time. The key-
board function keys can be used to display different portions of the
dump.

The disk contains the information requested by the MAIN, CONTROL,
HISTORY, PTF, CONFIG, or DISK parameter. F1 is the default value.

The diskette contains the information requested by the MAIN,
CONTROL, HISTORY, PTF, CONFIG, or DISK parameter.

PATCH PROCEDURE

The PATCH procedure enables IBM service personnel to modify {patch) a disk
or diskette sector. The sector to be modified is displayed, 40 characters at a
time, on the display screen. Then, the keyboard is used to enter patch data.

CAUTION

PATCH can alter any sector of disk storage with the exception of tracks 0, 1, 2, 4,
and 5, but it does not test whether the disk area is the library area, user area, or
fixed area. Therefore, an error during this procedure could cause unpredictable
results.

When the PATCH command statement is entered, a prompt for the sector number
is displayed. The sector number must be entered as a hexadecimal number. This
sector is then displayed and patch data is entered from the keyboard as the affected
portion of the sector is displayed. After all changes are made to a sector, the sector
is written back to the disk by pressing the REC ADV key. The next sequential
sector is then displayed. Other sectors are displayed by pressing the ENTER key
and responding to the prompt. To end the job, enter END in response to the
prompt.

Each line of the display screen is as follows:

Line 1 Printable EBCDIC characters
Line 2
and 3
Line 4 The cursor position and the current sector format and address
Line 6 A warning message to the user

%Hexadecimal representation of the characters in line 1

The PATCH procedure evokes the $FEPCH utility program.

PATCH Command Statement Format

PATCH [ﬁl] [LNOHEX]

PATCH Parameters

F1 A disk sector is to be patched. (F1 is the default.)
11 A diskette sector is to be patched.
NOHEX The hexadecimal representations of only unprintable characters are

to be displayed. If this parameter is not specified the hexadecimal
representations of all characters are displayed.

IBM SCP Service Procedures 305

306

TRACE PROCEDURE

The TRACE procedure provides the ability to compile a history of, or trace, impor-
tant SCP events occurring in the system. Whenever a request indicator byte (RIB)
or other branch to the supervisor is issued, its value, or function, is checked. If the
function is one for which a trace was requested, a 12-byte entry describing the
function is placed in a trace table in main storage. The table can contain 21 entries.
If the table is filled, new entries replace those recorded first in the table; that is,
the table is a wraparound table.

If the contents of main storage are saved on the CE cylinder because a processor
check interrupt occurred or because the RESET and then the CE START keys
were pressed on the CE control panel, the trace table, being contained in main
storage, is available on the disk. It is printed or displayed by the DUMP procedure
(see index entry: DUMP procedure) if DUMP is used to print or display the saved
contents of main storage. If the contents of main storage are printed, the trace
table is formatted to clearly identify the table and the kinds of information
contained in the entries.

The following system functions can be traced:
® Wait

¢ Disk 10S

® Control storage disk 10S
® Push

e Pull

@ Disable

@ Enable

® Queue

® Control storage load

® Main storage load

® Transient load

® XFER instruction

Information provided by the trace includes RIB values or supervisor call (SVC)
codes, register contents, and selected disk 10B (input/output block) information,

TRACE evokes the $SETCF utility (see index entry: $SETCF utility program).

TRACE Command Statement Format

TRACE I:

ALL
OFF

:l LWAIT] [FDIOS] [,CSFDIOS] [,PUSH] [,PULL] [,DISABLE]

[LENABLE] [,QUEUE] [,LDCS] [,LOADER] [, XIENT] [, XFER]

Note: |If either ALL or OFF is specified, ALL or OFF must be the first parameter.
All other parameters specified are ignored. The remaining parameters can be
specified in any order. A maximum of 10 parameters can be specified. The entire
SCP trace function is disabled if DEBUG-Y is specified in the ALTERBSC
command statement, the ALTERSDL command statement, $SETCF SETB and
SETP utility control statement {see index entries: ALTERBSC procedure and
BSCA environment ALTERSDL procedure and SDLC environment).

TRACE Parameters

ALL
OFF
WAIT
FDIOS
CSFDIOS
PUSH
PULL
DISABLE
ENABLE
QUEUE
LDCS
LOADER
XIENT

XFER

All traceable system functions are to be traced. ALL is a default value.
None of the system functions are to be traced.

Each evocation of the wait function is to be traced.

Each evocation of disk 10S (input/output supervisor) is to be traced.
Each evocation of control storage disk 10S is to be traced.

Each evocation of the push function is to be traced.

Each evocation of the pull function is to be traced.

Each evocation of the disable interrupt function is to be traced.

Ea(;h evocation of the enable interrupt function is to be traced.

Each evocation of the queue function is to be traced.

Each evocation of the control storage transient loader is to be traced.
Each evocation of the main storage relocating loader is to be traced.
Each evocati‘on of the main storage transient loader is to be traced,

Each execution of the XFER instruction is to be traced.

IBM SCP Service Procedures

307

308

Appendix E. IBM SCP Procedure Contents

This appendix shows the OCL and utility control statements contained in each
IBM procedure. The substitution expressions that determine which statements are
generated for a particular procedure are not shown. This appendix is intended as a
reference for programmers who want to know what is executed when a procedure
is evoked.)

ALTERBSC

// LOAD $SETCF
/l RUN

s [{(] [[ome 3] v
e 1] [ror 3] o]

// END

ALTERSDL

// LOAD $SETCF
// RUN

s [] [evooefz]] [osme (]
e {5}] [rese{31] [rone 3]

// END

APAR

// LOAD $FEAPR

// FILE NAME-APARFILE,RETAIN-999,PACK-vol-id,UNIT-I1
// FILE NAME-FIXDFILE,RETAIN-999,PACK-vol-id, UNIT-I1
// RUN

[// FROMLIBR object program name, LOAD,APARLOAD,,999,vol-id]
[// FROMLIBR source program name,APARSRCE,,999,vol-id]
APCHANGE

If the first parameter, blocks, in the command statement is specified:

/I LOAD $PACK
// RUN

IBM SCP Procedure Contents 309

If the second parameter, filename, in the command statement is specified:

// LOAD $MAINT

// FILE NAME-filename, UNIT-11

// RUN

[// DELETE NAME-ALL,LIBRARY-ALL]
// COMPRESS

// COPY FROM-DISK,FILE-filename, TO-F1
// END

APPLYPTF

// LOAD $MAINT

SC1nn
RG1nn
UT1nn
UT2nn
FO1nn
AS1nn

// FILE NAME- JUNIT-T

// RUN
If the second parameter in the command statement is OLD:

SCinn

RG1nn
UT1nn
UT2nn
FO1nn
AS1nn

// COPY FROM-DISK,TO-F1,FILE- ,RETAIN-R,OMIT-NEW

If the second parameter is ALL:

SC1nn
RG1nn
UT1nn
// COPY FROM-DISK,TO-F1,FILE- ,RETAIN-R
UT2nn
FO1nn

AS1inn
If the second parameter is PTF log number:

SC1inn

RG1nn
UT1nn
UT2nn
FO1nn
AS1nn

// COPY FROM-DISK,TO-F1,FILE- PTF-ptfid, RETAIN-R

// END

310

BACKUP

// LOAD $BACK
// FILE NAME-#LIBRARY,LABEL- {

PACK-vol-id, UNIT-I
// RUN

filename
#LIBRARY

BUILD

// LOAD $BUILD
// RUN

BWSUD

// LOAD $BWSUD

// RUN

.. CONFIG SLUNAME-name, HOST-name
.. GO

// END

BWSUR

// LOAD $BWSUR

// RUN

.. CONFIG SLUNAME-name
.. GO

// END

CATALOG

// LOAD $LABEL

/I'RUN i ~ { filename
// DISPLAY UNIT- {H} ,LABEL- {ALL }
// END

} RETAIN- {:etentlon-days }

IBM SCP Procedure Contents

311

312

CNFIGSCP
Set belt image option:

// LOAD $SETCF

BELT48
BELT64
// IMAGE MEM, BELT96
BELT48HN
// RUN
// SETCF IMAGE-YES
// END

Set number of lines per page option:

// LOAD $SETCF

// RUN

// SETCF LINES- {110 ga}
// END

Set date format option:

// LOAD $SETCF

// RUN
YMD
// SETCF FORMAT- < MDY
DMY
// END

Load SCP support for BSC data communications (the nested procedure name is
CNFIBSCA):

// LOAD $MAINT

// FILE NAME-BSCALOAD,UNIT-11

// RUN '

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-BSCALOAD
// END

L.oad SCP support for MRJE data communications (the nested procedure name is
CNFIMRJE):

// LOAD $MAINT

// FILE NAME-MRJELOAD UNIT-I1

// FILE NAME-BSCALOAD,UNIT-i1

// RUN _
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-MRJELOAD
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-BSCALOAD
// END

Load SCP support for batch work station data communications (the nested
procedure name is CNFITPSD):

// LOAD $MAINT

// FILE NAME-BWSLOAD,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-BWSLOAD
// END

Set line type option for BSC-switched (thé nested procedure name is CNFIOVRD):

/I LOAD $SETCF

// RUN
c AA
// SETR LINE- {S} SWTYP- { MA
mc

// END

Set line type option for BSC-nonswitched (the nested procedure name is CNFILINE):

/!l LOAD $SETCF

/' RUN
P
// SETR LINE- {R}
T
/!l END

Set line type option for SDLC—switched (the nested procedure name is CNFIOVSD):

// LOAD $SETCF
// RUN

C AA
// SETS LINE- {S} SWTYP- ¢ MA
McC

// END

Set line type option for SDLC—nonswitched (the nested procedure name is
CNFILISD):

/! LOAD $SETCF

// RUN
// SETS LINE- {:_}
/I END

World Trade answer tone option for BSC (the nested procedure name is
CNFITPBS):

// LOAD $SETCF
// RUN

// SETB ERC-7,SLINE-N,BRATE-F,DEBUG-N, TONE- {;}
// END

Modem clocking option for BSC (the nested procedure name is CNFITPBS): ‘

// LOAD $SETCF

// RUN
NsmBmﬂcn{;}
/I END

IBM SCP Procedure Contents

313

314

1BM modem option for BSC (the nested procedure name is CNFITPBS):

// LOAD $SETCF

/I RUN
// SETB TEST- {;}
/I END

World Trade answer tone option for SDLC (the nested procedure name is
CNFITPSD):

// LOAD $SETCF
// RUN
// SETP SLINE-N,BRATE-F,DEBUG-N,TONE- {;}

// END
Modem clocking option for SDLC (the nested procedure name is CNFITPSD):

// LOAD $SETCF
// RUN

/I SETP CLOCK- { ;}
/I END

IBM modem option for SDLC (the nested procedure name is CNFITPSD):

// LOAD $SETCF

// RUN
// SETP TEST- {;}
// END

Load SCP support for RPG (the nested procedure name is CNFIRG1):

// LOAD $MAINT

// FILE NAME-RPGSUBR,UNIT-I1

// FILE NAME-COMNSUBR,UNIT-i1

// FILE NAME-RPGLINK,UNIT-11

// FILE NAME-BSCASUBR,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-BSCASUBR
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-RPGSUBR
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-COMNSUBR
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-RPGLINK
// END

Load SCP support for data recorder attachment (the nested procedure name is
CNFICDIO):

// LOAD $MAINT

// FILE NAME-CARDIO,UNIT-I1

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-CARDIO
// END

Load SCP support for word processing (the nested procedure name is CNFIGULF):

// LOAD $SMAINT

/{ FILE NAME-WPFILE,UNIT-I1

// FILE NAME-WCFILE,UNIT-I

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-WPFILE
// COPY FROM-DISK,TO-F1,RETAIN-R,FILEWCFILE
// END

Set country code options for word processing (the nested procedure name is
CNFIGULF):

// LOAD $WPSET
// RUN
// CCnn
// END

Load OCL support for the 1255 Magnetic Character Reader attachment (the nested
procedure name is CNFIMICR):

// LOAD $MAINT

// FILE NAME-MICR,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-MICR
// END

Load SCP support for FORTRAN 1V (the nested procedure name is CNFIFORT):

// LOAD $MAINT

// FILE NAME-FORTRAN,UNIT-11

// FILE NAME-OLE,UNIT-I1

// FILE NAME-COMNSUBR,UNIT-I1

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-FORTRAN
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-OLE

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-COMNSUBR
// END

IBM SCP Procedure Contents

315

316

Load SCP support for basic assembler (the nested procedure name is CNFIAMPR):

// LOAD $MAINT

// FILE NAME-OLE, UNIT-i1

// FILE NAME-AMMACO,UNIT-11

// FILE NAME-RPGSUBR,UNIT-11

/! FILE NAME-COMNSUBR,UNIT-I1

// FILE NAME-AMBSCA,UNIT-I

// FILE NAME-BSCALOAD,UNIT-I1

// FILE NAME-BSCASUBR,UNIT-i1

// FILE NAME-AMSCNT,UNIT-I1

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-OLE

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-AMMACO
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-RPGSUBR
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-COMNSUBR
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-AMBSCA
// COPY FROM-DISK, TO-F1,RETAIN-R,FILE-BSCALOAD
// COPY FROM-DISK, TO-F1,RETAIN-R,FILE-BSCASUBR
// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-AMSCNT
/l END

Load SCP support for the overlay linkage editor {the nested procedure name is
CNFIOLED):

/!l LOAD $MAINT

// FiLE NAME-OLE,UNIT-i1

/1 RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-OLE
// END

Load SCP support for queued job stream (the nested procedure name is CNFIQJOB):

// LOAD $MAINT

// FILE NAME-QJOB,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-QJOB
// END

Load SCP support for optional messages {the nested procedure name is CNFIMSGS):

// LOAD SMAINT

// FILE NAME-MSGMBR, UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-MSGMBR
// END

Apply PTFs to SCP and optionai programs (the nested procedure name is
CNFIPTFS), see index entry: APPLYPTF procedure.

Remove the CNFIGSCP procedures from the library:

// LOAD SMAINT

// RUN

// DELETE LIBRARY-P,NAME-CNFI.ALL RETAIN-S
// END

COMPRESS

/!l LOAD $PACK
// RUN

CONDENSE

// LOAD $MAINT
// RUN

// COMPRESS

/!l END

CONVERT

// LOAD $CNVRT
/I RUN

,//

COPYI1

// LOAD $DUPRD
// FILE NAME-COPYI1[,DATE-date] UNIT-I1

// RUN
filename . YES
// COPYI1 NAME- {ALL } ,PACK-vol-id [,DELETE- {N_Q. }jl
’[,PRESERVE- {T\IEos}] [,COPIES— {?umber ofcopies}]
// END
CREATE

// LOAD $MGBLD
// RUN

/' MGBLD SOURCE-sourcename, REPLACE- { \N(ES }
/| END ==

DATE

// DATE-date

‘DCPRINT

/{/ LOAD $DCSUP
// RUN
{// COPYFILE NAME-filename,OUTPUT-PRINT]
{// GO]
{// END]

I1BM SCP Procedure Contents

317

318

DELETE
// LOAD $DELET
/' RUN

// SCRATCH LABEL-filename [,DATE-date] ,UNIT- {::11}

and/or
. YES F1
// REMOVE LABEL-filename,DATA- NO [,DATE-date]l ,UNIT- "
// END "" -
DISPLAY

// LOAD $COPY

// FILE NAME-COPYIN,LABEL-filename [,DATE-date] ,UNIT-F1
// RUN

// COPYFILE OUTPTX-PRINT _

[// SELECT RECORD,FROM-number-1 [,TO-number-2] |

// END

DUMP

// LOAD $FEDMP
// RUN _
(MAIN)

} CONTROL‘
HISTORY
//DUMP | LIST- { PTF [,OUTPUT- {%yf—ﬁ }][,:NPUT-{

CONFIG 1

‘ DISK
\ MICR)]

=1
N
—

// END

FROMLIBR

// LOAD $MAINT

I:ﬁlename-1 :I : IfF1is
// FILE NAME- Il.brary-name-1 RETAIN- T specified. ,blocks
[fllename-2] -/ 8
retention-days
name-1
— 1 or
PACK-vol-id

F1
UNIT- {”}

or, if ADD is specified,
filename-1

// FILE NAME- [“brarv name-1

]
[ﬁlenamez] N —~—

[,PACK-vol-id] ,UNIT- {::11}

name-1 If UNIT-11
// RUN
S
P library-name-1
// COPY FROM-F1,LIBRARY-{ O ,NAME- ary-nam ,
R name-1.ALL
ALL

l:filename-1]

FILE- h'brary-name-1
filename-2
name-1

,TO-DISK,OMIT-SYSTEM [,ADD-YES]

// END

HISTORY

/' LOAD $HIST

// RUN
ALL , | RESET
// DISPLAY | NOLIST noreseT | [PRINT-nnn]
VIEWED - J
// END
INIT
// LOAD $INIT
// RUN
FORMAT
FORMAT?2
// UIN OPTION-
ON DELETE
RENAME
[/I VOL PACK- {"°"'d |D. Jownerid
system date OWNERID
// END

IBM SCP Procedure Contents

319

INSTALL
(The following are some of the OCL statements for INSTALL.)

Print System Directory:

// LOAD $MAINT

// RUN

// COPY FROM-F1,TO-PRINT,LIBRARY-SYSTEM,NAME-DIR
// END

Delete INSTALL procedures from tailored system:

// LOAD SMAINT

// RUN

// DELETE LIBRARY-P,NAME-INST.ALL,RETAIN-S
// END

JOBSTR
For card input

// LOAD $QJOB
// RUN

For diskette input:

// LOAD $BICR

// FILE NAME-COPYIN,LABEL-filename,UNIT-I1

// FILE NAME-COPYO,LABEL-filename, UNIT-F1,RECORDS-number
// RUN

// TRANSFER

// END

// LOAD $MAINT

// FILE NAME-filename, UNIT-F1

// RUN

// COPY FROM-DISK,FILE-filename,TO-F1
/l END

// LOAD $DELET

// RUN

// REMOVE LABEL-filename,UNIT-F1
// END

For executing a procedure if the procedure name is specified:
// INCLUDE procedurename
For deleting the procedure name if {he NOSAVE parameter is specified:
// LOAD SMAINT
// RUN
// DELETE NAME-procedurename,LIBRARY-P
// END

320

LINES

// FORMS LINES- { g;mber}

LISTLIBR

// LOAD SMAINT

/I RUN
s
DIR P
/I COPY FROM-F1,NAME- ¢ 'Prarvname b\ ippagy.) © TO-PRINT
name.ALL R
ALL ALL
SYSTEM
// END
LoG
PRINTER | f,EJECT
/I L0G {CRT } {,NOEJECT}
MRJE

// LOAD $MRJE

[// FILE NAME-TDISKPR1,BLOCKS-number of blocks{,LABEL-filehame]]
[// FILE NAME-PDISKPR1,BLOCKS-number of blocks]

[// FILE NAME-PDISKPU1,BL.OCKS-number of blocks]

// RUN

// END

1BM SCP Procedure Contents

3N

vy
322

ORGANIZE

// LOAD $COPY
// FILE NAME-COPYIN, LABEL-filename-1 [,DATE-date] ,UNIT-F1
P
// FILE NAME-COPYO,LABEL-filename-2,RETAIN- ¢ S > ,UNIT-F1
I N
or
// FILE NAME-COPYO,LABEL-filename-1,RETAIN- {'ete"m“'days} ,

1
PACK-vol-id, UNIT-11

// RUN

// COPYFILE OUTPUT-DISK [,DELETE-'position,character'],REORG-YES

// END

OVERRIDE

// LOAD $SETCF

// RUN
(o
P< jAA

// SETR [ADDR-nn] | ,LINE- < R [L.SWTYP- {MA |
SS { mc
T

// END

PATCH

// LOAD $FEPCH
// RUN

// PATCH INPUT- {‘E‘} JHEX- {NO }

YES
// END
REBUILD
// LOAD $REBLD
// RUN
RELOAD

// LOAD $LOAD
// FILE NAME-#LIBRARY,LABEL-

JUNIT-11
// RUN

{ filename

#LIBRARY} [.DATE-date] [,PACK-vol-id]

REMOVE

// LOAD $MAINT

// RUN
s
library-name P
// DELETE NAME- name.ALL ,LIBRARY- (0]
ALL } R
ALL
// END
RENAME

// LOAD $RENAM
// RUN

mmddyy
// RENAME LABEL-filename-1,NEWLABEL-filename-2 | ,DATE- { ddmmyy
{yymmdd}
// END

RESTORE

// LOAD $COPY
' filename-1

// FILE NAME-COPYIN,LABEL- < #SAVE [LDATE-date] ,UNIT-11
filename-2

. ,RECORDS-value-1
// FILE NAME-COPYO{,LABEL-filename-2] [{,BLOCKS-vaIue-2 }:I [LUNIT-F1]
// RUN

// COPYALL TO-F1

or
// COPYFILE OUTPUT-DISK,REORG-NO
// END

SAVE

/! LOAD $COPY
// FILE NAME-COPYIN{[,LABEL-filename-2] [,DATE-date] [,UNIT-F1}

. filename-2
// FILE NAME-COPYO | ,RETAIN- {;ete"“”'days} LABEL- J filename-1 & |,
= #SAVE,

PACK-vol-id, UNIT-11

// RUN

// COPYALL TO-I1
or

// COPYFILE OUTPUT-DISK,REORG-NO
or

// COPYADD

/I END

IBM SCP Procedure Contents ' 823

324

SET

// LOAD $SETCF
[// IMAGE MEM,source-name]
[// DATE date]

// RUN
MDY YES
// SETCF [LINES-number] | ,FORMAT- < DMY ,IMAGE- { }
; NO
YMD
// END
SETMICR

// LOAD $SETCF

// RUN
// SETR CYCLE- {; }
// END

SPECIFY

// LOAD $SETCF

// RUN
| c An
/ SETS [ADDR-nn] | LINE- ¢ ¢ SWTYP- { MA, | [,iD-nnnnn]
T mMC
// END
STATUS
// LOAD $STATS
// RUN
SYSLIST
PRINTER
// SYSLIST | CRT
OFF
TOLIBR

// LOAD $MAINT

// FILE NAME-filename [, DATE-date] ,UNIT- {”1}
// RUN

// COPY FROM-DISK,FILE-filename, RETAIN- { },TO-F1
// END

-m

ol

TRACE

// LOAD $SETCF
// RUN ALLY

// TRACE WAIT-N ,FDIOS-Y ,CSFDIOS-Y ,PUSH-Y JPULLY
WAIT-Y ,FDIOS-N ,CSFDIOS-N ,PUSH-N LPULL-N
.DISABLE-Y ,ENABLE-Y ,QUEUE-Y ,LDCS-Y ,LOADER-Y
,DISABLE-N L,ENABLE-N ,QUEUE-N ,LDCS-N ,LOADER-N

XIENT-Y XFER-Y
,XIENT-N | | ,XFER-N

// END

IBM SCP Procedure Contents 325

326

TRANSFER

// LOAD $BICR

// FILE NAME-COPYIN,LABEL-filename-1[,DATE-date] ,UNIT- { ::11}

Transfer disk to diskette:

// FILE NAME-COPYO,LABEL-filename-1,PACK-vol-id I:
UNIT-11 or

,retention-days]
.1

Transfer diskette to disk, with ADD:

filename-2

// FILE NAME-COPYO,LABEL- .
filename-1

} [,DATE-date] [,UNIT-F1] or

Transfer diskette to disk, without ADD, size specified:

// EILE NAME-COPYO,LABEL-filename-1 { :258825. fa‘l’lujs } [LUNIT-F1]
Transfer diskette to disk, without ADD, using size of input file:

No COPYO FILE statement is generated.

// RUN

Diskette basic data exchange file to disk sequential file, or disk sequential, indexed,
or direct file to diskette basic data exchange file:

[// TRANSFER]

Diskette basic data exchange file to disk sequential file with ADD:
// TRANSFER ADD-YES

Diskette basic data exchange file to disk indexed file, without ADD:
// TRANSFER ADD-NO,KEYLEN-value-1,KEYLOC-value-2

// END

IPL: See initial program load.

job stream: The input to the system. The job stream can
contain OCL statements, utility control statements, and
input data. '

keyword: A group of characters, usually a word, that
identifies a parameter in a control statement.

keyword parameter: A parameter that contains a keyword.
level: See procedure level.

library: An area on the disk that contains procedure
members, source members, load members, and subroutine
members, as well as areas required by the system control
program.

library directory: The library component that contains
information about each member in the library (for
example, name and location).

library member: A named collection of records or state-
ments in the library that can contain source statements,
format descriptions, OCL statements, or executable
instructions.

load member: A collection of instructions, stored in the
library, that the system can execute to perform a particular
function, whether the function is requested by the
operator or specified in an OCL statement.

megabyte: One million bytes.
member: See /ibrary member.

message control statement: A statement that specifies the
name and level of the message load member to be created.

message identification code (MIC): A 4-digit number
associated with a specific error or informational message.
The MIC is printed following the program identifier to allow
the message to be reviewed after the program is signed off.

meséage load member: A special type of library member
from which the SCP retrieves the text associated with a
specific message identification code (MIC).

message source member: A special type of library source
member containing control and message text statements.

message text statement: Statement in a message source
member that specifies the message identification code
(MIC) and text associated with that code.

MIC: See message identification code.

modem: A device that modulates and demodulates signals
transmitted over communication facilities.

MULTI-LEAVING: The fully synchronized, two-directional
transmission of a variable number of data streams between
two computers using BSC facilities.

multipoint data link: One or more secondary stations on a
common transmission line or communications facility
where the primary station has controlling responsibilities
for maintaining communications integrity and data link
control.

multivolume file: A diskette file that resides on more than
one diskette, or that can be expanded from one diskette
to more than one diskette. See also offline multivolume
file.

nested procedure: A procedure that is evoked by another
procedure. A nested procedure is a procedure within a
procedure. '

network: A number of communication lines connecting
a computer with remote terminals.

nonswitched line: A communication link between a remote
station and computer that does not have to be established
by dialing.

null entry: An entry that contains no value. For example,
if CATALOG, 11 is entered, the first parameter position
contains a null entry.

object program: A set of instructions in machine language.
The object program is produced by the compiler from the
source program.

OCL: See operation control language.
offline multivolume file: A multivolume file that is
processed in segments by the system. Each segment is

processed before the next segment is copied to or from
the disk.

Glossary 327

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

operation control language (OCL): The control language
used to communicate with the system control program.
OCL is composed of statements with which specific system
functions are requested.

parameter: A variable that is given a constant value for
a specific purpose or process.

point-to-point line: A communications facility connecting
a single remote station to the computer.

positional parameters: Parameters in a statement that must
appear in a designated sequence.

procedure: A named collection of related OCL statements,
and possibly, utility control statements, that describe a
specific function or set of functions. A procedure is
evoked by a command statement or included OCL
statements.

procedure level: Identifies the precedence of a particular
procedure in a progression of nested procedures. For
example, if procedure A evokes procedure B, which in turn
evokes procedure C, procedure C is a third level procedure.

procedure member: A named collection of related OCL
statements, and possible, utility control statements stored
in the library.

PTAM: Pseudo tape access method.

pseudo tape access method (PTAM): An access method for
processing simulated tape files on disk.

record mode: The mode of system operation in which data
is transferred by the system one record at a time. The
record mode of operation is used by the library maintenance
utility (SMAINT) when placing user-generated source or
procedure members into the library or a file.

relocation dictionary (RLD): The part of a load member
used for adjusting main storage addresses when the member
is moved to main storage.

rollout area: An area on disk that is allocated if inquiry
support or offline multivolume support is selected.
Programs interrupted by an inquiry request (INQ key
pressed and the 1 option selected) are stored in the rollout
area while the interrupting program is processed.

328

scheduler work area (SWA): An area on disk reserved for
use by the scheduler program. The scheduler is part of the
SCP.

scientific instruction set (SIS): The object program
language, processed by the interpreter resident in the
control storage increment, used to execute System/32
scientific programs.

SDLC: See synchronous data link control.

sector: A unit of data recorded on disk. A sector of data
is the smallest amount of data that can be read from disk
or the smallest amount of data that can be transferred by
a single data transfer operation.

sector mode: The mode of system operation in which
data is transferred by the system either one sector at a
time or several sectors at a time. (Only whole sectors are
transferred.) The sector mode of operation is used by the
library maintenance utility (SMAINT) when placing user-
generated members into the library or a file.

segment: See file segment.

sequential file: A file in which the order of records is
determined by the order that they are put in the file. For
example, the tenth record entered occupies the tenth record
position. Sequential files can be processed using the
consecutive, random by relative record number, and ADD-
ROUT file processing methods.

SNA: See systems network architecture.

source member: A collection of records (such as RPG 1|
specifications or sort sequence specifications) that are used
as input for a program. Source members are stored in the
library.

source program: A set of instructions that represents a
particular job as defined by the programmer. These)
instructions are written in a programming language such as
RPG Il, and are translated by a compiler into an object
program.

statement parameter: The portion of an IF expression that
defines the action to be taken if the condition exists as
specified. The statement parameter can be an OCL state-
ment (except comment or end of data) or a utility control
statement. The initial // of the statement is not entered as -
part of the expression. CANCEL and RETURN are also
valid entries in the statement parameter.

$BACK utility program (backup library) 136
$BICR utility program (basic data exchange)
control statements 137
description 137
example 139
$BUILD utility program (alternate sector rebuild)
control statements 141
description 139
example 140
$BWSUD (see /BM System /32 Data Communications Reference
Manual, GC21-7691)
$BWSUR (see /BM System /32 Data Communications Reference
Manual, GC21-7691)
$CNVRT utility program
control statement 142
description 142
$COPY utility program (disk copy/display)
control statements 144
description 142
examples 154
file retention summary 153
$DCSUP (see IBM System /32 Data Communications Reference
Manual, GC21-7691)
$DELET utility program (file delete)
control statements 157
description 156
examples 159
$DUPRD utility program (diskette copy)
control statements 160
description 159
examples 162
$FREE utility program 162
" control statements 162
description 162
examples. 162.1
$HINT utility program 163
$HIST utility program (HISTORY file display)
control statements 1622 '
description . 162.2
examples 163
$INIT utility program (diskette labeling and initialization)
control statements 166
description 164
examples 1684
$LABEL utility program (VTOC display)
control statements 172
description 169
examples 169
$LOAD utility program (reload library)
control statements 176
description 173
example 176
$LOADI program 173

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Index

$MAINT utility program (library maintenance)
allocate function
control statements 179
description 179
examples 180
compress function
control statements 202
descriptions 202
example 203
copy function
control statements 182
description 180
examples 196
delete function
control statements 200
description 199
examples 202
general description 176
$MGBLD utility program (create message member)
control statements 203
description 203
example 206
$MRJE (see /BM System /32 Data Communications Reference
Manual, GC21-7691)
$PACK utility program (disk reorganization) 208
$QJOB utility program (queued job stream card-to-library)
control statements 209
description 209
$REBLD utility program (rebuild data file)
control statements 210
description 210

$RENAM utility program 211
control statements 211
description 211
~ examples 211
$SETCF utility program (set)
override BSC specifications
control statements 215
description 215
example 216

set BSC environment
control statements 213
description 213
example 214

set functions to be traced
control statements 220
description 220
example 222

set SDLC environment
control statements 217
description 216
example 218

. Index

3N

$SETCF utility program (set) (continued)
set system environment
control statements 212
description 211
example 213
specify SDLC specifications
control statements 218
description 218
example 219
$SOURCE file 112
$STATS utility program (status display) 222
$WORK file 112
SWORK2 file 112
*comment statement
(see also comments)
description 32
statement summary 11
/ *end of data statement
description 33
statement summary 11
/! *message statement
description 33’
example 33
parameter summary 14
statement summary 11
// CEND statement
description 103, 182, 190
example 126
// COMPILE statement
description 15
example 15
parameter summary 12
statement summary 10
// DATE statement
description 16
example 16
parameter summary 12
statement summary 10
// END statement
description 132
example 126
/! FILE statement
description
disk 17
diskette 17,21
example
disk 20
diskette 23
parameter summary
disk 12
diskette 12
statement summary 10
/| FORMS statement
description 23
example 23
parameter summary 13
statement summary 10
// IMAGE statement
description 24
examples 26
parameter summary 13
statement summary 10

332

/! INCLUDE statement
as a command statement 39
description 26
example 27
parameter summary 13
statement summary 10

/! LOAD statement
description 27
example 27
parameter summary 13
statement summary 10

/] LOG statement
description 28
example 28
parameter summary 13
statement summary 10

I/ MEMBER statement
description 29
examples 30
parameter summary 13, 14
statement summary 10

I/ PAUSE statement
description 30
statement summary 11

/! RUN statement
description 30
statement summary 11

I/ SWITCH statement
description 31
example 31
parameter summary 14
statement summary 11

// SYSLIST statement
description 32
example 32
parameter summary 14
statement summary 11

frestrictions
in // *message statement 33
in comment statements 32
in filenames and labels 17, 21
in INCLUDE statement 27
in library member names 178, 192
in procedure parameter 27, 43

Mn? 44

n'default’? 45

nR? 46

?nR’'msg-id'? ~ 45

nT'default’? 45

?R? 46

#HMSG1 267

#HMSG3 40,41

#HMsGa 267

FLIBRARY (see system library)

abbreviations and acronyms ix
add
a disk file to a diskette 96, 143
a disk file to the library 103
(see also SMAINT utility program copy function)
basic data exchange to a disk file 105, 137
library members to a file 76
(see also SMAINT utility program copy function)
library members to the library 103
(see also SMAINT utility program copy function)
allocate function (see SMAINT utility program allocate function)
ALTERBSC command statement
description 62
format summary 55
ALTERBSC procedure
contents 287
description 62
alternate sector 139, 325
alternate sector rebuild utility program (see $BUILD
utility programy)
ALTERSDL command statement
description 63
format summary 55
ALTERSDL procedure
contents 287
description 63
APAR command statement
description 280
format summary 279
APAR procedure
contents 287
description 280
APARFILE 280
application programs 237
APCHANGE command statement
description 65
format summary 55
APCHANGE procedure
contents 287
description 65
APPLYPTF command statement
description 241
format summary 225
APPLYPTF procedure
contents 288
description 241
attribute bytes 194, 325

backup
configured SCP 231
copy of a program product 250
system library 67
BACKUP command statement
description 67
format summary 56
backup diskettes
creating 70, 159
program products 232
system 227

Page of GC21-7593-3

Issued 22 November 1978

By TNL: GN21-7993

backup library utility program (see $BACK utility program)
BACKUP procedure
contents 289
description 67
basic assembler
applying PTFsto 241
installation 249
installation verification 261
basic data exchange
-definition 326
diskette 277
(see also INIT procedure; TRANSFER procedure)
file 277
{see also TRANSFER procedure)
utility program (see $BICR utility program)
batch work station support option 244
belt image option 243
(see also print belt)
block 325
block number to first sector in block conversion 274
BSC
definition 325
environment 213
status information 102
support option 243
BUILD command statement
description 281
format summary 279
BUILD procedure
contents 289
description 281
BWSUD
command statement 55
contents 289
BWSUR
command statement 55
contents 289
bypass unreadable data 141

calculating the number of backup diskettes required for
the system 238
CATALOG command statement
description 68
format summary 656
CATALOG procedure
contents 289
description 68
CE cylinder 280, 326
changing
directory and library size
using SMAINT allocate function 179
using RELOAD display 268
using RELOAD procedure 92
disk space allocation 94
characters, listof 305
CMD key 40
CNFIGSCP command statement
description 242
format summary 225

Index

333

i

CNFIGSCP procedure

contents 289
description 242
coding rules

OCL statements 5
utility control statements 131
command keys :
assigning 40
message identification code (MIC)
using - 40
command statements
{see also ALTERBSC, ALTERSDL, APAR, APPLYPTF,
BACKUP, BUILD, BWSUD, BWSUR, CATALOG, CNFIGSCP,
COMPRESS, CONVERT, COPY11, CREATE, DATE,
DCPRINT, DELETE, DISPLAY, DUMP, FROMLIBR,
HISTORY, INIT, INSTALL, LINES, LISTLIBR, LOG, MRJE,
ORGANIZE, OVERRIDE, PATCH, REBUILD, RELOAD,
REMOVE, RESTORE, SAVE, SET, SPECIFY, STATUS
SYSLIST, TOLIBR, TRACE, TRANSFER)
as INCLUDE statements 26, 39
definition 325
in sample jobs 126
tables of
SCP 55
service 279)
system configuration, installation and modification- 225
comments
(see also *comment statement)
definition 8
examples 8
for messages 206
OCL- 8
utility control statements 133
comparison parameter 48, 325
COMPILE OCL statement (see // COMPILE statement)
COMPRESS command statement
description 68
format summary 56
COMPRESS procedure
contents 295
description 68
CONDENSE command statement
description 69
format summar\j 56
CONDENSE procedure
contents 295
description 69
condition parameter 48, 325
conditional expressions: IF and ELSE 47,325
configuration record, system 97, 325
configuration, system 4,225
continuation
definition 325
ocL 7
utility control statements 132
continued FILE statements 7
control statement for message source member 203
control storage dump 282
conversions
block number to first sector in block 274
hex and decimal 275
records to blocks 273)
sector number to block number 274

40, 205

r334 sa by

convert a
basic data exchange diskette file to disk file 105, 137
disk file to basic data exchange file 105, 137

CONVERT command statement
description 69
format summary 56
CONVERT procedure
contents 295
description 69
copy function (see $BACK utility program; $COPY utility
program; $DUPRD utility program; SMAINT utility
program copy function)
COPY11 command statement
description 70
example 71
format summary 56
COPY 11 procedure
contents 295
description 70
correct unreadable data 141
CREATE command statement
description 72
example 73
format summary .56
create message member utility program (see $MGBLD
utility program)
CREATE procedure
contents 295
description 72
creating and using messages 119
creating another version of an existing output file 19
creation date
disk 20
diskette 22

data communications
definition 326
SCP support for 243
support for RPG 244
data file: 325 »
data file utility (see DFU)
data recorder attachment support option 244
DATE command statement
description 73
format summary 56
date format)
(see also // DATE statement DATE command statement,
SET command statement)
display 101))
in // FILE statement 16, 20, 22
option 243 ’ v
DATE OCL statement (See // DATE statement)
DATE procedure
contents 295
description 73
date, setting
(see also // DATE statement, DATE command statement,
SET command statement) '
job 16
system 16
DCPRINT
contents 295
format summary 56

decimal and hex conversions 275
decreasing the library size 179
default value
definition 326
showing in formats 61, 134
DELETE command statement
description 74
example 75
format summary 56
delete function of SMAINT utility program 199
DELETE procedure :
contents 296
description - 74
deleting a file
at diskette initialization 80, 165
caution 229
using DELETE 74
deleting from the library 93, 266
(see also SMAINT utility program delete function)
deleting members 268.1
deleting records from a file 88, 142
describing a disk file 111
(see also // FILE statement)
determining space available in the library 267
determining space available on the disk 267
DFU (data file utility)
applying PTFsto 241
installing 249
diagnostic information 280
direct file 326
directory (see library directory)
disk block 326
disk capacity display 101
disk copy/display utility program (see $COPY utility program)
disk files
adding to diskette 96, 142
adding to library 103
(see also $MAINT utility program copy function)
converting to basic data exchange diskette 105, 137
copying 88,96 -
creating 111
definition 326
deleting (see deleting a file)
deleting records from 88, 142
describing 111
(see also // FILE statement)
displaying 75, 142
number of 112
obtaining space for 111
retention summary 153
space allocation 94
disk free space, compressing 68, 202
disk read/write error 139, 281
disk record to block conversion 273
disk reorganization utility program (see $PACK utility program)
disk volume label (VOL1) 177
diskette copy utility program (see $DUPRD utility program)
diskette data set label 277
diskette defects 165
diskette files '
adding to disk 105, 137
basic data exchange 277
converting to disk - 105, 137
creating 111
expiration date for 22
number of 113
system 278

Page of GC21-7593-3

Issued 22 November 1978

By TNL: GN21-7993

diskette formats 277

(see also $INIT utility program; INIT procedure)
diskette formats and diskette data files 277
diskette free space, compressing 70, 159
diskette labeling and initialization utility program (see $INIT

utility program)

diskettes

backup

creating 70, 159
program products 232

PID 227

PTF 227

scp 227
DISPLAY command statement

description 75

example 76

format summary 56
DISPLAY procedure

contents 296

description 75
dispiaying a file 76, 142
displaying messages and OCL statements 28,87
displaying system information 101, 222
displaying VTOC 68, 169
DUMP command statement

description 281

format summary 279
DUMP procedure

contents 296

description 281

ELSE expression 51
end of data - 33
(see also / *end of data statement)
end of extent 326
end of OCL statements 30
entering OCL statements 3
erasing a file 74, 165
error logging area 177, 326
evoking a procedure 39

examples

$BICR utility program 139
$BUILD utility program 140
$COPY utility program 154
$DELET utility program 159
$DUPRD utility program 162
$HIST utility program 163
$INIT utility program 168
$LABEL utility program 169
$LOAD utility program 176
$MAINT utility program
allocate function 180
copy function 196
delete function 202
$MGBLD utility program 206
$SETCF utility program
BSC environment 214
override BSC specifications 216
system environment 213
trace functions 222
// *message statement 33
// CEND statement 126
/| COMPILE statement - 15

Index

336

e oy

¥ “command key to procedure, assignment 207

examples (continued)
/| DATE statement 16
/! END statement 126
/| FILE statement
disk 20
diskette 23
// FORMS statement 23
// IMAGE statement = 26
%,/ INCLUDE statement 27
*// LOAD statement 27
7l LOG statement 28
J/ MEMBER statement 30
1/ SWITCH statement 31

f/ SYSLIST statement 32

comments 8,133
continuation 7,132
" COPYI1 command statement 71
CREATE command statement 73
creating a message source and load member 206
creating an offline multivolume file 114
DELETE command statement 75
disk VTOC display 169
diskette VTOC display 171
DISPLAY command statement 76
ELSE expression 52
FROMLIBR command statement 79
|F expression 52
INIT command statement 81
LISTLIBR command statement 87
OCL and procedure jobs 126
ORGANIZE command statement 89
printing of library directory entry 199
printing of system information 199 :
procedure coding 52
procedure member to basic data exchange diskette file 196
reading an offline multivolume file 115
REMOVE command statement 94
RESTORE command statement 95
SAVE command statement 97
source member to basic data exchange diskette file 196
" system sharing 319
TRANSFER command statement 107
existence testing parameter 48, 326
expiration date 22
extended format, diskette 277, 326
(see also SINIT utility program; INIT procedure)
extent 326
external indicators 31, 101

FCU (file conversion utility)

applying PTFsto 244

installation 249

installation verification 251
file

disk (see disk files)

diskette (see diskette files)

permanent 19

retention summary 153

scratch 19

temporary 19
file delete utitity program (see SDELET utility program)
file names for 1BM procedures 287
FILE OCL statement (see // FILE statement)
file segment 114, 326

336

FILEBKUP procedure, example of procedure coding 52
FIXDFILE 280 ’
format diskette 80, 164
format 1 record 210, 326
format5 177
FORMS OCL statement (see // FORMS statement)
FORTRAN VvV
applying PTFsto 241
installation 249
installation verification -~ 256
free space, disk 68, 208
FROMLIBR command statement
description 76
examples 79
format summary 56
FROMLIBR procedure
contents 297
description 76

general form of OCL statements 5
glossary 325

hex and decimal conversions 275
hex form of standard characters 305
HISTORY command statement
description 79
format summary 57
history file 79, 326°
history file display utility program (see $HIST utility program)
HISTORY procedure
contents 297
description 79
how to use this manual xi

identifier
definition 326
OCL statement 5
utility control statement 131
IF expression 47
IMAGE OC!: statement (see // IMAGE statement)
INCLUDE OCL statement (see // INCLUDE statement)
increasing the library size 179
indexed file 326
indicator settings parameter 326
indicators, external 31, 101
INIT command statement
description 80
examples 81
format summary 57
INIT procedure
contents 297
description 80

initial program load (IPL) . label

definition 3,326 data set 277
from diskette 92 disk file 18
initialization ' diskette file 21
(see also $INIT utility program; INIT procedure) level, procedure 42,328
definition 326 librarian (see SMAINT utility procedure)
INQkey 174 library (see system library)
inquiry : library directory
interrupt 135,174 area 177
option 174,326 changing the size of 92,174
request 174, 326) (see also RELOAD display)
support 92 . definition 327
INQUIRY/OFFLINE option entry 177
(see also RELOAD display) i formula for number of entries 174
availability on system 101 " information in entries 194
changing 92 library maintenance utility program (see $SMAINT utility program)
deleting 267 library members
display setting 174 ' creating a file form ‘76
requesting 92 definition 3,327
INSTALL command statement .. deleting 93, 266
description 246 ' naming 178, 192
format summary 225 organization of 179
INSTAL.L procedure s library requirements 265
contents 298 LINES command statement
description 246 description 85
installation i format summary 57
application program 225, 235 lines printed per page
program product 249 displaying number of 101
system 235 i ‘ setting number of
introduction during system configuration 243
to OCL statements 3 using $SETCF utility program 211
to procedures 37 using //FORMS statement 23
to system configuration, installation, and modification 225 using LINES procedure 85
to system utility programs 131 : ' using SET procedure 97
IPL (initial program load) LINES procedure
definition 3, 326 contents 299
from diskette 92 description 85
list of abbreviations and acyonyms ix
listing the ‘
files 75, 142
history file 79
job date 16, 73 system library 85
job stream VTOCs 68
and // INCLUDE 26 LISTLIBR command statement
definition 4, 327 description 85
modifying procedure 44) examples 87
JOBSTR command statement . format summary 57
description 82 ‘ LISTLIBR procedure
example 84) contents 299
format summary 57 ' : description 85
JOBSTR procedure load member 3, 327
contents 298) LOAD OCL statement (see // LOAD statement)
description 82 S load program 27

loading and running programs 123
LOG command statement
description 87
format summary 57

keyword parameter LOG OCL statement (see // LOG statement)
definition 327 LOG procedure
OCL statement 6 contents 299
utility control statement 131 ' .description 87

Index 337

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

main storage
display 281
dump 281
print 281
megabyte 327
member (see library members)
MEMBER OCL. statement (see // MEMBER statement)
message control statement 204, 327
message display 28, 85
message identification code (see MIC)
message levels 29, 119
message load member
assigning command keys 40
creating .72, 119, 203
definition 327
example of creating 206
message member . 29, 33
(see also message load member; message source member)
message OCL statement (see // * message statement)
message retrieving 121 :
message source member 204, 119, 327
message text statement 205, 327
messages to operator 33
MIC (message identification code)
definition 327
for assigning command keys 40, 205
for creating message load members 205
modem 327 N
modifying a procedure job stream 44
MRJE command statement
contents 299
fornmiat summary 57
MRJE support option 243
MULTI-LEAVING 327
multipoint data link 327
multivolume file 113, 327
(see also.offline multivolume file)

naming library members 176

nested procedure 42, 327

network 327

nonswitched line 327

null entry 51, 327

number of lines per page option. 243

object program
definition 327
error in 280
running 15, 123, 126
obtainin space for a disk file 111
OCL (operation control language) statements
(see also * comment / * end of data, // * message,
// COMPILE, // DATE, // FILE, /| FORMS, // IMAGE,
// INCLUDE, // LLOAD, // LOG, // MEMBER, //PAUSE,
/I RUN, // SWITCH, // SYSLIST)
and job stream 4, 126

338

OCL (operation control language) statements (continued)
codingrules for 5 -
definition of 3,328
description of 15
displaying 28, 85
entering 3
general formof 5
identifiers for 5
informationin 5
introductionto 3,4
tables of 10, 11

OCL and procedure example 126

offline multivolume file 113, 327

. operation control language (OCL) statements (see OCL statements)

ORGANIZE command statement
description 88
examples 89
format summary 57
ORGANIZE procedure
contents 300
description 88
overflow, printer 23
overlay linkage editor option 245
OVERRIDE command statement
description 90
format summary 57
OVERRIDE procedure
contents 300
description 90
override BSC specifications
control statements 215
description 215
example 216

parameters
condition 48
definition 328
existence testing 48
keyword 327
ocL 6
positional
defined 43,328
showing in formats 61
procedure 27,43
statement
IF expression 47
symbolic 6
table of OCL. 12
utility control statement 15
PATCH command statement
. description 283
format summary 279
PATCH procedure
contents 300
description 283
pause message 30
PAUSE OCL statement (see // PAUSE statement)
permanent file 19, 22

PID distribution diskette 227
point-to-point line 328
polling and addressing characters 311
positional parameter
defined 43,328
showing in formats 61
print belt
characters
entering from keyboard 24, 25
entering from source member 25
listof 305
displaying image of 101
setting image for
$SETCF utility program 211
// IMAGE statement 24
"SET procedure 97 ‘
printing from the library 181
printing system information 187
procedure and OCL example 126
procedure coding, example 52
procedure member 3, 328 _
to basic data exchange diskette file 183
procedure name 26
procedure parameters 26 43
procedures
(see also ALTERBSC, ALTERSDL APAR APCHANGE,
APPLYPTR, BACKUP BWSUD, BWSUR, CATALOG,
ONFIGSCP, COMPRESS, CONVERT COPYI1, CREATE,

DATE, DCPRINT, DELETE, DISPLAY, DUMP, FROMLIBR,
HISTORY INIT, INSTALL, LINES, LISTLIBR, LOG, MRJE,
ORGANIZE, OVERRIDE, PATCH, REBUILD, RELOAD,

REMOVE, RESTORE, SAVE, SET, SPECIFY, STATUS,
SYSLIST, TOLIBR, TRACE, TRANSFER)
creation of 38
definition 37,328
evoking 26, 39,42
execution of 43
introduction to 37
levels of 42,328
nested 42
parameters 27,43
SCP 38,55
service 38,279
system conﬂguratlon, installation, and modification 225
procedures used for system configuration and installation
APPLYPTF procedure 241
CNFIGSCP procedure 242
- INSTALL procedure 246
program check 280
program date (see job date)
program product installation 249
program product PTFs 235, 241
programs, loading and running 123
PTAM (pséudo tape access method) 328
PTF diskette 227,246

queued job stread card-to-library
control statements 209
description 209

Page of GC21-7593-3

Issued 22 November 1978
By TNL: GN21-7993

read/write error, disk 139, 281
reading an offline multivolume file 113
REBUILD command statement
description 91
format summary 58
rebuild data file utility program (see $R EBLD utility program) |
REBUILD procedure
contents 300
description 91
record mode
copying filesin 103
definition 328
~specifying 180
record, block, and sector conversions 273
RELOAD command statement
description 92
format summary 58
RELOAD display 268)
reload library utility program (see $LOAD utility program)
RELOAD procedure
contents 300
description 92
relocation dictionary (RLD) 328
REMOVE command statement
description 93
examples 94
format summary 58
REMOVE procedure
contents. 301
description 93
rename diskette 165
reorganize disk 68, 208
reorganize library- 69, 136
RENAME command statement
description 94
format summary 58
RENAME procedure
contents 301
description 94
RESTORE command statement
description 94 .
examples 95
format summary 58
restore disk files (see RESTORE command statement;
RESTORE procedure)
RESTORE procedure
contents 301
description 94
restore system information 91
retention period 19, 22
retention summary, file 153
RLD (relocation dictionary) 328
rollout area
definition. 328
useof 174,177
RPG Il
applying PTFs to 241
compiler 15
installation 249)
mstallatnon verification 253
RUN OCL statement (see // RUN statement)

Index

339

SAVE command statement
description 96
examples 97
format summary 58
SAVE procedure
contents 301
description 96
scheduler work area (SWA) 177,328
scP
diskette 227
procedure 38, 55
(see also procedures)
support for
basic assembler 245
data communications 243
data recorder attachment 244
FORTRAN IV 245
overlay linkage editor 245
queued job stream 245
RPG Il 244
word processing 244
1255 Magnetic Character Reader attachment 244
scratch file 19
SDLC
definition 328
environment 216
status information 101
sector 328
sector mode
copying filesin 103
definition 328
specifying 180
sector number to block number conversion 273
segment, file 114, 326)
selecting library members to delete 267
sequence numbers 43
sequential file 328
service procedures 38, 279
{see also procedures)
SET command statement
description 97
format summary 58
SET procedure
contents 301
description 97
set utility program (see $SETCF utility program)
SETICR command statement

description (see /IBM System/32 1255 Magnetic Character

Reader Reference and Logic Manual, GC21-7692)
format summary 58
procedure contents 302
setting
" jobdate 16,73
number of lines printed per page 97, 211, 243
print belt image 97,211
system date/date format
$SETCF utility program 211
// DATE statement 16
DATE procedure 73
SET procedure 97
system environment 97,211
trace functions 211, 220

340

SEU (source entry utility)
applying PTFsto 241
installation of 249
installation verification 251
skip to next page, printer 28
SNA (system network architecture) 328
sort
applying PTFs to 241
installation of 249
source entry utility (see SEU)
source member 3, 328
to basic data exchange diskette file, example
source program
causing error 280
definition. 328
specified in // COMPILE statement 15
space allocation, changing
disk 94
library 92,178
library director 92,174
SPECIFY command statement
description 99
format summary 58
SPECIFY procedure
contents 302
description 99

" specifying library size 178

statement identifiers
oCL 5
utility control statements. 131
statement parameter
definition 328
IF expression 47
OCL 5
utility control statement 132
statement tables
command
SCP 55
service 279

system configuration, installation, and modification 225

ocL 10
statements

command (see command statements)

OCL (see OCL statements) '

utility control (see utility control statements)
STATUS command statement

description 101

format summary 59

status display utility program (see $STATS utility program)

STATUS procedure

contents 302

description - 101
subroutine member 3, 329.
substitution in procedures 44 :
SWA (scheduler work area) 178,328
switch indicators 31, 101

196

SWITCH OCL statement (see // SWITCH statement)

" switched line 329

symbolic parameter 6, 329
SYSLIST command statement
description 102
format summary 59

IBM System/32

System Controi Programming

Reference Manual

© IBM Corp. 1975, 1976, 1977

Technical Newsletter

This Newsletter No.

GN21-7993
22 November 1978

Date
Base Publication No. GC21-7593-3
FileNo. 532-36
Previous Newsletters ~ GN21-7939

This technical newsletter, a part of version 8, modification 0 of IBM System/32 (Program Product
5725-SC1), provides replacement pages for the subject publication. These replacement pages remain
in effect for subsequent versions unless specifically altered. Pages to be inserted and/or removed are:

Title Page, Edition Notice

105, 106 187, 188
iii through xii 111,112 207, 208
xiii, xiv (added) 119,120 211,212
17,18 135 through 138 212.1, 212.2 (added)
21, 22 141, 142 225, 226
37,38 159, 160 251, 252
45, 46 160.1, 160.2 (added) 265, 266
46.1, 46.2 (added) 161, 162 267, 268
55 through 58 162.1, 162.2 (added) 2721, 272.2
69 through 72 165 through 168 295 through 298
93, 94 168.1, 168.2 301, 302
94.1, 94.2 (added) 179, 180 302.1, 302.2 (added)
95, 96 331 through 340

© 1BM Corp. 1978

Changes to text and illustrations are indicatedv by a vertical line at the left of the change.

Summary of Amendments
® Miscellaneous editorial and technical changes
® $FREE and SRENAM utility programs

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBN! Corporation, Publications, Department 245, Rochester. Minnesota 55901

Printed in U.S.A.

= EIM;E Technical Newsletter This Newsletter No. GN21-7939

Date 25 November 1977

Base Publication No. GC21-7593-3
File No. S32-36

Previous Newsletters

IBM System/32
System Control Programming
Reference Manual

©I1BM Corp. 1976, 1977
This technical newsletter, a part of version 7, modification 00 of the IBM System/32 (Program Product

5725-SC1), provides replacement pages for the subject publication. These replacement pages remain in
effect for subsequent versions unless specifically altered. Pages to be inserted and/or removed are:

ix, X 249 through 252

15, 16 255, 256

55 through 60 261, 262

69, 70 264.1 through 264.6 (added)
77 through 80 265, 266

80.1, 80.2 (added) 266.1, 266.2 (added)

93, 94 ’ 267, 268

103 through 106 268.1, 268.2 (added)

139, 140 272.1 through 272.4 (added)
175, 176 281, 282

195, 196 293, 294

205, 206 297, 298

225 through 230 301, 302

230.1, 230.2 {added) 327,328

241,242

Changes to text and illustrations are indicated by a vertical line at the left of the change; new or extensively
revised illustrations are denoted by the symbol @ at the left of the caption.

Summary of Amendments

® Add a version update instruction summary.

® Miscellaneous changes.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©18M Corp. 1977 Printed in U.S.A.

International Business Machines Corporation

wggne{al Systems Division
4111|Northside Parkway N.W.
P.0. Box 2150
Atanta, Georgia 30301
“(4.S.A. only)

General Business Group/international
44 South Broadway

White Plains, New York 10601
USA. ,

(lnte:rnational)‘k ‘

GC21-7593-4

SuiuIweIB0.g 10300 LigISAS Z¢/S WAl

“(GETES "ON Sit} fenueyy oouesd

v-E66L°120D VS UrpeIung

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046.0
	046.1
	046.2
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080.0
	080.1
	080.2
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094.0
	094.1
	094.2
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111a
	111b
	112a
	112b
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160.0
	160.1
	160.2
	161
	162.0
	162.1
	162.2
	163
	164
	165
	166
	167
	168.0
	168.1
	168.2
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212.0
	212.1
	212.2
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230.0
	230.1
	230.2
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264.0
	264.1
	264.2
	264.3
	264.4
	264.5
	264.6
	265
	266.0
	266.1
	266.2
	267
	268.0
	268.1
	268.2
	269
	270
	271
	272.0
	272.1
	272.2
	272.3
	272.4
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302.0
	302.1
	302.2
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	upd-1
	upd-2
	xBack

