Series/1

SL23-0106-0

EDX Communications Facility

Programmer’s Guide

Version 2
-
(Introduction Design and (Operator’s B
Installation Guide
Guide
et \ N J
§ Master Index f Programmer’s > Messages and)
and Guide Codes
Glossary
. s & J
' & (: N\
WSC High-Level Debugging Operator’s
Language Guide Reference
Subroutines Summary
Programmer’s
Guide
o <=L J

Series/1

SL23-0106-0

EDX Communications Facility
Programmer’s Guide

Version 2

Programmer’s
Guide

e

-
)

1E]

s
.

=

First Edition (September 1984)

This edition applies to Version 2.0 of the Licensed Program IBM Series/1 Event Driven
Executive Communications Facility, Program Number 5719-CF2, and to all subsequent
versions and modifications of this program unless otherwise indicated in new editions or
technical newsletters.

Information in this publication is subject to significant change. Any such changes will be
reported in new editions or technical newsletters. Use this publication only for the
purposes mentioned under “About This Book” on page iii.

It is possible that this material may contain references to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Direct all requests for copies of IBM publications to your IBM representative or to the
IBM branch office that serves your locality.

Any names of individuals, companies, brands, and products in the examples in this book
are fictitious; any similarity to the name of an actual business enterprise is entirely
coincidental.

This publication may contain technical or typographical errors. Forms for readers’
comments are provided at the back of the book. If the forms have been removed, address
your comments to IBM Corporation, System Products Division, 4J1/037, PAS5 MS33,
1501 California Avenue, PO Box 10500, Palo Alto, CA 94304. IBM may use and
distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information
you supply.

© Copyright International Business Machines Corporation 1984

O

About This Book

This book is intended for programmers who are going to code application
programs, device-support programs, transaction-processing programs, and
command-processing programs to run under the IBM Series/1 Event Driven
Executive Communications Facility. It assumes that you already understand the
Communications Facility’s functions, know how a Communications Facility system
is organized, and know the purpose of the program you plan to code. If you need
introductory information about the Communications Facility, refer to IBM
Series/1 EDX Communications Facility Introduction, GL23-0071. For detailed
information about the structure of a Communications Facility system, see IBM
Series/1 EDX Communications Facility Design and Installation Guide, SL23-0073.

Other Communications Facility manuals you may want to refer to are IBM
Series/1 EDX Communications Facility Operator’s Guide, SL23-0075, which
explains how to use the operator commands and utilities, the IBM Series/1 EDX
Communications Facility Debugging Guide, 1.1.23-0076, which gives the formats of
control blocks and describes the EDL language extensions that are intended for
internal system use, and the IBM Series/1 EDX Communications Facility Messages
and Codes, SL23-0120.

This book assumes that you know the Event Driven Executive Language (EDL)
presented in the IBM Series/1 Event Driven Executive Language Reference,
SC34-0442.

This book also assumes that you know how to use the facilities of the EDX system,
as explained in these books:

IBM Series/1 Event Driven Executive Operator Commands and Utilities Reference,
SC34-0444

IBM Series/1 Event Driven Executive Messages and Codes, SC34-0445
IBM Event Driven Executive Language Programming Guide, SC34-0438.
If you’re creating 3270 data streams, you’ll need to refer to:

IBM 3270 Information Display System: Data Stream Programmer’s Reference,
GA23-0059, or ‘ :

IBM 3270 Information Display System: 3271 Control Unit, 3272 Control Unit,
3275 Display Station Description and Programmer’s Guide, GA23-0060.

If you’re writing X.25 application programs, you may need to refer to IBM
Series/1 X.25/HDLC Communications Support General Information Manual,
GC09-1026. If the programs send and receive X.25 control messages, you’ll also
need to refer to CCITT Recommendation X.25 Data Communication Networks,
CCITT Yellow Book, volume VIII.2, Geneva, Switzerland ITU, 1981.

You call on the Communications Facility through language extensions and utility

programs. This book is intended to give you the information you need to use the
utilities and to code programs that use the language extensions.

About This Book iii

iv

To that end, it has these chapters:

“Using the Communications Facility” on page 1 explains the functions you @
can perform, in a user program, through the Communications Facility’s >
extensions to the Event Driven Executive Language.

“Writing Communications Facility Programs” on page 27 contains
programming information that you’ll need to write a Communications Facility
program.

“Creating and Managing 3270 Panels” on page 45 explains how to use the
$.PANEL utility program (a part of the Communications Facility) to create the
panels that are displayed as part of interactive programs used by operators
working at 3270 terminals or Series/1 terminals being managed as if they were
3270 terminals. It includes a sample program.

“Creating a Transaction” on page 67 explains the coding conventions you must
follow in a program that is called in response to a transaction, and the
procedures necessary to get such a program installed and running.

“Creating a Program to Communicate with EDX Terminals” on page 85
explains how to use the work session controller (a part of the Communications
Facility) to write an interactive program to be used by operators working at
EDX terminals. It also explains how to store images in the work session
controller’s image library, and how to use the program $. WSMENU to start
communication between your interactive program and its users. It includes a
sample transaction-processing application.

" N
“Writing an X.25 Application Program” on page 107 contains the information {
you’ll need to write an application that uses the X.25 protocols. A

“Creating a Command” on page 155 explains how to create a new operator
command and make it available to users. It includes a sample
command-processing program.

“Creating an I/0 Control Program” on page 165 explains how to structure
and code a program to add device support for devices not directly supported by
the Communications Facility, and how to get such a program installed and
running. It includes a coding example.

“Coding Communications Facility Instructions” on page 175 presents
reference material about each instruction—its format, operands, and return
codes.

“Coding Work Session Controller Transactions” on page 305 presents
reference material about the trnasactions you use to code work session
controller applications.

Appendix A, “$.CFMENU Sample Program” on page 375 discusses the
$.CFMENU program—a sample application program, distributed as part of the
Communications Facility, that demonstrates how to communicate with users at
3270-type terminals. The chapter includes a listing of the sample program.

The “Glossary” presents the definitions of technical Communications Facility ™
terms and acronyms. For EDX definitions, see the appropriate EDX book. (}J

Communications Facility Programmer’s Guide

Version 2.0

Summary of Amendments

Only changes affecting the content of this book are listed in the Summary of
Amendments.

The following changes were made between the Communications Facility Version
1.2 and Version 2.0:

Recommendation X.25 Support: The Communications Facility X.25 IOCP supports
packet-level communication over network interfaces as defined in CCITT
Recommendation X.25. The new IOCP, $.IO0ABS, is described in “Writing
Communications Facility Programs” on page 27.

A new chapter is added to this book—‘“Writing an X.25 Application Program” on
page 107.

4980 Terminal Support: The Communications Facility now supports the 4980
terminal.

$.PNLUTI1 Utility Program: $.PNLUT1, a utility program that prints descriptions of
panels created by $.PANEL, is added to “Creating and Managing 3270 Panels” on
page 45.

PUT TCB Instruction: The new programming instruction “PUT TCB—Create a
Task Control Block” on page 257 has been added.

SEND SM Instruction: The new programming instruction “SEND SM—=Send a
Status Message from a Buffer’” on page 293 has been added.

Summary of Amendments V

vi Communications Facility Programmer’s Guide

Using the Communications Facility 1
Language Extension Instructions 1
Communications Facility Messages 4
Message Type 4
Managing Storage 5
Using Workspace Pools 5
Defining Pools in Your Program 6
Using Dynamic Storage 6
Using DEFINE BUFFERPOOL 6
Getting Workspace from Your Program 7
Getting a Buffer from Your Program 7
Getting Storage from the System Storage Pool 7
Using the Buffer Header 8
Initializing Storage 9
Sending and Receiving Messages 9
Sending Messages 10
Message Content 11
Message Destination 12
Message Origin 12
Message Priority 13
Waiting for Storage 13
Waiting for Completion 13
Undeliverable Messages 13
Receiving Messages 14
Examining or Sending the Message Header 15
Acknowledging Messages 17
Creating and Sending L.og Messages 19
Creating Messages in $.SYSMSG 19
Sending Log Messages 19
SEND L and SEND E Instructions 19
Format of the Delivered Message 20
Managing Stations 21
Sending Commands 21
Creating, Purging, Deleting, and Examining Station Blocks 21
Creating and Retrieving 3270 Data Streams 22
Creating 3270 Data Streams 22
Retrieving 3270 Data Streams 23
Moving Data 24
Locating System Facilities 24
Managing Tasks 24
Activating and Deactivating Tasks 24
Creating Task Control Blocks 24
Creating and Managing Queues 25

Writing Communications Facility Programs 27
Copying the Communications Facility Equates 27
Loading Your Program 27
Verifying that a Partition is Mapped 27
Terminating Your Program 28
Using Task Error Exits 29
Using Diagnostic Dumps 29
Using Station Blocks 30
Using Message Stations 32
Using the Alternate Link 33
Communicating with 3270-Type Terminals 33
BSC Control Characters 34
3270 Data Streams 34
Unformatted Messages 35
Transparent-Text Mode 35
Host Considerations 36
SNA Considerations 36
Host Subsystem Considerations 37
Intercepting Messages from an 1/0 Control Program 37
Intercepting Messages from $.I00AB0 37
Intercepting Messages from $.I00AB8 38

Contents

Contents Vil

Intercepting Messages from Other I/O Control Programs 40
Providing a Central System Log 40
Processing Undeliverable Messages 41

Creating and Managing 3270 Panels 45
Using $.PANEL to Design Panels 45
Terminal Considerations 45
$.PANEL Output 45
Changing Member Size 46
Overview of Panel Design 46
Starting a Session with $. PANEL 47
Panel Specification Phase 47
Design Indicators Phase 48
Panel Layout Phase 49
Panel Layout PF and ENTER Keys 49
Panel Layout Editing Commands 50
Field Attributes Phase 54
Output Options Phase 56
Ending a Session with $. PANEL 59
$.PANEL User Messages 59
Using SSGETPNL to Fetch Panels 61
S$GETPNL Calling Sequence 62
S$GETPNL Output 62
Header Information 62
Field Table 63
Return Codes 64
Sample Application Program 64
Using Panels in Other Ways 65
Using $.PNLUT1 to Print Panel Descriptions 66

Creating a Transaction 67
Naming the Transaction 67
Determining the Transaction’s Type 67
Coding the Transaction-Processing Program 69
Type 10 Transaction 69
Type 11 Transaction 69
Type 12 Transaction 70
Type 13, 23, 33, or 43 Transaction 70
Type 20, 30, or 40 Transaction 70
Type 21 Transaction 70
Type 22 Transaction 71
Type 31 or 41 Transaction 71
Type'32 or 42 Transaction 72
Terminating Your Program 72
Using Transactions to Segment Your Program 74
Saving Time Instead of Storage 75
Exchanging Transactions with Communications Facility Terminals 76
Receiving Transactions from the Terminal 76
Sending a Response to the Terminal 77
Communicating with Remote Terminals 79
Entering the Transaction into $.SYSPD 79
Defining the Station in $.SYSNET 80
Tracing Transactions 81
Testing Transactions 82

Creating a Program to Communicate with EDX Terminals 85
Sending WSC Transactions 85
WSC Acknowledgment Transactions 86
Communicating with Multiple Terminals 86
Work Session Controller Transaction Commands 87
Adding New WSC Transaction Commands 88
Storing Images in the Image Library 89

Creating an Image 89

Formatting and Storing an Image 89

Displaying an Image 90

Maintaining the Image Library 90
Using $.WSMENU 90

$.WSMENU Functions 90

Vili Communications Facility Programmer’s Guide

Running $. WSMENU 91
Example Transaction-Processing Application 94
STRTSESS Program 95
MENUPROG Program 95
ENTRPROG Program 97
BTCHPROG Program 97

Writing an X.25 Application Program 107
Determining the Circuit Usage 107
Managing the Circuit Station 107
Using X.25 Headers 108
Communicating with an STD Usage Circuit 108
Establishing the Call 108
Starting Communication 109
Sending and Receiving Data Messages 109
Communicating with an STD+ Usage Circuit 110
Establishing the Call 111
Using Network Facilities 112
Sending and Receiving Control Messages 113
Sending Control Messages 114
Receiving Control Messages 115
X.25 Control Messages 116
Call Accept 117
Example 117
Call Accept with Fast Select Facility 119
Example 120
Call Connected 121
Example 121
Call Connected with Fast Select facility 123
Example 124
Call Request 125
Example 126
Clear Confirmation 127
Clear Indication 129
Example 129
Clear Indication with Fast Select Facility 131
Example 132
Clear Request 133
Example 133
Clear Request with Fast Select Facility 135
Example 136
Error Indication 137
Example 137
Incoming Call 139
Example 140
Interrupt 141
Example 141
Interrupt Confirmation 143
Passthrough 145
Example 145
Reset Confirmation 147
Reset Indication 149
Example 149
Reset Request 151
Example 151

Creating a Command 155

Example Command-Processing Program 155
Naming Your Program 156

Retrieving the Command’s Parameters 156
Gaining Access to $.SYSNET 156

Updating $.SYSNET 156

Gaining Access to Other Data Sets 157
Logging Errors and Successful Completion 157
Sending a Completion Code 157

Avoiding Deadlocks 157

Ensuring Your Program Will Load 158

Contents

ix

X

Creating an 1/0 Control Program 165
Overview of an I/0 Control Program 165
Designing Your I/O Control Program 165
Creating Your Stations 166
Coding the Main Task 166
Coding Subtasks 167
Reentrant Coding Considerations 167
Data Stream Considerations—3270 IOCPs 168
Basic Mode Messages 168
Record Mode Messages 169
Data Stream Considerations—IOCPs that Connect Nodes 170
Example I/O Control Program Listing 171

Coding Communications Facility Instructions 175

Syntax Notation 175

Special Symbolic Addresses 175

Instruction Format 176

Operand Formats 177

Macro Assembler Considerations 178

ACTIVATE T—Activate or Deactivate a Task 179
CFTERM—Define Non-EDX 3101 or 7485 on Multifunction Attachment 181
DEFINE BRB—Define a Buffer Reference Block 183

DEFINE BUFFER—Define a Buffer 185

DEFINE BUFFERPOOL~-Define a Workspace Pool 187

DEFINE DEVICE—Define Remote Disk Access 189

DEFINE Q—Define a Queue Control Block 191

DEFINE VOLUME—Define a Remote Disk Volume 193

FREE B—Free a Buffer 195

FREE S—Free Storage 197

GET A—Locate a System Facility 199

GET Al—Retrieve the AID Byte and Cursor Address from a 3270 Data Stream 201
GET B—Get a Buffer 203

GET F—Retrieve a Field from a Buffer 205

GET Q—=Get an Element from a Queue 211

GET S—Get Storage 213

GET W—Get Workspace 215

LCC—Define Local Communications Controller Channel 217
LOCATE NA—Locate a Station Block by Network Address 219
LOCATE ST—Create, Delete, Purge, or Locate a Station Block 221
MOV—Move Data 225

PUT AID—Put an AID Byte into a 3270 Data Stream 227

PUT CO—Put a WRITE Command into a 3270 Data Stream 229
PUT CURS—Put a Cursor into a 3270 Data Stream 231

PUT DLEETB—Put a DLE and an ETB into a 3270 Data Stream 233
PUT DLEETX—Put a DLE and an ETX into a 3270 Data Stream 235
PUT DLESTX—Put a DLE and an STX into a 3270 Data Stream 237
PUT ERA—Put an Erase Order into a 3270 Data Stream 239

PUT ETB—Put an ETB into a 3270 Data Stream 241

PUT ETX—Put an ETX into a 3270 Data Stream 243

PUT F—Put Data into a Communications Facility Buffer 245

PUT NUL—Set Buffer Address 249

PUT Q—Put an Element in a Queue 251

PUT REP—Repeat a Character in a 3270 Data Stream 253

PUT STX—Put an STX into a 3270 Data Stream 255

PUT TCB—Create a Task Control Block 257

RECEIVE M—Receive a Message into a Buffer 259

RECEIVE N—Receive Notification of Messages 263

RECEIVE P—Purge a Message 265

RECEIVE T—Receive a Message into a Text Area 267

SEND A—Send Acknowledgment 271

SEND CP—Send a Command 273

SEND E—Send an Error Message 277

SEND L—Send a Log Message 279

SEND M--Send a Message from a Buffer 281

SEND MT—Send a Transaction from a Buffer 285

SEND S—S8end a Status Message from an EDX Text Area 289
SEND SM—Send a Status Message from a Buffer 293

SEND T—Send a Message from an EDX Text Area 297

SEND TT—Send a Transaction from an EDX Text Area 301

Communications Facility Programmer’s Guide

-

AN

Coding Work Session Controller Transactions 305
BI—Send a Screen Image 307
CC—Carriage Control 309

CD—Clear Data 311

ES—End a Session 313

FT—Read the Field Table 315

IT—Set Input Timer 319

LI—Link to Another Program 321
LK—Lock the Keyboard 323

LS—Set Lock Sequence 325

PD—Stop Device 327

PW—Priority Write 329

RA—Read All Data 331

RC~—Read the Cursor 333

RD—Read Unprotected Data 335
RS—Restore Data 337

RT—Read Program Function Key Table 341
SC—Set Cursor 345

SD—Start Device 347

SF—Set Forms 349

SL—Set Station Name 351

SS—Start a Session 353

ST—Set Program Function Key Table 355
SV—Save Data 359

TN—Sound Tone 363

UK—Unlock Keyboard 365

US—End Lock Sequence 367
WD—Write Unprotected Data 369
WK—Wait for a Key 371

WP—Write Protected Data 373

Appendix A. $.CFMENU Sample Program 375
$.CFMENU Functions 375
$.CFMENU Listing 375

Glossary 383

Index 393

Contents

xi

xii

Communications Facility Programmer’s Guide

C

VO A WN =

Figures

. Building a Buffer Reference Block 7

. Buffer Header Contents 9

. Sample Application Program Flow 10
. Station Types and Subtypes 15

. Message Header Contents 16

User or Message Station Block 31

. Screen Layout During Panel Specification 48

. Screen Layout During Design Indicators Phase 50
. Screen Layout During Panel Layout 51

. Panel Display During Panel Layout Phase 52

. Unprotected Field Attributes 54

. Protected Field Attributes 55

. Screen Layout During Output Options Phase 56

. Sample Print Panel Description 57

. Sample SSGETPNL Application 65

. Transaction Types 69

. 3270 Transaction Processing—Example 1 77

. 3270 Transaction Processing—FExample 2 78

. 3270 Transaction Processing—Example 3 79

. $.WSMENU User Menu 93

. Sample Transaction-Processing Program Menu 95
. Sample Data Entry Screen 96

. STRTSESS Listing 98

. MENUPROG Listing 100

. ENTRPROG Listing 102

. BTCHPROG Listing 105

. X.25 Network Facilities 112

. Diagnostic Codes 152

. S$CPBIT Listing 159

. Sample IOCP Listing 172

. System Facilities Available through GET A 199

. PUT F Example 248

. Work Session Controller Transaction Commands 305

Figures Xiil

Xiv

Communications Facility Programmer’s Guide

PN
“

=4

Using the Communications Facility

This chapter explains the Communications Facility functions you can use in writing
applications and device-support (I/O control) programs. It summarizes what you
can do with the Communications Facility and what instructions you use to carry
out each function.

Language Extension Instructions

Your program will communicate with the Communications Facility through a set of
EDL instructions collectively called language extensions. The instructions fall into
these categories:

o Storage management instructions, which enable you to get and free blocks of
processor storage for your program’s use. You’ll be using these instructions to

get the storage you need to build, send, and receive messages.

o Message management instructions, which enable you to send messages to and
receive messages from stations.

o Station management instructions, which allow you to create and delete station
blocks and gain access to information about existing stations.

e 3270 field formatting instructions, which allow you to create and receive data
as a 3270 data stream.

« Data move instructions, which allow you to carry out indexed and indirect
moves.

« A system facilities instruction, which allows you to gain access to various
system control blocks.

o Task management-instructions, which allow you to create task control blocks
and activate and deactivate tasks.

o . Queue management:instructions, which allow you to define and access queues.

o Supervisor definition instructions, used to define elements of a Communications
Facility configuration to the Event Driven Executive (EDX) supervisor. These
instructions are used only for system generation; they cannot be used in your
application program.

o Local -Communications: Controller instructions, used to access the Local
Communications Controller. These instructions are for Communications
Facility internal use only and are described in the Debugging Guide.

The following list summarizes these instructions and shows where you can locate
them in this book.

Storage Management
“DEFINE BUFFER—Define a Buffer” on page 215

“DEFINE BUFFERPOOL—Define a Workspace Pool’” on page 217

Using the Communications Facility 1

2

“FREE B—Free a Buffer” on page 195

“FREE S—Free Storage” on page 197 @
“GET B—Get a Buffer” on page 203

“GET S—Get Storage” on page 213

“GET W—Get Workspace” on page 215

Message Management

“RECEIVE M—Receive a Message into a Buffer” on page 259
“RECEIVE N—Receive Notification of Messages” on page 263
“RECEIVE P—Purge a Message” on page 265

“RECEIVE T—Receive a Message into a Text Area” on page 267
“SEND A—Send Acknowledgment” on page 271

“SEND CP—Send a Command” on page 273

“SEND E—Send an Error Message” on page 277

“SEND L—Send a Log Message” on page 279 "{_ay‘
“SEND M—Send a Message from a Buffer”” on page 281

“SEND MT—-Send a Transaction from a Buffer’” on page 285

“SEND S—Send a Status Message from an EDX Text Area” on page 289
“SEND SM—Send a Status Message from a Buffer”” on page 293

“SEND T—Send a Message from an EDX Text Area” on page 297

“SEND TT—Send a Transaction from an EDX Text Area” on page 301

Station Management
“LOCATE NA-—Locate a Station Block by Network Address” on page 219

“LOCATE ST—Create, Delete, Purge, or Locate a Station Block’ on page
221

Communications Facility Programmer’s Guide

3270 Field Formatting

“GET Al—Retrieve the AID Byte and Cursor Address from a 3270 Data
Stream” on page 201

“GET F—Retrieve a Field from a Buffer” on page 205

“PUT AID—Put an AID Byte into a 3270 Data Stream” on page 227

“PUT CO—Put a WRITE Command into a 3270 Data Stream” on page 229
“PUT CURS—Put a Cursor into a 3270 Data Stream’ on page 231

‘“PUT DLEETB—Put a DLE and an ETB into a 3270 Data Stream” on page
233

“PUT DLEETX—Put a DLE and an ETX into a 3270 Data Stream’ on page
235

“PUT DLESTX—Put a DLE and an STX into a 3270 Data Stream” on page
237

“PUT ERA—Put an Erase Order into a 3270 Data Stream” on page 239
“PUT ETB—Put an ETB into a 3270 Data Stream” on page 241

“PUT ETX—Put an ETX into a 3270 Data Stream” on page 243

“PUT F—Put Data into a Communications Facility Buffer”” on page 245
“PUT NUL—Set Buffer Address” on page 249

“PUT REP—Repeat a Character in a 3270 Data Stream” on page 253

“PUT STX—Put an STX into a 3270 Data Stream’ on page 255

Data Move
“GET F—Retrieve a Field from a Buffer” on page 205
“PUT F—Put Data into a Communications Facility Buffer”” on page 245

“MOV—Move Data’ on page 225

Facilities

“GET A—Locate a System Facility”’ on page 199

Using the Communications Facility

Task Management
“ACTIVATE T—Activate or Deactivate a Task” on page 179 ’@

“PUT TCB—Create a Task Control Block” on page 257

Queue Management
“DEFINE Q—Define a Queue Control Block” on page 191
“GET Q—Get an Element from a Queue” on page 211

“PUT Q—Put an Element in a Queue” on page 251

Supervisor Definition

“DEFINE BRB—Define a Buffer Reference Block” on page 183
“DEFINE DEVICE—Define Remote Disk Access” on page 189
“DEFINE VOLUME—Define a Remote Disk Volume” on page 193

“CFTERM—Define Non-EDX 3101 or 7485 on Multifunction Attachment”

on page 181 @\

“LCC—Define Local Communications Controller Channel” on page 217.

Communications Facility Messages

Much of the work your Communications Facility programs will do consists of
building, sending, receiving, and otherwise managing messages. A message is a unit
of data to be transmitted from one station to another. It may, for example, be a
request that a terminal operator answer a question; the operator’s response; a
report to be produced on a printer; a Communications Facility operator command;
or a very large data set. A message can be of any length up to 32K bytes.

The Communications Facility language extensions include instructions to help you
build, send, and receive messages.

Message Type

4

There are five types of 'Communications Facility messages:

o Datas The message is intended to be sent to another station. The data in the
message is meaningful to its destination; the Communications Facility doesn’t’
have to understand it.

o Transaction, The message is a Communications Facility transaction to be
processed at some Series/1 in the configuration. A transaction is always sent
to the program dispatcher, which then routes it to its ultimate destination. The
first part of the message, the transaction header, tells the program dispatcher @
where to route the transaction.

Communications Facility Programmer’s Guide

Managing Storage

Using Workspace Pools

o
e

o Commands The message is a Communications Facility command. Using this
type of message allows your program to issue commands.

» Log The message is an error message or an informational message to be sent
to the system log device. By creating this kind of message, your program can
log its error messages just as the Communications Facility logs its own.

o .Status., The message contains control information, such as an X.25 control
message, or a command that tells a program to stop.

Your program may create and send messages of any type, and may receive data,
transaction, or status messages.

You need storage to receive messages and to create the messages you send. You
may also need storage for other purposes. There are three types of storage areas:

1. Communications Facility buffer—An area up to 32K bytes long prefixed by a
S5-word header, which is used to keep track of the data in the buffer, as
explained in section “Using the Buffer Header” on page 8.

2. .EDX text.area=—An area up to 254 bytes long prefixed by a 2-byte text count
field, which contains the size of the area and the count of the actual number of
characters in the area.

3. Workspace—An area up to 32K bytes long with no header or other control
information.

If you’re creating or receiving a data, transaction, or status message, the space can
be either an EDX text area or a Communications Facility buffer.

If you’re creating a command message, you must build the message in an EDX text
area.

If you’re creating a log message, you can prestore the message text in amember of
the $.SYSMSG data set. A log message you send can consist of prestored text
alone; prestored text with appended data from an EDX text area; or the contents
of an EDX text area alone.

The storage you use for purposes other than creating or receiving messages can be
a Communications Facility buffer, an EDX text area, or a workspace.

The storage you use in your program may be a workspace pool, an area that
includes information used to control the allocation of space from a pool. A pool
starts with a 4-word buffer reference block (BRB):

Word 1 Address of the first element in the pool.

Word 2 Address of the first element in the pool (initialized to zero).

Word 3 Size of the largest possible element (initialized to zero).

Word 4 Size of the pool, excluding the BRB.

Using the Communications Facility 5

Each element in the pool starts with a 4-word StoFagéresoreeblock (SRB):

Word 1 Address of next element in pool.

Word 2 Address of previous element in pool.

Word 3 Address of owner’s task control block (zero if element is available
space).

Word 4 Size of element excluding SRB.

When you build a pool, as explained in section “Using Dynamic Storage,” you must
create the BRB. Otherwise, you don’t need to be aware of the BRB or the SRBs
except to allow space for them when you compute the size of a pool.

The size of a workspace pool is the sum of the sizes of the workspaces and buffers
to be allocated at the same time plus the following overhead:

« Add 8 bytes for the BRB at the beginning of the pool.

« For each workspace allocated from the pool, add 8 bytes for the SRB and
round the sum to a multiple of 8.

« For each buffer allocated from the pool, add 8 bytes for the SRB and 10 bytes
for a buffer header, and round the sum to a multiple of 8.

Assume, for example, that you need a pool large enough for two 30-byte
workspaces and two 500-byte buffers. The space required for each workspace is
40 bytes (30 plus 8, rounded to a multiple of 8). The space required for each
buffer is 520 bytes (500 plus 18, rounded to a multiple of 8). The required pool
size is 1128 bytes (2 times 40, plus 2 times 520, plus 8).

Defining Pools in Your Program

% You can define a pool in your program in two ways: by building one in dynamic
storage or by using the DEFINE BUFFERPOOL instruction.

Using Dynamic Storage

You can use dynamic storage, specified on the PROGRAM statement, as a
workspace pool. This approach has the advantage that you can use the SS function
of the $DISKUT? utility to change the size of the pool without recompiling your
program. If you choose to use dynamic storage as a workspace pool, you must
format the first 4 words of the area as a BRB. The code to do that is shown in
Figure 1 on page 7.

Using DEFINE BUFFERPOOL

6

The DEFINE BUFFERPOOL instruction allows you to define a workspace pool
within your program. When you use DEFINE BUFFERPOOL, you don’t have to
create the BRB, and you can change the size of the area only by recompiling the
program. When you issue DEFINE BUFFERPOOL., you specify how big the pool
is to be.

Communications Facility Programmer’s Guide

IF ($LENGTH,LT, 1)
SEND ERROR, ...
PROGSTOP LOGMSG=NO

ENDIF

MOVE #1, $STORAGE

MOVE POOL®, $ STORAGE

ADD POOL®,+PHDRL,RESULT= (0, #1)
MOVE (2,#1),0,2
SHIFTL $LENGTH,8,RESULT=(6,%1)
SUB(6,4#1) , +PHDRL
[]
[]
[]

POOL® DATA F'O'

PHDRL EQU 8

Figure 1. Building a Buffer Reference Block

NO STORAGE ALLOCATED
LOG ERROR
TERMINATE EXECUTION

GET ADDRESS OF DYNAMIC
STORAGE AND SAVE IT

BUILD BUFFER REFERENCE BLOCK
ADDRESS OF FIRST ELEMENT

TWO WORDS OF ZERO

STORAGE SIZE (BYTES)

LESS HEADER SIZE

ADDRESS OF WORKSPACE POOL
LENGTH OF BUFFER REFERENCE BLOCK

Getting Workspace from Your Program

The GET W instruction allows you to get some space from a workspace pool in
your program, either the one built in dynamic storage or one defined through a
DEFINE BUFFERPOOL instruction. When you issue GET W, you specify which
pool the space is to come from; how large the space is to be; and whether your
program is to wait, if necessary, until the space is available. When you’ve finished
with the space, use the FREE S (free storage) instruction to return it to the pool.

You might, for example, use GET W to get space to save information about a
station with which your program communicates.

Getting a Buffer from Your Program

The DEFINE BUFFER instruction defines a Communications Facility buffer
within your program. The buffer is static; you can’t release the space it occupies
when your program is running. When you issue DEFINE BUFFER, you specify
the buffer’s size and, if you want, a character with which the buffer is to be filled
initially (the default is a blank).

The GET B instruction gets a Communications Facility buffer from a workspace
pool in your program, either the one built in dynamic storage or one defined
through a DEFINE BUFFERPOOL instruction. When you issue GET B, you
specify the pool the buffer is to come from, its size, and whether your program is to
wait, if necessary, until the space is available. You can use the FREE B or the
FREE S TYPE=BUFFER instruction to free a buffer obtained this way.

Getting Storage from the System Storage Pool

#¥ The GET S instruction lets you get a workspace or buffer from the system storage
pool, SSPOOL, in the common area. The Communications Facility uses SSPOOL
for station blocks and work areas. You should use SSPOOL only for data that
must be in partition 1 (for example, a device control block) or for data that is used
by several programs in different partitions.

Using the Communications Facility 7

Using the Buffer Header

8

4

When you issue GET S, you specify how much space you need, whether it is to be
formatted as a buffer, and whether your program is to wait, if necessary, until the ‘
space is available. @

Use either the FREE B or the FREE S TYPE=BUFFER instruction to free a
buffer in SSPOOL. Use the FREE S instruction to free a workspace in SSPOOL.

However you get your buffer, it is prefixed with a 5-word buffer header. Figure 2
on page 9 shows the buffer header contents.

The data you put into the buffer goes after the header. The address of the buffer
or the name you give to it refers to the beginning of the data. You can send and
receive messages without any awareness of the buffer header contents.

You may want to examine or change some of the buffer header fields. For
example, you can find the length of a received message by examining BSCOUNT
(the second word of the buffer header). As another example, you might want to
send the data at the end of a buffer, leaving out some data at the beginning of the
buffer. You could do that by changing BSADDR (the third word of the buffer
header) to point to the data you want to send and BSCOUNT (the second word of
the buffer header) to the appropriate length.

There are three ways you can refer to the buffer header fields:

o By name (B$SIZE, BSCOUNT, etc.) relative to the beginning of the buffer

data. For example, you might use buffername+B$COUNT, or, assuming the /W\
address of the buffer is in register 2, (B§COUNT,#2). To use these names, \,t %
you must include the Communications Facility system equates (SSCFEQU) in

your program.

« By position relative to the beginning of the buffer data. For example, you can
refer to BSCOUNT as buffername-8.

« By giving names to the fields through the P1-P5 operands of DEFINE
BUFFER.

Note that the fifth word of the header (B$TXTCT) is a text count field when the
buffer size is less than 255 bytes. You can use such a buffer for instructions that

require an EDX text area as well as for those that require a Communications
Facility buffer.

Communications Facility Programmer’s Guide

O

Initializing Storage

Pn Label Displacement Contents

P11 BS$SIZE -10 Size, in bytes, of the entire
buffer not including the header.

P21 B$COUNT -8 Count of the bytes of actual data
in the buffer, beginning at
B$SADDR.

P31 BSADDR -6 The address of the first byte of
the buffer to be treated as data.

P41 BSDATA@ -4 An address of some data within

the buffer (used when the buffer
is being accessed by GET and
PUT instructions).

P51 B$TXTCT -2 The EDX text count (maximum
size followed by actual size of
the data in the buffer) if the
buffer is smaller than 255 bytes;
the buffer size (equal to
B$SIZE) if the buffer size is
greater than 254 bytes.

B$STEXT 0 Normally, the start of the data.
B$ADDR normally points here.

Figure 2. Buffer Header Contents::

When you get the first workspace or buffer from a workspace pool, the entire pool
is initialized to binary zeros. When you get a workspace from a pool, the
workspace is initialized to binary zeros. When you get a buffer from a pool, the
buffer is not initialized. If you require that the buffer have some initial value, you
must initialize it yourself.

Sending and Receiving Messages

The Communications Facility SEND and RECEIVE instructions allow your
program to receive messages from one or many sources, process the messages, and
send the results to one or many destinations.

A typical application program, shown in Figure 3 on page 10, may issue a
RECEIVE instruction with an option that indicates the program is to wait until
there is a message to be received on its queue. When a message is queued, the
message text is then moved to an area specified on the RECEIVE instruction so
the program can process the message.

After processing the message, the program may send it on to another program for
further processing, or create and send some other output message. The output may
go to the originator of the original message, or to any other station.

1 For use in DEFINE BUFFER

Using the Communications Facility 9

Source Ent @
Message nter

Queue

Initiate

Wait
for
message

Process
message

Send
output
message

AN
o
Destination
Message
Queue
Figure 3. Sample Application Program Flow
Sending Messages
This section explains the instructions that allow you to send data, transaction,
command, and status messages. The instructions are:
SEND M Send a data message from a Communications Facility buffer.
SENDT Send a data message from an EDX text area.
SEND MT Send a transaction from a Communications Facility buffer.
SEND TT Send a transaction from an EDX text area.
SEND CP Send a command from an EDX text area.
SEND SM Send a status message from a Communications Facility buffer. 0
SEND S Send a status message from an EDX text area.

10 Communications Facility Programmer’s Guide

0}

Message Content

When you send a messége, you specify the address of the buffer or text area that
contains the message. The buffer header field BECOUNT or the text count field
must contain the message length.

A data message can be any data that is meaningful to the program that receives the
message.

A command message can be any of the CP or PD commands described in the
Operator’s Guide.

By convention, status messages are used only for sending certain types of control
information. The command processor and the program dispatcher send status
messages to tell programs to stop or halt. The X.25 I/0 control program uses
status messages to send X.25 control messages. You should send status messages
from your application only to send X.25 control messages, as discussed in the
chapter “Writing an X.25 Application Program” on page 107.

The first part of a transaction message is a fixed-format header that identifies the
transaction and the cell where it is to be processed.

The format of a transaction message is:

1-4 5-6 7-10 11-12 13-n

tidl I cl I tid2 I c2 I transaction data
where:
tidl

is the primary transaction identifier, a 4-character code that identifies the
transaction.

cl
is the primary cell identifier, a 2-character code that identifies the cell where the
transaction is to be processed. Two blanks or 00 means that the transaction is to
be processed in the cell where it originated. Two asterisks mean that the
transaction is a broadcast transaction, which is to be processed in all cells known
to the program dispatcher.

tid2 ,
is the secondary transaction identifier, whose meaning is defined by the program
that processes the transaction.

c2

is the secondary cell identifier, whose meaning is defined by the program that
processes the transaction. When c2 is 7?, the program dispatcher replaces it with
the ID of the cell where the transaction originated.

transaction data
is whatever data is meaningful to the program that processes the transaction.

Using the Communications Facility 11

g

‘Message Destination

- s Message Origin

The minimum length of a transaction message is 6 bytes. The data portion is
optional. If a transaction contains no data, the secondary transaction identifier and
secondary cell identifier are optional. @

The destination of data and status messages is a station. You can specify the name
of the destination station in a SEND instruction. You can also specify an area that
will contain the name when the program is executed. This allows you to obtain the
name of a station from which you receive a message and use that name as a
destination when you send a response.

If you don’t specify the destination of a data or status message, the message is sent
to the origin station’s direct fihk~—the station specified as the default destination by
the CP LINK command. The direct link can be changed at any time, even while
your program is running.

The destination of command messages is the command processor; either in the
local node or in a remote node. If you want a command to be processed in the
local node, you don’t need to specify a destination in the SEND CP instruction. If
you want a command to be processed in a remote node, you must specify the name
of any station in that node as the destination. This specification causes the
command to be routed to the remote node, where it is sent to the command
processor.

You can’t send a command message to a remote node if the nodes are connected
by a BSC multipoint line (one managed by I/0 control programs $.I00ACO and
$.I00AEO0).

G
The initial destination of transaction messages is the program dispatcher (that is, -
the station named $.PD). You don’t specify a destination in SEND MT and SEND

TT instructions, because $.PD is the implied destination. The ultimate destination

is the transaction-processing program defined by the primary transaction and cell

identifiers in the transaction header.

The origin of a message is a station. You can specify the name of the origin station
in a SEND instruction. If you don’t specify the name, the origin is the station with
the same name as the sending program.

If the origin station doesn’t exist, the message origin is not known. This is not
necessarily a problem; however, the message origin is required when:

¢ You haven’t specified the destination of a data or status message, and the
message is sent to the origin station’s direct link. If the origin isn’t known, then
the destination can’t be determined and the message is undeliverable.

« You request that your program wait until the message has been received, as
described in ‘“Waiting for Completion’’ on page 13. If the origin isn’t known,

the request is ignored.

« A program that receives the message needs the name of the origin station.

O

12 Communications Facility Programmer’s Guide

Message Priority

Waiting for Storage

Waiting for Completion

Undeliverable Messages

When you send a message, you can assign it a priority of 1 (highest priority) to 127
(lowest priority). The default is 127. Messages for a given destination are queued
and received according to their priority.

At your installation’s option, messages of priority 127 for a given station can be
queued on disk or diskette while all its other messages are queued in processor
storage. In general, disk-queued messages take longer to arrive. As a rule, you
should disk-queue longer messages and messages for which arrival time isn’t
crucial.

When you send a message, it is copied into the message.buffer:pool (EFBUF). A
disk-queued message remains in CFBUF until it has been written to disk. A
storage-queued message remains in CFBUF until it has been received.

The WAIT option of the SEND instructions allows you to specify whether you
want your program to wait, if necessary, until there is space in the message buffer
pool for the message. The default is YES.

There are three different points at which a SEND instruction will complete (that is,
when your program is free to resume execution), depending on the operands you
specify:

« If you specify ACK=NO (which is the default), your program is free to resume
execution when the message has been placed on the destination queue. If the
message is disk-queued, the SEND instruction does not complete until the
message has been written to disk.

o If you specify ACK=YES, your program is free to resume execution when the
message has been received, as explained in the section “Acknowledging
Messages” on page 17. ACK=YES has no effect if the message origin is not
known, if the origin is a vector station (one that represents a station in a
remote node), or if the destination is a message station.

e If you specify OPTION=NOPOST for a disk-queued message, your program is
free to resume execution when the message has been placed on the disk write
task’s queue. (The effect of OPTION=NOPOST is the same as ACK=NO for
a storage-queued message.) This option is provided for the Communications
Facility log processor, and it is not recommended that you use it in your
programs. If you do use it, the SEND instruction completes successfully even
when a disk-queued message can’t be delivered.

A message may be undeliverable—for example, if its destination station is stopped
or doesn’t exist. At your installation’s option, such messages are either discarded
or queued to a station called $:WASTE, Each undeliverable message on
$.WASTE’s queue is preceded by a reason message, which contains the date, time,
and a code that indicates why the message could not be delivered. You can use
utility program $.UT2 (described in the Operator’s Guide) to examine the messages
on $.WASTE’s queue.

Using the Communications Facility 13

Receiving Messages

e

If you write a program that receives messages and then sends them on, you may
decide that a message is undeliverable. It might, for example, contain incorrect
data. If you want to send such a message to $.WASTE, use a SEND instruction ((
with OPTION=WASTE. Don’t specify $.WASTE as the destination station

instead. If you do, the message will be sent to $.WASTE, but it won’t be preceded

by a reason message.

-

When you use OPTION=WASTE, you don’t specify a reason code. The code will
always be WAOQ7, which indicates that the message was sent to $. WASTE by some
program other than the message dispatcher.

When you send a message that can’t be delivered, you may not want it to be sent to
$.WASTE. For example, if the destination is stopped, you may send the message
to some other station. To prevent an undeliverable message from being sent to
$.WASTE, specify OPTION=DISCARD in the SEND instruction.

The RECEIVE M and RECEIVE T instructions allow you to receive a data,
transaction, or status message. You use RECEIVE M to receive the message into a
Communications Facility buffer and RECEIVE T to receive it into an EDX text
area.

A return code of +6 on completion of the RECEIVE instruction means that the

message is a status message. Any program can receive a status message that is a

command to stop or halt, as discussed in the section ‘“Terminating Your Program”

on page 28. X.25 application programs may also receive status messages that

contain X.25 control messages, as discussed in “Writing an X.25 Application o
Program” on page 107. 7oA

A return code of -1 on completion of the RECEIVE instruction means that the
message is a data or transaction message. There’s no way to distinguish a data
message from a transaction message once you’ve received it; your program must
know what kind of messages it’s going to receive.

You receive messages from a station’s message queue. The station can be the one
that represents your program or some other station. To receive messages from
some other station’s queue, you must specify the name of the station. You can
specify that, if there is no message on the queue, the instruction is to wait until
there is a message on the queue.

You must specify the address of the buffer or text area into which the message is to
be placed. On successful completion, the message length is in the buffer header
field BSCOUNT or in the text header field.

You can specify whether or not receipt of the message is to be acknowledged to the
sender (described under “Acknowledging Messages” on page 17). You can also
request the name of the station that originated the message, or you can request the
message header (described under “Examining or Sending the Message Header” on
page 15).

If you request the name of the originating station, you provide a 10-byte area for

the station name. After the receive, the first 8 bytes of that area contain the

station’s name. The remaining 2 bytes contain the station’s type and subtype, as

shown in Figure 4 on page 15. SSCFEQU contains names for the type and O

14 Communications Facility Programmer’s Guide

subtype values. There are types and subtypes other than those shown in the figure;
the figure presents those from which you are most likely to receive messages. All
the types and subtypes are shown in the Operator’s Guide.

Station Type Subtype
User station 02 00
3277 terminal 04 C2
Emulated channel attach port 04 DO
Emulated 3277 terminal 04 E2

3101 device, managed as a 3277 06 31
4978 device, managed as a 3277 06 78
3101F device, managed as a 3277 06 F3

Message station oC 00
SNA LU 3277 12 E2
SNA LU 3278 12 EA
SNA LU 3279 12 EB
PVC 16 BD
SvC 16 BE

Figure 4. Station Types and Subtypes

% When you receive a message from a queue, the message is removed from the queue
unless you specify otherwise. The COPY option of RECEIVE M and RECEIVE T
allows you to receive a copy of the message but also leave it on the queue. When
you have finished processing the message, you must remove it from the queue, as
explained later in this section. Until you do, another RECEIVE with the COPY
option will receive another copy of the same message, unless a higher-priority
message has been placed on the queue in the meantime. Your program is
responsible for being sure that the next RECEIVE is receiving the right message.

The KEEP option is just like the COPY option except that, if the message is
disk-queued and the receiving program’s buffer is too small to receive the message,
a copy is kept in the message buffer pool (CFBUF) as well as on the disk queue. It
is unlikely that you will have any reason to use the KEEP option in your programs.
The option is provided for use of the Series/1-to-Series/1 I/O control program.

¢ A third RECEIVE instruction, RECEIVE P, purges the last message received with
the COPY or KEEP option. After your program issues a RECEIVE with the
COPY or KEEP option, it can’t issue a RECEIVE without the option until it issues
a RECFEIVE P.

& Note that only one program at a time should use RECEIVE with the COPY or
KEEP option against a queue; multiple programs would interfere with each other’s
operations on the queue.

& A fourth RECEIVE instruction, RECEIVE N, merely notifies you of whether there
are any messages on the queue, without receiving one. When you issue RECEIVE
N, you can specify whether the instruction is to wait until there is a message
queued.

Examining or Sending the Message Header

When the Communications Facility transmits a message, it prefixes a24byte
ungssagesheader 1o the message. The header contains such information as the
message’s origin, destination, and priority. You can send and receive messages
without being aware of the header at all.

Using the Communications Facility 15

16

%

If you want to examine the header, you can specify, on the RECEIVE M or

RECEIVE T instruction, a location where you want the Communications Facility B

to place the header. The header’s contents are shown in Figure 5. ((\w
w4

Having received the header, you can refer to its fields in two ways:

o By name (MNIQ, MSPIQ, etc.) relative to the beginning of the header. To
use these names, you must include the Communications Facility system equates
(S$CFEQU) in your program.

« By displacement from the beginning of the header.

When you use a SEND M instruction to send a data message or a SEND CP
instruction to send a command, you can provide the message header as well as the
message data. This option is provided for use of the I/O control programs that
transfer messages and their headers between Series/1s. It is unlikely that you will
have any reason to use it, except as described in the section “Intercepting Messages
from an I/O Control Program” on page 37.

If you do provide headers for the messages you send, you can specify any value for
fields MNIQ, MPIQ, M$SAKR, and M$STA; the message dispatcher provides
this data. You must provide the rest of the message header data.

Label Size Displacement Contents

M$NIQ 2 0 The address of the next message
’ for this station. If this element is
0, this is the last message on the
station’s storage queue.

MS$PIQ 2 2 The address of the previous
message for this station. If this
element is 0, this is the first
message on the station’s storage

C

queue.

MS$PRI 1 4 The priority of the message.

M$SAKR 1 5 The sender’s address key register
(AKR) value.

MSSTA 2 6 The sender’s task control block
(TCB) address.

MS$ALV 2 8 The network address of the
' . origin station’s alternate link; O if
it has no alternate link.

MS$FLAG 2 10 Message option flags. See the
Debugging Guide.

MS$OAF 12 12 The origin station’s network
address; 0 if the origin station is
not known.

Figure 5 (Part 1 of 2).{Message Header Contents

Communications Facility Programmer’s Guide

Acknowledging Messages

Label Size Displacement Contents

MS$DAF 2 14 The destination station’s network
address.
M$SNF 2 16 A binary number representing

the sequence number of the
message, assigned at its origin.

MS$DCF 2 18 A binary number representing
the number of bytes in the
message.

M$RH 2 20 Message type flags. See the
Debugging Guide.

MSDATA@ 2 22 Always 0.

MS$TEXT — 24 The beginning of the message
data.

Figure 5 (Part 2 of 2). Méssage Header:Contents:

When you send a message, you can use the ACK operand of the SEND instruction
to specify that your program is to wait until the message has been received.

The receiver acknowledges receipt of the message either:
o By specifying ACK=YES on the RECEIVE M or RECEIVE T instruction
or

« By specifying ACK=NO on the RECEIVE instruction and later issuing
another instruction, SEND A, which only acknowledges receipt.

To use SEND A or ACK=YES, the sender and receiver must be in the same node.
If they are in different nodes, the sender’s wait is satisfied when the I/O control
program that will transfer the message to the remote node receives the message.

Using ACK=YES on a SEND instruction keeps two programs operating
synchronously. It paces the flow of messages through the system and, when the
messages are queued in storage, keeps CFBUF from being flooded.

Sending Program Receiving Program

1. SEND with ACK=YES
‘ 2. RECEIVE with ACK=YES
3. Wait is posted
4. Process message

Using the Communications Facility 17

18

If the receiving program uses SEND A instead of RECEIVE with ACK=YES, the
sending program can wait until the receiving program has not only received the
message, but also processed it. @

Sending Program Receiving Program

1. SEND with ACK=YES
2. RECEIVE with ACK=NO
3. Process message
4. SEND A

5. Wait is posted

If you're sending messages between Series/ 1s or between a Series/1 and a host
computer, SEND A and RECEIVE with ACK=YES are not effective. To
acknowledge messages, the communicating programs will have to have an
agreed-on protocol. For example, after receiving a message (or after receiving and
processing a message), each may send the other a special acknowledgment
message.

Sending Program Receiving Program

1. SEND data message

2. RECEIVE data message

3. Process data message

4. SEND acknowledgment message
5. RECEIVE acknowledgment message

When you send transactions, the only effect of ACK=YES is to synchronize the

operations of the sending program and the program dispatcher. The sender’s wait -
is satisfied when the program dispatcher receives the transaction. The situation is /(™
the same as the first example in this section, with the program dispatcher as the U
receiving program.

You can'synchronize the operations of transaction-processing programs by sending
a transaction to acknowledge that a transaction has been received and processed.
The sending program will wait to receive the acknowledgment transaction, so
there’s no point to specifying ACK=YES on the SEND instruction.

Sending Program Program Dispatcher Receiving Program
1. SEND transaction
2. RECEIVE with
ACK=YES
3. SEND transaction
4. RECEIVE transaction

5. Process transaction

6. SEND acknowledgment
transaction

G

Communications Facility Programmer’s Guide

Sending Program Program Dispatcher Receiving Program
7. RECEIVE with

ACK=YES
8. SEND acknowledgement
transaction

9.RECEIVE

acknowledgement

transaction

Creating and Sending Log Messages

By using the:$4BSNEE utility and the SEND E or SEND L instruction, you can
build and send your own log messages just as the Communications Facility handles
its own log messages.

Creating Messages in $.SYSMSG

Sending Log Messages

If you want, you can store the text portion of your log messages in the same data
set the Communications Facility uses for its own log messages. The data set,
$*SYSMSE:, is a partitioned data set. Each member is a file that accommodates up
to 99 messages. To create a member for your messages and store your message
text, or to edit a member you’ve already created, use the EDIT command of the
$.CONFIG utility program.

Note that the Communications Facility itself uses eight file IDs: CA, CF, CP, 10,
I1, PD, PN, and SN. Give your file a name different from any of those. When you
send a log message, the default file ID is UM. You may want to name your file
UM so you can use that default. $.CONFIG creates a file, with the ID you
specified, containing 99 messages that all have UNDEFINED MESSAGE as their
text.

See the Operator’s Guide for instructions on how to use the $.CONFIG utility
program.

This section explains the instructions that allow you to send a log message, and
shows the format of the delivered message.

SEND L and SEND E Instructions

The Communications Facility includes two instructions, SEND L and SEND E,
that allow you to send a message to the Communications Facility system log.

You can specify a message identifier when you send a log message; the default is
UM. If you want the message to include text from $.SYSMSG, the identifier must
be the name of the member that contains the text.

You must specify a message number, a value from 1 to 99. The number appears in
the log message and is used to locate the message text in the $.SYSNET member.

You can specify message text in the instruction itself. If you don’t use $.SYSMSG
for your log messages, the text can be a complete message. If you do use
$.SYSMSG, the text can provide additional, variable information. You might, for
example, have text in $.SYSMSG that describes an error and append to it the name

Using the Communications Facility 19

of the station to which the error applies. The text you specify in the instruction
plus the text taken from $.SYSMSG must not exceed 48 characters. If it does, the
excess text is truncated.

Other options of SEND L and SEND E allow you to:
» Create a copy of the message in a text area.

o Put a 4-character hexadecimal code into the message. You might use this field,
for example, to display a return code.

o Specify the type code: E for error, I for information, and C for comment.
SEND E has two special type codes: X, which is used only in task error exit
routines to log special data; and D, which produces a diagnostic dump. See
“Using Task Error Exits” on page 29 and “Using Diagnostic Dumps” on page
29 for an explanation of these special cases.

The only difference between SEND L and SEND E is the default type code: I for
SEND L, and E for SEND E. A type code of C (comment) allows you to create a
copy of the message in a text area without sending it to the system log.

When your program issues a SEND L or SEND E instruction, it does not resume
execution until the log message has been delivered to the system log. If the system
log is an EDX device and the device is busy, your program waits until the device is
available. If the system log is a Communications Facility station, your program
waits until the log message has been put on that station’s message queue.

Format of the Delivered Message

20

A log message, as delivered, has this format:
phh:mm:ss idnn t code program apptext dstext

where:

p
is a 1-character prefix: * for an error message, blank for an information
message.

hh:mm:ss
is the time of day (taken from the EDX time of day clock) when the message
was logged.
idnn
is the message identifier followed by the message number.
is the type code: E for error, I for information.
code ,
is the 4-digit hexadecimal code you specified when you sent the message. 0000

means you didn’t specify a code.

program
is the name of the program that issued the message.

Communications Facility Programmer’s Guide

Managing Stations

Sending Commands

apptext
is the text you specified in the instruction.

dstext
is the text from $.SYSMSG.

The Communications Facility includes three instructions that allow you to control
stations from your program.

The SEND CP instruction allows your program to send a command, as described in
the section ‘“Sending Messages” on page 10. You might use SEND CP, for
example, to start, stop, or link a station, or to modify a station’s attributes.

Creating, Purging, Deleting, and Examining Station Blocks

Two instructions, LOCATE ST and LOCATE NA, allow you to perform various
operations on station blocks.

“LOECATPESF allows you to:

+ Obtain the address of a station’s control block. You can then examine or
change the control block contents. The control block formats are given in the
Debugging Guide.

« Create a station block. A station created in this way can’t have a disk queue
and need not be defined in $.SYSNET. Normally, you would use this option
only to create a message station for temporary use within your program or to
create a station block for your program when it is started by an EDX $L
command rather than by a CP Start command.

If you use LOCATE ST to create a station block, you’re responsible for
deleting that station block and thus freeing the space it occupies.

» Delete a station. This option deletes a station block if the station has no
storage-queued messages.

o Purge a station. This option removes all storage-queued messages from a
station’s queue and deletes its station block.

o Stop your program. This option removes all storage-queued messages from the
station’s queue, deletes its station block, and performs a PROGSTOP.

You should delete only stations that you manage—the one that represents your
program and those that you create. If you delete stations managed by I/O control
programs or other parts of the Communications Facility, the results are
unpredictable.

E@CATEN:A instruction returns the address of a station’s control block,
given the network address of the station. LOCATE NA has no other options.

Using the Communications Facility 21

Creating and Retrieving 3270 Data Streams

Creating 3270 Data Streams

22

The language extension instructions include 13 PUT instructions and two GET ()
instructions to help you in creating and retrieving 3270 data streams. Information

about 3270 data streams and their contents is in the 3270 Description and

Programmer’s Guide.

The 13 PUT instructions move data, plus 3270 commands, orders, and control
information, from an EDX text area to a Communications Facility buffer. The
PUT instructions use the BECOUNT and B$DATA@ fields of the buffer header to
keep track of the next available buffer location. Thus you can use multiple PUT
instructions to construct a 3270 data stream field by field.

The PUT F instruction moves data or control information from a text area to a
buffer. You can use PUT F to move any sort of data—not necessarily a 3270 data
stream—to a buffer. When you use PUT F, you must specify where the data is and
the buffer to which it is to be moved. You may, optionally, specify that the field is
to be the first or the last in the buffer.

When you use PUT F to move 3270 field data, you must specify where the data is
to be displayed on the output device; you may, optionally, specify a field attribute
character and put a TAB order into the buffer following the data.

The remaining 12 PUT instructions move 3270 commands, orders, and BSC

control information from a text area to a buffer. You could use PUT F to move

data of this sort, but, because the data is non-character, it is easier to use the other -
PUT instructions. AN

They are:

PUT AID—Moves a 3270 read header to the start of the buffer. You supply the
attention ID value and, optionally, a cursor position.

PUT CO—Moves a 3270 write command sequence to the start of the buffer. The
data includes a WRITE command and a write control character that resets modified
data tags and unlocks the keyboard. At your option, you can change the command
to an ERASE WRITE or an ERASE/WRITE ALTERNATE, and you can change
the write control character.

PUT CURS—Appends a 3270 insert cursor order to the data stream, with the
cursor address you specify.

PUT DLEETB—Appends a DLE and an ETB to the data stream, indicating the
end of a block of transparent data.

PUT DLEETX—Appends a DLE and an ETX to the data stream, indicating the
end of transparent text.

PUT DLESTX—Moves a DLE and an STX to the start of the buffer, indicating
the start of transparent text.

PUT ERA—Appends a 3270 erase unprotected to address order to the data
stream, with the stop address you specify. ‘ .ﬁ

Communications Facility Programmer’s Guide

PUT ETB—Appends an ETB to the data stream, indicating the end of a block of
text.

PUT ETX—Appends an ETX to the data stream, indicating the end of text.

PUT NUL—Appends a 3270 set buffer address order to the data stream, with the
address you specify.

PUT REP—Appends a 3270 repeat to address order to the data stream, with the
repeat character and stop address you specify.

- PUT STX—Moves an STX to the start of the buffer, indicating the start of text.
Retrieving 3270 Data Streams

The GET F instruction moves data from a Communications Facility buffer to an
EDX text area. The maximum amount of data you can move depends on the size
of the text area. After the move, you can find the number of bytes moved in the
text area header.

By combining various operands of GET F, you can achieve four different kinds of
retrieval: get sequential, get sequential by delimiter, get specific 3270 field, and get
sequential 3270 field. For sequential retrievals, the GET F instruction uses the
BSDATAQ@ field of the buffer header to keep track of the current buffer position.

Get Sequential: This form of retrieval gets the next field, starting at the current
buffer position and retrieving the number of bytes indicated by your text area
header. At completion, BSDATA@ points to the byte following the last one
moved. You achieve this kind of retrieval by coding only the fext and buffer
operands. You can use this form of retrieval to retrieve any kind of data—not
necessarily from a 3270 data stream.

Get Sequential by Delimiter: This form of retrieval moves the next field, from the
current buffer position to a delimiter that you specify in the COMPARE= operand.
At completion, BSDATA@ points to the byte following the delimiter. You can use
this form of retrieval to retrieve any kind of data—not necessarily from a 3270
data stream.

Get Specific 3270 Field: This form of retrieval moves a field, whose screen
position you specify, from a 3270 data stream. The Communications Facility
searches the buffer for a set buffer address (SBA) order for the specified position.
All data from that SBA to the next SBA, ETX, or ETB is moved. If you want, you
can also specify that the field’s attribute character be moved. You can intermix this
form of retrieval with sequential retrievals; it does not affect BEDATA@.

Get Sequential 3270 Field: This form of retrieval moves the next field, as delimited
by an SBA order, from a 3270 data stream. It also returns the field’s screen
position to you. If you want, you can also specify that the field’s attribute
character be moved. If the first field does not begin with an SBA order, its screen
position is assumed to be zero (row 1, column 1).

The GET Al instruction retrieves the attention ID (AID) byte from a 3270 data
stream. You can also use this instruction to get the cursor address or to verify the
cursor’s location. It is assumed that the data stream is the result of a 3270 read
command.

Using the Communications Facility =~ 23

Moving Data

The &#&¥ instruction moves data from one storage location to another. You can (w’b
use language extension symbolic addresses, indexed operands, and indirect
operands for the data addresses and length.

The GET F instruction, described in “Retrieving 3270 Data Streams” on page 23,
moves data from a Communications Facility buffer to an EDX text area. The
buffer data doesn’t have to be a 3270 data stream.

The PUT F instruction, described in “Creating 3270 Data Streams” on page 22,
moves data from an EDX text area to a Communications Facility buffer. The
buffer data doesn’t have to be a 3270 data stream.

Locating System Facilities

The GEE;Ayinstruction allows you to get the addresses of various system control
. blocks and tables.

By using GET A, you can get the addresses of these system facilities:

Task control block

Terminal control block

The buffer within the terminal control block

Current station block

System storage pool (S$POOL)

System queue control block

EDX system common area ($SYSCOM) '
Language extension command table ~ “>

Some Communications Facility programs refer to other system facilities by their
negative displacement from the command table. These facilities are defined in
module S$CSXSYS.

Managing Tasks

Activating and Deactivating Tasks

If you’re writing an I/O control program with a reentrant task that controls
multiple devices, you can use the ACTIVATE T instruction to activate and
deactivate tasks. (You can’t use EDX instructions ATTACH and DETACH to do
this, because the task isn’t defined by a TASK statement.) Options of ACTIVATE
T allow you to attach and chain, unchain, or detach and unchain a task.

Creating Task Control Blocks ;

If you’re writing an I/O control program with a re-entrant task that controls
multiple devices, you need a task control block (TCB) for each station that
represents one of the devices. The TCB can be within the station block in the
system storage pool (S$POOL) or it can be in the I/O control program’s storage.
When the TCB is within the station block, it is created when the station is started.

You can use the PUT TCB instruction to create a TCB that is separate from, but

associated with, a station. You specify the address of the station block and the

address of a 130-byte area to contain the TCB. The PUT TCB instruction @
initializes the first 128 bytes of the area as a TCB, assigning a task priority

24 Communications Facility Programmer’s Guide

O

according to the station type. The priority is 100 (level 2, priority 100) for a line
station and 355 (level 3, priority 100) for any other type of station. The PUT TCB
instruction places the address of the station block in the word following the TCB,
and it places the address and address key of the TCB in the station block (in fields
Q$TCB@ and Q$TCBADS).

A station that is associated with a TCB must have a station block long enough to
contain the TCB address and address key. The location of these fields is defined in
the Communications Facility system equates, SSCFEQU.

You can also use the PUT TCB instruction to create a TCB that is not associated
with a station. You might do this, for example, when you need more than one task
for a station. You specify the address of a 128-byte area to contain the TCB, and
optionally, the task level and priority. The default level is 2, and the default
priority is 150. When you omit the station specification, the PUT TCB instruction
just initializes the 128-byte area as a TCB.

When you create a TCB that is not associated with a station, you can make the
association yourself by placing the address of a station block in the word following
the TCB. If you do this, you can use symbolic address #L. and operand #LINE of
the GET A instruction to address that station when the TCB is active.

Creating and Managing Queues

The Communications Facility uses three instructions—DEFINE @, GEF.-Q,xand

PUT'Q--to create and manage its queues of messages. While these instructions

are intended primarily for internal system use, they are available to you if you have
a use for them.

DEFINE Q creates a 2-word queue control block (QCB). The first word contains
the address of the first element in the queue, and the second word contains the
address of the last element in the queue. Note that a Communications Facility
QCSB is different from an EDX QCB. An EDX QCB is a 5-word control block
used to control access to a resource that can be used by only one task at a time.

GET Q gets an element from the queue. You can retrieve the first element in the
queue, retrieve the first element of a specified priority, or remove an element from
a queue.

PUT Q puts an element into the queue. The first 5 bytes of the queue element

consist of the address of the next element in the queue (2 bytes), the address of the
previous element in the queue (2 bytes), and the element’s priority (1 byte).

Using the Communications Facility 25

26

Communications Facility Programmer’s Guide

N
N

Writing Communications Facility Programs

This chapter covers general programming topics that will be of interest no matter
what type of program you’re writing.

Copying the Communications Facility Equates

The Communications Facility equate table, SSCFEQU, contains equates for all the

fields of the various station blocks, the buffer header, and the message header. If

you want to be able to refer to any of those fields by name, include the statement
PYSSCEFE@Wain your program.

Loading Your Program

Your program may be loaded in any of five ways:

+ Through entry of a CP S (start) command that designates a user station
defined in $.SYSNET that has the same name as your program.

« Through a transaction, if your program is defined to the program dispatcher as
the program that services that transaction.

+ Through the EDX $L command.
o Through a LOAD instruction issued by a user program.
o Through the $DEBUG program.

dp A CP S command creates a station block with the same name as your program. A
transaction also creates a station block if you have defined the transaction
appropriately. (The chapter “Creating a Transaction” on page 67 explains how to
do that.)

iy If you use $L, SDEBUG, or a LOAD instruction to load your program, your
program must include a setup routine that creates a station block for the program,

gives the station a network address, and sets its status word to active.

The instructions to accomplish these steps, from a program named PROGA, are:

LOCATE ST, #1,0PTION=CREATE FIND OR CREATE STATION BLOCK
IF (PROGA, EQ, -2) STATION BLOCK CREATED
MOVE (Q$NAU,#1),X"018A" SET NETWORK ADDRESS
ENDIF
IOR (Q$STAT, #1) , +QH#ACTIVE FLAG STATION ACTIVE

Verifying that a Partition is Mapped

The common area, which contains support for Communications Facility
instructions, may not be mapped into all partitions. If a Communications Facility
program is loaded into an unmapped partition, it will program check the first time a
Communications Facility instruction is executed. (The program check PSW has a
value of 0802 indicating an invalid function.)

Because of this restriction, the CP Start command processor and the program
dispatcher will not load a Communications Facility program into an unmapped
partition. If you load your program with an EDX $I. command or LOAD
instruction, and if your system has unmapped partitions, you may want to include

Writing Communications Facility Programs 27

Terminating Your Program

28

code to verify that its partition is mapped. If your program loads another program,
it should check before loading the secondary program. In either case, if the test
fails, the program can terminate before executing any Communications Facility @
instructions.

Communications Facility initialization records partition mapping in a word in

module CSXSYS, which resides in the common area. The address of the mapping

word is in the EDX communications vector table, at label §CFPARM. (The label is

defined in EDX copy code PROGEQU.)

This word is actually a bit map of the partitions: bits 0-7 correspond to partitions
1-8 and, therefore, to address keys 0-7. Bit value 0 means that the partition is
mapped; 1 means that the partition is unmapped or doesn’t exist. The second byte
of the word (bits 8-15) is always set to X‘00’. For example, a mapping word value
of X‘0300’ means that partitions 1-6 are mapped.

The following instructions check whether or not the partition in which they execute
is mapped:

COPY PROGEQU CVT EQUATES
COPY TCBEQU TCB EQUATES
BITO EQU 1 LEFTMOST BIT
SHIFTCT DATA F'O' ADDRESS KEY
MAP DATA F'O' MAPPING WORD
[]
[]
MOVE #1,$CFPARM,FKEY=0 GET MAPPING WORD ADDR
IF (#1,EQ,0) ,GOTO,QUIT NO CSXSYS
MOVE MAP, (0,#1) ,FKEY=0 GET MAPPING WORD
TCBGET SHIFTCT, $TCBADS GET ADDRESS KEY
SHIFTL MAP,SHIFTCT SHIFT PARTITION BIT TO O A ™
IF (MAP,ON,+BITO) ,GOTO,QUIT PARTITION NOT MAPPED W
. y
[]
QUIT EQU * TERMINATE PROGRAM

Your program is required to terminate when a CP P (stop) or CP H (halt)
command designating your program is issued. If your program is a
transaction-processing program managed by the program dispatcher, it is also
expected to stop when the program dispatcher tells it to. The reasons the program
dispatcher tells transaction-processing programs to stop are explained in “Creating
a Transaction” on page 67.

Whatever its source, a request to stop or halt is sent to your program as a status
message. You receive a status message, as you do any other message, with a
RECEIVE M or RECEIVE T instruction. A return code of +6 indicates that the
message is a status message. '

Your program will receive no status message other than a stop request unless it
communicates with circuit stations. In that case, you’ll need to distinguish a status
message that tells your program to stop from one that contains X.25 control
information by its content. A stop request is a 2-byte message—either P or H,
followed by a blank.

oy

U

Communications Facility Programmer’s Guide

By the time you receive a status message that is the result of a CP P or CP H
command, your program’s station block has been flagged inactive and its disk
queue, if any, has been closed. As a result, no more data or transaction messages
will be placed on your station’s message queue, and you can’t receive any messages
that are queued on disk.

In your termination routine, you may process any messages still queued in storage.
Then you must delete your station block and terminate execution. You can do this
by issuing the LOCATE ST instruction with OPTION=PROGSTOP. If you issue
an EDL PROGSTOP instruction, be sure to specify LOGMSG=NO.

Using Task Error Exits

It is recommended that you provide a task error exit routine that gains control if
your program fails. The purpose of the task error exit is to log error information
and terminate the failing program with minimal impact on the rest of the system.
You can use $$EDXIT, the task error exit routine supplied with EDX, which is
described in the EDL Programming Guide. You can also code your own task error
exit routine, as explained in the EDX Customization Guide.

If you code your own task error exit routine, you can use a special form of the
SEND E instruction to log the hardware status information on the Communications
Facility system log by:

SEND E,82[,taskname] ,ID=C'CF',
TYPE=X,XCODE=teehsa*

The message number must be 82; the message ID must be CF; and the message
type must be X. Operand XCODE must be an indirect reference to the last word
of your task error exit control block, the word that contains the address of your
hardware status area.

You don’t need to specify taskname for a main task (one defined by a PROGRAM
statement). If the exit routine is for a subtask defined by a TASK statement,
specify its name. If the exit routine is for a subtask started by an ACTIVATE T
instruction, specify the associated station name as the task name.

When the SEND E instruction is executed, this information is logged to the
Communications Facility system log:

*hh:mm:ss CF81 E plp? program PROGRAM OR MACHINE CHECK

PSW IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

hh:mm:ss CF82 I 0000 program [task] EXECUTION TERMINATED
Using Diagnostic Dumps

During testing of a program, you may want to print the contents of some area of
storage to see if the program is running correctly. To log diagnostic dumps on the
Communications Facility system log, use a SEND ERROR instruction with
TYPE=D, so:

SEND ERROR,dump-length, 'dump-header', XCODE=dump-loc, TYPE=D

2 program load point

Writing Communications Facility Programs 29

Using Station Blocks

The dump-length is the number of 16-byte units (1 to 255) to be dumped. The
dump-header is whatever text you want to identify the dump data. XCODE is the
address of the area to be dumped. @

Assuming DUMPLOC contains 2CA4, this request:

SEND ERROR, 3, 'STORAGE DUMP',XCODE=DUMPLOC#* , TYPE=D

will produce this result on the system log:

hh:mm:ss CF84 D plp program STORAGE DUMP
2CA4 XXXX XXXX XXXX XXXX...
2CB4 XXXX XXXX XXXX XXXX...
2CC4 XXXX XXXX XXXX XXXX..

Figure 6 on page 31 shows the format of a user or message station block, the types
you’re most likely to use with your application programs.

The labeled fields are used by the Communications Facility for the following
information:

QS$NIQ The address of the next station block in SSPOOL.
QSPIQ The address of the previous station block in SSPOOL.
QS$TYPE The station type; X‘02’ for a user station; X‘0C’ for a message
station.
N
QS$STYPE The station subtype; X‘00’. N
QS$STAT The station’s status (16 bits):
0123 4567 89AB CDEF
Xeee ¢ =vve <o.. 1 = Station active
XXX XXXX Not used
veee seee Xeee ve.. 1 = Waiting for acknowledgment of SEND
XXX Not used
... X... 1 = Input from station prohibited
.X.. 1 = Output to station held
..XX Not used
QS$DLV The network address of the station’s direct link.
Q$NAU The station’s network address.
QSTCF The text count field for the station name and disk queue flags.
Q$NAME The station name.
QSFIQ The address of the first storage-queued message for the station.
QS$LIQ The address of the last storage-queued message for the station.
Q$DQA The address of the file control block, if the station has a disk queue.
QS$ECB An EDX event control block, posted when a message is sent to the @
station.

30 Communications Facility Programmer’s Guide

DEC HEX

0 0 | Q$NIQ [Q$PIQ |
4 4| QSTYPE | Q$STYPE | o$sTAT |
I osoLv | osnaU |
2 c1 gsTcr 1 osNaME |
16 10 T ___________________ -I
20 14 T 7——___—_—___-——__—_—]
24 180
28 1c T___--——__-_—___—_-_|—~—___———___——____-_I
32 20 I---______________—_I___—___—__-_________I
% 241 osF10 | osto |
s0 281 o$DOR
s 20 o$EcB |
a8 301 o QSWORK |
s2 34 $ALV | osMsRC |
s 38 os1sN |
s 31 gsosw
64 w01 ostenr |
68 a4 gsocyr |
72 s o$ACKECE |
76 4c T T_—____—-_—__———____-I-

Figure 6. User or Message Station Block

Q$SWORK The address of the station’s work area, if you used the LOCATE ST
instruction to create the station and specified a work area.

QS$ALV The network address of the station’s alternate link.

Q$SMSRC A message address or disk flag used by RECEIVE instructions.

QS$ISN The number of messages sent with this station as the origin.
Q$OSN The number of messages received from the station’s queue.
QSICNT The number of characters sent with this station as the origin.
Q$OCNT The number of characters received from the station’s queue.

Writing Communications Facility Programs 31

QSACKECB An EDX event control block used to acknowledge receipt of
messages sent with this station as the origin.

You can use the rest of a user or message station block, including the unused bits in
Q$STAT, however you want.

If you need to know the format of other types of station blocks, see the Debugging
Guide.

Using Message Stations

You can create a message station and use its message queue for any purpose you
choose. You might, for example, create a message station if you have a program
(program A) creating messages and storing them on disk to be processed later by
another program (program B).

The requirements for such a setup are:
« The message station must be defined in $.SYSNET as having a disk queue.

¢ Program A issues a CP S command to start the message station, sends priority
127 (disk-queued) messages to it, issues a CP P command to stop the message
station, and deletes the message station’s station block.

¢ Program B issues a CP S command to start the message station, receives the
messages program A put on the queue, issues a CP P command to stop the
message station, and deletes the message station’s station block.

It would also be possible to have programs A and B running simultaneously. That
setup would impose these additional requirements:

+ Program A would have to have some means of knowing whether program B is
running so it would not stop the station if program B was running. You might,
for example, have program B set a bit in the station status word when it begins
execution.

¢ Program B needs to know when to stop. You could handle this requirement by
having program A send a special-format “last” message.

If you use message stations, you should be aware that they differ from other types
of stations in these ways:

» Messages can be sent to a stopped message station. You have to delete a
message station to prevent messages from being sent to it.

« You can’t wait for acknowledgment that a message sent to a message station
has been received. The wait is satisfied as soon as the message has been put on
the station’s queue.

« When you use a LOCATE ST instruction to create a message station (as
opposed to defining it in $.SYSNET and starting it), the station is treated as a

local station, even though the node assignment in its network address is that of
a remote node.

32 Communications Facility Programmer’s Guide

Using the Alternate Link

O

The program dispatcher uses a station’s alternate link to handle transactions that it
is unable to route. The X.25 IOCP uses the alternate link to send X.25 control
messages. If your program communicates with stations whose alternate link is not
used for one of these purposes, you can use the alternate link however you want.

Assume, for example, that your program communicates with operators at 3270
terminals or at Series/1 terminals managed as 3277s. The terminal stations are
linked to your program, so it receives all input from the operators. Your program
processes some of the input and sends some of it on to a host program. The
alternate link of each terminal station could be a station that provides a connection
to the host program—an emulated 3277 terminal, an emulated channel attach port,
or an SNA logical unit.

If the instruction that receives a message from a terminal is:

RECEIVE M,BUFFER,ORIGIN=USERTERM

then the instructions to send a message on to the host program are:

LOCATE ST,#1,USERTERM
LOCATE NA,#2, (Q$ALV, #1) ,EXIT=NOLINK
SEND M, (Q$NAME, #2) ,BUFFER, ORIGIN=USERTERM

The RECEIVE instruction places the name of the originating station in the
USERTERM field. The first LOCATE instruction finds the station block with that
name and returns its address in register 1. Field Q$ALYV is the alternate link
vector—the network address of the alternate link. The second LOCATE
instruction finds the station block with that network address and returns its address
in register 2. If it doesn’t find the station block, control passes to the instruction
labeled NOLINK. The destination in the SEND instruction is the name from the
alternate link’s station block.

Communicating with 3270-Type Terminals

‘e

When you write a program that communicates with 3270-type stations, you must
understand the data format requirements of the I/O control programs that manage
the stations. This section describes those requirements for these types of stations:

e 3270 terminals attached to the Series/1 by a BSC line.

« 3101, 4978, 4980, 7485, and printer devices managed as if they were 3270
terminals.

» Stations used to communicate with host systems over a BSC line (3270
emulation terminals), a channel attachment (port terminals), or an SNA
connection (SNA logical units, types 2 and 3). The term “emulated terminal
station,” as used in this section, means any of these types of stations.

Note that the term does not include SNA type 1 logical units. These stations
receive SNA character string data, not 3270 data streams, from the host.

The 1I/0 control program that manages 3270 terminals can also be used for

communication between Series/1s. Communication is from 3270 control terminal
stations in one Series/1 to 3270 emulation terminal stations in another Series/1.

Writing Communications Facility Programs 33

BSC Control Characters

3270 Data Streams

The I/0 control programs expect a message sent to a 327 O-type tation to begin (J)
with the BSC control character SFRs(0&02?, start text) or B (2410022, p
start transparent text). If it doesn’t, the I/O control program appends control

information to the beginning of the message, as described under ‘“Unformatted

Messages™ on page 35.

The 1/0 control programs check that a message sent to a 3270-type station ends
with amBiENG @#032, end text) or andBfEB @&262, end transmission block). If the
last character of the message is neither of these, the I/O control program appends
an ETX; if the last character is an ETB, the I/O control program replaces it with
an ETX.

The SNA and channel attach I/O control programs remove BSC information from
a message before they send it to the host. They append BSC information to data
received from the host. This means that messages you exchange with an emulated
terminal station have the same data format, regardless of the station type.

When you communicate with real terminals (including 3270 control terminal
stations used for communication between Series/ 1s), you send output data streams
to the terminals and receive input data streams from them. When you
communicate with a host system through an emulated terminal station, the
direction is reversed because the Series/1 appears to the host as if it were a 3270
system. You send input data streams to emulated terminal stations and receive
output data streams from them.

An wutputidata:stream, including BSC control characters, looks like this:

[sTx |ESC |cma

[wce | orders and data ETX

ESC
is the BSC escape control character (X‘27°).

cmd
is a 3270 command.

wee
is a 3270 write control character.

34 Communications Facility Programmer’s Guide

O

C

An inputsdasastremmpincluding BSC control characters, looks like this:

ETX | cuda

| AID Eursor I orders and data | ETX J

Unformatted Messages

Transparent-Text Mode

cuda
is the terminal’s control-unit/device-address. When you create an input data
stream to be sent to an emulated terminal station, put two blanks here; the I/O
control program fills in the actual cuda for the terminal.

AID
is the 3270 attention identifier.

cursor
is the 2-byte cursor address.

Not all 3270 data streams are exactly as shown in these diagrams. An output data
stream doesn’t always have a write control character or data; it depends on the
particular 3270 command. An input data stream doesn’t always include the cursor
address and data. For detailed information about 3270 data streams, see the 3270
Description and Programmer’s Guide.

When you send a message that does not begin with STX or DLE/STX, the 1/O
control program assumes that the message is not a 3270 data stream and appends
BSC and 3270 control information to the message. Therefore, you must either
provide a complete BSC/3270 data stream or omit all the leading control
information. The exact data appended by each 1/0 control program is shown in
the Design and Installation Guide.

Transparent-text mode is used to send messages that contain binary data (any
value from X‘00’ to X‘FF’), rather than character data. A transparent message
may, for example, be a storage dump or an object program.

A transparent message must begin with DLE/STX (start transparent text). You
should end the message with an ETX, rather then letting the I/O control program
append one, because the I/0 control program always deletes an ETX from the end
of a transparent message before sending it to the terminal or host. If the last data
byte of the message should happen to be X‘03’, the I/O control program will
assume it is an ETX and delete it. If the last data byte is X‘26’, the I/O control
program will assume it is an ETB, replace it with an ETX, and then delete it. If
you provide the ETX, the message is sent correctly, no matter what the last data
byte is.

There are some device dependencies for transparent messages. You can’t send
transparent messages to a 3270 terminal attached to a 3271 control unit; the
control unit ignores transparent messages. You may or may not be able to send
transparent messages to a host system over a BSC line; check with the host system
programmer to find out whether transparency is supported. You can send
transparent messages to a host system through a channel attachment or SNA
connection.

The 3270 control and emulation I/0 control programs both accept transparent

data from the BSC line, but delete the initial DLE (X‘10’) before sending the

4

Writing Communications Facility Programs 35

Host Considerations

SNA Considerations

message on. Don’t send transparent messages between Series/ 1s that are

connected by 3270 control and emulation unless the messages are transactions

routed by the program dispatcher; it ensures transparency of messages. You can @
always send transparent messages between Series/1s connected by a Local

Communications Controller, an HDLC line, or a Series/1-to-Series/1 BSC line.

Messages sent to an emulated terminal station by a host system must be 3270 data
streams, just as if they were being sent to a real 3270 system. At a minimum, the
message data must be preceded by a 3270 command sequence; for example, a 3270
write command and write control character. Not all 3270 commands are accepted
by I/O control programs. The Design and Installation Guide shows the restrictions
for each 1/0 control program.

If the message is sent over a BSC line, it must begin with STX/ESC (start text,
escape) and end with an ETX.

Host systems can send transparent messages (binary data) to a Series/1.
Transparent mode from the host is controlled by host access methods or
programming techniques; consult the documentation of the host system you’re
using. Note that after a transparent message has been received at the Series/1, it
can no longer be identified as transparent. If it was received from a BSC line, the
I/0 control program drops the initial DLE (X‘10’, data link escape) before sending
the message on. If it was received from a channel attachment or SNA connection,
it never had a DLE. The program that receives the message must know that it is
receiving binary data.

If you write programs that communicate with an SNA host system, you must "
understand what an SNA session is and the bracket protocol on sessions. To begin
communication with the host, a session must be established. You can do this by
specifying a logon ID when you define SNA logical unit stations to the
Communications Facility; the I/O control program establishes the session when the
logical unit is started. ‘

If you don’t specify a logon ID, you will receive the SNA logon prompt screen
when you start communication with an SNA logical unit, and you must create a
3270 data stream with the appropriate fields to reply to it. The Design and
Installation Guide shows the format of the SNA logon prompt screen.

SNA LU?2 half-duplex protocol prohibits you from sending data to the host until
the host program has sent an indication that you may. You receive this indication
as a 3270 data stream in which the write control character has the keyboard restore
bit (bit 6) on. If you send a message while the host application has the right to
send, the message is discarded.

One way to control the session protocol is to use the attention feature to signal the
host application that you want to send. To do this, you send a 3270 test-request
data stream to your LU after the I/O control program is started. The test-request
data stream has the following format:

X‘016C61’, followed by ETX or STX-data-ETX

36 Communications Facility Programmer’s Guide

C

A second way to control the session isolates your program from half-duplex
protocol. Use the CP F command to set the I/O control program station into
non-remove mode. (All LUs will operate in non-remove mode, which may affect
the operation of terminals using SNA.)

In non-remove mode, messages received while the host has the right to send are not
discarded; they are queued on the Series/1, the host is signaled that the Series/1
wishes to send, and the messages are sent when the Series/1 again has the right to
send. You must use the CP F command each time you start the I/O control
program station, because it resets the mode to remove—the normal SNA LU2
mode—each time it starts.

When you communicate in non-remove mode, both your program and the host
program must be aware of it, because data sent to the host may not be a response
to the last message sent to the Series/1.

Host Subsystem Considerations

The subsystem (such as CICS) that is used to implement a host application may use
special protocol. For example, the subsystem may send your program 3270 screen
images. You must include code to handle them and to send the required response.
Consult your host subsystem programmer for guidance.

Intercepting Messages from an I/O Control Program

If you want, you can set up an application program that intercepts all the messages
that an I/0O control program sends into the system from the stations it controls.
You may want to do this, for example, to provide an audit trail of messages by
writing the messages to a disk data set before sending them on to their destination.

You can intercept messages from any I/O control program except $.I00A10. To
intercept messages, you must link the I/O control program to your program’s
station:

CP LINK $.I0xxxx userprog

Because of the link, the I/O control program sends each message to your program
instead of to the station to which the origin station is linked.

You must handle the messages you receive from the Local Communications
Controller IOCP ($.I00ABO0) and the X.25 IOCP ($.I00AB8) differently from
those you receive from other IOCPs.

Intercepting Messages from $.100AB0

When you receive a message from $.JI00ABO, the first 20 bytes are bytes 4-23 of
the message header (all of the header except fields M§NIQ and M$PIQ); the
message data begins at the 21st byte.

Writing Communications Facility Programs 37

After processing the message, your program might send it on to its destination. To
do so, you have to move the message header to a 24-byte area, modify the buffer
header to address the message data, and use the HEADER operand of the SEND
instruction. For example:

BUFF DEFINE BUFFER, SIZE=2048,P2=BCOUNT, P3=BADDR

MHDR DATA 12A (*-%)
MPRI EQU MHDR+4
MHDRL EQU 20

RECEIVE M,BUFF

MOVE MPRI,BUFF, (+MHDRL,BYTES)
ADD BADDR , +MHDRL
SUB BCOUNT , +MHDRL

¥ PROCESS MESSAGE DATA

SEND M, ,BUFF , HEADER=MHDR
* RESET BUFFER DATA ADDRESS
SUB BADDR, +MHDRL

Intercepting Messages from $.I00AB8

38

The first 24 bytes of the messages you receive from $.IO0ABS are the
Communications Facility message header; the message data begins at the 25th

byte. You can skip past the message header by modifying the buffer header so that

B$ADDR addresses the message data and BSCOUNT contains the message length.
You must do this if you want to send a message on to its destination after you have
processed it. After modifying the buffer header, issue a SEND M instruction with
a HEADER= operand that addresses the message header at the start of the buffer.
This causes the message to be dispatched to the destination station specified in the
message header.

You may receive three kinds of messages from $.I00ABS8. Their type and format
vary depending on the usage attribute of the origin circuit station:

» Data messages from circuit stations with usage CF.

« Data messages that begin with an X.25 header from circuit stations with usage
STD or STD+.

» X.25 control messages that begin with an X.25 header from circuit stations
with usage STD+.

$.I00ABS sends both forms of data messages as Communications Facility data
messages; your receive instruction completes with return code -1. $.IO0ABS sends
the X.25 control messages as Communications Facility status messages; your
receive instruction completes with return code +6.

If you have both CF and STD or STD+ circuit stations, you may want to know
whether a data message begins with an X.25 header. If so, use the origin network
address in the message header to locate the origin station and determine its usage.
The first byte of an X.25 header contains the length of the header. You can use
the length to skip past the X.25 header to the message data.

Communications Facility Programmer’s Guide

™
S

You can skip past the X.25 header in control messages too. You probably won’t
want to do this, because the header includes the control message type. If you need
information about X.25 control messages, see “Writing an X.25 Application
Program” on page 107.

The following example shows how to receive all three forms of messages from
$.IO00ABS, distinguish between them, and send them on to their destination.

BUFF
USAGE
HDRLEN
LOCALHDR

STOP
HALT
RCODE
RCDATA
RCSTAT

COPY

DEFINE BUFFER,SIZE=256 INPUT BUFFER
DATA F'0' CIRCUIT USAGE
DATA F'0' X.25 HEADER LENGTH
DATA 12F'0" LOCAL MSG HEADER
DATA c'p ! CP P ISSUED FOR PROGRAM
DATA C'H ' CP H ISSUED FOR PROGRAM
DATA F'0" RETURN CODE
EQU -1 DATA MSG RETURN CODE
EQU +6 STATUS MSG RETURN CODE
[]
S$CFEQU
[]
RECEIVE M,BUFF, HEADER=LOCALHDR RECEIVE MESSAGE
TCBGET RCODE, $TCBCO GET RETURN CODE
IF (RCODE, EQ, +RCDATA) IF DATA MESSAGE
LOCATE NA,#1,LOCALHDR+M$OAF, EXIT=NOORG FIND ORIGIN STATION
MOVE USAGE, (Q$USE, #1) SAVE CIRCUIT USAGE
ADD BUFF+B$ADDR , +M$HDRLN SKIP PAST MSG HEADER
SUB BUFF+B$COUNT, +M$HDRLN ADJUST LENGTH TO MATCH
MOVE #1,BUFF+B$ADDR #1 POINTS TO DATA MSG
MOVE #2, BUFF+B$COUNT #2 IS ITS LENGTH
IF (USAGE, NE, +Q#UCF) IF USAGE IS STD/STD+
MOVE HDRLEN+1, (0,#1),BYTE GET X.25 HDR LENGTH
ADD #1,HDRLEN SKIP PAST X.25 HEADER
SUB #2,HDRLEN ADJUST MESSAGE LENGTH
ENDIF
[]
. PROCESS DATA MESSAGE
[]
ELSE
IF (RCODE, EQ, +RCSTAT) IF STATUS MESSAGE
IF (BUFF,EQ,STOP, 1) ,0OR, (BUFF,EQ,HALT, 1) ,GOTO, END
ADD BUFF+B$ADDR, +M$HDRLN SKIP PAST MSG HEADER
SUB BUFF+B$COUNT, +M$HDRLN ADJUST LENGTH TO MATCH
MOVE #1, BUFF+B$ADDR #1 POINTS TO CTL MSG
MOVE #2 , BUFF+B$COUNT #2 IS ITS LENGTH
[]
. PROCESS CONTROL MESSAGE
[]
ELSE
*
. PROCESS RECEIVE ERROR
[]
ENDIF
ENDIF
SEND M, ,BUFF , HEADER=BUFF SEND MESSAGE ON
SUB BUFF+B$ADDR , +M$HDRLN . RESET BUFFER DATA ADDR

You use a SEND M instruction to send all messages on. A bit in the message
header identifies it as a Communications Facility data or status message, so the
destination will get the appropriate return code when it receives the message.

You may, if you wish, have one program that intercepts data messages from
$.I00ABS and another that intercepts control messages. To do so, define the data

Writing Communications Facility Programs 39

message intercept program as $.I00ABS8’s direct link and the control message
intercept program as its alternate link. If $. I00ABS has a direct link but no
alternate link, it sends all messages—data and control—to its direct link. @)

Intercepting Messages from Other 1/ O Control Programs

When you receive a message from an IOCP other than $.I00ABO or $.I00ABS,
you receive just the message data. Use the ORIGIN operand of the RECEIVE
instruction to get the name of the station that originated the message:

RECEIVE M,BUFFER,ORIGIN=USERTERM

Having processed the message, your program might send it on to the station to
which the origin is linked:

SEND M, ,BUFFER,ORIGIN=USERTERM

return it to the origin:

SEND M,USERTERM,BUFFER

or send it to some other station:

SEND M, 'ELSEWHER',BUFFER,ORIGIN=USERTERM
Providing a Central System Log

Each node in a Communications Facility configuration can have a system log at
which all error and informational messages issued at that node are recorded. If
your configuration consists of more than one node, you may want to have all
messages logged at a central site. (‘«)

There is a simple way to set up a central log when the nodes are connected by a
Local Communications Controller, an HDLC line, or a Series/1-to-Series/1 BSC
line. You can assign a printer at the central site to be the log device. At each
node, you would define that printer as a device station and set that station as the
system log.

There are, however, two disadvantages to this simple solution:

o Messages are logged only at the central site, not at the node where they were
issued.

o The log does not show which node a message came from.

An effective solution requires that you write two programs—one to run at the
central node and the other to run at each remote node. At each node, define the
appropriate program as a user station and add a start command for that station to
the $.SYSIPL data set.

Each program should begin by issuing a SEND CP instruction to set itself as the
system log:

SEND CP,,'SET LOG program-name’

40 Communications Facility Programmer’s Guide

O

The programs will receive formatted log messages, up to 80 bytes long. The
remote node program can use a PRINTEXT instruction to log the message locally,
if you want. It should then prefix the message with a unique node identifier and
send it to the program at the central node.

The central node program will receive these messages and its own node’s log
messages. It should prefix its own messages with its own node identifier and use a
PRINTEXT instruction to log all messages, with their node identifier, on the log
device.

Each program must terminate when it receives a status message, as described under
“Terminating Your Program” on page 28. Before doing so, it should issue a SEND
CP instruction to turn off logging. Alternatively, the central node program could
assign the log device as the system log.

It is strongly recommended that all stations that receive log messages have disk
queues. Otherwise a communication line error, for example, can quickly flood the
system message pool with error messages. Such a situation could cause a deadlock
when, for example, a remote node log program can’t send a message to the central
node program because the system message pool is full of unreceived messages.

The disk queues should be large to avoid losing log messages during periods of high
activity.

When the log messages are sent across nodes, the station to which messages for the
remote node are queued should also have a disk queue. The relevant station for
different types of connections is:

+ Local Communications Controller: The node station that represents the
remote node.

o Series/1-to-Series/1 BSC line:" The line station (subtype CPU) to which the
station that represents the remote node is linked.

« HDLC line: The circuit station (with usage CF) to which the station that
represents the remote node is linked.

o Multipoint BSC line: A 3270 emulation terminal station. Note that for this
type of connection, the remote node log program would send messages (or be
direct linked) to a 3270 emulation terminal station; in the central node, the
corresponding 3270 control terminal stations would be direct linked to the
central node log program.

Processing Undeliverable Messages

Instead of using utility program $.UT2 to process undeliverable messages, you can
write a program that receives undeliverable messages and manages the
undeliverable message station, $.WASTE. For example, you might want to notify
the operator of undeliverable messages as they occur, so the operator can correct
the problems.

Writing Communications Facility Programs 41

42

Each undeliverable message results in a pair of messages being sent to $.WASTE.
The first message of a pair contains the date, the time, and a reason code that
indicates why the message could not be delivered. Its format is:

Position Content

1-8 The date, in the form mm/dd/yy

9 A blank

10-17 The time, in the form hh:mm:ss

18 A blank .

19-22 The reason code, as documented for utility

program $.UT?2 in the Operator’s Guide.

The second message of each pair is the undeliverable message. You will probably
want to specify the HEADER operand on the instruction that receives this second
message so that you can determine the origin and destination. (You can also
receive the headers of the reason messages, but they don’t contain any useful
information.)

The Communications Facility control program operates as if there is no program
managing station $. WASTE. When the Communications Facility is shut down (by
a stop or halt command for station $.CF or $.DISP), it issues a stop command for
station $.WASTE and then purges the station block. These actions close
$.WASTE’s disk queue if it has one, or purge any storage-queued messages if it
doesn’t. As a result, your program doesn’t have a chance to process pending
undeliverable messages. If this is not acceptable, you can manage shutdown
differently by coordinating your operational procedures with the design of your
program.

One solution is to have the operator wait until there are no pending undeliverable
messages before shutting down the Communications Facility. First, use the CP Q *
command to determine whether messages are pending. The FIQ field is 0000 when
there are no storage-queued messages; the DISK MSG field is NO when there are
no disk-queued messages. If you use this approach, define $. WASTE as a user
station and name your program $.WASTE. Give the program a high priority so
that it will receive the status message that results from the. stop command before its
station block is purged. When the program receives the status message, it need
only terminate execution.

An alternative solution, when $.WASTE has no disk queue, is to have the operator
stop $.WASTE before shutting down the Communications Facility. Define
$.WASTE as a user station and name your program $.WASTE. When the program
receives the status message that tells it to stop, it can process pending
storage-queued messages, issue a log message to notify the operator that processing
of undeliverable messages is completed, purge the $.WASTE station block, and
terminate execution.

The last solution won’t work when $.WASTE has a disk queue, because the stop
command closes the disk queue. In this case, define $. WASTE as a message
station, give your program some other name (for example, WASTEPGM), and
define it as a user station. Have the operator stop WASTEPGM instead of
$.WASTE before shutting down the Communications Facility. The program has to
receive a status message from its own queue and undeliverable messages from the
$.WASTE queue.

Communications Facility Programmer’s Guide

U

C

You might write the program as two tasks. The main task should attach a subtask
and then wait to receive the status message that tells it to stop. When it does, the
main task should wait for the subtask to finish and then issue a log message, purge
the $.WASTE and WASTEPGM station blocks, and terminate execution. The
subtask should receive and process messages from $.WASTE’s queue until there
are no more messages, and station WASTEPGM has been stopped (bit 0 of
QS$STAT in the station block is 0).

Writing Communications Facility Programs 43

44

Communications Facility Programmer’s Guide

-

Creating and Managing 3270 Panels

The Communications Facility includes an interactive utility program, $.PANEL,
which you can use to design panels that are to be displayed as part of
Communications Facility applications. Aspanel.is a screen image for a
Communications Facility terminal, either a 3270 display station or a 3101, 4978,
4980, or 7485 terminal being managed as if it were a 3277. The Communications
Facility also includes a subroutine, SSGETPNL, which you can use in your
program to fetch the panels you created through $.PANEL. You can use the
language extension GET and PUT instructions with the panel fetch subroutine to
append variable data to panels and to retrieve the input entered by the user of your
program.

You can get a printed description of a panel when you create it. You can also use
the utility program $.PNLUT1 to print descriptions of panels.

Using $.PANEL to Design Panels

O Terminal Considerations

$.PANEL Output

O

$.PANEL is itself a Communications Facility application program that can
communicate with multiple users. The maximum number of concurrent users
depends on the amount of dynamic storage defined in the PROGRAM statement.
The program is distributed with 512 bytes of dynamic storage, which allows four
concurrent users (each active user requires 116 bytes). You can use the SS
command of the EDX utility $DISKUT?2 to change the amount of dynamic storage.

You must define $.PANEL to the Communications Facility as a user station, with
station name $.PANEL.

You can use $.PANEL at any Communications Facility terminal: 3101, 4978,
4980, 7485, or 3270 display station. The terminal may be in the same node as
$.PANEL or in a remote node. The target terminal (the one at which the panel is
displayed) may be of the same or a different type. When creating any panel, you
can specify any 3270 function supported by $.PANEL,; but you should keep in
mind that the type of target terminal may affect what is actually displayed when the
panel is used. For example, you can define the intensity of a field as normal,
bright, or nondisplay. On the 7485, the field is displayed in the intensity you have
defined. Since a 3101 terminal has only one level of intensity, normal and bright
fields appear the same. On a 4978, unprotected fields (those in which the
application user can enter data) display at bright intensity and protected fields
(those in which the application user can’t enter data) display at normal intensity;
therefore, the protected/unprotected attribute of a field overrides its normal/bright
attribute.

The Design and Installation Guide describes the 3270 functions that are emulated
by the 3101, 4978, 4980, and the 7485 1/0 control programs. If you need more
information about 3270 concepts and functions, see the 3270 Description and
Programmer’s Guide.

The output of $.PANEL is a member of a partitioned data set. The data sets used
for $.PANEL output must be allocated and initialized using the EDX utilities
$DISKUT1 and $DIUTIL. $.PANEL allocates the members; each member

Creating and Managing 3270 Panels 45

Changing Member Size

Overview of Panel Design

requires nine records. A member contains a 3270 data stream and, optionally, a
field table. The 3270 data stream, when sent to a Communications Facility
terminal, displays the defined panel. The field table contains, for each field
specified by the panel’s designer, the field’s screen location, length, and type. You
can use this information in your application programs to simplify the use of PUT F
and GET F instructions when the panel is processed.

If you’re defining panels with many fields, nine records may not be enough. In that
case, you will get an error message, “PANEL EXCEEDS MEMBER SIZE” or
“TOO MANY NON-STANDARD FIELDS”. You can increase the size of the
member that $. PANEL allocates for new panels. This has no effect on the size of
existing smaller panels, but you can still use $.PANEL to process them.

Each record you add will allow for 64 more nonstandard fields.

To change the number of records, change the following instructions in the modules
S$SPANEL and S$PNLPRT:

Module Label Operand

S$PANEL BUFF1 SIZE=n x 2563
S$PANEL BUFF2 SIZE=n x 256
S$PANEL PH#REC n

S$PNLPRT BUFF SIZE=n x 256
S$PNLPRT BUFFL n x 256

Assemble the modules and build load modules $.PANEL and $.PNLPRT, as
explained in the chapter ‘“Maintaining the Communications Facility”” in the Design
and Installation Guide.

You also need to increase the dynamic storage of the utility program $.PNLUT1.

Use the SS command of the EDX utility $DISKUT?2 to set the size to the new
member size plus 10.

Using $.PANEL to design a panel is a five-phase process. For each phase, the
program presents you with a panel in which you enter the required information.
Where appropriate, the program provides default information.

The five phases are:

1. Panel Specification: Identify the panel to be defined.

2. Design Indicators: Define indicators used during the panel layout phase to
delimit fields.

3. Panel Layout: Define the contents of the panel.
4. Field Attributes: Define the attributes of the fields that make up the panel.

5. QOutput:Optiohs: Define options that apply to the entire panel.

n is the number of records per member to be allocated.

46 Communications Facility Programmer’s Guide

You proceed from phase to phase with the ENTER key and program function (PF)
keys.

PF1+causes the display of help information for the current phase.

PF12causes work on the current panel to end. A working copy of the panel is
saved, but it is not in the form that application programs can use. The panel will be
saved in its final form only when you complete the last phase (output options) by
pressing the ENTER key. During a session with $. PANEL, you can use either
form of the panel.

The meaning of the other PF keys and the ENTER key varies with the different
phases, and is shown in the lower left part of the screen at all times.

The action defined for ENTER also applies to any PF keys for which no action is
defined. For example, look at Figure 7 on page 48, which shows what the screen
looks like during the panel specification phase. During this phase, PF2 and PF6-11
cause the program to move on to the design indicators phase.

When you press PF1 or PF12, any pending input is discarded. When you press any
other PF key or ENTER, your input is processed before the action defined for the
key occurs. :

If your input is in error, a message appears at the right side of the bottom row.
Explanations of the messages are in the section “$.PANEL User Messages” on
page 59.

The panel data that you specify in the panel layout phase may include lowercase
alphabetic characters. For all other input, lowercase characters are converted to
uppercase.

The following sections explain each phase of the panel design process. The panel
used to illustrate the process is CFMENU. This is the panel used by the
Communications Facility sample program, $.CFMENU, which is described in the
chapter Appendix A, “$.CFMENU Sample Program” on page 197.

Starting a Session with $. PANEL

Panel Specification Phase

To start a session with $.PANEL, you must start the program, link your terminal to
it, and start your terminal. The following commands will accomplish this process:

> CP S $.PANEL
> CP LINK staname $.PANEL
> CP S staname

Then press ENTER and proceed with the first phase of panel design.

Figure 7 on page 48 shows the layout of the screen during the panel specification
phase. Enter the panel name (1 to 8 characters), the data set name, and the
volume name. The data set must have been allocated and initialized. If the panel
(that is, the member) does not already exist, $. PANEL allocates it. If the panel
does exist, you may modify it during this session.

Creating and Managing 3270 Panels 47

//:t;ANEL: PANEL DESIGN: AID i ‘\\\

PANEL SPECIFICATION

PANEL NAME: CFMENU
DATASET: $.SYSPNL
VOLUME: EDXO002

f
v

ENTER: DESIGN INDICATORS
PF1: HELP

PF3: PANEL LAYOUT

PF4: FIELD ATTRIBUTES

PFS: OUTPUT OPTIONS
PF12: QUIT J

Figure 7. Screen Layout During Panel Specification

Design Indicators Phase

Design indicators are four characters you will use during the panel layout phase to
delimit fields and define their types. Three of them define field types, and the
fourth is a fill character.

There are three types of fields; you specify a design indicator for each:
« Standard: A protected field (that is, one in which the user of your application

is not allowed to enter data) that has default attributes (shown in Figure 12 on
page 55). You specify only its contents.

Protectedr A field, in which the application user is not allowed to enter data,
that has nondefault attributes, which you specify during the field attributes
phase.

o nprotected: A field in which the application user can enter data. You may
specify nondefault attributes for it.

The field.filkdesign indicator is used to indicate trailing field positions that are to
appear as blanks in the panel.

Figure 8 on page 50 shows how the screen appears during the design indicators
phase. The design indicators shown in the figure (& for standard, ! for protected,
@ for unprotected, and / for field fill) are the defaults.

You can change the design indicators to characters other than the defaults.

48 Communications Facility Programmer’s Guide

The following rules apply:
O’ o The four indicators must be unique.
o The three field start indicators cannot be used within fields.

« The field fill indicator can be used within fields; only the rightmost ones in a
field appear as blanks in the panel.

Panel Layout Phase

The panel layout phase is the phase during which you define what will actually
appear to the panel’s user. A set of editing commands, described under “Panel
Layout Editing Commands” on page 50, is provided to help you in manipulating
the panel.

During this phase, the layout area is marked with column numbers across the top
and row numbers down the left, as shown in Figure 9 on page 51. The panel you
create will be 80 columns wide and 24 rows long. Because some of your screen is
taken up by the row and column numbers and the PF key explanations, you can’t
see your whole panel at one time. The area you see at one time is a window: to part
of your panel. Use PF3 to move the window from the left side of the panel to the
right side, or vice versa. Use the TOP and BOT commands (described under
“Panel Layout Editing Commands” on page 50) to move the window up and down.

Enter your panel data in the layout area, using the design indicators to delimit
fields. Your four indicators are shown in the center of the bottom row, in the
0} sequence standard, protected, unprotected, and fill.

A field extends from the position following a field start indicator to the rightmost
nonblank character preceding the next field start indicator (or the end of the
panel). A field may wrap from one row to the next, but not from the bottom row
to the top row. A field may be from 0 to 254 characters long, not counting the
field start indicator. In the resulting panel, the positions occupied by field start
indicators and all undefined positions are protected and displayed as blanks.

Some examples of panel data, using the default design indicators, are:
&DEMO MENU A 9-character protected field.

&(Y/N) A S-character protected field; the slash is not a fill character
here, because it is not in a trailing position.

@//////7/ An 8-character blank unprotected field.

@SAMPLE// An 8-character unprotected field with a 6-character initial
value.

! A null (length 0) protected field that is to have nondefault
attributes.

Panel Layout PF and ENTER Keys

When you press ENTER, you remain in the panel layout phase. Data entered in
the panel layout area and commands are read and processed.

Creating and Managing 3270 Panels 49

PF1:
PF4:
PF5:
PF12:

FIELD~-START INDICATORS
STANDARD: &
PROTECTED:
UNPROTECTED: a

FIELD-FILL INDICATOR: 7/

===> ENTER: PANEL LAYOUT

FIELD ATTRIBUTES
OUTPUT OPTIONS

: -
///::PANEL: PANEL DESIGN AID ‘\\\ QQ;J

DESIGN INDICATORS

/

Figure 8. Screen Layout During Design Indicators Phase

Use PF2*to display the panel as the user will see it. You may modify the display to

check cursor movement and field attributes, but these changes are not processed.)
Press ENTER (or any PF key) to leave the display and resume panel design. If you / \
pressed PF2 while working on the panel shown in Figure 9 on page 51 , you would \ Ve
then see the panel shown in Figure 10 on page 52.

During panel design, it is convenient to alternate between the panel layout and field
attributes phases. Use PF4 to transfer to the field attributes phase.

Panel Layout Editing Commands

50

You enter the panel layout editing commands in the row number fields on the left
side of the panel layout screen, including the blank field above the top row number.
A command applies to the row in which it is entered; the blank field is, in effect,
the top row less one.

The commands are:

TOP Scroll this row to the top of the layout area. TOP causes the panel to move
up in the window, but the last row of the panel never appears above the last
row of the layout area. If, for example, rows 1 to 20 of a 24-row panel are
in view, TOP on any row from 5 to 20 causes rows 5 to 24 to appear.

BOT Scroll this row to the bottom of the layout area. BOT causes the panel to
move down in the window, but the first row of the panel never appears
below the first row of the layout area.

Lnn Shift this row left nn columns. This causes the entire row, not just the
portion that appears in the window, to be shifted; blanks are inserted on the “w,
right. To clear a row, specify L80.

Communications Facility Programmer’s Guide

/ 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 15
Ioool..oo‘oOoc'oooolo-.n‘ooo.]o-oolo.o.'.o-oloooolo-ool.oo-'o.ool-g.al...ol

13 G S dnsl g oo Ao o Lot e e e s e o o e o o etk e e e e o e e e e e e e e e e e e L e ek e fefroe e e ok ok Ak e KRk Aok

3: EEVENT DRIVEN EXECUTIVE COMMUNICATIONS FACILITY

5: ESAMPLE PROGRAM

T3 Edede deofe e oo e e oo e oo e ofe ek e e oo ook e ge ek Qe e o ofe e AR feale s e fesfe e e Qe o ek A e e eofp e Ao oo e ek e e e ek

=>ENTER:CONTINUE LAYOUT
PF5:0UTPUT OPTIONS

10: ECONNECT TO HOST:a//////// &(ENTER HOST TERMINAL NAME)
i; ECONNECT TO APPLICATION PGM:d//////// G&(ENTER PROGRAM NAME)

ii E€LOAD SFSEDIT UNDER EDX:3//////// E{ENTER WORKFILE NAME)

12: EDISCONNECT THIS TERMINAL:a/ &(ENTER ANY CHARACTER)

1o:

19:

20: &===> TAB TO FIELD AND ENTER DATA
PF1:HELP PF2:DISPLAY PF3:CHANGE VIEW PF4:FIELD ATTR

PF12:QUIT &tay J

Figure 9. Screen Layout During Panel Layout

Rnn Shift this row right nn columns. This causes the entire row to be shifted;
blanks are inserted on the left.

CEN Center this row. This causes the row to be shifted left or right, so that
there are equal numbers of leading and trailing blanks.

D Delete this row.

DD Delete a block of rows encompassed by a pair of these commands. For
example, to delete rows 5 through 10, enter DD on row 5 and on row 10.

Inn Insert nn blank rows after this one.

"nn Duplicate this row nn times.

M Move this row.

MM Move the block of rows encompassed by a pair of these commands.

C Copy this row.

CC Copy the block of rows encompassed by a pair of these commands.

A Move or copy after this row.

B Move or copy before this row.,

Creating and Managing 3270 Panels 51

-

A e ek Ak e A ok e e R ok ek Rk ek e A R e A S ke ek ke kR AR A R A R Rk Rk Rk
EVENT DRIVEN EXECUTIVE COMMUNICATIONS FACILITY

SAMPLE PROGRAM

20 e e e e ook ko el e ok el e e o e e s sk e e e s e e e e S el e el s Sk g e e el ke skl A ek R e e Ak

CONNECT TO HOST: (ENTER HOST TERMINAL NAME)
CONNECT TO APPL[CATION PGM: (ENTER PROGRAM NAME)
LOAD SFSEDIT UNDER EDX: (ENTER WORKFILE NAME)
DISCONNECT THIS TERMINAL: (ENTER ANY CHARACTER)

==> TAB TO FIELD AND ENTER DATA

Figure 10. Panel Display During Panel Layout Phase

52

For commands of the form Xnn (where X represents a command), nn is optional;
the default is 1. To specify a 1-digit value, type a blank after it (or type X0n). If
the row number field contains ‘Xn:’, n is assumed to be part of the original row
number, and the default is taken.

A request that requires more than one command (block commands, move
after/before, and copy after/before) must be complete on one screen. You may
enter more than one command at a time, except that only one move or copy is
allowed. Invalid commands are ignored.

Remember that a panel contains only 24 rows. Insert, duplicate, and copy
commands cause rows to be dropped from the bottom of the panel. The delete
command causes blank rows to be appended to the bottom of the panel.

When you press ENTER (or any PF key except 1 or 12), input is processed in this
sequence:

« Changes to the panel layout area.

« Commands other than move or copy, from top to bottom.
* Move or copy command.

Communications Facility Programmer’s Guide

The following examples illustrate the effect of some of the commands. In each
example, a portion of the layout screen with commands entered but not yet
processed is shown on the left; the result after the commands are processed is
shown on the right.

20: E&AAAAA 20: &AAAAA
I1: EBBBBB 21: &EBBBBB
22: §&Cccce 22:
D3: &DDDDD 23: g&CcCcce
24: EEEEEE 24:

The insert command on row 21, which causes row 24 to be
dropped, is processed before the delete command on

row 23.
"0: EAAAAA 20: E&AAAAA
21: &BBBBB 21: EAAAAA
22: §&CCCcCC 22: EBBBBB
L3 &DDDDD 23: &CCcce
24: EEEEEE 24: DDD

Although commands are processed from top to bottom,
they apply to the row on which they are entered. Thus,
row 23 is shifted even though the preceding duplicate
command causes it to become row 24.

MM: E&AAAAA 20: &EEEEE
21: EBBBBB 21: &AAAAA
R5: &CCCCC 22: E&BBBBB
MM: &DDDDD 23: §&CcCCcCC
A4: EEEEEE 24: &DDDDD

Row 22 is shifted only one column; the 5 is assumed to be
part of the original row number. The move command is
processed last.

Attributes-of-fields:are.retained when they-are:moved-or ‘duplicated-as-a-result. of
.commands: Attributes-are not retained-when-fields.are:moved.as:aresiilt of*
-changes to:the panel layout-area.-«

If, for example, you want to shift this row:

10: EPRICE:d////// &QUANTITY:Q////
so that it looks like this:
10: §PRICE:d////// EQUANTITY:d////

there are three ways to do it: retype the row, use the delete key of the terminal to
delete two of the leading blanks, or enter a shift left command.

Creating and Managing 3270 Panels 53

Field Attributes Phase

In the third case, any nondefault attributes that you have specified for the
unprotected fields are retained. In the first two cases, they are not; the fields are
assumed to be new ones and are given default attributes. O

During the field attributes phase, the program presents you with attributes of each
nonstandard (unprotected or protected) field, one field at a time in panel layout
sequence. The program does not present fields that you define as standard. Press
ENTER to proceed from one field to the next, or from the last field to the first.

The phase begins with the first field except when you enter from the panel layout
phase with the cursor at the field start indicator of a nonstandard field; then that
field is presented. When you transfer to panel layout from this phase (using PE3),
the cursor is positioned at the current field of this phase.

Use PE2 to display the panel as the user will see it, as described under ‘“Panel
Layout Phase’ on page 49.

Figure 11 shows the attributes for an unprotected field, the first one of the sample
panel. The two rows above the set of attributes (field content, position, and
length) are for information only; you can’t modify them here. Note that the screen
location of the start of the field data is shown in two ways: its position relative to
0, and the corresponding row and column. The attributes shown in Figure 11 are
the defaults for an unprotected field. In the completed sample panel, each
unprotected field has a field table entry, and the first one is the cursor position
field.

CANELt PANEL DESIGN AID \

FIELD ATTRIBUTES FOR UNPROTECTED FIELD
CONTENT: ////////
POSITION: 756 ROW/COLUMN: 10 37 LENGTH: 8
NORMAL/BRIGHT/DARK INTENSITY (N/B/D): N
ALPHAMERIC/NUMERIC (A/N): A
SET MODIFIED DATA TAG (Y/N): N
FIELD TABLE ENTRY (Y/N): N
CURSOR POSITION FIELD (Y/N): N
===> ENTER: NEXT FIELD
PFl1: HELP
PF2: DISPLAY PANEL
PF3: PANEL LAYOUT
PFS5: OUTPUT OPTIONS
K PF12: QUIT /
Figure 11. Unprotected Field Attributes
Figure 12 on page 55 shows the attributes for a protected field, the only ‘
nonstandard protected field in the sample panel. The attributes shown are the O)

defaults. In the completed sample panel, this field has a field table entry. This is

54 Communications Facility Programmer’s Guide

()

the field in which the sample program writes error messages. Note that it is defined
as null, because the sample program provides the field contents. The purpose of
defining the field as part of the panel is to establish its field attributes and screen
location.

-~

CONTENT:
POSITION: 1606

PF1: HELP

$.PANEL: PANEL OESIGN AID i\\\\

FIELD ATTRIBUTES FOR PROTECTED FIELD

ROW/COLUMN: 21 7 LENGTH: 0
NORMAL /BRIGHT/DARK INTENSITY (N/B/D):

SET MODIFIED DATA TAG (Y/N):
SELECTOR-PEN DETECTABLE (Y/N):
FIELD TABLE ENTRY (Y/N):
CURSOR POSITION FIELD (Y/N):

===> ENTER: NEXT FIELD

PF2: DISPLAY PANEL
PF3: PANEL LAYOUT
PF5: OUTPUT OPTIONS
PF12: QUIT

AUTOSKIP (Y/N):

Z2z2zz2z222

/

Figure 12. Protected Field Attributes

The meaning of the various attributes is explained in the remainder of this section,
as they apply to a real 3270 terminal. Remember that the result may be different if
the panel is used at a 3101, 4978, 4980, or 4985 terminal, as discussed in section
“Using $.PANEL to Design Panels” on page 45.

Intensity:
A field can be of normal, bright, or dark (nondisplay) intensity.

Alphameric/ Numeric:
The application user can enter any character in an alphameric field. The user
can enter only digits, minus, and decimal point in a numeric field.

Automatic Skip:
This attribute is relevant only for a field that immediately follows an unprotected
field. If you specify “Y”’, when the user enters a character in the last position of
the preceding unprotected field, the cursor skips to the next unprotected field. If
you specify “N”°, the cursor skips to the beginning of this (the nonautomatic
skip) field.

Modified Data Tag:

If you specify “Y”’, the contents of the field are returned on a read from the
terminal whether or not the application user modified the field.

Creating and Managing 3270 Panels 55

Selector-Pen Detectable:
If you specify “Y”, the attribute for a detectable field is set. There are -
additional requirements on the field’s content, length, and screen location, as @
described in the 3270 Description and Programmer’s Guide. Note that a
nondisplay field cannot be detectable and that a bright field is always detectable
(provided the other requirements are met).

Field Table Entry:
If you specify “Y”, an entry for this field is placed in the field table. You should
specify “Y” for fields that are modified or referenced by the application
programs that use the panel.

Cursor Field:
If you specify ‘“Y”, the cursor is positioned at this field when the panel is used.
If you specify more than one cursor field, the one you specify last takes effect.
If you specify no cursor field, the cursor is positioned at the first unprotected
field; if there are no unprotected fields, it is positioned at the first nonstandard

protected field; if there are no nonstandard fields, it is positioned at row 1,
column 1.

Output Options Phase

Output options is the last phase of panel design. A panel is not in the form that can
be used by application programs until you complete this phase by pressing the
ENTER key. The options used for the sample panel, as shown in Figure 13 , are
the defaults.

C’ANEL: PANEL DESIGN AID \

OUTPUT OPTIONS

NULL/BLANK FILL CHARACTER (N/8):
" SOUND ALARM (Y/N):

RESTORE KEYBOARD (Y/N):

RESET MDT BEFORE WRITE (Y/N):
WRITE OPTION (1/2/3):

~Z2<Z2

ERASE/WRITE ‘
ERASE-UNPROTECTEO/WRITE

1
2
3 WRITE

Houon

PRINT PANEL DESCRIPTION (Y/N): Y
PRINT DEVICE NAME: $SYSPRTR

===> ENTER: STORE COMPLETED PANEL
PF1: HELP

PF12: QUIT /

Figure 13. Screen Layout During Output Options Phase

56 Communications Facility Programmer’s Guide

The output options are:

m Fill Character:

The specified character replaces trailing field fill indicators in the panel. Null
allows the application user to use insert mode to enter characters in unused field
positions; blank does not.

Sound Alarm:
If you specify “Y”, the alarm is sounded when the panel is sent to the
application user.

Restore Keyboard:
If you specify “Y”’, the keyboard is unlocked after the panel is sent to the user.

Reset MDT:
This option is relevant only for write options 2 and 3 (described next). If you
specify “Y”’, modified data tags set as a result of the preceding read from the
terminal are reset before the panel is sent to the user.

Write Options:
1 (erase/write) causes the panel to replace whatever was on the user’s screen; 2
(erase-unprotected/write) and 3 (write) modify the contents of the screen. In
addition, option 2 causes existing unprotected fields to be filled with nulls before
the new fields are written.

Print Panel Description:
If you specify “Y”, a description of the panel is printed on the device whose
(} name you specify; $SYSPRTR is the default.

Figure 14 shows the printed description of the sample panel.

DESCRIPTION OF PANEL CFMENU

PANEL NAME: CFMENU
DATASET: $4SYSPNL
VOLUME: EDX002

FIRST RECORD NUMBER: 121

NUMBER OF RECORDS: 9
EFFECTIVE LENGTH: 600
MINIMUM CF BUFFER SIZE: 768

PANEL SIZE: 1920 (24 X 80)

WRITE OPTION: ERASE/WRITE
FILL CHARACTER: NULL
SOUND ALARM: NO
RESTORE KEYBOARD: YES
RESET MDT BEFORE WRITE: NO

STANDARD FIELD INDICATOR: &
PROTECTED FIELD INDICATOR: !
UNPROTECTED FIELD INDICATOR: a
FILL INDICATOR: /

Figure 14 (Part 1 of 3). Sample Print Panel Description

Creating and Managing 3270 Panels 57

DESCRIPTION OF PANEL CFMENU

5 10 15 20 25 30 35 40 45

50 55 60 65 T0 75 80

st e e A ol gk e o e A Qe oo e e e e e Ko e o ek oot e e e o e el e Qe sk e e ok e e e ok e e e R e e e R A R e e e X Ak Ao |

fo gk A e kR el ok e Qe M e K F XA A A

|
|
i EVENT DRIVEN EXECUTIVE COMMUNICATIONS FACILITY
!

3

(ENTER HOST TERMINAL NAME)
(ENTER PROGRAM NAME)
(ENTER WORKFILE NAME)

(ENTER ANY CHARACTER)

5 SAMPLE PROGRAM
|
| ok et e e fe e ool R AR R AR S B e B X e e e
|
!
10~ CONNECT TO HOST: ////////
|
| CONNECT TO APPLICATION PGM: /////7/7/
|
| LOAD SFSEDIT UNDER EDX: ////////
15-
] DISCONNECT THIS TERMINAL: /
i
I
[
20- ===> TAB TO FIELD AND ENTER DATA
|
|
1
1

e B B B e B L B L el Al Rl Bttt Bt Bl Bl

Figure 14 (Part 2 of 3). Sample Print Panel Description

DESCRIPTION OF PANEL CFMENU

(ENTER HOST TERMINAL NAME)
CONNECT TO APPLICATION PGM:

DISCONNECT THIS TERMINAL:

===> TAB TO FIELD AND ENTER DATA

FTAB SCREEN LOCATION ATTR BITS
ENTRY POSITION ROW COLM LENGTH 2 3 4 5 7 CURSOR CONTENT
1 1 2 79 10000
177 3 18 46 1 0000
353 S 34 14 10000 SAMPLE PROGRAM
481 7 2 79 10000
139 10 20 16 10000 CONNECT TO HOST:
1 756 10 37 8 00000O0 i 117/77777
767 10 48 26 10000
888 12 9 27 1 0000
2 916 12 37 8 00000 171717717
927 12 48 20 1 00600 {ENTER PROGRAM NAME)
1052 14 13 23 10000 LOAD $FSEDIT UNDER EDX:
3 1076 14 37 8 00000 17717777
1087 14 48 21 10000 (ENTER WORKFILE NAME)
1210 16 11 25 10000
4 1236 16 37 1 0 00O0OC /
1247 16 48 21 1 0000 (ENTER ANY CHARACTER)
1521 20 2 32 10000
S 1606 21 K 0 10000

FIELD ATTRIBUTES:

BIT MEANING

2 0 = UNPROTECTEDy 1 = PROTECTED

3 0 = ALPHAMERICs =

465 00 = NORMAL INTENSITY, NOT DETECTABLE
01 = NORMAL INTENSITY, DETECTABLE
10 = BRIGHT INTENSITYs DETECTABLE
11 = NONDISPLAYs NOT DETECTABLE

7 MODIFIED DATA TAG

Figure 14 (Part 3 of 3). Sample Print Panel Description

1 = NUMERIC (PROTECTED + NUMERIC = AUTOSKIP)

e e desie A e e S d o A A ARk ek Aok e R gt ofe e e e e A e ek el kAol KRR R AT AR

o s e e A o e e e A e et et e e e ok A o o e ke e e etk etk e g ek Rk

EVENT DRIVEN EXECUTIVE COMMUNICATIONS FACILITY

Fode AR A e Aok ok

58

Communications Facility Programmer’s Guide

U

The first page gives general information about the panel. The first three items
identify the panel. Then the location of the member, relative to the start of the
data set, and size of the member appear. The effective length shows how many
bytes of the member are actually used; this item and the next (buffer size) are
discussed under “Using SSGETPNL to Fetch Panels” on page 61.

The second page shows the panel as the user sees it, except that field fill indicators
are not replaced by blanks, and lowercase data prints as uppercase.

The rest of the report describes the fields that make up the panel. The first column
shows the relative location of the field’s entry in the field table, if any. The next
four columns show the field’s position and length. Next come the field’s attributes,
shown as they appear in a 3270 attribute character; an explanation of the bits is
printed at the bottom of the last page of the report. Bits 0 and 1, which are set
according to the value of the other bits, and bit 6, which is always 0, are not shown.
The column headed CURSOR contains asterisks for the field at which the cursor is
positioned when the panel is used.

Ending a Session with $.PANEL

8.PANEL User Messages

When you press PF12 during any phase or ENTER during the output options
phase, you get this message:

CONTINUE SESSION WITH $.PANEL? (Y/N):

If you respond “Y”’, you are returned to the first phase where you can specify the
next panel that you want to work on. If you respond “N”, your terminal is
unlinked from $.PANEL, and you receive an END OF SESSION message. If no
one else is using $. PANEL, the program is stopped.

You may receive the following messages at your terminal while using $.PANEL.
The messages are shown here in alphabetical order. Messages sent to the

- Communications Facility system log are shown in the Operator’s Guide.

DATA SET DIRECTORY FULL
There is no space in the partitioned data set directory for another member. If
the data set contains deleted members, use the compress function of the EDX
utility $DIUTIL to retrieve unused space. If not, allocate a new larger data set,
copy the existing members to it, delete the old data set, and rename the new one.
Do not do either of those steps while anyone else is using the data set.

DATA SET FULL
There is no space in the partitioned data set itself for another member. If the
data set contains deleted members, use the compress function of the EDX utility
$DIUTIL to retrieve unused space. If not, allocate a new larger data set, copy
the existing members to it, delete the old data set, and rename the new one. Do
not do either of those steps while anyone else is using the data set.

DATA SET NOT FOUND

The data set you specified does not exist. Enter the correct name, or allocate
and initialize the data set that you want to use.

Creating and Managing 3270 Panels 59

60

DISK I/0 ERROR
An I/0 error occurred while your panel was being read or written. The system ,
log gives additional information. «)

DUPLICATE INDICATORS
The design indicator at which the cursor is positioned is not unique. Change it.

FIELD TOO LONG (>254)
The field at which the cursor is positioned is longer than the maximum allowed.
You must correct it before you can obtain a panel display or complete the output
options phase.

INDICATOR ALREADY USED AS PANEL DATA
The design indicator at which the cursor is positioned appears within the panel as
field data. Specify a different indicator, or proceed to panel layout and change
the panel data before again specifying this indicator.

INVALID OPTION
The option at which the cursor is positioned is invalid. Correct it.

MAXIMUM NUMBER OF USERS ACTIVE; PLEASE TRY AGAIN LATER
There is not enough dynamic storage for another user. If this problem occurs
often, consider increasing the amount of storage as explained in the section
“Using $.PANEL to Design Panels” on page 45.

MEMBER NOT BUILT BY $.PANEL
The member (panel) that you specified exists, but it does not appear to have
been built by $.PANEL. This may be because of a disk I/O error, but it is more w
likely that you did not specify the name that you intended. Q{ JV

NO FIELDS DEFINED
The panel is completely empty. It must contain at least one field before you can
obtain a panel display or complete the output options phase.

NO INITIAL FIELD START INDICATOR
The first nonblank character in the panel is not a field start indicator. You must
correct this before you can obtain a panel display or complete the output options
phase.

NO NON-STANDARD FIELDS DEFINED
This message indicates that the panel contains only standard fields, so there is
nothing to do in the field attributes phase.

PANEL DESCRIPTION NOT PRINTED, NO SPACE TO LOAD PROGRAM
When you request a printed panel description, $.PANEL loads another program
to do it, and there was not enough space in any partition. Repeat the request
when there is less work in the system or use $.PNLUT1 to obtain a panel
description.

PANEL DESCRIPTION NOT PRINTED, PRINT DEVICE NAME NOT
DEFINED
The print device name that you specified is not known to EDX. Repeat the
request with a correct name.

O

Communications Facility Programmer’s Guide

PANEL DESCRIPTION NOT PRINTED, PRINTER IS BUSY
The print device that you specified is busy. Repeat the request when the printer
is available, specify a different printer, or use $.PNLUT1 to obtain a panel
description.

PANEL DESCRIPTION NOT PRINTED, PROGRAM LOAD ERROR
When you request a printed panel description, $.PANEL loads another program,
and the load failed. The system log gives additional information.

PANEL EXCEEDS MEMBER SIZE
The panel, in its final form, is too long to fit in the allocated member. This
occurs only when a panel contains a great many, very short fields. Each field
requires 5 bytes in the 3270 data stream, in addition to its contents. An
unprotected field that is immediately followed by one or more undefined
positions requires an additional 2 bytes. Modify the panel to reduce the size of
the resulting data stream or to reduce the number of field table entries (each
requires 4 bytes). If you cannot do this, delete the member, increase the
member size that $ PANEL allocates (see ‘“Changing Member Size” on page
46), and define the panel again.

PANEL IS IN USE
Another user of $.PANEL is working on the panel that you specified. Try again
later.

PANEL name COMPLETED AND STORED
The panel is stored in the form that can be used by application programs.

PANEL name SAVED
The panel is saved in its design form. It can be used with $.PANEL but not by
application programs.

REQUIRED PARAMETER NOT SPECIFIED
The parameter at which the cursor is positioned is blank. Enter a correct value.

TOO MANY NON-STANDARD FIELDS (>91)
You have specified more nonstandard fields than can be recorded in the
allocated member. Reduce this number, perhaps by changing some protected
fields to standard fields. If you cannot do this, delete the member, increase the
member size that $. PANEL allocates (see ‘“Changing Member Size” on page
46), and define the panel again.

VOLUME NOT FOUND
The volume you requested does not exist. Enter the correct name, or ready the
volume that you want to use.

$.PANEL HAS BEEN STOPPED
The program has stopped because of an operator command or an error. The
system log shows the reason.

Using SSGETPNL to Fetch Panels

S$SGETPNL is a subroutine used in application programs to fetch panels defined by
$.PANEL.

Creating and Managing 3270 Panels 61

SSGETPNL Calling Sequence
The calling sequence for S$GETPNL is: ()

i

‘GALL: S$GETPNL;buffer,name,dsch,rcode:.
where:

buffer

is the address of a Communications Facility buffer to receive the panel.

name
is the address of an 8-byte area that contains the panel name.

dsch
is the address of the data set control block for the partitioned data set in which
the panel is stored.

reode
is the label of a word to receive the return code.

S$GETPNL Output

S$GETPNL locates the panel in the data set and reads it into the buffer.
There are three sections in a panel:

o Header information that gives the length of the 3270 data stream and the
relative location of its beginning and end. 4 N

+ Field table (optional).

o 3270 data stream, which produces the panel when it is sent to a
Communications Facility terminal.

Header Information

The header information overlays words 2 to 5 of the buffer header, with the
relative locations converted to actual buffer addresses.

On return from S$§GETPNL, the buffer data area contains the field table and data
stream, and the buffer header contains:

B$SIZE—Buffer size, not modified

B$COUNT—Length of 3270 data stream
B$SADDR-—Address of start of 3270 data stream

B$DATA @—Address of end of 3270 data stream plus one
B$TXTCT—Equal to B$SIZE

The buffer header information is such that the buffer can be used as the subject of

a SEND M instruction to send the panel to a user of the application program. It is

also such that you can use the PUT instructions to modify the panel before sending
it.

The buffer must be large enough to contain the field table and data stream, with '
additional space if the application program appends data to it. $.PANEL allocates y .

62 Communications Facility Programmer’s Guide

Field Table

nine records for a panel (unless you have changed the member size), because that
is what is needed during the design of a panel. The panel in its final form usually
requires far less. SSGETPNL reads only the records that contain the final output.
The printed report that you can obtain from $.PANEL or $.PNLUT1 shows the
length of the final output (the effective length) and the minimum buffer size (the
effective length rounded to a multiple of 256). See Figure 14 on page 57.

If you append data to the buffer, you must be sure that the buffer is large enough
to contain it. PUT instructions can overrun the buffer with no error indication,
because BSCOUNT does not include the length of the field table that precedes the
3270 data stream. The space required for each field that you append to the buffer
is the data length, plus 3 bytes for an SBA (set buffer address) order, plus 2 bytes
if you specify the field’s attributes.

The field table contains one 4-byte entry for each field specified by the panel’s
designer.

Byte Contents

0-1 Field position (its screen location relative to 0)
2 Field length (0-254)
3 Field type (1 if the field is unprotected and

numeric, otherwise 0)

You can use the field position in these ways:

¢ As the “position” operand of a GET F instruction used to retrieve a specific
field from the user’s input to the panel.

« To identify which field was obtained as the result of a sequential GET F
instruction.

» As the “position” operand of a PUT F instruction used to modify the field’s
attributes and/or contents.

In the latter case, the PUT F instructions addressed to a buffer that contains a
panel do not modify the existing 3270 data stream; they append fields to it. Each
field in the data stream begins with an SBA (set buffer address) order that contains
the screen location at which the following data is to appear. When a data stream is
sent to a terminal, a later specification for a particular screen location overlays an
earlier specification. It may also overlay following fields; be careful that your data
is no longer than it should be.

An SBA order need not be followed by field data. You can use a PUT F
instruction with a null text operand and an ATTR= operand to modify the
attributes of a field without changing its contents. You can use a PUT F
instruction with the text operand containing an insert cursor order (X‘13’) to
reposition the cursor.

The field table makes it possible to modify panels with little or no modification of

the application programs that use them. If the screen location of a field is changed,
but its relative location in the field table is not, no program change is required. If

Creating and Managing 3270 Panels 63

Return Codes

Sample Application Program

you expect a panel design to be volatile, programs should use symbolic names for

field table entries. That makes it simple to modify programs so that, for example, e
the name QUANTITY now refers to the fifth entry instead of the third entry. (_,..J
You can use the third byte of a field table entry (field length) in application

programs that are not dependent on predefined field lengths. You can use the

fourth byte (field type) to decide whether a GET F instruction is to include the
TYPE=NUMERIC operand.

$.CFMENU, the sample program, illustrates the use of a field table. The program
uses the screen locations from the field table to determine which option the user
selected and to send error messages to the user.

S$GETPNL returns one of the following values in the rcode operand:
-1 Successful.

1-11 A disk read error, as described for the READ instruction in the Event
Driven Executive Messages and Codes, occurred.

20 Member (panel) not found.
21 Member is in its design format, not its final format.

22 Member not built by $.PANEL (member code is not 12, or content is not
that produced by $.PANEL).

23 Buffer too small. {, o

You can use the LA command of the EDX $DIUTIL utility to determine whether a
member was built by $.PANEL and whether it is in its design format or final
format. For members built by $.PANEL, the member code is 12. For design
format, the user code is 0. For final format, the user code is the effective length
rounded to a multiple of 256 (the value reported by $.PANEL as the minimum
buffer size).

Figure 15 on page 65 shows the skeleton of an application program that uses
S$GETPNL. It illustrates the concepts discussed in the previous sections of this
chapter and some additional requirements.

The data set referenced in the call to SSGETPNL must be open. The DS=
operand of the PROGRAM statement accomplishes this.

The program must contain the Communications Facility equates (SSCFEQU), the
EDX data set control block equates (DSCBEQU), and the panel fetch subroutine
(S$GETPNL).

You can use the same buffer for terminal input and output, if you wish. After the

panel is fetched, the buffer header field BSADDR contains the address of the 3270

data stream, If the RECEIVE instruction uses the same buffer, the panel data

stream is overlaid, but the field table at the beginning of the buffer is left intact. (\%

64 Communications Facility Programmer’s Guide

Using Panels in Other Ways

If you use the same buffer for input and output, you must be sure that the terminal
input will be no longer than the buffer size minus the length of the field table. The
RECEIVE instruction can overrun the buffer with no error indication, because
B$SADDR does not address the start of the buffer data area.

The MOVEA instruction resets buffer header field BSADDR to address the start
of the buffer data area, as it normally does. You may need to do this if you use the
buffer for purposes other than processing panels.

Refer to Appendix A, “$.CFMENU Sample Program” on page 197 for another
example.

You may write applications that need to access the output of $.PANEL other than
through SSGETPNL. For such applications, SSPNEQU?2 is provided. This
component of the Communications Facility is a set of equates that defines the
format of the partitioned data set member built by $.PANEL.

TASKNAME PROGRAM START,DS=name
COPY S$CFEQU CF EQUATES
COPY DSCBEQU EDX DSCB EQUATES
COPY S$GETPNL PANEL FETCH SUBROUTINE
BUFF DEFINE BUFFER, SIZE=nnn 1/0 BUFFER
FLD1 EQU BUFF FIRST FIELD TABLE ENTRY
FLD2 EQU FLD1+4 SECOND FIELD TABLE ENTRY
[]
]
C '
PNLNAME DATA sc'' PANEL NAME
RCODE DATA F'0’ RETURN CODE
ORIGIN TEXT LENGTH=10 USER'S STATION NAME AND TYPE
INPUT TEXT LENGTH=nn INPUT TEXT AREA
[]
[
[]
START EQU *
L]
[]
L]
MOVE PNLNAME, name, (8,BYTE) SET PANEL NAME
CALL S$GETPNL, (BUFF) , (PNLNAME), (DS1) ,RCODE FETCH PANEL
IF (RCODE,NE, -1) ,GOTO, error 1 CHECK RETURN CODE
PUT FIELD,BUFF, text,FLD1* MODIFY FIRST FIELD
SEND MESSAGE ,ORIGIN,BUFF SEND PANEL TO USER
L
[]
[]
RECEIVE MESSAGE, BUFF,WAIT=YES, ORIGIN=ORIGIN GET USER'S INPUT
GET FIELD, INPUT,BUFF,FLD1* FIRST FIELD MODIFIED?
IF (INPUT-1,NE,O0,BYTE) YES (TEXT COUNT > 0)
[]
[]
[]
MOVEA BUFF+B$ADDR, BUFF RESET BUFFER DATA ADDRESS
[]
o
[]
w Figure 15. Sample SSGETPNL Application

Creating and Managing 3270 Panels 65

Using $.PNLUT1 to Print Panel Descriptions

66

$.PNLUT1 is a utility program that prints descriptions of panels created by m
$.PANEL. The panel descriptions are the same as those that you can obtain when -
you design panels. You can request a description of one panel, of a group of panels

whose names begin with the same 1 to 7 characters, or of all panels in a data set.

The Communications Facility does not have to be active when you use $.PNLUT1.
Use the EDX $L command to load the program into a mapped partition, specifying
the name and volume of the partitioned data set that contains the panels. For
example, you can enter:

$L $.PNLUT1 USERPNLS,EDX003

Then enter one of the following commands:

PM (Print 1 Member)
This command prints a description of the member whose name you specify.

PG (Print Generic Group of Members)
This command prints a description of each member whose name begins with
the string of 1 to 7 characters you specify.

PALL (Print All Members)
This command prints a description of all members in the data set.

EN (End Program)
This command ends the program.

You will be prompted for a print device name after you enter the first print N
command.

C

Communications Facility Programmer’s Guide

Naming the Transaction

Creating a Transaction

You can create a new transaction and specify what the program dispatcher is to do
when a user enters that transaction from a terminal or a program. To create a
transaction and integrate it into the Communications Facility system, you have to:

« Name the transaction (what the operator or programmer will enter to identify
the transaction).

o Determine what will happen when an operator or programmer issues the
transaction. Possible actions taken when a transaction is issued are:

— Load a program somewhere in the network.
— Create a station (and its associated message queue).
— Send a message (the transaction the user entered) to the station so created.

Assuming a program is loaded in response to the transaction, you have to
decide whether that program will process one transaction and then terminate;
process transactions until no more are available and then terminate; or remain
in storage, waiting for transactions, until its station is explicitly stopped.

» Determine the transaction’s type—one of 16 predefined categories. The
transaction’s type defines what is to happen when the transaction is entered.

» Code the transaction-processing program.

+ Make an entry for the transaction in the program dispatcher’s data set,
$.SYSPD. The entry indicates the transaction’s name and type, the name of
the associated transaction-processing program, and other attributes of the
transaction.

« Optionally, define the station created for your program in $.SYSNET.

“Creating a Program to Communicate with EDX Terminals” on page 85 includes a
sample transaction-processing application. It illustrates many of the concepts
presented in this chapter.

The transaction name, or identifier, can be from 1 to 4 characters. It must be
unique within the cell where the transaction is to be processed; it must not
duplicate the names of IBM-supplied transactions, which are listed in the Operator’s
Guide.

Determining the Transaction’s Type

The transaction type, which you specify when you define the transaction in
$.SYSPD, tells the program dispatcher what to do when it receives the transaction.
The transaction type consists of 2 digits. The first digit indicates the type of
program that processes the transaction; the second indicates the various actions the
program dispatcher may take when it receives the transaction. It’s your
responsibility to be sure your program is actually of the type you specify in the first
digit.

Creating a Transaction 67

68

The first digit can have these values:

1 A single-transaction program. This type of program processes a single @
transaction and terminates.

2 A multi-transaction program. This type of program processes transactions until
there are no more and then terminates. The indicator that there are no more
transactions depends on how you design your program. It may, for example, be
that there are no more messages on the queue; a special transaction that
contains an “end-of-data” indicator; or a request to stop.

3 A continuous program. This type of program remains in storage, waiting for
transactions, until it is requested to stop.

4 A continuous, reentrant program. This type of program also remains in
storage, waiting for transactions, until it is requested to stop.

The program dispatcher loads a type 1 program (if the second digit of the type
code specifies so) each time the transaction is issued; it loads the other types only if
the program is not already in storage. The program dispatcher may tell a type 3 or
4 program to stop when storage is needed for another program; it does so only if
you specified that the program can be purged when you defined the transaction in
$.SYSPD. To the program dispatcher, there’s no difference between types 3 and 4.
The two types are provided for your own documentation purposes.

The second digit can have these values:

0 Load a program; do not create a station; do not put the transaction on any (/ RN
queue. This type of transaction simply starts a program somewhere in the %J’
network.

1 Load a program; create a station and its associated message queue; do not put
the transaction message on the queue.

2 Load a program; create a station and its associated message queue; put the
transaction message on the queue.

3 Create a station and its associated message queue; put the transaction message
on the queue; do not load a program. In this case, you must be planning to
manage the message queue by some means other than having a program
identified with the station.

Figure 16 on page 69 summarizes the transaction types.

@

Communications Facility Programmer’s Guide

Load Single | Load Multi | Load {ll::‘llltrant Create Put

Transaction | Transaction | Tramsaction | Continuous | Centinuous | Station and | Transaction
Type Program Program Program program Queue On Queue
10 Y N N N N N

11 Y N N N Y N

12 Y N N N Y Y

13 N N N N Y Y

20 N Y N N N N

21 N Y N N Y N

22 N Y N N Y Y

23 N N N N Y Y

30 N N Y N N N

31 N N Y N Y N

32 N N Y N Y Y

33 N N N N Y Y

40 N N N Y N N

41 N N N Y Y N

42 N N N Y Y Y

43 N N N N Y Y

Figure 16. Transaction Types

Coding the Transaction-Processing Program

Type 10 Transaction

Type 11 Transaction

When you’re coding the transaction-processing program, you need to take into
account various considerations that depend on the transaction type. This section
explains those considerations.

In the examples that follow, the instruction:

IF (END,EQ,YES)

represents a test for whatever termination condition your program is designed to
recognize.

With transaction type 10, there is no station to manage and no transaction to

receive. A new copy of the program is loaded each time the transaction is issued.

This type is appropriate for a batch program.

A new copy of the program is loaded each time the transaction is issued. A
message type station with the same name as the program is created if it doesn’t
already exist, but the transaction message isn’t put on the queue. You're
responsible for deleting the station.

Creating a Transaction

69

This is an example of a type 11 transaction-processing program:

PROG11 PROGRAM START
START .

Program functions
L J

[]
Delete station and terminate

Type 12 Transaction

A new copy of the program is loaded each time the transaction is issued. A
message type station with the same name as the program is created if it doesn’t
already exist, and the transaction message is put on the queue. You’re responsible
for handling the message and deleting the station. Transaction type 12 would be

appropriate, for example, for a program that simply displays a menu at the
terminal.

This is an example of a type 12 transaction-processing program:

PROG12 PROGRAM START
START U]

.

RECEIVE M, BUFF

Process the transaction
L]
[]

Delete station and terminate

Type 13, 23, 33, or 43 Transaction

A message type station with the same name as the program is created if it doesn’t
already exist, and the transaction message is sent to that station, but no program is
loaded. You’re responsible for handling the messages and deleting the station.
These types may be used, for example, to accumulate a queue of transaction
messages for later processing. When it’s time to process the transactions, use the
EDX $L command to load the program.

Type 20, 30, or 40 Transaction

The program is loaded if it isn’t already in storage. There is no station to manage
and no transaction to receive. These transaction types are appropriate for batch
programs.)

Type 21 Transaction
The program is loaded if it isn’t already in storage. A message type station with the

same name as the program is created if it doesn’t already exist, but the transaction
message isn’t put on the queue. You’re responsible for deleting the station.

70 Communications Facility Programmer’s Guide

C

e

Type 22 Transaction

Type 31 or 41 Transaction

This is an example of a type 21 transaction-processing program:

PROG21 PROGRAM START
START .
L]
Program functions
L]
[]

IF (END, EQ, YES)
Delete station and terminate

ENDIF

[]

[)

GOTO START

The program is loaded if it isn’t already in storage. A message type station with the
same name as the program is created if it doesn’t already exist, and the transaction

message is put on the queue. You’re responsible for handling the message and

deleting the station.

This is an example of a type 22 transaction-processing program:

PROG22 PROGRAM START
START .

L

RECEIVE M, BUFF

[]

[]

Process the transaction
. >

[]

IF (END, EQ, YES)
Delete station and terminate

ENDIF

[]

[]

GOTO START

The program is loaded if it isn’t already in storage. A message type station with the
same name as the program is created if it doesn’t already exist, but the transaction
message isn’t put on the queue. You’re responsible for managing and deleting the
station. Your program must check for a Communications Facility status message

and stop when it receives one.

This is an example of a type 31 or 41 transaction-processing program:

PROG3141 PROGRAM START
START .
.
Program functions
[]
[]

RECEIVE M,BUFF,WAIT=NO

IF (PROG3141,EQ, 6)
Delete station and terminate

ENDIF

[]

[]

GOTO START

Creating a Transaction

71

Type 32 or 42 Transaction

The program is loaded if it isn’t already in storage. A message-type station with
the same name as the program is created if it doesn’t already exist, and the
transaction message is put on the queue. You're responsible for handling the
message and deleting the station. Your program must check for a Communications
Facility status message and stop when it receives one.

This is an example of a type 32 or 42 transaction-processing program:

PROG3242 PROGRAM START
START .
[]
RECEIVE M, BUFF
IF (PROG3242,EQ,6)
Delete station and terminate
ENDIF

Process the transaction
[]
[]

GOTO START
Terminating Your Program

A single-transaction program (type 1n) terminates when it has finished its work. A
multi-transaction program (type 2n) terminates when it has finished its work or
when it has been requested to stop. A continuous program (type 3n or 4n)
terminates when it has been requested to stop.

Your program receives the request to stop in the form of a status message, which is
sent as a result of a halt command for the program dispatcher or a stop or halt
command for your program. If you defined your program as purgable, it is also
requested to stop when its storage is needed for another transaction-processing
program.

If you want, you can determine why your program was told to stop by checking
whether its station block is active (bit 0 of Q$STAT, 1=active, O=inactive) and
examining the first character of the status message:

¢ Your program was stopped—station block is inactive, status message starts
with P.

« Your program was halted—station block is inactive, status message starts with
H.

« Storage is needed for another program—station block is active, status message
starts with P.

e Program dispatcher was halted—station block is active, status message starts
with H.

How you terminate your program depends partly on the transaction type and partly
on the characteristics of your transaction-processing system. You need to consider
what you know about your system as you apply the suggestions in this section.

72 Communications Facility Programmer’s Guide

Also consider that the program dispatcher and your program are operating
asynchronously. Their functions can conflict if you code your program incorrectly.
0 The two things to keep in mind are:

¢ $.PD may load your program if it isn’t already in storage; you terminate the
program.

« $.PD may create a station if it doesn’t already exist; you delete the station.

When there is no station to manage (type 10, 20, 30, or 40), just terminate the
program when it finishes its work:

PROGSTOP LOGMSG=NO

When there is a station, but transactions aren’t sent to it (type 11, 21, 31, or 41),
you can delete the station as you terminate the program:

LOCATE ST, #1,0PTION=PROGSTOP

When your program processes a single transaction (type 12 or 13), you are
responsible for deleting the station, but you can’t do so unconditionally. By the
time you’ve finished processing the transaction, $.PD may have received and sent
another one and loaded another copy of the program. If the station has no disk
queue, use the DELETE option of the LOCATE instruction, which will delete the
station only if it has no pending storage-queued messages:

LOCATE ST, #1,0PTION=DELETE
PROGSTOP LOGMSG=NO

0} If the station has a disk queue, use the RECEIVE N instruction to check for
messages before deleting the station:

RECEIVE N,WAIT=NO

IF (taskname,EQ, 1)
LOCATE ST, #1,0PTION=DELETE

ENDIF

PROGSTOP LOGMSG=NO

When your program processes multiple transactions until there are no more (type
22 or 23), you need to consider what the “no more” indicator is. If it’s an empty
queue and the station has no disk queue, you can delete the station conditionally
and proceed according to the return code:

LOCATE ST, #1,0PTION=DELETE
iFr (taskname,EQ,5) ,GOTO, receive~transaction
PROGSTOP LOGMSG=NO

As an alternative, or if the station has disk queue, use the RECEIVE N instruction
instead:

RECEIVE N,WAIT=NO
IF (taskname,LT,0) ,GOTO, receive-transaction
LOCATE ST, #1,0PTION=PROGSTOP

When your program processes transactions until it’s requested to stop (type 32, 33,
42, or 43) and you didn’t define it as purgable, a stop request means that it’s time
to shut down. You can, if you wish, receive and process any pending transactions.
Then delete the station and terminate.

Creating a Transaction 73

If you did define your program as purgable, you may want to handle a purge

request differently from other stop requests. When you receive a purge request,

you could ignore pending transactions and terminate without deleting the station. @
You should do this only if you know that more of your program’s transactions will

be issued. If this isn’t the case, and there are pending transactions when you

receive the purge request, your program may never be reloaded to process them.

In any case, be sure that you do nothing between detecting an empty queue and
terminating your program. For example, if you issued a log message before
terminating, the following sequence of events could occur:

1. Your program detects that its queue is empty and deletes its station.
2. Your program issues a log message.

3. While your program is waiting for the SEND LOG instruction to complete,
$.PD receives another transaction for your program. It creates the station and
sends the transaction. It doesn’t load the program, because it’s already in
storage.

4. The SEND LOG instruction completes, and your program terminates.

As aresult, the pending transaction won’t be processed unless yet another
transaction for your program is issued.

Finally, you need to decide whether or not to close your station’s disk queue, if it

has one, before terminating your program. A station’s disk queue is closed when

the station is stopped or halted; deleting a station block doesn’t affect the disk Qﬂ
queue. You don’t have to close the disk queue before terminating. If you leave it

open, it will be available when the station is started again. If you prefer to close

the disk queue, issue a SEND CP instruction, specifying a stop or halt command for

your station and ACK=YES. You can delete the station block and terminate when

the instruction completes, or you can wait until you receive the status message that

results from the stop or halt command.

L

Using Transactions to Segment Your Program

By dividing your application into several programs that respond to different
transactions, you can effect substantial storage savings by having only one
transaction-processing program in storage at any time.

This section and the next discuss how to do this, using a work session controller
application as an example. You can apply the concepts to any
transaction-processing application. The work session controller transactions are

described in “Creating a Program to Communicate with EDX Terminals” on page
85.

74 Communications Facility Programmer’s Guide

C

For example, say your application displays a menu on the terminal and waits for
the operator to select an option. The program might issue these work session
controller transaction commands:

SD—Start device
SS—Start session
BI—Send image
WK—Wait for key
RD—Read data
LI—Link to program

You might split your application into three small programs:

PROG1 Issue SD and SS
SD Start device
SS Start session with secondary transaction ID PROG?2

PROG2 Issue BI and WK
BI Send image
WK Wait for key with secondary transaction ID PROG3

PROG3 Issue RD and LI
RD Read data from the screen
LI Link to PROG?2 if input is invalid; else link to requested program

None of these programs have to be in storage while the operator is deciding which
option to select. You could code these programs as type 22 programs, terminating
each after it issues its second transaction. When the operator makes a selection,
PROGS3 will be loaded. If the operator’s input is invalid, PROG?2 will be loaded.

Saving Time Instead of Storage

Although the program dispatcher uses a high-speed loader, the time required to
load type 22 programs repeatedly may have an unacceptable effect on
performance. If so, you can code your interactive programs as type 32 programs,
which remain in storage until they are requested to stop. Using the example from
the preceding section (‘“Using Transactions to Segment Your Program” on page
74), PROG2 and PROGS3 could each be coded as a type 32 program, or their
functions could be combined into a single type 32 program.

If you require optimum performance, but storage is sometimes at a premium, you
should define type 32 programs as purgable. If you do so, the program dispatcher
may request the program to stop when it needs storage for some other
transaction-processing program. When the program is purged, you must ensure
that it will be reloaded to continue its work. You can do this by specifying your
program’s transaction identifier as the secondary transaction identifier in each
WSC transaction that it sends. After the program is purged, an acknowledgment
transaction sent by the work session controller will cause it to be reloaded. In
contrast, a type 22 program (or any type not defined as purgable) need request an
acknowledgment only when the acknowledgment contains information the program
requires.

Creating a Transaction 75

Exchanging Transactions with Communications Facility Terminals

You may want to write an application program that processes transactions received @
from a Communications Facility terminal. This section explains how your program

receives transactions from a Communications Facility terminal and how it can send

a response to the terminal.

Receiving Transactions from the Terminal

76

When you define the transaction, you specify, in its transaction identifier
statement, that data received as a result of this transaction will be in the form of a
3270 data stream. You must link the terminal to the program dispatcher, $.PD.
For example, say that you have a program named PROG that is designed to
process transaction TRID from a 3270-type terminal, as shown in Figure 17 on
page 77.

The terminal’s station is linked to the program dispatcher through this command:

CP LINK 3270ST $.PD

Transaction TRID must be defined to the program dispatcher by a TID statement
in data set $.SYSPD. For example:

TID TRID PROG 32,,S

The last operand (S) specifies that the transaction is a 3270 data stream that the
program dispatcher is to route without modification.

The terminal operator must enter the transaction identifier (in this case, TRID) as
the first field on the screen. When the terminal operator enters a transaction, the
data stream is sent to the program dispatcher.

é\

If the first field of the data stream is TRID, the program dispatcher sends the entire
data stream (including the 3270 header at the beginning and the ETX at the end)
to your program, PROG.

If the first field of the data stream isn’t TRID (or some other transaction identifier
defined to the program dispatcher), the program dispatcher sends the message to
the sender’s alternate link, if one is defined and active; otherwise, it sends the
message to $.WASTE as undeliverable. Note that the data stream created when
the operator presses CLEAR or a PA key (a short read sequence) will not begin
with a transaction identifier; those messages will go to the alternate link or to
$.WASTE, not to your program.

In example 1, station 3270ST has no alternate link, so undefined transactions and
short read data streams are sent to $.WASTE.

A second example is shown in Figure 18 on page 78.

The CP LINK command to link the terminal to the program dispatcher and the
TID statement are the same as in example 1. In this example, an alternate link
(ALTST) is defined for station 3270ST:

CP LINK 3270ST ALTST ALT

In example 2, undefined transactions and short read data streams are routed to 0)
ALTST. Figure 18 on page 78 shows ALTST as a station associated with a BSC

Communications Facility Programmer’s Guide

$.PD
Transaction-

Processing

TID Program
for

TRID ‘ PROG l

LINK

3270ST

I/O control program

3270-type
terminal

Figure 17. 3270 Transaction Processing—Example 1

line and illustrates a way of routing transactions to a host transaction-processing
program. With this setup, transaction TRID and any other transactions defined to
the program dispatcher are routed to local programs. All undefined transactions
are routed to the host.

A third example is shown in Figure 19 on page 79.

In this example, the transaction-processing program is itself the alternate link for
the terminal:

CP LINK 3270ST PROG ALT

With this setup, all input from the terminal, including undefined transactions and
short read data streams, goes to program PROG.

Sending a Response to the Terminal

You may want to write a program that sends a response to a 3270-type terminal
after receiving a transaction from it. You can send the response either as an
ordinary data message or as a transaction.

To send the response as a data message, use the ORIGIN operand on the
instruction that receives transactions, and send the response to the origin station.
Format the response as a 3270 data stream. If your application program decides
which transaction the operator will issue next, include the transaction identifier in
the data stream as the first screen field. The attributes of the field should be
protected (so that the operator can’t modify it), nondisplay (because the operator
doesn’t need to see it), and MDT. The MDT (modified data tag) attribute will
cause the transaction identifier to be included as the first field of the next input
data stream.

Creating a Transaction 77

78

$.PD .
Transaction-
Processing
TID Program
for
TRID PROG
LINK
LINK ALT
3270ST > ALTST
I/O control program I/O control program
3270-type
terminal

Figure 18, 3270 Transaction Processing—Example 2

To send the response as a transaction, you must define the terminal station to the
program dispatcher as if it were a transaction-processing program. For example, to
define transaction identifier T37A for station 3270ST:

TID T37A 3270ST,,,N 13,,S

Notice the type code, 13. This type code does not cause the program dispatcher to
try to load a program named 3270ST.

Your program must have a way of associating a transaction identifier with a
terminal. You could have a table that equates transaction identifiers to station
names, or you could have the operator specify the transaction identifier as part of
the initial transaction. Whichever technique you use, you send a response to
station 3270ST by sending a T37A transaction to the program dispatcher. Make
transaction identifier T37A the first field in the data stream; it can be at any screen
location. The attributes of the field should be protected and nondisplay. Set the
MDT bit if you want the field to be included in the next input data stream. You
can include the identifier of the transaction the operator is to issue next as the first
screen field, as already discussed.

The following instructions build a data stream that contains an erase/write
command, T37A as the first field, and TRID as the second field:

PUT CO,BUFF,OPTION=ERASE
PUT F,BUFF,'T37A',ROW=1,COLM=2
PUT F,BUFF, 'TRID',ROW=1,COLM=2,ATTR=X'6D"

T37A is in the data stream to cause the program dispatcher to route the transaction

to station 3270ST. It will not be written to the terminal, because it will be overlaid
by the second field which has the same screen location.

Communications Facility Programmer’s Guide

e

¥

C

$.PD .
Transaction-
Processing
TID Program
for -
TRID PROG
<
NS
LINK o
3270ST
I/O control program

3270-type
terminal

Figure 19. 3270 Transaction Processing—Example 3

Communicating with Remote Terminals

All the examples in this section have the terminal and the transaction-processing
program in the same cell, so no cell identifier is required. When the first field of
the data stream is 4 bytes, the program dispatcher assumes that the transaction is to
be processed in the local cell. If you need to route data stream transactions to
remote cells, include the cell identifier as the fifth and sixth bytes of the first field.

Entering the Transaction into $.SYSPD

The final step in creating a transaction is to make an entry for it in the $.SYSPD
data set.

Use an EDX editor to add the following TID (transaction identifier) statement to
the data set:

TID tranid pgml|,vol,part,prefind][type,P,S,R][H]

tranid
is the 1- to 4-character transaction identifier.

pgm
is the 1- to 8-character name of the program that is to process the transaction.

vol

is the 1- to 6-character volume name of the program. The default is the [PL
volume.

Creating a Transaction 79

part
is the number of the partition where the program is to be loaded. You can
specify any of the following:

1t08
means that the specified mapped partition is used. If the partition does not
exist or is not mapped, the partition specification in the transaction table is set

to 0.
0
means that any available mapped partition is used.

-1to -8
means that any available mapped partition is used except the one specified.

CF
means that the $.CF partition is used.

NCF
means that any mapped partition is used except the $.CF partition.

prefind
indicates whether or not a prefind of the program’s data sets and overlays is to

be performed when the program dispatcher is started. Omit the parameter to
enable prefind; specify N to disable prefind.

bype
is the transaction type, discussed under ‘“‘Determining the Transaction’s Type”
on page 67.

P

indicates that the program may be purged to make its storage available to other

transaction-processing programs. This parameter is valid only for transaction
types 30 to 43.

S

indicates that this transaction is a 3270 data stream that the program dispatcher
is not to modify.

R
indicates that the program load retry counts set by the PD RC command are to
be ignored for this transaction. When there is no storage available for the

program, the load is to be retried until it succeeds or until the program dispatcher
is shut down.

H

puts the transaction on a hold queue. You must use a PD modify command or
transaction to release it.

Defining the Station in $.SYSNET

80

If you want the station that the program dispatcher creates for your program to
have a disk queue, or if you want its type to be other than message, you must
define that station in $.SYSNET. If you want your program’s transaction messages
to be queued in storage to a message-type station, there is no need to define the
station.

Communications Facility Programmer’s Guide

U

Tracing Transactions

When the station is defined in $.SYSNET, the program dispatcher issues a CP S
(start) command for the station instead of issuing a LOCATE instruction to create
the station block. If the station type is USER, the program is loaded by the start
processor, and it may not be loaded into the partition you specified in the TID
statement. If you specified the partition as 1 to 8, an attempt is made to load the
program into that partition. If there isn’t enough space, or if you specified some
other value for partition, the program is loaded into any available mapped partition.
To ensure that the program is loaded into the partition you specify, define the
station type as MSG so-that the program will be loaded by the program dispatcher.

To define a message station with a disk queue, either use the $. CONFIG utility
program or issue the following CP command in the cell where your program runs:

>CP DEF name na MSG dsnamel[,volume] {Y | N}

name
is the 1- to 8-character name of the transaction-processing program.

na
is the 4-digit hexadecimal network address, as appropriate to your network
configuration.

dsname
is the 1- to 8-character name of the disk-queue data set.

volume
is the 1- to 6-character name of the volume where the disk-queue data set
resides. The default is the volume where the message dispatcher resides.

Y|N
indicates whether or not disk queuing is to be activated when the station is
started.

While you’re developing a program or doing debugging, you may want to have a
record of all transactions processed by the program dispatcher. To get such a
trace, use the PD TRAC command. When you enter the command, you can direct
the trace output to any EDX terminal or to any station in a Series/1 where the
program dispatcher resides. You might choose a station whose messages are
disk-queued, thereby putting the trace output on disk for later display.

One line is displayed for each transaction received or sent by the program
dispatcher. These are some sample lines from the trace output:

2272 IN $.HMU 0016 SYSTSJHMU SJLU$.RMU
205 IN $.PD 0017 HMU SJSYST??LU$.RMU N
18 OT $.HMU 0017 HMU SJSYSTSJLU$.RMU N

The first item in each line is the time that has elapsed, in milliseconds, since the
preceding trace output. The second item indicates whether the program dispatcher
sent (OT) or received (IN) the transaction. The third item is the name of the
station from which the transaction was received or to which it was sent. The fourth

Creating a Transaction 81

item is the length of the transaction, in hexadecimal. The remaining data is the
transaction itself—the first 50 bytes for a character display, and the first 40 bytes
for a hexadecimal display. @

The format of the PD TRAC command is:

PD TRAC {ON | OFF}
’ [{destination | *}]
[X]
ON | OFF

turns the trace on or off.

destination
is the name of the EDX device or the station to receive the trace output.

displays the trace on the terminal where the PD TRAC command was entered.

X

indicates that the trace output is to be hexadecimal; if X is omitted, the trace
output is character.

Testing Transactions

While you’re testing a transaction-processing program, you may want to execute it

under control of the EDX $DEBUG program. To do so, you run the program in
test mode. You can run a program in test mode only if it is loaded by the program Q.D
dispatcher; do not define a user station for the program.

For example, say you’re debugging program XYZPROG, which processes
transaction XYZ. Transaction XYZ has this transaction identifier:

TID XYZ XYZPROG,,3 22

First you use the PD F command to place the transaction in test mode:

> PD F TID XYZ TE ON

Putting the transaction in test mode means that when the transaction is entered, the
program will be loaded but not executed.

Now enter an XYZ transaction, thereby loading the program:

> TRAN XYZbOObbbbbboptional data

Load $DEBUG and set whatever breakpoints you want. Then issue this command:

> GOTEST

You’ll get the message:

START XYZPROG (Y/N)?

Enter Y to start execution of XYZPROG, and debug the program.

82 Communications Facility Programmer’s Guide

C

You can run several programs under control of $DEBUG at the same time, but you
must load and activate the programs one at a time. For example, you are debugging
XYZPROG and ABCPROG, and you have entered a transaction to load

XYZPROG. If you then enter a transaction to load ABCPROG, youw’ll get these log
messages:

PD41 I 0000 $.PD XYZPROG WAITING, MUST BE STARTED FIRST
PD22 E 0000 $.PD ABC DISCARDED

Issue a GOTEST command to start execution of XYZPROG. Then re-enter the
transaction to load ABCPROG, and issue a GOTEST command for it.

To remove the test mode option, enter:

> PD F TID XYZ TE OFF

For the complete syntax of PD F and TRAN, see the Operator’s Guide.

Creating a Transaction 83

84

Communications Facility Programmer’s Guide

Sending WSC Transactions

Creating a Program to Communicate with EDX Terminals

The Communications Facility allows you to write interactive application programs
that communicate with EDX terminals anywhere in the network. Such programs
can communicate with:

« 3101, 4978, 4979, and 4980 terminals, and
o 4973,4974, 4975, 5219, 5224, and 5225 printers.

The program can communicate with multiple terminals, which can be attached to
any Series/1 in the network. The terminals need not be defined to the
Communications Facility, but they must be defined to EDX.

The Communications Facility program that allows you to manage such terminals is
called the work session controller. You communicate with it by means of
transactions. You send the work session controller a transaction specifying what
you want done at the terminal—for example, reading data, writing data, or
sounding a tone. The work session controller, running in the Series/1 to which the
terminal is physically attached, uses EDX I/0 instructions to perform the function
you requested. It sends another transaction as an acknowledgment.

You can also communicate with the work session controller through a set of
subroutines that can be called from COBOL or EDL programs. The subroutines
provide an interface similar to that of the EDX Multiple Terminal Manager
(Program Number 5719-MS2). Most Multiple Terminal Manager applications can
be converted to run under the Communications Facility. The subroutines are
discussed in the Communications Facility Work Session Controller High-Level
Language Subroutines Programmer’s Guide.

Images displayed through the work session controller are built through $SIMAGE
and stored in the partitioned data set $. WSCIMG. “Storing Images in the Image
Library” on page 89 explains how to convert $IMAGE images to work session
controller images.

The Communications Facility also includes a program, $. WSMENU, that you can
use to start communication between your application and its users. “Using
$.WSMENU on page 90 describes $.WSMENU.

The sample application in this chapter illustrates the use of some work session
controller transactions.

To make an I/0 request, you send a transaction whose transaction ID is WSC.
The WSC transaction, like any other transaction, is a fixed-format message. Part
of the fixed format is a 2-character command in bytes 13-14. You use the
commands to specify what you want done at the terminal. The commands are
described under “Work Session Controller Transaction Commands” on page 87.

In your program, you use the SEND MT or SEND TT instruction to send a WSC

transaction, just as you send any other transaction. The transactions are of various
lengths; be sure you set the correct count in the text header or the buffer header.

Creating a Program to Communicate with EDX Terminals 85

WSC Acknowledgment Transactions

When you send a WSC transaction, the work session controller does what you
requested; it may then send an acknowledgment transaction. For some WSC
transaction commands, an acknowledgment transaction is required and you must
specify where it is to be sent; in those cases, the acknowledgment transaction
contains data or a return code. For other commands, the acknowledgment
transaction is sent only if you request it; in those cases, it simply indicates that the
function you requested was performed.

To specify where the acknowledgment transaction is to be sent, you use the
secondary transaction and cell identifier fields of the WSC transaction. If you want
no acknowledgment, specify blanks. The work session controller, when it builds an
acknowledgment transaction, exchanges the primary and secondary identifiers from
the WSC transaction. As a result, the acknowledgment transaction is routed where
you specified; you can identify it (because its secondary transaction identifier is
WSC) as having been sent by the work session controller.

The format of the acknowledgment transaction is shown along with the description
of each work session controller command, in chapter ‘“Coding Work Session
Controller Transactions” on page 305.

Communicating with Multiple Terminals

86

To use storage most efficiently, your application should communicate with multiple
terminals. When you use the WSC transactions, you don’t have to keep track of
which terminal you’re communicating with or what function is being performed for
each terminal. Instead, you can design your application as if it were
communicating with only one terminal.

You do need to establish a session with each terminal—a connection between the
program and the terminal. To establish a session, you send two WSC transactions.
The first is SD (start device), in which you specify the EDX terminal name and
another name of your choice which you will use in all subsequent communications
with that terminal. The second is SS (start session), which causes an ENQT of the
terminal and, optionally, sends it a screen image. Your program can send the SD
and SS transactions for each terminal with which it’s going to communicate, or the
terminal operator can use the >TRAN command to send them.

In every WSC transaction, you code a command to specify what you want done
and a terminal’s session name to specify where it’s to be done. The work session
controller returns that information as part of every acknowledgment transaction.
Youissue a RECEIVE M or RECEIVE T instruction that waits for the receipt of
an acknowledgment transaction. When you receive an acknowledgment, you can
examine it to determine which function was completed for which terminal and
proceed accordingly.

Your application may need to know more about each terminal than its name and
the function just completed for it. The work session controller allows you to save
information associated with a specific terminal in storage or on disk.

When you send an SD (start device) transaction, you can request that a work area
of up to 128 bytes be allocated. The work area is appended to the station block
that the work session controller creates to represent the terminal. To refer to the
work area, use the LOCATE instruction to get the address of the terminal’s station

Communications Facility Programmer’s Guide

O

O

block. The area begins at the offset defined by USERWORK, which is an equate
in module SSWSCEQU. You can use the work area only when your program runs
in the Series/1 to which the terminal is attached.

You can use the SV (save data) and RS (restore data) transactions to save
information in a $.WSCIMG data set. You can save up to 256 records if the data
set is in the same Series/1 as your program. You can save up to 8 records if the
data set is in a different Series/1.

Work Session Controller Transaction Commands

The format of each work session controller transaction and the corresponding
acknowledgement transactions is given in chapter “Coding Work Session
Controller Transactions” on page 305. Each transaction includes a command. The
commands provide these functions:

Session Control

SD Start device; create station block to represent work session controller
terminal.

SS Start session with terminal; ENQT on terminal and, optionally, send a screen
image.

ES End session with terminal; DEQT terminal.
PD Stop device; delete station block.

SL Specify the station name by which the terminal is defined to the
Communications Facility as an emulated 3270 device.

LI Link to another program.

Terminal I1/0O Functions

BI Send a screen image from data set $.WSCIMG to a terminal.
CD Clear all unprotected data areas on a terminal.

RA Read protected or unprotected data from a terminal.
RD Read unprotected data from a terminal.

WD Write unprotected data to a terminal or printer.

WP Write protected data to a terminal.

PW Write data to the priority area of a terminal.
Terminal Control

RC Read the cursor position.

SC Set the cursor position.

LK Lock the keyboard.

Creating a Program to Communicate with EDX Terminals 87

UK Unlock the keyboard.

LS Set lock sequence to prevent keyboard from being unlocked when a WK @
command is issued.

US End lock sequence.

TN Sound the tone (audible alarm).

=

Set time-out interval for subsequent WK commands.

ST Set program function key table—a table of transaction identifiers of the
transactions to be sent when an operator presses a PF key.

RT Read program function key table.

WK Wait for operator to press ENTER or a PF key until interval set by IT
command has elapsed.

FT Read field table associated with a screen image in data set $.WSCIMG.
CC Skip lines or spaces on printer or roll screen terminal.

SF Set lines per inch for printer; set output pause for roll screen terminal; set
lines per page, margins, and overflow for printer or roll screen terminal.

Save and Restore Data
SV Save data in data set $.WSCIMG. WJ/

RS Restore data from data set $.WSCIMG.

Adding New WSC Transaction Commands

88

You can, if you want, create your own WSC transaction commands. To do that,
you have to add an entry for your command to the table of WSC transaction
commands labeled CMDTABLE in the module S§WSC.

The entry for each transaction command has this format:

DATA C'XX',A(routine)

where XX is the 2-character transaction command code, and routine is the label of
the routine that is to process this request.

To add your new command, simply add an entry of this form to the table. Add
your routine to SSWSC, reassemble it, and build load module $.WSC, as explained
in the section ‘“Maintaining the Communications Facility’’ in the Design and
Installation Guide.

Communications Facility Programmer’s Guide

For example, say you wanted to add a transaction command ‘“XX”’ which would
send the message “HELLQO” to a terminal. You would insert this entry into the
table:

DATA C'XX',A(SENDH)

You would also add this new routine:

SENDH PRINTEXT 'HELLO'
GOTO SD

where SD is the routine in the work session controller that sends a response if one
was requested and frees buffers.

Storing Images in the Image Library

Creating an Image

Images displayed through the work session controller must be in the partitioned
data set $.WSCIMG, which is distributed as part of the Communications Facility.
The $.WSCUT!1 utility program allows you to convert images that you have created
by means of the EDX $IMAGE utility to work session controller images.

You use the EDX utilities $DISKUT1 and $IMAGE to create an image.
Information about the EDX utilities is in the EDX Operator Commands and Utilities
Reference manual.

Use the DISKUTT1 utility to allocate a data set to store the output of $IMAGE.
Use the $SIMAGE utility to build or change your image. The line length must be

80. The number of rows can be from 1 to 24. Keep the data set that contains the
output of $SIMAGE if you might want to modify the image in the future.

Formatting and Storing an Image

Use the SI (format and store image) command of $.WSCUT1 to convert the output
of $IMAGE to a work session controller image and store it in the image library,
$.WSCIMG. Note that it is not necessary to allocate a member of $.WSCIMG to
hold the image; $.WSCUT!1 allocates the appropriate number of records. The
dialog to format and store an image is:

ENTER COMMAND (?): SI

ENTER $IMAGE DATA SET (NAME, VOLUME): MENU,EDX003
ENTER # OF FIRST IMAGE LINE (1-24): 1

ENTER WSC IMAGE NAME: MENU

PRESS ENTER TO DISPLAY IMAGE

THEN PRESS ENTER AGAIN TO PROCEED

At this point, the selected image appears on the screen for verification. Press
ENTER again to continue:

STORE MENU? (Y/N): Y
MEMBER MENU STORED

In case of a problem, you may receive one of five error messages:

ERROR » DETECTED DURING $IMOPEN

Creating a Program to Communicate with EDX Terminals 89

Displaying an Image

$.WSCUT1 uses the EDX subroutine $SIMOPEN to read an image from the
$IMAGE data set. This message indicates that the read failed. n can be:

G
1—Disk I/0 error

2—Invalid data set name

3—Data set not found

4—Incorrect header or data set length
S5—Input buffer too small

6—Invalid volume name

7—No 3101 image available

8—Data set name longer than 8 bytes

$IMAGE DATA SET INVALID FOR USE WITH WSC
LINE SIZE NOT 80

FIRST IMAGE LINE # MUST BE BETWEEN 1 AND 24

MEMBER name ALREADY USED
REPLACE? (Y/N)

NOT ENOUGH ROOM IN WSC IMAGE LIBRARY
MEMBER name NOT STORED

Use the DI (display image) command to display an image in the image library,
$.WSCIMG. The dialog to display an image is:

ENTER COMMAND (?): DI &
ENTER IMAGE NAME: MENU S
PRESS ENTER TO DISPLAY IMAGE

THEN PRESS ENTER AGAIN TO PROCEED

At this point, the selected image appears on the screen. Press ENTER again to
continue.

If $.WSCUT1 doesn’t find the member you request, you’ll get the message
“MEMBER name NOT FOUND”.

Maintaining the Image Library

Using $.WSMENU

$.WSMENU Functions

You use the EDX utility $DIUTIL. to maintain data set $. WSCIMG. You can
delete members, compress the data set, or copy members to a larger data set if you
need to enlarge it. You can also allocate members to be used by the work session
controlier command SV (save data).

$.WSMENU is a program, distributed with the Communications Facility, that you
can use to start sessions between EDX terminals and work session controller
application programs.

$. WSMENU displays a menu that offers the user various options. The options .
include several that you can use to start communication between your (—)
transaction-processing applications and their users.

90 Communications Facility Programmer’s Guide

O

Running $. WSMENU

The menu is distributed with the Communications Facility. It is a screen image
named MENU in data set $. WSCIMG.

Use any of the EDX editors to insert these two transaction identifiers into data set
$.SYSPD:

TID WSC $.WSC 42
TID MENU $.WSMENU 22

Start the program dispatcher:

> CP S $.PD

Issue a WSC SD (start device) transaction, as described later in this section, to start
a session between a terminal and $. WSMENU. The terminal cannot be the
Communications Facility system log device. You can issue the transaction from a
program, or you can use the TRAN command to issue it from a terminal:

> TRAN transaction

If the work session is already started, you can also use the WSC command to
generate a transaction that starts a session for the terminal where you issue the
command.

In the following example transactions, the character “b” represents a blank. The
transaction to start a session for EDX terminal $SYSLOGA, using the name
TERMO0004 for the session, is:

WSChbbbMENUbbSDTERMO0O04 $SYSLOGA

The WSC command to generate that transaction is:

> WSC MENU O TERMOOO4

If you don’t need a specific session name, you can just issue:

> WsC

and a session name that is the reverse of the EDX terminal name is generated. If
you issue the command at $SYSLOGA, the session name is AGOLSYSS.

If you need to communicate with an application that requires a user work area,
include the size of the work area in the transaction:

WSCbbbMENUbbSDTERMOO04 $SYSLOGAO64

or:

> WSC MENU 64

If you plan to select the option to communicate with a host, include the terminal’s
station name (the name by which it is defined to the Communications Facility)
after the work area field:

WSCbbbMENUbbSDTERM0O004$SYSLOGAOO0T4978

Creating a Program to Communicate with EDX Terminals 91

92

(You can’t use the WSC command in this case. It doesn’t have a station-name
parameter.)

1)
The WSC transaction causes the work session controller ($.WSC) to be started if it @
isn’t already. The transaction is sent to the work session controller, which starts

the specified terminal and issues this acknowledgment transaction (where x is Y or

N to indicate whether or not the terminal was started):

MENUbbWSCbbbSDTERMO004x

The MENU transaction causes $. WSMENU to be started if it isn’t already. The
transaction is sent to $.WSMENU, which starts a session with the terminal,
displays the menu shown in Figure 20 on page 93 and waits for input from the
terminal.

The menu offers these options:

1. Connect to a host system as a 3277 (valid only for 3101s, 4978s, and

4980s).
2. Terminate the session with this terminal and return it to EDX control.
3. Start the host management utility and remote management utility.

4. Build and send a transaction.
5-7. Send a predefined transaction called USR1, USR2, or USR3.

8. Connect to a program that uses the work session controller high-level (/ \)
language subroutines. LW 4

When you select option 1, $. WSMENU terminates the session and issues a CP S
(start) command for the terminal’s station name. To effect a communication to the
host, that station must be linked to an appropriate emulated terminal station, and
that station, plus its associated line station or SNA physical unit station, must be
active.

When the you select option 2, $.WSMENU terminates the session, thus freeing the
terminal for normal EDX use. $.WSMENU is ended if there are no more work
session controller terminals active.

When you select option 3, $.WSMENU terminates the session and sends a
transaction that loads the $.HMU program. $.HMU prompts you for a remote cell
designation and sends a transaction that starts the $.RMU program. Transaction
identifiers HMU and RMU must be defined to the program dispatcher. Refer to
the Operator’s Guide for more information about $.HMU and $.RMU.

When you select option 4, $.WSMENU responds with a request for data to build a
transaction. Enter the entire transaction you want $.WSMENU to send.

Communications Facility Programmer’s Guide

C

/

g Aot e g ## x% Rt ek e
T T TR A "% a% Bt ok LT
5 *% "% e wk Es
& R XX %k ek &k %
% kR X %k *% LT Tt T
ok ok w k& &% R R
i % P LI T % k%
fefe et & *% wx % A A Ak T
ok ek *% % f% T e d ke
==WORK SESSION CONTROLLER DEFAULT MENUs=====s====s======
SELECT OPTTION AND PRESS ENTER
CONNECT TO HOST (1) USER OPTION 1 (USR1) {(5)
END SESSION (2) USER OPTION 2 (USR2) (6)
START HMU/RMU (3) USER OPTION 3 (USR3) (7)
SEND TRANSACTION (4) HLS PRIMARY PROGRAM (8)
ENTER OPTION HERE ()

Figure 20. $.WSMENU User Menu

When you select one of options 5-7, $. WSMENU sends a PD (stop device)
transaction, thus freeing the terminal for use by an application program. It then
builds and sends a transaction with this format:

1-4 5-6 7-12 13-14 15-22 23-30 31-33 34-41
USRx I ch MENU?? | SD | terminal J EDXname size I staname
USRx

is the primary transaction identifier, where x is 1, 2, or 3.

pc
is the primary cell identifier (the cell in which $. WSMENU is running).

MENU??
.is the secondary transaction identifier and cell identifier.

SD .
is the start device work session controller command.

terminal
is the terminal name used for this session.

EDXname
is the EDX terminal name.

Creating a Program to Communicate with EDX Terminals

93

size
is the size of the user work area at the end of the station block for the terminal.

staname @

is the terminal’s station name.

Transaction identifier USRx must be defined to the program dispatcher. The
transaction causes a program (the one associated with USRx) to be started if it isn’t
already, and the transaction is sent to the program. If the program is to
communicate with the terminal through the work session controller, it just sends
the transaction after first changing the primary transaction identifier to WSC and
the secondary transaction identifier and cell identifier to indicate where the
acknowledgment is to be sent.

When you select option 8, $. WSMENU displays the high-level language
subroutines primary menu, from which you can select an application program that
uses the subroutines.

Example Transaction-Processing Application

94

The sample application in this section illustrates program segmentation, techniques
for coding various types of transaction-processing programs, and the use of work
session controller transactions.

The application is designed to be activated by option 5 of $. WSMENU. Option 5
causes transaction USR1 to be issued, as discussed under “Running $. WSMENU”’
on page 91. Once the terminal user has selected option 5, the application menu
shown in Figure 21 on page 95 is displayed.

The user can choose to: L W2

« Call a data entry program, which displays the data entry screen shown in
Figure 22 on page 96. The data entered on this screen is written to a disk file.
When the user has no more data to enter, pressing PF3 causes a return to the
application menu. ‘

o Call a batch program, which makes a backup copy of the data entry file.
+ Return to the main menu (the one displayed by $.WSMENU).

The application consists of four programs. The interaction between them and
$.WSMENU requires that these transaction identifiers be defined to the program
dispatcher:

TID WSC $.WSC 42

TID MENU $.WSMENU 22
TID USR1 STRTSESS 22
TID MEN1 MENUPROG 12
TID ENT1 ENTRPROG 32,P
TID BCH1 BTCHPROG 20

Communications Facility Programmer’s Guide

*
*
%
*
*
&
x
*
*

e g e e ke AR A AR AR e kA X e R e kAR R R AR A kR A e R

EVENT DRIVEN EXECUTIVE COMMUNICATIONS FACILITY

L Rt R e R Lttt R R R R R TR 2 2 R 2

PF1 - DATA ENTRY PROGRAM

PF2 - BATCH PROGRAM

PF3 - RETURN TO WORK SESSION CONTROLLER MAIN MENU

£
#*
*x
WORK SESSION CONTROLLER %
*
SAMPLE APPLICATION MENU *

*

*

/

Figure 21. Sample Transaction-Processing Program Menu

STRTSESS Program

MENUPROG Program

Program STRTSESS is started when the user selects option 5 from the
$.WSMENU menu. It issues three work session controller transactions:

e SD (start device), using the data passed in the USR1 transaction
¢SS (start session)
« LI (link), with the secondary transaction identifier MEN1.

STRTSESS is a type 22 program. It receives multiple transactions and terminates
when its work is finished—in this example, when its message queue is empty. Thus
it may start just one session, or it may start multiple sessions if several users log on
at approximately the same time. Figure 23 on page 98 is a listing of STRTSESS.

Program MENUPROG is started when the work session controller issues the
acknowledgment of STRTSESS’s link transaction. It terminates after issuing three
work session controller transactions:

« BI (build image), to display the application menu

s ST (set program function key table)
« WK (wait for key)

Creating a Program to Communicate with EDX Terminals 95

6 3 48 9 3 b 3

sedck ok ook Rk ok ek e kxR Lok ek ook ek e R Rk fodof hh R p e Rk ‘\\\

EVENT DRIVEN EXECUTIVE COMMUNICATIONS FACILITY
e de e e A deotol e ek & Aokl e g ool ok el ke e ot e g e e e ke Aok w kA X
CUSTOMER .NAME:

CUSTOMER NUMBER:

21IP CODE:

*
#*
*
WORK SESSION CONTROLLER *
SAMPLE DATA ENTRY MENU *

*

PF3 — RETURN TO APPLICATION MENU

/

Figure 22. Sample Data Entry Screen

The ST and WK transactions establish the following associations between PF keys
and transaction identifiers:

PF1—ENT1 PF2—MENI1
PF3—MEN1 other—MEN1

Thus MENUPROG is also started when the user presses ENTER or a PF key other
than PF1 and the work session controller issues the acknowledgment of the WK
transaction. The program proceeds according to the interrupt key code in the WK
acknowledgment.

If the user presses PF2, the program issues a WP (write protected) transaction to
notify the user that the batch job has been initiated. The secondary transaction
identifier is BCH1. The program then issues a WK transaction and terminates.
The user may again select an option from the application menu.

If the user presses PF3, MENUPROG issues an ES (end session) transaction with
the secondary transaction identifier MENU, and terminates. The acknowledgment
of the SS transaction is sent to $. WSMENU, which displays the main menu.

If the user presses ENTER or any other PF key, MENUPROG proceeds as it does
when it receives the acknowledgment of STARTSESS’s link transaction.

MENUPROG is a type 12 program. It receives one transaction (either an LI or a
WK acknowledgment), processes it, and terminates. Note that MENUPROG
routes the WK acknowledgment to itself. For other transactions, MENUPROG
specifies the secondary transaction identifier as BCH1, MENU, or blanks (no
acknowledgment). Figure 24 on page 100 is a listing of MENUPROG.

96 Communications Facility Programmer’s Guide

0

C

C

ENTRPROG Program

BTCHPROG Program

Program ENTRPROG is started the first time a user presses PF1 from the
application menu and the work session controller issues the acknowledgment of
MENUPROG’s WK transaction. Each time ENTRPROG receives such an
acknowledgment, it issues transactions to display the data entry screen, reset the
program function key stack, and wait for a key.

If the user presses PF3, the program issues a link transaction with the secondary
transaction identifier MEN1, which causes a return to the application menu.
Otherwise, the program reads the data from the screen, writes it to a file
(CUSTFILE), clears the user’s input from the screen, and waits for a key.

Because ENTRPROG is designed to communicate with multiple users, it has to
keep track of the next operation to be performed for each user. It does so by
storing a ‘“‘next operation” code in the user work area in the terminal station block.

ENTRPROG is a type 32 program. It receives multiple transactions, and
terminates when it receives a stop request in a status message. A stop request may
be issued because the application is being halted or (since the definition of ENT1
specified that the program is purgable) because the program dispatcher needs
storage for another program. Before terminating, ENTRPROG processes any
pending transactions on its message queue.

Note that ENTRPROG routes all transaction acknowledgments, other than the link
to MENUPROG, to itself. As a result, if the program is purged but the application
is not halted, the next acknowledgment causes the program to be restarted and it
continues where it left off. Figure 25 on page 102 is a listing of ENTRPROG.

Program BTCHPROG is started when the work session controller issues the
acknowledgment of MENUPROG’s WP transaction. It copies the data entry file
(CUSTFILE) to another file (BTCHFILE) and terminates.

BTCHPROG is a type 20 program. As long as it is running, no second copy of it is

loaded. Multiple copies are not allowed because all users of the application share
the files. Figure 26 on page 105 is a listing of BTCHPROG.

Creating a Program to Communicate with EDX Terminals 97

STRTSESS PROGRA

*x

M START

Fo e %o fp e e e e e e oo e e sk e oo e R e oo e sl e ook e e el Rk ek e e e e e e ok e ek sk e ek kg ek

* FUNCTION:
* TRANSACTION I
* PROGRAM TYPE:

START SESSION WITH TERMINAL USER

D: USR1
22

4+ 4k 3t

e oot g Stk Lo Ao e Bee A e A e el e e e ool de A koo e e e e R e e e ke e ek e ek Ao Ak
%

*

START EQU &

RECEIVE MsWSCTRANy EXIT=ERRO1 GET TRANSACTION

CALL GETACK EXTRACT COMMON FIELDS

IF (WSCCMDyEQsySDCMD) »GOTO »SD FROM $eWSMENU

IF (WSCCMDy EQ9SSCMD) yGOTO 4L I SESSTON STARTED

GOTO START - IGNORE ANY OTHER MESSAGE
%
R e e e e e e e e ek o e e e e e e e e e fe e e ofe e fe ol e e e e e e e e e o e ofe e e e e sl e Ak eofe i e ek ol e el e e ek e ek
PROCESS USR1 TRANSACTION SENT BY $.WSMENU: %
% USRL WSC SDTERMNAMEDEVNAME OOOSTANAME %

ek ok Bede e ook e e o el ek e ok e ook skl e ook e e e ok o e ek ek A e etk e e e ke e ek e ek

*

SD EQU *
GET FeDEVNAMEyWSCTRAN
GET FeWORK¢WSCTRAN
GET FeSTNAMEyWSCTRAN

GET EDX DEVICE NAME
IGNORE WORK AREA SIZE
GET CF STATION NAME

CALL PUTINITs(BLKTID),(SDCMD) BUILD SD TRANSACTION,
* eee NO SECONDARY TID
PUT FeaWSCTRAN9DE VNAME APPEND EDX DEVICE NAME

PUT FeWSCTRANy WORKSPAC APPEND WORK AREA SIZE
PUT FyWSCTRANy STNAME APPEND CF STATION NAME
SEND MT99sWSCTRANs EXIT=ERROL SEND SD TRANSACTION
CALL PUTINITy (PRITID)y (SSCMD) BUILD SS TRANSACTION,

= eee SECONDARY TID = USRI
PUT FeWSCTRANs*Y? WAIT FOR TERMINAL
SEND MTy+WSCTRANy EXIT=ERROL SEND SS TRANSACTION

GOTO START WAIT FOR ACKNOWLEDGMENT
*
fede e e e e oo e e e e ok A e AR e e e s e e e el A e e te e e e e ke e e e e e et e e gl A ek Ak
% PROCESS ACKNOWLEDGEMENT OF SS TRANSACTION. *

e #e o fe e o 2 e feofe e e e e e e e e e ke o e e fese e e e e e e ek e o ek e e e e e e sk e sk e e e e e e ek K ek ek F Lk
%
LI EQU ® ,
GET FyCODE yWSCTRAN CHECK SS RETURN CODE
IF (CODEsEQyC*N?yBYTE) yGOTO,ERRO2
CALL PUTINIT, (MENUTID)y (LICMD) BUILD LI TRANSACTION,
* eee SECONDARY TID = MEN1
SEND MT4sWSCTRANsEXIT=ERRO1 SEND TRANSACTION
ENDPROG EQU =
RECEIVE NOTIFY,WAIT=NO ANY MORE MESSAGES?
IF (STRTSESSsLT90)9GOTOsSTART YESs CONTINUE

LOCATE STy#1+0PTION=PROGSTOP PURGE STATION BLOCK & STOP
*x

Figure 23 (Part 1 of 2). STRTSESS Listing

98

Communications Facility Programmer’s Guide

‘::} o0t g e g R ke e e Rt o ok s ROt 4 g S o e e e ol o ke e g ok o e R e 0 8 20 2ok o o e et e

% GETACK: SURRDUTINE TO EXTRACT COMMON FIELDS FROM TRAMSACTION. *
fe s e e e e e e e ek e e ek gl e e el ol e e ol o o0 el Koo ek 4ok et et e e e e o el ok ke e o
%

SUBRIUT GETACK

GET FePRITID¢WSCTRAN PRIMARY TID/CELL (USRlae)

GET CeSECTIN+WSCTRAN SECONDARY TID/CELL (WSC aW)

GET FeWSCCMDyWSC TRAN WSC COMMAND

GET F e TERMNAME ¢y WSCTRAN TERMINAL NAME

RETURN

*
sl ot de o ke ook i et skl dok ok ol e ool e e el e ok ot ol ol ool sk ook ot e sl ol kloloke
* PUTINIT: SUBRIOUTINE TO BUILD COMMON FIELDS OF TRANSACTIONS

%* PARM-1 = SECOMDARY TID/CELL *
* PARM=2 = WSC COMMAND *
e sie e e e e A 3 o e e e e a ol 4 e e e ol e el e ofie e ol o e ool e afe el ol ofefe e e e ok e e ale ik e e ook sk sl sie Heole e e el ke A Aok
*
SUSROUT PUTINITHPUTTINDGPUTCHMD
PUT FeWSCTRANWSCTID9OPTION=INITIAL PRI TIN/CELL (WSC +4)
PUT FeWSCTRANyPUTTID SECONDARY TIND/CELL AS SPECIFIED
PUT FeWSCTRAN PUTCMD% WSC COIMMAND A5 SPECIFIFU
PUT FeWSCTRANYTERMNAME TERMINAL NAME
RETURN
*
e e o e e 2 e e e e e e it e e e e s o o e e e e s e o ool e Sl e e e o e ol sk e e o e e e ek e e e e o Aele e e ek e e ek ik
* ERROR ROUTINES =— LOG MESSAGE AND TERMINATS. *
e s e Ao e e e e ok ale o e sl e e e e e e o e afe ok otg o e ade e e e o el e e oo e ol ool ol e ol e e e e e s sfeolge o e e e ek K etk
%*
FRROY £QU * SEND/RECEIVE ERROR

SEND E499, *SEND/RECEIVF ERPOR® ¢ XCODE=STRTSESS
GATS ENJPROG

TRRU2 £QU * SS COMMAND FAILED
SEND E£998y *CANNOT START SESSION?
GOTL} ENDPRDG

*«

(:"Ll)\ e 3 e e e Xt 3t e o4 o0k o o o ok e e ik ode X o e e ofe e afe ok e o e ek K o e o e e e e s o e e e e e e i oo ok sk e e e e ol sl sl ok sk ool e
= DATA AREAS *
¢ e e s e e 2 e 3 e Fe xe e e o v sl ok X e ek e e oo e e e ek el e ool e e o s o ofe e sleofe o e e e o ok e ale e deode e et vl fesle e e ek A
%

WSCTRAN DEFINE BUFFER,SIZE=B0 WSC TRANSACTION BUFFER
WSCTID TEXT *WSC * WORK SESSION CONTROLLER TID/CELL
PRITIL TEXT LENGTH=6 PRIMARY TID/CELL
SECTIC TEXT LENGTH=6 SECONDARY TID/CELL
WSCCMD TEXT LENGTH=2 WSC COMMAND
TERMMAME TEXT LENGTH=8 TERMINAL NAME
CODE TEXT LENGTH=1 RETURN CODE FROM SS COMMAND
DEVNAME TEXT LENGTH=8 EDX DEVICE NAME
WORK TEXT LENGTH=12 WORKSPACE FROM $.WSMENU - IGNORE
STNAMZ TEXT LENGTH=8 CF STATION NAME
wORKSPAC TEXT *010° WO2K AREA SIZE FOR APPLICATION
MENUTID TEXT *MENL1?2° TIN/CELL FOR PROGRAM *MENUPROG®
2LKTID TEXT LENGTH=6 BLANK TID/CELL = N3 ACK
SDCMD TEXT vSD* START DEVICE COMMAND
SSCHD TEXT *§s¢ START SESSTON COMMAND
LICMD TEXT *LI® LINK CIMMAND

ENDPROG

END

Figure 23 (Part 2 of 2). STRTSESS Listing

Creating a Program to Communicate with EDX Terminals 99

MENUPROG PR3JGRAM START
*

oo e e e e e o et s e i st ool ool el e e ek e o e e s ol ek e e e e e o e e e e ot o oot e e e e o,

FUNCTION: ODISPLAY APPLICATION MENU OR PROUCESS USER'S INPUT *
% TRANSACTION ID: MEN1 i*
* PROGRAM TYPE: 12 *
e e el Qe sl o o ofe e e ek e ool s e ok e KRR e g A e o 4o ek o et e e ool el i ol oot e sk s e e s e e e e e s e ek
START EQU %

RECEIVE MyWSCTRANLEXIT=ERRQO1 GET TRANSACTION

CALL GETACK EXTRACT COMMDN FIELDS

*
*

e e e e e e e e e o el o e e s e 46 e o e ok o o s e X sk 46 % e e e e o s s R e o o e e o ool o et e e ok e o e ok
% PROCESS ACKNOWLEDGMENT OUF WK TRANSACTION. %
e e e e e et e ek ool e st st X2k et e el 30 i e X 000 %6 o 0 e e e e o ok s e sl e e ook o o e e e e e et o sk e e

x
&

IF (WSCCMDy EQsWKCMD) WSC COMMAND WAS WK

GET FoROWCOL 9 WSCTRAN IGNORE CURSIR RIW/CGLUMN

GET FeKEYCODEy WSCTRAN CHECK KEY CODE

IF (KEYCODE4EQsPF243) PF2 = EXECUTE BATCH JOB
CALL PUTINITS(BCHTID) 9 (WPCMD) BUILD WP TRANSACTION,

* eee SECONDARY TID = RB(H1

PUT FeWSCTRAN,ROWCOLL CURSDOR AT RGOW 23, COL 10
PUT FyWSCTRANJMESSAGE MESSAGE FOR USER
SEND MT494WSCTRANYEXIT=ERROL SEND TRANSACTION
GOTO WK DO WAIT KEY TRANSACTICN

ENDIF

IF (KEYCODESEQePF343) PF3 = RETURN TO $<WSMENU

CALL PUTINITo{BLKTID)9 (ESCMD) BUILD ES TRANSACTICN,
eee NO SECONDARY TID

i

SEND MT 49 9WSCTRANYEXTIT=ERRDL SEND TRANSACTION

CALL PUTINIT(WSCMTID)9(SSCMD) BUILD SS TRANSAZTION
% eee SECONDARY TID = MENU

PUT FeWSCTRANgtY? WAIT FOR TERMINAL

SEND MT49eWSCTRAN9EXIT=ERROL SEND TRANSACTION

GOTO ENNPROS DONE PROCESSING

ENDIF
ENDIF

%
e e e e e e e e e e ol e e e o s ek ot o e e e ot e e e ofe o e ok ok e e e e e e o e ool o e e o e o e ke o e
% PROCESS ACKNOWLEDGEMENT OF LI TRANSACTION ISSUED BY STRTSESS *
* OR USER INPUT OTHER THAN PF2 OR PF3. *

o e e e s e e e e ol o o e ok e e o el ootk e ek e o e o e ofe sk ook e e oo e e o e e e e e e e e e et e ok A o
%*

CALL PUTINITs (BLKTID)» (BICMD} BUILD BI TRANSACTION,
* eee NO SECONCARY TID
PUT FaWSCTRANYMENUIMAG APPEND IMAGE NAME
SEND MTye9WSCTRAN9 EXIT=ERROL SEND TRANSACTION
CALL PUTINITy (BLKTID) ¢ (STCMD) BUILD ST TRANSACTICN,
* ess NO SECONDARY TIOD
PUT FeWSCTRANs PFKSTACK APPEND PF KEY SETTINGS
SEND MT4yWSCTRAN9EXIT=ERRO1 SEND TRANSACTION
WK €QU *
CALL PUTINITs (MENUTID)y (WKCMD} BUILD WK TRANSACTIONS
* eee SECONDARY TID = MENL
SEND MT4y9WSCTRAN9EXIT=FRRO1 SEND TRANSACTION
ENDPROG EQU *
LOCATE STysf14OPTION=DELETE DELETE STATION IF NG MSGS
PROGSTOP LOGMSG=NO SToP

Figure 24 (Part 1 of 2). MENUPROG Listing

Communications Facility Programmer’s Guide

R e e e e et e oo o o X s o e e e oo e el e e e ofe e e oo e e e ok e e ok o e o e ofe o o o o e e e o e o sl o o e s o

#* GETACK: SURROUTINE TO EXTRACT COMMON FIELDS FROM TRANSACTION. B3
el e ek e e e e e e s e e e oo e e Qe e et sl sl e ot e oo o e e okl o e e ok o o o 00 ek o 0 i oot o oo e
*

SUBRJUT GETACK

GET FePRITIDyWSCTRAN PRIMARY TID/CELL (USRles)

GET FeSECTIDeWSCTRAN SECONDARY TID/CELL (WSC' ee)

GET FeWSCCMDyWSCTRAN WSC COMMAND

GET Fy TERMNAME ¢yWSCTRAN TERMINAL NAME

RETURN

$
e el e e 4 e e ok et e ol e e e e e e bl e lcde o el oK oo e e el e et e o e o e o e ot e e et e e oo o e o o
* PUTINIT: SUBROQUTINE TO BUILD COMMON FIFELDS OF TRANSACTION. *
* PARM-1 = SECONDARY TID/CELL *
* PARM-2 = wWSC COMMAND *
i e s s e sl e e e et ool e g e d Reofe ol e ook o ok R0 X oo e e e e e e ol o i e o sl e e e s o oo ok oK
£

SUBROUT PUTINITePUTTID,PUTCMD

PUT FoWSCTRANYWSCTID9OPTION=INITIAL PRI TID/CELL (WSC o)

PUT FeAdSCTRANSPUTT IO SECONDARY TID/CELL AS SPECIFIED
PUT FeWSCTRANy PUTCMD WSC COMMAND AS SPECIFIED
PUT FeWSCTRANy TERMNAME TERMINAL NAME
RETURN
*
e e e S e e e Qoo e e e e Xt e e e e e e e e e e e o ol e oo e e e s ol e i koo o e e e o e e e o o e e e ook
* ERROR ROUTINE =-- (0G MESSAGE AND TERMINATE. *
el e de e e e e o e e el ook s 4R B e ook oot e o ol ek o e 9ot o ool e e ool o s o o ok ok ke e o e o o ok
£
ERRG1 QU *

SEND E999y *SEND/RECEIVE ERRQR* ¢ XCODE=MENUPROGH
GOTO ENUPRRG
%
e e Xe e e e e e e e e ol sl o e o st s et o ol e sl e sk e ol e e e o o e o e e e oo o e ok e el 2 e e e e sk sk

* DATA AREAS : : *
el e e e g sl o e il e e e e e ol e e e e e el e o oot e ook e o e ok o o o o o e e e o g o st e o e e
*
WSCTRAN DEFINE BUFFEReSIZE=80 WSC TRANSACTION BUFFER
WSCTID TEXT *WSC . WORK SESSION CONTROLLER TID/CELL
PRITIOD TEXT LENGTH=6 PRIMARY TID/CELL
SECTID TEXT LENGTH=6 SECONDARY TID/CELL
WSCCMD TEXT LENGTH=2 WSC COMMAND
TERMNAME TEXT LENGTH=8 TERMINAL NAME
PFKSTACK TEXT *ENT1 MEN1 MENL *+LENGTH=30 PFL - PF3 SETTINGS
KEYCOOE TEXT LENGTH=3 KEY CODE FROM WK ACKNOWLEDGMENT
PF2 TEXT v 219 PF 2 KEY (CODE
PF3 TEXT ’ 3 PF 3 KEY COODE
MENUIMAG TEXT *MENUIMAG® APPLICATION MENU NAME
WSCMTID TEXT *MENU??! TIO/CELL FOR $eWSMENU
MENUTID TEXT *MEN12?2? TID/CELL FOR MENUPRQG
BCHTID TEXT *BCH1??°* TIO/CELL FOR BTCHPROG
BLKTID TEXT LENGTH=6 BLANK TID/CELL = NO ACK
ROWCGL TEXT LENGTH=4 POW & COL FROM WK - IGNORE
RUWCOL1 TEXT *2310°¢ ROW & COL FOR WP TRANSACTION
BICMD TEXT B]I? BUILD IMAGE COMMAND
STCMD TEXT *ST* SET PFKEY STACK COMMAND
WKCMD TEXT *WK?* WAIT KEY COMMAND
ESCMD TEXT *g5? END SESSION COMMAND
SSCMD TEXT eSs? START SESSION COMMAND
WPCMOD TEXT 'Wpe WRITE PROTECTED COMMAND
MESSAGE TEXT *#%%x BATCH JOB INITIATED #x%?
ENDPROG
END

Figure 24 (Part 2 of 2). MENUPROG Listing

Creating a Program to Communicate with EDX Terminals 101

it
4
ENTRPROG PROGRAM STARTDS=(({CUSTFILE EOX002)) O
e s s ale e e s e e oo e olofe e e el e e e e o s e e e s s e et e e st ok oo e e o e e e ok g o e o e
* FUNCTION: DISPLAY DATA ENTRY SCREEN AND PROCESS USER INPUT ok
* TRANSACTION ID: ENT1! *
#* PROGRAM TYPE: 32 *
e e s e e e el e e ok o s s e sie el el e e sk el s e e e e e e e o o e e e g o ikt o e A e e e o e e e e o e e e ok o oo e
3%
COPY SS$CFEQU
COPY SS$SWSCEQU
START EQU *
IF (QUITYEQ,1) STOP WAS REQUESTED
RECEIVE NOTIFYyWAIT=ND ANY PENDING MESSAGES?
IF (ENTRPROG¢GT 90} GOTO9ENDPROG NOs STOP

ENDIF .
RECEIVE MyWSCTRAN GET TRANSACTION
iF {ENTRPROG+GT40) ERRQOR?
IF (ENTRPROGyNE96) 9y GOTDERROL YES
* NO - STATUS MESSAGE

MOVE QUIT,1
GOTO START
ENDIF
CALL GETACK

SET STOP FLAG
PROCESS PENDING MSGS

EXTRACT COMMON FIZLDS

*

Heole ok e e e e e ae e e e ol e e oo e oot e s ek e st ok e e sk e e o e ok e e o e ofe e ot ol ot o i e o ot e e e e o e ok
* GET ADDRESS OF TERMINAL'S STATION BLOCK AND PROCEED ACCGRDING TO W
* 'NEXT OPERATIGON® CODE IN WORK AREA. *

el e s et e e ool e X e Al e o e e el o et e el ofe e e s e e e e e ok Rk e ek ot e e e e o oo o ok e

%
LOCATE STye#ly TERMNAMEEXIT=ERRDL

GOTD (3I9STySCaWKyCHKKEY9yRD9SC)y (USERWORK 1)

%*

BI EQU %* CODE = 0y DISPLAY DATA ENTRY SCREEN
CALL PUTINITy(PRITID)y(BICMD) BUILD BI TRANSACTION,

* eee SECONDARY TID = ENT1
PUT FeaWSCTRANGENTRIMAG APPEND IMAGE NAME
CALL SENDTRAN,1 SEND AND SET CODE =1
GOTO START GET ACKNOWLEDGEMENT

*

ST EQU * CODE = 1y RESET PF KEY STACK
CALL PUTINIT(PRITID)y(STCMD) BUILD ST TRANSACTION,

* eese SECDONDARY TID = ENTL
PUT FoWSCTRANy PFKSTACK APPEND PF KEY SETTINGS
CALL SENDTRAN,?2 SEND AND SET CODE = 2
GOTO START GET ACKNOWLEDGMENT

*

ScC EQuU CODE = 2 OR 69 SET CURSOR TO INPUT AREA
CALL PUTINIT,(PRITID)Q(SCCMD) BUILD SC TRAMSACTIONe

* eee SECONDARY TID = ENTI
PUT FesWSCTRANsROWCEOLL APPEND ROW/COLUMN
CALL SENDTRAN,3 SEND AND SET CODF = 3
GOTO START GET ACKNOWLEDGEMENT

%*

WK EQU * CODE = 3, SEND WAIT KEY TRANSACTION
CALL PUTINIT(PRITID) s (WKCMD) BUILD WK TRANSACTION,

%

CALL SENDTRAN,4
GOTO START

Figure 25 (Part 1 of 3). ENTRPROG Listing

eee SECONDARY TID = ENTI
SEND AND SET CODE = 4
GET ACKNOWLEDGEMENT

102

Communications Facility Programmer’s Guide

%

CHKKEY EQU * CODE = 4y GET KEY CODE FROM WK ACKNOWLEDGEMENT

GET FeRORCOL s WSCTRAN
GET FeKEYCODEsWSCTRAN
1F (KEYCODE EQ9PF343)

IGNORE CURSOR ROW/COUOLUMN
CHECK KEY CODE
PF3 = RETURN TO MENUPROG

CALL PUTINIT.(MENUTID)y (LICMD) BUILD LI TRANSACTION,

* ees SECONDARY TID = MENL
CALL SENDTRAN,O SEND AND SET CCDE = O
GOTO START GET ACK FROM ANJTHER USER
® ees OR WHEN THIS ONE
#* eee SELECTS MENU OPTION 1
ELSE
CALL PUTINIT,(PRITID),(RDOCMD) RUILD RD TRANSACTION,
% ees SECONDARY TID = ENTL
PUT FeWSCTRANs ROWCOLL SET INPUT AREA ROW/COLUMN
PUT FyWSCTRANs COUNTIN SET MAXIMUM DATA LENGTH
CALL SENDTRAN,S SEND AND SET CODE = 5
GOTO START GET ACKNOWLEDGMENT
ENDIF
x .
RO EQU CODE = 5, PROCESS USER INPUT (RD ACKNDWLEDGMENT)
* CLEAR USER INPUT FROM SCREEN

GET FeROWCOL s WSCTRAN
GET FeDATACNT g WSCTRAN
GET FeCUSTOATAWSCTRAN

IGNORE CURSIR RIW/COLUMN
GET DATA LENGTH
GET DATA

WRITE DS14CUSTDATA-2491,ERROR=ERRO2 WRITE DATA TO CUSTFILE
CALL PUTINIT#{(PRITID) s (CDCMD) BUILD CD TRANSACTION,
* X eee SECONDARY TID = ENT1
CALL SENDTRANsS SEND AND SET CODE = 6
GOTO START GET ACKNOWLEDGMENT
%
e e 3 e e o e e e o o e e e e o e 0k e ke ke e e e ol e e oo e ol o ol 3 ale e e e e ol ot e e el e ol e e ke o o e e e ke e e ek R e o kR
% HAVE BEEN ASKED TU STOP AND HAVE NO MORE STORAGE-QUEUED MESSAGES. %
e e e o e s e e e e e e e e e e ok e e e e 2e i e e ok st deate s kol sheade e e o e Sk e e e e e e e e e ol ok o e e ol e o e ok e e e ek
£
ENDPROG EQU *

LOCATE ST,#1+0PTION=PROGSTOP PURGE STATION BLOCK & STOP

%
s e e e e e e e e e el el e et o st e e e e e o e o e ol el o o e ek sk ok e e sk e e e e e e o e el ook
% GETACK: SUBROUTINE TO EXTRACT COMMON FTELDS FROM TRANSACTION. B3

4e 3 e e oo e e e e ok e i e e ol o b e A e o e e e e e o Rl s o Rl el s e e e o s s et o et e o ol e e sk e
*
SUBROUT GFTACK
GET FePRITIN,WSCTRAN
GET FeSECTIDyWSCTRAN
GET FeyWSCCMD e WSCTRAN
GET Fy TERMNAME yWSCTRAN

PRIMARY TID/CELL (USRles)
SECONDARY TID/CELL (WSC e)
WSC COMMAND

TERMINAL NAME

KETURN
-3
e s e e 8 e e e e e ofe e o e e e ok e o e o i i el ek o o ol e e e e e e oo e e e e e el e e e e e et e kol ok ek
% PUTINIT: SUBROUTINE TO bUILD COMMON FIELDS OF TRANSACTION. *
%* PARM~1 = SECONODARY TID/CELL *
%* PARM=2 = WSC COMMAND *

e e e s e e e s o e e e e e e i e i e el e e ksl o oo o et o el e e e o ek e o ol st et e ool e sk ok e e ek ok e

2
2

SUBRUUT PUTINITSPUTTID,PUTCMD

PUT FeWSCTRANsWSCTIDyOPTION=INITIAL PRI TID/CELL (WSC a4}
PUT FeaWSCTRANSPUTTIO* SECONDARY TID/CELL AS SPECIFIED
PUT FeWSCTRAN9PUTCMD=* WSC COMMAND AS SPECIFIED

PUT FeWSCTRAN, TERMNAME TERMINAL NAME

RETURN

Figure 25 (Part 2 of 3). ENTRPROG Listing

Creating a Program to Communicate with EDX Terminals

103

e 3 33 e e 30k 2k o v e e e e e e e e e e afe ofe e e e k3 e 2o e e ok s o e e e e o o e e e o X 3 e o e ek ke ik e e o e e e e e e e e oe e ok e Tk e e
* SENDTRAN: SUBROUTINE TO SAVE °*NEXT OPERATION®' CODE IN WORK AREA IN x
* TERMINAL®*S STATION BLOCK AND SEND THE TRANSACTION IN *
%* BUFFER WSCTRAN. e
e 3 2 e e 3ie o o e aje e e e e e e e e e ol e e v 3 2 v e e e e e 3 Qe ale Bk e e e ofe e e e deafe e o vk e e e e ale e e o e e e e e e e e o e e e el e
%*

SUBROUT SENDTRANSNXTCMO

MOVE (USERWORK9e#1l) e SNXTCMD MOVE SPECIFIED CODE TO WORK AREA

SEND MT9sWSCTRANyEXIT=ERROL SEND TRANSACTION

RETURN
%*
e 3 3 e 3 e e 3e 2 2ie 3¢ 3 0e 2 e e e Je e e e e B o 3 e o afe e e e afe ale e A e e e e e e e N e e o e i e e Ke e e e sk e e g o e o e e e e e A e ek ok
% ERROR RQUTINES -- LOG MESSAGE AND TERMINATE. %*

20 3e e e e o o e e e e e ook o e ok s e e ok e oo o ook e e e o e sk e e o e e e o ok 3o e ofe o e e o e e Xk e e e e ok e

*
FRRO1 EQU *
SEND E999y *SEND/RECEIVE ERROR® ¢ XCODE=ENTRPROG*
GOTC ENDPROG
ERRO2 EQU %*
SEND E9979'DISK I/0 ERROR' ¢XCODE=ENTRPROG*
GOTC ENDPROG
%

st e st e e i ol e e e ok ok e s e e e ot s e e o e e e ek sk o e ofe e o ek e e e e e oo e e e e e e e e ok o ol o Qe e ot e ok e ook e

% DATA AREAS

e Xe 3 e e 3k e e e e e e o s o e o e e o e e o o e e e afe e ae o e o e e e ok e ok o e o o e oo i o ofe e o e e e o e o ool e e e o ok e e o

%x
WSCTRAN DEFINE BUFFEReSIZE=200 WSC TRANSACTION BUFFER
WSCTID TEXT *WSC ‘ WORK SESSION CONTROLLER TID/CELL
PRITID TEXT LENGTH=6 PRIMARY TID/CELL
SECTID TEXT LENGTH=6 SECONDARY TID/CELL
WSCCMD TEXT LENGTH=2 WSC COMMAND
TERMNAME TEXT LENGTH=2 TERMINAL NAME
PFKSTACK TEXT LENGTH=30 RESET PF KEY STACK TO BLANKS
ENTRIMAG TEXT 'ENTRIMAG® NAME OF DATA ENTRY SCREEN IMAGE
MENUTID TEXT *MENL??2° TID/CELL FOR MENUPROG
BICMD TEXT *BI* BUILD IMAGE COMMAND
STCMD TEXT ST SET PF KEY STACK COMMAND
SCCMD TEXT *SC* SET CURSOR COMMAND
WKCMD TEXT *WK® WAIT KEY COMMAND
RDCMD TEXT *RD* READ DATA COMMAND
LICMD TEXT *LI* LINK COMMAND
CDCMD TEXT *CD* CLEAR DATA COMMAND
ROWCOL TEXT LENGTH=4 ROW & COL FROM WK ACK - TIGNORE
ROWCCOLY TEXT *1427* ROW & COL FOR SET CURSCR TRANSACTION
DATACNT TEXT LENGTH=4 NUMBER CHARACTERS READ
KEYCODE TEXT LENGTH=3 KEY OPERATOR PRESSED
COUNTIN TEXT *0100°
CUSTDATA TEXT LENGTH=254 DATA RECORD WRITTEN TO DISK
PF3 TEXT + 3¢
QUIT DATA F*Q° FLAG TO PURGE SELF
ENDPROG
END

Figure 25 (Part 3 of 3). ENTRPROG Listing

104

Communications Facility Programmer’s Guide

A

-7

BTCHPROG PROGRAM START¢DS=((CUSTFILE+EDX002)+(BTCHFILEZEDX002))
*

020 e e ol e et e ook etk e ok e ol e ko kR R A R R e R e Ak e ok e ok A A g A A A ek XA g A R A

% FUNCTION: MAKE BACKUP COPY OF DATA ENTRY FILE *
* TRANSACTION 1D: BCH1 *
% PROGRAM TYPE: 20 %
B R T LT T T T B TP e B P P I R e P e]
START EQU *

READ DS1+BUFFER 91 9ERROR=ENDPROG READ CUSTFILE

WRITE DS2+BUFFER 91 9yERRCR=ENDPROG WRITE BTCHFILE

GOTO START
ENDPROG PROGSTOP LOGMSG=NO sTOP
BUFFER BUFFER 2569BYTES

ENDPROG

END

Figure 26. BTCHPROG Listing

Creating a Program to Communicate with EDX Terminals

105

106

Communications Facility Programmer’s Guide

Writing an X.25 Application Program

An X.25 application program is a program that communicates with another X.25
program or device through a circuit station. Circuit stations are used only to route
messages from one Series/ 1 to another over an X.25 connection.

When you write an X.25 application program, you need to:
o Decide which kind of circuit station you’ll need to use

« Know how to establish a call; that is, a connection with another Data Terminal
Equipment (DTE)

¢ Understand the format of the messages you’ll send and receive.

X.25-defined packets other than data packets (for example, reset request packets,
incoming call packets, etc.) are referred to in this chapter as X.25 control packets.
Within the Communications Facility node, the corresponding information is
recorded in fixed format messages referred to as X.25 control messages. Refer to
the CCITT Recommendation X.25 if you need more detailed information on the
procedures and terms used in this chapter.

Determining the Circuit Usage

If you need only to send and receive data, use a circuit station with usage STD.
When you do so, you don’t have to establish the call; the X.25 I/O control
program establishes the call when the circuit station is started. The X.251/0
control program handles any control packets that come across the circuit.

@k

If you need to control the state of the X.25 circuit or get information about
network conditions, use a circuit station with usage STD+. When you do so, you
have to establish the call (if the circuit is a switched virtual circuit) by sending and
receiving X.25 control messages. Once the connection is made, you can send and
receive data and control messages.

Managing the Circuit Station

The circuit station you communicate with is managed by the X.25 IOCP.
However, no productive communication will occur until its link (your program) is
active. You should start the user station that represents your program before you
start the circuit station. If your program is the only one that ever communicates
with that circuit, you can stop the circuit station before terminating your program,
as illustrated in the following example. The example depends on the user station’s
being directly linked to the circuit station.

STOPMSG TEXT C'P XXXXXXXX'
STOPSTA EQU STOPMSG+2
®
[]
LOCATE ST, #1 FIND YOUR STATION
LOCATE NA,#1, (Q$DLV,#1) ,EXIT=NOLINK FIND ITS LINK
MOVE STOPSTA, (Q$NAME, #1) , (8,BYTES) GET CIRCUIT NAME
SEND CP, STOPMSG, ACK=YES SEND STOP COMMAND

w .

Writing an X.25 Application Program 107

Using X.25 Headers

When the IOCP detects that the circuit station has been stopped, it clears the call if
one is still established.

Each message that you send or receive (either data or control) begins with a header
that is referred to in this chapter as the X.25 header. This is not a Communications
Facility message header or an X.25 packet header. It is a header built and used by
the X.25 IOCP. The IOCP appends the header to messages that come across the
circuit before sending them on to their destination. It removes the header from
messages before sending them across the circuit.

The format of the X.25 header is:

Byte 1: Length of the header, including the first byte
Byte 2: Bits 0-1: Format identifier
Bits 2-7: Message type code

With the present version of X.25 support, the X.25 header length is always 2 bytes
and the format identifier is always 00. You should not assume either of these in
your program. X.25 support in the future could include headers of different
lengths or with different identifiers.

When you receive a message, take the header length from the header itself. You
don’t have to worry about the format identifier in data messages, but you do in
control messages. A format identifier other than 00 may mean that the control
message is not in the format described in this chapter; you should terminate your
program on this condition.

The message type code for data messages is 000000. The message type codes for
control messages are given in the section “X.25 Control Messages” on page 116.

Communicating with an STD Usage Circuit

Establishing the Call

To communicate with an STD usage circuit, set a direct link between your
program’s user station and the circuit station:

> CP LINK program circuit BOTH

You don’t have to specify a destination when you send messages; they’ll be sent to
the circuit station. All data messages that come across the circuit will be put on
your station’s message queue.

You don’t need to do anything in your program to establish the call. If the circuit is
a permanent virtual circuit (PVC), and the circuit station is started, the connection
is always established. If the circuit is a switched virtual circuit (SVC), the call is
either initiated automatically (contact type INIT) or accepted automatically
(contact type WAIT) after the circuit station is started.

A circuit station with usage STD can have contact type USERINIT. If it does, your
program must send a call request control message to initiate call establishment, as
explained in section ‘“Communicating with an STD+ Usage Circuit” on page 110.
You receive no indication of whether or not the call is established, so it is not

108 Communications Facility Programmer’s Guide

U

recommended that you specify contact USERINIT with an STD usage circuit. The
call request control message is the only control message you can send to an STD
usage circuit.

The information used to establish the call for contact type INIT or WAIT comes
from the circuit station definition and the X.25 data set, $.SYSX25. The Design
and Installation Guide explains how to define the required information.

Starting Communication

You can tell that the connection with the other end of the circuit has been made
when you receive a message. If you send a message before the connection is made,
it may be lost.

You may want to establish some sort of handshaking procedure with the program
or device you communicate with. For example, if the circuit is a PVC, you could
begin by sending a “hello” message, waiting a few seconds, and checking your
message queue to see if you got a response. Continue doing this until you get the
response or terminate your program after some number of attempts.

If the circuit is an SVC, you could begin by sending a “hello” message and waiting
until your partner responds. The other side would begin by waiting for the message
and sending a response when it is received.

You could also wait to send any messages to an SVC circuit station until the call
establishment is complete. When the call is connected, bit 15 of the circuit
station’s Q$STAT field is set to 1.

Here is an example of how to check the circuit station’s status; it depends on your
program’s user station being directly linked to the circuit station.

LOCATE ST, #1 FIND YOUR STATION

LOCATE NA,#1, (Q$DLV, #1) , EXIT=NOLINK FIND ITS LINK

DO WHILE, ((Q$STAT,#1) ,OFF, 15) IF NOT CONNECTED
STIMER 500,WAIT WAIT 500 MS

ENDDO

This method will not work for PVC circuit stations, because bit 15 of Q$STAT
indicates that this end of the permanent connection is ready to transmit data, even
when the program controlling the other end is not active.

Sending and Receiving Data Messages

Each message that you send or receive begins with an X.25 header, as explained in
“Using X.25 Headers” on page 108.

Writing an X.25 Application Program 109

The following example shows how to include the header in messages you send and

skip past it in messages you receive.

INBUFF DEFINE BUFFER,SIZE=256
OUTBUFF DEFINE BUFFER,SIZE=256
HELLO TEXT 'HELLO'
*
DATA X'0202'
X25HDR DATA X'0200'
*
X25LEN DATA F'O'
L
L
*%% SENDING A MESSAGE
PUT F,OUTBUFF, X25HDR, OPTION=INITIAL
PUT F,OUTBUFF, HELLO
SEND M, ,OUTBUFF

L]
.
**% RECEIVING A MESSAGE
RECEIVE M, INBUFF

MOVE X25LEN+1, INBUFF, BYTE
ADD INBUFF+B$ADDR, X25LEN, RESULT=41
SUB INBUFF+B$COUNT, X25LEN, RESULT=#2

Communicating with an STD+ Usage Circuit

110

INPUT BUFFER
OUTPUT BUFFER
MESSAGE DATA
X.25 HEADER:
TEXT COUNT FIELD
HEADER DATA

INPUT HEADER LENGTH

PUT HEADER
APPEND DATA
SEND MESSAGE

RECEIVE MESSAGE
GET HEADER LENGTH
SKIP HEADER
ADJUST LENGTH

You can write one program to communicate with an STD+ usage circuit. The
program sends and receives both data and control messages. Link the program and
circuit as shown in the section ‘“Communicating with an STD Usage Circuit” on

page 108.

You can also write one program to handle the data messages and another to handle
the control messages. To do this, set a direct link between the data program and
the circuit, a direct link from the control program to the circuit, and an alternate

link from the circuit to the control program:

> CP LINK data-program circuit BOTH
> CP LINK control-program circuit
> CP LINK circuit control-program ALT

You don’t need to specify a destination when you send either type of message;
they’ll be sent to the circuit station. All data messages that come across the circuit
will be put on the data-program’s message queue as Communications Facility data
messages; when you receive a data message, the instruction completes with return
code -1. All control packets, including qualified data packets, that come across the
circuit will be put on the control-program’s message queue as Communications
Facility status messages; when you receive a status message, the instruction

completes with return code +6.

X.25 control messages are sent to you as status messages whether you use one or
two programs to communicate with a circuit. Remember that your program may
also receive a status message that is a request to stop, as discussed in ‘“Terminating
Your Program” on page 28. The stop request is a 2-byte message that contains

either P (stop) or H (halt), followed by a blank.

Communications Facility Programmer’s Guide

O

Establishing the Call

You must send X.25 control messages as status messages. Use the SEND S
instruction if the message is in an EDX text area; use SEND SM if it’sin a
Communications Facility buffer.

If the circuit is a PVC, you don’t do anything in your program to establish the call.
The connection is always established as long as the circuit station is started. Start
communication with a PVC as described in ‘““Starting Communication” on page
109.

If the circuit is a SVC, you have to establish the call by sending and receiving
control messages. The procedure varies depending on the type of contact defined
for the circuit station.

When the contact type is WAIT, the circuit waits for a call from another DTE.
When an incoming call packet comes across the circuit, the X.25 IOCP sends your
program an incoming call control message. You can either:

« Send a call accept control message to accept the call. You can then begin data
transfer.

« Send a clear request control message to reject the call. You will receive a clear
confirmation control message. You should then wait for another incoming call
control message.

When the contact type is INIT, the X.25 IOCP sends a call request packet when
the circuit station is started. The address it calls is the one defined for the circuit
station’s call ID in data set $.SYSX25.

One of the following will occur:

« The other side accepts the call. You will receive a call connected control
message. You can then begin data transfer.

« The other side rejects the call. You will receive a clear indication control
message. The IOCP then either stops the circuit station if it is in STOP mode,
or tries again to establish the call if it is in RETRY mode. When you receive a
clear indication, you should either terminate the program or wait again for the
call to be established, depending on the circuit station’s mode. If you don’t
know its mode, you can locate the circuit station and check bit 9 of field
Q$DVD; 0=STOP mode, 1=RETRY mode.

o There is no entry for the circuit station’s call ID in $.SYSX25, the entry is
invalid, or $.SYSX25 is not accessible. You will receive an error indication
control message. You should terminate your program. Then stop the circuit
station, correct $.SYSX25, and start the circuit station and your program(s).

When the contact type is USERINIT, you must send a call request control message
to initiate the call. One of the following will occur:

» The other side accepts the call. You will receive a call connected control
message. You can then begin data transfer.

« The call request control message is invalid or the other side rejects the call.
You will receive a clear indication control message with information that

Writing an X.25 Application Program 111

Using Network Facilities

indicates why the call was rejected. If the call request was invalid, yow’ll need
to correct your program. If the other side rejected the call, you can either
either send another call request control message or terminate the program. ‘ O

o If you used an abbreviated address in your call request control message, there
is no entry for the circuit station’s call ID in $.SYSX25, the entry is invalid, or
$.SYSX25 is not accessible. You will receive an error indication control
message. Proceed as described for contact type INIT.

Once the call is established, you can send and receive data messages with an STD+
circuit just like you do with an STD circuit, as described in ‘‘Sending and Receiving
Data Messages” on page 109.

You can use network facilities that are subscribed to with the X.25 network carrier
during call establishment. You can define certain X.25 network facilities in contact

- type INIT or USERINIT circuit stations, using $.CONFIG or the CP F FAC

command. These facilities include fast select, reverse charge, closed user group,
bilateral closed user group, and RPOA. Facilities defined in the station are always
included in the call request packets sent for the circuit.

You can also include X.25 and non-X.25 facilities in the call request control
message you send to contact type USERINIT circuit stations. The format of the
facility field in the call request control message is identical with the format of the
facility field in call request packets described in CCITT Recommendation X.25.
Each facility consists of a code and a parameter. The facility code specifies which
facility is being used, and the facility parameter specifies the value of the facility.

Figure 27 lists some examples of X.25 network facility codes and parameters. @
Code Keyword Values Sample Description
(Hex) (Hex)
01 This code includes
3 facilities:
REV Bit7 =1 0101 Reverse the charges
FS Bits 0,1 = 10 0180 Fast select facility—
call request and
clear request or call
accept can carry user
data for delivery before
call is established.
01CO Fast select, restriction on
FSR Bits 0,1 = 11 response—like fast

select, but call must
be cleared, may not be
accepted.

Figure 27 (Part 1 of 2). X.25 Network Facilities

112 Communications Facility Programmer’s Guide

Code Keyword Values Sample Description

(Hex) (Hex)
@ 02 Coded bps 0288 Class throughput
negotiation— not looked at
by X.25 IOCP, but will be
passed to network.

03 CuG Number 0302 Closed user group number—
to use this, you must have
subscribed to at least one
closed user group in your

network.
41 BCUG Number 410365 Bilateral closed user group—
A special kind of user group.
42 Coded sizes 4208 Packet size negotiation— not

looked at by the X.25 IOCP
but will be passed on to

network.

43 Sizes 4304 Window size negotiation—not
looked at by the X.25 IOCP
but will be passed on to
network.

44 RPOA 4 BCD digits 440122 RPOA transit network data

network ID code.

Figure 27 (Part 2 of 2). X.25 Network Facilities

Q) You can include non-X.25 facilities in your call request control message by
separating the X.25 facilities from the non-X.25 facilities with a 2-byte facility
marker. The facility code in the marker must be 0. Note that X.25 facilities must
always precede the non-X.25 facilities.

You can include any X.25 facilities in your call request—not just the ones you can
define in circuit station definitions. If you include facilities in your call request
control message, and the same facilities are defined in the circuit station definition,
the values in the call request control message are used instead of the values defined
in the station. If the station has facilities that are not included in the call request
control message, they are added to the call request packet before it is sent. The
length of the facility field—including all facility codes and parameters—cannot
exceed 63 bytes.

Sending and Receiving Control Messages

When you send a control message, the X.25 IOCP builds a corresponding X.25
control packet and sends it across the circuit. When an X.25 control packet comes
across the circuit, the IOCP builds a corresponding control message and sends it to
your program (that is, to the circuit station’s direct or alternate link). The control
messages closely resemble their corresponding X.25 control packets, but they are
not identical.

The rest of this section describes the control messages you can send or receive.
You can use them with either PVCs or SVCs, unless noted otherwise. The format
of the control messages is given in section ‘“X.25 Control Messages” on page 116.

O

Writing an X.25 Application Program 113

Sending Control Messages

The control messages that you can send are:

Call Accept

Accepts a call on an SVC whose contact type is WAIT. You send it as a
response to an incoming call control message. The message may optionally
contain the called and calling X.25 network addresses; you can obtain these
from the incoming call control message. It may contain negotiable network
facilities—facilities specified by the caller that the accepter must acknowledge
or that the accepter can override. If the fast select facility is used during call
establishment, the message may also contain a protocol identifier and user
data.

Call Request

Initiates a call on an SVC whose contact type is USERINIT. The message
contains the X.25 network address to be called, or an abbreviated address
with the call ID of the address to be called. It may optionally contain the
network facilities to be used for the call, a protocol identifier, and user data.

Clear Request

Rejects a call on an SVC whose contact type is WAIT. Yousenditas a
response to an incoming call control message. If the fast select facility is used
during call establishment, the message may also contain user data.

You can also send a clear request control message to clear an established call
on an SVC with any contact type. Once the call has been cleared, a new call
can be established.

After you send a clear request control message for either reason, youw’ll receive
a clear confirmation control message, if the other side confirms the clear
within the time prescribed by CCITT Recommendation X.25. If the time limit
is exceeded, the X.25 I/O control program closes the X.25 circuit and you’ll
receive a clear indication control message.

Interrupt

Sends 1 byte of user data to the other side without flow control. After you
send an interrupt control message, yow’'ll receive an interrupt confirmation
control message. You can’t send another interrupt until you receive an
interrupt confirmation; you can send data messages.

Passthrough

Sends user-defined control information as qualified data packets (data packets
with the Q-bit on). You can use passthrough messages to send any sort of
data that you want your partner to receive as a control message. Their length
is restricted only by the buffer size of the line station with which the circuit
station is associated.

Reset Request

Reinitializes the circuit. Packets in transit may be discarded. When you send
a reset request control message, yow’ll receive a reset confirmation control
message if the other side confirms the reset within the time prescribed by
CCITT Recommendation X.25. If the time limit is exceeded, the X.25 I/0
control program closes the X.25 circuit and you’ll receive a reset (PVC) or
clear (SVC) indication control message.

114 Communications Facility Programmer’s Guide

U

AN
Ny

O

O

Receiving Control Messages

The control messages that you can receive are:

Call Connected

Indicates that the other DTE has accepted a call on an SVC you (contact
USERINIT) or the X.25 I/0 control program (contact INIT) initiated. The
message may optionally contain the called and calling X.25 network addresses
or negotiable network facilities. If the fast select facility is used during call
establishment, the message may also contain a protocol identifier and user
data.

Clear Confirmation

Confirms that the SVC has been cleared as a result of a clear request control
message you sent. The message contains no data.

Clear Indication

Indicates that the other DTE has rejected a call on an SVC you (contact
USERINIT) or the X.25 IOCP (contact INIT) initiated. The message
contains codes that indicate why the call was rejected. If the fast select
facility is used during call establishment, the message may also contain user
data.

You also receive a clear indication control message when the SVC has been
cleared as a result of a clear request by the other side, or as a result of an
error detected by the X.25 network or $XHCS. The message contains codes
that indicate why the circuit was cleared.

Error Indication

Indicates that the X.25 I/O control program rejected a control message you
sent because the message is invalid, there is something wrong with the circuit
station, or there is some problem with data set $.SYSX25. You also receive
an error indication control message when the IOCP cannot initiate a call
(contact INIT) because of a problem with the circuit station or $.SYSX25.
The message contains codes that identify the error.

Incoming Call

Indicates that a call has been initiated by the other side on an SVC whose
contact type is WAIT. The message contains the called X.25 network
address. It may optionally contain the calling X.25 network address, the
network facilities to be used for the call, a protocol identifier, and user data.

You must send a call accept control message if you accept the call or a clear
request control message if you reject the call.

Interrupt

Contains 1 byte of user data sent by the other side without flow control.

Interrupt Confirmation

Confirms that the other side received an interrupt packet as the result of an
interrupt control message you sent. The message contains no data.

Writing an X.25 Application Program 115

X.25 Control Messages

Passthrough
Contains user-defined control information sent by the other side in a data Ty
packet with the Q-bit set. U’

Reset Confirmation
Confirms that the circuit has been reset as a result of a reset request control
message you sent. The message contains no data.

Reset Indication
Indicates that the circuit has been reset as a result of a reset request by the
other side, or an error detected by the X.25 network or $XHCS. The message
contains codes that indicate why the circuit was reset.

This section gives the format of the X.25 control messages you can send or receive
when you use an STD+ usage circuit. Each message begins with an X.25 header,

-as explained in “Using X.25 Headers” on page 108. With the present version of

X.25 support, the message type code is in bits 2-7 of the second byte of the
header; bits 0-1 (the format identifier) are 00.

In the following formats, the numbers shown above specific fields represent bytes.

Certain fields have no numbers above them; this means that the field length is
variable.

"

116 Communications Facility Programmer’s Guide

O

Call Accept

Example

CALL ACCEPT

The call accept control message accepts a call on an SVC whose contact type is
WAIT. You send it as a response to an incoming call control message.

1 2 3 4 .
I hl | mc | al | called | calling | fl l faciIitie.sJ

hl
is the length, in bytes, of the X.25 header, For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘OF’.

al
is the number of BCD digits in the next two fields. The first 4 bits are the
number of BCD digits in the calling address (0-15). The last 4 bits are the
number of BCD digits in the called address (0-15). The field is optional if all
following fields are omitted.

called
is the called X.25 network address, specified as one to 15 BCD digits (one
binary digit per half-byte). If the address is an odd number of digits, the first
digit of the calling address is in the same byte as the last digit of the called
address. The field is optional.

calling
is the calling X.25 network address, specified as one to 15 BCD digits (one
binary digit per half-byte). The field is optional.

fl
is a 1-byte field that contains the length, in bytes, of the next field. The field
is optional if the next field is omitted.

facilities

is the negotiable network facilities to be used for the call. See “Using
Network Facilities” on page 112 for the format of this field. The field is
optional.

X'020F0812345678"

where 12345678 is the 8-digit called address.

Writing an X.25 Application Program 117

118

Communications Facility Programmer’s Guide

S

O

CALL ACCEPT WITH FAST SELECT

Call Accept with Fast Select Facility

The call accept control message accepts a call on an SVC whose contact type is
WAIT. You send it as a response to an incoming call control message that
requested the fast select facility.

1 2 3 4
I hl I mc l al | called | calling I fl Lfacilities I protid | user-data

hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘OF’.

al
is the number of BCD digits in the next two fields. The first 4 bits are the
number of BCD digits in the calling address (0-15). The last 4 bits are the
number of BCD digits in the called address (0-15). The field is required.

called
is the called X.25 network address, specified as one to 15 BCD digits (one
binary digit per half-byte). If the address is an odd number of digits, the first
digit of the calling address is in the same byte as the last digit of the called
address. The field is optional.

calling
is the calling X.25 network address, specified as one to 15 BCD digits (one
binary digit per half-byte). The field is optional.

1l
is a 1-byte field that contains the length, in bytes, of the next field. The field
is required; specify O if the next field is omitted.

facilities
is the negotiable network facilities to be used for the call. See “Using
Network Facilities” on page 112 for the format of this field. The field is
optional.

protid

is the protocol identifier, a 4-byte user-defined value.

The first 2 bits are significant to public data networks. Depending on their
value, the protocol identifier and the user data field will be used in accordance
with the specifications of the following:

00 - Recommendation X.29
01 - Network Administrations
10 - International User Bodies
11 - No constraints

A protocol identifier whose first 2 bits are other than 11 may cause a protocol
to be implemented within public data networks.

Writing an X.25 Application Program 119

CALL ACCEPT WITHFAST SELECT

The field is optional if the following field is omitted.

user-data
is user data such as a password or function selection information. The data
can be up to 124 bytes long.

Example
X'020F081234567800C0001234"',C' INVENTORY'
where 12345678 is the 8-digit called address; there are no negotiated facilities;
C0001234 is the protocol identifier; and INVENTORY is the user data.

120 Communications Facility Programmer’s Guide

O

)

Call Connected

Example

CALL CONNECTED

The call connected control message indicates that a call on an SVC has been
accepted. You receive it as a response to a call initiated by you (contact
USERINIT) or by the X.25 IOCP (contact INIT).

1 2 3 4
th I-mcl al | calledl calling l fl | facilities]

hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘OF’.

al
is the number of BCD digits in the next two fields. The first 4 bits are the
number of BCD digits in the calling address (0-15). The last 4 bits are the
number of BCD digits in the called address (0-15). The field is required;
specify O if the next two fields are omitted.

called
is the called X.25 network address, specified as one to 15 BCD digits (one
binary digit per half-byte). If the address is an odd number of digits, the first
digit of the calling address is in the same byte as the last digit of the called
address. The field is optional.

calling
is the X.25 network address that initiated the call, specified as one to 15 BCD
digits (one binary digit per half-byte). The field is optional.

11
is a 1-byte field that contains the length, in bytes, of the next field. The field
is required; specify O if the next fields is omitted.

facilities

is the negotiable network facilities to be used for the call. See “Using
Network Facilities” on page 112 for the format of this field. The field is
optional.

X'020F081234567800"

where 12345678 is the 8-digit called address and there are no negotiated facilities.

Writing an X.25 Application Program 121

122

Communications Facility Programmer’s Guide

O

CALL CONNECTED WITH FAST SELECT

Call Connected with Fast Select facility

The call connected control message indicates that a call on an SVC has been
accepted. You receive it as a response to a call initiated by you (contact
USERINIT) or by the X.25 IOCP (contact INIT), which requested the fast select
facility.

1 2 3 4
I hl l mc] al | called I calling | fl I facilities I protid] user-data]

hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘OF’.

al
is the number of BCD digits in the next two fields. The first 4 bits are the
number of BCD digits in the calling address (0-15). The last 4 bits are the
number of BCD digits in the called address (0-15). The field is required.

called
is the called X.25 network address, specified as one to 15 BCD digits (one
binary digit per half-byte). If the address is an odd number of digits, the first
digit of the calling address is in the same byte as the last digit of the called
address. The field is optional.

calling
is the X.25 network address that initiated the call, specified as one to 15 BCD
digits (one binary digit per half-byte). The field is optional.

fl
is a 1-byte field that contains the length, in bytes, of the next field. The field

is required; specify O if the next field is omitted.

facilities
is the negotiable network facilities to be used for the call. See “Using
Network Facilities” on page 112 for the format of this field. The field is
optional.

protid
is the protocol identifier, a 4-byte user-defined value.

The first 2 bits are significant to public data networks. Depending on their
value, the protocol identifier and the user data field will be used in accordance
with the specifications of the following:

00 - Recommendation X.29
01 - Network Administrations
10 - International User Bodies
11 - No constraints

A protocol identifier whose first 2 bits are other than 11 may cause a protocol
to be implemented within public data networks.

Writing an X.25 Application Program 123

CALL CONNECTED WITH FAST SELECT

The field is optional if the following field is omitted.

user-data
is user data such as a password or function selection information. The data
can be up to 124 bytes long.

Example
X'020F081234567800C0001234"' ,C"'INVENTORY"'
where 12345678 is the 8-digit called address; there are no negotiated facilities;
C0001234 is the protocol identifier; and INVENTORY is the user data.

124 Communications Facility Programmer’s Guide

C

Call Request

CALL REQUEST

The call request control message initiates a call on an SVC whose contact type is
USERINIT.

1 2 3 4
[11 | me | a1 | cattea| f1 | facitities | protid | user-data

hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘OB’.

al
is the number of digits in the address to be called, including the period if an
abbreviated address is specified. The field is required.

called
is the X.25 network address to be called, specified in one of two ways:

e an actual X.25 network address—up to 15 EBCDIC digits. The X.25
IOCP converts the address to BCD digits.

o an abbreviated network address—a period followed by a 2-digit EBCDIC
call ID. The IOCP looks up the call ID in data set $.SYSX25 and initiates
the call to the associated X.25 network address.

is a 1-byte field that contains the length, in bytes, of the next field. This field
is required; specify O if the next field is omitted.

facilities
is the negotiable network facilities to be used for the call. See “Using
Network Facilities” on page 112 for the format of this field. The field is
optional.

protid
is the protocol identifier, a 4-byte user-defined value that can be used to
decide whether or not a call from a particular X.25 network address will be
accepted.

The first 2 bits are significant to public data networks. Depending on their
value, the protocol identifier and the user data field will be used in accordance
with the specifications of the following:

00 - Recommendation X.29
01 - Network Administrations
10 - International User Bodies
11 - No constraints

A protocol identifier whose first 2 bits are other than 11 may cause a protocol
to be implemented within public data networks.

Writing an X.25 Application Program 125

CALL REQUEST

The field is optional if the following field is omitted.

user-data
is user data such as a password or function selection information. The data
can be up to 12 bytes, or up to 124 bytes if the fast select facility is being
used. The field is optional.

Example

126

X'020BO6F1F1F2F2F3F3050181415566C0001234"' ,C'PASSWORDCSAD'

where 112233 is the 6-digit called address in EBCDIC; in the 5-byte facility field,
0181 is the fast select and reverse charge facilities, and 415566 is the bilateral
closed user group facility with a group number of 5566; C0001234 is the protocol
identifier; and PASSWORDCSAD is the user data field.

Note that there is no calling address field in a call request control message. If you
want a calling address in the call request, use $.CONFIG or the CP F ADDR
command to define the address in the circuit’s controlling line station. If the line
station contains a calling address, the X.25 I/O control program includes it in all
call requests it sends out on the line’s circuits.

Communications Facility Programmer’s Guide

CLEAR CONFIRMATION

Clear Confirmation

The clear confirmation control message confirms that the SVC has been cleared as
a result of a clear request control message you sent.

hl

is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘17°.

Writing an X.25 Application Program 127

128

Communications Facility Programmer’s Guide

&

Clear Indication

Example

The clear indication control message indicates that the SVC has been cleared as a
result of a clear request by the other side, an error detected by the X.25 network or
$XHCS, or because a CP P command issued for the circuit station.

1 2 3 4
Ihllmclcaldil

hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘13’.

ca
is the cause code. It contains one of the following values:

X‘00’ - DTE originated

X‘01’ - Number busy

X‘03’ - Invalid facility request

X‘05’ - Network congestion

X‘09’ - Out of order

X‘OB’ - Access barred

X‘0OD’ - Not obtainable

X‘11’ - Remote procedure error

X‘13’ - Local procedure error

X‘15’ - RPOA out of order

X‘19’ - Reverse charging not subscribed
X‘21’ - Incompatible destination

X‘29’ - Fast select acceptance not subscribed
X‘FO’ - Error on line

X‘FF’ - Circuit station was stopped

di

is the diagnostic code. See Figure 28 on page 152 for a list of diagnostic
codes and their meanings.

X'02130300'

where the cause code, 03, means you requested an invalid facility in the call request
packet sent on your circuit, and 00 is the diagnostic code that indicates there is no
additional information.

Writing an X.25 Application Program 129

130 Communications Facility Programmer’s Guide

O

CLEAR INDICATION WITH FAST SELECT

Clear Indication with Fast Select Facility

The clear indication control message is used in conjunction with the fast select
facility to indicate that the SVC has been cleared as a result of a clear request by
the other side, an error detected by the X.25 network or $XHCS, or because of a
CP P command issued for the circuit station.

1 2 3 4 S
r hl I mc l ca I di l al rcalledl calling l fl I facilities user-dataJ

hl

is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘13’.

ca
is the cause code. It contains one of the following values:

X‘00’ - DTE originated

X‘01’ - Number busy

X‘03’ - Invalid facility request

X‘05’ - Network congestion

X‘09’ - Out of order

X‘OB’ - Access barred

X‘OD’ - Not obtainable

X‘11’ - Remote procedure error

X*‘13’ - Local procedure error

X‘15’ - RPOA out of order

X‘19’ - Reverse charging not subscribed
X‘21’ - Incompatible destination

X29’ - Fast select acceptance not subscribed
X‘FO’ - Error on line

X‘FF’ - Circuit station was stopped

di
is the diagnostic code. See Figure 28 on page 152 for a list of diagnostic
codes and their meanings.

al
is the number of BCD digits in the next two fields. The first 4 bits are the
number of BCD digits in the calling address (0-15). The last 4 bits are the
number of BCD digits in the called address (0-15). The field is optional if all
of the following fields are omitted. At present, the field is O if any of the
following fields are specified. .

called
is the called X.25 network address, specified as one to 15 BCD digits (one
binary digit per half-byte). At present, omit this field.

calling
is the X.25 network address that initiated the call, specified as one to 15 BCD
digits (one binary digit per half-byte). At present, omit this field.

Writing an X.25 Application Program 131

CLEAR INDICATION WITH FAST SELECT

1l
is a 1-byte field that contains the length, in bytes, of the facilities field. The
field is optional if the user-data field is omitted. At present, the field is O if
the user-data field is specified. '

facilities
is the facilities field. At present, this field is omitted.

user-data

is up to 128 bytes of user data. The field is optional.

Example

X'021300000000"',C'CUSTOMER SMITH OK FOR PURCHASE'
where:

00 (DTE originated) is the cause code;

00 (no further information) is the diagnostic code;

00 is the address lengths;

00 is the facilities length; and

CUSTOMER SMITH OK FOR PURCHASE is the clear user data.

132 Communications Facility Programmer’s Guide

O

CLEAR REQUEST

Clear Request
The clear request control message clears an SVC. You send it either in response to
0 an incoming call control message or to clear an established call.
1 2 3 4
[a1 [me|ca|ail
hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.
mc
is the format identifier and the message type code, X‘13’.
ca
is the cause code. Specify X‘00’ (DTE originated) or omit the field.
di
is the diagnostic code. See Figure 28 on page 152 for a list of diagnostic
codes and their meanings. The field is optional.
Example
X'021300'

where 00 is the cause code for DTE originated.

Writing an X.25 Application Program 133

134

Communications Facility Programmer’s Guide

N

O

CLEAR REQUEST WITH FAST SELECT

Clear Request with Fast Select Facility

The clear request control message clears an SVC. You send it in response to an
incoming call control message which specified the fast select facility if you wish to
clear the the call. You must send it in response to an incoming call which specified
the fast select facility with restriction on response.

1 2 3 4 5
rhl | mc I ca Ldi | al [called calling Lﬂ Lfacih’ties I user-data

hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘13°.

ca
is the cause code. Specify X‘00’ (DTE originated).

di
is the diagnostic code. See Figure 28 on page 152 for a list of diagnostic
codes and their meanings. The field is optional if all of the following fields are
omitted.

al
is the number of BCD digits in the next two fields. The field is optional if all
of the following fields are omitted. Specify O if any of the following fields are
present.

called
is the called X.25 network address, specified as one to 15 BCD digits (one
binary digit per half-byte). At present, omit this field.

calling
is the X.25 network address that initiated the call, specified as one to 15 BCD
digits (one binary digit per half-byte). At present, omit this field.

fl
is a 1-byte field that contains the length, in bytes, of the facility field. The
field is optional if the user-data field is omitted. Specify O if user-data is
present.

facilities
is the facilities field. At present, this field is omitted.

user-data

is up to 128 bytes of user data. The field is optional.

Writing an X.25 Application Program 135

CLEAR REQUEST WITH FAST SELECT

Example

X'021300000000',C'CUSTOMER SMITH OK FOR PURCHASE'

-

where:

00 (DTE originated) is the cause code;

00 (no further information) is the diagnostic code;

00 is the address lengths;

00 is the facilities length;

and CUSTOMER SMITH OK FOR PURCHASE is the clear user data.

136 Communications Facility Programmer’s Guide

ERROR INDICATION

Error Indication
The error indication control message indicates that the X.25 IOCP rejected a
0 control message you sent or could not initiate a call on an SVC (contact INIT).
1 2 3 4
Ll {me|at | cal
hl
is the length, in bytes, of the X 25 header. For the present version of X.25
support, this field is X‘02’.
mc
is the format identifier and the message type code, X‘35’.
ca
is the cause code. It contains one of the following values:

X‘32’ - Interrupt data is wrong length
X*33’ - Received unknown control message
X‘35’ - Clear is not allowed on PVC
X‘39’ - Reset data is too long
X‘44’ - Interrupt is already pending
X‘64’ - Error in $.SYSX25
X‘90’ - Circuit is in invalid state
X‘91’ - SVC has invalid contact type

cd

h is additional information for the following cause codes (it is omitted for the
other cause codes):
33: The unknown message code
64:
X‘02’—call ID not found in $.SYSX2S5 or entry for call ID is invalid
X*03’—Disk I/0 error during access to $.SYSX25
90: The invalid circuit state
91: The invalid contact type
Example
X'02356403"

where 64 is the error cause code for a $.SYSX25 data set error, and 03 means it
was a hardware error.

Writing an X.25 Application Program 137

138

Communications Facility Programmer’s Guide

O

g

O

Incoming Call

INCOMING CALL

The incoming call control message indicates that a call has been initiated by the
other DTE on an SVC whose contact type is WAIT.

1 2 3 4
I hl | mc | al I calledl calling | fl | facilities Jlrotid | user-data

hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘OB’.

al
is the number of BCD digits in the next two fields. The first 4 bits are the
number of BCD digits in the calling address (0-15). The last 4 bits are the
number of BCD digits in the called address (0-15).

called
is the called X.25 network address, specified as one to 15 BCD digits (one
binary digit per half-byte). If the address is an odd number of digits, the first
digit of the calling address is in the same byte as the last digit of the called
address.

calling
is the X.25 network address that initiated the call, specified as one to 15 BCD
digits (one binary digit per half-byte).

fl
is a 1-byte field that contains the length, in bytes, of the next field. It contains
0 if the next field is omitted.

facilities
is the negotiable network facilities to be used for the call. See “Using
Network Facilities” on page 112 for the format of this field. The field is
optional.

protid

is the protocol identifier, a 4-byte user-defined value that can be used to
decide whether or not a call from a particular X.25 network address will be
accepted.

The first 2 bits are significant to public data networks. Depending on their
value, the protocol identifier and the user data field will be used in accordance
with the specifications of the following:

00 - Recommendation X.29
01 - Network Administrations
10 - International User Bodies
11 - No constraints

A protocol identifier whose first 2 bits are other than 11 may cause a protocol
to be implemented within public data networks.

Writing an X.25 Application Program 139

INCOMING CALL

The field is optional if the following field is omitted.

user-data O
is user data such as a password or function selection information. The data
can be up to 12 bytes, or up to 124 bytes if the fast select facility is being
used. The field is optional.

Example
X'020F651122312345600201C1"
where 11223 is the 5-digit called address; 123456 is the 6-digit calling address; and

in the 2-byte facility field, 01C1 is the fast select restriction on response and
reverse charge facilities.

C

140 Communications Facility Programmer’s Guide

C

Interrupt

Example

INTERRUPT

The interrupt control message contains 1 byte of user-defined control information.
You can send or receive an interrupt control message.

1 2 3
[n1 | mc]| aa |
hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.
mc
is the format identifier and the message type code, X‘23.
da
is the byte of interrupt data.
X'0223D2"

where D2 is the byte of interrupt data.

Writing an X.25 Application Program 141

142

Communications Facility Programmer’s Guide

o

O

Interrupt Confirmation

INTERRUPT CONFIRMATION

The interrupt confirmation control message confirms that the other side received
the interrupt control message you sent.

1 2

hl

is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘27°.

Writing an X.25 Application Program 143

144

Communications Facility Programmer’s Guide

Passthrough

O

Example

PASSTHROUGH

The passthrough control message contains user-defined control information. The
message flows on the X.25 circuit in qualified data packets. You can send or
receive a passthrough control message.

1 2 3
Ihl |mc|data|

hi
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘00’.

data
is the user-defined data.

X'0200',C'CLASSIFIED: SMITH'S CREDIT RATING IS VERY GOOD'

where CLASSIFIED: SMITH’S CREDIT RATING IS VERY GOOD is the data to
be sent as qualified data.

Writing an X.25 Application Program 145

146

Communications Facility Programmer’s Guide

RESET CONFIRMATION

Reset Confirmation

The reset confirmation control message confirms that the circuit has been reset as a
result of a reset request control message you sent.

hl

is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘1F.

Writing an X.25 Application Program 147

148

Communications Facility Programmer’s Guide

O

Reset Indication

Example

RESET INDICATION

The reset indication control message indicates that the circuit has been reset as a
result of a reset request by the other side, an error detected by the X.25 network or
$XHCS, or because of a CP P command issued for a PVC circuit station.

1 2 3 4
L nt | mc|ca|ail

hl

is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

mc
is the format identifier and the message type code, X‘1B’.

ca
is the cause code. It contains one of the following values:

X‘00’ - DTE originated

X‘01’ - Out of order (PVCs only)

X‘03’ - Remote procedure error

X‘05’ - Local procedure error

X‘09’ - Remote DTE operational (PVCs only)
X‘OF’ - Network operational (PVCs only)

X‘11’ - Incompatible destination

X‘FO’ - Error on line (PVCs only)

X‘FF’ - Circuit station was stopped (PVCs only)

di

is the diagnostic code. See Figure 28 on page 152 for a list of diagnostic
codes and their meanings. The field is optional.

X'021B0900'

where the cause code, 09, means the other end of the PVC is active and ready to
receive messages, and the diagnostic code, 00, means there is no additional
information.

Writing an X.25 Application Program 149

150

Communications Facility Programmer’s Guide

RESET REQUEST

Reset Request

The reset request control message reinitializes the circuit by resetting the windows
on each side to zero.

1 2 3 4
|hllmc[ca|di|

hl
is the length, in bytes, of the X.25 header. For the present version of X.25
support, this field is X‘02’.

is the format identifier and the message type code, X‘1B’.

ca
is the cause code. Specify X‘00’ (DTE originated) or omit the field.

di
is the diagnostic code. See Figure 28 on page 152 for a list of diagnostic
codes and their meanings. The field is optional.

Example

X'021B00O"

where 00 is the cause code for DTE originated.

Writing an X.25 Application Program 151

Diagnostic Code Meaning
Decimal Hex
0 00 No diagnostic information
1 01 Invalid P(S)
2 02 Invalid P(R)
16 10 Packet type invalid
17 11 Packet type invalid for state R1
18 12 Packet type invalid for state R2
19 13 Packet type invalid for state R3
20 14 Packet type invalid for state P1
21 15 Packet type invalid for state P2
22 16 Packet type invalid for state P3
23 17 Packet type invalid for state P4
24 18 Packet type invalid for state P5
25 19 Packet type invalid for state P6
26 1A Packet type invalid for state P7
27 1B Packet type invalid for state D1
28 1C Packet type invalid for state D2
29 1D Packet type invalid for state D3
32 20 Packet not allowed
33 21 Unidentifiable packet type
34 22 Incoming call on one way logical channel
35 23 Invalid packet type on a permanent virtual circuit
36 24 Packet received on an unassigned logical channel
37 25 Reject packet not supported
38 26 Packet too short
39 27 Packet too long
40 28 Invalid general format identifier
41 29 Restart packet received with nonzero in bits 1-4,
9-16
42 2A Packet type not compatible with facility
43 2B Unauthorized interrupt confirmation
44 2C Unauthorized interrupt
48 30 Timer expired
49 31 Timer expired for incoming call
50 32 Timer expired for clear indication
51 33 Timer expired for reset indication
52 34 Timer expired for restart indication

Figure 28 (Part 1 of 2). Diagnostic Codes

152 Communications Facility Programmer’s Guide

e ‘\‘
AN

64 40 Call set-up problem

65 41 Facility code not allowed

66 42 Facility parameter not allowed

67 43 Invalid called address

68 44 Invalid calling address

80 50 Not assigned

161 Al Invalid M-bit on non-full Data packet
174 AE Invalid Q-bit on packet

Figure 28 (Part 2 of 2). Diagnostic Codes

Writing an X.25 Application Program

153

154

Communications Facility Programmer’s Guide

I}

(1f ™

O

Creaﬁng a Command

The Communications Facility command processor consists of an initial task (task
CP in the control program, S$CF) plus a set of independent command-processing

programs (one per command). To add a new command to the Communications
Facility, you must:

e Decide what functions the command is to provide.
¢ Define the command’s syntax.

« Name your command-processing program so the Communications Facility will
recognize it as a program that processes a command.

o Code your command-processing program.
e Add a description of the command to the module SSCPHELP, which processes
the CP HELP command. (This step is not strictly required, but is

recommended.)

The rest of this chapter discusses the following topics, which you need to consider
as you code your command-processing program:

o Naming your program.
¢ Retrieving the command parameters the user entered.

¢ Getting information from, and writing information to, the network
configuration data set ($.SYSNET).

¢ Getting information from, and writing information to, other Communications
Facility data sets.

« Sending messages to indicate successful completion or error conditions.
« Sending a completion code upon termination.
e Avoiding deadlocks.
« Ensuring that your program will load.
Example Command-Processing Program
Example command-processing program S$CPBIT, shown in Figure 29 on page

159, illustrates the steps described in the rest of this chapter. We’ll be referring to
this example throughout.

S$CPBIT processes the BIT command (which is not part of the Communications
Facility). The BIT command modifies a station by setting a bit in the status word
(QS$STAT) on or off. The status word is modified in the system configuration data
set, $.SYSNET. If the station is started, BIT also modifies the status word in the
station block.

Creating a Command 155

Naming Your Program

The syntax of the BIT command is:
CP BIT station-name bit-number [bit-value]
where:

station-name
is the name of the station.

bit-number
indicates which bit (0-15) is to be modified.

bit-value
is the value to which the bit is to be set (0 or 1); the default is 1.

When task CP receives a command message, it moves the message to a
Communications Facility buffer and gets the first field, the command name. It
then issues an instruction to load program $.CPxxxx, where xxxx is the 1- to
4-character command name. Therefore, the load module name of your
command-processing program must be $.CPxxxx. To conform to Communications
Facility naming conventions, the source module name should be S§CPxxxx.

Retrieving the Command’s Parameters

The address of the buffer that contains the command is in field Q$BADDR of the
message dispatcher’s station block. Retrieve the address as shown in statements
150-160 of the example program. The buffer header fields point to the character
following the blank that delimits the command name. Use the GET F instruction
to retrieve each parameter, specifying a blank delimiter. Subroutine GETPARM in
the example program (statements 1440-1690) retrieves parameters, allowing for
multiple blanks between parameters.

Gaining Access to $.SYSNET

Updating $.SYSNET

When the Communications Facility is started, it opens $.SYSNET using a data set
control block in the common area. Specify DS=$$ in your PROGRAM statement,
and modify your data set control block as shown in statements 170-240 of the
example program. \

$.SYSNET is a partitioned data set, with a 1-record member for each defined
station. The format of a member is the same as the format of a station block. Use
a subroutine like FINDMEM in the example program (statements 2010-2400) to
determine whether or not a station is defined and to obtain its record number.

While a station that has a disk queue is active, disk queuing control information is .
maintained in its $.SYSNET member. If you modify that member while the station
is active, you must enqueue on the member to prevent concurrent updating by your
program and the disk queuing programs. Do the enqueuing as shown in statements
900-990 of the example program. The QCB used by the disk queuing programs is
in a file control block whose address is in the station block.

156 Communications Facility Programmer’s Guide

O

You must dequeue before your program terminates. Subroutine DEQNET
(statements 1870-1990) of the example program does the dequeuing. Note that,
before issuing the DEQ, it ensures that this task is the current owner of the
resource. EDX allows any task to release a shared resource.

Gaining Access to Other Data Sets

All Communications Facility data sets reside on one volume, the one from which
the control program is loaded. If your program requires access to other data sets
(the example program doesn’t), you can address the Communications Facility
volume by specifying DS=(dsname ##) in your PROGRAM statement.

Logging Errors and Successful Completion

Sending a Completion Code

Avoiding Deadlocks

You must send a message to the Communications Facility log before your program
terminates. The message is either an informational message that indicates
successful completion or an error message that describes the error. Error messages
must be CP messages, because the completion code reflects the CP message
number, as described under “Sending a Completion Code.” Use only existing CP
error messages. There is no assurance that currently unused CP messages will not
be used in the future. If you need a new information message, either specify its full
text in the SEND L instruction or use your own member of $.SYSMSG.

The example program uses these existing error messages:

CPO03 station-name $.SYSNET 1/0 ERROR

CPO09 parameter IS INVALID

CP12 station-name NOT DEFINED IN $.SYSNET
CP44 parameter IS OMITTED

and this information message:

UMO1 station-name STATUS MODIFIED

The PROGSTOP instruction that terminates your program must specify a negative
completion code, either -1 for successful completion or the negative of the CP error
message number.

After task CP loads your program, it waits on an event which is posted either if the
load fails or when your program issues a PROGSTOP. If the completion code is
positive, task CP assumes a load error and issues this message:

CP59 command ERROR ON LOAD

Subroutine ERROR (statements 1710-1850) of the example program issues an
error message and sets the corresponding completion code.

The command processor is a single-thread operation. Task CP loads a
command-processing program and waits for it to complete before receiving the '
next command message. Therefore, your program must not wait on an event that
may not complete. In particular, you must not use the instruction SEND CP with
ACK=YES. Your program should include a task error-exit routine, as shown in
statements 1380-1420 of the example program.

Creating a Command 157

Ensuring Your Program Will Load

158

Command-processing programs are loaded into the same partition as the
Communications Facility control program. When the Communications Facility is
started, task CP loads the largest command-processing program ($.CPS) to ensure
that there is enough space for it. Your program must be no larger than $.CPS,
which is approximately 6K; its exact size is in the Design and Installation Guide.

Communications Facility Programmer’s Guide

U

O

g et ol g0 e e A e AR R e A A e A R R A R AR R AR AR RS R R R AR AR R R R AR AR LK

% S$SCPBIT: COMMUNICATIONS FACILITY EXAMPLE COMMAND PROCESSOR. *
e T LT L L R P - E P e EE L L P P S P T P P T L T]
%*
S$CPBIT PROGRAM START95009DS=$$4ERRXIT=TEECB

copy SSCFEQU

coPY DSCBEQU
oo e o fede e oo e g e o e A A e e ge e ok ek e Re A Aok e A A Aok R Ak Ak A kR A AR R e AR A KA
* INITIALIZATIONe. %
A oot e ook e e el ook el e Aede o Aok A Aol Qe ke e e ek e R K AR AR s ek e A o AR A e e A A e A KK
START EQU =

MOVE ENDCODEs-1 INITIALIZE COMPLETION CODE

LOCATE STy#ls*$.DISP" GET ADDR OF $.DISP STATION BLOCK

MOVE CPBFAD.(Q$BADDRyi#l) GET ADDR OF CP BUFFER
* SET UP $.SYSNET DSCB

GET Ay i#19CSXTABLE

MOVE DS1+$DSCBORNy (-549#1)92 ORIGIN

AND DS1+$O0SCBORN+X*2000*yRESULT=DS1+8DSCBFLG FH INDICATOR
AND DS1+$DSCBORNeX*DFFF* TURN OFF FH INDICATOR, IF ON
MOVE DS1+$DSCBLNGy(-50+#1)9e2 LENGTH

MOVE DS1+$DSCBVDEs(-464itl) VDE ADDRESS

MOVE DS1+$DSCBNEXyQ42 NEXT RECORD

B g T L LT

NOTES:

le NEXT PARAMETER IS FETCHED FROM COMMAND INTO TEXY FIELD *PARM®
VIA CALL TO °*GETPARM's THERE IS NO RETURN IF THE SIZE OF THE
PARAMETER IS NOT WITHIN THE RANGE SPECIFIED BY THE 1ST AND 2NO
ARGUMENTS.

« ERRORS ARE LOGGED VIA CALL TO °*ERROR', WHICH DOES NOT RETURN

Sedede Rk Al e ook g g Ak A e Kook e A g Ao R e Ao e ke e e ek Ak e X e o e e A e ke e ook g e ke Ak

3
3¢ 3k St 3 9 4 3t

N

T

3

4 S 4F 4b b 3 3F 3 3% 4

B T R g g g L T T g e P L LT T

¥ GET STATION NAME PARAMETER AND FIND STATION'S $.SYSNET MEMBER. *
Ao ook e Ao ek e eke g ok e R oK A e o e e A R A e R g A AR e A e e e e o e ok ek e e

x
*

CALL GETPARMy 1489 (PNAME) GET STATION NAME
MOVE STANAME.PARMs (8+BYTE) ese AND SAVE IT
CALL FINDMEMy (STANAME) yRECH FIND MEMBER
IF (RECi#+EQ40) MEMBER NOT FOUND
CALL ERRORy 124 (STANAME) LOG STATION NOT DEFINED
ENDIF

e A A e e e e Ak A R 2 A oK ek A e e o 4 £ ol A e o kA A e B e e A A A R g A
AND CHECK BIT NUMBER PARAMETER. *

R R T T P T L e PP P P g R TP L T b 3 L P e S -

CALL GETPARMy 1429 (PBIT) GET BIT NUMBER
CONVTD BITNUMyPARMoFORMAT=(24091) CONVERT TO BINARY
IF (SSCPBITyNEs-1),0R, NOT NUMERIC
(BITNUMyLT+0)¢ORy (BITNUMyGTy15) OUT OF RANGE
CALL ERRORy 9, (PBIT) LOG INVALID PARAMETER
ENDIF

W*

P L L LT DL L T P T P P R P P T e
* GET AND CHECK BIT VALUE PARAMETER (OPTIONALes DEFAULT IS 1)

Sk e Rk g Rk R Ak ok e o fok e ek AR A A R R R Rk R Ak X

o A
PP e Y

. #
L E

46 4t

MOVE BITVAL,1 SET DEFAULT VALUE
CALL GETPARMsOy1ls (PVAL) GET SPECIFIED VALUE
IF (PARM—14NE ¢04BYTE) VALUE WAS SPECIFIED
IF (PARMyEQsC'0'yBYTE) CHECK FOR VALUE = 0
MOVE SITVAL+O
ELSE
1F (PARMoNEC*1*yBYTE) CHECK FOR VALUE NOT = 1
CALL ERRORy9y (PVAL) LOG INVALID PARAMETER
ENDIF
ENDIF
ENDIF

Figure 29 (Part 1 of 5). SSCPBIT Listing

00000010
¢0000020
00000030
00000040
00060050
00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230

00000240

00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000400
00000410
00000420
00000430
00000440
00000450
00000460
00000470
00000480
00000490
00000500
00000510

X00000520

00000530
00000540
00000550
00000560
00000570
00000580
00000590
00000600
00000610
00000620
00000630
00000640
00000650
00000660
00000670
00000680
00000690
00000700
00000710
00000720

Creating a Command

159

o e e e e Aot B e e e e ek e e e K R o ke A kM A A R B RS F R BFRER X KRKASXXEXEEE 00000730
SET MASK VALUE ACCORDING TO BIT NUMBER AND VALUE. % 00000740
ER A R SRR AR AR E AR R RS G R XGRS LR E LR R AR RER TR RS R R RS SR EET R &R EEEE 00000750
* 00000760
SHIFTL BITNUMy1 MULTIPLY BIT NUMBER BY 2 00000770

MOVE #1+BITNUM SELECT CORRESPONDING MASK 00000780

MOVE MASKy (MASKSeitl) eee FROM TABLE OF 'OR®' MASKS 00000790

IF (BITVALYEQ,O) BIT IS TO BE TURNED OFF 00000800

MOVE #19X°*FFFF* CHANGE *OR* MASK 00000810

sus #*19MASKyRESULT=MASK eee TO *AND' MASK 00000820

ENDIF 00009830

* ‘ 00000840
e oo gk Ao e Bk Ko A R ol e e Rk e R kR kR Rk Rk AR R ARk R kR A ks xR ke ERxE 00000850
% FIND STATION BLOCKe IF STATION IS STARTED AND HAS A DISK QUEUE, * 00000860
* ENQUEUE ON THE QCB IN ITS FILE CONTROL BLOCKe * 00000870
e e 3 e e e e e AR Qe R Ao e e A G K AR R AR AR ARG R KRS R A K E R RS RE R S ex R EFTxxREE 00000880
* 00000890
MOVE FCBas0 INDICATE NO FILE CTL BLOCK 00000900

LOCATE STyit29STANAME #2 ==> STATION BLOCK 00000910

IF (#29NE9) STATION IS STARTED 00000920

IF ((QSTYPE¢i#2) ¢+NE9+Q#VECT+BYTE) IT*S NOT A VECTOR X00000930
ANDv((QSDQAv +2)9NE$0) ese AND HAS DISK QUEUE 00000940

MOVE #19(Q$DQAs#2) GET ADDR OF FILE CONTROL 00000950

MOVE FCBaeil eee BLOCK AND SAVE IT 00000960

ENQ (DQQCB;HI) ENQUEUE ON USE OF $.SYSNET 00000970

ENDIF 00000980

ENDIF 00009990

* 00001000
e e gk A e R sl o o e o o Rk s et ool e R e e gk Bk e Aok S Rk ok ke o etk kR ek gk k% 00001010
* UPDATE $«SYSNET MEMBER AND STATION BLOCKy IF IT EXISTSe. * 00001020
ek g ok g ok o o e e e e e e e ek ok Rk R R ROk KR G Ak Ak AR R ARk S SR A kR kxR xFAZE 00001030
* 00001040
READ DS1yBUFFs14REC#¢ERROR=NETERR READ MEMBER NP0J1050

MOVEA il ¢BUFF #1 ==> MEMBER RECORD 00001060

IF (BITVALsEQy]) SET BIT ON 00001070

I0R (O$STAT 1) yMASK IN MEMBER RECORD 00001080

IF (#29NEHLC) 00001090

I0R (Q8STATe#2) ¢ MASK IN STATION BLOCK 00001100

ENDIF 00001110

ELSE SET BIT OFF 00001120

AND (Q$STAT 91) ¢MASK IN MEMBER RECORO 00001130

IF (#29NE$QC) 00001140

AND (Q$STATy#2) 9 MASK IN STATION BLOCK 00001150

ENDIF 00001160

ENDIF 00001170

WRITE DS1¢+BUFFy14RECi*y ERROR=NETERR WRITE MEMBER 00001180

CALL DEQNET RELEASE LOCK ON $.SYSNET 00001190

* 00001200
AKX AR AR EEE R RERERKE R RE AR ARER G AR A F SR D RAX ARG XFFRXARDXDLRARFES AR ITFEEXE 00001210
#* LOG SUCCESSFUL COMPLETION AND STOP. * 00001220
e B e e B g ek e e e e Aol Rk ok et ke e A e e e A ok o R R R SR Rk feko o e ek R ke Rk 00001230
% 00001240
MOVE LOGMSGySTANAME(B+BYTE) MOVE STATION NAME TO MESSAGE (00001250

SEND L0OGel9yLOGMSGeID=C UM’ 00001260

STOP EQU * 00001270
PROGSTOP #*4LOGMSG=NOyP1=ENDCODE 00001280

* 00001290
HHE R SRR SRR ER R E G EEFRAR AL R F R AL RREF IS E R DR R AR RS ELpEE T2 Ex5Ex 00001 300
% ERROR ROUTINES. * 00001310
RXRRERH RS R SR RR R RR R R ERR ARG IR F R AR R SRR AR RE AR AR RS ERF R AT LK FTXE 00001320
= 00001330
NETERR EQU * $.SYSNET DISK I,/0 ERROR 00001 340
MOVE XCODE+DS1 XCODE = I/0 RETURN CODE 000011350

CALL ERRORy 3y (STANAME) LOG ERROR 00001360

* 00001370
TEEXIT EQU * TASK ERROR EXIT Q0001380
* LOG HARDWARE STATUS INFO 00001390
SEND E9829yID=C'CF'¢TYPE=X¢XCODE=TEEHSAD* 00001400

CALL DEQNET RELEASE LOCK ON $.SYSNET 00001410

GOTO STOP TERMINATE EXECUTION 00001420

* 00001430

Figure 29 (Part 2 of 5). SSCPBIT Listing

160 Communications Facility Programmer’s Guide

e e Ao fe dheafe e fesfede e e dede s el e Ak el e ol e e e e e e el el ok ek ol e o ek A ek ke ek ke kR kg 00001440

% GETPARM: SUBROUTINE TO GET NEXT PARAMETER FROM COMMAND. % 00001450
® PARM-1 IS MINIMUM PARAMETER LENGTH. % 00001460
% PARM=-2 IS MAXIMUM PARAMETER LENGTH. % 00001470
% PARM-3 IS ADDRESS OF PARAMETER NAME. * 00001480
* IF PARAMETER LENGTH IS INVALID, EXIT IS TO °*STOP® VIA % 00001490
* CALL TO SUBROUTINE *ERROR'. * 00001500
e 3 e fkalk ok oksle e g o e e e deade o ok e ol o e o e ol ok e ek ook Aok e el e e e e e ek e e ke R A Rk kX kHXx 00001510
= 00001520
SUBROUT GETPARMyPMINsPMAXyPNAMER 00001530

SHIFTL PMAXy8,RESULT=PARM-2 SET MAXIMUM LENGTH 00001540

s} UNTILy (PARM=1sNEsO9BYTE) SKIP EXTRA BLANKS 00001550

GET FIELDyPARMyCPBFAD*9COMPARE=X"40' GET PARAMETER 00001560

IF (SSCPBIT4EQy4) END OF BUFFER 00001570

IF (PMIN+EQ40) PARAMETER IS OPTIONAL 00001580

RE TURN 00001590

ELSE 00001600

CALL ERRORy44yPNAMEQ LOG PARAMETER OMITTED 00001610

ENDIF 00001620

ENDIF 00001630

ENDDO 00001640

IF (S$CPBITyEQs2) +ORy PARAMETER TOO LONG X00001650
(PARM=14LTyPMIN+1,BYTE) eee OR TOO SHORT 00001660

CALL ERROR¢9+PNAMER LOG PARAMETER INVALID 00001670

ENDIF 00001680

RETURN 00001690

x 00001700
e 3 e ae e e o0 B e K e e oo e e e ek e e oo e e oo e ok ek e e ko e e e e e e el o e e etk e Aok R hekk ek kkE 00001710
* ERROR: SUBROUTINE TO LOG AN ERROR MESSAGEy SET THE COMPLETION CODEs % 00001720
* AND EXIT (DDES NOT RETURN TO CALLER). * 00001730
* PARM-1 IS MSG NUMBER, ITS NEGATIVE VALUE IS COMPLETION CODE. * 00001740
% PARM-2 IS ADDRESS OF TEXT TO BE INSERTED IN MESSAGE. * 00001750
* THE XCODE, IF ANY, IS SET BY THE CALLER. * 00001760

g e e ok Qe e a0 0 ook B e ek Kook e ok AR ke R ded kR kR A o Kk AR kg kg w R kHEE 00001770

* 00001780
‘::D SUBROUT ERROR$ERR#9ERRTXTa 00001790
\ CALL DEQNET RELEASE LOCK ON $SYSNET 00001800
SEND ERROR¢ERRi# %y ERRTXT%* ¢ XCODE=XCODE%*491D=C*CP* 00001810

MOVE ENDCODESO COMPLETION CODE IS NEGATIVE 00001820

sus ENDCODE 9 ERR ese MESSAGE NUMBER 00001830

GOTO STOP TERMINATE EXECUTION 00001840

RETURN 00001850

#* 00001860
ege ot kol e s A ke de ok e A A e AR R R e R R AR R A e Rk Rk S A R A Rk AR kSRR X xFE 00001870
* DEQNET: SUBROUTINE TGO RELEASE LOCK ON $SYSNET —-- TO DEQUEUE THE * 00001880
* QCB IN AN ACTIVE STATION®'S FILE CONTROL BLOCKe * 00001890
e e R ket Ao e e e e e et KA R e R g A e e ke R ke Ak AR A Rk R R kR A Ex S nKE XL EEE 00001900
* 00001910
SUBROUT DEQNET 00001920

IF (FCBayNE+0) _ WE MAY BE ENQUEUED 00001930

MOVE #2+FCBa GET ADDR OF FILE CTL BLOCK 00001940

IF ((DQQCB+649#2)+EQeSSCPBITA) WE ARE ENQUEUED 00001950

DEQ (OQQCBy#2) RELEASE 00001960

ENDIF 00001970

ENDIF 00001980

RETURN 00001990

* 00002000

Figure 29 (Part 3 of 5). SSCPBIT Listing

Creating a Command 161

0 R A A R A A B A A A G e Al e 2 A e e B A A R R A A R R
FINDMEM: SUBROUTINE TO LOCATE A MEMBER IN DS1ly A PARTITIONED DATA

*
* SETe AND RETURN ITS RECORD NUMBER.

* PARM-1 IS ADDRESS OF MEMBER NAMEe.

* PARM-2 IS A WORD TO RECEIVE THE RECORD NUMBER;
* MEMBER DOESN'T EXIST.

%*

%

B e e e e B e ok e e e e e A e ok e A e X e A eole ook e ek ke g e e e s ek ek Aok KR e w A e dp sk ok AKX

SUBROUT FINDMEM.FNAMEQeFREC
MOVE FSAVREGSei#le2

MOVE 2 yFNAMEQ #2 ==> MEMBER NAME

MOVE FRECi#40 INDICATE MEMBER NOT FOUND
MOVE FDIR#s1 DIRECTORY BEGINS IN RECORD 1
MOVEA i1 4BUFF #1 ==> INPUT BUFFER

READ DS19(04/#1)e19FDIRH#9ERROR=FEXIT READ 1ST RECORD

MOVE FDENDs (FSDNXTE 1) SAVE ¢ OF NEXT AVAIL ENTRY
ADD #le+FSEL . POINT TO FIRST MEMBER ENTRY
MOVE FMEMityl INIT MEMBER ENTRY NUMBER
MOVE FCOUNTy+FS$E: SET LOOP COUNT, WHICH DQOES
sus FCOUNTy 1 eee NOT INCLUDE FIRST ENTRY

FSEARCH EQU *
DO FCOUNTSTIMES

0 MEANS THE

SAVE CALLER'S REGISTERS

EXAMINE EACH ENTRY IN RECD

IF (FMEMi 4 EQy FDEND) yGOTOyFEXIT DIRECTORY ENDy
% e««MEMRER NOT FOUND
IF ((FSMNAME, #1),EQs(0v#2)+8) FOUND MEMBER
IF ((FSMMCODE »#1) yNE9+F$MDEL) IT*S NOT DELETED
MOVE FREC#, (FSMREC1,#1) SET 1ST RECORD NUMBER
FEXIT EQU %
MOVE #14sFSAVREGS,2 RESTORE REGISTERS
RETURN EXIT
ENDIF
ENDIF
ADD #1y+FSEL POINT TO NEXT ENTRY
ADD FMEMi,1 INCREMENT ENTRY NUMBER
ENDDO
ADD FDIR#yl INCREMENT RECORD NUMBER
MOVEA #1,BUFF RESET BUFFER ADDRESS
MOVE FCOUNTy+F$E# RESET LOOP COUNT
READ DS1ls(Os#1)9lsFDIR#,ERROR=FEXIT GET NEXT RECORD

GOTO FSEARCH

A
*

FSAVREGS DATA 2F'0O°* REGISTER SAVE AREA

FOIR# DATA F*O°* DIRECTORY RECNRD NUMBER

FDEND DATA F'O? NUMBER OF NEXT AVAIL DIR ENTRY
FMEM DATA F'O°* MEMBER ENTRY NUMBER

FCOUNT DATA F'O° LOOP CONTROL

ES

Fer AR RRRR TR R ER SR GpREER RS fIRR R R SRR R R SRR SRR TR R R HRRE R R KRk KK

% PARTITIONED DATA SET DIRECTORY DEFINITIONS.

* THERE ARE 16 ENTRIES PER DIRECTORY RECORDy EACH 16 BYTESe
¥ 1ST ENTRY DESCRIBES DATA SET; EACH SUBSEQUENT ENTRY DESCRIBES A

* MEMBER OF DATA SET.

3¢

>4

F$D EQU 0 DATA SET ENTRY
F$DNXTM EQU F$D
F$DSIZE EQU FSDNXTM+2
F$ONXTE EQU F$DSIZE+2
F$DTOTE EQU FSONXTE+2
*

TOTAL SIZE OF DATA SET

*

F$M EQU 8] MEMBER ENTRY
F$MNAME EQU F$M MEMBER NAME

F$SMREC1 EQU FSMNAME+8
FSMIREC EQU FEMRECL1+2

IN RECORDS

NEXT AVAILABLE DIR ENTRY (ORIGIN 0)
TOTAL MEMBER ENTRIES (USED OR NOT)
LAST 8 BYTES ARE NOT USED

1ST RECD NUM (RELATIVE TO DS START)
NUMBER OF RECORDS IN MEMBER

F$MMCODE EQU FEMUEREC+2 MEMBER CODE:

F$MDEL EQU -1 MEMBER IS DELETED

F$MUCODE EQU F$MMCODE+2 USER CODE

FSEL EQU F$MUCODE+2 LENGTH OF DIRECTORY ENTRY

%

F$EW# EQU 16 NUMBER OF ENTRIES PER RECORD

Figure 29 (Part 4 of 5). SSCPBIT Listing

*
*
x
*
x

4

R 1 A 1)

g de A sk ok e g R e e e R AR R e e e Btk e o e e e o s e el o e e e s el e Qe o e A R R

NEXT AVAILABLE RECORD NUM FOR MEMBER

00002010
00002020
00002030
00002040
00002050
00002060
00002070
00002080
00002090
00002100
00002110
00002120
00002130
00002140
00002150
00002160
00002170
00002180
00002190
00002200
00002210
00002220
00002230
00002240
00002250
00002260
00002270
00002280
00002290
00002300
00002310
00062320
00002330
00002340
00002350
00002360
0No002370
00002380
00002390
00002400
00002410
00002420
00002430
00002440
00002450
00002460
00002470
00002480
00002490
00002500
00002510
00002520
00002530
00002540
N0002550
00002560
00002570
00002580
00002590
00002600
00002610
00002620
00002630
00002640
00002650
00002660
00002670
00002680
00002690
00002700
00002710

162 Communications Facility Programmer’s Guide

O

%

00002720

3 e e e e e e e e e e Aot e e e e e oo Aok N el Ko Ak A e Lo de ool e e e R e e ek e ek deok ek ek kR kR kR A Gk A RAER 00002730
* CONSTANTS
ek e 3 esie e e Qe A e s e e e e s sie Ao e e sfe e e s ek e e e e e e e Sk ofe e e e dfede e e s el e e e de el e e Ak R RaR e

#*
LOGMSG
SSCPBITA
*

PNAME
PBIT
PVAL

&

MASKS

TEECR
TEECTL
TEEXIT3
TEEHSAQ
%

TEXT
DATA

TEXT
TEXT
TEXT

DATA
DATA
DATA
DATA
EQU

DATA
DATA
DATA

XXXXXXXX STATUS MODIFIED® INFORMATION MESSAGE
A(SSCPBIT) TASK ADDRESS

PARAMETER NAMES FUR ERROR. MSGS
'STATION NAME?

*BIT NUMBER®
*BIT VALUE'

MASKS FOR OR-ING BITS O - 15
X*'8000'9X*4000*9yX*2000*+X*1000"
X'0800'9¢X'0400*9X*0200%9yX*0100"
X*'0080*yX'0040'+X*0020'4X*0010"
X'0008'9X*'0004"yX*0002*9X*0001"

* TASK ERROR EXIT CONTROL BLOCK
Xx*Q002° NUMBER OF FOLLOWING WORDS
A{TEEXIT) ADDR OF TASK ERROR EXIT ROUTIN
A(TEEHSA) ADDR OF HARDWARE STATUS AREA

e e e Aoole el e e o Ko Akte o e fefeste e Lo e A Lot eole Aesde e e e e deofe e deofe e e e e e e e ek e e e s e ke
* WORK AREAS

%o e e e fe e frse e oo Ao e ek Fe e fesie e oo ste ek e ok sfe e e Ao Hesfe e e esfe e e e A g ek ke el A sfe e e e sl e sle e e e ek

x
CPBFAD
BUFF
TEEHSA
REC#
FCBa
XCODE
BITNUM
BITVAL
MASK
STANAME
PARM

*

DATA F*0O* ADDR OF CP INPUT BUFFER
DATA 128X*'0000° DISK BUFFER

EQU BUFF HARDWARE STATUS AREA

DATA F*O° MEMBER RECORD NUMBER

DATA F*0O° ADDR OF FILE CONTROL BLOCK
DATA F*O°* LOG MESSAGE XCODE

DATA F'0° BIT NUMBER

DATA F*0O°* BIT VALUE

DATA F'O°* MASK FOR MODIFYING STATUS
TEXT LENGTH=8 STATION NAME

TEXT LENGTH=8 PARAMETER INPUT AREA
ENDPROG

END

Figure 29 (Part 5 of 5). SSCPBIT Listing

* 00002740
*%% 00002750
00002760
00002770
00002780
00002790
00002800
00002810
00002820
00002830
00002840
00002850
00002860
00002870
00002880
00002890

E 00002900
00002910
00002920

*#%% 00002930
* 00002940
* 00002950
00002960
00002970
00002980
00002990
00003000
00003010
00003020
00003030
00003040
00003050
00003060
00003070
00003080
00003090
00003100

Creating a Command

163

164

Communications Facility Programmer’s Guide

Creating an 1/0O Control Program

You can extend the Communications Facility to support a new device or a new
Series/ 1 feature by writing an I/0 control program (IOCP). 1I/0 control programs
provide the device-dependent functions necessary to control input to and output
from the device.

Your I/O control program must accept messages destined for the device from the
Communications Facility, process them, and forward them to the device. It must
also accept messages from the device and pass them along to the Communications
Facility for delivery to their ultimate destination. The Communications Facility
treats your I/0O control program as a user program.

Overview of an 1/0 Control Program

The primary functions of an I/O control program are:

« Receive messages from stations that represent the physical devices, using
Communications Facility language extension instructions.

¢ Reformat those messages as required.

« Send messages to the physical devices, using device-specific routines.

« Receive messages from the physical devices, using device-specific routines.
¢ Reformat those messages as required.

« Send those messages to their destination stations, using Communications
Facility language extension instructions.

Additionally, the 1/0 control program must handle control input from the
Communications Facility, such as instructions to halt itself or one of its devices.
The I/0 control programs supplied with the Communications Facility handle such
functions in a separate task. A main task receives control information from the
Communications Facility and oversees operation of one or more subtasks that
service message traffic.

Designing Your I/O Control Program

When designing your I/O control program, your first consideration is what
functions you intend it to add to the Communications Facility system. For
example, your I/O control program might manage a specific device as if it were a
3270 terminal. Your program would then have to provide all 3270 data stream
support, mapping device functions to 3270 control keys and allowing the device to
communicate with existing Communications Facility 3270 I/0 control programs,
such as 3270 emulation.

As another example, your program might provide a new way to connect
Communications Facility nodes over a communication line or network not directly
supported by the Communications Facility. As a third example, you might want to
allow your Communications Facility user programs to communicate with a special
type of device, without including any special data stream conversions.

Another consideration is whether you’re going to support one device or multiple
devices. The I/0 control programs that are supplied with the Communications

Creating an I/O Control Program 165

Creating Your Stations

Coding the Main Task

Facility support multiple devices or lines simultaneously; for example, the 3270
control IOCP can support several 3270 terminals at once. You must decide
whether you need such flexibility, or whether supporting a single device will be
adequate. Supporting multiple devices may introduce the need for multiple tasks
and reentrant code, whereas single-device IOCPs can be more straightforward.

You must also, of course, consider what hardware and what programming
techniques will be necessary to control the device you intend to support.

Finally, you must decide how you will represent your device to the
Communications Facility. You may make use of existing station types (such as
terminal, line, or device), add new station types, or build special stations when your
1/0 control program is loaded.

Because all messages and commands in the Communications Facility flow to and
from stations, you have to create stations to represent the devices your IOCP
supports. This section explains three ways of creating stations.

The first, and recommended, method is to build special station blocks directly from
the I/O control program main task. When the program is loaded, it issues
LOCATE instructions with OPTION=CREATE to build station blocks to your
specifications in SSPOOL. Having built the station blocks, you can use MOVE
instructions to fill in their fields. You can examine SSCFEQU or look in the
Debugging Guide for a description of the fields of station blocks.

A second possibility is to use the station types and subtypes associated with a
Communications Facility IOCP that your installation doesn’t use. For example, if
your IOCP controls some kind of device on a BSC line, and you know that your
installation will never use the 3270 control IOCP ($.I00ACO0), you could name
your IOCP $.I00ACO and use line and terminal stations as defined by that
program. Then you could use the standard Communications Facility Start, Define,
Help, Modify, Stop, and Halt commands to manage your stations.

To use this option, your program must be coded to use the stations just as the
original IOCP does; your station blocks must be of exactly the same size and
format as those of the original IOCP.

If you choose this option and later your installation elects to use the IOCP you
have replaced, you will have to rework your IOCP extensively.

A third method is to define new station types and modify the Start, Define, Modify,
Stop, and Halt commands to handle them. The main drawback of this method is
that it involves modifying Communications Facility modules, and so may cause
serious maintenance and service problems. If you do choose this method, select the
modules you need to modify from the ‘“Module Descriptions” list in the Debugging
Guide.

The main task accepts commands for the individual devices controlled by the
IOCP.

If you have modified the CP command processor or if you’re using the station types
of a Communications Facility IOCP, your main task will receive control commands

166 Communications Facility Programmer’s Guide

0

Ceoding Subtasks

directed to your stations. In that case, you can refer to the listing of the main task
of one of the other IOCPs for guidance. S$IO0ACO, 3270 control, is a typical
example.

If you’re using the LOCATE OPTION=CREATE technique, yow’ll have to build
in code to receive and interpret commands. .

When your IOCP processes a Start command, it may start a subtask to handle the
started device. If the device is attached directly, use a subtask for each device. If
several devices are attached over a line, use one subtask per line and have that
subtask control all the devices. The ACTIVATE T instruction is a handy way to
start an IOCP subtask.

The subtask processes message traffic between your device and the
Communications Facility. Its main functions are those listed earlier under
“Overview of an I/0 Control Program” on page 165.

You must devise a method of mapping each device to its associated station block.
You might choose device address (as used in the 3101 and 4978 IOCPs), poll and
select sequence (as used in 3270 emulation and control), or some other method.
Whatever method you choose, your subtask then uses it to select the station block
to be used for message traffic to a device. The subtask moves messages from a
specific station block to a specific device, and vice versa.

The subtask must also accept control input from the main task, and detach itself
when requested. The usual method for this is to monitor the Q#ACTIVE bit in
field Q$STAT of the station block. When Q#ACTIVE is off, the subtask performs
whatever operations are necessary to prepare for termination, and then terminates.
Several bits of Q$STAT are left as device-dependent bits; your main task and
subtasks can use those bits for their own purposes.

Reentrant Coding Considerations

If your subtask code is reentrant, you can save storage by using the same subtask
code for all your devices.

Note that some EDX instructions and techniques are not reentrant; you can’t use
them in a reentrant subtask. Examples are:

o The Pn feature of EDL instructions
« The SUBROUT, CALL, and RETURN instructions
+ The DO count, TIMES form of the DO instructions.

Availability of only two registers can make reentrant coding difficult. The #T, #L,
and indirect (*) features of Communications Facility instructions alleviate the
problem somewhat. If you locate your EDX task control block (TCB) and your
station working storage next to your station block, you can use a single register to
refer to all of them. If you also use #T, you can often free both EDX registers
temporarily.

You might, alternatively, locate the TCB and working storage in a workspace

acquired by each task. You can use the PUT TCB instruction to build the TCB.
This method requires the use of two registers to refer to the station block and

Creating an 1/0 Control Program 167

working storage at the same time. Note that space used in the station block is in
the mapped area of EDX; increasing its size will reduce the amount of storage
available for programs in all Communications Facility partitions.

Data Stream Considerations—3270 IOCPs

If your I/O control program manages a device as if it were a 3270 terminal, it must
build messages according to the expectations of the other 3270-type I/O control
programs.

Messages passing between such programs use two format modes: basic mode and
record mode. Basic mode messages are formatted in normal BSC 3270 data stream
format, including BSC control characters before and after the actual 3270 screen.
Record mode messages are sent and received without the special BSC and 3270
control characters.

Basic Mode Messages

To coexist with Communications Facility 3270 programs, your program must be
coded to accept and send basic mode messages.
The format of a typical basic mode message as it flows from a program to a
terminal is:

[STX EESC | cmd | wee I orders and data | ETX |
The format of a typical basic mode message as it flows from a terminal to a
program is:

I STX J cuda J AID | cursor orders and data | ETX J
STX

is X‘02’, the BSC start text control character.

ESC
is X‘27°, the BSC escape control character.

cmd
is the 3270 remote command code, such as write or erase/write. Its values are
defined in the 3270 Description and Programmer’s Guide.

wee
is the 3270 write control character. Its values are defined in the 3270
Description and Programmer’s Guide.

ETX
is X‘03’, the BSC end text control character. It may or may not appear in a
basic mode message.

168 Communications Facility Programmer’s Guide

Record Mode Messages

cuda
is the BSC control unit/device address field. Within the Communications
Facility, these values are meaningless; they are often set to blanks, X‘4040°.

AID
is the 3270 attention identifier. Its values are defined in the 3270 Description
and Programmer’s Guide.

cursor
is the position of the cursor on the 3270 screen when the 3270 attention-type
key was pressed. It is expressed in 3270 position address values, as described in
the 3270 Description and Programmer’s Guide.

Basic mode messages may also begin with a BSC DLE/STX sequence (X‘1002’)
instead of STX. DLE/STX indicates that the message should be transmitted in
transparent mode—that is, accepting any bit sequence found in the data stream
without changing it or interpreting it as a BSC control character.

Record mode is normally used for transmitting, over a 3270 line, messages built
without standard 3270 control sequences. Another limited use is for connecting
two 3270-type terminals so they can send messages to one another directly without
the intervention of an application program.

IOCPs support record mode by adding control characters before sending a message
over a line or to a device, and by removing the characters before giving a message
to the message dispatcher.

Four kinds of record mode processing can occur:

* An IOCP connecting a host to the Communications Facility receives a message
for the host.

» An IOCP connecting a device to the Communications Facility receives a
message for its device.

e An IOCP connecting a host to the Communications Facility receives a message
from the host.

o An IOCP connecting a device to the Communications Facility receives a
message from its device.

1/0 control programs receiving a message from the Communications Facility
assume that the message is in record mode when it is received without STX (X‘02’)
or DLE STX (X‘1002’) as the starting character sequence.

In the case of a message being sent from the Communications Facility to a device,
a default 3270 remote command code of X‘F5’ (erase/write) and a write control
character of X‘F8’ (80-character line) are prefixed to the message, along with
whatever device control is necessary.

In the case of a message being sent from the Communications Facility to a host, an
attention ID value of X‘7D’ (ENTER key) and a cursor address of X‘4040’ (screen

Creating an I/O Control Program 169

position 0) are added to the message. See the actual source code of the
Communications Facility 1/0 control programs to become familiar with this

technique. @

Your IOCP may put messages received from a 3270 line for the Communications
Facility into record mode by removing control characters from the message before
sending it. Check the record mode bit of the Q$STAT field of the station block to
determine whether or not to use record mode.

To put messages received from the host into record mode, follow these steps, as
used by the Communications Facility 3270 IOCPs:

« Remove the STX (X‘02’) and ESC (X‘27°) characters from the message (for
BSC) or don’t add it (for other line protocols).

+« Remove remote command code and write control characters.

« If the next character is a 3270 set buffer address order (X‘11’), remove three
characters representing the order and the address operand.

« If the next character is a 3270 start field order (X‘1D’), remove two characters
representing the order and the field attribute byte.

+ Remove the ETX (X‘03’) from the end of the message (for BSC) or don’t add
it (for other line protocols).

Messages received from a device are processed similarly; the difference is in the
format of the beginning of such a message: .

T
« Remove the STX (X‘02’) and 3270 control unit and device address fields from @LJ
the message (for BSC) or don’t add them (for other line protocols).

« Remove the 3270 attention identifier and 2-byte cursor position address.

o If the next character is a 3270 set buffer address order (X‘11’), remove three
characters representing the order and the address operand.

« Remove the ETX (X‘03’) from the end of the message (for BSC) or don’t add
it (for other line protocols).

In neither case is the data stream inside the message modified; it is assumed that
the originator of the message has set up the message content beyond the fields that
have been removed.

Examine the source code of the various 3270 IOCPs for detailed information about
the record mode processing each one does.

Data Stream Considerations—IOCPs that Connect Nodes

170

Your IOCP may connect Communications Facility nodes, as do the
Series/1-to-Series/1 IOCP ($.I00A10), the X.25 IOCP ($.I00ABS), or the Local
Communications Controller IOCP ($.I00AB0). You must receive messages from
the Communications Facility that have Communications Facility message headers;
transmit messages between nodes with message headers intact; and supply the

0

Communications Facility Programmer’s Guide

appropriate message headers when passing messages to the Communications
Facility in the other node. To pick up and send the headers, use the HEADER =
operand of the SEND or RECEIVE instruction.

Because the headers may contain any random bit pattern, data transmission must
be transparent in this type of program.

If you’re writing a program of this type, you can use $.I00ABO (the Local
Communications Controller IOCP) or $.I00AB8 (the X.25 IOCP) as examples.
$.IO0A10 (the Series/1-to-Series/1 IOCP) isn’t a suitable example, because it has
many dependencies on Communications Facilities internals that might change.

Example I/0 Control Program Listing

This section describes a BSC point-to-point IOCP in detail. The point-to-point
IOCP need only issue a RECEIVE instruction from the line station and write data
to the line continually until it receives no message. At this point, the program reads
the line, sends any data to the Communications Facility, and issues another
RECEIVE instruction.

Figure 30 on page 172 shows an example IOCP. The sample is not an operational
program. It shows only enough logic to illustrate its operation.

Statement 200 defines an EDX attention list containing the commands used to
control the IOCP.

Statement 300 copies in the Communications Facility equate list for use by the
10CP.

Statements 500 to 1000 define the BSC IOCB in the work area allocated at the end
of the line station block. These locations are accessed as displacement values from

register #1.

Statement 1200 locates the station block for the IOCP. The address is returned in
register 1.

Statement 1300 turns on the station active bit for the IOCP’s station.

Statement 1500 waits for one of the attention routines to post CMDECB,
indicating that a command has been received.

Statements 1600 to 1900 perform the ISTOP command. The program sends an
END message to the log, and issues a PROGSTOP.

Statement 2000 checks for an ISTART command. If none exists, it returns to
statement 1500 to await a command.

Statement 2100 tries to locate the line station block. If the locate is successful, the
address is returned in register 2; if not, register 2 is cleared and the program goes
to the instruction labeled GETL. ‘

Statement 2200 sets the active field in the status field of the station block.

Creating an I/0 Control Program 171

TOSAMPLE PROGRAM START,450

%

3S10CB
BSTIODA
B8SBUF1
BSL1
BSBUF2
BSL2

START

*x

GETL

2

STARTL

=~
B

ouTPUT

INPUT

oo
*

Isp

ISsT

#*
10POOL

LUNAME
CMDECB
CMDTYPE
IS

1P

ATTNLIST (ISTOPsSPeISTART,LST)
COPY S$CFEQU

EQU QS$END BSC 10CB

EQU BSIUCB+2 BSC DEVICE ADDRESS
EQU BSIODA+2 BSC BUFFER 1

EQU BSBUF 142 BSC BUFFER 1 LENGTH
EQU BSL1+2 BSC BUFFER 2

EQU BSBUF2+2 BSC BUFFER 2 LENGTH

LOCATE LUNAME4i##140PTION=CREATE BUILD TOCP STATION
I0OR (QSSTAT 4#1)9+Q#ACTIVE SET LU ACTIVE

WAIT CMDECB WAIT FOR COMMAND TO PROCESS
IF (CMDTYPEWEQe+IP) s THEN ISTOP COMMAND
SEND LDGy219XCODE=TOSAMPLE*,TYPE=I,1D=C*1I0"
PROGSTOP
ENDIF
IF (CMDTYPE4NE¢+IS)sGOTOLGETL INVALID COMMAND
LOCATE LU##29 LUNAME 9EXIT=GETL BUILD LINE STATION
I0R (USSTAT4#2) 9+Q#*ACTIVE SET STATION ACTIVE
ACTIVATE TASKy(Q$TCBye#2)9STARTL START LINE TASK
GOTO GETL

GET ADDRESS,#2y#LINE

GET BUFFERy (BSBUF1+#2)%y (QSBFSZy#2)9P0O0OL=10POOL
MOVE (BSL19#2) 9 (QS$BFSZ4#2)

MOVE (BSL24%2) 9 {Q$BFSZ4#2)

AND (QSNAU+#2) 9 X'OO0FF* yRESULT=(BSIODA#2)

RECEIVE MESSAGE 9 (BSBUFL 92)%y (QSNAMEs#2) s WAIT=NO»

EXIT=INPUT
BSCWRITE 14(BSCIOCBs#2)
GOTGC O0OuUTPUT GET NEXT MESSAGE

BSCWRITE Es(BSIOCBsi2)

BSCREAD I4(BSIOCBy#2)yEND=OUTPUTy ERROR=0UTPUT
SEND MESSAGE .y (BSBUF14i#2)%*9ORIGIN= (Q3NAME,i2)
GOTO INPUT

EQU * ISTOP COMMAND ENTERED

POST CMDECB.+IP PROCESS AN ISTOP COMMAND
ENDATTN

EQU * ISTART COMMAND ENTERED

POST CMDECBs+I1IS PROCESS AN ISTART COMMAND
ENDATTN

DEFINE POOLsSIZE=2000 BUFFER POOL

TEXT *PTPTLINE? THE ONE AND ONLY STATION

ECB 0 ECB POSTED WHEN COMMAND IS ENTRD
EQU CMDECB COMMAND TYPE FROM ISTART/ISTOP
EQU 1 ISTART COMMAND TYPE

EQU 2 ISTOP COMMAND TYPE

ENDPROG

END

Figure 30. Sample IOCP Listing

00000100
00000209
00000300
00000400
00000500
60000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
£C00003200
00003300
00003400
00003500
00003600
00003700
00003800
00003900
00004000
00004100
00004200
00004300
00004400
00004500
00004600
00004700
00004800
00004900
00005000
00005100
60005200
60005300
00005400
00005500
00005600
00005706
00005800

If the command is ISTART and the line station block is located, statement 2300
starts the line subtask. The task control block is located at Q$TCB in the line
station block, and the subtask is to start execution at STARTL. The program
continues at statement 2400 and waits for another message at statement 1500,

172 Communications Facility Programmer’s Guide

O

C

The next execution occurs when the subtask begins at STARTL in statement 2600.
The subtask gets the address of the line station block in register 2. The equates in
C$CFEQU that begin with Q$ can then be used.

At statement 2700, the program gets buffer space from the pool of workspace in
the program. The pool’s size was set during $.CONFIG execution and is stored as
an integer in Q$BFSIZ in the line station block. In this example, the buffer is kept
and never freed.

Statements 2800 to 3000 set up the IOCB needed by the BSC access method.

Statement 3200 starts the I/O processing. The program issues a RECEIVE
instruction for a message queued to the station named at Q§NAME in the line
station block. It moves the message into the buffer whose address is at BSBUF1.
If no message is received, execution continues at INPUT (statement 3700). If data
is received, statement 3400 writes the data to the BSC line, using the IOCB in the
line station block work area.

After the BSC write operation, the program continues at statement 3200, where
eventually the RECEIVE exits to INPUT. At INPUT (statement 3700), the
program writes an EOT and reads data with a BSCREAD in statement 3800.

After the read is complete, execution continues at QOUTPUT in statement 3200 if
an EOT is received or at statement 3900 if data is received.

The SEND instruction sends a message to the message dispatcher. The message is
sent from the buffer specified to the BSC IOCB, and the origin of the message is
specified as the Q$NAME of the line station block. After the SEND is complete,
execution continues at OUTPUT.

Statements 4200 through 4400 are the attention processing routine that handles the
attention command ISTOP. It posts the CMDECB with a code indicating the type
of command. Statements 4600 through 4800 do the same thing for the ISTART
command. When CMDECSB is posted, the IOCP waiting at statement 1500 begins
execution.

The line buffers are acquired from a workspace pool defined at statement 5000.

Creating an I/0 Control Program 173

174

Communications Facility Programmer’s Guide

=3

L

N/

Syntax Notation

Special Symbolic Addresses

Coding Communications Facility Instructions

This chapter gives the details of the format, operands, and return codes of each
Communications Facility language extension instruction except those that are used
to access the Local Communications Controller. The Local Communications
Controller instructions are intended for internal use only and are documented in
the Debugging Guide.

First, here’s an explanation of the syntax notation that’s used to describe the
instructions in this chapter.

Each instruction format in this chapter appears in a box with three columns:

Name Operation Operand

Name Field. This field contains a symbolic label of up to 8 characters.
Operation Field. This field contains the instruction name.

Operand Field. This field contains the operands associated with the instruction.
The following conventions are used within the format descriptions:

¢« Words in BOLD CAPITAL letters must be coded exactly as shown. Commas,
parentheses, and equal signs must also be coded exactly as shown.

o Values in BOLD UNDERSCORED Ietters are defaults.

« Words in italics are symbols for which you must substitute actual values.
+ Brackets ([]) indicate that the operand is optional.

o Braces ({ }) indicate a group of mutually exclusive operands or values, of
which you can code only one.

« A vertical bar (|) separates the mutually exclusive items within braces.

To facilitate using EDL language for manipulation of data in system control blocks,
two special symbolic addresses are allowed in the language extension instructions:

¢ #T—refers to the beginning of the current task control block ($TCBCO or
$TCBECB).

« #I—refers to the beginning of the station block associated with the current
TCB. Either the TCB must be within the station block, or the word following
the TCB must contain the address of the station block.

Coding Communications Facility Instructions 175

Instruction Format

instructions, except that most operands in the language extensions can be indexed
and indirect. For information about EDL syntax rules, see the EDL Reference
manual. '

The syntax of the language extensions is very similar to that of the other EDL @

The general format of a Communications Facility language extension instruction is:

label VERB MODIFIER,pos1,pos2,. . ..KEY1=valuel KEY2=value2,. . ..P1=namel P2=name2,. . .

where:

label .
is the label to be given to the first word of the generated instruction. It is
required only if other instructions will refer to this instruction.

VERB

is the name of the general operation to be performed (such as DEFINE, SEND,
or GET).

MODIFIER
is an additional word (such as BUFFER, MESSAGE, or STORAGE) that
further defines what the instruction is to do. Three instructions, CFTERM,
LCC, and MOV, have no modifier.

The modifier names as given in this chapter are the minimum names you can
code to specify the instructions. You can code additional letters beyond those N
required if you want. For example, GET B is the required form of the L
instruction that gets a buffer, but you can code GET BUFFER (or, for that

matter, GET BANANA) if you want. Be careful to code the modifiers

accurately. GET BIELD, for example, would be interpreted as a GET BUFFER

instruction, not a GET FIELD instruction.

In some cases, for compatibility with earlier versions of the Communications
Facility, different modifiers have the same meaning. For example, LOCATE ST
(locate station) has the same meaning as LOCATE LU (locate logical unit) and
LOCATE QN (locate queue name). In those cases, all the allowable modifiers
are shown in the instruction syntax.

posl, pos2,. ..
are positional operands, which must be coded in the position shown.

KEY1, KEY2,. ..
are keyword operands, for which you supply values.

P1, P2, ..
allow you to give names to operands, as in other EDL instructions.

A space is required after the verb. No spaces are permitted between the modifier
and the firsp operand, or between operands.

176 Communications Facility Programmer’s Guide

Operand Formats

The description of each operand in this chapter includes a notation of its valid
syntax. The terms used to describe the syntax are:

#R
EDX software registers, #1 or #2.

#A
The language extension symbolic addresses #T and #L.

disp
A displacement value to be added to an index register value to obtain an
effective address. A displacement is normally represented by an equated value
or a self-defining term.

baddr
A base address value to be added to an index register value to obtain an
effective address. This is normally the label of a storage location.

term
A self-defining term of 2 bytes or less. Self-defining terms are decimal constants
such as the bufferpool size 4000, hexadecimal constants such as the polling
address X‘C240’, or EBCDIC constants such as the characters CNAME’.

literal
A specific value, specified in the syntax of the instruction that requires its use.
For example, a literal may be YES, NO, BUFFER, or CREATE. A literal may
also be alphameric such as the volume name EDX002 or hexadecimal such as
the device address A9.

‘string’
Any valid EBCDIC character string, enclosed in single quotes. The maximum
length of the string, if applicable, is given in the operand description. Station
names can be 1 to 8 characters; text strings can be 1 to 254 characters.

label
Either a symbolic name to represent the generated instruction, or a nonindexable
label of another storage location (used in the EXIT operand of several
instructions).

An indicator of an indirect reference.

location
An address, which you can specify in any of these ways:

s label. The label defines the effective address.

e label*. The storage location defined by the label contains the effective
address.

o #1 or #2. The EDX software register is the effective address.

+ #R*. The EDX software register contains the effective address.

Coding Communications Facility Instructions 177

Macro Assembler Considerations

178

#A*. The storage location defined by #A contains the the effective address.

(disp,#R) or (baddr#R). The displacement or base address plus the value in
the EDX software register is the effective address.

(disp,#A). The storage location defined by #A plus the displacement is the
effective address.

(disp,#R)* or (baddr#R)*. The storage location defined by the
displacement or base address plus the value in the EDX software register
contains the effective address.

(disp#A)*. The storage location defined by #A plus the displacement
contains the effective address.

integer
An integer value, which you can specify in any of these ways:

term. The term, which may be a self-defining term or a value defined by an
EQU statement, is the integer.

label*. The storage location defined by the label contains the integer.
#R*. The EDX software register contains the integer.

#A*. The storage location defined by #A contains the integer.

(disp #R)* or (baddr,#R)*. The storage location defined by the
displacement or base register plus the value in the EDX software register

contains the integer.

(disp#A)*. The storage location defined by #A plus the displacement
contains the integer.

This section describes considerations that apply when you use the EDX Macro
Assembler (5719-ASA) to generate language extension instructions.

All labels, terms, expressions, and baddr operands are subject to limitations
imposed by the assembler. The maximum length of any of these items is
determined by the maximum length of an operand in the SETC instruction. For
the EDX macro assembler, the maximum is 64 characters; this limitation is subject
to change, and you should check the documentation of the assembler you’re using.

If you want to use an expression larger than the size shown, you can break it up
into several smaller expressions using equates, finally resolving to a term or
expression that is small enough.

Communications Facility Programmer’s Guide

C
»

ACTIVATET

ACTIVATE T—Activate or Deactivate a Task

O

ACTIVATE T Format

ACTIVATE T Operands

ACTIVATE T Return Codes

The ACTIVATE T instruction attaches and chains, unchains, or detaches and
unchains a task.

[label] ACTIVATET [,tcbaddr]

[,start]

[LOPTION={UNCHAIN | DETACH}]
LEXIT=label]

LERRXIT = label]

[,P1=namell

[,LP2=name2]

P1

P2

Operand Syntax Description

tchaddr location The address of the TCB for the task to be
activated or unchained. This operand is not
valid for OPTION=DETACH.

start location The starting address of the task to be
attached. This operand is not valid for
OPTION=UNCHAIN or
OPTION=DETACH.

OPTION= literal UNCHAIN causes the named task to be
taken out of the EDX task chain; DETACH
causes the issuing task to be detached and
removed from the EDX task chain.

EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.

ERRXIT= label The label of a task error exit control block.

See ‘“Using Task Error Exits” on page 29
for more information.

Successful.

If OPTION= was not specified, the TCB is invalid. If OPTION= was
specified, the detach or unchain was unsuccessful.

If OPTION= was not specified, the task is already activated. If OPTION=
was specified, the task is already unchained.

Coding Communications Facility Instructions 179

ACTIVATE T

ACTIVATE T Examples
ACTIVATE TASK, (Q$TCB,#2) ,START,EXIT=ERROR
ACTIVATE T, (Q$TCB, #2) ,0PTION=UNCHAIN (’W
B acrivaTtE T,0PTION=DETACH
Example Rl activates the task whose TCB is at (Q$TCB,#2). The task begins
execution at location START. If a positive return code is returned, control is to go
to the instruction labeled ERROR.
Example E unchains the task whose TCB is at (Q$TCB,#2).

Example [f] unchains and detaches the issuing task.

180 Communications Facility Programmer’s Guide

O

CFTERM—Define Non-EDX 3101 or 7485 on Multifunctjon Attachment

CFTERM defines a 3101 or 7485 terminal, on a multifunction attachment, that is

CFTERM Format

CFTERM Operands

intended for Communications Facility usage only; it is not known to the EDX
supervisor. One or more of these instructions are used in conjunction with the

ADAPTER statement that defines the multifunction attachment.

CFTERM is used only during EDX system generation.

label CFTERM ADDRESS=addr
,LMODE={RS422 | LOCAL |
SWITCHED | PTTOPT}
Operand Syntax Description
label label The name that identifies this terminal in the
ADAPTER statement.
ADDRESS= literal The hexadecimal address of the
multifunction attachment port to which the
3101 is connected.
LMODE= literal The type of connection.
RS422 For a terminal directly attached to any port
of the multifunction attachment. For a
7485, you must define LMODE=RS422.
LOCAL For a terminal directly attached. The
terminal must be attached on the base
address only.
SWITCHED For a point-to-point switched connection.
The terminal must be attached on the base
address only.
PTTOPT For a point-to-point nonswitched

connection. The terminal must be attached
on the base address only.

Coding Communications Facility Instructions

181

EEET

CFTERM Examples
MFA3101 ADAPTER ADDRESS=58,TYPE=MFA, cc
DEVICES=(T3101A,T3101B,T3101C), CC \
END=YES v

T3101A CFTERM ADDRESS=58,LMODE=RS422
T3101B - CFTERM ADDRESS=59, LMODE=RS422
T3101C CFTERM ADDRESS=5A,LMODE=RS422

These statements define a multifunction attachment with 3101 terminals attached
to three ports.

182 Communications Facility Programmer’s Guide

DEFINE BRB

DEFINE BRB—Define a Buffer Reference Block

Instead of using the DEFINE BUFFERPOOL or DEFINE WORK instruction to

0 create the system storage pool, you may use the DEFINE BRB instruction to create
a control block, called a buffer reference block, that defines the beginning of
S$POOL. Modules that will not be needed in storage after EDX system
initialization may be located in the area following the buffer reference block. After
initialization, this area becomes SSPOOL.

DEFINE BRB is used only during EDX system generation.

DEFINE BRB Format
[label] DEFINE BRB ySIZE=size
DEFINE BRB Operands
Operand Syntax Description
label label The label to be assigned to the buffer
reference block. If you code a label, it must
be S$POOL.
SIZE= term The decimal size, in bytes, of the storage
O area to be allocated (the pool size plus 8).

DEFINE BRB Example

DEFINE BRB,SIZE=3816

creates this buffer reference block:

Address Contents

11004 1108 Pointer to first word after BRB
1102 0000 0000 2 full words of 0

1106 OEE8 SIZE

1108 First word after BRB

4 Example address only

Coding Communications Facility Instructions 183

184 Communications Facility Programmer’s Guide

A
7

DEFINE BUFFER

DEFINE BUFFER—Define a Buffer
DEFINE BUFFER creates a Communications Facility buffer in your program.
DEFINE BUFFER Format

label DEFINE BUFFER SIZE=size
- [LDATA={byte | X‘40°}]
[,P1=namel}’
[,[P2=name2]
[,[P3=name3]
[,P4=name4]
[,P5=name5]

DEFINE BUFFER Operands

Operand Syntax Description

label label The label to be used to refer to the
beginning of the data in the buffer.

SIZE= term The size, in bytes, of the buffer. The
maximum size is 32767. Note that the size
does not include the 10-byte buffer header.
If the size you specify is 0 or negative, a
buffer header with the O or negative value in
its size field is created.

DATA= term A self-defining 1-byte constant to be used

to initialize the buffer. For example, you
might choose C‘0’ or X‘00°.

DEFINE BUFFER Return Codes
None.

DEFINE BUFFER Examples
BUF1 DEFINE BUFFER,SIZE=200,P2=BCOUNT
E BUF2 DEFINE BUFFER,SIZE=80,DATA=X'FO0'
Example Rl defines a 200-byte Communications Facility buffer, filled with
EBCDIC blanks. You can refer to the count field in the buffer’s header as
BCOUNT1.

Example E defines an 80-byte Communications Facility buffer, filled with the
character X‘FO’. -

5 The Pn operands refer to the five words of the buffer header, described under “Getting a Buffer
from Your Program” on page 7.

Coding Communications Facility Instructions 185

186

Communications Facility Programmer’s Guide

C

DEFINE BUFFERPOOL

DEFINE BUFFERPOOL—Define a Workspace Pool

This instruction defines a pool of workspace within a program. When coded in a
user program, it creates a workspace pool for the program’s use. You can
subsequently use GET W or GET B to access portions of the workspace pool.

When used during EDX system generation, this instruction defines the system
storage pool (S$POOL). An alternative to the DEFINE BUFFERPOOL
instruction is the DEFINE BRB instruction, which you can use to reduce the size of
the supervisor. (See the chapter ‘Planning Storage Requirements” in the Design
and Installation Guide for a description of SSPOOL and an explanation of how to
calculate its size.)

Note that you can code DEFINE WORK or DEFINE POOL instead of DEFINE
BUFFERPOOL.

DEFINE BUFFERPOOL Format

DEFINE BUFFERPOOL Operands

[label] DEFINE BUFFERPOOL »SIZE=size
DEFINE WORK
DEFINE POOL
Operand Syntax Description
label label The label to be assigned to the pool. Your

subsequent GET W and GET B instructions
must refer to this label. If no label is
specified, the default label SSPOOL is
generated. When the instruction defines the
system storage pool, you must code
S$POOL or take the default.

SIZE= term The decimal size, in bytes, of the storage
pool to be allocated. The maximum size is
32,767. If you specify O or a negative value,
only a buffer reference block (BRB) is
created, its size field contains O or the
negative value.

Coding Communications Facility Instructions 187

DEFINE BUFFERPOOL

DEFINE BUFFERPOOL Examples
DEFINE BUFFERPOOL,SIZE=4096 @
B pooL DEFINE WORK,SIZE=2048

Example , when used during EDX system generation, defines a system storage
pool of 4096 bytes. When coded in a user program, it defines a workspace pool
with the default label SSPOOL.

Example E defines a workspace pool with the label POOL.

Y

o

188 Communications Facility Programmer’s Guide

DEFINE DEVICE

DEFINE DEVICE—Define Remote Disk Access

DEFINE DEVICE defines the information used to access one or more disks on
another Series/1 as if they were on this Series/1. It is used in conjunction with
one or more DISK statements that define remote disks. DEFINE DEVICE
generates entry point and label $CFPDDB; only one DEFINE DEVICE per
assembly is allowed.

The information supplied in DEFINE DEVICE is used to access remote disks only
when the program dispatcher is not running in this Series/1. When the program
dispatcher is running in this Series/1, access to remote disks is through the paths
defined to the program dispatcher. DEFINE DEVICE is required even if remote
disks are not accessed until the program dispatcher is running in this Series/1.

DEFINE DEVICE is used only during EDX system generation.

DEFINE DEVICE Format
DEFINE DEVICE +JCUDA=polladdr |
RINGADR=ringaddr}
,LINE=lineaddr
yCELL=cellid
,/ADDRESS=diskaddr
DEFINE DEVICE Operands
Operand Syntax Description
CUDA= term A 3270 polling address, in the form of a
fullword hexadecimal constant, or 0. When
access to remote disks is over a multipoint
BSC line, specify the polling address of the
terminal station that represents the path to
the program dispatcher in the Series/1
where the real disks are located. When
access to remote disks is over a
point-to-point BSC line
(Series/ 1-to-Series/ 1), specify 0.
RINGADR= literal The hexadecimal Local Communications

Controller ring address of the Series/1
where the real disks are located.

Coding Communications Facility Instructions 189

DEFINE DEVICE

DEFINE DEVICE Examples

Operand Syntax Description
LINE= literal The hexadecimal address of the line in this
Series/1 that is used to access the remote j
disks—either a BSC line or subchannel 0 of -
a Local Communications Controller
attachment.
CELL= literal The cell ID of this Series/1.
ADDRESS= literal The hexadecimal device address of the

remote disk. This can also be a list of
addresses in parentheses (for example,

. ADDRESS=(E1,E2,E3)). The address is
the one specified on the DISK statement
that defines the remote disk.

[} p1sk DEVICE=4962-3,ADDRESS=E1, VOLNAME= (EDX003)

DEFINE DEVICE,CUDA=X'C240',LINE=9,CELL=S2,ADDRESS=E1
B DEFINE DEVICE, RINGADR=4F,LINE=50,CELL=S2,ADDRESS=E1

Example ji}} shows a DISK statement and the DEFINE DEVICE instruction. The
DISK statement defines a remote disk with address E1. The device type must be | .
the same as that of the corresponding real disk. The device address must be a A
fictitious address; there must be no real disk or other device attached at that

address.

The DEFINE DEVICE instruction specifies that when the program dispatcher is
not running in this Series/1, the corresponding real disk is accessed by means of a
transaction sent from cell S2 to the emulated terminal station with polling address
X‘C240’ on BSC line 9.

Example P4 specifies that when the program dispatcher is not running in this
Series/ 1, the real disk corresponding to the one with address E1 is accessed by
means of a transaction sent from cell S2 over the Local Communications
Controller attachment at address 50 to the Series/1 with ring address 4F.

190 Communications Facility Programmer’s Guide

DEFINE Q—Define a Queue Control Block

This instruction defines a Communications Facility queue control block.

DEFINE Q Format
label DEFINE Q
DEFINE Q Operands
Operand Syntax Description
label label The label of the queue control block
created.
DEFINE Q Return Codes
None.
DEFINE Q Example
QCB1 DEFINE QUE

This instruction defines a queue control block with the label QCBI1.

Coding Communications Facility Instructions 191

192

Communications Facility Programmer’s Guide

O

DEFINE VOLUME

DEFINE VOLUME—Define a Remote Disk Volume
O DEFINE VOLUME makes an entry for a remote disk volume in the volume

descriptor cross-reference table. The first DEFINE VOLUME statement generates
entry point and label SCFPVDE.

DEFINE VOLUME is used only during EDX system generation.

DEFINE VOLUME Format
DEFINE VOLUME yCELL=cellid
,YOLNAME = (local-name,remote-name)
[END={YES | NO}]
DEFINE VOLUME Operands
Operand Syntax Description
CELL= literal The cell ID of the Series/1 where the real
disk volume is located.
VOLNAME= literal The volume name used in this Series/1,
followed by the real volume name.
) END= literal YES if this is the end of the volume
()) descriptor cross-reference table; NO
otherwise.
DEFINE VOLUME Examples

DEFINE VOLUME,CELL=SJ,VOLNAME=(PSD002,EDX002)
DEFINE VOLUME,CELL=SJ,VOLNAME=(EDX003,EDX003) ,END=YES

These instructions define remote volumes located in cell SJ. The first one defines
volume EDX002, which is known as PSDO002 in this Series/1. The second one
defines the volume known as EDX003 both in this Series/1 and in cell SJ.

The remote volumes and the names by which they are known in this Series/1 must

be designated as performance volumes (specified in the VOLNAME operand of a
DISK statement).

Coding Communications Facility Instructions 193

194

Communications Facility Programmer’s Guide

FREE B—TFree a Buffer
' This instruction returns a Communications Facility buffer obtained with GET B or
@ GET S to the workspace pool from which it was acquired.
FREE B Format
[label] FREE B Llocation
LEXIT=label]
[LP1=namel]
FREE B Operands
Pn Operand Syntax Description
P1 location location The location of a word that contains the
address of the buffer. The address was
returned to you when you issued the GET B
or GET 8§ instruction.
EXIT= label The label of the next instruction to be

FREE B Return Codes
-1 Successful.

executed if the instruction completes with a
positive return code.

1 The address specified in the location operand was 0.

2 The address specified in the location operand is invalid because it is the

address of an odd byte.

3 Anincorrect forward pointer was found in the workspace pool. Report the
problem to your IBM representative.

4 Anincorrect backward pointer was found in the workspace pool. Report the
problem to your IBM representative.

FREE B Example

FREE B, #1

This example returns the buffer whose address is in register 1 to the pool from

which it was acquired.

Coding Communications Facility Instructions 195

196

Communications Facility Programmer’s Guide

Free s |

FREE S—Free Storage
This instruction returns storage obtained with GET B, GET S, or GET W to the
workspace pool from which it was acquired. Note that you can code this
instruction as FREE S or FREE W.
FREE S Format
[label] FREE S ,location
FREE W [,TYPE=BUFFER]
[,LEXIT=label]
[,P1=namel]
FREE S Operands
Pn Operand Syntax Description
P1 location location The location of a word that contains the
address of the storage. The address was
returned to you when you issued the GET S
or GET W instruction.

TYPE= literal Specify TYPE=BUFFER if the storage
being returned is a Communications Facility
buffer. Note that FREE S with
TYPE=BUFFER is the same as FREE B.

EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.

FREE S Return Codes
-1 Successful.
1 The address specified in the location operand was 0.
2 The address specified in the location operand is invalid because it is the
address of an odd byte.
3 Anincorrect forward pointer was found in the workspace pool. Report the
problem to your IBM representative.
4 An incorrect backward pointer was found in the workspace pool. Report the
problem to your IBM representative.
FREE S Example

FREE S, #2

The storage whose address is in register 2 is freed.

Coding Communications Facility Instructions 197

198

Communications Facility Programmer’s Guide

A

¢

GET A—Locate a System Facility

O GET A Format

GET A Operands

The GET A instruction allows you to get the addresses of various system facilities.

[label] GET A¢

Llocation

[,ifacility | #TCB}]
LEXIT=label}
[LP1=namel]
[,P2=name2]

Pn Operand

P1 location

P2 Sacility

EXIT=

Value Literal

#TCB
#CCB
#BUFFER
#LINE

WN=O

LUPOOL
BUFPOOL
SYSQ
SYSCOM
CSXTABLE

[~ I WV I

Syntax

location

Description

The location where the address of the
facility is to be returned.

integer A value from Figure 31.
literal A literal from Figure 31 .
label The label of the next instruction to be
executed if the instruction completes with a
positive return code.
System Facility
Task control block

Terminal control block ($TCBCCB)

Buffer in terminal control block ($CCBBFAD)
Station block associated with current task
control block.

System storage pool (S$POOL)

System storage pool (SSPOOL)

System queue control block

EDX system common area ($SYSCOM)
Language extension command table
(S$CMDTBL, in module S$CSXSYS)

Figure 31. System Facilities Available through GET A

6 Any characters except I can follow the A. For example, you can enter GET ADDRESS or GET
ALBATROSS, but not GET Al or GET AID. This restriction applies because GET Al is another

instruction.

Coding Communications Facility Instructions 199

GET A Return Codes

GET A Examples

-1 Successful. U

1 facility specified as an integer is invalid; location is set to 0.

GET A, #2,#LINE
GET A,#2,FACILITY*
FACILITY DATA 'O’ INTEGER FOR LITERAL'#TCB'

Example g requests that the address of the station block associated with the
current TCB be returned in register 2. Either the TCB must be within the station
block, or the word following the TCB must contain the address of the station
block.

Example P4 requests that the address of the current TCB be returned in register 2.

200 Communications Facility Programmer’s Guide

O

GET Al—Retrieve the AID Byte and Cursor Address from a 3270 Data Stream

GET AI Format

GET AI Operands

GET Al retrieves the attention ID (AID) byte and, optionally, the cursor address
from a 3270 data stream that is in a Communications Facility buffer. You can also
use this instruction to verify whether the cursor is at a specific row and column
position. It is assumed that the 3270 data stream is the result of a 3270 read
command. If the data stream is the result of a short read operation, it contains no

cursor location.
[label] GET Al | ,text
sbuffer
[{,position | ROW =row,COLM=column}]
[LWIDTH={80 | width}]
LEXIT=label]
[,P1=namel]
[LP2=name2]
[LP3=name3]
Pn Operand Syntax Description
P1 text location The address of an EDX text area to receive
the AID byte.
P2 buffer location The address of the Communications Facility
buffer that contains the 3270 data stream.
P3 position integer To verify the cursor position, the screen
location to be verified; the valid range is
0-4096. You can also specify the location
by using the ROW and COLM operands.
location To retrieve the cursor position, the location
to receive it. The location must have an
address greater than 4096.
ROW= term The cursor row position to be verified.
ROW and COLM are used together in place
of the position operand.
COLM= term The cursor column position to be verified.

COLM must be between 1 and the value of
WIDTH. ROW and COLM are used
together in place of the position operand.

Coding Communications Facility Instructions 201

Pn Operand Syntax Description
WIDTH= term The screen width. This operand is o
meaningless unless ROW and COLM are u
specified.
EXIT= label The label of the next instruction to be

executed if the instruction completes with a
positive return code.

GET AI Return Codes

-1 Successful. The AID byte was moved. If position was specified to retrieve the
cursor location and a cursor location exists in the data stream, it was moved to
position; if no cursor location exists in the data stream, position is set to -1. If
cursor verification was specified, the actual cursor location is as specified.

1 Cursor verification was specified, but the buffer contained no cursor location.

3 The cursor verification specification does not describe the actual cursor
location.

4 The buffer does not contain a valid 3270 data stream; that is, it doesn’t begin
with an STX (X‘02’).

GET AI Example

GET AID,TEXT1,TPBUF,CURPOS A
TEXT1 TEXT LENGTH=1 %Mﬂw
CURPOS DATA F'0Q’

This example retrieves the AID byte and the cursor location from the data stream
in TPBUF.

Assuming that TPBUF contains this data stream:
X‘0240407D4CC911C2D3F1F2F3114CC8C1C2C3C403’
the result is:

TEXT1=X‘7D’ (the AID value)
CURPOS=X‘0309’ (the cursor location, in binary)

202 Communications Facility Programmer’s Guide

GET B—Get a Buffer

The GET B instruction gets a Communications Facility buffer from a workspace

O pool in your program.,

GET B Format

[label] GETB LJocation

JSize

LPOOL={location | SSPOOL}]
[LWAIT={YES | NO}]

LEXIT =label]

[,P1=namel]

[,P2=name2]

LP3=name3]

GET B Operands

Pn Operand Syntax Description

P1 location location The location to receive the address of the
data area of the buffer.

P2 size integer The requested size of the buffer, in bytes.
This is the size of the data area of the
w buffer; it doesn’t include the buffer header.
The size must be in the range 1-32760.

P3 POOL= location The address of the pool from which the
buffer is to be acquired. If you use the
default label SSPOOL, it must be defined in
your program; the label does not refer to the
system storage pool.

WAIT= literal An indicator of whether or not the
instruction is to wait until the requested
space is available. Don’t specify
WAIT=YES unless storage is available or
another task will release some. Note that if
the requested size is greater than the size of
the workspace pool and you code
WAIT=YES, the instruction will never
complete.

EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.

Coding Communications Facility Instructions 203

GET B Return Codes

-1 Successful. The buffer address is in location.

C

1 Not enough space is available. location is set to 0. .

2 The requested buffer size is 0 or negative.

GET B Examples

GET B,#1,80,POOL=POOL

POOL DEFINE POOL,SIZE=4000

GET BUFFER,#1,#2
DEFINE POOL,SIZE=1000

GET BUFF,#1,256,POOL=POOLa*

POOLa DATA A(*-%)

Example g} requests an 80-byte buffer from the workspace pool POOL, and waits
until the space is available. On return, register 1 contains the address of the buffer.

In example E, register 2 contains the buffer size you want to be allocated from
S$POOL in your program. On return, register 1 contains the address of the buffer.

Example g} allocates a 256-byte buffer from the pool whose address is in
POOL@. This example is related to Figure 1 on page 7.

204 Communications Facility Programmer’s Guide

GET F—Retrieve a Field from a Buffer

The GET F instruction moves data from a Communications Facility buffer to an
0 EDX text area. Depending on the combination of operands chosen, you can use
: GET F to retrieve a specific amount of text; to retrieve all the text preceding a
delimiter; and to get the next sequential field or a specific field from a 3270 data
stream. The number of bytes moved is recorded in the text area header. Unused
bytes in the text area are set to blanks.

A GET F instruction may complete successfully and return a record of length 0.
This means the instruction detected a null field. A null field results from two
delimiters in a row with no intervening text, or a delimiter as the last character in
the buffer.

GET F Format

[label} GETF Llext

Jbuffer

[,position]
[,COMPARE=integer]
[LROW=row]
[,COLM={2 | column}]
[LATTR=/ocation]
[,TYPE=NUMERIC]
[LWIDTH={80 | width}]
[LEXIT=label]
[,P1=namel]

o [,P2=name2]
(J’) [LP3=name3]

GET F Operands

Pn Operand Syntax Description

P1 text location The address of an EDX text area to which
the data is to be moved.

P2 buffer location The address of the buffer from which the

data is to be moved.
P3 position integer For retrieval of a specific field from a 3270

data stream, the screen position of the field
data (not of the attribute character); the
valid range is 0-4096. Note that you can
also specify the position through the ROW
and COLM operands.

Coding Communications Facility Instructions 205

Pn Operand

P3 COMPARE=

ROW=

COLM=

P4 ATTR=

TYPE

WIDTH=

206 Communications Facility Programmer’s Guide

Syntax

location

integer

term

term

location

literal

term

Description

For sequential retrieval from a 3270 data
stream, the location to receive the screen
position of the field. The location must
have an address greater than 4096.

O

A character that delimits the field, coded in
bits 8~15. Note that if you use this operand,
you can’t use position or ROW and COLM
operands.

For retrieval of a specific field from a 3270
data stream, the row position of the field on
the screen. ROW and COLM are used
together in place of the position operand.

For retrieval of a specific field from a 3270
data stream, the column position of the field
on the screen. COLM must be between 1
and the value of WIDTH. ROW and
COLM are used together in place of the
position operand.

For retrieval from a 3270 data stream, the
location to receive the start field order and
its associated attribute character. Note that
this operand is meaningful only when you
retrieve a field from a 3270 write data

=Y
stream; a data stream that is the result of a QZJ
read modified operation does not contain

start field sequences.

If this operand is specified and no start field
order exists, location is set to 0. If a start
field order exists and this operand is not
specified, the start field sequence is treated
as data and moved to the beginning of zext.

NUMERIC specifies that the data is to be
right-justified in the text area, with any
unused bytes to the left being filled with
zeros. This operand is ignored unless
position, ROW and COLM, or COMPARE-
is specified.

The screen width. This operand is
meaningless unless ROW= and COLM=
are specified.

GET F Return Codes

GET F Examples

Operand Syntax Description

= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.

Successful. The data has been moved or a null field was detected.

For get sequential only, the end of the buffer was detected. This is the last
data field in the buffer. A subsequent get sequential will result in return code
4.

For all gets except get sequential, a text area overrun occurred. The receiving
text area was filled and the balance of the field was truncated.

For get sequential, get sequential by delimiter, and get 3270 sequential, the
instruction requested a read past the end of the data buffer. No data was
moved to the text area, and the text count fext-1 was set to 0. The location
specified by position was set to -1.

For get specific 3270 field, there is no field at the specified position. No data
was moved to the text area, and the text count fext-1 was set to 0.

Get Sequential

GET F,TEXT1,TPBUF
GET F,TEXT2,TPBUF
GET F,TEXT3,TPBUF

TEXT1 TEXT LENGTH=2
TEXT2 TEXT LENGTH=3
TEXT3 TEXT LENGTH=2

Assuming the following data in TPBUF:
‘ABCDEFG’

The result in the text areas is:

Label Header Data
TEXT1 X‘0202’ ‘AB’
TEXT?2 X‘0303’ ‘CDFE’
TEXT3 X‘0202’ ‘FG’

Coding Communications Facility Instructions

Get Sequential by Delimiter

GET FIELD,CPCMD,TPBUF,COMPARE=X'40"
. GET FIELD,CPTEXT,TPBUF,COMPARE=X'40"'
CPCMD TEXT LENGTH=4
CPTEXT TEXT LENGTH=8

Assuniing the following data in TPBUF:
‘CP TEST’

The result in the text areas (where b represents a blank) is:

Label Header Data
CPCMD X‘0402’ ‘CPbb’
CPTEXT X‘0804° ‘TESTbbbb’

Get Specific 3270 Field

GET F,FIELD1,TPBUF,ROW=3,COLM=4
GET F,FIELD2,TPBUF,LOC¥

FIELD1 TEXT LENGTH=8
FIELD2 TEXT LENGTH=8
LocC DATA F'82'

Note that screen position 82 is equivalent to row 2, column 3.
Assuming the following data in TPBUF:
X‘02C1407D404011C1D2F1F2F311C2E3C1C2C3C403’

The result in the text areas (where b represents a blank) is:

Label Header Data
FIELD1 X‘0804° ‘ABCDbbbb’
FIELD2 X‘0803° ‘123bbbbb’

IJ Get Next Sequential 3270 Field

GET FIELD,TEXT1,TPBUF,POSITON1
GET FIELD,TEXT2, TPBUF,POSITON2

TEXT TEXT LENGTH=8
TEXT2 TEXT LENGTH=8
POSITON1 DATA A(*-%*)

POSITONZ DATA A(*-%)

. Assuming the following data in TPBUF:

‘Xf.0240407D40401 1C2D3F1F2F3114CC8C1C2C3C403’

208 Communications Facility Programmer’s Guide

r\é\w

The result in the text areas and position fields (where b represents a blank) is:

Label

TEXT1
TEXT?2
POSITON1
POSITON2

Header

X‘0803’
X‘0804°

Data

‘123bbbbb’
‘ABCDbbbb’
F147
F‘7176°

POSITON1 shows that the data appeared from row 2, column 68 (position 147);
POSITON2 shows that the data appeared from row 10, column 57 (position 776).

Coding Communications Facility Instructions 209

210

Communications Facility Programmer’s Guide

O

GET Q—Get an Element from a Queue

GET Q Format

GET Q Operands

GET Q Return Codes

GET Q gets an element from a queue. Normally (unless you specify PRI= or
OPTION=), it gets the first element on the queue. If you specify PRI=, it gets the
first element of the specified priority. If you specify OPTION=REMOVE, it
removes the specific element whose address you have placed at element.

[label] GET Q ,element

»qcb

[,PRI=priority]
[,OPTION=REMOVE]
[LEXIT=label]
[,P1=namel]
[LP2=name?2]

Pn Operand Syntax Description

P1 element location The location where the address of the
element is to be placed. If
OPTION=REMOVE is coded, this address
must contain the location of the element to
be removed.

P2 qcb location The location of the Communications
Facility queue control block, which was
created by the DEFINE Q instruction.

PRI= integer The priority of the element to be gotten.
The range of valid priorities is 1-127. The
default is the first element in the queue,
without regard to priority. This operand is
invalid if OPTION=REMOVE is coded.

OPTION= literal REMOVE indicates that element contains
the address of the element to be removed
from the queue.

EXIT= label The label of the next instruction to be

executed if the instruction completes with a
positive return code.

-1 Successful. The address of the element is at element, or, if
OPTION=REMOVE was specified, the element has been removed.

1 The queue is empty. element has been set to 0.

Coding Communications Facility Instructions 211

2 The QCB address is 0.

3 There is an incorrect forward pointer in the chain of station blocks. Report
the problem to your IBM representative. 0

4 There is an incorrect backward pointer in the chain of station blocks. Report
the problem to your IBM representative.

GET Q Example

GET QOUT, #2,QCB1
QCB1 DEFINE QUE

In this example, the address of the first element on the queue QCBI1 is returned in
register 2.

212 Communications Facility Programmer’s Guide

GET S—Get Storage

The GET S instruction gets storage or a Communications Facility buffer from the
0 system storage pool (SSPOOL.).

GET S Format

[label]

GET S

sJocation

JSize

[, WAIT={YES | NO}]
[,TYPE=BUFFER]
[LEXIT=label}
LP1=namel]
[,P2=name2]

GET S Operands

Pn Operand

P1 location

P2 size

C rvee

WAIT=

EXIT=

Syntax

location

integer

literal

literal

label

Description

The location to receive the address of the
storage or buffer.

The requested size of the storage or buffer,
in bytes. The size must be in the range
1-32760.

Specify TYPE=BUFFER if you want the
storage acquired to be a Communications
Facility buffer. This operand has no other
valid values.

An indicator of whether or not the
instruction is to wait until the requested
space is available. Don’t specify
WAIT=YES unless storage is available or
another task will release some. Note that if
the requested size is greater than the size of
the workspace pool and you code
WAIT=YES, the instruction will never
complete.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

Coding Communications Facility Instructions 213

GET S Return Codes

GET S Examples

-1 Successful. The address of the storage or the buffer is in location. @
1 Not enough space is available. location is set to 0. -

2 The requested storage size is 0 or negative.

GET STORAGE, #1, #2, EXIT=NOSTOR , WATT=NO

GET S,LOC,SIZE*,TYPE=BUFFER

SIZE DATA F'80'
LoC DATA A (*-%*)

In example , register 2 contains the number of bytes to be allocated. On return,
if storage was available, its address is in register 1. If the storage is not available,
register 1 contains 0 and execution of the program resumes at location NOSTOR.

In example [}, storage location SIZE contains the size of the buffer to be allocated.
On return, storage location LOC contains the address of the buffer. If the storage
is not available, the program waits until it is.

214 Communications Facility Programmer’s Guide

GET W—Get Workspace

0 The GET W instruction gets storage from a workspace pool in your program.

GET W Format

[label]

GETW

,location

,Size

[LPOOL={location | SSPOOL}]
[LWAIT={YES | NO}]
LEXIT=label]

[,P1=namel]

[,P2=name2]

[,P3=name3]

GET W Operands

P1

P2

0 P3

GET W Return Codes
-1

O 1

Operand

location

size

POOL=

WAIT=

EXIT=

Syntax

location

integer

location

literal

label

Description

The location to receive the address of the
storage.

The requested size of the storage, in bytes.
The size must be in the range 1-32760.

The address of the pool from which the
storage is to be acquired. If you use the
default label SSPOOL, it must be defined in
your program; the label does not refer to the
system storage pool.

An indicator of whether or not the
instruction is to wait until the requested
space is available. Don’t specify
WAIT=YES unless storage is available or
another task will release some. Note that if
the requested size is greater than the size of
the workspace pool and you code
WAIT=YES, the instruction will never
complete.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

Successful. The storage address is in Jlocation.

Not enough space is available. location is set to 0.

Coding Communications Facility Instructions 215

2 The requested storage size is 0 or negative.

GET W Examples

GET W,#1,SIZE*,POOL=POOL @

SIZE DATA F'100'

B cET WORKSPACE, #2,80,WAIT=NO

Example il gets 100 bytes from the workspace pool labeled POOL. On return,

register 1 contains the address of the storage obtained. If the storage is not

available, the program waits until it is.

Example P gets 80 bytes from a workspace pool named S$POOL in your program.,

On return, register 2 contains the address of the storage obtained. If storage is not

available, the program doesn’t wait; in this case, the TCB code word is set to 1 and

register 2 is set to 0.

A

216 Communications Facility Programmer’s Guide

LCC

LCC—Define Local Communications Controller Channel

LCC Format

LCC Operands

LCC Examples

The L.CC instruction defines a Local Communications Controller channel to the
EDX supervisor. All LCC instructions must appear together in the SEDXDEFS
data set. Each Local Communications Controller has three subchannels; all three
subchannels must be defined for each Local Communications Controller

attachment.

LCC is used only during EDX system generation.

LCC ADDRESS=chanaddr
[LEND=YES]
Operand Syntax Description
ADDRESS= literal The hexadecimal address of the Local
Communications Controller subchannel.
END= literal This operand must be included on the last

LCC ADDRESS=50
LCC ADDRESS=51
LCC ADDRESS=52
LCC ADDRESS=AS8
LCC 'ADDRESS=A%9

LCC ADDRESS=AA,END=YES

LCC instruction.

The L.CC instructions in this example define two Local Communications Controller
attachments, one starting at address X‘50’ and the other at address X‘A8’.

Coding Communications Facility Instructions 217

218

Communications Facility Programmer’s Guide

LOCATE NA—Locate a Station Block by Network Address

O

LOCATE NA Format

LOCATE NA Operands

LOCATE NA Return Codes

LOCATE NA Example

LOCATE NA

The LOCATE NA instruction locates a station’s control block, given its network

address.
[label] LOCATE NA slocation
,ha
LEXIT=label]
[LP1=namel]
[,P2=name2]
Pn Operand Syntax Description
location location The location to receive the address of the
station block.
P2 na location The location that contains the network
address of the station.
EXIT= label The label of the next instruction to be

executed if the instruction completes with a
positive return code.

The station was found; the address of the station block is at location.

The station was not found; location is set to 0.

LOCATE NA,#1, (Q$DLV, #2)

In this example, the address of a station’s control block is in register 2 and the
network address of the station to which it is linked is at (Q$DLV,#2). If the
linked-to station is started, the address of its station block is returned in register 1.
If the station isn’t started, O is returned in register 1.

Coding Communications Facility Instructions 219

220

Communications Facility Programmer’s Guide

C:

LOCATE ST

LOCATE ST—Create, Delete, Purge, or Locate a Station Block

O

LOCATE ST Format

LOCATE ST Operands

C

The LOCATE ST instruction locates a station’s control block, given its station
name. It also allows you to delete a station’s control block, or create a station
control block. Note that you can code LOCATE LU or LOCATE QN instead of
LOCATE ST.

[label}

LOCATE ST
LOCATE LU
LOCATE QN

,location

[,staname]

[TYPE={2 | tpe}]

[WORK=1{0 | size}]
[,OPTION={CREATE | REMOVE
| DELETE | PURGE | PROGSTOP}]
[,TCB=NO]

[LEXIT=label]

[,P1=namel]

[,[P2=name2]

[,P3=name3]

P1

P2

P3

Operand

location

staname

TYPE

Syntax

location

location

‘string’

integer

literal

Description

The location to receive the address of the
station block.

The location of the 8-character literal name
of the station. The default is the name of
this program.

The station name, enclosed in quotes. A
name longer than 8 characters is truncated
to 8 characters.

2 for a user station; 12 for a message
station. The values for all station types are
given in the Debugging Guide.

USER or PROGRAM for a user station;
MESSAGE for a message station. The
literals for all station types are given in the
Debugging Guide.

TYPE is valid only for
OPTION=CREATE.

Coding Communications Facility Instructions 221

LOCATE ST

Pn Operand
WORK=

OPTION=

TCB=

EXIT=

222 Communications Facility Programmer’s Guide

Syntax

term

literal

literal

label

Description

The amount of workspace to be allocated
when the station block is created. This
value is specified in bytes, from 0 to 255. It
is valid only for OPTION=CREATE.
Workspace is allocated immediately
following the station block. The address of
the workspace is placed in field Q§WORK
in the station block.

One of the following values:

CREATE—Create the station block if one
named staname does not already exist.

REMOVE or DELETE—Delete the station
block if there are no storage-queued
messages on the station’s queue. The
station block address is not returned in
location.

PURGE—Remove storage-queued
messages from the station’s queue and
delete its station block. The station block
address is not returned in location.

PROGSTOP—Remove storage-queued
messages from the station’s queue, delete its
station block, and perform a PROGSTOP.
The station block address is not returned in
location.

This operand is valid only with
OPTION=CREATE. NO indicates that the
station will be associated with a task control
block that is not contained within the
station block.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

O

LOCATE ST Return Codes

LOCATE ST Examples

LOCATE ST

The station was not found and OPTION=CREATE was specified; the station
block was created and its address is at location.

The station was found; unless the station block was deleted, its address is at
location.

The station was not found and OPTION=CREATE was not specified. No
action was taken; 0 is returned at location.”

The station was not found and OPTION=CREATE was specified, but no
storage was available in the system storage pool. 0 is returned at location.”

There is an incorrect forward pointer in the chain of station blocks. Report
the problem to your IBM representative.

There is an incorrect backward pointer in the chain of station blocks. Report
the problem to your IBM representative.

REMOVE or DELETE was specified, but the station wasn’t deleted because
it has storage-queued messages pending. Either remove all the
storage-queued messages or use OPTION=PURGE.

LOCATE ST, #1,0PTION=CREATE

B rocaTe LU, #1, 'PROGA’

In example n, if a station block with the name of the program issuing the
instruction does not exist, one is created; its type is USER and its network address
is the station block address. In either case, the address of the station block is
returned in register 1.

In example E, the address of the station block for station PROGA is returned in
register 1. If the station block does not exist, 0 is returned in register 1.

7

Note that, if the OPTION operand didn’t specify that the station be deleted, you can check for
successful completion by testing location for a nonzero value.

Coding Communications Facility Instructions 223

224 Communications Facility Programmer’s Guide

N

MOV

MOV—Move Data
0 The MOV instruction moves data from one storage location to another.
MOV Format
[label] MOV St0
Jfrom
[,{length | DWORD | BYTE | WORD1]
[,LP1=namel]
[,P2=name2]
[,P3=name3]
MOY Operands
Pn Operand Syntax Description
P1 to location The location to which the data is to be
moved.
P2 from location The location from which the data is to be
moved. The data cannot be immediate data.
P3 length integer The number of bytes to be moved.
‘ Y, | literal BYTE for one byte, WORD for one word,

or DWORD for one doubleword.

MOV Return Codes
None.

MOV Examples
MOV STATUS, (0, #T)
MOV TEXT, (0, #2) ,#1%

Example [} moves the TCB code word to the location STATUS. It is not
necessary to know the address of the TCB, because #T refers to it.

Example E moves data from the address pointed to by register 2 to the text area
defined by TEXT. The number of bytes is in register 1.

Coding Communications Facility Instructions 225

226 Communications Facility Programmer’s Guide

O

C

PUT AID—Put an AID Byte into a 3270 Data Stream

PUT AID Format

PUT AID Operands

The PUT AID instruction moves a 3270 read header that includes an attention ID
(AID) byte and, optionally, a cursor address, into a Communications Facility
buffer. The data moved into the buffer is X‘024040xxyyy)’, where xx is the AID
byte you supply and yyyy is the optional cursor address.

The buffer header fields BSCOUNT and BSDATA@ are reset to indicate that the
buffer is empty. Then the data is moved to the beginning of the buffer, and
B$SCOUNT and BSDATA@ are updated.

[Zabel]

PUT AID ,buffer

Jtext

[{,position | ROW =row,COLM=column}]
LWIDTH=1{80 | width}]

LEXIT=label]

[,P1=namel]

[,P2=name2]

[,P3=name3]

P1

P2

P3

Operand
buffer

text

Dposition

ROW=

COLM=

Syntax Description

location The address of the buffer to which the read
header is to be moved.

location The address of an EDX text area that
contains the AID byte. The text area must
be formatted as shown in the first example.

‘string’ One EBCDIC character, enclosed in quotes.

integer The screen location of the cursor. If the
location is not specified, either here or
through the ROW and COLM operands, no
cursor address is moved to the buffer.

term The row position of the cursor. ROW and
COLM are used together in place of the
position operand.

term The column position of the cursor. COLM
must be between 1 and the value of
WIDTH. ROW and COLM are used
together in place of the position operand.

Coding Communications Facility Instructions 227

Pn Operand Syntax Description
WIDTH= term The screen width. This operand is
meaningless unless ROW and COLM are @
specified.

EXIT= label The label of the next instruction to be
’ executed if the instruction completes with a
positive return code. -

PUT AID Return Codes
-1 Successful. The read header has been moved into the buffer.

2 The text address is 0.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the read header; no data was moved.

PUT AID Examples
PUT AID,TPBUF,AID
DC X'0201" TEXT COUNT FIELD
AID DC X'6D02' TEXT
PUT AID,TPBUF,'1',ROW=2,COLM=10
Example [f] moves X‘0240406D’ into the buffer TPBUF. This is the header that <LD
would result from a 3270 read operation ended by the CLEAR key.

Example P4 moves X‘024040F1C1D9’ into the buffer TPBUF. This is the header
that would result from a 3270 read operation ended by the PF1 key when the
cursor was at row 2, column 10. X‘F1’ is the AID byte, and X‘C1D9’ is the 3270
buffer address for row 2, column 10. '

O

228 Communications Facility Programmer’s Guide

PUT CO—Put a WRITE Command into a 3270 Data Stream

The PUT CO instruction moves a 3270 write command and write control character
Q into a Communications Facility buffer. The default data that is moved into the
buffer is X‘0227F1C3’, where X‘F1’ is a WRITE command and X‘C3’ is a write
control character that resets modified data tags and unlocks the keyboard. Options
of this instruction allow you to make the command an ERASE/WRITE or an
ERASE/WRITE ALTERNATE, and to change the write control character.

The buffer header fields BECOUNT and BSDATA@ are reset to indicate that the
buffer is empty. Then the data is moved to the beginning of the buffer, and
B$COUNT and BSDATA@ are updated.

shuffer
[,OPTION=(optionl,option2,...)]
LEXIT =label]

[,P1=namel]

PUT CO Format
[label] PUT CO
PUT CO Operands
Pn Operand Syntax
O P1 buffer location
OPTION= literal

Description

The address of the buffer to which the
command is to be moved.

TAB puts a program tab order (X‘05’) into
the buffer following the write control
character.

ERASE makes the command that is moved
into the buffer an ERASE/WRITE (X‘F5°)
rather than a WRITE.

ALTERNATE makes the command that is
moved into the buffer an ERASE/WRITE
ALTERNATE (X“IE’) rather than a
WRITE.

Seven additional options allow you to
modify the write control character that is

put into the buffer:

MDT prevents the resetting of modified
data tags.

LOCK prevents unlocking of the keyboard.

Coding Communications Facility Instructions 229

Pn Operand

EXIT

PUT CO Return Codes

Syntax

label

Description
TONE causes the alarm to be sounded.

P40 sets a 40-character print line and prints
the contents of the screen.

P64 sets a 64-character print line and prints
the contents of the screen.

P80 sets an 80-character print line and
prints the contents of the screen.

PRINT sets unformatted print mode and
prints the contents of the screen.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-1 Successful. The command has been moved into the buffer.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the command. No data was moved.

PUT CO Example

PUT COMMAND, TPBUF,OPTION=(ERASE,PRINT)

This instruction moves X‘0227F54B’ into the buffer TPBUF. X‘F5’ is an
ERASE/WRITE command, and X‘4B’ is a write control character that initiates a
printout operation, resets modified data tags, and unlocks the keyboard.

230 Communications Facility Programmer’s Guide

A

N/

PUT CURS—Put a Cursor into a 3270 Data Stream

The PUT CURS instruction moves a 3270 insert cursor order (X‘13’) and,
m optionally, the position at which the cursor is to be displayed, into a
Communications Facility buffer.

The data is moved to the next available location in the buffer, and buffer header
fields BSCOUNT and BSDATA@ are updated.

PUT CURS Format

[label] PUT CURS sbuffer

[{,,positions |

SROW =row,COLM=column}]
LWIDTH={80 | width}]
[LOPTION=TAB]
LEXIT=label]

[, P1=namel]

[,[P3=name3]

PUT CURS Operands
Pn Operand Syntax Description

P1 buffer location The address of the buffer to which the insert
0 cursor order is to be moved.

P3 position integer The screen location of the cursor. If the
location is not specified, either here or
through the ROW and COLM operands, no
cursor address is moved to the buffer.

ROW= term The row position of the cursor. ROW and
COLM are used together in place of the
position operand.

COLM= term The column position of the cursor. COLM
must be between 1 and the value of
WIDTH. ROW and COLM are used
together in place of the position operand.

WIDTH= term The screen width. This operand is
meaningless unless ROW and COLM are
specified.

8 Even though this instruction has only two positional operands, the Communications Facility treats
: position as the third positional operand. Therefore you must code two commas before position. If
you enter a value for the second positional operand, it is ignored.

Coding Communications Facility Instructions 231

PUT CURS Return Codes

PUT CURS Examples

Pn Operand Syntax Description

OPTION= literal TAB puts a program tab order (X‘05°) into
, the buffer following the insert cursor order.

EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-1 Successful. The insert cursor order has been moved into the buffer.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the insert cursor order; no data was moved.

PUT CURSOR, TPBUF,ROW=6, COLM=8 , OPTION=TAB
H rur curs, TPBUF

Example jjj moves X‘11C6D71305’ into the buffer TPBUF. X‘11’ is a set buffer
address order; X‘C6D7’ is the 3270 buffer address for row 6, column 8; X‘13’ is an
insert cursor order; and X‘05’ is a program tab order.

Example 4 moves an insert cursor order (X‘13’) into the buffer TPBUF. The
cursor position depends on previous set buffer address orders and data in the 3270
data stream.

232 Communications Facility Programmer’s Guide

c

PUT DLEETB

PUT DLEETB—-Put a DLE and an ETB into a 3270 Data Stream

The PUT DLEETB instruction moves BSC control characters DLE and ETB
(X‘1026°) into a Communications Facility buffer.

The data is moved to the next available location in the buffer, and buffer header
fields BECOUNT and B§$DATA@ are updated. This instruction allows the last

shuffer
LEXIT =label]
[,P1=namel]

byte of the buffer to be used.
PUT DLEETB Format
[label] PUT DLEETB
PUT DLEETB Operands
Pn Operand Syntax
P1 buffer location
EXIT= label

PUT DLEETB Return Codes

Description

The address of the buffer to which the DLE
and ETB are to be moved.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-1 Successful. The DLE and ETB have been moved into the buffer.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the DLE and ETB. No data was moved.

PUT DLEETB Example

PUT DLEETB, TPBUF

This instruction puts a DLE and an ETB into the buffer TPBUF.

Coding Communications Facility Instructions 233

234

Communications Facility Programmer’s Guide

C

PUT DLEETX

PUT DLEETX—Put a DLE and an ETX into a 3270 Data Stream

The PUT DLEETX instruction moves BSC control characters DLE and ETX
@, (X1003’) into a Communications Facility buffer.

The data is moved to the next available location in the buffer and buffer header
fields BSCOUNT and B§DATA@ are updated. This instruction allows the last
byte of the buffer to be used.

PUT DLEETX Format
[label] PUT DLEETX ,buffer
[,LEXIT=label]
[,LP1=namel]
PUT DLEETX Operands
Pn Operand Syntax Description
P1 buffer location The address of the buffer to which the DLE
and ETX are to be moved.
EXIT= label The label of the next instruction to be

executed if the instruction completes with a
positive return code.

C
PUT DLEETX Return Codes
-1 Successful. The DLE and ETX have been moved into the buffer.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the DLE and ETX; no data was moved.

PUT DLEETX Example

PUT DLEETX, TPBUF

This instruction puts a DLE and an ETX into the buffer TPBUF.

Coding Communications Facility Instructions 235

236

Communications Facility Programmer’s Guide

PUT DLESTX

PUT DLESTX—Put a DLE and an STX into a 3270 Data Stream

The PUT DLESTX instruction moves BSC control characters DLE and STX
w (X‘1002’) into a Communications Facility buffer.

The buffer header fields BSCOUNT and B§DATA@ are reset to indicate that the
buffer is empty. Then the data is moved to the beginning of the buffer, and
B$COUNT and BSDATA@ are updated.

PUT DLESTX Format
[label] PUT DLESTX Jbuffer
LEXIT=label]
[,P1=namel]
PUT DLESTX Operands
Pn Operand Syntax Description
P1 buffer location The address of the buffer to which the DLE

and STX are to be moved.

EXIT= label The label of the next instruction to be
executed if the instruction completes with a

positive return code.
C

PUT DLESTX Return Codes

-1 Successful. The DLE and STX have been moved into the buffer.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the DLE and STX; no data was moved.

PUT DLESTX Example

PUT DLESTX, TPBUF

This instruction puts a DLE and an STX into the buffer TPBUF.

Coding Communications Facility Instructions 237

238

Communications Facility Programmer’s Guide

O

PUT ERA—Put an Erase Order into a 3270 Data Stream

PUT ERA Format

PUT ERA Operands

The PUT ERA instruction moves a 3270 erase unprotected to address (EUA)
order into a Communications Facility buffer. The data moved into the buffer is
X‘12xxxx’, where xxxx is the 3270 buffer address at which the erase operation is to
stop.

The data is moved to the next available location in the buffer, and buffer header
fields BSCOUNT and B$DATA are updated.

[label] PUT ERA ,buffer

{,sposition® |

JROW =row,COLM=column}
[LWIDTH={80 | width}]
[,OPTION=TAB]

[LEXIT=label]
[,P1=namel]
[,[P3=name3]
Pn Operand Syntax Description
P1 buffer location The address of the buffer to which the erase

order is to be moved.

P3 position integer The screen location at which the erase
operation is to stop. Specify the location
either here or through the ROW and COLM
operands.

ROW= term The row position at which the erase
operation is to stop. ROW and COLM are
used together in place of the position
operand.

COLM= term The column position at which the erase
operation is to stop. COLM must be
between 1 and the value of WIDTH. ROW
and COLM are used together in place of the
position operand.

9 Even though this instruction has only two positional operands, the Communications Facility treats

position as the third positional operand. Therefore you must code two commas before position. If
you enter a value for the second positional operand, it is ignored.

Coding Communications Facility Instructions 239

Pn Operand
WIDTH=

OPTION=

EXIT=

PUT ERA Return Codes

term

literal

label

Description

The screen width. This operand is
meaningless unless ROW and COLM are
specified.

TAB puts a program tab order (X‘05’) into
the buffer following the erase order.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-1 Successful. The erase order has been moved into the buffer.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the erase order. No data was moved.

PUT ERA Example

240

PUT ERASE, TPBUF,ROW=7,COLM=1

This instruction moves X‘12C760’ into the buffer TPBUF. X‘12’ is an erase
unprotected to address order, and X‘C760’ is the 3270 buffer address for row 7,

column 1.

Communications Facility Programmer’s Guide

~

(%JJ’

PUT ETB—Put an ETB into a 3270 Data Stream

PUT ETB Format

PUT ETB Operands

PUT ETB Return Codes

PUT ETB Example

The PUT ETB instruction moves BSC control character ETB (X‘26’) into a
Communications Facility buffer.

The data is moved to the next available location in the buffer, and buffer header
fields BSCOUNT and B$DATA@ are updated. This instruction allows the last
byte of the buffer to be used.

[label] PUT ETB Jbuffer
[LEXIT=label]
[,P1=namel]
Pn Operand Syntax Description
P1 buffer location The address of the buffer to which the ETB

is to be moved.
EXIT= label The label of the next instruction to be

executed if the instruction completes with a
positive return code.

-1 Successful. The ETB has been moved into the buffer.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the ETB. No data was moved.

PUT ETB,TPBUF

This instruction puts an ETB into the buffer TPBUF.

Coding Communications Facility Instructions 241

242

Communications Facility Programmer’s Guide

PUT ETX—Put an ETX into a 3270 Data

Stream

Communications Facility buffer.

0 The PUT ETX instruction moves BSC control character ETX (X‘03’) into a

The data is moved to the next available location in the buffer, and buffer header
fields BSCOUNT and B$DATA@ are updated. This instruction allows the last
byte of the buffer to be used.

PUT ETX Format
[label] PUT ETX sbuffer
[LEXIT=label]
[LP1=namell]
PUT ETX Operands
Pn Operand Syntax Description
P1 buffer location The address of the buffer to which the ETX
is to be moved.
EXIT= label The label of the next instruction to be

C

PUT ETX Return Codes

executed if the instruction completes with a
positive return code.

-1 Successful. The ETX has been moved into the buffer.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the ETX. No data was moved.

PUT ETX Example

PUT ETX,TPBUF

This instruction puts an ETX into the buffer TPBUF.

Coding Communications Facility Instructions 243

244 Communications Facility Programmer’s Guide

PUT F—Put Data into a Communications Facility Buffer

The PUT F instruction moves data from an EDX text area to a Communications
Facility buffer. Depending on the combination of operands chosen, you can use
PUT F to concatenate several text fields into one buffer, or to construct a 3270

data stream.

PUT F Format

[label]

PUTF .

sbuffer

Jext

[,position]
[LATTR=integer]
[LROW==row]
[,COLM=1{2 | column}]
[LWIDTH={80 | width}]
[,OPTION={INITIAL | FINAL | TAB}]
LEXIT=label]
[,P1=namel]
[,LP2=name2]
[,P3=name3]
[,P4=name4]

PUT F Operands

P1

P2

P3

Operand
buffer

text

position

Syntax

location

location

‘string’

integer

Description

The address of the buffer to which the data
is to be moved.

The address of an EDX text area from
which the data is to be moved.

From 1 to 253 EBCDIC characters,
enclosed in quotes.

The location (0-1919) where the field is to
be displayed on the receiving device. If the
position is not specified, either here or
through the ROW and COLM operands, no
new field is created; the data is
concatenated to any data already in the
buffer.

Coding Communications Facility Instructions 245

Pn Operand

P4 ATTR=

ROW=

COLM=

WIDTH=

OPTION=

246 - Communications Facility Programmer’s Guide

Syntax

integer

term

term

term

literal

Description

If the position is specified, a 3270 set buffer
address order is moved to the buffer
preceding the field. The order is X‘11xxxx’,
where xxxx is the 3270 buffer address for
the field location.

If the ATTR operand is not coded, xxxx is
the position you specify. If the ATTR
operand is coded, xxxx is position-1, unless
position is 0; in that case, xxxx is location
1919.

The attribute character of the field, coded in
bits 8-15. If ATTR is coded, either position
or ROW= and COLM= must be coded. A
3270 start field order is moved to the buffer
following the set buffer address order. The
order is X‘1Dxx’, where xx is the attribute
character you specify.

The row position at which the data is to be
displayed on the receiving device. ROW
and COLM are used together in place of the
position operand.

The column position at which the data is to
be displayed on the receiving device.
COLM must be between 1 and the value of
WIDTH. ROW and COLM are used
together in place of the position operand.

The screen width. This operand is
meaningless unless ROW= and COLM=
are specified.

INITIAL specifies that this is the first data
in the buffer. This operand resets buffer
header fields BSCOUNT and B§DATA@©@
to indicate that the buffer is empty before
the data is moved into it. Be sure to code
OPTION=INITIAL when you’re reusing a
buffer.

If you don’t code OPTION=INITIAL, the
data is moved to the next available location
in the buffer, and buffer header fields
B$COUNT and B§DATA@ are updated.

&
.

N
W4

N

Pn Operand

EXIT=

PUT F Return Codes

Description

FINAL specifies that this is the last data in
the buffer. Specifying FINAL allows you to
use the last byte of the buffer, which you
can’t use otherwise. FINAL is normally
used to add an ETB or ETX to an otherwise
full buffer.

TAB puts a program tab order (X‘05’) into
the buffer following the data.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-1 Successful. The data has been moved into the buffer.

2 The text address is 0.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the data. No data was moved.

PUT F Examples

‘::D

ol I

DATA F'1'
ETX DATA X'03'

DATA F'4' .
ERASE DATA X'0227F5C3'

PUT F,TPBUF,ERASE,OPTION=INITIAL
PUT F,TPBUF, 'EXAMPLE',ROW=2,COLM=3,ATTR=X'FO0"'

PUT F,TPBUF,ETX,OPTION=FINAL

TEXT COUNT FIELD
TEXT
TEXT COUNT FIELD
TEXT

Figure 32 on page 248 shows the buffer content at each of four stages: empty, and
after each of the three PUT F instructions.

Coding Communications Facility Instructions 247

248

Label Address Empty After K1 After] After]

BSCOUNT 0OF8 00 04 10 11

BSADDR 00FA 0100 0100 0100 0100

BSDATA@ O0OFC 0100 0104 0110 0111
00FE

TPBUF 0100 40 02 02 02
0101 40 27 27 27
0102 40 F5 F5 Fs
0103 40 C3 C3 C3
0104 40 40 11 11
0105 40 40 Cl C1
0106 40 40 D1 DI
0107 40 40 1D 1D
0108 40 40 FO FO
0109 40 40 Cs Cs
010A 40 40 E7 E7
010B 40 40 Ci Cl
010C 40 40 D4 D4
010D 40 40 D7 D7
010E 40 40 D3 D3
010F 40 40 Cs Cs
0110 40 40 40 03

Figure 32. PUT F Example

Communications Facility Programmer’s Guide

N
J

PUT NUL—Set Buffer Address

Communications Facility buffer. The data moved into the buffer is X‘11xxxx’,
where xxxx is a 3270 buffer address. If you specify neither a buffer address nor
OPTION=TAB, no data is moved.

0 The PUT NUL instruction moves a 3270 set buffer address (SBA) order into a

The data is moved into the next available location in the buffer, and buffer header
fields BECOUNT and B§$DATA@ are updated.

PUT NUL Format

[label] PUT NUL youffer

[{,sposition |
JROW=row,COLM=column}]
[LWIDTH={80 | width}]
[LOPTION=TAB]

LEXIT=label]
[,P1=namel]
[,LP3=name3]
PUT NUL Operands
Pn Operand Syntax Description
O P1 buffer location The address of the buffer in which the

address is to be set.

P3 position integer The screen location at which the 3270
buffer address is to be set. If the location is
not specified, either here or through the
ROW and COLM operands, no set buffer
address order is moved to the buffer.

ROW= term The row position at which the 3270 buffer
address is to be set. ROW and COLM are
used together in place of the position
operand.

COLM= term The column position at which the 3270
buffer address is to be set. COLM must be
between 1 and the value of WIDTH. ROW
and COLM are used together in place of the
position operand.

0 10 Even though this instruction has only two positional operands, the Communications Facility treats
position as the third positional operand. Therefore you must code two commas before position. If
you enter a value for the second positional operand, it is ignored.

Coding Communications Facility Instructions 249

Pn Operand
WIDTH=

OPTION=

EXIT=

PUT NUL Return Codes

Syntax

term

literal

label

Description ﬂ

The screen width. This operand is -
meaningless unless ROW and COLM are ()
specified. L

TAB puts a program tab order (X‘05’) into
the buffer following the set buffer address
order.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-1 Successful. The data has been moved into the buffer.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the data. No data was moved.

PUT NUL Example

250

PUT NULL,TPBUF,ROW=7,COLM=1

This instruction moves X‘11C760’ into the buffer TPBUF. X‘11’ is a set buffer
address order, and X‘C760’ is the 3270 buffer address for row 7, column 1.

Communications Facility Programmer’s Guide

PUT Q—Put an Element in a Queue
0 PUT Q puts an element onto a queue.
PUT Q Format

[label] PUT Q

»qch

selement

[,{priority | 127 | YES}]
[,LP1=namel]
[,[P2=name2]
[,[P3=name3]

PUT Q Operands

Pn Operand Syntax

P1 gch location

P2 element location

Cj) P3 priority integer

literal

PUT Q Return Codes

None.

Description

The location of the Communications
Facility queue control block (created
through DEFINE Q).

The location that contains the address of the
element to be added to the queue.

The priority of the element, where 1 is the
highest priority.

YES specifies that the user has provided the
priority in the queue element priority byte.

If the priority operand is not coded, the
element is placed at the end of the queue.

Coding Communications Facility Instructions 251

PUT Q Examples

252

QCB1
QCB2
ADDR1
ADDR2
ADDR3
ELEMENT 1

ELEMENT2
ELEMENT3

Example §ll places ELEMENT1 into QCBI1 in first-in-first-out priority.

Example E places ELEMENT?2 into QCB2 according to its priority. The priority
is contained in the fifth byte of the element; it is 19 (decimal). The element is put
into the queue after other elements of priority 19 and before any elements of
priority 20.

Example g} inserts ELEMENT3 into QCB2 with priority 4. The element is
inserted ahead of ELEMENT?2. The fifth byte will be set to X‘04°.

Communications Facility Programmer’s Guide

PUT QIN,QCB1,ADDRI1
PUT QIN,QCB2,ADDR2,YES

PUT QIN,QCB2,ADDR3,4

DEFINE QUE
DEFINE Q

DATA A (ELEMENT1)
DATA A (ELEMENT2)
DATA A (ELEMENT3)
DATA 2F'0',...

DATA 2F'0',X'13',X'00'..

DATA 3F'0',...

N

PUT REP—Repeat a Character in a 3270 Data Stream

The PUT REP instruction moves a 3270 repeat to address (RA) order into a
Communications Facility buffer. The data moved into the buffer is X‘3Cxxxxyy’,
where xxxx is the 3270 buffer address at which the repeat operation is to stop, and
Jy is the repeated character.

O

PUT REP Format

PUT REP Operands

O

The data is moved to the next available location in the buffer, and buffer header
fields BSCOUNT and BSDATA@ are updated.

[label]

PUT REP Jbuffer

,Character

§,position | ROW =row,COLM=column}
[LWIDTH={80 | width}]
[,OPTION=TAB]

LEXIT=/abel]

[,[P1=namel]

[,P2=name2]

[,P3=name3]

P1

P2

P3

Operand
buffer

character

Dposition

ROW=

Syntax

location

location

‘string’

integer

term

Description

The address of the buffer to which the
repeat order is to be moved.

The address of an EDX text area that
contains the repeated character. The text
area must be formatted as shown in example

(1]
One EBCDIC character, enclosed in quotes.

The screen location at which the repeat
operation is to stop. Specify the location
here or through the ROW and COLM
operands.

The row position at which the repeat
operation is to stop. ROW and COLM are
used together in place of the position
operand.

Coding Communications Facility Instructions 253

Pn Operand
COLM=

WIDTH=

OPTION=

PUT REP Return Codes

Syntax

term

term

literal

label

Description

operation is to stop.. COLM must be
between 1 and the value of WIDTH. ROW
and COLM are used together in place of the
position operand.

The column position at which the repeat @
4

The screen width. This operand is
meaningless unless ROW and COLM are
specified.

TAB puts a program tab order (X‘05°) into
the buffer following the repeat to address
order.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-1 Successful. The repeat order has been moved into the buffer.

2 The character address is 0.

3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the repeat order. No data was moved.

A
b

&

PUT REP Examples
H PUT REP, TPBUF,CHAR,ROW=2,COLM=1
DC X'0201" TEXT COUNT FIELD
CHAR DC X'403C' TEXT
B PUT REPEAT,TPBUF, '*',ROW=2, COLM=1

Example [} moves X‘3CC15040’ into the buffer TPBUF. X‘3C’ is a repeat to
address order; X‘C150’ is the 3270 buffer address for row 2, column 1; and X‘40’

is the repeated character, a blank.

Example E has the same effect as example , except that the repeated character

is an asterisk.

254 Communications f‘acility Programmer’s Guide

PUT STX—Put an STX into a 3270 Data Stream

The PUT STX instruction moves BSC control character STX (X‘02’) into a
Communications Facility buffer.

The buffer header fields BSCOUNT and BSDATA@ are reset to indicate that the
buffer is empty. Then the data is moved to the beginning of the buffer, and
B$COUNT and BSDATA@ are updated.

PUT STX Format
[label} PUT STX sbuffer
LEXIT=label]
LP1=namell
PUT STX Operands
Pn Operand Syntax Description
P1 buffer location The address of the buffer to which the STX
is to be moved.
EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.
PUT STX Return Codes
-1 Successful. The STX has been moved into the buffer.
3 A buffer overrun occurred. Not enough space remains in the buffer to
accommodate the STX. No data was moved.
PUT STX Example

PUT STX,TPBUF

This instruction puts an STX into the buffer TPBUF.

Coding Communications Facility Instructions 255

{:

W g

256 Communications Facility Programmer’s Guide

PUT TCB—Create a Task Control Block

O

PUT TCB Format

PUT TCB Operands

PUT TCB Return Codes

The PUT TCB instruction creates a task control block.

[label] PUT TCB Sich
[,station]
LLEV=1{2 | level},PRI={150 | priority}]
LEXIT=label]

Pn Operand Syntax Description

P1 teh location The address of the area to contain the TCB.
The area must be 130 bytes long if station is
specified and 128 bytes long if station is not
specified.

P2 station location The address of the station block with which
the TCB is to be associated. If this operand
is omitted, the TCB is not associated with a
station.

P3 LEV= integer The hardware interrupt level at which the
task is to execute; 1, 2, or 3. This operand
is ignored if station is specified.

P4 PRI= integer The priority at which the task is to execute;
1 to 255. This operand is ignored if station
is specified.

EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-1 Successful.

1 The specified station block address or TCB area address is 0.

2 The specified station block is not large enough to be associated with a TCB.

3 The specified level or priority is invalid.

Coding Communications Facility Instructions 257

PUT TCB Examples

PUT TCB,#1%,#2%

This instruction creates a TCB in the area whose address is in register 1 that is
associated with the station block whose address is in register 2.

PUT TCB,TCB2*,LEV=2,PRI=255

This instruction creates a TCB in the area whose address is in TCB2 that is not
associated with a station block.

258 Communications Facility Programmer’s Guide

RECEIVE M

RECEIVE M—Receive a Message into a Buffer

The RECEIVE M instruction receives a message from a station’s queue into a
D Communications Facility buffer. On successful completion, the message length is
in buffer header field BECOUNT.

RECEIVE M Format

[label] RECEIVEM ybuffer

[,staname)
LWAIT={YES | NO}]
[ACK={YES | NO}]
[,{HEADER=location |
ORIGIN=/ocation}]
[,OPTION={COPY | KEEP}]
LEXIT=label]
[LP1=namel]
[,P2=name?2]
[,P3=name3]

RECEIVE M Operands

Pn Operand Syntax Description

P1 buffer location The address of the buffer into which the
l yj 4 message is to be placed. '

P2 staname location The location of the 8-character name of the
station from whose queue the message is to
be received. The default is the name of the
program that issues the instruction.

‘string’ The station name, enclosed in quotes.

WAIT= literal An indicator of whether or not the
instruction is to wait until there is a message
on the queue. If the station is deleted while
a wait is in effect, the instruction returns a
return code of 2.

ACK= literal An indicator of whether or not receipt of
the message is to be acknowledged to the
sender of the message. ACK=YES has no
effect if the sender is in a different node.

Coding Communications Facility Instructions 259

RECEIVE M

Pn Operand Syntax Description

P3 HEADER= location The address at which the message header is :
to be placed. The area at location must be 0
at least 24 bytes long to accommodate the
header.

P3 ORIGIN= location The address at which the name of the

station that originated the message is to be
placed. The area at Jlocation must be at least
10 bytes long. Bytes 1 to 8 contain the
station name, and bytes 9 and 10 contain
the station type and subtype. If the origin
of the message is not known, the area at
location is filled in with binary zeros.

OPTION= literal COPY indicates that a copy of the message
is to be delivered normally, but the message
is to be left on the queue.

KEEP has the same effect as COPY, and
also indicates that if the receiving program’s
buffer is too small to hold a disk-queued
message, a copy of the message is to be kept
in the system message buffer pool.

EXIT= label The label of the next instruction to be

executed if the instruction completes with a
positive return code. T

L

RECEIVE M Return Codes

-19 The receive completed successfully, and the disk-queue data set’s capacity
warning level, specified when the data set was defined, has been exceeded.

-18 The receive completed successfully, and an overlay occurred in the disk-queue
data set.

-1 Successful. A message has been moved to the buffer at buffer.

1 There is no message on the queue and WAIT=NO was specified.

2 The station specified by staname does not exist.

3 The buffer at buffer isn’t big enough to contain the message; the message has
been truncated. If OPTION=KEEP was specified, the buffer header count
field contains the message length; otherwise it contains the number of bytes

moved to the buffer.

4 Messages for staname are being held as a result of a CP F command that set
output hold. No message was received.

5 The buffer address specified was 0. C

Ny ¥

260 Communications Facility Programmer’s Guide

RECEIVE M Examples

RECEIVE M

6 A status message (one sent by a SEND Status instruction) was received.

7 The message to be received was disk-queued and a disk I/O error occurred.
No message was received.

8 The message to be received was disk-queued and the station specified by
staname is not active. No message was received.

9 The previous receive from the queue specified by szaname specified
OPTION=COPY or KEEP, and no RECEIVE P instruction has been issued.
No message was received.

RECEIVE MESSAGE, TPBUF,ORIGIN=ORIGIN

TPBUF DEFINE BUFFER,SIZE=256

ORIGIN TEXT LENGTH=8 ORIGIN STATION NAME

TYPE DATA F'0' ORIGIN STATION TYPE AND SUBTYPE

In example , a message is received from the queue of the station that has the
name of the program. The message is placed in the buffer at TPBUF. The name
of the station that originated the message is moved into the field ORIGIN, and its
type and subtype are moved into the field at TYPE.

RECEIVE M,WASTEBUF, '$.WASTE', HEADER=HDR

WASTEBUF DEFINE BUFFER,SIZE=256
HDR DATA 12X'0000' MESSAGE HEADER

In example , a message is received from the queue for station $.WASTE into a
buffer at WASTEBUF. The header is moved into HDR.

Coding Communications Facility Instructions 261

262

Communications Facility Programmer’s Guide

RECEIVE N—Receive Notification of Messages

RECEIVE N

This instruction checks a station’s message queue and notifies you (through the
return code) of whether or not there is a message on the queue.

RECEIVE N Format
[label} RECEIVE N Lystaname]l
[LWAIT={YES | NO}]
LEXIT=label]
[,P2=name2]
RECEIVE N Operands
Pn Operand Syntax Description
P2 staname location The location of the 8-character name of the
station whose queue is to be.examined. The
default is the name of the program that
issues the instruction.
‘string’ The station name, enclosed in quotes.
WAIT= literal An indicator of whether or not the
instruction is to wait until there is a message
on the queue. If the station is deleted while
a wait is in effect, the instruction returns a
return code of 2.
EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.
RECEIVE N Return Codes
-2 There is a message on the disk queue, and no message on the storage queue.
-1 There is a message on the storage queue.
1 There is no message on the storage queue or the disk queue.
2 The station specified by staname does not exist.
4 Messages for staname are being held as a result of a CP F command that set

output hold.

11

The Communications Facility treats staname as the second positional operand (as it is in the other
RECEIVE instructions). Therefore you must code two commas before staname. If you enter a
value for the first positional operand, it is ignored.

Coding Communications Facility Instructions 263

RECEIVE N

RECEIVE N Example

RECEIVE NOTIFY,,'TPQUEUE',WAIT=NO

This example checks the queue of the station TPQUEUE and returns a return code
. indicating whether or not there is a message on the queue.

264 Communications Facility Programmer’s Guide

RECEIVE P—Purge a Message

RECEIVE P Format

RECEIVE P Operands

RECEIVE P Return Codes

RECEIVE P

This instruction purges a message that was previously received by a RECEIVE
instruction with option COPY or KEEP. If the message to be purged exists both
on disk and in storage as a result of a RECEIVE instruction with OPTION=KEEP,
both copies of the message are purged. If the previous RECEIVE instruction
against the queue did not specify OPTION=COPY or OPTION=KEEP, no
message is purged.

[label}

RECEIVE P

[,sStaname]12

[, WAIT={YES | NO}]
[LEXIT=label]
[,P2=name2]

Pn Operand

P2 staname

WAIT=

EXIT=

Syntax

location

‘string’

literal

label

Description

The location of the 8-character name of the
station from whose queue a message is to be
purged. The default is the name of the
program that issues the instruction.

The station name, enclosed in quotes.

An indicator of whether or not the
instruction is to wait until there is a message
on the queue.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

If the message to be purged was both on disk and in storage, the task code word
contains the return code for the purge of the storage-queued message.

-1 Successful. The message was purged, or the previous RECEIVE instruction
did not specify OPTION=COPY or OPTION=KEEP.

1 There is no message on the queue and WAIT=NO was specified.

2 The station specified by staname does not exist.

12 The Communications Facility treats staname as the second positional operand (as it is in the other
RECEIVE instructions). Therefore you must code two commas before staname. If you enter a
value for the first positional operand, it is ignored.

Coding Communications Facility Instructions 265

RECEIVE P

3 There is an incorrect forward pointer in the storage queue. Report the
problem to your IBM representative.

‘w&
4 There is an incorrect backward pointer in the storage queue. Report the ((}
problem to your IBM representative.

7 A disk I/0 error occurred; no message was purged.

8 The message to be purged is disk-queued and the station is not active; no
message was purged.

RECEIVE P Example

RECEIVE PURGE,, 'TPQUEUE',WAIT=NO

This example purges the first message on the queue for station TPQUEUE.

£
N

266 Communications Facility Programmer’s Guide

RECEIVE T

RECEIVE T—Receive a Message into a Text Area

The RECEIVE T instruction receives a message from a station’s queue into an
0 EDX text area. On successful completion, the message length is in the text header
field (zexz-1).

RECEIVE T Format

[label] RECEIVE T Jtext

[,staname]

[WAIT={YES | NO}]
LACK={YES | NO}]
[LHEADER=location}
{,ORIGIN=location |]
[,OPTION={COPY | KEEP}]
LEXIT=label]
[,LP1=namel]
[,P2=name2]
[,LP3=name3]

RECEIVE T Operands

Pn Operand Syntax Description

P1 text location The address of the EDX text area into

which the message is to be placed.

P2 staname location The location of the 8-character name of the
station from whose queue the message is to
be received. The default is the name of the
program that issues the instruction.

‘string’ The station name, enclosed in quotes.

WAIT= literal An indicator of whether or not the
instruction is to wait until there is a message
on the queue. If the station is deleted while
a wait is in effect, the instruction returns a
return code of 2.

ACK= literal An indicator of whether or not receipt of
the message is to be acknowledged to the
sender of the message. ACK=YES has no
effect if the sender is in a different node.

Coding Communications Facility Instructions 267

RECEIVE T Return Codes

P3

P3

-19

-18

Operand Syntax Descriptioh

HEADER= location The address at which the message header is ‘
to be placed. The area at location must be /m
at least 24 bytes long to accommodate the -
header.

ORIGIN= location The address at which the name of the

station that originated the message is to be
placed. The area at location must be at least
10 bytes long. Bytes 1 to 8 contain the
station name, and bytes 9 and 10 contain
the station type and subtype. If the origin
of the message is not known, the area at
location is filled in with binary zeros.

OPTION= literal COPY indicates that a copy of the message
is to be delivered normally, but the message
is to be left on the queue.

KEEP has the same effect as COPY, and
also indicates that if the receiving program’s
buffer is too small to hold a disk-queued
message, a copy of the message is to be kept
in the system message buffer pool.

EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code. P

7

The receive was completed successfully, and the disk-queue data set’s capacity
warning level, specified when the data set was defined, has been exceeded.

The receive was completed successfully, and an overlay occurred in the
disk-queue data set.

Successful. A message has been moved to the text area at zext.

There is no message on the queue and WAIT=NO was specified.

The station specified by staname does not exist.

The text area at text isn’t big enough to contain the message; the message has
been truncated. If OPTION=KEEP was specified, the text header count field
contains the lesser of 255 and the message length; otherwise it contains the

number of bytes moved to the text area.

Messages for staname are being held as a result of a CP F command that set
output hold. No message was received.

The text area address specified was 0. @

268 Communications Facility Programmer’s Guide

O

RECEIVE T Examples

[REVEIVE [

6 A status message (one sent with a SEND STATUS instruction) was received.

7 The message to be received was disk-queued and a disk I/O error occurred.
No message was received.

8 The message to be received was disk-queued and the station specified in
staname is not active. No message was received.

9 The previous receive from the queue specified by staname specified
OPTION=COPY or OPTION=KEEP, and no RECEIVE P instruction has
been issued. No message was received.

RECEIVE TEXT,RECV,'STA1',ORIGIN=FROM

RECV TEXT LENGTH=200

FROM TEXT LENGTH=8 ORIGIN STATION NAME

TYPE DATA F'0’ ORIGIN STATION TYPE AND SUBTYPE

In example , a message is received from the queue of the station STA1. The
message is placed in the text area at RECV. The name of the station that
originated the message is moved into the field FROM, and its type and subtype are
moved into the field at TYPE.

RECEIVE T, TEXT,HEADER=HEAD

TEXT TEXT LENGTH=100
HEAD TEXT 12F'0’ MESSAGE HEADER

In example , a message is received from the queue associated with the station

that has the same name as the program. The message is moved into the text area at
TEXT. The header is moved into HEAD.

Coding Communications Facility Instructions 269

270

Communications Facility Programmer’s Guide

SEND A—Send Acknowledgment

This instruction sends an acknowledgment to a program that may be waiting at a
O SEND instruction with ACK=YES. This instruction allows the receiving program

to

receive a message, process it, and then acknowledge the receipt to the sending

program. If the sender and receiver are in different nodes, the instruction has no
effect.

SEND A Format

[label] SEND A ,Staname
,code
[,TYPE=NA]
LEXIT=label]
[,P1=namel]
[,P2=name2]

SEND A Operands

P1

P2

SEND A Return Codes

Operand Syntax Description

staname location The location of the 8-character name of the
station that is the origin of the message
whose receipt is being acknowledged. If
TYPE=NA is coded, this must be the
location of the word that contains the
station’s network address.

‘string’ The station name, enclosed in quotes. This
syntax is not allowed with TYPE=NA.

code integer The return code to be returned to the
sender. The value must be in the range
20-32767. The value is made negative and
placed in the sender’s TCB code word.

TYPE= literal NA if the staname operand specifies the
station by its network address.

= label The label of the next instruction to be

executed the instruction completes with a
positive return code.

Successful.
The station specified by staname does not exist.

The station is not the origin of a message for which acknowledgment is
pending.

Coding Communications Facility Instructions 271

SEND A

SEND A Example

272

If one program sends a message with this instruction:

SEND M, 'PROG2',MSGBUF,ORIGIN=MYSTA,ACK=YES

and another prdgram receives it with this instruction:

RECEIVE M, INPUT, 'PROG2',0ORIGIN=FROMSTA, ACK=NO

then the second program can acknowledge receipt of the message with this
instruction:
SEND ACK,FROMSTA, 20

The first program’s SEND instruction will complete with return code -20.

Communications Facility Programmer’s Guide

SEND CP—Send a Command

O

This instruction sends a CP or PD command from an EDX text area. The amount
of data sent is determined by the text header field (zexz-1). Do not include the

prefix CP in the message text. All the commands are explained in the Operator’s

,[staname]

Jtext
[{,ORIGIN=origin |
,HEADER=/ocation}]
[PRI={127 | priority}]
[ACK={YES | NO}]
LWAIT={YES | NO}]
[,EXIT= label]
[,P1=namel]
[LP2=name2]
[,[P3=name3]

Guide.
SEND CP Format
[label] SEND CP
SEND CP Operands
Pn Operand Syntax
Or P1 staname location
‘string’
P2 text location
‘string’
P3 ORIGIN= location

Description

The location of the 8-character name of any
station in the node to which the command is
to be sent; required only if the command is
to be executed in a node other than the local
node. If this operand is omitted, or specifies
a station in the local node, the command is
sent to the command processor in the local
node.

The station name, enclosed in quotes.

The address of an EDX text area that
contains the command to be sent.

The actual command text; up to 254
characters, enclosed in quotes.

The location of the name of the station that
is the origin of this message. The default is
the name of the sending program.

Coding Communications Facility Instructions 273

SEND CP Return Codes

P3

Operand Syntax Description

HEADER= location The location at which the 24-byte message ‘
header is stored. If this operand is specified, ((W*\
staname and PRI are ignored; the message e

header must include the destination and
priority. If this operand is not specified, the
message dispatcher will build the message
header.

PRI= integer The priority of the command message,
where 1 is the highest and 127 is the lowest.

ACK= literal An indicator of whether or not this
instruction is to wait for an acknowledgment
from the command processor. ACK=YES
is effective only when the message is sent to
the command processor in the local node. If
the message is sent to a remote node,
receipt is acknowledged by the I/O control
program that will transfer the message to
the remote node.

WAIT= literal YES if this instruction is to wait, if
necessary, until storage is available in the
message buffer pool to contain the
command message.

EXIT= label The label of the next instruction to be N
executed if the instruction completes with a (ﬂ/‘
positive return code.

to -99 The negative value of the number of a CP error message issued when
the command was executed. These conditions are returned only when
ACK=YES. All the error messages are documented in the Operator’s Guide.

Successful. If ACK=NO, the message was sent to the command processor. If
ACK=YES, the command was successfully executed by the local command
processor or received by the I/O control program that will transfer the
message to a remote node.

The message length is 0.

The destination station specified does not exist.

Storage is not available to hold the message and WAIT=NO was coded.

The origin station is prevented from sending messages as a result of a CP F
command that set input hold.

274 Communications Facility Programmer’s Guide

SEND CP Examples
SEND CP,,CPSTART

2] SEND CP, 'NODE2',CPSTART

CPSTART TEXT 'S PROGRAM'

Example g} sends a CP START command to the command processor, which starts
the station called PROGRAM.

Example 4 specifies a destination station in a remote node. The command
processor in that remote node starts a station called PROGRAM.

Coding Communications Facility Instructions 275

276 Communications Facility Programmer’s Guide

G

SEND E—Send an Error Message

. SEND E sends a formatted error message to the Communications Facility system
0 log. This instruction is identical to SEND L except that the default for the TYPE
operand is E rather than 1.

SEND E Format

[label] SEND E ;number

[,text]

[,COPY =location]
[ID={C‘i@ | CUM’}]
[, XCODE={code | 0000}]
[L,TYPE={C|I|E}]
[,P1=namel]
[,P2=name2]
[LP3=name3]
[,P4=name4]
[LP5=name5]

SEND E Operands

Pn Operand Syntax Description

P1 number term The number (1-99) of the message in a
C\\ member of the $.SYSMSG data set. The
v member is specified in the ID= operand. If
you specify a value other than 1-99, the
message number field of the displayed
message will contain **.

P2 text location The address of an EDX text area containing
text you want to print in the text portion of
the message. This text must not cause the
entire message to exceed 72 characters. If it
does, excess data is truncated.

‘string’ A literal string of message text, enclosed in
quotes. This text must not cause the entire
message to exceed 72 characters. If it does,
excess data is truncated.

P3 COPY= location The address of an EDX text area where a
copy of the message is to be placed. You
can use the copy to send the message to a
second destination.

Coding Communications Facility Instructions 277

Pn Operand
P4 ID=
P5 XCODE=
TYPE=
SEND E Return Codes
-1 Successful.

SEND E Examples

Syntax

term

integer

literal

Description

The 2-character name of the member of the
$.SYSMSG data set where the message text
is stored. This operand is used in
conjunction with the number operand. If
you specify a member that doesn’t exist, the
message as displayed contains no fixed text.

A value to be included in the message,
displayed as 4 hexadecimal digits.

An EBCDIC character to be inserted into
the message to indicate its type: E for error,
I for informational, C for comment. If you
code C, you must include the COPY=
operand. TYPE=C together with COPY=
creates a copy of the message without
sending the message to the system log.
SEND E also has two special type codes:
X, which is used only in task error exit
routines to log special data; and D, which
produces a diagnostic dump. See “Using
Task Error Exits” on page 29 and ‘“Using
Diagnostic Dumps” on page 29 for an
explanation of these special cases.

SEND ERROR,22,'$.SPOOL',ID=C'AB'

If the text of message 22 in member AB of $.SYSMSG is “IS NOT DEFINED”,
and program PROGA issues this instruction, this message is sent to the system log:

*hh:mm:ss AB22 E 0000 PROGA $.SPOOL IS NOT DEFINED

E SEND ERROR, 10,DS1+$DSCBNAM, ID=C'AB',XCODE=DS1*

Assume that DS1 is a data set control block for data set MASTERO?2 and that this
instruction is being used to report a disk I/O error. If the text of message AB10 is
“DISK 1/0 ERROR”, and the disk I/O return code is 10, this message is sent to

the system log:

*hh:mm:ss AB10 E 0O00A PROGA MASTER0O2 DISK I/O ERROR

278 Communications Facility Programmer’s Guide

7N
&

ey

SEND L—Send a Log Message
SEND L sends a formatted log message to the Communications Facility system log.
0 This instruction is identical to SEND E except that the default for the TYPE
operand is I rather than E.
SEND L Format
[label] SEND L ,number
[,rext]
[,COPY==location]
[LID={C‘d | CCUM’}]
[LXCODE={code | 0000}]
LTYPE={C|E|1}]
[,LP1=namel]
[,[P2=name2]
[,P3=name3]
[,P4=name4]
[,PS=name5]
SEND L Operands
Pn Operand Syntax Description
P1 number term The number (1-99) of the message in a
09 member of the $.SYSMSG data set. The
member is specified in the ID= operand. If
you specify a value other than 1-99, the
message number field of the displayed
message will contain **,

P2 text location The address of an EDX text area containing
text you want to print in the text portion of
the message. This text must not cause the
entire message to exceed 72 characters. If it
does, excess data is truncated.

‘string’ A literal string of message text, enclosed in
quotes. This text must not cause the entire
message to exceed 72 characters. If it does,
excess data is truncated.

P3 COPY= location The address of an EDX text area where a

copy of the message is to be placed. You
can use the copy to send the message to a
second destination.

Coding Communications Facility Instructions 279

Pn Operand
P4 ID=
P5 XCODE=
TYPE=
SEND L Return Codes
-1 Successful.
SEND L Example

SEND LOG,22,'$.SPOOL',ID=C'AB'

Syntax

term

integer

literal

Description

The 2-character name of the member of the
$.SYSMSG data set where the message text
is stored. This operand is used in
conjunction with the number operand. If
you specify a member that doesn’t exist, the
message as displayed contains no fixed text.

A value to be included in the message,
displayed as 4 hexadecimal digits.

An EBCDIC character to be inserted into
the message to indicate its type: E for error,
I for informational, C for comment. If you
code C, you must include the COPY=
operand. TYPE=C together with COPY=
creates a copy of the message without
sending the message to the system log.

If the text of message 22 in member AB of $.SYSMSG is “IS NOT DEFINED”,
and program PROGA issues this instruction, this message is sent to the system log:

hh:mm:ss AB22 I 0000 PROGA $.SPOOL IS NOT DEFINED

280 Communications Facility Programmer’s Guide

O

O

SEND M—Send a Message from a Buffer

This instruction sends a message to a station from a Communications Facility
buffer. The amount of data sent is determined by the buffer header field

S[staname]

sbuffer
[{,ORIGIN=origin |
JHEADER = Jocation}]
[,PRI={127 | priority}]
[,OPTION=(optionl,option2...)]
[LACK={YES | NO}]
[LWAIT={YES | NO}]
LEXIT=label]
[,P1=namel]
[LP2=name?2]
[,P3=name3]

B$COUNT.
SEND M Format
[label] SEND M3
SEND M Operands
Pn Operand Syntax
P1 staname location
‘string’
P2 buffer location
P3 ORIGIN= location
P3 HEADER= location

13

Description

The location of the 8-character name of the
destination station. This operand is required
unless the originating station is linked to a
destination or HEADER = is specified.

The station name, enclosed in quotes.

The address of the buffer that contains the
message.

The location of the name of the station that
is the origin of this message. The default is
the name of the sending program.

The location at which the 24-byte message
header is stored. If this operand is specified,
staname and PRI are ignored; the message
header must include the destination and
priority. If this operand is not specified, the
message dispatcher will build the message
header.

Any characters exﬁept T can follow the M. For example, you can enter SEND MESSAGE or
SEND MUSH, but not SEND MT or SEND MTEXT. This restriction applies because SEND MT

is another instruction.

Coding Communications Facility Instructions 281

Pn Operand Syntax Description
PRI= integer The priority of the message, where 1 is the
highest and 127 is the lowest. (\J}
OPTION= literal WASTE if the message is to be sent to the

station $. WASTE, overriding staname or the
station to which the origin is linked. If
$.WASTE is not active, the message is
discarded.

DISCARD if the message is to be discarded
when it is undeliverable, instead of being
sent to $.WASTE.

NOPOST if this instruction is to wait only
until the message has been placed in the
message buffer pool, not until it has been
placed on the destination queue.

ACK= literal YES if this instruction is to wait for an
acknowledgment from the receiving
program; NO if no wait is to occur.
ACK=YES is effective only for messages
sent within the same node; if you code
ACK=YES for a message sent to another
node, receipt is acknowledged by the I/O
control program that will transfer the
message to the remote node. If the -
destination is a message station, ACK is @
ignored.

WAIT= literal YES if this instruction is to wait, if
necessary, until storage is available in the
message buffer pool to contain the message.
If the message is to be disk-queued, this
operand does not cause the instruction to
wait until there is enough space in the disk
data set.

EXIT= label The label of the next instruction to be

executed if the instruction completes with a
positive return code.

SEND M Return Codes

-20 to -32767 User-assigned return codes, returned by the SEND ACK
instruction; the send was successful.

-19 The send was successful, and the disk-queue data set’s capacity warning level,
specified when the data set was defined, has been exceeded.

-18 The send was successful, and an overlay occurred in the disk-queue data set. ())

282 Communications Facility Programmer’s Guide

SEND M Example

The message was sent with ACK=YES and the message was received, but it
was truncated because the receiver’s buffer or text area was too small. If the
receiver is I/O control program $.I00A10 or $.I00ADO, the message is
subsequently received successfully without truncation; return code -3 occurs
because of the way these programs manage their buffers.

Successful. If ACK=NO, the message was sent to the station’s queue. If
ACK=YES, the message was successfully received by its local destination or
by the I/O control program that will transfer the message to a remote node.

The message length is 0.

The destination station specified does not exist, or, if the destination is in a
different node, the path to that node does not exist.

Storage is not available to hold the message and WAIT=NO was coded.

The origin station is prevented from sending messages as a result of a CP F
command that set input hold. No message was sent.

The message was to be disk-queued, and not enough space was available in
the disk-queue data set. No message was sent.

The message was to be disk-queued and the message is longer than the
disk-queue data set. No message was sent.

The message was to be disk-queued and a disk I/O error occurred. No
message was sent.

The destination station is stopped and it is not a message station. No message
was sent.

SEND MESSAGE, , TPBUF ,ORIGIN=0RG

TPBUF DEFINE BUFFER,SIZE=1024

ORG

TEXT 'ORGTERM'

In this example, a message in the buffer TPBUF is sent to the station to which the
station ORGTERM is linked.

Coding Communications Facility Instructions 283

284

Communications Facility Programmer’s Guide

C

SEND MT—Send a Transaction from a Buffer

’ This instruction sends a transaction message to the program dispatcher from a
Communications Facility buffer. The amount of data sent is determined by the

buffer header field BECOUNT.
SEND MT Format

[label] SEND MT whufferi4

[,ORIGIN=origin]

[,PRI={127 | priority}]
[,OPTION=(optionl,option2...)]
LACK={YES | NO}]
[[WAIT={YES | NO}]
LEXIT=label]

[,P2=name2]

[,P3=name3]

SEND MT Operands

Pn Operand Syntax Description

P2 buffer location The address of the buffer that contains the
transaction message.

P3 ORIGIN= location The location of the name of the station that
is the origin of this transaction message.
The default is the name of the sending
program.

PRI= integer The priority of the transaction message,
where 1 is the highest and 127 is the lowest.

OPTION= literal WASTE if the message is to be sent to the
station $.WASTE rather than to the
program dispatcher. If $.WASTE is not
active, the message is discarded.

DISCARD if the message is to be discarded
when it is undeliverable, instead of being
sent to $.WASTE.

14 The Communications Facility treats buffer as the second positional operand (as it is in the other
SEND instructions). ‘Therefore you must code two commas before buffer. If you enter a value
for the first positional operand, it is ignored.

Coding Communications Facility Instructions 285

\ND NV

Pn Operand

ACK=

WAIT=

SEND MT Return Codes

Syntax

literal

literal

label

Description

NOPOST if this instruction is to wait only
until the message has been placed in the
message buffer pool, not until it has been
placed on the destination queue.

YES if this instruction is to wait for an
acknowledgment from the program
dispatcher; NO if no wait is to occur.

YES if this instruction is to wait, if
necessary, until storage is available in the
message buffer pool to contain the
transaction message. If the message is to be
disk-queued, this operand does nor cause the
instruction to wait until there is enough
space in the disk data set.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-20 to -32767 User-assigned return codes, returned by the SEND ACK
instruction; the send was successful.

-19 The send was successful, and the disk-queue data set’s capacity warning level,
specified when the data set was defined, has been exceeded.

-18 The send was successful, and an overlay occurred in the disk-queue data set.

-3 The message was sent with ACK=YES and the message was received, but it
was truncated because the receiver’s buffer or text area was too small. If the
receiver is I/O control program $.I00A10 or $.I00ADO, the message is
subsequently received successfully without truncation; return code -3 occurs
because of the way these programs manage their buffers.

-1 Successful. If ACK=NO, the message was sent to the program dispatcher. If
ACK=YES, the message was successfully received by the program dispatcher.

1 The message length is 0.

2 The program dispatcher’s user station does not exist.

3 Storage is not available to hold the message and WAIT=NO was coded.

4 The origin station is prevented from sending messages as a result of a CP F
command that set input hold. No message was sent.

5 The message was to be disk-queued, and not enough space was available in
the disk-queue data set. No message was sent.

286 Communications Facility Programmer’s Guide

SEND MT Example

N 1V

6 The message was to be disk-queued and the message is longer than the
disk-queue data set. No message was sent.

7 The message was to be disk-queued and a disk 1/0 error occurred. No
message was sent.

8 The program dispatcher is stopped. No message was sent.

PUT FIELD, TRANS,SCHDTRNS,OPTION=INITIAL
SEND MT, , TRANS

TRANS DEFINE BUFFER,SIZE=512

SCHDTRNS TEXT 'SCHDHSLGITHS3020000'

In this example, a transaction message in the buffer TRANS is sent to the program
dispatcher. The transaction ID is SCHD, and the cell ID is HS.

Coding Communications Facility Instructions 287

288

Communications Facility Programmer’s Guide

»

[SEND S

SEND S—Send a Status Message from an EDX Text Area

This instruction sends a status message to a station from an EDX text area. The
amount of data sent is determined by the text header field (zexr-1).

SEND S Format

[label] SEND St5 [,staname)

yrext
[,ORIGIN=o0rigin]
[,PRI={127 | priority}]
[LOPTION=(optionl,option2...)]
[LACK={YES |NO}]
[LWAIT={YES | NO}]
LEXIT=label]
[,LP1=namel]
[,P2=name2]
[,P3=name3]

SEND S Operands

Pn Operand Syntax Description

P1 staname location The location containing the 8-character
name of the destination station. This
operand is required unless the originating
station is linked to a destination.

‘string’ The station name, enclosed in quotes.

P2 text location The location of the text area that contains
the status message.

‘string’ A string of up to 254 characters, enclosed in
quotes.
P3 ORIGIN= location The location of the name of the station that

is the origin of this message. The default is
the name of the sending program.

PRI= integer The priority of the message, where 1 is the
highest and 127 is the lowest.

15 Any characters except M can follow the S. This restriction applies because SEND SM is another
instruction.

Coding Communications Facility Instructions 289

Pn Operand
OPTION=

ACK=

WAIT

EXIT

SEND S Return Codes

Syntax

literal

literal

literal

label

Description

WASTE if the message is to be sent to the
station $.WASTE, overriding staname or the
station to which the origin is linked. If
$.WASTE is not active, the message is
discarded.

DISCARD if the message is to be discarded
when it is undeliverable, instead of being
sent to $.WASTE.

NOPOST if this instruction is to wait only
until the message has been placed in the
message buffer pool, not until it has been
placed on the destination queue.

YES if this instruction is to wait for an
acknowledgment from the receiving
program; NO if no wait is to occur.
ACK=YES is valid only for messages sent
within the same node. If the destination is a
message station, ACK is ignored.

YES if this instruction is to wait, if
necessary, until storage is available in the
system buffer to contain the message. This
operand causes the instruction to wait only
until there is enough storage to send the
message. If the message is to be
disk-queued, this operand does not cause the
instruction to wait until there is enough
space in the disk data set.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-20 to -32767 User-assigned return codes, returned by the SEND ACK
instruction; the send was successful.

-19 The send was successful, and the disk-queue data set’s capacity warning level,
specified when the data set was defined, has been exceeded.

-18 The send was successful, and an overlay occurred in the disk-queue data set.

-3 The message was sent with ACK=YES and the message was received, but it
was truncated because the receiver’s buffer or text area was too small. If the
receiver is I/O control program $.I00A10 or $.IO0ADO, the message is
subsequently received successfully without truncation; return code -3 occurs
because of the way these programs manage their buffers.

290 Communications Facility Programmer’s Guide

LA

A

SEND S Example

Successful. If ACK=NO, the message was sent to the station’s queue. If
ACK=YES, the message was successfully received by its local destination or
by the I/0 control program that will transfer the message to a remote node.
The message length is 0.

The destination station specified does not exist, or, if the destination is in a
different node, the path to that node does not exist.

Storage is not available to hold the message and WAIT=NO was coded.

The origin station is prevented from sending messages as a result of a CP F
command that set input hold. No message was sent.

The message was to be disk-queued, and not enough space was available in
the disk-queue data set. No message was sent.

The message was to be disk-queued and the message is longer than the
disk-queue data set. No message was sent.

The message was to be disk-queued and a disk I/0 error occurred. No
message was sent.

SEND STATUS, 'PROGA', 'P'

This example sends a status message to the station PROGA to tell the program to

stop.

Coding Communications Facility Instructions 291

292

Communications Facility Programmer’s Guide

SEND SM—Send a Status Message from a Buffer

This instruction sends a status message to a station from a Communications Facility
0 buffer. The amount of data sent is determined by the buffer header field
B$COUNT.

SEND SM Format

[label] SEND SM

[,staname]

ybuffer
[LORIGIN=origin]
[,PRI={127 | priority}]
[,OPTION=(optionl,option2...)]
[ACK={YES | NO}]
[LWAIT={YES | NO}]
LEXIT=label]
[,P1=namel]
LP2=name2]
[,LP3=name3]

SEND SM Operands

P1

P2

P3

Operand Syntax
staname location
‘string’
buffer location
ORIGIN= location
PRI= integer
OPTION= literal

Description

The location containing the 8-character
name of the destination station. This
operand is required unless the originating
station is linked to a destination.

The station name, enclosed in quotes.

The address of the buffer that contains the
status message.

The location of the name of the station that
is the origin of this message. The default is
the name of the sending program.

The priority of the message, where 1 is the
highest and 127 is the lowest.

WASTE if the message is to be sent to the
station $. WASTE, overriding staname or the
station to which the origin is linked. If
$.WASTE is not active, the message is
discarded.

Coding Communications Facility Instructions 293

SEND S

Pn Operand Syntax Description

DISCARD if the message is to be discarded
when it is undeliverable, instead of being
sent to $.WASTE.

NOPOST if this instruction is to wait only
until the message has been placed in the
message buffer pool, not until it has been
placed on the destination queue.

ACK= literal YES if this instruction is to wait for an
acknowledgment from the receiving
program; NO if no wait is to occur.
ACK=YES is valid only for messages sent
within the same node. If the destination is a
message station, ACK is ignored.

WAIT= ~ literal YES if this instruction is to wait, if
necessary, until storage is available in the
system buffer to contain the message. This
operand causes the instruction to wait only
until there is enough storage to send the
message. If the message is to be
disk-queued, this operand does not cause the
instruction to wait until there is enough
space in the disk data set.

EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.

SEND SM Return Codes

294

-20 to -32767 User-assigned return codes, returned by the SEND ACK
instruction; the send was successful.

-19 The send was successful, and the disk-queue data set’s capacity warning level,
specified when the data set was defined, has been exceeded.

-18 The send was successful, and an overlay occurred in the disk-queue data set.

-3 The message was sent with ACK=YES and the message was received, but it
was truncated because the receiver’s buffer or text area was too small. If the
receiver is I/O control program $.I00A10 or $.IO0ADO, the message is
subsequently received successfully without truncation; return code -3 occurs
because of the way these programs manage their buffers.

-1 Successful. If ACK=NO, the message was sent to the station’s queue. If
ACK=YES, the message was successfully received by its local destination or
by the I/O control program that will transfer the message to a remote node.

1 The message length is 0.

Communications Facility Programmer’s Guide

SEND SM Example

The destination station specified does not exist, or, if the destination isin a
different node, the path to that node does not exist.

Storage is not available to hold the message and WAIT=NO was coded.

The origin station is prevented from sending messages as a result of a CP F
command that set input hold. No message was sent.

The message was to be disk-queued, and not enough space was available in
the disk-queue data set. No message was sent.

The message was to be disk-queued and the message is longer than the
disk-queue data set. No message was sent.

The message was to be disk-queued and a disk I/0 error occurred. No
message was sent.

SEND SM, 'PROGA',OUTBUFF
OUTBUFF DEFINE BUFFER,SIZE=512

This example sends the status message in buffer OUTBUFF to station PROGA.

Coding Communications Facility Instructions 295

296 Communications Facility Programmer’s Guide

SEND T—Send a Message from an EDX Text Area

This instruction sends a message to a station from an EDX text area. The amount
of data sent is determined by the text header field (sext-1).

SEND T Format
[label] SEND T16 J[staname]
Jext
[,ORIGIN=o0rigin]
[,PRI={127 | priority}]
[,OPTION=(optionl,option2...)]
LACK={YES | NO}]
[LWAIT={YES | NO}]
[LEXIT=label]
[,LP1=namel]
[,P2=name?2]
[,P3=name3]
SEND T Operands
Pn Operand Syntax béséription
P1 staname location The location of the 8-character name of the

destination station. This operand is required
unless the originating station is linked to a

destination.
‘string’ The station name, enclosed in quotes.
P2 text location The address of the text area that contains
the message.
‘string’ A string of up to 254 characters, enclosed in
quotes.
P3 ORIGIN= location The location of the name of the station that

is the origin of this message. The default is
the name of the sending program.

PRI= integer The priority of the message, where 1 is the
highest and 127 is the lowest.

16 Any characters except T can follow the T. For example, you can enter SEND TEXT or SEND
TIP, but not SEND TT or SEND TTEXT. This restriction applies because SEND TT is another
instruction.

Coding Communications Facility Instructions 297

Pn Operand

OPTION=

ACK=

WAIT=

EXIT=

SEND T Return Codes

Syntax

literal

literal

literal

label

Description

WASTE if the message is to be sent to the
station $.WASTE, overriding staname or the
station to which the origin is linked. If
$.WASTE is not active, the message is
discarded.

DISCARD if the message is to be discarded
when it is undeliverable, instead of being
sent to $.WASTE.

NOPOST if this instruction is to wait only
until the message has been placed in the
message buffer pool, not until it has been
placed on the destination queue.

YES if this instruction is to wait for an
acknowledgment from the receiving
program; NO if no wait is to occur.
ACK=YES is effective only for messages
sent within the same node; if you code
ACK=YES for a message sent to another
node, receipt is acknowledged by the I/0O
control program that will transfer the
message to the remote node. If the
destination is a message station, ACK is
ignored.

YES if this instruction is to wait, if
necessary, until storage is available in the
message buffer pool to contain the message.
If the message is to be disk-queued, this
operand does not cause the instruction to
wait until there is enough space in the disk
data set.

The label of the next instruction to be
executed if the instruction completes with a
positive return code.

-20 to -32767 User-assigned return codes, returned by the SEND ACK
instruction; the send was successful.

-19 The send was successful, and the disk-queue data set’s capacity warning level,
specified when the data set was defined, has been exceeded.

-18 The send was successful, and an overlay occurred in the disk-queued data set.

-3 The message was sent with ACK=YES and the message was received, but it
was truncated because the receiver’s buffer or text area was too small. If the

298 Communications Facility Programmer’s Guide

C

SEND T Example

receiver is I/O control program $.I00A10 or $. I00ADO, the message is
subsequently received successfully without truncation; return code -3 occurs
because of the way these programs manage their buffers.

Successful. If ACK=NO, the message was sent to the station’s queue. If
ACK=YES, the message was successfully received by its local destination or
by the I/O control program that will transfer the message to a remote node.
The message length is 0.

The destination station specified does not exist, or, if the destination is in
another node, the path to that node does not exist.

Storage is not available to hold the message and WAIT=NO was coded.

The origin station is prevented from sending messages as a result of a CP F
command that set input hold. No message was sent.

The message was to be disk-queued, and not enough space was available in
the disk-queue data set. No message was sent.

The message was to be disk-queued and the message is longer than the
disk-queue data set. No message was sent.

The message was to be disk-queued and a disk I/O error occurred. No
message was sent.

The destination station is stopped and it is not a message station. No message
was sent.

SEND TEXT, 'PROGA',AREA

AREA TEXT 'TEST MESSAGE'

In this example, the message ‘TEST MESSAGE’ is sent to the station PROGA.

Coding Communications Facility Instructions 299

300

Communications Facility Programmer’s Guide

SEND TT-—Send a Transaction from an EDX Text Area

O

SEND TT Format

SEND TT Operands

This instruction sends a transaction message to the program dispatcher from an
EDX text area. The amount of data sent is determined by the text header field

(text-1).

[label] SEND TT

slextl?

[LORIGIN=origin]

[PRI={127 | priority}]
[,OPTION=(optionl,option2...)]
[LACK={YES | NO}]
[,WAIT={YES [NO}]
LEXIT=label]

[,LP2=name2]

[,P3=name3]

Pn Operand
P2 text

P3 ORIGIN=

Syntax

location

‘string’

location

integer

literal

Description

The address of the EDX text area that
contains the transaction message.

A string of up to 254 characters, enclosed in
quotes.

The location of the name of the station that
is the origin of this transaction message.
The default is the name of the sending
program.

The priority of the transaction message,
where 1 is the highest and 127 is the lowest.

WASTE if the message is to be sent to the
station $.WASTE rather than to the
program dispatcher. If $.WASTE is not
active, the message is discarded.

DISCARD if the message is to be discarded
when it is undeliverable, instead of being
sent to $. WASTE.

17 The Communications Facility treats text as the second positional operand (as it is in the other
SEND instructions). Therefore you must code two commas before fext. If you enter a value for

the first positional operand, it is ignored.

Coding Communications Facility Instructions 301

SEND TT Return Codes

-20

-19

-18

Operand Syntax Description
NOPOST if this instruction is to wait only
until the message has been placed in the @

message buffer pool, not until it has been
placed on the destination queue.

ACK= literal YES if this instruction is to wait for an
acknowledgment from the program
dispatcher; NO if no wait is to occur.

WAIT= literal YES if this instruction is to wait, if
necessary, until storage is available in the
message buffer pool to contain the
transaction message. If the message is to be
disk-queued, this operand does not cause the
instruction to wait until there is enough
space in the disk data set.

EXIT= label The label of the next instruction to be
executed if the instruction completes with a
positive return code.

to -32767 User-assigned return codes, returned by the SEND ACK
instruction; the send was successful. ((RN

C

The send was successful, and the disk-queue data set’s capacity warning level,
specified when the data set was defined, has been exceeded.

The send was successful, and an overlay occurred in the disk-queue data set.
The message was sent with ACK=YES and the message was received, but it
was truncated because the receiver’s buffer or text area was too small. If the
receiver is I/O control program $.I00A10 or $.I00ADO, the message is

subsequently received successfully without truncation; return code -3 occurs

because of the way these programs manage their buffers.

Successful. If ACK=NO, the message was sent to the program dispatcher. If
ACK=YES, the program dispatcher successfully received the message.

The message length is 0.
The program dispatcher’s user station does not exist.
Storage is not available to hold the message and WAIT=NO was coded.

The origin station is prevented from sending me’ssages as a result of a CP F
command that set input hold. No message was sent.

The message was to be disk-queued, and not enough space was available in _
the disk-queue data set. No message was sent. 0

302 Communications Facility Programmer’s Guide

0

SEND TT Example

6 The message was to be disk-queued and the message is longer than the
disk-queue data set. No message was sent.

7 The message was to be disk-queued and a disk I/O error occurred. No
message was sent.

8 The program dispatcher is stopped. No message was sent.

SEND TT,,'SCHDHSLGITHS3020000"'

In this example, the transaction SCHD is sent to the program dispatcher, which
routes it to cell HS.

Coding Communications Facility Instructions 303

304 Communications Facility Programmer’s Guide

Coding Work Session Controller Transactions

This chapter shows the format of the transactions you use to communicate with the
work session controller (WSC). It shows the format of each WSC transaction
command and the corresponding acknowledgment transaction.

Transaction data is characters unless a specific transaction description specifies
otherwise. In the transaction examples, the character “b” represents a blank.

Figure 33 summarizes which commands are valid for which terminals, and which
ones require an acknowledgment. A static screen terminal is a 4978, 4979, 4980,
or 3101 in block mode. A roll screen terminal is a 3101 in character mode. An
output only terminal is a printer.

Transaction Static Roll Output Acknow-

Command Screen Screen Only ledgment
Terminal Terminal Terminal Required

BI—Send a Screen Y N N N

Ima}ge ‘

CC-Carriage N Y Y N

Control

CD-Clear Data Y N N N

ES—End Session Y Y Y N

FT—Read Field Y N N Y

Table

IT—Set Input Y N N N

Timer

LI-Link to Y Y Y Y

Another Program

LK-Lock Y N N N

Keyboard

LS—Set Lock Y N N N

Sequence

PD—Stop Device Y Y Y N

PW—Priority Write | Y N N N

RA—Read all Data Y Y N Y

RC~—Read Cursor Y N N Y

RD—-Read Y Y N Y

Unprotected Data

RS—Restore Data Y Y Y Y

RT—Read Program |Y N N Y

Function Key

Table

SC—Set Cursor Y N N N

Figure 33 (Part 1 of 2). Work Session Controller Transaction Commands

Coding Work Session Controller Transactions 305

306

Transaction Static Roll Output Acknow~-

Command Screen Screen Only ledgment
Terminal Terminal Terminal Required

SD-—Start Device Y 1Y Y N

SF—Set Forms N Y Y N

SL—Set Station Y Y Y N

Name

SS—Start Session Y Y Y N

ST—Set Program Y N N N

Function Key

Table

SV—Save Data Y Y Y Y

TN—Sound Tone Y Y N N

UK—Unlock Y N N N

Keyboard

US—End Lock Y N N N

Sequence

WD—Write Y Y Y N

Unprotected Data

WK—Wait forKey |Y N N Y

WP—Write Y N N N

Protected Data

Figure 33 (Part 2 of 2). Work Session Controller Transaction Commands

Communications Facility Programmer’s Guide

o

BI—Send a Screen Image
The BI command fetches a screen image from $.WSCIMG and displays it on the
terminal.
BI Transaction Format
1-4 5-6 17-10 11-12 13-14 15-22 23-30
LWSC I pc | sect | sc | BI | terminal image
WSC

is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

BI
is the work session controller command.

terminal
is the terminal name used in this session.

image
is the name of the screen image.

BI Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22
[prir |pc [wsc |sc [B1 | terminal
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

WSC
is the secondary transaction identifier.

Coding Work Session Controller Transactions 307

BI Example

SC
is the secondary cell identifier (the cell where your original WSC transaction was

executed). {‘Ej

BI
is the work session controller command.

terminal
is the terminal name used in this session.

To display the screen image SCRNIMAG on terminal 4978TERM:
WSCbbbPROGbLbBI4978 TERMSCRNIMAG

The acknowledgment transaction is:
PROGbbWSCb??BI4798 TERM

indicating that the screen image SCRNIMAG was successfully displayed on
terminal 4978 TERM.

308 Communications Facility Programmer’s Guide

CC—Carriage Control

The CC command allows you to control the carriage of a roll screen or output only

terminal.
CC Transaction Format
1-4 5-6 17-10 11-12 13-14 15-22 23-24 25-26 27-28
I WSC I pc | sect I sc | CC I terminal I nn I Is I ss
WSC

is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect

is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction). »

sc
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

cC
is the work session controller command.

terminal
is the terminal name used in this session.

nn .
is the number of the line to go to. If this field is blank, it is ignored.

Is
is the number of lines to skip. If this field is blank or 0, it is ignored.

K
is the number of spaces to skip. If this field is blank or 0, it is ignored.

CC Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22
prit | pc I WSC | sc | CC | terminal
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

Coding Work Session Controller Transactions 309

CC Example

pc
is the primary cell identifier (it was the secondary cell identifier in the original

WSC transaction you sent). @

WSC
is the secondary transaction identifier.

sc
is the secondary cell identifier (the cell where your original WSC transaction was
executed).

cC
is the work session controller command.

terminal
is the terminal name used in this session.

To go to the top of a form and space over 20 positions:
WS CbbbbbbbbbCCSYSTPTRb0O0bb20

No acknowledgment is sent, because the secondary transaction identifier is blank.
The roll screen terminal is at line 0, space 20.

310 Communications Facility Programmer’s Guide

CD—Clear Data

CD Transaction Format

The CD command sets the unprotected data areas on a terminal to nulls.

1-4 5-6 7-10 11-12 13-14 15-22
WSC | pc | sect | sc I CD I terminal
WSC

is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect

is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

SsC

is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

CD
is the work session controller command.

terminal
is the terminal name used in this session.

CD Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22
prit I pc | WSC I sc | CD I terminal
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

WwSC
is the secondary transaction identifier.

sc

is the secondary cell identifier (the cell where your original WSC transaction was
executed).

Coding Work Session Controller Transactions 311

CD
is the work session controller command.
terminal : (J)
is the terminal name used in this session. w4
CD Example

To clear the unprotected data areas on terminal 4978 TERM.:
WSCbbbMEN1bbCD4978TERM

The acknowledgment transaction is:
MENlbbWSCb??CD4978TERM

All unprotected data areas are set to nulls.

S

312 Communications Facility Programmer’s Guide

ES—End a Session

ES Transaction Format

The ES command ends a session with a terminal. The work session controller
executes a DEQT for the EDX terminal whose name you supplied in the SD
command.

1-4 5-6 7-10 11-12 13-14 15-22
WSC | pc | sect | sc I ES | terminal I
WSC

is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

ES
is the work session controller command.

terminal
is the terminal name used in this session.

ES Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22
prit | pc I WSC I sc I ES I terminal
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

WwSC
is the secondary transaction identifier.

Coding Work Session Controller Transactions 313

ES Example

sc
is the secondary cell identifier (the cell where your original WSC transaction was

executed). @
ES
is the work session controller command.

terminal
is the terminal name used in this session.

To end a session with the terminal 4978 TERM:
WSCbbbPROGbbES4978TERM

The acknowledgment transaction is:
PROGbbWSCbHb??ES4978TERM

The EDX terminal referred to in this session as 4978TERM is released.

314 Communications Facility Programmer’s Guide

FT—Read the Field Table

FT Transaction Format

1-4 5-6 7-10

11-12 13-14 15-22

The FT command reads the field table associated with a screen image in
$.WSCIMG. The format of the field table is the same as for the $SIMPROT
subroutine, described in the Communications and Terminal Applications Guide. You
can request that the field table be transferred to a buffer you specify or returned in
the acknowledgment transaction. If you request that it be transferred to a buffer,
the command can be executed only in the cell in which it is entered.

23-24 25-26 27-34

[wsc

I pc | sect

Isc

I FT | terminal l ad I ak | image

WSC
is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect

is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

FT
is the work session controller command.

terminal
is the terminal name used in this session.

ad
is the address, in binary, of the buffer where the field table is to be stored.
Specify 0 if the field table is to be returned in the acknowledgment transaction.
The buffer must be defined with an EDX BUFFER instruction.

ak
is the address key associated with the buffer address, in binary. Specify -1
(X‘FFFP) if the field table is to be returned in the acknowledgment transaction.
(See the TCBGET instruction in the EDX Language Reference manual.)

image
is the name of the screen image.

Coding Work Session Controller Transactions 315

FT Acknowledgment Transaction Format (Required)

1-4 5-6 17-10

11-12 13-14 15-22 23-24 25-n 1@

prit [pc [wsc

| sc I FT I terminal I re l Jtab

FT Examples

prit
is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

WSC
is the secondary transaction identifier.

sC

is the secondary cell identifier (the cell where your original WSC transaction was
executed).

FT
is the work session controller command.

terminal =
is the terminal name used in this session. ((,/

rc
is a return code:

Y0—Operation was successful.
El—Incorrect transaction length.
E2—Key specified is invalid.
E4—Data set member not defined.
E5—Disk I/0 error occurred.
E6—Buffer too small.
E7—Request is not for this cell.

ftab
is the field table. This field is optional.

To read the field table associated with the screen image MENUSCRN into the
buffer BUFF1 in partition 3:

BUFF1 BUFFER 100,BYTES
WSCbbbPROGbbFT4978 TERMxxyyMENUSCRN

where xx is the address of BUFF1 and yy is X‘0002’ (the address key is 1 less than

the partition number). (:))

316 Communications Facility Programmer’s Guide

The acknowledgment transaction is:
PROGbbWSCbHb??FT4978TERMYO
The operation was successful and the field table is in BUFF1 in partition 3.

B To receive the field table associated with the screen image MENUSCRN in
the acknowledgment transaction:

WSCbbbPROGbbFT4978 TERMxxyyMENUSCRN
where xx is X‘0000’ and yy is X‘'FFFF’.

The acknowledgment transaction is:
PROGbbWSCb??FT4978TERMYOnnssrlclslr2c2s2. . .
where:

nn
is the number of screen fields in the table.

s
is the screen size.

rn
is the row position of field n.

cn
is the column position of field n.

sn
is the size of field n.

Coding Work Session Controller Transactions 317

318

Communications Facility Programmer’s Guide

O

IT—Set Input Timer
The IT command sets a timer for a static screen terminal. Subsequent WK
commands will time out when the time interval specified through IT has elapsed.
IT Transaction Format
1-4 5-6 7-10 11-12 13-14 15-22 23-28
rWSC I pc l sect I sc | IT | terminal I hhmmss

wSsC
is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect

is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc

is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

IT
is the work session controller command.

terminal
is the terminal name used in this session.

hhmmss
is the time interval, in the form hours, minutes, seconds. Zero resets the timer.

IT Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22
prit I pc I WSC | sc I IT I terminal
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

WSC
is the secondary transaction identifier.

Coding Work Session Controller Transactions 319

IT Example

sc
is the secondary cell identifier (the cell where your original WSC transaction was
executed).

IT @

is the work session controller command.

terminal
is the terminal name used in this session.

To set an input timer on terminal 4978 TERM with a value of 2 minutes and 5
seconds:

WSCbbbPROGbbLIT4978TERMO000205
The acknowledgment transaction is:
PROGbbWSCb??IT4978TERM

The input timer has been set; 2 minutes and 5 seconds will be the timeout value
used in subsequent WK transaction commands.

320 Communications Facility Programmer’s Guide

LI—Link to Another Program

The LI command links to another program and, optionally, passes data to it. The

0 program it links to is the one associated with the secondary transaction identifier
you specify. Note that you can achieve such linkage with any WSC transaction by
specifying, as the secondary transaction identifier, the transaction associated with
the program you want.

LI Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22 23-n
WSC I pc I sect I sc | LI | terminal data
WSC

is the primary transaction identifier.
pe ‘
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc
0 is the secondary cell identifier (the cell to which the acknowledgment is to be

sent).

LI
is the work session controller command.

terminal
is the terminal name used in this session.

data
is binary or character data to be passed to the program, 1-1920 bytes. This field
is optional.

LI Acknowledgment Transaction Format (Required)

1-4 5-6 17-10 11-12 13-14 15-22 23-n

[prit T pc I WSC I sc I LI l terminal data J
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

Coding Work Session Controller Transactions 321

LI Example

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

WSC (W

is the secondary transaction identifier.

sc
is the secondary cell identifier (the cell where your original WSC transaction was
executed). .

LI
is the work session controller command.

terminal
is the terminal name used in this session.

data

is binary or character data passed by the program that issued the LI command,
1-1920 characters. This field is optional.

To link to the program that is associated with transaction identifier USER:
WSCbbbUSERbbLLI4978 TERM

The acknowledgment transaction is:

Y

USERbbWSCb??LI4978TERM o

The acknowledgment is sent to the program associated with transaction identifier
USER.

322 Communications Facility Programmer’s Guide

LK—Lock the Keyboard
The LK command locks the keyboard on a static screen terminal.

LK Transaction Format

1-4 5-6 17-10 11-12 13-14 15-22
WSC | pc I sect | sc | LK | terminal J
WSC

is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect

is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent). .

LK
is the work session controller command.

terminal
is the terminal name used in this session.

LK Acknowledgment Transaction Format

1-4 5-6 17-10 11-12 13-14 15-22
prit l pc I WSC I sC I LK I terminal I
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

WSC
is the secondary transaction identifier.

sc

is the secondary cell identifier (the cell where your original WSC transaction was
executed).

Coding Work Session Controller Transactions 323

LK
is the work session controller command. -

terminal
is the terminal name used in this session.

LK Example
To lock the keyboard of terminal 4978TERM:

WSCbbbMEN1bbLK4978 TERM
The acknowledgment transaction is:

MEN1bbWSCb??7LK4978TERM

The keyboard of terminal 4978 TERM is locked.

324 Communications Facility Programmer’s Guide

U

—

LS—Set Lock Sequence

O

LS Transaction Format

The LS command sets a lock sequence for a static screen terminal. When a lock
sequence is in effect, a locked keyboard remains locked until a US command is
issued. When a lock sequence is not in effect, a locked keyboard is unlocked when
a WK command is issued and relocked when the wait key operation completes.

Use the US command to end a lock sequence.

1-4 5-6 7-10 11-12 13-14 15-22
WSC I pc I sect l sc | LS I terminal
WSC

is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

LS
is the work session controller command.

terminal
is the terminal name used in this session.

LS Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22
I prit | pc | WSC | sc I LS | terminal J
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc

is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

Coding Work Session Controller Transactions 325

WwSC
is the secondary transaction identifier.

sc
is the secondary cell identifier (the cell where your original WSC transaction was
executed). C

LS
is the work session controller command.

terminal
is the terminal name used in this session.

LS Example

326

To set a lock sequence for terminal 4978 TERM:
WSCbbbMEN1bbLS4978 TERM

The acknowledgment transaction is:
MEN1bbWSCb??L.S4978 TERM

indicating that the lock sequence is set.

Communications Facility Programmer’s Guide

S

PD-—Stop Device

O

PD Transaction Format

The PD command stops a work session controller device and returns it to EDX
control. It deletes the station block that the SD command created.

1-4 5-6 17-10 11-12 13-14 15-22
WSC | pc Lvect | sc l PD J terminal
WwSsC

is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

PD
is the work session controller command.

terminal
is the terminal name used in this session.

PD Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22
rprit | pc I WSC | sC] PD | terminal 1
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

WSC
is the secondary transaction identifier.

Coding Work Session Controller Transactions 327

PD Example

sc
is the secondary cell identifier (the cell where your original WSC transaction was

executed). O

PD
is the work session controller command.

terminal
is the terminal name used in this session.

To stop the work session controller device 4978 TERM:
WSCbbbbbbbbbPD4978TERM
In this example, no acknowledgment is sent because the secondary transaction

identifier is blank. The terminal 4978 TERM is returned to EDX control, and the
station block 4978TERM is deleted.

328 Communications Facility Programmer’s Guide

PW—Priority Write
The PW command writes data to the priority area (rows 23 and 24) of a static
screen terminal.
PW Transaction Format
1-4 5-6 7-10 11-12 13-14 15-22 23-24 25-26 27-n
I WSC | pc l sect J sc I PW I terminal l rr | cc Ldata J

WSC
is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect

is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc

is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

PW
is the work session controller command.

terminal
is the terminal name used in this session.

r
is the beginning row in the priority area to be written.

cc
is the beginning column in the priority area to be written.

data
is the data to be written.

PW Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22

rprit T pc TWSC I sc I PW I terminal

prit
is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc

is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

Coding Work Session Controller Transactions 329

PW Example

WSC
is the secondary transaction identifier.

sc
is the secondary cell identifier (the cell where your original WSC transaction was
executed).

PW
is the work session controller command.

terminal
is the terminal name used in this session.

To write data to the terminal 4978TERM starting at row 23, column 0:
WSCbbbPROGbbPW4978TERM2300ERROR ON INPUT

The acknowledgment transaction is:

PROGbbWSCb??PW4978TERM

The message is written to the priority area of the terminal.

330 Communications Facility Programmer’s Guide

,\'
J/

RA—Read All Data

The RA command reads a specified number of characters of protected and
unprotected data from a terminal, beginning at a specified location.

RA Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22 23-24 25-26 27-30

ITVSC 7 pc I sect | sC | RA] terminal l rr | cc I numb J

WSC
is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc

is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

RA
is the work session controller command.

terminal
is the terminal name used in this session.

rr
is the beginning row to be read. For roll screen terminals, specify 00.

cc
is the beginning column to be read. For roll screen terminals, specify 00.

numb

is the number of characters to be read. For static screen terminals, numb can be
from 1 to 1920; for roll screen terminals, it can be from 1 to 102.

RA Acknowledgment Transaction Format (Required)
1-4 5-6 7-10 11-12 13-14 15-22 23-24 25-26 27-30 31-n

I prit I pc I WSC —[sc TRA | terminal | rr T cc | numb rdata

prit
is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc

is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

Coding Work Session Controller Transactions 331

RA Example

WSC
is the secondary transaction identifier.

: G

is the secondary cell identifier (the cell where your original WSC transaction was
executed).

RA ;
is the work session controller command.

terminal
is the terminal name used in this session.

rr
is the row where the cursor is positioned (00 for roll screen terminals).

cc
is the column where the cursor is positioned (00 for roll screen terminals).

numb
is the number of characters read.

data
is the data read.

To read 10 protected and unprotected characters from a terminal, TERMO1,
starting at row 22, column 60:

WSCbbbPROGbbRATERMO01bb22600010
The acknowledgment transaction is:
PROGbbWSCb??’RATERM01bb01000010MESSAGEb16

The cursor was at row 1, column O when the 10 characters (MESSAGEb16) were
read.

332 Communications Facility Programmer’s Guide

O

RC—Read the Cursor

RC Transaction Format

The RC command reads the cursor position from a static screen terminal.

1-4 5-6 17-10 11-12 13-14 15-22

LWSC Ilrc Isect Jsc LRC l terminal]

WwSC
is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect

is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sC

is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

RC
is the work session controller command.

terminal
is the terminal name used in this session.

RC Acknowledgment Transaction Format (Required)

1-4 5-6 7-10 11-12 13-14 15-22 23-24 25-26

prit l pc rWSC |sc —l RC] terminal L‘r lcc 1

prit
is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

WSC
is the secondary transaction identifier.

sc

is the secondary cell identifier (the cell where your original WSC transaction was
executed).

Coding Work Session Controller Transactions 333

RC
is the work session controller command.

terminal @

is the terminal name used in this session.

rr
is the row position of the cursor.

cc
is the column position of the cursor.

RC Example

To read the cursor position on terminal 4979T1:
WSCb01MENAbbRC4979T1bb

The acknowledgment transaction is:
MENAbbWSCb01RC4979T1bb1001

The cursor is at row 10, column 1.

@
3

334 Communications Facility Programmer’s Guide

RD—Read Unprotected Data

The RD command reads a specified number of characters of unprotected data from
a terminal, beginning at a specified location. For a roll screen device, RD is

identical to RA.
RD Transaction Format
1-4 5-6 7-10 11-12 13-14 15-22 23-24 25-26 27-30
I WSC J pc rsect [sc I RD l terminal | r J cc | numb
WSC

is the primary transaction identifier.

e
is the primary cell identifier (the cell in which the command is to be executed).

sect

is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc

is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

RD
is the work session controller command.

terminal
is the terminal name used in this session.

rr
is the beginning row to be read. For roll screen terminals, specify 00.

cc
is the beginning column to be read. For roll screen terminals, specify 00.

numb
is the number of characters to be read. For static screen terminals, numb can be
from 1 to 1920; for roll screen terminals, it can be from 1 to 102.

RD Acknowledgment Transaction Format (Required)
1-4 . 5-6 7-10 11-12 13-14 15-22 23-24 25-26 27-30 31-n

[prit] pc [WSC] sc | RD I terminal —[rr Ec Ltumb Ldata J

prit
is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

Coding Work Session Controller Transactions 335

RD Example

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent). @

WSC
is the secondary transaction identifier.

sc
is the secondary cell identifier (the cell where your original WSC transaction was
executed).

RD
is the work session controller command.

terminal
is the terminal name used in this session.

rr
is the row where the cursor is positioned (00 for roll screen terminals).

cc
is the column where the cursor is positioned (00 for roll screen terminals).

numb
is the number of characters read.

data :
is the data read.

To read 5 unprotected characters from a terminal, 4978TERM, starting at row 5,
column 10:

WSCbbbUSR1bbRD4978 TERMO05100005
The acknowledgment transaction is:
USR1bbWSCb??RD4978 TERM1220000SHELLO

The cursor was at row 12, column 20 when the 5 characters (HELLO) were read.

336 Communications Facility Programmer’s Guide

O

O

RS—Restore Data

RS Transaction Format

1-4

5-6 7-10

The RS command restores data from the partitioned data set $. WSCIMG on disk
or diskette. The data is taken from the member that has the same name as the
terminal name used for this session. The data restored is whatever was saved with
the last SV command. You can request that the data be transferred to a data area
you specify or returned in the acknowledgment transaction. If you request that it
be transferred to a data area, the command can be executed only in the cell in
which it is issued.

11-12 13-14 15-22 23-24 25-26 27-28

[wsc

I pc Tsect

I sC I RS Tterminal I ad ‘ ak I no J

WSC
is the primary transaction identifier.

pc .
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc

is the secondary cell identifier (the cell to which the acknowledgment is to be
_ sent).

RS
is the work session controller command.

terminal
is the terminal name used in this session.

ad .
is the address, in binary, where the data is to be stored. Specify 0 if the data is
to be returned in the acknowledgment transaction.

ak
is the address key associated with this data address, in binary. Specify -1
(X‘FFFPF’) if the data is to be returned in the acknowledgment transaction. (See
the TCBGET instruction in EDX Language Reference.)

no

is the number, in binary, of 256-byte records to be restored, in the range 1-256.
If data is returned in the acknowledgment transaction, the range is 1-8 records.

Coding Work Session Controller Transactions 337

RS Acknowledgment Transaction Format (Required)

1-4 5-6 7-10 11-12 13-14 15-22 2324 25-n (J}
prit l pc I WSC l sc I RS J terminal | re | data J
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc
is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

wSsC
is the secondary transaction identifier.

sc

is the secondary cell identifier (the cell where your original WSC transaction was
executed).

RS
is the work session controller command.

terminal -
is the terminal name used in this session. (/ \\"
M
rc
is a return code:

YO0—Operation was successful

El—Incorrect transaction length

E2—Key specified is invalid

E3—Number of records specified is more than the maximum
E4—Data set member not defined '

E5—Disk I/0 error occurred

E7—Request is not for this cell

data
is the restored data. This field is optional.

338 Communications Facility Programmer’s Guide

RS Examples

To restore 3 records of data to location PROGDATA in partition 5:
PROGDATA DATA 384F‘0’
WSCbbbPRM101RSTERM1bbbxxyyzz

where xx is the address of PROGDATA, yy is the binary value X‘0004’ (the
address key is 1 less than the partition number), and zz is the binary value X‘0003’.

The acknowledgment transaction is:
PRM101WSCb??RSTERM1bbbY0

Three records were read into location PROGDATA in partition 5 from member
TERM1 of data set $.WSCIMG.

A To restore 3 records of data and receive it in the acknowledgment transaction:
WSCbbbPRM101RSTERM 1bbbxxyyzz

where xx is X‘0000’, yy is X‘’FFFF’, and zz is X‘0003’.

The acknowledgment transaction is:

PRM101WSCb??RSTERM1bbbY0aa

where aa is 768 bytes of restored data.

Coding Work Session Controller Transactions 339

340 Communications Facility Programmer’s Guide

2
.

O

RT—Read Program Function Key Table

The RT command reads the transaction identifiers that are set for program function

keys 1-5.
RT Transaction Format
1-4 5-6 7-10 11-12 13-14 15-22 23-30
WSC I pc I sect | sc | RT I terminal image
WSC

is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

RT
is the work session controller command.

terminal
is the terminal name used in this session.

image
is the name of the screen image.

RT Acknowledgment Transaction Format (Required)
1-4 5-6 7-10 11-12 13-14 15-22 23-26

I prit | pc I WSC I sc | RT | terminal | t] |

27-28 29-32 33-34 35-38 39-40 41-44 45-46 47-50 51-52

ler [[c2 | |3 | w4 les |5 [es |

prit
is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc

is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

Coding Work Session Controller Transactions 341

WSC
is the secondary transaction identifier.

is the secondary cell identifier (the cell where your original WSC transaction was
executed).

RT
is the work session controller command.

terminal
is the terminal name used in this session.

tl
is the transaction identifier used as a primary transaction identifier when PF1 is
pressed after a WK command.

cl
is the cell identifier of the cell to which transaction ¢! is sent.

12
is the transaction identifier used as a primary transaction identifier when PF2 is
pressed after a WK command.

c2
is the cell identifier of the cell to which transaction ¢2 is sent.

13

is the transaction identifier used as a primary transaction identifier when PF3 is “\
pressed after a WK command. '

c3
is the cell identifier of the cell to which transaction ¢3 is sent.

t4

is the transaction identifier used as a primary transaction identifier when PF4 is
pressed after a WK command.

c4
is the cell identifier of the cell to which transaction ¢4 is sent.

5

is the transaction identifier used as a primary transaction identifier when PFS5 is
pressed after a WK command.

cS
is the cell identifier of the cell to which transaction ¢5 is sent.

RT Example

To read the table of transaction identifiers for PF1-5 for terminal SCRNO1:

WSCbbbUSR2bbRTSCRNO1bb

342 Communications Facility Programmer’s Guide

The acknowledgment transaction is:
USR2bbWSCb??RTSCRN0O1bbPGM1bbPGM201bbbbbbPGM401PGM5bb

The acknowledgment indicates the following assignment of transactions to PF
keys:

PF1—transaction PGM1 in this cell.

PF2—transaction PGM2 in cell 01.

PF3—not set; uses the secondary transaction ID in the WK command.
PF4—transaction PGM4 in cell 01.

PF5—transaction PGMS in this cell.

Coding Work Session Controller Transactions 343

344 Communications Facility Programmer’s Guide

SC—Set Cursor

The SC command positions the cursor on a static screen terminal.

SC Transaction Format

1-4 5-6 17-10 11-12 13-14 15-22 23-24 25-26
LWSC I pc | sect | sc | SC I terminal I rr | cc I
WSC

is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

s
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

SC
is the work session controller command.

terminal
is the terminal name used in this session.

rr
is the number of the row to which the cursor is to be positioned.

cc
is the number of the column to which the cursor is to be positioned.

S'C Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22
l prit I pc I WSC | sc | SC | terminal
prit

is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

pc

is the primary cell identifier (it was the secondary cell identifier in the original
WSC transaction you sent).

Coding Work Session Controller Transactions 345

SC Example

WSC
is the secondary transaction identifier.

“ e O
is the secondary cell identifier (the cell where your original WSC transaction was -

executed).

SC
is the work session controller command.

terminal
is the terminal name used in this session.

To set the cursor on terminal SCRNO1 to row 0, column 0:
WSCbbbENTRO01SCSCRN01bb0000

The acknowledgment transaction is:
ENTRO1WSCb??SCSCRNO1bb

indicating that the cursor was set.

A

346 Communications Facility Programmer’s Guide

O

SD—Start Device

The SD command starts an EDX terminal as a work session controller terminal. A
station block with the terminal name to be used for this session is created.

SD Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22 23-30 31-33 34-41

I WSC | pc I sect | sc | SD I terminal EDX name I wa | staname

WSC
is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect

is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sC

is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

SD
is the work session controller command.

terminal
is the terminal name to be used in this session.

EDX name

is the EDX terminal name. It cannot be the name of the Communications
Facility system log device.

wa

is the size of the user work area to be appended to the station block when it is
built, 1-128 bytes. This field is optional.

staname

is the station name (if any) by which this EDX terminal is defined to the
Communications Facility as an emulated 3270 device. This field is optional and
is valid only for 4978s, 4980s, 3101s, and printers.

SD Acknowledgment Transaction Format

1-4 5-6 7-10 11-12 13-14 15-22 23

prit | pc | WSC l sc I SD l terminal | YN |

Coding Work Session Controller Transactions 347

SD Example

prit
is the primary transaction identifier (it was the secondary transaction identifier in
the original WSC transaction you sent).

: ‘ C

is the primary cell identifier (it was the secbndary cell identifier in the original
WSC transaction you sent).

WwSC
is the secondary transaction identifier.

sc

is the secondary cell identifier (the cell where your original WSC transaction was
executed).

SD
is the work session controller command.

terminal
is the terminal name used in this session.

Y|N
indicates whether or not the terminal was started.

To start EDX terminal $SYSLOG with a terminal name of 4978 TERM for this
session, a 16-byte user work area, and an emulated 3270 device station name of
T4978T1:

j}
WSCbbbUSR1bbSD4978TERM$SYSLOGbH016T4978T1b W‘W‘/
The acknowledgment transaction is:

USR1bbWSCb??SD4978TERMY

The acknowledgment indicates that the start was successful.

348 Communications Facility Programmer’s Guide

SF—Set Forms

SF Transaction Format

The SF command sets the forms parameters for a roll screen or output only
terminal. Parameters for which you specify blanks retain their current values.

1-4 5-6 7-10 11-12 13-14 15-22

WSC I pc I sect I sc | SF | terminal

23 24 25 26-28 29-31 32-34 35-37

ll Ip |o |Iin tm bm rm

WSC
is the primary transaction identifier.

pc
is the primary cell identifier (the cell in which the command is to be executed).

sect
is the secondary transaction identifier (used as the primary transaction identifier
in the acknowledgment transaction).

sc
is the secondary cell identifier (the cell to which the acknowledgment is to be
sent).

SF
is the work session controller command.

terminal
is the terminal name used in this session.

l
is the number of lines per inch—either 6 or 8. This field is ignored if the
terminal is not a printer.

p
is Y or N, indicating whether the term<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>