Series/1

SC34-0644-0

Event Driven Executive
Operator Commands and Utilities Reference

Version 5.0
- D [
Library Guide and Installation and Operator Commands
Common Index System Generation and
Guide Utilities Reference
i
SC34-0645 SC34-0646 SC34-0644 J
& J i J \
(o ™ = ~
N Language rCommunications rMessages and
Reference Guide Codes
SC34-0643 SC34-0638 $C34-0636
& By € y € J
4 N\ (o ™) e p
Operation Guide Event Driven Reference
Language Cards
Programming Guide
$C34-0642 SC34-0637 SBOF-1625
& p €) @& &
i A 4 N =
Problem Customization Internal
Determination Guide Design
Guide
$C34-0639 $C34-0635 LY34-0354 J
e J ; y @&

Series/

SC34-0644-0

Event Driven Executive
Operator Commands and Utilities Reference

Version 5.0

~
Operator Commands

and
Utilities Reference

SC34-0644

First Edition (December 1984)
Use this publication only for the purpose stated in the Preface.

Changes are made periodically to the information herein; any such-changes will be
reported in subsequent revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies:or typographical errors. A form
forreaders’ comments. is.provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, 3406, P. O: Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in.any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines:Corporation 1984

Summary of Changes For Version 5.0

The following changes have been made to this document.

« The Job Cross-Reference Chart in Chapter 1. has been updated to include $TRANS, $TRAP,
$DUMP, $MEMDISK, SCOMPRES, and $E.

« A new utility, $TRANS has been added for Version 5. It replaces the CS command of
$COPYUT!. This utility makes it possible to transport EDX data sets and programs from one
Series/ 1 to another. Refer to “$TRANS - Transmit Data Sets Across a Bisync Line” on
page UT-581 for this information.

« The section “$DASDI - Format Disk or Diskette”” on page UT-90 has also been updated to
reflect the ability to use option O to create both a stand alone dump and a $TRAP diskette.

+ The $TRAP section now contains information on how to dump storage to multiple diskettes
for systems larger than 512K. This information is located in “$TRAP - Save Storage on
Error Condition” on page UT-589.

« Changes have been made to the prompt messages for the $DUMP utility. These changes are
located in “$DUMP - Format and Display Saved Environment” on page UT-228.

« LIST and PATCH commands of the $DEBUG utility have been updated to illustrate their use
with unmapped storage. A new CLOSE command and new prompts which appear when
$DEBUG is loaded have also been documented in “$DEBUG - Debugging Tool” on page
UT-126.

o Use of the $LOG utility is now required. Additional information regarding CIRCBUFF data is

also contained in this version. Details on use of $LOG can be found in “$LOG - Log Errors
into Data Set”” on page UT-457.

Summary of Changes For Version 5.0 iii

Summary of Changes For Version 5.0

+ Information about the 4975-01 ASCII printer is now included in the section entitled
“$TERMUT1 - Change Terminal Parameters” on page UT-548.

iv §C34-0644

)

About This Book

This book is a reference book containing detailed descriptions of the Event Driven Executive
operator commands, session manager, and system utilities. The commands and applicable
syntax for each operator command and system utility are shown, along with usage examples.

C

Audience

This book is intended for anyone who has to operate the IBM Series/1 with the Event Driven

Executive. Readers should have a basic understanding of computer terminology before using
this book.

How This Book Is Organized

The book is divided into the following 4 chapters.

o Chapter 1, Introduction contains an overview of the contents of the book.

¢ Chapter 2, Operator Commands contains a description and the syntax of the operator
commands.

o Chapter 3, Session Manager contains a description of the session manager facility.

o Chapter 4, Utilities contains a description of each system utility used to operate your Event
Driven Executive system. The utilities are presented in alphabetical order.

About This Book VvV

About This Book
Aids in Using This Book ;

o

This book contains the following aids to using the information it presents:

» A chart of the main jobs that are done on the Series/1 with EDX. The chart is found under
“Job Cross-Reference Chart” on page UT-2. It lists the operator command or system
utility that is used for the job, the session manager option numbers to help you access the
utility with the session manager, and the prefix of the guide in the EDX library that contains
instructions for doing the job.

« A table of contents that lists the major headings in this book.

¢ An index of the topics covered in this book.

» A glossary that defines terms and acronyms used in this book and in other EDX library
publications.

Illustrations in this book are enclosed in boxes. Many illustrations display output formats
printed while using the Event Driven Executive. In those cases where the actual printer output
exceeds the size of the box, the information is shown in a modified format.

Examples of display screens are also enclosed in a box representing the outline of a screen. A

partial screen is indicated by the top or bottom of the screen. In examples where a response is
required, the sample response is shown in red.

A Guide to the Library

.

Refer to the Library Guide and Common Index for information on the design and structure of (;}
the Event Driven Executive Library, for a bibliography of related publications, and for an index '
to the entire library.

Refer to the Messages and Codes manual for information about return codes issued by each
utility described in this reference.

Contacting I1BM about Problems

You can inform IBM of any inaccuracies or problems you find when using this book by
completing and mailing the Reader’s Comment Form provided in the back of the book.

If you have a problem with the Series/1 Event Driven Executive services, fill out an authorized

program analysis report (APAR) form as described in the IBM Series/1 Software Service Guide,
GC34-0099.

vi SC34-0644

Contents

Chapter 1. Introduction UT-1
Operator Commands UT-1
Session Manager UT-2

System Utilities UT-2

Job Cross-Reference Chart UT-2

Chapter 2. Operator Commands UT-11
Entering Commands UT-12
Prompt-Reply Format UT-12
Single-Line Format UT-12
Operator Command Descriptions UT-13
Syntax Conventions UT-13
$A - List Partitions and Active Programs UT-13
$B - Blank Display Screen UT-14
$C - Cancel Program UT-15
$CP - Change Display Terminal’s Partition Assignment UT-15
$D - Dump Storage UT-16
$E - Eject Printer Page UT-16
$L - Load a Program or Utility UT-17
$P - Patch Storage UT-18
$S - Control Spooled Program Output UT-19
$T - Set Date and Time UT-27
$U - Invoke Your Own Operator Command UT-28
$VARYOFF - Set Device Offline UT-28
$VARYON - Set Device Online UT-29
$W - Display Date and Time UT-30

Chapter 3. Session Manager UT-31
Invoking the Session Manager UT-32

Contents Vil

Contents

viii

SC34-0644

Menus UT-32
Logon/Logoff Menu UT-32
Primary Option Menu UT-33
Secondary Option Menu UT-34
Parameter Input Menu UT-35
The Background Option UT-36
Custom Menus UT-36

Data Sets UT-37

Program Function Keys UT-38

Supported Utilities UT-39

Chapter 4. Utilities UT-43

Invoking the Utilities UT-43
Entering Utility Commands UT-44

Cancelling a Utility UT-45

$BSCTRCE - Trace 1/O Activity on a BSC Line UT-46
Invoking $BSCTRCE UT-46

$BSCUT1 - Format BSC Trace Files UT-48
Invoking $BSCUT1 UT-48

$BSCUT?2 - Communications I/O Exerciser UT-51
Invoking $BSCUT2 UT-52
$BSCUT2 Commands UT-53

$CHANUTI1 - Channel Attach Utility UT-61
Invoking SCHANUT1 UT-61
$CHANUT1 Commands UT-61

$COMPRES - Compress Disk, Diskette, or Volume UT-64
Specifying Dynamic Storage UT-65
Invoking SCOMPRES UT-65
$COMPRES Commands UT-65

$COPY - Copy Data Set UT-72
Copying Programs or Data Members UT-72
Specifying Dynamic Storage UT-73
Invoking $COPY UT-73
$COPY Commands UT-74

$COPYUT1 - Copy Data Set with Allocation UT-80
Specifying Dynamic Storage UT-80
Invoking $COPYUT1 UT-80
$COPYUT1 Commands UT-81

$DASDI - Format Disk or Diskette UT-90
Invoking $DASDI UT-90
Primary Option 0 — Create a Stand-Alone UT-91
Primary Option 1 — Diskette Initialization UT-94
Primary Option 2 — 4962 Disk Initialization UT-101
Primary Option 3 — 4963 Disk Initialization UT-105
Primary Option 4 — 4967 Disk Initialization UT-109
Primary Option 5 — DDSK Disk Initialization UT-117
Primary Option 9 — Exit Initialization UT-125

$SDEBUG - Debugging Tool UT-126

Major Features of $DEBUG UT-126
Necessary Data for Debugging UT-127
Invoking $DEBUG UT-128
$DEBUG Commands UT-129
$DICOMP - Display/Modify Profiles UT-144
Invoking $DICOMP UT-144
$DICOMP Commands UT-144
Composer Subcommands UT-147
$DIINTR - Graphics Interpreter Utility UT-161
Invoking $DIINTR UT-161
$DIRECT - Directory Organization Sort UT-168
Invoking $DIRECT UT-168
$DIRECT Commands UT-169
$DISKUT1 - Allocate/Delete/List Directory Data UT-177
Loading $DISKUT1 UT-177
$DISKUT1 Commands UT-178
$DISKUT? - Patch/Dump/List Data Set or Program UT-198
Program and Data Set Member Dumps and Patches UT-198
Absolute Record Numbers UT-199
Invoking $DISKUT2 UT-199
$DISKUT2 Commands UT-200
$DIUTIL - Maintain Partitioned Data Base UT-220
Invoking $DIUTIL UT-220
$DIUTIL Commands UT-221
$DUMP - Format and Display Saved Environment UT-228
Invoking $DUMP UT-228
$EDIT1 and EDIT1N - Line Editors UT-235
Data Set Requirements UT-235
Invoking $EDIT1 or $EDITIN UT-235
Sequence of Operations UT-236
Special Control Keys UT-238
Editor Commands UT-238
Edit Mode Subcommands UT-247
Line Editing Commands UT-264
$EDXASM - Event Driven Language Compiler UT-265
. Required Data Sets UT-265
Invoking $EDXASM UT-266
Data Sets Used in Examples UT-267
Output of the Compiler UT-270
Obtaining Extra Compilation Listings UT-271
Invoking $EDXLIST with $JOBUTIL UT-273
$EDXLINK - Linkage Editor UT-274
Required Data Sets UT-275
$EDXLINK Control Statements UT-275
Specifying Dynamic Storage UT-286
Invoking $SEDXLINK UT-287
Operator Termination of SEDXLINK UT-291
$EDXLINK Output UT-292

Contents

Contents

AUTOCALL Option UT-294
Using $EDXLINK Control Statement Data Sets UT-295
$FONT - Process Character/Images Tables UT-296
$FSEDIT - Full Screen Editor UT-312
Invoking $FSEDIT UT-312
Work Data Set UT-315
Scrolling UT-316
Program Function Keys UT-317
3101 Display Terminal Switch Settings UT-318
Directory Data Set List Commands UT-319
Primary Options and Commands UT-326
Primary Commands UT-334
Edit Line Commands UT-344
$GPIBUT1 Utility UT-352
Invoking $GPIBUT1 UT-352
$GPIBUT1 Commands UT-352
$GPIBUT1 Example UT-360
$HCFUT!1 - Interact with Host Communications Facility UT-366
Invoking $SHCFUT1 UT-366
$HCFUT1 Commands UT-366
Return Codes UT-370
$HXUT1 - H-Exchange Utility UT-371
Invoking $HXUT1 UT-372
$HXUT1 Commands UT-373
Using the H-exchange utility UT-373
$IMAGE - Define Formatted Screen Image UT-386
Data Set Requirements UT-386
Considerations for Using $SIMAGE UT-386
Formatting Screens with SIMAGE UT-387
Invoking $IMAGE UT-389
$IMAGE Commands UT-390
Entering Edit Verification Mode UT-399
$INITDSK - Initialize Direct Access Device; Volume Control UT-402
Invoking $INITDSK UT-402
$SINITDSK Commands UT-403
$IOTEST - Test Sensor I/0; List Configuration UT-423
Invoking $IOTEST UT-423
$IOTEST Commands UT-424
$JOBQUT - Controlling Job Queue Processing UT-430
Invoking $JOBQUT UT-430
$JOBQUT Commands UT-431
$JOBUTIL - Job Stream Processor UT-437
Invoking $JOBUTIL UT-437
$JOBUTIL Commands UT-438
$L.OG - Log Errors into Data Set UT-457
Log Data Set UT-457
Invoking $L.OG UT-457
Coding Example UT-457

X SC34-0644

£

~

$L.OG Commands UT-458
$MEMDISK - Allocate Unmapped Storage as a Disk UT-460
Invoking $SMEMDISK UT-460
$MEMDISK Commands UT-460
$MOVEVOL - Disk Volume Dump/Restore UT-464
Diskette Usage UT-464
Invoking $SMOVEVOL UT-464
Dump Procedure UT-465
Restoration Procedure UT-468
$MSGUT1 - Message Utility UT-470
Invoking $MSGUT1 UT-470
$MSGUT1 Commands UT-470
$PFMAP - Identify 3101(Block Mode)/4978/4979/4980 Program Function Keys UT-475
Invoking $PFMAP UT-475
$PREFIND - Prefinding Data Sets and EDL Overlays UT-476
Program Load Process Overview UT-476
Invoking $PREFIND UT-476
$PREFIND Commands UT-477
$PRT2780 and $PRT3780 UT-481
Invoking $PRT2780 and $PRT3780 UT-481
Sample $RJE Session UT-482
$RIE2780 and $RIE3780 UT-484
Interface to Host RJE Subsystems UT-484
Invoking $RIE2780 or $RJE3780 UT-485
Attention Commands UT-486
$SPLUTT - Spool Utility UT-489
$SPLUT1 Operations UT-489
Invoking $SPLUT1 UT-491
$SPLUT1 Commands UT-492
Spool Capacity Change Examples UT-492
Spool Start Type Examples UT-494
$STGUT1 - Free Up Nonprogram Areas of Storage UT-497
Invoking $STGUT1 UT-497
$STGUT1 Commands UT-497
$SUBMIT - Submit/Control Jobs in Job Queue Processor UT-503
Invoking $SUBMIT UT-503
$SUBMIT Commands UT-504
$S1ASM - Series/1 Assembler UT-509
Required Data Sets UT-509
Invoking $S1ASM UT-509
Assembler Options UT-510
Data Sets Used in Examples UT-511
Assembling a Program Using the $I. Operator Command UT-511
Assembling a Program Using the Session Manager UT-515
Assembling a Program Using $JOBUTIL UT-516
$S1ASM Output UT-516-
$S1S1UT1 - Series/1-to-Series/1 UT-517
Invoking $S1S1UT1 UT-517

Contents Xi

Contents

Xii SC34-0644

$S1S1UT1 Commands UT-517

$TAPEUT1 - Tape Management UT-522
Invoking $STAPEUT1 UT-522
$TAPEUT1 Commands UT-523

$TERMUT1 - Change Terminal Parameters UT-548
Invoking $TERMUT1 UT-548
$TERMUT1 Commands UT-548

$TERMUT?2 - Change Image/Control Store UT-557
4974 Support UT-557
4978 and 4980 Support UT-557
Invoking $STERMUT2 UT-559
$TERMUT2 Commands UT-559

$TERMUTS3 - Send Message to a Terminal UT-573
Invoking $STERMUT3 UT-573

$TRACEIO - ACCA/EXIO Trace Facility UT-576
Invoking $TRACEIO UT-576
$TRACEIO Commands UT-576

$TRANS - Transmit Data Sets Across a Bisync Line UT-581

Invoking $STRANS UT-581
$TRANS Commands UT-582
$TRAP - Save Storage on Error Condition UT-589
$UPDATE - Converting Series/1 Programs UT-598
Required Data Sets UT-598
Invoking SUPDATE UT-598

Updating a Program Using the $L. Operator Command UT-598

$UPDATE Commands UT-599

Updating a Program Using the Session Manager UT-602

Updating a Program Using $JOBUTIL UT-602
$UPDATE Output UT-603
Considerations When Creating a Supervisor UT-603

$UPDATEH - Converting Host System Programs UT-605

Invoking SUPDATEH UT-605

Updating a Hosting Program Using the $L. Operator Command UT-605

$UPDATEH Commands UT-605

Updating a Host Program Using $JOBUTIL or Session Manager UT-607

Glossary of Terms and Abbreviations UT-609

Index UT-619

Figures

. Job Cross-reference Chart UT-3
. Session manager logon/logoff menu UT-33
. Session manager primary option menu UT-34

Example session manager secondary option menu UT-34
Example session manager parameter input menu UT-35
Example secondary option menu for primary option 10 UT-36

. Session manager data sets UT-38

. Session Manager Options by Utility UT-39

. Dumping BSC trace records to a terminal UT-49

. Density and sector sizes available according to format UT-94

. X,Y coordinate grid and viewing area UT-148

. X,Y,Z coordinate grid and viewing area UT-148

. Viewing Area in 3-D Mode UT-165

. $EDIT1/$EDITIN commands and subcommands UT-237

. $SEDXLIST use example UT-272

. Multilink $EDXLINK primary-control-statement data set UT-285
. $SEDXLINK Secondary Control Statement Data Set UT-286

. $EDXLINK multilink interactive interface UT-289

. $EDXLINK map UT-292

. $GPIBUT1 example UT-361

. $IMAGE - Command and Edit Mode UT-400

. Initialize a disk UT-408

. Initialize a diskette UT-410

. Initialize a multivolume diskette UT-411

. $SMOVEVOL parameter input menu UT-465

. $PREFIND parameter input menu UT-479

. Sample $RJE session UT-482

. $RIJE attention commands UT-485

. Spooling Defaults UT-491

. $S1ASM parameter input menu UT-515

. Sample of output from EX (tape exerciser). UT-530

. $JOBUTIL procedure for invoking $TAPEIT for an SL tape. UT-533
. $JOBUTIL procedure for invoking $TAPEIT for an NL tape. UT-534
. Testing the post code returned by $TAPEIT when UT-534

. 4978 Display Station keyboard UT-563

. 4980 Display Station UT-563

Figures

xiii

Figures

Xiv SC34-0644

37. Control Chart for 4978 Display Station UT-564
38. Control Chart for 4980 Display Station UT-565
39. $UPDATE parameter input menu UT-602

)

a

o

Chapter 1. Introduction

Operating your IBM Series/1 Event Driven Executive (EDX) system involves many different
tasks, as follows:

o Installing the starter system

« Generating a tailored operating system

« Developing application programs

» Operating your system

» Determining hardware and/or software problems
» Customizing your system

To perform these tasks, you use the operator commands and system utilities.

Operator Commands

Operator commands are instructions that represent a request for action by your EDX system.

When you enter an operator command, your EDX system performs the action specified by the
operator command.

Chapter 2, “Operator Commands” contains a description and the syntax of each operator
command, along with examples of its usage.

Chapter 1. Introduction ~ UT-1

Introduction

Session Manager

The session manager is a collection of predefined screens called “menus” that you can use to
access system utilities and application programs from a display station.

Chapter 3, “Session Manager” contains an introduction to the session manager and a
description of the facility.

System Utilities

The system utilities are a set of programs that do everyday jobs on your Series/1. The system
utilities are independent programs that can be run concurrently with other application programs
or utilities.

Chapter 4, “Utilities”” contains a description of each system utility. The utilities are presented in
alphabetical order.

Job Cross-Reference Chart

The following chart directs you to the operator command or system utility that will help you do a
particular job. There are four columns within the chart.

JOB This column lists specific jobs you may want to perform. .

OPERATOR COMMAND/UTILITY
This column lists the name of the operator command or utility used to perform the
job.

SESSION MANAGER OPTION
If a utility can be accessed through the session manager, the session manager option
number is listed.

GUIDE INFORMATION
If instructions for doing a specific job are included in the Operation Guide, Event
Driven Executive Language Programming Guide, Communications Guide, Problem
Determination Guide, or Installation and System Generation Guide, the page prefix of
the guide is listed.

UT-2 SC34-0644

Job Cross-Reference Chart (continued)

The prefix for each guide within the EDX library follows:

PG Event Driven Language Programming Guide

CO Communications Guide

CU Customization Guide

IS Installation and System Generation Guide

OP Operations Guide

PD Problem Determination Guide

Operator Session
Command/ Manager Guide
Job Utility Option Information
Allocate a data set $DISKUT1 3.1 OP, IS
‘ $TAPEUT1 3.10

Allocate an H-exchange data set $HXUT1 3.1 OoP
Allocate a member in a graphics data base $DICOMP 5.2 -
Allocate a volume $INITDSK 3.7 OP, IS
Allocate a volume under a fixed head SINITDSK 3.7 OP, IS
Analyze GPIB errors $GPIBUT1 4.9 CO, PD
Analyze hardware errors $DUMP 9.1 PD
Analyze program checks $DUMP 9.1 PD
Analyze tape surface for defects $TAPEUT1 3.10 —
Browse a source data set $FSEDIT 1 —
Cancel a program $C — oP
Change hard-copy device $TERMUT1 4.1 oP
Change print screen PF key $TERMUT1 4.1 oP
Change spooj job attributes $SPLUT1 4.7 oP
Change a tape label $TAPEUT1 3.10 oP

Figure 1 (Part 1 of 7). Job Cross-reference Chart

Chapter 1. Introduction ~ UT-3

Introduction

Job Cross-Reference Chart (continued)

Operator Session

Command/ Manager Guide
Job Utility Option Information
Change a terminal address $TERMUT1 4.1 oP
Close job created by $DEBUG $DEBUG — —
Compile an EDL program $EDXASM 2.1 PG, OP
Compile and link edit an EDL program $EDXASM 2.2 PG, OP

SEDXLINK
Compile a program on a S/370 and execute it on a Series/ 1 $UPDATEH 2.10 —
Compress one volume or all volumes on a device $COMPRES 3.4 oP
Controlling the job queue processor $JOBQUT 10.1 oP
Control printer spooling $SPLUT1 4.7 oP
Convert object modules to executing code SEDXLINK 2.7 PG

SUPDATE 2.9
Copy all data sets $COPYUT1 3.3 oP
Copy a data set with automatic allocation $COPYUT1 3.3 IS, OP
Copy all data sets with the same prefix $COPYUT1 3.3 oP
Copy a basic exchange data set $COPY 3.5 OP
Copy a disk/diskette data set to tape $TAPEUT1 3.10 oP
Copy an H-exchange data set $HXUT1 3.1 orP
Copy a tape data set to diskette $TAPEUT1 3.10 oP
Copy a tape data set to tape $TAPEUT1 3.10 oP
Copy a $TRAP data set to two diskettes $COPY 3.5 oP
Copy a volume or data set to an allocated volume or data set $COPY 3.5 OoP
Create an upper/lower case data set $FSEDIT 1 oP

$TERMUT2 4.2
Create your own terminal keyboard characters $FONT 4.5 —
Date and time, display sw — oP
Date and time, set $T — oP

Figure 1 (Part 2 of 7). Job Cross-reference Chart

UT-4 SC34-0644

{3 ,V/’(

C

Job Cross-Reference Chart (continued)

Operator Session

Command/ Manager Guide
Job Utility Option Information
Delete job queue $JOBQUT 101 oP
Delete a data set $DISKUT1 3.1 OP
Delete all data sets with the same prefix $DISKUT1 3.1 oP
Delete a volume $INITDSK 3.7 oP
Determine address of a data set $DISKUT1 3.1 —_
Determine how many records a data set contains $DISKUT1 3.1 oP
Determine terminal name, address, type and partition assignment $TERMUT1 4.1 OoP
Determine how much free space is on a volume $DISKUT1 3.1 OP
Determine the hardware supported by supervisor $IOTEST 9.3 OP, IS
Device, set offline $VARYOFF — oP
Device, set online $VARYON — oP
Display data/volume/storage contents in decimal, EBCDIC, or $DEBUG —3.2,9.2 PD, OP
hexadecimal $DISKUT2
Dump storage to a data set on error condition $TRAP —_ PD, OP
Dump unmapped storage $TRAP — PD, OP

$DUMP
Estimate progress of compress $COMPRES 3.4 oP
Eject a page $E — oP
End job queue processing $JO0BQUT 10.1 PD
Enter source statements $FSEDIT 1 PG, OP
Erase contents of a data set $DISKUT2 3.2,9.2 —
Erase display screen $B — oP
Format and print BSC trace data sets $BSCTRCE 8.1 CO, PD

$BSCUT1 8.2
Format and print error log information $DISKUT2 3.29.2 OP, PD
Generate a supervisor $XPSLINK 2.8 1S

2.13

Figure 1 (Part 3 of 7). Job Cross-reference Chart

Chapter 1. Introduction ~ UT-5

Introduction

Job Cross-Reference Chart (continued)

Operator Session
Command/ Manager Guide
Job Utility Option Information
Hold a job in the job queue processor $JOBQUT 10.1 oP
Identify the program function keys on a 4978 and 4980 display station $PFMAP 4.6 —
Increase the size of a data set $DISKUT1 3.1 —
$COPY 3.5
Initialize a disk $DASDI 3.6 IS, OP
$MEMDISK —
Initialize unmapped storage as a disk $MEMDISK — oP
Initialize a diskette to EDX format $DASDI 3.6 OoP
Initialize a diskette to exchange format $DASDI 3.6 OP
Initialize a diskette for a stand-alone/$TRAP dump $DASDI 3.6 oP
Initialize a tape $TAPEUT1 3.10 oP
Invoke your own operator command $U — OP, CU
IPLa >mote Series/ 1 $S1S1UT1 4.8 co
Job queue processing controller $J0OBQUT 10.1 oP
Job queue job submission utility $SUBMIT 10.2 OoP
Link edit programs $EDXLINK 2.7 PG, OP
List all data sets $DISKUT1 3.1 opP
List data sets by type (program or data) $DISKUT1 3.1 oP
List all data sets with same prefix $DISKUT1 341 oP
List a directory $INITDSK 3.7 oP
List all volumes on all disk/diskette devices $DISKUT1 3.1 OoP
S$INITDSK
List all volumes on a particular device $INITDSK 3.7 OP
List information about one data set $DISKUT1 3.1 oP
List messages in source message data set $MSGUT1 2.14 OP
Load and execute a program $L — oP

Figure 1 (Part 4 of 7). Job Cross-reference Chart

UT-6 sC34-0644

O

Job Cross-Reference Chart (continued)

Operator Session

Command/ Manager Guide
Job Utility Option Information
Load 4980 terminal $TERMUT2 4.2 OP
Loading control image $TERMUT2 4.2 oP
Loading control store $TERMUT2 4.2 OP
Locate required data sets/overlays before program execution $PREFIND 2.1 —
Message-source processing $MSGUT1 2.14 OP
Modify a source data set $FSEDIT 1 OP,PG
Partition assigned to terminal, change $CP —_— OP
Prepare Version 1 and 2 data sets for use with Version 5 $MIGRATE — IS

$MIGAID

$MIGCOPY
Print a formatted $TRAP dump $DUMP 9.1 OP, PD
Print a stand-alone dump $DUMP 9.1 OP, PD
Programs, display all active $A ALL — orP
Programs, display all active in terminal’s partition $A — OoP
Recognizing intermittent program errors $TRAP — OP, PD
Recording hardware errors $LOG — PD
Recover a backed-up data set $MOVEVOL 3.8 orP
Redefine terminal scrolling $TERMUT1 4.1 —
Rename a disk/diskette volume $INITDSK 3.7 OP
Rename a terminal $TERMUT1 4.1 oP
Restart job queue processing $JOBQUT 10.1 oP
Retrieve a data set from a host $EDITIN — —
Running batch job streams $JOBUTIL 7 oP

$SUBMIT 10.2
Running multiple jobs $JOBUTIL 7 oP

$SUBMIT 10.2

Figure 1 (Part 5 of 7). Job Cross-reference Chart

Chapter 1. Introduction ~ UT-7

Introduction

Job Cross-Reference Chart (continued)

Operator Session
Command/ Manager Guide
Job Utility Option Information
Send a data set to a host $HCFUT1 8.8 co
Send a message to a terminal $TERMUT3 4.3 orP
Setting PF keys $TERMUT2 4.2 oP
Setting a terminal offline or online $TERMUT1 4.1 OP
Sorta disk/diskette volume directory $DIRECT — —_
Spooling, change forms type $S ALT — oP
Spooling, change heading id $S ALT —_— oP
Spooling, change number of copies $S ALT — oP
Spooling, change printer $S ALT — orP
Spooling, delete a job $S DEL — oP
Spooling, delete a set of jobs $S DG — OoP
Spooling, display status of jobs $S DISP — oP
Spooling, display status of resources $S DISP —_ OP
Spooling, display status of writers $S DISP — opP
Spooling, hold jobs $S HOLD —_ orP
Spooling, keep a job after printing $S KEEP — OoP
Spooling, release held jobs $S REL — oP
Spooling, restart a writer $S WRES — (o]
Spooling, start $L $SPOOL — oP
Spooling, start a writer $S WSTR — oP
Spooling, stop $S STOP — OoP
Spooling, stop a writer $S WSTP — oP
Storage, change contents (patch) $P — —

Figure 1 (Part 6 of 7). Job Cross-reference Chart

UT-8 SC34-0644

O

C

Job Cross-Reference Chart (continued)

Operator Session

Command/ Manager Guide
Job Utility Option Information
Storage, display contents $D — oP
Storage map, display for all partitions $A ALL — (0]
Storage map, display for terminal’s partition $A —_ oP
Submit a job into a host batch job stream $EDITIN — —
Suspend job queue processing $JOBQUT 10.1 oP
Test the binary synchronous access method (BSCAM) $BSCUT2 8.3 CO, PD
Test tape label type to ensure /O commands executing correctly $TAPEUT1 3.10 —
Test the operation of sensor |/0 features $IOTEST 9.3 —
Trace 1/0 activities on a BSC line $BSCTRCE 8.1 CO, PD
Transport data sets across a bisync line $TRANS — OP
Trap storage image on error condition $TRAP — PD
Trap to two diskettes $TRAP — PD, OP
Verify BSC hardware and software assignments $BSCUT2 8.3 CO, PD
Verify Series/1-Series/1 attachment performing correctly $S1S1UT1 4.8 CO, PD
Write a tape label $TAPEUT1 3.10 OP

Figure 1 (Part 7 of 7). Job Cross-reference Chart

Chapter 1. Introduction ~ UT-9

Notes

UT-10 SC34-0644

O

Chapter 2. Operator Commands

The system operator commands provide system control functions from your terminal. They tell
EDX to do things such as load a program and set the time and date. The 14 operator commands
and their functions are:

Command

$A

$B
$C
$Cp
$D
$E
$L
$P
$S
$T

$U

Function

Displays partition sizes and addresses and the names, locations, and loading
terminal names of all loaded programs.

Blanks the display terminal screen.

Cancels a running program.

Changes the partition assigned to a terminal.
Displays the contents of storage.

Ejects a page on the printer.

Loads a program.

Patches storage.

Controls the spooling of program output.
Enters the date and time.

Invokes a user-written routine.

Chapter 2. Operator Commands UT-11

Operator Commands

$VARYOFF Sets a device offline.
$VARYON Sets a device online.
sw Displays the date and time.

This chapter shows you how to enter an operator command and describes the function and
syntax of each command. Refer to the Operation Guide for procedures that use the operator
commands.

Entering Commands

You can enter operator commands in one of two ways: prompt-reply or single-line format. With
prompt-reply format you enter the command name and each parameter as the system asks for it.
With single-line format you enter the command name and all the parameters on the same line.
The following examples show you how to use the two formats.

Prompt-Reply Format

Press the attention key. After EDX responds with the greater-than sign (>), type the operator
command and press the enter key. EDX responds with a prompt for the next parameter as each -
parameter is entered. (\

Single-Line Format

Press the attention key. After EDX responds with the greater-than sign (>), type the operator
command and all parameters in the order expected by EDX, and press the enter key.

You can enter all operator commands (except $T - set date and time) in the single-line format.

UT-12 sC34-0644

w Entering Commands (continued)
Operator Command Descriptions

This section contains a description and the syntax of each operator command arranged in
alphabetical order.

Syntax Conventions

The following conventions are used in the presentation of the operator command syntax:

Uppercase If a parameter is shown in all uppercase letters, enter it exactly as shown.

¥
Lowercase If a parameter is shown is all lowercase letters, substitute a variable value.
[If two or more parameters are enclosed in brackets, chose one of them. The

parameters within the brackets are separated by the or (|) character.

| If parameters are separated by the or (|) character, choose one of them.

$A - List Partitions and Active Programs

Use the $A operator command to list the storage partitions defined for your EDX operating
™, system. (A partition is a portion of storage in which programs run.) When you enter the $A
c / command, the system provides the starting address, the name of the terminal from which the
program was loaded, the size of each partition, and whether or not a partition is static or
dynamic. It also tells you the names and address of each program active in each partition.

You can use $A to list a/l partitions or only the one to which your terminal is assigned.

Syntax:

$A ALL | blank

Required: none
Default: starting address, size, and active programs of
partition currently assigned to

Chapter 2. Operator Commands UT-13

Operator Commands

Operator Command Descriptions (continued)

O

Operands Description

ALL Displays the starting addresses and sizes of all partitions and the active programs in .
each partition.
blank If you do not enter ALL, EDX displays the starting addresses of the programs active

in the partition where your terminal is running.

$B - Blank Display Screen
Use the $B operator command to erase all information on your display terminal screen.

Syntax:

$B

Required: none
Default: none

Operands Description

None None

T
:{g//,

UT-14 SC34-0644

0 Operator Command Descriptions (continued)

$C - Cancel Program

Use the $C operator command to cancel a program running in the same partition as your
terminal. If there is more than one program of the same name, EDX asks (prompts) you for the
load address of the program. The load address is the storage address where the program starts.
You can find this address using the $A operator command.

Notes:
1. s$cC should not be used as the normal means of stopping a program.

2. $C should not be used to cancel some of the system utilities. If $C should not be used, the
utility warns you on the first screen it displays.

Syntax:
$C program
Required: program
Default: none
0‘ Operands Description

program The name of the program to cancel.

$CP - Change Display Terminal’s Partition Assignment

Some jobs require that the display terminal be running in the same partition as the object of the
job, such as $C to cancel a program. Use the $CP operator command to change the partition
number for the terminal you are using.

Syntax:

$CP n

Required: n
Default: none

Operands Description

n The partition to which the terminal is to be assigned.

Chapter 2. Operator Commands UT-15

Operator Commands

Operator Command Descriptions (continued)

$D - Dump Storage
Use the $D operator command to display, or dump, the contents of an area of storage on the
screen of your display terminal. When you enter the $D command, EDX displays the
hexadecimal contents of the specified storage locations.

Syntax:

$D origin,address,count

Required: origin
Default: address defaults to O
count defaults to 1.

Operands Description

origin The hexadecimal origin address. This can be any address, but if the address
parameter is a displacement into a program, this value is the program load point.

address The hexadecimal displacement from origin at which the dump is to start.

count The decimal number of words to dump (maximum value of 16).

£
A

$E - Eject Printer Page

Use the $E operator command to advance (eject) one or more pages on the specified printer.
Entering a number with $E advances the paper that number of pages.

Syntax:

$E n printername

Required: none
Default: ejects one page, $SYSPRTR

Operands Description

n The number of pages to eject. Defaults to printername.

O

UT-16 SC34-0644

@ Operator Command Descriptions (continued)

$L - Load a Program or Utility

Use the $L operator command to load a program into storage and start it running.

Syntax:
$L program,volume,storage data sets
Required: program
Default: volume defaults to IPL volume; storage
defaults to the amount specified on the
PROGRAM statement of the program to be
loaded
Operands Description
program The name of the program being loaded. This is the same as the name of the data
set where the program is stored.
volume The name of the volume containing the program data set.

mf; storage
C :

data sets

The total additional storage (in bytes) to be added to the end of the loaded
program (overrides the STORAGE= parameter specified in the PROGRAM
statement). The number of bytes that must be specified, if any, is determined by
local procedures. If a *’ is specified, the loaded program will receive the
maximum amount of contiguous free space available in that partition.

The data set and volume names of one to nine data sets being passed to the
program. This parameter is required if DS=?? is coded on the PROGRAM
statement. The data sets must be specified in the order used by the program and
entered in the format: name,volume name,... If data set names are required and
you do not enter them as part of a single-line command, EDX prompts you for
them.

o

Chapter 2. Operator Commands UT-17

Operator Commands

Operator Command D

$P - Pat;:h Storage

escriptions (continued) @

Use the $P operator command to change (patch) one or more words of storage. (Refer to the
Problem Determination Guide for instructions on using $P.)

Note: Patching of main storage is only valid for the current session. When the system is
reinitialized (IPL’D) or the executing program is reloaded, the patched data reverts to its original

value.

Syntax:

$P

Required:
Default:

origin,address,count

origin
‘address defaults to O
‘count defaults to 1.

Operands

origin

address

count

UT-18 SC34-0644

Description

The hexadecimal origin address (program load point). Use the $A operator
command to determine this address.

The hexadecimal address in the program where the patch starts.

N

The decimal number of words being patched. A maximum of 16 words can be
patched.

O

C

™

Operator Command Descriptions (continued)

$S - Control Spooled Program Output

Use the $s operator command to control the operation of printer spooling from your display
terminal. $S has several subcommands that do these control functions. The syntax for these
subcommands is described on the following pages under:

“$S - List Subcommands” on page UT-20

e “$S ALT - Alter Spool Job Printing” on page UT-20

« “$S DALL - Delete All Spool Jobs” on page UT-21

+ “$S DE - Delete a Spool Job” on page UT-22

¢ “$S DG - Delete Generic Spool Jobs” on page UT-22

o ““$S DISP - Display Spool Status Information” on page UT-23
« “$S HOLD - Hold Spool Job(s)” on page UT-23

« “$S KEEP - Keep or Release a Spool Job” on page UT-24
« “$S REL - Release Spool Job(s)” on page UT-24

o “$S STOP - Stop Spooling Facility”” on page UT-25

« ‘“$S WRES - Restart a Spool Writer”” on page UT-25

+ “$S WSTP - Stop a Spool Writer” on page UT-26

« “$S WSTR - Start a Spool Writer”” on page UT-27

Chapter 2. Operator Commands UT-19

Operator Commands

Operator Command Descriptions (continued)

$S - List Subcommands

Use the $S command to obtain a list of the $S subcommands.

Syntax:

$s

Required: none
Default: none

$S ALT - Alter Spool Job Printing

UT-20 SC34-0644

Use the $S ALT command to change the parameters that control the way a spool job is printed.
You can:

Change the number of copies printed.

Change the forms code for the job.

Change the job name used on the spool job separator page.
Redirect one spool job to a different printer.

Redirect all spool jobs from one printer to another printer.
Specify that forms alignment be verified before a job is printed.

Syntax:

$S ALT id [COPY n|FORM code| NAME heading | WRIT name | ALIGN Y/N]
or
$S ALT WRIT cwriter nwriter

Required: id and either COPY FORM NAME WRIT or ALIGN
or
WRIT cwriter nwriter

Default: none

C

Q Operator Command Descriptions (continued)

Operands

id

COoPY
FORM

NAME

WRIT

C

ALIGN

Description

The one-to-three-digit identification assigned to a spool job by the spool facility.

This identification is included on the spool status report generated by the $S DISP ALL
operator command.

n - The number of copies to be printed (must be from 1 to 127).
code - The four-character code identifying the forms required to print the spool job.

heading - A one-to-eight-character heading printed on the spool job separator page.
It defaults to the name of the program which created the spool job.

The name of the spoolable printer or display terminal. The ‘“WRIT name” form of
this parameter is used to assign a printer or display terminal to a particular spool job.
The “WRIT cwriter nwriter” form is used to redirect spool jobs from one spool
device to another.

name The name of the spool device for this spool job.

cwriter The name of the current spool device whose spool jobs are to be
redirected.

nwriter The name of the new spool device.

Y/N - Specifies whether forms alignment is to be verified before the spool job is
printed (Y=yes, N=no). Alignment is verified for the next complete copy of the
job. Alignment is not verified for a job that is printing when this command is
entered or for a job that has been stopped with the $S WSTP command.

$S DALL - Delete All Spool Jobs

Use $S DALL to delete all ready or printing spool jobs.

Syntax:
$S DALL
Required: None
Default: None
Operands Description
None None

Chapter 2. Operator Commands ~ UT-21

Operator Commands

Operator Command Descriptions (continued)

$S DE - Delete a Spool Job

Use $S DE to delete one spool job that is either ready or printing.

Syntax:

$S DE id
Required: id
Default: None

Operands Description

id The one-to-three-digit identification assigned to a spool job by the spool facility.
This identification is included on the spool status report generated by the $S DISP
ALL operator command.

$S DG - Delete Generic Spool Jobs

UT-22

SC34-0644

Use the $S DG command to delete all ready or printing spool jobs that have a name starting with
a specified prefix.

Syntax:

$S DG string

Required: string
Default: None

Operands Description

string A one-to-eight-character prefix that specifies the spool jobs to be deleted. All
spool jobs with this prefix are deleted.

&

AN
"

w Operator Command Descriptions (continued)

$S DISP - Display Spool Status Information

Use $s DISP to display information about spool jobs, spool resources, and spool writers.

Syntax:

$S DISP id|ALL|STAT

Required: None
Default: ALL

Operands Description

id The internal one-to-three-character identification assigned to a spool job by the
spool facility. This identification is obtained by using the $S DISP ALL command.

ALL Displays the status of all spool jobs, all spool writers, and all spool resources.

STAT Displays the status of the spool resources.

$S HOLD - Hold Spool Job(s)

(jf Use the $s HOLD command to hold a specific spool job, or all spool jobs, from being printed.
Only active and ready spool jobs can be heid.

Syntax:

$S HOLD id | ALL

Required: None
Default: ALL

Operands Description

id The one-to-three-character identification assigned to a spool job by the spool
facility. This identification is included on the spool status report generated by the
$S DISP ALL operator command.

ALL Holds all active and ready spool jobs and all future spool jobs.

Chapter 2. Operator Commands ~ UT-23

Operator Commands

Operator Command Descriptions (continued)

S

$S KEEP - Keep or Release a Spool Job

Use $S KEEP to keep a specific spool job from being deleted or to delete a job that has been
kept. When a kept job is released, $SPOOL prints one additional copy before deleting the job.

Syntax:
$S KEEP id YIN
Required: id and either Y or N
Default: None
Operands Description
id The one-to-three-character identification assigned to a spool job by the spool
facility. This identification is included on the spool status report generated by the
$S DISP ALL operator command.
Y Keeps the spool job available after it is printed. The spool job is both held and
kept after printing, with the number of copies set to one. Thus, when released by
using the $S REL command, it is printed (even if printed once already).
N
N Deletes the spool job from the system after it is printed. When released by use of (ﬂ)

$S REL - Release Spool Job(s)

this operand, the number of copies of the spool job to be printed is set to one, even
if more than one copy was requested before the job was kept.

Use $S REL to release one, or all, held jobs for printing. A released job resumes its place in the

ready queue;

ready.

Syntax:

that is, its print order is still determined by the order in which it originally became

$S REL

Required
Default:

: None

id | ALL

ALL

UT-24 SC34-0644

0) Operator Command Descriptions (continued)

Operands Description

id The one-to-three-character identification assigned to a spool job by the spool
facility. This identification is included on the spool status report generated by the
$S DISP ALL operator command.

ALL Releases all currently held spool jobs. This resets the effect of the $s HOLD ALL
command.

$S STOP - Stop Spooling Facility

Use $S STOP to stop the spooling facility. Spooling stops when any jobs in active or printing
status finish.

Syntax:

$S STOP

Required: None
Default: None

O Operands Description

None None

$S WRES - Restart a Spool Writer
Use $S WRES to restart a temporarily stopped spool writer. You can restart a writer:
« at the beginning of the interrupted job
» at the line following the last line printed

« at a specified number of lines or pages before or after the last line printed

Syntax:

$S WRES name [IMMIJOBIB nnnL/PIF nnnL/P] code

Required: name

nnn and L or P if B or F specified
Default: IMM

code defaults to blanks

Chapter 2. Operator Commands ~ UT-25

Operator Commands

Operator Command Descriptions (continued)

Operands Description

name

IMM

JOB

B

nnn

code

The name of the writer which is to be restarted.
Resume printing at the next line of the interrupted spool job.
Resume printing at the start of the interrupted spool job.

Resume printing nnn lines (L) or pages (P) before the line where the job was
stopped.

Resume printing nnn lines (L) or pages (P) after the line where the job was
stopped.

The number of lines or pages backward (B) or forward (F) from the point of
interruption. Specify this parameter if you specified B or F.

If the writer scrolls to the start of the spool job, the complete job is printed. If the
writer scrolls to the end of the spool job, the job is not printed.

Specifies that nnn is in lines.
Specifies that nan is in pages.
The four-character forms code for the forms to be used for jobs printed by this @

writer. A new forms code specification takes effect when the writer processes the
next job or the next copy of the current job. Defaults to blanks.

$S WSTP - Stop a Spool Writer

Use $S WSTP to stop a spool writer. You can stop a spool writer:

« immediately at the start of the next line of the spool job or at the end of the current job
« temporarily, to be restarted with the $S WRES command, or permanently. A spool job that is
permanently stopped is restarted with the $S WSTR command.

Syntax:

$S WSTP name [IMM|JOB] [TERM|NOTERM]

Required: name
Default:

IMM NOTERM

UT-26 SC34-0644

0 Operator Command Descriptions (continued)

Operands Description

name The name of the writer which is being stopped.

IMM Stop printing at the next line of the spool job.

JOB Stop printing at the end of the current job.

TERM Stop permanently. (The dedicated pﬁnter is released and writer task is ended.)

Note: A permanently stopped writer task can only be restarted by the $S WSTR
command.

NOTERM Stop temporarily. The writer can be restarted by the $S WRES command. (The
writer maintains control of the printer device.)

$S WSTR - Start a Spool Writer

Use $S WSTR to start a spool writer and specify a forms code.

Syntax:

$S WSTR name code

-
C‘ Required: name

Default: code - defaults to blanks

Operands Description

name The name of the printer for which the writer is to be started. This is also the name
of the writer.

code The four-character forms code for the printer forms used with the jobs printed by
this writer. Defaults to blanks.

$T - Set Date and Time

Use the $T operator command to set the date and time in the EDX operating system.
You can only enter $T from a display terminal named $SYSLOG or $SYSLOGA (the system logging
display terminal or its alternate). If you enter it from a terminal with another name, the system

displays the date and time as if you had entered a $W command.

Note: $T must be entered in prompt-reply format.

Chapter 2. Operator Commands UT-27

Operator Commands

Operator Command Descriptions (continued)

Syntax:

$T date,time

Required: date,time
Default: date defaults to 00/00/00
time defaults to 00:00:00

Operands Description
date The current date. Can be entered as mm/dd/ 'yy, mm.dd.yy., or mm dd yy.

time The current time. Can be entered as hh:mm:ss, hh.mm, or hh mm.

$U - Invoke Your Own Operator Command

Use the $U operator command to enter an operator command function that is unique to your
system. Refer to Customization Guide for information on how to write a program for the $U
operator command.

If $U is entered and your system does not have a program to support it, EDX displays the r~ ”\\‘_‘
message “FUNCTION NOT DEFINED.” S

$VARYOFF - Set Device Offline

UT-28

SC34-0644

Use the $VARYOFF command to set a diskette or tape drive offline. When a diskette or tape
drive is offline, the computer does not control it. When you vary a tape drive offline, the system
rewinds the tape to the beginning.

When you remove a diskette from a diskette unit, issue the $VARYOFF command to vary the slot
used offline. Otherwise, EDX will continue to use that diskette.

Syntax:

$VARYOFF ioda slot

Required: ioda
Default: none

C

& Operator Command Descriptions (continued)

Operands Description
ioda The hexadecimal device address of the diskette or tape device being varied offline.

slot The number of the 4966 diskettes being varied offline. This parameter is valid only
for the 4966 diskette unit. The valid siot numbers for the 4966 magazine unit are:

All diskettes (1,2,3,A,B)
Slot 1

Slot 2

Slot 3

Magazine 1

Magazine 2

W W N =S

$VARYON - Set Device Online

Use the $VARYON operator command to set a diskette or tape drive online. Use the $VARYOFF
operator command to cancel each $VARYON command.

You do not have to enter SVARYON when you put a new diskette into a 4964 or 4965 diskette
unit. Your system automatically varies these devices online when you shut the door of the
diskette unit. You MUST, however, issue the $VARYON command before attempting to use a tape
unit or a 4966 diskette unit.

O

Syntax:

$VARYON ioda slot| file EX

Required: ioda
Default: file defaults to 1
maximum value of file is 255

Operands Description
ioda The hexadecimal device address of the diskette or tape device being varied online.
slot The number of the 4966 slot containing the diskette being varied online. This

parameter is valid only for the 4966 diskette unit. The valid slot numbers for the
4966 magazine unit are:

0 All diskettes (1, 2, 3, A, B)
1 Slot1

2 Slot2

3 Slot3

A Magazine 1

Chapter 2. Operator Commands =~ UT-29

Operator Commands

Operator Command Descriptions (continued)

B Magazine 2

file The decimal file number on the tape being accessed.

EX Override the tape expiration date. If a tape data set is initialized with an expiration
date, EX must be used to be able to write to that tape data set. The file number

must also be specified.

The “file” and ‘“EX” parameters are valid only for tape devices.

$W - Display Date and Time

Use the $W operator command to display the date and time, according to your EDX system, on
your display terminal.

Syntax:

$W

Required: none
Default: none

Operands Description

None

UT-30 sC34-0644

Y
s

~

Chapter 3. Session Manager

The session manager provides access to system utilities and application programs from a display
terminal. It uses a series of menu screens to direct you to the system utility you need and/or
prompts you for parameters, such as data set names, needed by the option you chose.

This chapter explains the session manager screens and options. It also contains a table that

cross references the system utilities supported by the session manager to the appropriate menu
option.

Chapter 3. Session Manager = UT-31

Session Mlanager

Invoking the Session Manager

Menus

O

The session manager must be active at your display terminal before you can use it. This can be
accomplished by either loading it for that specific terminal, or having it loaded automatically
during initial program load (IPL) of the EDX system. When the session manager is loaded during
IPL, EDX loads a copy for each display terminal recognized by the operating system.

The session manager is loaded for a specific terminal using the $L. operator command as follows:

To load the session manager automatically, you must rename the session manager initialization
program from $SMINIT to $INITIAL. This is done using the $DISKUT1 RE command as follows:

When the session manager is loaded, it displays the logon menu shown in Figure 2 on page
UT-33.

The session manager menus, or display screens, list system facilities available through the C h
session manager. They also display prompts for required parameters.

The session manager has the following menus:

+ Logon/logoff

o Primary option

¢ Secondary option
« Parameter input

« Custom

Logon/Logoff Menu

UT-32

SC34-0644

The logon menu prompts you for a user ID and an optional alternate session menu if you are

logging on to the session manager, or for the word LOGOFF if you are ending your session
(logging off).

Your user ID must be 1 to 4 unique characters, such as your initials. The session manager uses
your ID as part of the data set names of six work data sets that it allocates for your session. It
does not use your ID as a password to verify that you are authorized to use the system.

0 Menus (continued)

The alternate session menu is an alternate menu that you want displayed instead of the primary
option menu. An alternate session menu is available only if your copy of the session manager
has been customized. (Refer to the Customization Guide for instructions on adding menus to the
session manager.)

Fighre 2. Session manager logon/logoff menu

Primary Option Menu

The primary option menu lists all of the primary options provided with the session manager. If
your session manager has been customized, you may have additional options, or the options may
be different from the ones listed below. To select an option, enter the number of the option on
the SELECT OPTION prompt line. After you select a primary option, the session manager displays
a secondary option or parameter input menu. (See Figure 3 on page UT-34 for an example of
the primary option menu.)

The basic options are:

o

1. TEXT EDITING: Accesses the $FSEDIT text editor.

2. PROGRAM PREPARATION: Accesses the program preparation utilities.

3. DATA MANAGEMENT: Accesses the utilities for managing data on disk, diskette, or tape.
4. TERMINAL UTILITIES: Accesses the terminal support utilities.

5. GRAPHICS UTILITIES: Accesses the utilities that generate, maintain, and display two- and
three-dimensional fixed graphic backgrounds, and store them in data sets.

6. EXEC PROGRAM/UTILITY: Allows you to load any program. The program can be an EDX
system program, an EDX utility, or an application program.

7. EXEC $JOBUTIL PROC: Allows you to load a previously built $JOBUTIL procedure.
8. COMMUNICATION UTILITIES: Accesses the utilities that support communications.
9. DIAGNOSTIC AIDS: Accesses the utilities that help with problem determination.

10. BACKGROUND JOB CONTROL UTILITIES: Accesses the job queue processing utilities.

Chapter 3. Session Manager UT-33

Session Manager

Menus (continued)

Figure 3. Session manager primary option menu

Secondary Option Menu

A secondary option menu lists the utilities that are available under the related primary option.
Primary options 2, 3, 4, 5, 8, 9, and 10 have secondary option menus. Figure 4 shows an
example of the secondary option menu for primary option 2 - Program Preparation.

To select a secondary option, enter the number of the option on the SELECT OPTION prompt line.
After you select a secondary option, the session manager either displays a parameter input menu
or loads the requested utility.

\

Fe 4, Example session hnager seconary option mn

UT-34 sC34-0644

Menus (continued)

Parameter Input Menu

The parameter input menus prompt you for parameters, such as a data set and volume name,
that are required by the requested utility.

Primary options 1, 6, and 7 have a parameter input menu but no secondary option menu. Figure
5 contains an example of the parameter input menu for the $EDXASM utility (primary option 2,

secondary option 1).

Enter the requested parameters in the format expected by the requested utility.

Figure 5. Example session manager parameter input menu

Chapter 3. Session Manager UT-35

Session Manager

Menus (continued)

The Background Option

Figure 5 shows that you can specify either the background or foreground option. This choice is
offered with options 2.1, 2.2, 2.7, 2.8, 2.13, 6, and 7. If you run a job in foreground, you
cannot use your terminal until the job has completed. Foreground is adequate for small jobs.
However, if you don’t want to tie up your terminal waiting for a large job to complete, run in
background and the job will run on another terminal. Then you can continue to use your
terminal for another job. '

If you try to code anything except an “F”’ or a blank for foreground or a “B” for background,
you will receive an “INVALID PARAMETER INPUT” message.

To submit a job through the background options of 10.1 or 10.2, the system must load the batch
control manager, $JOBQ. For a job to execute in background, 8K bytes of storage must be
available.

Figure 6. Example secondary opion menufor primafy option 10

Note: See the $JOBQUT and $SUBMIT utilities for the screen examples.

3
‘a

The session manager allocates one additional work data set for the entire system to use for
- background processing. When you log onto the system, the session manager checks to see if this
work data set exists already. If it doesn’t, the session manager allocates 400 records for the data
set. If the data set already exists, the session manager continues as usual. Every job submitted
in background that needs a work data set will use this preallocated data set. Since only one job
can run background at a time, there is no problem. If you delete this data set, the session
manager will reallocate it when the next user logs on.

Note: If you never intend to run background jobs, your system manager can move this entry
after the end statement in the data set $SSMALLOC, EDX002 with $FSEDIT.
Custom Menus

You can add your own custom menus which give you access to your application programs with
the session manager. Refer to the Customization Guide for instructions on customizing the
session manager.

UT-36 SC34-0644

Data Sets

The session manager uses the following six work data sets for each person that is logged-on. (If
your session manager has been tailored as described in the Customization Guide, additional data
sets may be used.)

+ $SMEuser
« $SMPuser
e $SMWuser
e $SMluser
« $SM2user
« $SM3user.

The data sets are allocated after you enter your user ID on the logon menu, unless they were
saved at the end of a previous session. The session manager uses your user ID as part of the data
set name, creating a unique set of data sets for each user.

Chapter 3. Session Manager UT-37

Session Manager

Data Sets (continued)

When you log off, the session manager gives you an opportunity to erase all work data sets
except $SMPuser. If you chose to save the data sets, the information they contain will be
available the next time you sign on with the same user ID. Figure 7 lists the six basic
session-manager data sets, their sizes, and their purpose.

Size in

Data set 256-byte

name records Purpose

$SMEuser 400 Used by the full-screen text editor ($FSEDIT) as a work data set.

$SMPuser 30 Used by the session manger to save your input parameters. This data set is not
deleted at the end of a session, making your parameters available for the next
session.

$SMWuser 30 Used by the session manger to submit procedures via the job procedure utility
{$JOBUTIL).

$SM1user! 400 | Used by $S1ASM, $EDXASM, $COBOL, $PL/I, SPASCAL and $FORT as a work data set.

$SM2user! 400 | Used by $EDXLINK, $S1ASM, $EDXASM, $XPSLINK, $COBOL, $PL/I, and $FORT as a work
data set.

$SM3user! 250 | Used by the Series/1 Macro Assembler ($51AsM), $COBOL, $PASCAL, and $PL/I as a
work data set.

Figure 7. Session manager data sets

Note: If you use option 2.8 or 2.13, the session manager expands $SM2user to 600 records and
then resets it to 400 records.

Program Function Keys

The session manager has four program function (PF) keys defined for special use: PF1, PF2, PF3,
and PF4. They perform the following functions:

PF1 Suspends the session manager, allowing you to enter operator commands. Suspending the
session manger is quicker than logging off and back on. To restart the session manager,

press the attention key, and enter $SM. The session manager returns to the menu you were

using when you pressed the PF1 key.

1 These data sets must be deleted and reallocated to new sizes when using the session manger to invoke
compilers and assemblers. Recommended sizes for most programs are 2000 records for $sM1USER and
$sm2user and 800 records for $SM3USER.

UT-38 SC34-0644

L

w Program Function Keys (continued)

When you press the PF1 key, the session manager displays the following messages:

PF2 Restores the current menu screen to its appearance when first displayed. Use this key to
erase incorrect entries.

PF3 Returns to the previous menu.

PF4 Return directly to the primary option menu.

Supported Utilities

The following table lists the EDX system utilities that are supported by the session manager and
the primary and secondary option numbers for each. (See Figure 1 on page UT-3 for a table

which includes a list of the jobs that can be done with the session manager, including the
appropriate primary and secondary option numbers for each.)

‘ ! Note: The session manager menus are independent of the EDX supervisor installed on
’ your EDX system. Therefore, all the utilities listed on the menu screens may not be a
part of your system.

Utility Description Options
$ARJE Advanced RJE program and utilities 8.10
$BSCTRCE Trace 1/0 activity on a BSC line 8.1
$BSCUT1 Format BSC trace files 8.2
$BSCUT2 Communications | /O exerciser 8.3
$CHANUT1 Channel attach utility 8.9
$COBOL COBOL language compiler 2.4
$COMPRES Compress disk, diskette, or volume 3.4
$COPY Copy data set or volume 3.5

Figure 8 (Part 1 of 3). Session Manager Options by Utility

Chapter 3. Session Manager

UT-39

Session Manager

Supported Utilities (continued)

UT-40

SC34-0644

Utility Description Options
$COPYUT1 Copy data set with allocation 3.3
$DASDI Format disk or diskette 3.6
$DICOMP Display and change graphics profiles 5.2
$DIINTR Graphics interpreter 5.3
$DISKUT1 Allocate, delete, list data set directory data 3.1
$DISKUT2 Patch, dump, or list a data set or program a data set 3.2,9.2
or program
$DIUTIL Maintain partitioned data base 5.1
$DUMP Format and list saved environment 9.1
$EDXASM Event Driven Language Compiler 21
$EDXASM/$SEDXLINK Compile and link 2.2
$EDXASM /$XPSLINK Compile and link a supervisor program 2.13
$EDXLINK Linkage editor 2.7
$FONT Process 4974, 4978, and 4980 character image 4.5
tables
$FORT FORTRAN language compiler 25
$FSEDIT Full-screen editor 1
$GPIBUT1 General purpose interface bus utility 4.9
$HCFUT1 Interact with Host Communications Facility 8.8
$HXUT1 H exchange diskette utility 3.11
SIAMUT1 Indexed Access Method Utility 3.9
$IMAGE Define 4978, 4979, 4980 or 3101 screen image 4.4
$INITDSK Initialize disk or diskette, and volume control 3.7
$IOTEST Test sensor |/0; list hardware configuration 9.3
$JOBUTIL Job stream processor 7

Figure 8 (Part 2 of 3). Session Manager Options by Utility

O

U

O

Supported Utilities (continued)

Utility Description Options
$JOBQUT Job queue processing controlier 10.1
$MOVEVOL Disk volume dump and restore 3.8
$MSGUT1 Message-source processing 2.14
$PASCAL/$EDXLINK Pascal language compile and link 2.12
$PFMAP Display 4978 and 4980 PF key codes 4.6
$PLI/$SEDXLINK PLI language compile and link 2.6
$PREFIND Prefind data sets and EDL overlays 2.1
$PRT2780 2780 spooled RJE file printer 8.6
$PRT3780 3780 spooled RJE file printer 8.7
$RJIE2780 2780 remote job entry to host 8.4
$RJE3780 3780 remote job entry to host 8.5
$SPLUT1 Spool utility 4.7
$SUBMIT Job queue job submission utility 10.2
$S1ASM Series/1 assembler 2.3
$S1S1UTH Series/1 to Series/1 4.8
$TAPEUT1 Tape management 3.10
$TERMUT1 Change terminal parameters 4.1
$TERMUT2 Change 4974, 4978, and 4980 image or control 4.2
store

$TERMUT3 Send message to a terminal 4.3
$UPDATE Converting Series/1 programs 2.9
$UPDATEH Convert host system programs 2.10
$VERIFY Verify Indexed Access Method Files 9.4
$XPSLINK Link a supervisor program 2.8

Figure 8 (Part 3 of 3). Session Manager Options by Utility

Chapter 3. Session Manager

uUT-41

Notes

UT-42 SC34-0644

22N

¢
\

TN

(:’“s

L

vy

Chapter 4. Utilities

The system utilities are a set of programs supplied with the Event Driven Executive. They allow
you to interactively communicate with the system and perform tasks necessary for Series/1
application program development and system maintenance.

This chapter provides detailed descriptions (in alphabetical order) of the EDX system utility
programs.

O

Invoking the Utilities

The Event Driven Executive provides three ways to invoke the utility programs from a terminal:

Session manager You choose the desired utility program from a predefined option menu.
This is the easiest to use for interactive utilities because you only enter
option numbers (not program names) to access the function needed.

$JOBUTIL The job stream processor utility is used to invoke a predefined sequence of
utility programs and to pass parameters to those programs. $JOBUTIL can

be invoked by the $1. operator command or the session manager.

$L command Enter the operator command $L (load program), followed by the utility
name. All utilities described in this chapter can be invoked using $L.

Chapter 4. Utilites UT-43

Utilities

Invoking the Utilities (continued)

Any utility invoked results in a loading message being displayed. The following example is for
illustrative purposes only.

Here, UTILITY is the name of the utility being loaded. xP indicates the size of the utility in pages
(256 bytes equals one page). 00.00.00 is the time in hours, minutes, and seconds. L.LP= 0000
indicates that the load point of the utility is at location X‘0000’, and PART= number indicates
the partition in which the utility is loaded. If timer support is not included in your supervisor,
the time is not printed.

Most utility programs are used interactively from a terminal. If you are not familiar with the
commands available under a specific utility, you can enter a question mark in response to the
COMMAND (?): prompt and press the enter key. A list of the available commands for that utility
is displayed.

Entering Utility Commands

You can enter utility commands in one of two ways — prompt-reply or single-line format. With
prompt-reply format, you enter the command name and each parameter as the system asks for
it. With single-line format, you enter the command name and all the parameters on the same
line. The following examples show you how to use the two formats.

Prompt/Reply Format

UT-44

Type the utility command following the COMMAND (?): prompt and press the enter key. EDX
responds with a prompt for the next parameter as each parameter is entered.

SC34-0644

O Invoking the Utilities (continued)

Single Reply Entry

Type the command name and all the required parameters (information) needed by the command
to perform its function following the COMMAND (?): prompt and press the enter key. When
using the single reply entry, the parameters must be entered in the order that the EDX expects
them.

Cancelling a Utility

Use the $C operator command to cancel a utility program running in the same partition as your
terminal. If $C should not be used to cancel a utility, the utility warns you on the first screen it
displays.
To cancel a utility with the $C operator command:

O 1) Press the attention key.
2) EDX responds with the greater-than sign (>).

3) Enter the $C operator command.

4) Press the enter key.

Chapter 4. Utilities UT-45

$BSCTRCE

$BSCTRCE - Trace I/0 Activity on a BSC Line

The $BSCTRCE utility traces the 1/0 activities on a given binary synchronous communication
(BSC) line. You must load $BSCTRCE in the same partition as the application program that is
controlling the traced line. If you load it in any other partition, you will get unpredictable
results.

Invoking $BSCTRCE

UT-46

SC34-0644

You invoke $BSCTRCE with the $1. command or option 8.1 of the session manager.

After you load $BSCTRCE, it prompts you for the disk or diskette file in which to place the trace
output. $BSCTRCE then prompts you for the line number you want traced. Use the attention
command STOP to end the trace action.

When the system reaches the end of the output file, it reuses it from the beginning, since \)‘]
$BSCTRCE displays the relative record number of the last trace record it wrote before it ended.
You can display or list the trace file by using the $BSCUT1 utility.

$BSCTRCE writes trace file records at the completion of a BSC operation. Therefore, for a
conversational BSCWRITE, if you specify the same buffer address for both input and output, the
trace file does not show the data that the system transmitted; it shows only the data that it
received.

Multiple BSC lines may be traced concurrently with multiple loads of $8SCTRCE using different
trace files. Each copy of $BSCTRCE must use a different trace data set. We recommend that

each trace data set name reflect a unique line number.

When $BSCTRCE ends, it displays the relative record number of the last trace record it wrote.

C

$BSCTRCE

$BSCTRCE - Trace |/0 Activity on a BSC Line (continued)

Record Format

The format of the records produced by $BSCTRCE is shown below.

cC 1SW STATUS DCB LGTH DATA LASTS
0 +2 +4 +10 +26 +28 +252
CC Interrupt condition code on completion of the 1/0.
ISW Interrupt status word on completion of the 1/0.

STATUS The three status words of the BSC adapter (produced when bit 0 of the ISw is on).
DCB The device control block for the 1/0.

LGTH The length of the data sent/received.

DATA The data in main storage following the 1/0.

LAST4 The last 4 bytes of data if the data is longer than 227 bytes.

Note: The CcC, 1SW, and STATUS fields are zero when the DCB has been chained from the
previous record’s DCB.

Refer to the IBM Series/1 Communications Features Description, GA34-0028, for descriptions

of the interrupt condition code, interrupt status word, the three cycle steal status words, and the
device control block.

Chapter 4. Utilities UT-47

$BSCUT1
$BSCUT1 - Format BSC Trace Files

The $BSCUT1 utility formats BSC trace files (see $BSCTRCE utility) for printing to either $SYSPRTR ’

or a terminal. You can select the record for the trace file to dump. The system will prompt you
as necessary for information that the functions of $BSCUT1 require.

Invoking $BSCUT1

You invoke $BSCUT1 with the $L command or option 8.2 of the session manager.

$BSCUT1 Commands

To display the $BSCUT1 commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?):.

After $BSCUTI displays the commands, it prompts you with COMMAND (?):. Then you can
respond with the command of your choice (for example, CV).

Example: Figure 9 on page UT-49 shows invoking and using $BSCUT!1 to display specified
trace data records.

UT-48 SC34-0644

O

$BSCUT1

$BSCUT1 - Format BSC Trace Files (continued)

Figure 9. Dumping BSC trace records to a terminal

The command for printing the selected records is DP; the command for dumping records to a
terminal is DU. THIS EXAMPLE USES DU.

You can select a specific range of records for $8SCUT1 to display. Enter the first and last
record numbers as the utility requests them. Figure 9 on page UT-46 shows that when
$BSCTRCE ends, it displays the last trace record number. This information provides you with the
range of record numbers that are available in the $BSCTRCE data set.

The system displays the record number along with the type of BSC operation it represents.

Chapter 4. Utilites UT-49

$BSCUT1

$BSCUT1 -Format BSC Trace Files (continued)

UT-50

SC34-0644

This line provides 3 items of diagnostic information:

ccC This is the interrupt condition code. In this example the 2 is the condition code
returned and indicates an exception condition.

ISW The interrupt status word represents the interrupt status byte in the left-most byte.

STATUS The 3 words of status are the values stored in the cycle steal status words (CSSW)
for the BSC adapter. The CSSWs contain valid diagnostic information when the ISw
bit 0 is set to 1.

The detailed descriptions of these codes are contained in the IBM Series/1 Communications
Features Description, GA34-0028.

When analyzing the trace records, you must remember that the system writes the trace records
after the BSC operation completes. Therefore, the error indications may not relate directly to the
record with which they are formatted and printed but will relate to the operation as a whole.

This line provides a brief interpretation of the condition code field and the interrupt status
byte.

B These 8 words represent the values stored in the device control block (DCB). Their

meanings are described in detail in the IBM Series/1 Communications Features Description,

GA34-0028. ((\}
This line provides a brief interpretation of what operation was performed by the device w
control block whose values are represented on the previous line.

B This is the number of bytes of data that the current operation receives.

B This is the first byte of data in the record the system is displaying. Notice that in record
number 33 of the example, the DATA LENGTH = 485 (bytes). Also, the left-most column of the
record’s data that the system is displaying shows the first byte position of each line in decimal
values. When the DATA LENGTH of a trace record exceeds 227 bytes, the system displays only
the first 224 bytes of data followed by ‘LAST 4’ and the last 4 bytes of the data record.

[} This is the beginning of the display for LAST RECORD selected in the example, record number
33.

$BSCUT2

0} $BSCUT2 - Communications I/0O Exerciser

The $BSCUT?2 utility is primarily an 1/0 exerciser and is used to verify the following:
+ Binary synchronous communications access method (BSCAM)
« BSCLINE definitions generated in the executing supervisor
« Customized jumper assignments in the BSC hardware features, such as:
— device address
— type of connection

— tributary station address.

You can use $BSCTRCE to trace the exercising activities of $8SCUT2. You can format and print
the records with $BSCUT1.

For each function you select in $BSCUT2, the system prompts you for the device (line) address,
tributary station address (if multipoint), record length, and other related information. If any
discrepancies exist between the function you are performing and the hardware assignments, the
system prints error messages.

$BSCUT2 checks out binary synchronous operations if at least two binary synchronous adapters
are available on Series/1 processors and if you make the connection between the two adapters.
If you use a switched manual connection, $BSCUT2 does not prompt you to make the connection.
Cm This must be done after you issue the $BSCUT2 command and answer all prompts.

The BSCAM capabilities that $BSCUT2 can test are:

« Read and write of both transparent and nontransparent data

« Operation in limited conversational mode with both transparent and nontransparent data

« Operation as a control station on a multipoint line to both poll and select tributaries (text
written only for transparent data)

« Operation as a tributary station on a multipoint line to be polled and selected (text written
only for transparent mode)

Test Pattern Messages
$BSCUT? issues a test pattern message for every record it read or wrote in a test.
The first line of a test pattern message gives the task name, record number, and record length.

The second line shows the alphabet repeated to fill up the number of characters specified for
record length.

Chapter 4. Utilities UT-51

$BSCUT2

$BSCUT2 - Communications |/O Exerciser (continued)

The meanings of the task names are as follows:

« READ - read of standard or transparent data in standard mode
¢ RXV1 - read of transparent data in conversational mode

« RNVI1 - read of standard data in conversational mode

¢ WRTN - write of standard data in standard mode

e WRIT - write of transparent data in standard mode

e WXVI1 - write of transparent data in conversational mode

« WNV1 - write of standard data in conversation mode

o MTXI1 - read of transparent data by a tributary station

« MCXI1 - write of transparent data by a control station

The system repeats the output message in the previous example for the number of records
transmitted.

Invoking $BSCUT2

UT-52

SC34-0644

You invoke $BSCUT2 with the $L. command or option 8.3 of the session manager.

AN
A4

O

$BSCUT2

$BSCUT2 - Communications I/O Exerciser (continued)

$BSCUT2 Commands

To display the $BSCUT2 commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?):.

(COMMAND (2): 7

RWI ---- READ/WRITE - NONTRANSPARENT
“RWIX === READ/WRITE - TRANSPARENT

“READ/WRITE - MULTIDROP LINE NONTRANSP
READ/WRITE - MULTIDROP LINE TRANSP/
READ - TRANSPARENT/NONTRANSPARENT
'WRITE - NONTRANSPARENT '

After $BSCUT2 displays the commands, it prompts you with COMMAND (?):. Then you can
respond with the command of your choice (for example, RI.)

Most of the commands and their explanations are presented in alphabetical order on the
following pages.

CH — Change Hard-copy Device

Use the CH command to reassign the hard-copy device for the terminal or printer output.

Example:

Note: If the hard-copy device you specified is not defined, the system directs the output to the
terminal where you loaded $BSCUT2.

EN — End $BSCUT2 Program

Use the EN command to end the $BSCUT2 utility.

Example:

Chapter 4. Utilities UT-53

$BSCUT2

$BSCUT2 - Communications /0 Exerciser (continued)

Rl — Read Transparent/Nontransparent

The read task does not require NUMBER OF RECORDS since it will read either transparent or
nontransparent data until the system receives EOT. This makes the read task useful for
monitoring any BSC line sending data to the processor. For example, RI can receive data from
the $RIE2780 or $RJE3780 utility operating in the same Series/1 or in another Series/1.

Note: The RI, W1, and WIX commands individually activate the tasks composing RWI and RWIX.

Example:

RWI — Read/Write Nontransparent Data

Use the RWI command to read and write nontransparent messages on a line. The system
numbers each message. The record length for write includes the control characters. The read
task receives the messages, analyzes them, and prints them on a hard-copy device. The analysis
includes whether they are transparent or nontransparent and record length received.

Example: (\

READ ADDRESS and WRITE ADDRESS refer to the device address of the BSC hardware feature. If
you are going to run the test between two processors (one to read and one to write), load
$BSCUT2 on both processors and enter the correct address for read on one processor and the
correct address for write on the other processor. One of the addresses can be invalid and the
task for the invalid address on each processor will fail due to an undefined line. However, the
read/write task will function properly. This is true for all $8SCUT2 commands.

UT-54 SC34-0644

C

$BSCUT2

$BSCUT2 - Communications |/O Exerciser (continued)

The RECL prompts refer to the buffer size the system will use and, therefore, the number of
bytes the system will transfer in one transmission over the BSC line. The maximum buffer size
the system permits is 512 bytes. READ (RECL) should always be equal to or greater than WRITE
(RECL) or errors will occur.

NUMBER OF RECORDS determines the number of transmissions the system will make before the
test ends.

The MONITOR function causes each task to report its progress to the terminal. If you enable the
monitor function, the system writes messages such as TASK ENTERED and TASK EXITED to the
terminal.

RWIV — Read/Wsrite Nontransparent Conversational

Use the RWIV to test limited conversational operation in nontransparent mode. BUFFER LENGTH
is equivalent to RECL.

Example:

BUFFER LENG’
NUMBER OF RECO
R E]

READ ADDRESS and WRITE ADDRESS refer to the device address of theBSC hardware feature. If
you are going to run the test between two processors (one to read and one to write), load
$BSCUT2 on both processors and enter the correct address for read on one processor and the
correct address for write on the other processor. One of the addresses can be invalid and the
task for the invalid address on each processor will fail due to an undefined line. However, the
read/write task will function properly. This is true for all $8SCUT2 commands.

The RECL prompts refer to the buffer size the system will use and, therefore, the number of
bytes the system transfers in one transmission over the BSC line. The maximum buffer size the
system permits is 512 bytes. READ (RECL) should always be equal to or greater than WRITE
(RECL) or errors will occur. NUMBER OF RECORDS determines the number of transmissions the
system will make before the test ends. The MONITOR function causes each task to report its
progress to the terminal. If the the system enables the monitor function, it writes messages such
as TASK ENTERED and TASK EXITED to the terminal.

Chapter 4. Utilities UT-55

"$BSCUT2

$BSCUT2 - Communications I/0 Exerciser (continued)

The following is a description of the binary synchronous line transactions:

WRITE TASK READ TASK
BSCWRITE 1V(X) ----ENQ------------- > BSCREAD |

<---ACKO (Response)-

----Text----------~- >

<---Text (Response)-- BSCWRITE CV(X)
BSCREAD € ----ACK1 (Response)->

<o--Text----=--=n====- BSCWRITE CV(X)
BSCWRITE CV(X) ----Text (Response)->

<---ACKO (Response)-- BSCREAD C
BSCWRITE CV(X) —--Text==-=======n= >

<---Text---========-- BSCWRITE CV(X)
BSCREAD C o S e —— >

This sequence continues until the NUMBER OF RECORDS count is satisfied.

RWIWVX — Read/Write Transparent Conversational

UT-56

SC34-0644

Use the RWIVX command to test limited conversational operation in transparent mode. Each
message is numbered. The record length for write includes the control characters. The read
task receives the messages, analyzes them, and prints them on a hard-copy device. The analysis
includes whether they are transparent or nontransparent and record length received. BUFFER
LENGTH is equivalent to RECL.

Example: (“:: D

READ ADDRESS and WRITE ADDRESS refer to the device address of the BSC hardware feature. If
the test is to be run between two processors (one to read and one to write), load $BSCUT2 on
both processors and enter the correct address for read on one processor and the correct address
for write on the other processor. One of the addresses can be invalid and the task for the invalid
address on each processor will fail due to an undefined line. However, the read/write task will
function properly. This is true for all $BSCUT2 commands.

The RECL prompts refer to the buffer size to be used and, therefore, the number of bytes
transferred in one transmission over the BSC line. The maximum buffer size permitted is 512
bytes. READ (RECL) should always be equal to or greater than WRITE (RECL) or errors will occur.

O

O

$BSCUT2

$BSCUT2 - Communications I/0 Exerciser (continued)

NUMBER OF RECORDS determines the number of transmissions to be made before the test ends.

The MONITOR function causes each task to report its progress to the terminal. If the monitor
function is enabled, messages such as TASK ENTERED and TASK EXITED are written to the

terminal.

The following is a description of the binary synchronous line transactions:

WRITE TASK

BSCWRITE 1V(X)

BSCREAD €
BSCWRITE CV(X)
BSCWRITE CV(X)

BSCREAD C

____ENQ_
<---ACKO
----Text
<---Text
---=-ACK1
<---Text
----Text
<---ACKO
----Text
<---Text
---=-ACK1

(Response)--
(Response)->
(Response)->
(Response) -~

READ TASK

BSCREAD |

BSCWRITE CV(X)
BSCWRITE CV(X)
BSCREAD C

BSCWRITE CV(X)

This sequence continues until the NUMBER OF RECORDS count is satisfied.

RWIX — Read/Write Transparent Data

Use the RwWIX command to read and write transparent messages on a line. Each message is
numbered. The record length for write includes the control characters. The read task receives
the messages, analyzes them, and prints them on a hard-copy device. The analysis includes
whether they are transparent or nontransparent and record length received.

Example:

Chapter 4. Utilities UT-57

$BSCUT2

$BSCUT2 - Communications |/O Exerciser (continued)

READ ADDRESS and WRITE ADDRESS refer to the device address of theBSC hardware feature. If
you are going to run the test between two processors (one to read and one to write), load
$BSCUT2 on both processors and enter the correct address for read on one processor and the
correct address for write on the other processor. One of the addresses can be invalid and the
task for the invalid address on each processor will fail due to an undefined line. However, the

read/write task will function properly. This is true for all $BSCUT2 commands.

The RECL prompts refer to the buffer size the system will use and, therefore, the number of
bytes transferred in one transmission over the BSC line. The maximum buffer size the system
permits is 512 bytes. READ (RECL) should always be equal to or greater than WRITE (RECL) or
errors will occur.

NUMBER OF RECORDS determines the number of transmissions the system will make before the
test ends.

The MONITOR function causes each task to report its progress to the terminal. If the system
enables the monitor function, it writes messages such as TASK ENTERED and TASK EXITED to the
terminal.

RWIXMP — Read/Write Transparent, Multidrop Line

UT-58

SC34-0644

Use the RWIXMP command to read and write transparent messages on a multidrop line. Each
message is numbered. The record length for write includes the control characters. The read
task receives the messages, analyzes them, and prints them on a hard-copy device. The analysis
includes whether they are transparent or nontransparent and record length received. (™

READ ADDRESS and WRITE ADDRESS refer to the device address of the BSC hardware feature. If
the test is to be run between two processors (one to read and one to write), load $BSCUT2 on
both processors and enter the correct address for read on one processor and the correct address
for write on the other processor. One of the addresses can be invalid and the task for the invalid
address on each processor will fail due to an undefined line. However, the read/write task will
function properly. This is true for all $BSCUT2 commands.

The RECL prompts refer to the buffer size to be used and, therefore, the number of bytes
transferred in one transmission over the BSC line. The maximum buffer size permitted is 512
bytes. READ (RECL) should always be equal to or greater than WRITE (RECL) or errors will occur.

NUMBER OF RECORDS determines the number of transmissions to be made before the test ends.
The MONITOR function causes each task to report its progress to the terminal. If the monitor

function is enabled, messages such as TASK ENTERED and TASK EXITED are written to the
terminal. ’

O

$BSCUT2

$BSCUT2 - Communications 1/0 Exerciser (continued)

In the following example, the control station (MC) at device address 50 polls and selects all
tributary stations (MT) and sends and receives messages to them. Since each task both transmits
and receives, successful operation requires the control station length to equal all tributary station
buffer lengths. Values other than this can be entered to test access method error detection.
Received messages are logged to the hard-copy device.

Example:

DEVICE ADDRESS for this command refers to the device address of the BSC hardware feature.
TRIBUTARY ADDRESS refers to the jumpered tributary address on each hardware feature card.
LOOP COUNT refers to the number of times $BSCUT2 sends the messages that you have specified.
Note: The adapter must be jumpered in tributary mode for this test to function properly.

If this test is to be performed between two $BSCUT2 programs then:

« Program 1 would use a valid MC device address and dummy tributaries (MT).

e Program 2 would use a dummy MC device address and valid tributaries (MT).

o NUMBER OF TRIBUTARIES must be equal in both programs.

« LOOP COUNT must be equal in both programs.

Chapter 4. Utilities UT-59

$BSCUT2

$BSCUT2 - Communications 1/0 Exerciser (continued)

WI — Write Nontransparent

Note: The RI, W1, and WIX commands individually activate the tasks composing RWI and RWIX,

Example:

WIX — Write Transparent

Note: The RI, W1, and WIX commands individually activate the tasks composing RWI and RWIX.

Example:

UT-60 SC34-0644

O

'
“_/

$SCHANUT1

@ $CHANUT1 - Channel Attach Utility

The $CHANUT! utility starts or stops a channel attach device, enables or disables I/0 tracing,
and prints the trace area. $CHANUTI1 issues prompts to the terminal where you loaded it; in
response to a prompt, you must enter a command.

Invoking $CHANUT1

Invoke $CHANUT1 with the $L. command or option 8.9 of the session manager. When you load
$CHANUTI, it prompts you for the address of the channel attach device.

You can load the channel attach utility into any partition. The $CHANUT1 commands interface
with the channel attach program in the same manner as the channel attach instructions. The
error codes for the $CHANUT1 commands are the same as those for the corresponding
instructions. See Messages and Codes for more information.

$CHANUT1 Commands

To display the $CHANUT1 commands at your terminal, enter a question mark in response to the
C prompting message COMMAND (?):.

After $CHANUT! displays the commands, the system prompts you again with COMMAND (?):.
Then you can respond with the command of your choice (for example, PR). Each command and
its explanation is presented in alphabetical order on the following pages.

CA — Change Device Address

Use the CA command to change the device address.

Chapter 4. Utilities UT-61

$CHAN UuT1
$CHANUT1 - Channel Attach Utility (continued)

EN — End $CHANUT1 utility

Use the EN command to end the $CHANUT!1 utility.

PR — Print the Trace Area

Use the PR command to print the trace buffer, with the title you enter, on a terminal.

SP — Stop a Channel Attach Device

Use the sp command to stop the channel attach device you have specified.

ST — Start a Channel Attach Device

Use the ST command to start the channel attach device you have selected.

TR — Enable/Disable Trace

Use the TR command to enable (E) or disable (D) the trace function.

UT-62 SC34-0644

$SCHANUT1

$CHANUT1 - Channel Attach Utility (continued)

O

The following is an example of starting a trace using the session manager.

The following shows what happens when you select option 9 (from the previous screen), request
and start device 10, and enable trace.

Chapter 4. Utilitess UT-63

$COMPRES

$COMPRES - Compress Disk, Diskette, or Volume

UT-64

SC34-0644

@

$COMPRES compresses a disk/diskette volume or the entire contents of a device. Used it to
allocate new data sets and volumes when a volume or device is fragmented (due to deletion of
data sets and volumes).

Notes:

1.

5.

Do not compress a volume or device while it is being accessed. Use the $A ALL command to
determine if programs are active in the partition you are currently assigned to or in other
partitions. However, if you are executing under the session manager, the $SMUuser program
will be in the system but not active until §COMPRES ends.

You must initialize the IPL text after using $COMPRES if the device or the IPL volume you
are compressing contains the supervisor (SEDXNUCX) and if the nucleus has moved.

Before compressing the IPL volume, you should create an iPLable diskette as follows:
a. Use $DASDI to format a diskette.

b. Use $INITDSK (ID command) to initialize the diskette. Do not allocate a nucleus if your
customized nucleus EDXNUCX is larger than 400 records.

¢. Copy (using $COPYUT1) $SEDXNUCX, $L.LOADER and $INITDSK to a backup IPL diskette. If
a 4978 or 4980 terminal is your $SYSLOG device, you need to do a “copy generic” (CG)
for $4978 and $4980. You will need to use the “copy member”” command (CM) of
$MFARAM, $FPCARAM, or $ACCARAM if you are using a 3101 or an ACCA device as
$SYSLOG.

A
e

d. Use the $INITDSK II command to initialize IPL. text on the backup IPL diskette.

e. Verify that you can IPL the diskette and load $INITDSK to initialize IPL text on the IPL
volume on disk before starting the $SCOMPRES.

If the compress moves the nucleus (as indicated by the message SEDXNUCX COPIED):

a. IPL from the backup diskette.

b. Initialize (write IPL text) the nucleus on disk using the 11 command of $INITDSK.

c. IPL from the disk.

If you have not copied $EDXNUCX, $LOADER, and $INITDSK to a backup diskette and the
compress does move the nucleus, you may use the starter system to load $INITDSK (11
command) to initialize the IPL text. This assumes that one of the attached terminals will be

recognized by the starter system as $SYSLOG.

Compressing a volume may relocate EDL overlay programs and data sets which you have
defined previously to $PREFIND. If this is the case, you must reissue $PREFIND.

SCOMPRES
$COMPRES - Compress Disk, Diskette, or Volume (continued)

7. Compressing a disk may relocate volumes which you defined as “performance volumes.” If
this is the case, you must re-IPL.

Specifying Dynamic Storage

To increase program performance you can change the dynamic storage used by $COMPRES.
$COMPRES is shipped with a dynamic storage of 512 bytes. Using the $L command, you can
specify the number of bytes of additional storage the system should allocate when $COMPRES is
loaded for execution.

The following example shows how to temporarily change a 512 byte Dynamic Storage
Allocation to 10K.

You can use $DISKUT2 to modify the default load time storage allocation. See “‘SS — Set
Program Storage Parameter” on page UT-219 for an example.

Invoking $SCOMPRES

Invoke $COMPRES with the $1. command or option 3.4 of the session manager.

$COMPRES Commands

Each command and its explanation is presented in alphabetical order on the following pages.

Chapter 4. Utilites UT-65

$COMPRES

S$COMPRES - Compress Disk, Diskette, or Volume {continued)

? — Help
Use the ? command if you want to see the command menu again.

Example: Help command.

=> N0 PAUSE :
R‘ESTORE STARTING CHARACTERISTICS
DEVICE COMPRESS '
- VOLUME" COMPRESS i
- = ESTIMATE COMPRESS PROGRESS

J'END

UT-66 SC34-0644

%

SCOMPRES
$SCOMPRES - CompreSs Disk, Diskette, or Volume (continued)

C

D — Device Compress

Use the D command to compress the entire contents of a device. Use $A ALL to determine if any
programs are active before you compress the library.

Example: Compress a Device with Fixed-Head Volumes.

EN — End $COMPRES

Use the EN command to end the SCOMPRES utility.

Example: End $COMPRES utility

Chapter 4. Utilities UT-67

$COMPRES

$COMPRES - Compress Disk, Diskette, or Volume (continued)

HF — Estimate Compress Progress

UT-68

SC34-0644

Use >HF during a volume or device compress to get the percent of completion, the total number
of records to be compressed, and the number already copied up to that point. To use this
command, press the attention key and type in “HF”.

Example 1: Estimate progress of volume directory compress.

OOP ALREADY IN PLACE AND NOT COPIED
SR ALREADY N PLACE AND NOT COPIED‘ .

ING THE VOLUME/DISK, NOW AT: 15 PERCENT

OLUME/DISK, NOW AT: 17 PERCENT

O

A
S

SCOMPRES
m $COMPRES - Compress Disk, Diskette, or Volume (continued)

ROLLOFF — Restore Starting Characteristics

Use the ROLLOFF command to restore a terminal to its original mode. With ROLLOFF you must
press enter each time the screen fills up.

Example: Restore starting characteristics.

ROLLON — Set Screen => No Pause

Use the ROLLON command if you don’t want to have to press the enter key each time the screen
fills up. When you specify this command, the output “rolls” off the top of the screen as new
terminal output appears at the bottom of the screen.

Example: Set screen to roll mode.

Chapter 4. Utilities UT-69

ne if any

Tmi

Use $A ALL to dete.

kette volume.
library.

18

disk or di

before you compress the

ive

Compress a Volume.

.

Use the v command to compress a

programs are act

$COMPRES - Compress Disk, Diskette, or Volume (continued)
Example 71

V — Volume Compress

$COMPRES

E4

pa—

@m

.
o &

=

aia

G

S

. .
el e
- g -

.

o

s
.

it

i

e

ok

wm
L

SC34:0644

UT-70

C

$COMPRES
$COMPRES - Compress Disk, Diskette, or Volume (continued)

Example 2: Compress the IPL volume.

Chapter 4. Utilities UT-71

$COPY

SCOPY - Copy Data Set

$COPY copies a disk or diskette data set, in part or in its entirety, to another disk or diskette data

set.

Copying Programs or Data Members

When copying volume members, the target member must already exist (allocate using $DISKUT1)
and must be of the same organization as the source member. Two types of organization are
available:

DATA Data sets used as work files, user source modules, and application data set.

When you copy data members, you may copy an entire member or only a
selected number of records (partial copy). If you are copying the entire
member, the target data member must be equal to or larger than the source. If
you are doing a partial copy, the target member need not be as large as the
source but must have enough space following the starting target record number
to accommodate the number of records you are copying from the source
member.

PROGRAM Data sets that will contain executable (loadable) Event Driven Executive
programs.

When you copy program members, the target member must be equal to or
greater than the source member.

Copying Disk/Diskette Volumes to Another Diskette/Disk

When you copy a single volume diskette to disk, the target data set size must be equal to or
greater than the diskette size in records. When you copy a disk volume or a multivolume
diskette volume to another disk volume or a multivolume diskette, both volumes should be equal
in size. If the source volume is larger than the target, you are prompted for the name of the
source data set you wish copied to the target. The system copies the source data set to the
target volume starting at the absolute beginning ($$EDXVOL). If the source volume is smaller
than the target, you are prompted for the name of the target data set into which you want the
source volume copied.

Note: For information on copying H-exchange volumes see “$HXUT1 - H-Exchange Utility”
on page UT-371.

Absolute Record Copy

UT-72

SC34-0644

$COPY provides an absolute record capability using the special system data set names $$,
$$EDXLIB, and $$EDXVOL. This allows you to copy a record relative to the beginning of a device
($$EDXVOL) or relative to the beginning of a volume ($$EDXLIB). You can use this capability
when you copy one single-volume diskette volume to another. The CV command of $COPY does
not copy the first cylinder on diskette. If the source diskette were an IPL volume (has IPL text
and $EDXNUC), the system would not copy the IPL text, contained in the first record of the first

(o
\ 7

o™

o

O

$COPY

$COPY - Copy Data Set (continued)

cylinder, to the target diskette. Therefore, the target diskette volume, although containing a
supervisor in $EDXNUC, would not be able to load that supervisor when you pressed the IPL key.

To copy the IPL text to the target diskette, use the CD command with $$EDXVOL specified as the
data set name and record 1 specified as the first and last record you want copied.

Note: $$, $$SEDXVOL, and $$EDXLIB are special system data set names and you must use them
with care. $$ is a reserved system name, $$EDXVOL points to the beginning of the device
volume, and $$EDXLIB points to the beginning of the data set directory within a volume.

Specifying Dynamic Storage

To increase program performance you can change the dynamic storage used by $COPY. $COPY is
shipped with a dynamic storage of 2K. Using the $L command, you can specify the number of
bytes of additional storage the system should allocate when $COPY is loaded for execution.

The following example shows how to temporarily change a 2K Dynamic Storage Allocation to
20K.

$DISKUT2.can also modify the default load time storage allocation associated with a program
using the sS command. See “$DISKUT2 - Patch/Dump/List Data Set or Program” on page
UT-198 for an example.

Invoking $COPY

You invoke $COPY with the $L operator command or option 3.5 of the session manager.

Chapter 4. Utilities UT-73

$COPY
$COPY - Copy Data Set (continued)

$COPY Commands

To display the $COPY commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?):.

After $COPY displays the commands, it prompts you again with COMMAND (?):. Then you can
respond with the command of your choice (for example, CV). Each command and its
explanation is presented in alphabetical order on the following pages.

CD — Copy Data Set

Use the CD command to copy disk or diskette data sets to a preallocated disk or diskette target

data set. When you copy data sets, you may copy an entire data set or only a select number of

records. If you are copying the entire data, the target data set must be equal to or larger than

the source. If you do a partial copy, the target data set need not be as large as the source but

should have enough space following the starting record number to accommodate the number of ,
records you are copying from the source data set. A

UT-74 SC34-0644

COPY - Copy Data Set (continued)

Example 1: Copy entire data set.

Notes:

You cannot copy data sets allocated as program organization to a data set that you allocated
as data organization.

2. When you copy program members, the target and source data sets must be equal in size.

Example 2: Partial copy of a data set.

When the output data set is on disk or diskette, the system updates the end-of-data pointers.

Chapter 4. Utilities UT-75

$COPY
$COPY - Copy Data Set (continued)

CV — Copy Volume

Use the CV command to copy entire volumes. This provides a volume backup capability. You

may copy a disk volume to a disk or diskette volume, a diskette volume to a diskette volume, or
a diskette volume to a preallocated disk data set of appropriate size in records. The number of

records for the various types of diskettes are:

128 Bytes/ 256 Bytes/ 1024 Bytes/
Type sector sector sector
Diskette 1 949 1110 -
Diskette 2 1924 2200 =
Diskette 2 D - 3848 4736

Volume copy operations do not add the members in a source volume to the target volume. The
system replaces the original contents of the target volume, including the directory.

If you have two or more diskette units, you may perform diskette volume copies between

diskette devices. If you have a single diskette drive and a disk, you can perform copies using the

following procedure:

1. Allocate a target data set on a disk of appropriate size.

2. Using the CV command, copy the diskette volume to the disk data set. ~
3. Mount the target diskette on the diskette device and vary the device online. -

4. Using the cv command, copy the contents of the disk data set to the target diskette.

If you have a single 4966 Diskette Magazine Unit and a disk, the above procedure is also
recommended.

Example: Copy a diskette to a backup data set on a 4962 disk.

UT-76 SC34-0644

$COPY

$COPY - Copy Data Set (continued)

O

The Cv command copies the entire single volume diskette volume. Therefore, the target data set
should be equal to or greater than the volume size in records. If the target data set is not large
enough, you may choose to do a partial copy or allocate (using $DISKUT1) a target data set large
enough to accommodate the source.

Note: You can perform CV on an entire multivolume diskette.

If the target data set is not large enough, you are prompted as follows:

If you respond Y, the system copies the source to the target data set until the target is full. If
you respond N, the CvV command ends and you are prompted for another command, COMMAND

N:.

Note: Once you have copied a volume to a target disk volume, the system replaces the original
contents of the target volume, including the directory. As a result, you can no longer access the
original contents of the target disk volume.

EN — End $COPY Utility

0 Use the EN command to end the $COPY utility.

Chapter 4. Utilities UT-77

$COPY
$COPY - Copy Data Set (continued)

RE — Copy from Basic Exchange

Use the RE command to copy a basic-exchange data set from a diskette to a disk data set. A
basic-exchange data set is contained on a diskette that you formatted for Standard for
Information Interchange. You can use only one-sided, 128-byte diskettes as EDX recognizes
only one volume on a basic-exchange diskette. You must allocate the target disk data set using
$DISKUT1 before you use the RE command.

RE prompts you for the source diskette data set name and volume, the target disk data set name
and volume, the number of the first record you want written to the target data set, and the
basic-exchange data set name.

Example 1: Copy entire basic-exchange diskette data set to disk.

Note: If you enter the wrong data set name, the system issues a read/write error message.

Example 2: Copy basic-exchange data set to disk. The record number where the copy is to
start on target disk is specified. .

UT-78 SC34-0644

$COPY

$COPY - Copy Data Set (continued)

WE — Copy to Basic Exchange

Use the WE command to copy a disk data set to a basic-exchange data set on diskette. You must
allocate the diskette data set before you use the WE command. Use $DASDI to format the
diskette for Standard for Information Interchange. Under this format, $DASDI formats a volume
called IBMEDX, initializes the basic-exchange header on the diskette, and automatically allocates
a data set named DATA. DATA consists of all the data tracks on the diskette.

WE prompts you for the source disk data set name and volume, the starting or ending records,
the target diskette data set name and volume, and the basic-exchange data set name.

Example 1: Copy a disk data set to a basic-exchange diskette.

Example 2: Copy a disk data set to a basic-exchange diskette. The beginning and ending
record numbers on the disk to be copied to the target diskette are specified.

1. Errors may occur if you have not initialized the diskette. The system reads and writes data
on the diskette two sectors per I/O operation. '

2. The diskette data set you access must start on an odd sector boundary.

Chapter 4. Utilities UT-79

$COPYUT1

$COPYUT1 - Copy Data Set with Allocation

$COPYUT1 performs several related copy functions. These functions determine the size and
organization of the source data set(s) that $COPYUT1 copies, allocate members on the target
volume, and then copy the source member(s) to the target member(s). With $COPYUT1, you can
copy one member using the CM command or you can use the multiple copy commands to copy
all members from source to target volumes.

Notes:

1. Do not specify the dynamic storage option (for example, $L. $COPYUT1,,48000) when
loading $COPYUT1 to make copies of the same volume from two or more terminals at the
same time. This will cause formatting errors in your table of contents.

2. If a member already exists on the target volume, it is first deleted, then reallocated when the
new source is copied to the target volume. This occurs only if enough contiguous space is
available for reallocation of the member. There are no prompting messages asking if you
wish to replace the existing member.

For any copying related to tape, see “$STAPEUT]1 - Tape Management” on page UT-522.

Specifying Dynamic Storage

To increase program performance you can change the dynamic storage used by $COPYUTI.
$COPYUT!1 is shipped with a dynamic storage of 2K. Using the $L command, you can specify the
number of bytes of additional storage the system should allocate when $COPYUT1 is loaded for
execution.

The following example shows how to temporarily change a 2K Dynamic Storage Allocation to
20K.

You can use $DISKUT2. to modify the default load time storage allocation See ‘“‘SS — Set
Program Storage Parameter’” on page UT-219 for an example.

Invoking $COPYUT1

Invoke $COPYUT1 with the $L. command or option 3.3 of the session manager.

UT-80 SC34-0644

AN
L

O

$COPYUT1

$COPYUT1 - Copy Data Set with Allocation (continued)

When you invoke $COPYUT1, the source and target volumes are assumed to be on the IPL
volume. You have the option of specifying the source and target volumes. Once you specify the
correct volumes, the commands copy members from the source volume to the target volume
until you change the volume using the CV command.

$COPYUT1 Commands

To display the $COPYUT1 commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?):.

After $cOPYUT!1 displays the commands, it prompts you with COMMAND (?): again. Then you
can respond with the command of your choice (for example, CM).

Chapter 4. Utilities UT-81

$COPYUT1

$COPYUT1 - Copy Data Set with Allocation (continued)

The Mode Commands

UT-82

SC34-0644

The following mode commands, presented in alphabetical order, modify the way the multiple
copy commands (CALL, CAD, CAP, CG, CNG) work.

Ccv

NQ

RDBK

ROLLOFF

ROLLON

SQ

\\AZ

Changes the source and target volumes.

All members are copied. If you do not set SQ, the multiple copy command defaults
to NQ.

Does not use the hardware feature but actually reads the data back into storage to
verify that it is valid. If you do not set RDBK, the multiple copy command you are
using defaults to wv.

Turns off roll-screen mode. Then you must press the enter key each time the
screen fills up.

Turns on roll-screen mode. In roll-screen mode, you do not need to press the
enter key each time the screen fills up. Output “rolls” off the top of the screen as
new terminal output appears at the bottom of the screen.

If you only want to copy some of the members, $COPYUT! asks you to verify each
member before copying it.

Forces a write verify of the target member by using the hardware feature available
for validating the data written. WYV is the default.

$COPYUT1

$COPYUT1 - Copy Data Set with Allocation (continued)

Using the Copy Commands
With the copy commands you can copy:
« All or selected members in a volume
o All or selected data type members in a volume
« All or selected program types in a volume
« All or selected members beginning with a generic text prefix

¢ All or selected members that do not begin with a generic text prefix.

If a copy command stops because the target volume on diskette is full, $COPYUT1 issues the
following message:

If you wish to continue, enter a “Y’’; $COPYUT1 issues the following message:

Chapter 4. Utilites UT-83

$COPYUT1

$COPYUT1 - Copy Data Set with Allocation (continued)

UT-84

SC34-0644

In this manner, you can create a disk backup spanning several diskettes. Although the copy may
take longer using $COPYUTI1 instead of $MOVEVOL, you may use fewer diskettes as only members
are copied. In addition, you can mix single- and double-sided diskettes. If you are creating a
new volume, use $INITDSK (IV command) to start with an empty target volume.

The copy commands will not copy the supervisor ($SEDXNUC). This prevents the inadvertent loss
of a tailored supervisor. Furthermore, since the supervisor is allocated during disk initialization,
the CM command will not allocate $SEDXNUC on the target volume. It will copy $EDXNUC from
source to target but only if you have allocated the target already and it is the same size as
$EDXNUC on the source.

The system does not allow absolute record copy from disk or diskette. Therefore, you cannot
use the special names $$, $$EDXLIB, $$EDXVOL. The $COPY utility provides an absolute copy by
record number.

To cancel a multiple copy command, press the attention key and enter CA. The command
(CALL, CAD, CAP, CG, CNG) ends after the current member is copied.

Note: When using the CAP, CAD, or CALL commands, you can specify the members you want to
copy. If the starting member occurs later in the directory list than the ending member, the copy
function wraps around and copies all members except those members that occur between the
ranges specified.

Each copy command and its explanation is presented in alphabetical order on the following
pages.

O

C

$SCOPYUT1

$COPYUT1 - Copy Data Set with Allocation (continued)

CAD — Copy All Data Members from Source to Target

Use CAD to copy data sets designated as D (data) from the source volume to the target volumes.
When you allocated data sets using $DISKUT1, you specified one of two organization types: D for
data organization or P for program organization. Use data organization to specify data sets used
as work files, user source modules, and application data sets. If you use the CAD command,
$COPYUT1 only copies those data sets you designated as D (data organization).

You can copy all the data sets or specify a subset of data sets. If you reply Y to the COPY FROM
BEGINNING? prompt, $COPYUT1 copies all the data sets. If you respond N to the COPY FROM
BEGINNING? prompt, $COPYUT1 prompts you for the first (starting) member and the last (ending)
member you want copied.

Example: Copy only data sets designated as D from one volume to another.

CALL — Copy All Data Sets from Source to Target

Use CALL to copy data sets from the source volume to the target volume. You can copy all the
data sets or specify a subset of data sets. If you reply Y to the COPY FROM BEGINNING? prompt,
$COPYUT1 copies all the data sets. If you respond N to the COPY FROM BEGINNING? prompt,
$COPYUT1 prompts you for the first (starting) member and the last (ending) member you want
copied.

When doing a CALL (copy all) function, $COPYUT1 prints the names of the data sets it is
copying. When the screen fills up, press the enter key to continue. By specifying the ROLLON
command, you turn on roll-screen mode. In roll-screen mode, you do not need to press the
enter key after the screen is full. Output “rolls” off the top of the screen as new terminal output
appears at the bottom of the screen. You can turn off the roll-screen function by specifying the
ROLLOFF command.

Chapter 4. Utilities UT-85

$SCOPYUT1
$COPYUT1 - Copy Data Set with Allocation (continued)

Example 1: Copy all data sets from one volume to another, starting with DATA1 and ending
with LASTONE

-4

UT-86 SC34-0644

$COPYUT1

& $COPYUT1 - Copy Data Set with Allocation (continued)

CAP — Copy All Programs from Source to Target

Use CAP to copy programs from the source volume to the target volume. When you allocated
data sets using $DISKUT1, you specified one of two organization types: D for data organization
or P for program organization. Use program organization to specify data sets that contain
executable (loadable) Event Driven Executive Language programs. If you use the CAP
command, $COPYUT1 only copies those data sets you designated as P (program organization).

You can copy all the data sets or specify a subset of data sets. If you reply Y to the COPY FROM
BEGINNING? prompt, $COPYUT1 copies all the data sets. If you respond N to the COPY FROM
BEGINNING? prompt, $COPYUT1 prompts you for the first (starting) member and the last (ending)
member to be copied.

Example: Copy only programs from one volume to another.

Chapter 4. Utilities UT-87

COPYUT1
$COPYUT1 - Copy Data Set with Allocation (continued)

CG — Copy All Members Starting with a Prefix

Use the CG (copy generic) command to copy only those members beginning with generic text
(prefix). $COPYUT1 prompts you for the prefix. $COPYUT! then searches the source volume
directory for names beginning with this prefix and copies only these members to the target
volume.

Example: Copy members with prefix of DATA.

CM — Copy Member from Source to Target

Use CM to copy a member from the source volume to the target volume with the same
characteristics. $COPYUT1 automatically allocates the receiving member on the target volume.

UT-88 sC34-0644

$COPYUT1

$COPYUT1 - Copy Data Set with Allocation (continued)

O

Example 1: Copy a data set (MYPROG) from EDX002 to ASMLIB and rename the data set S1.

CNG — Copy All Data Sets Not Starting with a Prefix

Use CNG to copy only those data sets that do not begin with the prefix. $COPYUT1 prompts you
for a generic text prefix. $COPYUT! then searches the source volume directory for names that
O don’t begin with the prefix and copies only those data sets to the target volume.

Example: Copy data sets without a prefix of DATA.

EN — End $COPYUT1

Use EN to end the $COPYUT!1 utility.

Example: End $COPYUT]1.

Chapter 4. Utilites UT-89

$DASDI

$DASDI - Format Disk or Diskette

$DASDI initializes your disks and formats your diskettes.

Invoking $DASDI
You invoke $DASDI with the $L command or option 3.6 of the session manager.
When you invoke $DASDI, it prompts you for one of the following primary initialization options:
« Primary Option 0 - Create a Stand-Alone Dump/$TRAP Diskette
« Primary Option 1 - Diskette Initialization
o Primary Option 2 - 4962 Disk Initialization
e Primary Option 3 - 4963 Disk Initialization
¢ Primary Option 4 - 4967 Disk Initialization
o Primary Opt10n5 - DDSK Disk Initialization
e Primary Oﬁiion 9 - Exit Initialization.
Notes:
1. You can load $DASDI into any partition. $DASDI then loads the initialization routines, $14962,
$14963, $14967, or $IDDSK30 into partition 1, and $IDSKETT into any available partition.

$DASDI returns an error if partition 1 does not have the space for the initialization routines.

2. When primary options 2, 3, 4, and 5 are executing, do not run a program that accesses the
disk being initialized.

3. You can run diskette initialization concurrently with other programs.

UT-90 SC34-0644

O

$DASDI

$DASDI - Format Disk or Diskette (continued)

Primary Option 0 — Create a Stand-Alone

Dump/$TRAP Diskette $TRAP diskette $TRAP diskette $TRAP, creating $TRAP diskette

Primary option O uses a 4964, 4965, or 4966 diskette unit to initialize a two-sided,
single-density, 256-byte diskette to be used for stand-alone dumps or the $TRAP utility. $DASDI
loads a program that places IPL text and the stand-alone dump utility on the front of the diskette.
Once you create the diskette, it is ready for use.

If you wish to dump more than 512K bytes, then you must create two diskettes for a stand-alone
dump. Once you create them, these two diskettes are identical, and the order in which you use
them is not important.

The diskettes you have created are reusable and you do not have to re-create them after you
have used them to take a stand-alone dump.

Once you have obtained a stand-alone dump, you can list the contents of the diskette using
$pUMP. To dump the contents of the diskette, use data set $$EDXLIB and volume name IBMEDX.

Chapter 4. Utilities UT-91

$DASDI

$DASDI - Format Disk or Diskette (continued)

Primary Option 0 Example: Create 2 diskettes for a stand-alone dump >512K.

i

UT-92 SC34-0644

O

$DASDI - Format Disk or Diskette (continued)

Create 2 diskettes for a stand-alone dump >512K (continued).

Chapter 4. Utilities

UT-93

$DASDI

$DASDI - Format Disk or Diskette (continued)

Primary Option 1 — Diskette Initialization

UT-94

SC34-0644

The $DASDI utility initializes single and double-sided diskettes. Three formats are available:

« Format for use with the Series/1'Event Driven Executive

« Format to the 1BM Standard for Information Interchange

« Format entire diskette to sector size: 128-, 256-, 512-, or 1024-byte records.

Notes:

1. Double-density is available on the 4965 and 4966 8 inch diskette units at 256, 512, or 1024
bytes per sector. Only double-density at 256 and 1024 bytes per sector is recognized on the
Event Driven Executive.

2. 128 bytes per sector are available only at single density on the 8 inch diskette.

3. 1024 bytes per sector are available only at double-density on the 8 inch diskette.

The following matrix shows the configurations available by format for density and sector size
when initializing your diskettes.

128 bytes/sector | 256 bytes/sector | 512 bytes/sector | 1024 bytes/sector
Formats S D S D S D S D @
Event Driven Y N/A Y Y NA | NA | A Y
Executive /
Standard for
Information Y N/A Y Y Y Y N/A Y
Interchange
Sector size Y N/A Y Y Y Y N/A Y
Legend:

S = Single-density (Diskette 1 and Diskette 2)
D = Double-density (Diskette 2D on 4965 and 4966)

Figure 10. Density and sector sizes available according to format

$DASDI

$DASDI - Format Disk or Diskette (continued)

Note: For basic exchange copying under the Standard for Information Interchange format, use
a single-sided diskette, formatted as single density, 128 bytes per sector. For H-level exchange,
use a double-sided diskette, formatted as double-density, 256 bytes per sector.

Event Driven Executive Format

If you select the Event Driven Executive format, cylinder 0 is formatted according to the IBM
Standard for Information Interchange. The remaining cylinders are formatted at 128 or 256
bytes per sector. On a 4965 and a 4966, a diskette may be formatted as double-density at 256
or 1024 bytes per sector.

After surface analysis is complete, $DASDI writes the volume label, IBMEDX, on the diskette. The
next step after preparing a diskette surface usually is to create a volume for use with the Event
Driven Executive. You create volumes (establish directories) with the $INITDSK wutility. $DASDI
gives you the option of going directly into $INITDSK execution without having to end $DASDI and
issue the $L. command for $INITDSK yourself.

Standard for Information Interchange Format

If you select the IBM Standard for Information Interchange, format cylinder O according to that
standard, and format the remaining cylinders for 128-, 256-, 512-, or 1024-byte records.
$DASDI prompts you for the density (single or double) and the sector size (single: 1-128, 2-156,
3-512; or double: 1-256,2-512, 3-1024). If you are going to use the diskette for basic
exchange copy under $COPY, use a single-sided diskette formatted as single density, 128 bytes
per sector. If you are going to use the diskette for H-exchange copy using $HXUT1, use a
double-sided diskette formatted as double-density at 256 bytes per sector. After surface
analysis, $DASDI writes the volume label, IBMEDX, on the diskette and assigns a data set name,
DATA. DATA consists of all the tracks on the diskette. Under this format, you do not need to
initialize diskettes.

Sector Size Format

If you select the sector size format, $DASDI formats all cylinders to the density (single or double)
and sector size you select (128, 256, 512, or 1024 bytes). After surface analysis, $DASDI does
not write a volume label, header, or record in cylinder 0, and you are not given the option of
going directly into $INITDSK execution.

Note: A diskette initialized according to sector size cannot be used on an Event Driven system
except for reformatting.

Chapter 4. Utilities UT-95

$DASDI

$DASDI - Format Disk or Diskette (continued)

Operating Characteristics

UT-96

SC34-0644

After you invoke $DASDI and choose primary option 1, $DASDI prompts you for the device
address of the diskette drive where the diskette to be formatted is mounted. Enter this address
in hexadecimal.

Note: The 4966 has a capacity of 23 diskettes: 2 magazines of 10 diskettes each plus 3 slots for
individual diskettes. The three individual slots are the first 3 slots in the device. $DASDI
operates on diskettes in slot 1 only; you must mount in slot 1 any diskette on which you want to
run surface preparation. '

After you choose a format, $DASDI prompts you (as constrained by format and device choice)
for density (single or double) and sector size (128, 256, 512, or 1024 bytes). $DASDI varies the
selected diskette device offline, displays the selected format, and issues the following warning

message:

If you respond Y, the following occurs for each of the three formats:

1. Event Driven Executive—$DASDI formats the diskette, writes a volume label (IBMEDX) on the
diskette, and issues the message:

P
e
x S

You then have the option of going directly to $INITDSK as follows:

If you wish to create a logical volume or establish a directory, respond Y and the system
invokes $INITDSK. After you initialize your diskette under $INITDSK, end the $INITDSK utility.

2. Standard for Information Interchange—S$DASDI formats the diskette and writes a volume
label IBMEDX) on the diskette, allocates a data set called DATA, and issues the following

message:

DATA consists of all the data tracks on the diskette.

$DASDI

$DASDI - Format Disk or Diskette (continued)

3. Sector Size Format—$DASDI formats the diskette but does not write a volume label or header
on the diskette; it issues the following message:

$DASDI prompts you as follows:

If you respond Y, you have the following choices (you should insert another diskette as
required):

Choice 1

Or

Choice 2

If you respond N to “ANOTHER DISKETTE,” the system displays the $DASDI primary option
menu again.

Notes:
1. Do not use $C to cancel a formatting operation. Enter ATTN $DASDI to force termination.

2. After you create the volume label and data set header, the rest of cylinder O consists of
deleted records. Any attempt to read them results in an error condition.

Chapter 4. Utilites UT-97

$DASDI
$DASDI - Format Disk or Diskette (continued)

Example 1: Format a double-density diskette on a 4966 for Event Driven Executive.

S
SR

i
S
e

UT-98 SC34-0644

O

$DASDI

$DASDI - Format Disk or Diskette (continued)

Chapter 4. Utilities

UT-99

$DASDI
$DASDI - Format Disk or Diskette (continued)

Example 3: Format diskette on a 4966 to 256-byte records (double-density).

UT-100 $C34-0644

C

$DASDI

$DASDI - Format Disk or Diskette (continued)

Primary Option 2 — 4962 Disk Initialization

The disk initialization utility for the 4962 initializes your disk, writes sector addresses on the
entire volume, analyzes and locates defective sectors, and assigns alternate sectors. After you
initialize the disk, it is ready for use with the Event Driven Executive. For a new disk device,
you should perform initialization before you install the Event Driven Executive on it.

When using this primary option, you must select one of two initialization types:
o PI (primary) — initialize a disk for the first time or completely reinitialize the disk.

Note: This type rewrites the complete disk surface and destroys all data that may have been
on the disk.

« AS (alternate sector assignment) — assign alternate sectors without destroying the data
currently on the disk.

Using Pl Initialization

Use pI to verify and correct sector IDs and to analyze the disk surface to find defective sectors.
If the programmer’s console is active, the data buffer displays the number of the cylinder $DASDI
is initializing currently. If the system finds a defective sector, either on a movable or a fixed
head, it assigns an alternate sector from cylinder 1 and $DASDI issues a message. When the
system assigns an alternate sector, the sector ID of the defective sector refers to the location of
its alternate on cylinder 1. The system marks defective sectors. If a defective sector exists on

cylinder 0, the system assigns to the defective sector an alternate sector under the same head on
cylinder 0.

Using AS Initialization

Use AS to force the assignment of alternate sectors without destruction of data on the disk.
$DASDI tries to move data from the defective sector to its assigned alternate. If data recovery
fails, $DASDI issues a message and flags the alternate data field with all one-bits (hexadecimal
FFFF). If the system finds an assigned alternate is defective, it marks the alternate as defective
and assigns a new alternate. The system attempts data recovery in this case, also.

Note: Use AS only when necessary. Cylinder 1 has a limited number of available alternate

sectors. Once the system assigns an alternate sector, you can recover the sector only by writing
all sector IDs during a primary initialization.

Chapter 4. Utilities UT-101

$DASD|
$DASDI - Format Disk or Diskette (continued)

The storage capacity and number of altérnate sectors available on cylinder 1 depends on the
4962 model:
Storage capacity (in bytes) ¥ Alternate
Model Moveable heads _Fixed heads sectors
1 9,308,160 - 120
1F 9,308,160 122,880 120
2 9,308,160 - 120
2F 9,308,160 122,880 120
3 13,962,240 - 180
4 13,962,240 - 180

Example 1: Primary initialization of a 4962 disk.

UT-102 sC34-0644

$DASDI

$DASDI - Format Disk or Diskette (continued)

In the previous example, $DASDI prompts for the following:
» Disk or diskette primary initialization option: 1 through 6
o Initialization type: PI for primary or AS for alternate sector
o Initialization mode:

— N - Retain defective flag byte of each sector ID.

— Y - Rewrite sector flag IDs and reinitialize the flag byte where possible. Allows you to
initialize a disk with invalid sector flags.

Note: Respond Y only if you wish to rewrite all sector IDs. This causes the loss of any IBM
factory-assigned defective sector flags. If you respond Y, the following verify operation occurs:

N Operation will continue with flags considered invalid.

Y A reprompt of the previous message results, allowing you to change the status of the

C defective flags. .
A .

The system repeats the following message for each alternate sector assignment, if any occurs:

Note: ccchss=the address of the alternate sector assigned.

Chapter 4. Utilities UT-103

$DASDI
$DASDI - Format Disk or Diskette (continued)

Example 2: Alternate sector assignment on a 4962 disk.

i i

Cylinder /Head / Sector (ccchss): The address of the sector presumed to be defective.
$DASDI assigns an alternate sector on cylinder 1 then tries to move the data from the defective
sector to the alternate sector. Alternates on cylinder O are located on the same track and head
as the defects on cylinder 0. This process may reveal that the sector IDs on cylinder 0 are in an
inconsistent condition. Processing continues if possible. You cannot assign an alternate to a
defective sector on cylinder 1.

Note: The system always refers to the fixed-head area as cylinder 303. You should consider
that this cylinder contains eight heads (zero through seven). To refer to sector five under
fixed-head four, specify 303405.

The system displays the following message at your terminal indicating completion of the disk
initialization.

UT-104 SC34-0644

C

$DASDI

$DASDI - Format Disk or Diskette (continued)

Primary Option 3 — 4963 Disk Initialization

The $DASDI utility identifies and restores defective sectors on a 4963 disk device. The 4963
comes from the factory already formatted with all logical sector addresses assigned and tested
and with alternates assigned to any defective sectors; you do not have to initialize a newly
installed 4963.

With this primary option, you can:

« Identify a specific sector as being defective and cause the utility to assign an alternate to it.

« Restore a previously identified defective sector and cause the utility to free its alternate.

« Print a map of all defective sectors and indicate if the defective sector were factory- or
user-identified.

The system assigns alternate sectors as follows:

o If the primary alternate (the extra sector on the same track) is available, the system uses it as
the alternate for the defective sector.

« If the primary alternate is not available (either it is defective or already assigned), the system
assigns a secondary alternate from the nearest track under the movable heads having an

available primary alternate.

Note: The system assigns the primary alternate under a fixed head to a sector that is under the
same fixed head.

The storage capacity and the number of alternate sectors for each 4963 model follows:

Storage ° Alternate

Model capacity (in bytes) sectors

~ Moveable head:
23A,B 23,592,960 358
29A,B 29,491,200 358
58A,B 58,982,400 358
64A,B : 64,880,640 358
Fixed-head:)
23A, 23B,
58A, 58B only 131,072 358

Chapter 4. Utilities UT-105

$DASDI

$DASDI - Format Disk or Diskette (continued)

UT-106

SC34-0644

When restoring sectors from defective status, $DASDI physically moves the sectors within the
track to minimize the processing time between consecutive logical sectors. You cannot restore:

+ A factory-assigned defective sector
« A primary defect (one that causes the system to assign the primary alternate for the track)

« A sector whose ID has been extended (caused by a defect in the ID field of the original
sector). (See example 2 on the following page.)

Example 71: Invoking 4963 disk initialization.

Your option entry must be one of the four secondary options listed in the command menu. You

can choose to identify, restore, or map defective sectors. $DASDI ends when you enter primary
option 9.

C

$DASDI

$DASDI - Format Disk or Diskette (continued)

Example 2: Obtaining a map of defective 4963 sectors.

© DEFECT
0000101
0020114

TE EXTENDED

0340401 3580400
This map shows three defective sectors, one of which is a secondary defect (indicated by the

alternate address). If the system finds a defective ID and is able to extend that sector to an
alternate one, the map displays an asterisk (*) in the EXTENDED field for that sector.

Example 3: Assigning an alternate sector.

_ENTER OPTION:
ENTER

Chapter 4. Utilities UT-107

$DASDI
$DASDI - Format Disk or Diskette (continued)

3

Notes:

1. In the preceding example, enter the disk address for a 4963 as a seven-digit number
(0010205): the cylinder is 1 (001), the head is 2 (02), and the sector is 5 (05).

2. $DASDI uses the following range of values for the ccchhss of a 4963:

cylinder 0 - 357
head 0-4(510,11)*
sector 0-63

* depending on model

3. $DASDI may appear to assign an alternate for a ccchhss that is not the one you specified.
This occurs because the 4963 is arranged as follows:

records 0,32 are located in physical sector 0
records 1,33 are located in physical sector 1

records 31,63 are located in physical sector 31

Example 4: Restoring a previously assigned alternate sector. s)

Note: The system always refersito the fixed-head area on the 4963 as cylinder 511. This
cylinder contains 8 heads (16-23) and 64 sectors (0-63).

UT-108 SC34-0644

$DASDI

$SDASDI - Format Disk or Diskette (continued)

Primary Option 4 — 4967 Disk Initialization

The $DASDI utility identifies and restores defective sectors on a 4967 disk device. However,
unlike the 4962 and 4963 disks, the system identifies the sector addresses on the 4967 by
relative block address (RBA) rather than by cylinder, track, and sector.

With primary option 4, you can:

» Verify all data fields and associated IDs on the entire disk or a selected cylinder and identify
any defective RBAS.

« Refresh data associated with a specified RBA.
« Assign an alternate sector for a specified RBA.
« List the assigned alternate sectors.

» Remove an alternate sector assignment.

» Write one sector ID.

The storage capacity and the number of alternate sectors for each 4967 model follows:

Storage Alternate
Model capacity (in bytes) sectors
02CA 200,177,152 7,966
02CB 200,177,152 7,966

Chapter 4. Utilities UT-109

$DASDI
$DASDI - Format Disk or Diskette (continued)

Example 1: Invoking 4967 disk initialization.

Your option entry must be one of the seven secondary options listed in the command menu.
Primary option 4 ends when you enter secondary option 7. Once you return to the primary
menu, $DASDI ends when you enter primary option 9.

UT-110 §C34-0644

O

$DASDI

$DASDI - Format Disk or Diskette (continued)

Secondary Option 0 — Verify Entire Disk

Use secondary option 0 to identify any defective RBAs on the entire 4967 disk. The system
reads and verifies all data fields and associated sector IDs on the disk. If it finds no errors,
$DASDI issues the following message:

When you use secondary option 0, no errors are expected to occur. However, if the system
detects errors, you should correct them.

If the system detects errors, $DASDI displays a table showing the relative block address, the
sector ID of the RBA, the head and cylinder, and a comment describing the error. Following the
table, $DASDI displays the recommended ways to correct the errors.

——

This table shows flagged or bad sectors that exist on the disk.

Note: Use of secondary option 0 causes all system processing to stop until secondary option 0
completes. This option takes approximately 6 minutes to complete since it is reading and writing
every sector on the entire disk. ' ’

If you suspect you have a defective RBA (as indicated by disk error messages), you may want to

look at your $SYSLOG (cycle steal status) to find which RBA is causing the disk errors. If you do
this, then use secondary option 1 to verify that particular RBA.

Chapter 4. Utilities UT-111

$DASDI
$DASDI - Format Disk or Diskette (continued)

Secondary Option 1 — Verify a Cylinder by Selected RBA

Use secondary option 1 to identify defective RBAs on a particular cylinder. The system reads
and verifies all data fields and associated IDs on the selected cylinder. If it finds no errors,
$DASDI issues the following message:

If $DASDI finds an error, it displays a table showing the relative block address, the sector ID of
the RBA, the head and cylinder, and a comment describing the error. Following the table,
$DASDI displays the recommended ways to correct the errors.

This table shows flagged or bad sectors that exist on a selected cylinder.

UT-112 SC34-0644

$DASDI

$DASDI - Format Disk or Diskette (continued)

Secondary Option 2 — Refresh Data

Use secondary option 2 to refresh the data contained in the sector to ensure that it is valid or
correct. You are able to patch data in the suspected RBA and write the new data back out to the
RBA. If the error no longer appears, you can use the RBA as is. If the error still appears, then
you must assign an alternate sector (secondary option 3).

Notes:

1. For inverted ECC errors, if you write back the RBA without correcting it, the inverted ECC
error disappear. However, the data could still be bad. Be sure to verify the data.

2. For ECC corrected errors, you need not verify the data before writing it back to disk.

Example:

At this point, $DASDI reads the selected RBA and displays the 256 bytes, in eight-words-per-line
format, contained in the RBA.

$DASDI then prompts you as follows:

If you enter Y, $DASDI issues a prompt for the starting address and number of words (count) of
the patch:

Chapter 4. Utilities UT-113

$DASDI

$DASDI - Format Disk or Diskette (continued)

$DASDI then displays the address of the area you want to patch and the data currently appearing
at that location. Enter the new data.

$DASDI then prompts if you wish to patch another location in the same RBA.

If you respond Y, $DASDI prompts for another address and count. If you respond N, $DASDI
issues a prompt asking if you wish to write the changed RBA to disk. If you respond Y to this
prompt, $DASDI writes the changed RBA back to the dis

Once you have written the RBA to disk, $DASDI issues a prompt asking if you wish to patch
another area.

If you respond Y, $DASDI again prompts for the selected RBA and displays the 256 bytes
contained in that RBA in eight-word-per-line format. If you respond N, $DASDI returns to the
4967 Disk Initialization secondary menu.

UT-114 sC34-0644

$DASDI

$DASDI - Format Disk or Diskette (continued)

C

Secondary Option 3 — Assign Alternate Sector
Use secondary option 3 to assign an alternate sector for a selected RBA.

Example:

Secondary Option 4 — Remove Alternate Sector Assignment

Use secondary option 4 to remove an alternate sector assignment that you assigned using
secondary option 3.

Example:

If the RBA you specified is not assigned to an alternate sector, $DASDI issues the following
prompt:

Secondary Option 5 — List All User-Assigned Sectors
Use secondary option 5 to display a list of alternate sectors you assigned.

Example:

Chapter 4. Utilities UT-115

$SDASDI
$DASDI - Format Disk or Diskette (continued)

Secondary Option 6 — Write One Sector ID

Use secondary option 6 to convert the selected RBA to a head, cylinder, and logical number.
The system writes the sector ID for that logical number using the factory defect data (if any
exist) from the surface analysis cylinder. The system recovers and writes data with the sector ID.

Example:

If the system has already assigned the selected RBA as a user-defined alternate, then $DASDI
displays the following message:

In response to this message, refresh the data using secondary option 2.

Secondary Option 7 — Exit

Use secondary option 7 to end 4967 initialization (primary option 4) and to return to the
primary option menu of $DASDI. Primary option 9 ends the $DASDI utility.

UT-116 SC34-0644

$DASDI

0 $DASDI - Format Disk or Diskette (continued)

Primary Option 5 — DDSK Disk Initialization
The $DASDI: utility identifies and restores defective sectors on the 30-megabyte disk device
(DDSK-30) and the 60-megabyte disk (DDSK-60). For these devices, the system identifies disk
sector addresses by relative block address (RBA) rather than by cylinder, track, and sector.
With this option, you can:
» Verify all data fields and associated IDs on the entire disk or a selected cylinder.
o Identify any defective RBAs.
« Refresh data associated with a specific RBA.
« Assign an alternate sector for a specified RBA.
« List the assigned alternate sectors.

+ Remove an alternate sector assignment.

The initialization routines for the DDSK-30 and DDSK-60 disks appear as primary option 5
under the $DASDI utility. When you load $DASD], it displays the following menu:

w— o ———

The storage capacity and the number of alternate sectors for DDSK-30 and DDSK-60 disks

follows:
Storage Alternate
Model capacity (in bytes) sectors
30D 30,821,888 3,644
60D 61,668,864 7,088

Chapter 4. Utilites UT-117

$DASD|
$DASDI - Format Disk or Diskette (continued)

O

Enter a 5 in response to the ENTER DISK INITIALIZATION OPTION prompt. $DASDI then prompts
you for the address of the disk. Once you have entered the disk address, $DASDI displays the
secondary options available under option 5.

Select one of the six secondary options listed above. A description of each secondary option ' e
follows. ‘)

UT-118 SC34-0644

$DASDI

Q $DASDI - Format Disk or Diskette (continued)

Secondary Option 0 — Verify Entire Disk

Use secondary option O to identify any defective RBAs on the entire DDSK-30 or DDSK-60
disks. The system reads and verifies all data fields and associated sector IDs on the disk. If
$DASDI finds no errors, it issues the following message:

When using secondary option 0, no errors are expected to occur. However, if the system detects
errors, you should correct them. $DASDI displays the relative block address, the sector ID of the
RBA, the head and cylinder, and a comment describing each error. Following the error
description, $DASDI displays the recommended way to correct each error.

Note: Use of secondary option 0 causes all system processing to stop until secondary option 0
completes. This option takes approximately 6 minutes to complete since it is reading and writing
every sector on the disk.

If you suspect that there is a defective RBA (as indicated by a disk error message), use secondary
option 1 to verify that particular RBA.

Chapter 4. Utilities UT-119

SDASDI
$DASDI - Format Disk or Diskette (continued)

Secondary Option 1 — Verify a Cylinder by Selected RBA

Use secondary option 1 to identify defective RBAS on a particular cylinder. The system reads
and verifies all data fields and associated IDs on the selected cylinder. If $DASDI finds no errors,
it issues the following message:

$DASDI displays the relative block address, the sector ID of the RBA, the head and cylinder, and a
comment describing any error it finds. Following the error description, $DASDI displays the
recommended way to correct the error.

Secondary Option 2 — Refresh Data Q)
Use secondary option 2 to refresh the data contained in the sector to ensure it is valid or correct.
You are able to patch data in the suspected RBA and write the new data back out to the RBA. If

the error disappears, the RBA can be used as is. If the error remains, then you must assign an
alternate sector (secondary option 3).

Notes:

1. For inverted ECC errors, if you write the RBA back without correcting the error, the inverted
ECC error disappears. However, the data could still be bad. Be sure to verify the data.

2. For ECC corrected errors, you don’t need to verify the data before writing it back to disk.

Example:

UT- 120 SC34-0644

$DASDI

$DASDI - Format Disk or Diskette (continued)

O

At this point, $DASDI reads the selected RBA and displays the 256 bytes (1 record), in
eight-words-per-line format, contained in the RBA.

$DASDI then prompts you as follows:

O If you enter Y, $DASDI issues a prompt for the starting address and number of words (count) of
S the patch:

$DASDI then displays the address of the area you want to patch and the data currently appearing
at that location. Enter the new data. ‘

Chapter 4. Utilities UT-121

$DASDI

$DASDI - Format Disk or Diskette (continued)

$DASDI displays the selected RBA showing the selected address and changed data.

$DASDI then prompts if you wish to patch another area.

If you respond Y, $DASDI issues the ENTER ADDRESS,COUNT prompt. If you respond N, $DASDI
asks if you wish to write the patched RBA to disk. ((‘)

If you respond Y, $DASDI writes the changed RBA back to the disk and prompts if you want to
read another RBA.

If you respond N, $DASDI asks if you wish to read another RBA. If you respond Y, $DASDI again
prompts for the selected RBA and displays the 256 bytes contained in that RBA in
eight-word-per-line format. If you respond N, $DASDI returns to the DDSK Disk Initialization
menu.

UT-122 SC34-0644

O

C

$DASDI

$DASDI - Format Disk or Diskette (continued)

Secondary Option 3 — Assign Alternate Sector

Use secondary option 3 to assign alternate sectors for a selected RBA. When assigning alternate
sectors, you should be familiar with the layout of the disk. Each track contains 68 sectors
(rRBAs) for your use plus up to two sectors for use as alternates. The alternate sectors on the
same track are called primary alternate 1 and primary alternate 2.

When an RBA requires an alternate assignment, $DASDI attempts to assign primary alternate 1. If
primary alternate 1 has already been assigned by the same RBA or another RBA, $DASDI attempts
to assign primary alternate 2. If primary alternate 2 is also unavailable, $DASDI assigns a
secondary alternate sector. The secondary alternate sector is always located on a track different
than the track where primary alternates 1 and 2 are located.

If a secondary alternate goes bad, you can assign another secondary alternate. However, using
secondary option 4, you can unassign only the last secondary alternate that you assigned.

Example:

Secondary Option 4 — Unassign Secondary Alternate Sector

Use secondary option 4 to unassign the last secondary alternate sector that you assigned with
secondary option 3. You can only unassign a secondary alternate.

Example:

If the RBA you specified is not a secondary alternate sector, $DASDI issues the following prompt:

Chapter 4. Utilities UT-123

$SDASDI
$DASDI - Format Disk or Diskette (continued)

Secondary Option 5 — List All User-Assigned Alternate Sectors

Use secondary option 5 to display a list of alternate sectors you assigned. $DASDI issues a listing
of all the primary and secondary alternates assigned.

Example:

The ID-FG/SEC column contains two bytes. The first byte in this column is a flag byte which
indicates the condition of the sector’s surface. The second byte is a sector byte which is the
hexadecimal representation of the alternate sector assigned. For a description of the flag and
sector bytes, re/f;ar to one of the following hardware description manuals:

o IBM Series/1 4952 Processor Model 30D Processor Features Description, GA34-0251

£

. /

o IBM Series/1 4954 Processor Model 30D and Model 60D and Processor Features Description,
GA34-0252

e IBM Series/1 4956 Processor Model 30D and Model 60D and Processor Features Description,
GA34-0253

o IBM Series/1 4965 Storage and 1/O Expansion Unit Description, GA34-0254
Secondary Option 6 — Exit

Use secondary option 6 to end DDSK initialization (primary option 5) and return to the primary
option menu of $DASDI. Primary option 9 ends the $DASDI utility.

UT-124 $C34-0644

$DASDI

$DASDI - Format Disk or Diskette (continued)

Primary Option 9 — Exit Initialization

Use primary option 9 to end the $DASDI utility.

9,

Chapter 4. Utilities

uT-125

$DEBUG

$DEBUG - Debugging Tool

Use $DEBUG to locate errors in programs. All of your interactions are through terminals; none
require the use of the optional programmer console. By operating a program under control of
$DEBUG, you can:

O

Stop the program each time execution reaches an instruction address (breakpoint), that you
have specified.

Trace the flow of execution of instructions within the program by specifying one or more
ranges of instruction addresses known as trace ranges. Each time the program executes an
instruction within any of the specified trace ranges, the terminal displays a message
identifying the task name and the instruction address just executed. You may stop program
execution after the system executes each instruction within a trace range. You may restart
program execution at other than the next instruction.

List additional registers and storage location contents while the program is stopped at a
breakpoint or at an instruction within a trace range.

Patch the contents of storage locations and registers.

Restart program execution at the breakpoint or trace range address where it is currently
stopped.

You can determine the results of computations performed by the program and the sequence of
instruction execution within the program. You can also modify data or instructions of the
program during execution.

N
“ /

Major Features of $DEBUG

UT-126

A summary of the major features of the $DEBUG program follows:

SC34-0644

You can establish multiple breakpoints and trace ranges.
You can debug overlay segments.

Up to five users can employ separate copies of $DEBUG concurrently if the system has
sufficient storage available.

You can set breakpoints and trace ranges in the Series/1 assembler language as well as in
Event Driven Language instructions.

The system automatically obtains the task names from the program you are testing.
You can display and modify task registers #1 and #2.
You can display and modify hardware registers RO through R7 and the IAR.

You can display and modify the task return code words.

$DEBUG

$DEBUG - Debugging Tool (continued)

o The list and patch functions accept five different data formats.

« You can run the program you are debugging in a partition other than the one where $DEBUG
is loaded.

+ You can make all address specifications as shown in the program assembly listing without
concern for the actual storage addresses where the system loads the program into storage
for testing.

« The task where you set the trace ranges is the only place that incurs processing overhead.
Even then, the system enables the hardware trace feature only for specific tasks.

« You can activate the debug facility for a program that is experiencing problems even if you
previously loaded that program without the debug facility.

* You can debug a program by loading $DEBUG from a terminal other than the one from which
you loaded the program you are testing.

« You can debug a program that uses a 4978, 4979, 4980, or 3101 terminal in STATIC or ROLL
screen mode.

« You can list breakpoints or trace ranges specified during a debug session.

C e $DEBUG can control the execution of programs containing up to 20 tasks.

Necessary Data for Debugging

To use $DEBUG, you must include $DBUGNUC at system generation. You must have a printed
listing of the program you are debugging that shows the storage addresses of each instruction
and data area of interest. To obtain such a listing using $S1ASM, specify PRINT GEN in the source
program, after the PROGRAM statement, at assembly time. Precede the PROGRAM statement
with PRINT NOGEN to prevent the system from printing many system EQU statements, among
others. For $EDXASM, you can get a satisfactory listing if you specify LIST.

To debug segment overlays, you need a link map to find the overlay segment numbers.

For an example of debugging an application program, see the Event Driven Executive Language
Programming Guide.

Chapter 4. Utilites UT-127

$DEBUG

$SDEBUG - Debugging Tool (continued)

Invoking $SDEBUG

Invoke $DEBUG with the $L operator command. The session manager does not support this
utility.

G
B

|

-
@

Lo

The program that you are debugging does not have to run in the same partition where the
system loaded $DEBUG. After you enter the program name, the system prompts you for a
partition number. The system prompts you for a terminal name only if $DEBUG is loading your
program. (You may enter the partition number and terminal name on the same line as the
program name if you prefer.)

The system will inform you if there is not enough room for your program in the partition you i
specified or if you specified an invalid partition number. You may specify O as a partition N
number to tell $DEBUG to load your program in the first available partition. $DEBUG will not

look to see if your program is already in storage.

Note: Do not enter the name of a printer when prompted for the name of the terminal on which
$DEBUG is to load your application program.

After you enter the partition number and the terminal name, if applicable, $DEBUG displays the
load point of the program as follows:

If you have loaded the program you are debugging into storage multiple times, the system lists
the load points of all currently active copies as follows:

i =

UT-128 S$C34-0644

$DEBUG

$DEBUG - Debugging Tool (continued)

You have the option of requesting a fresh copy of the program or specifying which copy of the
program you wish to debug.

$DEBUG Commands

To display the $DEBUG commands at your terminal, press the attention key and enter the HELP
command as follows:

You specify each command by pressing the attention key on your terminal and entering the
command name or the command name plus the required parameters for the command.

Chapter 4. Utilites UT-129

$DEBUG

SDEBUG - Debugging Tool (continued)

Syntax Summary

The following examples show the various formats of the AT command. Example 1 shows
interactive mode and example 2 shows single-line entry. Syntax examples for each command
capitalize the $DEBUG command keyword parameters and show the variable parameters in
lowercase. A slash (/) separates the keyword options that you can specify.

Example 1:

Example 2: You can obtain identical results by entering the single response. However, when
using single-line entry, be sure that you enter the parameters in the order $DEBUG expects them.

O

Each command with its syntax description follows in alphabetical order.

AT — Set Breakpoints and Trace Ranges

AT sets breakpoints and trace ranges. The system executes the LIST and STOP options
established for a breakpoint or trace range prior to executing the instruction that satisfied the
breakpoint or trace range specification. When the system satisfies the specification for a
breakpoint or trace range, it reroutes the currently active task. Then $DEBUG performs the
following actions for the subject task:

« Prints its status and the current value of the task code word

o Prints the LIST specification

“» Optionally puts the task into a wait state.

If you requested the NOSTOP option, $DEBUG prints task status as ‘“taskname CHECKED AT
Xxxx.” The STOP option generates a ‘‘taskname STOPPED AT XXXX’’ message.

UT-130 sC34-0644

O

$DEBUG

$DEBUG - Debugging Tool (continued)

You can modify the LIST and STOP options for all currently defined breakpoints and trace ranges
by entering AT ALL. Similarly, you can alter the specifications for the most recently entered AT
command with the AT * option.

If you specify LIST UNMAP after issuing the AT command, the unmapped storage area to be listed
must already be initialized at the time you set the breakpoint.

Notes:

1. You cannot set breakpoints in ATTNLIST routines.

2. If a trace range is set around a GETVALUE coded with PROMPT=COND and a message
data set prompt, the instruction will not wait for input. The input data area will be

unchanged.

Syntax:

AT ADDR address overlay# NOLIST/LIST NOSTOP/STOP

AT TASK taskname start-add end-add NOLIST/LIST NOSTOP/STOP
AT ALL NOLIST/LIST NOSTOP/STOP

AT * NOLIST/LIST NOSTOP/STOP

Operands Description
ADDR Keyword indicating this is an instruction program breakpoint specification.
address Instruction address where you want to insert a breakpoint.

Note: Be sure that this is the address of the first word of an executable
instruction, since $DEBUG will modify this word. $DEBUG can give unpredictable
results if you specify the address of data or the address of other than the first
word generated by an instruction.

overlay# Overlay segment number where the system sets the breakpoint when the address
you specified is within the overlay area. You can find the overlay segment
number in the link map of the program you are debugging.

NOLIST You need no special print request at this breakpoint or trace range.

LIST Complete specification for a storage or register display; see the LIST command
for a description of all list options and parameters.

NOSTOP Processing continues after the breakpoint notification occurs.
STOP The task stops whenever the system satisfies this breakpoint or trace range
specification.

Chapter 4. Utilities UT-131

$DEBUG_

$DEBUG - Debugging Tool (continued)

TASK

taskname

start-add

end-add

ALL

Trace range specification.

Name of task you want to trace (if the program contains only one task, omit this
parameter).

Trace range starting address (since your program is not actually modified by a
trace specification, you don’t have to use special care when you entet trace
addresses).

Trace range ending address.

The system redefines all currently defined breakpoints and trace ranges with new
list and stop options.

The system redefines the most recently defined breakpoint or trace range
specification. The system determines this specification by the last usage of an
AT, GO, or OFF commands.

BP — List Breakpoints and Trace Ranges

BP displays all breakpoints and trace ranges that you specified for the current debug session.
For each breakpoint, BP displays the task address, the instruction type, the associated list
options, and the overlay segment number, and it indicates whethef you specified a stop.

Syntax:

BP

Required: none

Operands

None

Description

CLOSE — Close Spool Job Created by $DEBUG

CLOSE closes the spool job created by the last PRINT command you issued to a spoolable device.

Example: CLOSE command.

UT-132 SC34-0644

O

C

$DEBUG

$DEBUG - Debugging Tool (continued)

A spool job is created when a LIST command is sent to a spooling device. Issueing a CLOSE
command will close this spool job and make it ready for printing. Only the spool job associated
with the most recent PRINT command is closed. IF $SPOOL is active and there is no job to close
(in other words, no LIST command has been issued between a PRINT command and a CLOSE
command,) a spool job will be created consisting of an ENQT and a DEQT. If $SPOOL is not
active, such a command will be ignored. Delete such empty jobs to release space.

If $SPOOL is not active, you will receive the following message:

Syntax:

CLOSE

Required: none

Operands Description

none

END — End $DEBUG

END removes all currently-active breakpoints and trace ranges, activates all currently-stopped
tasks, and ends $DEBUG. Do not use the $C operator command to cancel $DEBUG.

Note: If the program you are debugging continues to execute after you ended $DEBUG, then you
can cancel the program by pressing the attention key and entering the $C operator command and

the program name.

Syntax:

END

Required: none

Operands Description

None

Chapter 4. Utilities UT-133

$DEBUG

$DEBUG - Debugging Tool (continued)

GO — Activate a Stopped Task

UT-134

GO reactivates any task that $DEBUG has stopped. If a task stops at a breakpoint, specify the
exact breakpoint address. If a task stops as a result of a trace specification, supply the name of
the task and an address range which brackets the addresses in the original trace request. If you
are debugging only one task, you don’t need to specify any operands.

Syntax:

GO ADDR address
GO TASK taskname

GO ALL
GO *
GO
Operands Description
ADDR Keyword indicating this is a breakpoint specification.
address Instruction address where the task stops.
TASK Keyword indicating this is a trace range specification.
taskname Name of task you want activated. For programs containing only a single task,
omit this parameter.
ALL Activate all currently stopped tasks.
* Use the most recently referenced breakpoint or trace range specification. The
system determines this specification by the last usage of an AT, GO, or OFF
command.

SC34-0644

C

$DEBUG

$DEBUG - Debugging Tool (continued)

GOTO — Change Execution Sequence

GOTO reactivates, at a different instruction, any task that has stopped at an Event Driven
Language or Series/ 1 assembler instruction. If you used a breakpoint or trace to stop the task,
supply the current address and the address at which execution should be resumed. $DEBUG will
not change the breakpoint or trace specifications.

Syntax:

GOTO current-address new-address

Operands Description
current-address Address where the task stops.
new-address Address where you want execution restarted.

HELP — List $DEBUG Commands

The HELP command produces a list of $DEBUG commands and functions.

Syntax:

HELP

Required: none

Operands Description

None

Chapter 4. Utilities UT-135

$DEBUG

$DEBUG - Debugging Tool (continued)

LIST — Display Storage or Registers

UT-136

LIST displays the contents of storage locations, task registers, hardware registers, or the IAR
(instruction address register). You can display the LsB (level status block) by listing the IAR
with a length of 11 words. Any register data is guaranteed to be current only if $DEBUG stops
the corresponding task by a breakpoint or trace range. Use LIST * to repeat the most recently
specified LIST command or to verify (list) a patch you have just entered.

The following example shows the LIST command prompts. You can list the unmapped as well as
the mapped storage that your program acquired previously with the GETSTG command.

Example: LIST command for unmapped storage.

Syntax:

LIST *

LIST ADDR address length mode

LIST RO...R7 taskname length mode

LIST #1...#2 taskname length mode

LIST IAR taskname length mode

LIST TCODE taskname length mode

LIST UNMAP storblkaddress swap# displacement length mode

Operands Description

* Use the most recently specified LIST or PATCH specification. The system
determines this by the last usage of a LIST or PATCH command.

ADDR Keyword indicating this is a display of a mapped storage location.

RO...R7 One of the Series/1 hardware registers RO through R7 where you want $DEBUG

SC34-0644

to start the list.

®

$DEBUG

$DEBUG - Debugging Tool (continued)

taskname

#1/%2

IAR

TCODE

UNMAP

storblk address

swap#

displacement

length

mode

Name of task where you want $DEBUG to display register data. For programs
containing only a single task, omit this parameter.

Task register #1 or #2 specification.

Keyword indicating you want $DEBUG to display the IAR (instruction address
register).

Keyword indicating you want $DEBUG to display the task return code words (first
two words of the TCB).

Keyword indicating this is a display of an unmapped storage location.

Address of the storage statement that defines the unmapped storage location you
want $DEBUG to display. (The address can be found in the program listing as the
address of the storblk statement.)

Number of the unmapped storage area instruction. If you specify 0, you can list
mapped storage.

Number of bytes (in hex) where you want to start listing an unmapped storage
area. For example, if you enter 1A, $DEBUG begins patching from byte 26 of the
unmapped storage area indicated. The largest possible value for displacement is
X‘FFFF since the maximum size of an unmapped storage area is 64K.

Length of display in words, doublewords, or characters depending on mode.
Mode of data display:

X - hexadecimal word

F - decimal number(word)

D - decimal number(doubleword)

A - relocatable address
C - EBCDIC character

Chapter 4. Utilites UT-137

$DEBUG

$DEBUG - Debugging Tool (continued)

OFF — Remove Breakpoints and Trace Ranges

OFF removes a breakpoint or trace range established with the AT command. To remove a
breakpoint, specify the exact breakpoint address. To remove a trace request, specify the name
of the task and an address range which brackets the addresses in the original trace request. If a
task currently is stopped at the requested breakpoint or trace range, the system automatically
reactivates the task.

Syntax:

OFF ALL
OFF *

OFF ADDR address overlay#
OFF TASK taskname start-add end-add

Operands
ADDR
address

overlay#

TASK

taskname

start-add
end-add

ALL

*

UT-138 sC34-0644

Description

Keyword indicating this is the removal of the breakpoint specification.
Instruction address where the system previously established a breakpoint.
Overlay segment number from where you want $DEBUG to remove the -
breakpoint when the address specified is within the overlay area. You can find (\
the overlay segment number in the link map of the program you are debugging. .

Keyword indicating you want $DEBUG to remove a trace range.

Name of task associated with a trace range; for programs containing only a single
task, omit this parameter.

Trace range starting address.
Trace range ending address.
Remove all breakpoints and trace ranges.

Use the most recently referenced breakpoint or trace range specification. The
system determines this by the last usage of an AT, GO, or OFF command.

$DEBUG

$DEBUG - Debugging Tool (continued)

PATCH — Modify Storage or Registers

PATCH modifies the contents of storage locations, task registers, hardware registers, task code
words, and the IAR (instruction address register). You can modify the entire LSB (level status
block) by patching the IAR with a length specification of 11 words. The patch to any register
data is guaranteed only if a $DEBUG breakpoint or trace range stops the corresponding task. To
respecify the data for the most recent patch or to patch the data the most recent LIST command
displays, enter PATCH *.

The following example shows the PATCH command prompts. You can patch unmapped as well
as mapped storage. Unmapped storage may be patched only after the GETSTG statement is
issued.

Example: PATCH command for unmapped storage.

C

After you enter the patch command, the system displays the current storage or register content,
and you are prompted for the patch data (a string of data entries that satisfies the length and
mode specifications). Use spaces to separate the entries. After you enter the patch data, you
can apply the patch by responding YES, cancel the patch by responding NO, or indicate
additional patches by responding CONTINUE to the prompting message. If you respond
CONTINUE, the system performs the patch and prompting continues for new length, mode, and
data specifications to storage or register locations immediately behind your previous patch.

If you enter less data than specified with the length operand, the effective patch is padded to the
right with blanks for character data and zeros for all other data types.

Chapter 4. Utlites UT-139

$DEBUG

$DEBUG - Debugging Tool (continued)

Syntax:

PATCH *

PATCH RO..

PATCH IAR

PATCH ADDR address
.R7 taskname length mode
PATCH #1/#2

PATCH TCODE
PATCH UNMAP

length mode

taskname length mode
taskname length mode
taskname length mode
storblkaddress swap#f displacement length mode

Operands

%

ADDR

RO...R7

taskname

#1/#2

IAR

TCODE

UNMAP

storblk address

swap#

UT-140 SC34-0644

Description

Use the most recently referenced LIST or PATCH specification. This is determined
by the last usage of a LIST or PATCH command.

Keyword indicating this is a mapped storage patch.

One of the Series/1 hardware registers RO through R7, where you want $DEBUG
to start the patch.

Name of task for which you want $DEBUG to modify register data. For programs
containing only a single task, omit this parameter.

Task register #1 or #2 specification.

Keyword indicating you want the IAR (anstruction address register) to be
modified.

Keyword indicating which task return code word(s) (first two words of the TCB)
you want modified.

Keyword indicating this is an unmapped storage patch.
Address of the storage statement that defines the unmapped storage location you
want $SDEBUG to display. (You can obtain this address from the program

header on a copy of your application program.)

Number of the unmapped storage area instruction. If you specify 0, you can list
mapped storage.

@

$DEBUG

$DEBUG - Debugging Tool (continued)

displacement Number of bytes (in hex) where you want to start listing an unmapped storage
- area. For example, if you enter 1A, $DEBUG begins patching from byte 26 of the
unmapped storage area indicated. The largest possible value for displacement is
X‘FFFF’ since the maximum size of an unmapped storage area is 64K.

length Length of patch in words, doublewords, or characters depending on mode.
mode Mode of data entry:

X - hexadecimal word

F - decimal number(word)

D - decimal number(doubleword)
A - relocatable address

C - EBCDIC character

POST — Post an Event or Process Interrupt

POST activates a task waiting for an event or a process interrupt. To duplicate a previous
posting, enter POST *. The address of the ECB (event control block) that the system will post is
contained in the second word of a WAIT instruction as shown on a program assembily listing.
You can also post process interrupts by name using the PIxx option.

Note: Be sure to enter a valid ECB address; an invalid address will result in unpredictable
results.

Syntax:

POST ADDR address code
POST Plxx code
POST *

Operands Description

ADDR The address of an ECB (event control block).

address ECB address you want posted.

code Decimal code you want posted to the specified ECB.

PIxx Name of process interrupt PI1 to PI99.

* Use the most recently referenced ECB address or PIxx name and code specification.

Chapter 4. Utilities UT-141

$DEBUG

$DEBVUNG” "-”D'ébuggir‘lqg Tool (continued}’

QUALIFY — Modify Base Address

QUALIFY modifies the base address that $DEBUG uses to refer to physical storage locations.

Syntax:

QUALIFY base displ
Q base displ

Operands Description
base New hexadecimal base address.
displ Hexadecimal offset you want added to the base to form the new base address for

all subsequent address references. Enter the origin of the program module as
shown on the link editor listing.

PRINT — Direct Output to Another Terminal

UT-142

SC34-0644

PRINT allows you to direct the output to a terminal other than the one you used to invoke
$DEBUG.

Syntax:

PRINT terminal-name
PRINT *
PRINT

Operands Description

terminal-name The name of the terminal where you want the output directed. To direct the
output back to the current terminal, enter a blank or * to indicate the
terminal you used to invoke $DEBUG.

O

$DEBUG

$DEBUG - Debugging Tool (continued)

WHERE — Display Status of All Tasks

WHERE displays the current status of each task. If a task is currently processing its breakpoint
routine, the system marks it CHECKED. If a breakpoint or trace request has stopped a task or if
$DEBUG has not yet attached the main task, the system marks the task STOPPED. In all other
cases, the system shows that each task is at the currently executing instruction, at the command
it will start executing when dispatched by the task supervisor, or at the last command executed
prior to entering a wait state.

Note: $DEBUG can only locate tasks within a program if the task control blocks (TCBs) are
chained together. This chaining takes place at program assembly time for all tasks that are part
of the assembly containing the main program task. Tasks that are assembled separately and
then linked to the main task will not have their TCBs chained together until the system ATTACHS
the task at program execution time. (See a description of the ATTACH instruction in the
Language Reference.) For $DEBUG to control tasks that are linked to the main task, you must
load into storage the program you are debugging, and you must attach the desired tasks before
you load $DEBUG to control the further execution of the tasks.

Syntax:

WHERE
WH

Required: none

Operands Description

None

Chapter 4. Utilities UT-143

$DICOMP
$DICOMP - Display/Modify Profiles

Use the $DICOMP utility to add display profiles to the composer and to modify existing display
profiles. Because this utility does not change the basic structure of the online data base, you can
use it at the same time you are performing other functions. You can use $DIINTR to cause the

system to generate a partial display. If you need corrections or additions, use $DICOMP to alter
the display profile. '

Invoking $DICOMP
You invoke $DICOMP with the $L operator command or option 5.2 of the session manager.

To start execution of $DICOMP:

1. Load the program $DICOMP specifying the appropriate data set name. You can use $DIFILE,
the online data set, or any other data set. However, you should make sure that another user
or program is not changing or using the same data set.

p

$DICOMP Commands

To display the $DICOMP commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?):.

After $DICOMP displays the commands, it prompts you again with COMMAND (?):. Then you can
respond with the command of your choice (for example, AD).

UT-144 SC34-0644

$DICOMP

~ $DICOMP - Display/Modify Profiles (continued)

AD — Add a New Member to Data Base

Use the AD command to generate a new display profile. The display can be either report or
graphic form. You are prompted to enter a 1-8 character display profile name that the
interpreter will then use to retrieve the display. The next prompt message asks if you want a
display heading. If you respond yes, the system assumes you want a report display. If you
respond no, the system assumes you want a graphic display and prompts you to proceed with
generating the display. You can also select the device where you want the system to route the
output from the interpreter.

Report Display: If you respond N to the question

$DICOMP prompts you to enter the column headings you want. The system allows one line, up
to 132 characters. Following your entry of the column headings, $DICOMP prompts you to enter
the name of the print report data member and then to enter the next command.

Graphic Display: 1If you want a graphic display, you should respond Y to the question

The composer then asks if you want a 3-D object display. If you respond Y, then all following
references to X and Y values will also include the Z value. The composer asks you to enter the
values X, Y, and Z. The system uses them to position the first character of the display heading.
$DICOMP then prompts you for a command, COMMAND (?):. You can use the “Composer
Subcommands” on page UT-147 now to add, change, or insert elements in your display.

AL — Alter an Existing Member

Use the AL command to display each element of a display profile and make changes, using
subcommands, provided you do not change the size of the element and the sequence of
commands. This command is of great value during the trial-and-error period when you are
generating a new display. You can generate a display using the AD command and display the
results using the interpreter. You are allowed to start alteration at the beginning of the member
and display each element in turn or to skip to a specific element within the member. Use the PR
command to display the elements and their sequence numbers. As the system displays each
element, it questions you whether or not you want to alter this element.

If you choose to alter this element, $DICOMP prompts you to reenter the element as described
previously in the AD command. When the system reaches the end of the display profile, the
composer ends and you can redisplay the profile to see if you are satisfied with the corrections.

Chapter 4. Utilities UT-145

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

EN — Exit Program

Use the EN command to exit immediately from the composer.

IN — Insert or Delete Elements in an Existing Member

UT-146

Use the IN command to combine the facilities of the AL and AD commands with the ability to
delete individual display elements. Because the IN command creates a new member in the data
base, you can change the size and sequence of display elements.

Note: We recommend using the $DICOMP utility to verify that sufficient space remains in the
data base. By using the $DIUTIL utility (LA and ST commands), you can determine the size of the
member you want to modify and the remaining space in the data base. As described in the AL
command, the composer displays each element in turn, asking the following questions:

If you elect to keep the entry, the composer proceeds to the next element. If you respond N, the
system displays the DELETE ENTRY? question. If you respond N again, the system displays the
ALTER ENTRY? question. If you respond Y to’this prompt, the composer proceeds with the
alteration process as described in the AL command.

Following the alteration of the display, the system returns control to the ID command and ((’\D
repeats the process for the next element. If you did not alter the element, the system prompts » w__
you to insert a new subcommand. At this point, all the functions of the AD command are

available. You can add one display element. the system then returns control to the ID command

and redisplays the previous element and repeats the sequence.

Again, as in the alteration procedure, you must step through each element in the display profile
before completion. When the system reaches the end of the display, it issues the following
message:

The composer then returns to the AD command and you can enter additional commands.

Note: You must issue an SA (save) subcommand to end insertion of data. When you issue the
SA subcommand, the composer deletes the old member and renames the newly-built member
with the old name. This procedure makes the modified version available to the interpreter. It is
recommended that you use $COMPRES to compress the data base following insert activity to
prevent fragmentation of the data base and reclaim unused space.

SC34-0644

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

PR — Print Member Formatted

Use the PR command to display, on the terminal or printer, the contents of a display profile
member formatted the same way as the AL and IN commands. This display is useful as an aid in
maintaining display profiles. To obtain a high-speed hard copy, direct the listing to the
$SYSPRTR.

TD — Test Display as Currently Entered

When you issue the TD command, $DICOMP prompts you for the name of a plot control member
and then invokes $DIINTR to generate the specified display. The system returns control to you to
make changes.

Composer Subcommands

When adding, altering, or inserting elements in a member, use subcommands. These are listed
below and described on the following pages. When you enter a subcommand, the system places
it in to modify the member. The interpreter can use the member later to generate the desired
display. You can use the following subcommands:

Method for Producing a Graphic Display

The suggested method to produce a graphic display is to draw the display on graph paper first
and assign X and Y coordinates to the key nodes in the display. Then use this drawing as a guide
to the generation of the display, keeping in mind the screen limits of the terminal you will use.
The view area of the graphic terminals supported is shown in Figure 11 on page UT-148.

Figure 12 on page UT-148 shows the space supported in 3-D mode.

Chapter 4. Utilities UT-147

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

0 to 1023
Y units
addressable

Oto 779

X units
addressable

\

'4—0 to 1023-—-—»[-

| Normal viewing area

Y units

[/

Figure 11. X,Y coordinate grid and viewing area

s 32767
|
| 0 - I
.g I
N |
Jj S 32767
Ve /
yd -
/ 0 _{ 'b*\
4 /
32768 , -32768 /
-32768 0 32767
- X axis >

Figure 12. X,Y,Z coordinate grid and viewing area

UT-148 SC34-0644

€3

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

AD — Advance XY

Use the AD subcommand to move the beam position by the value specified. This can be helpful
in displaying data with even spacing on the screen. After issuing a DR subcommand using a
symbol, AD advances the X,Y position to the next position without regard to the actual screen X,Y
location. The limit for the specified X or Y value is plus or minus 512 units. If you are defining
a 3-D object, then the system requests the Z axis value as well.

DI — Direct Output

Use the DI subcommand to direct the resulting graphic output to a terminal other than the one
you used to enter commands. The terminal name you enter is the label of the TERMINAL
statement used to describe the desired terminal.

DR — Draw a Symbol

Use the DR subcommand to draw a predefined symbol. Several commonly used symbols have
been provided. In specifying a symbol, you are prompted to enter the symbol number and the
symbol modifier. These values are used by the interpreter to generate the requested symbol.
Some of the symbols require additional information. If so, the system prompts you for this
additional information. Valid symbol numbers are 1 through 14. The following examples
illustrate specifying symbols 1 through 14.

Symbol # - 1: Draw fan symbol left hand format.

and opening on left side

Modifier = Radius of fan body R I
of fan. Must be a multiple of 4.

= start and end X,Y current %R
position.

Symbol # - 2: Draw fan symbol right hand format.

and opening on right side

Modifier = Radius of fan body R I R
of fan. Must be a multiple of 4.

= start and end X,Y current %R
position.

Chapter 4. Utilities UT-149

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

Symbol # - 3: Draw damper vertical.

-——— ———

16 Units Y
Modifier = Number of damper pairs
to be generated in the down direction.
40 Units X
= start and end X,Y current position.
Symbol # - 4: Draw damper horizontal.
—— ——) ————
/
40 Units Y
Modifier = Number of damper pairs \
to be generated to the right.
= start and end X,Y current | I
position. 16 Units X
Symbol # - 5: Draw a hot coil.
—— .._. —
16 Units Y

Modifier = Number of hot coil pairs
to be generated in the down direction.

=gtart and end XY current
position.

12 Units X

UT-150 SC34-0644

@

-

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

Symbol # - 6: Draw a cold coil.

—_— _..{_ —_
16 Units Y

Modifier = Number of double pairs \\
to be generated in the down direction.

=start and end X,Y current | . |
position. 16 Units Y

Symbol # - 7: Draw a filter element.
16 Units Y

Modifier = Number of elements
to be generated in the down direction.

8 Units X

= gtart and end X,Y current position.

Symbol # - 8: Draw a valve.

l*]}6 Units Y

]

I .
For 2-way valve [—

|

|

|

Modifier = 2 32 Units X

For 3-way valve
Modifier = 3

32 Units Y

= start and end X,Y current position.

Chapter 4. Utilites UT-151

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

Symbol # - 9: Draw an arrow.

Modifier =

1 for left
2 for right
3 for up

4 for down

= start and end XY current position.

-<| }:8 Units Y
—

16 Units X '

16 Units Y
8 Units X jea]

16 Units Y

Symbol # - 10: Draw a logic block right.

Modifier = Radius of half circle.
Must be a multiple of 4.

= start and end X,Y current position.

16

Symbol # - 11: Draw a logic block left.

Modifier = Radius of half circle.
Must be a multiple of 4.

= start and end X,Y current position.

2R

UT-152 sC34-0644

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

Symbol # - 12: Draw a circle.

Modifier = Radius of Circle.
Must be a multiple of 4.

= start and end XY current position.

Symbol # - 13: Draw an arc right.

Modifier = Radius of circle.
Must be a multiple of 4.

= start and end X,Y current position. R
Note:
This symbol requires additional values. R

1. Draw arc up or down. Enter zero for down or one for up.

s
(,} 2. Number of Y units to draw arc. Must be a multiple of 4.

Note:
This symbol always starts at X=0 and proceeds until
the Y units have been exhausted.

Symbol # - 14: Draw an arc left.

Modifier = Radius of circle. R
Must be a multiple of 4.

= start and end. X,Y current R
position.

Note:
See note under symbol 13 for additional information.

Chapter 4. Utilites UT-153

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

EN — Exit Program

EP — End Display

HX — Send Data

Use the EN subcommand to terminate without updating the display profile data base directory.
All data collected up to this point for this member is lost.

Use the EP subcommand to specify that the end of this section of the display has been reached.
Normally, you would follow this command with the SA subcommand. However, this command
can be useful if a jump zero/not zero causes the interpreter to take alternate paths. Use the EP
subcommand at the end of each of these paths instead of an unconditional jump to a common
ending point.

Use the HX subcommand to send up to 16 words of data without conversion to the terminal. All
bit patterns are valid; therefore, you can send control or special data to the terminal.

IM — Insert Member

Use the IM subcommand to combine display profile members to form one display. M allows you
to conserve disk space, decrease time required to enter display profiles, and standardize display
formats. For example, you can build a display profile member to represent a common
background of a physical system or floor plan. Then, by defining another display profile
member, you can superimpose on the background the variables that will make the display
unique. the system permits only one level of nesting. That is, a member you insert using the IM
subcommand cannot contain any IM subcommands. However, a primary member can include
multiple IM subcommands.

JP — Jump to Address

Use the Jp subcommand to change the sequence of execution of subcommands. There are three
types of “jump to address” subcommands that you can use. They are:

o Jump Unconditional
o Jump if Zero
e Jump if Not Zero

As described in the display variable command, the conditional jump commands are dependent
on the use of the realtime data member. If you select conditional jump, then the jump is based
on the current condition (zero/not zero) of the specified word and record. Jump unconditional
prompts you to enter a JR subcommand. This reference is two characters and is resolved when
you define a JR subcommand (see the JR subcommand definition). If you select a conditional
jump, the system issues prompt messages requesting word number and record number.
Following the definition of these two codes, the system prompts you to enter the JR
subcommand. The jump to reference for a conditional jump is the same as that of an
unconditional jump. The following example shows the use of the JP subcommand.

UT-154 SC34-0644

O

C

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

Command sequence using jump:

The preceding example draws a fan symbol at 200,200 either right or left-depending on the
zero/not zero condition of the realtime data member word 0, record 4.

In the preceding sequence, the first JP causes a jump to JR AA if word O of record 4 is zero. The
second JP causes an unconditional jump to JR BB.

JR — Jump Reference

Use the JR subcommand to indicate to the composer that this location in the command sequence
is referred to in a JP subcommand. The location is defined by 2 characters. If you have used
these characters already, the system issues an error message. If you exceed the capacity of the
JR table, the system issues an error message. The capacity of the jump reference table is 40
unique jump reference points for each display.

LB — Display Characters
Use the LB subcommand to place a character string on the screen. You do not have to use an
MP subcommand to position the beam because LB allows specification of the location of first
character. If you are defining a 3-D object, then the system requests X, Y, and Z values. The

system can display up to 72 characters. The ending X,Y position is 1 character position beyond
the last character in the string.

LI — Draw a Line to X,Y

Use the LI subcommand to draw a vector to the specified X and Y coordinates from wherever
you left the beam with the previous command.

Chapter 4. Utilities UT-155

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

600 /
200

| |
100 600

Draw line to X=600 Y=600 Line shown on screen
END X,Y Current position

When generating a 3-D display, the system requires 3 values. These values are X, Y, and Z.

600 — [—— — —
0 T

Draw line to X=600 Y=600 Z=600
END X)Y.Z

LR — Draw Line Relative

UT-156

SC34-0644

Use the LR subcommand to draw a line relative to the current position. For example, you can
(through the use of the MP, JP, and JR subcommands) position the beam at various current
positions based on Realtime Data Member conditions. Then you can draw a series of lines to
form a symbol using the LR subcommand. This would have the effect of placing the symbol at
various screen locations based on external conditions. The limits allowed for the X,Y values are
plus or minus 512 units. If you are defining a 3-D object, then the system also requests Z axis
value.

O

.

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

MP — Move Beam to X,Y

Use the MP subcommand to draw a dark vector to the specified X and Y coordinates. A dark
vector is not visible and, therefore, results in moving the beam to the specified location.

2004 e

100

Beam moved to X=100 Y=200 Nothing shown on screen
END X,Y Current position

When generating a 3-D display, the system requires 3 values. These values are X, Y, and Z.

100 _ A

o[T
<100

|
l —0
I
1

Beam moved to X=100 Y=100 Z=100
END X,Y,Z Current position

PC — Plot Curve Only

Use the PC subcommand to provide multiple curves on an existing background as defined by a
preceding PL command. Refer to the following section (PL) for descriptions of entry procedure.
Steps 9 and 10 in that section are the only required actions. You can include as many PC
subcommands as you need to obtain the desired results

PL — Plot Data

Use the PL subcommand to format the viewing area into a basic plotter. The system provides
options for X and Y labels as well as X and Y grids. The system prompts you to include the name
of a plot curve data member. Refer to “$DIUTIL - Maintain Partitioned Data Base” on page
UT-220 for information regarding the allocation and formatting of the plot curve data member.
The following illustrates the information that PL requires to format the viewing area into a basic
plotter. 1) Enter the number of the Y axis divisions

Chapter 4. Utilites UT-157

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

p-To present a readable display, it is suggested that you make this value under 20. However, if
you bypass Y axis division values (Step 7), then you may use larger values. Y axis divisions
become unreadable when this value exceeds 125. 2) Enter the number of the X axis divisions

To present a readable display, it is suggested that you make this value under 40. However, if
you bypass X axis division values (Step 8), then you may use larger values. X axis divisions
become unreadable when this value exceeds 200. 3) Vertical Grid?

A Y answer causes the Composer to include commands to connect the X axis divisions (specified
in 2 preceding) to the top of the viewing area. Specifying an N bypasses this feature. 4)
Horizontal Grid?

Specifying a Y causes the Composer to include commands to connect the Y axis divisions
(specified in 1 preceding) to the right side of the viewing area. Specifying an N bypasses this
feature. 5) Enter Y axis label - 24 characters

You must enter the Y axis label. If you do not want an axis label, press the enter key. This label
is general in nature and is placed at the left side of the viewing area. This label is vertical, that
is, one character appears under the next. 6) Enter X axis label - 24 characters

You must enter the X axis label. If you do not want an X axis label, press the enter key. This
label is general in nature and is placed near the lower portion of the plot viewing area. 7) Y axis
division values?

If you want Y axis division values, respond with a Y. The composer asks for as many values as ."()
you have specified divisions plus 1 (see Step 1). You must enter 6 characters for each division.

The first value the system requests is the value for the Y base line and each succeeding value is

for the next division in the plus Y direction. 8) X axis division values?

If you want the X axis division values displayed, respond with a Y. The composer asks for as
many values as you have specified divisions plus 1 (see Step 2). You must enter 6 characters for
each division. The first value the system requests is the value for the X base line and each
succeeding value is for the next division in the plus X direction. 9) Enter Name of Member for
Plot Data

Enter the name of a plot curve data member. You must must have allocated and initialized this
member with the the utility program $DIUTIL. Refer to “$DIUTIL - Maintain Partitioned Data
Base” on page UT-220 for procedures on allocating and initializing this member. 10) Is This
Plot a Point Plot?

The composer allows you to use of any valid printable character for the plot. If you specify Y,
the system requests the plot character you want. If you specify N, then the system uses a normal
line for the curve

The preceding steps generate the necessary commands to cause the system to display a basic
plot background and superimpose one curve on that background. If you want additional curves,
then you must issues PC subcommands next.

UT-158 SC34-0644

$DICOMP

$DICOMP - Display/Modify Profiles (continued)

RT — Activate New Realtime Data Member

Use the RT subcommand to define multiple realtime data members. This subcommand allows
you to switch from one member to another during the generation of a display. The default name
for the realtime data member is REALTIME.

SA — Save Accumulated Data

Use the SA subcommand to specify that completion of a display profile has been reached. The
composer enters the member name into the directory of the display profile data base and makes
it available for the interpreter.

TD — Display Time and Date

Use the TD subcommand to display the current time of day and date from the realtime clocks
used by the Event Driven Executive. You are reminded that prior to issuing a TD subcommand,
you may have to issue an MP subcommand to position the beam to the display location you want.
The TD subcommand displays the time and date in the following format:

Where: HH is Hours

MM is Minutes
SS is Seconds
MM is Month
DD is Day

YY is Year
VA — Display Variable

Use the VA subcommand to place a data variable from the Realtime Data Member on the
screen. $DICOMP issues a prompt message asking if you wish to locate the data at a location
other than the current X,Y position. If you are defining a 3-D object, then the system requests X,
Y, and z This subcommand requires that you allocate the realtime data member. The composer
continues by asking you for the record number and word number. The record number is the
record number within the realtime data member. The word number is the word number within
the record specified. This value is in the range of 0—8.

The system requests the function code next and indicates the type of variable to be displayed.
Valid function codes are as follows:

0 Single-precision integer

Chapter 4. Utilities UT-159

$DICOMP
$DICOMP - Display/Modify Profiles (continued)

&

1 Double-precision integer

2 Standard-precision floating point
3 Extended-precision floating point
15 Character data

The system requests type code next. It is an indicator of the format of the value to be displayed.
Valid type codes are:

0 Integer
1 Floating-point F format
2 Floating-point E format

The system requests field width and number of decimal places next. If the variable is an integer,
the number of decimals should be zero.

UT-160 SC34-0644

$DIINTR

$DIINTR - Graphics Interpreter Utility

The $DIINTR interpreter utility searches the data base and generates the display you request.
You can generate both graphic and report displays in this manner. Each display profile is made
up of many display profile elements. Each element, when retrieved from the data base by the
interpreter, is decoded and converted to the appropriate command to cause the system to
perform the action you request. Each display profile element contains various parts, such as
display code, X and Y coordinates, symbol ID, and symbol modifier. Realtime data member
record number and additional member names are included in the display profile element.

Invoking $DIINTR
You invoke $DIINTR with the $L operator command or option 5.3 of the session manager.
To begin operation of the interpreter, you must first load $DIINTR. The system directs output to

the terminal that requests the display or as directed by the display profile. Use the following
steps to initiate the processor monitor: 1) Load $DIINTR.

2) The system responds with the prompt message:

3) To terminate the interpreter, enter EXIT. To cause the interpreter to prepare the display,
enter the display ID.

Using $DIINTR from an Application Program

You can $DIINTR from an application program to allow displays without operator assistance.
Following is an example of loading $DIINTR from an application program:

Chapter 4. Utilitiess UT-161

$DIINTR

$DIINTR - Graphics Interpreter Utility (continued)

.

* Your program

LOAD $DIINTR,MBRNME,DS=($DIFILE) , EVENT=#WAIT, C
LOGMSG=NO
WAIT #WAIT

MBRNME DATA CL8'DISPLAY'

Si DATA F'O' THESE 8 VALUES ARE FOR 3D OBJECTS
S2 DATA F'O' *
S3 DATA F'0O' *
D DATA F'O' *
T DATA F'O' *
R DATA F'O' *
D1 DATA F'0O' *
T1 DATA F'0O' *

You must supply eight values to describe the manner in which you want the system to display a
three-dimensional (3-D) object. Coding of these values is shown in the above example starting
with S1 and continuing to T1. The following describes the meaning of these values when you

pass them to $DIINTR. (RN
_
S1 Platform Location X=
S2 Platform Location Y=
S3 Platform Location Z=
D Platform Direction in Degrees
T Platform Tilt in Degrees
R Platform Rotate in Degrees
D1 View Direction in Degrees
T1 View Tilt in Degrees

These values are single-precision integers and may contain a numeric value from -32768 to
+32767.

You must have a 4955 processor with floating-point hardware installed to display 3-D images.

Three-dimensional (3-D) Concepts as Used by $DIINTR

Three-dimensional (3-D) objects can be defined by $DICOMP and placed on disk or diskette in
much the same way as with a two-dimensional (2-D) object. The only difference is that each
point in space has three values associated with it instead of two. These three values represent
the X, Y, and Z coordinates of the point in space. The following illustration shows the limits of
the defined area in space. The maximum limits of the defined areas in space are -32768 to
+32767. You can define one or more objects within this cube. Once you define the object, you
can view it from any location within the same space. To specify the location from where you

UT-162 SC34-0644

$DIINTR

SDIINTR - Graphics Interpreter Utility (continued)

O

wish to view the object, either pass these eight values through the use of the PARM= parameter
in the LOAD instruction or, if you invoked it by the $L. command, wait for $DIINTR to request this
input. The concept used to compute the 2-D representation of a 3-D object is as follows. The
system assumes the viewer is suspended on a platform at a specific location in space. The first
three values are the X, Y, and Z values that define the location in space of the viewing platform.
The next five values represent the physical orientation of the platform and the viewer’s
orientation on that platform.

Platform Direction in Degrees

Assume the following unit vector:

If this unit vector is rotated in the direction Y to X around the Z axis, you can turn the view in
any direction. A plus value causes the unit vector to rotate clockwise as viewed from the Z axis
to zero.

0. Platform Tilt in Degrees

Assume the following unit‘vector:

If this unit vector is rotated in the direction Z to Y around the X axis, you can tilt the view to any
angle. A plus value causes the unit vector to rotate clockwise as viewed from the X axis to zero.

Chapter 4. Utilities UT-163

$DIINTR

$DIINTR - Graphics Interpreter Utility (continued)

Platform Rotate in Degrees

Assume the following unit vectors:

If this unit vector is rotated in the direction Z to X around the Y axis, you can rotate the view to
any angle. A plus value causes the unit vector to rotate clockwise as viewed from the -Y axis to
Zero.

View Direction In Degrees

The system uses this value in the same way it uses the Platform Direction, but it calculates the
value after it computes the above three. This calculation rotates the unit vector in a'y to X
direction around the Z axis with a plus value causing the unit vector to rotate clockwise as
viewed from the Z axis to zero.

View Tilt In Degrees

UT-164

The system uses this value in the same way it uses the Platform Tilt, but it calculates the value
after it computes the above four. This calculation rotates the unit vector in a Z to X direction

around the Y axis with a plus value causing the unit to rotate clockwise as viewed from the -y

axis to zero.

Once the eight values you provided are computed, the system converts the object in space to its
2-D representation and sends it to the terminal. It is possible to view an object with all or a
portion of it outside the viewing area. The system does not show points and lines that do not
fall within the viewing area. Figure 13 on page UT-165 shows the viewing area.

SC34-0644

$DIINTR

0 $DIINTR - Graphics Interpreter Utility (continued)

3D obiject in space

> 2D obiject on screen

/ - /
z

L—— Viewing screen

Platform location
Distance between platform location and viewing screen = 1

Figure 13. Viewing Area in 3-D Mode

Chapter 4. Utilities UT-165

$DIINTR

$DIINTR - Graphics Interpreter Utility (continued)

UT-166

The following example defines a 3-D object in space:

. A Cube

-100
+100
+100
-100
-100
-100
+100
+100
-100
-100
+100
+100
+100
+100
-100
-100

-100
-100
-100
-100
-100
+100
+100
+100
+100
+100
-100
+100
-100
+100
-100
+100

-100
-100
+100
+100
-100
-100
-100
+100
+100
-100
-100
-100
+100
+100
+100
+100

Object as viewed from:

S1
S2
S3
D
T
R
D1
T

SC34-0644

O

$SDIINTR

$SDIINTR - Graphics Interpreter Utility (continued)

o

Object as viewed from:

S1 -150
S2 -400
S3
D
T
R
D1
T

[eNeNoNeoNoNo]

Obiject as viewed from:

S1 -150
S2 -400
S3 100
D 0

T 0

R 45
D1 0

T1 0

Chapter 4. Utilities

UT-167

$DIRECT

S$DIRECT - Directory Organization Sort

$DIRECT sorts a disk or diskette volume directory. $DIRECT sorts alphabetically, by size, by

fic order.

, Or in speci

location on disk

Notes

1. Allocation or deletion of a data set alters the ordering of the data sets.

ince the utility

ith $DIRECT s

ther possible nor necessary to use the $C command w

is nei
patches itself.

It

2.

Invoking $DIRECT

$DIRECT prompts you to set the

i3

it

You invoke $DIRECT with the $L command. When you load

screen mode which

Output

in roll
1ls up

1

ma.

terminal to roll screen mode. If you respond Y, it places the term

means you do not need to press the enter key each t

rolls” off

(13

fi .

the screen

me

If you respond

the top of the screen as new terminal output appears at the bottom of the screen

N, you must press the enter key each time the screen fills up

o

e

e

.

o
e
suaw

e
.
e

e
e
e

-

o

dee

-

=
=

g
-

o
.
e

=

e

Ao

o

.
-

-

Shiy
P
o

-

S

e

E

.

e

e

-

a

a e
e o

e

s

S
B

|

tory sort.

1reC

$DIRECT then prompts you for the volume you want accessed for the d

If you enter an incorrect or nonexistent volume name, $DIRECT issues the following message

If you reply Y, $DIRECT prompts you for another volume name. If you respond N, $DIRECT ends.

SC34-0644

UT-168

$DIRECT

$SDIRECT - Directory Organization Sort (continued)

O

$DIRECT Commands

To display the $DIRECT commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?):.

COMMAND (?) S
v —--- CHANGE VOLUME o
~ LIST ALL MEMBERS IN OLUME

After $DIRECT displays the commands, it prompts you with COMMAND (?): again. Then you can
respond with the command of your choice (for example, LA). $DIRECT prompts you for any
parameters the requested function requires.

Each command and its explanation is presented in alphabetical order on the following pages.
AO — Alphabetical Order Sort

"'\ Use the AO command to sort the directory in alphabetical order. This command makes it easier
for you to find a data set in a directory list.

Example: Sort alphabetically.

After executing the AO command, the directory looks as follows:

Chapter 4. Utilities UT-169

SDIRECT
$DI‘RECT - Diréctory 'Organizati‘on Sort (continued)

CV — Change Volume to be Accessed for Directory Sort

Use the CV command to change the volume you want to access for your directory sort. This

command displays the volume the system is using currently and prompts you for the name of the
the volume you want to access.

Example: Change volume.

DL — Sort By Location on Disk/Diskette
Use the DL command to sort the directory by the data set location on disk/diskette.

Example: Sort by location.

3
4

N

After executing the DL command, the directory looks as follows:

UT-170 8C34-0644

$DIRECT

O SDIRECT - Directory Organization Sort (continued)

EN — End $DIRECT

Use the EN command to end the $DIRECT utility.

Example: End $DIRECT.

 COMMAND (?): EN

_ $DIRECT ENDED AT 08

Chapter 4. Utilities

UT-171

$DIRECT

$DIRECT - Directory Orgénization Sort (continued)

LA — List All Data Sets in a Volume

Use the LA command to list all the data sets contained in a specified volume. Press the attention

key and enter the CA command to cancel the list and return to the COMMAND (?): prompt.
Example: List data sets on EDX002.

e
v

et
s

G
we e

SA — Sort By Ascending Data Set Size

Use the SA command to sort the directory by ascending (smallest-to-largest) data set size.
Example: Sort directory in ascending order.

k

UT-172 SC34-0644

$DIRECT

$SDIRECT - Directory Organization Sort (continued)

O

SD — Sort By Descending Data Set Size

Use the SA command to sort the directory by descending (largest-to-smallest) data set size.

Example: Sort directory in descending order.

After executing the SD command, the directory looks as follows:

Note: Sorting the directory in descending order can be beneficial if you want to copy
N the volume to another volume. By placing the largest members at the top of the
C directory, the system copies them first. This decreases fragmentation of disk space and
gives you the best chance of doing the copy without having to compress the target
volume.

Chapter 4. Utilitess UT-173

SDIRECT
$DIRECT - Directory Organization Sort (continued)

O

UD — Sort Directory in Predefined Order

Use the UD command to place members in the order you feel is most desirable for retrieval. You
can put the most frequently accessed data sets at the top of the directory to increase speed of
retrieval. This command prompts you for a previously allocated data set containing the order,
by data set name, in which you want the directory sorted. You create this data set using
$FSEDIT. The system allows only one data set name for each 80-byte record and you must begin
that name in column 1. The first record must be // and the last must be /*. The /* marks the
logical end of data which may or may not be the physical end of data.

Example: The following is an example of a data set named TESTSORT on EDX002.

U

UT-174 SC34-0644

O

C

$DIRECT

$DIRECT - Directory Organization Sort (continued)

The utility reorders the directory as specified by the input data set.

The utility reorders the directory as follows:

Chapter 4. Utilities UT-175

$DIRECT

$DIRECT - Directory Organization Sort (continued)

UT — Sort Directory in Desired Order Interactively

Use the UT command to place members in the order you feel is most desirable for retrieval. You
can put the data sets you access most frequently at the top of the directory to increase speed of
retrieval. This command prompts you for member names you want to place at the top of the
directory. A blank ends the command.

Example:

The utility reorders the directory to look as follows:

UT-176 SC34-0644

R
~ /

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data

O

$DISKUT1 performs several commonly-used disk or diskette storage management functions. With
this utility, you can:

« Rename a data set.
« List data sets.
» Direct listings to $SYSPRTR or terminal.

Note: For tape management functions, see “$TAPEUT1 - Tape Management” on page
UT-522.

Loading $DISKUT1

You load $DISKUT1 with the $SL command or option 3.1 of the session manager.

..")1‘
C/‘ When you load $DISKUT1, it issues the following message:

where XXXXXX equals the IPL volume. The $DISKUT1 commands, with the exception of CV and
EN, act upon the IPL volume.

To point to another volume, enter the CV command and the name of the volume. All commands
act upon the specified volume until you change them by another Cv command or until you end
and reload $DISKUT1. If you specify an invalid volume on a CV command, $DISKUT1 uses the IPL
volume if it is available. If the IPL volume is not available, the system issues the message NO
VOLUME AVAILABLE. You can either end $DISKUT1 or do a CV command with a valid volume.

Chapter 4. Utilities UT-177

$SDISKUT1
$DISKUT1 - Allocate/Delete/List Directory Data (continued)

$DISKUT1 Commands

To display the $DISKUT1 commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?):.

UT-178 SC34-0644

O

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data (continued)

After $DISKUT1 displays the commands, it prompts you once again with the prompt, COMMAND
(?):. Then you can respond with the command of your choice (for example, AL). Each
command and its explanation is presented in alphabetical order on the following pages.

Notes:

1.

You can enter a prefix on the commands that have an asterisk. The prefix can be up to eight
(8) characters. If you do specify a prefix, the system lists only those data sets beginning
with the prefix.

To cancel a long list, press the attention key, press the enter key, then enter CA.

Note: For a 3101 display terminal, press the attention key and enter CA.

If your system includes timer support and you direct output to the $SYSPRTR, the system
includes the time and date in the listing.

For the 4962 disk and the 4963 disk subsystem, the system shows disk locations in cylinder,
track, and sector (CTS) format instead of by record number.

For the 4967 disk subsystem, as well as DDSK-30 and DDSK-60 disks, the system shows
disk locations in relative block address (RBA) format instead of by record number.

Chapter 4. Utitities UT-179

$DISKUT1
$DISKUT1 - Allocate/Delete/List Directory Data (continued)

AL — Allocate a Data Set

Use the AL command to allocate a data set. $DISKUT1 prompts you for the following
information:

+ The name of the data set

« The size of the data set in records

o The organization type.

The Event Driven Executive recognizes two types of data sets: data-type and program-type. A
data-type data set contains work files, user source modules, and application data sets. A
program-type data set contains executable (loadable) EDL programs.

Select one of the following organization types:

D Data organization for data sets used as work files, user source modules, and application
data sets.

P Program organization for data sets that will contain executable (loadable) Event Driven
Executive Language programs. Use this for executable object programs (the output of
$UPDATE/$UPDATEH).

Example: Allocate a 100-record data-type data set named DATAFILE. ((™

UT-180 SC34-0644

SDISKUT1
$DISKUT1 - Allocate/Delete/List Directory Data (continued)

CV — Change Volume

Use the Cv command to change the volume you want to access with other commands. $DISKUT1
prompts you for the new volume label after you enter the Cv command.

Example: Change volume.

DE — Delete a Data Set

Use the DE command to delete a data set. $DISKUT1 prompts you for the name of the data set
(member) you want to delete.

Example: Delete a data set named DATAFILE

Chapter 4. Utilities UT-181

$DISKUT1
SDISKUT1 - Allocate/Delete/List Directory Data (continued)

@

DG — Delete All Members Starting with Text

Use DG to delete data sets that start with a specific prefix. The system displays each data set
starting with the specified prefix and $DISKUT1 prompts you as shown in the example. If you do
not want to display each data set, use the SNQ command to turn off the prompt mode. $DISKUT1
then deletes the appropriate data sets without verification.

Example: Delete all data sets starting with the prefix $z.

Respond Y to the DELETE? prompt to delete a data set or N to cancel the delete function.
$DISKUT1 continues prompting for each data set on the volume with the specified prefix.

Note: NA means that the end-of-data pointer and flag in the directory member entry have not
been set.

DGD — Delete all Data-Type Data Sets Starting with Text

Use the DGP command to delete all data-type data sets starting with a specific prefix. DGD
operates in the same manner as DG except that you can only delete data-type data sets.

DGP — Delete All Programs Starting with Text

Use the DGP command to delete all program-type data sets starting with a specific prefix. DGP
operates in the same manner as DG except that you can only delete program-type data sets.

UT-182 SC34-0644

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data (continued)

DNG — Delete All Data Sets Not Starting with Text

Use the DNG command to delete all data sets (data- and program-type) not starting with a
specific prefix. $DISKUT1 displays each data set that doesn’t start with the specified prefix, then
prompts you as shown in the example. If you do not want to be prompted for each data set, use
the SNQ command to turn off the prompt mode. $DISKUT1 then deletes the appropriate data sets
without verifying them.

Example: Delete all data sets that do not start with the prefix $Z.

Respond Y to the DELETE? prompt to delete a data set and N to cancel the delete function.
$DISKUT1 continues prompting for each data set on the volume with the specified prefix.

Note: NA means that the end-of-data pointer and flag in the directory member entry have not
been set.

Chapter 4. Utilities UT-183

$DISKUT1
$DISKUT1 - Allocate/Delete/List Directory Data (continued)

DNGD — Delete All Data-Type Data Sets Not Starting with Text

Use the DNGD command to delete all data-type data sets that do not start with a specific prefix.
DNGD operates in the same manner as DNG except you can only delete data-type data sets.

DNGP — Delete All Programs Not Starting with Text

Use the DNGP command to delete all program-type data sets not starting with a specific prefix.
DNGP operates in the same manner as DNG except you can only delete program-type data sets.

EN — End the Program

Use the EN command to end the $DISKUT]1 utility.
LA — List All Data Sets

Use the LA command to list all data sets (data- and program-type) on a specific volume.

P

UT-184 SC34-0644

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data (continued)

Notes:
1. EOD is the displacement to the next available record for data-type data sets.

2. NA means that the system has not set the end-of-data pointer and flag in the directory
member entry.

To cancel a long list, press the attention key, press the enter key, and enter CA.
LACTS — List All Data Sets in CTS/RBA Mode

Use the LACTS command to list all data sets (data- and program-type) on a specific volume.
For the 4962 disk and the 4963 disk subsystem, the system shows the disk locations of the data

sets in CTS format. For the 4967 disk subsystem, as well as DDSK-30 and DDSK-60 disks, the
system shows the disk locations of the data sets in RBA format.

Example 1: List all data sets in CTS format. Volume EDX001 resides on a 4963 disk
subsystem; the system shows the disk locations of the data set in CTS format.

Chapter 4. Utilities UT-185

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data (continued)

Example 2: List all data sets in RBA format. Volume EDX001 resides on a 4967 disk
subsystem; the system shows the disk locations of the data sets in RBA format.

8864 FREE RECORDS (N LIBRA Sl ensan T e

UT-186 SC34-0644

3

~

$DISKUT1

$DISKUTT1 - Allocate/Delete/List Directory Data (continued)

LAD — List Data Sets on All Volumes

Use the LAD command to list all data sets (data- and program-type) on all volumes. You may
only want to list data sets starting with a specific prefix. Do this by entering the LAD command
followed by the prefix. This command is useful in finding a data set when you do not know the
name of the volume where it resides or if the same data set appears on multiple volumes.
$DISKUTT1 lists the name of each data set along with the following information:

the type (data or program)
« the number of the first record in the data set

the size of the data set

the last record in a data-type data set or the number of records in a program-type data set

+ the volume where it resides.

Example: List data sets with a prefix of ‘S’ in all volumes.

Chapter 4. Utilities UT-187

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data (continued)

LAV — List All Volumes @)

UT-188

Use the LAV command to list all volumes on your Series/1. The LAV command scans all existing
volumes and $DISKUT!1 lists the name of each volume along with the following information:

o the device address

o the number of the first record on the volume

« the size of the volume.

When it finishes the scan, $DISKUT1 points to the last volume accessed.

Example:

(

COMMAND (2): LAV

DEVICE ADDRESS

O

To cancel a long list, press the attention key and enter $C $DISKUT1. This cancels the listing and
$DISKUTI.

SC34-0644

$DISKUT1

$DISKUTT1 - Allocate/Delete/List Directory Data (continued)

O

LD — List Data-Type Data Sets

Use the LD command to list all the data-type data sets on a specific volume, the number of the
first record in the data set, and the size of the data set.

Example: List the data sets on volume EDX001.

Notes:

1. EoD is the displacement to the next available record.

2. NA means that the system has not set the end-of-data pointer and flag in the directory

(t\ member entry.
P

LDCTS — List Data-Type Data Sets in CTS/RBA Mode

Use the LDCTS command to list only data-type data sets on a specific volume. Depending upon
the disk on which the volume resides, the system shows the locations of the data sets in CTS or
RBA format.

For the 4962 disk and the 4963 disk subsystem, the system shows the disk locations of the

members in CTS format. For the 4967 disk subsystem, as well as DDSK-30 and DDSK-60 disks,
the system shows the disk locations of the members in RBA format.

Chapter 4. Utilities UT-189

SDISKUT1
$DISKUT1 - Allocate/Delete/List Directory Data (continued)

Example 1: List all data sets in CTS format. Volume EDX001 resides on a 4963 disk
subsystem; the example shows the disk locations of the data sets in CTS format.

Example 2: List all data sets in RBA format. Volume EDX001 resides on a 4967 disk
subsystem; the example shows the disk locations of the data sets in RBA format.

UT-190 SC34-0644

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data (continued)

LISTP — Direct Listing to $SYSPRTR

Use the LISTP command to direct all $DISKUT! listings to the device designated as the $SYSPRTR.

Once you specify this command, the system directs all listings to $SYSPRTR until you specify
another device.

Example: List all subsequent $DISKUT! listings to the $SYSPRTR.

LISTT — Direct Listing to Terminal

Use the LISTT command to direct all $DISKUT!1 listings to the terminal that invoked $DISKUT1.

Once you specify this command, the system directs all listings to that terminal until you specify
another device.

Example: List all subsequent $DISKUT1 listings to the terminal that invoked $DISKUTI!.

LM — List a Specific Data Set
Use the LM command to list the description of a specific data set (data- or program-type).

$DISKUT!1 lists the data set type, the disk location of the first record, the size of the data set and
the EOD. The EOD is the displacement to the next available record for data-type data sets.

Chapter 4. Utilities UT-191

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data (continued)

UT-192

O

Example 1: List the directory description of a data-type data set (member).

For the 4962 disk and the 4963 disk subsystem, the system shows the disk location of a data set
in CTS format.

Notes:
1. 10DA=1/0 device address; CTS=cylinder, track, and sector. In this example, the data set is

on the device at device address 003 at cylinder 22, track 01, from sector 16 through sector

21.
2. FIRST RECORD is the number containing the first record of the data set. —
Example 2: List the directory description of a program-type data set (member). QL_ ;D
For the 4967 disk subsystems, as well as the DDSK-30 and DDSK-60 disks, the system shows

the disk location of a data set in RBA (relative block address) format. In this example, the data
set is on the device at address 0048 at RBA 0751100,0760107.

SC34-0644

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data (continued)

Notes:

1. 10DA=1/0 device address; RBA=relative block address. In this example, the data set is on
the device at device address 00CO at relative block address 0751100.

2. FIRST RECORD is the number containing the first record of the data set.

LP — List Programs

Use the LP command to list all program-type data sets on a specific volume or only those starting
with a specified prefix. The system directs the listing to the $SYSPRTR. You can redirect the
listing by specifying the label of the printer following the Lp command or the prefix. For
example, to direct the listing in the example to a printer other than $SYSPRTR, enter the
following:

The system directs the listing, in this case, towards the printer designated as the alternate logging
device ($SYSLOGA).

Example: List directory description of the program-type data sets beginning with the prefix
$DISK.

Notes:

1. FIRST RECORD is the number of the first record of the data set.
2. PGMSZ shows the size of the program in records, excluding RLDs and overlays.

3. OVLY indicates an overlay program.

Chapter 4. Utilities UT-193

- $DISKUT1
$DISKUT1 - Allocate/Delete/List Directory Data (continued)

LPCTS — List Program-Type Data Sets in CTS/RBA Mode

Use the LPCTS command to list only program-type data sets on a specific volume. Depending
upon the disk on which the volume resides, the location of the data sets (members) are shown in
CTS or RBA format.

For the 4962 disk and the 4963 disk subsystem, the system shows the disk locations of the
members in CTS format.

For the 4967 disk subsystems, as well as DDSK-30 and DDSK-60 disks, the system shows the
disk locations of the members in RBA format.

Example 1: List all data sets in CTS format. Volume EDX001 resides on a 4963 disk
subsystem; the system shows the locations of the data sets in CTS format.

Example 2: List all data sets in RBA format. Volume EDX001 resides on a 4967 disk
subsystem; the system shows the locations of the data sets in RBA format.

UT-194 SC34-0644

$DISKUT1

$SDISKUT1 - Allocate/Delete/List Directory Data (continued)

O

LS — List Free Space

Use the LS command to list the free space available on a specific volume. In addition, $DISKUT1
lists the following information:

« the size (in records) of the volume

¢ the number of unused records

« the number of directory entries

¢ the number of unused directory entries
« the total number of data sets

« the number of free space entries.

$DISKUTI1 then prompts if you wish to list the free space chain. Respond Y and $DISKUT!1 lists the
size and the location (number of the first record) of each area of free space on the volume.

Example: List free space available on volume EDX001.

Note: FIRST RECORD is the number of the first record within the data set.

Chapter 4. Utilities UT-195

$DISKUT1
$DISKUT1 - Allocate/Delete/List Directory Data (continued)

RE — Rename a Data Set

Use the RE command to rename a data set.

Example: Rename a data set named PROG1 to MYPROG.

i

PRO
RO

SE — Set End of Data Pointer/Flag

Use the SE command to set the end-of-data pointer/flag on within a data- or program-type data
set.

Example: Set end of data pointer for data set named DATAFILE.

Notes:
1. RESET option sets the EOD flag off and the EOD pointer to 0.

2. This command modifies fields within the directory member entry. It does not change the
actual data set.

UT-196 SC34-0644

$DISKUT1

$DISKUT1 - Allocate/Delete/List Directory Data (continued)

O

SNQ — Reset Prompt Modes

Use the SNQ command to turn off the prompt mode for the delete generic commands (DG, DGP,
DGD, DNG, DNGP and DNGD). This means that for these commands, $DISKUT1 deletes the data
sets without prompting you to verify each one. If you want to turn prompt mode off, do so
before you use any of these commands.

OMMAND (2): S

SQ — Set Prompt Modes

Use the SQ command to set $DISKUT1 to prompt mode for the delete generic commands. This
means that for the DG, DPG, DGD, DNG, DNGP and DNGD commands, $DISKUT1 prompts you to
verify each data set you want to delete. Prompt mode is the default for the list commands. If
you do not want to be prompted for each data set to be deleted, use the SNQ command to turn

off prompt mode.

Example:

Chapter 4. Utilities UT-197

$DISKUT2

$DISKUT2 - Patch/ Dump/List Data Set or Program

O

With $DISKUT2, you can perform the following operations on data sets and/or programs:
« Clear (set to zero) all or portions of a data set and reset the end-of-data pointer.

« Dump any data set created using $EDIT1N or $FSEDIT or any program on the terminal you are
using or on the printer of your choice.

« Patch a data record in a data set or an address within a program.
« Modify the default load time storage allocation associated with a program.
« List the contents of a data set on the terminal you are using or on the printer of your choice.

« List the log data set associated with a specific device on the terminal you are using or on the
printer of your choice.

Note: For tape management functions, see “$TAPEUT1 - Tape Management” on page
UT-522.

Program and Data Set Member Dumps and Patches

UT-198

You make program member dumps and patches by relative address (hexadecimal) within the

program. The relative address corresponds exactly to the address specified in the LOC field of

an assembly listing. You can enter data in decimal, hexadecimal, or EBCDIC as shown in the LN
examples that follow. G/

You make data set member dumps and patches by specifying a record number and a first word.
The numbering for both record and word number begins with 1. You can enter data in either
decimal, hexadecimal, or EBCDIC. You should separate each field of patch data with a
nonnumeric character other than a carriage return.

Note: Any patch you make to a data set or a program is permanent. Be sure that the data set
record or program address you are patching is correct. Check a dump of the data set or the
program assembly listing before you perform a patch.

The system formats dumps of program or data set members when you select hexadecimal as an
option.

SC34-0644

O

$DISKUT2

$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Absolute Record Numbers

A special feature of $DISKUT?2 allows dumping and/or patching of any area on a disk volume by
referencing absolute record numbers. Select this this mode by entering the characters $$EDXVOL
as a member data set name. When you use this mode, the system will direct operation to
absolute record numbers rather than symbolic data/program member names, with record 1
being the first physical record on the disk or diskette where the volume resides.

If you enter the special system name $$EDXLIB, the system uses absolute record numbers and
considers the first record in the directory as record 1. $$EDXVOL references the first physical
record on the disk or diskette. On diskettes, the system uses $$EDXVOL to reference records on
cylinder 0 only (if you attempt to access other cylinders, you will produce unpredictable results).
You can reference all other records on diskette using $$EDXLIB.

Notes:

1. $$, $$EDXVOL, and $$EDXLIB are special system data set names. $$ is a reserved system
name. $$EDXVOL points to the beginning of a volume. $$EDXLIB points to the beginning of
the data set directory within a volume.

2. When using this mode, you also have access to records that are meant for Series/1 hardware
use only. For example, the system designates records 121 through 240 on the 4962 disk for
alternate sector assignment and they are not meant to be accessed directly.

3. When you use the DU or LU commands to dump or list $$EDXVOL, you dump only the data,
not the whole device.

Invoking $DISKUT2

You invoke $DISKUT2 with the $I. command or option 3.2 of the session manager.

Chapter 4. Utilities UT-199

$DISKUT2
$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

$DISKUT2 Commands

To display the $DISKUT2 commands at your terminal, enter a question mark in response to the
prompting command COMMAND (?):.

Note: The LR and PR commands are for remote manager (RM1) users only.

$DISKUT? includes the time and the date in your listing if you include timer support in your
system and you direct output to a print device using DP, LP, PL,, or PR. You can send your output
to any printer using the PRTNAME parameter on the DP, LP, PL, or PR command. The default is
$SYSPRTR.

Note: If you dump (DU) or list (LU) a data set on a terminal using $$EDXVOL, you are limited to
the number of logical records.

All the functions listed (except for ?, Cv, and EN) act upon the IPL volume. When you invoke
$DISKUT2, it issues the following message:

To point to another volume to perform one or more of the previously listed functions, enter the
Cv command and the name of the volume.

N

MA
NG VO

UT-200 SC34-0644

O

C

$DISKUT2

$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

All functions act upon the specified volume until you change them with another Cv command or
until you end and reload $DISKUT2. If you specify an invalid volume a CV command, the utility
uses the IPL volume, if it is available. If the IPL volume is not available, the system issues the
message NO VOLUME AVAILABLE. You can either end the $DISKUT2 or change volumes using the
CV command.

Each command and its explanation is presented in alphabetical order on the following pages.

CD — Clear a Data Set (to Zeros)

Use CD to clear an entire data set or a portion of a data set and to reset the end-of-data pointer.
This sets the data within the data set to zero.

CV — Change Volume

Use the CV command to change volumes. When you invoke $DISKUT?2, it assumes you are using
the IPL volume. All $DISKUT2 functions operate on the IPL volume until you change to another
volume.

Example:

Chapter 4. Utilitess UT-201

SDISKUT2
$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

DP — Dump a Data Set or Program on a Printer

Use DP to dump all or portions of a data set or program to a printer. If you don’t specify a
printer, the system directs the dump to the $SYSPRTR.

Example 1: Dump a data set on a printer other than $SYSPRTR.

You must specify the printer name on the same line as the command and the data
set/program. The system does not issue a prompt for the printer name.

The printer name is the label on the TERMINAL definition statement defining the printer to
the supervisor.

Example 2: Dump a portion of a program on $SYSPRTR.

UT-202 SC34-0644

$SDISKUT2
$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

DU — Dump a Data Set or Program on Terminal

Use the DU command to dump all or a portion of a data set or a program to the terminal where
you invoked $DISKUT2.

Example 1: Dump a portion of a data set on the terminal.

Example 2: Dump a portion of a program on the terminal.

Chapter 4. Utilites UT-203

$SDISKUT2
$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Example 3: Dump a portion of a program with overlay segments on the terminal.

Note: Addresses within an overlay segment are relative to the beginning of that overlay
segment.

UT-204 SC34-0644 ‘

SDISKUT2
0 $DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Example 5: Dump a portion of the supervisor that is located in an overlay area.

— |)

COMMAND (?): DU -
‘PGM OR os NAME $EDXNUCC

ENTER" PARTITION NUMBER(] 8) : 1
PARTITION 1 OF $EDXNUCC HAS A HEX SIZE OF 0000D9FF WITH 3 OVERLAY SEGMENTS
“ADDRESS: D000
~ DUMP OVERLAY SEGMENT (0) “OR RESIDENT CODE (R)7 0
" 'WHICH OVERLAY? 2
How MANY woansz

o3ob 10A2 0420 OMIE B

 DUMP COMPLETE N
ANOTHER AREA? N

‘ COMMAND'(?): ; ,k ; | $ 1 Lo *¢‘ ~ﬁ i ‘ ;:,"
\G o i b e e e R S ERR T RN, R ;J/

Example 6: Dump a portion of a supervisor with overlay segments. The portion you are
dumping does not reside within the overlay segment.

sPGM OR. DS NAME $EDXNUCC

Chapter 4. Utilities UT-205

$DISKUT2
$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Example 7: Dump a portion of a supervisor not located within an overlay area.

You can use single-line entry; however, be sure to enter the information required in the order
that the $DISKUT2 expects it. Here is the information for the above example entered in
single-line entry:

EN — End $DISKUT2

Use EN to end $DISKUT2.

Example

UT-206 sC34-0644

$SDISKUT2
0 $DISKUT2 - Patch/Dump/List Data Set or Program (continued) |

LL — List Log Data Set for a Specific Device on a Terminal

Use LL to list the log data set for a specific device on the terminal where you invoked $DISKUT?2.

Example: List log data set for device at address 002 on the terminal. (Refer to the Problem
Determination Guide for an explanation of the log output.)

(51COMMAND (2):

LOG DS ‘NAME: $LOGDS ' .
ENTER DEVICE ADDRESS, NULL FOR ALL ENTRIES :
~ OR 'FFFF' FOR. PROGRAM/SYSTEM CHECKS ONLY: 002
- ERROR" L0G LIST (DATA SET: LOGDS ON EDX002 ;u;,;
" “ADDR: 0002 L
fi“|/o LOG. ERROR COUNTERS (BY DEVICE ADDR)

)

SOFT RECOV. ERR

~ DEV ADDR: 0002 ~ DEV ID: 0106
DATE: 7/ 7/80 LVL: 0001

‘::> TIME: 11:13:20

Chapter 4. Utilities UT-207

SDISKUT2
$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

LP — List All or a Portion of a Data Set on Printer

Use LP to list all or a portion of a data set on the printer. If you do not specify a printer, the
system directs the list to the $SYSPRTR.

Example 71: List a data set on a printer other than $SYSPRTR.

Notes:

You must specify the printer name on the same line as the command and the data
set/program. The system does not issue a prompt for the printer name.

The printer name is the label on the TERMINAL definition statement defining the printer to
the supervisor.

Example 2: List a portion of a data set on $SYSPRTR.

7

A

UT-208 8C34-0644

$DISKUT2
0 $DISKUT2 - Patch/Dump/List Data Set or Program (continued)

LR — List Log by Wrap Count and Relative Record for a Specific Device on a Terminal

Use LR to list the log by wrap count and relative record on the terminal where you invoked
$DISKUT2.

Example 1: List log by wrap count and relative record on current terminal. (Refer to the
Problem Determination Guide for an explanation of the log output.)

COMMAND (7): LR
LOG DATA SET (NAME

ENTER (HEX) WRAP

J

When your log data set is exactly filled, $LOG increments its wrap count by one even if there is
no data after the wrap. The header, therefore, shows a wrap with no data. In this situation,
specify the previous wrap count number. By doing so, you dump the entire data set.

Chapter 4. Utilities UT-209

SDISKUT2
$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Example 2: In the following example of a log eight records long, two are control records and
six are data records. $LOG writes to the end of the data set and sets the wrap count to two. No
more data is written.

LU — List Contents of a Data Set on Terminal

Use. LU to list all or a portion of a source data set on the terminal where you invoked $DISKUT2.

Example: List a portion of a data set.

UT-210 SC34-0644

O

$DISKUT2

$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

PA — Patch a Data Set or Program

Use PA to patch a data set record(s) or an area within a program in decimal, EBCDIC, or
hexadecimal.

Example 1: Patch a data set in decimal.

__COMMAND (?): PA ASMOBJ
~-ASMOBJ 1S A DATA SET Ll
FIRST RECORD (O TO CANCEL COMMAND): 2
 FIRST WORD: 3
" HOW MANY WORDS? 4
~ (D)EC, (E)BCDIC OR (H)EX? D

CONOW IS:

3016

NEW DATA:
T e g

SET e e
0 TO CANCEL COMMAND)

Chapter 4. Utilities

UT-211

$DISKUT2

$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Example 3: Patch a data set in hexadecimal.

UT-212 sC34-0644

SDISKUT2
0 $DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Example 5: Patch a program in EBCDIC.

Chapter 4. Utilities UT-213

$DISKUT2

$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Example 7: Patch a program with overlay segments.

Note: Addresses within an overlay segment are relative to the beginning of that overlay
segment.

Example 8: Patch a portion of the supervisor that resides in an overlay area.

UT-214 SC34-0644

$SDISKUT2
0 $DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Example 9: Patch a portion of the supervisor that resides in partition 2.

You can use single-line entry; however, be sure to enter the information required in the order
that the $DISKUT2 expects it. Here is the information for the above example entered in
single-line entry:

O

Chapter 4. Utilites UT-215

$DISKUT2
$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

O

PL — List Log Data Set for a Specific Device on a Printer

Use PL to list the log data set for a specific device or all devices on the printer of your choice. If
you do not specify a printer, the system directs the list to the $SYSPRTR.

Example 1: List the log data set for device 002 on the $SYSPRTR. (Refer to the Problem
Determination Guide for an explanation of the log output.)

UT-216 SC34-0644

$SDISKUT2
0 $DISKUT2 - Patch/Dump/List Data Set or Program (continued)

Example 2: List the log data set for device 002 on a printer other than $SYSPRTR.

‘) Notes:

You must specify the printer name on the same line as the command and the program name.
The system does not issue a prompt for the printer name.

The printer name is the label on the TERMINAL definition statement defining the printer to
the supervisor.

Chapter 4. Utilities UT-217

$DISKUT2

$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

PR — List Log by Wrap Count and Relative Record for a Specific Device on a Printer

If you are a remote manager user (RM1), use PR to list the log wrap count and relative record for
a specific device or all devices on the printer of your choice. If you do not specify a printer, the
system directs the list to $SYSPRTR.

Example: List log by wrap count and relative record on $SYSPRTR. (Refer to the Problem
Determination Guide for an explanation of the log output.)

UT-218 SC34-0644

C
e

$DISKUT2

$DISKUT2 - Patch/Dump/List Data Set or Program (continued)

SS — Set Program Storage Parameter

Use Ss to modify the default load time storage allocation associated with a program. You can
change the allocation without reassembling the source code or providing an override on the
LOAD instruction. SS requires that you express the size in bytes in decimal. The system rounds
up the value you request if it is not an even multiple of 256.

Example: Reduce the dynamic storage you want allocated for the COBOL compiler at program
load.

Chapter 4. Utilities UT-219

$DIUTIL

$DIUTIL - Maintain Partitioned Data Base"

$DIUTIL maintains a disk-resident partitioned data base. This utility provides comprehensive
facilities to keep the data base current by means of the following functions:

« Initialize the Disk-Resident data base.

¢ Delete a member.

« Reclaim space in the data base due to deleted members.

« Display contents of data base.

e Copy the data base.

« Copy individual members of the data base.

o Allocate and build a data member.

Normally, you use $DIUTIL only when no other programs of the display processor are in use.
You can change the online data base or you may select another data base for the system to

reference. This allows you to create displays in a data base other than the online data base and
then copy the members into the online data base after testing.

Invoking $DIUTIL

You invoke $DIUTIL with the $L command or option 5.1 of the session manager. To start
execution of $DIUTIL:

1. Load $DIUTIL specifying the appropriate data set. You can use $DIFILE, the online data set,
or any other data set. However, be sure that another user or program is not changing or
using the same data set.

2. The system responds with the program-loaded message followed by:

UT-220 SC34-0644

~_/

@

O

$DIUTIL

$DIUTIL - Maintain Partitioned Data Base (continued)

$DIUTIL Commands

To display the $DIUTIL commands at your terminal, enter a question mark in reply to the

prompting message COMMAND (?):.

T i)
COMMAND (7) ? ‘
AL - ALLOCATE DATA MEMBER
BU.~ BUILD DATA MEMBER :
CP = COMPRESS DATA BASE -
CM - COPY MEMBER
DE - DELETE A MEMBER
EN. - EXIT PROGRAM
IN = INITIALIZE DATA BASE :
LA = DISPLAY MEMBER DIRECTORY
LH.~ DISPLAY .MEMBER HEADER =
MD - MOVE DATA BASE
RE - RENAME MEMBER
ST -:DISPLAY DATA SET STATUS
UMMAND (?) Y,

After $DIUTIL displays the commands, it prompts you with COMMAND (?): again. Then you can

respond with the command of your choice (for example, AL).

AL — Allocate Data Member

Use the AL command to reserve space in a data base for one of several types of data members.
The system requests information such as size in sectors and member codes. Member codes are

specified as follows:

4 - Print Report Data Member: The system requests information such as number of lines and

line length. It then enters each line, limited to 132 characters each.

5 - Plot Curve Data Member: The system requests information such as X and Y ranges, X and
Y base values, and number of points it must plot. You can select automatic entry of the X points
to reduce the data entry requirements. The system provides a sawtooth pattern option to shade

under the curve for more vivid presentation of plotted data. Using fewer than 200 points on the

X axis gives an inadequate shading effect.

Chapter 4. Utilities UT-221

$DIUTIL

$DIUTIL - Maintain Partitioned Data Base (continued)

6 —- Realtime Data Member: The system requests the number of records. You can enter
hexadecimal data for testing.

7 thru 9 - User Data Member: The build function uses these codes to guide you through the
correct data entry procedure.

BU — Build Data Member

UT-222

Use the BU command to insert fixed data into a data member. This command allows you to
enter data records to describe a fixed display or enter records, which normally will be dynamic,
with a fixed value, to allow testing of the display.

You may have allocated the member using AL; if not, the system prompts you for the allocation
information it requires before it proceeds with the :“build:” process. The system guides you one
_step at a time through the initialization of the data member.

In this case, the member was already allocated.

SC34-0644

O

C

$DIUTIL

$DIUTIL - Maintain Partitioned Data Base (continued)

CP — Compress Data Base

Use the CP command to reclaim unused space in the data base. The system actually does not
remove deleted members; it merely flags the space as unusable until you compress it. Then the
system moves other members into that space and displays a message after each member it
moves. When the system completes the compress, it displays the following message:

COMPRESS COMPLETED

You should exercise caution in using this function as it actually rearranges the members in the
data base. To prevent unpredictable results, you should restrict your use of the interpreter
($DIINTR) during this process.

Note: If an unrecoverable I/0 error occurs, it destroys the data set.

CoMMAND (7) cP ‘ L ;‘:j" e)
 WARNING--COMPRESS IN | PLACE. IF AN’ERROR e : S ~

REPORT :
SQUARE
CCIRCLE

CM — Copy Member

Use the CM command to copy a member from the source data base to the target data base. The
options available under MD (move data base) are also available under CM (copy member).

Chapter 4. Utiliies UT-223

$SDIUTIL
$DIUTIL - Maintain Partitioned Data Base (continued)

DE — Delete a Member

N\

Use the DE command to remove display or data members from the data base. The system
prompts you for the name of the member you want to delete and asks you to verify the accuracy
of your entry prior to actual deletion.

EN — Exit Program

Use the EN command to terminate the $DIUTIL utility.

IN — Initialize Data Base

Use the IN command to format the entire data base to zeros and to format the directory to
reflect the starting and ending record numbers. The system prompts you to proceed.

Note: This function destroys any data in the data base.

DATA SET FORMATTED. You allocated $DIFILE with $DISKUT1 Each directory record allocated

Make sure you enter the correct data set name. IN ends when the system displays the message (—\
with IN contains 16 directory entries, except the first, which contains 15. -

UT-224 $C34-0644

O

C

$DIUTIL

$DIUTIL - Maintain Partitioned Data Base (continued)

LA — Display Directory

Use the LA command to display all active members. Each line of display shows the member
name followed by four values:

1. Starting sector relative to the start of the data base.
2. Length of member in records.
3. Member usage code.

. 4. User-defined member code.

COMMAND (?): LA . . o A
PLOT 1 b 2 0 ' :
DATA 15 10 5 0O
RDATA 25 10 4 0
REPORT 35 11 0
SQUARE - 36 1.2 0
CIRCLE 38 1 2 0
RPT. 7 0 39 10
ARC kO 120
"COMMAND (?): Bt

LH — Display Member Header

Use the LH command to display the header of a data member (types 4-9). The header describes
the characteristics and use of the member.

Example:

Chapter 4. Utilities UT-225

$D|UT|L
$DIUTIL - Maintain Partitioned Data Base (continued)

MD — Move Data Base

Use the MD command to move the data base on the same or another volume when the data base
becomes too small to add a member. You can move the online data base to another location
temporarily, delete the old version, reallocate and initialize the new expanded version, and move
back the previous contents. During this procedure, use the Interpreter with care.

Note: If you are moving the data base and the Interpreter uses a member, you will get
unpredictable results.

During the execution of MD, the system prompts you for a new source data if you want one and
a target data base. You have the option of saving the members in the target data base. MD is
helpful if you wish to use $DICOMP to develop display members in a different data base than the
online version and then, at a later time, combine the new members with those in the online data
base.

UT-226 SC34-0644

O

$DIUTIL

$DIUTIL - Maintain Partitioned Data Base (continued)

RE — Rename Member

Use the RE command to change the display profile ID name. The system prompts you for each
step and takes no action until it obtains your response first. RE is useful when you need to
modify an online member. You can copy the member that needs changing to another data base,
modify and test it, then rename it and copy it back to the online data base. By using the rename
and delete functions, you can exchange the new for the old without interfering with any online
functions.

COMMAND (?): RE
MEMBER NAME: PLOT
ENTER 'NEW NAME: PLTT
RENAME COMPLETED

COMMAND (?):

ST — Display Data Base Status

Use the ST command to display the current data base status. The first line shows the data base
location and name. The data that follows is the current status of the data base. There are four
values presented. The first is the next available record. The second is the total number of
records in the data base. You can see then how much space is available for new members. If
space is running short, you can compress the data base or allocate a larger area. The next value
displayed is the next available directory entry. The last value displayed is the total number of
directory entries available. Refer to these two values to determine if you need more or less
space for directory entries. Following the completion of the status display, the system displays a
message indicating end-of-status.

Chapter 4. Utilities ~UT-227

SDUMP
$DUMP - Format and Display Saved Environment

O

$DUMP displays on a terminal or printer the contents of the data set generated by the $TRAP
utility or stand-alone dump facility. After the successful execution of $TRAP and the subsequent
occurrence of a trap condition, the data set assigned to $TRAP or the stand-alone dump will
contain a storage image. Use $DUMP to retrieve, format, and print the data on a terminal or
printer. The Problem Determination Guide shows how to interpret the output of $DUMP.

Notes:

1. To print the contents of a stand-alone dump or $TRAP diskette that