
POWERstation and POWERserver

Hardware Technical Information
General Architectures

SA23-2643-03

Fourth Edition (October 1993)
This edition notice applies to the POWERstation and POWERs61WJr Hardware Tflehltical
Information-General Architectuf8S. This edition obsoletes all previous edtionl.

The followlng parag,.ph doee not apply to the Unlt.d Kingdom or My country .._.. 8uc:h
provlalona are lnconalet.nt with local law: THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some sta111 do
not allow disclaimer of express or implied warranties In certain transactions; therefore. this 51atemenl may
not appty to you.
This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication.

It is possible that this publication may contaln reference to, or information about. products (rnac:hines and
programs), programming, or services that are not announced in your country. Such references or infommtion
must not be construed to mean that such products, programming, or services intend to be announced in your
country. Any reference to a licensed program In this publication is not intended to state a< in1>fY that you est
use only the licensed program mentioned. You can use any functionally equivalent program instead.

Micro Channel is a registered trademark of lntemational Business Machines Corporatiol 1.

POWER2 is a trademark of International Business Machines Corporation.

®Copyright International Business Machines Corporation, 1992. All rights 1'88efV8d.

Note to U.S. Government Users - Documentation and programs related to restricted nghtS - Use.
duplication, or disclosure is subject to the restrictions set forth in GSA ADP Schedule Contract

Table of Contents

AboLlt Thia Book • I I • I I I • I I e I • • I I • I • I I I • I • I I IP I I • I I I I I I I I I I I I I lo I I I I I I I I I I I y

Chapt8r' 1. Sy8l8m ~ I 1·1
Description . • • . • • . 1 ·5
Central Electronics Complex . . • • . • . • . . . • . . • • • • 1 ·5
Document Conventions • . • 1-1 o
Systems Overview • . 1·11
Instruction Fonnats . . . • . . • . . . • . . • . . • . • 1 -12
Memory Add1'8881ng • . • . • • • • • • . . • • . . . 1 • 19
Branch Processor.. 1-21
Axed-Point Processor Registers 1 ·25
Floating-Point Processor OVervlew • • 1-27
Floating-Point Data Representation 1 ·33
Floating-Point Exceptions . 1 ·39
Floating-Point Resource Management • • .. . 1-45
Floating-Point Execution Models • . • 1-45
Interrupts . • . • 1-48
Storage Control . • • • . • • • 1-69
Timer Facilities . 1-82
Floating-Point Round to Single Model . • • 1-87
Floating-Point Integer Convert Model • • • . 1 ·92
VO Space Rules • • . • • . . 1-94
Serializing Semantics of Various lnstnJctions • 1-85

Chmplmr 2. Symm llO Structure • . 2·1
Description.. 2-3
Bit and Byte Numbering Conventions 2·7
VO Bus Protocols . • . . • • • • . • . . . • • • • . . . • • 2-13
Progranvning Model . . • . • • • . . • 2-21
Special Faclllties . • • . . 2-72
System l/O and Standard 110 . 2-84
Exc8ptlon Reporting and Handling .. • • 2-85
lmpl81118ntation Details . . • . 2-86

CMpt8r 3. Vltlll Product Data • . . • 3-1
Description • • • • . . . • . • 3-3
Keyword Descriptor Summary 3-5
Hardware VPD Descriptor Summary 3-13
Micro Channel Adapter Requirements • . . • 3-16
Sample Layout of the Micro Channel Adapter VPD . 3-20

Praface Ill

Chmpter 4. Initial Program Load (IPL) ROM • • • • • . • • • • . . . • • • • . . • • • • 4-1
Description . 4-3
IPL ROM Components . 4-6
IPL ROM Functional Characteristics 4-13
Error Codes . 4-16

lrtdex' .••• I •••••••••••••••••••••• I • X-1

Iv General Architectures

About This Book

This manual describes architecture features that are common to the system family.

Note: The Information in this book can also be found in the CD-ROM Hypertext Information
Base Library. This online documentation is designed for use with the lnfoExplorer
hypertext retrieval system.

Who Should Use This Book
This book Is an overview of the operation ol the system. It is Intended for programmers and
engineers who understand computer architecture and programming concepts and who
develop hardware and software products for the system family.

How to Use This Book
overview of Contenta

This book contains the following chapters:

• Chapter 1, •Processors,• describes the central electronics complex, the document
conventions, a general systems ovelVlew, instruction formats, and memory addressing.

• Chapter 2, •system VO Structure," describes bit and byte numbering conventions, l/O bus
protocols, the programming model, load and store instructions, the translation, protection,
and TCW table, the bus master, the OMA slave, IOCC Commands, Buffer Flush
commands, VO Interrupts, special facilities, the system l/O and standard VO, exception
reporting and handling, and implementation details.

• Chapter 3, "Vital Product Data," contains the keyword descriptor summary, the hardware
VPD descriptor summary, the Micro Channel adapter requirements, and a sample layout
of the Micro Channel adapter VPD.

• Chapter 4, •1n1t1al Program Load (IPL) ROM," describes IPL ROM components, IPL ROM
functional characteristics, and error codes.

overview of Reference Library Contents
This general information manual, is one pan of the hardware technical Information library.
Thia manual describes features that are common to the system family. Since the last edition,
new products have evolved that feature economy of cost and size. Check the front of each
chapter In this manual for a note specifying which models are covered In the chapter. The
General Architectures manual should be used in conjunction with the following hardware
technical information manuals:

• POWERstation and POWERssrver Hardware Technical Information-Options and Devices
(SA23-2646)

• 7011 POWERstation and POWERssrvsr Hardware Technical Information (SA23-2666)

• 7012 POWERstation and POWERserver Models 34x, 35x. 36x, and 37x Hardware
Technical Information (SA23-2680)

• 7013 POWERstation and POWERserver Models 550L, 57x, 5Bx, 58H, and 590 Hardware
Tschnical Information (SA23-2684)

• 7015 POWERserver Models 97x, 98x, and 99x Hardware Technical Information
(SA23-2686).

Preface V

Highlighting
The following hlghlighting conventions are used in this book:

Bold Identifies commands, keywords, files, direciOlies. and other il8ms whme
names are predefined by the system.

Italics Identifies parameters whose actual names ex values are to be ~ by
the user.

Monospace Identifies examples of specltlc data vaJues, ~ of rext ~IO wt'll
you might see displayed, examples of port>ons of program code smlar IO
what you might write as a programmer. mess~ from the sysaem. 0t

information you should actually type.

Related Publlcatlons
The following is a list of related publications. Fcx lnfonnation on ~ these p iblic.iict-.
contact your authorized dealer or marketing representative.

• IBM RISC System/8000 System Over"'9w (GC23-2.COS)

• Personal SysterrV2 Hardware lnterfaoe Technical Reference; .4rchilectutw (SS.U:-9808)

• AIX Version 3.2 Assembler Languaf1s Reference (SC23-21 an
• AlX Version 3.2 Kernel Extensions and De\'ice Suppott Progranrrwtg Coapes

(SC23-2207)

• AJX Version 3.2 Problem Solving Gulde and Rslereta (SC23-2204).

Ordering Publlcatlons
You can order IBM publications from your IBM sales rept898f1tatrYe ex. in the U.S .. from IBM
Customer Publlcationa Support at 1800879-2755. ti you tMMMMI you are en1iled to
publications that were not shipped wi1h your RISC Syst.elW8000 Of ADC ~. oonlml::t
your IBM sales representative Of' Customer Publications Support tormnc:e.

To order additional copies of this book. use Order NunUf' SA23-2&43.

VI General Architectures

Chapter 1. System Processors

Chapter Contents
Description . • . 1 -5
Central Electronics Complex . 1-5
Document Conventions . 1-1 O
Systems Overview . 1 -1 1
Instruction Formats . 1·12

Fonns.. 1-12
D Fonn . 1-12
OS Fonn . 1·12
B FOITTI • • • • • • . • • • . . • • . . . 1-12
I Form . • . 1-12
SC Fonn . 1·13
x FOITTI • • • • • • • • • • • • • . • • • • • • • • . . • . • • • • . • • . . . • . • • . • • • • . • • • 1-13
XL Fonn . 1-13
XFX Fonn.. 1-13
XFL Fonn . 1-13
XO Form • . 1-13
A Form . 1-14
M Form • . 1·14

Instruction Fields . 1-14
Memory Addressing • . 1-19
Branch Processor . • 1-21
Fixed-Point Processor Registers 1-25

General Purpose Registers . 1-26
Fixed-Point Exception Register . 1 ·26
Multiply Quotient Register . 1-26

Floating-Point Processor Overview 1-27
Floating-Point Registers . 1 -28
Floating-Point Status and Control Register . 1 ·29

Floating-Point Data Representation • • 1-33
Data Fonnat . 1-33
Value Representation . 1-34
Binary Floating-Point Numbers 1-34
Normalized Numbers (+NOR) 1-35
Zero values (+O) • • . 1-35
Denormalized Numbers (+DEN) • 1-35
Infinities (+INF).................................. 1-35
Not a Numbers (NaNs) • • • . 1-36
Normalization and Oenorrnalization 1-36
Precision . 1-37
Rounding... 1-37
Data Handling . 1-38

System Processors 1·1

Floating-Point Exceptions .. .
Invalid Operation Exception .. .
Zero DMde Exception
Overflow Exception
Underflow Exception .. .
Inexact Exception .. .

Floating-Point Resource Management
Floating-Point Execution Models .. .

Execution Model for IEEE Operations
Execution Model for Multiply-Add Type Instructions

Interrupts .. .
Interrupt Definitions

System Reset Interrupt
Machine Check Interrupt .. .
Data Storage Interrupt .. .
Instruction Storage Interrupt
Alignment Interrupt
Program Interrupt .. .
External Interrupt .. .
Floating-Point Unavailable Interrupt
Trace Interrupt (POWER2 Only)
Floating-Point Imprecise Interrupt (POWER2 only)
Supervisor Call Interrupt .. .

Interrupt Priorities .. .
External Interrupt Mechanism for POWER

External Interrupt Enable .. .
External Interrupt Control Registers
Functions
Addressing the EICRs .. .
Accessing the EICRs
Reading from the EICAs .. .
Writing to the EICAs .. .
External Interrupt Sources
Submitting Interrupts
EICA Mapping

External Interrupt Mechanism for POWER2
Interrupt Level Control Registers
MFSPR RT, ILCR .. .
MTSPR ILCR, RS .. .
EISBID Registers .. .
PEIS Registers .. .

Storage Control
Storage Control Registers

Segment Registers
Storage Description Registers for POWER
Storage Description Register for POWER2

1 ·2 General Architectures

1-39
1-40
1-41
1-42
1-44
1-44
1-45
1-45
1-45
1-47
1-48
1-50
1-50
1-50
1-51
1-53
1-54
1-56
1-57
1-58
1-58
1-59
1-60
1-60
1-62
1-63
1-64
1-64
1-64
1-65
1-65
1-66
1-66
1-66
1-66
1-67
1-67
1-68
1-68
1-68
1-69
1-69
1-70
1·70
1-71
1-72

Virtual Address Translation . 1-72
Inverted Page Table (POWER Only) . 1-73
Hashed Page Table (POWER2 Only) 1-76
Address Aliasing . 1-80
Storage Access Recording Mechanism . 1-81
Storage Protection Mechanism 1-81
Page Protection . 1-81

Timer Facillties . 1-82
Real-1irne Clock . 1-82

RTCL Description . 1·83
RTCU Description . 1-84
Setting and Reading the ATC 1-84

Decrernenter . 1-85
Decrernenter Interrupts . 1 ·86
Decrementer Usage . • 1 ·86

Floating-Point Round to Single Model • 1-87
Floating-Point Round to Single Model . 1-87
Disabled Exponent Underflow . 1-87
Enabled Exponent Underflow . 1-88
Disabled Exponent Overflow 1 ·89
Enabled Exponent Overftow . 1-90
Infinity Operand·................... 1-90
QNaN Operand . 1 ·90
SNaN Operand . 1-90
Nonnal Operand . 1 ·91
Round Single (sign, exp, frac, G, R. X) 1-91

Floating-Point Integer Convert Model 1 ·92
Floating-Point Integer Conversion 1-92

Round Integer (sign, frac, gbit, rbit, xbit, round_mode) • 1-92
Infinity Operand . 1 ·93
SNaN Operand . • • 1 ·94
QNaN Operand . 1 ·94
Large Operand . 1-94

UO Space Rules . • . 1 -94
Serializing Semantics of Various Instructions 1-95

Some Serialization Cases 1 ·95
Instruction Cache Synchronize and Data Cache Synchronize Definitions 1-96

ics Instruction . . • . • 1 -96
des Instruction . 1 ·97

Other Instructions Possibly Requiring Serialization . 1-97

System Pl'OC8880rs 1-3

1-4 General Archltedunit1

Description
This section describes the central electronics complex (CEC) for the POWER2 and POWER
lmplementatlons of the RISC System/6000, the document conventions, a general systems
overview, instruction formats, and memory addressing.

A POWER processor is used in this system family. Like earlier processors, the POWER
processor employs a simple register-oriented Instruction set that is completely hardwired,
and features a pipelined implementation and an efficient storage hierarchy. This enables the
processor chip set to run an instruction almost every cycle. Unlike earlier processors,
however, this unit employs several advanced architectural and lmpleinentation features
including separate Instruction and data caches, zero-cycle branches, multiple Instruction
dispatch, simultaneous running of fixed- and floating-point operations, and overlapped
running of register-register (RR) operations and load and store commands. As such, the unit
combines the slmpllclty of an Instruction set with sophisticated hardware design techniques
to achieve a short cycle time and a low cycles-per-Instruction (CPI) ratio.

In the POWER2 Implementation, six Instructions can be executed in a single cycle: a
branch, two fixed-point, two floating-point, and a Condition register loglcaJ Instruction.
Counting the floating-point multiply-add Instruction as two operations, this yields a peak run
rate of eight operations per cycle. In the POWER Implementation, four Instructions can be
executed In a single cycle: a branch, a fixed-point, a floating-point, and a Condition register
logical instruction. Counting the floating-point multiply-add Instruction as two operations, this
yields a peak run rate of five operations per cycle.

Note: This chapter provides Information for system models 32x, 34x, 35x, 38x, 37x, 52x,
53x, 540, 55x, 56x, 57x, 58x, SSH, 59x, 730, 930, 95x, 97x, 98x, and 99x.
Information for other system models can be found In the product-specific technical
information manual for those models.

The processor chip sets deacribed In this chapter are representative of the chip sets used In
the models mentioned in the preceding paragraph. The megahertz number of the processor
chip set varies depending on the system model.

Central Electronics Complex
The POWER and POWER2 processor chip sets form the central electronics complex (CEC)
and have up to eleven semi-custom chips: a fixed-point unit (FXU), a floating-point unit
(FPU), an instruction cache and branch processing unit (ICU), four data cache units (OCU),
a memory control unit (MCU), an Input/Output (VO) Channel controller a Serial Optical
Channel converter, and a clock chip (CLK). Every memory board contains two data
multiplexing modules and one control module for inter1eaving.

There are four basic processor chip sets in this family of system units. The first chip set
shown In Figure 1 on page 1-6 Is the POWER2 implementation having the following
characteristics:

• Fixed-point unit with two execution units
• Floating-point unit with two multiply add units
• 32K-byte instruction cache
• 2581<-byte data cache.

System Processors 1-5

This implementation supports configurations with two, four, or eight memory boards. A two
memory board configuration supports a 128K-byte data cache and a 128-bit memory
interface. A four or eight board configuration supports a 256K-byte data cache and a 256-blt
memory interface. The eight chips (ICU, FXU, FPU, 4X OCU, and MCU) are packaged on a
muttlchip carrier. The VO subsystem can contain up to two extended input/output (XIO)
modules.

Multi-chip CPU Module

ICache
Reload Bua
(Quad Word)

ICU
PBUS

Micro
Channel

lnetructlon Bus
Dlapatch Bua Micro

(Quad Word) Channel
Bua

FPU FXU MCU I
FPU Data FXU Date XIO XIO

(2 Quad Worda) (2 Single Worda)

EJEJEJEJ SIOBua J
ROM Dam Bua

Memory Data Bua (8 Word•)

r I 1

DD DD 4 00 DD -o- -o- -D- -o-- - - - - - - -- - - - - - - -- - - - - - - -

Note: Some ayatema have only two memory board•.
Some ayatema have only one XIO module.

POWER2 Syatem Configuration, 8 Word Memory Bua

Figure 1. First Processor Chip Set

1-8 General Architectures

ROM

J

The second chip set has two data cache units and a system memory interface that is 64 bits
wide.

The third chip set uses the same modules, but has four data cache units and a 128-bit bus
to system memory.

The second and third chip sets a have an instruction cache unit with BK bytes. It has an
Input and output unit (IOU) that combines the 1/0 channel controller (for Micro Channel bus)
and the serial link logic. Figure 2 shows the chip sets described previously with four data
cache units like the second chip set.

I-cache (2W)

'8 Reload (2W)
FPU

ICU I-Bua (2W) 8

P-BUS(1W)

Syetem lfO Bue (2W)

I
{1W)

8
I M-BUI
I (4W)

FXU I

8
~temllOBue

MCU

llO Channel COntroller
and Serlal Optlcal
Channel .Converter

M
• m
0
r
y

B
0

• r
d

•

Tranelatlon Control
Word RAM Optlcal Channet Converter

lfO Interface Logic

Micro Channel Prime

Figure 2. Second and Third Processor Chip Sets

Optical Fiber

System Processors 1-7

The fourth chip set Is shown in Figure 3. This chip set has an Instruction cache unit with 32K
bytes of chip memory. The VO subsystem can contain up to two XIO modules and a serial
link logic for system serial optical channels. The XIO module, contains the VO channel
control unit that generates the Micro Channel Interface.

l·Bua (2W)

ICU FXU

P-Bua (1W) i---+------'
(1W)

MCU

ROM

XIO
Number1

Micro Channel
Prime to the
Combination
Board

1-Cect.
Aelolld (2W)

Memory
Boarda

SyntmllO
Bua(2W)

LOClll
llO

XIO"
Number2

Micro Channel
Prime to the
Optional llO
ao.rd

DCU

II-Bua
(4W)

FPU

(2W)

Serial*
Link Logic
(Optional)

*The Hrlal llnk loglc la optional on aome rnodela.
-rhe XIO Number 2 la only avallable on aome modela.

Figure 3. Fourth Processor Chip Set

1-8 General Architectures

The POWER2 and POWER implementations have an ICU that contains a two-way
set-associative instruction cache. It runs branch instructions and Condition register logical
instructions, and supports interrupts. In many cases, branches cost zero cycles because the
ICU looks ahead in the instruction stream and removes branches from the stream. In a
given cycie, the ICU in the POWER implementation can dispatch two instructions (two to the
FXU, or two to the FPU, or one to the FXU and one to the FPU) by way of the I-bus shoWn
in Figure 1 on page 1-6. The ICU in the POWER2 Implementation can dispatch four
Instructions. The floating-point unit contains a full 64-bit double-precision floating-point data
flow and conforms to the IEEE 754 binary floating-point standard with software support
Floating-point instructions can run in parallel with fixed-point Instructions for maximum
perfonnance. The FXU contains the general purpose registers and the arithmetic logic units,
and runs all fixed-point Instructions. The FXU includes an address tranSlatlon and data
protection unit that makes precise interrupts easier to implement with minimal perfonnance
penalty. The FXU also provides the directories and control for the data cache, and controls
the running of fixed-point load, floating-point load, and store Instructions.

In the POWER2 implementation four DCUs provtde a four-way set-associative data cache.
The OCUs form an eight-word (four or eight memory boards) and a tour-word (two memory
boards) interface to memory, two four-word (4W) Interfaces to FPU, and two single-word
(1 W) interfaces to FXU. In the POWER Implementation four DCUs provide a four-way
set-associative data cache. The DCUs form a four-word (4W) Interface to memOfY, a
two-word (2W) Interface to FPU, and a single-word (1W) interface to FXU. DCUs contain
error checking and correction (ECC) and bit steering logic. They provide the data path for
Direct Memory Accesses (OMA), and supply the path for Instruction cache (I-cache) reloads.
The MCU contains the controls and configuration registers for system memory. The MCU
provides the data path between 110 and processor chip set for VO load and store
instructions. The MCU also interfaces to the ROM that contains the system lnltiaJization
code for the processor chip set, also referred to as the initial program load read-only
memory (IPL ROM).

The processor bus (P-bus) shown in Figure 1 on page 1-6 is used to send the address to
the MCU for D-cache (data cache) reloads (by FXU) and for I-cache reloads (by ICU). It is
used for I-cache translation look-aside buffer (TLB) reloads (by FXU), and for 1/0 loads and
stores (by FXU). The P-bus is also used tor moves to and from special registers (for
example, Segment registers, Unk register, and Machine State register) between FXU and
ICU. The system VO bus is used to transfer the OMA data between the IOU and system
memory by way of the DCU, and provides a path for 110 load and store operations between
the FXU and the IOU by way of the MCU.

The VO unit contains an VO channel control unit that generates the Micro Channel Interface.
The VO channel control unh uses the data stored In translation control word (TCW) and tag
tables for address translation and data protection duting 1/0 operations.

System Proceaaors 1 ·9

Document Conventions
The following conventions are used throughout this document

• Quadwords are 128 bits, doublewords are 64 bits, words are 32 bits, halfwords are
16 bits, bytes are a bits.

• All numbers are decimal unless specified in some special way.

• b'nnn' means a number expressed in binary fonnat.

• ~ nnrl means a number expressed in hexadecimal format.

• n x b'O' means n zeros.

• n x b'1' means nones.

• (RAIO) means the contents of register RA if the RA field has the value 1 through 31, or
the value o If the RA field is o.

• (Rx) means the contents of register Rx.

• (FRx) means the contents of ~er FRx.

• X(p) means bit p of register or field X.

• X sub p means bit p of register or field X.

• X(p-q) means bits p through q of register or field X.

• X(p .. q) means bits p through q of register or field X.

• X sub p-q means bits p through q of register or field X.

• -.(RA) means the ones complement of the contents of register RA.

• /,II, Ill, ... means a field that is ignored by the hardware.

• The symbol II is used to describe two fields that are appended or concatenated to each
other. For example, 01011111 isthesameaso10111.

• All bits in registers that are reserved are O on read and can be either o or 1 on write.

• 2••n means 2 raised to the n° th power.

• Field i refers to bits 4 x i to (4 x Q + 3 of a register.

• Positive means greater than O.

• Negative means less than 0.

• Instructions are assumed to be nonprMleged unless stated otherwise in the instruction
description.

1 • 1 0 General Architectures

Systems Overview
The processor or processor unit contains the sequencing and processing controls for
instruction fetch, instruction execution, and interrupt action. The following classes of
instructions can be executed by the processing unit:

• Branch processor instructions
• Fixect.point processor instructions
• Floating-point processor instructions.

Refer to AIX Ve.rsion 3.2 Assembler Language Reference for information on a specific
instruction.

See Figure 4 for a representation of the logical partitioning provided by the system
architecture. The processing unit is a word-oriented fixed-point processor and in a
doubleword-oriented floating-point processor. The system architecture uses 32-blt
word-aligned Instructions and provides for byte, halfword, word, and doubleword operand
fetches and stores between system memory and a set of 32 general purpose registers
(GPRs), and between system memory and a set of 32 floating-point registers (FPRs).

Progr11mmed i...
l/O ...- l

Fixed-Point
ProceHor

i.. ..a.I ,..,
Branch i...

Proceaaor ...- -.-
GP Ra h

XER l MQ
Data CR SRRO Cache

LA SRR1

CTR MSR
L....t i... ...

Floating-Point ...- ...

lnatructlon Proceaeor 4~

C.Che

FPRe • FPSCR
. ...

Main Memory

Direct Memory AcceN

Figure 4. System Architecture View

System Processors 1 • 11

Instruction Formats

Forms
DForm

OS Form

BForm

I Form

All instructions are 4 bytes long and are located on word boundaries. Thus, whenever
Instruction addresses are presented to the processing unit (as in branch instructions) the
two low-order bits are ignored. Similarly, whenever the processing unit develops an
instruction address, its two low-order bits are 0.

Bits O through 5 always specify the opcode. For XO-form instructions, an extended opcode
is specified in bits 22 through 30. For all other X-form instructions, an extended opcode is
specified in bits 21 through 30. For A-form instructionS, an extended opcode is specified in
bits 26 through 30.

The remaining bits contain one or more alternative fields for the different instruction formats.

0 6 11 18

[OPCD RT RA D

RS SI

FRT UI

TO

BF

FRS

0 6 11 18 30

OPCD 1: I:: I OS
I xoj

0 8 11 18 30 31

I OPCD I BO I Bl I BO IAA!ucl

0 6 30 31

OPCD u IAAlucl

1-12 General Architectures

SC Form

0 6 11 18 20 27 30 31

I OPCD I '" I "' I ~1 I LEV IFL21 SA I LI(I

XFonn

0 8 11 18 21 31

l OPCD RT RA RB EO I Re J
FRT FRA FRB

BF BFA SH

RS SPR NB
FRS I

TO

BT

XL Form

0 8 11 16 21 31

OPCD 1: I:~ I BB I EO I LKI

XFX Form

0 8 11 21 31

I OPCD I RT I FXM I EO I Rel
XFL Fonn

0 8 18 21 31

I OPCD I FLM IFReleo I Rel
XO Form

0 8 11 18 21 22 31

I OPCD I RT I RA I RB I OE I EO• I Rel

System Processors 1 ·13

A Form

MForm

A-form instructions are used for four operand instructions. The operands. all floating-point
registers, are specified by the FAT, FRA, FRB, and FRC fields. The short extended opcode,
XO, is in bits 26 through 30.

0 6 11 16 21 26 31

I OPCD FRA FRB jFRC jxo

0 8 11 16 21 28 31

I OPCD RS RA -~-B __ I MB

Instruction Fields
The followlng instruction fields are defined for the various Instruction formats:

Flelda Deacrlptlon

AA (30) Following Is the description of the Absolute Address bit.

BA (11-15)

Bit O..Crlptlon

0

1

The immediate field represents an address relative to the
current instruction address. For 1-fonn branches, the
effective address of the branch is the sum of the LI field
sign extended to 32 bits and the address of the branch
Instruction. For B-form branches, the effective address of
the branch is the sum of the BO field sign extended to
32 bits and the address of the branch instruction.

The immediate field represents an absolute address. For
I-form branches, the effective address of the branch is the
LI field sign extended to 32 bits. For B-form branches, the
effective address of the branch is the BO field sign
extended to 32 bits.

Field used to specify a bit in the Condition register (CR) to be used es a
source.

BB (18-20) Field used to specify a bit in the CR to be used as a source.

BD (18-29) Immediate field specifying a 14-blt signed twos complement branch
displacement, which is concatenated on the right with b'OO' and sign
extended to 32 bits.

BF (8-8) Field used to specify one of the CR compare result fields or one of the
FPSCR fields as a target. If i = BF(fhS}, then field i refers to bits i x 4 to
(I x 4) + 3 of the register.

BFA (11-13) Field used to specify one of the CR compare result fields, one of the
FPSCR fields, or one of the XER fields as a source. If j = BFA(11-13), then
field j refers to bits j x 4 to Ox 4) + 3 of the register.

Bl (11-15) Field used to specify the bit in the CR to be used as the condition of the
branch.

1-14 General Architectures

Fie Ida

BO (6-10)

BT(&-10)

D (16-31)

DS(16-29)

EO (21-30)

EO' (22-30)

FL1 (16-19)

FL2(27-29)

FXM (12-19)

Description

Field used to specify different options that can be used in conditional branch
instructions. Following is the encoding for the BO field:

BO Deacrlptlon

OOOOx Decrement the CTR, then branch if the decremented
CTR ~ O and condition is false.

0001 x Decrement the CTR, then branch if the decremented
CTR = o and condition is false.

001xx Branch if condition is false.

0100x Decrement the CTR, then branch if the decremented
CTR ;t 0 and condition is true.

0101x Decrement the CTR, then branch if the decremented
CTR"' o and condition is true.

011xx Branch If condition is true.

1x00x Decrement the CTR, then branch if the decremented
CTR~O.

1 x01x Decrement the CTR, then branch if the decremented
CTR=O.

1x1xx Branch always.

Field used to specify a bit in the CR as the target of the result of an
instruction.

Immediate field specifying a 16-bit signed twos complement integer sign
extended to 32 bits.

Immediate field specifying a 14-bit signed twos complement integer to
which a b'OO' is concatenated on the right.

A 10-bit extended opcode used in X-form Instructions.

A 9-blt extended opcode used in XO-form instructions.

A 4-blt field in the Supervisor Cell (SVC) instruction.

A 3-blt field in the SVC instruction.

Field mask, identifies which CR field is to be updated.

Bit Deacrlptlon

12 CR Field 0 (bits 00-03}

13 CR Field 1 (bits 04-07)

14

15

18

17

18

19

CR Field 2 (bits Der 11)

CR Field 3 (bits 12-15)

CR Field 4 (bits 16-19)

CR Field 5 (bits 20-23)

CR Field 6 (bits 24-27)

CR Field 7 (bits 28-31).

System Processors 1·15

Field•

FLM (7-14)

FRA (11-16)

FRB (16-20)

FRC (21-26)

FRS (&-10)

FRT (6-10)

I (1&-19)

LEV(20-28)

U(&-29

LK (31)

1 • 16 General Architectures

Deacriptlon

Field mask, identifies which FPSCR field is to be updated.

Bit Description

7 FPSCR Field 0 (bits oo--03)

8 FPSCR F1eld 1 {bits 04--07)

9 FPSCR F1eld 2 (bits 08-11)

10 FPSCR Field 3 (bits 12-15)

11 FPSCR Field 4 (bits 16-19)

12 FPSCR Field 5 (bits 20-23)

13 FPSCR Field 6 (bits 24-27)

14 FPSCR Field 7 (bits 28-31).

Field used to specify an FPR as a source of an operation.

Field used to specify an FPR as a source of an operation.

Field used to specify an FPR as a source of an operation.

F"ield used to specify an FPR as a source of an operation.

Field used to specify an FPR as the target or an operation.

Immediate field used as the data to be placed into a field in the FPSCR.

Immediate field in the SVC Instruction that addresses the SVC routine by
b'1' II LEV II b'OOOOO' if SA = O.

Immediate field specifying a 24-blt signed two's complement integer that Is
concatenated on the right with b'OO' and sign extended to 32 bits.

Following is the description of the Link bit.

Bit O..Crlptlon

0

1

Do not set the Link register.

Set the Link register. If the instruction is a branch, the
address of the instruction following the branch instruction is
placed into the Link register. If the instruction Is an SVC, the
address of the instruction following the SVC instruction Is
placed Into the Link register.

Flelda Description

IMB (21-25) & ME (26-30)

NB (16-20)

OPCD(D-5)

OE (21)

RA (11-15)

RB (16-20)

Re (31)

RS (6-10)

RT(&-10)

Fields used to specify a 32-blt string, consisting of either a substring of ones
surrounded by zeros or a substring of zeros surrounded by ones. The
encoding is as follows:

Flelda Description

MB (21-25)

ME (26-30)

Index to start bit of substring of ones.

Index to stop bit of substring of ones.

Let mstart = MB and mstop = ME.

If mstart < mstop + 1
then mask (mstart..mstop) =ones
mask (all other) = zeroes.

If mstan = mstop + 1 then
mask (C>-31) = ones.

If mstart > mstop + 1 then
mask (mstop+ 1 .. mstart-1) =zeros
mask (all other) = ones.

Field used to specify the number of bytes to move in a load or store string
immediate.

The basic opcode field of the Instruction.

Used for extended arithmetic to inhibit the setting of OV and SO In XER.

Field used to specify a GPR to be used as a source or as a target.

Field used to specify a GPA to be used as a source.

Following is the description of the Record bit.

Setting Deacrlptlon

0 Do not set the Condition register (CR).

1 Set the Condition register to reflect the result of the
operation.

For fixed-point instructions, CR bits (O to 3) are set to reflect the result as a
signed quantity. The result as an unsigned quantity or a bit string can be
deduced from the EO bit.

For floating-point instructions, CR bits (4 to 7) are set to reflect
Floating-Point Exception, Floating-Point Enabled Exception, Floating-Point
Invalid Operation Exception, and Floating-Point Overflow Exception.

Field used to specify a GPA to be used as a source.

Field used to specify a GPA to be used as a target.

System Processors 1 • 17

Fields

SA(30)

SH'(16-20)

SI (16-31)

SPR (11-15)

TO (6-10)

UI (16-31)

XO (26-30)

XO (30, 31)

1-18 General Architectures

Description

The following describes the SVC Absolute.

Setting Description

0

1

SVC routine at address '1' II LEV II b'OOOOO'.

SVC routine at address X'1 FEO'.

Field used to specify a shift amount.

Immediate field used to specify a 16-bit signed integer.

Special Purpose register.

SPA Special PurpoM Reglater

00000 (00) IVIQ

00001 (01) XER

00100 (04) from RTCU

00101 (05) from RTCL

00110 (06) from DEC

01000 (08) LR

01001 (09) CTR

10100 (20) to RTCU

10101 (21) to RTCL

10110 (22) to DEC

11010 (26) SARO

11011 (27) SRA 1.

TO bit ANDed with condition.

TO bit ANDed with Condition

8 Compares less than.

7 Compares greater than.

8 Compares equal.

9 Compares logically less than.

10 Compares logically greater than.

Immediate field used to specify a 16-bit unsigned integer.

A-form instructions contain a 5-bit extended opcode.

OS-form instructions contain a 2·bit extended opcode.

Memory Addressing
Within the context of a program executing on the processing unit {PU), system memory is
organized Into doublewords, words, halfwords, and bytes, which are constrained to lie on
boundaries that are multiples of their sizes. See Figure 5 for an example of byte, halfword,
word, doubleword, and quadword memory addressing.

en. Add

Byte Halfword Word Doubleword Quadword

0000
0000

D-31
0001

0000
0010

0010
0011

0000
0100

0100
0101

31-83 0100
0110

0110
0111

1000
0000

1000
1001

32-G
1010

1000

1010
1011

1000
1100

1100
1101

84-127 1100
1110

1110
1111

F"igure 5. Memory Organization

Bytes in system memory are consecutively numbered starting with 0. Each number is the
address of the corresponding byte. The 32-bit addresses computed for system memory
access are tanned effective addresses and specify a byte in memory. System memory
address arithmetic wraps around from the maximum byte address,~ - 1, to address a.
System memory can be accessed by quadword, doubleword, word, halfword, or byte. The
required number of bytes are fetched from a properly aligned area of memory. The rules
when the operands are not property aligned are controlled by a mode bit, MSR(AL). See
•Machine State Register" on page 1-22.

System Processors 1·19

The mapping to real memory addresses is controlled by relocate (address translation)
facilities. When the relocate facility is active, effective addresses generated by program
execution are first transformed to 52·bit vinua/ address, which in tum are mapped to real
memory.

In general, the terms memory and address are used within the context of the effective
addresses generated by the PU.

All processor computations are perfonned in registers In the processing unit (PU). There are
no Instructions, for instance, to add two numbers, one of which is in memory.

Effective Address Calculation
Effective addresses (EAs) are generated by instructions that reference data in system
memory and by taken branch instructions. Address calculations use 32-blt two's
complement binary arithmetic. A carry from bit O is ignored.

A value of O In the RA field indicates the absence of the corresponding address component
For the absent component, a O value Is used in forming the address. This is shown In the
instruction descriptions as (RAIO).

X-form Instructions are used for data references. Address computation adds the GPA
contents designated by the RA field or the value O If RA equals a value of O with the GPR
contents designated by the AB field. The computation is shown as (RAIO) + (RB).

With D-form instructions, the 16-bit D field Is sign extended to form a 32-blt address
component. In computing the effective address of a data element, this address component Is
added to the GPA contents designated by the RA field or the value O if RA equals a value
of o.
With OS-fonn instructions, the 2-bits of zeros are added to the 14-bit OS field whH:h is then
sign extended to form a 32-bit address component. In computing the effective address of a
data element, this address component is added to the GPR contents designated by the RA
field or the value O If RA equals a value of o.
With 1-fonn branch instructions, the 24-bit LI field is concatenated on the right with b'OO' and
sign extended to fonn a 32-bit address. When AA equals a value of 0, this address is added
to the address of the branch instruction to form the effective address. If AA equals a value
of 1, this 32-bit value is the effective address.

With B-form branch Instructions, the 14-blt BO field Is concatenated on the right with b'OO'
and sign extended to form a 32·bit value. If AA equals a value of o, this 32-blt value is added
to the address of the branch Instruction to fonn the effective address. If AA equals a value
of 1, this 32-blt value ls the effective address.

With XL-form branch Instructions, bits o to 29 of the Link register or the Count register are
concatenated on the right with b'OO' to fonn the effective address.

1 ·20 General Architectures

Branch Processor
This section describes the registers and Instructions that make up the branch processor
facilities.

Branch Processor Registers
This section describes the branch processor registers and their bit definitions.

Condition Register
The Condition register (CA) Is a 32-bit register that reflects the result of certain operations
and provides a mechanism for tasting (and branching).

0 31

CR

Bits Name
OG-03 CR Reid 0
04-4)7 CR Reid 1
08-11 CR Rald2
12-15 CRFleld3
18-19 CR Fleld4
20-23 CR Fields
24-27 CR Fleld6
28-31 CR Reid 7.

The Condition register bits are grouped into eight 4-bit fields, named CR Field 0 through
CR Fleld 7, which are set in one of the following ways:

• A load or copy operation Into a specific CR field .
• CR Field O can be set as the implicit result of a fixed-point operation.
• CR Fleld 1 can be set as the implicit result of a floating-point operation.
• As the result of either a fixed or floating-point compare operation Into a specified CR field.

Instructions are provided to test these bits singly and in combination.

When the record bit (Re) is set to 1 In most fixed-point instructions, the first three bits of CR
Field o are set by a comparison of the result, which is interpreted as a signed integer, to a
value of o. The fourth bit of CR Field O Is copied from the SO field of the XER. Add
Immediate, Add Immediate Lower, and Add Immediate Upper Instructions set these four bits
lmpllcltty. These bits are Interpreted as shown In the following list

Bit O..Crlptton

O Compares Less Than, Negative (LT). For arithmetic operations, the result is
negative or less than a value of o. For compare operations, (RA)< SI, UI,
or (RB).

1

2

3

Compares Greater Than, Positive (RB). For arithmetic operations, the result
Is positive or greater than a value of O. For compare operations, (RA)> SI,
UI, or (RB).

Compares Equal, Zero (EC). For arithmetic operations, the result is a value
of O or equal to a value of 0. For compare operations, (RA) = SI, UI, or (RB).

Summary Overflow (SO). This Is a copy of the final state of XER(SO) at the
completion of the instruction.

System Processors 1 ·21

When the Re bit equals a value of 1 in all floating-point instructions except the Floating-Point
Compare Instruction, CR Field 1 (Condition register bits 4 to 7) is set to the floating-point
exceptions status. These bits are interpreted as shown In the following list:

Bit Description

4

5

8

7

Floating-Point Exception (FX). This is a copy of the final state of
FPSCA(FX) at the completion of the Instruction.

Floating-Point Enable Exception (FEX). This is a copy of the final state of
FPSCA(FEX) at the completion of the instruction.

Floating-Point Invalid Operation Exception (VX). This is a copy of the final
state of FPSCR(VX) at the completion of the instruction.

Floating-Point Overflow Exception (OX). This is a copy of the final state of
FPSCA(OX) at the completion of the instruction.

Condition register bits 4 to 7 are copies of bits o to 3 in the Floating-Point Status and Control
register.

Link Register
The Link register (LR) Is a 32-blt register. The Link register provides the branch target
address for the Branch Conditional Register instruction and holds the retum address (link
address) for branch and link type Instructions and SVC instructions.

0 31

LR

Count Register
The Count register (CTR) is a 32-bit register. The Count register contains a loop count and
Is automatically decremented during execution of the branch and count instructions,
wrapping from X'OOOOOOOO' around through X'FFFFFFFP. The Count register also provides
the branch target address for the Branch to Count Register Instruction. The Count register
contains a copy of bits 16 to 31 of MSR and bits 16 to 31 of the SVC instruction after
execution of that SVC instruction. Both registers can be copied to and from any GPR.

0 31

CTR

Machine State Register
The Machine State register (MSR) is a 32-blt register that defines the modal state of the
processor. When the RFI Instruction is executed, bits 16 to 31 of SRR 1 are placed into bits
16 to 31 of the MSR. The MSR can also be modified by the Move to Machine State Register
Instruction.

0

Bit Name
00-15
16 EE
17 PR
18 FP
19 ME
20 FE

1 ·22 General Architectures

MSR

Ducrlptlon
Reserved
External Interrupt Enable
Problem State
FPAvallable
Machine Check Enable
FP Exception Enable

31

21
22
23
24
25
26
27
28
29
30-31

SE
BE
FE
AL
IP
IR
DR

PM

Single-Step Enable
Branch and Trap Enable
FP Imprecise Enable
Alignment Check
Interrupt Prefix
Instruction Relocate
Data Relocate
Reserved
Performance Monitor Control
Reserved.

The following are the Machine State register bit definitions and settings:

Bila Deacrlptlon

~15 Reserved

18 External Interrupt Enable (EE)

Setting Dncrlptlon

o The processor is disabled against extemal interrupts.

1 The processor is enabled to take external interrupts.

17 Problem State (PR)

18

19

20

Setting Description

o The processor is privlleged to execute any instruction.

1 The processor can only execute the nonprivlleged
Instructions.

Floating-Point (FP) Available

Setting Deacrlptlon

o The processor cannot execute any floating-point
instructions, including floating-point loads, stores and
moves.

1 The processor can execute floating-point Instructions.

Machine Check Enable (ME)

Setting DMcrlptlon

O Machine check interrupts are disabled.

1 Machine check interrupts are enabled.

Floating-Point Exception Interrupt Enable (FE)

Setting Dncrlptlon

O Program interrupts on floating-point enabled exception are
disabled.

1 Program interrupts on floating-point enabled exception are
enabled.

System Processors 1-23

Blta Deacrlption

21 Single-Step Enable (SE)

Setting 0.Crlptlon

o The processor executes instructions normally.

1 The processor generates a Single-Step type Trace Interrupt
upon the successful execution of an instruction (the
instruction does not cause any other type of interrupt).

22 Branch and Trap Enable (BE)

23

24

1 ·24 General Architectures

Setting DeecrlptJon

O The processor executes branch Instructions nonnalty.

1 The processor generates a Branch and Trap type Trace
Interrupt after completing the execution of a branch
Instruction.

FP Imprecise Enable (FE)

Setting O..Crlptlon

o FP Imprecise interrupts are disabled.

1 FP Imprecise interrupts are enabled if MSR(FE) = o.
Alignment Check (AL)

Setting O..Crlptton

o Alignment checking is off and the low-order bits of the
address are Ignored.

1 Alignment checking is on; alignment checking proceeds as
follows:

If bits 29, 30, or 31 of an address generated by a
doubleword data memory reference instruction are nonzero,
an alignment interrupt is generated If the hardware cannot
pertonn the unaligned access.
If bits 30 or 31 of an address generated by a word data
memory reference instruction are nonzero, an alignment
interrupt is generated if the hardware cannot perform the
unaligned access.

If bit 31 of an address generated by a halfword data
memory reference Instruction is nonzero, an alignment
interrupt Is generated if the hardware cannot perfonn the
unaligned access.
This checking does not apply to the load and store
string-type instructions since these instructions always
perform the unaligned access. Load and store multiple-type
instructions always generate an alignment interrupt If bits
30 to 31 of the effective address are nonzero.

When the memory reference is to an VO segment, the
address is sent to VO unmodified, regardless of the setting
of the MSR(AL).

Btta Deacrlptlon

25 Interrupt Prefix (IP)

Setting Dncrlptlon

O Interrupts vectored to the effective address X'OOOxxxxx'
where xxxxx is the interrupt offset.

1 Interrupts vectored to the effective address X'FFFx.iocxX
where xxxxx is the interrupt offset. This is intended to direct
the interrupt to read only memory (ROM).

26 Instruction Relocate (IR)

Setting Deecrlption

0

1

Instruction address translation Is off.

Instruction address translation is on.

27 Data Relocate (DR)

0

1

28 Reserved

Data address translation Is off.

Data address translation Is on.

29 Controls performance monitoring functions.

3G-31 Reserved.

Fixed-Point Processor Registers
This section describes the registers in the fixed-point processor facility.

General Purpose Registers
All manipulation of Information Is done in registers internal to the processing unit (PU).The
principal storage within the fixed-point processor is a sat of 32 general purpose registers
(GPRs). Each GPA consists of 32 bits. See Figure 6 for an example of the general purpose
registers.

0 31

GPROO

GPR01

GPR30

GPR31

Figure 6. General Purpose Registers

System Processors 1 ·25

Fixed-Point Exception Register
The Fixed-Point Exception register (XER) is in the fixed-point unit and is 32 bi1s wide.

0

Bit

0

1

2

31

XER

Deacrlptlon

Summary Overflow (SO)

The Summary Overflow bit is set to 1 whenever an instruction sets the
Overflow bit to indicate overflow and remains set until software resets it.
The SO bit is not altered by the compare instructions.

Overflow (OV)

The Overflow bit is set to Indicate that an overflow has occurred during an
instruction operation. In the case of add and subtract instructions, it is set to
1 if the carry out of bit o is not equal to the carry out of bit 1. Otherwise the
OV bit is set to o. The OV bit is not altered by the compare instructions.

Carry (CA)

The Carry bit is set to Indicate a carry from bit o of the computed result. In
the case of add and subtract Instructions, it is set to 1 if the operation
generates a carry out of bit 0. Otherwise, the CA bit is set to o. The CA bit is
not altered by the compare instructions.

3-16 Reserved

18-23 Used by the Load String and Compare Byte Indexed instructions as the
byte being compared against.

24 Reserved

25-31 Used by Load String Indexed, Load String and Compare Byte Indexed, and
Store String Indexed instructions to indicate the number of bytes loaded or
stored.

Multiply Quotient Register
The Multiply Quotient (MO) register is a 32-bit register that provides a register extension to
accommodate the product for the multiply instructions and the dividend for the divide
instructions. The MQ register is also used as an operand of long rotate and shift instructions
and as a temporary storage facility for store string instructions.

0 31

MQ

1 ·26 General Architectures

Floating-Point Processor Overview
The floating-point processor (FPP) provides high-pertonnance execution of floating-point
operations. Instructions are provided to perfonn arithmetic operations in floating-point
registers and move floating-point data between memory and these registers.

This architecture provides tor hardware to implement a floating-point system as defined in
ANSVIEEE Standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic, but is
dependent on supporting software to be in confonnance with that standard.

A floating-point number consists of a signed exponent and a signed significand. The quantity
expressed by this number is the product of the significand and the number 2 .. exponent.
Encodings are provided in the data fonnat to represent finite numeric values, ± Infinity and
Not-a-Number (NaN) values. Operations involving infinities produce results obeying
traditional mathematical conventions. NaN values have no mathematical interpretation. Their
encoding pennits a variable dlagnostic-lnfonnatlon field. They can Indicate such things as
uninitialized variables and can be produced by certaln invalid operations.

There are two classes of exceptional events that occur during instruction execution that are
unique to the FPP:

• FPP unavailable
• Floating-point exception.

The FPP unavailable event is signaled with a Floating-Point Not Available Interrupt.
Floating-point exceptions are signaled with bits set in the Floating-Point Status and Control
register and can generate a precise interrupt with the proper bits enabled.

The Floating-Point Available bit is defined to enhance context switching performance for
programs that do not require the use of FPP. The Floating-Point Available bit Is defined in
MMachine State Register.ft on page 1-22.

If the Machine State Register (Floating-Point) (MSR(FP)) bit equals 1, the FPP is available
for use and floating-point instructions can be successfully executed. If the MSR(FP) bit
equals 0, the FPP is unavailable for use, execution of any floating-point Instruction is
suppressed, and a Floating-Point Unavailable Interrupt Is generated to signal the attempted
use of the FPP in the unavailable state.

The following floating-point exceptions are detected by the hardware:

• Invalid Operation Exception
a. SNaN
b. Infinity - Infinity
c. Infinity x Zero
d. Infinity + Infinity
e. Zero + Zero
f. Ordered Compare With a NaN

• Zero DMde Exception
• Overflow Exception
• Underflow Exception
• Inexact Exception.

System Processors 1-27

Each floating-point exception and exception sub-class (in the case of Invalid Operation
Exception) has an Exception bit defined in the Floating-Point Status and Control Register.
Each floating-point exception has an Enable bit defined in the Floating-Point Status and
Control Register. See •Floating-Point Status and Control Register" on page 1-29 for
definitions of these bits. A bit is defined in the MSR, Floating-Point Exception lntenupt
Enable, or MSR(FE), which allows a precise program interrupt to be generated when an
enabl~ floating-point exception occurs.

Floating-Point Registers
Implementations of this architecture provide 32 floating-point registers (FPA). The
floating-point instruction fonnats provide a 5-bit field for specifying the FPRs used in the
instruction execution. The FPRs are numbered 0 to 31. See Figure 7 for a representation of
the floating-point registers. A Floating-Point Status and Control register controls the handling
of floating-point exceptions and records status resulting from the floating-point operations.

FPROO

FPR01

... . . .

FPR30

FPR31

0

Figura 7. Floating-Point Registers

Each FPR contains 84 bits, which support the double-precision floating-point format. AJI
operations that Interpret the contents of an FPR as a floating-point value use the
double-precision floating-point format for this Interpretation.

All floating-point operations other than load and store operations are performed on operands
located In FPRs and place the result value In an FPR. Status infonnation is placed In 1he
Floating-Point Status and Control register and In some cases in the Condition rvgister.

Load and store double Instructions are provided that transfer 84 bits of data between
memory and the FPRs in the FPP with no conversion. Load single instructions are provided
to transfer and convert floating-point values In single floating format from memory to the
same value In double floating format In the FPRs. Store single instructions are provided to
transfer and convert floating-point values in double floating fonnat from the FPRs to the
same value in single-floating fonnat In memory.

1-28 General Architectures

Floating-Point Status and Control Register
The Floating-Point Status and Control register (FPSCR) contains the status and control flags
for floating-point operations. Bits O to 19 are Status bits. Bits 20 to 31 are Control bits.

0 31

FPSCR

Bit Name Oeecrlption

00 FX Floating-Point Exception Summary
01 FEX Floating-Point Enabled Exception Summary
02 vx Floating-Point Invalid Operation Exception Summary
03 ox Floating-Point Overflow Exception

04 ux Floating-Point Underflow Exception
05 zx Floating-Point Zero DMde Exception
oe xx Floating-Point Inexact Exception
07 VXSNAN Floating-Point Invalid Operation Exception (SNaN)

08 VXISI Floating-Point Invalid Operation Exception INF - INF)
09 VXIDI Floating-Point Invalid Operation Exception (INF+ INF)
10 VXZDZ Floating-Point Invalid Operation Exception (O + O)
11 VXIMZ Floating-Point Invalid Operation Exception (INF x 0)

12 vxvc Floating-Point lnvalld Operation Exception
(Invalid Compare}

13 FR Floating-Point Fraction Rounded
14 Fl Floating-Point Fraction Inexact
16 c Floating-Point Result Class Descriptor

18 FL Floating-Point Less Than
17 FG Floating-Point Greater Than
18 FE Floating-Point Equal
18 FU Floating-Point Unordered

20 Reserved
21 Reserved
22 VXSQRT Floating-Point lnvalld Operation Exception

(Invalid Square Root)
23 VXCVI Floating-Point Invalid Operation Exception

(Invalid Integer Convert)

24 VE Floating-Point Invalid Operation Exception Enable
25 OE Floating-Point Overflow Exception Enable
26 UE Floating-Point Underflow Exception Enable
'71 ZE Floating-Point Zero Divide Exception Enable

28 XE Floating-Point Inexact Exception Enable
29 Reserved
30 RN Floating-Point Rounding Control
31 RN Floating-Point Rounding Control.

System Processors 1-29

The format of the FPSCR follows:

Bit Description

O Floating-Point Exception Summary (FX). Every floating-point arithmetic
instruction, floating-point compare instruction, and the Floating Round to
Single instruction shall implicitly set FPSCR(FX) if that instruction causes
any of the Floating-Point Exception bits In the FPSCR to transition from

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 ·30 General Architectures

o to 1. Also, use of the mtfsb1 instruction, which causes any of the
Floating-Point Exception bits in the FPSCR to transition from O to 1 shall
implicitly set FPSCR(FX). The mcrfs instruction shall be able to implicitly
reset the FPSCR(FX). And finally, the mtfsf, mtfsfi, mtfsb1, and mtfsbO
instructions are able to set or clear FPSCR(FX) expliclUy.

Floating-Point Enabled Exception Summary (FEX). This bit signals the
occurrence of any of the enabled exception conditions. It is the 'OR' of all
the floating-point exceptions masked with their respective enable.

Floating-Point Invalid Operation Exception Summary (VX). This bit signals
the occurrence of any invalid operation exceptions. It is the 'OR' of ail the
invalid operation exceptions.

Floating-Point Overflow Exception (OX). See "Overflow Exception· on
page 1-42 for infonnation about this register.

Floating-Point Underflow Exception (UX). See "Underflow Exception• on
page 1-44 for Information about this register.

Floating-Point Zero Divide Exception (ZX). See "Zero Divide Exception• on
page 1-41 for infonnation about this register.

Floating-Point Inexact Exception (XX). See ~Inexact Exception•on page 1-44
for Information about this register.

Floating-Point Invalid Operation Exception (SNaN) (VXSNAN). See ·invalid
Operation Exception" on page 1-40 for information about this register.

Floating-Point Invalid Operation Exception (INF - INF) (VXISI). see ·invalid
Operation Exception" on page 1 -40 for infonnation about this register.

Floating-Point Invalid Operation Exception (INF+ INF) (VXIDI). See Mlnvalid
Operation Exception" on page 1-40 for information about this register.

Floating-Point Invalid Operation Exception (O + O) (VXZOZ). See "Invalid
Operation Exception" on page 1-40 for information about this register.

Floatlng-F'olnt Invalid Operation Exception (INF x 0) (VXIMZ). See "Invalid
Operation Exception" on page 1-40 for Information about this register.

Floating-Point Invalid Operation Exception (Invalid Compare) (VXVC). See
"Invalid Operation Exception" on page 1-40 for information about this
register.

Floating-Point Fraction Rounded (FR). The last floating-point instruction that
rounded the intermediate result Incremented the fraction.

Floating-Point Fraction Inexact (Fl). The last floating-point instruction that
rounded the intermediate result produced an inexact fraction or a disabled
exponent overflow.

Bit Description

15-19 Floating-Point Result Flags (FPRF).

Bit Deecrlptlon

15 Floating-Point Result Class Descriptor (C)

16-19 Floating-Point Condition Code (FPCC).

Bit Deacnptlon

18

17

18

19

Floating-point less than or negative
(Fl or<)

Floating-point greater than or positive
(FG or>)

Floating-point equal or zero (FE or equals)

Floating-point unordered or NaN (FU).
Floating-point compare instructions always
set one of the FPCC bits to 1 and the other
three FPCC bits to o. Other instructions
can set the FPCC bits with the C bit to
encode these 5 bits to indicate the class of
the stored result. See the following table for
the floating-point result flags. Notice that in
this case the three high-order bits of the
FPCC retain their relational significance
indicating that the value Is less than,
greater than, or equal to zero.

Floating-Point R•ult Flag•

R•ult Flag•
C<>=? R•ult Value Clua

10001 -Quiet NaN

01001 - Infinity

01000 - Normalized number

11000 - Denormalized number

10010 -Zero

00010 +Zero

10111 + Denormalized number

00100 + Normalized number

00101 +Infinity

$)'stem Processors 1-31

Bit

20-21

22

23

24

25

26

27

28

28

30-31

Description

Reserved.

Floating-Point Invalid Square Root Exception. See •invalid Operation
Exception" on page 1-40 for information about this register.

Floating-Point Invalid Integer Convert Exception. See ·invalid Operation
Exception" on page 1-40 for Information about this register.

Floating-Point Invalid Operation Exception Enable (VE). See "Invalid
Operation Exception" on page 1-40 for information about this register.

Floatlng-Polnt Overflow Exception Enable (OE). See "Overflow Exception•
on page 1-42 for Information about this register.

Floating-Point Underflow Exception Enable (UE). See "Underflow
Exception" on page 1-44 for information about this register.

Floating-Point Zero Divide Exception Enable (ZE). See uZero Divide
Exception" on page 1-41 for Information about this register.

Floating-Point Inexact Exception Enable (XE). See "Inexact Exception" on
page 1-44 for information about this register.

Reserved.

Floating-Point Rounding Control (RN). See •Rounding" on page 1-37 for
information about this register.

Setting Deecrlptfon

00 Round to Nearest

01

10

Round toward Zero

Round toward +Infinity

11 Round toward -Infinity.

Note: Every exception bit In the FPSCR Is sticky (bits o to 12) except the Floating-Point
Enabled Exception Summary and Floating-Point Invalid Operation Exception
Summary bits. That Is, once sat they remain set until one of the following instructions
possibly changes them: mtfsf, mtfsfi, mtfsbO, and mcrfs.

1-32 General Architectures

Floating-Point Data Representation
This section describes how data is represented in the Floating-Point Processor.

Data Format
This architecture defines the representation of a floating-point value In two different binary
fixed-length formats. The format can be a one-word format for a single-precision floating­
point value or a two-word fonnat for a double-precision floating-point value. The single
format (see Figure 8) can be used for data in memory. The double fonnat (see Figure 9) can
be used for data in memory and for data in Floating-Point registers. The length of the
exponent and the fraction fields differ between these two forma1s.

Is I EXP FRACTION

0 1 31

Figure 8. Floating-Point Single Format

Is I EXP FRACTION

0 1 12 83

Figure 9. Floating-Point Double Fonnat

Values In floating-point format are composed of the following fields:

Field Deecrlptlon
S Sign bit
EXP Exponent + Blas
FRACTION Fraction.

Bit o Is the Sign bit. The xMSB bit Is the most significant bit of the EXP field, the xLSB bit 18
the least significant bit of the EXP field. The fMSB bit is the most significant bit of the
FRACTION field. The fLSB bit is the least significant bit of the FRACTION field.

Representation of numerical values in the floating-point formats consist of a Sign bit S, a
biased exponent EXP, and the fraction portion FRACTION, of the slgnlficand. The
slgnificand consists of a Leading Implied bit concatenated on the right with the FRACTION
field. This Leading Implied bit Is a 1 for nonnallzed numbers and a o for denormalized
numbera and Is located in the Unit bit position (the first bit to the left of the binary point).

System Procesaors 1-33

Values represented within the two floating point formats can be specified by the parameters
listed in Figure 10.

Parameter Format

Sing le Double

Exponent blu +127 +1023
Maximum exponent +127 +1023
Minimum exponent -126 -1022

Wldth8 (blta)
Format 32 64
Sign 1 1
Exponent 8 11
Fraction 23 52
Slgntflcand 24 53

Figure 10. IEEE Floating-Point Fields

The architecture requires that the FPRs of the FPP support the arithmetic instructions on
values in the double-precision floating-point format only.

Value Representation
This architecture defines numerical and nonnumerical values representable within each of
the two supported fonnats. The numerical values are approximations to the real numbers
and include the normalized numbers, denormalized numbers, and zero values. The
nonnumerical values representable are the infinities and the NaN values. The infinities are
adjoined to the real numbers but are not numbers themselves, and the standard rules of
arithmetic do not hold when they appear in an operation. They are related to the real
numbers by order alone. Restricted operations among numbers and infinities can be
defined. Figure 11 shows the relative location on the real number line for each of the defined
entities .

.. -INF I -NOR +NOR

Figure 11. Approximation to Real Numbers

The NaN values are not related to the numbers or infinities by order or value, but are
encodings used to convey diagnostic information such as the representation of uninitialized
variables.

The following sections describe the different floating-point values defined in the architecture.

Binary Floating-Point Numbers
Machine-representable values are used as approximations to real numbers. Three
categories of numbers are supported: normalized numbers, denormalized numbers, and
zero values.

1·34 GeneralAn::hltectures

Normalized Numbers (+NOR)
The following are values that have a biased exponent value in the range:

• 1 to 254 In single fonnat
• 1 to 2046 in double fonnal

They are values in which the implied Unit bit Is 1. Normalized numbers are Interpreted as
follows:

NOR equals (-1)-ax 2••E x (1.fraction)

where s is the sign, E is the unbiased exponent, and 1. fraction is the significand that is
composed of a leading Unit bit (Implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normalized floating-point number are
approximately equal to:

Single format

1.2x1 o--38 :s; M s 3.4x1 o**38

Double format

2.2x10**.....308 s M S 1.8x10**308

Zero Values (+O)
Zero values are values that have a biased exponent value of o and a fraction value of o.
Zeros can have a positive or negative sign.

Denormalized Numbers (+DEN)
Denormalized numbers are values that have a biased exponent value of O and a nonzero
fraction value. Thay are nonzero numbers smaller in magnitude than the rapresentable
normalized numbers. They are values in which the Implied Unit bit Is 0. Denonnallzed
numbers are Interpreted as follows:

DEN equals (-1)**8 x 2••Emin x (O.fraction)

where Emln Is the minimum representable exponent value (-128 for single precision, -1022
for double precision).

Infinities (+INF)
Infinities are values that have the maximum biased exponent value of:

• 255 in the single format
• 2047 in the double fonnat.

The fraction value of an infinity is zero. They are used to approximate values greater in
magnitude than the maximum normalized value.

Infinity arithmetic Is defined as the limiting case of real arithmetic, with restricted operations
defined among numbers and infinities. Infinities and the real numbers can be related by
ordering In the affine sense:

-INF < every finite number< + INF

Arithmetic on infinities is exact and usually does not signal an exception. Exceptions occur
because of invalid operations. See •invalid Operation Exception• on page 1-40 for
Information.

System Processors 1-35

Not a Numbers (NaNs)
NaN values are values that have the maximum biased exponent value and a nonzero
fraction value. The Sign bit is ignored (NaN values are neither positive nor negative). If the
high-order bit of the fraction field is 1, It is defined as a quiet NaN (ONaN); otherwise, it is
defined as a signaling NaN. Quiet NaNs are used to represent the result of certain invalid
operations. When the Invalid Operation Exception Is disabled, FPSCR(VE) equals 0.
Examples include undefined arithmetic operations on infinities or NaNs. NaNs used in this
manner can convey diagnostic information to help identify results from these invalid
operations. Signaling NaNs are used to signal exceptions when they appear as arithmetic
operands, while quiet NaNs propagate through most operations without signaling exceptions
regardless of the condition of the operation. Specific encoding can thus be preserved
through a number of arithmetic operations for Its intended use as diagnostic information.
When a QNaN Is the result of an operation because one of the operands is a NaN or
because a QNaN was generated due to a disabled Invalid Operation Exception, then the
following rule is applied to determine the NaN with the High-Order Fraction bit set to 1 that is
to be stored as the result.

If (FAA) is a NaN
Then (FAT) +- (FAA)
Else If (FRB) Is a NaN

Then (FRT) +- (FRB)
Else if (FRC) is a NaN

Then (FRT) +- (FRC)
Else if generated ONaN

Then (FAT) +- generated QNaN

If the operand specified by the FAA is a NaN, that NaN is stored as the result. If the operand
specified by the FRB is a NaN (if the Instruction specifies an FRB operand), that NaN is
stored as the result. If the operand specified by the FRC is a NaN (if the instruction specifies
an FRC operand), that NaN Is stored as the result. If a QNaN was generated due to a
disabled Invalid Operation Exception, that QNaN is stored as the result. If a ONaN is to be
generated as a result. the ONaN generated has a Sign bit of o, an exponent field of all ones
and a High-Order Fraction bit of 1 with all other fraction bits o. Any instruction that generates
a QNaN as the result of a disabled Invalid Operation generates this ONaN.

Normalization and Denormallzatlon
When an arithmetic operation produces an Intermediate result, consisting of a Sign bit, an
exponent, and a nonzero slgnlficand with a o leading bit, it is not a normalized number and
must be normalized before it Is stored.

To normalize a number, the signlficand is shifted left while the exponent is decremented by
one for each bit shifted, until the leading significand bit becomes 1. The Guard bit and the
Round bit (See "Execution Model for IEEE Operations" on page 1-45) participate in the shift
with zeros shifted Into the Round bit. The exponent is regarded as if Its range were
unllmlted. If the resulting exponent value is less than the minimum value that can be
represented in the format specified for the result, the intermediate result is said to be Tiny.
The stored result Is determined by the rules described in "Underflow Exception" on
page 1-44. The sign of the number does not change.

When an arithmetic operation produces a nonzero intermediate result with an exponent
value less than the minimum value that can be represented in the format specified for the
result, the stored result is determined by the rules described in ~underflow Exception" on
page 1 -44. This process may require de normalization.

1-36 General Architectures

Precision

Rounding

To denormalize a number, the significand is shifted right while the exponent is incremented
by one for each bit shifted until the exponent is equal to the format minimum value. If any
significant bits are lost in this shifting process then Loss of Accul3Cy has occurred and
Underflow Exception is signaled. See "Underflow Exception• on page 1-44 for more
information. The sign of the number does not change.

When denormalized numbers are operands of multiply and divide operations they are
prenormalized intemally before the operations are performed.

All arithmetic operations are performed in floating-point double-precision. Floating-point
single-precision is obtained with the implementation of four forms of instructions:

1. Load Floating-Point Single

This form of Instruction accesses a single-precision operand in memory, converts It to
double-precision operand, and loads it into an FPR. No exceptions are detected on the
load operation.

2. Arithmetic operation performed In double precision

3. Round to Floating-Point Single

This form of Instruction rounds a double-precision operand to single-precision, checks
the exponent for single-precision range, handles any exceptions according to respective
enable bits, and stores that operand into an FPR as a double-precision operand.

4. Store Floating-Point Single

This form of Instruction converts a double-precision operand to slngle-preclslon and
stores that operand into memory. If the operand requires denormallzatlon In order to fit in
single-precision, It is denormalized prior to storing It. No exceptions are detected on the
store operation. (Assumes step 3 has been executed.)

All arithmetic instructions defined by this architecture produce an Intermediate result that can
be regarded as being Infinitely precise. This result must then be written with a precision of
finite length Into an FPR. After nonnallzatlon or denonnalizatlon, if the infinitely precise
intermediate result is not representable, it must be rounded.

Four modes of rounding are provided that are user-selectable through the Floating-Point
Rounding Control field In the FPSCR. These are encoded as follows:

RN Rounding Mode
00 Round to Nearest
01 Round towards Zero
10 Round towards +Infinity
11 Round towards -Infinity.

Let Z be the Infinitely precise Intermediate arithmetic result or the operand of a convert
operation. If Z can be represented exactly in the target format, rounding in all modes is
equivalent to truncation of Z. If Z cannot be represented exactty in the target fonnat, let Z1
and Z2 be the next largest and next smallest numbers representable in the target format that

System Proc:easors 1-37

bound Z, then Z1 or Z2 can be used to approximate the result in the target format. Figure 12
shows the relation of Z, Z1, and Z2 .

.----------By Incrementing LSB of Z

l Infinitely Precl1e Value l I +.....---By Truncating after LSB ------,1 1
I I I I I
nz~ o nz~

Negative Values •4----+-I ----.~ Positive Value8

Figure 12. Selection of Z1 and Z2

The following rules specify the rounding in the four modes:

Round To Neareat

Round Toward Zero

Round Toward +Infinity

Round Toward -Infinity

Choose the best approximation of Z1 or Z2. In case of a tie,
choose the one that is even (least significant bit 0).

Choose the smaller in magnitude (Z1 or Z2).

ChooseZ1.

ChooseZ2.

The arithmetic instructions are defined for operations on vaJues that are in the double
format.

See •execution Model for IEEE Operations" on page 1-45 for a detailed explanation of
rounding.

Data Handling
Instructions are defined to move floating-point data between the FPRs and memory. For
double format the data is not altered during the move. For single-format data, a format
conversion from single to double is performed when loading from memory into an FPR and
a format conversion from double to single is performed when storing from an FPR to
memory. No floating-point exceptions are raised during these operations.

The arithmetic instructions interpret the operand data and produce result data only in the
double format.

Note: The Round Floating-Point Double to Single instruction is provided to allow value
conversion from double to single precision with appropriate exception checking and
rounding. This instruction should be used after every arithmetic operation for
obtaining conforming IEEE single-precision results.

1-38 General Architectures

Floating-Point Exceptions
This architecture defines the following floating-point exceptions:

• Invalid Operation Exception
- SNaN
- Infinity- Infinity
- Infinity x Zero
- Infinity + Infinity
- Zero+Zero
- Ordered Compare with a NaN

• Zero Divide Exception
• Overflow Exception
• Underflow Exception
• Inexact Exception.

These exceptions can occur during the floating-point arithmetic and conversion operations.
For each exception, there Is one FPSCR bit to Indicate occurrence of the exception and
another FPSCR bit to Indicate whether the exception is enabled or disabled. If any of these
exceptions are recognized during the execution of a floating-point instruction, the exception
condition is signalled by setting the corresponding exception bit for the condition In the
FPSCR. A Floating-Point Exception Summary bit in the FPSCR is set when any of the
exception bits changes from O to 1, or when expllcltly set by software. A Floating-Point
Enabled Exception Summary bit In the FPSCR is set when any of the exceptions are set and
the exception Is enabled (enable bit Is 1).

Multiple exceptions can be set in four cases:

• Inexact Exception can be set with Overflow Exception.

• Inexact Exception can be set with Underflow Exception.

• Invalid Operation Exception (SNaN) can be set with Invalid Operation Exception (Inf x 0)
for multiply-add type instructions.

• Invalid Operation Exception (SNaN) can be set with Invalid Operation Exception (NaN
Compare) for compare Instructions.

When an exception occurs, a result can be delivered or the instruction execution can be
suppressed depending on the exception. When a result is to be delivered, it can be a
different value for the enabled and disabled conditions for some of the exceptions.

The IEEE standard specifies the handling of the exceptional conditions In terms of traps and
trap handlers. In this architecture, an Exception Enable bit of 1 causes the generation of
result values as specified in the IEEE standard for the trap enabled case. An Exception
Enable bit of o causes the generation of default result values as specified for the trap
disabled (or no trap occurs or trap is not implemented> case. The result to be delivered in
each case for each exception is described in the following sections.

In this architecture the detection of the floating-point exception conditions requires either a
programmed test or enabling of program Interrupts to be generated on enabled floating­
point exceptions. For the programmed test to uniquely and precisely detect all exceptions
that occur, each instruction that can cause a floating-point exception should be followed by a
software branch to a handling routine. For program Interrupt detection, MSR(FE) or MSR(IE)
must be set to one and the desired floating-point exception enable bits must also be set to
ones.

System Processors 1-39

If MSR(FE) is a one and a floating-point operation causes an enabled exception, a precise
PRogram Interrupt is generated. For a precise interrupt, the address saved in SARO is the
address of the Instruction that caused the interrupt, all Instructions prior to the instruction
casing the exception have completed, and no instruction subsequent to the instruction
causing their exception has been executed. A Floating-Point Imprecise Interrupt is
generated when MSR(FE) is a zero, MSR{IE) is a one, and a floating-point operation causes
an enabled exception. For an imprecise interrupt, some number of instructions beyond the
instruction causing the exception may have been executed and the address saved in SARO
points to an instruction that has not been executed.

Note: This program interrupt Is generated every cycle that FPSCR(FEX) equals 1 and
MSR(FE) equals 1 . It is the responsibility of the exception handler to clear the
exception bit that caused the interrupt. Also, the address of the instruction that
causes the interrupt is the address that is saved in the SAR O register, and, if the
SARO register Is unaltered, that instruction is the instruction retumed to and
re-executed. For certain types of floating-point exceptions, returning to the instruction
following the instruction that caused the Interrupt may be required; therefore, the
exception handler is required to Increment the address In the SRR O register by 4.

System performance with the MSR(FE) bit set to 1 can be significantly degraded.

Floating-Point Exception bits in the FPSCR are sticky. That is, once set, they remain set until
software resets them with either a mtfsf, mtfsfi, rntfsb1, mtfsbO, or mtcrfs instruction.

tnstruction execution is suppressed in some cases when an exception occurs, so there is no
possibility that one of the operands would be lost. These cases are:

• Enabled Invalid Operation
• Enabled Zero Divide.

In all other cases, a specified result is generated and written to the destination specified for
the instruction causing the exception. These cases are:

• Disabled Invalid Operation
• Disabled Zero Divide
• Disabled Overflow
• Disabled Underflow
• Disabled Inexact
• Enabled Overflow
• Enabled Underflow
• Enabled Inexact.

The following sections define each of the floating-point exceptions and specify the action to
be taken when they are detected. For single-precision applications, the exception detection
and handling can be slightly different. See the Floating Round to Single Precision instruction
in the Assembler Language Reference for exceptions and handling of exceptions for
single-precision floating-point arithmetic.

Invalid Operation Exception
Definition

An Invalid Operation Exception occurs when an operand is invalid for the specified
operation. The invalid operations follow:

• Any operation on a signaling NaN (SNaN)
• For add or subtract operations, magnitude subtraction of infinities (INF - INF)
• Multiplication of zero by infinity (INF x O)
• Division of zero by zero (0 + O)
• Division of infinity by infinity (INF+ INF)

1-40 General Architectures

Action

• Ordered comparison involving a NaN (NaN Compare)
• Square Root of a number that is both negative and nonzero (Invalid Square Root)
• Integer conversion of a NaN or a number that is too large (Invalid Integer Conversion).

The action to be taken depends on the setting of the Invalid Operation Exception Enable bit
of the FPSCR.

When the Invalid Operation Exception Enable bit is enabled, FPSCR(VE) equals 1, and
Invalid operation occurs, the following actions are taken:

1. Instruction execution is suppressed; operands are unmodified.

2. One of the following invalid operation exceptions is set:

FPSCR(VXSNAN) (If SNaN)
FPSCR(VXISI) (If INF - INF)
FPSCR(VXIDI) (If INF+ INF)
FPSCR(VXZDZ) (if 0 + 0)
FPSCA(VXIMZ) (if INF x 0)
FPSCR(VXVC) (if NaN Compare)
FPSCR(VXSQRT) (if Invalid Square Root)
FPSCR(VXCVI) (if Invalid Integer Conven).

3. If the operation is a compare operation, the FPCC field is set to reflect the Floating-Point
Unordered bit. Refer to the •Floating-Point Status and Control Register" on page 1-29 for
more details.

When the Invalid Operation Exception Enable bit is disabled, FPSCR(VE) equals 0, and
invalid operation occurs, the following actions are taken:

1 . One of the invalid operation exceptions is set:

FPSCR(VXSNAN)
FPSCR(VXISI)
FPSCR(VXIDI)
FPSCR(VXZDZ)
FPSCR(VXIMZ)
FPSCR(VXCVI)

(If SNaN)
(If INF - INF)
(if INF+ INF)
(If 0 + 0)
(if INF x 0)
(If Invalid Integer Convert).

2. If the operation destination is an FPR, the result is a QNaN.

3. If a result is generated, the FPRF field In the FPSCR is set to reflect the quiet NaN result.
If the operation is a compare operation, the FPCC field Is set to reflect the Floating-Point
Unordered bit. Refer to the "Floating-Point Status and Control Register" on page 1-29 for
more details.

Zero Divide Exception
Definition

Action

A Zero Divide Exception occurs when a divide instruction is executed with a zero divisor
value and a finite nonzero dividend value.

The action taken depends on the setting of the Zero Divide Exception Enable bit of the
FPSCR.

System Processors 1-41

When the Zero Divide Exception Enable bit is enabled, FPSCA(ZE) equals 1, and a zero
divide exception occurs, the following actions are taken: FPSCR(ZX) t- 1. (A value of 1 is
stored in the 2x bit of the FPSCA.

1. Instruction execution is suppressed; operands are unmodified.

2. The Zero Divide Exception bit is set: FPSCR(ZX) t-1.

When the Zero Divide Exception Enable bit Is disabled, FPSCR(ZE) equals 0, and a zero
divide exception occurs, the following actions are taken:

1. The Zero Divide Exception bit is set: FPSCR(ZX) +- 1.

2. The result is set to ± infinity, where the sign is determined by the exclusive 'OR' of the
sign of the operands.

3. The FPRF field In the FPSCA is set to indicate an infinity with the proper sign.

4. The result is placed into the target FPR.

Overflow Exception

Definition

Action

An overflCYN occurs when the magnitude of what would have been the rounded result, If the
exponent range were unbounded, exceeds the magnitude of the largest finite number of the
specified result precision.

The action to be taken depends on the setting of the Overflow Exception Enable bit of the
FPSCR.

When the Overflow Exception Enable bit is enabled, FPSCR(OE) equals 1, and exponent
overflow occurs, the following actions are taken:

1. The Overflow Exception is set: FPSCR(OX) +- 1.

2. The exponent of the nonnalized intermediate result is adjusted by subtracting 1536.

3. The FPRF field In the FPSCR is set to indicate a normalized number with the proper
sign.

4. The rounded result Is placed Into the specified FPR.

When the Overflow Exception Enable bit Is disabled, FPSCR(OE) equals o, and overflow
occurs, the following actions are taken:

1. The Overflow Exception bit is set: FPSCR(OX) +-- 1.

2. The Inexact Exception bit is set: FPSCR(XX) t- 1.

3. The result is detennlned by the rounding mode, FPSCR(RN), and the sign of the
intermediate result as follows: for negative overflows, store -Infinity; and, for positive
overflows, store the format's largest finite number.

a. Round To Nearest: Store ± Infinity, where the sign is the sign of the intermediate
result.

b. Round To Zero: Store the fonnars largest finite number with the sign of the
Intermediate result.

1-42 General Architectures

c. Round To + Infinity: For negative overflows, store the fonnars most negatiVe finite
number, and, for positive overflows, store + infinity.

d. Round To - Infinity: For negative overflows, store - infinity and, for positive overflows,
store the fonnars largest finite number.

4. The FPRF field in the FPSCR is set to indicate the class and sign of the result.

s. The result Is placed into the specified FPR.

FPA 2.4 Implementation Note
An Overflow Exception applies to machines with an FPA level of 2.4. To identify the level of
the FPA, run the lacfg command with a_,., flag. This produces a list of the vital product data.
Under the processor component near the beginning of the list, there is a line similar to the
following:

Device Specific. (ZO) ..•..... OlXXyy

This exception applies only if the xx equals a value of 24.

Overllow occurs when the magnitude of the rounded Intermediate result exceeds that of the
largest finite number of the specified result preclaion.

The Floating Round to Single Precision instruction may produce Incorrect results when all
the following conditions are met:

• The Floating Round to Single Precision Instruction is dependent on a previous
floating-point artthmetlc operation. Dependent means that It uses the target register of the
arithmetic operation as the source register.

• Less than two nondependent floating-point arithmetic operations occur between the
Floating Round to Single Precision Instruction and the operation on which it is dependent.

• The magnitude of the double-precision result of the arithmetic operation is less than
2**128 before rounding.

• The magnitude of the double-precision result after rounding is exactly 2**128.

R•ultmnt V.lue
if the error occurs, the magnitude of the result placed in the target register Is 2**128:

X'47FOOOOOOOOOOOOO' or X'C7FOOOOOOOOOOOOO'

This Is not a valid single precision value. The setting of the FPSCR and Condition register
(CR) will be the same as If the result did not overflow.

lnaurlng Correct Reaulta
If after considering the results described previously, the programmer decides that the error
will cause significant problems for the application, either of the following methods may be
used to avoid the error:

• Ensure that two nondependent floating-point operations are placed between a floating­
point arithmetic operation and the dependent round to single. The target register for these
operations should not be the same register that the Floating Round to Single Precision
instruction uses as a source register.

• Insert two floating-round-to-single-precision operations when the
floating-round-to-single-precision operation may be dependent on an arithmetic operation
that precedes It by less than three floating-point instructions.

Either solution degrades perfonnance by an amount dependent on the particular application.

System Processors 1-43

Underflow Exception

Definition

Action

Underflow Exception Is defined separately for the enabled and disabled states:

Enabled.

Disabled.

Underflow occurs when the intermediate result is Tiny.

Underflow occurs when the intermediate result is Tiny and there is Loss of
Accuracy.

A Tiny result Is detected before rounding when a nonzero result value, computed as though
the exponent range were unbounded, would be less in magnitude than the smallest
normalized number.

II the intermediate result is liny and the Underflow Exception Enable bit is off, FPSCR(UE)
equals 0, the Intermediate result Is to be denonnallzed and rounded. See •Normalization
and Denormalizatlon• on page 1-36 and "Rounding" on page 1-37 for information about
denormalizing and rounding results.

Loss of Accuracy ls detected as an Inexact result when the delivered result value differs
from what would have been computed were both the exponent range and precision
unbounded.

The ·action to be taken depends on the setting of the Underflow Exception Enable bit of the
FPSCR.

When the Underflow Exception Enable bit is enabled, FPSCR(UE) equals 1 , and exponent
underflow occurs, the following actions are taken:

1. The Underflow Exception bit is set: FPSCR(UX) ~ 1.

2. The exponent of the normalized intermediate result is adjusted by adding 1536.

3. The FPRF field in the FPSCR is set to indicate a normalized number with the proper
sign.

4. The rounded result Is placed into the specified FPR.

Note: The FR and Fl bits In the FPSCR allow the trap handler to simulate a trap disabled
environment. The bits provide enough Information to unround the result prior to
denormalizatlon.

When the Underflow Exception Enable bit is disabled, FPSCR(UE) equals 0, and underflow
occurs, the following actions are taken:

1. The Underflow Exception bit Is set: FPSCR(UX) ~ 1.

2. The FPRF f19ld in the FPSCR is set to indicate the class and sign of the result
(±Denormalized Number or ±zero).

3. The rounded result is placed into the specified FPR.

Inexact Exception

Definition
The Inexact Exception occurs when one of two conditions occurs during rounding:

• The rounded result differs from the intermediate result assuming the intermediate result
exponent range and precision to be unbounded.

• The rounded result overflows and the Overflow Exception is disabled.

1-44 General Architectures

Action
When the Inexact Exception occurs, 1he following actions are taken:

1. The Inexact Exception bit Is set: FPSCR(XX) t- 1.
2. The FPRF field In the FPSCR Is set to indicate the class and sign of the result.
3. The rounded or overflowed result is placed into the destination FPR.

Floating-Point Resource Management
Facilities are defined to allow control of the use of the Floating-Point Processor. MSR(FP) is
the Floating-Point Avallable bit. It controls the execution of floating-point instructions. When
the FPP Is avallable, MSR(FP) equals 1 and the floating-point ins1ructions can be executed.
Otherwise the FPP is unavailable, and MSR(FP) equals o. An attempt to execute a
floating-point instruction in this state causes a Floating-Point Unavailable Interrupt and the
instruction execution is suppressed.

The test for an Invalid processor op code Is made before the MSR(FP) bit is inspected.

Floating-Point Execution Models
All implementations of this architecture must provide the equivalent of the following
execution models to ensure that Identical results are obtained.

Special rules are provided In the definition of the arithmetic Instructions for the Infinities,
denormalized numbers, and NaNs.

Although the double-precision format specifies an 11-blt exponent, exponent arithmetic
makes use of two additional bit positions to avoid potential transient overflow conditions.
One extra bit is required when denonnallzed double-precision numbers are pranormallzed.
The second bit is required to pennit the computation of the adjusted exponent value In each
of the following cases when the corresponding Exception Enable bit is 1:

• Underflow during multiplication using a denonnallzed factor.
• Overflow during dMslon ualng a denormalized divisor.

Execution Model tor IEEE Operations
IEEE conforming signlflcand arithmetic Is considered to be performed with a floating-point
accumulator. Rgure 13 shows the fonnat of the accumulator.

FRACTION I GI R x
0 1 52

Figure 13. IEEE Execution Model

Field Description
S Sign bit
C Carry bit that captures the carry out of the signlflcand
L Leading Unit bit of the signlficand that receives the lmpliclt bit from the

operands
FRACTION Fraction, a 52-bit field that accepts the fraction of the operands.

System Proeeaaara 1-45

The Guard (G), Round (A), and Sticky (X) bits are extensions to the low-order bits of the
accumulator. The G and A bits are required for post normalization of the result. The G, A,
and X bits are required during rounding to determine if the intermediate result is equally near
the two nearest representable values. The X bit serves as an extension to the G and A btts
by representing the logical 'OR' of all bits that can appear to the low-order side of the R bit,
either due to shitting the accumulator right or other generation of low-order result bits. The G
and R bits participate in the left shifts with zeros being shifted into the R bit. Figure 14 shows
the significance of the G, R, and X bits with respect to the intermediate result (IA), the next
lower in magnitude representable number (NL), and the next higher In magnitude
representable number (NH).

GRX Interpretation

000 IR II exact

001
010 IR cloeer to NL
011

100 IR midway between NL and NH

101
1 1 0 IR cloNr to NH
111

Figure 14. Interpretation of G, R, and X Bits

The signlficand of the lntennediate result is made up of the L bit, the FRACTION field, and
the G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in the L.
FRACTION, G, R, and X bits of the floating-point accumulator.

Before the results are stored into an FPR, the signlficand is rounded using the rounding
mode specified by the Floating-Point Rounding Control field (RM) of the FPSCR. If rounding
results in a carry into the C bit, the signlficand is shifted right one position and the exponent
is incremented by one. This, in tum, can result in an exponent overflow. Fraction bits to the
left of the bit position used for rounding are stored in the FPR, and low-order bit positions, if
any, are set to o.

Four modes of rounding are provided that are user-selectable through the Floating-Point
Rounding Control field (RM) of the FPSCR. This field is encoded as follows:

RN Rounding Mode
00 Round To Nearest
01 Round Toward Zero
10 Round Toward + Infinity
11 Round Toward - Infinity

For rounding, the conceptual Guard, Round, and Sticky bits are defined in terms of
accumulator bits. The following table refers to the bit positions of Guard, Round, and Sticky
for double and single-precision FP numbers.

1-46 General Architectures

Location of the Guard, Round, and Sticky Bits

Format Guard Round Sticky

Double G bit R bit x bit

Single 24 25 26-52G, R, X

Rounding can be treated as though the signif1Cand were shifted right, If required, until the
least significant bit to be retained is in the low-order bit position of the FRACTION field. If
any of the Guard, Round, or Sticky bits are nonzero, the result is inexact.

Z1 and Z2, as defined In •Rounding,• on page 1-37 can be used to approximate the result in
the target format when one of the following rules is used.

If rounding results in a carry into the C bit, the significand must be shifted right one position
and the exponent is increased by one. This can result in signaling an inexact result If the low
order bit of the fraction had been a 1.

Where the result is to have fewer than 53 bits of precision because the instruction is a round
to single-precision, the intennediate result is either nonnalized, or is placed in correct
denormalized form before the result is rounded.

Execution Model for Multiply-Add Type Instructions
The architecture makes use of a special fonn of instruction that performs up to three
operations in one Instruction (a multiply, an add, and a negate operation). With this added
capability Is the special feature of being able to produce a more exact Intermediate result as
an Input to the rounder. Figure15 shows the intermediate results produced by the
multiply-add operations.

I s I c I L I FRACTION

0 1 105

Figure 15. Multiply Add Execution Model

The first part of the operation is a multiply operation. The multiply operation has two 53-bit
significands as inputs, which are assumed to be prenormallzed, and produces a result
conforming to the preceding model. The sign produced by the multiply operation portion is
defined to be the XOR of the signs of the two multiply input operands. If there is a carry out
of the signlficand (C), the signlflcand is shifted to the right by one bit, shifting the L bit
(Leading Unit bit) into the most significant bit of the fraction, shifting the C bit (carry out) into
the L bit. All 106 bits (L bit, the fraction) of the product take part in the add operation. If the
exponents of the two inputs to the adder are not equal, the significand of the operand with
the smaller exponent is aligned (shifted) to the right by an amount that is added to that
exponent to make it equal to the other inputs' exponent. Zeros are shifted into the left of the
signlficand as it is aligned and bits shifted out of bit 105 of the significand are ORed into the
X bit. The add operation also produces a result conforming to the preceding model with the
X bit taking part in the add operation. The sign produced by the add portion is defined to be
the sign of the largest of the two add input operands. When the sum of two operands with
opposite signs is exactly zero, the sign of that sum is positive in all rounding modes except
Round Toward - Infinity, in which mode that sign Is negative. The sum of operands with the
same sign retains the sign of the operands, even if the operands are zeros.

The result of the add is then normalized, with all bits of the add result, except the X bit,
participating in the shift. The normalized result provides an intermediate result as input to

System Processors 1-47

the rounder that conforms to the model described in "Execution Model for IEEE Operation&.•
on page 1-45 The intermediate result has the following characteristics:

• The Guard bit Is bit 53 of the intermediate result.
• The Round bit is bit 54 of the Intermediate result.
• The Sticky bit is the OR of all remaining bits to the right of bit 55, inclusive.

The rules of rounding the intennediate result are the same as the described in •execution
Model for IEEE Operations• on page 1-45.

It the Instruction is Floating NegatiVe Multiply Add or Floating Negative Multiply Subtract, the
negation occurs after rounding.

Interrupts
This section describes the function of and control over the System Interrupt mechanism.
Except for the Supervisor Call Interrupt, an interrupt is composed of the following actions:

1. Loading SRA O with the address of the current or the next Instruction (bitS 30 and 31
are O).

2. Loading bits o to 15 of SAR 1 with information specific to each interrupt.

3. Loading bits 16 to 31 of SAR 1 from bits 16 to 31 of the MSR.

4. Setting the MSR according to the following table.

Machine Stabt Aegl8ter Setting Due to Interrupt

Interrupt 'fype EE PR FP ME FE AL IP IR DR

System Reset 0 0 0 N 0 0 N 0 0

Machine Check 0 0 0 0 0 0 N 0 0

Data Storage 0 0 0 N 0 0 N 0 0

Instruction Storage 0 0 0 N 0 0 N 0 0

Alignment 0 0 0 N 0 0 N 0 0

Program 0 0 0 N 0 0 N 0 0

External 0 0 0 N 0 0 N 0 0

FP Unavailable 0 0 0 N 0 0 N 0 0

Trace 0 0 0 N 0 a N 0 0

FP Imprecise 0 0 0 N 0 a N 0 0

Supervtsor Call 0 0 N N 0 N N N N

The preceding table uses the following representations:

Setting Decode
O Bit is set to O.
N Bit Is not altered.

5. Beginning the instruction fetch and execution operations using the new MSR value at a
location specific to each Interrupt type. This location is determined by knoWing the base

1-48 General Architectures

address, as determined in "Machine State Register" on page 1-22, and by knowing the
offset of the interrupt as shown in the following list:

OftHt Interrupt Type
X'00100' System Reset Interrupt
X'00200' Machine Check Interrupt
X'00300' Data Storage Interrupt
X'00400' Instruction Storage Interrupt
X'00500' External Interrupt
X'00800' Alignment Interrupt
X'00700' Program Interrupt
X'00800' Floating Unavailable Interrupt
X'00900' Trace Interrupt (POWER2 only)
X'OOAOO' Floating-Point Imprecise Interrupt (POWER2 only)
X'OOBOO' Reserved

X'OOFOO'
X'01000'
X'01020'

Reserved
Supervisor Call Interrupt
Supervisor Call Interrupt

X'01 FCO' Supervisor Call Interrupt
X'01 FEO' Supervisor Call Interrupt.

Note: The ranges of memory locations from x·oooooeoo· to X'OOOOOFFP and from
X'FFFOOBOO' to X'FFFOOFFF' are reserved. Use of these locations risks possible
incornpatlblllty with Mure implementations.

In the case of an SVC Interrupt, the Link register Is used Instead of SRR o and the Count
register instead of SAR 1. The execution begins at one of i 28 entry points starting at offset
x·oi 000' to the base address indicated by the setting of MSR(IP). In addition, the following
bits in the MSR are turned off:

• External Interrupt Enable (EE)
• Problem State (PR)
• FP Exception Interrupt Enable (FE).

The remaining bits are not modified.

Note: Except for the SVC Interrupt, the actions taken at an Interrupt include tuming off both
the Instruction and the data translation. Thus, the locations of the first instruction for
each of these Interrupts are interpreted in a real context. See "Storage Contror on
page i -69 for more information.

All interrupts are precise except the Floating-Point Imprecise, Machine Check and System
Reset Interrupts. For Program, Alignment, and Data Storage Interrupts, the address
contained in SRR 0 points to the instruction that caused the interrupt. For the Floating-Point
Imprecise Interrupt, the address contained in SRR 0 points to an Instruction beyond the
instruction that caused the interrupt. For External and Instruction Storage Interrupts, the
address loaded into SRR 0 points to the instruction that would have executed next. For
System Reset and Machine Check Interrupts, the address loaded into SAR o points to the
instruction currently being executed if that instruction also causes an interrupt; otherwise, It
points to the instruction that would have executed next. For SVC Interrupts, the address
loaded into the Link register points to the instruction that should be retumed to after the SVC
Interrupt and does not affect SRR O.

System Processors 1-49

All instructions prior to the instruction pointed to by SRR 0 (the Link register for SVC) have
logically completed at the time of the interrupt and no instruction logically subsequent to It
has executed.

In the case of a Data Storage Interrupt or an Alignment Interrupt, neither the RT register in
Load instructions nor the RA register in Load/Store with Update instructions are to be
altered.

Interrupt Definitions
The following section describes the interrupt definitions for the system processor
architecture.

System Reset Interrupt
A System reset begins with a System Reset Interrupt.

The following registers are set as indicated:

SRRO

SRR1

MSR

Bit Description
o-31 Set to the address of the instruction currently being

executed if that instruction also causes an interrupt;
otherwise, set to the address of the instruction that would
have executed next.

Bit Description
0-15 Set too.
16-31 Loaded from bits 16 to 31 of the MSR.

Bit
0-15
16EE
17PR
18 FP
19ME
20FE
21-23
24AL
251P
261R
27DR
28-31

Description
Reserved.
Set too.
Set too.
Set to O.
Not altered.
SettoO.
Reserved.
Set too.
Not altered.
Set too.
Set to O.
Reserved.

Execution resumes at offset X'00100' from the base address indicated by the setting of
MSR(IP).

Machine Check Interrupt
Typical machine failures reported with this interrupt include:

• Instruction Cache Reloads
- Memory Address Parity Error
- Uncorrectable ECC Error
- Address Exception (no extents match)

1-50 General Architectures

• Data Cache Reloads
- Memory Address Parity Error
- Uncorrectable ECC Error
- Address Exception (no extents match)

• Data Cache Storebacks
- Memory Address Parity Error
- Address Exception (no extents match).

Machine Check Interrupts are enabled when MSR(ME) = 1. If MSR(ME) = o and a Machine
Check occurs, the Processor Check stops.

The following registers are set as indicated:

SRRO

SRR1

MSR

Bit Dncrlptfon
o-31 Set to the address of the Instruction currently being

executed If the instruction has an exception; otherwise, set
to the instruction that would have executed next.

Bit Dncrlptlon
0-15 Set to 0.
16-31 Loaded from bits 16 to 31 of the MSR.

Bit
0-15
18 EE
17PR
18FP
19ME
20FE
21-23
24AL
2SIP
281R
27DR
28-31

Ducrlptlon
Reserved.
Set too.
Set to 0.
Set too.
Set too.
Set too.
Reserved.
SettoO.
Not altered.
Set to 0.
Set too.
Reserved.

Execution resumes at offset X'00200' from the base address indicated by the setting of
MSA(IP).

A Machine Check Interrupt with MSR(ME) = O produces a Check Stop condition and the
processor halts execution. The machine goes through a self-test and IPL again. See the
hardware technical reference manual for your system for more information on the Initial
Program Load procedure. Certain hardware failures, such as internal parity errors, hardware
hang conditions, and hardware error detection logic can also cause a Check Stop.

Data Storage Interrupt
A Data Storage Interrupt occurs when a data storage access cannot be performed for any of
the following reasons:

• 110 Exception, when the execution of a storage access instruction is attempted and the
110 subsystem indicates a failure detecied as part of the synchronous execution of that
instruction.

• Accessed virtual address cannot be translated.

System Processors 1-51

• Access is a floating load or store to an 110 segment.

• Access violates storage protection.

• Access caused a loop in the hardware translation mechanism.

• Access caused a segment crossing from T = 0 to T = 1.

Such aocessas can be generated by load and store type instructions, certain storage
controls, and the cache control instructions.

The interrupt cause is defined in a Data Storage Interrupt Status register. These interrupts
also use the Data Address register.

The following registers are set as indicated when the interrupt occurs:

SRRO

SRR1

MSR

DSISR

1 ·52 General AA:hltectures

Bit Deacrlptlon
D-31 Set to the address of the falling instruction.

Bit Description
0-15 Set too.
16-31 Loaded from bits 16 to 31 of the MSR.

Bit
0-15
18EE
17PR
18FP
19ME
20FE
21-23
24AL
25IP
281R
27DR
28-31

Bit

0

1

2

3

Deacrlption
Reserved.
Set too.
Set too.
Set to O.
Not altered.
Set too.
Resenied.
Set too.
Not altered.
Set too.
Set too.
Reserved.

Description

Set to 1 for an VO Exception, otherwise to o.
Set to 1 If the end of the selected PTE chain is reached and
the translation of an attempted access is not found,
otherwise to O.

Set to 1 if a storage access is not pennltted by the
data-locking mechanism.

Set to 1 If a floating load or store Instruction references an
1/0 segment (for example, a segment whose Segment
register's T bit equals 1); otherwise, set to O.

DAR

Bit Description

4 Set to 1 if a storage access is not permitted by the page
protection mechanism described in "Page Protectionft on
page 1 ·81 ; otherwise, set to o.

5 Set to 1 If an access causes a loop In the translation
mechanism (for example, the PTE search has gone on for
more than 127 attempts)}; otherwise, set to 0.

8 Set to 1 for a store operation and to zero for a load
operation

7 Set to 1 if a data storage access crosses a segment
boundary where the first segment accessed had T = O and
the segment crossed into has T = 1); otherwise, set to O.

&-14 Set to o.
15-31 Undefined.

Bh DeacrlpUon

D-31 Set to 1 of the following:

• An effective address of a byte in the first word accessed
in the page that caused the Data Storage Interrupt, for
floating single- and fixed-storage accesses

• An effective address of a byte In the first doubleword
accessed in the page that caused the Data Storage
Interrupt, for floating double accesses

• The effective address referenced in the VO space for VO
exceptions.

Execution resumes at offset X'00300' from the base address indicated by the setting of
MSR(IP).

Instruction Storage Interrupt
An Instruction Storage Interrupt occurs when an Instruction fetch operation cannot be
performed for of any of the following reasons:

• Address cannot be translated.
• Address is in a Special segment.
• Address is In an VO segment.
• Address is in a protected page.
• Address caused a loop in the hardware translation mechanism.

Such accesses can only be generated by instruction fetch operations. The following
registers are set as Indicated:

SRRO

Bit Description

D-31 Set to the address of the instruction that was being fetched.

System Processors 1-53

SRR 1

MSR

Bit

0

1

2

3

4

5

6-15

16-31

Bit
0-15
16EE
17PR
18FP
19ME
20FE
21-23
24AL
251P
281R
27DR
28-31

Description

Set too.

Set to 1 if the end of the selected PTE chain is reached and.
the translation of an attempted access is not found;
otherwise, set to O.

Set to 1 if the virtual address used to fetch an instruction is
in a Special Segment (SR S bit one); otherwise, set to 0.

Set to 1 if the address used to fetch an instruction is in an
1/0 segment (for example, a segment whose Segment
register's T bit equals 1) and Instruction Relocate is on;
otherwise, set to 0.

Set to 1 if a storage access is not permitted by the page
protection mechanism described in "Page Protection• on
page 1-81; otherwise, set to O.

Set to 1 If the fetch causes a loop in the translation
mechanism (for example, the PTE search has gone on for
more than 127 attempts); otherwise, set too.

Set too.

Loaded from bits 16 to 31 of the MSR.

Description
Reserved.
Set too.
Set too.
Set to O.
Not altered.
Set too.
Reserved.
Set too.
Not altered.
Set to 0.
Set too.
Reserved.

Execution resumes at offset X'00400' from the base address indicated by the setting of
MSR(IP).

Alignment Interrupt
An Alignment Interrupt is raised when MSR{AL) "' 1 and one the following conditions is met:

• The effective address generated by a halfword load or store type instruction is not on a
halfword storage boundary and the hardware cannot perform the unaligned storage
access.

• The effective address generated by a word load or store type instruction is not on a word
storage boundary and the hardware cannot perform the unaligned storage access.

1 ·54 General Architectures

• The effective address generated by a doubleword load or store type instruction is not on a
doubleword storage boundary and the hardware cannot perform the unaligned storage
access.

• The effective address generated by a Load/Store Multiple instruction is not on a word
storage boundary.

The following registers are set as Indicated. Set the registers to bits 1 to 4 of the instruction If
utilizing a 0-form instruction.

SARO

SRR1

MSR

DSISR

Bit DeecrlpUon

G-31 Set to the address of the instruction that caused the
interrupt.

Bit Deecrlptlon
0-15 Set too.
11-31 Load from bits 16 to 31 of the MSR.

Bit
0-15
18EE
17PR
18FP
19ME
20FE
21-23
24AL
251P
261R
27DR
28-31

Bit

.. 13

14

15-18

17

18-21

22-31

Deecrlpllon
Reserved.
Set too.
Setto o.
SettoO.
Not altered.
Set too.
Reserved.
Setto O.
Not altered.
Satto o.
Setto o.
Reserved.

DncrlpUon

Setto o .

Sat to value of the T-bit of the Segment register of the
storage access that caused the Alignment Interrupt.

Set to bits 29 to 30 of the instruction If an X-form
Instruction. Set to bit b'OO' If a 0-fonn instruction.

Set to bit 25 of the instruction if an X-form instruction. Set to
bit 5 of the instruction if a 0-form instruction.

Sat to bits 21 to 24 of the instruction if an X-form
Instruction. Set to bits 1 to 4 of the instruction If a 0-form
instruction.

Set to bits 6 to 15 of the Instruction.

System Processors 1-55

DAR

Bit Description

D-31 Set to the effective address that caused the Alignment
Interrupt.

Execution resumes at offset X'00600' from the base address indicated by the setting of
MSR(IP).

Program Interrupt
A Program Interrupt is generated by any of the following exceptions:

• Floating-Point Enabled Exception

A Floating-Point Exception Program Interrupt is generated when the MSR(FE) = 1 and
the FPSCR(FEX) = 1. FPSCR(FEX) is turned on by the execution of a floating-point
instruction that causes an enabled exception or by the execution of a "Move to FPSCR"
type Instruction which sets both an exception and its corresponding enable.

• Invalid Operation

An Invalid Operation Program Interrupt is generated when the execution of an instruction
is attempted with an undefined opcode or undefined combination of opcode and
extended opcode fields.

• Prlvlleged Instruction

A Privileged Instruction Program Interrupt is generated when the execution of a
privileged instruction is attempted and MSR(PR) = 1.

• Trap

A Trap Program Interrupt is generated when any of the specified set of conditions in a
Trap Instruction is met.

The following registers are set es Indicated:

SRRO

Bit De8crlptlon

D-31 Set to the address of the instruction that caused the
Program Interrupt.

SRR1

Bit O..Crfptlon

0-10 SettoO.

11 Set to 1 for a Floating-Point Enabled Exception Program
Interrupt; otherwise, to 0.

12 Set to 1 for an Invalid Operation Program Interrupt;
otherwise, to O.

13 Set to 1 for a Privileged Instruction Program Interrupt;
otherwise, to 0.

14 Set to 1 for a Trap Program Interrupt; otherwise, to 0.

15 Set too.

1&-31 Loaded from bits 16 to 31 of the MSR.

1-56 General Architectures

MSR

Bft Dacrlptlon
0-15 Reserved.
16EE Set to 0.
17PR Set too.
18 FP Set too.
111 ME Not altered.
20FE Set too.
21-23 Reserved.
24AL SettoO.
25IP Not altered.
281R Set too.
27DR Set to 0.
28-31 Reserved.

Execution resumes at offset X'00700' from the base address Indicated by the setting of
MSR(IP).

Note: If FPSCR(FEX) = 1 and MSR(FE} = 0, a Floating-Point Enabled Exception type
Program Interrupt can be generated by setting MSR(FE) to one with any Instruction
that can set the MSR (for example, mtmsr. rfi, and rfsvc). WMn this occurs, SRR 0 iS
loaded with the address of the instruction that would have executed next and not to
the address of the instruction that modified the MSR causing the interrupt.

external Interrupt
External Interrupts are requested by a signal presented by the External Interrupt
mechanism. An External Interrupt occurs when an External Interrupt signal is present and
MSR(EE) = 1.

The following registers are set as indicated:

SRRO

SRR1

MSR

Bit Deeerlptlon
0-31 Set to the address of the instruction 1hat the processor

would have attempted to exearte next if no interrupt
conditions were present.

Bit Deecrlptlon
0-15 Set to 0.
16-31 Loaded from bits 16 to 31 of the MSR.

Bit
0-15
18EE
17PR
18FP
19ME
20FE
21-23
24AL
251P
261R

DMcriptlon
Reserved.
Setto o.
Set too.
Set to 0.
Not altered.
Set to 0.
Reserved.
Set to 0.
Not altered.
Set too.

System Procesaors 1-57

27 DR Set to 0.
28-31 Reserved.

Execution resumes at offset X'OOSOO' from the base address indicated by the setting of
MSR(IP).

Floating-Point Unavailable Interrupt
A Floating-Point Unavailable Interrupt is generated when the execution of any floating-point
instruction is attempted and MSR(FP) = O.

The following registers are set as indicated:

SARO

SRR1

MSR

Bit Description
o-31 Set to the address of the instruction that caused the

interrupt.

Bit O..Crfptlon
0-15 Set too.
16-31 Loaded from bits 16 to 31 of the MSR.

Bit O..Crlptfon
0-15 Reserved.
18 EE Set to 0.
17PR SettoO.
18 FP Set to 0.
19 ME Not altered.
20 FE Set to o.
21-23 Reserved.
24 AL Set to 0.
25 IP Not altered.
21 IR Set to o.
27 DR Sat to 0.
28-31 Reserved.

Execution resumes at offset X'00800' from the base address indicated by the setting of
MSR(IP).

Trace Interrupt (POWER2 Only)
A Trace Interrupt is generated after every Instruction that completes without causing any
other Interrupt.

The following registers are set as indicated:

SRRO

SRR1

1 ·58 General Architectures

Bit Deacrlptlon
o-31 Set to the address of the instruction to be executed next

(next sequential instruction or the instruction that Is the
target of a taken branch).

Bit Deacrlptlon
0-15 Set too.
16-31 Loaded from bits 16 to 31 of the MSR.

MSR

Bit Ducrlptlon
0-15 Reserved.
16 EE Setto 0.
17 PR Set to 0.
18 FP Set to 0.
19 ME Not altered.
20 FE Set to 0.
21 SE Set to 0.
22 BE Set to 0.
23 FE Set to 0.
24 AL Set to 0.
25 IP Not altered.
28 IR Set to 0.
27 DR Set to 0.
28 Reserved.
29 PM Set to 0.
30-31 Reserved.

Execution resumes at offset X'OOAOO' from the base address Indicated by the setting of
MSR(IP).

Floating-Point Imprecise Interrupt (POWER2 only)
A Floating-Point Imprecise Interrupt Is generated when FPSCR(FEX) = 1, MSR(FE) = 0, and
MSR(IE) = 1.

The following registers are set as Indicated:

SRRO

SRR1

MSR

Bit Dncrlptlon
D-31 Set to the address of some Instruction beyond the

Instruction that created the condition where
FPSCR(FEX) = 1, MSR(FE) = 0, and MSR(IE) = 1.

Bit DHcrlptlon
0-15 Set to 0.
18-31 Loaded from bits 16 to 31 of the MSR.

Bit
0-15
16EE
17PR
18FP
19ME
20FE
21 SE
22BE
23FE
24AL
251P
281R
27DR

O..Crlptton
Reserved.
Set to 0.
Set to 0.
Set too.
Not altered.
Set to 0.
Set to 0.
Set too.
Set to O.
Set too.
Not altered.
Set too.
Set too.

System Processors 1-59

Bit
28
29PM
3G-31

Deacrlptlon
Reserved.
Set to 0.
Reserved.

Execution resumes at offset X'OOAOO' from the base address indicated by the setting of
MSR(IP).

Supervisor Call Interrupt
An SVC Interrupt occurs when an SVC instruction is executed.

The registers are set as follows:

LR

CTR

MSR

Bit Deecrlptlon
D-31 The Unk register is set to the address of the instructiOn

following the SVC instruction if LI< = 1 in the instruction.

Bit Deecrlptlon
~16 Loaded from bits 16-31 of the SVC instruction.
16-31 Loaded from bits 16-31 of the MSR.

Bit Deecrlptlon
~16 Reserved.
16 EE Set to O.
17 PA Set to O.
18 FP Not altered.
19 ME Not altered.
20 FE Set to 0.
21-23 Reserved.
24 AL Not altered.
26 IP Not altered.
28 IR Not altered.
27 DR Not altered.
28-31 Reserved.

If SA = 0, execution resumes at one of 128 entry points starting at offset b'00001' II LEV II
b'OOOOO' from the base effective address Indicated by the setting of MSR(IP). If SA= 1,
execution resumes at offset X'01 FEO' from the base effective address incfteated by the
setting of MSR(IP).

Interrupt Priorities
Interrupts are either unordered or ordered with respect to the Save Restore registers.
Machine Check and System Reset Interrupts are unordered. That is, either can occur at any
time. When either occurs, the machine Immediately changes state according to the rules
specified In "System Reset Interrupt" on page 1-50 and "Machine Check Interrupt" on
page 1 -50. State change Is such that any previous Interrupt information contained In SRR O
and SRA 1 is lost. Any other pending interrupt is suppressed. To prevent indefinite looping
on System Reset, the Interrupt should be viewed as a trigger caused by a system or
operator action. The triggering action must be repeated to cause another System Reset.
Looping on Machine Check is already prevented by MSR(ME).

1-60 General Architectures

The remaining interrupts are ordered, that is, one and only one Interrupt can ocour at a time.
This is due to the serial reusable nature of the SAR O and SRA 1 registers. Insuring one and
only one interrupt at a time is both a hardware and software responsibility. Hardware must
test and present interrupts In the order that follows. Finding an interrupt condition present,
the hardware does not continue testing for additional interrupt conditions. Thus, even when
there are multiple interruptible conditions present, the hardware does not know about the
additional conditions and therefore does not present the associated interrupts. Software, for
Its part, must save the state of the machine (including SRA O and SAR 1) in such a manner
that the saving operation does not cause an interrupt.

The Instruction Storage Interrupt Is the lowest ordered interrupt. It is generated when the
machine is unable to fetch the next Instruction.

External Interrupt requires special handling. This Is the only maskable ordered interrupt. It is
also the lowest ordered interrupt. If the External Interrupt signal is present and is allowed,
the hardware cannot present this Interrupt until It Is determined that no other ordered
Interrupt condition is present. According to the rules of "Interrupt Definitions,• on page 1 -50
when any interrupt occurs, External Interrupt is automatically masked. This ensures that an
External Interrupt does not immediately follow any other Interrupt. After any Interrupt
software must not allow an External Interrupt until it has safely saved the state of the
machine.

The next higher-ordered interrupt Is Instruction Storage lnte~t. This interrupt occurs when
the machine is unable to fetch the next instruction. The remaining interrupts are instruction
dependent for loads/stores, SVC, Trap, floating, privilege, and undefined Instructions. The
associated interrupts ocour next in the ordering. Each of these types of Instructions can only
generate one Interrupt condition so there Is no need for addltional ordering in these
situations.

For floating load or store Instructions, Floating Unavailable lntem.Jpt Is ordered higher than
Alignment Interrupt, which is ordered higher than Data Storage Interrupt.

For fixed load or store instructions when not accessing an VO segment, Alignment Interrupt
Is ordered higher than Data Storage Interrupt.

For fixed load or store instructions when accessing an VO segment, the only Interrupt Is an
VO Exception-type Data Storage Interrupt, which can be caused by alignment, prtvllege, or
other llO conditions. There is no processor architecture definition about the ordering of
these conditions.

The following summarizes the interrupts that can be caused due to the direct execution of
the listed types of instructions and their relative priority. Not listed are System Reset,
Machine Check, Instruction Storage, and External Interrupts.

• For fixed-point loads and stores (T = O)
1. Alignment
2. Data Storage
3. Trace.

• For fixed-point loads and stores (T = 1)
1 . Data Storage
2. Trace.

• For floating-point loads and stores {T = 0)
1 . Floating-Point Unavailable
2. Alignment
3. Data Storage
4. Trace.

System Processors 1-61

• For floating-point loads and stores (T = 1)
1. Floating-Point Unavailable
2. Data Storage
3. Trace.

Note: Some implementations generate an Alignment Interrupt instead of a Data Storage
Interrupt in the event the effective address generated is unaligned (not a word or
doubleword address). In this case, bit 14 of the DSISR is set to the value of the
T bit of the Segment register selected by the effective address.

• For floating-point arithmetic, compare, floating round to single, floating square root,
floating covert to integer, and any move to FPSCR instructions
1. Floating-Point Unavallable
2. Program (Floating-Point Enabled Exception)
3. Trace.

• For remaining floating-point instructions
1. Floating-Point Unavailable
2. Trace.

• For rfi, rfscv, and mtmsr instructions
1. Program (Privileged Instruction)
2. Program (Floating-Point Enabled Exception).

• For trap Instructions
1. Program (Trap).

• Any privileged Instructions
1. Program (Privileged Instruction)
2. Trace.

• Any undefined instructions
1. Program (Invalid Operation).

External Interrupt Mechanism for POWER
The External Interrupt mechanism provides for the collection and presentation of interrupt
requests from external (non-PU) sources. Software and hardware control External Interrupt
requests using the following mechanisms:

• Extemal Interrupt Enable MSR(EE).

• External Interrupt Mask (EIM) register (64 bits).

• External Interrupt Summary (EIS) register (64 bits).

• Load and store instructions addressing the EIM, the EIS, and other VO resources.

• Sources of External Interrupts.

Figure 16 shows the logical structure of the Extemal Interrupt mechanism. This mechanism
supports 64 separate External Interrupt sources that are collected into one single Extemal
Interrupt Request signal (EIRS). An External Interrupt Request (EIR) is sent to the processor
only if the EIRS is present and MSR(EE) = 1.

The EIM register is used as a mask to enable or suppress the requests that have been
latched In the EIS register. These registers are referred to as the External Interrupt Control
registers (EICR). The EICRs are in the 110 address space in BUID o. They are manipulated
using load register and store register instructions addressing the VO space.

1-62 General Architectures

There is no hardware priority among the bits of the EIS and software can service the
requests in any order.

Proc:e8aor
MSR

EIR ~ AND 14
I EE

A

I
EIRS 7 1 t Loed.IStore

llO Space

83-bttOR

/ 64

/ 84

EIM

[iiEVl [iiEVl loEVl loEVl
~···~~- .. ~

Where:
EIR •External Interrupt Requnt

loEV1 rDEV1
~ ... ~

EIRS = External Interrupt Requut Signal.

Figure 16. External Interrupt Control Mechanism

External Interrupt Enable
MSR(EE) controls the presentation of an extemal interrupt to the processor. EIR is true only
when the following conditions are met:

• MSR(EE) = 1

• One or more enabled External Interrupt requests are pending (the state of EIRS is true).

See ·Machine State Register" on page 1 -22 for the description of the MSR and MSR(EE).

System Processors 1-63

External Interrupt Control Registers

Functions

Both the EIM and the EIS are 64-bit registers in the VO space. These registers serve
different functions but have the same mapping between Extemal Interrupt sources and
register bits. See "EICR Mapping" on page 1 -66 for the mapping.

The EICAs, the hardware control of the EICRs, and the Instructions that manipulate them
provide the functions that control the presentation of and identify the source of External
lntenupts.

EIM Register The EIM register provides the programmer with a mechanism to selectively
inhibit or enable any External Interrupt request. Setting any bit of the EIM to
one enables the Interrupt request represented by the associated bit in the
EIS. Setting the bit to zero causes the request to be ignored.

EIS ReglUlr When an interrupt is requested by an external source, the bit of the EIS
mapped to that source is set to one. It retains all latched requests until reset
by software. The EIS always latches an interrupt request from an external
source regardless of the state of the associated bit in the EIM.

If any request Is latched by the EIS and the corresponding EIM bit is a one, an External
Interrupt is signalled, that is EIRS is true. See Figure 1 e on page 1-63.

Addressing the EICAa
A Segment register must be loaded such that It addresses the architectural resources in
BUID O. The effective address must then select this Segment register and contain the
address of the EICR to be accessed. The content of the Segment register used to access
the EICRs is shown In Figure 17.

0 1 2 3 4

Bit

T

K

E

R

BUID

AS

Value

b'1'

b'O'

b'O'

b'O'

X'OO'

X'OOOOO'

BUID

12

UIO

VO Space

Privileged Access

Reserved

Reserved

Bus Unit ID 0

Adapter Specific.

Figure 17. Segment Register

Hotel:

Adapter Specfflc

1. For architectural resources in BUID O, the adapter specific field contains o.

31

2. If the K bit Is equal to one and a load or store register instruction is Issued
addressing the EICRs, an 110 Exception-type Data Storage Interrupt results and no
changes are made either to the target or source register.

1-84 General Architectures

Figure 1 e shows the effective address used to access the EiC Rs.

I SR Addreu

0 4

Figure 18. EfTectlve Address

SR These four bits must select the Segment register set up to access the
architectural resources of BUID o.

Addreu This field contains the address of the EICRs being accessed.

The address assignments for the EICR are shown In the following list:

Reglner Hex Addreu

EIMO 0000000

EIM1 0000004

Reserved 0000008

Reserved ooooooc
EISO 0000010

EIS1 0000014

Reserved 0000018

Reserved 000001C

DECEISBID 0000020.

Acceulng the EICRa

31

The EICRs can be accessed using load or store Instructions that confonn to the following
requirements:

• All accesses must be on a word boundary.

• Data transfers must be multiples of four bytes (one word).

• Multiple word transfers are not Interruptible.

• When the EIS Is the target of a load or store instruction and any extemal interrupt
requests are signalled to the EIS during the execution of that Instruction, the result is the
same as If the events occurred sequentially. The signalled interrupts are not lost or
duplicated.

• Accesses that address reserved locations either directly or through multiple word
transfers cause a data storage interrupt when the reserved location Is addressed.
Registers or locations altered before the interrupt are not restored.

Reading from the EICR•
The content of the EICRs can be copied to one or more GPRs using load instructions
addressing the registers. The Instruction used must conform to requirements previously
specified.

• The content of the addressed registers replaces the content of the target registers.

• When the EIM is the source for the load, the content of the EIM is not altered.

• When the EIS Is the source for the load, the content of the addressed portion of the EIS is
set to zero.

System Processors 1-85

Writing to the EICRa
The content of the EICRs can be altered using a store instruction addressing them. The
Store Register instructions used must confonn to the requirements specified previously.
Executing a Store Register instruction addressing the EICRs resul1s in the following actions:

• When the EIM is the target of a store instruction, the content of the source registers
replaces the content of the specified portion of the EIM.

• When the EIS is the target of a store Instruction, the content of the source registers is
ORed with the content of the specified portion of the EIS (one or two words) and the
result replaces that portion of the EIS.

• The change may affect the EIR or the EIRS, or both.

NotM:

1. Instructions addressing the EICRs that transfer more than 4 bytes are not
interruptible.

2. The bits of the EIS can be mapped to hardware interrupt sources. However, any of
the EIS bits can be set by software.

Extemal Interrupt Sources
The description is necessary to define the interface between the processor and the 110
process.

An External Interrupt source is a logical entity that Is associated with a specific bit in the
EICRs. Whenever a source recognizes the need to be serviced by the processor, it submits
a request to have that bit set to 1. The association of bits in the EICRs and interrupt sources
is programmable and set by software as needed.

Submitting Interrupts
Submission of Interrupt requests to set bits in the EIS must confonn to the following
requirements:

• The source must not lose any interrupt requests.

• The source should minimize the redundant submission of interrupt requests for any single
event that requires servicing by the processor.

• The source should not submit any requests if it can determine that a previous request it
submitted is stlll pending.

Note: This function may require the implementation of a latch that is set when a request is
first submitted and must be reset by software after the interrupt Is serviced.

EICR Mapping
An interrupt source sets the bit of the EIS to which it has been programmed to by software.
This feature requires additional functions of the interrupt source.

• A source contains a locatlon (EISBID) that can be read and altered as desired by
software.

• Transfer EIS61D Content to GPR: A load instruction addressing any EISBID must transfer
at least one word. EISBID is placed in bits 26 to 31 of register RT. Bits Oto 25 of register
RT are undefined.

1-66 General Architectures

• Transfer GPA to EISBID: A store instruction addressing any EISBID must transfer at least
one word. The contents of bits 26 to 31 of register RS are placed in the addressed
EISBID.

• When signalling an interrupt, the source causes the bit in the EIS that is indicated by the
content of the EISBID to be set to one. Only six bits are used to select the EIS bit to be
set.

Note: The Decrementer (DEC) causes an Extemal Interrupt that is associated with a bit in
the EICRs. The EISBID for the Decrementer is located in the VO space as shown in
•Addressing the EICRs" on page 1-64.

External Interrupt Mechanism tor POWER2
This interrupt mechanism provides a means for sensing, presenting, and controlling
interrupts. All interrupts are classified by level. The interrupts are presented to the processor
in order of most favored interrupt first.

The Extemal Interrupt mechanism is composed of the Interrupt Level Control register and
associated hardware that provides the means by which software can manage External
Interrupts. The Interrupt Level Control register (accessible as a Special Purpose register)
and the External Interrupt mechanism provide a means for software to perform the following
tasks:

• Sense the current interrupt level.
• Sense the pending interrupt level.
• Clear a pending interrupt at any selected level.
• Set an interrupt at any selected level.

An interrupt level can be one of 64 levels (Oto 63). Level o Is the most favored level and
level 63 is the least favored level. The current interrupt level (CIL) can be set to any value
between O and 255. A processor can accept Interrupts only when pending interrupt level is
more favored than the l"el indicated by ILCR(CIL).

For example, if the content of ILCR(CIL) = 37, the processor accepts interrupt levels O
through 36. Interrupt levels 37 through 63 are masked.

When an Interrupt Is signalled, It Is posted and remains pending until software dispatches or
resets the interrupt.

Interrupt Level Control Registers
The Interrupt Level Control register (ILCR) is a 32-bit register that provides the Interface
through which software manages the Extemal Interrupt mechanism. Sae Agure 19.

ICO Ill CIL PIL

0 8 16 24 31

Figure 19. Interrupt Level Control Aegl81er

The ILCR contains three 8-blt fields (ICO, PIL, CIL). The content and function of these fields
depend on the instruction executed.

The register is manipulated with the mfspr and mtspr instructions. The following sections
daSCribe the result of executing those Instructions.

System Processors 1 ~7

MFSPR RT, ILCR
This Instruction copies the content of the ILCR into the RT register.

• CIL contains the interrupt level at which the processor is executing. The processor
accepts only an interrupt that Is at a more favored level than the level indicated by the
CIL.

• PIL contains 255 If no interrupt is pending. Otherwise, it contains the level of the most
favored pending Interrupt The retumed lntenupt level is removed from the list of pending
interrupt levels.

• Bits 0 to 15 of the RT register are set to x'OOOO.'

MTSPR ILCR, RS
This Instruction causes the interrupt control mechanism to execute the command contained
In bits 0 to 7 of the RS register.

ICO Interrupt Mechanlam Action

00000000 Update CIL (UCIL)

00000001

00000010

Copies the content of bits 18 to 23 of the RS register to the CIL field of the
ILCR.

Clear Interrupt Level (CIL)

Clears the interrupt level specified by bits 24 to 31 of the RS register.

Sat Interrupt Level (SIL)

Sets the interrupt level specified by bits 24 to 31 of the RS register.

All other values of the ICO field are ignored.

Nolea:

EISBID Registers

1. An mfllcr instruction closely following an mtilcr instruction does not obtain the
actual values of the ILCR register.

2. External interrupts need not be disabled to write to ILCR.

A 8-blt External Interrupt Status Bit ID register (EISBIO) is associated with each interrupt
source. Software can write the EISBIO register to assign the priority at which that source will
signal that an Interrupt Is pending. In addition to external sources, each of the three local
Interrupt sources also have an associated EISBID.

• One per Interrupt source In 1/0
• Three for local interrupts

- Decrementer
- External check (memory error on OMA)
- Early power..off waming (EPOW).

The following are the EISBID address assignments in BUID 0:

Regl8ter EISBID Addreea
Decrementer 0000020
External Check 0000024
EPOW 0000034

1-68 General Architectures

PEIS Registers
The pending External Interrupt Status registers contain pending interrupt status for the 64
interrupt levels. Using the addresses in BUID 0, software can read these registers.

The following are the address assignments in BUID O:

Regleter Addreu
PEISO X'OOOO 0010'
PEIS1 X'OOOO 0014'

Storage Control
This section describes the function of and control over the storage mechanism. Brief
motivation Is given, but the primary purpose of this saction Is to serve as a reference. SOme
of the major features of the storage mechanism are as follows:

• Page size is 212 bytes.
• Maximum real memory size Is ~ bytes.
• Presumed minimum real memory size la ~ bytes.
• Virtual memory size is ~ bytes.
• Number of segments is 224.

• Number of transaction IDs Is 21s.
• Hardware support for Special Segments (physical lock management on a 128-byte line).
• Automatic granting of locks in Special Segments in some cases.
• Memory-mapped l/O Into VO segments.
• IPL ROM origin at address X'FFFO 0000'.

The memory hierarchy of the system consists of the following two levels:

• Cache
- Instruction cache
- Data cache that Is managed store-In.

• Main memory.

Instructions are provided to manage a data cache and an lnsbuctlon cache. The l/O goes
directly Into main memory with no hardware Interrogation of the caches. Software must Issue
the necessary cache control instructions before Issuing an VO to ensure consistency of the
data cache, Instruction cache, and main memory. Instructions can be changed by treating
them as data in the normal way. A store to the data cache Is not guaranteed to update the
instruction cache. Again, software must Issue the necessary cache control Instructions to
maintain the consistency of the two caches, Instruction prefatch and main memory.

Page faults cause precise Data Storage lntenupts. Precise means that the address of the
faulting ins.tructlon is identified, and after the fault is satisfied, execution resumes at that
address. For instruction page fault, the precision Is obvious.

Crossing segment boundaries can also cause Data Storage Interrupts. Refer to Figure 28
on page 1-n tor more information.

For Data Storage Interrupts, the precision is present but there may be side effects. In
general, an instruction that makes a reference that causes a Data Storage Interrupt does not
change the contents of any register that can be changed in nonprivllegad state, which would
prohibit restarting the instruction after the Interrupt is serviced by software.

System Processors 1-89

In those cases where registers or storage are changed, they are not changed in a way that
would prevent the restart of the faulting instruction. Examples of such instructions are Load
Multiple (Im), Load String Indexed (lsx), Load String and Compare Indexed (lscbx), Load
String Immediate (lsi), Store Multiple (stm), Store String Indexed (stsx), and Store String
Immediate (stsi). The Im, lsx, lsi, or lscbx instruction may fault part-way through its execution
with only some of the specified registers actually loaded. The Im, lsx, Isl, and lscbx
Instructions are restartable since the base registers are not altered, even if they are in the
range to be loaded. The strn, stsx, and stsi instructions may also fault part-way through. In
this case, some of the storage locations destined to hold the registers being stored may
have changed as well as respective page table entries. However, strn, stsx, and stsi are
restartable since the base registers are not altered. Unaligned stores may update storage
prior to the fault and leave the job up to the relevant interrupt handler to complete.

Crossing page or segment boundaries by a single instruction Is not necessarily prohibited by
this architecture. However, each side of the boundary must adhere to the specific rules tor
protecting that side. Crossing a segment boundary, however, results In a Data Storage
Interrupt if the first segment accessed has T = O and the second segment has T = 1.
Crossing a segment boundary cannot occur When the first segment has T = 1. The Segment
register of the calculated effective address indicates T = 1, and the processor sends the
load/store command with the Segment register and effective address to 1/0 with no further
checking of the Segment registers.

Storage Control Registers
The following section describes the Segment registers and the Storage Description
registers.

Segment Registers
There are sixteen 32-blt Segment registers (SR) as shown in Figure 20. The most significant
bit of a Segment register is called the T bit. When T = O, the segment named in the Segment
register is a nonnal segment. When T = 1 , as shown in Figure 22, the segment named in the
Segment register Is an 110 segment. Unless explicitly noted, all discussions of segments
from this point on deal only with normal segments.

SROO

SR01

...

. . .

SR14

SR15

0 31

figure 20. Segment Registers

1 ·70 General Architectures

Segment registers, when T = 0, contain a 24-bit Segment ID (SID), a Special Segment (S)
bit, and a 1-bit segment access key {K), in the format presented in Figure 21.

Ill SID

01 2 3 8 31

Figure 21. Segment Register Format (T = 0)

Adapter Spectflc

01 2 3 4 12 31

Figure 22. Segment Register Fonnat (T = 1)

Storage Description Registers for POWER
The Storage Description registers (SORO I SDR1} shown in Ftgure 23 are 32-blt registers.
SORO contains the high-order bits of the real address of the Page Frame Table (PFT). SDR1
contains the high order-bits of the real address of the Hash Anchor Table CHAn and the HAT
mask. Access to these registers by software is privileged.

SDRO

PFTORG

0 18 31

SDR1

HATORG HAT Mak

0 18 24 31

Figure 23. Storage Description Registers

Bits o to 15 of SORO (PFTORG) concatenated on the right with 16 zeros is the real address
of the origin of PFT. Bits 0 to 15 of SDR1 (HATOAG) concatenated on the right wtth 15
zeroes Is the real address of the origin of HAT. Bits 24 to 31 of SDR1 (HAT mask) to contain
the mask to be used when indexing into the HAT. This constrains the origin of HAT to be on
a 32K-byte boundary and the origin of the PFT to be on a 64K-byte boundary. These
alignment constraints pennit the relocation hardware to Index into the tables without addition
when the machine implements the smallest presumed main memory size (1 BM byte).

The reason this limit Is presumed Is that the actual amount of real memory may be less, but
the hardware addressing through the HAT assumes the limit. If less memory than the
presumed minimum Is actually Installed, then software cannot use any PFT entry that
corresponds to the noninstalled page of real memory as a legitimate entry without causing
an error. As the size of main memory Increases, the number of bits used to index the HAT
increases. Thus software must adjust the base address of the HAT such that this address
has at least the same number of low-order zeros as the hardware has additional bits of
index.

System Processors 1-71

This implies a hardware variable merger based on actual real memory size. The number of
entries In the HAT is a trade-off between HAT size and the average PFT chain length. It is
recommended that the number of entries In the HAT= 2r + 1,
where 2r:? size of memory > 2r-1• The HAT mask is used to assist the hardware merger. The
HAT mask Is set by software to contain r - 12 one bits, right-justified with leading zero bits.

Note: The size of memory Is expressed in units of 4K-byte pages, where 12 s r s 20
(presumed MIN and absolute MAX number of 4K-byte pages).

The situation for the PFT is different. The size of the PFT is again determined by the size of
main memory, but the assignment of Indexes is strictly software-controlled. While the width
of the Index field is set to handle the maximum main memory size, no value can be bigger
than the actual memory Installed and Identify a legitimate PFT entry.

For the PFT, hardware ORs the index with the base independent of the installed memory
size. Software must adjust the base of the PFT (PFTORG) so that there are sufficient
low-order zeros not to conflict with the maximum Index value for the Installed size.

Storage Description Register for POWER2
The Storage Description register 1 (SOR1) Is a 32-blt registers (shown in Figure 24). SDR1
contains the high-order bits of the origin address of the hashed page table (HTAB) and the
HTABmask. Access to these registers by software is privileged.

SDR1

HTABorg Ill HTABmuk

0 16 24 31

Figure 24. Storage Description Register

Bits Oto 14 of SDR1 (HTABorg) concatenated on the right with 17 zeroes is the real address
of the origin of HTAB. Bits 24 to 31 of SDR1 (HTABmask) contain the mask used when
Indexing Into the HTAB. This constrains the origin of HTAB to be on a 128K-byte boundary.
Thus software must adjust the origin address of the HTAB to have at least the same number
of low-order zeros as the hardware has additional bits of Index.

This Implies a hardware variable merge based on actual real memory size. The HTABmask
Is used to assist the hardware merge. The HTABmask Is set by software to contain
r - 12 one bits, right-justified with leading zero bitS.

Assume r Is the smallest integer such that 2r is greater than or equal to the number of
4K-byte page frames of real memory. Since the memory size is between 16M bytes and 4G
bytes, 12 :s; r :s; 20.

Virtual Address Translation
Translation is enabled by 2 bits In the MSR; there Is one bit for data address translation
MSR(DR) and one bit for Instruction address translation MSR(IR). MSA(IR) and MSR(DR)
are Independent bits and can be set differently. These bits are changed by the mtmsr
instruction which must be executed in privileged mode. Changing either of these bits with
rntmsr ls synchronizing. That is, fetching and executing the instructions after the rntmsr
Instruction is performed according to the new settings of the MSR. The new settings of the
MSR may not Immediately affect the fetching of instructions because an instruction beyond
the mtmsr instruction may have been fetched prior to the execution to the mtmsr. ICS can be

1·72 General Architectures

used to discard the prafatchad instructions and begin fetching instructions following the ICS
in the mode specified by the new setting of the MSR.

Note: Accessing of VO is independent of MSR(DR} because access to VO is controlled
only by the T bit in SRs. Instructions cannot be fetched from 1/0 space. Wrth
instruction-relocate on, the T bit in the Segment register selected by the effective
address of the next sequential instruction must be zero, or else an Instruction
Storage Interrupt is generated. When MSR(IR} = O the T bit is ignored for instruction
fetches.

When data translation is off, MSR(OR) = o, the Segment register is only accessed to
determine H It is an VO segment for data storage accesses. If the T bit is zero, the effective
address is the real address, and Its numerical value Is the address of a byte In main
memory. If the T bit is one, the effective address Is sent to l/O.

When address translation Is enabled, the hardware supports a 52-bit single virtual address
space consisting of up to 224 segments of 256M bytes each In 4K-byte pages. This address
is formed by the processor generating a 32-bit effective address that refers either to an
instruction or to data.

The translation hardware has 16 Segment registers. Bits D to 3 of the effective address are
used to address a Segment register. The 24-bit SID field of the accessecl Segment register
is concatenated with bits 4 to 31 of the effective address to form a 52-blt virtual address. Bits
4 to 19 of the effective address are called the Virtual Page Index (VPI) and bits 20 to 31 are
called the byte offset In the page.

Inverted Paga Table (POWER Only)
The address tables that define the mapping from virtual to real addresses are comprised of
the Hash Anchor Table (HAT) and Page Frame Table (PFT). These tables are maintained by
software and are searched by the relocation hardware as a hash table.

Remember, as described previously, r Is the smallest integer such that 2r is greater than or
equal to the number of 4K-byte page frames of real memory. Because the memory size is
between 16M byte and 4G byte, 12 Sr s 20. The HAT has 2r+1 32-blt entries and each entry
in the HAT contains an index into the PFT with an invalid bit, i. See Figure 25.

NextPFT

01 12 31

Figure 25. Hash Anchor Table Entry (One Word)

System Processors 1 ·73

WordOO

Word01

Word 10

Word 11

I

The number of entries in the PFT is 2r; for example, one per real page frame of memory in
the case when the size of real memory is a power of 2. Each entry in the PFT spans one
quadword (four words) and has the format shown in Figure 26.

Note: Bits 1 to 11 of each HAT entry, bits 1 to 11 of word 1, and bits 4 to 15 of word 3 of
each PFT entry should not be used by software and should be treated as reserved
for future use. Some of these bits may be inadvertently altered by hardware when
updating PFT information.

SID l p J vltJ cJ pp
R .. rved I NextPFT

b b ... 32 tld locK bytelts •.. ~b
lw rJ If

0

WordOO

Word01

Word 10

Word11

Btta
00-23
24-26
'D
28
29
3Ch11

00
01-11
12-31

Q0-31

00
01
02
03
~15
11-31

R ... rved

Symbol
SID
p
y

f
c
pp

NextPFT

b

I
w
r

•
tld

l
Description
Segnwtt ID

tld

3 high-order bite of VPI
SIDvalld
Reference bit
Change bit
Page Protection Keya

Invalid bit
R~

Frame number of next PFT entry

Lock bytelt8 for llnea

Locktype
Grant Write Loeb
G111nt Read Loeb
Allow Rad
Rnerved
Tranalatlon ID

Figure 26. Page Frame Table Entry (One Quadword)

To translate a virtual address to real the HAT and PFT are searched by the relocation
hardware as follows.

31

Bits o to 3 of the effective address are used to select a Segment register. The selected
Segment register contains the 24-bit SID. Eight zeros concatenated with the VPI (bits 4 to
19 of the effective address) are XORed with the 24-bit SID. The low order r + 1 bits
(specified by the HAT mask) of the resutt are used as an index into HAT. The real address
formed to look up the entry in the HAT Is as follows:

opa = b'O' II HATORG II 15 x b'O'
opb1 = (X'OO' II VPI) xor SID
opb2 = b'OOO' II HAT mask II 13 x b' 1'
opb3 = opb1 and opb2
opb = 6 x b'O' II opb3 II b'OO'
real address = opa or opb

1 ·74 General Architectures

If the next pft field of the selected entry in the HAT is invalid (i = i), then the search fails.
Otherwise, the next pit field is an index used to select an entry from the PFT. The real
address fanned to select an entry in the PFT is:

opa = PFTORG II 16 x b'O'
opb = X'OO' II next pit II X'O'
real = opa or opb

where next pfl comes initially from the HAT, and subsequenUy from the PFT.

Having selected an entry in the PFT, SIDll(bits 0 to 2 of the VPI) are compared to bits O to
26 of word o of that entry. If they compare equally and the SID valid bit (V) Is a one, the
search succeeds.

Otherwise, the search continues by accessing the next PFT entry Indexed by nexr pft (bits
12 to 31 of word 1 of the currant PFT entry) if the Invalid bit (bit 0 of word 1 of the current
PFT entry) is o, and repeating the process. If the Invalid bit is 1 then the search falls.

NotB: All hardware lookups are done through the cache using real addressing.

To prevent an infinite loop in this search, the hardware searches for a maximum of 127
entries during a single translation. If this limit Is exceeded, the search falls.

When the search succeeds, the real page frame Is the index of the PFT entry that contained
the matching virtual address, and the real address la obtained by concatenating that Index
with bits 20 to 31 of the effective address. When the search falls there is no real address
associated with the virtual address, and a Data/Instruction Storage Interrupt is generated.

The translation between virtual and real addresses Is defined by the HAT and PFT, and
conceptually these tables are searched by the address relocation hardware to translate
every reference. However, for performance reasons the hardware keeps a Translation
Look-aside Buffer (TLB) that holds portions of the PFT that It has recently used, and the TLB
is searched before referring to the tables In storage. As a consequence, when software
makes changes to these tables, it must issue the approprtate ne purge Instructions to
maintain the consistency of the TlB and the tables.

Whan a TLB entry Is loaded, hardware must Insure that either all of the lock and TIO
Information Is loaded from the PFT entry, or that the lnfonnatlon is marked invalid In the TLB
entry, even If the segment is not special. This is required because software may change the
s bit of a segment without invalidating the TLB entry.

NotM:

1 . It Is possible for the hardware to actually implement two sets of SRs (one for data
and one for Instruction). In this case, hardware must insure that the same
numbered register in both sets have the same value. Likewise, It Is possible for
the hardwa1'8 to implement two TLBs. In this case, the size, shape, and values
contained may be different, but the hardware must invalidate both TLBs as part of
the execution of a single TLB instruction.

2. If floating stores are used to update PFT entries, a Data Cache Synchronize (des)
should be used to Insure the store operation completes.

The physical location (In cache) of data or Instructions Is governed by bits 12 to 31 of the
effective address regardless of whether the address translation is enabled or disabled. For
this reason, care must be exercised by software In referencing data with translate off which
have been previously referenced with translate on, and the oposite situation. Let ra denote
the real address corresponding to an effective address after translation. Since only bits 20 to
31 are unaffected by translation, bits 12 to 19 of ra and ea may differ. When they do differ,
an effective address of ra with translate off refers to a different physical location in cache
than ea with translate on, potentially leading to inconsistent results. This can be avoided by

System Processors 1·75

software restricting the data that are referenced with translate on and off to have bits 12 to
31 of the real and virtual addresses agree, or by the appropriate use of the FlusMnvalidate
Cache instructions.

Note: The HAT and PFT are accessed by hardware using real addresses. Care must be
taken if software accesses these with translation on.

If a storage access has the effect of updating the corresponding PFT entry, then that PFT
entry is updated prior to the next storage access.

Hashed Page Table (POWER2 Only)
The HTAB contains a maximum of 219 Hash Table Entry Groups (HTEGs). Fewer HTEGs
can be allocated If software sets HTABmask appropriately. For a system with N pages of
real memory installed, the proposed number of HTEGs that should be allocated is Nt2. See
Figure27.

The HTAB must be located In a contiguous block of storage and cannot contain any
defective areas.

HTAB HTEGI

I HTEGO I
"'1

PTEl_O

PTEl_1 _.,, PTEl_2

J ...
'
I

I

I

I

I

'
I

• Word 1_2_0
I PTE 1_2
I

1
Word 1_2_1

I PTEl_3 __.J ...
•
' PTEl_4

PTEl_5
HTEGI

Notea:

PTE 1_8

• PTE 1_7
I

__.J ..

1. n = (Nl2) - 1 where N la the number ot real paga
of •tonlge.
2. HTEG(I) le one ot Nl2 h•h table entry groups.
3. PTE(l_J) I• one of 8 page table enb'lea In HTEG(I)

Figure 27. Virtual Address Translation Data Structure

An HTEG contains eight page table entries (PTEs). HTEGs are the addressable element in
the HTAB. Hashing the virtual address, described in the following discussion, produces a
pointer to the first of two HTEGs that could contain the translation for the virtual addl'8SS, if a
translation exists. If the translation is not found in 1he initial HTEG, the virtual address is
rehashed and a secondary HTEG is searched.

1·76 General Architectures

Each two-word PTE contains fields to specify the Segment ID (SID), the abbreviated virtual
page index, the real address, page protection, the reference bit, and the change bit. The
contents of the PTEs are shown in Figure 28.

The two words in the PTE describe the real page. The 20-blt RPN field specifies the real
page number (RPN) of the page translated by Word 0 of this entry.

Note: Reserved bits in the PTE should not be used by software. Some of these bits can be
inadvertently altered by hardware when updating Information.

aid

RPN

Figure 28. Page Table Entry (Two Words)

Word Bit Symbol

0 0 v
1-24 aid
25
26 h
27-31 avpi

1 0-19 RPN
2G-27
28
29 c
30-31 PP

Hulled Page Table Search

DMcrlpUon

entry valid
segment Id
reserved

Ill

hash function selector
abbreviated vpi, EA(4-8) = VPl(D-4)

real page number
reserved
reference bit
change bit
page protection keys

To translate a vtnual address to a real address, the relocation hardware searches the HTAB
as follows: bits o to 3 of the effective address are used to selact a Segment register. The
24-blt SID Is extracted from bits 8 through 31 of the selected Segment register. Then bits 4
through 19 of the effective address (VPI), the 24-bit SID, the HTABorg, and the HTABmask
are used to select one of N/2 HTEGs within the HTAB (where N Is the number of pages of
configured memory). Software sets the size of the HTAB by setting the HTABmask In SDR1.
The real address (HTEGaddr), fonned to access the Initial HTEG, Is shown in Agure 29.

HTABrnak 1111b'1'

19) 3b'O' II EA(4-

SID(~23)

f---+ HTABhuh

AND

XOR

HTABorg II 17b'O' I ~
7b'O' II HTABhuh 11 lb'O' ---1 OR- I

HTEGaddr

Figure 29. Hash Table Entry Group Accesa

System Processors 1 • 77

If a second hash Is required (see step 8), the real address (HTEGaddr') fonned to access
the second HTEG is shown in Figure 30. The initial and secondary HTEGs are searched for
the missing translation as follows:

1. PTEaddr +- HTEGaddr
2. Access PTE at memory location PTEaddr
3. If PTE(v) = 0 or PTE(h) = 1, then go to step 5
4. If SID II EA(4-8) = PTE{sid II avpi) then

a. Translation succeeds
b. Real page number::; PTE(RPN)
c. Exit

5. PTEaddr ~ PTEaddr + 8
6. If PTEaddr = HTEGaddr + 64 then

a. All eight entries are searched; no match is found
b. Rehash virtual address (see Figure 30)
c. Go to step e

7. Go to step 2
8. PTEaddr +- HTEGaddr'
9. Access PTE at memory location PTEaddr
1 O. If PTE(v) = O or PTE(h) = O then go to step 12
11. If SID II EA[4-8) = PTE(sid II avpl) then

a. Translation succeeds
b. Real page numbers PTE(RPN)
c. Exit

12.PTEaddr +- PTEaddr + 8
13. If PTEaddr = HTEGaddr + 64 then

a. All eight entries are searched; no match is found
b. Translation fails
c. Generate Data/Instruction Storage interrupt
d. Exit

14.Go to step 9

HTABma1k II 11b'1' f---t>
AND

4-19) 3b'O' II EA(

SID(S-23)

f--
XOR

..._
INV

HTABorg II 17b'O' I ~
7b'O' II HTABhaah II 6b'O' __ _, OR /

HTEGaddr•

Figure 30. Hash Table Entry Group Access (Hash 2)

1·78 General Architectures

HTABhuh

All eight PTEs in the primary HTEG and all eight PTEs in the secondary HTEG are checked
until a matching entry is found. If no matching PTE is found in either HTEG, the translation
fails and a Data/Instruction Storage interrupt is generated.

Notes:

1. HTAB entries may or may not be cached by hardware.

2. All hardware lookups are done through the cache using real addressing.

3. If software will access the HTAB In translated mode, it must avoid cache line
synonyms by mapping this table to make the real and virtual address bits used for
cache set selection are the same.

4. As memory size Increases, the origin must be set to make as many low-order bits
of the origin zero as there are significant bits on in the offset.

5. SDR1: HTABorg and HTABhash must be valid for the Installed memory size.
HTAB contains:

- Minimum: 211 HTEGs -+ 214 PTEs-+ 212 real pages

- Maximum: 219 HTEG~ 222 PTEs -+ 220 real pages

When the search succeeds, the real page number is the RPN in the selected page table
entry that contained the matching virtual address, and the real address is obtained by
concatenating that RPN with bits 20 to 31 of the effective address.

The translation between virtual and real addresses is defined by the HTAB. Conceptually,
this table are searched by the address relocation hardware to translate every reference.
However, for performance reasons the hardware keeps a translation look-aside buffer (TLB)
that holds recently used PTEs, and the TLB is searched before referring to the table in
storage. As a consequence when software makes changes to this table it must issue the
appropriate TLB Invalidate instruetions to maintain the consistency of the TLB and the table.
See Figure 31.

Note: If floating-point stores are used to update HTAB entries, a data cache synchronize
(DCS) should be used to Insure the store operation completes.

~-- HTEGaddr

Huh Page Table

Min: 128K Bytea
Max: 32M Bytes

HTEGllddr•

Figure 31. Virtual Address Translation

Primary HTEG

Match:
SID
EA(4-8)

Search up to a
Entries In HTEG

Secondary HTEG

Match:
SID
EA (4-8)

Search up to 8
Entries In HTEG

Y• Real Page Number
Page Protection
Reference and
Change

Reha ah

Y• Real Page Number
Page Protection
Reference and
Change

No Tranalatlon Failed
(DSlllSI)

System Processors 1·79

Addreu Allaelng
In multiple tasking systems. aliasing as used In reference to the virtual address mechanism
means the concurrent use of multiple virtual addresses to access a single storage element.
This architecture supports aliasing. To maintain storage consistency in this environment,
software must obey the following rules:

• Write Shared Data

The aliases used to access write shared data must be aligned on 256K-byte boundaries
(bits 14 through 31 of the addresses used to access the data must be identical).

• Read Shared Data

The allowed synonyms used to access read shared data (read only data or Instructions)
must be aligned on 4K-byte boundaries.

• Data Shared with VO

The 110 architecture defines a storage model that is not consistent with 110. Cache
consistency must be managed by software using the cache management Instructions to
Insure that changes to storage caused by 1/0 operations are visible to the processor, and
those caused by the processor are visible to VO.

These restrictions are necessary to avoid the creation of synonyms that could cause storage
to be Inconsistent. A synonym Is created when the main memory copy of a storage element
residing In one set of the cache Is copied from main memory into a dmerent set of the cache
because a second virtual address was used for a subsequent access and bits 16 through 31
of the addresses differ. The creation of synonyms when accessing read only data is not a
problem unless that storage must be consistent with VO.

When a storage element is addressed using multiple addresses but accesses using different
addresses are not concurrent, aliasing can be avoided. This approach Is useful only in cases
where the storage Is accessed by one address for a long period and then by a dmerent
address for a long period as in the case of cooperating processes that are not allowed to run
concurrently. When a change of address spaces occurs:

• Purge the cache of the shared address space
• Delete the existing translation (PTE)
• Create the alternate translation (PTE).

The following software options for supporting eppllcatlons can create cache synonyms:

• Software avoids cache synonyms by allocating large pages. This had effects on the ease
with which software can port the OSF OS and possible performance effects on address
space usage.

• When applications create unaligned aliases, they will suffer the performance penalties
caused by cache flushing and translation swapping since only one translation for the
page is allowed at any time.

• Software avoids cache synonyms by cancelling jobs that attempt to create cache
synonyms.

1-80 General Architectures

A similar effect results when storage is accessed in both real and translated modes. In this
case there are two aliases, the real address and the virtual address. The same rules hold for
these accesses. The addresses' spaces must be aligned or the data must be purged from
the cache betWeen accesses using one address and accesses using the other.

Storage Acee•• Recording Mechanism
Reference and Change bits are maintained in the PTE, if address translation is enabled, for
each real page, and can be accessed by software directly through ordinary load and store
instructions. These bits are set automatically by hardware in conjunction with normal TLB
processing as follows:

Reference bit When a storage 8CC8SS (load, store, or cache Instruction, or Instruction
fetch) results in a TLB miss and the resulting translation is loaded Into the
TLB, the reference bit may be set to 1 immediately, or Its setting may be
delayed until the storage access is detennined to be successful. If the
reference bit is not set because the access failed, the implementation must
set the reference bit on the next successful access.

Change bit Whenever a data store is executed, as part of the TLB look-up procedure,
the change bit in the TLB is checked and If it Is already set to 1, no further
action Is taken. However, If the TLB change bit Is o, It Is set to 1, and the
corresponding change bit In the PTE Is set to 1.

Note: Since hardware only sets the Reference and Change bits on the basis of TLB
activity, when software resets these bits to zero, It must synchronize the TLBs
actions by invalidating the TLB entrles associated with the pages whose reference
and change bits are reset

Also, since some implementations may not set the Reference bit when a TLB entry is
loaded due to an unsuccessful storage access, this indicates there may exist an
entry In the TLB for the page even though the reference bit In the PTE is O.

Storage Protection Mechanism
The protection mechanism Is provided to protect the contents of main storage from
destruction or misuse caused by unauthorized accesses by a program.

page Protactlon
Page protection Is provided at the granulartty of a page and the mechanism uses two
separate fields:

• K bit In the Segment register
• Page Protection (PP) bits in the PTE.

System Processors 1-81

Storage protection applies only when address translation is enabled. A reference made with
translation enabled is associated with a Segment register (SR) and a PTE by the address
translation procedure described in the preceding section. The following table describes the
access permitted in terms of the value of the access key in the Segment register and Page
Protection bits in the PTE.

Protection Key ProceHlng

Load store
Accen AcceN

K PP Page Type Permitted Permitted

0 00 Read and Write Yes Yes

0 01 Read and Write Yes Yes

0 10 Read and Write Yes Yes

0 11 Read only Yes No

1 00 No access No No

1 01 Read only Yes No

1 10 Read and Write Yes Yes

1 11 Read only Yes No

Where:

K = Segment register access key
PP= PTE page protect bits.

When a reference is not permitted because of the protection mechanism, a Data Storage
Interrupt (Instruction Storage Interrupt) occurs and bit 4 of the OSISR (SAR 1) is set to 1 .

The VO protection mechanism provided in the case of an VO segment, the K bit, provided
with the effective address, is used to protect 110 facilities.

Timer Facilities
The real-time clock (ATC} and the decrementer (DEC) provide the timing functions for the
system. Both functions are manipulated as Special Purpose registers.

Real Time Clock
The ATC provides a high-resolution measure of real-time suitable for the
indication of date and time of day. This is a volatile resource and must be
initialized during start-up.

Decrementer The decrementer provides a means of signalling an interrupt after a
specified amount of time has elapsed unless the decrementer is altered In
the Interim.

Real-Time Clock
Note: This architecture provides no functions to synchronize clocks in a cluster.

The real-time clock is composed of two Special Purpose registers as shown in Figure 32.
RTCU is the count of seconds since the epoch specified by software architecture. RTCL is a
measure of the fraction of the current second in nanoseconds such that when used with

1 ·82 General Architectures

RTCU it provides a high-resolution measurement of the real time. The ATC provides a
calendar range of 136. 19 years. The following requirements apply to both registers:

• The ATC runs continuously when powered on, but has no provision for retaining the
correct time during power-off periods.

• On power up, the RTC begins running but the content is undefined.

• The ATC can be used to measure elapsed time prior to initialization by first setting RTCL
too and then comparing the values read from the RTC at times bracketing the period of
interest.

Notes:

1. Software must initialize the RTC from a time source external to the processor.

2. If RTCL is not initialized, or If it is initialized with a value greater than 999,999,999,
the elapsed time until the count is reset to O by hardware is undefined but less than
four seconds.

RTCU

RTCL

0 31

Regleter DMcrlptlon
RTCU Represents time in seconds.
RTCL Represents time in nanoseconds.

Figure 32. Real Tlme Clock (ATC)

Note: All bits In the RTCL need not be Implemented.

RTCL Description
All 32 bits of RTCL need not be Implemented. The driving frequency, insertion bit, controls,
and number of bits must be implemented such that the following requirements are satisfied:

• If all bits are Implemented, bit 31 of RTCL changes state each nanosecond.

• The implemented bits function as a binary counter.

• The Initial Implementation has a resolution of 256 nanoseconds.

• The period of RTCL Is one billion nanoseconds (one second) once the content Is set to O
by software or hardware. This occurs within four seconds of power up if not initialized by
software.

• When not being altered by software, the RTCL operates such that:

- Only 999,999,999 nanoseconds after it has been set too, the content is equal to the
terminal count (a value less than and as near to 999,999,999 as the implemented bits
allow).

- One nanosecond later the content is set to 0.

• Moving the content of RTCL to a GPA has no effect on the counter. After the move, bits In
the GPR corresponding to the unimplemented bits in the counter are O's.

• Moving the content of a GPA to the counter causes the contents of the implemented bits
of RTCL to be replaced by the contents of the associated bits of the source GPA. Bits In
the GPR corresponding to the unimplemented bits in RTCL are ignored.

System Processors 1-83

RTCU Description
RTCU is a 32-bit binary counter which satisfies the following requirements:

• When the next state of RTCL is to become o because it has reached terminal count,
ATCU is incremented in synchronism with the setting of RTCL to 0.

• All 32 bits of RTCU are implemented.

• When the content of RTCU Is all 1s, the next time It is incremented the content becomes
all Os.

• The counter runs continuously while powered on.

• Moving the content of RTCU to a GPA has no effect on the counter.

• Moving the content of a GPA to RTCU causes the content of ATCU to be replaced by the
content of the source GPA.

Setting and Reading the RTC
The ATC Is accessed as two Special Purpose registers, RTCU and ATCL. The contents of
the ATC can be copied to GPRs or initialized from GPRs using the mtspr and mtspr
instructions. The RTCL or RTCU can only be altered in Privileged mode. If an attempt to
alter these registers Is made In Non-Privileged mode, a program Interrupt results.

lnltlallzlng the RTC
The content of the ATC can be altered using the ~pr instruction. This is a privileged

access.

The ATC can be Initialized by the following sequence of instructions and commands:

1. Load the value X'OOOO FFFP into Rx.

2. Obtain the correct time from a source external to the processor.

3. Compute a 32-blt representation of this value In seconds and place in Ry.

4. Compute the residual fractions of a second in nanoseconds and place in Rz.

5. Issue mtspr RTCL,Rx. Set lower register to zero to avoid carry.

6. Issue mtspr RTCU,Ry. Set upper register to time in seconds.

7. Issue mtspr ATCL,Rz. Set lower register to correct fraction of a second.

At the completion of this sequence, the ATC contains the correct time unless a delay such
as an Interrupt occurs during this sequence.

Reading the RTC
The content of either half of the RTC can be copied to a GPA using the mfspr instruction.
This instruction does not change the content of the RTC. This is not a privileged access.

When the current time is required in a form that includes more than the upper or lower word
of the ATC, the following procedure should be used:

1. Execute the following instruction sequence:

mfspr Rx,RTCU

mfspr Ry,RTCL

rnfspr Rz,RTCU.

1-84 General Architectures

2. IF Rz=Rx

THEN the correct value has been obtained.

ELSE go to step 1 .

This procedure guarantees that the correct value is obtained.

Note: If the following Instruction sequence is executed:

mtspr RTCU,Rx

mfspr Ry,RTCU,

then the contents of register Rx differ from the contents of register Ry by at most one
unless the sequence Is Interrupted.

oecrementer
The Dsctementer(DEC) is a decrementing counter that provides a mechanism for causing
an extemal Interrupt after a programmable delay. The period of bit o of DEC is
approximately 4.3 seconds. See Figure 33.

DEC

Deecrlptlon

0

Reglater
DEC Represents delay in nanoseconds

Figure 33. Decrementer

Note: All bits in DEC need not be Implemented.

31

The drtvlng frequency, insertion bit, and controls for the Decrementer must be implemented
such that the following requirements are satisfied:

• The Implemented bits function as a binary down counter.

• The operation of the ATC and the DEC are coherent; for example, both counters are
driven by the same fundamental time base.

• The resolution of the Initial implementation Is 256 nanoseconds.

• If all bits are Implemented, DEC(31) changes state each nanosecond.

• Loading a GPA from DEC has no effect on the counter. After the load, bits In the GPA
corresponding to the unimplemented bits in the counter are O's.

• Moving the content of a GPR to the DEC replaces the Implemented bits of DEC with the
associated bits of the GPA. Bits In the GPA corresponding to the unimplemented bits In
the DEC are Ignored.

• The Decrementer never stops running. When Its contents are o and it is decremented, all
the Implemented bits are set to 1.

• Whenever bit 0 of DEC changes from O to 1 , an Interrupt request Is signalled.

• If the DEC Is altered by software and the content of bit o of DEC Is changed from O to 1 ,
an interrupt request is signaled.

System Processors 1-85

Decrementer Interrupts
The Decrementer Interrupt is an External Interrupt and conforms to the specification as
defined in "External Interrupt Mechanism" on page 1-67. The Decrementer Interrupt
mechanism contains an EISBID located in the VO space.

DEC EISBIO Address

Segment Register Fields

BUID X'OO'

Adapter Specific
x·ooooo·

Effective Address

Decrementer Usage

Must select a Segment register with a content as specified
previously

X'0000020'

The content of the Decrementer can be read or altered using the Special Purpose registers
control instructions. The mtspr instruction is privileged when the DEC is the target register.

Setting the DEC
The content of the Decrementer is altered by software using the following mtspr instruction:

mtspr DEC.Rx.

Note: If the execution of this instruction causes bit o ol DEC to be changed from a value of
O to a value of 1, an interrupt request is signalled.

Reading the DEC
The content of the Decrementer can be copied to a GPA by executing a mfspr instruction.
Copying the Decrementer to a GPA has no effect on the Decrementer content or interrupt
mechanism.

mlspr Rx,DEC

1-88 General Architectures

Floating-Point Round to Single Model
The following describes the model for Floating-Point Round to Single-Precision instruction.

Floating-Point Round to Single Model

If FRB(1-11)<897 and FRB(1-63)>0 then
Do

If FPSCR(UE) = 0 then goto Disabled Exponent Underflow
If FPSCR(UE) = 1 then goto Enabled Exponent Underflow

End

If FRB(1-11)>1150 and FRB(1-11)<2047 then
Do

If FPSCR(OE) = O then goto Disabled Exponent Overflow
If FPSCR(OE) = 1 then goto Enabled Exponent Overflow

End ·

If FRB(1-11)>896 and FRB(1-11)<1151 then goto Nonna! Operand

If FRB(1-63) = O then goto Zero Operand

If FRB(1-11) = 2047 then
Do

If FRB{12-63) = 0 then goto Infinity Operand
If FRB(12) = 1 then goto QNaN Operand
If FRB(12) = 0 and FRB(1M3)>0 then goto SNaN Operand

End

Disabled Exponent Underflow

sign +- FRB(O)
If FRB(1-11) = 0 then

Do
exp+--1022
frac +- b'O' II FRB(12-63)

End
If FRB(1-11)>0 then

Oo
exp+- FRB(1-11) -1023
frac +- b'1' II FRB(12-63)

End
Denormalize operand:

G II R II X +- b'OOO'
Do while exp<-126

exp+-exp + 1
frac II G II R II X +- b'O' II free II G II R or X

End
FPSCR(UX) +- frac(24-52)11GllRllX>O
If frac(24-62)11GllRllX>O then FPSCR(XX) +- b'1'
Round single(sign,exp,frac,G,R,X)
If free = o then

Do
FRT(OO) +- sign
FRT(01-63) +- 0
If sign= 0 then FPSCR(FPRF) +- w+zero"

System Processors 1-87

If sign= 1 then FPSCR(FPRF) t- "-zero•
End

If frac>O then
Do

End
Done

If frac(O) = 1 then
Do

If sign= 0 then FPSCR(FPRF) +- "+nonnal number"
If sign= 1 then FPSCR(FPRF) +-"-normal number"

End
If trac(O) = O then

Do
If sign = O then FPSCR(FPRF) f- "+denormalized number"
If sign = 1 then FPSCR(FPRF) +- "-denormalized number"

End
Normalize operand:

Do while frac(O) = o
exp +-exp-1
frac II G II R +- frac(1-52) II G II R II b'O'

End
FRT(O) f- sign
FRT(1-11) +-exp+ 1023
FRT(12-63) +- frac(1-23) 1129.b'O'

Enabled Exponent Underflow

FPSCR(UX) +- b't'
sign +- FRB(O)
If FR8(1-11)-= 0 then

Do
exp +--1022
frac +- b'O' II FRB{12-63)

End
If FR8(1-11)>0 then

Do
exp+- FRB(1-11) - 1023
free +- b't' II FRB(l 2-63)

End
Normalize operand:

Do while frac(O) = O
exp+- exp-1
free+- frac(1-52) II b'O'

End
If frac(24-52)>0 then FPSCR(XX) +- b'1'
Round single(sign,exp,frac,0,0,0)
exp+- exp+ 192
FRT(O) +- sign
FAT(1-11) +-exp+ 1023
FRT(12-63) +- frac(1-23) II 29.b'O'
If sign = 0 then FPSCR(FPRF) +- "+normal number"
If sign = 1 then FPSCR(FPRF) +- "-normal number"
Done

1-88 General Architectures

Disabled Exponent Overflow

FPSCR(OX} +- b'1'
FPSCR(XX) E- b'1'
If FPSCR(RN) = b'OO' then (Round to Nearest)

Do

End

If FRB(O) = b'O' then
Do

FRT(o-63) +- x'7FFOOOOOOOOOOOOO'
FPSCR(FPRF) +-"+infinity"

End
If FRB(O) = b'1' then

Do

End

FRT(C>-63) +- x'FFFOOOOOOOOOOOOO'
FPSCR(FPRF) +- •-1nfinity"

If FPSCR(RN) = b'01' then (Round Truncate)
Do

End

If FRB(O) = b'O' then
Do

FRT(o-83) +- x'47EF FFFF EOOO 0000'
FPSCR(FPRF) +- "+nonnal number"

End
If FRB(O) = b'1' then

Do
FRT(o-83) +- x'C7EF FFFF EOOO 0000'
FPSCR(FPRF) +- "-nonnal number"

End

If FPSCR(RN) = b'10' then (Round to +Infinity)
Do

End

If FRB(O) = b'O' then
Do

End

FRT(o-63) E- x'7FFO 0000 0000 0000'
FPSCR(FPRF) +-•+infinity"

If FRB(O) = b'1' then
Do

FRT(~) E- x'C7EF FFFF EOOO 0000'
FPSCR(FPRF) +-"-normal number­

End

If FPSCR(RN) = b'11' then (Round to -lnfintty)
Do

End
Done

If FRB(O) = b'O' then
Do

FRT(C>-63) +- x'47EF FFFF EOOO 0000'
FPSCR(FPRF) +-•+normal number­

End
If FRB(O) = b'1' then

Do

End

FRT(o-63) +- :x'FFFO 0000 0000 0000'
FPSCR(FPRF) +- "-Infinity"

System Procesaors 1-89

Enabled Exponent Overflow

sign +- FRB(O)
exp+- FRB(1-11)-1023
frac +- b'1' II FRB(12-63)
If frac(24-52)>0 then FPSCR(XX) +- b'1'
Round single(sign,exp, frac,0,0,0)

Enabled Overflow:
FPSCR(OX) +- b'1'
exp+- exp -192
FRT(O) +- sign
FRT(1-11) +-exp+ 1023
FRT(12-63) +- frac(1-23) II 29*b'O'
II sign = 0 then FPSCR(FPRF) +- "+normal numbe('
If sign= 1 then FPSCR(FPRF) +-"-normal number"
Done

Zero Operand

FRT(H3) +- FRB(~)
If FRB(O) = b'O' then FPSCR(FPRF) +- "+zero"
If FRB(O) = b'1' then FPSCR(FPRF) +- "-zero"
Done

Infinity Operand

FRT(0-63) +- FRB(0-63)
If FRB(O) = b'1' then FPSCR(FPRF) +-"-infinity"
Done

QNaN Operand

FRT(o-63) +- FRB(D-34) II 29*b'O'
FPSCR(FPRF) +- "ONaN"
Done

SNaN Operand

FPSCR(VXSNAN) +- b'1'
If FPSCR(VE) = 0 then

Do

End
Done

FRT(0-11) +- FRB(0-11)
FRT(1 2) +- b'1'
FRT(1 ~3) +- FRB(13-34) II 29*b'O'
FPSCR(FPRF) +- "QNaN"

1 ·90 General Architectures

Normal Operand

sign +- FRB(O)
exp+- FRB(1-11)- 1023
frac +- b'1' II FRB(12-63)
If frac(24-52)>0 then FPSCR(XX) +-- b'1'
Round single(slgn,exp,trac,O,O,O)
If exp>+ 127 and FPSCR(OE) = O then go to Disabled Exponent Overflow
If exp>+ 127 and FPSCR(OE) = 1 then go to Enabled Overflow
FRT(O) +- sign
FRT(1-11) +-exp+ 1023
FRT(12-63) +- frac(1-23) 1129.b'O'
If sign= O then FPSCR(FPRF) +-"+normal number"
If sign = 1 then FPSCR(FPRF) +-- "-normal number"
Done

Round Single (sign, exp, frac, G, R, X)

inc+- b'O'
lsb +- frac(23)
gbit +- frac(24)
rbit +- frac(25)
xbit +- frac(26-52)11GllRllX>O
If FPSCR(RN) = b'OO' then

Do
If sign II lsb II gblt II rbit II xbit = b'x11 xx' then Inc +- b'1'
If sign 11 lsb II gbit II rbit II xblt = b'X011 x' then inc+- b'1'
If sign 11 lsb II gblt II rbit II xbit = b'X01x1' then Inc+-- b'1'

End
If FPSCR(RN)=b'1 O' then

Do
If sign 11 lsb II gbit II rbit II xblt = b'Ox1xx' then Inc+- b'1'
If sign 11 lsb II gblt II rblt II xblt = b'Oxx1 x' then inc +- b'1'
If sign 11 lsb II gbit II rblt II xbit = b'Oxxx1' then inc+- b'1'

End
If FPSCR(RN)=b'11' then

Do

End

If sign 11 lsb II gbit II rblt II xblt = b'1x1xx' then inc+- b'1'
If sign 11 lsb II gbit II rblt II xblt = b'1xx1x' then Inc+- b'1'
If sign 11 lsb II gbit II rbit II xbit = b'1xxx1' then Inc+- b'1'

trac(0-23) +- frac(0-23) + inc
If carry out= 1 then

Do
frac(0-23) +- b'1' II frac(0-22}
exp+- exp+ 1

End
FPSCR(FA) +- inc
FPSCA(FI) +- gbit or rbit or xblt
Retum

System Processors 1-91

Floating-Point Integer Convert Model
This section describes the conversion of the floating-point double precision vaJue contained
in register FRB into an integer or a special number if the conversion cannot be successfully
completed. This function converts a 64-bit floating-point value to a 32·bit integer. Whether
the conversion is successful or is an exception case, the high order 32 bits of RT are
undfined. If the conversion is successful, the low order 32 bits of RT contain the integer
resulting from the conversion. The 32 undefined bits are indicated by "xxxx xxxx" In hex
representations of the 64-bit register.

Floating-Point Integer Conversion
The follow segments describe the expected result based on the content of FRB:

If [Floating Convert to Integer and Round]
Then round_mode +- FPSCR(RN)

If [Floating Convert to Integer and Round toward Zero]
Then round_mode +- b'1'

FPSCR(FPRF) +- •undefined•

If FAB(1:11) = 2047 and FRB(12:83) = O then goto Infinity Operand
If FAB(1:11) = 2047 and FRB(12) = 0 then goto SNaN Operand
If FRB(1:11) = 2047 and FRB(12) = 1 then goto QNaN Operand
If FRB(1:11) > 1087 then goto Large Operand

sign +- FRB (0)
If FRB(1:11) > o then exp+- FRB(1:11)-1023 r* exp- bias .. ,
If FRB(1:11) = Othen exp +--1022
If FRB(1 :11) > 0 then frac(0:63) +- b'01' II FRB(12:63) II b'OOOOOOOOOOO' r* normal -1
If FRB(1:11) = 0 then frac(0:83) +- b'OO' II FRB(12:63) II b'OOOOOOOOOOO' ,.. denorrnal .. ,

gbit II rbit II xblt +- b'OOO'

Doi= 1, 64-exp
frac(0:63) II gbit II rbit II xblt +- b'O' II frac (0:83) II gbit II rblt or xblt

End

If gblt or rblt or xbit then FPSCR(XX) +- 1

Round Integer (sign, frac, gblt, rblt, xblt, round_mode)
Round Integer (sign, frac, gbit, rbit, xblt, round_mode)
If sign = 1 then frac(0:63) +- -frac (0:63) + 1

If frac (0:63) > +2**(31-1) then goto Large Operand
If frac (0:63) < -2•*(31) then goto large Operand

FRT +- x'xxxx xxxx' II frac (32:63) r• where x'xxxx xxxx' is undefined .. ,

Done (exit conversion)

1-92 General Architectures

Round Integer (sign, frac, gbit, rblt, xbit, round_mode)
{

inc+-b'O'
If round_mode = b'OO' then

Do

End

If sign II frac(63) II gbit II rblt II xblt = b'x11 xx' then inc +- 1
If sign II frac(63) II gblt II rbit II xbit = b'X011x' then inc+-- 1
If sign II frac(63) II gbit II rblt II xblt = b'X01 x1' then Inc +-- 1

If round_mode = b'1 O' then
Do

End

If sign II frac(63) II gbit II rblt II xbit = b'Ox1 xx' then inc +-- 1
If sign II frac(63) II gbft II rbit II xbit = b'Oxx1x' then inc+-- 1
If sign II frac(63) II gblt II rbit II xbit = b'Oxxx1' then inc +-- 1

If round_mode = b'11' then
Do

Encl

If sign II frac(63) II gblt II rblt II xblt = b'1x1xx' then Inc+-- 1
If sign II frac(63) II gblt II rblt II xblt .. b'1xx1x' then Inc+-- 1
If sign II frac(63) II gblt II rblt II xblt = b'1xxx1' then Inc+-- 1

frac(0:63) +- frac(0:63) + Inc
FPSCR(FR) +-- inc
FPSCR(FI) +- gblt or rblt or xblt
Retum r end of Round Integer•/

Infinity Operand
Infinity
{
H the content of FRB Is a representation of Infinity, the following is required:

1. FPSCR(FR, Fl, VXCVI) +- b'001'

2. If FPSCR(VE) = 0
THEN DO

If the sign = o
than do

FPSCR(FPAF) +- •+infinity"
FAT +- x'xxxx xxxx 7FFF FFFP

end do

If the sign = 1
then do

FPSCR(FPRF) +- "~nflnlty"
FAT +- X'xxxx xxxx 8000 0000'

end do
END DO

Done (exit conversion)
}

System Processors 1 ·93

SNaN Operand
SNaN Operand
{

QNaN Operand

If the content of FRB is an SNaN, the following is required:
FPSCR(FR, Fl, VXCVI) +-- b'001'
If FPSCR(VE) = 0

THEN DO
FPSCR(FPRF) &ldarrow. "quiet NaN"
FAT &ldarrow. +-- x'xxxx xxxx 8000 0000'

END DO
Done (exit conversion)

QNaN Operand
{

Large Operand

If the content of FRB is a QNaN, the following is required:
FPSCR(FR, Fl, VXCVI) +-- b'001'
If FPSCR(VE) = 0

THEN DO
FPSCR(FPRF) &ldarrow. Mquiet NaN"
FAT &ldarrow. +-- x'xxxx xxxx 8000 0000'

END DO
Done (exit conversion)

Large Operand
{

If the content of FRB, rounded as indicated by the instruction being executed, is too
large to be represented in 32 bits, the following is required:

FPSCR(FR, Fl, VXCVI) +-- b'001'
If FPSCR(VE) = 0

then if the sign = o
then FRT &ldarrow. +-- x'xxxx xxxx 7FFF FFFF'
else FAT &ldarrow. +-- x'xxxx xxxx 8000 0000'

Done (exit conversion)

1/0 Space Rules
The following rules should be adhered to when addressing 1/0 segments using loads and
stores:

• All references, both loads and stores, must be generated.

• The order of the references to shared variables must not be change by the compiler. This
is with respect to all shared variables, not just the same shared variable.

• No references can be moved outside of their basic block (for example, before an if test or
outside of a loop).

1-94 General Architectures

• Multiple references to adjacent locations cannot be combined into a single reference (for
example, a load byte from 1fe combined with a load byte from 1ff to create a load
halfword from 1fe).

• Read-modify-write cannot be supported and should produce a compile time error. The
programmer must be forced to explicitly program to the underlining storage classes
(character, halfword, word) for all references.

Serlallzing Semantics of Various Instructions

Some Serialization Cases
In order to arrive at the definitions of ics and des instructions, the following cases where
synchronization is required were considered:

• Synchronization on local 1/0 operations:

Assume memory control registers are being updated. The sequence of Instructions occur
as follows:

Store
<S)'flC>.

ram bank control

In this case the synchronization can be taken care of by an lcs Instruction. The ics must
wait for the store to complete (at this time It Is removed from the PCS).

• Instruction modification:

The following is a possible sequence:

Store (changed Instruction)
elf
<sync> (wait for store-back to complete, invalidate prefetch buffers)
Branch (to changed instruction).

This synchronization is accomplished by Issuing a des Instruction first, followed by an ics
Instruction. The entire sequence then becomes the following:

Store (changed instruction)
elf
des
ics
Branch (to changed instruction).

The des instruction waits for the store-back to main memory to finish at the Fixed-Point
unit. The ics forces the Instruction Cache Unit to wait until the des is complete. Any
prefetched instructions are invalidated, and the instruction following the ics is fetched
again. The fetching of the branch target causes an instruction cache miss and the new
version of the line is fetched from memory.

• Page in:

ell
<multiple dis>
<Sync>
(Invalidate prefetch instructions and wait for last cli to complete).

System Processors 1 ·95

This case is also handled by an ics instruction. The cli and elf instructions are placed on
the Program Counter Stack (PCS) (see the following). The ics instruction waits for the
PCS to empty before it can complete.

• Page out

elf
<multiple ctfs>
<Sync> (serialize Fixed-Point Unit, wait for store-back of last elf)
<Start VO>.

In this case the synchronization is handled by a des instruction. The Instruction Cache
Unit is not synchronized; it continues dispatching instructions beyond the des instruction
as there is no need to synchronize the Instruction Cache Unit.

Instruction Cache Synchronize and Data Cache Synchronize Definitions
The following sections describe the instruction cache synchronize (ics) and data cache
synchronize (OCS) instructions.

lea Instruction
The ics instruction should have the following semantics:

• Any prefetched instructions are discarded.

• The PCS is emptied. The PCS maintains a hardware list of outstanding instructions in the
Fixed-Point Unit which can cause an interrupt. They include loads, stores, and traps.

• Any outstanding operations from the following list must have executed (meaning that
none of the following Instructions causes an interrupt, and are completely executed with
respect to the state of proc8S$0r registers, but perhaps not memory):

- des
- tlbl
- mtsr and mtsri
- ell
- deist, dclz, and elf.

(To the point they cannot interrupt by way of the PCS, the line may not be valid in main
memory for elf and deist, and the cache line may not be entirely zeroed for dclz.)

The previous three conditions are referred to as the three serializing operations. Upon
encountering ics, the Instruction Cache Unit waits until these conditions are satisfied before
considering any subsequent instructions for dispatch.

There are actually two problems related to SDRi and SORO. The primary problem is what
the correct behavior of ics should be relative to these SPR moves. The second is what the
Instruction Cache Unit should do with respect to misses for prefetched instructions when
these registers are In the process of being updated.

There is a delay between the time an mtspr. SDAO/SDRi is dispatched by the Instruction
Cache Unit and the time It is actually executed by the Fixed-Point Unit. During this time the
Instruction Cache Unit must be prevented from presenting a translation request to the
Fixed-Point Unit, otherwise an incorrect translation could possibly be perfonned. We
recommend that this case be handled in the following way.

1-96 General Architectures

Update SORO and SDR1 in real mode only. In this case there is no possibility of an ITLB
miss, so an incorrect translation cannot be performed.

If this is unacceptable and software wishes to update SORO and SDR1 in virtual mode, then
an lcs must follow the mtspr SDRO/SDA1 in order to ensure correct operation. (This solution
will not work if the ics and mtspr are on different pages and lcs is on a page affected by the
new value of SDRO/SDR1 .)

des Instruction
The des instruction waits for all outstanding data cache operations (elf, deist, dclz) to
complete. (By virtue of the present design of the Axed-Point Unit, cli, tlbi, mtsr, and mtsri will
all have completed prior to the des completing.) The des instruction does not synchronize
the Instruction Cache Unit. (However, an interlock bit Is set in order to allow ics to inter1ock
until the des instruction completes.)

Other Instructions Possibly Requiring Serialization
The semantics of other serializing or potentially serializing instructions are listed as follows:

• SVC

As part of the execution of this Instruction all three serializing operations listed previously
for ics are performed. (Although the svc Instruction Is not presently defined as a
serializing instruction, the Initial implementation Implements it as such.) In addition, the
SVC cannot be executed until the Link register Is not Interlocked (If the LK bit is set) and
the Count register and MSR are not intertock:ed.

• mtmsr

The mtrnsr Instruction will not be dispatched until the MSR is not interlocked. When It is
dispatched no subsequent Instructions will be dispatched until the MSR has been
updated. At this point any prefetched Instructions will be invalidated, and the Instruction
following mtmsr will be refetched using the new MSR value. (Currently it is not necessary
to wait for the PCS to empty because the Fixed-Point Unit will not be able to perform the
mtmsr until all Instructions that could cause an interrupt in the Fixed-Point Unit have been
completed.)

• rfl

All three serializing operations will be performed. Additionally, the rfi Instruction will not
execute until SARO, SRR1, and the MSR are not interlocked.

• rtsvc

All three serializing operations will be performed. The rfsvc will not be executed until the
Unk register, the Count register, and the MSR are not interlocked .

• tlbi

This Instruction does not serialize the Instruction Cache Unit. An explicit ics must be
issued if TLB entries pertaining to the page from which instructions are being fetched or
pre-fetched are being invalidated.

System Processors 1 ·97

• mtsr and mtsri

These instructions do not serialize the Instruction Cache Unit. Instructions past the mtsr
or mtsri instructions are dispatched. Prefetched instructions are not Invalidated. If a
Segment register from which instructions are being fetched is to be updated, the
Segment register update must be followed by an ics instruction.

These instructions are self-serializing with respect to data references.

• Load/Store to VO

There is no known serialization since all of these operations must complete before any
subsequent operations are executed by the Fixed-Point Unit, and we are not aware of
any effect of these operations on the Instruction Cache Unit which requires implicit
serialization.

• elf and cli

These instructions do not serialize the Instruction Cache Unit. An ics instruction must be
issued to cause the Instruction C&che Unit to wait until all outstanding clf/cli operations
have been executed, and to fetch again any fetched Instructions.

• dclz and deist

These instructions cause no serialization in the instruction cache unit, but are
self-serializing in the Fixed-Point Unit.

• mtsprTID

This instruction is presently self-serializing in the Fixed-Point Unit so it requires no
special handling by software.

• mtspr SOR 0

• mtspr

Instructions which move to SPRs in the Instruction Cache Unit, such as SARO, SRR1.
LR, and CTR, are all handled by a standard intertock scheme. When the instruction is
dispatched, an interlock bit for the affected register is set. When the data returns from the
Fixed-Point Unit, the interlock bit Is reset. No subsequent read or write operation to a
register can be perfonned while the interlock bit is set. These instructions are not
serializing.

1 ·98 General Architectures

Chapter 2. System VO Structure

Chapter Contents
Description . 2-3

System Structure . 2-4
Virtual Memory . 2-6
System MelllOry . • 2-6
Bus Memory . 2·6
Bus VO . 2-7
IOCC Control Registers . 2-7

Data Security . 2-7
Bit and Byte Numbering Conventions....................................... 2-7

Processor and Bus Notation . 2-7
IC>CC Byte Steering.. 2-11

VO Bus Protocols•.•... , 2-13
Arbitration . • . 2-1 3

Priority Assignment.. 2·15
Nonpreemptive Burst . 2-16
PreemptiVe Burst . 2·16
Fairness Modes . 2-16
OMA Slave Selection . 2-16

Basic Transfer Cycle . 2-17
Streaming Data . . . • • . 2· 17
Dynamic Bus Sizing . 2-18
Partial Transfer Cycles . • 2· 18
Bus Refresh . • 2·19

Bus Errors . 2-19
Invalid Address . • . 2-19
Parity Errors . 2-19
Channel Check . . . • • . 2· 19
Bus Time Out . 2-20

Interrupt • • . • 2-20
Programming Model . 2-21

Load and Store Instructions . 2-21
1/0 Segment Register Definition . 2-26

Address and Data Alignment . 2-28
String Operations . 2-28
Load and Store Access Authority Checking . 2-29
Load and Store Error Conditions . 2-31

Translation, Protection, and the TOW Table . 2-33
Maintaining Consistency . 2-36

Unbuffered Mode . 2-36
Buffered Mode . 2-37

Bus Master • . 2-39
Buffered Bus Master . 2-39
Unbuffered Bus Master . 2-44
Bus Master Access Authority Checking . 2-46

System VO Structure 2· 1

Bus to Bus Data Transfers . 2-47
Bus Master Error Conditions . 2-47

OMA Slave . 2-49
OMA Slave Operations Using Tags . 2·50

OMA Slave Operations Using TCWs 2-57
OMA Slave Bus Protocols 2-60
OMA Slave Transfers to Bus Memory . 2-61
OMA Slave Transfers to System Memory . 2-61
Special Sequences . 2-62
OMA Slave Error Conditions 2-62

IOCC Commands . 2-63
Time Delay Command . • 2-63
End of Interrupt Command . 2-64
Enable and Disable Commands . 2-65
Buffer Flush Commands • 2-66
Buffer Invalidate Command 2-67
Next Buffer Invalidate Command . 2-68

110 Interrupts . 2-68
Special Facilities . 2·72

Board Configuration Data... 2-74
IOCC Configuration Register . 2-74
Bus Status Register.. 2-79
TCW and Tag Anchor Address Register 2-80
Component Reset Register 2·81
Bus Mapping Registers . 2-82

System VO and Standard VO .. • 2-84
System VO . 2-84

System Registers . 2-84
Nonvolatile RAM . 2-84

Standard VO . 2-84
Exception Reporting and Handling 2-85
Implementation Details . 2-86

Streaming Data Protocol . 2-86
Board Configuration Register . • 2-86
IOCC Configuration Register . 2-86
System Registers . 2-87
Nonvolatile RAM . 2-87
Standard 110 . 2-89
Bus Master Transfers . 2-89
Component Reset Register . 2-90
Notes on Error Detection . 2-90
Bus Timeout . 2-90
VO Interrupts . 2-90
Power-On Reset . 2·90
IPL Procedures . 2-91
Deviations from the 110 Architecture 2-93

2·2 General Architectures

Description
This chapter describes the Input/Output (VO) architecture. General 110 bus support functions
for Load and Store instructions, interrupt, and channel control are provided by the 1/0
Channel Controller (IOCC). A number of feature 110 slots are associated with the IOCC for
pluggable 110 devices. Also attached to the 1/0 bus, but not occupying feature slots, is the
Standard VO. See usystem VO and Standard vo· on page 2-84.

The IOCC design allows certain variations of function and performance to optimize its use
across multiple machine environments. The specific personalization is established with the
contents of the iOCC Configuration register. (See "IOCC Configuration Register" on page
2-74) and •1mptementatlon Oetalls" on page 2-86.)

Reasonable efforts were made to implement this architecture correctly and completely.
However, the implementations may deviate to some extent from the VO architecture,
documented In this chapter. The specifics of the various implementation deviations are
documented in the •tmplementation Details• on page 2-86 or in the VO architecture
implementation details section in the product-specific manual.

Figure 34 shows the logical view of the IOCC in the units.

Proceuor Syatem Bua
Chip Set 1----~~---~

IOCC

Figure 34. System Block Diagram

Memory

llO
Bua

llO Slot.

} Standard llO

System VO Structure 2-3

System Structure
Figure 35 shows a more detailed logical view of the IOCC. Functions provided by the IOCC
include data buffering, address translation, access protection, direct memory access (OMA),
and Interrupt support.

Proc:enor
Chip Set

Proceeaor
Data
Cache

LIST
Detlll

Xlate

Bua
Memory

Bua 110

LIST Data

UST Address

IOCC

• lfO
BFR

DMA
Ctrl

•tag
Table

~
~

Addreui--..-.- Addr
Range

Vlrtulll
Memory

Data
(Real) =

Micro
Channel Bua

Bua
Memory

Bua
Mallter

Bua UC

Note: • May be implementation specHic. (See "Implementation Details" on page 2-86).

Figure 35. Programming Model

2-4 General Architectures

The operating system can access all system facilities, for example, virtual memory, system
memory, bus VO. bus memory. and the IOCC. The IOCC contains special facilities needed
by the system tor translation, protection, and other functions.

Problem state programmers are normally restricted to virtual memory. The virtual address Is
always mapped to system memory by way of the translation mechanism associated with the
processor chip set.

For certain applications, the operating system also grants conditional access authority to the
bus VO and bus memory. Accesses to bus memory and bus VO devices are checked tor
proper access authority, restricting user programs to access only the devices that they are
authorized to use. Accesses to bus VO are verified by an address range check. Accesses to
bus memory are vei:ified by way of a key in the translate control word (TCW) table described
in "Translation, Protection, and TCW Table" on page 2·33.

The VO architecture Includes the definition of 16 independent VO channels. One channel
(X'F') is used by the system master for Load and Store transfers, leaving 15 that can be
programmed for bus master transfers. The number of channels that can be programmed for
OMA slave transfers Is Implementation specific. {See "IOCC Configuration Register" on page
2·74 and "Implementation Details·on page 2-86.)

A bus master is a Micro Channel device that contains Its own direct memory access
controller. A OMA slave is a Micro Channel device that requires the system to provide the
direct memory access control.

The VO architecture also includes a provision for 16 IOCC buffers that can be associated
with each of the VO channels previously described. The presence and the number of IOCC
buffers is implementation specific. In addition, the architecture optionally allows for each of
these 16 buffers to be dual buffers. The dual buffer option enhances VO performance by
allowing overlap of operations between the Micro Channel and system buses. The option
allows the IOCC to read-ahead of the device so that the data is there when the device
requests it, or to write data to the system memory whUe the device fills the other buffer. For
detaJls, see •1occ Configuration Register" on page 2-74 and ·implementation OetailsR on
page 2-86. Normally this dual buffering mode Is transparent to the software. However, under
certain circumstances the software may need to know of the buffers existence. Saa "next
buffer invalidate Command" on page 2-68.

Normally, aJI processor accesses to system memory go through the processor data cache.
However, if accesses are sharing memory areas with VO devices, a means must be
provided for maintaining consistency among the processor data cache, the system memory,
and the 1/0 buffers. How cache coherency is provided is implementation specific. Briefly, in
the unbuffered mode, the hardware provides consistency. In the buffered mode, the software
must provide consistency (by way of hidden pages, by the use of programmed 1/0 (PIO) to
system memory through the IOCC, or by other techniques). For more detalls, see
"Maintaining Consistency" on page 2·36, ·1occ Configuration Register" on page 2-74 and
"Implementation Details· on page 2-86. All caches can be visible to programmers, including
selected application level programmers.

A bus master on the VO bus accesses bus memory and bus VO, and if mapped, system
memory. Pages in the bus memory address space are mapped to system memory by way of
the TCW table and by a bit in each Channel Status register indicating the target (bus or
system memory) of the access. Mapped pages are checked for proper access authority
before allowing an access to proceed. Since the IOCC cannot Intercept or stop accesses
from a bus master to bus attached memory or bus VO devices, no access checking is
performed when a bus master addresses devices on the VO bus.

System 110 Structure 2-5

The OMA slave controller provides a convenient mechanism for moving data between an 1/0
device and system or bus memory. It provides addressing and control functions on behalf of
the 1/0 device. Two methods for providing addresses for the DMA slave operations are
supported in the architecture. In the first, memory addresses are obtained from a tag table In
the IOCC. This table provides translation facilities similar to the System/370 indirect address
word list, with additional capabilities allowing data chaining down to the byte level. In the
second method, a TCW table provides the Real Page Number (RPN) used along with an
offset as the memory address. Both methods are described in more detail later in this
document. For implementation specific details, see •1occ Configuration Register" on page
2-74 and •implementation Details" on page 2-86.

Vlrtual Memory
Virtual memory is a large address space containing logical system objects such as programs
and data. Each object Is assigned a unique address in the virtual memory space at the time
of creation. This address is used thereafter to reference that object.

Virtual memory objects are mapped to system memory on a demand basis. At the time of
reference by a system or user program, the translate unit associated with the processor chip
set verifies whether that object Is currently In system memory. If so, the unit supplies the
appropriate (real) memory address. If the object is not in system memory, the operating
system Is called to obtain the requested object, place it in system memory, and update the
tables used by the translate unit. The original faulting instruction Is then retried and control is
retumed to the original system or user program. As long as the (virtual) access does not
have any real-time dependencies, this demand mapping is transparent.

System Memory

Bua Memory

System memory Is closely associated with the processor chip set complex. The system
architecture provides for up to 4G bytes of system memory.

Bus master and OMA slave operations to this memory neither synchronize nor update the
processor data cache or Page Frame Table (PFT). Without proper programming
precautions, this can cause the processor data cache and Its associated system memory to
be inconsistent, resulting In the loss or corruption of data (for example, when the processor
chip set and an VO device both attempt to access the same memory area). For more details,
see •Maintaining Consistency- on page 2-36.

1/0 bus memory is the memory that logically resides on the 110 bus. The VO bus includes 32
address bits, providing up to 4G bytes of addressability. PC family 110 buses utilize
disjointed address spaces for bus memory and VO devices. In the system units, these two
address spaces are mapped together as shown In Figure 46 on page 2-21. This address
space Is differentiated from the 1/0 address space by an address decode. VO bus memory is
referenced when the address is above 64K bytes. Processor accesses to this memory
space do not go through the processor data cache and do not suffer from the cache
consistency problems described in the preceding section, "System Memory."

Bus memory Is generally packaged on feature 1/0 cards and is associated with specific
devices. Devices are generally mapped Into the bus memory space when they have large
addressability requirements, such as video display buffers and floating-point work space.
Any bus master on the 1/0 bus has unconditional access to other devices on the Micro
Channel 1/0 bus. As such, access to bus memory is unprotected.

2-6 General Architectures

Bus 110

Bus memoiy references are redirected to system memoiy by way of the TCW mechanism,
the Channel Status register mapping bit, and, for systems that implement the optional Bus
Mapping registers, by way of the Bus Mapping registers. Refer to the "Translation,
Protection, and TCW Table" on page 2-33 for a description of this mapping process.
Accesses to system rnemoiy are translated and checked for appropriate authority before
atlowlng them to proceed. If allowed to proceed, this mapping of bus addresses to system
memory ls transparent to the requesting bus master or OMA slave. Special rules must be
followed to guarantee the consistency of this memory if It is shared with the processor chip
set. See •Maintaining Consistency" on page 2-36 for a description of these rules.

The VO bus includes a special address space for accessing VO Control registers. This
address space is mapped together with the bus memory and is referenced when the
address is within the lower 64K bytes. It includes16 address bits and provides up to 64K
bytes of addressability. VO devices do not decode address bits A31 to A 16 and these
address bits are considered undefined relative to 1/0 devices. Note that the addressing
nomenclature on the VO bus follows the Micro Channel fonnat shown in Figure 36 on page
2-8.

1occ Control Registers
IOCC Control registers are special facilities managed by the system supervisor that control
ell aspects of the Load and Store Instructions, channel, and Interrupt operations. They are
only accessible to Load and Store instructions from the system processor. They are
addressed in a disjoint address space inaccessible to 1/0 bus devices. lllis address space
is defined so that it can be mapped onto the 110 bus, providing flexible implementation in
distributing IOCC control facilities across multiple chip packages. Refer to the -Special
Facilities• on page 2-72 for a description of these registers.

Data Security
The system unit is Intended to be used In shared environments and contains mechanisms to
maintain data security. The IOCC supports attachment of user-supplied VO devices and
device drivers. The IOCC includes extensive hardware and operating system mechanisms
to insulate the system and other users from them. All accessas to memory or the VO bus are
checked to verify that the user has authority to use that resource. Shared resources, such
as IOCC or memory buffers, are controlled (for example, zeroed) so that no task gets
access to some other task's data.

Sit and Byte Numbering Conventions
This section describes the processor and Micro Channel bus notations used for addressing
bits, bytes, and multibyte fields, as well as the effects of these notations on the IOCC
architecture.

processor and Bus Notation
Two different methods are used to address the indMdual bytes in a multlbyte scalar
(numeric value) field. The methods differ in whether the field Is addressed from the
most-significant byte (the ~ig• end) or the least-significant byte (the "little• end).

The big-endian notation addresses scalar fields in ascending order from left to right. This
results in the most-significant byte (MSB) always having the lowest address. This practice
provides consistency in addressing that is independent of the word size of the machine. Bits
are always numbered from left to right. lllis notation is used in all processor, channel, and
serial protocol descriptions.

System VO Structure 2·7

The little-endian notation reverses both bit and byte addressing for scalar fields. This
notation is used in the Micro Channel architecture.

Regardless of which method is used to address scalar fields, all systems address string
fields the same way, with the MSB having the lowest address.

Figure 36 shows the differences between big-endian and litUe-endian notation.

Blg-Enc:tian Notation (Scalars and String•)
0

lo,
I I .~
0 1

1°1

MSB LSB

I 1~ I I .71•, I I

0 1 2 3

1°1

MSB

I I I I .71 81 I I I I I 1 51 1~ I I , 3121, LSB I 31
I I I I I

Llttle-Endian Notation (Scalars only)
0

l1, I I .~
1 0

l1s MSB
I I I I ,911, I I

LSB

'°I I I

3 2 1 0

LSB
Pi I I I

Figure 36. Data Addressing and Bit Numbering Notations

The little-endian practice of numbering bytes in ascending order from right to left results in
the most significant byte of a word having the highest address. This poses problems in byte
ordering on 2· or 4-byte buses. For byte strings such as text to be compatible across
different word lengths and between different systems, the strings must be organized with the
most significant byte having the lowest address. Figure 37 on page 2-9 shows the address
consistency with the big-endian notation. Figure 38 on page 2-10 shows the address
Inconsistency when using the little-endian notation. With the little-endian numbering scheme,

2-8 General Architectures

there Is no consistency in addressing across the various word sizes; two half-word stores
produce a different result in memory than one full-word store.

1Wo H1H-Word Store lnltructlon8 from the Proceaeor Regl8ter to Memory

Procesw Reglntr Dela In Memory AddrM8

0 1

Clo, I~ lo, I l~
•A• 0 •A• •B•

i71•, I I
I I I I

I~ •B• 1 lo,· I I I
0 1

~lo, I~
1°1

•O•
I 1sl

•C• 2 •C•
,11•, I I

I I I

•D• I~ 3 lo,
I I I

Full-Word Store lnatructlon from the Proceuor Regl8'8r to Memory

Procee1or Regllt9r

0 1 2 3

lo, •A• •B• •C• •D•

I ~1 1 I I I ,111, I I I I 1~ 1r I I I I I '312f I I I I

J
DatalnMem ory Add1'918

.....
lo,

•A• ,,.
I I I I I I~ 0

_., lo, •B•
I I I I I I~

,

_.. lo1

•C•
I I I I I I~ 2

'--+ •D• I~ 3

Figure 37. Addressing Consistency Using Big.Endian Notation

System 110 Structure 2-9

Two HaH-Word Store ln1b'uctlon1 from the Proceuor Regllter to Memory

Processor Register Data In Memory Add1'9H

1 0

l1, 11~ l1s
1°1

.. •B• 0
•A• .. 9 ..

,911, I I I
I I I I

117, I~ •A• 1
I I I , 0

k 11~ l1s
1°1

.. •D• 2
•C• •On

181 71
I I I

I I I I

117, I~ •C• 3

I I I I

Full-Ward Store lnatruction from the Proceaaor Reglater to Memory

ProceslOf' Reglater

3 2 1 0

131
"'A" "'8" •C• •D•

101 I I I 1~l,1 I I I I 1~ 1r I I I I 1e111 I I I I I

Data In Memory Add1'9H

l1,
•D• 11~ 0

I I I

l1,
•C•

I I~ 1

I I I

'7i
•B• 11~ 2

I I I

l1, "A" I~ 3

I I I

Figure 38. Addressing Inconsistency When Using Llttle-Endian Notation

2·10 GaneralArchltectures

IOCC Byte Steering
The compilers use big-endian addressing notation to handle data in the system unit. To
match the little-endian notation of the Micro Channel bus, the bytes from the system must be
steered to the appropriate bytes on the Micro Channel bus. The IOCC and the system board
are designed to provide byte-order steering as shown in Figure 39. Steering occurs in both
directions as information passes through the IOCC.

(4-Byte) Organiz.tlon

D 1 2 3

I ·A· ·B· •C• •D.. I
QI I I I I 17181 I I I I I 151 1~ I I I I I '3121 I I I I I ~1

lo,

: · t · --------+---------·t · ---------f- ~s.;.;,j~: : . ---..... -.. tf ·1 .. -.. T o. ----------~ !'!". ~.:

15

2-Bytll Micro Channel Device

(4-Byte) Organization

0 1 2 3
•A• •B• •C• •D ..

311 I I I
,111, I I I I l 511r I I

r - - --····----· ~----------
I J I

I J .
I

I

1 I

I

~-- ·······--·~·-··---
3 2

I I I ~12t I I I

~----------
1

I I I

- -- .. -
Byte Steering :

thelOCC : by

-.. --------J
0

rl
4-Bytll Micro Channel Device

Figure 39. IOCC Byte Steering

System UO Structure 2· 11

The VO data bits require renaming but otherwise maintain a one-to-one ordering with
standards.

Combining both examples gives the byte steering shown in Figure 40.

Proc:eesor Register

0 1 2

1°1

•A• "8"' MC•

I I I 17181 I I I I 15 1 1~ I I I

r - - ----------- -------···
I

l I

I J I

' I
I l
I . -

3

"D•
311 I I ~1211 I I I I I

----------J----

-----·----

Byte Steering :
the IOCC : by

--. ------------~- -----.
3 2 1 0

I •D• •C• .. 9. "A" I On the

~3.~~1 1~•~1 1~~4~1~23~1~1~1 1~1~1~1.16~1~11~5 .1~1-1~1~~18~1~71 ~1-1 1~0 1 ~~nel

In Micro Channel Memory
I

1 Data In Memory Addreaa 1

17,
•A• I~ I I I

0

111

.. 9 .. I~ I I I

1

11•

MC• I~ I I I

2

l11

"0" I~ I I I

3

Figure 40. Example Showing IOCC Byte Steering

2-12 General Architectures

-. - -
• •

This architecture optionally allows for the implementation of the 8-byte Micro Channel
Streaming Data protocol. For implementations that support the optional 8-byte Micro
Channel Streaming Data operations (see "Implementation Details" on page 2-86 for details
on which systems support the 8-byte Streaming Data protocol), the words are steered
appropriately, as well as the bytes within the words, as shown in Figure 41 . Steering occurs
in both directions as information passes though the IOCC.

(8-Byte) Organlutlon
WordO Word1

~ - - - - - - _1 _ - - - - - - _2_ - - - - - -
3

: Byte Steering by the IOCC

• ---
I -----------------·-- -----·-

3 2 1 0

Micro Channel Addrwa Bu• Micro Channel Data Bue

Figure 41. IOCC Byte Steering for 8-Byte Streaming Data Protocol

110 eus Protocols

Arbttratlon

The IOCC is optimized to use the Micro Channel. It the IOCC must drive another bus,
conversion logic translates the Micro Channel protocols to the target bus.

A brief description of the Micro Channel protocols is summarized in this section. For
reference to other Micro Channel architecture information, refer to the Personal System/2
Hardware Interface Technical Reference: Architectures manual.

Note: This document uses the abbreviated signal names as they appear in the Personal
System.12 Hardware Interface Technical Reference: Architectures manual. For
example, 'cd ehrdy' represents 'card channel ready'.

Arbitration is the resolution of multiple bus requests, awarding use of the bus to the highest
priority requester. It applies to all devices that request bus use such as processors, bus
master devices, and OMA slave devices. Characteristics of the Micro Channel arbitration
mechanism include:

• One to 16 bus masters
• Multidrop (dot-OR) mechanism
• Parallel prioritization
• Asynchronous operation
• Cycle-by-cycle arbitration
• Programmable priority levels
• Programmable faimess mode

System VO Structure 2-13

• Mixable linear and fairness modes
• Preemptive burst capability
• Multiple bus extension.

The arbitration mechanism distributes prioritization among the arbiters but retains control
and clocking functions within the IOCC. Bus arbitration timing is programmable and is
established by a field in the IOCC Configuration register.

Figure 42 shows the typical device arbiters and their relationship in the system. Parameters
such as arbitration level and burst characteristics are programmable by way of Configuration
registers in each device. There are no restrictions on changing operating modes following
system startup.

Micro Channel
Arbiter IOCC

Drq Preempt---------- Preempt
Dack ArbfGn ArblGnt

Burat Burlt ----------- Burlt
Rotation al
Protocol

Priority Arb
Level Bue

Micro Channel
Arbiter

Arbtntlon
Bue

D~ Praempt---+-+-+--i-ei
Dack Arb/Gn-------4

Burlt Buret -----.~-
Rotational
Protocol
Priority Arb
L9vel BUI

Figure 42. VO Bus Arbitration

IOCC
Clock

Figure 43 on page 2-15 shows an arbitration cycle. Devices request service by activating the
'preempf signal. The IOCC responds by deactivating the 'arb/gnf signal when the current
bus owner completes its bus actMty. Each requesting arbiter then presents its arbitration
level on the arbitration bus. The IOCC then reactivates the 'arb/gnf signal. If the device sees
its arbitration level value on the arbitration bus, the device knows it has been granted use of
the bus. Device Request (Drq) is a signal (internal to each of the device arbiters) that signals
a request to arbitrate for the bus. Device Acknowledge (Dack) is a signal (internal to each of
the device arbiters) that signals acknowledgement of being granted the bus.

Note: In some implementation, the arbitration bus might be multiple buses to the arbitration
control logic, but the bus can be viewed as one logical bus from the device's
perspective.

2-14 General Architectures

At the end of the bus cycle, the arbitration cycle is repeated if the 'bursf signal is not active.
If there are no requesters, control is returned to the default arbiter at the arbitration bus level
X'F'.

_) Drq ~'------'\~----
Preempt

Arb/Gnt

Arbitration Bus

Dack

SOIS1

Cmd

Figure 43. Arbitration Cycle

Both OMA slave and bus master devices utilize the arbi1ratlon mechanism to initiate bus
cycles. The difference is that once granted use of the bus, the bus master device controls
bus cycles, while the IOCC controls the bus cycles for OMA slave devices.

priority Assignment
At startup, each device supporting arbitration Is assigned a unique priority level ranging from
X'O-F'. This priority level establishes the selection criteria to be used when contention exists.
If multiple requests occur simultaneously, the device with the lowest numbered priority level
Is awarded use of the bus.

Arbitration level X'F' is always assigned to the system processor. If there are no other bus
requesters, bus ownership defaults to level X'F'. Thus, the IOCC owns the VO bus during
idle conditions. Since VO bus utlllzation Is nonnally low, the IOCC does not normalty
arbitrate for the bus for VO Load and Store Instructions. Some IOCC Implementations
execute any pending VO Load or Store instruction during the arbitration cycle (that Is, when
the 'arblgnf signal is in the 'arb' state), and extend the arbitration cycle as needed to
complete the llO Load or Store (up to the maximum time specified in the burst control field
of the IOCC Configuration register). See ·implementation Details• on page 2-86.

Micro Channel VO devices with long bursting characteristics should be designed using the
Fairness (rotational) Arbitration Protocol, without which it is possible to lock out system
processor 110 Load or Store instructions until the 1/0 device transfer is complete. If a lockout
occurs for an extended period of time, a bus timeout error Is posted, the 'arb/gnf signal is
set to the 'arb' state, and the 'resef signals are activated to all slots. Whlle the bus timeout
error is active, all system processor 110 Load and Store Instructions are guaranteed access
to the bus.

System VO Structure 2· 15

NonPreemptlve Burst
Devices can force nonpreemptive burst operations if it is necessary to retain control of the
bus for short periods of time. Examples include use of a read-modify-write sequence In
setting locks and use of a burst to allow the completion of a word-organized transfer
sequence. The device signals the arbiter that a forced burst is required by activating the
'bursr signal to the arbiter. Whan the burst sequence is complete, the device must
deactivate the 'burst' signal.

Preemptive Burst
This function allows a device to use consecutive bus cycles without any arbitration
overhead, as long as no other device is requesting bus service. It takes advantage of the
low average utilization of most 1/0 buses, and increases the effective data rate of a device.
Devices programmed for preemptive burst mode conditionally activate the 'bursf signal
when the 'preempf signal is inactive. A device can remain temporarily nonpreemptive for up
to 7.8 microseconds following a preemption request. This delay allows completion of, for
example, block transfers.

Fairness Modes
Devices operating in burst mode or devices with high bus request rates can cause severe
Interference to devices assigned lower priority levels. The problem is compounded when
multiple high-bandwidth devices are present In the system. The programmable fairness
mode makes these high-bandwidth devices subject to preemption by any device. If multiple
high-bandwidth devices are active simultaneously, service is rotated in a priority sequence,
and each receives a percentage of bus cycles inversely proportional to the number of active
bus requesters.

To meet wide variations in device operating requirements, arbiters are programmable to
operate In either linear or taimess mode. Operating modes can be mixed on the same bus.
Linear priority mode is provided to meet low latency requirements of unbuffered devices,
while faimess mode provides a more equitable distribution of bus cycles in a high-demand
environment, for example, with two or more high-bandwidth bus masters.

Fairness mode is a special case of preemptive burst. If there is only one bus requester, the
current bus owner can utilize all of the bus bandwidth. As with preemptiVe burst, a device
programmed In fairness mode can remain temporarily nonpreemptive for up to 7 .8
microseconds following a preemption request.

DMA Slave Selection
The Micro Channel architecture allows a OMA slave to be selected either by its arbitration
level or, optionally, by its 1/0 address (but not both). In these systems, the method supported
for selection of OMA slave devices Is by its arbitration level, status ('sO' exclusive-ored with
's1'), and an VO cycle ('mlio' signal in the 10 state).

2-16 General Architectures

Basic Transfer Cycle
Although the VO architecture defined in this chapter is generic and allows the attachment of
a number of unique buses, the intended design point is the Micro Channel bus. These bus
protocols are shown in Figure 44.

0 100 200

A31 to AO, MllO

S11SO(RIW)

Figure 44. VO Bua Cycles

The Micro Channel offers a 32-bit data path with 4G bytes of address space. It includes
extensive support for reliabillty, availability, selViceablllty, extendlblllty, and configurabillty.
The physical package and connector are designed to improve electrical characteristics.

Two status lines, 'SO' and 's1 ', define the initiation of bus write and read cycles respectlvely,
while the 'mllo' line differentiates between VO memory and VO devices. All addresses for the
next cycle are overlapped with the processing of the currant cycle. The bus architectu!'8
includes a special protocol for transferring sequential blocks of data. This is known as the
Streaming Data protocol, and is described In the next section.

Streaming Data
The Streaming Data protocol is a single-address, multiple-data protocol that improves bus
efficiency by amortizing bus-cycle arbitration and address setup across multiple data cycles.
It has particular value in transferring data between a memory and a processor cache or
between a memory and a high-performance VO device.

Streaming data begins with a cycle similar to a standard basic transfer cycle, but switches to
a clock synchronous transfer protocol.

Streaming data operations are supported for all IOCC transactions Including Load and Store
Instructions, OMA slave, and bus master operations.

Following the activation of the 'cmd' signal, the bus master indicates Streaming Data
Protocol capability by starting a bus clock called the 'ad strobe' signal. This clock is used by
both the bus master and slave to clock data onto and off of the bus. As the operation
proceeds, new data is placed on the bus every time the 'sd strobe' signal makes a
high-to-low transition. For additional information on the Streaming Data Protocol, refer to
•implementation Details" on page 2-86 for system implementation specific information. For
other Micro Channel architecture information, refer to the Personal System'2 Hardware
Interface Technical Reference: Architectures.

System 1/0 Structure 2·17

Dynamic Bus Sizing
VO bus read or write operations do not necessarily have to match the physical width of the
device. The Micro Channel architecture requires that the current bus master automatically
manage discrepancies in data transfer widths. The IOCC is considered to be the current bus
master for processor initiated 1/0 Load and Store instructions, and thus, must manage
logical data-width transformations.

A Load or Store instruction issued to a device of lesser width than the command causes
multiple 110 cycles to be taken until the transfer width is satisfied. This automatic data-width
matching Is referred to as dynamic bus sizing in the Micro Channel architecture. The
multiple 1/0 cycles complete as a preemptable operation in the system unit, allowing bus
master and OMA slave cycles to break in for service. As such, bus master or OMA slave
latency is unaffected by use of dynamic bus sizing.

Protocols and sequencing of dynamic bus sizing are shown in Figure 45.

Transfer
Size

48

1 B
1 B
1 8
1 8

Bua Protocol•

BE~
Ena)

s
B
H

0 1 2 3 ..E.. A1 AO
0 0 0 0 010 0

0 1 1 1 1 0 0
1 0 1 1 0 0 1
1 1 0 1 1 1 0
1 1 , 0 0 1 1

Figure 45. Dynamic Bus Sizing

Bua Sequencing

32-Btt 1fHHt
Slave Slave

8-Blt
Sieve

+32 +16 +a----.

+16 -+ 18 .. ,
+18 -+18 18 ...

+8
+8
+8
+8

-+8
-+8
.+8
-+8

+8
+8
-+8
-+8

8
8
8

It is generally recommended that the programmer writing an 110 device driver be aware of
the physical characteristics of the target device. One should be aware when dynamic bus
sizing is invoked by IOCC hardware since this operation requires more time to complete.
See •str1ng Operations" on page 2-28 for details on where this could be a problem.

Partial Transfer Cycles
Partial write operations (for example, writing one byte of a 2-byte device, or two bytes of a
4-byte device) are permitted In the bus architecture. The operations are useful in performing
unaligned moves. The Micro Channel supports partial write operations when operating with
both memory and VO devices.

Bus write operations issued on address boundaries matching the device width allow
completion of the operation in the minimum number of bus cycles. Operations issued to
nonaligned addresses transfer the data to the device using multiple (partial write} cycles.
These write operations use the bus 'sbhe'faO' and 'beO to be3' protocols to write the desired
portion of the word. Partial transfers apply to 1/0 Load and Store instn.ictlons and
{potentially) to bus master end OMA slave operations when operating with bus memory.

Partial transfers can take two to four times the normal number of bus cycles and caution
should be exercised in their use. If nonaligned, VO Load and Store instructions halt the
processor for a longer period of time, adding latency to system interrupt service. See KString
Operations" on page 2·28 for details on where this could be a problem.

2·18 General Architectures

au• Refresh
Bus refresh cycles are provided as a convenience to 110 devices with embedded random
access memory (RAM). Refresh cycles occur at one of several periodic rates selectable by
the Configuration register. Refer to ·1occ Configuration Regls1er" on page 2-74 and
•tmplementatlon Details• on page 2-88 for a description of refresh options. The refresh cycle
occurs with the 'arb/gnt' signal high and does not consume a bus arbitration level.

A refresh cycle Is similar to an 1/0 memory read operation, except that the 'refresh' line is
also activated. Address bits O through 11 (using the Micro Channel notation shown In Figure
36 on page 2-8) are Incremented by one, and are placed on the bus during the refresh
cycle.

sus Errors
Four different kinds of errors are detectable on the Micro Channel:

• Invalid address
• Parity
• Channel check
• Bus timeout.

When an error occurs, the error status is logged In IOCC registers as an aid in error
recovery. Individual error status Is kept for each VO device (by tubitration level) to assist In
recovery of multiple errors and is stored in the Channel Status register associated with that
device. l/O Load and Store instructions utilize channel 15 in f89Ular operation and error
status for those operations is saved in that set of registers. Refer to •Load and Store Error
CondltiOns· on page 2-31 for a description of this error status.

lnvalld Add":: Micro Channel architecture requires a positive response to all addresses. Address
response is signalled on the Micro Channel by driving the 'cd sfdbk' signal low. Failure to
respond Indicates that the address is invalid, or Is Issued to a missing or mis-seated card.

If an VO Load or Store Instruction is issued with Segment Register bit 12 on, the IOCC
checks for this address response. If none is received, a Data Storage Interrupt (OSI) is
lssUed and a card selected feedback enor code Is set in Channel Status register 15. Refer
to ·vo Segment Register Definition• on page 2·26 for additional details.

parity Errors
The Micro Channel architecture definition includes address and data parity functions.
Checking Is performed only when both the bus master and slave support parity. Refer to
-exception Reporting and Handling" on page 2-85 for details of the VO parity support.

Channel Check
The Micro Channel includes a 'chck' signal that indicates an unusual event occurred during
the bus cycle. Examples Include data parity error and page fault.

For details on the use of the 'chck' signal in reporting exception conditions within the unit,
see •exception Reporting and Handling• on page 2-85.

It is important to note that the unit is designed to recover from synchronous channel checks.
Adapters that use the 'chck' signal asynchronously make an Initial Program Load (IPL), the
only recovery that is possible.

System VO Structure 2·19

Bus 11me Out

Interrupt

A number of conditions can result in a hung bus or in grossly extended 1/0 bus cycles.
These errors can result in overrun conditions to other devices on the VO bus and are
checked by the IOCC using a bus timeout mechanism. Although the minimum architected
bus timeout value is 7.8 microseconds, the IOCC does not attempt to check that finely and
should Implement a timeout that varies between 15 and 120 microseconds. See
Mlmplementation Details" on page 2-86.

Bus hang problems are caused by either hardware or software errors. These errors are
generally associated with arbitration for the 1/0 bus followed by failure to complete the bus
cycle.

On a bus timeout error, the IOCC deactivates the 'arb/gnr signal, and sets bit 1 (the bus
timeout bit) In the IOCC Miscellaneous Interrupt register, and generates an interrupt. This
error is considered to be uncorrectable and the master enable control in the IOCC
Configuration register is reset. This disables all interrupt and channel requests. Also, a
'reset' signal Is applied to all 110 slots. In addition, If an VO Load or Store instruction is
pending in the IOCC when the bus timeout occurs, and the target of that Load or Store
instruction is the Micro Channel bus, then a Data Storage interrupt is sent for the terminated
Load or Store Instruction. If an VO Load or Store instruction is pending in the IOCC when the
bus timeout occurs and the target of that Load or Store instruction is an IOCC facility, then
the load or store instruction wlll be completed after the Micro Channel bus is cleared by the
IOCC. The IOCC intemal status is unchanged, so that channel conditions at the time of the
error can be logged. As an aid In determining the cause of the error, extraneous bus status
is also captured in the Bus Status register.

Incorrect programming of the OMA controller can result in a hung bus. The OMA controller
includes multiple channels; each can be personalized to control either a bus master or OMA
slave device. Personalization can be dynamically performed. If a programmer should
personalize a channel for bus master operation, but the device is actually a OMA slave
device, the bus will hang on the first OMA request that the device makes.

Eleven Micro Channel interrupt lines are supported by the IOCC. Interrupts on the Micro
Channel are level-sensitive, active-low, and exhibit natural interrupt-sharing capabilities. The
VO Board provides pull-up resistors on all Micro Channel interrupt signals so that unused
lines float to the inactive state. Refer to "1/0 Interrupts" on page 2-68 for additional details.

2-20 General Architectures

Programming Model
The following section describes the programming model for the 110 bus support functions
provided by the IOCC.

Load and Store Instructions
The Load and Store Instructions can be issued to devices on the VO bus in a similar manner
that they are issued to system memory. The programmer specifies a Segment register
identifying a specific address space and supplies an offset into that space. The offset Is
obtained from the effective address and is not translated prior to being applied as a bus
address. Figure 48 shows the process.

VO Load and Store Instructions are under control of the Segment registers. A command is
directed to the 110 bus when the type en bit of the Segment register is set to a value of 1
and the bus unit Id (BUID) address Is set to select the IOCC. Some VO operations require
that the privileged key (K) be set to a value of O (the privileged mode).

4 28

Segment Regl8tera

c
t Ext

Effective Addrea

I Pl2f I

18

llO

64K-Byte
Bua LIO

MEM

I3L_ 32 18 Paga of
258M-llyte

TK IOCC Ctrl
Select

Figure 46. l/O Add1'89Slng

Ctrl
Bua Memory

Address Spaces and Effective Addresses
Figure 47 on page 2-23 illustrates the addressing modes. 110 addressing requirements are
met by having multiple address spaces. These address spaces are selected by way of
control bits in the Segment register (see Figure 51 on page 2-26) resulting in three VO
effective address operating modes as follows:

1. Standard Bus Mode: This VO effective address mode provides for 32-bit addressing of
the 110 bus. In this mode the Segment register control bits are in the following state:
T = 1, I = 0, and M = 0.

The 32 bit bus memory address Is fonned by concatenating 28 bits of the effective
address with the 4 extent (EXT) bits from the Segment register. This partitions the bus
memory device space into 16 pages of 256M bytes each (4G bytes of total address
space), and separate Segment registers must be used to address adjacent 256 M-byte

System 110 Structure 2·21

address spaces. The 16 bit 110 device address is taken directly from the effective
address. To address a device within the 64K byte Micro Channel 1/0 space, effective
address bits 4 through 15 and Segment register bits 28 through 31 must all be set to a
value of o. Effective addresses are not translated, but era used as real addresses Into
the VO space.

For a pictorial representation of this addressing mode, see Figura 48 on page 2-24.

2. RT Compatibility Mode: This addressing mode assists in the simulation of the RT system
allowing for 24 bit addressing. In this mode the Segment register control bits are in the
following state: T = 1, I = 0, M = 1, and EXT = x.

In this mode, 18M bytes of bus memory Is selected using an effective address of X'x4
xxxx xx'. and 84K bytes of bus VO using X'XO 00 xx 'JO(. Any other effective addressing
range other than these two results In a Data Storage interrupt and an invalid operation
error status Is set in the Channel Status register (CSR) 15. This mode maintains
compallblllty with the VO structure of the RT system and provides the ability to replace an
RT object code Load or Store instruction with its system equivalent, and the simulator
does not have to worry about differences In the affective address fonnat.

In this mode, the hardware sets the effective addr9SS high order 8 bits (AO to A7) to a
value of O before J>'aclng the address on the bus. Note that with this definition of the bus,
no bus memory devices can reside In the address range from o to 64K bytes. Also note
that In the RT compatibility mode, no bus memory devieeS can reside In the lower
84K·byte range of the bus memory address space {84M bytes to 84M bytes +
64 K bytes). If the Segment register X'P is used to provide access to the IOCC address
spaces, all user Load and Store instruction effective addresses operate the same as
those in the RT system.

For a pictorial representation of this addressing mode, see Figure 49 on page 2·24.

3. IOCC Control Mode: This addressing mode provides for access to the IOCC facilities. In
this mode the Segment register control bits are In the following state, T = 1, I = 1, M = x,
EXT= x, and K = 0.

Included in this address space are IOCC registers, the tag and TCW tables, the System
registers and Nonvolatile Random Access Memory (NVRAM).

Noa.: Some references to the IOCC control space are on word boundaries only and
require that the data length be a multiple of 4 bytes (for example, the tag tables,
ttle TCW tables, and the IOCC registers).

The IOCC control space Is prlvlleged and Is only accessible when the Segment register
privileged bit Is set to a value of o. Attempts to access this address space when the
Segment register privileged bit is set to a value of 1 causes a Data Storage Interrupt to
be posted and and invalid operation error status to be set In the Channel Status register
15. Attempts to access undefined effective addresses In the IOCC control address space
also results In a Data Storage Interrupt (Invalid operation).

For a pictorial representation of this addressing mode, see Figure 50 on page 2-25.

2-22 General Architectures

Although bus memory and bus VO are disjointed in PC products, the system unit maps
these two address spaces together. Since bus 110 only requires 84K bytes of addressing,
this address space easily maps into the low addresses of the (4G bytes) bus memory
address space. The architecture of PC products is such that no bus memory feature cards
may be hardwired in the address range of O to 64K bytes, and no address conflicts exist.
Note that the 64K bytes of Micro Channel VO space can be accessed when utilizing each of
the three effective address operating modes as shown in Figure 47. The values for the T, I
and M bits for each of the three VO effective address operating modes were previously
described and are illustrated in Figure 47.

System Addreaa (T = 0)
I

llO Addreu (T • 1, BUID • IOCC)

Standard Bue RT Compatlblllty tOCC Control
Mode Mode Mode

I = X. M = X I = 0, M = 0 I = 0, M = 1 I • 1, M • X, K • 0
256M 2S8M 258M 258M ------.

192M

128M

84M

0

182M

128M

84M

Bua
Mem

182M 182M

128M 128M

84M 8411

64Klf0~--~~~~~---~~~~~--'
Space

Figure 47. Add~ng Model

System VO Structure 2·23

Figures 48, 49, and 50 summarize the system effective addresses. Effective addresses are
obtained from the processor general purpose registers and are under user control. If a bus
memory page is mapped to system memory, the bus address is translated to the address of
the mapped system memory page.

Standard Bua Mode 1=0,M=D

Bua 110 Addreaa Bua
(Seg Reg blt8 28 to 31 = 0) 110

0 3 4 78 15 16 2324

Figure 48. User Effective Addresses: Standard Bus Mode

RT Compatlblllty Mode I =0, M = 1

Bua 110 Addreaa

=::, ooooooooooooxooooooo11100

0 34 78 15 16 2324

Figure 49. User Effective Addresses: RT Compatibility Mode

2-24 General Architectures

31

DLY

31

Time
Delay

Bua
Memory

Bua
uo
Time
Delay

Bua
Memory

IOCC Addrnalng I= 1, M = X, K = 0

Seg 00000000000 l/O Device Addreu
Reg#

.,._ -..-+-........................ _.__._. _._.

............................. ~"""-t--................ ._._._._.~~

0 34 78 1518 23 24 31

IOCC Command• 1=1,M=X,K:i:O

Bue
uo
IOCC
Syatem
Regleter•

T•gTable

NV RAM

TCWTable

Time Seg 000
Reg# r------t----t"--------"'f-"' _._L...&..~ Delay

•R ... rved•

End Of
Interrupt

O 1 1 O 1 o o o lnvalldalB

Chnll o 1 1 1 o o o o EnablelDluble
Channel (Arb Lvl)

............. ._._.1...4

Fluah DMA
Slave Buffer

............... "-+~t-"-.-...~_._ _._ __ ~-'-'-4-..L...I

Next Buffer
lnvalldalB

FR Flush Bue
Maablr Buffer

&....-_ __._ _._ _.__._-....._.......__...._...._........_L..,j~ and Replace RC

0 34 78 15 18 23 24 31

Figure 50. IOCC Effective Addresses

System VO Structure 2·25

110 Segment Register Definition
Segment registers provide access authority to the 110 bus for 110 Load and Store
instructions. They are protected resources within the system and generally cannot be
changed except by the system control program. Some personalizations of VO bus
operations are provided to match unique device (or VO bus) characteristics. This
personalization Is controlled by control bits in the Segment registers shown in Figure 51.

TK -

c
t

~L1~ - [Reserved
Prlvlleged Key Addreaa

Memory no Increment

Addresa Check

Figure 51. 1/0 Segment Register

IMB - EXT

~LL UOBua
Addreaa

Bypau
RT Compatlblllty Select

IOCC Select

The following Segment register definition applies only to IOCC and VO bus applications. Bits
o and 1 are system control bits defining system state. Bits 4 to 11 select system facilities
such as the IOCC. Bits 12, 13, 25 and 26 mediate IOCC operations, while bit 24 provides
access to IOCC facilities. Bits 2, 3, 14 to 23 and bit 27 are reserved, and bits 28 to 31 are
used as an address extension for the VO bus address. A complete description of all fields in
the Segment register is given in the following list:

Bits Deacrtptlon

0 Type: This bit defines whether a Load or Store instruction is targeted to
system memory or the llO address spaces. System memory is selected
when this bit is set to a value of o, and VO is selected when this bit is set to
a value of 1. The definition of the Segment register, Illustrated in Figure 51,
is only valid for VO operations, that is when bit O is set to a value of 1, and
the BUID selects the IOCC.

1 Privileged Key: This bit is generally set to a value of O when the operating
system is In control and set to a value of 1 when in the user mode.

2-3 Reseived: These bits are reserved and must be set to a value of O.

4-11 Bus Unit Identification (BUID): The BUID field is decoded to select the
IOCC. Addresses between X'20 - 23' are assigned to the IOCC. Hardware
strapping options on the IOCC allow specification of its exact BUID field
value on some Implementations. Implementations on machines that support
a single tOCC must have a BUID of X'20'.

12 Address Check: This bit provides for conditlonal checking of VO addresses
during Load and Store instructions. The Micro Channel provides for a
positive address response by device activation of the 'cd sfdbk' line. tt this
line is not activated, the device address is invalid. See "Invalid Address" on
page 2-19. An VO Load or Store instruction that does not receive a positive
address response is allowed to proceed when bit 12 in the Segment register
is set to a value of 0. A command issued to an invalid device address when
bit 12 is set to a value of 1 causes a Data Storage interrupt to be posted
and a card selected feedback error code to be set In Channel Status

2-26 General Architectures

13

register 15. Figure 52 summariZes all the combinations of bit 12 and the
address response by an VO board (the address response is true if the
device has activated the 'cd sfdbk' tine).

Bit 12
Addreaa Reaponae

O o Comrund Can Proceed
0 1 Command can Proceed
1 O Detll Stormge Interrupt
1 1 Command can Proceed

Figure 52. Bit 12 and Addf88S Response Definition

Address Increment: This bit controls Incrementing of the VO bus address If
a Load or Store instruction Is isSued to a bus llO device with a physical data
width less than that of the Instruction. The IOCC breaks the transfer Into
multiple 1/0 bus cycles. See "Dynamic Bus Sizing"' on page 2-18 for a
description of this function. This bit controls whether the address is
incremented between the 1/0 bus cycles. Addresses are Incremented when
bit 13 is set to a value of 1. Addresses are not Incremented if bit 13 Is set to
a value of o. The address Increment function Is controllable on a
device-by-device basis. In the case of a Load or Store instruction to bus
memory, bit 13 is ignored and the bus addresses are always lncramented.

The Micro Channel architecture specifies that all addresses are to be
incremented when performing dynamic bus sizing. This bit should be set to
a value of 1 when wo00ng with devices designed to this an:hltectura.

Use caution when using string operations as certain devices can support
multicycle operations up to a particular word size. but not to exceed that
word stze. Consult the particular device specifications tor details.

14-23 Reserved: These bits are reserved and must be set to a value of 0.

24 IOCC Select: This bit selects tha IOCC control mode.

25 RT Compatibility Select: This bit selects the RT Compatibility Mode when
the IOCC Select (I) bit = 0.

28 Bypass: When this bit is set to a value of 1, the IOCC bypasses TCW
checking and memory mapping. Only direct bus access ls possible.

When this bit Is set to a value of O, the extended functions of authority
cheeking, access validation, and system consistency are Invoked.

This bit is ignored if the I bit equals 1.

rr Reserved: This bit Is reserved and must be set to a value of 0.

21-31 Extent: This field Is concatenated with effective address bits 4 to 31, to form
a 32-blt VO bus address when working in standard bus mode. It is gated to
address bits 'A31' to 'A28' on the VO bus.

System VO Structure 2-27

Address and Data Alignment
Data for Load and Store instructions is normally right-justified in the Processor register.
One-byte operands are located in byte 3. Two-byte operands are located in bytes 2 and 3.
String operations are an exception and are left-justified in the starting Processor register.

Target 110 device addresses should normally be aligned on boundaries equal to the device
width. This maintains optimal perfonnance when performing Load and Store instructions. If
this rule is not observed, the IOCC performs the operation using multiple (narrower) 110 bus
cycles. This can take up to four times longer to complete the Load or Store operation. Refer
to •Partial Transfer Cyclesn on page 2·18 for additional details.

String Operations
String operations allow the issuance of Load or Store instructions with data widths from 1 to
128 bytes. The bus protocol used in the data transfer is dependent on the VO device. String
operations are applicable to any addressable device on the Micro Channel and to the tag
tables, TCW tables, and to the NVRAM within the IOCC address space. However, for some
1/0 devices, applicability of string operations may be limited by the device itself.

String operations issued to normal PC devices are performed using standard bus protocols.
Multiple bus cycles are issued, using dynamic bus sizing, until the transfer length is satisfied.
These multiple cycles operate under preemptive burst arbitration rules and Load or Store
string instructions are momentarily suspended if any 110 device requests OMA slave or bus
master operation.

String operations Issued to devices supporting the streaming data transfer protocol use that
protocol where appropriate. This protocol operates under non-preemptive burst arbitration
rules. In the case of string operations, however, the amount of time from the preempt
request by a device until the IOCC releases the bus Is controlled by the Burst Control bits in
the IOCC Configuration register (see "IOCC Configuration Register" on page 2· 74 and
"Implementation Details" on page 2-86).

It is generally recommended that the programmer writing an 110 device driver be aware of
the physical characteristics of the target device when using string operations. One should be
aware of the effects of dynamic bus sizing and partial transfers, since these operations
require more time to complete. Refer to "Dynamic Bus Sizing" on page 2-18 and "Partial
Transfer Cycles• on page 2· 18 for details of these functions. Slower than expected VO
Instruction processing can have detrimental effects on system performance. For example,
the system processor cannot accept an interrupt while VO Load or Store instructions are in
process. Both dynamic bus sizing and unaligned moves (partial transfers) take longer to
complete, adding latency to system interrupt service. Although most devices are reasonably
fast and do not cause any problems, this latency can be large if extended string operations
are performed against slow devices.

2-28 General Architectures

Load and Store Access Authority Checking
1/0 Load and Store instructions are subject to access authority checking. Separate
mechanisms are used for checking bus 110 and bus memory, as shown in Figure 53. Bus 1/0
accesses are checked by way of a base and bounds (range) check, while memory accesses
are verified by way of a storage key in the TCW table. If the page is mapped to system
memory, write authority is also verified. Load and Store instructions to bus memory or
{shared) system memory are treated like a bus master operating on channel 15 and use
IOCC registers associated with that channel.

16 18

Segment Key. 0 ---r----~
Time Delmy Commend --r------1

BuallOOp

~-~·!>~ ---[- ---~- ---- Bypua .. 1
Buffer # - Key Ctrl Bue Memory

[!~ J~ --_2'.I j~ ~ ~. -3~ Sv• -"=nd
3 ;r Write Ena

And

Reed

--8:1

Channel Statue regleter 15 8

Figure 53. Load and Store Access Authority Checking

AcceN
OK

System VO Structure 2·29

Operations to bus 1/0 have fine address granularities. The operations are verified by way of
address range checking. Address ranges are controlled by the operating system and restrict
access of user programs to authorized devices. Address range information is considered
pan of lhe user (program) context and is loaded Into an IOCC register by the operating
system. This register defines a contiguous range of authorized VO addresses with a
minimum address granularity of 1 byte. Invalid access attempts cause a Data S1orage
Interrupt to be posted and a limit check error code to be set In Channel Status register 15.
This Interrupt is precise for all VO Load and Store instructions. Address range checking is
suspended If the Segment register privileged key is set to a value of 0, or if a time delay
command is issued. Refer to "Time Delay Command" on page 2-63 for details of this
command. Also note that if the address Increment is off (bit 13 of the VO Segment register
equals 0), only the starting address is tested. If address Increment is on, the full length of the
access must be within the limit bounds.

Operations to bus memory have coarser address granularltles and are protected on page
boundaries. Each page In the bus memory address space has a 3-blt storage protect key
associated with the page that defines lhe protection class of the page. An 8-bit authority
mask in Channel Status register 15 specifies the key values (and by inference, pages) that
this program Is authorized to access. This mechanism Is identical to the memory protect
mechanism used for bus master devices. Memory protect keys are kept In the TCW table
and are described In "Translation, Protection, and TCW Table" on page 2-33. The mask
Information Is considered part of the user (program) context and Is loaded by the operating
system.

Bus memory access checking is suspended If the Segment register prtvlleged key (K) is set
to a value of O or if the bypass control bit (B) Is set to a value of 1 in the Segment register.
Refer to "VO Segment Register Definition" on page 2-26 for details.

The TCW table and IOCC registers containing limit check information and aUthority masks
are protected system resources and are only accessible when the Segment register
privileged key is set to a value of o. Attempts to access these facilities when the prfvlleged
key Is set to 1 causes a Data Storage Interrupt to be posted and invalid operation status to
be set In Channel Status register 15.

2-30 General An::hltectures

LOad and Store Error Conditions
Error conditions that arise in Load and Store instructions include bus errors, programming
errors, and hardware errors. If no previous error remains in the Channel Status register 15,
then the specific cause of the error Is placed into the Channel Status register 15 bits O to 3.
The IOCC only places the first error code into Channel Status register 15. Figure 54 shows
the resultant register contents.

ProceHor Effective Acldrea

a:g.
0

Channel Stlltua Reglnlr 15

T
0 0 0

0
1
1

0 1 0
0
1
1

1 0 0
0
1
1

1 1 0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

OK
Invalid Operation

UmltCheck

Authority Error
Page Fault

Channel Check
Data Parity Error
llO Bue Error
card Selected Feedt.ck Error
ECCEnor
Syatem Addreu Error
TCW Relaed Error
IOCCError

Figure 54. Load and Store Error Sta!ul

Load and Store instruction errors are synchronous and generate a Data Storage interrupt.
No device should asynchronously report errors by activating the 'chck' signal. However, If
this occurs, the error Is not reported here, but is reported as an miscellaneous interrupt as
described In ·vo Interrupts• on page 2-68. Refer to •Exception Reporting and Handling" on
page 2-85 for more information. Load and store error codes are summarized as follows:

Error Code Deacrlpllon

o o o 1 Invalid Operation: This error code is set if an attempt Is made to access a
faciltty or device not authorized by the system supervisor. It is also set If an
attempt Is made to access a bus address for which a TCW does not exist
(except when the bypass bit is on).

0011 Limit Check: This error code is set If an attempt is made to access a bus VO
device not within the address range established by the limit registers.

System 110 Structure 2-31

Error Code Description

O 1 O 1 Authority Error: This error code is set if an attempt is made to access a bus
or system memory page and the storage key in the TCW does not match
the authority mask in Channel Status register 15. It can also be set if a write
operation is attempted to a read-only page in system memory.

0 1 1 O Page Fault: This error code is set if an attempt is made to access a page
with TCW bits 30 and 31 set to 8'01 '.This should occur in normal operation.

1 O O O Channel Check: This error code is set if a device responds with a channel
check indication. For example, a device might respond with a channel
check for a write operation to that device where there is bad parity on the
data or for other device detected errors during an operation to that device.
This error cannot be reported if a card selected feedback error is reported.
(The card selected feedback error takes precedence over channel check
error).

1 o o 1 Data Parity: This error code is set if the IOCC detects bad parity on a Load
operation from an 1/0 device. (However, in the case of a Load operation, a
channel check error takes precedence over a data parity error.) This error
code is also set if the IOCC detects bad data parity or an uncorrectable
ECC error during a load of a TCW.

1 0 1 0 110 Bus Error: This error code is set if an error on the Micro Channel has
been detected during transfer. The types of errors detected here are
implementation dependent (see "Implementation Details" on page 2-86).

1011 Card Selected Feedback Error: This error code is set if, after a device is
addressed, It does not respond by driving the 'cd sfdbk' line, and the
address check bit is on in the 1/0 Segment register. Conditions which could
cause this to occur are the device is not present, the device is not seated in
the card slot properly, the device is not enabled, or the device detects bad
address parity and does not respond to that address. This error code takes
precedence over a channel check.

1 1 0 O Error Correcting Code (ECC) Error: This error code is set if the IOCC
received an uncorrectable ECC error response from the intemal system bus
during a Load or Store instruction that is mapped to system memory. (This
process is similar to a bus master operation).

1 1 O 1 System Address Error: This error code is set if the IOCC sends an address
over the system bus and does not receive an address acknowledgement.
This can occur if the real page number in the address is invalid. Software
should make sure that the real page number in the TCW is valid.

1 1 1 0 TCW Reload Error: This error code is set if the IOCC detects a parity or
uncorrectable ECC error during an indirect TCW reload (with the bypass bit
off).

1 1 1 1 IOCC Error: This error code is set if the IOCC detects an internal error
during a Load or Store instruction. This error only occurs in a TCW and Tag
table access or flush command. All other IOCC errors result In a check
stop.

No provision is made to capture status for multiple errors. If this should occur, Channel
Status register 15 contains error information relating to the first error. On some
implementations, Channel Status register 15 bits 6 to 31 may be indeterminate after an
error. Therefore, software should restore Channel Status register to a known state after an
error.

2-32 General Architectures

Channel 15 always remains enabled following an error, or a deadlock situation would exist.

Synchronous errors are precise, and a retry may be attempted as part of the error recovery.
Certain other errors associated with an 110 Load or Store instruction may not be
synchronous, and are not reflected in this register. An example of these errors include
delayed channel check response (see •Exception Reporting and Handling ... on page 2-85)
and a bus timeout condition (see "Bus Timeour on page 2-20 for more Information).

VO bus errors such as address or data parity errors can be caused by hardware
malfunctions or transient electrical noise. Refer to "Exception Reporting and Handlingn on
page 2-85 for more information.

On a Load instruction, If bits 0-3 are all O, the vaJue of CSR15 bits 4 to 31 are whatever
software previously had written into them with a Stora instruction.

vo Load and Store instructions to the IOCC facilities (for examples, the CSRs) do not
generate an error except for a machine check.

Translation, Protection, and the TCW Table
The tOCC provides address translation for all Load, Store, bus master and OMA slave
operations to system memory and access protection for all Load, Store and bus master
operations to system memory. Access protection is also provided for all Load and Store
operations to bus VO or bus memory. Translation allows the organizing of VO buffers within
the context of the virtual page map end assists in eliminating a subsequent move operation.
Protection Insulates the system from non-well behaved devices or programs.

Bus memory protection or system memory translate and protection information is contained
in a TCW table. Each TCW entry identifies whether that page is mapped to system memory.
If a page is mapped, the TCW entry also contains mapping and access authority
information. This table is an IOCC analogue of the system translation tables, and Is
generally managed In concert with those tables. Address translation and protection
mechanisms apply to 4K-byte memory pages, matching the system page size.

Load or Store operation protection of bus VO is by a base and bounds address check. The
high- and low-limit addresses are contained in IOCC registers. Refer to •Load and Store
Access Authority Checking" on page 2-29 for a detailed description.

The TCW table organization is shown in Figure 55 on page 2-34. The TCW table has a
one-to-one correspondenee with the first n pages of 110 bus memory addresses. The first
64K bytes of bus memory can never exist since bus l/O is mapped at those addresses, and
the first 16 TCWs should be initialized es invalid, that is, set to page fault. Thus, the first
valid TCW entry maps 110 bus addresses X'OO 01 00 00' to X'OO 01 OF FF'; the second entry
controls mapping of addresses X'OO 01 1 o 00' to X'OO 01 1 F FP, and so on.

The number of bus memory addresses that can be mapped depends on how much TCW
Random Access Memory (RAM) is supplied by the IOCC. This amount Is product
dependent. A field in the IOCC Configuration register Is used to specify the amount of TCW
RAM supplied. Refer to ·1occ Configuration Register" on page 2-74 and ·implementation
Detailsn on page 2-86 for details. Access to the TCW table entries must be 4-byte aligned
and must be an exact multiple of four bytes in length.

If the bus memory VO address is mapped to system memory, the Real Page Number (RPN)
in the TCW is used to access system memory. Otherwise, the address is directly applied to
the VO bus.

on a load instruction, if bits O to 3 all have a value of O, the value of CSR 15 bits 4 to 31 is
whatever software previously had written into them with a store instruction.

System 110 Structure 2-33

1/0 load and store instructions to the IOCC facility (for example, the CSRs) does not
generate an error except for a machine check.

The TCW table is a protected system resource located in the IOCC address space between
addresses X'-x co 00 00' and X'-x FF FF FF' (where x indicates any hexadecimal digit
between o and F). It is only accessible to Load and Store instructions from the system
processor when the Segment register privileged key is set to a value of O. Attempts to
access this table when the privileged key is set to a value of 1 causes a Data Storage
interrupt to be posted and Invalid operation error status to be set in Channel Status
register 15.

Proceuor Effective Addren

=IRC
0 34

T 1T1 Replace

Muk

TCWTable

~ Flueh

RPN Bfr # - Key RC Ctr

Ref/Chg J J
Bu• Memory []o

Page Faun o 1
Sy1 Memory Rea~nly 1 O
Sys Memory Read-Write 1 1

Figure 55. TCW Table

TCWs can be used for both bus master and OMA slave operations. A TCW entry is
described in detail as follows. (Some fields described in the following section may be
implementation-dependent as noted.)

Bite Deecrlptlon

0-19

20-23

2-34 General Architectures

Real Page Number: This field in the TCW contains the real page address
that the bus address Is mapped to in system memory. Software should
ensure that the RPN is valid (for example, is not outside the range of real
memory).

Buffer Number: On buffered implementations, this field contains a 4-bit
number specifying which of 16 buffers can be used by the IOCC when
operating with this page. Although any buffer number may generally be
assigned to any page, exercise caution since buffer sharing is not possible
with OMA slave channels when tags are used. PersoMlization of a channel

24

25-27

28-29

30-31

for a OMA slave operation causes that channel to use the same buffer
number. On implementations not buffered, these bits are indetenninate.

Note: Buffer number 'F' has some special restrictions and uses:

• Should always be used for Load and Stores Instructions to bus memory
when the bypass bit in the Segment register is off.

• Should never be assigned for any operations invoMng system memory
(that is, where bit 30 of TCW word o is set to a value of 1).

Reserved and must be set to a value of 0.

Page Protect Key: This field contains a 3-bit key specifying the protection
class of the page. Memory pages are assigned to one of eight protection
classes. When a device inltially arbitrates for the bus, an 8-bit access
authority mask is obtained from the Channel Status register associated with
that device. When a page is accessed, the key obtained from the TCW
specifies the mask bit to be tested. It the selected bit is set to a value of 1,
the access is permitted. Mask infonnation for VO Load and Store
Instructions are contained in Channel Status register 15. Load or store
references to a bus memory page without the appropriate authority cause a
Data Storage interrupt and set an access authority error code in Channel
Status register 15. Refer to 1..oad and Store Access Authority Checking"" on
page 2-29 for details. Similarly, Invalid access attempts by a bus master
device terminate the operation for this device and set an access authortty
error code In the Channel Status register associated with the device. Refer
to ·aus Master Access Authority Checking• on page 2-46 for details.

Reference and Change (RC): These bits are equivalent to the RC bits in the
system page frame table. Bus master transfers and shared memory Load
and Store instructions do not modify the page frame tabla. As an aid in
page management, the IOCC provides the reference and change history of
all of Its pages. This can be used to Improve system perfonnance In paging
operations. Whenever a page Is accessed, the IOCC sets its assocl•ed
reference bit In the TCW table to a value of 1. Slmllarty, whenever a page is
written, the IOCC sets both the reference and change bits to a value of 1.
The B'01' code point Is never naturally set by hardware and Is only set by
software to assist in page management. Note that these bits only apply to
pages mapped to system memory.

Page Mapping and Control: These bits define page mapping and read-write
authority. They are coded as shown in Figure 56.

30 31

Bus Memory
Page Fault (No AcceH)

Syatem Memory

Figura 56. Page Mapping and Control Bits

System VO Structure 2'"35

Code points B'OX' signify that the page ls not mapped to system memory. Code point B'OO'
should be set to allow accesses to memory devices on the 1/0 bus. Code point B'01 ' should
be set when a page is not mapped and no device is present at that address. It causes a
Data Storage interrupt if the operation is a load or a store, and a synchronous channel
check response if the operation is a bus master transfer. Both of these actions are
interpreted as an 1/0 bus page fault. Bus master devices designed to take advantage of this
function are expected to halt and wait for the system to take corrective action.

Code point B'1X' signifies that the page is mapped to system memory. For Programmed 110
(PIO} operations, it causes the IOCC to redirect references to system memory using the
TCW mechanism. Note that PIO to system memory using the TCW mechanism is
implementation dependent. (See Mlmplementation Details" on page 2-86.) Bit 27 of the IOCC
Configuration register is set at a value of O if PIO to system memory is supported. If not
supported (bit 27 equals 1), a PIO Load and Store instruction results In a Data Storage
interrupt.

Bus master operations are mapped by channel and enabled as defined by bits 2 and 3 of
the status field of the Channel Status register. Note that bit 30 should match bit 2 of the
status field of the Channel Status register; otherwise, it is treated as a page fault error
condition as described in the preceding text.

Bit 31 controls write authority; If set to a value of 1, the page can be written. Note that the K
bit (bit 1, or the Privileged bit) in the Segment register overrides bit 31, that is, privileged
access Is not limited by the Read-Write or Read-Only bit.

Maintaining Consistency
With various caches and buffers In a system, it is possible that the same data might exist in
several places in the system. It then becomes the challenge of the hardware and software to
maintain the consistency of these various copies. The 1/0 Architecture features that assist In
maintaining consistency are the subject of this section.

Currently the VO architecture defines two different modes of operation when it comes to
Cache Buffer Support and Cache Coherency (as specified by two bits in the IOCC
Configuration register). These are:

• Unbuffered Mode
• Buffered Mode.

Each of these modes has slightly different characteristics when it comes to keeping
consistency among the various copies of the data in the system. These modes are
discussed in the following sections.

Unbuffered Mode
In this mode, it is the responsibility of the hardware to keep everything consistent.

2·36 General Architectures

suffered Mode
Figure 57 is a simplified version of Figure 35 on page 2-4, with only the data flow shown.
Notice that there are (potentially) three copies of the same data in the system (shown as
shaded boxes); one copy in the system memory, one copy in the processor data cache, and
one copy In the IOCC buffer. In this mode, the software is responsible for keeping the data
consistent. The VO architecture along with the processor architecture provides the 'tools' to
do this.

PrOCNIOI'
Chip Set

UST
Data

IOCC

BFAI

TCW

Figure 57. Data Flow In the Programming Model

Micro
Channel Bua

l/O Device

The following architectural tools assist In providing consistency:

• Processor data cache flush instructions

- Write data that has been modified In the processor data cache to system memory.
Forces subsequent processor accesses to go to system memory, so that you no longer
have two different (inconsistent) sets of data in the processor data cache and system
memory.

- Must be executed after setting up VO data and before a bus master or OMA Slave can
read the data. The data is taken from system memory, not the processor data cache .

• Hiding of VO pages from software processes

- can hide the page (4K bytes) of memory so that a software process cannot access It
after the data is set up for l/O in the system memory.

- Works well with large block sizes.

System 110 Structure 2-37

• VO buffer Invalidate command

- Throws away the copy of data in the 1/0 buffer so that the VO device cannot access
that copy again.

- can be used after setting up the data in system memory in the same 64-byte area as
the VO device is accessing, so that the device now accesses the new data from
system memory instead of the old data In the VO buffer.

• VO next buffer lnvalldate command

- Used in systems that implement dual buffer support.

- Throws away the copy of data in the 1/0 buffer that is reading ahead of the device so
that the VO device cannot access that data.

- can be used after setting up the data In system memory in the next 64-byte area
ahead of where the 1/0 device is accessing, so that the device now accesses the new
data from system memory Instead of the old data in the next buffer.

• VO OMA Slave buffer ftuah command

- Given the buffer number, writes to system memory any data in the VO buffer, that has
been modified but not yet written to system memory, and eliminates the copy in the
buffer by invalidating it.

- Must be used at the end of a OMA Slave transfer to or from system memory If the
transfer did not complete to termination by the length count.

• VO bus master buffer ftuah command

- Given the TCW number, writes to system memory any data in the buffer pointed to by
the TCW, that has been modified but not yet written to system memory, and eliminates
the copy in the buffer by invalidating it.

- Must be used at the end of a bus master transfer to system memory under all
conditions.

• IOCC PIO to system memory support

- Can be used during a OMA Slave or bus master data transfer to access data In the
same page and even the same 64-byte area as the 1/0 device is accessing.

- Guarantees consistency.

- Works well for small data transfers, but there can be a performance penalty on long
data transfers.

• IOCC OMA read-modify-write support

- Provides support to transfer less than 64 bytes of good data from the UO buffer to
system memory.

- May be implemented by prefetching the data before the device wrttes the first byte to
the buffer or by postfetching data from memory and merging it with the bytes in the
buffer which have been written by the device.

- Is not atomic with the processor (processor can access the same location in system
memory between the IOCC's read and the IOCC's write), so for example, it does not
eliminate the need for hiding memory pages.

2-38 General Architectures

sus Master
Bus master transfers refer to data transfers between a bus master VO device and memory
where the bus master device supplies the memory addresses and controls all aspects of the
data transfer.

The system VO architecture supports both buffered and unbuffered bus master transfers. In
the buffered mode, VO buffers are provided as a performance feature and may also Include
caching of the current TCW table entry in a Buffer Control register. The following sections
include descriptions of both the buffered and unbuffered bus master operaUons. The mode
of operation Is implementation specific (see "IOCC Configuration Register" on page 2-74
and "Implementation 0eta11s• on page 2-86) and detennines what must be done to maintain
consistency of the data (Eee "Maintaining Consistency" on page 2-36).

euffel'8d Bus Master
Figura S8 shows the bus master operations to system memory. Sequential data transfers
are transferred on IOCC buffer boundaries, and the IOCC provides a set of 84-byte data
buffers. The actual bus master transfer cycles operate only against these buffers.

To Initiate buS master transfers, the system first loads the TCW table with the appropriate
mapping Information. When the TCW mapping Is complete, the channel can be Initialized to
n1n by loading the control registers with a set of values starting the demand reload process.
The eaaieSt way to do this is to load the control registers with the following:

1. Channel Status register- B'OOme O 100 0000 1111 auth auth 0000 0000'
2. cache Buffer register 4 - B'OOOO 0000 0000 0000 0000 0000 0000 0000'
3. Cache Status register 8 - B'0010 0000 0000 0000 0000 0000 0000 0000'

These values cause the IOCC to reload the control relPters from the TCW table on the first
access attempt by the l/O device.

Following device arbitration, the appropriate Channel Status register is selected. The buffer
number field In that register Is then used to select the Buffer Control registers used by this
device. The VO bus address is compared with the address contained in the Buffer Control
register. If a match occurs, the associated buffer is correct, and the operation can proceed
against the buffer.

H the l/O bus address does not match the address contained in the Buffer Control register, a
TCW access Is required. The VO bus address is used to select the appropriate TCW, and
the buffer number field obtained Is used to select the appropriate set of Buffer Control
registers. These registers are then tested to see If the l/O address matches. If a match
occurs, the contents of the buffer are valid and the operation can proceed. H not, the buffer
needs to be loaded.

Prior to loading of the buffer, the current buffer is checked to see tf It can be cast out. A bit In
1he Buffer Control register indicates whether that buffer is dirty. If so, the buffer is written
baek to system memory priOr to access of the new buffer. Following access of a new buffer,
the VO bUS address and new TCW are written into the Buffer Control registers.

System 110 Structure 2-39

The IOCC must perfonn a read-modify-write sequence to guarantee that the buffer space,
which has not been written to, does not change the data in system memory when that buffer
is written to memory.

1 ,1.~.~~~,~~~,,.,, .. . I I ,,~.~~:1~ ... ,,,,,,, ,I
'-r-- -r-- +32

20 32; 8 6 .. --·---- -------------· For a-er,:: :
stream n~ om .

I ~'- (See Note _i_ ~,

Compare To Lut Acceu l
_I

i:
~ 84-Byte Buffers

.....
I-' -.

TCWTable ~ __._

20 in = Ctrl
_.., ...
.....,

Note: Implementation of the Micro Channel a-byte Streaming Data protocol is optional.
(Saa "Implementation Details" on page 2-86.)

Figure 58. Buffered Bua Master Data Transfer Operation

2-40 General Architectures

As shown in Figure 59, each bus master channel is dynamically associated with two 32-bit
controlling registers. These registers are also used tor OMA slave operations but are defined
differently when personalized for bus master data transfer operations.

Processor Effective Address

Processor Effective Addreu

Buffer Control Regl1tera

'----------------·------

Bua o
Arb
Lvl

•
• Channel Status Regleter • 4

T
0 O ME

PN
0 1 0 0

0 1
1 0
1 1

1 0 0 0
0 1
1 0
1 1

1 1 0 0
0 1
1 0
1 1

--J--

T
Channel
Control

Authority Error
Page Fault
TCWExtent
110 Bus Error
Data Parity Error
Addreu Parity Error

Match To
Storage Key

Cerd Selected Feedback Error
ECCError
System Addrea1 Error
TCW Reload Error

IOCC Error

Figure 59. Buffered Bus Master Control Registers

System VO Structure 2-41

Each of the 16 channels has Its own Channel Status register. This register contains channel
status, some personalization controls, a buffer pointer, and an 8-bit memory access authority
mask.

The Buffer Control registers are associated with a specific buffer and can be dynamically
coupled to any channel. These registers cache the TCW associated with the buffer and
provide faster operation for sequential accesses. Selection of the Buffer and Buffer Control
registers to be used is determined by the buffer number field in the TCW.

Register fields are described in the following section:

• Register O - Channel Status Register

8118 Daacrlptlon

4

5

6-11

12-15

16-23

24-31

Control and Status: This field contains channel control and status, and
may be set by both the control program or the IOCC. Values between
X'0-3' are control channel operations while values between X'04-15' are
error codes. Refer to "Bus Master Error Conditions" on page 2-47 for a
description of bus master error conditions. When bits O to 1 are B'OO',
Bits 2 to 3 provide control of channel operations. Bit 2 Is set by a Store
instruction to the appropriate Channel Status register and Indicates
whether the channel Is mapped (Bit 2 equals 1), or not-mapped (Bit 2
equals 0). The architecture optionally allows for the mapping of bus
master operations to be controlled by address as well as by channel; see
the Information on the Bus Mapping registers for more details. Bit 3 is
controlled by channel enable and dlNble commands. Refer to Menable
and disable Commands• on page 2-65 for more information on the
enable and dlAble commands.

OMA Slave Flag: This bit is set to a value of o using an VO Store
instruction to personalize a channel for bus master data transfer
operation. The IOCC never changes the value of this bit.

Reserved: This bit is reserved and must be set to a value of 1.

Reserved: These bits are reserved and must be set to a value of o.
Buffer Number: This field is loaded from TCW bits 20 to 23 and is used
as an Indirect address to select the correct 64-byte buffer and Buffer
Control registers.

Authority Mask: This field defines the memory access authority granted to
this channel. Each bit corresponds to one memory protection class,
where bit O corresponds to class 0 (TCW key 0), bit 1 corresponds to
class 1 (TCW key 1). and so forth.

Reserved: These bits are reserved and must be set to a value of 0.

• Register 4 - Buffer Control Register

This register contains a copy of the current TCW associated with this buffer. This register
functions as a TCW cache and improves performance of bus master operations and
Load and Store instructions. Refer to "Translation, Protection and TCW Table• on page
2-33 for a description of the bit fields in this register.

2-42 General Architectures

• Register 8 - Buffer Control Register

This register contains a copy of the VO bus address associated with the TCW register
described in the preceding text. Whenever a bus master operation or a Load and Store
instruction references a m&ITIOIY obiect. the VO bus address is first checked against this
register to see if the object is contained in the associated buffer. The bit usage follows:

Btta Deecrlptlon

o Buffer Dirty: This bit indicates that the buffer associated wl1h this channel
is dirty. that is, has been written to and therefore contains data that is
inconsistent with data in system memory. This bit is reset by the IOCC
when the buffer is written to system memory and is set when the first byte
is written to the buffer. Though hardware normally sets and resets this bit,
software has both read and write access.

1

2

3

Buffered: This bit indicates that the buffer contains data that has been
prefetched. It is set upon initial prefetchlng of the buffer and is reset at
the time the buffer Is written to system memory. Though hardware
normally sets and resets this bit, software has both read and write
access. When the operation completes and the device interrupts, the
buffer must be flushed to system memory by software using the buffer
ftu•h command.

Buffer lnvalida1e: This bit is used to indicate that the buffer has been
invalidated. When this bit is set to a value of 1 it forces a prefetch from
system memory to this buffer. The bit is reset to a value of o at the time
the buffer is prefetched from system memory and set to a value of 1
when the buffer is flushed to system memory. Though hardware normally
sets and resets this bit, software has both read and write access. When
the invalidate bit Is set to a value of 1, It overrides the buffer dirty and the
buffer prefetched bits.

Next Buffer Prefetched: This bit Indicates that the next buffer of data has
been prefetched. It Is set upon initial prefetching of the next buffer. It is
reset at the time the buffer is flushed to system memory or by the buffer
lnvalldat8 or next buffer Invalidate commands. Though hardware
normally sets and resets this bit, software has both read and write
access. If the hardware does not support dual buffering, then It will not
read-ahead of the device, and this bit, on a load of this register, will have
a value equal to whatever the software has previously written into the bit.
The dual buffering function is an optional feature of the architecture; see
iocc configuration Register- on page 2-74 and "Implementation
Details" on page 2-86.

Reserved: These bits are reserved and must be set to a value of o.

System VO Structure 2-43

6-25 1/0 Bus Address A31 to A12: This field is used by the IOCC to detect
when a page changes. It contains a copy of the 110 bus address that
caused the last TCW to be fetched. This field is referred to on a
cycle-by-cycle basis to determine if the current TCW in register 4 is valid.
If a page is changed, that is, address bits A31 to A12 change, the IOCC
accesses the TCW table again.

26-31 1/0 Bus Address A 11 to AS: This field is used by the IOCC to detect when
a buffer changes. It contains a copy of the 1/0 bus address relating to the
current 64-byte 1/0 buffer within the 4 K-byte system page. If a bus
master changes buffers within the 4 K-byte system page, that is, address
bits A 11 to AS change, the IOCC accesses system memory as
appropriate to make a new 64-byte 110 buffer available.

Unbuffered Bua Master
Figure 60 shows the unbuffered bus master operations to system memory. Note that the
64-byte IOCC buffers are not shown as with the buffered mode previously described. The
caching of the current TCW table entry Is not shown. Figure 60 assumes direct access of the
TCW table entry on each VO access by the bus master.

l1111111I1~1~~~l~~~~l 111111 1 I I 1I11111I1~,~~~I~ I 11I111111 11

----------------:'f---------­ •
20 ' I

' I
I

I

~ ----

TCWEntry ~

20 l12
Ctrl

12

For8-Byte :
Streamfng Data •
(See Note) :

I

I

I

I

I

I .
.i. ,~

....
Syetem
Memory

...

32

Note: Implementation of the Micro Channel 6-byte Streaming Data protocol is optional
(See ·1mplementatlon Details" on page 2-86).

Figure 60. Unbuffered Bus Master Data Transfer Operation

2-44 General Architectures

The Bus Master Channel Status register for the unbuffered case is shown in Figure 61. Each
of the 16 channels has Its own Channel Status register. This register contains status, some
personalization controls, and an 8-bit memory access authortty mask.

Bua o
Arb
Lvl

Procenor Effective Addreu

Channel Status Regl9ter

T
0 O M E

p N

0 1 0 0
0 1
1 0
1 1

1 0 0 0
0 1
1 0
1 1

1 1 0 0
0 1
1 0
1 1

T
Channel
Control

Authority Error
PageFauh
TCWExtent
llO Bua Error
Data Parity
Addreu Parity Error

Match tD
Storage Key

Card Selected Feedback Error
ECCError
System Addl'ftl Error
TCW Reload Error
IOCC Error

Figure 61. Unbuffered Bus Master Control Registers

Note: The Buffer Control registers shown in Figure 59 on page 2-41 are not supported in
this mode. A Load Instruction to register 8 retums all zeroes. On a Store instruction
to register 8, data Is Ignored. Register 4 Is used for OMA slave operations. A Load or
Store instruction to register 4 is treated as described in "OMA Slave" on page 2-49.

Following device arbitration, the appropriate Channel Status register is selected. The 110 bus
address is used to select the appropriate TCW. The RPN from the TCW entry and 12 bits
from the VO bus address are used to address system memory.

System VO Structure 2-45

Register fields are described as follows:

• Register o - Channel Status Register

Bit. Description

4

5

8-15

16-23

24-31

Control and Status: These bits are defined the same as the corresponding
bits in Register O for the buffered bus master case. See •Register O -
Channel Status Register • on page 2-42.

OMA Slave Flag: This bit is defined the same as the corresponding bit in
Register O for the buffered bus master case. See "Register o - Channel
Status Register n on page 2-42.

Reserved: This bits is reserved and must be set to a value of 1.

Reserved: These bits are reserved and must be set to a value of o.
Authority Mask: These bits are defined the same as the corresponding bits
in Register O for the buffered bus master case. See •Register o - Channel
Status Register • on page 2-42.

Reserved: These bits are reserved and must be set to a value of O.

Bua Master Access Authority Checking
Bus master operations are subject to access authority checking. As shown in Figura 82,
accesses are verified by checking the TCW memory protect key against an authority mask
associated with the requesting channel.

TCW TabJe llO Bu1 AddrN8

:::::i 20 - 2412Si28Cb131r-J
3 t. Sy1 Mem and Wrltll Enable

Relld

8: 1 ______ _,

Channel Statue Reglatar

.,w
I I

Figure 62. Bus Master Access Authority Checking

2-46 General Architectures

Bus master operations are protected on page boundaries. Each page in the bus memory
address space has a 3-bit storage protect key associated with that page, that defines the
protection class of the page. These keys are kept in the TCW table described in the
"Translation, Protection and TCW Table" on page 2-33. An 8-blt mask in each channel
specifies the key vaJues (and by inference, pages) that this channel is authorized to access.
For information on what action occurs on an authority error, see "Bus Master Error
Conditions• on page 2-47.

Authority mask lnfonnation is considered part of the context and Is loaded Into the
appropriate Channel Status register by the operating system. The Channel Status registers
are protected system resources and are only accessible when the Segment register
privileged key Is set to a value of o. Attempts to access these registers when the privileged
key is set to a value of 1 causes a Data Storage interrupt to be posted and Invalid operation
status to be set in Channel Status register 15.

Bu• to Bus Data Tranafers
For performance reasons, the system memory is put on a separate bus from the Micro
Channel bUs. Transfers from a bus master to an address space have to be directed either to
bus memory (for bus to bus operations) or to system memory. For Implementations that
implement the optional Bus Mapping registers, certain blocks of bus address space can be
allocated for bus to bus data transfers by way of the Bus Mapping registers. Alternately, all
data transfers from a bus master can be directed to the bus address space by setting bit 2 of
that bus master's CSR to a value of o.

Bu• Matter Error Conditions
Error ex>ndltlons that arise In bus master operations include bus errors, programming errors,
and hardware errors. On an error, an error code Identifying the specific error cause Is set
into the Channel Status register (bits 0 to 3) corresponding to that channel. The l/O bus
address bits A31 to A 12 are also logged into the Channel Status register (bits 6 to 25) to
identify the page In error. After the error code is set Into the status field, the IOCC does not
respond to bus requests for thiS channel, effectively disabling the channel. The Channel
Status registers thus capture the channel status until the error code is reset by a Store
Instruction from the system supervisor.

All errors cause the 'chck' signal to be pulsed. In addition, on TCW extent and address parity
errors, the IOCC will not activate the 'sfdbkr1n' line. When a bus master device sees this
error condition, it should suspend operations and post an Interrupt. For additional
Information refer to •Exception Reporting and Handllng" on page 2-85.

After the error condition, H the bus master device tries to continue accesses with the channel
effectively disabled (also, If the bus master tries to make an access and the channel was
never enabled), the IOCC activates 'chck' and will not activate 'sfdbkrtn'. It the access is
directed to the IOCC, the IOCC does not take or supply data, and continued read accesses
by the device after the error results in the IOCC bus drivers being disabled which results in
ail ones on the VO data bus.

System VO Structure 2-47

110 bus errors such as an address or data parity errors may be caused by hardware
malfunctions or transient electrical noise. Refer to wParity Errors" on page 2-19 and "Channel
Check" on page 2-1 9 for a description of these errors. Error codes are summarized as
follows:

Error Code Description

0 1 0 1 Authority Error: This error code is set if the storage key in the TCW does not
match the authority mask in the Channel Status register or an attempt is
made to write to a read-only page.

o 1 1 o Page Fault Error: This error code is set if an attempt is made to access a
page with TCW bits 30 and 31 set to 8'01'. This can occur in nonnal
operation. Devices attempting to take advantage of this function must
present an interrupt after receiving a 'chck' signal on the 110 bus.

O 1 1 1 TCW Extent Error: This error code is set if an attempt is made to access a
bus address for which a TCW does not exist.

1 O 0 O 110 Bus Error. This error code is set if an error on the Micro Channel bus
has been detected during a transfer. The types of errors detected here are
implementation dependent (see "Implementation Details." on page 2-86.)

1 O 0 1 Data Parity Error: This error code is set If the IOCC detects bad parity when
operating as a slave on lhe bus (when the transfer Is from device to system
memory).

1 O 1 O Address Parity: This error code is set if the IOCC detects bad parity on the
address bus. This error is detected even when the IOCC is not involved in
the transfer (that is, on a bus-to-bus transfer). This is a bus monitoring
function of the IOCC.

1 0 1 1 Card Selected Feedback Error: This error code is set if, after a device is
addressed It does not respond by driving the 'cd sfbk' line. This is a bus
monitoring function of the IOCC.

1 1 o O ECC Error: This error code Is set If the IOCC received an uncorrectable
ECC error response from the system bus during a bus master transfer
request to system memory.

1 1 0 1 System Address Error: This error code is set if the IOCC sends data over
the system bus and does not receive an address acknowledgement. This
can occur if the real page number in the TCW is invalid. Software should
make sure that the real page number in the TCW is valid.

1 1 1 0 TCW Reload Error: This error code is set H the IOCC detects a parity or
uncorrectable ECC error during a TCW access.

1 1 1 1 IOCC Error: This error code Is set if the IOCC detects an internal error
(except those dealing with the Channel Status registers or Buffer Control
registers) during any bus master channel operation. An error with the
Channel Status or Buffer Control registers results in a check stop.

2-48 General Architectures

OMA Slave
DMA controller is the name given to a system-supplied resource that mediates data
transfers between memory and OMA slaves. The IOCC contains a OMA controller for the VO
bus. Three parties are Involved in this type of OMA operation: the OMA slave, the memory,
and the OMA controller. This type of OMA operation is often used for the following reasons:

• Cost
A OMA controller must provide interfaces to both system addresses and data and is
highly pin-Intensive. The data flow is quite regular and lends Itself well to implementation
using RAM arrays. Thus, muttlple4\annel OMA controllers are relatively easy to
implement. Since most systems require at least one OMA device, a common practice In
low-end systems Is to provide a multi-channel OMA controller as a shared resource and
amortize Its cost across multiple devices.

• Protection

OMA controllers manage all address, control, and byte count functions associated with
data transfer. As such, it ls relatively easy for a system to protect Its memory from the
extemal environment by using OMA channels, and making channel setup a prtvlleged
operation.

Using the OMA controller, data can be transferred between a device and bus memory, or
t>etween a device and system memory. Data transfers to or from system memory may or
may not be buffered. The system VO architecture SUPPorts both buffered and unbuffered
OMA slaVe transfers. In the buffered mode, VO data buffers are provided as a performance
feature for transfers between VO and system memory, and can also include caching of the
current TCW table entry In a Buffer Control register. Data transfers to or from bus memory
are never buffered. The following sections Include descriptions of both the buffered and
unbuffered OMA slave operations. The mode of operation Is Implementation specific (see
·1occ Configuration Register" on page 2·74 and •implementation Details" on page 2·86)
and detannlnes what must be done to maintain consistency of the data (see "Maintaining
Consistency- on page 2·36).

All memory Is partitioned Into 4K·byte pages, and the OMA controller Is organized to handle
phy&iCal transfers of this size. The architecture supports two modes of managing each
41<-byte page of memory for OMA slave operations. One mode uses TCWs and the other
uses tag elements to handle this management of memory pages. See "OMA Slave
Operations Using Tags• on page 2·50 and •oMA Slave Operations Using Tews• on page
2·57 for a description of these two modes. The choice of using TCWs or tags for the
management of the 4K·byte pages Is implementation dependent. (See "IOCC Configuration
Reglstef on page 2·74 and •implementation Details" on page 2·86.)

Each OMA slave channel includes a pair of 32-blt registers used to contain the current
memory address and control Information corresponding to the current page being accessed.
The IOCC implements up to 15 OMA channels. Each channel is associated with one of 16
VO bus arbitration levels. One of these arbitration levels (level 15) must be allocated to the
system processor for Issuing Load and Store instructions to the l/O bus, reducing the
maximum number of useable OMA channels to 15. For implementations using tags, the
number of channels implemented must be 15. For implementations using TCWs, the
number of useable OMA channels Is Implementation dependent (see "IOCC Configuration
Register" on page 2·74 and •implementation Details• on page 2-88).

System VO Structure 2-49

The OMA Slave Control registers are accessible by way of Load and Store instructions from
the system processor. and are located in the IOCC address space. OMA Slave Control
registers are a protected system resource and are only accessible when the Segment
register privileged key is set to o. Attempts to access these registers when the privileged key
is set to a value of 1 will cause a Data Storage Interrupt to be posted and invalid operation
error status to be set in Channel Status register 15.

Each channel is personalized to operate with either a bus master or OMA slave. Bit 4 of the
Channel Status register {OMA register O) must be set to a value of 1 when controlling a OMA
slave device, and set to o when controlling a bus master device.

Note: Software should program unallocated channels as bus master channels.

The system supervisor must first load the OMA slave control registers prior to enabling a
channel. Following setup, the channel is enabled using the OMA enable command
described in the •enable and dlsable Commands" on page 2-85. The IOCC is then ready to
control OMA operations on behalf of a OMA slave device.

The action taken when loading a Channel Status register for OMA slave operation where
there are fewer channels than Channel Status registers, with a channel number greater than
that indicated in the IOCC Configuration register Is implementation-dependent. (See
•implementation Details" on page 2·88.) Software supports assignment of OMA channels to
arbitration levels on a first come first serve basis. If a channel Is not available, the resource
request is rejected. Hardware does not check for the mapping of a OMA channel to more
than one arbitration level at a time. This must be controlled by the software.

If the operation completes without error, the IOCC terminates the OMA slave operation and
disables the channel. If an error occurs during the OMA slave operation, the IOCC sets a
code identifying the error Into the Channel Status register status field and terminates the
OMA slave operation. No additional OMA slave requests or enable commands will be
accepted by this channel until the error is cleared by way of a Store instruction. The OMA
Slave Control registers are frozen, capturing details on channel status at the time of error.
Refer to ·oMA Slave Error Conditions" on page 2-62 for details.

To suspend or terminate a OMA operation prior to its normal ending point, it is
recommended that a OMA dl .. ble command be used. This command provides a soft
termination of a OMA operation without destroying the current state of the OMA slave control
registers. Refer to •enable and disable Commands" on page 2-85 for details on this
command.
OMA slave termination is accompanied by the IOCC pulsing the 'tc' signal. Devices are
expected to post an Interrupt when this occurs, notifying the system that the OMA operation
is complete. The system supervisor can then Inspect the OMA registers to determine if the
operation completed nonnally.

OMA Slave Operations Using Tags
Tags provide support for byte-level scatter and gather OMA slave operations. A OMA slave
transfer is described by the OMA Slave Control registers and a list of tag entries. The OMA
Slave Control registers describe the Initial partial transfer and each of the tags describes
another part of the transfer.

OMA Slave Control registers o and 4 contain a copy of the tag except for the status field as
described in "OMA Slave Error Conditions" on page 2-62 and •enable and disable
Commands" on page 2-65.

2-50 General Architectures

The tags are organized as a heap in a special memory space called a tag table. The tag
table Includes 4096 entries. During the course of a OMA slave operation, the IOCC will
reload the OMA Slave Control registers from the tag table on a demand basis. The OMA
Slave registers must be loaded directly using a Store Instruction with the Initial tag entry.

To allow for management of large logical buffers, the OMA controller allows chaining of tags.
Whenever a page boundary is crossed or the length count expires, the OMA controller
automatically fetches the tag containing the mapping information for the next page and
reloads the OMA Slave Control registers for that channel. Since each tag also Includes
length count lnfonnatlon, this structure provides natural data chBJn;ng down to the byte level.

Figure 83 shows the OMA slave operations using tag elements. Data may be transtamtd
between a device and system memory or between a device and bus memory. In the
buffered mode, the IOCC must provide a 64 byte data buffer (or dual buffer; see •System
Structure• on page 2-4) for each channel, and this buffer must be managed by the software.
The actual 110 bus OMA cyde operates only against these buffers. In the unbuffered mode,
the IOCC must provide some read-modify-write capability so that transfers from the device,
that are leas than the memory read and write granulartty, can be matched to the system
memory Interface. Data transfers to or from bus memory are not buffered.

DMA Slave Control = Memory Addreui --.,

Ctrl I Next 1 Length r-

J ·~ ~"

4 TllgTable -• _[

~ l Data Burr..
(In Buffered Mode) ,.

' .·-·----------·
• For a-er,:
: Stream n~ Data _i (See Note _._ __._

_raualdcl"l J l/O Bui Dala l

Not8: Implementation of the Micro Channel 8-byte Streaming Data protocol ls optional
(S8e •implementation Details" on page 2·88).

Figure 63. OMA Slave, Using Tags

System 110 Structure 2-51

The tag table is a protected system resource located in the IOCC address space between
addresses x·-o 80 oo oo· and x·-o 80 7F FP. Figure 64 shows this address space. It is only
accessible to Load and Store Instructions from the system processor when the Segment
register privileged key is set to a value of O. Attempts to access this table when the
privileged key is set to a value of 1 causes a Data Storage interrupt to be posted and invalid
operation error status to be set In Channel Status register 15.

Proceuor Effttollw Add,....

4

0

Tag Table

•

Direction (0 - Memory to VO)
Enable Terminal Count

--- Syat8m Memory

Figure 64. Tag Table Addresaing

2-52 General Architectures

31

Each 4K-byte page involved in a OMA slave transfer, except for the first, has at least one
8-byte tag element in the tag table. The first tag is set up in the OMA Slave Control registers.
These tags contain relevant information required for the OMA slave operation such as the
memory address, length count, and direction. Tags may be chained together to control OMA
across multiple memory pages, or to provide a data chaining function. Each tag represents
the Initial set of values to be loaded into the OMA Slave Control registers every time a page
is crossed or the length count of the current transfer expires. Access to the tag table entries
is word access only. The bit definition of a tag entry is defined as follows:

• Word o of a tag contains control information relating to the current 4K-byte page and
Includes the following:

Blta O.Crlption

G-4 Reserved: This field is reserved and must be set to a value of O. The
hardware does not update the Channel Status register bits O to 3 with
these bits.

5

6

7

8-19

20-31

System Memory Flag: This bi1 selects whether system memory or bus
memory is to take part in a OMA slave transaction. This bit Is set to a
value of 1 for OMA slave transfers to system memory and set to a value
of o for OMA slave transfers to bus memory.

Enable Terminal Count Flag: This bit causes the IOCC to pulse the 'tc'
signal whenever the length count expires. This signal terminates the
OMA slave operation and causes the device to post an VO interrupt. Note
that this function is independent of OMA termination by the channel, and
tag chaining may be continued. This can be used to advantage In
assisting emulation of channel command chaining, or in emulating the
auto-reload function available in the 8237 OMA controller. Note also that
the IOCC always pulses 'tc' signal when the next tag field is X'FFP and
the length count expires, regardless of the setting of this bit.

Direction Flag: This bit selects the direction (device to memory or
memory to device) of a OMA slave transfer. This bi1 is set to a value of o
to transfer data from memory to the VO device and is set to a value of 1
to transfer data from the VO device to memory.

Next Tag Field: This field contains a 12-bit index into the tag table. This
index is a pointer to the next tag to be used when the length count
expires. When this condition occurs, the OMA controller automatically
fetches the tag containing the mapping information for the next piece of
the transfer and reloads the OMA Slave Control registers for that
channel. A next tag field of all 1 's indicates that this Is the last tag in a
chain. H this field is all 1 's and the length count expires, the IOCC
disables the channel and does not accept any further OMA slave
requests from the device. The last tag in the tag table has an address of
all 1 's and therefore cannot be used.

Length Count Field: This field contains a length count for the data
transfer. The length count is e binary number one less than the number of
bytes to be transferred and cannot be greater than the number of bytes
left to the end of the page.

• Word 4 of a tag contains a 32-bit real address to either the bus memory space or system
memory space.

System 110 Structure 2-53

Figure 65 shows the register definitions when tag control elements are used to manage
memory. Bits 28 and 29 (r) in the effective address indicate which word is being addressed.

Procenor Effective Addreu

0 0 0
0
1
1

0 1 0
0
1
1

1 0 0
0
1
1

, 1 0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Dlaabled
Enabled

Extra Req

Channel Check
Data Parity Error
VO Bua Error
Cerd Select8d Feedback Error
ECC Error
Syatem Addrea Error
Tag Reload Error ·
IOCCError

Figure 65. OMA Slave Registers Using Tags

2-54 General Architectures

}
Realater8
In luffered
Mode Only

The register fields are described in the following section.

• Register o - Channel Status register

There are 16 Channel Status registers (CSR) each having a one-to one correspondence
to one of 16 arbitration levels. The bit assignments for this register are as follows:

Bits

G-3

4

5

8

7

8-19

Description

Control and Status: This 4-blt field contains control infonnaUon when btts
o and 1 are B'OO'. When bits 2 and 3 are at 8'00', the channel associated
with this arbitration level Is In the disabled state. When bits 2 and 3 are at
B'01 ', the channel ls enabled. Bit 3 Is set using the channel enable
command and reset using the channel dlaable command. Code points
B'10' and 8'11' for bits 2 and 3 are reserved. When bits o and 1 are not at
B'OO', the contents of bits o and 3 represents error codes. See ·oMA
Slave Error Conditions" on page 2-62 for a description of these error
codeS.

OMA Slave Flag: This bit is defined the same as tor the tag table word o
defined on page 2-53.

System Memory Flag: This bit is defined the same as for the tag table
word O defined on page 2-53.

Enable TIC Flag: This bit Is defined the same as for the tag table word o
defined on page 2-53.

Direction Flag: This bit is defined the same as for the tag table word o
defined on page 2-53.

Next Tag Field: This bit is defined the same as for the tag table word o
defined on page 2-53.

Length Count Field: This bit is defined the same as for the tag tabla word
o defined on page 2-53.

• Register 4 - Memory Address Register

This register is defined the same as tag table word 4 on page 2-53.

System 1/0 Structure 2-55

• Register 8 - Buffer Control Register

This register only exists for buffered implementations. The bits assignments are as
follows:

Blta Description

0 Buffer Dirty: This bit is used to indicate that the buffer associated with this
channel is dirty, that is, has been written to and therefore contains data
which is inconsistent with data in system memory.

1 Buffered: This bit indicates that the buffer contains data that was
prefetched. It is set upon inltlal prefetching of the buffer and is reset at
the time the buffer is flushed to system memory. Though hardware
normally sets and resets this bit, software has both read and write
access.

2 Buffer Invalidate: This bi1 indicates that the buffer was invalidated. When
this bit is set to a value of 1 it forces a prefetch from system memory to
this buffer. The bit is reset to a value of O at the time the buffer is
prefetched from system memory and set to a value of 1 when the buffer
is flushed to system memory. Though hardware normally sets and resets
this bit, software has both read and write access.

3 Next Buffer Prefetched: This bit indicates that the next buffer of data has
been prefetched. It is set upon initial prefetching of the next buffer. It is
reset at the time the buffer is flushed to system memory or by the buffer
Invalidate or next buffer Invalidate commands. Though hardware
normally sets and resets this bit, software has both read and write
access. If the hardware does not support dual buffering, then it will not
read-ahead of the device, and this bit will always be returned as a value
of O on a load of this register. The dual buffering function is an optional
feature of the architecture; see "IOCC Configuration Register" on page
2-74 and "Implementation Details• on page 2-86.

4-31 Reserved: These bits are reserved and must be set to a value of o.

2-56 General Architectures

OMA Slave Operations Using TCWs
TCWs provide support for page level scatter and gather OMA slave operations. The OMA
Slave Control register is initialized with the first page TCW; the rest of the TCWs Involved In
the transfer are sequential. Figure 66 on page 2-57 shows the OMA slave operations using
TCWs. Notice that the memory address consists of a TCW number and an offset (unlike the
tag which contains a real address to system memory).

When TCW entries are used for OMA slave operations, bits 20 to 31 of the TCW entry are
not used and software must set these to a value of O. See "Translation, Protection and TCW
Table" on page 2-33 for a description of the TCW table.

DMA Slave Control Regl8tera

Ctr1 Chnl t Length

Memory Addresa
TCWI OffMt

20 12 12

1------itil TCW Table

20
RPN

: For 8-Byte Streaming

Sy.mm
Memory

Data Butfera
(In Buffered Mode)

' Data (See Note)
,--~~~~-.:11"--~~~~--

llO Bua Add reu VO Bua Data

Note: Implementation of the Micro Channel 8-byte Streaming Data protocol ls optional
(See •implementation Details" on page 2-86).

Agure 66. OMA Slave, Using TCWs

Figure 67 on page 2-58 shows the register definitions when TCWs are used to control OMA
slave operation.

System 110 Structure 2·57

Processor Effective Addreu

Proceseor Effective Addreea

DMA Slave Control Regi.tera
l:-:::::::::::::::::::::::::::::::::::::::--

DB IN RMerved
8 0 5 18

MemoryAddreu
Number 19 20

(During OMA Operation)

Channel Statua Register

Status 1 Ctrl Chnl #

Notae

1. Number of DMA Slave Control
Regletera le dependent on the number
of OMA channel• Implemented.

2. Number of CSR• I• alway• 16

0 3 5 8 1112
Length Count

TTT•DllAhV9
0 0 0

0
0
1

Dlubled
Enabled

1
h-,cj

Reg181er8
In Buffered
Mode Only

1
1

0 1 0
0

0
1
0
1

Extra Req
1 T Dll9ctlon (0 - llemoly to l/O)

Syatem Memory

1 0

, 1

1
1
0
0
1
1
0
0
1 ,

0
1
0 ,
0
1
0
1
0
1

TCWExtent
Channel Check
Data Parity Error
llO Bua Error
C.rd Select8c:I Feedback Error
ECC Error
Syetem Address Error
TCW or Tag Reload Error
IOCC Error

Figure 67. OMA Slave Registers Using TCWs

2-58 General Architectures

The register fields are described in the following section.

• Register O - Channel Status register

There are 16 Channel Status registers (CSR) each haVing a one to one correspondence
to one ol 16 arbitration levels. The bit assignments tor this register are as follows.

Bits

4

5-7

8-11

12-31

O..Crlptlon

Control and Status: This 4-blt field contains control lnfonnatlon when bits
o and 1 are B'OO'. When bits 2 and 3 are at B'OO', the channel associated
with this arbitration level Is in the disabled state. When bits 2 and 3 are at
0'01 ', the channel is enabled. Bit 3 is set using the channel enabhl and
reset using the dluble command. Code points B'10' and B'11' for bits 2
and 3 are reserved. When bits O and 1 are not at 8'00', the contents of
bits o and 3 represents error codes. See "OMA Slave Error Conditions•
on page 2-82 for a description of these error codes.

OMA Slave Flag: This bit Is set to a value of 1 using an VO Store
instruction to personalize a OMA channel for OMA slave operation. The
IOCC never changes the value of this bit.

Control: The definition of these bits are the same whether the OMA slave
operation uses TCWs or tags (except for TCWs, there Is no TIC enable).
These operations are described under the same numbered bits o1 tag
table word O defined on page 2-53. This field only exists for channel
numbers (as specified In bits 8 to 11 of this register) less than or equal to
the number of OMA slave channels implemented.

Channel Number: This field Is used to assign a OMA channel to a specific
Channel Status register. Storing a value which Is larger than the number
of OMA Slave channels supported minus 1 (as Indicated by the number
o1 OMA Slave channels field in the IOCC Configuration register) to this
field will produce implementation-dependent results.

Length Count: This field Is used to indicate the length of the OMA slave
transfer (byte count minus 1). This field only exists tor channel numbers
(as specified In bits 8 to 11 of this register) less than or equal to the
number of OMA stave channels Implemented. A tennlnal count Is
generated by a device when this field goes negative, that is, when the
most significant bit goes from a value of O to a value of 1.

• Register 4 - Memory Address

This register contains the memory address for the OMA slave operation. The number of
registers available of this type Is implementation dependent (see "IOCC Configuration
Register" on page 2-74 and •implementation Details• on page 2-86). However, the
number available must equal the number of OMA channels Implemented. These registers
are dynamically associated to the arbitration level based on the channel number
assigned in the Channel Status register (CSR). Software must Insure that the same
channel number is never assigned to more than one CSR (arbitration level) at any given
time.

System 1/0 Structure 2-59

If the transfer is to or from bus memory (Channel Status register bit 5 equal to O) this
register is applied as a 32-blt address directly to the 110 address bus. If the transfer is to
or from the system memory, this register is defined as follows:

Blta Description

0-19 TCW Number: The TCW number in the memory address provides an
index into the TCW table where the RPN is obtained if the channel is
mapped to system memory. When mapped to system memory, the
address used to address system memory consists of the RPN from the
TCW concatenated with the offset.

20-31 Offset: These bits are the lower 12 bits of the memory address.

The OMA address is incremented by the size of the transfer, and the length count is
decremented by the same amount. Each time the TCW number is incremented in
register 4, the next sequential TCW entry is obtained. Note that if software tries to access
register 4 with a channel number greater than the number of channels supported (as
Indicated in the IOCC Configuration register), the results are implementation-dependent
(see "Implementation Details• on page 2-86). Also note that only one OMA channel can
be assigned per arbitration level.

• Register 8 - Buffer Control Register

This register only exists for buffered implementations. The bit assignments are described
in "Register 8 - Buffer Control Register" on page 2-56.

OMA Slave Bua Protocol•
Conventional bus protocols are used in OMA operations and are documented in "Basic
Transfer Cycle· on page 2-17.

110 devices request OMA service on a demand basis by arbitrating for the bus using the
'preempt' line. This causes the 'granf line to be deactivated, causing an arbitration cycle.
When the 'grant' line Is reactivated, the IOCC inspects the Control register associated with
the bus requester to determine If any OMA service is required. If it is, the IOCC performs a
OMA slave sequence on behalf of the requester.

Typical requests are for one or two bytes. On occasion, multiple requests from different
devices are received at the same time. When this occurs, service is sequential with the
highest priority requester serviced first.

When service is granted to a device, data is transferred between the device and memory.
The sequence to be used depends on whether the memory is bus or system memory. The
number of bytes transferred Is generally equal to the data width of the device. The OMA
address is Incremented by the size of the transfer and the length count is decremented by
the same amount.

If the specified OMA address does not have the same boundary as the 1/0 device data
width, the operation proceeds using a Partial Transfer Protocol as described In "Partial
Transfer Cycles• on page 2-18. For example, a OMA transfer involving a 2-byte 110 device
and a buffer starting on an odd address results in two 1 -byte OMA sequences being
performed. This retains the functional integrity of the operation, but requires additional time
to complete the operation. As a result, it is suggested that buffers in system memory be
located on address boundaries matching the physical width of the 110 device.

2-60 General Archi1ectures

OMA Slave Transfers to Bus Memory
OMA slave transfers between a device and bus memory consist of two bus cycles: one to
read the data from the source and one to write the data to the target An Input operation
consists of an VO device read cycle followed by a bus memory write cycle. An output
operation is reversed.

There is no buffering on transfers to or from bus memory.

DMA Slave Transfers to System Memory
OMA slave transfers between a device and system memory have only one apparent bus
cycle: an 1/0 device read or write cycle. These transfers are described as follows:

• Buffered

The memory operation is directed to the IOCC buffer and does not appear as a bus
cycle. The buffer operation is overlapped with the l/O cycle, and a sequence of OMA
cycles to system memory appears on the bus as a sequence of VO read or write
operations. As a result, the average instantaneous performance of OMA slave transfer to
system memory may be much better than to bus memory ..

Whenever the address crosses an IOCC buffer boundary or the length count expires, the
IOCC transfers the data between the buffer and system memory. This operation may
increase the worst case bus latency (depending on the IOCC implementation),
decreasing effective OMA performance.

No restriction is placed on having OMA addresses begin or end on IOCC buffer
boundaries. The OMA controller perfonns read-modify-write sequences to system
memory as required. As this potentially occurs onty on the first and last buffers to be
transferred, addressing has little effect on performance.

When performing OMA slave transfers to system memory, and the first address does not
start on a 64-b';1e boundary or the remaining count is less than 64, the OMA controller
automatically performs either a buffer prefetch before storing the OMA data Into the
buffer or does some sort of read-modify-write before storing the data to system memory
(depending on the Implementation). If a buffer flush command Is issued before the
length count expires and the buffer cache contains less than 64-bytes (the memory
address ls not B'xx .. xxOOOOOO'), the remainder of the buffer transfer to system memory
may consist of zeros (implementation dependent). See "Buffer Flush Commands" on
page 2-66 for additional details.

• Unbuffered

OMA slave transfers between a device and system memory have only one apparent bus
cycle: an VO device read or write. The memory operation Is directed to the IOCC, is
overlapped with the 110 cycle, and therefore does not appear as a bus cycle. AB a result,
the average instantaneous performance of OMA slave transfers to system memory may
be twice that of bus memory.

System 110 Structure 2-61

Special Sequences
Special mechanisms are provided to improve the relative data transfer efficiency of highly
buffered devices.

The Micro Channel supports preemptive burst operations to take advantage of low average
1/0 bus loading. A device starts this mode by activating the 'burst' line prior to the end of the
OMA slave cycle. No arbitration cycle occurs, and the OMA controller concatenates
successive OMA sequences until the 'burst' line is deactivated. Micro Channel arbitration
rules require preemptive burst devices to deactivate the 'burst' line request if any other
device requires bus service.

The OMA controller also supports a special transfer mode called streaming data transfer.
This mode Is a single-address, multiple-data protocol, and is described in "Streaming Data"
on page 2-17.

DMA Slave Error Conditions
Error conditions that arise in OMA operations include bus enors, programming errors, and
hardware errors. The specific cause of the error is coded and set into the status field (bits O
to 3) In the Channel Status register. The 'tc' signal Is then pulsed, which should cause the
110 device to suspend OMA operations and post an interrupt. If It does not, but continues to
request OMA service, the IOCC services the OMA requests with dummy cycles, pulsing the
'tc' signal on every cycle. Error codes are summarized as follows:

Enor Codee Deecrlptlon

0100

0 , 1 1

1000

1001

, 0, 0

2-62 General Architectures

Extra Request Error: This error code is set if a DMA slave request is
received by a OMA channel when the channel is disabled. Receipt of an
unsolicited OMA request Is an error unique to a OMA slave. This error is
generally caused by 1/0 device malfunctions and the IOCC pulses the 'tc'
signal in an attempt to shut off the OMA slave. This error can also occur
with incorrect programming of the channel.

TCW Extent Error: This error code Is set H a OMA slave request is received
and the OMA slave control register 4 contains a TCW number for which
there does not exist a corresponding TCW.

Channel Check Error: This error code is set H the device responds with a
channel check indication during a OMA slave operation.

As an example, a device might respond with a 'chck' signal for a Write
operation to that device where there is bad parity on the data, or for other
device-detected errors during an operation to that device. This error will not
be reported if a card selected feedback error is reported (a card selected
feedback error takes precedence over a channel check error).

Data Parity: This error code is set if the IOCC detects bad parity on the data
bus when the IOCC is reading data. (See MException Reporting and
Handling" on page 2-85 for details.)

VO Bus Error: This error code is set if an error on the Micro Channel bus
has been detected during a transfer. The types of errors detected here are
implementation dependent see Mlmplementation Details" on page 2-86).

ErrorCodM

1011

1100

1101

1110

1111

DHcriptlon

Card selected Feedback Error: This error code is set If, alter a device is
addressed, it does not respond by driving the 'cd sfbk' line. Conditions lhat
could cause this to occur are: if lhe device is not present; Is not seated in
the care! slot property; is not enabled or detects bad address parity and
doeS not respond to that address. This error code takes precedence over a
channel check error.

ECC Error: This error code is set if the IOCC receives an uncorrectable
ECC error response from the system VO bus during a OMA slave request to
system memory.

System Address Error: This error code is set If lhe IOCC sends data over
the system VO bus and does not receive an address acknowledgement.
This can occur if the real page number in the address is Invalid.

TCW or Tag Reload Error: This error code Is set H the IOCC detects a parity
or uncorrectable ECC error during a TCW or Tag table access.

IOCC Error: This error code is set If the IOCC detects an internal error
during any OMA slave operation. If the IOCC error Is on access to the OMA
Slave registers; this error will not occur and the machine will check stop
instead.

10cc commands ·
IOCC commands are used to change the state of the IOCC or control special bus actions.
They take Ute fonn of Load and Store Instructions to special (effective) addreases, where the
addresses specify Iha actions to be taken. In most cases, the Load or Store Instruction can
be either a string or nonstring operation. The IOCC include supports the following
commands:

• tlmedHIY'
• end of Interrupt
• enable and dleable
• bufl9r"tluah
• butts lnvallcl8le
• nut buffer lnwlldata.

user applications can only tasue the time delay command, and then only H they have
Segment register authority to access the l/O bus. All the other commands are protected and
must have the Segment register privileged key set to a value of O (bH 1) and the IOCC select
bit set to a value of 1 (bit 24). IOCC commands are not placed on the VO bus.

All IOCC commandS are 4-byte operations except the time delay command,whlch can be 1,
2, or 4 byteS.

Delay Command 'Tlrn• A number of Micro Channel devices have strict rules regarding minimum periodicity of
programmed VO commands. Using program path lengths for timing is not a good
programming practice. since program performance varies widely by processor type and
(current) operating environment. To assis~ In programming devices with real·tlme
dependencies, lhe IOCC supports a special time delay command that can guarantee
separation of bus VO commands.

System VO Structure 2-63

The time delay command is coded as a 1-. 2-, or 4-byte Load or Store instruction and is
shown in Figure 68 on page 2-64. It is nonnally inserted between successive Load and
Store instructions to devices with time senSitivities and enforces minimum time spacing
between the l/O bus cycles. This command is similar to the time delay command in the RT
system but allows additional time delay increments. The command provides delay
Increments ranging from 1 to 8 microseconds and is specified using the effective address
and the logical (byte) length. If a Load instruction is used to call the time delay function, the
data returned is indetenninate. If a Store instruction is used, the data is ignored.

Effective Addrna for the Time Dela Command

Figure 68. Tlme Delay Command

Delay In Mlcrouconda T
1 Byte 2 Byte 4 Byte

1
2
3
4
5
6
7
B

2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4

0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

The time delay command Is issued by any user application having Segment register
authority to access the VO bus. Command execution is overlapped with succeeding
processor instructions as long as they do not attempt to access any VO space. If, however,
another VO Load or Store instruction is issued to the VO space before the time delay has
expired, that command is synchronously halted until the pending delay is completed. This
command affects only programmed VO and has no effect on OMA or other VO operations
run by hardware.

The time delay command is issued with the I bit in the VO Segment register equal to 1 or o.
The time delay command can be a string operation, but the length must be 1, 2, or 4 bytes.
Implementation accuracy of the time delay command is to~ and +1 microseconds (for
example, a 1 microsecond delay Is greater than or equal to 1 microsecond but less than 2
microseconds).

End of Interrupt Command
Following presentation of an VO interrupt to the system External Interrupt Source (EIS)
register, the IOCC automatically masks off that interrupt so the presentation is only made
once. An end of Interrupt command reenables this mask, causing any active interrupts to
be presented (or re-presented) to the system EIS register. On a Store instruction, the data is

2-64 General Architectures

ignored. On a Load instruction, the data is indeterminate. This command, shown in
Figure 69, should be issued following the interrupt service.

Effective Add1'898 for the Encl of lnterru Command

Figure 69. End of lntemJpt Command

ThiS command is privileged and is only accessible when the Segment register privileged bit
is set to a value of o. Attempts to run this command when the Segment register privileged bit
is set to a value of i causes a Data Storage Interrupt to be posted and invalid operation
error status to be set In Channel Status register 1 5.

Enable and Dlaable Commands
The enable and dleable commands allow system Initiation and suspension of OMA slave
and bus master operations for devices attached to the Micro Channel. Each command is
directed to a specific channel as specified by the channel field in the effective address. The
command tonnats are shown in Figure 70. Bits i2 to 15 of the effective address specify the
channel to be started or stopped.

and Dlaable Store Commands

Figure 10. Enable and Disable Commands (Load equals enable and Store equals disable).

The enable command initializes a channel to accept requests by changing the channel
status In the Channel Status register from the disabled (B'OOXO') state to the enabled
(B'OOX1 ') state. This command is coded as a Load Instruction and retums the original
contents of the selected Channel Status register to the target processor register. The
channel status field must initially be B'OOXO' for this command to update the channel status
to the enabled state. This command always returns a status consisting of the full contents of
the associated Channel Status register. The status field Is the only field changed by this
command.
The disable command disables operation for a particular channel by changing the channel
status from the enabled state (B'OOX1 ') to the disabled (B'OOXO') state and Is coded as a
Store instruction (data is ignored). It does not disrupt any other data in the channel registers,
allowing restart of the operation If the device is designed accordingly. The channel status
field must initially be B'OOX1' for this command to be run. If it ts not B'OOX1 ', a no operation
(NOP) instruction occurs when this command is issued.

The x in the preceding paragraphs does not indicate a do not care state, but indicates that
the enmble and disable commands do not change the current state of the status bit 2
(mapped or not-mapped).

A request from a OMA slave when the channel is disabled is considered to be an error and
sets an extra request error code in the Channel Status register associated with that device.
The 'tc' signal on the Micro Channel bus is pulsed in an attempt to shut off the device.

System 110 Structure 2-65

If a bus master makes a request to a disabled bus master channel, the IOCC does not
activate the 'sfdbkrtn' signal and synchronously activates the 'chck' signal, but does not
update the error status.

Notice that an enable or dluble command to channel X'P results in an NOP. Channel X'P
is dedicated to the default master and remains enabled at all times.

These commands are protected system functions and are only issued when the Segment
register privileged key Is set to a value of o. Attempts to issue these commands when the
privileged key is set to a value of 1 causes a Data Storage interrupt to be posted and invalid
operation error status to be set in Channel Status register i 5.

Buffer Flush Commands
The buffer fluah commands are provided for implementations that support IOCC bu1fers. If
the buffers are supported, the IOCC buffers must be flushed to system memory at the end of
a transfer. The buffer flu1h commands provide the flush and Invalidate functions. Using
these commands will result in a NOP (data ignored on a Store instruction, indeterminate on
a Load instruction) if the buffers are not supported. For more information on why and when
these commands might be necessary, see ~Maintaining Consistency" on page 2-36 and
Mlmplementation Details• on page 2-86.

The buffer fluah commands are protected system functions and can only be issued when
the Segment register privileged key is set to a value of O. Attempts to issue these
commands when the privileged key is set to a value of 1 causes a Data Storage interrupt
(OSI) to be posted and invalid operation error status to be set in Channel Status register 15.

Bua Muter Buffer Flu1h Command
IOCC buffers for bus master transfers are managed similar to the processor data cache, and
a flush operation is performed by address. To improve performance, the buffer fluah
command is defined so the buffer flush can be performed simultaneously wi1h normal TCW
maintenance. The command utilizes a bit in the effective address to optionally flush the
buffer while accessing a TCW table entry. Figure 71 shows the effective address format. The
buffer associated with the TCW is conditionally transferred to system memory if the buffer
data has been changed (only flushed If dirty and valid). The IOCC remains busy until the
buffer transfer is completed and does not accept any new commands. Independent of
whether the transfer takes place or not, the buffer is invalidated by setting Buffer Control
register 8 to O Including the 0, B, and N bits, the TCW number and the offset, but not
Including the invalidate bit (I) which gets set to a value of i . This causes any subsequent
accesses to this buffer to have to access again the TCWs and system memory. If on, the
Dirty bit Is turned off, so any subsequent buffer fluah commands will not cause a buffer
transfer.

Effective Addreaa for the Bue Maater Buffer Flush Command

ISog~ H I I I Reg t RC 1 1 TCW Number FR Bua Muter

o, I I 41 =: 81 1Y I I 1511r I I I I I 'f312f I I I I ~1 Bulfw Fluoh

Mask

J1T1 Replace
Fluah

Figure 71. Bus Master Buffer Flush

2-66 General Architectures

Bit 30 of the effective address causes any buffers associated with this memory page to be
flushed, while bit 31 causes the 4-bit mask value to replace the reference, change, and
control bits in the TCW. The following list shows what happens for the various combinations
ot the Flush and Replace bits:

• Flush equals 0, Replace equals O.

This Is just a Load or Store Instruction to the TCW table.

• Flush equals O, Replace equals 1.

The TCW is updated based on the R, C, and CTL bits in the mask field. On a Load
instruction, return the old value of the TCW. On a Store instruction, data ls Ignored.

• Flush equals 1, Replace equals 0.

On a Load instruction, retum the old value of the TCW. If operating in buffered mode.
flush the buffer, update the Buffer Control registers, and on a Store instruction, Ignore the
data. In unbuffered mode, the Store instruction ls a NOP.

• Flush equals 1, Replace equals 1.

On a Load instruction, retum the old value of the TCW. On a Store Instruction, data is
ignored. If operating in buffered mode, flush the buffer, update the Buffer Control
registers. The TCW is updated based on the A, C, and CTL bits In the mask field.

OMA Slave Buffer Fluah Command
The IOCC buffers for the OMA slaves are managed as simple buffers, and the flush
operation Is performed by channel number. The OMA Slave buffer tluah command Is
shO'Nn In Figure 72 and Is Issued by way of an VO Store instruction. Bits 12 to 15 of the
effective address specifies the buffer that the command is directed to.

Effective AddreN for the OMA Slave Buffer Fluah Command =· 0000010 Bfrl 0000000001111000
0 4 7 8 1 1 5 18

Figure 72. OMA Slave Buffer Flush

The OMA Slave buffer flu•h command conditionally causes the buffer associated with the
specified OMA channel to be transferred to system memory If the buffer data has been
changed. that is, the Dirty bit is on. The IOCC remains busy until the buffer transfer Is
completed and does not accept any new commands. Independent of whether the transfer
takes place or not, the buffer ls invalidated by setting Buffer Control register 8 O, e, and N
bi1S to a value of 0, and the Invalidate bit (1) equal to a value of 1.

On a Store instruction. the data Is Ignored. A Load Instruction causes a Data Storage
Interrupt. In the unbuffered mode, a Store instruction is a NOP and a Load instruction
retums indeterminate data.

B . .-..., Invalidate Command
u • •• Figure 73 shows the effective address format for this command.

etfectlve Addreu for Buffer Invalidate Command

Figure 73. Buffer Invalidate Command

System VO Structure 2-67

The buffer Invalidate command assists in the management of OMA slave and bus master
operations. This command forces the hardware to reload the buffer on the next OMA slave
operation or bus master operation. On bus master operations, the Buffer Control register 4 is
also reloaded. A Load instruction returns the state of the bits, but does not invalidate the
buffer. On a Store Instruction, the data must be X'20000000'. (This is just a store to buffer
control register 8 with the buffer invalidate bit turned on.)

If operating in the unbuffered mode, this Store instruction is a NOP, and a Load instruction
returns zeroes.

This command is privileged and is only accessible when the Segment register privileged bit
is set to a value of 0. Attempts to use this command when the Segment register privileged
bit is set to a value of i causes a Data Storage interrupt to be posted and invalid operation
error status to be set in Channel Status register 15.

Next Buffer Invalidate Command
Figure 74 shows the effective address fonnat for this command.

Effective Addre91 for Next Buffer Invalidate Command

lo~ 1~ ~1 °1 °1 ;1 d~ 1 1 1 l51 'f~~ ~u1m1f !2t 1 1 1 1 I 0~~1
Figure 74. Next Buffer Invalidate Command

The next buffer Invalidate command is provided to assist in the management of bus
master operations. This command forces the hardware to throw away any buffers of data
that were read-ahead of where the bus master device is currentty reading (the next bit Is
turned off). This is useful to ensure consistency between the IOCC next buffer and data that
may have been modified in system memory. Note that the hardware will read-ahead of the
device only if the implementation supports the dual buffering option of the architecture (see
MIOCC Configuration Register" on page 2-74 and Mlmplementation DetailsN on page 2-86).

This is not the only method which is available to ensure consistency in implementations
which support read-ahead. Other methods Include hiding the OMA page in system memory
from the processor during the transfer to the device and the use of PIO to system memory.

This command must be issued with a full word Store instruction. The data must be a value of
0. A Load Instruction causes a Data Storage lntem.1pt.

If operating In the unbuffered mode or if operating In buffered mode but the dual buffer
option is not supported, this command causes a Data Storage Interrupt.

If operating in the buffered mode with dual buffer support, this command is guaranteed not
to retum an error to the processor (with the exception of a privileged error). Should an error
occur, this command invalidates the next buffers for all 16 buffers instead of returning an
error indication.

This command is privileged and is only accessible when the Segment register privileged bit
is set lo a value of 0. Attempts to use this command when the Segment register privileged
bit Is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation
error status to be set in Channel Status register 15.

110 Interrupts
The IOCC supports ii bus 1/0 interrupts, 3 native 1/0 interrupts, 1 miscellaneous interrupt,
and i reserved interrupt level. The miscellaneous Interrupts are collected together and are
presented as one logical level. This results in a total of 16 IOCC interrupt levels.

2-68 General Architectures

The architecture supports both a direct and a coded mapping of the VO interrupt requests
(IROs) to the External Interrupt Summary (EIS) register. The specific approach supported Is
implementation dependent (see •implementation Details" on page 2-86). When the direct
mapping approach is supported, the mapping is a direct one for one map (Interrupt level O
maps directly to EIS bit O, level 1 maps directly to EIS bit 1 and so on).

The following information describes the coded mapping approach In detail including a
description of an Interrupt Vector table used in the mapping.

When the coded mapping is supported, the 16 interrupt levels are coded and are mappable
to any EIS bit between O and 63. Figure 75 shows the Interrupt mechanism.

Deel ___ _,

ln18mlpt Enable Reglatw 80

Bua Interrupt - Bua Interrupt Par Bua In 84 Interrupt
3 4 s e 7 a a 10 11 12 14 11 Aequeet

7 8 15 Reglater
0

~ --En-cod-lng-and--Mapp--1-ng __ /

I 0
1

0 I Interrupt Vector 180
8 15

Figure 75. Interrupt Mechanism

Interrupts are presented to the system with a special sequence, setting a bit In the system
EIS register corresponding to the vector code presented. Refer to Chapter 1, "System
processors.· in this manual, tor additional details.

The presentation cycle begins when an interrupt occurs. If the Interrupt Is enabled, Its
corresponding bit in the interrupt request field is set to a value of 1. An IOCC sequence then
codeS the interrupt, looks up a vector value, and presents that value to the system as an
interrupt. If multiple interrupts occur simultaneously, the hardware resolves which Interrupt Is
presented first. Following the presentation of each interrupt, a special hardware mask bit Is
reset to ensure that each interrupt is presented only once.

When the system responds to the interrupt, the current processor state ls saved, and a
device-specific interrupt handler is invoked. As part of that service, the interrupt source Is

System VO Structure 2-69

reset. When the device service is complete, an end of Interrupt command is issued, which
sets the special hardware mask, reenabling the presentation of interrupts on this level. If
another interrupt is pending at this level, the EIS register in the system is set again.

Interrupt registers are shown in Figure 76. These registers are a protected system resource
located in the IOCC address space between addresses X'-0 40 oo 80' and X'--0 40 oo 9P,
and are only accessible to Load and Store Instructions from the system processor when the
Segment register privileged key is set to a value of O. Attempts to access this address space
when the privileged key is set to 1 results In a Data Storage interrupt to be posted and
Invalid operation error status to be set in Channel Status register 15.

Proceeeor Effective Addreea

I ~1,~01°1 81~ 11°1 81 81 81 81 81~ 81 81 81~ 01°1 81 11 oj '1 '1'1°1
8

1

0 3 4 7 8 15 16 23 24 31

Control Regl8111n

Interrupt Enables 80

84

88

0 34 78 15 16 23 24 31

Vector Table

Ml8cellaneoua Keyboard Ser Port 14/B IAQ3 80

94

9C

0 34 78 15 16 2324 31

Figure 78. Interrupt Registers

• Register 80 - Interrupt Enable Register

This register provides the ability to enable or disable any of the primary 16 interrupt
requests. Bits 16 to 31 are reserved and should be set to a value of Oona Store
instruction. On a load Instruction, bits 16 to 31 are indeterminate. No dynamic
management of this register Is necessary during interrupt service. It is provided primarily
to allow disabling of unused, potentially noisy interrupts.

2·70 GeneralArchHectures

• Register 84 - Interrupt Request Register

This register provides access to the device interrupt sources and can be read using an
VO Load instruction. Bits 16 to 31 are reserved and on a Load Instruction are
indeterminate. A Store instruction to this address Is a NOP. A detailed description of each
bit follows:

Btta Delcrlptlon

o Miscellaneous Interrupt: Miscellaneous Interrupts are not directly
vectored to the EIS register. The system unit provides one EIS register
wltl1 64 interrupts, of which the IOCC is allocated 16 levels. To fit within
this maximum, the IOCC presents miscellaneous interrupts as a class
interrupt. consuming one logical level. This appears In bit o (vector
lookup 0), and is an OR of all the bits in register 88. If this interrupt is
posted, the system Is required to read IOCC register 88 to determine the
cause of the interrupt. Bit 0 is set to a value of 1 when any miscellaneous
interrupt occurs and bit O in the Enable register Is set to a value of 1. This
bit is a summary OR of register 88 and cannot be written. During an VO
Store instruction to this register, bit o Is ignored. This bit Is reset when
register 88 is reset.

1 Keyboard Interrupt: This bit Is set to a value of 1 when a keyboard
Interrupt occurs and bit 1 in the Enable register is set to a value of 1. This
interrupt is level-sensitive and must be reset within the device prior to an
Interrupt retum.

2 Serial Port Interrupts: This bit Is set to a value of 1 when a board serial
port 1 or serial port 2 Interrupt occurs (Shared Interrupt) and bit 2 In the
Enable register is set to a value of 1. This Interrupt Is level-sensitive and
must be reset within the device prior to an interrupt return.

3-7,9-12,14-15

8

110 Bus Interrupts: These bits are set to a value of 1 when 110 bus
interrupts occur and their corresponding bits in the Enable register are
set to a value of 1 . These bits reflect the current signal level of each of
the Micro Channel Interrupt lines and are not latched. It is not necessary
to reset these bits as part of Interrupt service.

Reserved: This bit is reserved and must be set to a value of o.

13 Parallel Port Interrupt: This bit Is set to a value of 1 when a Standard VO
parallel port Interrupt occurs and bit 13 in the Enable register is set to a
value of 1 . This interrupt ls level-sensitive and must be reset within the
device prior to an interrupt retum.

16-31 Reserved: These bits are reserved and must be set to a value of o. On a
Load instruction, the value of bits 16 to 31 are indeterminate.

• Register 88 - Miscellaneous Interrupts Register

The first two bits of this register contain IOCC errors not reported In the Channel Status
registers. These errors are caused by asynchronous events or are associated with
situations where no device interrupt is posted. As such, the IOCC reports these errors by
way of Its own interrupt.

The third bit of this register provides an interrupt for the Standard l/O keyboard
etrt-Alt-Anything sequence and is called a Keyboard External Interrupt.

The summary OR of this register is presented as bit O of register 80.

System 110 Structure 2· 71

This register is both read and written using 1/0 Load and Store instructions. Store
instructions function only as a masked reset. Writing a value of O to a bit position resets
that bit, while writing a value of 1 does nothing. A detailed description of each bit follows:

Blta Deacrlptlon

0

,

2

Channel Check: This bit is set if the 1/0 bus 'chck' line is active during a
Micro Channel operation (PIO or OMA slave) at the beginning of a cycle
(after 'arb/gnt' signal falls and before the first time the 'cmd' signal falls).
There should be no devices that asynchronously report errors by
activating the 'chck' signal. However, if this occurs, the channel check
posts an asynchronous IOCC error interrupt. Normally, in the system unit,
the 'chck' signal is presented as a synchronous exception and a Data
Storage interrupt is posted instead. Refer to "Exception Reporting and
Handling" on page 2-85 and "Channel Check" on page 2-19 for more
information.

Bus Timeout: This bit is set if an VO bus timeout occurred. See "Bus
Timeour on page 2-20 for additional details. While this bit Is active, the
'arb/gnt' signal is forced high, bus arbitration is suspended, and control of
the VO bus is unconditionally given to the IOCC.

Keyboard External: This bit is set when the Ctrt-Alt-Anythlng sequence is
pressed at the Standard VO keyboard and is called a Keyboard External
Interrupt. It is presented to the system es an extemal interrupt. Software
is then able to determine which key caused the interrupt and takes the
appropriate action. This bit is implementation dependent. (See
"Implementation Details" on page 2-86).

3-31 Reserved: These bits are reserved and must be set to a value of 0. On a
Load instruction, the value of bits 16 to 31 are indeterminate.

• Register 90 to 9F - Vector Table

This set of registers contains the interrupt vectors to be presented to the system EIS
register. One vector Is provided for each bit in register 84. The operating system loads
this table with a set of 6-blt values corresponding to the Interrupt priority desired.

Note: The vector table is implementation-specific. (See "Implementation Details" on
page 2-86.) Implementations that support a single VO bus can fix the conversion
of interrupt level to the EIS bit This fixed conversion is the identify transform (that
is, interrupt 0 to EIS bit 0, interrupt 5 to EIS bit 5, and so on.) When the vector
table is not supported, a Load or Store instruction to the vector table addresses
results in a Data Storage Interrupt (invalid operation).

Special Facilltles
Figure n shows the register organization within the IOCC. (For implementation details, see
Mlmplementation Details" on page 2-86.)

2· 72 General Architectures

Addreaa
From To

I
r--------------------------------,

--------........----------. • Board
O 40 00 00 O 4F 00 00 Board l~ntlflcatlon Device ~pendent 1 Conflg

O 40 00 04 0 4F 00 04 Device ~ndent Sub-Acif ree•lng ~ Reglatera

0400010

0400020

0400024

04000 2C

0400040

0400080 04F 00 80

0400084 04F 00 64

0400068 04FOO 68

0400080

04000 84

0400088

0400090

0400094

0400098

040009C

0400200

0400204

0400208

Figure n. IOCC Registers

I IOCC
Configuration Data Conflg ,__ __ _._ ___ _.I ___ __.,_ __ ___, Reglater

Reaerved
I j Bua Statu•I :::.~.

Reg later

----------------~ (Implementation Dependent} I TCW/Tag
1 • 1 1 • Anchor

"'----.......i.----'----~-----' Addreaa I Component_ ___ s_1ot ____ __ Reaervec1 ____ _, ~~..,.

Low Limit High Limit I Load/Store
..._ __i.1 ___ _,__ ___ L.I --~ Limit

l
Channel Statua Reglater
I l l

~-(lmp~tion ~t)

Re~ -(lmp~on °)"dent)

Interrupt Enables
J.

lnterru~ Requeata Reserved

Mlac l~terrupta

(Implementation Dependent)

I l l

l l l

I I

l

....

~

I-

-

Channel
Control
Regl•tera

Interrupt
Control
Reglatera

Interrupt
Vector
Table

Bua
Mapping
Regratera

System VO Structure 2· 73

Board Configuration Data
The Micro Channel defines a slot select mechanism for accessing board-unique
configuration data (byte-only access). Eight bytes of addressing are provided per board,
which includes a unique 2-byte board identification and up to 4 bytes of programmable
parameters. This mechanism is called setup, and is used at startup time to determine the
boards in the system and to set configuration parameters on each board. Support Is
provided for up to 16 boards.

The Board Configuration registers are shown In Figure 78. They are a protected system
resource located in the IOCC address space. These registers are only accessible to Load
and Store Instructions from the system processor when the segment register privileged key
is set to a value of o. Attempts to access these registers when the privileged key is set to a
value of 1 causes a Data Storage Interrupt and an invalid operation status to be set in
Channel Status register 15.

Proce•aor Effective Addreu

I ;1,1~01 01 01 ~11 oj ~1~1 I~ 01 o1 01 ~01 01 x1 o1 01 o1ojr .','I
0 3 4 7 8 15 16 23 24 31

Data

0

Sub-Addreealng 4
LS Byte MS Byte (X7)

0 34 78 15 16 2324 31

Figure 78. Board Configuration Registers

Refer to Personal System/2 Hardware Interface TechnlcaJ Reference: Architectures manual
for more information on Micro Channel architecture and a description of the setup
mechanism. Even though the architecture specifies that only address bits O to 2 are to be
used In the address decode operation, some boards are developed with a dependency on
serup addresses being between X'01 00' and X'01 07'. To accommodate these boards, bit
23 is allowed to be a value of either a 1 or 0. The small r in bit positions 29 to 31 is a
variable designating the byte being addressed within the 2-word field.

Board configuration data Is unique to each specific board. Refer to each board specification
for details.

Note that the software should do a byte reversal on 2-byte entitles that are targeted for the
Board Configuration registers used during setup cycles; for example, the most significant
byte of the board identification should be placed in the register as shown in Figure 79.

IOCC Configuration Register
The IOCC design allows for certain variations of function and perfonnance that optimize its
usage across multiple machine environments. The specific personalization is established
with the contents of the IOCC Configuration register. For the contents of this register for
specific implementations, see "Implementation Details" on page 2-86.

2-74 General Architectures

This register is a protected system resource located in the IOCC address space at address
X'-0 40 00 1 O'. It is only accessible to Load and Store instructions from the system
processor when the segment register privileged key is set to a value of 0. Attempts to
access this register when the privileged key is set to a value of 1 result in a Data Storage
Interrupt and an Invalid operation error status set in Channel Status register 15.

This register is set up by hardware and ROM code and is treated as a read-only register by
the operating software with the exception of the master enable bit.

Figure 79 shows the organization of the configuration register. Bit O in this register is
Initialized to a value of O at startup.

PrOCM80r Effective Addreu

I :: • I o o o ol o • o o o o o o o o o o o o o o o o o • o o o ol
I I I I I I I I I I II I I I I I I I I I I I I I I I I I

0 3 4 7 8 15 18 23 24 31

Configuration Data

I I

0 34 78 15 18 23 24 31

Figure 79. !OCC Configuration Register

The various fields in the Configuration register are described as follows:

Btta Description

0 Master Enable: This bit functions as a master enable control for channel
and interrupt operations only. It is intended to disable channel operations
until the system has Initialized the Channel Control registers, tag table, and
TCW table, but also could be used following startup to assist recovery from
catastrophic errors. Nonnally, this bit is set to a value of 1 following initial
program load (IPL) and is never changed thereafter.

Reserved: This bit is reserved and must be set to a value of O.

Burst Control: Programmable burst control is an optional implementation. A
Load Instruction to these bits Indicates the state implemented or currently
assigned (see also "Implementation De1alls• on page 2-86). If not
supported, a Store instruction to these bits Is a NOP. These bits control the
maximum time that the IOCC continues to utilize the VO bus by way of the
Load and Store instructions under bursting protocol following a bus request
from another device. This set of controls ls provided as a protective
measure to retain reasonable Interrupt response time in the presence of an
VO bus hog. The Micro Channel architecture places few restrictions on
device bursting, and It is possible for a device to be designed wtth long
(non-preemptive) burst sequences, even if operating in the fairness mode.
The device then receives a disproportionate number of bus cycles If the
IOCC does not also utilize non-preemptive burst sequences to increase the

System l/O Structure 2· 75

blocking factor. It is the responsibility of the IOCC to ensure that the
7 .8-microsecond bus timeout constraint is adhered to.

2 3

UJ] Complete Current Cycle
1.6 microsecond
3.2 microsecond
6.4 microsecond

Figure 80. Bit 2 and 3 Burst Control Setting

The IOCC normally uses a Preemptive Burst protocol when executing Load
and Store instructions. Under normal bus loading, this provides high
statistical data rates while also providing the lowest latency to OMA slave
and bus master devices.

Reserved: These two bits are reserved but the value that they must be set
to is implementation dependent (see u1mplementation Details· on page
2-86).

~7 Refresh Control: These bits allow specification of bus refresh periodicity and
the number of (burst} refresh cycles taken. This provides for a certain
amount of flexibility to handle new memory technologies with different
refresh rate requirements. The refresh control setting is defined as shown in
Figure 81 (rates are maximum times allowed).

6 7 Rate #CyclM

0 0 Off -
0 1 60 microsecond 4
1 0 30 microsecond ' 1 1 15 microsecond 4

Agure B 1. Refresh Control Setting

8 Reserved: This bit is reserved and must be set to a value of a.
~11 TCW Table Size Speclflcatlon: These bits allow specification of the amount

of control RAM (TCW and Tag) to be packaged with the IOCC. Different
applications require different amounts of TCW table, and the IOCC design
allows this size to be varied. This provides the flexibility to optimize cost and
function across a wide range of system applications. These bits should be
personalized to match the size of the RAM provided with the IOCC (in terms
of the number of TCWs supported). The TCW Table Sizes for

2·76 General Architectures

12

Combination TCW and Tag table shows the bit settings for
implementations where tags are used for OMA slave operations.

TCW Table Slat for Combination TCW and Tag

Bit TCW Table Size
91011 (I of TCW entries)

0 0 0 24K

0 0 , 56K

0 , 0 120K

0 , , 248K

1 0 0 504K

1 0 1 1016K

The following table shows the bit settings for Implementations that use
TCWs to support OMA slave operations.

TCW Table Slzea When Tags Are Not Supported

Bit TCW Table Size
91011 (I of TCW entrin)

0 0 0 BK

0 0 , 18K

0 1 0 32K

0 , 1 64K

1 0 0 128K

1 0 , 258K

1 , 0 512K

1 , , 1024K

The Tag table has 4096 entries, and the remainder of the RAM is allocated
to the TCW table. If both the OMA slave and the bus master operations are
handled using TCWs, all of the RAM is available for the TCW table. Due to
the mapping of bus VO and bus memory Into one address space, no bus
memory is allowed between o and 64K bytes, and the first 16 TCW entries
are never accessed.

Reserved: This bit is reserved and must be set to a value of o.

System 110 structure 2-n

Bits

13-15

1~22

23

24

25

2·78 General Architectures

Description

Arbitration Time: These bits allow specification of the arbitration time on the
Micro Channel. Different systems applications have different bus
configurations and loading, and require different arbitration values. These
values can be varied from the architected minimum to a value greater than
that provided by the RT system bus application. Each arbitration value in
the Arbitration Time Configurations table represents a range, for example,
100 nanoseconds equals 100 to 200 nanoseconds.

Arbitration Time Configuration•

Bits Arbitration Time
131415 (nanOHCOnda)

0 0 0 100

0 0 , 200

0 1 0 300

0 1 1 400

1 0 0 500

1 0 1 600

1 1 0 700

1 , , 800

Reserved: These bits are reserved and should be a value of o.
TCW and Tag Tables in System Memory: A value of 1 In this bit indicates
that the TCW and tag tables are in system memory. The register tor
anchoring the address of a system memory based TCW and tag table is at
X'-0 40 00 24'.

All pages in system memory provided for TCW and tag tables are
continuous In real memory and permanently pinned. The TCW and tag
tables are only accessed through the IOCC space and are not mapped into
the PFT. Any error while accessing this memory results in a TCW and Tag
access error. This area is not scrubbed.

A value of O In this bit Indicates that nonsystem memory is used for the
TCW and tag tables.

Dual Buffer Support and Bus Mapping Register: This bit indicates whether
or not the dual buffering and Bus Mapping register option of the architecture
Is supported. A value of 1 in this bit indicates that the dual buffer and Bus
Mapping register option of the architecture is supported. A value of 0 in this
bit Indicates that it Is not supported. For implementation details, see
·implementation Details" on page 2-86.

DMA Slave TCW or Tag Bit: This bit indicates whether the OMA supports
the use of tags or TCWs for OMA slave operations. A value of o Indicates
tags are supported.

Bits Description

26-27 Cache Buffer Support and Cache Coherency: These bits have the following
meanings:

26 27

[U] Buffered Mode, Software Enforced Con•l•tltncy
Unbuffered Mode
Reurved
Reurved

Figure 82. Cache Mooe Bits

In the buffered mode, the IOCC buffers exist, and PIOs to system memory
are allowed. In the unbuffered mode, there are no IOCC buffers and PIOs to
system memory are not allowed. See "Maintaining Consistency" on page
2-36.

28-31 Number of OMA Slave Channels: These bits Indicate the number of OMA
slave channels (that is, the number of OMA Slave Control registers) that are
supported. Both 8'0000' and 8'1111' Indicate that 15 channels are
supported. Also, B'0001', 8'0010', 8'00W indicate that one, two, and three
channels are supported, respectively. The number of channels supported Is
implementation-specific. However, the number of arbitration levels
supported is not Implementation-dependent, and must be equal to 16. (See
"Implementation Details• on page 2-88). If the implementation supports
tags, then all 15 OMA slave channels must be supported. The minimum
required by the Micro Channel architecture is 2. The minimum required by
the system architecture Is the number of slots plus the number required by
the Standard VO devices. If buffers are supported, the number of buffers
must equal the number of channels supported.

Bus Status Register
The Bus Status register (BSR) Is a diagnostic facility that aids In VO error Isolation. It Is
comprised of one RfN register and provides the ability to set and sample signals on the VO
bus.

The BSR is a protected system resource located in the IOCC address space at address
X'-0 40 DO 20'. It is only accessible to Load and Store instructions from the system
processor when the segment register privileged key Is set to a value of 0. Attempts to
access these registers when the privileged key is set to a value of 1 causes a Data Storage

System VO Structure 2·79

Interrupt and an invalid operation error status to be set in Channel Status register 15.
Figure 83 shows the Bus Status register.

Proce880r Effective Address

I r;1,,~01 010 1 ~11 01 o1 01 o1
o

1
o, ~01 01 01 ~~01 01 01 ~ , 10101010 1

0J

0 3 4 7 8 15 16 23 24 31

BSRData

Reserved

I I II II

0

Figure 83. Bus Status Register

31

1Burat
Cd Chrdy
SDR(O)
SOR (1)

The 'arb' bus lines, 'bursf signal, 'cd chrdy' signal, and 'sdr (O)' and 'sdr (1)'signals are
latched In the BSA latches when a bus timeout error occurs. The 'arb' bus bit o is the least
significant and bit 3 is the most significant bit. If a bus timeout error occurs during an UO
cycle, further bus errors will not be trapped until the error interrupt is cleared out of the
Miscellaneous Interrupt register. As such, the BSA contains a copy of the sampled VO bus
signal llnes at the time of the first error. No provision is made for saving bus states for
successive errors.

Results of a Store instruction are implementation-dependent (see •implementation Details~
on page 2-86) On a Load instruction, the data retumed is the contents of the register as
described, If an error has occurred (bit 1 of the Miscellaneous Interrupt register is on); the
contents of bits O to 23 are indeterminate.

TCW and Tag Anchor Address Register
This register specifies the starting address of the TCW and tag table when that table is In
system memory (as Indicated by bit 23 of the IOCC Configuration register). This register is
undefined when bit 23 of the IOCC Configuration register is a 0, and a Store instruction to
this register when bit 23 is a o will cause a Data Storage Interrupt, and an invalid operation
status to be set in Channel Status register 15.

The TCW and Tag Anchor Address register is a protected system resource located in the
IOCC address space at address X'-0 40 00 24'. It is only accessible to Load and Store
instructions from the system processor when the Segment register privileged key is set to a
value of 0. Attempts to access this register when the privileged key is set to a value of 1

2-80 General Architectures

causes a Data Storage Interrupt and invalid operation status to be set in Channel Status
register 15. Figure 84 shows the TCW and Tag Anchor Address register.

Proce9eor Effective Address

I ;1.101010101 ~'1010101010101 ~010101 ~0101olo1011101011101ol
0 3 4 7 8 15 16 23 24 31

Anchor Addrea Regl8ter Data

J
0 7 8 15 18 23 24 31

Figure 84. TCW and Tag Anchor Address Register

Software must guarantee that the table starting address is on a boundary which is equal to
the size of the table. For example, for a 128K-byte table must start on a 128K byte
boundary.

Component Reset Register
The Component Reset register (CRR) is comprised of one register and provides the ability
to indMdually drive the resets to each LIO slot. Writing a value of o into a bit position resets
that slot, and writing a value of 1 removes the reset.

The CRR is a protected system resource located in the IOCC address space at the address
X'-0 40 00 2C'. It is ~ble to Load and Store instructions from the system processor
when the segment register privileged key Is set to a value of o. Attempts to store into this
register when the privileged key is set to a value of 1 causes a Data Storage Interrupt and
an invalid operation error status to be set in Channel Status register 15.

Figure 85 shows the Component Reset register. The actual number of slots supported Is
Implementation dependent and is consistent with the IOCC configuration definition. The use
of the reserved bits Is also implementation dependent, and the usage includes resets tor the
Standard VO devices. On a Load instruction to this register, the value of the unused bits Is
implementation dependent. See •implementation Detalls" on page 2·86.

Procesaor Effective Addreu

I ;; 1• I 01 01 o. 01 0, 11 01 01 01 0101 o, ~ 01 01 01 ~ 01 01 o, 01011. 0111 11 0 IOI

0 3 4 7 8 15 18 23 24 31

Component Reset Reglaler Data

1°, I I I I I ~~ I I I I I l~ I

0 78 15 16

Figure 85. Component Reset Register

Reaerved

II I I I

23 24

I I

31

System VO Structure 2-81

The CRR is initialized to a value of O tit startup. This sets and holds a bus reset to all the VO
boards until explicitly enabled by a startup diagnostic utility.

After a reset operation occurs, the software removes the reset by writing a value of 1 to the
board slots. To ensure proper timing relationships, the software must make sure the reset is
held a minimum of 100 milliseconds before removing the reset.

Software can detennine If a slot exists and contains a board by removing the reset to the
slot and reading the board identification. A board identification of X'FFFF means that no slot
exists, or that the slot is empty.

On a bus timeout error, hardware sets the implemented CAR bits to a value of 0.

Bus Mapping Registers
The Bus Mapping registers provide a means to specify that certain blocks of bus address
space are allocated for bus to bus (that is, Micro Channel peer to peer) data transfers by
bus masters. Alternately, all data transfers from a bus master can be directed to the bus
address space by setting bit 2 of that bus master's CSR to a value of 0. These registers
allow for the flexibility of directing some of a bus masters transfers to the bus memory and
some to system memory without having software intervene to change the setting of CSR bit
2 for that bus master. The Bus Mapping registers are an optional feature of the architecture.
Their presence is indicated by bit 24 in the IOCC Configuration register being set to a value
of 1.

The following Tables 1, 2, and 3, show the address ranges mapped by each bit of each Bus
Mapping register. If a bus master has its CSR bit 2 (mapping bit) set to a value of 1 and a bit
in the Bus Mapping registers is set to a value of O, then the corresponding range of bus
address space will NOT be mapped to system memory for that bus master (that is, a bus
master access to this range will result in a bus to bus transfer cycle). If a bus master has its
CSR bit 2 (mapping bit) set to a value of 1 and a bit in the Bus Mapping registers Is set to a
value of 1, then the corresponding range of bus address space is mapped to system
memory for that bus master. A bus master whose CSR bit 2 Is set to a value of O will always
be accessing the bus address space (doing a bus-to-bus operation), regardless of the
setting of the corresponding Bus Mapping register bit (that is, the cycle Is a bus to bus cycle
If either the CSR bit 2 of the bus master doing the access or the corresponding bit of the Bus
Mapping register is set to a value of O). Notice that there are three granularities of the
mapping depending on the address range mapped.

Table 1. Bua Mapping Register O (X'OO 40 02 00')

Regl•ter Bit Addrna Range Mapped Size of Addreu Range
(Hexadecimal)

0 00 00 00 00-00 03 FF FF 256K

1 00 04 00 00-00 07 FF FF 256K

2 00 08 00 00-00 OB FF FF 256K

...
31 00 7C 00 ~00 7F FF FF 256K

2-82 General Architectures

Table 2. Bua Mapping Register 4 (X'OO 40 02 04')

Register Bit Addreu Range Mapped Size of AddreH Range
(Hexadecimal)

0 00 80 00 00-00 83 FF FF 256K

1 00 84 00 00-00 87 FF FF 256K

2 00 88 00 00-00 88 FF FF 256K

...
31 00 FC 00 00-00 FF FF FF 256K

Table 3. Bua Mapping Aeglabtr 8 (X'OO 40 02 08')

Reglater Bit Address A•nge Mapped
(Hexadecimal)

Size of Addreaa Range

0 01 00 00 00-03 FF FF FF 48M

1 04 00 00 00-07 FF FF FF 64M

2 08 00 00 00-0B FF FF FF 64M

...
15 40 00 00 Q0-43 FF FF FF 64M

These registers are protected system resources located in the IOCC address space at the
address x·oo 40 02 00' to X'OO 40 02 08'. They are accessible to Load and Store
instructions from the system processor when the segment register privileged key is set to a
value of O. Attempts to store Into these registers with the privileged key is set to a value of 1
will cause a Data Storage Interrupted and an invlaid operation error status to be set in
Channel Status register 15.

System VO Structure 2-83

System 110 and Standard 110
Two classes of devices are described in this section, the System VO and the Standard 1/0.

System VO is defined as facilities in the VO space intrinsic to the system but not normally
considered 1/0 devices. Included in this category are NVRAM, clock and calendar, operator
panel, system registers, and on card sequencers (OCS). System VO, though in the VO
space, is isolated from the 1/0 bus by way of an intemal bus and is a protected resource.

Standard VO devices in the system unit are defined as those 1/0 devices intrinsic to a basic
workstation, and as such, are included as pan of the base machine. These deviees do not
necessarily occupy feature slots because these devices are not optional features. The list of
items which fall into this category is implementation specific (see •implementation Details"
on page 2-88).

System UO
System 110 is located In the IOCC control space, is privileged, and is only accessible when
the segment register privileged bit is set to a value of 0. Attempts to access this address
space when the privileged bit is set to a value of 1 causes a Data Storage Interrupt to be
posted and an invalid operation error status to be set in Channel Status register 15. The
remainder of this section contains information describing System VO.

System Registers
System registers are located In the IOCC control space between the addresses X'--0 40 00
CO' and X'-0 40 00 FP defining a contiguous space of 64 bytes. These registers are
implementation-dependent (see "Implementation Details" on page 2-88).

Nonvolatile RAM
The Nonvolatile Random Access Memory (NVRAM) is located in the IOCC control space
between X'-0 AO 00 00' and x·-o BF FF FF and occupies 2M·bytes of address space. The
amount of NVRAM in the system is implementation-specific (see ·implementation Details"
on page 2-86).

Standard UO
The Micro Channel provides for a 16-bit bus 110 address. To access a device within this
address space, effective address bits 4 to 15 and segment register bits 28 to 31 must all be
a value of 0.

Accesses to the 110 bus are checked for proper access authority by way of an address
range check, restricting user programs to access only authorized devices. However, since
the IOCC cannot Intercept or stop accesses to bus attached memory or bus 110 devices by a
bus master on the 1/0 bus, no access checking is performed when a bus master addresses
these devices.

Actual Standard 1/0 address assignment are implementation dependent (see
•implementation Details" on page 2-86).

2-84 General Architectures

Exception Reporting and Handling
Refer to Personal System/2 Hardware Interface Technical Reference: Architectures manual
for more infonnation on Micro Channel architecture and for definitions of the data and
address parity on the Micro Channel.

The following are general guidelines that were followed in designing the system units and
adapters, and should be followed in designing new adapter boards for the machines:

• Full parity support Is recommended for all address and data buses for all adapter boards,
Internal boards, and internal devices (such as Standard 1/0 devices, NVRAM, and
System registers). Full address and data parity support Is defined as traversing the
complete paths of the address and data buses (generate parity at the signal source and
check parity at each destination point where the address and data will be used).

• Internal boards (Standard VO and VO Boards) provide both address and data parity
support to each of their devices.

• Adapter boards to be supported for system units should provide both address and data
parity support at the board connector and on all internal data and address buses.

- 8- and 16-bit devices should provide the 32 bit board connector to gain access to all
the required parity signals.

- 8- and 16-blt devices, should also implement a notch in the board tab so they can be
installed In a 16-bit board slot.

Note: Suitable pull-up resisters should be utilized as appropriate.

• Adapters that do not use the 32-blt board connector (8· and 16-bit data), should support
data parity as a minimum requirement. The objective is to include the 32-bit connector
described previously to allow address parity, also, if possible.

• Devices and boards should meet the signal timing specifications described in the Micro
Channel architecture documents. For Micro Channel architecture infonnation, refer to the
Personal System/'2 Hardware lnterfsce Technical Reference: Architectures manual.

System 110 Structure 2-85

Implementation Details
This section provides implementation details for system Models 320, 32E, 32H, 520, 52H,
530, 530E, 53H, 540, 550, 550E, 550S, 560, 560F, 730, 930, 950 and 950E.

Implementation details for other models can be found In the Input/Output (VO) architecture
implementation details sections of the product-specific technical lnfonnation manuals.

Streaming Data Protocol
These models support the 4-byte Streaming Data protocol.

Board Configuration Register
Figure 78 on page 2-74 shows the board configuration register assignments.

IOCC Configuration Register
Some of the bits In the IOCC Configuration register Indicate support or nonsupport of
various implementation-dependent features. The following Is a summary o1 the definition of
the IOCC Configuration register implementation for these models. In the case of read-only
memory (ROM) code Initialized bits, the value that the ROM must Initialize these bits to ls
shown. For the bits of the IOCC Configuration register that are not documented in the
following descriptions, the ROM code must Initialize those bits to a value of o.
Btta Description

2-3 Burst Control: These models support the programmable burst control In bits
2 and 3 of the IOCC Configuration register. These bits are set to B'11' (6.4
microsecond) by the ROM code.

6-7

9-11

1~15

23

24

25

26-27

28-31

2-86 General Architectures

Reserved: These bits are reserved end must be set to 8'01 '. Reserved bits
are set to B'01' by the ROM code.

Refresh Control: These bits are set to 8'01 ' (60 microseconds refresh) by
the ROM code.

TCW Table Size Specification: These bits are set to B'01 O' by the ROM
code.

Arbitration Time: These bits are set to 8'011' (400 nanoseconds) by the
ROM code.

TCW and Tag Tables in System Memory: These models support nonsystem
memory for TCW and tag tables as indicated by a O in this bit.

Dual Buffer and Bus Mapping Register Support: These models do not
support the dual buffer and Bus Mapping register option of the architecture,
as indicated by a O In this bit.

OMA Slave TCW and Tag: These models support the use of tags for OMA
slave operations as indicated by a O in this bit.

Buffer Support and Coherency: These models support the use o1 buffers for
bus master and OMA slave operations that are managed by software, as
indicated by a B'OO' in these bits. This also indicates that PIO operations to
system memory are supported.

Number of OMA Slave Channels: These models support the use of 15
channels for OMA slave operations as indicated by B'OOOO' in these bits.

System Registers
Figure 86 shows the register assignments within this area.

Software polls the Power Status and Keylock Decode register (address X'O 40 00 E4') to
determine if any bit within that register changes state, and then tests to determine the bit
that caused the state change in order to take the proper action. Bits 28 to 31 in this register
are the cover keylock switch-position decode bits and are used by ROM and software to
detennine proper IPL procedures based on the switch position. (The keyboard lock on these
models is a software function.)

Addreu Data

04000CO

04000C4

04000C8

04000CC

04000DO

0400004

0400008

04000DC

04000 EO

040 00 E4

04000E8

04000EC

04000FO

04000F4

04000F8

04000FC

Time of Day Clock and Alarm
l I I
Tll of Day rk and A1rm

Time of Day Clock and Alarm
l l l

Time of Day Clock and Alarm
i l I

TI_L of Day ~lock and A~rm

Time of Day Clock and Alarm
l J I

Time of Day Clock and Alarm
l I l

Tll of Day ~lock and Ar

Syetem Reeet Count
l l I

Power Statue and Keylock Decode
l I l
rower ~I and R~

Dlagncmic Control
l l I

R918rved
J_ j_ I

1
Rlrved

_L
R819MM:1

l I l
l/O Board Part No and EC Level

l l L
Figure 86. System Registers

Nonvolatile RAM

Syatem
Reglatera

At least 32K bytes of nonvolatile random access memory (NVRAM) are implemented and
are located In the lower range of the NVRAM address space. Figure 87 on page 2-88
shows the address assignments for the NVRAM area.

System 1/0 Structure 2-87

Addreu

0 AO 00 00 (4 Bytee)

0 AO 00 04 (4 llyte8)

0 AO 00 08 (4 Bytes)

0 AO 00 OC (4 Bytea)

0 AO 00 10 (4 Bytes)

0 AO 00 14 (4 Bytes)

0AO0018 (4 Bytee)

0AO001C (4 Bytea)

0 AO 00 20 (224 Bytel)

0 AO 01 00 (258 BytM)

0 AO 02 00 (38 Bytee)

0 AO 02 24 (218 BytM)

0 AO 02 FC (4 Bytee)

0 AO 03 00 (4 Bytee)

0 AO 03 04 (4 Bytee)

0 AO 03 08 (4 Bytes)

0 AO 03 OC (4 Bytea)

0 AO 03 10 (4 Byta)

0 AO 03 14 (4 Bytes)

O AO 03 18 (4 Bytes)

0 AO 03 1C (4 Bytea)

0 AO 03 20 (84 BytM)

0 AO 03 80 (4 Bytes)

0 AO 03 64 (4 Bytee)

0 AO 03 88 (20 Bytes)

0 AO 03 7C (4 Bytea)

0 AO 03 80 (128 Bytm)

0 AO 04 00 (18K Bytea)

0 AO 44 00 (15,380 BytH)

Data

Reeerved

NVRAMSlze

Date and Time NVRAM lnltlallzec:I

RMerved

SCSI Initiator Addreea Slot 1-16

Reserved

Reserved

Reserved

Memory Control And Error Regl•mra
Mapped From BUID 0 Addreea 1000-1000

Memory Error Summary Data

Prevlou1 IPL Device O..Crlptar
Reserved

Software CRC Value For AO 00 00 - AO 02 FB

LEO. (Mirrored)

LEDa (Mirrored)

Check Stop Count

PTR To OCS Logout Area Lt 00 AO 44 00

OCS Code EC Level

Seed• ROM, EC Level

Manufacturing Control Word

Polnmr To Manufacturing Data Area

OCS LED String Output Area

Pointer to OCS Code Exec. ArM

Polntar to OCS Work Area

Machine Check Error Save

OCS and RS Command Interface

Renrvec:I for OCS Buffer to RS Proc.

OCS Work and Code Area

Software Data ArM

T

~

~

i..
}
}

PrOl8cted
Software or ROM
AcceaOnly

Hardware
Prevents OCS
Write to Thi•
Area

Shared Acceu
OCS, Software,
ROM

OCS Area

Software Area

Note: For •Y•tem• with greater than 32K bytes of Nonvolatile RAM, the extra RAM lncrM ...
the software data aru.

Figure 87. NVRAM Addressing

2-88 General Architectures

Standard UO
The Standard 1/0 Address Map table shows a Standard VO address map indicating the
address assignments for each Standard VO device.

StanUrd llO Addreaa Map

Hex Addreu Range Standard llO Device

0000-002F Reserved

0030-0037 Serial Port 1 (See nota)

0038-003F Serial Port 2 (See note)

0040-0041 Serial OMA Registers

0042-0047 Reserved

0048-004F Mouse

0050-0059 Keyboard, Tablet and Sound

OOSA-0061 Reserved

0082-0067 Diskette

ooee-oon Reserved

0078-007A Parallel Pon

0078-000F Reserved

OOEO-OOE7 Time Delay Command

OOE8-00FF Reserved

Not.: Serial ports 1 and 2 are referred to in the software documentation as serial ports A
and B, respectively.

Bus Master Transfers
Bus master operations follow the buffered mode of operation (see "Buffered Bus Master" on
page 2-39).

System VO Structure 2-89

Component Reset Register
Up to eight slots plus the Standard VO are supported. Bits o to 7 of this register represent
the eight slots. Bit 31 is for the Standard 1/0. On a Load instruction, the value of bits 8 to 30
are indeterminate. The CAR and Board Configuration Register Assignments table shows the
logical slot number (Component Reset register bit) for the devices.

CRR and Board Configuration Reglater Anlgnmente

Logical Slot Board
Number Configuration
(CRR bit Register Slot Physical
Number) Number Slot Number Commente

0 0 1

1 1 2

2 2 3

3 3 4

4 4 5 Not used in 4-slot models

5 5 6 Not used in 4-slot models

6 6 7 For 4-slot models, used for
the Direct Bus Attached file

7 7 e For 4-slot models, used for
the Direct Bus Attached file

81030 not used

31 X'P Standard 110

Notes on Error Detection
• IOCC and 110 bus protocol errors are not logged in the Channel Status register.
• TCW errors are parity errors, not ECC errors.

Bus Timeout
The time period Is the time between refresh cycles (which is programmable through bits 6
and 7 of the IOCC Configuration register; see "IOCC Configuration Register" on page 2-74)
plus the amount of time the device was on the bus prior to the first refresh cycle. For

·example, for a 15 microsecond refresh, the time range would be 15 to 30 microseconds, and
for a 60 microsecond refresh, the time range would be 60 to 120 microseconds.

1/0 Interrupts
The coded method of handling UO interrupts is supported, Including the use of the interrupt
vector tables.

Power-On Reset
A power-on reset, system reset, or bus timeout, resets the master enable bit in the
Configuration register. When this bit is a value of o, the following is accomplished:

• The 'preempt' signal Is de-gated, disabling channel arbitration.
• Interrupt presentation is inhibited to the system.

2-90 General Architectures

Also, on power-on reset, system reset, or bus timeout, the following is accomplished:

• The Component Reset register is reset.
• A reset condition is forced to all 110 slots.

The master enable bit can be set or reset by a Store Instruction to the IOCC Configuration
register. Figure 88 shows the system implementation.

I

•Bua
:nme
·out
I

Power-On I

or Syntm --­
Reeet

OR

Figure 88. System Reset

IPL Procedures

IOCC

•R

0

Micro
Channel Bua

llO Slot8

CRR

Figure 89 on page 2-92 shows the power-on state of the IOCC registers. Indeterminate
power-on states are indicated with an x, and undefined states are Indicated with a dash (-).
Attempts to read an IOCC register with an x before It has been Initialized can result in a
parity em>r, and the IOCC error Interrupt mask should be disabled. The Channel Control
registers and the interrupt vector table must be initialized with the Store Instruction to
establish good parity in these registers.

The TCW tabfe, tag table, and IOCC memory also tum on In an indeterminate state.
Attempts to read these address spaces before they have been initialized can result In parity
errors, and the IOCC error interrupt mask should be disabled until after these spaces are ·
initialized. These facilities must be initialized with a sequence of Store instructions to
establish good parity.

Hardware provides a means for ROM to set the buffers and registers in the appropriate
Invalid state at power-on. Following a power-on condition, the following procedure must be
followed to initialize the IOCC:

1. Initialize the IOCC Configuration register.

2. Reset the Interrupt COntrol registers.

3. Initialize the Channel Control registers, register 8 bit 2(1) to a value of 1, all other bits to a
value of o. Register O and 4 should be reset to a value of O.

4. Reset the Load and Store Limit registers.

System VO Structure 2·91

5. Initialize the Interrupt vector table.

6. Initialize the TCW table.

7. Initialize the tag table.

Except for the master enable bit being reset, the IOCC does not lose any state information
following a check stop reset. Thus, it is not necessary to reinitialize the IOCC following a
check stop condition.

Addrea
From To r---------------------------------- ..

I t

:::: :::::1-:=+== 1~1 ~~ration
IOCC

O 40 00 10 I Om XXXX 1 XXXX XXXXj =r'J:.ratk>n

0400020 0000 0000

040002C

0400040 lxxxxxxxx I 1 rm xxxx 1 xxxx xxxx I

Bua
Statua
Reglalltr

COmponent
Rael
Reg later

Load and
Store Limit

r----·----------------------------- ..
0 40 00 80 O 4F 00 80

0 40 00 84 0 4F 00 84

0 40 00 88 0 4F 00 88

0400080

0400084

0400088

0400090

0400094

0400098

040009C

xxxx xxxx l xxxx xxxx l
l

xxxx xxxx I xxxx xxxx J xxxx xxxx J xxxxxxxx

xxxx xxxx I xxxx xxxx l xxxx xxxx I xxxx xxxx

xxxx xxxx I xxxx xxxx
-

xxxx xxxx I xxxx xxxx - -
xxxx xxxx I xxxx xxxx

xxxx xxxx I xxxx xxxx l xxxx xxxx I xxxx xxxx

xxxx xxxx I xxxx XXXXJ xxxx xxxx I xxxx xxxx

xxxx xxxx I xxxx xxxx l xxxx xxxx I xxxx xxxx

xxxx xxxx I xxxx xxxx l xxxx xxxx l xxxx xxxx

Figure 89. IOCC Power-On States

2-92 General Architectures

: Channel _ .. Con1rOI

: Aeglatera _ ..
•
I

-'

Interrupt
Control
Reglatera

Interrupt
Vector
Table

Deviations from the 110 Architecture
The following deviations are specific to system Models 320, 32E, 32H, 520, 52H, 530, 530E,
53H, 540, 550, 550E, 550$, 560, 560F, 730, 930, 950 and 950E. It has been verified that
these systems, with these stated deviations, function satisfactorily. While this listing reflects
good faith reasonable effort, no representation or guarantee is made that this listing is
exhaustive.

• A Load or Store instruction with the bypass bit off and with a previous error set in the CSR
results in a Data Storage interrupt. Load and Store instructions with the bypass bit on and
with a previous error set in the CSR are processed. On a Data Storage interrupt, software
must clear the error before allowing any more Load and Store instructions with the
bypass bit off.

• On an VO Load or Store instruction, an Invalid Operation error is not logged Into Channel
Status register 15 If the instruction was preceded by a Load or Store to a Channel Status
register. Software must prevent this by following any access to a Channel Status register
with a non-VO Instruction. {The supervlSory code is the only code that accesses the
Channel Status registers.)

• The bus address Is not put Into the Channel Status register If a system address error is
preceded by a TCW reload. This can only be caused by a supervisory level software
problem.

• The time del8y command is implemented with time delays of 1, 2, 3, 4, 5, and 6
microseconds; delays of 7 or 8 microseconds should not be used.

• For bus master operations, the 'chck' signal Is not activated on succeeding cycles
following a data parity error. Bus masters should terminate on first occurrence of 'chck'
signal.

• Bus master buffer flush command through a Load instruction is not supported; a Store
Instruction should be used.

• The Streaming Data protocol ls not supported for IOCC initiated Load or Store, and OMA
Slave operations.

System UO Structure 2-93

2·94 General Architectures

Chapter 3. Vital Product Data

Chapter Contents
Description . • . 3-3

Importance . • . 3-3
Characteristics . 3-3
Customer and Service Personnel Assistance . • . . 3-4
VPD Structural Overview • . 3-4
System Data Set . 3-5

Keyword Descriptor Summary 3-5
Hardware VPD Descriptor Summary 3-13

Rack Record . • • . . 3-13
Enclosure Record . • . 3-13
Processor Board Record . • . . . • • 3-14
l/O Board Records . . . • • . 3-14
Memory Records • . • . 3-14
Extra l/O Board Record • . • 3-15
SCSI Attached Device Records • 3-15
Standard VO Attached Devices . • 3-15

Micro Channel Adapter Requirements • .. 3-16
Preferred Implementation - POS Configuration Registers 3-17
System Configuration Protocol • • . . . 3-18
Extended POS Register Space • 3-19

Sample Layout of the Micro Channel Adapter VPD . 3-20

Vital Product Data 3· 1

3-2 General Architectures

Description
Vital product data (VPD) uniquely defines each hardware, software, and microcode element
of a system. Configuration data Identifies the physical and logical location of each hardware
element of a system including addressing information. The combination of configuration and
VPD provides the system with a bill of material description that typically includes the
assembly part number, Engineering Change (EC) level, serial number, and other detalled
information. The objective from a system point of view is to determine this infonnatlon by
reading this data directly from the hardware, software, and microcode components.

Note: This chapter provides information for system models 32x, 34x, 35x, 36x, 52x, 53x,
540, 55x, 56x, 58x, 730, 930, 95x, 97x, and 98x. lnfonnation for other system models
can be found In the product-specific technical infonnation manual for those models.

Certain Information such u machine type, model and external serial number (for example,
desk.side system numbers) is not in machine-readable form. This information is provided in
Nonvolatile Random Access Memory (NVRAM) during manufacturing. Access to
configuration and VPD information Is provided by the Operating System with the System
Management Interface Tools. This interface allows the user to add VPO (such as a serial
number) u wen as other user information such as owner, physical location, and information
applicabte to inventory or asset control.

Importance
The collection of configuration and VPD offers the following advantages:

• Assists the operating system in auto-configuring the system and Its components.

• Assists diagnostics in problem determination and fault isolation:

- Error logging Includes VPD lnfonnation so that a historical entry is associated with a
serialized unit (such u an adapter).

- Identifying the physical and logical location of failing units for replacement.

• Assists the operating system in determining the proper device driver and loadable
microcode level.

• Assists the user in maintaining asset and inventory control.

• Provides a means of licensing software on a processor ID or serial number basis.

Characteristics
Configuration and VPD have the following characteristics:

• VPD is available at the rack, drawer, and field replaceable untt (FRU) level.

• For compatibility verification and testing, pluggable FRUs or potentially pluggable FRUs
must to be known to the system.

• Uniquely identifies each system hardware, software, and microcode element.

• Becomes part of the VPD record during installation or upgrade.

• When elements do not support VPD in directly readable form, It can be entered manually.
Data entered manually is flagged by the operating system software.

• Accessed locally or from a remote console by way of a configuration and VPD facility
provided by software.

Vital Product Data 3-3

Customer and Service Personnel Assistance
When field upgrades are made to a system, for example, adding a disk drive drawer to a
rack system, the user or service personnel must enter information regarding its physical
location and properties uSlng the System Management Interface Tools (SMIT).

VPD Structural Overview
A system-level file or data set contains the fully expanded information on all VPD elements
for each enclosure component. The tree structure so formed, shown in Figure 90, begins
with a rack or an enclosure level and goes on to identify all system components logically
connected.

Reck

Enclo9ure

Procesw
Board

PMmory
Boerda

llO Board

Figure 90. Configuration Tree

3-4 General Architectures

Slot 1
SCSI
Slot2
Dia
Slot3
Dlapllly Adpt
Slot4
Token Ring

Slot5
8 Port232

Slot8

Slot7

Slot&

standard llO
Board

FD1
L- FD2

Network

T1
T2
T3

L-FD3

Keyboard
MouM
Dlalmtte
EIA-232 Serial Port
Parallel Port

System Data Set
The fonnat of the data representing the configuration tree described previously is defined by
software. The preferred hardware implementation of vital product data is In the form of
keyword descriptors. The VPD is gathered by a software device driver that interfaces with
the hardware. If the VPD is stored in a format other than the preferred method, the inc:lvidual
device driver must convert that data into the keyword descriptor format and store that data In
a format required by the system configuration and management software method.

Keyword Descriptor Summary
Each keyword header Is composed of four bytes of information. The first character is the
" (asterisk) character in ASCII format. The next two characters are an abbreviated
mnemonie associated with a specific descriptor. The last byte Is binary and represents the
total length of the keyword descriptor Including its header. The length is the total byte count
divided by two. Hence, descriptor data is always an even number of bytes with padding as
defined by each keyword.

The descriptors listed are a combination of all descriptor keywords used throughout the
system. Certain specific types of adapters require pointer values based on the method of
Implementing VPD.

If a deacriptor Is manually entered, it must be extended to Its full size by the configuration
and VPD utility. In addition, the characters ME (for manual entry) are Inserted in the
high-order positions, adding two characters to Its length.

The following list identlfles the descriptor keywords currently defined:

• •AD L = addressing field

The addressing field fonnat is unique to each component described. It must Include the
Bus Unit ID and slot designation if appropriate. In addition, it specifies sufficient
addressing Information to program the adapter. The fonnat of the addressing field Is
specified by software. This descriptor Is not present within the machine-readable VPD
field contained within an adapter or channel. It Is added by software to the configuration
and the VPD file or the NVRAM area for VPD.

• *AT L = adapter type

To suppon different system field-replacement strategies, this keyword defines a category
of Micro Channel adapters. Used In conjunction with the part number (defined by the *PN
Land *EC L keywords), this keyword defines a FRU. Its use is not currently planned for
the system.

• •co L = board ID (adapter board ID)

The board ID field Is supplied by software after reading the board ID from POS o and
POS 1 registers. (Programmable Option Select (POS), replaces switches on feature
boards. It is defined under •Micro Channel Adapter Requirements• on page 3-16.) This
descriptor only applies to Micro Channel adapters. This descriptor is not present within
the machine-readable VPD field contained within an adapter or channel. It Is added by
software to the configuration and VPD file or the NVRAM area for VPD.

Following the two bytes of the board ID Is a field generated and used by software, which
contains mask bytes and POS data used to initialize the adapter. It also contains a flag
byte to Indicate whether this adapter was successfully configured. The detailed
specification of this field Is defined by the software operating system.

Vital Product Data 3-5

This descriptor is not present within the machine-readable VPD field contained within an
adapter or channel. It is added by software to the Configuration and VPD file or the
NVRAM area for VPD.

• *CN L = customer number

The data portion of this descriptor is in ASCII format. It represents the customer number
assigned to the customer owning this machine. The source of this data is the
administrative ordering system.

• *DC L = action code and date

This field is a combined action code and date and time stamp when the action took
place. The format of the field is shown in Figure 91:

*DC ac yyyymmddhhmm••

1 1 ~nd•
mlnu18a

houre
day

month
year

action code
keyword "DC"

•••

Figure 91. Format of a Combined Action Code and Date and lime Stamp

The following action codes are currently supported:

Acdon Code Deacrlptlon

Plant BO Build date (manufacturer)

Plant AM Added as MES (MES diskettes)

Plant AB Added as BULK MES (Bulk MES diskettes)

Plant Al Available at install (manufacturer and field)

Field ID Install date (field)

Field AC Added with ED (field)

Field AU Added from unknown source (field)

Field AR Added In repair action (field and CIT)

Field AT Added temporarily (field)

Field AH Added manually (field)

Field RU Removed unknown (field)

Field RR Removed in repair action (field and CIT)

F1eld RC Removed with EC (field)

Field RT Removed temporarily or powered off (field)

Field RM Removed permanently (field)

Field RN Removed to another system (field)

3-6 General Architectures

• ·oo L = device driver level (minimum required)

The data portion of this descriptor is in ASCII fonnat. It represents the minimum device
driver level required. The first release is level 00. Levels are incremented by one for each
successive level independently of operating system version and of modification level.
The minimum value for L Is 3, which Is two bytes or two ASCII character numbers of
descriptor data plus the header.

The device driver level represents a generic Interface level to software. If the interface
changes between software and hardWare such that a new interface is required by
hardware, the value of this level Is incremented. This level is Independent of the
operating system being used.

If this keyword is not explicitly specified, level 00 Is implied.

• ·oo L = diagnostic level (minimum required)

The data portion of this descriptor is in ASCII format. It represents the minimum
diagnostic level required. The first release Is level 00. Levels are Incremented by one for
each successive level Independently of operating system version and modification level.
The minimum value for L Is 3, which is two bytes or two ASCII character numbers of
descriptor data plus header.

The diagnostic level represents a generic interface level to diagnostics. If the interlace
changes between software and hardware such that a new interface is required by
hardware, the value of this level is incremented. This level is independent of the
operating system being used.

If this keyword is not explicitly specified, level 00 Is impHed.

• •oL L =drawer level

The data portion of this descriptor is In ASCII format and specifies a drawer location in
Electronics Industries of America (EIA) units. It represents the drawer location within a
rack for an enclosure. The EIA unit values are marked on the rear panel of the rack.
These values are captured during manufacturing while a rack is in its final manufacturing
test. In the field, configuration changes that alter drawer infonnation must be supplied by
the trained customer or customer engineer installing the change.

• ·os L = displayable message (ASCII format)

This is an optional field that can Include a message to be printed or displayed for this
record type. Avoid the ASCII character * (asterisk) within the data content of this
message.

Micro Channel adapters designed for the system unit require this keyword with a brief
description of the adapter fundlon.

• •ou L = drawer unit

This field Is used at the system level to describe the contents of a drawer unit within a
rack system. The number in this field can be a feature code, a machine type and model
number, or other alphanumeric field used to describe the drawer unit. The data portion is
In ASCII format.

• ·EA L = electronic address

The data portion of this descriptor is In ASCII format. The value represents an electronic
address where this machine can be contacted. This field must be entered manually by
the •Product Topology Service Aid.·

Vital Product Data 3·7

• *EC L = engineering change level

The data portion of this descriptor Is In ASCII format. The characters are alphanumeric
and represent the engineering change level for this element. The values of L, which
range from 6 to 8, represent descriptor data counts of 8 to 12 alphanumeric characters.
This descriptor number is left justified and can be padded with low-order blanks. For IBM
released parts, this field must contain the IBM EC number.

• *FC L = feature code

This field contains the feature code or RPO number used to order or specify the
hardware described after it in the product topology data hierarchy. The designation must
match precisely the nomenclature used by the order process for the device. The source
of this data is the administrative order entry system.

• *FN L = FRU number

The data portion of this descriptor is In ASCII format. The characters are alphanumeric
and represent the assigned Field Replaceable Unit part number for this element of the
system product. The value of L ranges from 6 to 8 representing descriptor data counts
from a to 12 alphanumeric characters. The data is right justified and padded with
high-order zero. For IBM released parts, this field must contain the IBM FRU Part
Number.

• •LA L = pointer to loadable microcode on the adapter

This keyword is an optional descriptor type available for use. If an adapter chooses to
implement loadable microcode using the POS registers for writing and reading of
microcode, this field is required. Micro Channel adapters can use the POS subaddress
facility or any Other method to Implement loadable microcode. Data In the field can be
encoded in binary on the device but Is externalized in ASCII or a hexadecimal
representation of a binary value in ASCII.

The data portion of this descriptor is an address pointer in the POS subaddress space.
Byte o is the most significant address byte, and byte 1 is the least significant address
byte in binary.

• •u L = loadable microcode level (minimum required)

The data portion of this descriptor is in ASCII format. It represents the minimum loadable
microcode level required for functional operation. The first release is level 00. Levels are
Incremented by one for each successive level. Loadable microcode is associated with a
given board ID rather than a part number or EC level. Therefore, as changes are made
to a particular adapter, a corresponding microcode level can be required for correct
operation. This field Is required If loadable microcode is required for functional operation
of the adapter. The field's presence notifies the initialization code of this additional
requirement. The minimum value for L is 3, which is two bytes or two ASCII character
numbers of descriptor data plus the header.

This is a generic level equivalent in use to a device driver or a diagnostic level. It
indicates that a significant change was implemented on the adapter and that a new
minimum level of loadable microcode is required.

• *LO L = location (internal or external)

This descriptor Is optional. The data portion of this optional descriptor contains the ASCII
characters IN for internal devices or EX for external devices or for other components.
The default value for this descriptor is EX and is Implied if this field is not specified. This
field Is generated dynamically by software for fixed disks attached to a SCSI adapter that
provides internal reset capability. For other devices, it can be entered by the user In the

3-8 General Architectures

configuration and VPD utility. It is required for power domain and security domain
requirements. The value of L is 3.

• *MF L = manufacturer

The manufacturer descriptor field is typically six characters of ASCII data. For our
components, the first three characters are alpha characters. The next three characters
are alphanumeric and are a code assigned to each location. For six characters of
descriptor data, L equals 5.

Vendor manufacturers are identified by a 6-diglt number assigned by the purchasing
department when a contract is established. An abbreviation for the location establishing
the contract is concatenated to the purchase order number.

The *MF L keyword is being retired and replaced with the *MN Keyword.

• •MN L = Manufacturer and location

The manufacturer descriptor field Is 4 or 1 O characters of ASCII data.

- For an IBM manufactured component (built for IBM), the first character is an ASCII
number •1 • character. The next 3 characters are assigned by IBM and are a location
code (LOC) assigned to each IBM location (described In the following list).

- For an IBM manufactured component (built for an OEM), the first character is an ASCII
number "2" character. The next 3 characters are assigned by IBM and are a location
code (LOC) assigned to each IBM location (described In the following list).

- For a Vendor manufactured component (built for IBM) The first character is an ASCII
number "3" character. The next 3 characters are assigned by IBM and are a location
code (LOC) assigned to each IBM location (described In the following list). This Is
followed by a 6-digit number (NNNNNN) assigned by the IBM purchasing departmant
when a contract is established.

- For an OEM manufactured component. The first character is an ASCII number 4
character. Up to 9 additional characters may be assigned as a manufacturer
identification. These 9 additional characters are assigned by the OEM.

Location
Code
M8
97N
975
9NX
98J
984
983
155
991
981
997
988
988
98K
90S
90W
90F
90Q

Manuhtcturlng Location
Austin, ESO plant
Austin, ESO card manufacturer
Boca Raton, ESD plant
Boca Raton, Card vendor
Boulder, IPD plant
Burlington, GTD plant
Charlotte, Card manufacturer
Endicott, CP manufacturer
Endicott, SP manufacturer
Lexington, IPD plant
Manassas, GTD
Raleigh, CPD plant
Rochester, SPD plant
Tucson, CP plant
Bromont, plant
Greenock, plant
Toronto, plant
Vimercate. plant

Vrtal Product Data 3-9

• *NA L = network address

This is an optional field used by those adapters which require a unique network address
for a local area network. Adapters such as token ring and baseband use this field. Data
In the field can be encoded in binary on the device but is extemalized in ASCII or a
hexadecimal representation of a binary value In ASCII.

When specified, this field must be Implemented as the first descriptor keyword and
therefore "NA L" is located at address 00 08. The first data byte is, therefore, located at
byte 12 (decimal) or 00 OC Hex within the extended storage area located by POS
Registers 6 and 7.

• *NX L = pointer to next adapter VPD for multlboard adapters

This is used by multicard adapters including those occupying more than one card slot.
The primary card must provide POS registers. Additional (secondary) cards mUS1 be
plugged into slots adjacent to the primary card. This field specifies the VPD address to
be specified in POS registers 7 and 6, respectively, In order to access VPO data on the
adjacent (secondary) adapters. Data in the field can be encoded in binary on the device
but is externalized in ASCII or a hexadecimal representation of a binary value in ASCII.

• ·os L = Operating System level

The data portion of this descriptor contains the name of the operating system (for
example, "AIXj followed by version, modification, and PTF level. All characters are
specified In ASCII. Additional data can be included to specify specific options being used
(such as cluster). This descriptor is required in the Enclosure Record store in NVRAM
and In the configuration and VPD file.

• *PC L = processor component definition

This data represents binary information that details the processor speed and model.

• *Pl L =processor ID

The data portion of this descriptor is an ASCII alphanumeric field that represents the
processor ID for a processor enclosure. This data is normally extracted from IPL ROM
associated with the processor board. This serial number is often used for software
licensing.

• *PN L = part number

The data portion of this descriptor is in ASCII format. The characters are alphanumeric
and represent the part number for this element The values of L, which range from 6 to 8,
represent descriptor data counts of 8 to 12 alphanumeric characters. This descriptor
number is right justified and can be padded with high-order zeros. For IBM released
parts, this field must contain the IBM Part Number.

• •RA L = pointer to ROM code on adapter

If an adapter chooses to access on-board ROM using the POS registers for reading
microcode, then this field is used. Data in the field can be encoded on the device In
binary, but is extemalized in ASCII or a hexadecimal representation of a binary value in
ASCII. The first data byte represents a PCS register to use as a Port to read and write
data to the adapter for purposes of reading microcode on the adapter. Any POS register
(0-5) can be specified. The second byte specifies the number of low-order bit positions
of POS register 5 to use for expanding the address range of PCS registers 6 and 7. The
address so formed is specified as follows:

POS 5 (n low-order bits), Pos 7, POS 6

3-10 General Architectures

The second byte can specify from o to 6 bits of additional addressability. Data bytes 3, 4,
5, and 6 specify the initial address for reading microcode. This is an optional descriptor
type available for use.

• *ALL= ROM level and ID

This descriptor identifies the part number of any nonalterable ROM code on the adapter.
The data field of the keyword is defined as follows:

Bytes ~ 11 Part number of the ROM code (alphanumeric ASCII).

Bytes 12-23 EC level of ROM code (alphanumeric ASCII), this is optional if the ROM
code PN is not changed when updated.

• *RM L D = Alterable ROM ID

This descriptor identifies the part number of any alterable ROM code on the adapter. The
data field of the keyword is defined as follows:

Byte o An optional "field patch level." A value of o indicates no field patch
applied (ASCII).

Bytes 1-12

Bytes 13-24

Part number of the ROM code (alphanumeric ASCII).

EC level of ROM code (alphanumeric ASCII), this is optional if the ROM
code PN Is not changed when updated.

• *RN L = rack name (letter designation)

This keyword is a required descriptor for records describing a rack enclosure. The
abbreviated name consists of a 2 ASCII character field, such as •space A" or Mspace B,"
that matches the letter Installed on the rear of the rack unit. It Is used by diagnostics for
FRU location specification.

• *RW L = pointer to Read and Wrtte adapter registers

This keyword is an optional descriptor type available for use. If an adapter chooses to
Implement Read and Write registers using POS registers, then this field is used.
Adapters can use the POS extended addressing facility or any other method to
Implement access to Read and Write registers and storage.

Data In the field can be encoded in binary on the device byte is externalized in ASCII or a
hexadecimal representation of a binary value In ASCII. This first data byte represents a
POS register to use as a port to read and write data to the adapter for spectflc adapter
purposes. Any POS register (o-5) can be specified. The second byte specifies the
number of low-order bit positions of POS register 5 to use for expanding the address
range of POS registers 6 and 7. The address so formed is specified as follows:

POS 5 (n low-order bits), Pas 7, POS 6

The second byte can specify from O to 6 bits of additional addressability. Data bytes 3, 4,
5, and e specify the initial address for accessing Read and Write registers or storage.
The size and use of this Read and Write area is adapter specific. The minimum value for
L Is 5, which represents 6 bytes of descriptor data plus a keyword.

• •sc L = spectty codes

This field contains all the specify codes selected for this machine. The source of this data
is the administrative order entry system.

Vrtal Product Data 3·11

• •sE L = machine serial number

This field contains the serial number assigned to the processor machine type by the
manufacturing location. The number normally begins with two digits which uniquely
Identify the plant of manufacture. These are followed by a 5 character serial number. For
example, In the serial number 2605668, "26" is the Austin plant designation and "05668"
represents the serial number of this machine. The source of this data is the
administrative order entry system.

• •sL L =slot location

Memory board adapters use this description to specify board slot location. The data field
is 2 bytes in size.

• ·sN L = serial number

The data portion of this descriptor is in ASCII format. The characters are alphanumeric
and represent the serial number of the machine or device. The value of L is 6,
representing a descriptor data count of 8. The descriptor number is left justified and can
be padded with low-order blanks.

• *SY L = system number

This field contains the system number assigned to this system. The source of this data is
the administrative order entry system.

• ·sz L =size

Memory board adapters use this description to specify the size In M bytes. The data
portion contains 1 to 8 digits, left-justified, with no leading zeros and padded on the right
with blanks as required.

• *TM L = machine type and model

The data portion of this descriptor specifies the machine type in ASCII format. The data
portion is 4 characters long, followed by a dash (-) and the 3 character machine model.
The total data length is 8 characters. Therefore, Lis specified as 6, representing a
characters of data plus the header (for example, '7207--001 ').

• •us L = user data

The data portion of this field is an ASCII character string specified by the user utilizing
the configuration and VPD utility. II could be used to specify owner, location, or similar
Information. It must contain an even number of bytes.

• *VE L = pointer to VPD extended data on adapter

This optional descriptor Is used es an address pointer in the subaddress space of VPD
for a Micro Channel adapter. It points to a storage location that contains additional
keyword descriptors In order to support an implementation of noncontiguous keyword
descriptor data.

The data portion of this descriptor is an address pointer in the PCS subaddress space.
Byte 0 is the most significant address byte, and byte 1 Is the least significant address
byte in binary form.

• *ZO-*Z9, ZA-'ZZ L = available for adapter-specific use.

Refer to the specific adapter section for a description.

3-12 General Architectures

Hardware VPD Descriptor Summary
The following sections define the minimum requirements of various hardware components of
a system.

Rack Record
Descriptors

The required descriptors for the rack record are as follows:

Keyword
*PNL
*ECL
*FNL
"TML
*FCL
*SNL
*MFL
*RNL

Dacrlptlon
Part number
Engineering change level
Field replacement unit number
Machine type and model {for the primary rack)
Feature code (for secondary, attached racks)
Serial number
Manufacturer
Rack name (letter designation).

Implementation Notes
Rack configuration data Is supplied by manufacturing in NVRAM. The rack name is a letter
designation (A, B, C) used by diagnostic programs to locate problem FRUs. This Information
must be Input by a customer engineer from the hard card using a configuration and system
management utility if this unit is field installed. The serial number specified must match the
extemal label on the system unit.

Enclosure Record
Descriptors

The required descriptors for the enclosure record are as follows:

tc.yword
*PNL
*ECL
*FN L
*SN L
-TM L
*DLL
*MF L

Deecrlptlon
Part number
Engineering change level
Field replacement unit number
Serial number (externally visible)
Machine type and model
Drawer level (if rack-mounted)
Manufacturer.

implementation Notes
An enclosure represents a physical package. It can be a drawer in a rack, a deskside
system, a table-top system, a portable file, a free-standing tape drive, or other tree-standing
unit. Enclosures are normally machine type and models; however, feature codes can also be
designated.

This lnfonnation must be Input by a customer engineer from the hard card using a
configuration and system management utility if this unit is field-installed. The serial number
specified must match the extemal label.

Vrtal Product Data 3·13

Processor Board Record

Descriptors
The required descriptors for the processor board record are as follows:

Keyword
*PNL
*ECL
*Pl L
*FNL
*ALL
*ALL
*ALL
*PC L
*ZO L-"Z9 L

Implementation Notes

Description
Board part number
Engineering change level
Processor ID
Field replacement unit number
ROM level and ID (IPL ROM)
ROM level and ID (on card sequencer (OCS) ROM)
ROM level and ID (seeds ROM)
Processor component definition (specifies speed and processor model)
Processor module lnfonnation.

The board description represents a reflection of the physical packaging of a processor unit.
The processor board is the physical unit that contains the processor modules.

1/0 Board Records

Descriptors
The required descriptor for the 110 Board record is as follows:

Keyword O.Crtptlon
*EC L Engineering change level.

Implementation Notes
The 110 Board contains the VO slots for installing VO adapters. If a model contains only a
system board or a combination board, the value in the System VO register designates the
level of the hardware components supporting the interface to the logic normally associated
with the VO Board.

As currently Implemented in most models, the 110 Board level is identified by an 8-bit code In
a System VO register. Each level is incremented by one. Software locates the corresponding
part number and the EC level by table lookup.

Memory Records

Descriptors
The required descriptors for the memory records are as follows:

Keyword
*PN L
*SNL
*FN L
*MFL
*S2 L
*ECL
*SLL
"ZO L
*Z1 L
*Z2 L
*Z3L

3-14 General Architectures

O.Crlption
Part number
Serial number
Field replacement unit number
Manufacturer
Size in megabytes
Engineering change level
Slot location (software)
EC level left Data Multiplexer module
EC level Right Data data multiplexer module
EC level Controller module
SIMM product definition (PD) code.

Implementation Notes
The initial memory board does not support VPD. The default data of all zeros Is written to
the board immediately after startup. If the board is revision level 2 or higher, the real VPD is
retumed on the first read operation. If the board is revision level 1 (initial release), all zeros
are retumed on the first read operation.

Extra 110 Board Record
The keywords specified depend on the function provided by the board. The function should
be compatible with the requirements for a system, an VO Board, or other adapters. The
minimum requirements always include the •PN and *EC keywords.

SCSI Attached Device Records
The exact Information can vary from vendor to vendor; however, the data supplied by the
Inquiry command on the SCSt interface contains machine type and model, part number, EC
or revision level, serial number, and microcode infonnation (the AL and LL keywords as
appropriate). Some units provide VPD for the device enclosure unit as well as data for the
loglc board associated with the unit, where each can be a FRU. Serialization is always
required. Software must provide a FRU number ff one is not contained In the
machine-readable VPD.

Device Required Descriptors
The required device descriptors are as follows:

Keyword Dncrlptlon
*PN L Part number
'"EC L Engineering change level
*FN L Field replacement unit number
*TM L Machine type end model
*SN L Serial number (matches extemal bar code label)
*MF L Manufacturer.

Optional Descriptors
The optional device descriptors are as follows:

Keyword Deacrlption
*AL L ROM level and ID (If ROM Is present)
*LL L Loadable ROM level and ID (minimum level required).

Standard VO Attached Devices
The exact data can vary from device to device making the ROM level (RL) and loadable
microcode level (LL) conditionally required.

oevlce Required Descriptors
The required device descriptors are as follows:

K8yword
*PN L
•ecL
*111 L
*FNL
*SNL
*MFL

Description
Part number
Engineering change level
Machine type and model
Field replacement unit number
Serial number (matches external bar code label)
Manufacturer.

Vital Product Data 3-15

Conditionally Required Optional Descriptors
The optional device descriptors are as follows:

Keyword O..Crlptlon
*AL L ROM level and ID (if ROM is present)
*LL L Loadable ROM level and ID (minimum level required).

Micro Channel Adapter Requirements
The preferred method of Implementation is to use the Programmable Option Select (POS)
register subaddressing space during board setup. When POS registers 6 and 7 contain
values other than X'OOOO', POS register 3 ls a port that accesses a read-only memory (ROM
or EPROM) module containing vital product data in the keyword descriptor format. For
example, when POS register 6 equals X'01' and POS register 7 equals X'OO', a one-byte
load operation from POS register 3 reads data from address X'0001' in the EPROM
containing VPO. When POS register 6 equals X'02' and a load from POS register 3 of 1 byte
reads from the address X'0002', and so forth. An alternative address is X'FF01 '.

A header Is deftned that Immediately precedes memory containing the descriptor keywords.
It Is reccmmended that a pluggable EPROM be written at the lime of manufacture on a
part-by-part basis (for serialization and incorporation of the latest EC level information).

An alternative method of machine-readable vital product data (VPD) allows the adapter to
provide the data in an adapter-specific manner. For example, available ROM locations could
be used In a fixed-memory location known to the device driver for this adapter. The device
driver must gather and convert the VPD into the keyword format described for the preferred
method. The device driver then provides the lnfonnatlon to the operating system In the
manner required by the indMdual operating system. This alternative method allows existing
adapters to add VPD with the least hardware impact.

Most adapters designed for the system have implemented the preferred method with the
required keywords defined in the following lists:

• Required keywords:

Keyword DescrlpUon

*PN L Part number

*EC L EC level

*FN L FRU number for field replacement unit

*SN L Serial number

*MF L Manufacturer and location.

• Conditionally required keywords:

Keyword Description

*DSL

*ALL

*LLL

*NAL

*DDL

*DGL

3-16 General Architectures

Brief description (for example, SCSI, token ring, and 8-port asynchronous
adapter)

ROM level and ID information (if ROM is present)

Loadable microcode level (if loadable code is present)

Network address (If adapter type requires a network address)

Device driver level

Diagnostic level.

• Optional keywords:

Keyword Deecrlption

•RA L Pointer to ROM code on adapter

*RW L Pointer to Read and Write Adapter registers

*DS L Displayable message (additional description}

*LA L Pointer to loadable ROM code on adapter

*ZO L - *ZZ L Available for adapter-specific use.

Preferred Implementation - POS Configuration Registers
The POS addresses for the POS registers are shown In Figure 92.

POS
Addreau

POS
Reglatara

MSB LS8
7 B 5 4 3 2 1 0 .

Device ID Low

Device ID H~h
Device Unique Tc EN

DXO(LSB)

xxx1 (MSB)
XXX2(LSB)

xxx3(MSB)
XXX4(LSB)

xxd(MSB)
xxx9(LSB)
xxx7(MSB)

R1W Port tor Ext Conflg Data (VPO)
Device Unique

CHC]l:STATf Devk:e Unique

CHCK I Extended Addrea
CHCK I Extended Addrea

System wrltea add,..... Into
POS reglater a. Thia addreu
polnta rnto extel lded POS
reglatar •pace.

Sy8tem react. POS register 3 to
llCC8N data etonKI In extended
POS reglfttr apace.

'01'x

255x8 1--1
~

'FPx

Extended POS
Regldtr Space

Nolll: POS register 6 ls Initialized to a value of O when the power la turned on. A nonzero
value must be written to POS register e to access the extended POS register space.

Figura 92. POS Configuration Reglsters

Term O..Crlptlon
MSB Most significant byte
LSB Least significant byte.

Vital Product Data 3-17

TL

CRCValue

The total length in 2-byte worclS 10 read from this facility beginning at
address X'OO OB' to the end of the last data field. This field is two bytes in
binary format

This 2-byte value is a cyclic redundancy check (CRC) value starting at
address X'OO 08' through the end of s1ora99 (TL).

The CRC polynomial is 1 + X (exp 5) + X (exp 12) + X (exp 16), which Is the
same as the CRC polynomial use<! for most diskette recorclS.

Sample Layout of the Micro Channel Adapter VPD

Addreu
(Hex)

00 01

oo oa
00 14

00 22

00 2E

00 38

00 42

00 4C

00 52

00 58

Notee:

Con111nla of ROM and PROM
(ASCII numbera In perenth- are decimal, 1-byte value•}
V P D (00) (40) (252) (18B)

' P N (06) e 1 B 1 8 8 2 A

• E C (07) 4 9 5 0 2 e 2 5 3 6

• S N (06) o o 0 O o 1 9 4

• F N (05) 1 3 5 7 2 2

• M F (05) I B M 0 3 7

'DS(05)8-PORT

'DG(03)01

• D D (03) 0 1

1. The CRC value on data from X'OO 08' through X'OO ST Is the actual calctJlated
CRC for this example aata.

2. A- (daSh) Indicates binary zeros.

3. A () (parenthesis) indicates decimal byte length divided by 2.

Addreu
(Hex)

00 01

oo oa
00 14

00 22

00 2E

00 38

00 42

00 4C

00 52

00 58

3·20 General Archttectums

Content. of ROM and PROM
(Hex}

56 50 44 00 2B FC BC

2A 50 4E 06 36 31 38 31 36 38 32 41

2A 45 43 07 34 39 35 30 32 36 32 35 33 36

2A 53 4E 06 30 30 30 30 30 31 39 34

2A 46 4E 05 31 33 35 37 32 32

2A 40 46 05 49 42 40 30 33 37

2A 44 53 05 38 2D 50 4F 52 54

2A 44 47 03 30 31

2A 44 47 03 30 31

Chapter 4. Initial Program Load (IPL) ROM

Chapter Contents
Descnption

ROM Hardware
Hardware Initialization
Cold System Reset
Warm System Reset
ROM Warm IPL Function
Hardware-initiated IPL
Software-Initiated IPL
Check Stop

LEDs ···· · ·· · ·· · ·
NVRAM
IPL Record · · ·
Sec1Jrity
Service IPL

IPL ROM Components
lnrtial Sequence Controller
Core Seqoonce Controller
IPL Controller

IPL Controller Functions
IPL Devices

Power-On Self Tests
IPL ROM Functional Characleristics

Cold IPL Entry Point
ROM Warm IPL Entry Point
IPL Control Block ·
IPL Record .. .
Interface to the Loaded Code
NVRAM .. .
LED Operation

Errors ··················
ROM LEO Values During IPL ..
ROM Entry Point Table

Error Codas · · . - · · · · . · · · · · · ·

Initial Program Load (IPL) ROM

4-3
4.3
4.3
4-3
4.3
4-4
4-4
4-4
4-4

4-4
4.5
4-5
4·5
4-5
4-6
4-6
4-8
4·9

4-to
4·11
4-12
4·13
4-13
4-13
4-14
4·14
4-15
4-15
4-15
4-15
4·15
4-16
4·16

4-1

4-2 General Architectures

Description
The initial program load (IPL) is the sequence of events that occurs during the period of time
following a power-on reset or system reset operation until control of the processor is passed
to loaded code.

The IPL consists of initializing and testing the base hardware, and then finding, loading, and
executing code. The task of the read-only memory (ROM) resident IPL function is to verify
the portion of the machine necessary to initialize the IPL function, and then to start the IPL if
possible.

ROM Hardware
• ROM is located on the processor board.

• ROM addressing begins at X'FFFOOOOO'.

• IPL ROM code entry point address is X'FFF00100'.

• The configuration information is contained in ROM. The following configuration
infonnation is required:

- Processor board engineering change (EC) level and part number

- Processor serial number

- ROM part number and ID

- ROM copyright

- ROM version and level.

Hardware lnltlallzatlon
Prior to execution of IPL ROM code, hardware initialization puts the processor Into a known
working state.

For system units with the on card sequencer (OCS), hardware initialization Is performed by
the OCS before control Is passed to IPL ROM COde.

Cold System Reset
Cold system reset occurs at initial startup and in system units with on card sequencer (OCS)
when a hardware event (such as check stop) triggers the system reset finite state machine
and the resulting system reset count is not equal to o. Following hardware initialization by
OCS, e System Reset Interrupt occurs at X'FFF00100' In IPL ROM.

warm System Reset
A wann system reset occurs when a hardware event triggers the system reset finite state
machine and the resulting system reset count is equal to 1 . A System Reset interrupt occurs
and normally (machine state register (MSR) IP bit equals O) execution proceeds at location
X'00000100' in the operating system. The operating system can perform actions such as
dumping all or part of memory or invoking a debugger and then can reload the operating
system kemel. (If the MSR IP bit equals 1, execution proceeds at X'FFF00100', and a cold
IPL occurs.)

Initial Program Load (IPL) ROM 4-3

ROM Warm IPL Function
An entry point is provided in IPL ROM to facilitate reloading of the code specified in the IPL
record. The ROM warm IPL function reloads the IPL record and code specified in the IPL
record and passes control to the code while disturbing the existing machine state as little as
possible. The hardware is not reinitialized. The IPL device is redetermined.

Note: Upon receipt of a warm system reset interrupt, an operating system can elect to
reload itseH without branching to ROM.

Hardware-Initiated IPL
The following events cause hardware to generate a System Reset Interrupt:

• Power-on reset (POR).
• Reset button on operator panel pushed. Keyswitch lock enables the Reset button.
• Check stop for system units with OCS.

Software-Initiated IPL
A ROM warm IPL can be achieved by branching to the wann IPL entry point in ROM.

Software can designate the IPL device by way of the device lists in nonvolatile random
access memory (NVRAM). Software can expedite the IPL process by designating a known
IPL device near the front of the device lists. Only devices for which there is an IPL control
block entry Indicating the device is present and functional are eligible as IPL devices.
Software must provide a method for the operator to customize the device lists in NVRAM. If
the operator elects not to specify a device list, the ROM uses a predefined default list.

No special entry point has been defined in the IPL ROM to facilitate a software-initiated cold
IPL.

Check Stop

LEDs

For system units without OCS, (a check stop event causes a halt) the check stop count in
NVRAM Is always a value of O.

For system units with OCS, a check stop event causes a cold system reset.

Before executing the power-on sett test (POST), the IPL ROM inspects the check stop count
inNVRAM:

• A value of O Indicates that a check stop event did not occur. The IPL ROM continues
normal execution.

• A value of 1 indicates that a check stop event occurred and that OCS logged out check
stop data in NVRAM. The IPL ROM continues normal execution.

• A value greater than 1 indicates that an error occurred, which caused a check stop event.
The error was not detected by the OCS built-in self test (BIST). The IPL ROM puts an
error code in the light-emitting diodes (LEDs) and halts.

The system units have three 7-segment LEDs on the operator panel. The IPL ROM displays
appropriate values In the LEDs to indicate the progress of the IPL and to identify the point of
the error should a fatal error occur.

4-4 General Architectures

NV RAM
The system units have at least 8K bytes of NVRAM.

If NVRAM is valid, the IPL ROM reads the following information from NVRAM:

• IPL expansion code
• Nonna! device list
• Service device list
• Network boot information.

IPL Record

Security

In order to perfonn an IPL, a valid IPL record must reside on a valid IPL media. This record
consists of the following:

• An ID uniquely identifying it as an IPL record.

• A media description, such as characteristics of the IPL device.

• One or more load descriptions, such as location, length, and entry point of code to be
loaded (service or normal).

• The address where the code must load.

The IPL record tonnat is common for all devices.

A Keylock switch In the secure position disables the Reset button on the operator panel. In
the normal position, the Kaylock switch permits the IPL to Initialize only from trusted IPL
devices. In the service position, the Keylock switch allows the IPL to Initialize from any IPL
device.

The following are characteristics of the IPL device:

• Disabling of Reset button is a hardware function. Disabling stops the machine from
perfonning an IPL

• Disabling of the IPL from devices other than trusted IPL devices Is Implemented In the IPL
ROM. The IPL ROM controller code senses the posttlon of the keyswltch and If In the
normal position, only permits an IPL from trusted IPL devices. If a valid IPL record and
IPL code are found on a trusted IPL device, the IPL sequence completes; otherwise, the
IPL ROM loops, polling the trusted IPL devices for an IPL record and testing for a change
In keyswitch position.

Service IPL
The IPL ROM supports an IPL from an alternate load description. For systems with a service
keyswltch position, when the keyswltch is in the service position, the IPL ROM Ignores the
primary (normal) load description in an IPL record and loads the software described by the
alternate (service) load description. The IPL ROM Inspects the code length fields in the
primary and alternate load descriptions to determine what can be loaded from a particular
device. The length field must be a value of o If the code is not present.

This function is provided so that diagnostics or another alternate operating environment can
initialize the IPL from the same device as the operating system.

Initial Program Load (IPL) ROM 4-5

IPL ROM Components
The IPL ROM code is functionally divided into the power-on sett tests, the device interface
routines, and three control programs:

• Initial sequence controller (ISC)
• Core sequence controller (CSC)
• IPL controller (IPLC).

Initial Sequence Controller
The initial sequence controller (ISC) accepts control after hardware initialization and passes
control to the Core sequence controller (CSC) after completion. The following diagram gives
a general idea of what the ISC does.

Entry from ROM
Hardware lnltiallzatlon

lnltlallzatJon

ROM Cyclk:
Redundancy Check
(CRC)Teat

Check Stop
Count>1?

Execute
RAM POST

Enough Good
RAM tor IPL?

v ..
Exit to csc

(MIKOmpare)----

v--------

No--------91

Halt

Figure 94. Initial Sequence Controller Logic Flow

4-6 General Architectures

The following are major initial sequence controller functions:

• Performing initialization

- Reading ROM configuration information from non-CRC checked part of ROM and set
ROM size and speed In the Storage Control Unit Configuration register (SCCR)

- Setting Initial LED values

- Performing other Initialization as required.

• Activating system ROM cyclic redundancy check

- Halting if mlscompare.

• Inspecting check stop count

- If o or 1, continuing normal execution

- If greater than 1, halting with an error code In LEDs.

• Executing RAM POST

- Determining memory configuration (Includes setting configuration register extents).

- Finding enough good memory. At least 1 M-byte memory is required. (2M-bytes
memory are required on some systems.)

- Testing memory and creating a bit map.

- Storing results of RAM POST into the IPL control block.

• Inspecting retum code from the RAM POST.

- Halting if the amount of good memory is less than required for the system.

Initial Program Load (IPL) ROM 4-7

Core Sequence Controller
The core sequence controller accepts control from the initial sequence controller and passes
control to the IPL controller. The core sequence controller sequences through the POSTs.
These POSTs complete the testing performed by the IPL ROM. The following diagram gives
a general idea of what the core sequence controller does.

Entry from lnltlal Sequence Controller

ROM Wann
Syatem ReMt

Call Next POST

No
l..aet POST?

Yu

Exit to IPL Controller

Figure 95. Core Sequence Controller

Fatal
Error

The following are functions of the core sequence controller.

• Executing POSTs in a predefined order

HALT

• Passing a pointer from POSTs to the IPL control block to record results
• Passing return codes from POSTs to the Core sequence controller.

4-8 General Archnectures

IPL Controller
The IPL controller accepts control from the core sequence controller and passes control to
loaded code. The following diagram gives a general idea of what the IPL controller does. It Is
the job of the IPL controller to find a successful IPL path. If an IPL attempt Is not successful,
the IPL controller continues to cycle through the IPL device list (Devllst), trying to Initiate an
IPL from each IPL device.

Entry from Core $equence Controller

No

No

No

Keyawltch
Secure?

CheckNVRAM
for Device um

Device Ll8t
Empty?

Bulld Default
Device Llet

Get Device
from Llet

lolldlPL
Record

Valld IPL
Record?

Wiii Boot
Code Flt?

Load OK?

Figure 96. IPL controller

No

lnlUallze
System State Exit to

Code

Initial Program Load (IPL) ROM 4-9

IPL Controller Functions
The following are functions of the IPL controller.

1. NVRAM CRC test. Run NVRAM cyclic redundancy check on portions of NVRAM
containing configured IPL device selection sequence . .

2. Builds the list of IPL device candidates based on the following:

- Keyswitch position

- Device lists (if present).

3. Cycles through created device lists.

4. Gets the candidate from the list.

5. Otherwise attempts to toad the IPL record from candidate device. (If the device ls the
small computer systems interface (SCSI) disk, the IPL controller finds a memory area to
store the bad block map.)

6. If the keyswitch is not in the serviee position, looks for an IPL record in which the primary
code description length field Is not o.

7. If the keyswltch Is In the service position, looks tor an IPL record in which the alternate
code descliptlon length field Is not o.

8. If the valid IPL record is not loaded, gets the next candidate from the list.

9. If all candidates have been attempted, rebuilds the list and retry.

10.Loads code. The code loaded in the system's minimum required good memory space is
loaded contiguously. Beyond that boundary, the loading skips around memory bad blocks
If the flag byte in the IPL record says to do fragmentation.

- If the code does not fit in RAM, gets the next candidate from the list.

- If all candidates have been attempted, rebuilds the list and retry.

11. Initializes machine state for execution of loaded code.

12.lf an IPL was performed from a diik, the volume ID (unique ID) is saved in the IPL control
block.

The syslem is left In real mode with the following:

- External interrupts disabled

- All good memory initialized with good error checking and correction (ECC).

4-1 0 General Architectures

IPL Devices

- Any IPL device used inactive

- Memory contents as shown in Figure 97.

Loaded Code
I Low

Bad Block Map

IPL Record/CR Record (1 K byte)

IPL ROM S1ack Arm (32K bylm)

Expeneion Code from NVRAM (H
p.....,t)

IPL Controller and Device
lnterfac:e Routlna (32K bylee)

IPL Control Block (Varlable)

Location of Lut Bad Memory
Block

: Area of < ROM Requirements

Figure 97. RAM map

13. Pass control to code loaded. The following parameters are passed to the loaded code in
registers:

- Pointer to IPL control block.

- The IPL control block contains pointers to other things (such as memory bit map).

The IPL devices supported are:

• Standard feature 3.5-inch diskette
• 5.25-inch diskette
• 7012 direct bus-attached (OBA) disk drive
• SCSI adapter-attached IPL devices
• ROMscan
• Ethernet adapter
• Token Ring adapter.

Initial Program Load (IPL) ROM 4-11

Trusted (Normal) Default IPL Device Selection Sequence
The following sequence is the trusted (normal) default IPL device order.

1. ROMscan
2. Direct bus-attached file (7012 disk drive)
3. SCSI device
4. Token Ring adapter
5. Ethemet adapter.

Service Default IPL Device Selection Sequence
The default service IPL device list Is as follows:

1. Standard VO diskette 0, and then 1
2. OBA file (7012 disk drive)
3. SCSI device (CD-ROM, tape)
4. ROMscan
5. SCSI device (disk)
6. Token Ring adapter
7. Ethemet adapter.

Power-On Self Tests
Tests run during the execution of the IPL ROM, before any load from an IPL device, are
referred to as power-on sett tests (POSTs). The IPL ROM executes POSTs to determine the
presence and functionality of those portions of the system required for a successful IPL The
results of these tests are collected in a data structure in RAM called the IPL control block.
The IPL ROM testing Is limited to those portions of the machine necessary for an IPL: the
base system (RAM and 1/0 Channel Controller) and the IPL devices. The IPL ROM code
does not halt due to the absence or failure of hardware except where that absence or failure
directly precludes the IPL.

If an error is detected during a POST, lnfonnatlon about the error is retumed for resolution.

Except for base system function, testing performed by IPL ROM POSTs is minimal. The IPL
device POSTs test an adapter's functionality and device presence. The following tests are
performed:

• RAMPOST
• VO channel controller (IOCC) POST
• IPL device POSTS.

RAM POST
• Processor and memory interface tests (Memory Control Unit)
• Memory test.

IOCCPOST
• Processor and IOCC interface tests
• IOCC register tests
• Bus test (IOCC to Standard VO)
• Direct memory access (OMA) test
• Test interrupts.

4-12 General Architectures

IPL device POST•
• Standard and feature diskette drive test

- Adapter
- Device presence.

• 7012 OBA disk drive test
- Adapter ID which is detennined and saved
- Adapter
- Device presence.

• SCSI disk test
- Adapter IDs which are determined and saved
- Adapter
- Device presence.

• Token Ring adapter test
- Adapter
- Adapter initialization.

• Ethernet adapter test
- Adapter
- Adapter initlaJlzatlon.

Before calling a POST routine, the controller puts a value In the LEOS identifying the POST
so that If an error occurs while a POST is running and control does not return, the error Is
Identifiable.

POST routines are passed a pointer that Identifies to the area of the IPL control block In
which to store the test results. See Figure 97 on page 4-11 for more infonnatlon.

IPL ROM Functional Characteristics
The following section describes the IPL ROM entry points, control block, configuration
records, NVRAM, expansion code, and LED operation.

Cold IPL Entry Point
The ROM entry point Is at real address X'FFF00100'. This is the nonnal entry point following
poviter-on reset.

ROM Warm IPL Entry Point
An entry point is provided In IPL ROM to facilitate the reloading of the system after a warm
system reset. The entry point results in an IPL record and code being reloaded. On a warm
IPL, the system must pass the IPL control block pointer In general purpose register 3. The
pointers in the IPL control block are considered valid and reusable.

The ROM warm IPL entry point is stored in the ROM entry point table. A pointer to the ROM
entry point table is stored In the IPL control block by the IPL ROM.

The following requirements must be met to perform a ROM warm IPL:

• IPL ROM code operates In reaJ mode.

• ROM is mapped to real address X'FFFOOOOO' at startup.

• The IPL control block must be in memory, and a pointer to It must be passed to ROM In
register 3.

Initial Program Load (IPL) ROM 4-13

• The contents of the IPL control block, as saved by the previous execution of the IPL
ROM, must be intact. (The operating system must not delete the existing contents of the
IPL control block.)

• The linkage conventions and the register conventions established by the IPL ROM must
be followed.

• The IPL ROM code can alter the contents of memory.

IPL Control Block
The IPL control block is created In RAM during the execution of ROM. The IPL control block
size Is variable. The IPL controller is dependent on the IPL control block for the results of
power-on self tests executed for IPL devices. Loading of the IPL record and the code by the
IPL ROM does not overwrite the IPL control block. A pointer to the IPL control block is
passed to the loaded code. Loaded software can relocate the IPL control block and add
entries for IPL devices, but should preserve the rest of the IPL control block. The IPL control
block must be intact in order for the ROM warm IPL to work and loaded software must pass
ROM a pointer to the IPL control block.

The following shows some of the information that is stored in the IPL control block:

• NVRAM tests results
• Actual IPL device
• Service IPL flag
• Pointer to ROM entry point table
• Pointer to IPL record
• IPL ROM date stamp (IPL ROM build date)
• POST results (a unique structure for each POST)
• Results of expansion code CRC test
• A pointer to a memory bit map
• Pointer to the bad block map
• ROM part number and ID
• An area reserved for future use by IPL ROM.

IPL Record
The IPL record is located in a predefined area on all devices. The record formats are the
same for all devices. The IPL ROM loads the IPL record into a known location in RAM. The
record is 512 bytes long and contains the following:

• A unique ID to Identify the record as an IPL record

• A description of the media: for example, device characteristics

• Descriptions: for example, location, length, and entry point, of one or more code areas to
be loaded.

- The primary load description describes how to load the normal operating system if the
operating system is present on the device. If it is not present, the length field of the
primary load description must be o.

- The alternate load description describes how to a load an alternate operating
environment, such as diagnostics, if the altemate operating environment is present on
the device. If it is not present, the length field of the alternate load description must
beO.

4-14 General Architectures

Interface to the Loaded Code

NV RAM

The IPL ROM loads code into memory and passes the pointer to IPL control block in general
purpose register 3.

All machines have NVRAM as described in ·NVRAM" on page 4-5.

The following are read from NVRAM by ROM IPL code:

• Check stop count {stored by hardware)

• Device lists stored by software (trusted and service)

• Cyclic redundancy check (CRC) values for the areas of NVRAM from which data Is read
by the IPL ROM.

LED Operation

Errors

ROM displays the appropriate values in the LEDs before executing hardware tests so that If
the POST does not return to ROM, the appropriate value Is displayed as follows:

1. At the stan of each POST, the LEDs are set to the value for that POST.

2. If the POST completes correctly, the next POST Is started. Some POSTs execute so
quickly that if no error occurs, the display of the corresponding vaJue Is not visible to the
operator.

3. If the POST code does not complete correctly, the POST LED value remains displayed
Indicating the error.

4. If the POST detects an error, the sequence controller determines by way of the return
code whether the error is a fatal or nonfatal error.

5. If the error Is nonfatal, the error information Is preserved in the IPL control block, and the
sequence controller continues.

8. If the POST error Is fatal. the LEDs display an appropriate vaJue steadily, and operation
of the system halts.

Errors occurring during IPL ROM execution can be fatal or nonfatal. The fatal errors are
those that prevent an IPL. Nonfatal errors are those that leave the machine In a state to
Initiate an IPL. The operating system can Interrogate the IPL control block to determine If
errors occurred during IPL ROM execution.

ROM LED Values During IPL
ROM has been assigned a LED range of 200 to 299. Specific values are assigned during
code development. There are special cases where a series of informational data should be
presented in the LEDS. Refer to the problem solving section of the product-specific
operator's guide for more information on ROM LED values.

The LED codes are displayed during execution of the IPL ROM. Refer to the problem
soMng section of the product-specific operator's guide for a list of the LED codes.

Initial Program Load (IPL) ROM 4·15

ROM Entry Point Table
The IPL control block contains a pointer to the ROM entry point table. The ROM entry point
table contains the entry point for the ROM warm IPL.

Error Codes
For the list of system error codes, refer to the problem solving section of the product-specific
operator's guide.

4-16 GeneralArchHectures

Index

A
address

calculation, 1-20
translation, 2-33

addressing model, 2·23
arbitration

B

definition, 2-13
OMA slave selection, 2-16
fairness modes, 2·16
non-preemptive burst, 2-16
ownership, 2-15
preemptive burst, 2-16
prtortty assignment, 2-1 5

basic transfer cycle
bus refresh, 2-19
dynamic but sizing

description, 2-18
protocols, 2·, 8
sequencing, 2· 18

VO bus cycles, 2-17
partial transfer cycles, 2-18
streaming data, 2-17

blg-endlan notation
addressing, 2·9
definition, 2·7

binary floating-point numbers, 1 ·34
bit, numbering conventions, 2-7
board oonflguration data, 2· 74
board configuration register, 2-86
branch proc:easor

condition register, 1-21
count register, 1 ·22
link register, 1 ·22
machine state register, 1 ·22
registers, 1 ·21

bUffer flush commands
buffer Invalidate, 2-67
bus master, 2-66
OMA slave, 2-67
IOCC buffers, 2-66
next buffer invalidate, 2-68

bUS
status register, 2-79
timeout, 2·90

bUs errors
bus time out

OMA, 2-20
IOCC, 2-20

channelcheck,2·19
invalid address, 2-19
partty errors, 2·19

bus UO, 2-7, 2-33
bus mapping registers, 2-82
bus master

access authority checklng, 2-48
buffered

control registers, 2-41
data transfer operation, 2-40
operations to system memory, 2-39

bus to bus data transfers, 2-47
error conditions, 2-47
transfers, 2-89
types supported, 2-39
unbuffered

control registers, 2-45
data transfer operation, 2-44
operations to system memory, 2-44

bus memory
OMA slave transfers, 2-61
packaging, 2-6
protection, 2-33
references, 2-6

bus notation
blg-endlan, 2-7
llttle-endian, 2-8

byte, numbering conventions, 2· 7
byte steering

8-byte streaming data protocol, 2-13
IOCC example, 2-12
llttle-endian steering, 2-11
PC bus byte, 2·11

c
central electronics complex, 1 ·5
check stop, 4-4
commands

disable, 2-50
enable, 2-50
IOCC, 2-63

component reset register, 2-81 , 2·90
consistency

architectural tools, 2-37
buffered mode, 2·37
programming model, 2-36
unbuffered model, 2·36

core sequence controller, 4-8

D
data

addressing, 2-8
bus to bus transfers, 2-47
chaining, 2-51
flow in the programming model, 2-37
format, 1 -33

Index X·1

date (continued)
handling, i-38
internal, 2-85
security, 2-7
transfer, 2-49

data cache synchronize (des) instruction, i -97
decrementer (DEC}, 1-85
decrementer interrupt, 1-86
default result, i -39
denormalization, 1 -36
denormalized numbers (+DEN), 1-35
dirty, 2-43, 2-56
disabled exponent overflow, 1-89
disabled exponent underflow, i-87
disabled state, 1 -44
OMA channels, 2-49
DMAslave

channel, 2-49
controller, 2-49
data transfer, 2-49
loading, 2-50
operations using tags

bus protocols, 2-60
description, 2-50
error conditions, 2-62
special sequences, 2-62
TCWs, 2-57
transfer, 2-53
transfers to bus memory, 2-61
transfers to system memory, 2-si

registers, 2-49, 2-54
registers using flags, 2-55
suspending an operation, 2-50
terminating an operation, 2-50

do not care state, 2-65
document conventions, 1-1 o
E
effecttve address

calculation, 1-20
definition, 1-19

enabled exponent overflow, 1-90
enabled exponent underflow, 1-88
enabled state, 1-44
enclosure record

descriptors, 3- i 3
implementation notes, 3-13

error codes, initial program load ROM, 4-16
errors

bus, 2-19
bus master, 2-47
detection, 2-90
OMA slave, 2-62
IPL ROM, 4-15
load conditions, 2-3i
store conditions, 2-31

exceptions
handling, 2-85
reporting, 2-85

X·2 General Architectures

execution model
IEEE operations, 1-45
multiply-add type instructions, 1-47

extended PCS register space, 3-i 9
external interrupt mechanism

accessing the EICRs, 1-65

F

addressing the EICRs, i-64
control registers, 1-84
EICR Mapping, i -66
EISBID registers, i-68
enable, 1-63
functions, i -64

EIM register, i -84
EIS register, 1 -64

Interrupt level control register, 1 -67
MFSPR RT, ILCR, i-68
MTSPR ILCR, RS, 1-68
PEIS registers, i-69
POWER, i-62
POWER2, 1-67
reading from the EICRs, 1-65
sources, 1-66
submitting interrupts, 1-66
writing to the EiC Rs, 1 -66

faimess mode, 2· 16
fixed-point exception register, 1-26
ftXed-point processor

fixed-point exception register, 1-26
general purpose registers, 1-25
multiply quotient register, 1-26
registers, 1-25

flags,2-53
floating-point control register, 1-29
floating-point data representation, i-33
floating-point exceptions

inexact exception, 1-44
invalid operation, i-40
overflow, i -42
types, 1-39
underflow, 1-44
zero divide, i -41

floating-point execution models
IEEE operations, i -45
multiply-add type instructions, i -4 7

floating-point integer conversion
infinity operand, 1-93
Large Operand, i-94
QNaN, i-94
results, 1 ·92
round Integer, 1-92
SNaN operand, 1-94

floating-point processor
binary floating-point numbers, i -34
control register, i-29
data format, 1 -33
data handling, i -38
denonnalization, 1-36

floating-point processor (continued)
denormalized numbers (+DEN), 1-35
execution models, 1-45
infinities (+INF), 1-35
nonnalization, 1-36
normalized numbers (+NOR), 1-35
not a number, 1-36
overview, 1-27
precision, 1-37
registers, 1-28
resource management, 1-45
rounding, 1 -37
status register, 1 -29
value representation, 1-34
zero values, 1-35

floating-point round to single model
description, 1-87
disabled exponent overflow, 1-89
disabled exponent underflow, 1 -87
enabled Exponent overflow, 1 -90
enabled exponent underflow, 1-88
infinity operand, 1-90
normal operand, 1-91
QNaN operand, 1-90
round single (sign, exp, frac, G, R, X), 1-91
SNaN operand, 1-90

floating-point status register, 1 -29
forms, Instruction, 1-12

G
general purpose registers, 1-25

H
hardWare, Initialization, 4-3
hardware VPD descriptor

enclosure record, 3-13
extra VO board record, 3-15
VO board records, 3-14
memory records, 3-14
minimum requirements, 3-13
processor board record, 3-14
rack record, 3-13
SCSI attached device records, 3-15
standard VO attached devices, 3-15

hung bus, 2-20

I
VO architecture, deviations from, 2-93
VO board records

descriptors, 3-14
extra, 3-15
Implementation notes, 3-14

VO buS protocols
arbitration

cycle, 2-14, 2·15
description, 2-13
OMA slave selection, 2-16
fairness modes, 2·16

non-preemptive burst, 2·16
preemptive burst, 2-16
priority assignment, 2·15

basic transfer cycle, 2-17
bus errors, 2·19
interrupt, 2-20
IOCC,2-13

1/0 interrupts
bus, 2-88
coded method, 2-90
mechanism, 2-69
miscellaneous, 2-68
native, 2-68
registers, 2-70
reserved, 2-68

1/0 segment register
address alignment, 2-28
data alignment, 2-28
definition, 2·26
fields, 2-26
load access authority checking, 2-29
load error conditions, 2-31
store access authority checking, 2-29
store error conditions, 2·31
string operations, 2-28

l/O space rules, 1 -94
implementation

board configuration register, 2-86
component reset register, 2·90
error detection, 2-90
UO interrupts, 2-90
IOCC configuration register, 2-86
Models 320, 32E, 32H, 520, 52H, 530, 530E,

53H,540,550,550E,550S, 730,930,and
950E, 2-86, 2-93

nonvolatile RAM, 2-87
streaming data protocol, 2-86
system VO structure, 2-86

implementation details
bus master transfers, 2-89
bus timeout, 2-90
deviations from the VO architecture, 2-93
IPL procedures, 2·91
power-on reset, 2-90
standard 1/0, 2-89
system registers, 2-87

inexact exception
action, 1-45
definition, 1-44

infinities (+INF), 1 ·35
infinity operand, 1 -90, 1-93
initial program load (IPL), 4-3
initial program load (IPL) ROM, 4-3
initial program load ROM

error codes, 4-16
functional characteristics, 4-13
NVRAM,4-5

Index X-3

initial sequence controller
check stop count, 4-7
Initialization, 4-7
logic flow, 4-6
RAM POST, 4-7
retum code, 4-7
ROM cycle redundancy check, 4-7

instruction, fields, 1-14
instruction cache synchronize (ics) instruction, 1-96
instruction formats

A form, 1-14
Bform, 1-12
D form, 1-12
description I 1 • 12
OS form, 1-12
fields, 1-14
I form, 1-12
M form, 1-14
SCfonn, 1-13
X form, 1-13
XFL form, 1-13
XFX form, 1-13
XL form, 1-13
XOform, 1-13

instructions
data cache synchronize, 1-97
Instruction cache synchronize, 1-96
others possibly requiring serialization, 1-97
serializing semantics, 1-95

interface, to the loaded code, 4-15
Interrupt definitions

alignment, 1-54
data storage, 1-51
extemal, 1-57
floating-point imprecise, 1-59
floating-point unavailable, 1-58
Instruction storage, 1·53
machine check, 1-50
program, 1-58
supervisor call, 1-60
system reset, 1-50
trace, 1·58

Interrupts, External Interrupt mechanism, 1-82
interrupts

control, 1-48
definitions for the system processor

architecture, 1-50
extemal interrupt mechanism, 1-87
function, 1-48
VO, 2-88, 2-90
1/0 bus protocols, 2·20
priorities, 1-60

invalid operation exception
action, 1-41
definition, 1-40

IOCC commands
buffer flush, 2-66
disable,2-65

X-4 General Architectures

enable, 2-65
end of Interrupt, 2-64
list of, 2-63
time delay, 2-63

IOCC configuration register, 2-74, 2-86
IOCC control registers, 2-7
IPL

controller, 4·9
hardware initiated, 4-4
procedures, 2-91
record, 4-5, 4-14
service, 4-5
software Initiated, 4-4

IPL control block, 4-14
IPL controller

devices
service default IPL device selection

sequence, 4-12
supported, 4-11
trusted (normal) default IPL device

selection sequence, 4-12
functions, 4-1 o

IPL entry point
cold, 4-13
ROM warm, 4-13

IPL ROM
check stop, 4-4
functional characteristics

cold IPL entry point, 4-13
errors, 4-15
interface to the loaded code, 4-15
IPL control block, 4-14
IPL record, 4-14
LEO operation, 4-15
NVRAM,4-15
ROM entry point table, 4-16
ROM LEO values during IPL, 4-15
ROM warm IPL entry point, 4-13

hardware, 4-3
hardware initialization, 4-3
hardware Initiated IPL, 4-4
IPL, service, 4-5
LEDs, 4-4
security, 4-5
service IPL, 4-5
software initiated IPL, 4-4
system reset

cold, 4-3
wann, 4-3

warm IPL function, 4-4
IPL ROM components

core sequence controller, 4-8
functional divisions, 4-8
initial sequence controller, 4-8
IPL controller, 4-9
power-on self tests, 4-12

K
keyword descriptor summary

A through C, 3-5
D through E, 3-7
F through M, 3-8
torVPD, 3-5
N through R, 3-1 D
S through Z, 3-11

keywords

L

conditionally required tor Micro Channel, 3-16
optional tor Micro Channel, 3-17
required tor Micro Channel, 3-16

large operand, 1-94
LEOS,4-4
LEDs, operation, 4-15
llttle.andlan notation

addressing, 2-10
definition, 2-8

load instruction
access authority checking, 2-29
addressing model, 2-23
effective addresses, 2-21
l/O addressing, 2-21
l/O effective address operating modes

IOCC control, 2-22
~occ effective addresses, 2-25
RT compatiblllty, 2-22, 2-24
standard bus, 2-21, 2-24

VO segment register, 2-26
issUlng. 2-21

loS8 of accuracy, 1-37, 1-44

M
memory

addressing, 1-19
effective address calculation, 1-20

memory records
descriptors, 3-14
Implementation notes, 3-15

Micro Channel
adapter requirements, 3-18
adapter VPD, sample layout, 3-20
extended POS register space, 3-19
keywords, 3-16
POS configuration registers, 3-17
preferred implementation, 3-17
system configuration protocol, 3-18

mode.I. floating-point Integer convert, 1-92
models, floating-point round to single, 1-87
multiply quotient register, 1-26

N
N pages, 2-33
Next pft, 1 • 75
no trap occurs, 1 ·39
nonvolatile RAM, 2-87

normal operand, 1-91
normalization, 1-36
normalized numbers {+Nor), 1-35
not a numbers (NaNs), 1-36
numbering conventions

bit, 2-7, 2-8
bus notation, 2-7
byte, 2-7
full- word store Instruction, 2-9
half-word store Instruction, 2·9
IOCC byte steering, 2-11
Pf'OC6SSOr notation, 2-7

NVRAM, 4-5, 4-15

0
overflow, 1-43
overflow exception

action, 1-42
definition, 1-43

p

insuring correct results, 1-43
resultant value, 1-43

port, 3-16
power-on reset, 2-90
power-on self test (POST)

description, 4-12
IOCC POST, 4-12
IPL device POSTs, 4-13
RAM POST, 4-12

precision, 1 -37
processor board record

descriptors, 3-14
Implementation notes, 3-14

processor notation
big-endian, 2-7
llttle-endian, 2-8

processors
branch, 1-21
central electronics complex, 1·5
description, 1-5
document conventions, 1-10
fixed-point processor registers, 1-25
floating-point, 1 ·27, 1-33
instruction formats, 1-12
interrupts, 1-48
memory addressing, 1·19
systems overview, 1·11
timerfacillties, 1-82

programmable option select (POS), 3-16
programming model

bus master, 2-39
data flow, 2-37
OMA slave, 2-49
OMS slave, operations using tags, 2-50
1/0 bus support functions, 2-21
110 interrupts, 2-68
VO segment register, 2·26
IOCC commands, 2-83

Index X-S

programming model (continued)
load instruction, 2-2i
maintaining consistency, 2-36
protection, 2-33
stare instruction, 2·21
TCW table, 2-33
translation, 2-33

Q
ONaN operand, 1 -90, 1-94
quiet NaN, 1-36

R
rack record

descriptors, 3-13
implementation notes, 3-13

read-only memory (ROM), 4-3
real address, 2-21, 2-53, 2·57
real memory, 1-20
real-time clock (RTC)

decrementer
description, 1-85
interrupts, 1-86
reading, 1-86
setting, 1-86
usage, 1-86

initializing, 1-84
reading, 1-84
RTCL, 1-82, 1-83
RTCU, 1-82, 1-84
setting, 1-84

registers
board configuration, 2-86
branch processor, 1-21
buffered bus master control, 2-41
bus mapping, 2-82
bus status, 2-79
component reset, 2-81, 2-90
OMA slave control, 2-50
fixed-point processor, 1-25
floating-point, 1-28
floating-point status and control, 1-29
VO interrupt, 2-70
VO segment, 2-26
interrupt level control, 1-67
IOCC configuration, 2-74, 2-86
POS configuration, 3-17
storage control, 1-70
system, 2-84, 2-87
tag control elements, 2-54
TCW/tag anchor address, 2-80
unbuffered bus master control, 2-46

ROM
hardware, 4-3
warm IPL function, 4-4

ROM entry point table, 4-1 B
ROM LED values, during IPL, 4-15
round integer, (sign, frac, gblt, rbit, xblt,

round_mode), 1-92

X-6 General Architectures

round single, (sign, exp, frac, G, R, X), 1-91
rounding, 1-37

s
sample layout, Micro Channel adapter VPO, 3-20
SCSI attached device records

device required descriptors, 3-15
optional descriptors, 3-i 5

security, 4-5
semantics

other Instructions possibly requiring
serialization, 1-97

serializing, 1 ·95
cases, 1-95

serialization
cases. i-95
data cache synchronize, 1-97
instruction cache synchronize, 1 -96
other Instructions possibly requiring

serialization
ctt, 1·98
ell, 1-98
deist, 1-98
dclz, 1-98
load/store to 110, 1-98
mtrnsr, 1 -97
mtspr, 1-98
mtspr SOR 0, 1 -98
mtspr TIO, 1 ·98
mtsr, 1-98
mtsri, 1-98
rfi, 1-97
rfsvc, 1-97
SVC, 1-97
tibi, 1-97

semantics of Instructions
cases, 1-95
instruction modification, 1-95
page in, 1-95
page out, 1 -96
synchronization on local 110 operations,

1-95
signaling NaN, 1-36
SNaN operand, 1-90, 1-94
special facilities

board configuration data, 2-74
bus mapping register, 2-82
bus status register, 2· 79
component reset register, 2-81
IOCC configuration register, 2-74
IOCC registers. 2-72
TCW/tag anchor address register, 2-80

standard 110
address map, 2-89
attached devices

conditionally required optional descriptors,
3-16

device required descriptors, 3-15

standard 110 (continued)
definition, 2.a.4
description, 2.a.4

storage control
features, 1-69
registers, 1-70
segment registers, 1-70
storage description register, 1-72
virtual address translation, 1-72

Storage control registers, Storage description, 1-71
store Instruction

access au1hority checking, 2-29
address spaces, 2-21
effective addresses, 2-21
UO addressing, 2-21
UO effective address operating modes

IOCC control, 2-22
IOCC effective addresses, 2-25
RT compatibility, 2-22, 2-24
standard bus, 2-21, 2-24

l/O segment register, 2-26
issuing, 2-21

streaming data protocol, 2-86
structural overview

configuration tree, 3-4
VPD,3-4

system configuration protocol, 3-18
system data set, 3-5
system VO

definition, 2-84
description, 2-84
nonvolatile RAM, 2-84
system registers, 2-84

system UO structure
bus VO, 2·7
description, 2-3
exception handling, 2-85
exception reporting, 2-85
implementation, 2-86
programming model, 2-21
special facflltles, 2-72
standard VO, 2-84
system l/O, 2-84

system memory
description 1 2-6
OMA slave transfers, 2-61
protection, 2-33

system registers, 2-87
system reset

cold, 4-3
wann, 4-3

system structure
bus memory, 2-8
data security, 2-7
IOCC, 2-4
IOCC control registers, 2-7
programming model, 2-4

system memory, 2-6
virtual memory, 2-6

systems overview, 1-11

T
tag

description, 2-50
OMA slave, 2-53
table, 2-51, 2-52
word 0, 2-53
word 4, 2-53

TCWtable
mapping, 2-33
organization, 2-34
protection information, 2-33

TCW/tag anchor address register, 2-80
t!mer facilities, real-time clock, 1-82
tiny, 1-36
tiny result, 1-44
translate control word (TCW), 2-5, 2-57
trap

enabled, 1-39
not implemented, 1-39

u
underflow exception

action, 1 -44
definition, 1-44
denormalizing a number, 1 -37

v
value representation, 1-34
virtual address, 1 -20
virtual address translation

address aliasing, 1-80
description, 1-72
hash table entry group (HTEG), 1-76
hashed page table (HTAB), 1-73, 1-76
hashed page table search, 1-n
page protection, 1-81
page table entry (PTE). 1-n
storage access. recording mechanism, 1-81

. storage protecnon mechanism, 1-81
virtual memory, 2-6
vital product data (VPD)

characteristics, 3-3
customer assistance, 3-4
description, 3-3
hardware descriptor summary, 3-13
Importance, 3-3
keyword descriptor, 3-5
Micro Channel adapter requirements 3-16
seivice personnel assistance, 3-4 '
structural overview, 3-4
system data set, 3-5

Index X-7

z
zero divide exception

action, 1-41
definition, 1-41

zero values (+O), 1 ·35

X-8 General Architectures

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	1-81
	1-82
	1-83
	1-84
	1-85
	1-86
	1-87
	1-88
	1-89
	1-90
	1-91
	1-92
	1-93
	1-94
	1-95
	1-96
	1-97
	1-98
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90
	2-91
	2-92
	2-93
	2-94
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08

