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About This Book 

This manual describes architecture features that are common to the system family. 

Note: The Information in this book can also be found in the CD-ROM Hypertext Information 
Base Library. This online documentation is designed for use with the lnfoExplorer 
hypertext retrieval system. 

Who Should Use This Book 
This book Is an overview of the operation ol the system. It is Intended for programmers and 
engineers who understand computer architecture and programming concepts and who 
develop hardware and software products for the system family. 

How to Use This Book 
overview of Contenta 

This book contains the following chapters: 

• Chapter 1, •Processors,• describes the central electronics complex, the document 
conventions, a general systems ovelVlew, instruction formats, and memory addressing. 

• Chapter 2, •system VO Structure," describes bit and byte numbering conventions, l/O bus 
protocols, the programming model, load and store instructions, the translation, protection, 
and TCW table, the bus master, the OMA slave, IOCC Commands, Buffer Flush 
commands, VO Interrupts, special facilities, the system l/O and standard VO, exception 
reporting and handling, and implementation details. 

• Chapter 3, "Vital Product Data," contains the keyword descriptor summary, the hardware 
VPD descriptor summary, the Micro Channel adapter requirements, and a sample layout 
of the Micro Channel adapter VPD. 

• Chapter 4, •1n1t1al Program Load (IPL) ROM," describes IPL ROM components, IPL ROM 
functional characteristics, and error codes. 

overview of Reference Library Contents 
This general information manual, is one pan of the hardware technical Information library. 
Thia manual describes features that are common to the system family. Since the last edition, 
new products have evolved that feature economy of cost and size. Check the front of each 
chapter In this manual for a note specifying which models are covered In the chapter. The 
General Architectures manual should be used in conjunction with the following hardware 
technical information manuals: 

• POWERstation and POWERssrver Hardware Technical Information-Options and Devices 
(SA23-2646) 

• 7011 POWERstation and POWERssrvsr Hardware Technical Information (SA23-2666) 

• 7012 POWERstation and POWERserver Models 34x, 35x. 36x, and 37x Hardware 
Technical Information (SA23-2680) 

• 7013 POWERstation and POWERserver Models 550L, 57x, 5Bx, 58H, and 590 Hardware 
Tschnical Information (SA23-2684) 

• 7015 POWERserver Models 97x, 98x, and 99x Hardware Technical Information 
(SA23-2686). 
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Highlighting 
The following hlghlighting conventions are used in this book: 

Bold Identifies commands, keywords, files, direciOlies. and other il8ms whme 
names are predefined by the system. 

Italics Identifies parameters whose actual names ex values are to be ~ by 
the user. 

Monospace Identifies examples of specltlc data vaJues, ~ of rext ~IO wt'll 
you might see displayed, examples of port>ons of program code smlar IO 
what you might write as a programmer. mess~ from the sysaem. 0t 

information you should actually type. 

Related Publlcatlons 
The following is a list of related publications. Fcx lnfonnation on ~ these p iblic.iict-. 
contact your authorized dealer or marketing representative. 

• IBM RISC System/8000 System Over"'9w (GC23-2.COS) 

• Personal SysterrV2 Hardware lnterfaoe Technical Reference; .4rchilectutw (SS.U:-9808) 

• AIX Version 3.2 Assembler Languaf1s Reference (SC23-21 an 
• AlX Version 3.2 Kernel Extensions and De\'ice Suppott Progranrrwtg Coapes 

(SC23-2207) 

• AJX Version 3.2 Problem Solving Gulde and Rslereta (SC23-2204). 

Ordering Publlcatlons 
You can order IBM publications from your IBM sales rept898f1tatrYe ex. in the U.S .. from IBM 
Customer Publlcationa Support at 1800879-2755. ti you tMMMMI you are en1iled to 
publications that were not shipped wi1h your RISC Syst.elW8000 Of ADC ~. oonlml::t 
your IBM sales representative Of' Customer Publications Support tor ....mnc:e. 

To order additional copies of this book. use Order NunUf' SA23-2&43. 
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Description 
This section describes the central electronics complex (CEC) for the POWER2 and POWER 
lmplementatlons of the RISC System/6000, the document conventions, a general systems 
overview, instruction formats, and memory addressing. 

A POWER processor is used in this system family. Like earlier processors, the POWER 
processor employs a simple register-oriented Instruction set that is completely hardwired, 
and features a pipelined implementation and an efficient storage hierarchy. This enables the 
processor chip set to run an instruction almost every cycle. Unlike earlier processors, 
however, this unit employs several advanced architectural and lmpleinentation features 
including separate Instruction and data caches, zero-cycle branches, multiple Instruction 
dispatch, simultaneous running of fixed- and floating-point operations, and overlapped 
running of register-register (RR) operations and load and store commands. As such, the unit 
combines the slmpllclty of an Instruction set with sophisticated hardware design techniques 
to achieve a short cycle time and a low cycles-per-Instruction (CPI) ratio. 

In the POWER2 Implementation, six Instructions can be executed in a single cycle: a 
branch, two fixed-point, two floating-point, and a Condition register loglcaJ Instruction. 
Counting the floating-point multiply-add Instruction as two operations, this yields a peak run 
rate of eight operations per cycle. In the POWER Implementation, four Instructions can be 
executed In a single cycle: a branch, a fixed-point, a floating-point, and a Condition register 
logical instruction. Counting the floating-point multiply-add Instruction as two operations, this 
yields a peak run rate of five operations per cycle. 

Note: This chapter provides Information for system models 32x, 34x, 35x, 38x, 37x, 52x, 
53x, 540, 55x, 56x, 57x, 58x, SSH, 59x, 730, 930, 95x, 97x, 98x, and 99x. 
Information for other system models can be found In the product-specific technical 
information manual for those models. 

The processor chip sets deacribed In this chapter are representative of the chip sets used In 
the models mentioned in the preceding paragraph. The megahertz number of the processor 
chip set varies depending on the system model. 

Central Electronics Complex 
The POWER and POWER2 processor chip sets form the central electronics complex (CEC) 
and have up to eleven semi-custom chips: a fixed-point unit (FXU), a floating-point unit 
(FPU), an instruction cache and branch processing unit (ICU), four data cache units (OCU), 
a memory control unit (MCU), an Input/Output (VO) Channel controller a Serial Optical 
Channel converter, and a clock chip (CLK). Every memory board contains two data 
multiplexing modules and one control module for inter1eaving. 

There are four basic processor chip sets in this family of system units. The first chip set 
shown In Figure 1 on page 1-6 Is the POWER2 implementation having the following 
characteristics: 

• Fixed-point unit with two execution units 
• Floating-point unit with two multiply add units 
• 32K-byte instruction cache 
• 2581<-byte data cache. 
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This implementation supports configurations with two, four, or eight memory boards. A two 
memory board configuration supports a 128K-byte data cache and a 128-bit memory 
interface. A four or eight board configuration supports a 256K-byte data cache and a 256-blt 
memory interface. The eight chips (ICU, FXU, FPU, 4X OCU, and MCU) are packaged on a 
muttlchip carrier. The VO subsystem can contain up to two extended input/output (XIO) 
modules. 

Multi-chip CPU Module 

ICache 
Reload Bua 
(Quad Word) 

ICU 
PBUS 

Micro 
Channel 

lnetructlon Bus 
Dlapatch Bua Micro 

(Quad Word) Channel 
Bua 

FPU FXU MCU I 
FPU Data FXU Date XIO XIO 

(2 Quad Worda) (2 Single Worda) 

EJEJEJEJ SIOBua J 
ROM Dam Bua 

Memory Data Bua (8 Word•) 

r I 1 

DD DD 4 00 DD -o- -o- -D- -o-- - - - - - - -- - - - - - - -- - - - - - - -

Note: Some ayatema have only two memory board•. 
Some ayatema have only one XIO module. 

POWER2 Syatem Configuration, 8 Word Memory Bua 

Figure 1. First Processor Chip Set 
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The second chip set has two data cache units and a system memory interface that is 64 bits 
wide. 

The third chip set uses the same modules, but has four data cache units and a 128-bit bus 
to system memory. 

The second and third chip sets a have an instruction cache unit with BK bytes. It has an 
Input and output unit (IOU) that combines the 1/0 channel controller (for Micro Channel bus) 
and the serial link logic. Figure 2 shows the chip sets described previously with four data 
cache units like the second chip set. 

I-cache (2W) 

'8 Reload (2W) 
FPU 

ICU I-Bua (2W) 8 

P-BUS(1W) 

Syetem lfO Bue (2W) 

I 
{1W) 

8 
I M-BUI 
I (4W) 

FXU I 

8 
~temllOBue 

MCU 

llO Channel COntroller 
and Serlal Optlcal 
Channel .Converter 

M 
• m 
0 
r 
y 

B 
0 

• r 
d 

• 

Tranelatlon Control 
Word RAM Optlcal Channet Converter 

lfO Interface Logic 

Micro Channel Prime 

Figure 2. Second and Third Processor Chip Sets 
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The fourth chip set Is shown in Figure 3. This chip set has an Instruction cache unit with 32K 
bytes of chip memory. The VO subsystem can contain up to two XIO modules and a serial 
link logic for system serial optical channels. The XIO module, contains the VO channel 
control unit that generates the Micro Channel Interface. 

l·Bua (2W) 

ICU FXU 

P-Bua (1W) i---+------' 
(1W) 

MCU 

ROM 

XIO 
Number1 

Micro Channel 
Prime to the 
Combination 
Board 

1-Cect. 
Aelolld (2W) 

Memory 
Boarda 

SyntmllO 
Bua(2W) 

LOClll 
llO 

XIO" 
Number2 

Micro Channel 
Prime to the 
Optional llO 
ao.rd 

DCU 

II-Bua 
(4W) 

FPU 

(2W) 

Serial* 
Link Logic 
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*The Hrlal llnk loglc la optional on aome rnodela. 
-rhe XIO Number 2 la only avallable on aome modela. 

Figure 3. Fourth Processor Chip Set 
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The POWER2 and POWER implementations have an ICU that contains a two-way 
set-associative instruction cache. It runs branch instructions and Condition register logical 
instructions, and supports interrupts. In many cases, branches cost zero cycles because the 
ICU looks ahead in the instruction stream and removes branches from the stream. In a 
given cycie, the ICU in the POWER implementation can dispatch two instructions (two to the 
FXU, or two to the FPU, or one to the FXU and one to the FPU) by way of the I-bus shoWn 
in Figure 1 on page 1-6. The ICU in the POWER2 Implementation can dispatch four 
Instructions. The floating-point unit contains a full 64-bit double-precision floating-point data 
flow and conforms to the IEEE 754 binary floating-point standard with software support 
Floating-point instructions can run in parallel with fixed-point Instructions for maximum 
perfonnance. The FXU contains the general purpose registers and the arithmetic logic units, 
and runs all fixed-point Instructions. The FXU includes an address tranSlatlon and data 
protection unit that makes precise interrupts easier to implement with minimal perfonnance 
penalty. The FXU also provides the directories and control for the data cache, and controls 
the running of fixed-point load, floating-point load, and store Instructions. 

In the POWER2 implementation four DCUs provtde a four-way set-associative data cache. 
The OCUs form an eight-word (four or eight memory boards) and a tour-word (two memory 
boards) interface to memory, two four-word (4W) Interfaces to FPU, and two single-word 
(1 W) interfaces to FXU. In the POWER Implementation four DCUs provide a four-way 
set-associative data cache. The DCUs form a four-word (4W) Interface to memOfY, a 
two-word (2W) Interface to FPU, and a single-word (1W) interface to FXU. DCUs contain 
error checking and correction (ECC) and bit steering logic. They provide the data path for 
Direct Memory Accesses (OMA), and supply the path for Instruction cache (I-cache) reloads. 
The MCU contains the controls and configuration registers for system memory. The MCU 
provides the data path between 110 and processor chip set for VO load and store 
instructions. The MCU also interfaces to the ROM that contains the system lnltiaJization 
code for the processor chip set, also referred to as the initial program load read-only 
memory (IPL ROM). 

The processor bus (P-bus) shown in Figure 1 on page 1-6 is used to send the address to 
the MCU for D-cache (data cache) reloads (by FXU) and for I-cache reloads (by ICU). It is 
used for I-cache translation look-aside buffer (TLB) reloads (by FXU), and for 1/0 loads and 
stores (by FXU). The P-bus is also used tor moves to and from special registers (for 
example, Segment registers, Unk register, and Machine State register) between FXU and 
ICU. The system VO bus is used to transfer the OMA data between the IOU and system 
memory by way of the DCU, and provides a path for 110 load and store operations between 
the FXU and the IOU by way of the MCU. 

The VO unit contains an VO channel control unit that generates the Micro Channel Interface. 
The VO channel control unh uses the data stored In translation control word (TCW) and tag 
tables for address translation and data protection duting 1/0 operations. 
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Document Conventions 
The following conventions are used throughout this document 

• Quadwords are 128 bits, doublewords are 64 bits, words are 32 bits, halfwords are 
16 bits, bytes are a bits. 

• All numbers are decimal unless specified in some special way. 

• b'nnn' means a number expressed in binary fonnat. 

• ~ nnrl means a number expressed in hexadecimal format. 

• n x b'O' means n zeros. 

• n x b'1' means nones. 

• (RAIO) means the contents of register RA if the RA field has the value 1 through 31, or 
the value o If the RA field is o. 

• (Rx) means the contents of register Rx. 

• (FRx) means the contents of ~er FRx. 

• X(p) means bit p of register or field X. 

• X sub p means bit p of register or field X. 

• X(p-q) means bits p through q of register or field X. 

• X(p .. q) means bits p through q of register or field X. 

• X sub p-q means bits p through q of register or field X. 

• -.(RA) means the ones complement of the contents of register RA. 

• /,II, Ill, ... means a field that is ignored by the hardware. 

• The symbol II is used to describe two fields that are appended or concatenated to each 
other. For example, 01011111 isthesameaso10111. 

• All bits in registers that are reserved are O on read and can be either o or 1 on write. 

• 2••n means 2 raised to the n° th power. 

• Field i refers to bits 4 x i to (4 x Q + 3 of a register. 

• Positive means greater than O. 

• Negative means less than 0. 

• Instructions are assumed to be nonprMleged unless stated otherwise in the instruction 
description. 
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Systems Overview 
The processor or processor unit contains the sequencing and processing controls for 
instruction fetch, instruction execution, and interrupt action. The following classes of 
instructions can be executed by the processing unit: 

• Branch processor instructions 
• Fixect.point processor instructions 
• Floating-point processor instructions. 

Refer to AIX Ve.rsion 3.2 Assembler Language Reference for information on a specific 
instruction. 

See Figure 4 for a representation of the logical partitioning provided by the system 
architecture. The processing unit is a word-oriented fixed-point processor and in a 
doubleword-oriented floating-point processor. The system architecture uses 32-blt 
word-aligned Instructions and provides for byte, halfword, word, and doubleword operand 
fetches and stores between system memory and a set of 32 general purpose registers 
(GPRs), and between system memory and a set of 32 floating-point registers (FPRs). 

Progr11mmed i... 
l/O ...- l 

Fixed-Point 
ProceHor 

i.. ..a.I ,.. ....., 
Branch i... ..... 

Proceaaor ...- -.-
GP Ra h 

XER l MQ 
Data CR SRRO Cache 

LA SRR1 

CTR MSR 
L....t i... ... 

Floating-Point ...- ... 

lnatructlon Proceaeor 4~ 

C.Che 

FPRe • FPSCR 
_._ ... 

Main Memory 

Direct Memory AcceN 

Figure 4. System Architecture View 
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Instruction Formats 

Forms 
DForm 

OS Form 

BForm 

I Form 

All instructions are 4 bytes long and are located on word boundaries. Thus, whenever 
Instruction addresses are presented to the processing unit (as in branch instructions) the 
two low-order bits are ignored. Similarly, whenever the processing unit develops an 
instruction address, its two low-order bits are 0. 

Bits O through 5 always specify the opcode. For XO-form instructions, an extended opcode 
is specified in bits 22 through 30. For all other X-form instructions, an extended opcode is 
specified in bits 21 through 30. For A-form instructionS, an extended opcode is specified in 
bits 26 through 30. 

The remaining bits contain one or more alternative fields for the different instruction formats. 

0 6 11 18 

[ OPCD RT RA D 

RS SI 

FRT UI 

TO 

BF 

FRS 

0 6 11 18 30 

OPCD 1: I:: I OS 
I xoj 

0 8 11 18 30 31 

I OPCD I BO I Bl I BO IAA!ucl 

0 6 30 31 

OPCD u IAAlucl 
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SC Form 

0 6 11 18 20 27 30 31 

I OPCD I '" I "' I ~1 I LEV IFL21 SA I LI( I 

XFonn 

0 8 11 18 21 31 

l OPCD RT RA RB EO I Re J 
FRT FRA FRB 

BF BFA SH 

RS SPR NB 
FRS I 

TO 

BT 

XL Form 

0 8 11 16 21 31 

OPCD 1: I:~ I BB I EO I LKI 

XFX Form 

0 8 11 21 31 

I OPCD I RT I FXM I EO I Rel 
XFL Fonn 

0 8 18 21 31 

I OPCD I FLM IFReleo I Rel 
XO Form 

0 8 11 18 21 22 31 

I OPCD I RT I RA I RB I OE I EO• I Rel 
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A Form 

MForm 

A-form instructions are used for four operand instructions. The operands. all floating-point 
registers, are specified by the FAT, FRA, FRB, and FRC fields. The short extended opcode, 
XO, is in bits 26 through 30. 

0 6 11 16 21 26 31 

I OPCD FRA FRB jFRC jxo 

0 8 11 16 21 28 31 

I OPCD RS RA -~-B __ ...... I MB 

Instruction Fields 
The followlng instruction fields are defined for the various Instruction formats: 

Flelda Deacrlptlon 

AA (30) Following Is the description of the Absolute Address bit. 

BA (11-15) 

Bit O..Crlptlon 

0 

1 

The immediate field represents an address relative to the 
current instruction address. For 1-fonn branches, the 
effective address of the branch is the sum of the LI field 
sign extended to 32 bits and the address of the branch 
Instruction. For B-form branches, the effective address of 
the branch is the sum of the BO field sign extended to 
32 bits and the address of the branch instruction. 

The immediate field represents an absolute address. For 
I-form branches, the effective address of the branch is the 
LI field sign extended to 32 bits. For B-form branches, the 
effective address of the branch is the BO field sign 
extended to 32 bits. 

Field used to specify a bit in the Condition register (CR) to be used es a 
source. 

BB (18-20) Field used to specify a bit in the CR to be used as a source. 

BD (18-29) Immediate field specifying a 14-blt signed twos complement branch 
displacement, which is concatenated on the right with b'OO' and sign 
extended to 32 bits. 

BF (8-8) Field used to specify one of the CR compare result fields or one of the 
FPSCR fields as a target. If i = BF(fhS}, then field i refers to bits i x 4 to 
(I x 4) + 3 of the register. 

BFA (11-13) Field used to specify one of the CR compare result fields, one of the 
FPSCR fields, or one of the XER fields as a source. If j = BFA(11-13), then 
field j refers to bits j x 4 to Ox 4) + 3 of the register. 

Bl (11-15) Field used to specify the bit in the CR to be used as the condition of the 
branch. 
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Fie Ida 

BO (6-10) 

BT(&-10) 

D (16-31) 

DS(16-29) 

EO (21-30) 

EO' (22-30) 

FL1 (16-19) 

FL2(27-29) 

FXM (12-19) 

Description 

Field used to specify different options that can be used in conditional branch 
instructions. Following is the encoding for the BO field: 

BO Deacrlptlon 

OOOOx Decrement the CTR, then branch if the decremented 
CTR ~ O and condition is false. 

0001 x Decrement the CTR, then branch if the decremented 
CTR = o and condition is false. 

001xx Branch if condition is false. 

0100x Decrement the CTR, then branch if the decremented 
CTR ;t 0 and condition is true. 

0101x Decrement the CTR, then branch if the decremented 
CTR"' o and condition is true. 

011xx Branch If condition is true. 

1x00x Decrement the CTR, then branch if the decremented 
CTR~O. 

1 x01x Decrement the CTR, then branch if the decremented 
CTR=O. 

1x1xx Branch always. 

Field used to specify a bit in the CR as the target of the result of an 
instruction. 

Immediate field specifying a 16-bit signed twos complement integer sign 
extended to 32 bits. 

Immediate field specifying a 14-bit signed twos complement integer to 
which a b'OO' is concatenated on the right. 

A 10-bit extended opcode used in X-form Instructions. 

A 9-blt extended opcode used in XO-form instructions. 

A 4-blt field in the Supervisor Cell (SVC) instruction. 

A 3-blt field in the SVC instruction. 

Field mask, identifies which CR field is to be updated. 

Bit Deacrlptlon 

12 CR Field 0 (bits 00-03} 

13 CR Field 1 (bits 04-07) 

14 

15 

18 

17 

18 

19 

CR Field 2 (bits Der 11) 

CR Field 3 (bits 12-15) 

CR Field 4 (bits 16-19) 

CR Field 5 (bits 20-23) 

CR Field 6 (bits 24-27) 

CR Field 7 (bits 28-31). 
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Field• 

FLM (7-14) 

FRA (11-16) 

FRB (16-20) 

FRC (21-26) 

FRS (&-10) 

FRT (6-10) 

I (1&-19) 

LEV(20-28) 

U(&-29 

LK (31) 

1 • 16 General Architectures 

Deacriptlon 

Field mask, identifies which FPSCR field is to be updated. 

Bit Description 

7 FPSCR Field 0 (bits oo--03) 

8 FPSCR F1eld 1 {bits 04--07) 

9 FPSCR F1eld 2 (bits 08-11) 

10 FPSCR Field 3 (bits 12-15) 

11 FPSCR Field 4 (bits 16-19) 

12 FPSCR Field 5 (bits 20-23) 

13 FPSCR Field 6 (bits 24-27) 

14 FPSCR Field 7 (bits 28-31 ). 

Field used to specify an FPR as a source of an operation. 

Field used to specify an FPR as a source of an operation. 

Field used to specify an FPR as a source of an operation. 

F"ield used to specify an FPR as a source of an operation. 

Field used to specify an FPR as the target or an operation. 

Immediate field used as the data to be placed into a field in the FPSCR. 

Immediate field in the SVC Instruction that addresses the SVC routine by 
b'1' II LEV II b'OOOOO' if SA = O. 

Immediate field specifying a 24-blt signed two's complement integer that Is 
concatenated on the right with b'OO' and sign extended to 32 bits. 

Following is the description of the Link bit. 

Bit O..Crlptlon 

0 

1 

Do not set the Link register. 

Set the Link register. If the instruction is a branch, the 
address of the instruction following the branch instruction is 
placed into the Link register. If the instruction Is an SVC, the 
address of the instruction following the SVC instruction Is 
placed Into the Link register. 



Flelda Description 

IMB (21-25) & ME (26-30) 

NB (16-20) 

OPCD(D-5) 

OE (21) 

RA (11-15) 

RB (16-20) 

Re (31) 

RS (6-10) 

RT(&-10) 

Fields used to specify a 32-blt string, consisting of either a substring of ones 
surrounded by zeros or a substring of zeros surrounded by ones. The 
encoding is as follows: 

Flelda Description 

MB (21-25) 

ME (26-30) 

Index to start bit of substring of ones. 

Index to stop bit of substring of ones. 

Let mstart = MB and mstop = ME. 

If mstart < mstop + 1 
then mask (mstart..mstop) =ones 
mask (all other) = zeroes. 

If mstan = mstop + 1 then 
mask (C>-31) = ones. 

If mstart > mstop + 1 then 
mask (mstop+ 1 .. mstart-1) =zeros 
mask (all other) = ones. 

Field used to specify the number of bytes to move in a load or store string 
immediate. 

The basic opcode field of the Instruction. 

Used for extended arithmetic to inhibit the setting of OV and SO In XER. 

Field used to specify a GPR to be used as a source or as a target. 

Field used to specify a GPA to be used as a source. 

Following is the description of the Record bit. 

Setting Deacrlptlon 

0 Do not set the Condition register (CR). 

1 Set the Condition register to reflect the result of the 
operation. 

For fixed-point instructions, CR bits (O to 3) are set to reflect the result as a 
signed quantity. The result as an unsigned quantity or a bit string can be 
deduced from the EO bit. 

For floating-point instructions, CR bits (4 to 7) are set to reflect 
Floating-Point Exception, Floating-Point Enabled Exception, Floating-Point 
Invalid Operation Exception, and Floating-Point Overflow Exception. 

Field used to specify a GPA to be used as a source. 

Field used to specify a GPA to be used as a target. 
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Fields 

SA(30) 

SH'(16-20) 

SI (16-31) 

SPR (11-15) 

TO (6-10) 

UI (16-31) 

XO (26-30) 

XO (30, 31) 
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Description 

The following describes the SVC Absolute. 

Setting Description 

0 

1 

SVC routine at address '1' II LEV II b'OOOOO'. 

SVC routine at address X'1 FEO'. 

Field used to specify a shift amount. 

Immediate field used to specify a 16-bit signed integer. 

Special Purpose register. 

SPA Special PurpoM Reglater 

00000 (00) IVIQ 

00001 (01) XER 

00100 (04) from RTCU 

00101 (05) from RTCL 

00110 (06) from DEC 

01000 (08) LR 

01001 (09) CTR 

10100 (20) to RTCU 

10101 (21) to RTCL 

10110 (22) to DEC 

11010 (26) SARO 

11011 (27) SRA 1. 

TO bit ANDed with condition. 

TO bit ANDed with Condition 

8 Compares less than. 

7 Compares greater than. 

8 Compares equal. 

9 Compares logically less than. 

10 Compares logically greater than. 

Immediate field used to specify a 16-bit unsigned integer. 

A-form instructions contain a 5-bit extended opcode. 

OS-form instructions contain a 2·bit extended opcode. 



Memory Addressing 
Within the context of a program executing on the processing unit {PU), system memory is 
organized Into doublewords, words, halfwords, and bytes, which are constrained to lie on 
boundaries that are multiples of their sizes. See Figure 5 for an example of byte, halfword, 
word, doubleword, and quadword memory addressing. 

en. Add ....... 

Byte Halfword Word Doubleword Quadword 

0000 
0000 

D-31 
0001 

0000 
0010 

0010 
0011 

0000 
0100 

0100 
0101 

31-83 0100 
0110 

0110 
0111 

1000 
0000 

1000 
1001 

32-G 
1010 

1000 

1010 
1011 

1000 
1100 

1100 
1101 

84-127 1100 
1110 

1110 
1111 

F"igure 5. Memory Organization 

Bytes in system memory are consecutively numbered starting with 0. Each number is the 
address of the corresponding byte. The 32-bit addresses computed for system memory 
access are tanned effective addresses and specify a byte in memory. System memory 
address arithmetic wraps around from the maximum byte address,~ - 1, to address a. 
System memory can be accessed by quadword, doubleword, word, halfword, or byte. The 
required number of bytes are fetched from a properly aligned area of memory. The rules 
when the operands are not property aligned are controlled by a mode bit, MSR(AL). See 
•Machine State Register" on page 1-22. 
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The mapping to real memory addresses is controlled by relocate (address translation) 
facilities. When the relocate facility is active, effective addresses generated by program 
execution are first transformed to 52·bit vinua/ address, which in tum are mapped to real 
memory. 

In general, the terms memory and address are used within the context of the effective 
addresses generated by the PU. 

All processor computations are perfonned in registers In the processing unit (PU). There are 
no Instructions, for instance, to add two numbers, one of which is in memory. 

Effective Address Calculation 
Effective addresses (EAs) are generated by instructions that reference data in system 
memory and by taken branch instructions. Address calculations use 32-blt two's 
complement binary arithmetic. A carry from bit O is ignored. 

A value of O In the RA field indicates the absence of the corresponding address component 
For the absent component, a O value Is used in forming the address. This is shown In the 
instruction descriptions as (RAIO). 

X-form Instructions are used for data references. Address computation adds the GPA 
contents designated by the RA field or the value O If RA equals a value of O with the GPR 
contents designated by the AB field. The computation is shown as (RAIO) + (RB). 

With D-form instructions, the 16-bit D field Is sign extended to form a 32-blt address 
component. In computing the effective address of a data element, this address component Is 
added to the GPA contents designated by the RA field or the value O if RA equals a value 
of o. 
With OS-fonn instructions, the 2-bits of zeros are added to the 14-bit OS field whH:h is then 
sign extended to form a 32-bit address component. In computing the effective address of a 
data element, this address component is added to the GPR contents designated by the RA 
field or the value O If RA equals a value of o. 
With 1-fonn branch instructions, the 24-bit LI field is concatenated on the right with b'OO' and 
sign extended to fonn a 32-bit address. When AA equals a value of 0, this address is added 
to the address of the branch instruction to form the effective address. If AA equals a value 
of 1, this 32-bit value is the effective address. 

With B-form branch Instructions, the 14-blt BO field Is concatenated on the right with b'OO' 
and sign extended to form a 32·bit value. If AA equals a value of o, this 32-blt value is added 
to the address of the branch Instruction to fonn the effective address. If AA equals a value 
of 1, this 32-blt value ls the effective address. 

With XL-form branch Instructions, bits o to 29 of the Link register or the Count register are 
concatenated on the right with b'OO' to fonn the effective address. 
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Branch Processor 
This section describes the registers and Instructions that make up the branch processor 
facilities. 

Branch Processor Registers 
This section describes the branch processor registers and their bit definitions. 

Condition Register 
The Condition register (CA) Is a 32-bit register that reflects the result of certain operations 
and provides a mechanism for tasting (and branching). 

0 31 

CR 

Bits Name 
OG-03 CR Reid 0 
04-4)7 CR Reid 1 
08-11 CR Rald2 
12-15 CRFleld3 
18-19 CR Fleld4 
20-23 CR Fields 
24-27 CR Fleld6 
28-31 CR Reid 7. 

The Condition register bits are grouped into eight 4-bit fields, named CR Field 0 through 
CR Fleld 7, which are set in one of the following ways: 

• A load or copy operation Into a specific CR field . 
• CR Field O can be set as the implicit result of a fixed-point operation. 
• CR Fleld 1 can be set as the implicit result of a floating-point operation. 
• As the result of either a fixed or floating-point compare operation Into a specified CR field. 

Instructions are provided to test these bits singly and in combination. 

When the record bit (Re) is set to 1 In most fixed-point instructions, the first three bits of CR 
Field o are set by a comparison of the result, which is interpreted as a signed integer, to a 
value of o. The fourth bit of CR Field O Is copied from the SO field of the XER. Add 
Immediate, Add Immediate Lower, and Add Immediate Upper Instructions set these four bits 
lmpllcltty. These bits are Interpreted as shown In the following list 

Bit O..Crlptton 

O Compares Less Than, Negative (LT). For arithmetic operations, the result is 
negative or less than a value of o. For compare operations, (RA)< SI, UI, 
or (RB). 

1 

2 

3 

Compares Greater Than, Positive (RB). For arithmetic operations, the result 
Is positive or greater than a value of O. For compare operations, (RA)> SI, 
UI, or (RB). 

Compares Equal, Zero (EC). For arithmetic operations, the result is a value 
of O or equal to a value of 0. For compare operations, (RA) = SI, UI, or (RB). 

Summary Overflow (SO). This Is a copy of the final state of XER(SO) at the 
completion of the instruction. 
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When the Re bit equals a value of 1 in all floating-point instructions except the Floating-Point 
Compare Instruction, CR Field 1 (Condition register bits 4 to 7) is set to the floating-point 
exceptions status. These bits are interpreted as shown In the following list: 

Bit Description 

4 

5 

8 

7 

Floating-Point Exception (FX). This is a copy of the final state of 
FPSCA(FX) at the completion of the Instruction. 

Floating-Point Enable Exception (FEX). This is a copy of the final state of 
FPSCA(FEX) at the completion of the instruction. 

Floating-Point Invalid Operation Exception (VX). This is a copy of the final 
state of FPSCR(VX) at the completion of the instruction. 

Floating-Point Overflow Exception (OX). This is a copy of the final state of 
FPSCA(OX) at the completion of the instruction. 

Condition register bits 4 to 7 are copies of bits o to 3 in the Floating-Point Status and Control 
register. 

Link Register 
The Link register (LR) Is a 32-blt register. The Link register provides the branch target 
address for the Branch Conditional Register instruction and holds the retum address (link 
address) for branch and link type Instructions and SVC instructions. 

0 31 

LR 

Count Register 
The Count register (CTR) is a 32-bit register. The Count register contains a loop count and 
Is automatically decremented during execution of the branch and count instructions, 
wrapping from X'OOOOOOOO' around through X'FFFFFFFP. The Count register also provides 
the branch target address for the Branch to Count Register Instruction. The Count register 
contains a copy of bits 16 to 31 of MSR and bits 16 to 31 of the SVC instruction after 
execution of that SVC instruction. Both registers can be copied to and from any GPR. 

0 31 

CTR 

Machine State Register 
The Machine State register (MSR) is a 32-blt register that defines the modal state of the 
processor. When the RFI Instruction is executed, bits 16 to 31 of SRR 1 are placed into bits 
16 to 31 of the MSR. The MSR can also be modified by the Move to Machine State Register 
Instruction. 

0 

Bit Name 
00-15 
16 EE 
17 PR 
18 FP 
19 ME 
20 FE 
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MSR 

Ducrlptlon 
Reserved 
External Interrupt Enable 
Problem State 
FPAvallable 
Machine Check Enable 
FP Exception Enable 

31 



21 
22 
23 
24 
25 
26 
27 
28 
29 
30-31 

SE 
BE 
FE 
AL 
IP 
IR 
DR 

PM 

Single-Step Enable 
Branch and Trap Enable 
FP Imprecise Enable 
Alignment Check 
Interrupt Prefix 
Instruction Relocate 
Data Relocate 
Reserved 
Performance Monitor Control 
Reserved. 

The following are the Machine State register bit definitions and settings: 

Bila Deacrlptlon 

~15 Reserved 

18 External Interrupt Enable (EE) 

Setting Dncrlptlon 

o The processor is disabled against extemal interrupts. 

1 The processor is enabled to take external interrupts. 

17 Problem State (PR) 

18 

19 

20 

Setting Description 

o The processor is privlleged to execute any instruction. 

1 The processor can only execute the nonprivlleged 
Instructions. 

Floating-Point (FP) Available 

Setting Deacrlptlon 

o The processor cannot execute any floating-point 
instructions, including floating-point loads, stores and 
moves. 

1 The processor can execute floating-point Instructions. 

Machine Check Enable (ME) 

Setting DMcrlptlon 

O Machine check interrupts are disabled. 

1 Machine check interrupts are enabled. 

Floating-Point Exception Interrupt Enable (FE) 

Setting Dncrlptlon 

O Program interrupts on floating-point enabled exception are 
disabled. 

1 Program interrupts on floating-point enabled exception are 
enabled. 
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Blta Deacrlption 

21 Single-Step Enable (SE) 

Setting 0.Crlptlon 

o The processor executes instructions normally. 

1 The processor generates a Single-Step type Trace Interrupt 
upon the successful execution of an instruction (the 
instruction does not cause any other type of interrupt). 

22 Branch and Trap Enable (BE) 

23 

24 
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Setting DeecrlptJon 

O The processor executes branch Instructions nonnalty. 

1 The processor generates a Branch and Trap type Trace 
Interrupt after completing the execution of a branch 
Instruction. 

FP Imprecise Enable (FE) 

Setting O..Crlptlon 

o FP Imprecise interrupts are disabled. 

1 FP Imprecise interrupts are enabled if MSR(FE) = o. 
Alignment Check (AL) 

Setting O..Crlptton 

o Alignment checking is off and the low-order bits of the 
address are Ignored. 

1 Alignment checking is on; alignment checking proceeds as 
follows: 

If bits 29, 30, or 31 of an address generated by a 
doubleword data memory reference instruction are nonzero, 
an alignment interrupt is generated If the hardware cannot 
pertonn the unaligned access. 
If bits 30 or 31 of an address generated by a word data 
memory reference instruction are nonzero, an alignment 
interrupt is generated if the hardware cannot perform the 
unaligned access. 

If bit 31 of an address generated by a halfword data 
memory reference Instruction is nonzero, an alignment 
interrupt Is generated if the hardware cannot perfonn the 
unaligned access. 
This checking does not apply to the load and store 
string-type instructions since these instructions always 
perform the unaligned access. Load and store multiple-type 
instructions always generate an alignment interrupt If bits 
30 to 31 of the effective address are nonzero. 

When the memory reference is to an VO segment, the 
address is sent to VO unmodified, regardless of the setting 
of the MSR(AL). 



Btta Deacrlptlon 

25 Interrupt Prefix (IP) 

Setting Dncrlptlon 

O Interrupts vectored to the effective address X'OOOxxxxx' 
where xxxxx is the interrupt offset. 

1 Interrupts vectored to the effective address X'FFFx.iocxX 
where xxxxx is the interrupt offset. This is intended to direct 
the interrupt to read only memory (ROM). 

26 Instruction Relocate (IR) 

Setting Deecrlption 

0 

1 

Instruction address translation Is off. 

Instruction address translation is on. 

27 Data Relocate (DR) 

0 

1 

28 Reserved 

Data address translation Is off. 

Data address translation Is on. 

29 Controls performance monitoring functions. 

3G-31 Reserved. 

Fixed-Point Processor Registers 
This section describes the registers in the fixed-point processor facility. 

General Purpose Registers 
All manipulation of Information Is done in registers internal to the processing unit (PU).The 
principal storage within the fixed-point processor is a sat of 32 general purpose registers 
(GPRs). Each GPA consists of 32 bits. See Figure 6 for an example of the general purpose 
registers. 

0 31 

GPROO 

GPR01 

GPR30 

GPR31 

Figure 6. General Purpose Registers 
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Fixed-Point Exception Register 
The Fixed-Point Exception register (XER) is in the fixed-point unit and is 32 bi1s wide. 

0 

Bit 

0 

1 

2 

31 

XER 

Deacrlptlon 

Summary Overflow (SO) 

The Summary Overflow bit is set to 1 whenever an instruction sets the 
Overflow bit to indicate overflow and remains set until software resets it. 
The SO bit is not altered by the compare instructions. 

Overflow (OV) 

The Overflow bit is set to Indicate that an overflow has occurred during an 
instruction operation. In the case of add and subtract instructions, it is set to 
1 if the carry out of bit o is not equal to the carry out of bit 1. Otherwise the 
OV bit is set to o. The OV bit is not altered by the compare instructions. 

Carry (CA) 

The Carry bit is set to Indicate a carry from bit o of the computed result. In 
the case of add and subtract Instructions, it is set to 1 if the operation 
generates a carry out of bit 0. Otherwise, the CA bit is set to o. The CA bit is 
not altered by the compare instructions. 

3-16 Reserved 

18-23 Used by the Load String and Compare Byte Indexed instructions as the 
byte being compared against. 

24 Reserved 

25-31 Used by Load String Indexed, Load String and Compare Byte Indexed, and 
Store String Indexed instructions to indicate the number of bytes loaded or 
stored. 

Multiply Quotient Register 
The Multiply Quotient (MO) register is a 32-bit register that provides a register extension to 
accommodate the product for the multiply instructions and the dividend for the divide 
instructions. The MQ register is also used as an operand of long rotate and shift instructions 
and as a temporary storage facility for store string instructions. 

0 31 

MQ 
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Floating-Point Processor Overview 
The floating-point processor (FPP) provides high-pertonnance execution of floating-point 
operations. Instructions are provided to perfonn arithmetic operations in floating-point 
registers and move floating-point data between memory and these registers. 

This architecture provides tor hardware to implement a floating-point system as defined in 
ANSVIEEE Standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic, but is 
dependent on supporting software to be in confonnance with that standard. 

A floating-point number consists of a signed exponent and a signed significand. The quantity 
expressed by this number is the product of the significand and the number 2 .. exponent. 
Encodings are provided in the data fonnat to represent finite numeric values, ± Infinity and 
Not-a-Number (NaN) values. Operations involving infinities produce results obeying 
traditional mathematical conventions. NaN values have no mathematical interpretation. Their 
encoding pennits a variable dlagnostic-lnfonnatlon field. They can Indicate such things as 
uninitialized variables and can be produced by certaln invalid operations. 

There are two classes of exceptional events that occur during instruction execution that are 
unique to the FPP: 

• FPP unavailable 
• Floating-point exception. 

The FPP unavailable event is signaled with a Floating-Point Not Available Interrupt. 
Floating-point exceptions are signaled with bits set in the Floating-Point Status and Control 
register and can generate a precise interrupt with the proper bits enabled. 

The Floating-Point Available bit is defined to enhance context switching performance for 
programs that do not require the use of FPP. The Floating-Point Available bit Is defined in 
MMachine State Register.ft on page 1-22. 

If the Machine State Register (Floating-Point) (MSR(FP)) bit equals 1, the FPP is available 
for use and floating-point instructions can be successfully executed. If the MSR(FP) bit 
equals 0, the FPP is unavailable for use, execution of any floating-point Instruction is 
suppressed, and a Floating-Point Unavailable Interrupt Is generated to signal the attempted 
use of the FPP in the unavailable state. 

The following floating-point exceptions are detected by the hardware: 

• Invalid Operation Exception 
a. SNaN 
b. Infinity - Infinity 
c. Infinity x Zero 
d. Infinity + Infinity 
e. Zero + Zero 
f. Ordered Compare With a NaN 

• Zero DMde Exception 
• Overflow Exception 
• Underflow Exception 
• Inexact Exception. 
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Each floating-point exception and exception sub-class (in the case of Invalid Operation 
Exception) has an Exception bit defined in the Floating-Point Status and Control Register. 
Each floating-point exception has an Enable bit defined in the Floating-Point Status and 
Control Register. See •Floating-Point Status and Control Register" on page 1-29 for 
definitions of these bits. A bit is defined in the MSR, Floating-Point Exception lntenupt 
Enable, or MSR(FE), which allows a precise program interrupt to be generated when an 
enabl~ floating-point exception occurs. 

Floating-Point Registers 
Implementations of this architecture provide 32 floating-point registers (FPA). The 
floating-point instruction fonnats provide a 5-bit field for specifying the FPRs used in the 
instruction execution. The FPRs are numbered 0 to 31. See Figure 7 for a representation of 
the floating-point registers. A Floating-Point Status and Control register controls the handling 
of floating-point exceptions and records status resulting from the floating-point operations. 

FPROO 

FPR01 

... . . . 

FPR30 

FPR31 

0 

Figura 7. Floating-Point Registers 

Each FPR contains 84 bits, which support the double-precision floating-point format. AJI 
operations that Interpret the contents of an FPR as a floating-point value use the 
double-precision floating-point format for this Interpretation. 

All floating-point operations other than load and store operations are performed on operands 
located In FPRs and place the result value In an FPR. Status infonnation is placed In 1he 
Floating-Point Status and Control register and In some cases in the Condition rvgister. 

Load and store double Instructions are provided that transfer 84 bits of data between 
memory and the FPRs in the FPP with no conversion. Load single instructions are provided 
to transfer and convert floating-point values In single floating format from memory to the 
same value In double floating format In the FPRs. Store single instructions are provided to 
transfer and convert floating-point values in double floating fonnat from the FPRs to the 
same value in single-floating fonnat In memory. 
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Floating-Point Status and Control Register 
The Floating-Point Status and Control register (FPSCR) contains the status and control flags 
for floating-point operations. Bits O to 19 are Status bits. Bits 20 to 31 are Control bits. 

0 31 

FPSCR 

Bit Name Oeecrlption 

00 FX Floating-Point Exception Summary 
01 FEX Floating-Point Enabled Exception Summary 
02 vx Floating-Point Invalid Operation Exception Summary 
03 ox Floating-Point Overflow Exception 

04 ux Floating-Point Underflow Exception 
05 zx Floating-Point Zero DMde Exception 
oe xx Floating-Point Inexact Exception 
07 VXSNAN Floating-Point Invalid Operation Exception (SNaN) 

08 VXISI Floating-Point Invalid Operation Exception INF - INF) 
09 VXIDI Floating-Point Invalid Operation Exception (INF+ INF) 
10 VXZDZ Floating-Point Invalid Operation Exception (O + O) 
11 VXIMZ Floating-Point Invalid Operation Exception (INF x 0) 

12 vxvc Floating-Point lnvalld Operation Exception 
(Invalid Compare} 

13 FR Floating-Point Fraction Rounded 
14 Fl Floating-Point Fraction Inexact 
16 c Floating-Point Result Class Descriptor 

18 FL Floating-Point Less Than 
17 FG Floating-Point Greater Than 
18 FE Floating-Point Equal 
18 FU Floating-Point Unordered 

20 Reserved 
21 Reserved 
22 VXSQRT Floating-Point lnvalld Operation Exception 

(Invalid Square Root) 
23 VXCVI Floating-Point Invalid Operation Exception 

(Invalid Integer Convert) 

24 VE Floating-Point Invalid Operation Exception Enable 
25 OE Floating-Point Overflow Exception Enable 
26 UE Floating-Point Underflow Exception Enable 
'71 ZE Floating-Point Zero Divide Exception Enable 

28 XE Floating-Point Inexact Exception Enable 
29 Reserved 
30 RN Floating-Point Rounding Control 
31 RN Floating-Point Rounding Control. 
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The format of the FPSCR follows: 

Bit Description 

O Floating-Point Exception Summary (FX). Every floating-point arithmetic 
instruction, floating-point compare instruction, and the Floating Round to 
Single instruction shall implicitly set FPSCR(FX) if that instruction causes 
any of the Floating-Point Exception bits In the FPSCR to transition from 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
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o to 1. Also, use of the mtfsb1 instruction, which causes any of the 
Floating-Point Exception bits in the FPSCR to transition from O to 1 shall 
implicitly set FPSCR(FX). The mcrfs instruction shall be able to implicitly 
reset the FPSCR(FX). And finally, the mtfsf, mtfsfi, mtfsb1, and mtfsbO 
instructions are able to set or clear FPSCR(FX) expliclUy. 

Floating-Point Enabled Exception Summary (FEX). This bit signals the 
occurrence of any of the enabled exception conditions. It is the 'OR' of all 
the floating-point exceptions masked with their respective enable. 

Floating-Point Invalid Operation Exception Summary (VX). This bit signals 
the occurrence of any invalid operation exceptions. It is the 'OR' of ail the 
invalid operation exceptions. 

Floating-Point Overflow Exception (OX). See "Overflow Exception· on 
page 1-42 for infonnation about this register. 

Floating-Point Underflow Exception (UX). See "Underflow Exception• on 
page 1-44 for Information about this register. 

Floating-Point Zero Divide Exception (ZX). See "Zero Divide Exception• on 
page 1-41 for infonnation about this register. 

Floating-Point Inexact Exception (XX). See ~Inexact Exception•on page 1-44 
for Information about this register. 

Floating-Point Invalid Operation Exception (SNaN) (VXSNAN). See ·invalid 
Operation Exception" on page 1-40 for information about this register. 

Floating-Point Invalid Operation Exception (INF - INF) (VXISI). see ·invalid 
Operation Exception" on page 1 -40 for infonnation about this register. 

Floating-Point Invalid Operation Exception (INF+ INF) (VXIDI). See Mlnvalid 
Operation Exception" on page 1-40 for information about this register. 

Floating-Point Invalid Operation Exception (O + O) (VXZOZ). See "Invalid 
Operation Exception" on page 1-40 for information about this register. 

Floatlng-F'olnt Invalid Operation Exception (INF x 0) (VXIMZ). See "Invalid 
Operation Exception" on page 1-40 for Information about this register. 

Floating-Point Invalid Operation Exception (Invalid Compare) (VXVC). See 
"Invalid Operation Exception" on page 1-40 for information about this 
register. 

Floating-Point Fraction Rounded (FR). The last floating-point instruction that 
rounded the intermediate result Incremented the fraction. 

Floating-Point Fraction Inexact (Fl). The last floating-point instruction that 
rounded the intermediate result produced an inexact fraction or a disabled 
exponent overflow. 



Bit Description 

15-19 Floating-Point Result Flags (FPRF). 

Bit Deecrlptlon 

15 Floating-Point Result Class Descriptor (C) 

16-19 Floating-Point Condition Code (FPCC). 

Bit Deacnptlon 

18 

17 

18 

19 

Floating-point less than or negative 
(Fl or<) 

Floating-point greater than or positive 
(FG or>) 

Floating-point equal or zero (FE or equals) 

Floating-point unordered or NaN (FU). 
Floating-point compare instructions always 
set one of the FPCC bits to 1 and the other 
three FPCC bits to o. Other instructions 
can set the FPCC bits with the C bit to 
encode these 5 bits to indicate the class of 
the stored result. See the following table for 
the floating-point result flags. Notice that in 
this case the three high-order bits of the 
FPCC retain their relational significance 
indicating that the value Is less than, 
greater than, or equal to zero. 

Floating-Point R•ult Flag• 

R•ult Flag• 
C<>=? R•ult Value Clua 

10001 -Quiet NaN 

01001 - Infinity 

01000 - Normalized number 

11000 - Denormalized number 

10010 -Zero 

00010 +Zero 

10111 + Denormalized number 

00100 + Normalized number 

00101 +Infinity 
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Bit 

20-21 

22 

23 

24 

25 

26 

27 

28 

28 

30-31 

Description 

Reserved. 

Floating-Point Invalid Square Root Exception. See •invalid Operation 
Exception" on page 1-40 for information about this register. 

Floating-Point Invalid Integer Convert Exception. See ·invalid Operation 
Exception" on page 1-40 for Information about this register. 

Floating-Point Invalid Operation Exception Enable (VE). See "Invalid 
Operation Exception" on page 1-40 for information about this register. 

Floatlng-Polnt Overflow Exception Enable (OE). See "Overflow Exception• 
on page 1-42 for Information about this register. 

Floating-Point Underflow Exception Enable (UE). See "Underflow 
Exception" on page 1-44 for information about this register. 

Floating-Point Zero Divide Exception Enable (ZE). See uZero Divide 
Exception" on page 1-41 for Information about this register. 

Floating-Point Inexact Exception Enable (XE). See "Inexact Exception" on 
page 1-44 for information about this register. 

Reserved. 

Floating-Point Rounding Control (RN). See •Rounding" on page 1-37 for 
information about this register. 

Setting Deecrlptfon 

00 Round to Nearest 

01 

10 

Round toward Zero 

Round toward +Infinity 

11 Round toward -Infinity. 

Note: Every exception bit In the FPSCR Is sticky (bits o to 12) except the Floating-Point 
Enabled Exception Summary and Floating-Point Invalid Operation Exception 
Summary bits. That Is, once sat they remain set until one of the following instructions 
possibly changes them: mtfsf, mtfsfi, mtfsbO, and mcrfs. 
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Floating-Point Data Representation 
This section describes how data is represented in the Floating-Point Processor. 

Data Format 
This architecture defines the representation of a floating-point value In two different binary 
fixed-length formats. The format can be a one-word format for a single-precision floating­
point value or a two-word fonnat for a double-precision floating-point value. The single 
format (see Figure 8) can be used for data in memory. The double fonnat (see Figure 9) can 
be used for data in memory and for data in Floating-Point registers. The length of the 
exponent and the fraction fields differ between these two forma1s. 

Is I EXP FRACTION 

0 1 31 

Figure 8. Floating-Point Single Format 

Is I EXP FRACTION 

0 1 12 83 

Figure 9. Floating-Point Double Fonnat 

Values In floating-point format are composed of the following fields: 

Field Deecrlptlon 
S Sign bit 
EXP Exponent + Blas 
FRACTION Fraction. 

Bit o Is the Sign bit. The xMSB bit Is the most significant bit of the EXP field, the xLSB bit 18 
the least significant bit of the EXP field. The fMSB bit is the most significant bit of the 
FRACTION field. The fLSB bit is the least significant bit of the FRACTION field. 

Representation of numerical values in the floating-point formats consist of a Sign bit S, a 
biased exponent EXP, and the fraction portion FRACTION, of the slgnlficand. The 
slgnificand consists of a Leading Implied bit concatenated on the right with the FRACTION 
field. This Leading Implied bit Is a 1 for nonnallzed numbers and a o for denormalized 
numbera and Is located in the Unit bit position (the first bit to the left of the binary point). 
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Values represented within the two floating point formats can be specified by the parameters 
listed in Figure 10. 

Parameter Format 

Sing le Double 

Exponent blu +127 +1023 
Maximum exponent +127 +1023 
Minimum exponent -126 -1022 

Wldth8 (blta) 
Format 32 64 
Sign 1 1 
Exponent 8 11 
Fraction 23 52 
Slgntflcand 24 53 

Figure 10. IEEE Floating-Point Fields 

The architecture requires that the FPRs of the FPP support the arithmetic instructions on 
values in the double-precision floating-point format only. 

Value Representation 
This architecture defines numerical and nonnumerical values representable within each of 
the two supported fonnats. The numerical values are approximations to the real numbers 
and include the normalized numbers, denormalized numbers, and zero values. The 
nonnumerical values representable are the infinities and the NaN values. The infinities are 
adjoined to the real numbers but are not numbers themselves, and the standard rules of 
arithmetic do not hold when they appear in an operation. They are related to the real 
numbers by order alone. Restricted operations among numbers and infinities can be 
defined. Figure 11 shows the relative location on the real number line for each of the defined 
entities . 

.. -INF I -NOR +NOR 

Figure 11. Approximation to Real Numbers 

The NaN values are not related to the numbers or infinities by order or value, but are 
encodings used to convey diagnostic information such as the representation of uninitialized 
variables. 

The following sections describe the different floating-point values defined in the architecture. 

Binary Floating-Point Numbers 
Machine-representable values are used as approximations to real numbers. Three 
categories of numbers are supported: normalized numbers, denormalized numbers, and 
zero values. 
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Normalized Numbers (+NOR) 
The following are values that have a biased exponent value in the range: 

• 1 to 254 In single fonnat 
• 1 to 2046 in double fonnal 

They are values in which the implied Unit bit Is 1. Normalized numbers are Interpreted as 
follows: 

NOR equals (-1 )-ax 2••E x (1.fraction) 

where s is the sign, E is the unbiased exponent, and 1. fraction is the significand that is 
composed of a leading Unit bit (Implied bit) and a fraction part. 

The ranges covered by the magnitude (M) of a normalized floating-point number are 
approximately equal to: 

Single format 

1.2x1 o--38 :s; M s 3.4x1 o**38 

Double format 

2.2x10**.....308 s M S 1.8x10**308 

Zero Values (+O) 
Zero values are values that have a biased exponent value of o and a fraction value of o. 
Zeros can have a positive or negative sign. 

Denormalized Numbers (+DEN) 
Denormalized numbers are values that have a biased exponent value of O and a nonzero 
fraction value. Thay are nonzero numbers smaller in magnitude than the rapresentable 
normalized numbers. They are values in which the Implied Unit bit Is 0. Denonnallzed 
numbers are Interpreted as follows: 

DEN equals (-1)**8 x 2••Emin x (O.fraction) 

where Emln Is the minimum representable exponent value (-128 for single precision, -1022 
for double precision). 

Infinities (+INF) 
Infinities are values that have the maximum biased exponent value of: 

• 255 in the single format 
• 2047 in the double fonnat. 

The fraction value of an infinity is zero. They are used to approximate values greater in 
magnitude than the maximum normalized value. 

Infinity arithmetic Is defined as the limiting case of real arithmetic, with restricted operations 
defined among numbers and infinities. Infinities and the real numbers can be related by 
ordering In the affine sense: 

-INF < every finite number< + INF 

Arithmetic on infinities is exact and usually does not signal an exception. Exceptions occur 
because of invalid operations. See •invalid Operation Exception• on page 1-40 for 
Information. 
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Not a Numbers (NaNs) 
NaN values are values that have the maximum biased exponent value and a nonzero 
fraction value. The Sign bit is ignored (NaN values are neither positive nor negative). If the 
high-order bit of the fraction field is 1, It is defined as a quiet NaN (ONaN); otherwise, it is 
defined as a signaling NaN. Quiet NaNs are used to represent the result of certain invalid 
operations. When the Invalid Operation Exception Is disabled, FPSCR(VE) equals 0. 
Examples include undefined arithmetic operations on infinities or NaNs. NaNs used in this 
manner can convey diagnostic information to help identify results from these invalid 
operations. Signaling NaNs are used to signal exceptions when they appear as arithmetic 
operands, while quiet NaNs propagate through most operations without signaling exceptions 
regardless of the condition of the operation. Specific encoding can thus be preserved 
through a number of arithmetic operations for Its intended use as diagnostic information. 
When a QNaN Is the result of an operation because one of the operands is a NaN or 
because a QNaN was generated due to a disabled Invalid Operation Exception, then the 
following rule is applied to determine the NaN with the High-Order Fraction bit set to 1 that is 
to be stored as the result. 

If (FAA) is a NaN 
Then (FAT) +- (FAA) 
Else If (FRB) Is a NaN 

Then (FRT) +- (FRB) 
Else if (FRC) is a NaN 

Then (FRT) +- (FRC) 
Else if generated ONaN 

Then (FAT) +- generated QNaN 

If the operand specified by the FAA is a NaN, that NaN is stored as the result. If the operand 
specified by the FRB is a NaN (if the Instruction specifies an FRB operand), that NaN is 
stored as the result. If the operand specified by the FRC is a NaN (if the instruction specifies 
an FRC operand), that NaN Is stored as the result. If a QNaN was generated due to a 
disabled Invalid Operation Exception, that QNaN is stored as the result. If a ONaN is to be 
generated as a result. the ONaN generated has a Sign bit of o, an exponent field of all ones 
and a High-Order Fraction bit of 1 with all other fraction bits o. Any instruction that generates 
a QNaN as the result of a disabled Invalid Operation generates this ONaN. 

Normalization and Denormallzatlon 
When an arithmetic operation produces an Intermediate result, consisting of a Sign bit, an 
exponent, and a nonzero slgnlficand with a o leading bit, it is not a normalized number and 
must be normalized before it Is stored. 

To normalize a number, the signlficand is shifted left while the exponent is decremented by 
one for each bit shifted, until the leading significand bit becomes 1. The Guard bit and the 
Round bit (See "Execution Model for IEEE Operations" on page 1-45) participate in the shift 
with zeros shifted Into the Round bit. The exponent is regarded as if Its range were 
unllmlted. If the resulting exponent value is less than the minimum value that can be 
represented in the format specified for the result, the intermediate result is said to be Tiny. 
The stored result Is determined by the rules described in "Underflow Exception" on 
page 1-44. The sign of the number does not change. 

When an arithmetic operation produces a nonzero intermediate result with an exponent 
value less than the minimum value that can be represented in the format specified for the 
result, the stored result is determined by the rules described in ~underflow Exception" on 
page 1 -44. This process may require de normalization. 
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Precision 

Rounding 

To denormalize a number, the significand is shifted right while the exponent is incremented 
by one for each bit shifted until the exponent is equal to the format minimum value. If any 
significant bits are lost in this shifting process then Loss of Accul3Cy has occurred and 
Underflow Exception is signaled. See "Underflow Exception• on page 1-44 for more 
information. The sign of the number does not change. 

When denormalized numbers are operands of multiply and divide operations they are 
prenormalized intemally before the operations are performed. 

All arithmetic operations are performed in floating-point double-precision. Floating-point 
single-precision is obtained with the implementation of four forms of instructions: 

1. Load Floating-Point Single 

This form of Instruction accesses a single-precision operand in memory, converts It to 
double-precision operand, and loads it into an FPR. No exceptions are detected on the 
load operation. 

2. Arithmetic operation performed In double precision 

3. Round to Floating-Point Single 

This form of Instruction rounds a double-precision operand to single-precision, checks 
the exponent for single-precision range, handles any exceptions according to respective 
enable bits, and stores that operand into an FPR as a double-precision operand. 

4. Store Floating-Point Single 

This form of Instruction converts a double-precision operand to slngle-preclslon and 
stores that operand into memory. If the operand requires denormallzatlon In order to fit in 
single-precision, It is denormalized prior to storing It. No exceptions are detected on the 
store operation. (Assumes step 3 has been executed.) 

All arithmetic instructions defined by this architecture produce an Intermediate result that can 
be regarded as being Infinitely precise. This result must then be written with a precision of 
finite length Into an FPR. After nonnallzatlon or denonnalizatlon, if the infinitely precise 
intermediate result is not representable, it must be rounded. 

Four modes of rounding are provided that are user-selectable through the Floating-Point 
Rounding Control field In the FPSCR. These are encoded as follows: 

RN Rounding Mode 
00 Round to Nearest 
01 Round towards Zero 
10 Round towards +Infinity 
11 Round towards -Infinity. 

Let Z be the Infinitely precise Intermediate arithmetic result or the operand of a convert 
operation. If Z can be represented exactly in the target format, rounding in all modes is 
equivalent to truncation of Z. If Z cannot be represented exactty in the target fonnat, let Z1 
and Z2 be the next largest and next smallest numbers representable in the target format that 
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bound Z, then Z1 or Z2 can be used to approximate the result in the target format. Figure 12 
shows the relation of Z, Z1, and Z2 . 

.----------By Incrementing LSB of Z 

l Infinitely Precl1e Value l I +.....---By Truncating after LSB ------,1 1 
I I I I I 
nz~ o nz~ 

Negative Values •4----+-I ----.~ Positive Value8 

Figure 12. Selection of Z1 and Z2 

The following rules specify the rounding in the four modes: 

Round To Neareat 

Round Toward Zero 

Round Toward +Infinity 

Round Toward -Infinity 

Choose the best approximation of Z1 or Z2. In case of a tie, 
choose the one that is even (least significant bit 0). 

Choose the smaller in magnitude (Z1 or Z2). 

ChooseZ1. 

ChooseZ2. 

The arithmetic instructions are defined for operations on vaJues that are in the double 
format. 

See •execution Model for IEEE Operations" on page 1-45 for a detailed explanation of 
rounding. 

Data Handling 
Instructions are defined to move floating-point data between the FPRs and memory. For 
double format the data is not altered during the move. For single-format data, a format 
conversion from single to double is performed when loading from memory into an FPR and 
a format conversion from double to single is performed when storing from an FPR to 
memory. No floating-point exceptions are raised during these operations. 

The arithmetic instructions interpret the operand data and produce result data only in the 
double format. 

Note: The Round Floating-Point Double to Single instruction is provided to allow value 
conversion from double to single precision with appropriate exception checking and 
rounding. This instruction should be used after every arithmetic operation for 
obtaining conforming IEEE single-precision results. 
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Floating-Point Exceptions 
This architecture defines the following floating-point exceptions: 

• Invalid Operation Exception 
- SNaN 
- Infinity- Infinity 
- Infinity x Zero 
- Infinity + Infinity 
- Zero+Zero 
- Ordered Compare with a NaN 

• Zero Divide Exception 
• Overflow Exception 
• Underflow Exception 
• Inexact Exception. 

These exceptions can occur during the floating-point arithmetic and conversion operations. 
For each exception, there Is one FPSCR bit to Indicate occurrence of the exception and 
another FPSCR bit to Indicate whether the exception is enabled or disabled. If any of these 
exceptions are recognized during the execution of a floating-point instruction, the exception 
condition is signalled by setting the corresponding exception bit for the condition In the 
FPSCR. A Floating-Point Exception Summary bit in the FPSCR is set when any of the 
exception bits changes from O to 1, or when expllcltly set by software. A Floating-Point 
Enabled Exception Summary bit In the FPSCR is set when any of the exceptions are set and 
the exception Is enabled (enable bit Is 1 ). 

Multiple exceptions can be set in four cases: 

• Inexact Exception can be set with Overflow Exception. 

• Inexact Exception can be set with Underflow Exception. 

• Invalid Operation Exception (SNaN) can be set with Invalid Operation Exception (Inf x 0) 
for multiply-add type instructions. 

• Invalid Operation Exception (SNaN) can be set with Invalid Operation Exception (NaN 
Compare) for compare Instructions. 

When an exception occurs, a result can be delivered or the instruction execution can be 
suppressed depending on the exception. When a result is to be delivered, it can be a 
different value for the enabled and disabled conditions for some of the exceptions. 

The IEEE standard specifies the handling of the exceptional conditions In terms of traps and 
trap handlers. In this architecture, an Exception Enable bit of 1 causes the generation of 
result values as specified in the IEEE standard for the trap enabled case. An Exception 
Enable bit of o causes the generation of default result values as specified for the trap 
disabled (or no trap occurs or trap is not implemented> case. The result to be delivered in 
each case for each exception is described in the following sections. 

In this architecture the detection of the floating-point exception conditions requires either a 
programmed test or enabling of program Interrupts to be generated on enabled floating­
point exceptions. For the programmed test to uniquely and precisely detect all exceptions 
that occur, each instruction that can cause a floating-point exception should be followed by a 
software branch to a handling routine. For program Interrupt detection, MSR(FE) or MSR(IE) 
must be set to one and the desired floating-point exception enable bits must also be set to 
ones. 
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If MSR(FE) is a one and a floating-point operation causes an enabled exception, a precise 
PRogram Interrupt is generated. For a precise interrupt, the address saved in SARO is the 
address of the Instruction that caused the interrupt, all Instructions prior to the instruction 
casing the exception have completed, and no instruction subsequent to the instruction 
causing their exception has been executed. A Floating-Point Imprecise Interrupt is 
generated when MSR(FE) is a zero, MSR{IE) is a one, and a floating-point operation causes 
an enabled exception. For an imprecise interrupt, some number of instructions beyond the 
instruction causing the exception may have been executed and the address saved in SARO 
points to an instruction that has not been executed. 

Note: This program interrupt Is generated every cycle that FPSCR(FEX) equals 1 and 
MSR(FE) equals 1 . It is the responsibility of the exception handler to clear the 
exception bit that caused the interrupt. Also, the address of the instruction that 
causes the interrupt is the address that is saved in the SAR O register, and, if the 
SARO register Is unaltered, that instruction is the instruction retumed to and 
re-executed. For certain types of floating-point exceptions, returning to the instruction 
following the instruction that caused the Interrupt may be required; therefore, the 
exception handler is required to Increment the address In the SRR O register by 4. 

System performance with the MSR(FE) bit set to 1 can be significantly degraded. 

Floating-Point Exception bits in the FPSCR are sticky. That is, once set, they remain set until 
software resets them with either a mtfsf, mtfsfi, rntfsb1, mtfsbO, or mtcrfs instruction. 

tnstruction execution is suppressed in some cases when an exception occurs, so there is no 
possibility that one of the operands would be lost. These cases are: 

• Enabled Invalid Operation 
• Enabled Zero Divide. 

In all other cases, a specified result is generated and written to the destination specified for 
the instruction causing the exception. These cases are: 

• Disabled Invalid Operation 
• Disabled Zero Divide 
• Disabled Overflow 
• Disabled Underflow 
• Disabled Inexact 
• Enabled Overflow 
• Enabled Underflow 
• Enabled Inexact. 

The following sections define each of the floating-point exceptions and specify the action to 
be taken when they are detected. For single-precision applications, the exception detection 
and handling can be slightly different. See the Floating Round to Single Precision instruction 
in the Assembler Language Reference for exceptions and handling of exceptions for 
single-precision floating-point arithmetic. 

Invalid Operation Exception 
Definition 

An Invalid Operation Exception occurs when an operand is invalid for the specified 
operation. The invalid operations follow: 

• Any operation on a signaling NaN (SNaN) 
• For add or subtract operations, magnitude subtraction of infinities (INF - INF) 
• Multiplication of zero by infinity (INF x O) 
• Division of zero by zero (0 + O) 
• Division of infinity by infinity (INF+ INF) 

1-40 General Architectures 



Action 

• Ordered comparison involving a NaN (NaN Compare) 
• Square Root of a number that is both negative and nonzero (Invalid Square Root) 
• Integer conversion of a NaN or a number that is too large (Invalid Integer Conversion). 

The action to be taken depends on the setting of the Invalid Operation Exception Enable bit 
of the FPSCR. 

When the Invalid Operation Exception Enable bit is enabled, FPSCR(VE) equals 1, and 
Invalid operation occurs, the following actions are taken: 

1. Instruction execution is suppressed; operands are unmodified. 

2. One of the following invalid operation exceptions is set: 

FPSCR(VXSNAN) (If SNaN) 
FPSCR(VXISI) (If INF - INF) 
FPSCR(VXIDI) (If INF+ INF) 
FPSCR(VXZDZ) (if 0 + 0) 
FPSCA(VXIMZ) (if INF x 0) 
FPSCR(VXVC) (if NaN Compare) 
FPSCR(VXSQRT) (if Invalid Square Root) 
FPSCR(VXCVI) (if Invalid Integer Conven). 

3. If the operation is a compare operation, the FPCC field is set to reflect the Floating-Point 
Unordered bit. Refer to the •Floating-Point Status and Control Register" on page 1-29 for 
more details. 

When the Invalid Operation Exception Enable bit is disabled, FPSCR(VE) equals 0, and 
invalid operation occurs, the following actions are taken: 

1 . One of the invalid operation exceptions is set: 

FPSCR(VXSNAN) 
FPSCR(VXISI) 
FPSCR(VXIDI) 
FPSCR(VXZDZ) 
FPSCR(VXIMZ) 
FPSCR(VXCVI) 

(If SNaN) 
(If INF - INF) 
(if INF+ INF) 
(If 0 + 0) 
(if INF x 0) 
(If Invalid Integer Convert). 

2. If the operation destination is an FPR, the result is a QNaN. 

3. If a result is generated, the FPRF field In the FPSCR is set to reflect the quiet NaN result. 
If the operation is a compare operation, the FPCC field Is set to reflect the Floating-Point 
Unordered bit. Refer to the "Floating-Point Status and Control Register" on page 1-29 for 
more details. 

Zero Divide Exception 
Definition 

Action 

A Zero Divide Exception occurs when a divide instruction is executed with a zero divisor 
value and a finite nonzero dividend value. 

The action taken depends on the setting of the Zero Divide Exception Enable bit of the 
FPSCR. 
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When the Zero Divide Exception Enable bit is enabled, FPSCA(ZE) equals 1, and a zero 
divide exception occurs, the following actions are taken: FPSCR(ZX) t- 1. (A value of 1 is 
stored in the 2x bit of the FPSCA. 

1. Instruction execution is suppressed; operands are unmodified. 

2. The Zero Divide Exception bit is set: FPSCR(ZX) t-1. 

When the Zero Divide Exception Enable bit Is disabled, FPSCR(ZE) equals 0, and a zero 
divide exception occurs, the following actions are taken: 

1. The Zero Divide Exception bit is set: FPSCR(ZX) +- 1. 

2. The result is set to ± infinity, where the sign is determined by the exclusive 'OR' of the 
sign of the operands. 

3. The FPRF field In the FPSCA is set to indicate an infinity with the proper sign. 

4. The result is placed into the target FPR. 

Overflow Exception 

Definition 

Action 

An overflCYN occurs when the magnitude of what would have been the rounded result, If the 
exponent range were unbounded, exceeds the magnitude of the largest finite number of the 
specified result precision. 

The action to be taken depends on the setting of the Overflow Exception Enable bit of the 
FPSCR. 

When the Overflow Exception Enable bit is enabled, FPSCR(OE) equals 1, and exponent 
overflow occurs, the following actions are taken: 

1. The Overflow Exception is set: FPSCR(OX) +- 1. 

2. The exponent of the nonnalized intermediate result is adjusted by subtracting 1536. 

3. The FPRF field In the FPSCR is set to indicate a normalized number with the proper 
sign. 

4. The rounded result Is placed Into the specified FPR. 

When the Overflow Exception Enable bit Is disabled, FPSCR(OE) equals o, and overflow 
occurs, the following actions are taken: 

1. The Overflow Exception bit is set: FPSCR(OX) +-- 1. 

2. The Inexact Exception bit is set: FPSCR(XX) t- 1. 

3. The result is detennlned by the rounding mode, FPSCR(RN), and the sign of the 
intermediate result as follows: for negative overflows, store -Infinity; and, for positive 
overflows, store the format's largest finite number. 

a. Round To Nearest: Store ± Infinity, where the sign is the sign of the intermediate 
result. 

b. Round To Zero: Store the fonnars largest finite number with the sign of the 
Intermediate result. 
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c. Round To + Infinity: For negative overflows, store the fonnars most negatiVe finite 
number, and, for positive overflows, store + infinity. 

d. Round To - Infinity: For negative overflows, store - infinity and, for positive overflows, 
store the fonnars largest finite number. 

4. The FPRF field in the FPSCR is set to indicate the class and sign of the result. 

s. The result Is placed into the specified FPR. 

FPA 2.4 Implementation Note 
An Overflow Exception applies to machines with an FPA level of 2.4. To identify the level of 
the FPA, run the lacfg command with a_,., flag. This produces a list of the vital product data. 
Under the processor component near the beginning of the list, there is a line similar to the 
following: 

Device Specific. (ZO) ..•..... OlXXyy 

This exception applies only if the xx equals a value of 24. 

Overllow occurs when the magnitude of the rounded Intermediate result exceeds that of the 
largest finite number of the specified result preclaion. 

The Floating Round to Single Precision instruction may produce Incorrect results when all 
the following conditions are met: 

• The Floating Round to Single Precision Instruction is dependent on a previous 
floating-point artthmetlc operation. Dependent means that It uses the target register of the 
arithmetic operation as the source register. 

• Less than two nondependent floating-point arithmetic operations occur between the 
Floating Round to Single Precision Instruction and the operation on which it is dependent. 

• The magnitude of the double-precision result of the arithmetic operation is less than 
2**128 before rounding. 

• The magnitude of the double-precision result after rounding is exactly 2**128. 

R•ultmnt V.lue 
if the error occurs, the magnitude of the result placed in the target register Is 2**128: 

X'47FOOOOOOOOOOOOO' or X'C7FOOOOOOOOOOOOO' 

This Is not a valid single precision value. The setting of the FPSCR and Condition register 
(CR) will be the same as If the result did not overflow. 

lnaurlng Correct Reaulta 
If after considering the results described previously, the programmer decides that the error 
will cause significant problems for the application, either of the following methods may be 
used to avoid the error: 

• Ensure that two nondependent floating-point operations are placed between a floating­
point arithmetic operation and the dependent round to single. The target register for these 
operations should not be the same register that the Floating Round to Single Precision 
instruction uses as a source register. 

• Insert two floating-round-to-single-precision operations when the 
floating-round-to-single-precision operation may be dependent on an arithmetic operation 
that precedes It by less than three floating-point instructions. 

Either solution degrades perfonnance by an amount dependent on the particular application. 
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Underflow Exception 

Definition 

Action 

Underflow Exception Is defined separately for the enabled and disabled states: 

Enabled. 

Disabled. 

Underflow occurs when the intermediate result is Tiny. 

Underflow occurs when the intermediate result is Tiny and there is Loss of 
Accuracy. 

A Tiny result Is detected before rounding when a nonzero result value, computed as though 
the exponent range were unbounded, would be less in magnitude than the smallest 
normalized number. 

II the intermediate result is liny and the Underflow Exception Enable bit is off, FPSCR(UE) 
equals 0, the Intermediate result Is to be denonnallzed and rounded. See •Normalization 
and Denormalizatlon• on page 1-36 and "Rounding" on page 1-37 for information about 
denormalizing and rounding results. 

Loss of Accuracy ls detected as an Inexact result when the delivered result value differs 
from what would have been computed were both the exponent range and precision 
unbounded. 

The ·action to be taken depends on the setting of the Underflow Exception Enable bit of the 
FPSCR. 

When the Underflow Exception Enable bit is enabled, FPSCR(UE) equals 1 , and exponent 
underflow occurs, the following actions are taken: 

1. The Underflow Exception bit is set: FPSCR(UX) ~ 1. 

2. The exponent of the normalized intermediate result is adjusted by adding 1536. 

3. The FPRF field in the FPSCR is set to indicate a normalized number with the proper 
sign. 

4. The rounded result Is placed into the specified FPR. 

Note: The FR and Fl bits In the FPSCR allow the trap handler to simulate a trap disabled 
environment. The bits provide enough Information to unround the result prior to 
denormalizatlon. 

When the Underflow Exception Enable bit is disabled, FPSCR(UE) equals 0, and underflow 
occurs, the following actions are taken: 

1. The Underflow Exception bit Is set: FPSCR(UX) ~ 1. 

2. The FPRF f19ld in the FPSCR is set to indicate the class and sign of the result 
(±Denormalized Number or ±zero). 

3. The rounded result is placed into the specified FPR. 

Inexact Exception 

Definition 
The Inexact Exception occurs when one of two conditions occurs during rounding: 

• The rounded result differs from the intermediate result assuming the intermediate result 
exponent range and precision to be unbounded. 

• The rounded result overflows and the Overflow Exception is disabled. 
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Action 
When the Inexact Exception occurs, 1he following actions are taken: 

1. The Inexact Exception bit Is set: FPSCR(XX) t- 1. 
2. The FPRF field In the FPSCR Is set to indicate the class and sign of the result. 
3. The rounded or overflowed result is placed into the destination FPR. 

Floating-Point Resource Management 
Facilities are defined to allow control of the use of the Floating-Point Processor. MSR(FP) is 
the Floating-Point Avallable bit. It controls the execution of floating-point instructions. When 
the FPP Is avallable, MSR(FP) equals 1 and the floating-point ins1ructions can be executed. 
Otherwise the FPP is unavailable, and MSR(FP) equals o. An attempt to execute a 
floating-point instruction in this state causes a Floating-Point Unavailable Interrupt and the 
instruction execution is suppressed. 

The test for an Invalid processor op code Is made before the MSR(FP) bit is inspected. 

Floating-Point Execution Models 
All implementations of this architecture must provide the equivalent of the following 
execution models to ensure that Identical results are obtained. 

Special rules are provided In the definition of the arithmetic Instructions for the Infinities, 
denormalized numbers, and NaNs. 

Although the double-precision format specifies an 11-blt exponent, exponent arithmetic 
makes use of two additional bit positions to avoid potential transient overflow conditions. 
One extra bit is required when denonnallzed double-precision numbers are pranormallzed. 
The second bit is required to pennit the computation of the adjusted exponent value In each 
of the following cases when the corresponding Exception Enable bit is 1: 

• Underflow during multiplication using a denonnallzed factor. 
• Overflow during dMslon ualng a denormalized divisor. 

Execution Model tor IEEE Operations 
IEEE conforming signlflcand arithmetic Is considered to be performed with a floating-point 
accumulator. Rgure 13 shows the fonnat of the accumulator. 

FRACTION I GI R x 
0 1 52 

Figure 13. IEEE Execution Model 

Field Description 
S Sign bit 
C Carry bit that captures the carry out of the signlflcand 
L Leading Unit bit of the signlficand that receives the lmpliclt bit from the 

operands 
FRACTION Fraction, a 52-bit field that accepts the fraction of the operands. 
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The Guard (G), Round (A), and Sticky (X) bits are extensions to the low-order bits of the 
accumulator. The G and A bits are required for post normalization of the result. The G, A, 
and X bits are required during rounding to determine if the intermediate result is equally near 
the two nearest representable values. The X bit serves as an extension to the G and A btts 
by representing the logical 'OR' of all bits that can appear to the low-order side of the R bit, 
either due to shitting the accumulator right or other generation of low-order result bits. The G 
and R bits participate in the left shifts with zeros being shifted into the R bit. Figure 14 shows 
the significance of the G, R, and X bits with respect to the intermediate result (IA), the next 
lower in magnitude representable number (NL), and the next higher In magnitude 
representable number (NH). 

GRX Interpretation 

000 IR II exact 

001 
010 IR cloeer to NL 
011 

100 IR midway between NL and NH 

101 
1 1 0 IR cloNr to NH 
111 

Figure 14. Interpretation of G, R, and X Bits 

The signlficand of the lntennediate result is made up of the L bit, the FRACTION field, and 
the G, R, and X bits. 

The infinitely precise intermediate result of an operation is the result normalized in the L. 
FRACTION, G, R, and X bits of the floating-point accumulator. 

Before the results are stored into an FPR, the signlficand is rounded using the rounding 
mode specified by the Floating-Point Rounding Control field (RM) of the FPSCR. If rounding 
results in a carry into the C bit, the signlficand is shifted right one position and the exponent 
is incremented by one. This, in tum, can result in an exponent overflow. Fraction bits to the 
left of the bit position used for rounding are stored in the FPR, and low-order bit positions, if 
any, are set to o. 

Four modes of rounding are provided that are user-selectable through the Floating-Point 
Rounding Control field (RM) of the FPSCR. This field is encoded as follows: 

RN Rounding Mode 
00 Round To Nearest 
01 Round Toward Zero 
10 Round Toward + Infinity 
11 Round Toward - Infinity 

For rounding, the conceptual Guard, Round, and Sticky bits are defined in terms of 
accumulator bits. The following table refers to the bit positions of Guard, Round, and Sticky 
for double and single-precision FP numbers. 
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Location of the Guard, Round, and Sticky Bits 

Format Guard Round Sticky 

Double G bit R bit x bit 

Single 24 25 26-52G, R, X 

Rounding can be treated as though the signif1Cand were shifted right, If required, until the 
least significant bit to be retained is in the low-order bit position of the FRACTION field. If 
any of the Guard, Round, or Sticky bits are nonzero, the result is inexact. 

Z1 and Z2, as defined In •Rounding,• on page 1-37 can be used to approximate the result in 
the target format when one of the following rules is used. 

If rounding results in a carry into the C bit, the significand must be shifted right one position 
and the exponent is increased by one. This can result in signaling an inexact result If the low 
order bit of the fraction had been a 1. 

Where the result is to have fewer than 53 bits of precision because the instruction is a round 
to single-precision, the intennediate result is either nonnalized, or is placed in correct 
denormalized form before the result is rounded. 

Execution Model for Multiply-Add Type Instructions 
The architecture makes use of a special fonn of instruction that performs up to three 
operations in one Instruction (a multiply, an add, and a negate operation). With this added 
capability Is the special feature of being able to produce a more exact Intermediate result as 
an Input to the rounder. Figure15 shows the intermediate results produced by the 
multiply-add operations. 

I s I c I L I FRACTION 

0 1 105 

Figure 15. Multiply Add Execution Model 

The first part of the operation is a multiply operation. The multiply operation has two 53-bit 
significands as inputs, which are assumed to be prenormallzed, and produces a result 
conforming to the preceding model. The sign produced by the multiply operation portion is 
defined to be the XOR of the signs of the two multiply input operands. If there is a carry out 
of the signlficand (C), the signlflcand is shifted to the right by one bit, shifting the L bit 
(Leading Unit bit) into the most significant bit of the fraction, shifting the C bit (carry out) into 
the L bit. All 106 bits (L bit, the fraction) of the product take part in the add operation. If the 
exponents of the two inputs to the adder are not equal, the significand of the operand with 
the smaller exponent is aligned (shifted) to the right by an amount that is added to that 
exponent to make it equal to the other inputs' exponent. Zeros are shifted into the left of the 
signlficand as it is aligned and bits shifted out of bit 105 of the significand are ORed into the 
X bit. The add operation also produces a result conforming to the preceding model with the 
X bit taking part in the add operation. The sign produced by the add portion is defined to be 
the sign of the largest of the two add input operands. When the sum of two operands with 
opposite signs is exactly zero, the sign of that sum is positive in all rounding modes except 
Round Toward - Infinity, in which mode that sign Is negative. The sum of operands with the 
same sign retains the sign of the operands, even if the operands are zeros. 

The result of the add is then normalized, with all bits of the add result, except the X bit, 
participating in the shift. The normalized result provides an intermediate result as input to 
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the rounder that conforms to the model described in "Execution Model for IEEE Operation&.• 
on page 1-45 The intermediate result has the following characteristics: 

• The Guard bit Is bit 53 of the intermediate result. 
• The Round bit is bit 54 of the Intermediate result. 
• The Sticky bit is the OR of all remaining bits to the right of bit 55, inclusive. 

The rules of rounding the intennediate result are the same as the described in •execution 
Model for IEEE Operations• on page 1-45. 

It the Instruction is Floating NegatiVe Multiply Add or Floating Negative Multiply Subtract, the 
negation occurs after rounding. 

Interrupts 
This section describes the function of and control over the System Interrupt mechanism. 
Except for the Supervisor Call Interrupt, an interrupt is composed of the following actions: 

1. Loading SRA O with the address of the current or the next Instruction (bitS 30 and 31 
are O). 

2. Loading bits o to 15 of SAR 1 with information specific to each interrupt. 

3. Loading bits 16 to 31 of SAR 1 from bits 16 to 31 of the MSR. 

4. Setting the MSR according to the following table. 

Machine Stabt Aegl8ter Setting Due to Interrupt 

Interrupt 'fype EE PR FP ME FE AL IP IR DR 

System Reset 0 0 0 N 0 0 N 0 0 

Machine Check 0 0 0 0 0 0 N 0 0 

Data Storage 0 0 0 N 0 0 N 0 0 

Instruction Storage 0 0 0 N 0 0 N 0 0 

Alignment 0 0 0 N 0 0 N 0 0 

Program 0 0 0 N 0 0 N 0 0 

External 0 0 0 N 0 0 N 0 0 

FP Unavailable 0 0 0 N 0 0 N 0 0 

Trace 0 0 0 N 0 a N 0 0 

FP Imprecise 0 0 0 N 0 a N 0 0 

Supervtsor Call 0 0 N N 0 N N N N 

The preceding table uses the following representations: 

Setting Decode 
O Bit is set to O. 
N Bit Is not altered. 

5. Beginning the instruction fetch and execution operations using the new MSR value at a 
location specific to each Interrupt type. This location is determined by knoWing the base 

1-48 General Architectures 



address, as determined in "Machine State Register" on page 1-22, and by knowing the 
offset of the interrupt as shown in the following list: 

OftHt Interrupt Type 
X'00100' System Reset Interrupt 
X'00200' Machine Check Interrupt 
X'00300' Data Storage Interrupt 
X'00400' Instruction Storage Interrupt 
X'00500' External Interrupt 
X'00800' Alignment Interrupt 
X'00700' Program Interrupt 
X'00800' Floating Unavailable Interrupt 
X'00900' Trace Interrupt (POWER2 only) 
X'OOAOO' Floating-Point Imprecise Interrupt (POWER2 only) 
X'OOBOO' Reserved 

X'OOFOO' 
X'01000' 
X'01020' 

Reserved 
Supervisor Call Interrupt 
Supervisor Call Interrupt 

X'01 FCO' Supervisor Call Interrupt 
X'01 FEO' Supervisor Call Interrupt. 

Note: The ranges of memory locations from x·oooooeoo· to X'OOOOOFFP and from 
X'FFFOOBOO' to X'FFFOOFFF' are reserved. Use of these locations risks possible 
incornpatlblllty with Mure implementations. 

In the case of an SVC Interrupt, the Link register Is used Instead of SRR o and the Count 
register instead of SAR 1. The execution begins at one of i 28 entry points starting at offset 
x·oi 000' to the base address indicated by the setting of MSR(IP). In addition, the following 
bits in the MSR are turned off: 

• External Interrupt Enable (EE) 
• Problem State (PR) 
• FP Exception Interrupt Enable (FE). 

The remaining bits are not modified. 

Note: Except for the SVC Interrupt, the actions taken at an Interrupt include tuming off both 
the Instruction and the data translation. Thus, the locations of the first instruction for 
each of these Interrupts are interpreted in a real context. See "Storage Contror on 
page i -69 for more information. 

All interrupts are precise except the Floating-Point Imprecise, Machine Check and System 
Reset Interrupts. For Program, Alignment, and Data Storage Interrupts, the address 
contained in SRR 0 points to the instruction that caused the interrupt. For the Floating-Point 
Imprecise Interrupt, the address contained in SRR 0 points to an Instruction beyond the 
instruction that caused the interrupt. For External and Instruction Storage Interrupts, the 
address loaded into SRR 0 points to the instruction that would have executed next. For 
System Reset and Machine Check Interrupts, the address loaded into SAR o points to the 
instruction currently being executed if that instruction also causes an interrupt; otherwise, It 
points to the instruction that would have executed next. For SVC Interrupts, the address 
loaded into the Link register points to the instruction that should be retumed to after the SVC 
Interrupt and does not affect SRR O. 
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All instructions prior to the instruction pointed to by SRR 0 (the Link register for SVC) have 
logically completed at the time of the interrupt and no instruction logically subsequent to It 
has executed. 

In the case of a Data Storage Interrupt or an Alignment Interrupt, neither the RT register in 
Load instructions nor the RA register in Load/Store with Update instructions are to be 
altered. 

Interrupt Definitions 
The following section describes the interrupt definitions for the system processor 
architecture. 

System Reset Interrupt 
A System reset begins with a System Reset Interrupt. 

The following registers are set as indicated: 

SRRO 

SRR1 

MSR 

Bit Description 
o-31 Set to the address of the instruction currently being 

executed if that instruction also causes an interrupt; 
otherwise, set to the address of the instruction that would 
have executed next. 

Bit Description 
0-15 Set too. 
16-31 Loaded from bits 16 to 31 of the MSR. 

Bit 
0-15 
16EE 
17PR 
18 FP 
19ME 
20FE 
21-23 
24AL 
251P 
261R 
27DR 
28-31 

Description 
Reserved. 
Set too. 
Set too. 
Set to O. 
Not altered. 
SettoO. 
Reserved. 
Set too. 
Not altered. 
Set too. 
Set to O. 
Reserved. 

Execution resumes at offset X'00100' from the base address indicated by the setting of 
MSR(IP). 

Machine Check Interrupt 
Typical machine failures reported with this interrupt include: 

• Instruction Cache Reloads 
- Memory Address Parity Error 
- Uncorrectable ECC Error 
- Address Exception (no extents match) 
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• Data Cache Reloads 
- Memory Address Parity Error 
- Uncorrectable ECC Error 
- Address Exception (no extents match) 

• Data Cache Storebacks 
- Memory Address Parity Error 
- Address Exception (no extents match). 

Machine Check Interrupts are enabled when MSR(ME) = 1. If MSR(ME) = o and a Machine 
Check occurs, the Processor Check stops. 

The following registers are set as indicated: 

SRRO 

SRR1 

MSR 

Bit Dncrlptfon 
o-31 Set to the address of the Instruction currently being 

executed If the instruction has an exception; otherwise, set 
to the instruction that would have executed next. 

Bit Dncrlptlon 
0-15 Set to 0. 
16-31 Loaded from bits 16 to 31 of the MSR. 

Bit 
0-15 
18 EE 
17PR 
18FP 
19ME 
20FE 
21-23 
24AL 
2SIP 
281R 
27DR 
28-31 

Ducrlptlon 
Reserved. 
Set too. 
Set to 0. 
Set too. 
Set too. 
Set too. 
Reserved. 
SettoO. 
Not altered. 
Set to 0. 
Set too. 
Reserved. 

Execution resumes at offset X'00200' from the base address indicated by the setting of 
MSA(IP). 

A Machine Check Interrupt with MSR(ME) = O produces a Check Stop condition and the 
processor halts execution. The machine goes through a self-test and IPL again. See the 
hardware technical reference manual for your system for more information on the Initial 
Program Load procedure. Certain hardware failures, such as internal parity errors, hardware 
hang conditions, and hardware error detection logic can also cause a Check Stop. 

Data Storage Interrupt 
A Data Storage Interrupt occurs when a data storage access cannot be performed for any of 
the following reasons: 

• 110 Exception, when the execution of a storage access instruction is attempted and the 
110 subsystem indicates a failure detecied as part of the synchronous execution of that 
instruction. 

• Accessed virtual address cannot be translated. 
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• Access is a floating load or store to an 110 segment. 

• Access violates storage protection. 

• Access caused a loop in the hardware translation mechanism. 

• Access caused a segment crossing from T = 0 to T = 1. 

Such aocessas can be generated by load and store type instructions, certain storage 
controls, and the cache control instructions. 

The interrupt cause is defined in a Data Storage Interrupt Status register. These interrupts 
also use the Data Address register. 

The following registers are set as indicated when the interrupt occurs: 

SRRO 

SRR1 

MSR 

DSISR 
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Bit Deacrlptlon 
D-31 Set to the address of the falling instruction. 

Bit Description 
0-15 Set too. 
16-31 Loaded from bits 16 to 31 of the MSR. 

Bit 
0-15 
18EE 
17PR 
18FP 
19ME 
20FE 
21-23 
24AL 
25IP 
281R 
27DR 
28-31 

Bit 

0 

1 

2 

3 

Deacrlption 
Reserved. 
Set too. 
Set too. 
Set to O. 
Not altered. 
Set too. 
Resenied. 
Set too. 
Not altered. 
Set too. 
Set too. 
Reserved. 

Description 

Set to 1 for an VO Exception, otherwise to o. 
Set to 1 If the end of the selected PTE chain is reached and 
the translation of an attempted access is not found, 
otherwise to O. 

Set to 1 if a storage access is not pennltted by the 
data-locking mechanism. 

Set to 1 If a floating load or store Instruction references an 
1/0 segment (for example, a segment whose Segment 
register's T bit equals 1 ); otherwise, set to O. 



DAR 

Bit Description 

4 Set to 1 if a storage access is not permitted by the page 
protection mechanism described in "Page Protectionft on 
page 1 ·81 ; otherwise, set to o. 

5 Set to 1 If an access causes a loop In the translation 
mechanism (for example, the PTE search has gone on for 
more than 127 attempts)}; otherwise, set to 0. 

8 Set to 1 for a store operation and to zero for a load 
operation 

7 Set to 1 if a data storage access crosses a segment 
boundary where the first segment accessed had T = O and 
the segment crossed into has T = 1 ); otherwise, set to O. 

&-14 Set to o. 
15-31 Undefined. 

Bh DeacrlpUon 

D-31 Set to 1 of the following: 

• An effective address of a byte in the first word accessed 
in the page that caused the Data Storage Interrupt, for 
floating single- and fixed-storage accesses 

• An effective address of a byte In the first doubleword 
accessed in the page that caused the Data Storage 
Interrupt, for floating double accesses 

• The effective address referenced in the VO space for VO 
exceptions. 

Execution resumes at offset X'00300' from the base address indicated by the setting of 
MSR(IP). 

Instruction Storage Interrupt 
An Instruction Storage Interrupt occurs when an Instruction fetch operation cannot be 
performed for of any of the following reasons: 

• Address cannot be translated. 
• Address is in a Special segment. 
• Address is In an VO segment. 
• Address is in a protected page. 
• Address caused a loop in the hardware translation mechanism. 

Such accesses can only be generated by instruction fetch operations. The following 
registers are set as Indicated: 

SRRO 

Bit Description 

D-31 Set to the address of the instruction that was being fetched. 
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SRR 1 

MSR 

Bit 

0 

1 

2 

3 

4 

5 

6-15 

16-31 

Bit 
0-15 
16EE 
17PR 
18FP 
19ME 
20FE 
21-23 
24AL 
251P 
281R 
27DR 
28-31 

Description 

Set too. 

Set to 1 if the end of the selected PTE chain is reached and. 
the translation of an attempted access is not found; 
otherwise, set to O. 

Set to 1 if the virtual address used to fetch an instruction is 
in a Special Segment (SR S bit one); otherwise, set to 0. 

Set to 1 if the address used to fetch an instruction is in an 
1/0 segment (for example, a segment whose Segment 
register's T bit equals 1) and Instruction Relocate is on; 
otherwise, set to 0. 

Set to 1 if a storage access is not permitted by the page 
protection mechanism described in "Page Protection• on 
page 1-81; otherwise, set to O. 

Set to 1 If the fetch causes a loop in the translation 
mechanism (for example, the PTE search has gone on for 
more than 127 attempts); otherwise, set too. 

Set too. 

Loaded from bits 16 to 31 of the MSR. 

Description 
Reserved. 
Set too. 
Set too. 
Set to O. 
Not altered. 
Set too. 
Reserved. 
Set too. 
Not altered. 
Set to 0. 
Set too. 
Reserved. 

Execution resumes at offset X'00400' from the base address indicated by the setting of 
MSR(IP). 

Alignment Interrupt 
An Alignment Interrupt is raised when MSR{AL) "' 1 and one the following conditions is met: 

• The effective address generated by a halfword load or store type instruction is not on a 
halfword storage boundary and the hardware cannot perform the unaligned storage 
access. 

• The effective address generated by a word load or store type instruction is not on a word 
storage boundary and the hardware cannot perform the unaligned storage access. 
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• The effective address generated by a doubleword load or store type instruction is not on a 
doubleword storage boundary and the hardware cannot perform the unaligned storage 
access. 

• The effective address generated by a Load/Store Multiple instruction is not on a word 
storage boundary. 

The following registers are set as Indicated. Set the registers to bits 1 to 4 of the instruction If 
utilizing a 0-form instruction. 

SARO 

SRR1 

MSR 

DSISR 

Bit DeecrlpUon 

G-31 Set to the address of the instruction that caused the 
interrupt. 

Bit Deecrlptlon 
0-15 Set too. 
11-31 Load from bits 16 to 31 of the MSR. 

Bit 
0-15 
18EE 
17PR 
18FP 
19ME 
20FE 
21-23 
24AL 
251P 
261R 
27DR 
28-31 

Bit 

.. 13 

14 

15-18 

17 

18-21 

22-31 

Deecrlpllon 
Reserved. 
Set too. 
Setto o. 
SettoO. 
Not altered. 
Set too. 
Reserved. 
Setto O. 
Not altered. 
Satto o. 
Setto o. 
Reserved. 

DncrlpUon 

Setto o . 

Sat to value of the T-bit of the Segment register of the 
storage access that caused the Alignment Interrupt. 

Set to bits 29 to 30 of the instruction If an X-form 
Instruction. Set to bit b'OO' If a 0-fonn instruction. 

Set to bit 25 of the instruction if an X-form instruction. Set to 
bit 5 of the instruction if a 0-form instruction. 

Sat to bits 21 to 24 of the instruction if an X-form 
Instruction. Set to bits 1 to 4 of the instruction If a 0-form 
instruction. 

Set to bits 6 to 15 of the Instruction. 
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DAR 

Bit Description 

D-31 Set to the effective address that caused the Alignment 
Interrupt. 

Execution resumes at offset X'00600' from the base address indicated by the setting of 
MSR(IP). 

Program Interrupt 
A Program Interrupt is generated by any of the following exceptions: 

• Floating-Point Enabled Exception 

A Floating-Point Exception Program Interrupt is generated when the MSR(FE) = 1 and 
the FPSCR(FEX) = 1. FPSCR(FEX) is turned on by the execution of a floating-point 
instruction that causes an enabled exception or by the execution of a "Move to FPSCR" 
type Instruction which sets both an exception and its corresponding enable. 

• Invalid Operation 

An Invalid Operation Program Interrupt is generated when the execution of an instruction 
is attempted with an undefined opcode or undefined combination of opcode and 
extended opcode fields. 

• Prlvlleged Instruction 

A Privileged Instruction Program Interrupt is generated when the execution of a 
privileged instruction is attempted and MSR(PR) = 1. 

• Trap 

A Trap Program Interrupt is generated when any of the specified set of conditions in a 
Trap Instruction is met. 

The following registers are set es Indicated: 

SRRO 

Bit De8crlptlon 

D-31 Set to the address of the instruction that caused the 
Program Interrupt. 

SRR1 

Bit O..Crfptlon 

0-10 SettoO. 

11 Set to 1 for a Floating-Point Enabled Exception Program 
Interrupt; otherwise, to 0. 

12 Set to 1 for an Invalid Operation Program Interrupt; 
otherwise, to O. 

13 Set to 1 for a Privileged Instruction Program Interrupt; 
otherwise, to 0. 

14 Set to 1 for a Trap Program Interrupt; otherwise, to 0. 

15 Set too. 

1&-31 Loaded from bits 16 to 31 of the MSR. 
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MSR 

Bft Dacrlptlon 
0-15 Reserved. 
16EE Set to 0. 
17PR Set too. 
18 FP Set too. 
111 ME Not altered. 
20FE Set too. 
21-23 Reserved. 
24AL SettoO. 
25IP Not altered. 
281R Set too. 
27DR Set to 0. 
28-31 Reserved. 

Execution resumes at offset X'00700' from the base address Indicated by the setting of 
MSR(IP). 

Note: If FPSCR(FEX) = 1 and MSR(FE} = 0, a Floating-Point Enabled Exception type 
Program Interrupt can be generated by setting MSR(FE) to one with any Instruction 
that can set the MSR (for example, mtmsr. rfi, and rfsvc). WMn this occurs, SRR 0 iS 
loaded with the address of the instruction that would have executed next and not to 
the address of the instruction that modified the MSR causing the interrupt. 

external Interrupt 
External Interrupts are requested by a signal presented by the External Interrupt 
mechanism. An External Interrupt occurs when an External Interrupt signal is present and 
MSR(EE) = 1. 

The following registers are set as indicated: 

SRRO 

SRR1 

MSR 

Bit Deeerlptlon 
0-31 Set to the address of the instruction 1hat the processor 

would have attempted to exearte next if no interrupt 
conditions were present. 

Bit Deecrlptlon 
0-15 Set to 0. 
16-31 Loaded from bits 16 to 31 of the MSR. 

Bit 
0-15 
18EE 
17PR 
18FP 
19ME 
20FE 
21-23 
24AL 
251P 
261R 

DMcriptlon 
Reserved. 
Setto o. 
Set too. 
Set to 0. 
Not altered. 
Set to 0. 
Reserved. 
Set to 0. 
Not altered. 
Set too. 
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27 DR Set to 0. 
28-31 Reserved. 

Execution resumes at offset X'OOSOO' from the base address indicated by the setting of 
MSR(IP). 

Floating-Point Unavailable Interrupt 
A Floating-Point Unavailable Interrupt is generated when the execution of any floating-point 
instruction is attempted and MSR(FP) = O. 

The following registers are set as indicated: 

SARO 

SRR1 

MSR 

Bit Description 
o-31 Set to the address of the instruction that caused the 

interrupt. 

Bit O..Crfptlon 
0-15 Set too. 
16-31 Loaded from bits 16 to 31 of the MSR. 

Bit O..Crlptfon 
0-15 Reserved. 
18 EE Set to 0. 
17PR SettoO. 
18 FP Set to 0. 
19 ME Not altered. 
20 FE Set to o. 
21-23 Reserved. 
24 AL Set to 0. 
25 IP Not altered. 
21 IR Set to o. 
27 DR Sat to 0. 
28-31 Reserved. 

Execution resumes at offset X'00800' from the base address indicated by the setting of 
MSR(IP). 

Trace Interrupt (POWER2 Only) 
A Trace Interrupt is generated after every Instruction that completes without causing any 
other Interrupt. 

The following registers are set as indicated: 

SRRO 

SRR1 
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Bit Deacrlptlon 
o-31 Set to the address of the instruction to be executed next 

(next sequential instruction or the instruction that Is the 
target of a taken branch). 

Bit Deacrlptlon 
0-15 Set too. 
16-31 Loaded from bits 16 to 31 of the MSR. 



MSR 

Bit Ducrlptlon 
0-15 Reserved. 
16 EE Setto 0. 
17 PR Set to 0. 
18 FP Set to 0. 
19 ME Not altered. 
20 FE Set to 0. 
21 SE Set to 0. 
22 BE Set to 0. 
23 FE Set to 0. 
24 AL Set to 0. 
25 IP Not altered. 
28 IR Set to 0. 
27 DR Set to 0. 
28 Reserved. 
29 PM Set to 0. 
30-31 Reserved. 

Execution resumes at offset X'OOAOO' from the base address Indicated by the setting of 
MSR(IP). 

Floating-Point Imprecise Interrupt (POWER2 only) 
A Floating-Point Imprecise Interrupt Is generated when FPSCR(FEX) = 1, MSR(FE) = 0, and 
MSR(IE) = 1. 

The following registers are set as Indicated: 

SRRO 

SRR1 

MSR 

Bit Dncrlptlon 
D-31 Set to the address of some Instruction beyond the 

Instruction that created the condition where 
FPSCR(FEX) = 1, MSR(FE) = 0, and MSR(IE) = 1. 

Bit DHcrlptlon 
0-15 Set to 0. 
18-31 Loaded from bits 16 to 31 of the MSR. 

Bit 
0-15 
16EE 
17PR 
18FP 
19ME 
20FE 
21 SE 
22BE 
23FE 
24AL 
251P 
281R 
27DR 

O..Crlptton 
Reserved. 
Set to 0. 
Set to 0. 
Set too. 
Not altered. 
Set to 0. 
Set to 0. 
Set too. 
Set to O. 
Set too. 
Not altered. 
Set too. 
Set too. 
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Bit 
28 
29PM 
3G-31 

Deacrlptlon 
Reserved. 
Set to 0. 
Reserved. 

Execution resumes at offset X'OOAOO' from the base address indicated by the setting of 
MSR(IP). 

Supervisor Call Interrupt 
An SVC Interrupt occurs when an SVC instruction is executed. 

The registers are set as follows: 

LR 

CTR 

MSR 

Bit Deecrlptlon 
D-31 The Unk register is set to the address of the instructiOn 

following the SVC instruction if LI< = 1 in the instruction. 

Bit Deecrlptlon 
~16 Loaded from bits 16-31 of the SVC instruction. 
16-31 Loaded from bits 16-31 of the MSR. 

Bit Deecrlptlon 
~16 Reserved. 
16 EE Set to O. 
17 PA Set to O. 
18 FP Not altered. 
19 ME Not altered. 
20 FE Set to 0. 
21-23 Reserved. 
24 AL Not altered. 
26 IP Not altered. 
28 IR Not altered. 
27 DR Not altered. 
28-31 Reserved. 

If SA = 0, execution resumes at one of 128 entry points starting at offset b'00001' II LEV II 
b'OOOOO' from the base effective address Indicated by the setting of MSR(IP). If SA= 1, 
execution resumes at offset X'01 FEO' from the base effective address incfteated by the 
setting of MSR(IP). 

Interrupt Priorities 
Interrupts are either unordered or ordered with respect to the Save Restore registers. 
Machine Check and System Reset Interrupts are unordered. That is, either can occur at any 
time. When either occurs, the machine Immediately changes state according to the rules 
specified In "System Reset Interrupt" on page 1-50 and "Machine Check Interrupt" on 
page 1 -50. State change Is such that any previous Interrupt information contained In SRR O 
and SRA 1 is lost. Any other pending interrupt is suppressed. To prevent indefinite looping 
on System Reset, the Interrupt should be viewed as a trigger caused by a system or 
operator action. The triggering action must be repeated to cause another System Reset. 
Looping on Machine Check is already prevented by MSR(ME). 
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The remaining interrupts are ordered, that is, one and only one Interrupt can ocour at a time. 
This is due to the serial reusable nature of the SAR O and SRA 1 registers. Insuring one and 
only one interrupt at a time is both a hardware and software responsibility. Hardware must 
test and present interrupts In the order that follows. Finding an interrupt condition present, 
the hardware does not continue testing for additional interrupt conditions. Thus, even when 
there are multiple interruptible conditions present, the hardware does not know about the 
additional conditions and therefore does not present the associated interrupts. Software, for 
Its part, must save the state of the machine (including SRA O and SAR 1) in such a manner 
that the saving operation does not cause an interrupt. 

The Instruction Storage Interrupt Is the lowest ordered interrupt. It is generated when the 
machine is unable to fetch the next Instruction. 

External Interrupt requires special handling. This Is the only maskable ordered interrupt. It is 
also the lowest ordered interrupt. If the External Interrupt signal is present and is allowed, 
the hardware cannot present this Interrupt until It Is determined that no other ordered 
Interrupt condition is present. According to the rules of "Interrupt Definitions,• on page 1 -50 
when any interrupt occurs, External Interrupt is automatically masked. This ensures that an 
External Interrupt does not immediately follow any other Interrupt. After any Interrupt 
software must not allow an External Interrupt until it has safely saved the state of the 
machine. 

The next higher-ordered interrupt Is Instruction Storage lnte~t. This interrupt occurs when 
the machine is unable to fetch the next instruction. The remaining interrupts are instruction 
dependent for loads/stores, SVC, Trap, floating, privilege, and undefined Instructions. The 
associated interrupts ocour next in the ordering. Each of these types of Instructions can only 
generate one Interrupt condition so there Is no need for addltional ordering in these 
situations. 

For floating load or store Instructions, Floating Unavailable lntem.Jpt Is ordered higher than 
Alignment Interrupt, which is ordered higher than Data Storage Interrupt. 

For fixed load or store instructions when not accessing an VO segment, Alignment Interrupt 
Is ordered higher than Data Storage Interrupt. 

For fixed load or store instructions when accessing an VO segment, the only Interrupt Is an 
VO Exception-type Data Storage Interrupt, which can be caused by alignment, prtvllege, or 
other llO conditions. There is no processor architecture definition about the ordering of 
these conditions. 

The following summarizes the interrupts that can be caused due to the direct execution of 
the listed types of instructions and their relative priority. Not listed are System Reset, 
Machine Check, Instruction Storage, and External Interrupts. 

• For fixed-point loads and stores (T = O) 
1. Alignment 
2. Data Storage 
3. Trace. 

• For fixed-point loads and stores (T = 1) 
1 . Data Storage 
2. Trace. 

• For floating-point loads and stores {T = 0) 
1 . Floating-Point Unavailable 
2. Alignment 
3. Data Storage 
4. Trace. 
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• For floating-point loads and stores (T = 1) 
1. Floating-Point Unavailable 
2. Data Storage 
3. Trace. 

Note: Some implementations generate an Alignment Interrupt instead of a Data Storage 
Interrupt in the event the effective address generated is unaligned (not a word or 
doubleword address). In this case, bit 14 of the DSISR is set to the value of the 
T bit of the Segment register selected by the effective address. 

• For floating-point arithmetic, compare, floating round to single, floating square root, 
floating covert to integer, and any move to FPSCR instructions 
1. Floating-Point Unavallable 
2. Program (Floating-Point Enabled Exception) 
3. Trace. 

• For remaining floating-point instructions 
1. Floating-Point Unavailable 
2. Trace. 

• For rfi, rfscv, and mtmsr instructions 
1. Program (Privileged Instruction) 
2. Program (Floating-Point Enabled Exception). 

• For trap Instructions 
1. Program (Trap). 

• Any privileged Instructions 
1. Program (Privileged Instruction) 
2. Trace. 

• Any undefined instructions 
1. Program (Invalid Operation). 

External Interrupt Mechanism for POWER 
The External Interrupt mechanism provides for the collection and presentation of interrupt 
requests from external (non-PU) sources. Software and hardware control External Interrupt 
requests using the following mechanisms: 

• Extemal Interrupt Enable MSR(EE). 

• External Interrupt Mask (EIM) register (64 bits). 

• External Interrupt Summary (EIS) register (64 bits). 

• Load and store instructions addressing the EIM, the EIS, and other VO resources. 

• Sources of External Interrupts. 

Figure 16 shows the logical structure of the Extemal Interrupt mechanism. This mechanism 
supports 64 separate External Interrupt sources that are collected into one single Extemal 
Interrupt Request signal (EIRS). An External Interrupt Request (EIR) is sent to the processor 
only if the EIRS is present and MSR(EE) = 1. 

The EIM register is used as a mask to enable or suppress the requests that have been 
latched In the EIS register. These registers are referred to as the External Interrupt Control 
registers (EICR). The EICRs are in the 110 address space in BUID o. They are manipulated 
using load register and store register instructions addressing the VO space. 
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There is no hardware priority among the bits of the EIS and software can service the 
requests in any order. 

Proc:e8aor 
MSR 

EIR ~ AND 14 
I EE 

A 

I 
EIRS 7 1 t Loed.IStore 

llO Space 

83-bttOR 

/ 64 

/ 84 

EIM 

[iiEVl [iiEVl loEVl loEVl 
~···~~- .. ~ 

Where: 
EIR •External Interrupt Requnt 

loEV1 rDEV1 
~ ... ~ 

EIRS = External Interrupt Requut Signal. 

Figure 16. External Interrupt Control Mechanism 

External Interrupt Enable 
MSR(EE) controls the presentation of an extemal interrupt to the processor. EIR is true only 
when the following conditions are met: 

• MSR(EE) = 1 

• One or more enabled External Interrupt requests are pending (the state of EIRS is true). 

See ·Machine State Register" on page 1 -22 for the description of the MSR and MSR(EE). 
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External Interrupt Control Registers 

Functions 

Both the EIM and the EIS are 64-bit registers in the VO space. These registers serve 
different functions but have the same mapping between Extemal Interrupt sources and 
register bits. See "EICR Mapping" on page 1 -66 for the mapping. 

The EICAs, the hardware control of the EICRs, and the Instructions that manipulate them 
provide the functions that control the presentation of and identify the source of External 
lntenupts. 

EIM Register The EIM register provides the programmer with a mechanism to selectively 
inhibit or enable any External Interrupt request. Setting any bit of the EIM to 
one enables the Interrupt request represented by the associated bit in the 
EIS. Setting the bit to zero causes the request to be ignored. 

EIS ReglUlr When an interrupt is requested by an external source, the bit of the EIS 
mapped to that source is set to one. It retains all latched requests until reset 
by software. The EIS always latches an interrupt request from an external 
source regardless of the state of the associated bit in the EIM. 

If any request Is latched by the EIS and the corresponding EIM bit is a one, an External 
Interrupt is signalled, that is EIRS is true. See Figure 1 e on page 1-63. 

Addressing the EICAa 
A Segment register must be loaded such that It addresses the architectural resources in 
BUID O. The effective address must then select this Segment register and contain the 
address of the EICR to be accessed. The content of the Segment register used to access 
the EICRs is shown In Figure 17. 

0 1 2 3 4 

Bit 

T 

K 

E 

R 

BUID 

AS 

Value 

b'1' 

b'O' 

b'O' 

b'O' 

X'OO' 

X'OOOOO' 

BUID 

12 

UIO 

VO Space 

Privileged Access 

Reserved 

Reserved 

Bus Unit ID 0 

Adapter Specific. 

Figure 17. Segment Register 

Hotel: 

Adapter Specfflc 

1. For architectural resources in BUID O, the adapter specific field contains o. 

31 

2. If the K bit Is equal to one and a load or store register instruction is Issued 
addressing the EICRs, an 110 Exception-type Data Storage Interrupt results and no 
changes are made either to the target or source register. 
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Figure 1 e shows the effective address used to access the EiC Rs. 

I SR Addreu 

0 4 

Figure 18. EfTectlve Address 

SR These four bits must select the Segment register set up to access the 
architectural resources of BUID o. 

Addreu This field contains the address of the EICRs being accessed. 

The address assignments for the EICR are shown In the following list: 

Reglner Hex Addreu 

EIMO 0000000 

EIM1 0000004 

Reserved 0000008 

Reserved ooooooc 
EISO 0000010 

EIS1 0000014 

Reserved 0000018 

Reserved 000001C 

DECEISBID 0000020. 

Acceulng the EICRa 

31 

The EICRs can be accessed using load or store Instructions that confonn to the following 
requirements: 

• All accesses must be on a word boundary. 

• Data transfers must be multiples of four bytes (one word). 

• Multiple word transfers are not Interruptible. 

• When the EIS Is the target of a load or store instruction and any extemal interrupt 
requests are signalled to the EIS during the execution of that Instruction, the result is the 
same as If the events occurred sequentially. The signalled interrupts are not lost or 
duplicated. 

• Accesses that address reserved locations either directly or through multiple word 
transfers cause a data storage interrupt when the reserved location Is addressed. 
Registers or locations altered before the interrupt are not restored. 

Reading from the EICR• 
The content of the EICRs can be copied to one or more GPRs using load instructions 
addressing the registers. The Instruction used must conform to requirements previously 
specified. 

• The content of the addressed registers replaces the content of the target registers. 

• When the EIM is the source for the load, the content of the EIM is not altered. 

• When the EIS Is the source for the load, the content of the addressed portion of the EIS is 
set to zero. 
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Writing to the EICRa 
The content of the EICRs can be altered using a store instruction addressing them. The 
Store Register instructions used must confonn to the requirements specified previously. 
Executing a Store Register instruction addressing the EICRs resul1s in the following actions: 

• When the EIM is the target of a store instruction, the content of the source registers 
replaces the content of the specified portion of the EIM. 

• When the EIS is the target of a store Instruction, the content of the source registers is 
ORed with the content of the specified portion of the EIS (one or two words) and the 
result replaces that portion of the EIS. 

• The change may affect the EIR or the EIRS, or both. 

NotM: 

1. Instructions addressing the EICRs that transfer more than 4 bytes are not 
interruptible. 

2. The bits of the EIS can be mapped to hardware interrupt sources. However, any of 
the EIS bits can be set by software. 

Extemal Interrupt Sources 
The description is necessary to define the interface between the processor and the 110 
process. 

An External Interrupt source is a logical entity that Is associated with a specific bit in the 
EICRs. Whenever a source recognizes the need to be serviced by the processor, it submits 
a request to have that bit set to 1. The association of bits in the EICRs and interrupt sources 
is programmable and set by software as needed. 

Submitting Interrupts 
Submission of Interrupt requests to set bits in the EIS must confonn to the following 
requirements: 

• The source must not lose any interrupt requests. 

• The source should minimize the redundant submission of interrupt requests for any single 
event that requires servicing by the processor. 

• The source should not submit any requests if it can determine that a previous request it 
submitted is stlll pending. 

Note: This function may require the implementation of a latch that is set when a request is 
first submitted and must be reset by software after the interrupt Is serviced. 

EICR Mapping 
An interrupt source sets the bit of the EIS to which it has been programmed to by software. 
This feature requires additional functions of the interrupt source. 

• A source contains a locatlon (EISBID) that can be read and altered as desired by 
software. 

• Transfer EIS61D Content to GPR: A load instruction addressing any EISBID must transfer 
at least one word. EISBID is placed in bits 26 to 31 of register RT. Bits Oto 25 of register 
RT are undefined. 
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• Transfer GPA to EISBID: A store instruction addressing any EISBID must transfer at least 
one word. The contents of bits 26 to 31 of register RS are placed in the addressed 
EISBID. 

• When signalling an interrupt, the source causes the bit in the EIS that is indicated by the 
content of the EISBID to be set to one. Only six bits are used to select the EIS bit to be 
set. 

Note: The Decrementer (DEC) causes an Extemal Interrupt that is associated with a bit in 
the EICRs. The EISBID for the Decrementer is located in the VO space as shown in 
•Addressing the EICRs" on page 1-64. 

External Interrupt Mechanism tor POWER2 
This interrupt mechanism provides a means for sensing, presenting, and controlling 
interrupts. All interrupts are classified by level. The interrupts are presented to the processor 
in order of most favored interrupt first. 

The Extemal Interrupt mechanism is composed of the Interrupt Level Control register and 
associated hardware that provides the means by which software can manage External 
Interrupts. The Interrupt Level Control register (accessible as a Special Purpose register) 
and the External Interrupt mechanism provide a means for software to perform the following 
tasks: 

• Sense the current interrupt level. 
• Sense the pending interrupt level. 
• Clear a pending interrupt at any selected level. 
• Set an interrupt at any selected level. 

An interrupt level can be one of 64 levels (Oto 63). Level o Is the most favored level and 
level 63 is the least favored level. The current interrupt level (CIL) can be set to any value 
between O and 255. A processor can accept Interrupts only when pending interrupt level is 
more favored than the l"el indicated by ILCR(CIL). 

For example, if the content of ILCR(CIL) = 37, the processor accepts interrupt levels O 
through 36. Interrupt levels 37 through 63 are masked. 

When an Interrupt Is signalled, It Is posted and remains pending until software dispatches or 
resets the interrupt. 

Interrupt Level Control Registers 
The Interrupt Level Control register (ILCR) is a 32-bit register that provides the Interface 
through which software manages the Extemal Interrupt mechanism. Sae Agure 19. 

ICO Ill CIL PIL 

0 8 16 24 31 

Figure 19. Interrupt Level Control Aegl81er 

The ILCR contains three 8-blt fields (ICO, PIL, CIL). The content and function of these fields 
depend on the instruction executed. 

The register is manipulated with the mfspr and mtspr instructions. The following sections 
daSCribe the result of executing those Instructions. 
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MFSPR RT, ILCR 
This Instruction copies the content of the ILCR into the RT register. 

• CIL contains the interrupt level at which the processor is executing. The processor 
accepts only an interrupt that Is at a more favored level than the level indicated by the 
CIL. 

• PIL contains 255 If no interrupt is pending. Otherwise, it contains the level of the most 
favored pending Interrupt The retumed lntenupt level is removed from the list of pending 
interrupt levels. 

• Bits 0 to 15 of the RT register are set to x'OOOO.' 

MTSPR ILCR, RS 
This Instruction causes the interrupt control mechanism to execute the command contained 
In bits 0 to 7 of the RS register. 

ICO Interrupt Mechanlam Action 

00000000 Update CIL (UCIL) 

00000001 

00000010 

Copies the content of bits 18 to 23 of the RS register to the CIL field of the 
ILCR. 

Clear Interrupt Level (CIL) 

Clears the interrupt level specified by bits 24 to 31 of the RS register. 

Sat Interrupt Level (SIL) 

Sets the interrupt level specified by bits 24 to 31 of the RS register. 

All other values of the ICO field are ignored. 

Nolea: 

EISBID Registers 

1. An mfllcr instruction closely following an mtilcr instruction does not obtain the 
actual values of the ILCR register. 

2. External interrupts need not be disabled to write to ILCR. 

A 8-blt External Interrupt Status Bit ID register (EISBIO) is associated with each interrupt 
source. Software can write the EISBIO register to assign the priority at which that source will 
signal that an Interrupt Is pending. In addition to external sources, each of the three local 
Interrupt sources also have an associated EISBID. 

• One per Interrupt source In 1/0 
• Three for local interrupts 

- Decrementer 
- External check (memory error on OMA) 
- Early power..off waming (EPOW). 

The following are the EISBID address assignments in BUID 0: 

Regl8ter EISBID Addreea 
Decrementer 0000020 
External Check 0000024 
EPOW 0000034 
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PEIS Registers 
The pending External Interrupt Status registers contain pending interrupt status for the 64 
interrupt levels. Using the addresses in BUID 0, software can read these registers. 

The following are the address assignments in BUID O: 

Regleter Addreu 
PEISO X'OOOO 0010' 
PEIS1 X'OOOO 0014' 

Storage Control 
This section describes the function of and control over the storage mechanism. Brief 
motivation Is given, but the primary purpose of this saction Is to serve as a reference. SOme 
of the major features of the storage mechanism are as follows: 

• Page size is 212 bytes. 
• Maximum real memory size Is ~ bytes. 
• Presumed minimum real memory size la ~ bytes. 
• Virtual memory size is ~ bytes. 
• Number of segments is 224. 

• Number of transaction IDs Is 21s. 
• Hardware support for Special Segments (physical lock management on a 128-byte line). 
• Automatic granting of locks in Special Segments in some cases. 
• Memory-mapped l/O Into VO segments. 
• IPL ROM origin at address X'FFFO 0000'. 

The memory hierarchy of the system consists of the following two levels: 

• Cache 
- Instruction cache 
- Data cache that Is managed store-In. 

• Main memory. 

Instructions are provided to manage a data cache and an lnsbuctlon cache. The l/O goes 
directly Into main memory with no hardware Interrogation of the caches. Software must Issue 
the necessary cache control instructions before Issuing an VO to ensure consistency of the 
data cache, Instruction cache, and main memory. Instructions can be changed by treating 
them as data in the normal way. A store to the data cache Is not guaranteed to update the 
instruction cache. Again, software must Issue the necessary cache control Instructions to 
maintain the consistency of the two caches, Instruction prefatch and main memory. 

Page faults cause precise Data Storage lntenupts. Precise means that the address of the 
faulting ins.tructlon is identified, and after the fault is satisfied, execution resumes at that 
address. For instruction page fault, the precision Is obvious. 

Crossing segment boundaries can also cause Data Storage Interrupts. Refer to Figure 28 
on page 1-n tor more information. 

For Data Storage Interrupts, the precision is present but there may be side effects. In 
general, an instruction that makes a reference that causes a Data Storage Interrupt does not 
change the contents of any register that can be changed in nonprivllegad state, which would 
prohibit restarting the instruction after the Interrupt is serviced by software. 
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In those cases where registers or storage are changed, they are not changed in a way that 
would prevent the restart of the faulting instruction. Examples of such instructions are Load 
Multiple (Im), Load String Indexed (lsx), Load String and Compare Indexed (lscbx), Load 
String Immediate (lsi), Store Multiple (stm), Store String Indexed (stsx), and Store String 
Immediate (stsi). The Im, lsx, lsi, or lscbx instruction may fault part-way through its execution 
with only some of the specified registers actually loaded. The Im, lsx, Isl, and lscbx 
Instructions are restartable since the base registers are not altered, even if they are in the 
range to be loaded. The strn, stsx, and stsi instructions may also fault part-way through. In 
this case, some of the storage locations destined to hold the registers being stored may 
have changed as well as respective page table entries. However, strn, stsx, and stsi are 
restartable since the base registers are not altered. Unaligned stores may update storage 
prior to the fault and leave the job up to the relevant interrupt handler to complete. 

Crossing page or segment boundaries by a single instruction Is not necessarily prohibited by 
this architecture. However, each side of the boundary must adhere to the specific rules tor 
protecting that side. Crossing a segment boundary, however, results In a Data Storage 
Interrupt if the first segment accessed has T = O and the second segment has T = 1. 
Crossing a segment boundary cannot occur When the first segment has T = 1. The Segment 
register of the calculated effective address indicates T = 1, and the processor sends the 
load/store command with the Segment register and effective address to 1/0 with no further 
checking of the Segment registers. 

Storage Control Registers 
The following section describes the Segment registers and the Storage Description 
registers. 

Segment Registers 
There are sixteen 32-blt Segment registers (SR) as shown in Figure 20. The most significant 
bit of a Segment register is called the T bit. When T = O, the segment named in the Segment 
register is a nonnal segment. When T = 1 , as shown in Figure 22, the segment named in the 
Segment register Is an 110 segment. Unless explicitly noted, all discussions of segments 
from this point on deal only with normal segments. 

SROO 

SR01 

... 

. . . 

SR14 

SR15 

0 31 

figure 20. Segment Registers 
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Segment registers, when T = 0, contain a 24-bit Segment ID (SID), a Special Segment (S) 
bit, and a 1-bit segment access key {K), in the format presented in Figure 21. 

Ill SID 

01 2 3 8 31 

Figure 21. Segment Register Format (T = 0) 

Adapter Spectflc 

01 2 3 4 12 31 

Figure 22. Segment Register Fonnat (T = 1) 

Storage Description Registers for POWER 
The Storage Description registers (SORO I SDR1} shown in Ftgure 23 are 32-blt registers. 
SORO contains the high-order bits of the real address of the Page Frame Table (PFT). SDR1 
contains the high order-bits of the real address of the Hash Anchor Table CHAn and the HAT 
mask. Access to these registers by software is privileged. 

SDRO 

PFTORG 

0 18 31 

SDR1 

HATORG HAT Mak 

0 18 24 31 

Figure 23. Storage Description Registers 

Bits o to 15 of SORO (PFTORG) concatenated on the right with 16 zeros is the real address 
of the origin of PFT. Bits 0 to 15 of SDR1 (HATOAG) concatenated on the right wtth 15 
zeroes Is the real address of the origin of HAT. Bits 24 to 31 of SDR1 (HAT mask) to contain 
the mask to be used when indexing into the HAT. This constrains the origin of HAT to be on 
a 32K-byte boundary and the origin of the PFT to be on a 64K-byte boundary. These 
alignment constraints pennit the relocation hardware to Index into the tables without addition 
when the machine implements the smallest presumed main memory size (1 BM byte). 

The reason this limit Is presumed Is that the actual amount of real memory may be less, but 
the hardware addressing through the HAT assumes the limit. If less memory than the 
presumed minimum Is actually Installed, then software cannot use any PFT entry that 
corresponds to the noninstalled page of real memory as a legitimate entry without causing 
an error. As the size of main memory Increases, the number of bits used to index the HAT 
increases. Thus software must adjust the base address of the HAT such that this address 
has at least the same number of low-order zeros as the hardware has additional bits of 
index. 
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This implies a hardware variable merger based on actual real memory size. The number of 
entries In the HAT is a trade-off between HAT size and the average PFT chain length. It is 
recommended that the number of entries In the HAT= 2r + 1, 
where 2r:? size of memory > 2r-1• The HAT mask is used to assist the hardware merger. The 
HAT mask Is set by software to contain r - 12 one bits, right-justified with leading zero bits. 

Note: The size of memory Is expressed in units of 4K-byte pages, where 12 s r s 20 
(presumed MIN and absolute MAX number of 4K-byte pages). 

The situation for the PFT is different. The size of the PFT is again determined by the size of 
main memory, but the assignment of Indexes is strictly software-controlled. While the width 
of the Index field is set to handle the maximum main memory size, no value can be bigger 
than the actual memory Installed and Identify a legitimate PFT entry. 

For the PFT, hardware ORs the index with the base independent of the installed memory 
size. Software must adjust the base of the PFT (PFTORG) so that there are sufficient 
low-order zeros not to conflict with the maximum Index value for the Installed size. 

Storage Description Register for POWER2 
The Storage Description register 1 (SOR1) Is a 32-blt registers (shown in Figure 24). SDR1 
contains the high-order bits of the origin address of the hashed page table (HTAB) and the 
HTABmask. Access to these registers by software is privileged. 

SDR1 

HTABorg Ill HTABmuk 

0 16 24 31 

Figure 24. Storage Description Register 

Bits Oto 14 of SDR1 (HTABorg) concatenated on the right with 17 zeroes is the real address 
of the origin of HTAB. Bits 24 to 31 of SDR1 (HTABmask) contain the mask used when 
Indexing Into the HTAB. This constrains the origin of HTAB to be on a 128K-byte boundary. 
Thus software must adjust the origin address of the HTAB to have at least the same number 
of low-order zeros as the hardware has additional bits of Index. 

This Implies a hardware variable merge based on actual real memory size. The HTABmask 
Is used to assist the hardware merge. The HTABmask Is set by software to contain 
r - 12 one bits, right-justified with leading zero bitS. 

Assume r Is the smallest integer such that 2r is greater than or equal to the number of 
4K-byte page frames of real memory. Since the memory size is between 16M bytes and 4G 
bytes, 12 :s; r :s; 20. 

Virtual Address Translation 
Translation is enabled by 2 bits In the MSR; there Is one bit for data address translation 
MSR(DR) and one bit for Instruction address translation MSR(IR). MSA(IR) and MSR(DR) 
are Independent bits and can be set differently. These bits are changed by the mtmsr 
instruction which must be executed in privileged mode. Changing either of these bits with 
rntmsr ls synchronizing. That is, fetching and executing the instructions after the rntmsr 
Instruction is performed according to the new settings of the MSR. The new settings of the 
MSR may not Immediately affect the fetching of instructions because an instruction beyond 
the mtmsr instruction may have been fetched prior to the execution to the mtmsr. ICS can be 
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used to discard the prafatchad instructions and begin fetching instructions following the ICS 
in the mode specified by the new setting of the MSR. 

Note: Accessing of VO is independent of MSR(DR} because access to VO is controlled 
only by the T bit in SRs. Instructions cannot be fetched from 1/0 space. Wrth 
instruction-relocate on, the T bit in the Segment register selected by the effective 
address of the next sequential instruction must be zero, or else an Instruction 
Storage Interrupt is generated. When MSR(IR} = O the T bit is ignored for instruction 
fetches. 

When data translation is off, MSR(OR) = o, the Segment register is only accessed to 
determine H It is an VO segment for data storage accesses. If the T bit is zero, the effective 
address is the real address, and Its numerical value Is the address of a byte In main 
memory. If the T bit is one, the effective address Is sent to l/O. 

When address translation Is enabled, the hardware supports a 52-bit single virtual address 
space consisting of up to 224 segments of 256M bytes each In 4K-byte pages. This address 
is formed by the processor generating a 32-bit effective address that refers either to an 
instruction or to data. 

The translation hardware has 16 Segment registers. Bits D to 3 of the effective address are 
used to address a Segment register. The 24-bit SID field of the accessecl Segment register 
is concatenated with bits 4 to 31 of the effective address to form a 52-blt virtual address. Bits 
4 to 19 of the effective address are called the Virtual Page Index (VPI) and bits 20 to 31 are 
called the byte offset In the page. 

Inverted Paga Table (POWER Only) 
The address tables that define the mapping from virtual to real addresses are comprised of 
the Hash Anchor Table (HAT) and Page Frame Table (PFT). These tables are maintained by 
software and are searched by the relocation hardware as a hash table. 

Remember, as described previously, r Is the smallest integer such that 2r is greater than or 
equal to the number of 4K-byte page frames of real memory. Because the memory size is 
between 16M byte and 4G byte, 12 Sr s 20. The HAT has 2r+1 32-blt entries and each entry 
in the HAT contains an index into the PFT with an invalid bit, i. See Figure 25. 

NextPFT 

01 12 31 

Figure 25. Hash Anchor Table Entry (One Word) 
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WordOO 

Word01 

Word 10 

Word 11 

I 

The number of entries in the PFT is 2r; for example, one per real page frame of memory in 
the case when the size of real memory is a power of 2. Each entry in the PFT spans one 
quadword (four words) and has the format shown in Figure 26. 

Note: Bits 1 to 11 of each HAT entry, bits 1 to 11 of word 1, and bits 4 to 15 of word 3 of 
each PFT entry should not be used by software and should be treated as reserved 
for future use. Some of these bits may be inadvertently altered by hardware when 
updating PFT information. 
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Figure 26. Page Frame Table Entry (One Quadword) 

To translate a virtual address to real the HAT and PFT are searched by the relocation 
hardware as follows. 

31 

Bits o to 3 of the effective address are used to select a Segment register. The selected 
Segment register contains the 24-bit SID. Eight zeros concatenated with the VPI (bits 4 to 
19 of the effective address) are XORed with the 24-bit SID. The low order r + 1 bits 
(specified by the HAT mask) of the resutt are used as an index into HAT. The real address 
formed to look up the entry in the HAT Is as follows: 

opa = b'O' II HATORG II 15 x b'O' 
opb1 = (X'OO' II VPI) xor SID 
opb2 = b'OOO' II HAT mask II 13 x b' 1' 
opb3 = opb1 and opb2 
opb = 6 x b'O' II opb3 II b'OO' 
real address = opa or opb 
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If the next pft field of the selected entry in the HAT is invalid (i = i ), then the search fails. 
Otherwise, the next pit field is an index used to select an entry from the PFT. The real 
address fanned to select an entry in the PFT is: 

opa = PFTORG II 16 x b'O' 
opb = X'OO' II next pit II X'O' 
real = opa or opb 

where next pfl comes initially from the HAT, and subsequenUy from the PFT. 

Having selected an entry in the PFT, SIDll(bits 0 to 2 of the VPI) are compared to bits O to 
26 of word o of that entry. If they compare equally and the SID valid bit (V) Is a one, the 
search succeeds. 

Otherwise, the search continues by accessing the next PFT entry Indexed by nexr pft (bits 
12 to 31 of word 1 of the currant PFT entry) if the Invalid bit (bit 0 of word 1 of the current 
PFT entry) is o, and repeating the process. If the Invalid bit is 1 then the search falls. 

NotB: All hardware lookups are done through the cache using real addressing. 

To prevent an infinite loop in this search, the hardware searches for a maximum of 127 
entries during a single translation. If this limit Is exceeded, the search falls. 

When the search succeeds, the real page frame Is the index of the PFT entry that contained 
the matching virtual address, and the real address la obtained by concatenating that Index 
with bits 20 to 31 of the effective address. When the search falls there is no real address 
associated with the virtual address, and a Data/Instruction Storage Interrupt is generated. 

The translation between virtual and real addresses Is defined by the HAT and PFT, and 
conceptually these tables are searched by the address relocation hardware to translate 
every reference. However, for performance reasons the hardware keeps a Translation 
Look-aside Buffer (TLB) that holds portions of the PFT that It has recently used, and the TLB 
is searched before referring to the tables In storage. As a consequence, when software 
makes changes to these tables, it must issue the approprtate ne purge Instructions to 
maintain the consistency of the TlB and the tables. 

Whan a TLB entry Is loaded, hardware must Insure that either all of the lock and TIO 
Information Is loaded from the PFT entry, or that the lnfonnatlon is marked invalid In the TLB 
entry, even If the segment is not special. This is required because software may change the 
s bit of a segment without invalidating the TLB entry. 

NotM: 

1 . It Is possible for the hardware to actually implement two sets of SRs (one for data 
and one for Instruction). In this case, hardware must insure that the same 
numbered register in both sets have the same value. Likewise, It Is possible for 
the hardwa1'8 to implement two TLBs. In this case, the size, shape, and values 
contained may be different, but the hardware must invalidate both TLBs as part of 
the execution of a single TLB instruction. 

2. If floating stores are used to update PFT entries, a Data Cache Synchronize (des) 
should be used to Insure the store operation completes. 

The physical location (In cache) of data or Instructions Is governed by bits 12 to 31 of the 
effective address regardless of whether the address translation is enabled or disabled. For 
this reason, care must be exercised by software In referencing data with translate off which 
have been previously referenced with translate on, and the oposite situation. Let ra denote 
the real address corresponding to an effective address after translation. Since only bits 20 to 
31 are unaffected by translation, bits 12 to 19 of ra and ea may differ. When they do differ, 
an effective address of ra with translate off refers to a different physical location in cache 
than ea with translate on, potentially leading to inconsistent results. This can be avoided by 
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software restricting the data that are referenced with translate on and off to have bits 12 to 
31 of the real and virtual addresses agree, or by the appropriate use of the FlusMnvalidate 
Cache instructions. 

Note: The HAT and PFT are accessed by hardware using real addresses. Care must be 
taken if software accesses these with translation on. 

If a storage access has the effect of updating the corresponding PFT entry, then that PFT 
entry is updated prior to the next storage access. 

Hashed Page Table (POWER2 Only) 
The HTAB contains a maximum of 219 Hash Table Entry Groups (HTEGs). Fewer HTEGs 
can be allocated If software sets HTABmask appropriately. For a system with N pages of 
real memory installed, the proposed number of HTEGs that should be allocated is Nt2. See 
Figure27. 

The HTAB must be located In a contiguous block of storage and cannot contain any 
defective areas. 

HTAB HTEGI 

I HTEGO I ..... 
"'1 

PTEl_O 

PTEl_1 _.,, PTEl_2 

J ... 
' 
I 

I 

I 

I 

I 

' 
I 

• Word 1_2_0 
I PTE 1_2 
I 

1 
Word 1_2_1 

I PTEl_3 __.J ... 
• 
' PTEl_4 

PTEl_5 
HTEGI 

Notea: 

PTE 1_8 

• PTE 1_7 
I 

__.J .. 

1. n = (Nl2) - 1 where N la the number ot real paga 
of •tonlge. 
2. HTEG(I) le one ot Nl2 h•h table entry groups. 
3. PTE(l_J) I• one of 8 page table enb'lea In HTEG(I) 

Figure 27. Virtual Address Translation Data Structure 

An HTEG contains eight page table entries (PTEs). HTEGs are the addressable element in 
the HTAB. Hashing the virtual address, described in the following discussion, produces a 
pointer to the first of two HTEGs that could contain the translation for the virtual addl'8SS, if a 
translation exists. If the translation is not found in 1he initial HTEG, the virtual address is 
rehashed and a secondary HTEG is searched. 
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Each two-word PTE contains fields to specify the Segment ID (SID), the abbreviated virtual 
page index, the real address, page protection, the reference bit, and the change bit. The 
contents of the PTEs are shown in Figure 28. 

The two words in the PTE describe the real page. The 20-blt RPN field specifies the real 
page number (RPN) of the page translated by Word 0 of this entry. 

Note: Reserved bits in the PTE should not be used by software. Some of these bits can be 
inadvertently altered by hardware when updating Information. 

aid 

RPN 

Figure 28. Page Table Entry (Two Words) 

Word Bit Symbol 

0 0 v 
1-24 aid 
25 
26 h 
27-31 avpi 

1 0-19 RPN 
2G-27 
28 
29 c 
30-31 PP 

Hulled Page Table Search 

DMcrlpUon 

entry valid 
segment Id 
reserved 

Ill 

hash function selector 
abbreviated vpi, EA(4-8) = VPl(D-4) 

real page number 
reserved 
reference bit 
change bit 
page protection keys 

To translate a vtnual address to a real address, the relocation hardware searches the HTAB 
as follows: bits o to 3 of the effective address are used to selact a Segment register. The 
24-blt SID Is extracted from bits 8 through 31 of the selected Segment register. Then bits 4 
through 19 of the effective address (VPI), the 24-bit SID, the HTABorg, and the HTABmask 
are used to select one of N/2 HTEGs within the HTAB (where N Is the number of pages of 
configured memory). Software sets the size of the HTAB by setting the HTABmask In SDR1. 
The real address (HTEGaddr), fonned to access the Initial HTEG, Is shown in Agure 29. 

HTABrnak 1111b'1' 

19) 3b'O' II EA(4-

SID(~23) 

f---+ HTABhuh 

AND 

XOR 

HTABorg II 17b'O' I ~ 
7b'O' II HTABhuh 11 lb'O' ---1 OR- I 

HTEGaddr 

Figure 29. Hash Table Entry Group Accesa 
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If a second hash Is required (see step 8 ), the real address (HTEGaddr') fonned to access 
the second HTEG is shown in Figure 30. The initial and secondary HTEGs are searched for 
the missing translation as follows: 

1. PTEaddr +- HTEGaddr 
2. Access PTE at memory location PTEaddr 
3. If PTE(v) = 0 or PTE(h) = 1, then go to step 5 
4. If SID II EA(4-8) = PTE{sid II avpi) then 

a. Translation succeeds 
b. Real page number::; PTE(RPN) 
c. Exit 

5. PTEaddr ~ PTEaddr + 8 
6. If PTEaddr = HTEGaddr + 64 then 

a. All eight entries are searched; no match is found 
b. Rehash virtual address (see Figure 30) 
c. Go to step e 

7. Go to step 2 
8. PTEaddr +- HTEGaddr' 
9. Access PTE at memory location PTEaddr 
1 O. If PTE(v) = O or PTE(h) = O then go to step 12 
11. If SID II EA[4-8) = PTE(sid II avpl) then 

a. Translation succeeds 
b. Real page numbers PTE(RPN) 
c. Exit 

12.PTEaddr +- PTEaddr + 8 
13. If PTEaddr = HTEGaddr + 64 then 

a. All eight entries are searched; no match is found 
b. Translation fails 
c. Generate Data/Instruction Storage interrupt 
d. Exit 

14.Go to step 9 

HTABma1k II 11b'1' f---t> 
AND 

4-19) 3b'O' II EA( 

SID(S-23) 

f--
XOR 

..._ 
INV 

HTABorg II 17b'O' I ~ 
7b'O' II HTABhaah II 6b'O' __ _, OR / 

HTEGaddr• 

Figure 30. Hash Table Entry Group Access (Hash 2) 
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All eight PTEs in the primary HTEG and all eight PTEs in the secondary HTEG are checked 
until a matching entry is found. If no matching PTE is found in either HTEG, the translation 
fails and a Data/Instruction Storage interrupt is generated. 

Notes: 

1. HTAB entries may or may not be cached by hardware. 

2. All hardware lookups are done through the cache using real addressing. 

3. If software will access the HTAB In translated mode, it must avoid cache line 
synonyms by mapping this table to make the real and virtual address bits used for 
cache set selection are the same. 

4. As memory size Increases, the origin must be set to make as many low-order bits 
of the origin zero as there are significant bits on in the offset. 

5. SDR1: HTABorg and HTABhash must be valid for the Installed memory size. 
HTAB contains: 

- Minimum: 211 HTEGs -+ 214 PTEs-+ 212 real pages 

- Maximum: 219 HTEG~ 222 PTEs -+ 220 real pages 

When the search succeeds, the real page number is the RPN in the selected page table 
entry that contained the matching virtual address, and the real address is obtained by 
concatenating that RPN with bits 20 to 31 of the effective address. 

The translation between virtual and real addresses is defined by the HTAB. Conceptually, 
this table are searched by the address relocation hardware to translate every reference. 
However, for performance reasons the hardware keeps a translation look-aside buffer (TLB) 
that holds recently used PTEs, and the TLB is searched before referring to the table in 
storage. As a consequence when software makes changes to this table it must issue the 
appropriate TLB Invalidate instruetions to maintain the consistency of the TLB and the table. 
See Figure 31. 

Note: If floating-point stores are used to update HTAB entries, a data cache synchronize 
(DCS) should be used to Insure the store operation completes. 

~-- HTEGaddr 

Huh Page Table 

Min: 128K Bytea 
Max: 32M Bytes 

HTEGllddr• 

Figure 31. Virtual Address Translation 

Primary HTEG 

Match: 
SID 
EA(4-8) 

Search up to a 
Entries In HTEG 

Secondary HTEG 

Match: 
SID 
EA (4-8) 

Search up to 8 
Entries In HTEG 

Y• Real Page Number 
Page Protection 
Reference and 
Change 

Reha ah 

Y• Real Page Number 
Page Protection 
Reference and 
Change 

No Tranalatlon Failed 
(DSlllSI) 
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Addreu Allaelng 
In multiple tasking systems. aliasing as used In reference to the virtual address mechanism 
means the concurrent use of multiple virtual addresses to access a single storage element. 
This architecture supports aliasing. To maintain storage consistency in this environment, 
software must obey the following rules: 

• Write Shared Data 

The aliases used to access write shared data must be aligned on 256K-byte boundaries 
(bits 14 through 31 of the addresses used to access the data must be identical). 

• Read Shared Data 

The allowed synonyms used to access read shared data (read only data or Instructions) 
must be aligned on 4K-byte boundaries. 

• Data Shared with VO 

The 110 architecture defines a storage model that is not consistent with 110. Cache 
consistency must be managed by software using the cache management Instructions to 
Insure that changes to storage caused by 1/0 operations are visible to the processor, and 
those caused by the processor are visible to VO. 

These restrictions are necessary to avoid the creation of synonyms that could cause storage 
to be Inconsistent. A synonym Is created when the main memory copy of a storage element 
residing In one set of the cache Is copied from main memory into a dmerent set of the cache 
because a second virtual address was used for a subsequent access and bits 16 through 31 
of the addresses differ. The creation of synonyms when accessing read only data is not a 
problem unless that storage must be consistent with VO. 

When a storage element is addressed using multiple addresses but accesses using different 
addresses are not concurrent, aliasing can be avoided. This approach Is useful only in cases 
where the storage Is accessed by one address for a long period and then by a dmerent 
address for a long period as in the case of cooperating processes that are not allowed to run 
concurrently. When a change of address spaces occurs: 

• Purge the cache of the shared address space 
• Delete the existing translation (PTE) 
• Create the alternate translation (PTE). 

The following software options for supporting eppllcatlons can create cache synonyms: 

• Software avoids cache synonyms by allocating large pages. This had effects on the ease 
with which software can port the OSF OS and possible performance effects on address 
space usage. 

• When applications create unaligned aliases, they will suffer the performance penalties 
caused by cache flushing and translation swapping since only one translation for the 
page is allowed at any time. 

• Software avoids cache synonyms by cancelling jobs that attempt to create cache 
synonyms. 
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A similar effect results when storage is accessed in both real and translated modes. In this 
case there are two aliases, the real address and the virtual address. The same rules hold for 
these accesses. The addresses' spaces must be aligned or the data must be purged from 
the cache betWeen accesses using one address and accesses using the other. 

Storage Acee•• Recording Mechanism 
Reference and Change bits are maintained in the PTE, if address translation is enabled, for 
each real page, and can be accessed by software directly through ordinary load and store 
instructions. These bits are set automatically by hardware in conjunction with normal TLB 
processing as follows: 

Reference bit When a storage 8CC8SS (load, store, or cache Instruction, or Instruction 
fetch) results in a TLB miss and the resulting translation is loaded Into the 
TLB, the reference bit may be set to 1 immediately, or Its setting may be 
delayed until the storage access is detennined to be successful. If the 
reference bit is not set because the access failed, the implementation must 
set the reference bit on the next successful access. 

Change bit Whenever a data store is executed, as part of the TLB look-up procedure, 
the change bit in the TLB is checked and If it Is already set to 1, no further 
action Is taken. However, If the TLB change bit Is o, It Is set to 1, and the 
corresponding change bit In the PTE Is set to 1. 

Note: Since hardware only sets the Reference and Change bits on the basis of TLB 
activity, when software resets these bits to zero, It must synchronize the TLBs 
actions by invalidating the TLB entrles associated with the pages whose reference 
and change bits are reset 

Also, since some implementations may not set the Reference bit when a TLB entry is 
loaded due to an unsuccessful storage access, this indicates there may exist an 
entry In the TLB for the page even though the reference bit In the PTE is O. 

Storage Protection Mechanism 
The protection mechanism Is provided to protect the contents of main storage from 
destruction or misuse caused by unauthorized accesses by a program. 

page Protactlon 
Page protection Is provided at the granulartty of a page and the mechanism uses two 
separate fields: 

• K bit In the Segment register 
• Page Protection (PP) bits in the PTE. 
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Storage protection applies only when address translation is enabled. A reference made with 
translation enabled is associated with a Segment register (SR) and a PTE by the address 
translation procedure described in the preceding section. The following table describes the 
access permitted in terms of the value of the access key in the Segment register and Page 
Protection bits in the PTE. 

Protection Key ProceHlng 

Load store 
Accen AcceN 

K PP Page Type Permitted Permitted 

0 00 Read and Write Yes Yes 

0 01 Read and Write Yes Yes 

0 10 Read and Write Yes Yes 

0 11 Read only Yes No 

1 00 No access No No 

1 01 Read only Yes No 

1 10 Read and Write Yes Yes 

1 11 Read only Yes No 

Where: 

K = Segment register access key 
PP= PTE page protect bits. 

When a reference is not permitted because of the protection mechanism, a Data Storage 
Interrupt (Instruction Storage Interrupt) occurs and bit 4 of the OSISR (SAR 1) is set to 1 . 

The VO protection mechanism provided in the case of an VO segment, the K bit, provided 
with the effective address, is used to protect 110 facilities. 

Timer Facilities 
The real-time clock (ATC} and the decrementer (DEC) provide the timing functions for the 
system. Both functions are manipulated as Special Purpose registers. 

Real Time Clock 
The ATC provides a high-resolution measure of real-time suitable for the 
indication of date and time of day. This is a volatile resource and must be 
initialized during start-up. 

Decrementer The decrementer provides a means of signalling an interrupt after a 
specified amount of time has elapsed unless the decrementer is altered In 
the Interim. 

Real-Time Clock 
Note: This architecture provides no functions to synchronize clocks in a cluster. 

The real-time clock is composed of two Special Purpose registers as shown in Figure 32. 
RTCU is the count of seconds since the epoch specified by software architecture. RTCL is a 
measure of the fraction of the current second in nanoseconds such that when used with 

1 ·82 General Architectures 



RTCU it provides a high-resolution measurement of the real time. The ATC provides a 
calendar range of 136. 19 years. The following requirements apply to both registers: 

• The ATC runs continuously when powered on, but has no provision for retaining the 
correct time during power-off periods. 

• On power up, the RTC begins running but the content is undefined. 

• The ATC can be used to measure elapsed time prior to initialization by first setting RTCL 
too and then comparing the values read from the RTC at times bracketing the period of 
interest. 

Notes: 

1. Software must initialize the RTC from a time source external to the processor. 

2. If RTCL is not initialized, or If it is initialized with a value greater than 999,999,999, 
the elapsed time until the count is reset to O by hardware is undefined but less than 
four seconds. 

RTCU 

RTCL 

0 31 

Regleter DMcrlptlon 
RTCU Represents time in seconds. 
RTCL Represents time in nanoseconds. 

Figure 32. Real Tlme Clock (ATC) 

Note: All bits In the RTCL need not be Implemented. 

RTCL Description 
All 32 bits of RTCL need not be Implemented. The driving frequency, insertion bit, controls, 
and number of bits must be implemented such that the following requirements are satisfied: 

• If all bits are Implemented, bit 31 of RTCL changes state each nanosecond. 

• The implemented bits function as a binary counter. 

• The Initial Implementation has a resolution of 256 nanoseconds. 

• The period of RTCL Is one billion nanoseconds (one second) once the content Is set to O 
by software or hardware. This occurs within four seconds of power up if not initialized by 
software. 

• When not being altered by software, the RTCL operates such that: 

- Only 999,999,999 nanoseconds after it has been set too, the content is equal to the 
terminal count (a value less than and as near to 999,999,999 as the implemented bits 
allow). 

- One nanosecond later the content is set to 0. 

• Moving the content of RTCL to a GPA has no effect on the counter. After the move, bits In 
the GPR corresponding to the unimplemented bits in the counter are O's. 

• Moving the content of a GPA to the counter causes the contents of the implemented bits 
of RTCL to be replaced by the contents of the associated bits of the source GPA. Bits In 
the GPR corresponding to the unimplemented bits in RTCL are ignored. 
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RTCU Description 
RTCU is a 32-bit binary counter which satisfies the following requirements: 

• When the next state of RTCL is to become o because it has reached terminal count, 
ATCU is incremented in synchronism with the setting of RTCL to 0. 

• All 32 bits of RTCU are implemented. 

• When the content of RTCU Is all 1s, the next time It is incremented the content becomes 
all Os. 

• The counter runs continuously while powered on. 

• Moving the content of RTCU to a GPA has no effect on the counter. 

• Moving the content of a GPA to RTCU causes the content of ATCU to be replaced by the 
content of the source GPA. 

Setting and Reading the RTC 
The ATC Is accessed as two Special Purpose registers, RTCU and ATCL. The contents of 
the ATC can be copied to GPRs or initialized from GPRs using the mtspr and mtspr 
instructions. The RTCL or RTCU can only be altered in Privileged mode. If an attempt to 
alter these registers Is made In Non-Privileged mode, a program Interrupt results. 

lnltlallzlng the RTC 
The content of the ATC can be altered using the ~pr instruction. This is a privileged 

access. 

The ATC can be Initialized by the following sequence of instructions and commands: 

1. Load the value X'OOOO FFFP into Rx. 

2. Obtain the correct time from a source external to the processor. 

3. Compute a 32-blt representation of this value In seconds and place in Ry. 

4. Compute the residual fractions of a second in nanoseconds and place in Rz. 

5. Issue mtspr RTCL,Rx. Set lower register to zero to avoid carry. 

6. Issue mtspr RTCU,Ry. Set upper register to time in seconds. 

7. Issue mtspr ATCL,Rz. Set lower register to correct fraction of a second. 

At the completion of this sequence, the ATC contains the correct time unless a delay such 
as an Interrupt occurs during this sequence. 

Reading the RTC 
The content of either half of the RTC can be copied to a GPA using the mfspr instruction. 
This instruction does not change the content of the RTC. This is not a privileged access. 

When the current time is required in a form that includes more than the upper or lower word 
of the ATC, the following procedure should be used: 

1. Execute the following instruction sequence: 

mfspr Rx,RTCU 

mfspr Ry,RTCL 

rnfspr Rz,RTCU. 
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2. IF Rz=Rx 

THEN the correct value has been obtained. 

ELSE go to step 1 . 

This procedure guarantees that the correct value is obtained. 

Note: If the following Instruction sequence is executed: 

mtspr RTCU,Rx 

mfspr Ry,RTCU, 

then the contents of register Rx differ from the contents of register Ry by at most one 
unless the sequence Is Interrupted. 

oecrementer 
The Dsctementer(DEC) is a decrementing counter that provides a mechanism for causing 
an extemal Interrupt after a programmable delay. The period of bit o of DEC is 
approximately 4.3 seconds. See Figure 33. 

DEC 

Deecrlptlon 

0 

Reglater 
DEC Represents delay in nanoseconds 

Figure 33. Decrementer 

Note: All bits in DEC need not be Implemented. 

31 

The drtvlng frequency, insertion bit, and controls for the Decrementer must be implemented 
such that the following requirements are satisfied: 

• The Implemented bits function as a binary down counter. 

• The operation of the ATC and the DEC are coherent; for example, both counters are 
driven by the same fundamental time base. 

• The resolution of the Initial implementation Is 256 nanoseconds. 

• If all bits are Implemented, DEC(31) changes state each nanosecond. 

• Loading a GPA from DEC has no effect on the counter. After the load, bits In the GPA 
corresponding to the unimplemented bits in the counter are O's. 

• Moving the content of a GPR to the DEC replaces the Implemented bits of DEC with the 
associated bits of the GPA. Bits In the GPA corresponding to the unimplemented bits In 
the DEC are Ignored. 

• The Decrementer never stops running. When Its contents are o and it is decremented, all 
the Implemented bits are set to 1. 

• Whenever bit 0 of DEC changes from O to 1 , an Interrupt request Is signalled. 

• If the DEC Is altered by software and the content of bit o of DEC Is changed from O to 1 , 
an interrupt request is signaled. 
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Decrementer Interrupts 
The Decrementer Interrupt is an External Interrupt and conforms to the specification as 
defined in "External Interrupt Mechanism" on page 1-67. The Decrementer Interrupt 
mechanism contains an EISBID located in the VO space. 

DEC EISBIO Address 

Segment Register Fields 

BUID X'OO' 

Adapter Specific 
x·ooooo· 

Effective Address 

Decrementer Usage 

Must select a Segment register with a content as specified 
previously 

X'0000020' 

The content of the Decrementer can be read or altered using the Special Purpose registers 
control instructions. The mtspr instruction is privileged when the DEC is the target register. 

Setting the DEC 
The content of the Decrementer is altered by software using the following mtspr instruction: 

mtspr DEC.Rx. 

Note: If the execution of this instruction causes bit o ol DEC to be changed from a value of 
O to a value of 1, an interrupt request is signalled. 

Reading the DEC 
The content of the Decrementer can be copied to a GPA by executing a mfspr instruction. 
Copying the Decrementer to a GPA has no effect on the Decrementer content or interrupt 
mechanism. 

mlspr Rx,DEC 

1-88 General Architectures 



Floating-Point Round to Single Model 
The following describes the model for Floating-Point Round to Single-Precision instruction. 

Floating-Point Round to Single Model 

If FRB(1-11)<897 and FRB(1-63)>0 then 
Do 

If FPSCR(UE) = 0 then goto Disabled Exponent Underflow 
If FPSCR(UE) = 1 then goto Enabled Exponent Underflow 

End 

If FRB(1-11)>1150 and FRB(1-11)<2047 then 
Do 

If FPSCR(OE) = O then goto Disabled Exponent Overflow 
If FPSCR(OE) = 1 then goto Enabled Exponent Overflow 

End · 

If FRB(1-11)>896 and FRB(1-11)<1151 then goto Nonna! Operand 

If FRB(1-63) = O then goto Zero Operand 

If FRB(1-11) = 2047 then 
Do 

If FRB{12-63) = 0 then goto Infinity Operand 
If FRB(12) = 1 then goto QNaN Operand 
If FRB(12) = 0 and FRB(1M3)>0 then goto SNaN Operand 

End 

Disabled Exponent Underflow 

sign +- FRB(O) 
If FRB(1-11) = 0 then 

Do 
exp+--1022 
frac +- b'O' II FRB(12-63) 

End 
If FRB(1-11)>0 then 

Oo 
exp+- FRB(1-11) -1023 
frac +- b'1' II FRB(12-63) 

End 
Denormalize operand: 

G II R II X +- b'OOO' 
Do while exp<-126 

exp+-exp + 1 
frac II G II R II X +- b'O' II free II G II R or X 

End 
FPSCR(UX) +- frac(24-52)11GllRllX>O 
If frac(24-62)11GllRllX>O then FPSCR(XX) +- b'1' 
Round single(sign,exp,frac,G,R,X) 
If free = o then 

Do 
FRT(OO) +- sign 
FRT(01-63) +- 0 
If sign= 0 then FPSCR(FPRF) +- w+zero" 
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If sign= 1 then FPSCR(FPRF) t- "-zero• 
End 

If frac>O then 
Do 

End 
Done 

If frac(O) = 1 then 
Do 

If sign= 0 then FPSCR(FPRF) +- "+nonnal number" 
If sign= 1 then FPSCR(FPRF) +-"-normal number" 

End 
If trac(O) = O then 

Do 
If sign = O then FPSCR(FPRF) f- "+denormalized number" 
If sign = 1 then FPSCR(FPRF) +- "-denormalized number" 

End 
Normalize operand: 

Do while frac(O) = o 
exp +-exp-1 
frac II G II R +- frac(1-52) II G II R II b'O' 

End 
FRT(O) f- sign 
FRT(1-11) +-exp+ 1023 
FRT(12-63) +- frac(1-23) 1129.b'O' 

Enabled Exponent Underflow 

FPSCR(UX) +- b't' 
sign +- FRB(O) 
If FR8(1-11)-= 0 then 

Do 
exp +--1022 
frac +- b'O' II FRB{12-63) 

End 
If FR8(1-11)>0 then 

Do 
exp+- FRB(1-11) - 1023 
free +- b't' II FRB(l 2-63) 

End 
Normalize operand: 

Do while frac(O) = O 
exp+- exp-1 
free+- frac(1-52) II b'O' 

End 
If frac(24-52)>0 then FPSCR(XX) +- b'1' 
Round single(sign,exp,frac,0,0,0) 
exp+- exp+ 192 
FRT(O) +- sign 
FAT(1-11) +-exp+ 1023 
FRT(12-63) +- frac(1-23) II 29.b'O' 
If sign = 0 then FPSCR(FPRF) +- "+normal number" 
If sign = 1 then FPSCR(FPRF) +- "-normal number" 
Done 
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Disabled Exponent Overflow 

FPSCR(OX} +- b'1' 
FPSCR(XX) E- b'1' 
If FPSCR(RN) = b'OO' then (Round to Nearest) 

Do 

End 

If FRB(O) = b'O' then 
Do 

FRT(o-63) +- x'7FFOOOOOOOOOOOOO' 
FPSCR(FPRF) +-"+infinity" 

End 
If FRB(O) = b'1' then 

Do 

End 

FRT(C>-63) +- x'FFFOOOOOOOOOOOOO' 
FPSCR(FPRF) +- •-1nfinity" 

If FPSCR(RN) = b'01' then (Round Truncate) 
Do 

End 

If FRB(O) = b'O' then 
Do 

FRT(o-83) +- x'47EF FFFF EOOO 0000' 
FPSCR(FPRF) +- "+nonnal number" 

End 
If FRB(O) = b'1' then 

Do 
FRT(o-83) +- x'C7EF FFFF EOOO 0000' 
FPSCR(FPRF) +- "-nonnal number" 

End 

If FPSCR(RN) = b'10' then (Round to +Infinity) 
Do 

End 

If FRB(O) = b'O' then 
Do 

End 

FRT(o-63) E- x'7FFO 0000 0000 0000' 
FPSCR(FPRF) +-•+infinity" 

If FRB(O) = b'1' then 
Do 

FRT(~) E- x'C7EF FFFF EOOO 0000' 
FPSCR(FPRF) +-"-normal number­

End 

If FPSCR(RN) = b'11' then (Round to -lnfintty) 
Do 

End 
Done 

If FRB(O) = b'O' then 
Do 

FRT(C>-63) +- x'47EF FFFF EOOO 0000' 
FPSCR(FPRF) +-•+normal number­

End 
If FRB(O) = b'1' then 

Do 

End 

FRT(o-63) +- :x'FFFO 0000 0000 0000' 
FPSCR(FPRF) +- "-Infinity" 
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Enabled Exponent Overflow 

sign +- FRB(O) 
exp+- FRB(1-11)-1023 
frac +- b'1' II FRB(12-63) 
If frac(24-52)>0 then FPSCR(XX) +- b'1' 
Round single(sign,exp, frac,0,0,0) 

Enabled Overflow: 
FPSCR(OX) +- b'1' 
exp+- exp -192 
FRT(O) +- sign 
FRT(1-11) +-exp+ 1023 
FRT(12-63) +- frac(1-23) II 29*b'O' 
II sign = 0 then FPSCR(FPRF) +- "+normal numbe(' 
If sign= 1 then FPSCR(FPRF) +-"-normal number" 
Done 

Zero Operand 

FRT(H3) +- FRB(~) 
If FRB(O) = b'O' then FPSCR(FPRF) +- "+zero" 
If FRB(O) = b'1' then FPSCR(FPRF) +- "-zero" 
Done 

Infinity Operand 

FRT(0-63) +- FRB(0-63) 
If FRB(O) = b'1' then FPSCR(FPRF) +-"-infinity" 
Done 

QNaN Operand 

FRT(o-63) +- FRB(D-34) II 29*b'O' 
FPSCR(FPRF) +- "ONaN" 
Done 

SNaN Operand 

FPSCR(VXSNAN) +- b'1' 
If FPSCR(VE) = 0 then 

Do 

End 
Done 

FRT(0-11) +- FRB(0-11) 
FRT(1 2) +- b'1' 
FRT(1 ~3) +- FRB(13-34) II 29*b'O' 
FPSCR(FPRF) +- "QNaN" 
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Normal Operand 

sign +- FRB(O) 
exp+- FRB(1-11)- 1023 
frac +- b'1' II FRB(12-63) 
If frac(24-52)>0 then FPSCR(XX) +-- b'1' 
Round single(slgn,exp,trac,O,O,O) 
If exp>+ 127 and FPSCR(OE ) = O then go to Disabled Exponent Overflow 
If exp>+ 127 and FPSCR(OE) = 1 then go to Enabled Overflow 
FRT(O) +- sign 
FRT(1-11) +-exp+ 1023 
FRT(12-63) +- frac(1-23) 1129.b'O' 
If sign= O then FPSCR(FPRF) +-"+normal number" 
If sign = 1 then FPSCR(FPRF) +-- "-normal number" 
Done 

Round Single (sign, exp, frac, G, R, X) 

inc+- b'O' 
lsb +- frac(23) 
gbit +- frac(24) 
rbit +- frac(25) 
xbit +- frac(26-52)11GllRllX>O 
If FPSCR(RN) = b'OO' then 

Do 
If sign II lsb II gblt II rbit II xbit = b'x11 xx' then Inc +- b'1' 
If sign 11 lsb II gbit II rbit II xblt = b'X011 x' then inc+- b'1' 
If sign 11 lsb II gblt II rbit II xbit = b'X01x1' then Inc+-- b'1' 

End 
If FPSCR(RN)=b'1 O' then 

Do 
If sign 11 lsb II gbit II rbit II xblt = b'Ox1xx' then Inc+- b'1' 
If sign 11 lsb II gblt II rblt II xblt = b'Oxx1 x' then inc +- b'1' 
If sign 11 lsb II gbit II rblt II xbit = b'Oxxx1' then inc+- b'1' 

End 
If FPSCR(RN)=b'11' then 

Do 

End 

If sign 11 lsb II gbit II rblt II xblt = b'1x1xx' then inc+- b'1' 
If sign 11 lsb II gbit II rblt II xblt = b'1xx1x' then Inc+- b'1' 
If sign 11 lsb II gbit II rbit II xbit = b'1xxx1' then Inc+- b'1' 

trac(0-23) +- frac(0-23) + inc 
If carry out= 1 then 

Do 
frac(0-23) +- b'1' II frac(0-22} 
exp+- exp+ 1 

End 
FPSCR(FA) +- inc 
FPSCA(FI) +- gbit or rbit or xblt 
Retum 
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Floating-Point Integer Convert Model 
This section describes the conversion of the floating-point double precision vaJue contained 
in register FRB into an integer or a special number if the conversion cannot be successfully 
completed. This function converts a 64-bit floating-point value to a 32·bit integer. Whether 
the conversion is successful or is an exception case, the high order 32 bits of RT are 
undfined. If the conversion is successful, the low order 32 bits of RT contain the integer 
resulting from the conversion. The 32 undefined bits are indicated by "xxxx xxxx" In hex 
representations of the 64-bit register. 

Floating-Point Integer Conversion 
The follow segments describe the expected result based on the content of FRB: 

If [Floating Convert to Integer and Round] 
Then round_mode +- FPSCR(RN) 

If [Floating Convert to Integer and Round toward Zero] 
Then round_mode +- b'1' 

FPSCR(FPRF) +- •undefined• 

If FAB(1:11) = 2047 and FRB(12:83) = O then goto Infinity Operand 
If FAB(1:11) = 2047 and FRB(12) = 0 then goto SNaN Operand 
If FRB(1:11) = 2047 and FRB(12) = 1 then goto QNaN Operand 
If FRB(1:11) > 1087 then goto Large Operand 

sign +- FRB (0) 
If FRB(1:11) > o then exp+- FRB(1:11)-1023 r* exp- bias .. , 
If FRB(1:11) = Othen exp +--1022 
If FRB(1 :11) > 0 then frac(0:63) +- b'01' II FRB(12:63) II b'OOOOOOOOOOO' r* normal -1 
If FRB(1:11) = 0 then frac(0:83) +- b'OO' II FRB(12:63) II b'OOOOOOOOOOO' ,.. denorrnal .. , 

gbit II rbit II xblt +- b'OOO' 

Doi= 1, 64-exp 
frac(0:63) II gbit II rbit II xblt +- b'O' II frac (0:83) II gbit II rblt or xblt 

End 

If gblt or rblt or xbit then FPSCR(XX) +- 1 

Round Integer (sign, frac, gblt, rblt, xblt, round_mode) 
Round Integer (sign, frac, gbit, rbit, xblt, round_mode) 
If sign = 1 then frac(0:63) +- -frac (0:63) + 1 

If frac (0:63) > +2**(31-1) then goto Large Operand 
If frac (0:63) < -2•*(31) then goto large Operand 

FRT +- x'xxxx xxxx' II frac (32:63) r• where x'xxxx xxxx' is undefined .. , 

Done (exit conversion) 
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Round Integer (sign, frac, gbit, rblt, xbit, round_mode) 
{ 

inc+-b'O' 
If round_mode = b'OO' then 

Do 

End 

If sign II frac(63) II gbit II rblt II xblt = b'x11 xx' then inc +- 1 
If sign II frac(63) II gblt II rbit II xbit = b'X011x' then inc+-- 1 
If sign II frac(63) II gbit II rblt II xblt = b'X01 x1' then Inc +-- 1 

If round_mode = b'1 O' then 
Do 

End 

If sign II frac(63) II gbit II rblt II xbit = b'Ox1 xx' then inc +-- 1 
If sign II frac(63) II gbft II rbit II xbit = b'Oxx1x' then inc+-- 1 
If sign II frac(63) II gblt II rbit II xbit = b'Oxxx1' then inc +-- 1 

If round_mode = b'11' then 
Do 

Encl 

If sign II frac(63) II gblt II rblt II xblt = b'1x1xx' then Inc+-- 1 
If sign II frac(63) II gblt II rblt II xblt .. b'1xx1x' then Inc+-- 1 
If sign II frac(63) II gblt II rblt II xblt = b'1xxx1' then Inc+-- 1 

frac(0:63) +- frac(0:63) + Inc 
FPSCR(FR) +-- inc 
FPSCR(FI) +- gblt or rblt or xblt 
Retum r end of Round Integer•/ 

Infinity Operand 
Infinity 
{ 
H the content of FRB Is a representation of Infinity, the following is required: 

1. FPSCR(FR, Fl, VXCVI) +- b'001' 

2. If FPSCR(VE) = 0 
THEN DO 

If the sign = o 
than do 

FPSCR(FPAF) +- •+infinity" 
FAT +- x'xxxx xxxx 7FFF FFFP 

end do 

If the sign = 1 
then do 

FPSCR(FPRF) +- "~nflnlty" 
FAT +- X'xxxx xxxx 8000 0000' 

end do 
END DO 

Done (exit conversion) 
} 
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SNaN Operand 
SNaN Operand 
{ 

QNaN Operand 

If the content of FRB is an SNaN, the following is required: 
FPSCR(FR, Fl, VXCVI) +-- b'001' 
If FPSCR(VE) = 0 

THEN DO 
FPSCR(FPRF) &ldarrow. "quiet NaN" 
FAT &ldarrow. +-- x'xxxx xxxx 8000 0000' 

END DO 
Done (exit conversion) 

QNaN Operand 
{ 

Large Operand 

If the content of FRB is a QNaN, the following is required: 
FPSCR(FR, Fl, VXCVI) +-- b'001' 
If FPSCR(VE) = 0 

THEN DO 
FPSCR(FPRF) &ldarrow. Mquiet NaN" 
FAT &ldarrow. +-- x'xxxx xxxx 8000 0000' 

END DO 
Done (exit conversion) 

Large Operand 
{ 

If the content of FRB, rounded as indicated by the instruction being executed, is too 
large to be represented in 32 bits, the following is required: 

FPSCR(FR, Fl, VXCVI) +-- b'001' 
If FPSCR(VE) = 0 

then if the sign = o 
then FRT &ldarrow. +-- x'xxxx xxxx 7FFF FFFF' 
else FAT &ldarrow. +-- x'xxxx xxxx 8000 0000' 

Done (exit conversion) 

1/0 Space Rules 
The following rules should be adhered to when addressing 1/0 segments using loads and 
stores: 

• All references, both loads and stores, must be generated. 

• The order of the references to shared variables must not be change by the compiler. This 
is with respect to all shared variables, not just the same shared variable. 

• No references can be moved outside of their basic block (for example, before an if test or 
outside of a loop). 
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• Multiple references to adjacent locations cannot be combined into a single reference (for 
example, a load byte from 1fe combined with a load byte from 1ff to create a load 
halfword from 1fe). 

• Read-modify-write cannot be supported and should produce a compile time error. The 
programmer must be forced to explicitly program to the underlining storage classes 
(character, halfword, word) for all references. 

Serlallzing Semantics of Various Instructions 

Some Serialization Cases 
In order to arrive at the definitions of ics and des instructions, the following cases where 
synchronization is required were considered: 

• Synchronization on local 1/0 operations: 

Assume memory control registers are being updated. The sequence of Instructions occur 
as follows: 

Store 
<S)'flC>. 

ram bank control 

In this case the synchronization can be taken care of by an lcs Instruction. The ics must 
wait for the store to complete (at this time It Is removed from the PCS). 

• Instruction modification: 

The following is a possible sequence: 

Store (changed Instruction) 
elf 
<sync> (wait for store-back to complete, invalidate prefetch buffers) 
Branch (to changed instruction). 

This synchronization is accomplished by Issuing a des Instruction first, followed by an ics 
Instruction. The entire sequence then becomes the following: 

Store (changed instruction) 
elf 
des 
ics 
Branch (to changed instruction). 

The des instruction waits for the store-back to main memory to finish at the Fixed-Point 
unit. The ics forces the Instruction Cache Unit to wait until the des is complete. Any 
prefetched instructions are invalidated, and the instruction following the ics is fetched 
again. The fetching of the branch target causes an instruction cache miss and the new 
version of the line is fetched from memory. 

• Page in: 

ell 
<multiple dis> 
<Sync> 
(Invalidate prefetch instructions and wait for last cli to complete). 
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This case is also handled by an ics instruction. The cli and elf instructions are placed on 
the Program Counter Stack (PCS) (see the following). The ics instruction waits for the 
PCS to empty before it can complete. 

• Page out 

elf 
<multiple ctfs> 
<Sync> (serialize Fixed-Point Unit, wait for store-back of last elf) 
<Start VO>. 

In this case the synchronization is handled by a des instruction. The Instruction Cache 
Unit is not synchronized; it continues dispatching instructions beyond the des instruction 
as there is no need to synchronize the Instruction Cache Unit. 

Instruction Cache Synchronize and Data Cache Synchronize Definitions 
The following sections describe the instruction cache synchronize (ics) and data cache 
synchronize (OCS) instructions. 

lea Instruction 
The ics instruction should have the following semantics: 

• Any prefetched instructions are discarded. 

• The PCS is emptied. The PCS maintains a hardware list of outstanding instructions in the 
Fixed-Point Unit which can cause an interrupt. They include loads, stores, and traps. 

• Any outstanding operations from the following list must have executed (meaning that 
none of the following Instructions causes an interrupt, and are completely executed with 
respect to the state of proc8S$0r registers, but perhaps not memory): 

- des 
- tlbl 
- mtsr and mtsri 
- ell 
- deist, dclz, and elf. 

(To the point they cannot interrupt by way of the PCS, the line may not be valid in main 
memory for elf and deist, and the cache line may not be entirely zeroed for dclz.) 

The previous three conditions are referred to as the three serializing operations. Upon 
encountering ics, the Instruction Cache Unit waits until these conditions are satisfied before 
considering any subsequent instructions for dispatch. 

There are actually two problems related to SDRi and SORO. The primary problem is what 
the correct behavior of ics should be relative to these SPR moves. The second is what the 
Instruction Cache Unit should do with respect to misses for prefetched instructions when 
these registers are In the process of being updated. 

There is a delay between the time an mtspr. SDAO/SDRi is dispatched by the Instruction 
Cache Unit and the time It is actually executed by the Fixed-Point Unit. During this time the 
Instruction Cache Unit must be prevented from presenting a translation request to the 
Fixed-Point Unit, otherwise an incorrect translation could possibly be perfonned. We 
recommend that this case be handled in the following way. 
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Update SORO and SDR1 in real mode only. In this case there is no possibility of an ITLB 
miss, so an incorrect translation cannot be performed. 

If this is unacceptable and software wishes to update SORO and SDR1 in virtual mode, then 
an lcs must follow the mtspr SDRO/SDA1 in order to ensure correct operation. (This solution 
will not work if the ics and mtspr are on different pages and lcs is on a page affected by the 
new value of SDRO/SDR1 .) 

des Instruction 
The des instruction waits for all outstanding data cache operations (elf, deist, dclz) to 
complete. (By virtue of the present design of the Axed-Point Unit, cli, tlbi, mtsr, and mtsri will 
all have completed prior to the des completing.) The des instruction does not synchronize 
the Instruction Cache Unit. (However, an interlock bit Is set in order to allow ics to inter1ock 
until the des instruction completes.) 

Other Instructions Possibly Requiring Serialization 
The semantics of other serializing or potentially serializing instructions are listed as follows: 

• SVC 

As part of the execution of this Instruction all three serializing operations listed previously 
for ics are performed. (Although the svc Instruction Is not presently defined as a 
serializing instruction, the Initial implementation Implements it as such.) In addition, the 
SVC cannot be executed until the Link register Is not Interlocked (If the LK bit is set) and 
the Count register and MSR are not intertock:ed. 

• mtmsr 

The mtrnsr Instruction will not be dispatched until the MSR is not interlocked. When It is 
dispatched no subsequent Instructions will be dispatched until the MSR has been 
updated. At this point any prefetched Instructions will be invalidated, and the Instruction 
following mtmsr will be refetched using the new MSR value. (Currently it is not necessary 
to wait for the PCS to empty because the Fixed-Point Unit will not be able to perform the 
mtmsr until all Instructions that could cause an interrupt in the Fixed-Point Unit have been 
completed.) 

• rfl 

All three serializing operations will be performed. Additionally, the rfi Instruction will not 
execute until SARO, SRR1, and the MSR are not interlocked. 

• rtsvc 

All three serializing operations will be performed. The rfsvc will not be executed until the 
Unk register, the Count register, and the MSR are not interlocked . 

• tlbi 

This Instruction does not serialize the Instruction Cache Unit. An explicit ics must be 
issued if TLB entries pertaining to the page from which instructions are being fetched or 
pre-fetched are being invalidated. 
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• mtsr and mtsri 

These instructions do not serialize the Instruction Cache Unit. Instructions past the mtsr 
or mtsri instructions are dispatched. Prefetched instructions are not Invalidated. If a 
Segment register from which instructions are being fetched is to be updated, the 
Segment register update must be followed by an ics instruction. 

These instructions are self-serializing with respect to data references. 

• Load/Store to VO 

There is no known serialization since all of these operations must complete before any 
subsequent operations are executed by the Fixed-Point Unit, and we are not aware of 
any effect of these operations on the Instruction Cache Unit which requires implicit 
serialization. 

• elf and cli 

These instructions do not serialize the Instruction Cache Unit. An ics instruction must be 
issued to cause the Instruction C&che Unit to wait until all outstanding clf/cli operations 
have been executed, and to fetch again any fetched Instructions. 

• dclz and deist 

These instructions cause no serialization in the instruction cache unit, but are 
self-serializing in the Fixed-Point Unit. 

• mtsprTID 

This instruction is presently self-serializing in the Fixed-Point Unit so it requires no 
special handling by software. 

• mtspr SOR 0 

• mtspr 

Instructions which move to SPRs in the Instruction Cache Unit, such as SARO, SRR1. 
LR, and CTR, are all handled by a standard intertock scheme. When the instruction is 
dispatched, an interlock bit for the affected register is set. When the data returns from the 
Fixed-Point Unit, the interlock bit Is reset. No subsequent read or write operation to a 
register can be perfonned while the interlock bit is set. These instructions are not 
serializing. 
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Description 
This chapter describes the Input/Output (VO) architecture. General 110 bus support functions 
for Load and Store instructions, interrupt, and channel control are provided by the 1/0 
Channel Controller (IOCC). A number of feature 110 slots are associated with the IOCC for 
pluggable 110 devices. Also attached to the 1/0 bus, but not occupying feature slots, is the 
Standard VO. See usystem VO and Standard vo· on page 2-84. 

The IOCC design allows certain variations of function and performance to optimize its use 
across multiple machine environments. The specific personalization is established with the 
contents of the iOCC Configuration register. (See "IOCC Configuration Register" on page 
2-74) and •1mptementatlon Oetalls" on page 2-86.) 

Reasonable efforts were made to implement this architecture correctly and completely. 
However, the implementations may deviate to some extent from the VO architecture, 
documented In this chapter. The specifics of the various implementation deviations are 
documented in the •tmplementation Details• on page 2-86 or in the VO architecture 
implementation details section in the product-specific manual. 

Figure 34 shows the logical view of the IOCC in the units. 
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System Structure 
Figure 35 shows a more detailed logical view of the IOCC. Functions provided by the IOCC 
include data buffering, address translation, access protection, direct memory access (OMA), 
and Interrupt support. 
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The operating system can access all system facilities, for example, virtual memory, system 
memory, bus VO. bus memory. and the IOCC. The IOCC contains special facilities needed 
by the system tor translation, protection, and other functions. 

Problem state programmers are normally restricted to virtual memory. The virtual address Is 
always mapped to system memory by way of the translation mechanism associated with the 
processor chip set. 

For certain applications, the operating system also grants conditional access authority to the 
bus VO and bus memory. Accesses to bus memory and bus VO devices are checked tor 
proper access authority, restricting user programs to access only the devices that they are 
authorized to use. Accesses to bus VO are verified by an address range check. Accesses to 
bus memory are vei:ified by way of a key in the translate control word (TCW) table described 
in "Translation, Protection, and TCW Table" on page 2·33. 

The VO architecture Includes the definition of 16 independent VO channels. One channel 
(X'F') is used by the system master for Load and Store transfers, leaving 15 that can be 
programmed for bus master transfers. The number of channels that can be programmed for 
OMA slave transfers Is Implementation specific. {See "IOCC Configuration Register" on page 
2·74 and "Implementation Details·on page 2-86.) 

A bus master is a Micro Channel device that contains Its own direct memory access 
controller. A OMA slave is a Micro Channel device that requires the system to provide the 
direct memory access control. 

The VO architecture also includes a provision for 16 IOCC buffers that can be associated 
with each of the VO channels previously described. The presence and the number of IOCC 
buffers is implementation specific. In addition, the architecture optionally allows for each of 
these 16 buffers to be dual buffers. The dual buffer option enhances VO performance by 
allowing overlap of operations between the Micro Channel and system buses. The option 
allows the IOCC to read-ahead of the device so that the data is there when the device 
requests it, or to write data to the system memory whUe the device fills the other buffer. For 
detaJls, see •1occ Configuration Register" on page 2-74 and ·implementation OetailsR on 
page 2-86. Normally this dual buffering mode Is transparent to the software. However, under 
certain circumstances the software may need to know of the buffers existence. Saa "next 
buffer invalidate Command" on page 2-68. 

Normally, aJI processor accesses to system memory go through the processor data cache. 
However, if accesses are sharing memory areas with VO devices, a means must be 
provided for maintaining consistency among the processor data cache, the system memory, 
and the 1/0 buffers. How cache coherency is provided is implementation specific. Briefly, in 
the unbuffered mode, the hardware provides consistency. In the buffered mode, the software 
must provide consistency (by way of hidden pages, by the use of programmed 1/0 (PIO) to 
system memory through the IOCC, or by other techniques). For more detalls, see 
"Maintaining Consistency" on page 2·36, ·1occ Configuration Register" on page 2-74 and 
"Implementation Details· on page 2-86. All caches can be visible to programmers, including 
selected application level programmers. 

A bus master on the VO bus accesses bus memory and bus VO, and if mapped, system 
memory. Pages in the bus memory address space are mapped to system memory by way of 
the TCW table and by a bit in each Channel Status register indicating the target (bus or 
system memory) of the access. Mapped pages are checked for proper access authority 
before allowing an access to proceed. Since the IOCC cannot Intercept or stop accesses 
from a bus master to bus attached memory or bus VO devices, no access checking is 
performed when a bus master addresses devices on the VO bus. 
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The OMA slave controller provides a convenient mechanism for moving data between an 1/0 
device and system or bus memory. It provides addressing and control functions on behalf of 
the 1/0 device. Two methods for providing addresses for the DMA slave operations are 
supported in the architecture. In the first, memory addresses are obtained from a tag table In 
the IOCC. This table provides translation facilities similar to the System/370 indirect address 
word list, with additional capabilities allowing data chaining down to the byte level. In the 
second method, a TCW table provides the Real Page Number (RPN) used along with an 
offset as the memory address. Both methods are described in more detail later in this 
document. For implementation specific details, see •1occ Configuration Register" on page 
2-74 and •implementation Details" on page 2-86. 

Vlrtual Memory 
Virtual memory is a large address space containing logical system objects such as programs 
and data. Each object Is assigned a unique address in the virtual memory space at the time 
of creation. This address is used thereafter to reference that object. 

Virtual memory objects are mapped to system memory on a demand basis. At the time of 
reference by a system or user program, the translate unit associated with the processor chip 
set verifies whether that object Is currently In system memory. If so, the unit supplies the 
appropriate (real) memory address. If the object is not in system memory, the operating 
system Is called to obtain the requested object, place it in system memory, and update the 
tables used by the translate unit. The original faulting instruction Is then retried and control is 
retumed to the original system or user program. As long as the (virtual) access does not 
have any real-time dependencies, this demand mapping is transparent. 

System Memory 

Bua Memory 

System memory Is closely associated with the processor chip set complex. The system 
architecture provides for up to 4G bytes of system memory. 

Bus master and OMA slave operations to this memory neither synchronize nor update the 
processor data cache or Page Frame Table (PFT). Without proper programming 
precautions, this can cause the processor data cache and Its associated system memory to 
be inconsistent, resulting In the loss or corruption of data (for example, when the processor 
chip set and an VO device both attempt to access the same memory area). For more details, 
see •Maintaining Consistency- on page 2-36. 

1/0 bus memory is the memory that logically resides on the 110 bus. The VO bus includes 32 
address bits, providing up to 4G bytes of addressability. PC family 110 buses utilize 
disjointed address spaces for bus memory and VO devices. In the system units, these two 
address spaces are mapped together as shown In Figure 46 on page 2-21. This address 
space Is differentiated from the 1/0 address space by an address decode. VO bus memory is 
referenced when the address is above 64K bytes. Processor accesses to this memory 
space do not go through the processor data cache and do not suffer from the cache 
consistency problems described in the preceding section, "System Memory." 

Bus memory Is generally packaged on feature 1/0 cards and is associated with specific 
devices. Devices are generally mapped Into the bus memory space when they have large 
addressability requirements, such as video display buffers and floating-point work space. 
Any bus master on the 1/0 bus has unconditional access to other devices on the Micro 
Channel 1/0 bus. As such, access to bus memory is unprotected. 
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Bus 110 

Bus memoiy references are redirected to system memoiy by way of the TCW mechanism, 
the Channel Status register mapping bit, and, for systems that implement the optional Bus 
Mapping registers, by way of the Bus Mapping registers. Refer to the "Translation, 
Protection, and TCW Table" on page 2-33 for a description of this mapping process. 
Accesses to system rnemoiy are translated and checked for appropriate authority before 
atlowlng them to proceed. If allowed to proceed, this mapping of bus addresses to system 
memory ls transparent to the requesting bus master or OMA slave. Special rules must be 
followed to guarantee the consistency of this memory if It is shared with the processor chip 
set. See •Maintaining Consistency" on page 2-36 for a description of these rules. 

The VO bus includes a special address space for accessing VO Control registers. This 
address space is mapped together with the bus memory and is referenced when the 
address is within the lower 64K bytes. It includes16 address bits and provides up to 64K 
bytes of addressability. VO devices do not decode address bits A31 to A 16 and these 
address bits are considered undefined relative to 1/0 devices. Note that the addressing 
nomenclature on the VO bus follows the Micro Channel fonnat shown in Figure 36 on page 
2-8. 

1occ Control Registers 
IOCC Control registers are special facilities managed by the system supervisor that control 
ell aspects of the Load and Store Instructions, channel, and Interrupt operations. They are 
only accessible to Load and Store instructions from the system processor. They are 
addressed in a disjoint address space inaccessible to 1/0 bus devices. lllis address space 
is defined so that it can be mapped onto the 110 bus, providing flexible implementation in 
distributing IOCC control facilities across multiple chip packages. Refer to the -Special 
Facilities• on page 2-72 for a description of these registers. 

Data Security 
The system unit is Intended to be used In shared environments and contains mechanisms to 
maintain data security. The IOCC supports attachment of user-supplied VO devices and 
device drivers. The IOCC includes extensive hardware and operating system mechanisms 
to insulate the system and other users from them. All accessas to memory or the VO bus are 
checked to verify that the user has authority to use that resource. Shared resources, such 
as IOCC or memory buffers, are controlled (for example, zeroed) so that no task gets 
access to some other task's data. 

Sit and Byte Numbering Conventions 
This section describes the processor and Micro Channel bus notations used for addressing 
bits, bytes, and multibyte fields, as well as the effects of these notations on the IOCC 
architecture. 

processor and Bus Notation 
Two different methods are used to address the indMdual bytes in a multlbyte scalar 
(numeric value) field. The methods differ in whether the field Is addressed from the 
most-significant byte (the ~ig• end) or the least-significant byte (the "little• end). 

The big-endian notation addresses scalar fields in ascending order from left to right. This 
results in the most-significant byte (MSB) always having the lowest address. This practice 
provides consistency in addressing that is independent of the word size of the machine. Bits 
are always numbered from left to right. lllis notation is used in all processor, channel, and 
serial protocol descriptions. 
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The little-endian notation reverses both bit and byte addressing for scalar fields. This 
notation is used in the Micro Channel architecture. 

Regardless of which method is used to address scalar fields, all systems address string 
fields the same way, with the MSB having the lowest address. 

Figure 36 shows the differences between big-endian and litUe-endian notation. 
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Figure 36. Data Addressing and Bit Numbering Notations 

The little-endian practice of numbering bytes in ascending order from right to left results in 
the most significant byte of a word having the highest address. This poses problems in byte 
ordering on 2· or 4-byte buses. For byte strings such as text to be compatible across 
different word lengths and between different systems, the strings must be organized with the 
most significant byte having the lowest address. Figure 37 on page 2-9 shows the address 
consistency with the big-endian notation. Figure 38 on page 2-10 shows the address 
Inconsistency when using the little-endian notation. With the little-endian numbering scheme, 
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there Is no consistency in addressing across the various word sizes; two half-word stores 
produce a different result in memory than one full-word store. 
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Two HaH-Word Store ln1b'uctlon1 from the Proceuor Regllter to Memory 

Processor Register Data In Memory Add1'9H 
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Figure 38. Addressing Inconsistency When Using Llttle-Endian Notation 
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IOCC Byte Steering 
The compilers use big-endian addressing notation to handle data in the system unit. To 
match the little-endian notation of the Micro Channel bus, the bytes from the system must be 
steered to the appropriate bytes on the Micro Channel bus. The IOCC and the system board 
are designed to provide byte-order steering as shown in Figure 39. Steering occurs in both 
directions as information passes through the IOCC. 
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Figure 39. IOCC Byte Steering 
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The VO data bits require renaming but otherwise maintain a one-to-one ordering with 
standards. 

Combining both examples gives the byte steering shown in Figure 40. 
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Figure 40. Example Showing IOCC Byte Steering 
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This architecture optionally allows for the implementation of the 8-byte Micro Channel 
Streaming Data protocol. For implementations that support the optional 8-byte Micro 
Channel Streaming Data operations (see "Implementation Details" on page 2-86 for details 
on which systems support the 8-byte Streaming Data protocol), the words are steered 
appropriately, as well as the bytes within the words, as shown in Figure 41 . Steering occurs 
in both directions as information passes though the IOCC. 
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: Byte Steering by the IOCC 

• ---
I -----------------·-- -----·-
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Micro Channel Addrwa Bu• Micro Channel Data Bue 

Figure 41. IOCC Byte Steering for 8-Byte Streaming Data Protocol 

110 eus Protocols 

Arbttratlon 

The IOCC is optimized to use the Micro Channel. It the IOCC must drive another bus, 
conversion logic translates the Micro Channel protocols to the target bus. 

A brief description of the Micro Channel protocols is summarized in this section. For 
reference to other Micro Channel architecture information, refer to the Personal System/2 
Hardware Interface Technical Reference: Architectures manual. 

Note: This document uses the abbreviated signal names as they appear in the Personal 
System.12 Hardware Interface Technical Reference: Architectures manual. For 
example, 'cd ehrdy' represents 'card channel ready'. 

Arbitration is the resolution of multiple bus requests, awarding use of the bus to the highest 
priority requester. It applies to all devices that request bus use such as processors, bus 
master devices, and OMA slave devices. Characteristics of the Micro Channel arbitration 
mechanism include: 

• One to 16 bus masters 
• Multidrop (dot-OR) mechanism 
• Parallel prioritization 
• Asynchronous operation 
• Cycle-by-cycle arbitration 
• Programmable priority levels 
• Programmable faimess mode 
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• Mixable linear and fairness modes 
• Preemptive burst capability 
• Multiple bus extension. 

The arbitration mechanism distributes prioritization among the arbiters but retains control 
and clocking functions within the IOCC. Bus arbitration timing is programmable and is 
established by a field in the IOCC Configuration register. 

Figure 42 shows the typical device arbiters and their relationship in the system. Parameters 
such as arbitration level and burst characteristics are programmable by way of Configuration 
registers in each device. There are no restrictions on changing operating modes following 
system startup. 

Micro Channel 
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Rotation al 
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Protocol 
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Figure 42. VO Bus Arbitration 

IOCC 
Clock 

Figure 43 on page 2-15 shows an arbitration cycle. Devices request service by activating the 
'preempf signal. The IOCC responds by deactivating the 'arb/gnf signal when the current 
bus owner completes its bus actMty. Each requesting arbiter then presents its arbitration 
level on the arbitration bus. The IOCC then reactivates the 'arb/gnf signal. If the device sees 
its arbitration level value on the arbitration bus, the device knows it has been granted use of 
the bus. Device Request (Drq) is a signal (internal to each of the device arbiters) that signals 
a request to arbitrate for the bus. Device Acknowledge (Dack) is a signal (internal to each of 
the device arbiters) that signals acknowledgement of being granted the bus. 

Note: In some implementation, the arbitration bus might be multiple buses to the arbitration 
control logic, but the bus can be viewed as one logical bus from the device's 
perspective. 
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At the end of the bus cycle, the arbitration cycle is repeated if the 'bursf signal is not active. 
If there are no requesters, control is returned to the default arbiter at the arbitration bus level 
X'F'. 

_) Drq ~'------'\~----
Preempt 

Arb/Gnt 

Arbitration Bus 

Dack 

SOIS1 

Cmd 

Figure 43. Arbitration Cycle 

Both OMA slave and bus master devices utilize the arbi1ratlon mechanism to initiate bus 
cycles. The difference is that once granted use of the bus, the bus master device controls 
bus cycles, while the IOCC controls the bus cycles for OMA slave devices. 

priority Assignment 
At startup, each device supporting arbitration Is assigned a unique priority level ranging from 
X'O-F'. This priority level establishes the selection criteria to be used when contention exists. 
If multiple requests occur simultaneously, the device with the lowest numbered priority level 
Is awarded use of the bus. 

Arbitration level X'F' is always assigned to the system processor. If there are no other bus 
requesters, bus ownership defaults to level X'F'. Thus, the IOCC owns the VO bus during 
idle conditions. Since VO bus utlllzation Is nonnally low, the IOCC does not normalty 
arbitrate for the bus for VO Load and Store Instructions. Some IOCC Implementations 
execute any pending VO Load or Store instruction during the arbitration cycle (that Is, when 
the 'arblgnf signal is in the 'arb' state), and extend the arbitration cycle as needed to 
complete the llO Load or Store (up to the maximum time specified in the burst control field 
of the IOCC Configuration register). See ·implementation Details• on page 2-86. 

Micro Channel VO devices with long bursting characteristics should be designed using the 
Fairness (rotational) Arbitration Protocol, without which it is possible to lock out system 
processor 110 Load or Store instructions until the 1/0 device transfer is complete. If a lockout 
occurs for an extended period of time, a bus timeout error Is posted, the 'arb/gnf signal is 
set to the 'arb' state, and the 'resef signals are activated to all slots. Whlle the bus timeout 
error is active, all system processor 110 Load and Store Instructions are guaranteed access 
to the bus. 
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NonPreemptlve Burst 
Devices can force nonpreemptive burst operations if it is necessary to retain control of the 
bus for short periods of time. Examples include use of a read-modify-write sequence In 
setting locks and use of a burst to allow the completion of a word-organized transfer 
sequence. The device signals the arbiter that a forced burst is required by activating the 
'bursr signal to the arbiter. Whan the burst sequence is complete, the device must 
deactivate the 'burst' signal. 

Preemptive Burst 
This function allows a device to use consecutive bus cycles without any arbitration 
overhead, as long as no other device is requesting bus service. It takes advantage of the 
low average utilization of most 1/0 buses, and increases the effective data rate of a device. 
Devices programmed for preemptive burst mode conditionally activate the 'bursf signal 
when the 'preempf signal is inactive. A device can remain temporarily nonpreemptive for up 
to 7.8 microseconds following a preemption request. This delay allows completion of, for 
example, block transfers. 

Fairness Modes 
Devices operating in burst mode or devices with high bus request rates can cause severe 
Interference to devices assigned lower priority levels. The problem is compounded when 
multiple high-bandwidth devices are present In the system. The programmable fairness 
mode makes these high-bandwidth devices subject to preemption by any device. If multiple 
high-bandwidth devices are active simultaneously, service is rotated in a priority sequence, 
and each receives a percentage of bus cycles inversely proportional to the number of active 
bus requesters. 

To meet wide variations in device operating requirements, arbiters are programmable to 
operate In either linear or taimess mode. Operating modes can be mixed on the same bus. 
Linear priority mode is provided to meet low latency requirements of unbuffered devices, 
while faimess mode provides a more equitable distribution of bus cycles in a high-demand 
environment, for example, with two or more high-bandwidth bus masters. 

Fairness mode is a special case of preemptive burst. If there is only one bus requester, the 
current bus owner can utilize all of the bus bandwidth. As with preemptiVe burst, a device 
programmed In fairness mode can remain temporarily nonpreemptive for up to 7 .8 
microseconds following a preemption request. 

DMA Slave Selection 
The Micro Channel architecture allows a OMA slave to be selected either by its arbitration 
level or, optionally, by its 1/0 address (but not both). In these systems, the method supported 
for selection of OMA slave devices Is by its arbitration level, status ('sO' exclusive-ored with 
's1'), and an VO cycle ('mlio' signal in the 10 state). 
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Basic Transfer Cycle 
Although the VO architecture defined in this chapter is generic and allows the attachment of 
a number of unique buses, the intended design point is the Micro Channel bus. These bus 
protocols are shown in Figure 44. 

0 100 200 

A31 to AO, MllO 

S11SO(RIW) 

Figure 44. VO Bua Cycles 

The Micro Channel offers a 32-bit data path with 4G bytes of address space. It includes 
extensive support for reliabillty, availability, selViceablllty, extendlblllty, and configurabillty. 
The physical package and connector are designed to improve electrical characteristics. 

Two status lines, 'SO' and 's1 ', define the initiation of bus write and read cycles respectlvely, 
while the 'mllo' line differentiates between VO memory and VO devices. All addresses for the 
next cycle are overlapped with the processing of the currant cycle. The bus architectu!'8 
includes a special protocol for transferring sequential blocks of data. This is known as the 
Streaming Data protocol, and is described In the next section. 

Streaming Data 
The Streaming Data protocol is a single-address, multiple-data protocol that improves bus 
efficiency by amortizing bus-cycle arbitration and address setup across multiple data cycles. 
It has particular value in transferring data between a memory and a processor cache or 
between a memory and a high-performance VO device. 

Streaming data begins with a cycle similar to a standard basic transfer cycle, but switches to 
a clock synchronous transfer protocol. 

Streaming data operations are supported for all IOCC transactions Including Load and Store 
Instructions, OMA slave, and bus master operations. 

Following the activation of the 'cmd' signal, the bus master indicates Streaming Data 
Protocol capability by starting a bus clock called the 'ad strobe' signal. This clock is used by 
both the bus master and slave to clock data onto and off of the bus. As the operation 
proceeds, new data is placed on the bus every time the 'sd strobe' signal makes a 
high-to-low transition. For additional information on the Streaming Data Protocol, refer to 
•implementation Details" on page 2-86 for system implementation specific information. For 
other Micro Channel architecture information, refer to the Personal System'2 Hardware 
Interface Technical Reference: Architectures. 
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Dynamic Bus Sizing 
VO bus read or write operations do not necessarily have to match the physical width of the 
device. The Micro Channel architecture requires that the current bus master automatically 
manage discrepancies in data transfer widths. The IOCC is considered to be the current bus 
master for processor initiated 1/0 Load and Store instructions, and thus, must manage 
logical data-width transformations. 

A Load or Store instruction issued to a device of lesser width than the command causes 
multiple 110 cycles to be taken until the transfer width is satisfied. This automatic data-width 
matching Is referred to as dynamic bus sizing in the Micro Channel architecture. The 
multiple 1/0 cycles complete as a preemptable operation in the system unit, allowing bus 
master and OMA slave cycles to break in for service. As such, bus master or OMA slave 
latency is unaffected by use of dynamic bus sizing. 

Protocols and sequencing of dynamic bus sizing are shown in Figure 45. 
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It is generally recommended that the programmer writing an 110 device driver be aware of 
the physical characteristics of the target device. One should be aware when dynamic bus 
sizing is invoked by IOCC hardware since this operation requires more time to complete. 
See •str1ng Operations" on page 2-28 for details on where this could be a problem. 

Partial Transfer Cycles 
Partial write operations (for example, writing one byte of a 2-byte device, or two bytes of a 
4-byte device) are permitted In the bus architecture. The operations are useful in performing 
unaligned moves. The Micro Channel supports partial write operations when operating with 
both memory and VO devices. 

Bus write operations issued on address boundaries matching the device width allow 
completion of the operation in the minimum number of bus cycles. Operations issued to 
nonaligned addresses transfer the data to the device using multiple (partial write} cycles. 
These write operations use the bus 'sbhe'faO' and 'beO to be3' protocols to write the desired 
portion of the word. Partial transfers apply to 1/0 Load and Store instn.ictlons and 
{potentially) to bus master end OMA slave operations when operating with bus memory. 

Partial transfers can take two to four times the normal number of bus cycles and caution 
should be exercised in their use. If nonaligned, VO Load and Store instructions halt the 
processor for a longer period of time, adding latency to system interrupt service. See KString 
Operations" on page 2·28 for details on where this could be a problem. 
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au• Refresh 
Bus refresh cycles are provided as a convenience to 110 devices with embedded random 
access memory (RAM). Refresh cycles occur at one of several periodic rates selectable by 
the Configuration register. Refer to ·1occ Configuration Regls1er" on page 2-74 and 
•tmplementatlon Details• on page 2-88 for a description of refresh options. The refresh cycle 
occurs with the 'arb/gnt' signal high and does not consume a bus arbitration level. 

A refresh cycle Is similar to an 1/0 memory read operation, except that the 'refresh' line is 
also activated. Address bits O through 11 (using the Micro Channel notation shown In Figure 
36 on page 2-8) are Incremented by one, and are placed on the bus during the refresh 
cycle. 

sus Errors 
Four different kinds of errors are detectable on the Micro Channel: 

• Invalid address 
• Parity 
• Channel check 
• Bus timeout. 

When an error occurs, the error status is logged In IOCC registers as an aid in error 
recovery. Individual error status Is kept for each VO device (by tubitration level) to assist In 
recovery of multiple errors and is stored in the Channel Status register associated with that 
device. l/O Load and Store instructions utilize channel 15 in f89Ular operation and error 
status for those operations is saved in that set of registers. Refer to •Load and Store Error 
CondltiOns· on page 2-31 for a description of this error status. 

lnvalld Add":: Micro Channel architecture requires a positive response to all addresses. Address 
response is signalled on the Micro Channel by driving the 'cd sfdbk' signal low. Failure to 
respond Indicates that the address is invalid, or Is Issued to a missing or mis-seated card. 

If an VO Load or Store Instruction is issued with Segment Register bit 12 on, the IOCC 
checks for this address response. If none is received, a Data Storage Interrupt (OSI) is 
lssUed and a card selected feedback enor code Is set in Channel Status register 15. Refer 
to ·vo Segment Register Definition• on page 2·26 for additional details. 

parity Errors 
The Micro Channel architecture definition includes address and data parity functions. 
Checking Is performed only when both the bus master and slave support parity. Refer to 
-exception Reporting and Handling" on page 2-85 for details of the VO parity support. 

Channel Check 
The Micro Channel includes a 'chck' signal that indicates an unusual event occurred during 
the bus cycle. Examples Include data parity error and page fault. 

For details on the use of the 'chck' signal in reporting exception conditions within the unit, 
see •exception Reporting and Handling• on page 2-85. 

It is important to note that the unit is designed to recover from synchronous channel checks. 
Adapters that use the 'chck' signal asynchronously make an Initial Program Load (IPL), the 
only recovery that is possible. 
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Bus 11me Out 

Interrupt 

A number of conditions can result in a hung bus or in grossly extended 1/0 bus cycles. 
These errors can result in overrun conditions to other devices on the VO bus and are 
checked by the IOCC using a bus timeout mechanism. Although the minimum architected 
bus timeout value is 7.8 microseconds, the IOCC does not attempt to check that finely and 
should Implement a timeout that varies between 15 and 120 microseconds. See 
Mlmplementation Details" on page 2-86. 

Bus hang problems are caused by either hardware or software errors. These errors are 
generally associated with arbitration for the 1/0 bus followed by failure to complete the bus 
cycle. 

On a bus timeout error, the IOCC deactivates the 'arb/gnr signal, and sets bit 1 (the bus 
timeout bit) In the IOCC Miscellaneous Interrupt register, and generates an interrupt. This 
error is considered to be uncorrectable and the master enable control in the IOCC 
Configuration register is reset. This disables all interrupt and channel requests. Also, a 
'reset' signal Is applied to all 110 slots. In addition, If an VO Load or Store instruction is 
pending in the IOCC when the bus timeout occurs, and the target of that Load or Store 
instruction is the Micro Channel bus, then a Data Storage interrupt is sent for the terminated 
Load or Store Instruction. If an VO Load or Store instruction is pending in the IOCC when the 
bus timeout occurs and the target of that Load or Store instruction is an IOCC facility, then 
the load or store instruction wlll be completed after the Micro Channel bus is cleared by the 
IOCC. The IOCC intemal status is unchanged, so that channel conditions at the time of the 
error can be logged. As an aid In determining the cause of the error, extraneous bus status 
is also captured in the Bus Status register. 

Incorrect programming of the OMA controller can result in a hung bus. The OMA controller 
includes multiple channels; each can be personalized to control either a bus master or OMA 
slave device. Personalization can be dynamically performed. If a programmer should 
personalize a channel for bus master operation, but the device is actually a OMA slave 
device, the bus will hang on the first OMA request that the device makes. 

Eleven Micro Channel interrupt lines are supported by the IOCC. Interrupts on the Micro 
Channel are level-sensitive, active-low, and exhibit natural interrupt-sharing capabilities. The 
VO Board provides pull-up resistors on all Micro Channel interrupt signals so that unused 
lines float to the inactive state. Refer to "1/0 Interrupts" on page 2-68 for additional details. 
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Programming Model 
The following section describes the programming model for the 110 bus support functions 
provided by the IOCC. 

Load and Store Instructions 
The Load and Store Instructions can be issued to devices on the VO bus in a similar manner 
that they are issued to system memory. The programmer specifies a Segment register 
identifying a specific address space and supplies an offset into that space. The offset Is 
obtained from the effective address and is not translated prior to being applied as a bus 
address. Figure 48 shows the process. 

VO Load and Store Instructions are under control of the Segment registers. A command is 
directed to the 110 bus when the type en bit of the Segment register is set to a value of 1 
and the bus unit Id (BUID) address Is set to select the IOCC. Some VO operations require 
that the privileged key (K) be set to a value of O (the privileged mode). 
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Address Spaces and Effective Addresses 
Figure 47 on page 2-23 illustrates the addressing modes. 110 addressing requirements are 
met by having multiple address spaces. These address spaces are selected by way of 
control bits in the Segment register (see Figure 51 on page 2-26) resulting in three VO 
effective address operating modes as follows: 

1. Standard Bus Mode: This VO effective address mode provides for 32-bit addressing of 
the 110 bus. In this mode the Segment register control bits are in the following state: 
T = 1, I = 0, and M = 0. 

The 32 bit bus memory address Is fonned by concatenating 28 bits of the effective 
address with the 4 extent (EXT) bits from the Segment register. This partitions the bus 
memory device space into 16 pages of 256M bytes each (4G bytes of total address 
space), and separate Segment registers must be used to address adjacent 256 M-byte 
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address spaces. The 16 bit 110 device address is taken directly from the effective 
address. To address a device within the 64K byte Micro Channel 1/0 space, effective 
address bits 4 through 15 and Segment register bits 28 through 31 must all be set to a 
value of o. Effective addresses are not translated, but era used as real addresses Into 
the VO space. 

For a pictorial representation of this addressing mode, see Figura 48 on page 2-24. 

2. RT Compatibility Mode: This addressing mode assists in the simulation of the RT system 
allowing for 24 bit addressing. In this mode the Segment register control bits are in the 
following state: T = 1, I = 0, M = 1, and EXT = x. 

In this mode, 18M bytes of bus memory Is selected using an effective address of X'x4 
xxxx xx'. and 84K bytes of bus VO using X'XO 00 xx 'JO(. Any other effective addressing 
range other than these two results In a Data Storage interrupt and an invalid operation 
error status Is set in the Channel Status register (CSR) 15. This mode maintains 
compallblllty with the VO structure of the RT system and provides the ability to replace an 
RT object code Load or Store instruction with its system equivalent, and the simulator 
does not have to worry about differences In the affective address fonnat. 

In this mode, the hardware sets the effective addr9SS high order 8 bits (AO to A7) to a 
value of O before J>'aclng the address on the bus. Note that with this definition of the bus, 
no bus memory devices can reside In the address range from o to 64K bytes. Also note 
that In the RT compatibility mode, no bus memory devieeS can reside In the lower 
84K·byte range of the bus memory address space {84M bytes to 84M bytes + 
64 K bytes). If the Segment register X'P is used to provide access to the IOCC address 
spaces, all user Load and Store instruction effective addresses operate the same as 
those in the RT system. 

For a pictorial representation of this addressing mode, see Figure 49 on page 2·24. 

3. IOCC Control Mode: This addressing mode provides for access to the IOCC facilities. In 
this mode the Segment register control bits are In the following state, T = 1, I = 1, M = x, 
EXT= x, and K = 0. 

Included in this address space are IOCC registers, the tag and TCW tables, the System 
registers and Nonvolatile Random Access Memory (NVRAM). 

Noa.: Some references to the IOCC control space are on word boundaries only and 
require that the data length be a multiple of 4 bytes (for example, the tag tables, 
ttle TCW tables, and the IOCC registers). 

The IOCC control space Is prlvlleged and Is only accessible when the Segment register 
privileged bit Is set to a value of o. Attempts to access this address space when the 
Segment register privileged bit is set to a value of 1 causes a Data Storage Interrupt to 
be posted and and invalid operation error status to be set In the Channel Status register 
15. Attempts to access undefined effective addresses In the IOCC control address space 
also results In a Data Storage Interrupt (Invalid operation). 

For a pictorial representation of this addressing mode, see Figure 50 on page 2-25. 
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Although bus memory and bus VO are disjointed in PC products, the system unit maps 
these two address spaces together. Since bus 110 only requires 84K bytes of addressing, 
this address space easily maps into the low addresses of the (4G bytes) bus memory 
address space. The architecture of PC products is such that no bus memory feature cards 
may be hardwired in the address range of O to 64K bytes, and no address conflicts exist. 
Note that the 64K bytes of Micro Channel VO space can be accessed when utilizing each of 
the three effective address operating modes as shown in Figure 47. The values for the T, I 
and M bits for each of the three VO effective address operating modes were previously 
described and are illustrated in Figure 47. 
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Figures 48, 49, and 50 summarize the system effective addresses. Effective addresses are 
obtained from the processor general purpose registers and are under user control. If a bus 
memory page is mapped to system memory, the bus address is translated to the address of 
the mapped system memory page. 
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Figure 48. User Effective Addresses: Standard Bus Mode 
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Figure 49. User Effective Addresses: RT Compatibility Mode 
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110 Segment Register Definition 
Segment registers provide access authority to the 110 bus for 110 Load and Store 
instructions. They are protected resources within the system and generally cannot be 
changed except by the system control program. Some personalizations of VO bus 
operations are provided to match unique device (or VO bus) characteristics. This 
personalization Is controlled by control bits in the Segment registers shown in Figure 51. 

TK -

c 
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Prlvlleged Key Addreaa 

Memory no Increment 

Addresa Check 

Figure 51. 1/0 Segment Register 
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The following Segment register definition applies only to IOCC and VO bus applications. Bits 
o and 1 are system control bits defining system state. Bits 4 to 11 select system facilities 
such as the IOCC. Bits 12, 13, 25 and 26 mediate IOCC operations, while bit 24 provides 
access to IOCC facilities. Bits 2, 3, 14 to 23 and bit 27 are reserved, and bits 28 to 31 are 
used as an address extension for the VO bus address. A complete description of all fields in 
the Segment register is given in the following list: 

Bits Deacrtptlon 

0 Type: This bit defines whether a Load or Store instruction is targeted to 
system memory or the llO address spaces. System memory is selected 
when this bit is set to a value of o, and VO is selected when this bit is set to 
a value of 1. The definition of the Segment register, Illustrated in Figure 51, 
is only valid for VO operations, that is when bit O is set to a value of 1, and 
the BUID selects the IOCC. 

1 Privileged Key: This bit is generally set to a value of O when the operating 
system is In control and set to a value of 1 when in the user mode. 

2-3 Reseived: These bits are reserved and must be set to a value of O. 

4-11 Bus Unit Identification (BUID): The BUID field is decoded to select the 
IOCC. Addresses between X'20 - 23' are assigned to the IOCC. Hardware 
strapping options on the IOCC allow specification of its exact BUID field 
value on some Implementations. Implementations on machines that support 
a single tOCC must have a BUID of X'20'. 

12 Address Check: This bit provides for conditlonal checking of VO addresses 
during Load and Store instructions. The Micro Channel provides for a 
positive address response by device activation of the 'cd sfdbk' line. tt this 
line is not activated, the device address is invalid. See "Invalid Address" on 
page 2-19. An VO Load or Store instruction that does not receive a positive 
address response is allowed to proceed when bit 12 in the Segment register 
is set to a value of 0. A command issued to an invalid device address when 
bit 12 is set to a value of 1 causes a Data Storage interrupt to be posted 
and a card selected feedback error code to be set In Channel Status 
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13 

register 15. Figure 52 summariZes all the combinations of bit 12 and the 
address response by an VO board (the address response is true if the 
device has activated the 'cd sfdbk' tine). 

Bit 12 
Addreaa Reaponae 

O o Comrund Can Proceed 
0 1 Command can Proceed 
1 O Detll Stormge Interrupt 
1 1 Command can Proceed 

Figure 52. Bit 12 and Addf88S Response Definition 

Address Increment: This bit controls Incrementing of the VO bus address If 
a Load or Store instruction Is isSued to a bus llO device with a physical data 
width less than that of the Instruction. The IOCC breaks the transfer Into 
multiple 1/0 bus cycles. See "Dynamic Bus Sizing"' on page 2-18 for a 
description of this function. This bit controls whether the address is 
incremented between the 1/0 bus cycles. Addresses are Incremented when 
bit 13 is set to a value of 1. Addresses are not Incremented if bit 13 Is set to 
a value of o. The address Increment function Is controllable on a 
device-by-device basis. In the case of a Load or Store instruction to bus 
memory, bit 13 is ignored and the bus addresses are always lncramented. 

The Micro Channel architecture specifies that all addresses are to be 
incremented when performing dynamic bus sizing. This bit should be set to 
a value of 1 when wo00ng with devices designed to this an:hltectura. 

Use caution when using string operations as certain devices can support 
multicycle operations up to a particular word size. but not to exceed that 
word stze. Consult the particular device specifications tor details. 

14-23 Reserved: These bits are reserved and must be set to a value of 0. 

24 IOCC Select: This bit selects tha IOCC control mode. 

25 RT Compatibility Select: This bit selects the RT Compatibility Mode when 
the IOCC Select (I) bit = 0. 

28 Bypass: When this bit is set to a value of 1, the IOCC bypasses TCW 
checking and memory mapping. Only direct bus access ls possible. 

When this bit Is set to a value of O, the extended functions of authority 
cheeking, access validation, and system consistency are Invoked. 

This bit is ignored if the I bit equals 1. 

rr Reserved: This bit Is reserved and must be set to a value of 0. 

21-31 Extent: This field Is concatenated with effective address bits 4 to 31, to form 
a 32-blt VO bus address when working in standard bus mode. It is gated to 
address bits 'A31' to 'A28' on the VO bus. 
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Address and Data Alignment 
Data for Load and Store instructions is normally right-justified in the Processor register. 
One-byte operands are located in byte 3. Two-byte operands are located in bytes 2 and 3. 
String operations are an exception and are left-justified in the starting Processor register. 

Target 110 device addresses should normally be aligned on boundaries equal to the device 
width. This maintains optimal perfonnance when performing Load and Store instructions. If 
this rule is not observed, the IOCC performs the operation using multiple (narrower) 110 bus 
cycles. This can take up to four times longer to complete the Load or Store operation. Refer 
to •Partial Transfer Cyclesn on page 2·18 for additional details. 

String Operations 
String operations allow the issuance of Load or Store instructions with data widths from 1 to 
128 bytes. The bus protocol used in the data transfer is dependent on the VO device. String 
operations are applicable to any addressable device on the Micro Channel and to the tag 
tables, TCW tables, and to the NVRAM within the IOCC address space. However, for some 
1/0 devices, applicability of string operations may be limited by the device itself. 

String operations issued to normal PC devices are performed using standard bus protocols. 
Multiple bus cycles are issued, using dynamic bus sizing, until the transfer length is satisfied. 
These multiple cycles operate under preemptive burst arbitration rules and Load or Store 
string instructions are momentarily suspended if any 110 device requests OMA slave or bus 
master operation. 

String operations Issued to devices supporting the streaming data transfer protocol use that 
protocol where appropriate. This protocol operates under non-preemptive burst arbitration 
rules. In the case of string operations, however, the amount of time from the preempt 
request by a device until the IOCC releases the bus Is controlled by the Burst Control bits in 
the IOCC Configuration register (see "IOCC Configuration Register" on page 2· 74 and 
"Implementation Details" on page 2-86). 

It is generally recommended that the programmer writing an 110 device driver be aware of 
the physical characteristics of the target device when using string operations. One should be 
aware of the effects of dynamic bus sizing and partial transfers, since these operations 
require more time to complete. Refer to "Dynamic Bus Sizing" on page 2-18 and "Partial 
Transfer Cycles• on page 2· 18 for details of these functions. Slower than expected VO 
Instruction processing can have detrimental effects on system performance. For example, 
the system processor cannot accept an interrupt while VO Load or Store instructions are in 
process. Both dynamic bus sizing and unaligned moves (partial transfers) take longer to 
complete, adding latency to system interrupt service. Although most devices are reasonably 
fast and do not cause any problems, this latency can be large if extended string operations 
are performed against slow devices. 
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Load and Store Access Authority Checking 
1/0 Load and Store instructions are subject to access authority checking. Separate 
mechanisms are used for checking bus 110 and bus memory, as shown in Figure 53. Bus 1/0 
accesses are checked by way of a base and bounds (range) check, while memory accesses 
are verified by way of a storage key in the TCW table. If the page is mapped to system 
memory, write authority is also verified. Load and Store instructions to bus memory or 
{shared) system memory are treated like a bus master operating on channel 15 and use 
IOCC registers associated with that channel. 
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Figure 53. Load and Store Access Authority Checking 
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Operations to bus 1/0 have fine address granularities. The operations are verified by way of 
address range checking. Address ranges are controlled by the operating system and restrict 
access of user programs to authorized devices. Address range information is considered 
pan of lhe user (program) context and is loaded Into an IOCC register by the operating 
system. This register defines a contiguous range of authorized VO addresses with a 
minimum address granularity of 1 byte. Invalid access attempts cause a Data S1orage 
Interrupt to be posted and a limit check error code to be set In Channel Status register 15. 
This Interrupt is precise for all VO Load and Store instructions. Address range checking is 
suspended If the Segment register privileged key is set to a value of 0, or if a time delay 
command is issued. Refer to "Time Delay Command" on page 2-63 for details of this 
command. Also note that if the address Increment is off (bit 13 of the VO Segment register 
equals 0), only the starting address is tested. If address Increment is on, the full length of the 
access must be within the limit bounds. 

Operations to bus memory have coarser address granularltles and are protected on page 
boundaries. Each page In the bus memory address space has a 3-blt storage protect key 
associated with the page that defines lhe protection class of the page. An 8-bit authority 
mask in Channel Status register 15 specifies the key values (and by inference, pages) that 
this program Is authorized to access. This mechanism Is identical to the memory protect 
mechanism used for bus master devices. Memory protect keys are kept In the TCW table 
and are described In "Translation, Protection, and TCW Table" on page 2-33. The mask 
Information Is considered part of the user (program) context and Is loaded by the operating 
system. 

Bus memory access checking is suspended If the Segment register prtvlleged key (K) is set 
to a value of O or if the bypass control bit (B) Is set to a value of 1 in the Segment register. 
Refer to "VO Segment Register Definition" on page 2-26 for details. 

The TCW table and IOCC registers containing limit check information and aUthority masks 
are protected system resources and are only accessible when the Segment register 
privileged key is set to a value of o. Attempts to access these facilities when the prfvlleged 
key Is set to 1 causes a Data Storage Interrupt to be posted and invalid operation status to 
be set In Channel Status register 15. 
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LOad and Store Error Conditions 
Error conditions that arise in Load and Store instructions include bus errors, programming 
errors, and hardware errors. If no previous error remains in the Channel Status register 15, 
then the specific cause of the error Is placed into the Channel Status register 15 bits O to 3. 
The IOCC only places the first error code into Channel Status register 15. Figure 54 shows 
the resultant register contents. 
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Figure 54. Load and Store Error Sta!ul 

Load and Store instruction errors are synchronous and generate a Data Storage interrupt. 
No device should asynchronously report errors by activating the 'chck' signal. However, If 
this occurs, the error Is not reported here, but is reported as an miscellaneous interrupt as 
described In ·vo Interrupts• on page 2-68. Refer to •Exception Reporting and Handling" on 
page 2-85 for more information. Load and store error codes are summarized as follows: 

Error Code Deacrlpllon 

o o o 1 Invalid Operation: This error code is set if an attempt Is made to access a 
faciltty or device not authorized by the system supervisor. It is also set If an 
attempt Is made to access a bus address for which a TCW does not exist 
(except when the bypass bit is on). 

0011 Limit Check: This error code is set If an attempt is made to access a bus VO 
device not within the address range established by the limit registers. 
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Error Code Description 

O 1 O 1 Authority Error: This error code is set if an attempt is made to access a bus 
or system memory page and the storage key in the TCW does not match 
the authority mask in Channel Status register 15. It can also be set if a write 
operation is attempted to a read-only page in system memory. 

0 1 1 O Page Fault: This error code is set if an attempt is made to access a page 
with TCW bits 30 and 31 set to 8'01 '.This should occur in normal operation. 

1 O O O Channel Check: This error code is set if a device responds with a channel 
check indication. For example, a device might respond with a channel 
check for a write operation to that device where there is bad parity on the 
data or for other device detected errors during an operation to that device. 
This error cannot be reported if a card selected feedback error is reported. 
(The card selected feedback error takes precedence over channel check 
error). 

1 o o 1 Data Parity: This error code is set if the IOCC detects bad parity on a Load 
operation from an 1/0 device. (However, in the case of a Load operation, a 
channel check error takes precedence over a data parity error.) This error 
code is also set if the IOCC detects bad data parity or an uncorrectable 
ECC error during a load of a TCW. 

1 0 1 0 110 Bus Error: This error code is set if an error on the Micro Channel has 
been detected during transfer. The types of errors detected here are 
implementation dependent (see "Implementation Details" on page 2-86). 

1011 Card Selected Feedback Error: This error code is set if, after a device is 
addressed, It does not respond by driving the 'cd sfdbk' line, and the 
address check bit is on in the 1/0 Segment register. Conditions which could 
cause this to occur are the device is not present, the device is not seated in 
the card slot properly, the device is not enabled, or the device detects bad 
address parity and does not respond to that address. This error code takes 
precedence over a channel check. 

1 1 0 O Error Correcting Code (ECC) Error: This error code is set if the IOCC 
received an uncorrectable ECC error response from the intemal system bus 
during a Load or Store instruction that is mapped to system memory. (This 
process is similar to a bus master operation). 

1 1 O 1 System Address Error: This error code is set if the IOCC sends an address 
over the system bus and does not receive an address acknowledgement. 
This can occur if the real page number in the address is invalid. Software 
should make sure that the real page number in the TCW is valid. 

1 1 1 0 TCW Reload Error: This error code is set if the IOCC detects a parity or 
uncorrectable ECC error during an indirect TCW reload (with the bypass bit 
off). 

1 1 1 1 IOCC Error: This error code is set if the IOCC detects an internal error 
during a Load or Store instruction. This error only occurs in a TCW and Tag 
table access or flush command. All other IOCC errors result In a check 
stop. 

No provision is made to capture status for multiple errors. If this should occur, Channel 
Status register 15 contains error information relating to the first error. On some 
implementations, Channel Status register 15 bits 6 to 31 may be indeterminate after an 
error. Therefore, software should restore Channel Status register to a known state after an 
error. 
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Channel 15 always remains enabled following an error, or a deadlock situation would exist. 

Synchronous errors are precise, and a retry may be attempted as part of the error recovery. 
Certain other errors associated with an 110 Load or Store instruction may not be 
synchronous, and are not reflected in this register. An example of these errors include 
delayed channel check response (see •Exception Reporting and Handling ... on page 2-85) 
and a bus timeout condition (see "Bus Timeour on page 2-20 for more Information). 

VO bus errors such as address or data parity errors can be caused by hardware 
malfunctions or transient electrical noise. Refer to "Exception Reporting and Handlingn on 
page 2-85 for more information. 

On a Load instruction, If bits 0-3 are all O, the vaJue of CSR15 bits 4 to 31 are whatever 
software previously had written into them with a Stora instruction. 

vo Load and Store instructions to the IOCC facilities (for examples, the CSRs) do not 
generate an error except for a machine check. 

Translation, Protection, and the TCW Table 
The tOCC provides address translation for all Load, Store, bus master and OMA slave 
operations to system memory and access protection for all Load, Store and bus master 
operations to system memory. Access protection is also provided for all Load and Store 
operations to bus VO or bus memory. Translation allows the organizing of VO buffers within 
the context of the virtual page map end assists in eliminating a subsequent move operation. 
Protection Insulates the system from non-well behaved devices or programs. 

Bus memory protection or system memory translate and protection information is contained 
in a TCW table. Each TCW entry identifies whether that page is mapped to system memory. 
If a page is mapped, the TCW entry also contains mapping and access authority 
information. This table is an IOCC analogue of the system translation tables, and Is 
generally managed In concert with those tables. Address translation and protection 
mechanisms apply to 4K-byte memory pages, matching the system page size. 

Load or Store operation protection of bus VO is by a base and bounds address check. The 
high- and low-limit addresses are contained in IOCC registers. Refer to •Load and Store 
Access Authority Checking" on page 2-29 for a detailed description. 

The TCW table organization is shown in Figure 55 on page 2-34. The TCW table has a 
one-to-one correspondenee with the first n pages of 110 bus memory addresses. The first 
64K bytes of bus memory can never exist since bus l/O is mapped at those addresses, and 
the first 16 TCWs should be initialized es invalid, that is, set to page fault. Thus, the first 
valid TCW entry maps 110 bus addresses X'OO 01 00 00' to X'OO 01 OF FF'; the second entry 
controls mapping of addresses X'OO 01 1 o 00' to X'OO 01 1 F FP, and so on. 

The number of bus memory addresses that can be mapped depends on how much TCW 
Random Access Memory (RAM) is supplied by the IOCC. This amount Is product 
dependent. A field in the IOCC Configuration register Is used to specify the amount of TCW 
RAM supplied. Refer to ·1occ Configuration Register" on page 2-74 and ·implementation 
Detailsn on page 2-86 for details. Access to the TCW table entries must be 4-byte aligned 
and must be an exact multiple of four bytes in length. 

If the bus memory VO address is mapped to system memory, the Real Page Number (RPN) 
in the TCW is used to access system memory. Otherwise, the address is directly applied to 
the VO bus. 

on a load instruction, if bits O to 3 all have a value of O, the value of CSR 15 bits 4 to 31 is 
whatever software previously had written into them with a store instruction. 
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1/0 load and store instructions to the IOCC facility (for example, the CSRs) does not 
generate an error except for a machine check. 

The TCW table is a protected system resource located in the IOCC address space between 
addresses X'-x co 00 00' and X'-x FF FF FF' (where x indicates any hexadecimal digit 
between o and F). It is only accessible to Load and Store instructions from the system 
processor when the Segment register privileged key is set to a value of O. Attempts to 
access this table when the privileged key is set to a value of 1 causes a Data Storage 
interrupt to be posted and Invalid operation error status to be set in Channel Status 
register 15. 
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Figure 55. TCW Table 

TCWs can be used for both bus master and OMA slave operations. A TCW entry is 
described in detail as follows. (Some fields described in the following section may be 
implementation-dependent as noted.) 

Bite Deecrlptlon 
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20-23 
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Real Page Number: This field in the TCW contains the real page address 
that the bus address Is mapped to in system memory. Software should 
ensure that the RPN is valid (for example, is not outside the range of real 
memory). 

Buffer Number: On buffered implementations, this field contains a 4-bit 
number specifying which of 16 buffers can be used by the IOCC when 
operating with this page. Although any buffer number may generally be 
assigned to any page, exercise caution since buffer sharing is not possible 
with OMA slave channels when tags are used. PersoMlization of a channel 



24 

25-27 

28-29 

30-31 

for a OMA slave operation causes that channel to use the same buffer 
number. On implementations not buffered, these bits are indetenninate. 

Note: Buffer number 'F' has some special restrictions and uses: 

• Should always be used for Load and Stores Instructions to bus memory 
when the bypass bit in the Segment register is off. 

• Should never be assigned for any operations invoMng system memory 
(that is, where bit 30 of TCW word o is set to a value of 1 ). 

Reserved and must be set to a value of 0. 

Page Protect Key: This field contains a 3-bit key specifying the protection 
class of the page. Memory pages are assigned to one of eight protection 
classes. When a device inltially arbitrates for the bus, an 8-bit access 
authority mask is obtained from the Channel Status register associated with 
that device. When a page is accessed, the key obtained from the TCW 
specifies the mask bit to be tested. It the selected bit is set to a value of 1, 
the access is permitted. Mask infonnation for VO Load and Store 
Instructions are contained in Channel Status register 15. Load or store 
references to a bus memory page without the appropriate authority cause a 
Data Storage interrupt and set an access authority error code in Channel 
Status register 15. Refer to 1..oad and Store Access Authority Checking"" on 
page 2-29 for details. Similarly, Invalid access attempts by a bus master 
device terminate the operation for this device and set an access authortty 
error code In the Channel Status register associated with the device. Refer 
to ·aus Master Access Authority Checking• on page 2-46 for details. 

Reference and Change (RC): These bits are equivalent to the RC bits in the 
system page frame table. Bus master transfers and shared memory Load 
and Store instructions do not modify the page frame tabla. As an aid in 
page management, the IOCC provides the reference and change history of 
all of Its pages. This can be used to Improve system perfonnance In paging 
operations. Whenever a page Is accessed, the IOCC sets its assocl•ed 
reference bit In the TCW table to a value of 1. Slmllarty, whenever a page is 
written, the IOCC sets both the reference and change bits to a value of 1. 
The B'01' code point Is never naturally set by hardware and Is only set by 
software to assist in page management. Note that these bits only apply to 
pages mapped to system memory. 

Page Mapping and Control: These bits define page mapping and read-write 
authority. They are coded as shown in Figure 56. 
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Figura 56. Page Mapping and Control Bits 
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Code points B'OX' signify that the page ls not mapped to system memory. Code point B'OO' 
should be set to allow accesses to memory devices on the 1/0 bus. Code point B'01 ' should 
be set when a page is not mapped and no device is present at that address. It causes a 
Data Storage interrupt if the operation is a load or a store, and a synchronous channel 
check response if the operation is a bus master transfer. Both of these actions are 
interpreted as an 1/0 bus page fault. Bus master devices designed to take advantage of this 
function are expected to halt and wait for the system to take corrective action. 

Code point B'1X' signifies that the page is mapped to system memory. For Programmed 110 
(PIO} operations, it causes the IOCC to redirect references to system memory using the 
TCW mechanism. Note that PIO to system memory using the TCW mechanism is 
implementation dependent. (See Mlmplementation Details" on page 2-86.) Bit 27 of the IOCC 
Configuration register is set at a value of O if PIO to system memory is supported. If not 
supported (bit 27 equals 1 ), a PIO Load and Store instruction results In a Data Storage 
interrupt. 

Bus master operations are mapped by channel and enabled as defined by bits 2 and 3 of 
the status field of the Channel Status register. Note that bit 30 should match bit 2 of the 
status field of the Channel Status register; otherwise, it is treated as a page fault error 
condition as described in the preceding text. 

Bit 31 controls write authority; If set to a value of 1, the page can be written. Note that the K 
bit (bit 1, or the Privileged bit) in the Segment register overrides bit 31, that is, privileged 
access Is not limited by the Read-Write or Read-Only bit. 

Maintaining Consistency 
With various caches and buffers In a system, it is possible that the same data might exist in 
several places in the system. It then becomes the challenge of the hardware and software to 
maintain the consistency of these various copies. The 1/0 Architecture features that assist In 
maintaining consistency are the subject of this section. 

Currently the VO architecture defines two different modes of operation when it comes to 
Cache Buffer Support and Cache Coherency (as specified by two bits in the IOCC 
Configuration register). These are: 

• Unbuffered Mode 
• Buffered Mode. 

Each of these modes has slightly different characteristics when it comes to keeping 
consistency among the various copies of the data in the system. These modes are 
discussed in the following sections. 

Unbuffered Mode 
In this mode, it is the responsibility of the hardware to keep everything consistent. 
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suffered Mode 
Figure 57 is a simplified version of Figure 35 on page 2-4, with only the data flow shown. 
Notice that there are (potentially) three copies of the same data in the system (shown as 
shaded boxes); one copy in the system memory, one copy in the processor data cache, and 
one copy In the IOCC buffer. In this mode, the software is responsible for keeping the data 
consistent. The VO architecture along with the processor architecture provides the 'tools' to 
do this. 
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Figure 57. Data Flow In the Programming Model 
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The following architectural tools assist In providing consistency: 

• Processor data cache flush instructions 

- Write data that has been modified In the processor data cache to system memory. 
Forces subsequent processor accesses to go to system memory, so that you no longer 
have two different (inconsistent) sets of data in the processor data cache and system 
memory. 

- Must be executed after setting up VO data and before a bus master or OMA Slave can 
read the data. The data is taken from system memory, not the processor data cache . 

• Hiding of VO pages from software processes 

- can hide the page (4K bytes) of memory so that a software process cannot access It 
after the data is set up for l/O in the system memory. 

- Works well with large block sizes. 
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• VO buffer Invalidate command 

- Throws away the copy of data in the 1/0 buffer so that the VO device cannot access 
that copy again. 

- can be used after setting up the data in system memory in the same 64-byte area as 
the VO device is accessing, so that the device now accesses the new data from 
system memory instead of the old data In the VO buffer. 

• VO next buffer lnvalldate command 

- Used in systems that implement dual buffer support. 

- Throws away the copy of data in the 1/0 buffer that is reading ahead of the device so 
that the VO device cannot access that data. 

- can be used after setting up the data In system memory in the next 64-byte area 
ahead of where the 1/0 device is accessing, so that the device now accesses the new 
data from system memory Instead of the old data in the next buffer. 

• VO OMA Slave buffer ftuah command 

- Given the buffer number, writes to system memory any data in the VO buffer, that has 
been modified but not yet written to system memory, and eliminates the copy in the 
buffer by invalidating it. 

- Must be used at the end of a OMA Slave transfer to or from system memory If the 
transfer did not complete to termination by the length count. 

• VO bus master buffer ftuah command 

- Given the TCW number, writes to system memory any data in the buffer pointed to by 
the TCW, that has been modified but not yet written to system memory, and eliminates 
the copy in the buffer by invalidating it. 

- Must be used at the end of a bus master transfer to system memory under all 
conditions. 

• IOCC PIO to system memory support 

- Can be used during a OMA Slave or bus master data transfer to access data In the 
same page and even the same 64-byte area as the 1/0 device is accessing. 

- Guarantees consistency. 

- Works well for small data transfers, but there can be a performance penalty on long 
data transfers. 

• IOCC OMA read-modify-write support 

- Provides support to transfer less than 64 bytes of good data from the UO buffer to 
system memory. 

- May be implemented by prefetching the data before the device wrttes the first byte to 
the buffer or by postfetching data from memory and merging it with the bytes in the 
buffer which have been written by the device. 

- Is not atomic with the processor (processor can access the same location in system 
memory between the IOCC's read and the IOCC's write), so for example, it does not 
eliminate the need for hiding memory pages. 
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sus Master 
Bus master transfers refer to data transfers between a bus master VO device and memory 
where the bus master device supplies the memory addresses and controls all aspects of the 
data transfer. 

The system VO architecture supports both buffered and unbuffered bus master transfers. In 
the buffered mode, VO buffers are provided as a performance feature and may also Include 
caching of the current TCW table entry in a Buffer Control register. The following sections 
include descriptions of both the buffered and unbuffered bus master operaUons. The mode 
of operation Is implementation specific (see "IOCC Configuration Register" on page 2-74 
and "Implementation 0eta11s• on page 2-86) and detennines what must be done to maintain 
consistency of the data (Eee "Maintaining Consistency" on page 2-36). 

euffel'8d Bus Master 
Figura S8 shows the bus master operations to system memory. Sequential data transfers 
are transferred on IOCC buffer boundaries, and the IOCC provides a set of 84-byte data 
buffers. The actual bus master transfer cycles operate only against these buffers. 

To Initiate buS master transfers, the system first loads the TCW table with the appropriate 
mapping Information. When the TCW mapping Is complete, the channel can be Initialized to 
n1n by loading the control registers with a set of values starting the demand reload process. 
The eaaieSt way to do this is to load the control registers with the following: 

1. Channel Status register- B'OOme O 100 0000 1111 auth auth 0000 0000' 
2. cache Buffer register 4 - B'OOOO 0000 0000 0000 0000 0000 0000 0000' 
3. Cache Status register 8 - B'0010 0000 0000 0000 0000 0000 0000 0000' 

These values cause the IOCC to reload the control relPters from the TCW table on the first 
access attempt by the l/O device. 

Following device arbitration, the appropriate Channel Status register is selected. The buffer 
number field In that register Is then used to select the Buffer Control registers used by this 
device. The VO bus address is compared with the address contained in the Buffer Control 
register. If a match occurs, the associated buffer is correct, and the operation can proceed 
against the buffer. 

H the l/O bus address does not match the address contained in the Buffer Control register, a 
TCW access Is required. The VO bus address is used to select the appropriate TCW, and 
the buffer number field obtained Is used to select the appropriate set of Buffer Control 
registers. These registers are then tested to see If the l/O address matches. If a match 
occurs, the contents of the buffer are valid and the operation can proceed. H not, the buffer 
needs to be loaded. 

Prior to loading of the buffer, the current buffer is checked to see tf It can be cast out. A bit In 
1he Buffer Control register indicates whether that buffer is dirty. If so, the buffer is written 
baek to system memory priOr to access of the new buffer. Following access of a new buffer, 
the VO bUS address and new TCW are written into the Buffer Control registers. 
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The IOCC must perfonn a read-modify-write sequence to guarantee that the buffer space, 
which has not been written to, does not change the data in system memory when that buffer 
is written to memory. 

1 ...... ,1.~.~~~,~~~,,.,, .. . I I ....... ,,~.~~:1~ ... ,,,,,,, ,I 
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Note: Implementation of the Micro Channel a-byte Streaming Data protocol is optional. 
(Saa "Implementation Details" on page 2-86.) 

Figure 58. Buffered Bua Master Data Transfer Operation 
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As shown in Figure 59, each bus master channel is dynamically associated with two 32-bit 
controlling registers. These registers are also used tor OMA slave operations but are defined 
differently when personalized for bus master data transfer operations. 
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Figure 59. Buffered Bus Master Control Registers 
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Each of the 16 channels has Its own Channel Status register. This register contains channel 
status, some personalization controls, a buffer pointer, and an 8-bit memory access authority 
mask. 

The Buffer Control registers are associated with a specific buffer and can be dynamically 
coupled to any channel. These registers cache the TCW associated with the buffer and 
provide faster operation for sequential accesses. Selection of the Buffer and Buffer Control 
registers to be used is determined by the buffer number field in the TCW. 

Register fields are described in the following section: 

• Register O - Channel Status Register 

8118 Daacrlptlon 

4 

5 

6-11 

12-15 

16-23 

24-31 

Control and Status: This field contains channel control and status, and 
may be set by both the control program or the IOCC. Values between 
X'0-3' are control channel operations while values between X'04-15' are 
error codes. Refer to "Bus Master Error Conditions" on page 2-47 for a 
description of bus master error conditions. When bits O to 1 are B'OO', 
Bits 2 to 3 provide control of channel operations. Bit 2 Is set by a Store 
instruction to the appropriate Channel Status register and Indicates 
whether the channel Is mapped (Bit 2 equals 1 ), or not-mapped (Bit 2 
equals 0). The architecture optionally allows for the mapping of bus 
master operations to be controlled by address as well as by channel; see 
the Information on the Bus Mapping registers for more details. Bit 3 is 
controlled by channel enable and dlNble commands. Refer to Menable 
and disable Commands• on page 2-65 for more information on the 
enable and dlAble commands. 

OMA Slave Flag: This bit is set to a value of o using an VO Store 
instruction to personalize a channel for bus master data transfer 
operation. The IOCC never changes the value of this bit. 

Reserved: This bit is reserved and must be set to a value of 1. 

Reserved: These bits are reserved and must be set to a value of o. 
Buffer Number: This field is loaded from TCW bits 20 to 23 and is used 
as an Indirect address to select the correct 64-byte buffer and Buffer 
Control registers. 

Authority Mask: This field defines the memory access authority granted to 
this channel. Each bit corresponds to one memory protection class, 
where bit O corresponds to class 0 (TCW key 0), bit 1 corresponds to 
class 1 (TCW key 1 ). and so forth. 

Reserved: These bits are reserved and must be set to a value of 0. 

• Register 4 - Buffer Control Register 

This register contains a copy of the current TCW associated with this buffer. This register 
functions as a TCW cache and improves performance of bus master operations and 
Load and Store instructions. Refer to "Translation, Protection and TCW Table• on page 
2-33 for a description of the bit fields in this register. 
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• Register 8 - Buffer Control Register 

This register contains a copy of the VO bus address associated with the TCW register 
described in the preceding text. Whenever a bus master operation or a Load and Store 
instruction references a m&ITIOIY obiect. the VO bus address is first checked against this 
register to see if the object is contained in the associated buffer. The bit usage follows: 

Btta Deecrlptlon 

o Buffer Dirty: This bit indicates that the buffer associated wl1h this channel 
is dirty. that is, has been written to and therefore contains data that is 
inconsistent with data in system memory. This bit is reset by the IOCC 
when the buffer is written to system memory and is set when the first byte 
is written to the buffer. Though hardware normally sets and resets this bit, 
software has both read and write access. 

1 

2 

3 

Buffered: This bit indicates that the buffer contains data that has been 
prefetched. It is set upon initial prefetchlng of the buffer and is reset at 
the time the buffer Is written to system memory. Though hardware 
normally sets and resets this bit, software has both read and write 
access. When the operation completes and the device interrupts, the 
buffer must be flushed to system memory by software using the buffer 
ftu•h command. 

Buffer lnvalida1e: This bit is used to indicate that the buffer has been 
invalidated. When this bit is set to a value of 1 it forces a prefetch from 
system memory to this buffer. The bit is reset to a value of o at the time 
the buffer is prefetched from system memory and set to a value of 1 
when the buffer is flushed to system memory. Though hardware normally 
sets and resets this bit, software has both read and write access. When 
the invalidate bit Is set to a value of 1, It overrides the buffer dirty and the 
buffer prefetched bits. 

Next Buffer Prefetched: This bit Indicates that the next buffer of data has 
been prefetched. It Is set upon initial prefetching of the next buffer. It is 
reset at the time the buffer is flushed to system memory or by the buffer 
lnvalldat8 or next buffer Invalidate commands. Though hardware 
normally sets and resets this bit, software has both read and write 
access. If the hardware does not support dual buffering, then It will not 
read-ahead of the device, and this bit, on a load of this register, will have 
a value equal to whatever the software has previously written into the bit. 
The dual buffering function is an optional feature of the architecture; see 
iocc configuration Register- on page 2-74 and "Implementation 
Details" on page 2-86. 

Reserved: These bits are reserved and must be set to a value of o. 
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6-25 1/0 Bus Address A31 to A12: This field is used by the IOCC to detect 
when a page changes. It contains a copy of the 110 bus address that 
caused the last TCW to be fetched. This field is referred to on a 
cycle-by-cycle basis to determine if the current TCW in register 4 is valid. 
If a page is changed, that is, address bits A31 to A12 change, the IOCC 
accesses the TCW table again. 

26-31 1/0 Bus Address A 11 to AS: This field is used by the IOCC to detect when 
a buffer changes. It contains a copy of the 1/0 bus address relating to the 
current 64-byte 1/0 buffer within the 4 K-byte system page. If a bus 
master changes buffers within the 4 K-byte system page, that is, address 
bits A 11 to AS change, the IOCC accesses system memory as 
appropriate to make a new 64-byte 110 buffer available. 

Unbuffered Bua Master 
Figure 60 shows the unbuffered bus master operations to system memory. Note that the 
64-byte IOCC buffers are not shown as with the buffered mode previously described. The 
caching of the current TCW table entry Is not shown. Figure 60 assumes direct access of the 
TCW table entry on each VO access by the bus master. 
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Note: Implementation of the Micro Channel 6-byte Streaming Data protocol is optional 
(See ·1mplementatlon Details" on page 2-86). 

Figure 60. Unbuffered Bus Master Data Transfer Operation 
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The Bus Master Channel Status register for the unbuffered case is shown in Figure 61. Each 
of the 16 channels has Its own Channel Status register. This register contains status, some 
personalization controls, and an 8-bit memory access authortty mask. 

Bua o 
Arb 
Lvl 

Procenor Effective Addreu 

Channel Status Regl9ter 

T 
0 O M E 

p N 

0 1 0 0 
0 1 
1 0 
1 1 

1 0 0 0 
0 1 
1 0 
1 1 

1 1 0 0 
0 1 
1 0 
1 1 

T 
Channel 
Control 

Authority Error 
PageFauh 
TCWExtent 
llO Bua Error 
Data Parity 
Addreu Parity Error 

Match tD 
Storage Key 

Card Selected Feedback Error 
ECCError 
System Addl'ftl Error 
TCW Reload Error 
IOCC Error 

Figure 61. Unbuffered Bus Master Control Registers 

Note: The Buffer Control registers shown in Figure 59 on page 2-41 are not supported in 
this mode. A Load Instruction to register 8 retums all zeroes. On a Store instruction 
to register 8, data Is Ignored. Register 4 Is used for OMA slave operations. A Load or 
Store instruction to register 4 is treated as described in "OMA Slave" on page 2-49. 

Following device arbitration, the appropriate Channel Status register is selected. The 110 bus 
address is used to select the appropriate TCW. The RPN from the TCW entry and 12 bits 
from the VO bus address are used to address system memory. 
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Register fields are described as follows: 

• Register o - Channel Status Register 

Bit. Description 

4 

5 

8-15 

16-23 

24-31 

Control and Status: These bits are defined the same as the corresponding 
bits in Register O for the buffered bus master case. See •Register O -
Channel Status Register • on page 2-42. 

OMA Slave Flag: This bit is defined the same as the corresponding bit in 
Register O for the buffered bus master case. See "Register o - Channel 
Status Register n on page 2-42. 

Reserved: This bits is reserved and must be set to a value of 1. 

Reserved: These bits are reserved and must be set to a value of o. 
Authority Mask: These bits are defined the same as the corresponding bits 
in Register O for the buffered bus master case. See •Register o - Channel 
Status Register • on page 2-42. 

Reserved: These bits are reserved and must be set to a value of O. 

Bua Master Access Authority Checking 
Bus master operations are subject to access authority checking. As shown in Figura 82, 
accesses are verified by checking the TCW memory protect key against an authority mask 
associated with the requesting channel. 
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Figure 62. Bus Master Access Authority Checking 
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Bus master operations are protected on page boundaries. Each page in the bus memory 
address space has a 3-bit storage protect key associated with that page, that defines the 
protection class of the page. These keys are kept in the TCW table described in the 
"Translation, Protection and TCW Table" on page 2-33. An 8-blt mask in each channel 
specifies the key vaJues (and by inference, pages) that this channel is authorized to access. 
For information on what action occurs on an authority error, see "Bus Master Error 
Conditions• on page 2-47. 

Authority mask lnfonnation is considered part of the context and Is loaded Into the 
appropriate Channel Status register by the operating system. The Channel Status registers 
are protected system resources and are only accessible when the Segment register 
privileged key Is set to a value of o. Attempts to access these registers when the privileged 
key is set to a value of 1 causes a Data Storage interrupt to be posted and Invalid operation 
status to be set in Channel Status register 15. 

Bu• to Bus Data Tranafers 
For performance reasons, the system memory is put on a separate bus from the Micro 
Channel bUs. Transfers from a bus master to an address space have to be directed either to 
bus memory (for bus to bus operations) or to system memory. For Implementations that 
implement the optional Bus Mapping registers, certain blocks of bus address space can be 
allocated for bus to bus data transfers by way of the Bus Mapping registers. Alternately, all 
data transfers from a bus master can be directed to the bus address space by setting bit 2 of 
that bus master's CSR to a value of o. 

Bu• Matter Error Conditions 
Error ex>ndltlons that arise In bus master operations include bus errors, programming errors, 
and hardware errors. On an error, an error code Identifying the specific error cause Is set 
into the Channel Status register (bits 0 to 3) corresponding to that channel. The l/O bus 
address bits A31 to A 12 are also logged into the Channel Status register (bits 6 to 25) to 
identify the page In error. After the error code is set Into the status field, the IOCC does not 
respond to bus requests for thiS channel, effectively disabling the channel. The Channel 
Status registers thus capture the channel status until the error code is reset by a Store 
Instruction from the system supervisor. 

All errors cause the 'chck' signal to be pulsed. In addition, on TCW extent and address parity 
errors, the IOCC will not activate the 'sfdbkr1n' line. When a bus master device sees this 
error condition, it should suspend operations and post an Interrupt. For additional 
Information refer to •Exception Reporting and Handllng" on page 2-85. 

After the error condition, H the bus master device tries to continue accesses with the channel 
effectively disabled (also, If the bus master tries to make an access and the channel was 
never enabled), the IOCC activates 'chck' and will not activate 'sfdbkrtn'. It the access is 
directed to the IOCC, the IOCC does not take or supply data, and continued read accesses 
by the device after the error results in the IOCC bus drivers being disabled which results in 
ail ones on the VO data bus. 
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110 bus errors such as an address or data parity errors may be caused by hardware 
malfunctions or transient electrical noise. Refer to wParity Errors" on page 2-19 and "Channel 
Check" on page 2-1 9 for a description of these errors. Error codes are summarized as 
follows: 

Error Code Description 

0 1 0 1 Authority Error: This error code is set if the storage key in the TCW does not 
match the authority mask in the Channel Status register or an attempt is 
made to write to a read-only page. 

o 1 1 o Page Fault Error: This error code is set if an attempt is made to access a 
page with TCW bits 30 and 31 set to 8'01'. This can occur in nonnal 
operation. Devices attempting to take advantage of this function must 
present an interrupt after receiving a 'chck' signal on the 110 bus. 

O 1 1 1 TCW Extent Error: This error code is set if an attempt is made to access a 
bus address for which a TCW does not exist. 

1 O 0 O 110 Bus Error. This error code is set if an error on the Micro Channel bus 
has been detected during a transfer. The types of errors detected here are 
implementation dependent (see "Implementation Details." on page 2-86.) 

1 O 0 1 Data Parity Error: This error code is set If the IOCC detects bad parity when 
operating as a slave on lhe bus (when the transfer Is from device to system 
memory). 

1 O 1 O Address Parity: This error code is set if the IOCC detects bad parity on the 
address bus. This error is detected even when the IOCC is not involved in 
the transfer (that is, on a bus-to-bus transfer). This is a bus monitoring 
function of the IOCC. 

1 0 1 1 Card Selected Feedback Error: This error code is set if, after a device is 
addressed It does not respond by driving the 'cd sfbk' line. This is a bus 
monitoring function of the IOCC. 

1 1 o O ECC Error: This error code Is set If the IOCC received an uncorrectable 
ECC error response from the system bus during a bus master transfer 
request to system memory. 

1 1 0 1 System Address Error: This error code is set if the IOCC sends data over 
the system bus and does not receive an address acknowledgement. This 
can occur if the real page number in the TCW is invalid. Software should 
make sure that the real page number in the TCW is valid. 

1 1 1 0 TCW Reload Error: This error code is set H the IOCC detects a parity or 
uncorrectable ECC error during a TCW access. 

1 1 1 1 IOCC Error: This error code Is set if the IOCC detects an internal error 
(except those dealing with the Channel Status registers or Buffer Control 
registers) during any bus master channel operation. An error with the 
Channel Status or Buffer Control registers results in a check stop. 
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OMA Slave 
DMA controller is the name given to a system-supplied resource that mediates data 
transfers between memory and OMA slaves. The IOCC contains a OMA controller for the VO 
bus. Three parties are Involved in this type of OMA operation: the OMA slave, the memory, 
and the OMA controller. This type of OMA operation is often used for the following reasons: 

• Cost 
A OMA controller must provide interfaces to both system addresses and data and is 
highly pin-Intensive. The data flow is quite regular and lends Itself well to implementation 
using RAM arrays. Thus, muttlple4\annel OMA controllers are relatively easy to 
implement. Since most systems require at least one OMA device, a common practice In 
low-end systems Is to provide a multi-channel OMA controller as a shared resource and 
amortize Its cost across multiple devices. 

• Protection 

OMA controllers manage all address, control, and byte count functions associated with 
data transfer. As such, it ls relatively easy for a system to protect Its memory from the 
extemal environment by using OMA channels, and making channel setup a prtvlleged 
operation. 

Using the OMA controller, data can be transferred between a device and bus memory, or 
t>etween a device and system memory. Data transfers to or from system memory may or 
may not be buffered. The system VO architecture SUPPorts both buffered and unbuffered 
OMA slaVe transfers. In the buffered mode, VO data buffers are provided as a performance 
feature for transfers between VO and system memory, and can also include caching of the 
current TCW table entry In a Buffer Control register. Data transfers to or from bus memory 
are never buffered. The following sections Include descriptions of both the buffered and 
unbuffered OMA slave operations. The mode of operation Is Implementation specific (see 
·1occ Configuration Register" on page 2·74 and •implementation Details" on page 2·86) 
and detannlnes what must be done to maintain consistency of the data (see "Maintaining 
Consistency- on page 2·36). 

All memory Is partitioned Into 4K·byte pages, and the OMA controller Is organized to handle 
phy&iCal transfers of this size. The architecture supports two modes of managing each 
41<-byte page of memory for OMA slave operations. One mode uses TCWs and the other 
uses tag elements to handle this management of memory pages. See "OMA Slave 
Operations Using Tags• on page 2·50 and •oMA Slave Operations Using Tews• on page 
2·57 for a description of these two modes. The choice of using TCWs or tags for the 
management of the 4K·byte pages Is implementation dependent. (See "IOCC Configuration 
Reglstef on page 2·74 and •implementation Details" on page 2·86.) 

Each OMA slave channel includes a pair of 32-blt registers used to contain the current 
memory address and control Information corresponding to the current page being accessed. 
The IOCC implements up to 15 OMA channels. Each channel is associated with one of 16 
VO bus arbitration levels. One of these arbitration levels (level 15) must be allocated to the 
system processor for Issuing Load and Store instructions to the l/O bus, reducing the 
maximum number of useable OMA channels to 15. For implementations using tags, the 
number of channels implemented must be 15. For implementations using TCWs, the 
number of useable OMA channels Is Implementation dependent (see "IOCC Configuration 
Register" on page 2·74 and •implementation Details• on page 2-88). 
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The OMA Slave Control registers are accessible by way of Load and Store instructions from 
the system processor. and are located in the IOCC address space. OMA Slave Control 
registers are a protected system resource and are only accessible when the Segment 
register privileged key is set to o. Attempts to access these registers when the privileged key 
is set to a value of 1 will cause a Data Storage Interrupt to be posted and invalid operation 
error status to be set in Channel Status register 15. 

Each channel is personalized to operate with either a bus master or OMA slave. Bit 4 of the 
Channel Status register {OMA register O) must be set to a value of 1 when controlling a OMA 
slave device, and set to o when controlling a bus master device. 

Note: Software should program unallocated channels as bus master channels. 

The system supervisor must first load the OMA slave control registers prior to enabling a 
channel. Following setup, the channel is enabled using the OMA enable command 
described in the •enable and dlsable Commands" on page 2-85. The IOCC is then ready to 
control OMA operations on behalf of a OMA slave device. 

The action taken when loading a Channel Status register for OMA slave operation where 
there are fewer channels than Channel Status registers, with a channel number greater than 
that indicated in the IOCC Configuration register Is implementation-dependent. (See 
•implementation Details" on page 2·88.) Software supports assignment of OMA channels to 
arbitration levels on a first come first serve basis. If a channel Is not available, the resource 
request is rejected. Hardware does not check for the mapping of a OMA channel to more 
than one arbitration level at a time. This must be controlled by the software. 

If the operation completes without error, the IOCC terminates the OMA slave operation and 
disables the channel. If an error occurs during the OMA slave operation, the IOCC sets a 
code identifying the error Into the Channel Status register status field and terminates the 
OMA slave operation. No additional OMA slave requests or enable commands will be 
accepted by this channel until the error is cleared by way of a Store instruction. The OMA 
Slave Control registers are frozen, capturing details on channel status at the time of error. 
Refer to ·oMA Slave Error Conditions" on page 2-62 for details. 

To suspend or terminate a OMA operation prior to its normal ending point, it is 
recommended that a OMA dl .. ble command be used. This command provides a soft 
termination of a OMA operation without destroying the current state of the OMA slave control 
registers. Refer to •enable and disable Commands" on page 2-85 for details on this 
command. 
OMA slave termination is accompanied by the IOCC pulsing the 'tc' signal. Devices are 
expected to post an Interrupt when this occurs, notifying the system that the OMA operation 
is complete. The system supervisor can then Inspect the OMA registers to determine if the 
operation completed nonnally. 

OMA Slave Operations Using Tags 
Tags provide support for byte-level scatter and gather OMA slave operations. A OMA slave 
transfer is described by the OMA Slave Control registers and a list of tag entries. The OMA 
Slave Control registers describe the Initial partial transfer and each of the tags describes 
another part of the transfer. 

OMA Slave Control registers o and 4 contain a copy of the tag except for the status field as 
described in "OMA Slave Error Conditions" on page 2-62 and •enable and disable 
Commands" on page 2-65. 
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The tags are organized as a heap in a special memory space called a tag table. The tag 
table Includes 4096 entries. During the course of a OMA slave operation, the IOCC will 
reload the OMA Slave Control registers from the tag table on a demand basis. The OMA 
Slave registers must be loaded directly using a Store Instruction with the Initial tag entry. 

To allow for management of large logical buffers, the OMA controller allows chaining of tags. 
Whenever a page boundary is crossed or the length count expires, the OMA controller 
automatically fetches the tag containing the mapping information for the next page and 
reloads the OMA Slave Control registers for that channel. Since each tag also Includes 
length count lnfonnatlon, this structure provides natural data chBJn;ng down to the byte level. 

Figure 83 shows the OMA slave operations using tag elements. Data may be transtamtd 
between a device and system memory or between a device and bus memory. In the 
buffered mode, the IOCC must provide a 64 byte data buffer (or dual buffer; see •System 
Structure• on page 2-4) for each channel, and this buffer must be managed by the software. 
The actual 110 bus OMA cyde operates only against these buffers. In the unbuffered mode, 
the IOCC must provide some read-modify-write capability so that transfers from the device, 
that are leas than the memory read and write granulartty, can be matched to the system 
memory Interface. Data transfers to or from bus memory are not buffered. 

DMA Slave Control = Memory Addreu .....i --., 

Ctrl I Next 1 Length r-

J ·~ ~" 

4 TllgTable -• _[ 

~ l Data Burr.. 
(In Buffered Mode) .... ,. 

' .·-·----------· 
• For a-er,: 
: Stream n~ Data _i (See Note _._ __._ 

_raualdcl"l J l/O Bui Dala l 

Not8: Implementation of the Micro Channel 8-byte Streaming Data protocol ls optional 
(S8e •implementation Details" on page 2·88). 

Figure 63. OMA Slave, Using Tags 
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The tag table is a protected system resource located in the IOCC address space between 
addresses x·-o 80 oo oo· and x·-o 80 7F FP. Figure 64 shows this address space. It is only 
accessible to Load and Store Instructions from the system processor when the Segment 
register privileged key is set to a value of O. Attempts to access this table when the 
privileged key is set to a value of 1 causes a Data Storage interrupt to be posted and invalid 
operation error status to be set In Channel Status register 15. 
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Figure 64. Tag Table Addresaing 
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Each 4K-byte page involved in a OMA slave transfer, except for the first, has at least one 
8-byte tag element in the tag table. The first tag is set up in the OMA Slave Control registers. 
These tags contain relevant information required for the OMA slave operation such as the 
memory address, length count, and direction. Tags may be chained together to control OMA 
across multiple memory pages, or to provide a data chaining function. Each tag represents 
the Initial set of values to be loaded into the OMA Slave Control registers every time a page 
is crossed or the length count of the current transfer expires. Access to the tag table entries 
is word access only. The bit definition of a tag entry is defined as follows: 

• Word o of a tag contains control information relating to the current 4K-byte page and 
Includes the following: 

Blta O.Crlption 

G-4 Reserved: This field is reserved and must be set to a value of O. The 
hardware does not update the Channel Status register bits O to 3 with 
these bits. 

5 

6 

7 

8-19 

20-31 

System Memory Flag: This bi1 selects whether system memory or bus 
memory is to take part in a OMA slave transaction. This bit Is set to a 
value of 1 for OMA slave transfers to system memory and set to a value 
of o for OMA slave transfers to bus memory. 

Enable Terminal Count Flag: This bit causes the IOCC to pulse the 'tc' 
signal whenever the length count expires. This signal terminates the 
OMA slave operation and causes the device to post an VO interrupt. Note 
that this function is independent of OMA termination by the channel, and 
tag chaining may be continued. This can be used to advantage In 
assisting emulation of channel command chaining, or in emulating the 
auto-reload function available in the 8237 OMA controller. Note also that 
the IOCC always pulses 'tc' signal when the next tag field is X'FFP and 
the length count expires, regardless of the setting of this bit. 

Direction Flag: This bit selects the direction (device to memory or 
memory to device) of a OMA slave transfer. This bi1 is set to a value of o 
to transfer data from memory to the VO device and is set to a value of 1 
to transfer data from the VO device to memory. 

Next Tag Field: This field contains a 12-bit index into the tag table. This 
index is a pointer to the next tag to be used when the length count 
expires. When this condition occurs, the OMA controller automatically 
fetches the tag containing the mapping information for the next piece of 
the transfer and reloads the OMA Slave Control registers for that 
channel. A next tag field of all 1 's indicates that this Is the last tag in a 
chain. H this field is all 1 's and the length count expires, the IOCC 
disables the channel and does not accept any further OMA slave 
requests from the device. The last tag in the tag table has an address of 
all 1 's and therefore cannot be used. 

Length Count Field: This field contains a length count for the data 
transfer. The length count is e binary number one less than the number of 
bytes to be transferred and cannot be greater than the number of bytes 
left to the end of the page. 

• Word 4 of a tag contains a 32-bit real address to either the bus memory space or system 
memory space. 
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Figure 65 shows the register definitions when tag control elements are used to manage 
memory. Bits 28 and 29 (r) in the effective address indicate which word is being addressed. 

Procenor Effective Addreu 

0 0 0 
0 
1 
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0 1 0 
0 
1 
1 

1 0 0 
0 
1 
1 

, 1 0 
0 
1 
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0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
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Dlaabled 
Enabled 

Extra Req 

Channel Check 
Data Parity Error 
VO Bua Error 
Cerd Select8d Feedback Error 
ECC Error 
Syatem Addrea Error 
Tag Reload Error · 
IOCCError 

Figure 65. OMA Slave Registers Using Tags 
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The register fields are described in the following section. 

• Register o - Channel Status register 

There are 16 Channel Status registers (CSR) each having a one-to one correspondence 
to one of 16 arbitration levels. The bit assignments for this register are as follows: 

Bits 

G-3 

4 

5 

8 

7 

8-19 

Description 

Control and Status: This 4-blt field contains control infonnaUon when btts 
o and 1 are B'OO'. When bits 2 and 3 are at 8'00', the channel associated 
with this arbitration level Is In the disabled state. When bits 2 and 3 are at 
B'01 ', the channel ls enabled. Bit 3 Is set using the channel enable 
command and reset using the channel dlaable command. Code points 
B'10' and 8'11' for bits 2 and 3 are reserved. When bits o and 1 are not at 
B'OO', the contents of bits o and 3 represents error codes. See ·oMA 
Slave Error Conditions" on page 2-62 for a description of these error 
codeS. 

OMA Slave Flag: This bit is defined the same as tor the tag table word o 
defined on page 2-53. 

System Memory Flag: This bit is defined the same as for the tag table 
word O defined on page 2-53. 

Enable TIC Flag: This bit Is defined the same as for the tag table word o 
defined on page 2-53. 

Direction Flag: This bit is defined the same as for the tag table word o 
defined on page 2-53. 

Next Tag Field: This bit is defined the same as for the tag table word o 
defined on page 2-53. 

Length Count Field: This bit is defined the same as for the tag tabla word 
o defined on page 2-53. 

• Register 4 - Memory Address Register 

This register is defined the same as tag table word 4 on page 2-53. 
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• Register 8 - Buffer Control Register 

This register only exists for buffered implementations. The bits assignments are as 
follows: 

Blta Description 

0 Buffer Dirty: This bit is used to indicate that the buffer associated with this 
channel is dirty, that is, has been written to and therefore contains data 
which is inconsistent with data in system memory. 

1 Buffered: This bit indicates that the buffer contains data that was 
prefetched. It is set upon inltlal prefetching of the buffer and is reset at 
the time the buffer is flushed to system memory. Though hardware 
normally sets and resets this bit, software has both read and write 
access. 

2 Buffer Invalidate: This bi1 indicates that the buffer was invalidated. When 
this bit is set to a value of 1 it forces a prefetch from system memory to 
this buffer. The bit is reset to a value of O at the time the buffer is 
prefetched from system memory and set to a value of 1 when the buffer 
is flushed to system memory. Though hardware normally sets and resets 
this bit, software has both read and write access. 

3 Next Buffer Prefetched: This bit indicates that the next buffer of data has 
been prefetched. It is set upon initial prefetching of the next buffer. It is 
reset at the time the buffer is flushed to system memory or by the buffer 
Invalidate or next buffer Invalidate commands. Though hardware 
normally sets and resets this bit, software has both read and write 
access. If the hardware does not support dual buffering, then it will not 
read-ahead of the device, and this bit will always be returned as a value 
of O on a load of this register. The dual buffering function is an optional 
feature of the architecture; see "IOCC Configuration Register" on page 
2-74 and "Implementation Details• on page 2-86. 

4-31 Reserved: These bits are reserved and must be set to a value of o. 
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OMA Slave Operations Using TCWs 
TCWs provide support for page level scatter and gather OMA slave operations. The OMA 
Slave Control register is initialized with the first page TCW; the rest of the TCWs Involved In 
the transfer are sequential. Figure 66 on page 2-57 shows the OMA slave operations using 
TCWs. Notice that the memory address consists of a TCW number and an offset (unlike the 
tag which contains a real address to system memory). 

When TCW entries are used for OMA slave operations, bits 20 to 31 of the TCW entry are 
not used and software must set these to a value of O. See "Translation, Protection and TCW 
Table" on page 2-33 for a description of the TCW table. 

DMA Slave Control Regl8tera 

Ctr1 Chnl t Length 

Memory Addresa 
TCWI OffMt 

20 12 12 

1------itil TCW Table 

20 
RPN 

: For 8-Byte Streaming 

Sy.mm 
Memory 

Data Butfera 
(In Buffered Mode) 

' Data (See Note) 
,--~~~~-.:11"--~~~~--

llO Bua Add reu VO Bua Data 

Note: Implementation of the Micro Channel 8-byte Streaming Data protocol ls optional 
(See •implementation Details" on page 2-86). 

Agure 66. OMA Slave, Using TCWs 

Figure 67 on page 2-58 shows the register definitions when TCWs are used to control OMA 
slave operation. 
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Figure 67. OMA Slave Registers Using TCWs 
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The register fields are described in the following section. 

• Register O - Channel Status register 

There are 16 Channel Status registers (CSR) each haVing a one to one correspondence 
to one ol 16 arbitration levels. The bit assignments tor this register are as follows. 

Bits 

4 

5-7 

8-11 

12-31 

O..Crlptlon 

Control and Status: This 4-blt field contains control lnfonnatlon when bits 
o and 1 are B'OO'. When bits 2 and 3 are at B'OO', the channel associated 
with this arbitration level Is in the disabled state. When bits 2 and 3 are at 
0'01 ', the channel is enabled. Bit 3 is set using the channel enabhl and 
reset using the dluble command. Code points B'10' and B'11' for bits 2 
and 3 are reserved. When bits O and 1 are not at 8'00', the contents of 
bits o and 3 represents error codes. See "OMA Slave Error Conditions• 
on page 2-82 for a description of these error codes. 

OMA Slave Flag: This bit Is set to a value of 1 using an VO Store 
instruction to personalize a OMA channel for OMA slave operation. The 
IOCC never changes the value of this bit. 

Control: The definition of these bits are the same whether the OMA slave 
operation uses TCWs or tags (except for TCWs, there Is no TIC enable). 
These operations are described under the same numbered bits o1 tag 
table word O defined on page 2-53. This field only exists for channel 
numbers (as specified In bits 8 to 11 of this register) less than or equal to 
the number of OMA slave channels implemented. 

Channel Number: This field Is used to assign a OMA channel to a specific 
Channel Status register. Storing a value which Is larger than the number 
of OMA Slave channels supported minus 1 (as Indicated by the number 
o1 OMA Slave channels field in the IOCC Configuration register) to this 
field will produce implementation-dependent results. 

Length Count: This field Is used to indicate the length of the OMA slave 
transfer (byte count minus 1 ). This field only exists tor channel numbers 
(as specified In bits 8 to 11 of this register) less than or equal to the 
number of OMA stave channels Implemented. A tennlnal count Is 
generated by a device when this field goes negative, that is, when the 
most significant bit goes from a value of O to a value of 1. 

• Register 4 - Memory Address 

This register contains the memory address for the OMA slave operation. The number of 
registers available of this type Is implementation dependent (see "IOCC Configuration 
Register" on page 2-74 and •implementation Details• on page 2-86). However, the 
number available must equal the number of OMA channels Implemented. These registers 
are dynamically associated to the arbitration level based on the channel number 
assigned in the Channel Status register (CSR). Software must Insure that the same 
channel number is never assigned to more than one CSR (arbitration level) at any given 
time. 
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If the transfer is to or from bus memory (Channel Status register bit 5 equal to O) this 
register is applied as a 32-blt address directly to the 110 address bus. If the transfer is to 
or from the system memory, this register is defined as follows: 

Blta Description 

0-19 TCW Number: The TCW number in the memory address provides an 
index into the TCW table where the RPN is obtained if the channel is 
mapped to system memory. When mapped to system memory, the 
address used to address system memory consists of the RPN from the 
TCW concatenated with the offset. 

20-31 Offset: These bits are the lower 12 bits of the memory address. 

The OMA address is incremented by the size of the transfer, and the length count is 
decremented by the same amount. Each time the TCW number is incremented in 
register 4, the next sequential TCW entry is obtained. Note that if software tries to access 
register 4 with a channel number greater than the number of channels supported (as 
Indicated in the IOCC Configuration register), the results are implementation-dependent 
(see "Implementation Details• on page 2-86). Also note that only one OMA channel can 
be assigned per arbitration level. 

• Register 8 - Buffer Control Register 

This register only exists for buffered implementations. The bit assignments are described 
in "Register 8 - Buffer Control Register" on page 2-56. 

OMA Slave Bua Protocol• 
Conventional bus protocols are used in OMA operations and are documented in "Basic 
Transfer Cycle· on page 2-17. 

110 devices request OMA service on a demand basis by arbitrating for the bus using the 
'preempt' line. This causes the 'granf line to be deactivated, causing an arbitration cycle. 
When the 'grant' line Is reactivated, the IOCC inspects the Control register associated with 
the bus requester to determine If any OMA service is required. If it is, the IOCC performs a 
OMA slave sequence on behalf of the requester. 

Typical requests are for one or two bytes. On occasion, multiple requests from different 
devices are received at the same time. When this occurs, service is sequential with the 
highest priority requester serviced first. 

When service is granted to a device, data is transferred between the device and memory. 
The sequence to be used depends on whether the memory is bus or system memory. The 
number of bytes transferred Is generally equal to the data width of the device. The OMA 
address is Incremented by the size of the transfer and the length count is decremented by 
the same amount. 

If the specified OMA address does not have the same boundary as the 1/0 device data 
width, the operation proceeds using a Partial Transfer Protocol as described In "Partial 
Transfer Cycles• on page 2-18. For example, a OMA transfer involving a 2-byte 110 device 
and a buffer starting on an odd address results in two 1 -byte OMA sequences being 
performed. This retains the functional integrity of the operation, but requires additional time 
to complete the operation. As a result, it is suggested that buffers in system memory be 
located on address boundaries matching the physical width of the 110 device. 
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OMA Slave Transfers to Bus Memory 
OMA slave transfers between a device and bus memory consist of two bus cycles: one to 
read the data from the source and one to write the data to the target An Input operation 
consists of an VO device read cycle followed by a bus memory write cycle. An output 
operation is reversed. 

There is no buffering on transfers to or from bus memory. 

DMA Slave Transfers to System Memory 
OMA slave transfers between a device and system memory have only one apparent bus 
cycle: an 1/0 device read or write cycle. These transfers are described as follows: 

• Buffered 

The memory operation is directed to the IOCC buffer and does not appear as a bus 
cycle. The buffer operation is overlapped with the l/O cycle, and a sequence of OMA 
cycles to system memory appears on the bus as a sequence of VO read or write 
operations. As a result, the average instantaneous performance of OMA slave transfer to 
system memory may be much better than to bus memory .. 

Whenever the address crosses an IOCC buffer boundary or the length count expires, the 
IOCC transfers the data between the buffer and system memory. This operation may 
increase the worst case bus latency (depending on the IOCC implementation), 
decreasing effective OMA performance. 

No restriction is placed on having OMA addresses begin or end on IOCC buffer 
boundaries. The OMA controller perfonns read-modify-write sequences to system 
memory as required. As this potentially occurs onty on the first and last buffers to be 
transferred, addressing has little effect on performance. 

When performing OMA slave transfers to system memory, and the first address does not 
start on a 64-b';1e boundary or the remaining count is less than 64, the OMA controller 
automatically performs either a buffer prefetch before storing the OMA data Into the 
buffer or does some sort of read-modify-write before storing the data to system memory 
(depending on the Implementation). If a buffer flush command Is issued before the 
length count expires and the buffer cache contains less than 64-bytes (the memory 
address ls not B'xx .. xxOOOOOO'), the remainder of the buffer transfer to system memory 
may consist of zeros (implementation dependent). See "Buffer Flush Commands" on 
page 2-66 for additional details. 

• Unbuffered 

OMA slave transfers between a device and system memory have only one apparent bus 
cycle: an VO device read or write. The memory operation Is directed to the IOCC, is 
overlapped with the 110 cycle, and therefore does not appear as a bus cycle. AB a result, 
the average instantaneous performance of OMA slave transfers to system memory may 
be twice that of bus memory. 
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Special Sequences 
Special mechanisms are provided to improve the relative data transfer efficiency of highly 
buffered devices. 

The Micro Channel supports preemptive burst operations to take advantage of low average 
1/0 bus loading. A device starts this mode by activating the 'burst' line prior to the end of the 
OMA slave cycle. No arbitration cycle occurs, and the OMA controller concatenates 
successive OMA sequences until the 'burst' line is deactivated. Micro Channel arbitration 
rules require preemptive burst devices to deactivate the 'burst' line request if any other 
device requires bus service. 

The OMA controller also supports a special transfer mode called streaming data transfer. 
This mode Is a single-address, multiple-data protocol, and is described in "Streaming Data" 
on page 2-17. 

DMA Slave Error Conditions 
Error conditions that arise in OMA operations include bus enors, programming errors, and 
hardware errors. The specific cause of the error is coded and set into the status field (bits O 
to 3 ) In the Channel Status register. The 'tc' signal Is then pulsed, which should cause the 
110 device to suspend OMA operations and post an interrupt. If It does not, but continues to 
request OMA service, the IOCC services the OMA requests with dummy cycles, pulsing the 
'tc' signal on every cycle. Error codes are summarized as follows: 

Enor Codee Deecrlptlon 

0100 

0 , 1 1 

1000 

1001 

, 0, 0 
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Extra Request Error: This error code is set if a DMA slave request is 
received by a OMA channel when the channel is disabled. Receipt of an 
unsolicited OMA request Is an error unique to a OMA slave. This error is 
generally caused by 1/0 device malfunctions and the IOCC pulses the 'tc' 
signal in an attempt to shut off the OMA slave. This error can also occur 
with incorrect programming of the channel. 

TCW Extent Error: This error code Is set H a OMA slave request is received 
and the OMA slave control register 4 contains a TCW number for which 
there does not exist a corresponding TCW. 

Channel Check Error: This error code is set H the device responds with a 
channel check indication during a OMA slave operation. 

As an example, a device might respond with a 'chck' signal for a Write 
operation to that device where there is bad parity on the data, or for other 
device-detected errors during an operation to that device. This error will not 
be reported if a card selected feedback error is reported (a card selected 
feedback error takes precedence over a channel check error). 

Data Parity: This error code is set if the IOCC detects bad parity on the data 
bus when the IOCC is reading data. (See MException Reporting and 
Handling" on page 2-85 for details.) 

VO Bus Error: This error code is set if an error on the Micro Channel bus 
has been detected during a transfer. The types of errors detected here are 
implementation dependent see Mlmplementation Details" on page 2-86). 



ErrorCodM 

1011 

1100 

1101 

1110 

1111 

DHcriptlon 

Card selected Feedback Error: This error code is set If, alter a device is 
addressed, it does not respond by driving the 'cd sfbk' line. Conditions lhat 
could cause this to occur are: if lhe device is not present; Is not seated in 
the care! slot property; is not enabled or detects bad address parity and 
doeS not respond to that address. This error code takes precedence over a 
channel check error. 

ECC Error: This error code is set if the IOCC receives an uncorrectable 
ECC error response from the system VO bus during a OMA slave request to 
system memory. 

System Address Error: This error code is set If lhe IOCC sends data over 
the system VO bus and does not receive an address acknowledgement. 
This can occur if the real page number in the address is Invalid. 

TCW or Tag Reload Error: This error code Is set H the IOCC detects a parity 
or uncorrectable ECC error during a TCW or Tag table access. 

IOCC Error: This error code is set If the IOCC detects an internal error 
during any OMA slave operation. If the IOCC error Is on access to the OMA 
Slave registers; this error will not occur and the machine will check stop 
instead. 

10cc commands · 
IOCC commands are used to change the state of the IOCC or control special bus actions. 
They take Ute fonn of Load and Store Instructions to special (effective) addreases, where the 
addresses specify Iha actions to be taken. In most cases, the Load or Store Instruction can 
be either a string or nonstring operation. The IOCC include supports the following 
commands: 

• tlmedHIY' 
• end of Interrupt 
• enable and dleable 
• bufl9r"tluah 
• butts lnvallcl8le 
• nut buffer lnwlldata. 

user applications can only tasue the time delay command, and then only H they have 
Segment register authority to access the l/O bus. All the other commands are protected and 
must have the Segment register privileged key set to a value of O (bH 1) and the IOCC select 
bit set to a value of 1 (bit 24). IOCC commands are not placed on the VO bus. 

All IOCC commandS are 4-byte operations except the time delay command,whlch can be 1, 
2, or 4 byteS. 

Delay Command 'Tlrn• A number of Micro Channel devices have strict rules regarding minimum periodicity of 
programmed VO commands. Using program path lengths for timing is not a good 
programming practice. since program performance varies widely by processor type and 
(current) operating environment. To assis~ In programming devices with real·tlme 
dependencies, lhe IOCC supports a special time delay command that can guarantee 
separation of bus VO commands. 
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The time delay command is coded as a 1-. 2-, or 4-byte Load or Store instruction and is 
shown in Figure 68 on page 2-64. It is nonnally inserted between successive Load and 
Store instructions to devices with time senSitivities and enforces minimum time spacing 
between the l/O bus cycles. This command is similar to the time delay command in the RT 
system but allows additional time delay increments. The command provides delay 
Increments ranging from 1 to 8 microseconds and is specified using the effective address 
and the logical (byte) length. If a Load instruction is used to call the time delay function, the 
data returned is indetenninate. If a Store instruction is used, the data is ignored. 

Effective Addrna for the Time Dela Command 

Figure 68. Tlme Delay Command 
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The time delay command Is issued by any user application having Segment register 
authority to access the VO bus. Command execution is overlapped with succeeding 
processor instructions as long as they do not attempt to access any VO space. If, however, 
another VO Load or Store instruction is issued to the VO space before the time delay has 
expired, that command is synchronously halted until the pending delay is completed. This 
command affects only programmed VO and has no effect on OMA or other VO operations 
run by hardware. 

The time delay command is issued with the I bit in the VO Segment register equal to 1 or o. 
The time delay command can be a string operation, but the length must be 1, 2, or 4 bytes. 
Implementation accuracy of the time delay command is to~ and +1 microseconds (for 
example, a 1 microsecond delay Is greater than or equal to 1 microsecond but less than 2 
microseconds). 

End of Interrupt Command 
Following presentation of an VO interrupt to the system External Interrupt Source (EIS) 
register, the IOCC automatically masks off that interrupt so the presentation is only made 
once. An end of Interrupt command reenables this mask, causing any active interrupts to 
be presented (or re-presented) to the system EIS register. On a Store instruction, the data is 
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ignored. On a Load instruction, the data is indeterminate. This command, shown in 
Figure 69, should be issued following the interrupt service. 

Effective Add1'898 for the Encl of lnterru Command 

Figure 69. End of lntemJpt Command 

ThiS command is privileged and is only accessible when the Segment register privileged bit 
is set to a value of o. Attempts to run this command when the Segment register privileged bit 
is set to a value of i causes a Data Storage Interrupt to be posted and invalid operation 
error status to be set In Channel Status register 1 5. 

Enable and Dlaable Commands 
The enable and dleable commands allow system Initiation and suspension of OMA slave 
and bus master operations for devices attached to the Micro Channel. Each command is 
directed to a specific channel as specified by the channel field in the effective address. The 
command tonnats are shown in Figure 70. Bits i2 to 15 of the effective address specify the 
channel to be started or stopped. 

and Dlaable Store Commands 

Figure 10. Enable and Disable Commands (Load equals enable and Store equals disable). 

The enable command initializes a channel to accept requests by changing the channel 
status In the Channel Status register from the disabled (B'OOXO') state to the enabled 
(B'OOX1 ') state. This command is coded as a Load Instruction and retums the original 
contents of the selected Channel Status register to the target processor register. The 
channel status field must initially be B'OOXO' for this command to update the channel status 
to the enabled state. This command always returns a status consisting of the full contents of 
the associated Channel Status register. The status field Is the only field changed by this 
command. 
The disable command disables operation for a particular channel by changing the channel 
status from the enabled state (B'OOX1 ') to the disabled (B'OOXO') state and Is coded as a 
Store instruction (data is ignored). It does not disrupt any other data in the channel registers, 
allowing restart of the operation If the device is designed accordingly. The channel status 
field must initially be B'OOX1' for this command to be run. If it ts not B'OOX1 ', a no operation 
(NOP) instruction occurs when this command is issued. 

The x in the preceding paragraphs does not indicate a do not care state, but indicates that 
the enmble and disable commands do not change the current state of the status bit 2 
(mapped or not-mapped). 

A request from a OMA slave when the channel is disabled is considered to be an error and 
sets an extra request error code in the Channel Status register associated with that device. 
The 'tc' signal on the Micro Channel bus is pulsed in an attempt to shut off the device. 
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If a bus master makes a request to a disabled bus master channel, the IOCC does not 
activate the 'sfdbkrtn' signal and synchronously activates the 'chck' signal, but does not 
update the error status. 

Notice that an enable or dluble command to channel X'P results in an NOP. Channel X'P 
is dedicated to the default master and remains enabled at all times. 

These commands are protected system functions and are only issued when the Segment 
register privileged key Is set to a value of o. Attempts to issue these commands when the 
privileged key is set to a value of 1 causes a Data Storage interrupt to be posted and invalid 
operation error status to be set in Channel Status register i 5. 

Buffer Flush Commands 
The buffer fluah commands are provided for implementations that support IOCC bu1fers. If 
the buffers are supported, the IOCC buffers must be flushed to system memory at the end of 
a transfer. The buffer flu1h commands provide the flush and Invalidate functions. Using 
these commands will result in a NOP (data ignored on a Store instruction, indeterminate on 
a Load instruction) if the buffers are not supported. For more information on why and when 
these commands might be necessary, see ~Maintaining Consistency" on page 2-36 and 
Mlmplementation Details• on page 2-86. 

The buffer fluah commands are protected system functions and can only be issued when 
the Segment register privileged key is set to a value of O. Attempts to issue these 
commands when the privileged key is set to a value of 1 causes a Data Storage interrupt 
(OSI) to be posted and invalid operation error status to be set in Channel Status register 15. 

Bua Muter Buffer Flu1h Command 
IOCC buffers for bus master transfers are managed similar to the processor data cache, and 
a flush operation is performed by address. To improve performance, the buffer fluah 
command is defined so the buffer flush can be performed simultaneously wi1h normal TCW 
maintenance. The command utilizes a bit in the effective address to optionally flush the 
buffer while accessing a TCW table entry. Figure 71 shows the effective address format. The 
buffer associated with the TCW is conditionally transferred to system memory if the buffer 
data has been changed (only flushed If dirty and valid). The IOCC remains busy until the 
buffer transfer is completed and does not accept any new commands. Independent of 
whether the transfer takes place or not, the buffer is invalidated by setting Buffer Control 
register 8 to O Including the 0, B, and N bits, the TCW number and the offset, but not 
Including the invalidate bit (I) which gets set to a value of i . This causes any subsequent 
accesses to this buffer to have to access again the TCWs and system memory. If on, the 
Dirty bit Is turned off, so any subsequent buffer fluah commands will not cause a buffer 
transfer. 

Effective Addreaa for the Bue Maater Buffer Flush Command 

ISog~ H I I I Reg t RC 1 1 TCW Number FR Bua Muter 

o, I I 41 =: 81 1Y I I 1511r I I I I I 'f312f I I I I ~1 Bulfw Fluoh 

Mask 

J1T1 Replace 
Fluah 

Figure 71. Bus Master Buffer Flush 
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Bit 30 of the effective address causes any buffers associated with this memory page to be 
flushed, while bit 31 causes the 4-bit mask value to replace the reference, change, and 
control bits in the TCW. The following list shows what happens for the various combinations 
ot the Flush and Replace bits: 

• Flush equals 0, Replace equals O. 

This Is just a Load or Store Instruction to the TCW table. 

• Flush equals O, Replace equals 1. 

The TCW is updated based on the R, C, and CTL bits in the mask field. On a Load 
instruction, return the old value of the TCW. On a Store instruction, data ls Ignored. 

• Flush equals 1, Replace equals 0. 

On a Load instruction, retum the old value of the TCW. If operating in buffered mode. 
flush the buffer, update the Buffer Control registers, and on a Store instruction, Ignore the 
data. In unbuffered mode, the Store instruction ls a NOP. 

• Flush equals 1, Replace equals 1. 

On a Load instruction, retum the old value of the TCW. On a Store Instruction, data is 
ignored. If operating in buffered mode, flush the buffer, update the Buffer Control 
registers. The TCW is updated based on the A, C, and CTL bits In the mask field. 

OMA Slave Buffer Fluah Command 
The IOCC buffers for the OMA slaves are managed as simple buffers, and the flush 
operation Is performed by channel number. The OMA Slave buffer tluah command Is 
shO'Nn In Figure 72 and Is Issued by way of an VO Store instruction. Bits 12 to 15 of the 
effective address specifies the buffer that the command is directed to. 

Effective AddreN for the OMA Slave Buffer Fluah Command =· 0000010 Bfrl 0000000001111000 
0 4 7 8 1 1 5 18 

Figure 72. OMA Slave Buffer Flush 

The OMA Slave buffer flu•h command conditionally causes the buffer associated with the 
specified OMA channel to be transferred to system memory If the buffer data has been 
changed. that is, the Dirty bit is on. The IOCC remains busy until the buffer transfer Is 
completed and does not accept any new commands. Independent of whether the transfer 
takes place or not, the buffer ls invalidated by setting Buffer Control register 8 O, e, and N 
bi1S to a value of 0, and the Invalidate bit (1) equal to a value of 1. 

On a Store instruction. the data Is Ignored. A Load Instruction causes a Data Storage 
Interrupt. In the unbuffered mode, a Store instruction is a NOP and a Load instruction 
retums indeterminate data. 

B . .-..., Invalidate Command 
u • •• Figure 73 shows the effective address format for this command. 

etfectlve Addreu for Buffer Invalidate Command 

Figure 73. Buffer Invalidate Command 
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The buffer Invalidate command assists in the management of OMA slave and bus master 
operations. This command forces the hardware to reload the buffer on the next OMA slave 
operation or bus master operation. On bus master operations, the Buffer Control register 4 is 
also reloaded. A Load instruction returns the state of the bits, but does not invalidate the 
buffer. On a Store Instruction, the data must be X'20000000'. (This is just a store to buffer 
control register 8 with the buffer invalidate bit turned on.) 

If operating in the unbuffered mode, this Store instruction is a NOP, and a Load instruction 
returns zeroes. 

This command is privileged and is only accessible when the Segment register privileged bit 
is set to a value of 0. Attempts to use this command when the Segment register privileged 
bit is set to a value of i causes a Data Storage interrupt to be posted and invalid operation 
error status to be set in Channel Status register 15. 

Next Buffer Invalidate Command 
Figure 74 shows the effective address fonnat for this command. 

Effective Addre91 for Next Buffer Invalidate Command 

lo~ 1~ ~1 °1 °1 ;1 d~ 1 1 1 l51 'f~~ ~u1m1f !2t 1 1 1 1 I 0~~1 
Figure 74. Next Buffer Invalidate Command 

The next buffer Invalidate command is provided to assist in the management of bus 
master operations. This command forces the hardware to throw away any buffers of data 
that were read-ahead of where the bus master device is currentty reading (the next bit Is 
turned off). This is useful to ensure consistency between the IOCC next buffer and data that 
may have been modified in system memory. Note that the hardware will read-ahead of the 
device only if the implementation supports the dual buffering option of the architecture (see 
MIOCC Configuration Register" on page 2-74 and Mlmplementation DetailsN on page 2-86). 

This is not the only method which is available to ensure consistency in implementations 
which support read-ahead. Other methods Include hiding the OMA page in system memory 
from the processor during the transfer to the device and the use of PIO to system memory. 

This command must be issued with a full word Store instruction. The data must be a value of 
0. A Load Instruction causes a Data Storage lntem.1pt. 

If operating In the unbuffered mode or if operating In buffered mode but the dual buffer 
option is not supported, this command causes a Data Storage Interrupt. 

If operating in the buffered mode with dual buffer support, this command is guaranteed not 
to retum an error to the processor (with the exception of a privileged error). Should an error 
occur, this command invalidates the next buffers for all 16 buffers instead of returning an 
error indication. 

This command is privileged and is only accessible when the Segment register privileged bit 
is set lo a value of 0. Attempts to use this command when the Segment register privileged 
bit Is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation 
error status to be set in Channel Status register 15. 

110 Interrupts 
The IOCC supports ii bus 1/0 interrupts, 3 native 1/0 interrupts, 1 miscellaneous interrupt, 
and i reserved interrupt level. The miscellaneous Interrupts are collected together and are 
presented as one logical level. This results in a total of 16 IOCC interrupt levels. 
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The architecture supports both a direct and a coded mapping of the VO interrupt requests 
(IROs) to the External Interrupt Summary (EIS) register. The specific approach supported Is 
implementation dependent (see •implementation Details" on page 2-86). When the direct 
mapping approach is supported, the mapping is a direct one for one map (Interrupt level O 
maps directly to EIS bit O, level 1 maps directly to EIS bit 1 and so on). 

The following information describes the coded mapping approach In detail including a 
description of an Interrupt Vector table used in the mapping. 

When the coded mapping is supported, the 16 interrupt levels are coded and are mappable 
to any EIS bit between O and 63. Figure 75 shows the Interrupt mechanism. 

Deel ___ _, 

ln18mlpt Enable Reglatw 80 

Bua Interrupt - Bua Interrupt Par Bua In 84 Interrupt 
3 4 s e 7 a a 10 11 12 14 11 Aequeet 

7 8 15 Reglater 
0 

~ --En-cod-lng-and--Mapp--1-ng __ / 

I 0 
1 

0 I Interrupt Vector 180 
8 15 

Figure 75. Interrupt Mechanism 

Interrupts are presented to the system with a special sequence, setting a bit In the system 
EIS register corresponding to the vector code presented. Refer to Chapter 1, "System 
processors.· in this manual, tor additional details. 

The presentation cycle begins when an interrupt occurs. If the Interrupt Is enabled, Its 
corresponding bit in the interrupt request field is set to a value of 1. An IOCC sequence then 
codeS the interrupt, looks up a vector value, and presents that value to the system as an 
interrupt. If multiple interrupts occur simultaneously, the hardware resolves which Interrupt Is 
presented first. Following the presentation of each interrupt, a special hardware mask bit Is 
reset to ensure that each interrupt is presented only once. 

When the system responds to the interrupt, the current processor state ls saved, and a 
device-specific interrupt handler is invoked. As part of that service, the interrupt source Is 
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reset. When the device service is complete, an end of Interrupt command is issued, which 
sets the special hardware mask, reenabling the presentation of interrupts on this level. If 
another interrupt is pending at this level, the EIS register in the system is set again. 

Interrupt registers are shown in Figure 76. These registers are a protected system resource 
located in the IOCC address space between addresses X'-0 40 oo 80' and X'--0 40 oo 9P, 
and are only accessible to Load and Store Instructions from the system processor when the 
Segment register privileged key is set to a value of O. Attempts to access this address space 
when the privileged key is set to 1 results In a Data Storage interrupt to be posted and 
Invalid operation error status to be set in Channel Status register 15. 

Proceeeor Effective Addreea 

I ~1,~01°1 81~ 11°1 81 81 81 81 81~ 81 81 81~ 01°1 81 11 oj '1 '1'1°1
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0 3 4 7 8 15 16 23 24 31 

Control Regl8111n 

Interrupt Enables 80 

84 

88 

0 34 78 15 16 23 24 31 

Vector Table 

Ml8cellaneoua Keyboard Ser Port 14/B IAQ3 80 

94 

9C 

0 34 78 15 16 2324 31 

Figure 78. Interrupt Registers 

• Register 80 - Interrupt Enable Register 

This register provides the ability to enable or disable any of the primary 16 interrupt 
requests. Bits 16 to 31 are reserved and should be set to a value of Oona Store 
instruction. On a load Instruction, bits 16 to 31 are indeterminate. No dynamic 
management of this register Is necessary during interrupt service. It is provided primarily 
to allow disabling of unused, potentially noisy interrupts. 
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• Register 84 - Interrupt Request Register 

This register provides access to the device interrupt sources and can be read using an 
VO Load instruction. Bits 16 to 31 are reserved and on a Load Instruction are 
indeterminate. A Store instruction to this address Is a NOP. A detailed description of each 
bit follows: 

Btta Delcrlptlon 

o Miscellaneous Interrupt: Miscellaneous Interrupts are not directly 
vectored to the EIS register. The system unit provides one EIS register 
wltl1 64 interrupts, of which the IOCC is allocated 16 levels. To fit within 
this maximum, the IOCC presents miscellaneous interrupts as a class 
interrupt. consuming one logical level. This appears In bit o (vector 
lookup 0), and is an OR of all the bits in register 88. If this interrupt is 
posted, the system Is required to read IOCC register 88 to determine the 
cause of the interrupt. Bit 0 is set to a value of 1 when any miscellaneous 
interrupt occurs and bit O in the Enable register Is set to a value of 1. This 
bit is a summary OR of register 88 and cannot be written. During an VO 
Store instruction to this register, bit o Is ignored. This bit Is reset when 
register 88 is reset. 

1 Keyboard Interrupt: This bit Is set to a value of 1 when a keyboard 
Interrupt occurs and bit 1 in the Enable register is set to a value of 1. This 
interrupt is level-sensitive and must be reset within the device prior to an 
Interrupt retum. 

2 Serial Port Interrupts: This bit Is set to a value of 1 when a board serial 
port 1 or serial port 2 Interrupt occurs (Shared Interrupt) and bit 2 In the 
Enable register is set to a value of 1. This Interrupt Is level-sensitive and 
must be reset within the device prior to an interrupt return. 

3-7,9-12,14-15 

8 

110 Bus Interrupts: These bits are set to a value of 1 when 110 bus 
interrupts occur and their corresponding bits in the Enable register are 
set to a value of 1 . These bits reflect the current signal level of each of 
the Micro Channel Interrupt lines and are not latched. It is not necessary 
to reset these bits as part of Interrupt service. 

Reserved: This bit is reserved and must be set to a value of o. 

13 Parallel Port Interrupt: This bit Is set to a value of 1 when a Standard VO 
parallel port Interrupt occurs and bit 13 in the Enable register is set to a 
value of 1 . This interrupt ls level-sensitive and must be reset within the 
device prior to an interrupt retum. 

16-31 Reserved: These bits are reserved and must be set to a value of o. On a 
Load instruction, the value of bits 16 to 31 are indeterminate. 

• Register 88 - Miscellaneous Interrupts Register 

The first two bits of this register contain IOCC errors not reported In the Channel Status 
registers. These errors are caused by asynchronous events or are associated with 
situations where no device interrupt is posted. As such, the IOCC reports these errors by 
way of Its own interrupt. 

The third bit of this register provides an interrupt for the Standard l/O keyboard 
etrt-Alt-Anything sequence and is called a Keyboard External Interrupt. 

The summary OR of this register is presented as bit O of register 80. 
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This register is both read and written using 1/0 Load and Store instructions. Store 
instructions function only as a masked reset. Writing a value of O to a bit position resets 
that bit, while writing a value of 1 does nothing. A detailed description of each bit follows: 

Blta Deacrlptlon 

0 

, 

2 

Channel Check: This bit is set if the 1/0 bus 'chck' line is active during a 
Micro Channel operation (PIO or OMA slave) at the beginning of a cycle 
(after 'arb/gnt' signal falls and before the first time the 'cmd' signal falls). 
There should be no devices that asynchronously report errors by 
activating the 'chck' signal. However, if this occurs, the channel check 
posts an asynchronous IOCC error interrupt. Normally, in the system unit, 
the 'chck' signal is presented as a synchronous exception and a Data 
Storage interrupt is posted instead. Refer to "Exception Reporting and 
Handling" on page 2-85 and "Channel Check" on page 2-19 for more 
information. 

Bus Timeout: This bit is set if an VO bus timeout occurred. See "Bus 
Timeour on page 2-20 for additional details. While this bit Is active, the 
'arb/gnt' signal is forced high, bus arbitration is suspended, and control of 
the VO bus is unconditionally given to the IOCC. 

Keyboard External: This bit is set when the Ctrt-Alt-Anythlng sequence is 
pressed at the Standard VO keyboard and is called a Keyboard External 
Interrupt. It is presented to the system es an extemal interrupt. Software 
is then able to determine which key caused the interrupt and takes the 
appropriate action. This bit is implementation dependent. (See 
"Implementation Details" on page 2-86). 

3-31 Reserved: These bits are reserved and must be set to a value of 0. On a 
Load instruction, the value of bits 16 to 31 are indeterminate. 

• Register 90 to 9F - Vector Table 

This set of registers contains the interrupt vectors to be presented to the system EIS 
register. One vector Is provided for each bit in register 84. The operating system loads 
this table with a set of 6-blt values corresponding to the Interrupt priority desired. 

Note: The vector table is implementation-specific. (See "Implementation Details" on 
page 2-86.) Implementations that support a single VO bus can fix the conversion 
of interrupt level to the EIS bit This fixed conversion is the identify transform (that 
is, interrupt 0 to EIS bit 0, interrupt 5 to EIS bit 5, and so on.) When the vector 
table is not supported, a Load or Store instruction to the vector table addresses 
results in a Data Storage Interrupt (invalid operation). 

Special Facilltles 
Figure n shows the register organization within the IOCC. (For implementation details, see 
Mlmplementation Details" on page 2-86.) 
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Board Configuration Data 
The Micro Channel defines a slot select mechanism for accessing board-unique 
configuration data (byte-only access). Eight bytes of addressing are provided per board, 
which includes a unique 2-byte board identification and up to 4 bytes of programmable 
parameters. This mechanism is called setup, and is used at startup time to determine the 
boards in the system and to set configuration parameters on each board. Support Is 
provided for up to 16 boards. 

The Board Configuration registers are shown In Figure 78. They are a protected system 
resource located in the IOCC address space. These registers are only accessible to Load 
and Store Instructions from the system processor when the segment register privileged key 
is set to a value of o. Attempts to access these registers when the privileged key is set to a 
value of 1 causes a Data Storage Interrupt and an invalid operation status to be set in 
Channel Status register 15. 

Proce•aor Effective Addreu 

I ;1,1~01 01 01 ~11 oj ~1~1 I~ 01 o1 01 ~01 01 x1 o1 01 o1ojr .','I 
0 3 4 7 8 15 16 23 24 31 

Data 

0 

Sub-Addreealng 4 
LS Byte MS Byte (X7) 

0 34 78 15 16 2324 31 

Figure 78. Board Configuration Registers 

Refer to Personal System/2 Hardware Interface TechnlcaJ Reference: Architectures manual 
for more information on Micro Channel architecture and a description of the setup 
mechanism. Even though the architecture specifies that only address bits O to 2 are to be 
used In the address decode operation, some boards are developed with a dependency on 
serup addresses being between X'01 00' and X'01 07'. To accommodate these boards, bit 
23 is allowed to be a value of either a 1 or 0. The small r in bit positions 29 to 31 is a 
variable designating the byte being addressed within the 2-word field. 

Board configuration data Is unique to each specific board. Refer to each board specification 
for details. 

Note that the software should do a byte reversal on 2-byte entitles that are targeted for the 
Board Configuration registers used during setup cycles; for example, the most significant 
byte of the board identification should be placed in the register as shown in Figure 79. 

IOCC Configuration Register 
The IOCC design allows for certain variations of function and perfonnance that optimize its 
usage across multiple machine environments. The specific personalization is established 
with the contents of the IOCC Configuration register. For the contents of this register for 
specific implementations, see "Implementation Details" on page 2-86. 
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This register is a protected system resource located in the IOCC address space at address 
X'-0 40 00 1 O'. It is only accessible to Load and Store instructions from the system 
processor when the segment register privileged key is set to a value of 0. Attempts to 
access this register when the privileged key is set to a value of 1 result in a Data Storage 
Interrupt and an Invalid operation error status set in Channel Status register 15. 

This register is set up by hardware and ROM code and is treated as a read-only register by 
the operating software with the exception of the master enable bit. 

Figure 79 shows the organization of the configuration register. Bit O in this register is 
Initialized to a value of O at startup. 

PrOCM80r Effective Addreu 
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Figure 79. !OCC Configuration Register 

The various fields in the Configuration register are described as follows: 

Btta Description 

0 Master Enable: This bit functions as a master enable control for channel 
and interrupt operations only. It is intended to disable channel operations 
until the system has Initialized the Channel Control registers, tag table, and 
TCW table, but also could be used following startup to assist recovery from 
catastrophic errors. Nonnally, this bit is set to a value of 1 following initial 
program load (IPL) and is never changed thereafter. 

Reserved: This bit is reserved and must be set to a value of O. 

Burst Control: Programmable burst control is an optional implementation. A 
Load Instruction to these bits Indicates the state implemented or currently 
assigned (see also "Implementation De1alls• on page 2-86). If not 
supported, a Store instruction to these bits Is a NOP. These bits control the 
maximum time that the IOCC continues to utilize the VO bus by way of the 
Load and Store instructions under bursting protocol following a bus request 
from another device. This set of controls ls provided as a protective 
measure to retain reasonable Interrupt response time in the presence of an 
VO bus hog. The Micro Channel architecture places few restrictions on 
device bursting, and It is possible for a device to be designed wtth long 
(non-preemptive) burst sequences, even if operating in the fairness mode. 
The device then receives a disproportionate number of bus cycles If the 
IOCC does not also utilize non-preemptive burst sequences to increase the 
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blocking factor. It is the responsibility of the IOCC to ensure that the 
7 .8-microsecond bus timeout constraint is adhered to. 

2 3 

UJ] Complete Current Cycle 
1.6 microsecond 
3.2 microsecond 
6.4 microsecond 

Figure 80. Bit 2 and 3 Burst Control Setting 

The IOCC normally uses a Preemptive Burst protocol when executing Load 
and Store instructions. Under normal bus loading, this provides high 
statistical data rates while also providing the lowest latency to OMA slave 
and bus master devices. 

Reserved: These two bits are reserved but the value that they must be set 
to is implementation dependent (see u1mplementation Details· on page 
2-86). 

~7 Refresh Control: These bits allow specification of bus refresh periodicity and 
the number of (burst} refresh cycles taken. This provides for a certain 
amount of flexibility to handle new memory technologies with different 
refresh rate requirements. The refresh control setting is defined as shown in 
Figure 81 (rates are maximum times allowed). 

6 7 Rate #CyclM 

0 0 Off -
0 1 60 microsecond 4 
1 0 30 microsecond ' 1 1 15 microsecond 4 

Agure B 1. Refresh Control Setting 

8 Reserved: This bit is reserved and must be set to a value of a. 
~11 TCW Table Size Speclflcatlon: These bits allow specification of the amount 

of control RAM (TCW and Tag) to be packaged with the IOCC. Different 
applications require different amounts of TCW table, and the IOCC design 
allows this size to be varied. This provides the flexibility to optimize cost and 
function across a wide range of system applications. These bits should be 
personalized to match the size of the RAM provided with the IOCC (in terms 
of the number of TCWs supported). The TCW Table Sizes for 
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Combination TCW and Tag table shows the bit settings for 
implementations where tags are used for OMA slave operations. 

TCW Table Slat for Combination TCW and Tag 

Bit TCW Table Size 
91011 (I of TCW entries) 

0 0 0 24K 

0 0 , 56K 

0 , 0 120K 

0 , , 248K 

1 0 0 504K 

1 0 1 1016K 

The following table shows the bit settings for Implementations that use 
TCWs to support OMA slave operations. 

TCW Table Slzea When Tags Are Not Supported 

Bit TCW Table Size 
91011 (I of TCW entrin) 

0 0 0 BK 

0 0 , 18K 

0 1 0 32K 

0 , 1 64K 

1 0 0 128K 

1 0 , 258K 

1 , 0 512K 

1 , , 1024K 

The Tag table has 4096 entries, and the remainder of the RAM is allocated 
to the TCW table. If both the OMA slave and the bus master operations are 
handled using TCWs, all of the RAM is available for the TCW table. Due to 
the mapping of bus VO and bus memory Into one address space, no bus 
memory is allowed between o and 64K bytes, and the first 16 TCW entries 
are never accessed. 

Reserved: This bit is reserved and must be set to a value of o. 
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Bits 

13-15 

1~22 

23 

24 

25 
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Description 

Arbitration Time: These bits allow specification of the arbitration time on the 
Micro Channel. Different systems applications have different bus 
configurations and loading, and require different arbitration values. These 
values can be varied from the architected minimum to a value greater than 
that provided by the RT system bus application. Each arbitration value in 
the Arbitration Time Configurations table represents a range, for example, 
100 nanoseconds equals 100 to 200 nanoseconds. 

Arbitration Time Configuration• 

Bits Arbitration Time 
131415 (nanOHCOnda) 

0 0 0 100 

0 0 , 200 

0 1 0 300 

0 1 1 400 

1 0 0 500 

1 0 1 600 

1 1 0 700 

1 , , 800 

Reserved: These bits are reserved and should be a value of o. 
TCW and Tag Tables in System Memory: A value of 1 In this bit indicates 
that the TCW and tag tables are in system memory. The register tor 
anchoring the address of a system memory based TCW and tag table is at 
X'-0 40 00 24'. 

All pages in system memory provided for TCW and tag tables are 
continuous In real memory and permanently pinned. The TCW and tag 
tables are only accessed through the IOCC space and are not mapped into 
the PFT. Any error while accessing this memory results in a TCW and Tag 
access error. This area is not scrubbed. 

A value of O In this bit Indicates that nonsystem memory is used for the 
TCW and tag tables. 

Dual Buffer Support and Bus Mapping Register: This bit indicates whether 
or not the dual buffering and Bus Mapping register option of the architecture 
Is supported. A value of 1 in this bit indicates that the dual buffer and Bus 
Mapping register option of the architecture is supported. A value of 0 in this 
bit Indicates that it Is not supported. For implementation details, see 
·implementation Details" on page 2-86. 

DMA Slave TCW or Tag Bit: This bit indicates whether the OMA supports 
the use of tags or TCWs for OMA slave operations. A value of o Indicates 
tags are supported. 



Bits Description 

26-27 Cache Buffer Support and Cache Coherency: These bits have the following 
meanings: 

26 27 

[U] Buffered Mode, Software Enforced Con•l•tltncy 
Unbuffered Mode 
Reurved 
Reurved 

Figure 82. Cache Mooe Bits 

In the buffered mode, the IOCC buffers exist, and PIOs to system memory 
are allowed. In the unbuffered mode, there are no IOCC buffers and PIOs to 
system memory are not allowed. See "Maintaining Consistency" on page 
2-36. 

28-31 Number of OMA Slave Channels: These bits Indicate the number of OMA 
slave channels (that is, the number of OMA Slave Control registers) that are 
supported. Both 8'0000' and 8'1111' Indicate that 15 channels are 
supported. Also, B'0001', 8'0010', 8'00W indicate that one, two, and three 
channels are supported, respectively. The number of channels supported Is 
implementation-specific. However, the number of arbitration levels 
supported is not Implementation-dependent, and must be equal to 16. (See 
"Implementation Details• on page 2-88). If the implementation supports 
tags, then all 15 OMA slave channels must be supported. The minimum 
required by the Micro Channel architecture is 2. The minimum required by 
the system architecture Is the number of slots plus the number required by 
the Standard VO devices. If buffers are supported, the number of buffers 
must equal the number of channels supported. 

Bus Status Register 
The Bus Status register (BSR) Is a diagnostic facility that aids In VO error Isolation. It Is 
comprised of one RfN register and provides the ability to set and sample signals on the VO 
bus. 

The BSR is a protected system resource located in the IOCC address space at address 
X'-0 40 DO 20'. It is only accessible to Load and Store instructions from the system 
processor when the segment register privileged key Is set to a value of 0. Attempts to 
access these registers when the privileged key is set to a value of 1 causes a Data Storage 
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Interrupt and an invalid operation error status to be set in Channel Status register 15. 
Figure 83 shows the Bus Status register. 

Proce880r Effective Address 

I r;1,,~01 010 1 ~11 01 o1 01 o1 
o

1 
o, ~01 01 01 ~~01 01 01 ~ , 10101010 1

0J 

0 3 4 7 8 15 16 23 24 31 

BSRData 

Reserved 

I I II II 

0 

Figure 83. Bus Status Register 

31 

1Burat 
Cd Chrdy 
SDR(O) 
SOR (1) 

The 'arb' bus lines, 'bursf signal, 'cd chrdy' signal, and 'sdr (O)' and 'sdr (1 )'signals are 
latched In the BSA latches when a bus timeout error occurs. The 'arb' bus bit o is the least 
significant and bit 3 is the most significant bit. If a bus timeout error occurs during an UO 
cycle, further bus errors will not be trapped until the error interrupt is cleared out of the 
Miscellaneous Interrupt register. As such, the BSA contains a copy of the sampled VO bus 
signal llnes at the time of the first error. No provision is made for saving bus states for 
successive errors. 

Results of a Store instruction are implementation-dependent (see •implementation Details~ 
on page 2-86) On a Load instruction, the data retumed is the contents of the register as 
described, If an error has occurred (bit 1 of the Miscellaneous Interrupt register is on); the 
contents of bits O to 23 are indeterminate. 

TCW and Tag Anchor Address Register 
This register specifies the starting address of the TCW and tag table when that table is In 
system memory (as Indicated by bit 23 of the IOCC Configuration register). This register is 
undefined when bit 23 of the IOCC Configuration register is a 0, and a Store instruction to 
this register when bit 23 is a o will cause a Data Storage Interrupt, and an invalid operation 
status to be set in Channel Status register 15. 

The TCW and Tag Anchor Address register is a protected system resource located in the 
IOCC address space at address X'-0 40 00 24'. It is only accessible to Load and Store 
instructions from the system processor when the Segment register privileged key is set to a 
value of 0. Attempts to access this register when the privileged key is set to a value of 1 
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causes a Data Storage Interrupt and invalid operation status to be set in Channel Status 
register 15. Figure 84 shows the TCW and Tag Anchor Address register. 

Proce9eor Effective Address 

I ;1.101010101 ~'1010101010101 ~010101 ~0101olo1011101011101ol 
0 3 4 7 8 15 16 23 24 31 

Anchor Addrea Regl8ter Data 

J 
0 7 8 15 18 23 24 31 

Figure 84. TCW and Tag Anchor Address Register 

Software must guarantee that the table starting address is on a boundary which is equal to 
the size of the table. For example, for a 128K-byte table must start on a 128K byte 
boundary. 

Component Reset Register 
The Component Reset register (CRR) is comprised of one register and provides the ability 
to indMdually drive the resets to each LIO slot. Writing a value of o into a bit position resets 
that slot, and writing a value of 1 removes the reset. 

The CRR is a protected system resource located in the IOCC address space at the address 
X'-0 40 00 2C'. It is ~ble to Load and Store instructions from the system processor 
when the segment register privileged key Is set to a value of o. Attempts to store into this 
register when the privileged key is set to a value of 1 causes a Data Storage Interrupt and 
an invalid operation error status to be set in Channel Status register 15. 

Figure 85 shows the Component Reset register. The actual number of slots supported Is 
Implementation dependent and is consistent with the IOCC configuration definition. The use 
of the reserved bits Is also implementation dependent, and the usage includes resets tor the 
Standard VO devices. On a Load instruction to this register, the value of the unused bits Is 
implementation dependent. See •implementation Detalls" on page 2·86. 
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Figure 85. Component Reset Register 
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The CRR is initialized to a value of O tit startup. This sets and holds a bus reset to all the VO 
boards until explicitly enabled by a startup diagnostic utility. 

After a reset operation occurs, the software removes the reset by writing a value of 1 to the 
board slots. To ensure proper timing relationships, the software must make sure the reset is 
held a minimum of 100 milliseconds before removing the reset. 

Software can detennine If a slot exists and contains a board by removing the reset to the 
slot and reading the board identification. A board identification of X'FFFF means that no slot 
exists, or that the slot is empty. 

On a bus timeout error, hardware sets the implemented CAR bits to a value of 0. 

Bus Mapping Registers 
The Bus Mapping registers provide a means to specify that certain blocks of bus address 
space are allocated for bus to bus (that is, Micro Channel peer to peer) data transfers by 
bus masters. Alternately, all data transfers from a bus master can be directed to the bus 
address space by setting bit 2 of that bus master's CSR to a value of 0. These registers 
allow for the flexibility of directing some of a bus masters transfers to the bus memory and 
some to system memory without having software intervene to change the setting of CSR bit 
2 for that bus master. The Bus Mapping registers are an optional feature of the architecture. 
Their presence is indicated by bit 24 in the IOCC Configuration register being set to a value 
of 1. 

The following Tables 1, 2, and 3, show the address ranges mapped by each bit of each Bus 
Mapping register. If a bus master has its CSR bit 2 (mapping bit) set to a value of 1 and a bit 
in the Bus Mapping registers is set to a value of O, then the corresponding range of bus 
address space will NOT be mapped to system memory for that bus master (that is, a bus 
master access to this range will result in a bus to bus transfer cycle). If a bus master has its 
CSR bit 2 (mapping bit) set to a value of 1 and a bit in the Bus Mapping registers Is set to a 
value of 1, then the corresponding range of bus address space is mapped to system 
memory for that bus master. A bus master whose CSR bit 2 Is set to a value of O will always 
be accessing the bus address space (doing a bus-to-bus operation), regardless of the 
setting of the corresponding Bus Mapping register bit (that is, the cycle Is a bus to bus cycle 
If either the CSR bit 2 of the bus master doing the access or the corresponding bit of the Bus 
Mapping register is set to a value of O). Notice that there are three granularities of the 
mapping depending on the address range mapped. 

Table 1. Bua Mapping Register O (X'OO 40 02 00') 

Regl•ter Bit Addrna Range Mapped Size of Addreu Range 
(Hexadecimal) 

0 00 00 00 00-00 03 FF FF 256K 

1 00 04 00 00-00 07 FF FF 256K 

2 00 08 00 00-00 OB FF FF 256K 

... . .. ... 
31 00 7C 00 ~00 7F FF FF 256K 
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Table 2. Bua Mapping Register 4 (X'OO 40 02 04') 

Register Bit Addreu Range Mapped Size of AddreH Range 
(Hexadecimal) 

0 00 80 00 00-00 83 FF FF 256K 

1 00 84 00 00-00 87 FF FF 256K 

2 00 88 00 00-00 88 FF FF 256K 

... ... . .. 
31 00 FC 00 00-00 FF FF FF 256K 

Table 3. Bua Mapping Aeglabtr 8 (X'OO 40 02 08') 

Reglater Bit Address A•nge Mapped 
(Hexadecimal) 

Size of Addreaa Range 

0 01 00 00 00-03 FF FF FF 48M 

1 04 00 00 00-07 FF FF FF 64M 

2 08 00 00 00-0B FF FF FF 64M 

... ... . .. 
15 40 00 00 Q0-43 FF FF FF 64M 

These registers are protected system resources located in the IOCC address space at the 
address x·oo 40 02 00' to X'OO 40 02 08'. They are accessible to Load and Store 
instructions from the system processor when the segment register privileged key is set to a 
value of O. Attempts to store Into these registers with the privileged key is set to a value of 1 
will cause a Data Storage Interrupted and an invlaid operation error status to be set in 
Channel Status register 15. 
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System 110 and Standard 110 
Two classes of devices are described in this section, the System VO and the Standard 1/0. 

System VO is defined as facilities in the VO space intrinsic to the system but not normally 
considered 1/0 devices. Included in this category are NVRAM, clock and calendar, operator 
panel, system registers, and on card sequencers (OCS). System VO, though in the VO 
space, is isolated from the 1/0 bus by way of an intemal bus and is a protected resource. 

Standard VO devices in the system unit are defined as those 1/0 devices intrinsic to a basic 
workstation, and as such, are included as pan of the base machine. These deviees do not 
necessarily occupy feature slots because these devices are not optional features. The list of 
items which fall into this category is implementation specific (see •implementation Details" 
on page 2-88). 

System UO 
System 110 is located In the IOCC control space, is privileged, and is only accessible when 
the segment register privileged bit is set to a value of 0. Attempts to access this address 
space when the privileged bit is set to a value of 1 causes a Data Storage Interrupt to be 
posted and an invalid operation error status to be set in Channel Status register 15. The 
remainder of this section contains information describing System VO. 

System Registers 
System registers are located In the IOCC control space between the addresses X'--0 40 00 
CO' and X'-0 40 00 FP defining a contiguous space of 64 bytes. These registers are 
implementation-dependent (see "Implementation Details" on page 2-88). 

Nonvolatile RAM 
The Nonvolatile Random Access Memory (NVRAM) is located in the IOCC control space 
between X'-0 AO 00 00' and x·-o BF FF FF and occupies 2M·bytes of address space. The 
amount of NVRAM in the system is implementation-specific (see ·implementation Details" 
on page 2-86). 

Standard UO 
The Micro Channel provides for a 16-bit bus 110 address. To access a device within this 
address space, effective address bits 4 to 15 and segment register bits 28 to 31 must all be 
a value of 0. 

Accesses to the 110 bus are checked for proper access authority by way of an address 
range check, restricting user programs to access only authorized devices. However, since 
the IOCC cannot Intercept or stop accesses to bus attached memory or bus 110 devices by a 
bus master on the 1/0 bus, no access checking is performed when a bus master addresses 
these devices. 

Actual Standard 1/0 address assignment are implementation dependent (see 
•implementation Details" on page 2-86). 
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Exception Reporting and Handling 
Refer to Personal System/2 Hardware Interface Technical Reference: Architectures manual 
for more infonnation on Micro Channel architecture and for definitions of the data and 
address parity on the Micro Channel. 

The following are general guidelines that were followed in designing the system units and 
adapters, and should be followed in designing new adapter boards for the machines: 

• Full parity support Is recommended for all address and data buses for all adapter boards, 
Internal boards, and internal devices (such as Standard 1/0 devices, NVRAM, and 
System registers). Full address and data parity support Is defined as traversing the 
complete paths of the address and data buses (generate parity at the signal source and 
check parity at each destination point where the address and data will be used). 

• Internal boards (Standard VO and VO Boards) provide both address and data parity 
support to each of their devices. 

• Adapter boards to be supported for system units should provide both address and data 
parity support at the board connector and on all internal data and address buses. 

- 8- and 16-bit devices should provide the 32 bit board connector to gain access to all 
the required parity signals. 

- 8- and 16-blt devices, should also implement a notch in the board tab so they can be 
installed In a 16-bit board slot. 

Note: Suitable pull-up resisters should be utilized as appropriate. 

• Adapters that do not use the 32-blt board connector (8· and 16-bit data), should support 
data parity as a minimum requirement. The objective is to include the 32-bit connector 
described previously to allow address parity, also, if possible. 

• Devices and boards should meet the signal timing specifications described in the Micro 
Channel architecture documents. For Micro Channel architecture infonnation, refer to the 
Personal System/'2 Hardware lnterfsce Technical Reference: Architectures manual. 
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Implementation Details 
This section provides implementation details for system Models 320, 32E, 32H, 520, 52H, 
530, 530E, 53H, 540, 550, 550E, 550S, 560, 560F, 730, 930, 950 and 950E. 

Implementation details for other models can be found In the Input/Output (VO) architecture 
implementation details sections of the product-specific technical lnfonnation manuals. 

Streaming Data Protocol 
These models support the 4-byte Streaming Data protocol. 

Board Configuration Register 
Figure 78 on page 2-74 shows the board configuration register assignments. 

IOCC Configuration Register 
Some of the bits In the IOCC Configuration register Indicate support or nonsupport of 
various implementation-dependent features. The following Is a summary o1 the definition of 
the IOCC Configuration register implementation for these models. In the case of read-only 
memory (ROM) code Initialized bits, the value that the ROM must Initialize these bits to ls 
shown. For the bits of the IOCC Configuration register that are not documented in the 
following descriptions, the ROM code must Initialize those bits to a value of o. 
Btta Description 

2-3 Burst Control: These models support the programmable burst control In bits 
2 and 3 of the IOCC Configuration register. These bits are set to B'11' (6.4 
microsecond) by the ROM code. 

6-7 

9-11 

1~15 

23 

24 

25 

26-27 

28-31 
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Reserved: These bits are reserved end must be set to 8'01 '. Reserved bits 
are set to B'01' by the ROM code. 

Refresh Control: These bits are set to 8'01 ' (60 microseconds refresh) by 
the ROM code. 

TCW Table Size Specification: These bits are set to B'01 O' by the ROM 
code. 

Arbitration Time: These bits are set to 8'011' (400 nanoseconds) by the 
ROM code. 

TCW and Tag Tables in System Memory: These models support nonsystem 
memory for TCW and tag tables as indicated by a O in this bit. 

Dual Buffer and Bus Mapping Register Support: These models do not 
support the dual buffer and Bus Mapping register option of the architecture, 
as indicated by a O In this bit. 

OMA Slave TCW and Tag: These models support the use of tags for OMA 
slave operations as indicated by a O in this bit. 

Buffer Support and Coherency: These models support the use o1 buffers for 
bus master and OMA slave operations that are managed by software, as 
indicated by a B'OO' in these bits. This also indicates that PIO operations to 
system memory are supported. 

Number of OMA Slave Channels: These models support the use of 15 
channels for OMA slave operations as indicated by B'OOOO' in these bits. 



System Registers 
Figure 86 shows the register assignments within this area. 

Software polls the Power Status and Keylock Decode register (address X'O 40 00 E4') to 
determine if any bit within that register changes state, and then tests to determine the bit 
that caused the state change in order to take the proper action. Bits 28 to 31 in this register 
are the cover keylock switch-position decode bits and are used by ROM and software to 
detennine proper IPL procedures based on the switch position. (The keyboard lock on these 
models is a software function.) 
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Figure 86. System Registers 

Nonvolatile RAM 

Syatem 
Reglatera 

At least 32K bytes of nonvolatile random access memory (NVRAM) are implemented and 
are located In the lower range of the NVRAM address space. Figure 87 on page 2-88 
shows the address assignments for the NVRAM area. 
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Addreu 

0 AO 00 00 (4 Bytee) 
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Figure 87. NVRAM Addressing 
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Standard UO 
The Standard 1/0 Address Map table shows a Standard VO address map indicating the 
address assignments for each Standard VO device. 

StanUrd llO Addreaa Map 

Hex Addreu Range Standard llO Device 

0000-002F Reserved 

0030-0037 Serial Port 1 (See nota) 

0038-003F Serial Port 2 (See note) 

0040-0041 Serial OMA Registers 

0042-0047 Reserved 

0048-004F Mouse 

0050-0059 Keyboard, Tablet and Sound 

OOSA-0061 Reserved 

0082-0067 Diskette 

ooee-oon Reserved 

0078-007A Parallel Pon 

0078-000F Reserved 

OOEO-OOE7 Time Delay Command 

OOE8-00FF Reserved 

Not.: Serial ports 1 and 2 are referred to in the software documentation as serial ports A 
and B, respectively. 

Bus Master Transfers 
Bus master operations follow the buffered mode of operation (see "Buffered Bus Master" on 
page 2-39). 
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Component Reset Register 
Up to eight slots plus the Standard VO are supported. Bits o to 7 of this register represent 
the eight slots. Bit 31 is for the Standard 1/0. On a Load instruction, the value of bits 8 to 30 
are indeterminate. The CAR and Board Configuration Register Assignments table shows the 
logical slot number (Component Reset register bit) for the devices. 

CRR and Board Configuration Reglater Anlgnmente 

Logical Slot Board 
Number Configuration 
(CRR bit Register Slot Physical 
Number) Number Slot Number Commente 

0 0 1 

1 1 2 

2 2 3 

3 3 4 

4 4 5 Not used in 4-slot models 

5 5 6 Not used in 4-slot models 

6 6 7 For 4-slot models, used for 
the Direct Bus Attached file 

7 7 e For 4-slot models, used for 
the Direct Bus Attached file 

81030 not used 

31 X'P Standard 110 

Notes on Error Detection 
• IOCC and 110 bus protocol errors are not logged in the Channel Status register. 
• TCW errors are parity errors, not ECC errors. 

Bus Timeout 
The time period Is the time between refresh cycles (which is programmable through bits 6 
and 7 of the IOCC Configuration register; see "IOCC Configuration Register" on page 2-74) 
plus the amount of time the device was on the bus prior to the first refresh cycle. For 

·example, for a 15 microsecond refresh, the time range would be 15 to 30 microseconds, and 
for a 60 microsecond refresh, the time range would be 60 to 120 microseconds. 

1/0 Interrupts 
The coded method of handling UO interrupts is supported, Including the use of the interrupt 
vector tables. 

Power-On Reset 
A power-on reset, system reset, or bus timeout, resets the master enable bit in the 
Configuration register. When this bit is a value of o, the following is accomplished: 

• The 'preempt' signal Is de-gated, disabling channel arbitration. 
• Interrupt presentation is inhibited to the system. 
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Also, on power-on reset, system reset, or bus timeout, the following is accomplished: 

• The Component Reset register is reset. 
• A reset condition is forced to all 110 slots. 

The master enable bit can be set or reset by a Store Instruction to the IOCC Configuration 
register. Figure 88 shows the system implementation. 
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Figure 88. System Reset 

IPL Procedures 
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Channel Bua 
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CRR 

Figure 89 on page 2-92 shows the power-on state of the IOCC registers. Indeterminate 
power-on states are indicated with an x, and undefined states are Indicated with a dash (-). 
Attempts to read an IOCC register with an x before It has been Initialized can result in a 
parity em>r, and the IOCC error Interrupt mask should be disabled. The Channel Control 
registers and the interrupt vector table must be initialized with the Store Instruction to 
establish good parity in these registers. 

The TCW tabfe, tag table, and IOCC memory also tum on In an indeterminate state. 
Attempts to read these address spaces before they have been initialized can result In parity 
errors, and the IOCC error interrupt mask should be disabled until after these spaces are · 
initialized. These facilities must be initialized with a sequence of Store instructions to 
establish good parity. 

Hardware provides a means for ROM to set the buffers and registers in the appropriate 
Invalid state at power-on. Following a power-on condition, the following procedure must be 
followed to initialize the IOCC: 

1. Initialize the IOCC Configuration register. 

2. Reset the Interrupt COntrol registers. 

3. Initialize the Channel Control registers, register 8 bit 2(1) to a value of 1, all other bits to a 
value of o. Register O and 4 should be reset to a value of O. 

4. Reset the Load and Store Limit registers. 
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5. Initialize the Interrupt vector table. 

6. Initialize the TCW table. 

7. Initialize the tag table. 

Except for the master enable bit being reset, the IOCC does not lose any state information 
following a check stop reset. Thus, it is not necessary to reinitialize the IOCC following a 
check stop condition. 
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Figure 89. IOCC Power-On States 
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Deviations from the 110 Architecture 
The following deviations are specific to system Models 320, 32E, 32H, 520, 52H, 530, 530E, 
53H, 540, 550, 550E, 550$, 560, 560F, 730, 930, 950 and 950E. It has been verified that 
these systems, with these stated deviations, function satisfactorily. While this listing reflects 
good faith reasonable effort, no representation or guarantee is made that this listing is 
exhaustive. 

• A Load or Store instruction with the bypass bit off and with a previous error set in the CSR 
results in a Data Storage interrupt. Load and Store instructions with the bypass bit on and 
with a previous error set in the CSR are processed. On a Data Storage interrupt, software 
must clear the error before allowing any more Load and Store instructions with the 
bypass bit off. 

• On an VO Load or Store instruction, an Invalid Operation error is not logged Into Channel 
Status register 15 If the instruction was preceded by a Load or Store to a Channel Status 
register. Software must prevent this by following any access to a Channel Status register 
with a non-VO Instruction. {The supervlSory code is the only code that accesses the 
Channel Status registers.) 

• The bus address Is not put Into the Channel Status register If a system address error is 
preceded by a TCW reload. This can only be caused by a supervisory level software 
problem. 

• The time del8y command is implemented with time delays of 1, 2, 3, 4, 5, and 6 
microseconds; delays of 7 or 8 microseconds should not be used. 

• For bus master operations, the 'chck' signal Is not activated on succeeding cycles 
following a data parity error. Bus masters should terminate on first occurrence of 'chck' 
signal. 

• Bus master buffer flush command through a Load instruction is not supported; a Store 
Instruction should be used. 

• The Streaming Data protocol ls not supported for IOCC initiated Load or Store, and OMA 
Slave operations. 
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Chapter 3. Vital Product Data 
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Description 
Vital product data (VPD) uniquely defines each hardware, software, and microcode element 
of a system. Configuration data Identifies the physical and logical location of each hardware 
element of a system including addressing information. The combination of configuration and 
VPD provides the system with a bill of material description that typically includes the 
assembly part number, Engineering Change (EC) level, serial number, and other detalled 
information. The objective from a system point of view is to determine this infonnatlon by 
reading this data directly from the hardware, software, and microcode components. 

Note: This chapter provides information for system models 32x, 34x, 35x, 36x, 52x, 53x, 
540, 55x, 56x, 58x, 730, 930, 95x, 97x, and 98x. lnfonnation for other system models 
can be found In the product-specific technical infonnation manual for those models. 

Certain Information such u machine type, model and external serial number (for example, 
desk.side system numbers) is not in machine-readable form. This information is provided in 
Nonvolatile Random Access Memory (NVRAM) during manufacturing. Access to 
configuration and VPD information Is provided by the Operating System with the System 
Management Interface Tools. This interface allows the user to add VPO (such as a serial 
number) u wen as other user information such as owner, physical location, and information 
applicabte to inventory or asset control. 

Importance 
The collection of configuration and VPD offers the following advantages: 

• Assists the operating system in auto-configuring the system and Its components. 

• Assists diagnostics in problem determination and fault isolation: 

- Error logging Includes VPD lnfonnation so that a historical entry is associated with a 
serialized unit (such u an adapter). 

- Identifying the physical and logical location of failing units for replacement. 

• Assists the operating system in determining the proper device driver and loadable 
microcode level. 

• Assists the user in maintaining asset and inventory control. 

• Provides a means of licensing software on a processor ID or serial number basis. 

Characteristics 
Configuration and VPD have the following characteristics: 

• VPD is available at the rack, drawer, and field replaceable untt (FRU) level. 

• For compatibility verification and testing, pluggable FRUs or potentially pluggable FRUs 
must to be known to the system. 

• Uniquely identifies each system hardware, software, and microcode element. 

• Becomes part of the VPD record during installation or upgrade. 

• When elements do not support VPD in directly readable form, It can be entered manually. 
Data entered manually is flagged by the operating system software. 

• Accessed locally or from a remote console by way of a configuration and VPD facility 
provided by software. 
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Customer and Service Personnel Assistance 
When field upgrades are made to a system, for example, adding a disk drive drawer to a 
rack system, the user or service personnel must enter information regarding its physical 
location and properties uSlng the System Management Interface Tools (SMIT). 

VPD Structural Overview 
A system-level file or data set contains the fully expanded information on all VPD elements 
for each enclosure component. The tree structure so formed, shown in Figure 90, begins 
with a rack or an enclosure level and goes on to identify all system components logically 
connected. 
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Figure 90. Configuration Tree 
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System Data Set 
The fonnat of the data representing the configuration tree described previously is defined by 
software. The preferred hardware implementation of vital product data is In the form of 
keyword descriptors. The VPD is gathered by a software device driver that interfaces with 
the hardware. If the VPD is stored in a format other than the preferred method, the inc:lvidual 
device driver must convert that data into the keyword descriptor format and store that data In 
a format required by the system configuration and management software method. 

Keyword Descriptor Summary 
Each keyword header Is composed of four bytes of information. The first character is the 
" (asterisk) character in ASCII format. The next two characters are an abbreviated 
mnemonie associated with a specific descriptor. The last byte Is binary and represents the 
total length of the keyword descriptor Including its header. The length is the total byte count 
divided by two. Hence, descriptor data is always an even number of bytes with padding as 
defined by each keyword. 

The descriptors listed are a combination of all descriptor keywords used throughout the 
system. Certain specific types of adapters require pointer values based on the method of 
Implementing VPD. 

If a deacriptor Is manually entered, it must be extended to Its full size by the configuration 
and VPD utility. In addition, the characters ME (for manual entry) are Inserted in the 
high-order positions, adding two characters to Its length. 

The following list identlfles the descriptor keywords currently defined: 

• •AD L = addressing field 

The addressing field fonnat is unique to each component described. It must Include the 
Bus Unit ID and slot designation if appropriate. In addition, it specifies sufficient 
addressing Information to program the adapter. The fonnat of the addressing field Is 
specified by software. This descriptor Is not present within the machine-readable VPD 
field contained within an adapter or channel. It Is added by software to the configuration 
and the VPD file or the NVRAM area for VPD. 

• *AT L = adapter type 

To suppon different system field-replacement strategies, this keyword defines a category 
of Micro Channel adapters. Used In conjunction with the part number (defined by the *PN 
Land *EC L keywords), this keyword defines a FRU. Its use is not currently planned for 
the system. 

• •co L = board ID (adapter board ID) 

The board ID field Is supplied by software after reading the board ID from POS o and 
POS 1 registers. (Programmable Option Select (POS), replaces switches on feature 
boards. It is defined under •Micro Channel Adapter Requirements• on page 3-16.) This 
descriptor only applies to Micro Channel adapters. This descriptor is not present within 
the machine-readable VPD field contained within an adapter or channel. It Is added by 
software to the configuration and VPD file or the NVRAM area for VPD. 

Following the two bytes of the board ID Is a field generated and used by software, which 
contains mask bytes and POS data used to initialize the adapter. It also contains a flag 
byte to Indicate whether this adapter was successfully configured. The detailed 
specification of this field Is defined by the software operating system. 
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This descriptor is not present within the machine-readable VPD field contained within an 
adapter or channel. It is added by software to the Configuration and VPD file or the 
NVRAM area for VPD. 

• *CN L = customer number 

The data portion of this descriptor is in ASCII format. It represents the customer number 
assigned to the customer owning this machine. The source of this data is the 
administrative ordering system. 

• *DC L = action code and date 

This field is a combined action code and date and time stamp when the action took 
place. The format of the field is shown in Figure 91: 

*DC ac yyyymmddhhmm•• 

1 1 ~nd• 
mlnu18a 

houre 
day 

month 
year 

action code 
keyword "DC" 

••• 

Figure 91. Format of a Combined Action Code and Date and lime Stamp 

The following action codes are currently supported: 

Acdon Code Deacrlptlon 

Plant BO Build date (manufacturer) 

Plant AM Added as MES (MES diskettes) 

Plant AB Added as BULK MES (Bulk MES diskettes) 

Plant Al Available at install (manufacturer and field) 

Field ID Install date (field) 

Field AC Added with ED (field) 

Field AU Added from unknown source (field) 

Field AR Added In repair action (field and CIT) 

Field AT Added temporarily (field) 

Field AH Added manually (field) 

Field RU Removed unknown (field) 

Field RR Removed in repair action (field and CIT) 

F1eld RC Removed with EC (field) 

Field RT Removed temporarily or powered off (field) 

Field RM Removed permanently (field) 

Field RN Removed to another system (field) 
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• ·oo L = device driver level (minimum required) 

The data portion of this descriptor is in ASCII fonnat. It represents the minimum device 
driver level required. The first release is level 00. Levels are incremented by one for each 
successive level independently of operating system version and of modification level. 
The minimum value for L Is 3, which Is two bytes or two ASCII character numbers of 
descriptor data plus the header. 

The device driver level represents a generic Interface level to software. If the interface 
changes between software and hardWare such that a new interface is required by 
hardware, the value of this level Is incremented. This level is Independent of the 
operating system being used. 

If this keyword is not explicitly specified, level 00 Is implied. 

• ·oo L = diagnostic level (minimum required) 

The data portion of this descriptor is in ASCII format. It represents the minimum 
diagnostic level required. The first release Is level 00. Levels are Incremented by one for 
each successive level Independently of operating system version and modification level. 
The minimum value for L Is 3, which is two bytes or two ASCII character numbers of 
descriptor data plus header. 

The diagnostic level represents a generic interface level to diagnostics. If the interlace 
changes between software and hardware such that a new interface is required by 
hardware, the value of this level is incremented. This level is independent of the 
operating system being used. 

If this keyword is not explicitly specified, level 00 Is impHed. 

• •oL L =drawer level 

The data portion of this descriptor is In ASCII format and specifies a drawer location in 
Electronics Industries of America (EIA) units. It represents the drawer location within a 
rack for an enclosure. The EIA unit values are marked on the rear panel of the rack. 
These values are captured during manufacturing while a rack is in its final manufacturing 
test. In the field, configuration changes that alter drawer infonnation must be supplied by 
the trained customer or customer engineer installing the change. 

• ·os L = displayable message (ASCII format) 

This is an optional field that can Include a message to be printed or displayed for this 
record type. Avoid the ASCII character * (asterisk) within the data content of this 
message. 

Micro Channel adapters designed for the system unit require this keyword with a brief 
description of the adapter fundlon. 

• •ou L = drawer unit 

This field Is used at the system level to describe the contents of a drawer unit within a 
rack system. The number in this field can be a feature code, a machine type and model 
number, or other alphanumeric field used to describe the drawer unit. The data portion is 
In ASCII format. 

• ·EA L = electronic address 

The data portion of this descriptor is In ASCII format. The value represents an electronic 
address where this machine can be contacted. This field must be entered manually by 
the •Product Topology Service Aid.· 
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• *EC L = engineering change level 

The data portion of this descriptor Is In ASCII format. The characters are alphanumeric 
and represent the engineering change level for this element. The values of L, which 
range from 6 to 8, represent descriptor data counts of 8 to 12 alphanumeric characters. 
This descriptor number is left justified and can be padded with low-order blanks. For IBM 
released parts, this field must contain the IBM EC number. 

• *FC L = feature code 

This field contains the feature code or RPO number used to order or specify the 
hardware described after it in the product topology data hierarchy. The designation must 
match precisely the nomenclature used by the order process for the device. The source 
of this data is the administrative order entry system. 

• *FN L = FRU number 

The data portion of this descriptor is In ASCII format. The characters are alphanumeric 
and represent the assigned Field Replaceable Unit part number for this element of the 
system product. The value of L ranges from 6 to 8 representing descriptor data counts 
from a to 12 alphanumeric characters. The data is right justified and padded with 
high-order zero. For IBM released parts, this field must contain the IBM FRU Part 
Number. 

• •LA L = pointer to loadable microcode on the adapter 

This keyword is an optional descriptor type available for use. If an adapter chooses to 
implement loadable microcode using the POS registers for writing and reading of 
microcode, this field is required. Micro Channel adapters can use the POS subaddress 
facility or any Other method to Implement loadable microcode. Data In the field can be 
encoded in binary on the device but Is externalized in ASCII or a hexadecimal 
representation of a binary value in ASCII. 

The data portion of this descriptor is an address pointer in the POS subaddress space. 
Byte o is the most significant address byte, and byte 1 is the least significant address 
byte in binary. 

• •u L = loadable microcode level (minimum required) 

The data portion of this descriptor is in ASCII format. It represents the minimum loadable 
microcode level required for functional operation. The first release is level 00. Levels are 
Incremented by one for each successive level. Loadable microcode is associated with a 
given board ID rather than a part number or EC level. Therefore, as changes are made 
to a particular adapter, a corresponding microcode level can be required for correct 
operation. This field Is required If loadable microcode is required for functional operation 
of the adapter. The field's presence notifies the initialization code of this additional 
requirement. The minimum value for L is 3, which is two bytes or two ASCII character 
numbers of descriptor data plus the header. 

This is a generic level equivalent in use to a device driver or a diagnostic level. It 
indicates that a significant change was implemented on the adapter and that a new 
minimum level of loadable microcode is required. 

• *LO L = location (internal or external) 

This descriptor Is optional. The data portion of this optional descriptor contains the ASCII 
characters IN for internal devices or EX for external devices or for other components. 
The default value for this descriptor is EX and is Implied if this field is not specified. This 
field Is generated dynamically by software for fixed disks attached to a SCSI adapter that 
provides internal reset capability. For other devices, it can be entered by the user In the 

3-8 General Architectures 



configuration and VPD utility. It is required for power domain and security domain 
requirements. The value of L is 3. 

• *MF L = manufacturer 

The manufacturer descriptor field is typically six characters of ASCII data. For our 
components, the first three characters are alpha characters. The next three characters 
are alphanumeric and are a code assigned to each location. For six characters of 
descriptor data, L equals 5. 

Vendor manufacturers are identified by a 6-diglt number assigned by the purchasing 
department when a contract is established. An abbreviation for the location establishing 
the contract is concatenated to the purchase order number. 

The *MF L keyword is being retired and replaced with the *MN Keyword. 

• •MN L = Manufacturer and location 

The manufacturer descriptor field Is 4 or 1 O characters of ASCII data. 

- For an IBM manufactured component (built for IBM), the first character is an ASCII 
number •1 • character. The next 3 characters are assigned by IBM and are a location 
code (LOC) assigned to each IBM location (described In the following list). 

- For an IBM manufactured component (built for an OEM), the first character is an ASCII 
number "2" character. The next 3 characters are assigned by IBM and are a location 
code (LOC) assigned to each IBM location (described In the following list). 

- For a Vendor manufactured component (built for IBM) The first character is an ASCII 
number "3" character. The next 3 characters are assigned by IBM and are a location 
code (LOC) assigned to each IBM location (described In the following list). This Is 
followed by a 6-digit number (NNNNNN) assigned by the IBM purchasing departmant 
when a contract is established. 

- For an OEM manufactured component. The first character is an ASCII number 4 
character. Up to 9 additional characters may be assigned as a manufacturer 
identification. These 9 additional characters are assigned by the OEM. 

Location 
Code 
M8 
97N 
975 
9NX 
98J 
984 
983 
155 
991 
981 
997 
988 
988 
98K 
90S 
90W 
90F 
90Q 

Manuhtcturlng Location 
Austin, ESO plant 
Austin, ESO card manufacturer 
Boca Raton, ESD plant 
Boca Raton, Card vendor 
Boulder, IPD plant 
Burlington, GTD plant 
Charlotte, Card manufacturer 
Endicott, CP manufacturer 
Endicott, SP manufacturer 
Lexington, IPD plant 
Manassas, GTD 
Raleigh, CPD plant 
Rochester, SPD plant 
Tucson, CP plant 
Bromont, plant 
Greenock, plant 
Toronto, plant 
Vimercate. plant 
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• *NA L = network address 

This is an optional field used by those adapters which require a unique network address 
for a local area network. Adapters such as token ring and baseband use this field. Data 
In the field can be encoded in binary on the device but is extemalized in ASCII or a 
hexadecimal representation of a binary value In ASCII. 

When specified, this field must be Implemented as the first descriptor keyword and 
therefore "NA L" is located at address 00 08. The first data byte is, therefore, located at 
byte 12 (decimal) or 00 OC Hex within the extended storage area located by POS 
Registers 6 and 7. 

• *NX L = pointer to next adapter VPD for multlboard adapters 

This is used by multicard adapters including those occupying more than one card slot. 
The primary card must provide POS registers. Additional (secondary) cards mUS1 be 
plugged into slots adjacent to the primary card. This field specifies the VPD address to 
be specified in POS registers 7 and 6, respectively, In order to access VPO data on the 
adjacent (secondary) adapters. Data in the field can be encoded in binary on the device 
but is externalized in ASCII or a hexadecimal representation of a binary value in ASCII. 

• ·os L = Operating System level 

The data portion of this descriptor contains the name of the operating system (for 
example, "AIXj followed by version, modification, and PTF level. All characters are 
specified In ASCII. Additional data can be included to specify specific options being used 
(such as cluster). This descriptor is required in the Enclosure Record store in NVRAM 
and In the configuration and VPD file. 

• *PC L = processor component definition 

This data represents binary information that details the processor speed and model. 

• *Pl L =processor ID 

The data portion of this descriptor is an ASCII alphanumeric field that represents the 
processor ID for a processor enclosure. This data is normally extracted from IPL ROM 
associated with the processor board. This serial number is often used for software 
licensing. 

• *PN L = part number 

The data portion of this descriptor is in ASCII format. The characters are alphanumeric 
and represent the part number for this element The values of L, which range from 6 to 8, 
represent descriptor data counts of 8 to 12 alphanumeric characters. This descriptor 
number is right justified and can be padded with high-order zeros. For IBM released 
parts, this field must contain the IBM Part Number. 

• •RA L = pointer to ROM code on adapter 

If an adapter chooses to access on-board ROM using the POS registers for reading 
microcode, then this field is used. Data in the field can be encoded on the device In 
binary, but is extemalized in ASCII or a hexadecimal representation of a binary value in 
ASCII. The first data byte represents a PCS register to use as a Port to read and write 
data to the adapter for purposes of reading microcode on the adapter. Any POS register 
(0-5) can be specified. The second byte specifies the number of low-order bit positions 
of POS register 5 to use for expanding the address range of PCS registers 6 and 7. The 
address so formed is specified as follows: 

POS 5 (n low-order bits), Pos 7, POS 6 
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The second byte can specify from o to 6 bits of additional addressability. Data bytes 3, 4, 
5, and 6 specify the initial address for reading microcode. This is an optional descriptor 
type available for use. 

• *ALL= ROM level and ID 

This descriptor identifies the part number of any nonalterable ROM code on the adapter. 
The data field of the keyword is defined as follows: 

Bytes ~ 11 Part number of the ROM code (alphanumeric ASCII). 

Bytes 12-23 EC level of ROM code (alphanumeric ASCII), this is optional if the ROM 
code PN is not changed when updated. 

• *RM L D = Alterable ROM ID 

This descriptor identifies the part number of any alterable ROM code on the adapter. The 
data field of the keyword is defined as follows: 

Byte o An optional "field patch level." A value of o indicates no field patch 
applied (ASCII). 

Bytes 1-12 

Bytes 13-24 

Part number of the ROM code (alphanumeric ASCII). 

EC level of ROM code (alphanumeric ASCII), this is optional if the ROM 
code PN Is not changed when updated. 

• *RN L = rack name (letter designation) 

This keyword is a required descriptor for records describing a rack enclosure. The 
abbreviated name consists of a 2 ASCII character field, such as •space A" or Mspace B," 
that matches the letter Installed on the rear of the rack unit. It Is used by diagnostics for 
FRU location specification. 

• *RW L = pointer to Read and Wrtte adapter registers 

This keyword is an optional descriptor type available for use. If an adapter chooses to 
Implement Read and Write registers using POS registers, then this field is used. 
Adapters can use the POS extended addressing facility or any other method to 
Implement access to Read and Write registers and storage. 

Data In the field can be encoded in binary on the device byte is externalized in ASCII or a 
hexadecimal representation of a binary value In ASCII. This first data byte represents a 
POS register to use as a port to read and write data to the adapter for spectflc adapter 
purposes. Any POS register (o-5) can be specified. The second byte specifies the 
number of low-order bit positions of POS register 5 to use for expanding the address 
range of POS registers 6 and 7. The address so formed is specified as follows: 

POS 5 (n low-order bits), Pas 7, POS 6 

The second byte can specify from O to 6 bits of additional addressability. Data bytes 3, 4, 
5, and e specify the initial address for accessing Read and Write registers or storage. 
The size and use of this Read and Write area is adapter specific. The minimum value for 
L Is 5, which represents 6 bytes of descriptor data plus a keyword. 

• •sc L = spectty codes 

This field contains all the specify codes selected for this machine. The source of this data 
is the administrative order entry system. 

Vrtal Product Data 3·11 



• •sE L = machine serial number 

This field contains the serial number assigned to the processor machine type by the 
manufacturing location. The number normally begins with two digits which uniquely 
Identify the plant of manufacture. These are followed by a 5 character serial number. For 
example, In the serial number 2605668, "26" is the Austin plant designation and "05668" 
represents the serial number of this machine. The source of this data is the 
administrative order entry system. 

• •sL L =slot location 

Memory board adapters use this description to specify board slot location. The data field 
is 2 bytes in size. 

• ·sN L = serial number 

The data portion of this descriptor is in ASCII format. The characters are alphanumeric 
and represent the serial number of the machine or device. The value of L is 6, 
representing a descriptor data count of 8. The descriptor number is left justified and can 
be padded with low-order blanks. 

• *SY L = system number 

This field contains the system number assigned to this system. The source of this data is 
the administrative order entry system. 

• ·sz L =size 

Memory board adapters use this description to specify the size In M bytes. The data 
portion contains 1 to 8 digits, left-justified, with no leading zeros and padded on the right 
with blanks as required. 

• *TM L = machine type and model 

The data portion of this descriptor specifies the machine type in ASCII format. The data 
portion is 4 characters long, followed by a dash (-) and the 3 character machine model. 
The total data length is 8 characters. Therefore, Lis specified as 6, representing a 
characters of data plus the header (for example, '7207--001 '). 

• •us L = user data 

The data portion of this field is an ASCII character string specified by the user utilizing 
the configuration and VPD utility. II could be used to specify owner, location, or similar 
Information. It must contain an even number of bytes. 

• *VE L = pointer to VPD extended data on adapter 

This optional descriptor Is used es an address pointer in the subaddress space of VPD 
for a Micro Channel adapter. It points to a storage location that contains additional 
keyword descriptors In order to support an implementation of noncontiguous keyword 
descriptor data. 

The data portion of this descriptor is an address pointer in the PCS subaddress space. 
Byte 0 is the most significant address byte, and byte 1 Is the least significant address 
byte in binary form. 

• *ZO-*Z9, ZA-'ZZ L = available for adapter-specific use. 

Refer to the specific adapter section for a description. 
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Hardware VPD Descriptor Summary 
The following sections define the minimum requirements of various hardware components of 
a system. 

Rack Record 
Descriptors 

The required descriptors for the rack record are as follows: 

Keyword 
*PNL 
*ECL 
*FNL 
"TML 
*FCL 
*SNL 
*MFL 
*RNL 

Dacrlptlon 
Part number 
Engineering change level 
Field replacement unit number 
Machine type and model {for the primary rack) 
Feature code (for secondary, attached racks) 
Serial number 
Manufacturer 
Rack name (letter designation). 

Implementation Notes 
Rack configuration data Is supplied by manufacturing in NVRAM. The rack name is a letter 
designation (A, B, C) used by diagnostic programs to locate problem FRUs. This Information 
must be Input by a customer engineer from the hard card using a configuration and system 
management utility if this unit is field installed. The serial number specified must match the 
extemal label on the system unit. 

Enclosure Record 
Descriptors 

The required descriptors for the enclosure record are as follows: 

tc.yword 
*PNL 
*ECL 
*FN L 
*SN L 
-TM L 
*DLL 
*MF L 

Deecrlptlon 
Part number 
Engineering change level 
Field replacement unit number 
Serial number (externally visible) 
Machine type and model 
Drawer level (if rack-mounted) 
Manufacturer. 

implementation Notes 
An enclosure represents a physical package. It can be a drawer in a rack, a deskside 
system, a table-top system, a portable file, a free-standing tape drive, or other tree-standing 
unit. Enclosures are normally machine type and models; however, feature codes can also be 
designated. 

This lnfonnation must be Input by a customer engineer from the hard card using a 
configuration and system management utility if this unit is field-installed. The serial number 
specified must match the extemal label. 
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Processor Board Record 

Descriptors 
The required descriptors for the processor board record are as follows: 

Keyword 
*PNL 
*ECL 
*Pl L 
*FNL 
*ALL 
*ALL 
*ALL 
*PC L 
*ZO L-"Z9 L 

Implementation Notes 

Description 
Board part number 
Engineering change level 
Processor ID 
Field replacement unit number 
ROM level and ID (IPL ROM) 
ROM level and ID (on card sequencer (OCS) ROM) 
ROM level and ID (seeds ROM) 
Processor component definition (specifies speed and processor model) 
Processor module lnfonnation. 

The board description represents a reflection of the physical packaging of a processor unit. 
The processor board is the physical unit that contains the processor modules. 

1/0 Board Records 

Descriptors 
The required descriptor for the 110 Board record is as follows: 

Keyword O.Crtptlon 
*EC L Engineering change level. 

Implementation Notes 
The 110 Board contains the VO slots for installing VO adapters. If a model contains only a 
system board or a combination board, the value in the System VO register designates the 
level of the hardware components supporting the interface to the logic normally associated 
with the VO Board. 

As currently Implemented in most models, the 110 Board level is identified by an 8-bit code In 
a System VO register. Each level is incremented by one. Software locates the corresponding 
part number and the EC level by table lookup. 

Memory Records 

Descriptors 
The required descriptors for the memory records are as follows: 

Keyword 
*PN L 
*SNL 
*FN L 
*MFL 
*S2 L 
*ECL 
*SLL 
"ZO L 
*Z1 L 
*Z2 L 
*Z3L 
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O.Crlption 
Part number 
Serial number 
Field replacement unit number 
Manufacturer 
Size in megabytes 
Engineering change level 
Slot location (software) 
EC level left Data Multiplexer module 
EC level Right Data data multiplexer module 
EC level Controller module 
SIMM product definition (PD) code. 



Implementation Notes 
The initial memory board does not support VPD. The default data of all zeros Is written to 
the board immediately after startup. If the board is revision level 2 or higher, the real VPD is 
retumed on the first read operation. If the board is revision level 1 (initial release), all zeros 
are retumed on the first read operation. 

Extra 110 Board Record 
The keywords specified depend on the function provided by the board. The function should 
be compatible with the requirements for a system, an VO Board, or other adapters. The 
minimum requirements always include the •PN and *EC keywords. 

SCSI Attached Device Records 
The exact Information can vary from vendor to vendor; however, the data supplied by the 
Inquiry command on the SCSt interface contains machine type and model, part number, EC 
or revision level, serial number, and microcode infonnation (the AL and LL keywords as 
appropriate). Some units provide VPD for the device enclosure unit as well as data for the 
loglc board associated with the unit, where each can be a FRU. Serialization is always 
required. Software must provide a FRU number ff one is not contained In the 
machine-readable VPD. 

Device Required Descriptors 
The required device descriptors are as follows: 

Keyword Dncrlptlon 
*PN L Part number 
'"EC L Engineering change level 
*FN L Field replacement unit number 
*TM L Machine type end model 
*SN L Serial number (matches extemal bar code label) 
*MF L Manufacturer. 

Optional Descriptors 
The optional device descriptors are as follows: 

Keyword Deacrlption 
*AL L ROM level and ID (If ROM Is present) 
*LL L Loadable ROM level and ID (minimum level required). 

Standard VO Attached Devices 
The exact data can vary from device to device making the ROM level (RL) and loadable 
microcode level (LL) conditionally required. 

oevlce Required Descriptors 
The required device descriptors are as follows: 

K8yword 
*PN L 
•ecL 
*111 L 
*FNL 
*SNL 
*MFL 

Description 
Part number 
Engineering change level 
Machine type and model 
Field replacement unit number 
Serial number (matches external bar code label) 
Manufacturer. 
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Conditionally Required Optional Descriptors 
The optional device descriptors are as follows: 

Keyword O..Crlptlon 
*AL L ROM level and ID (if ROM is present) 
*LL L Loadable ROM level and ID (minimum level required). 

Micro Channel Adapter Requirements 
The preferred method of Implementation is to use the Programmable Option Select (POS) 
register subaddressing space during board setup. When POS registers 6 and 7 contain 
values other than X'OOOO', POS register 3 ls a port that accesses a read-only memory (ROM 
or EPROM) module containing vital product data in the keyword descriptor format. For 
example, when POS register 6 equals X'01' and POS register 7 equals X'OO', a one-byte 
load operation from POS register 3 reads data from address X'0001' in the EPROM 
containing VPO. When POS register 6 equals X'02' and a load from POS register 3 of 1 byte 
reads from the address X'0002', and so forth. An alternative address is X'FF01 '. 

A header Is deftned that Immediately precedes memory containing the descriptor keywords. 
It Is reccmmended that a pluggable EPROM be written at the lime of manufacture on a 
part-by-part basis (for serialization and incorporation of the latest EC level information). 

An alternative method of machine-readable vital product data (VPD) allows the adapter to 
provide the data in an adapter-specific manner. For example, available ROM locations could 
be used In a fixed-memory location known to the device driver for this adapter. The device 
driver must gather and convert the VPD into the keyword format described for the preferred 
method. The device driver then provides the lnfonnatlon to the operating system In the 
manner required by the indMdual operating system. This alternative method allows existing 
adapters to add VPD with the least hardware impact. 

Most adapters designed for the system have implemented the preferred method with the 
required keywords defined in the following lists: 

• Required keywords: 

Keyword DescrlpUon 

*PN L Part number 

*EC L EC level 

*FN L FRU number for field replacement unit 

*SN L Serial number 

*MF L Manufacturer and location. 

• Conditionally required keywords: 

Keyword Description 

*DSL 

*ALL 

*LLL 

*NAL 

*DDL 

*DGL 
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Brief description (for example, SCSI, token ring, and 8-port asynchronous 
adapter) 

ROM level and ID information (if ROM is present) 

Loadable microcode level (if loadable code is present) 

Network address (If adapter type requires a network address) 

Device driver level 

Diagnostic level. 



• Optional keywords: 

Keyword Deecrlption 

•RA L Pointer to ROM code on adapter 

*RW L Pointer to Read and Write Adapter registers 

*DS L Displayable message (additional description} 

*LA L Pointer to loadable ROM code on adapter 

*ZO L - *ZZ L Available for adapter-specific use. 

Preferred Implementation - POS Configuration Registers 
The POS addresses for the POS registers are shown In Figure 92. 

POS 
Addreau 

POS 
Reglatara 

MSB LS8 
7 B 5 4 3 2 1 0 . 

Device ID Low 

Device ID H~h 
Device Unique Tc EN 

DXO(LSB) 

xxx1 (MSB) 
XXX2(LSB) 

xxx3(MSB) 
XXX4(LSB) 

xxd(MSB) 
xxx9(LSB) 
xxx7(MSB) 

R1W Port tor Ext Conflg Data (VPO) 
Device Unique 

CHC]l:STATf Devk:e Unique 

CHCK I Extended Addrea 
CHCK I Extended Addrea 

System wrltea add,..... Into 
POS reglater a. Thia addreu 
polnta rnto extel lded POS 
reglatar •pace. 

Sy8tem react. POS register 3 to 
llCC8N data etonKI In extended 
POS reglfttr apace. 

'01'x 

255x8 1--1 
~ .... 

'FPx 

Extended POS 
Regldtr Space 

Nolll: POS register 6 ls Initialized to a value of O when the power la turned on. A nonzero 
value must be written to POS register e to access the extended POS register space. 

Figura 92. POS Configuration Reglsters 

Term O..Crlptlon 
MSB Most significant byte 
LSB Least significant byte. 
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TL 

CRCValue 

The total length in 2-byte worclS 10 read from this facility beginning at 
address X'OO OB' to the end of the last data field. This field is two bytes in 
binary format 

This 2-byte value is a cyclic redundancy check (CRC) value starting at 
address X'OO 08' through the end of s1ora99 (TL). 

The CRC polynomial is 1 + X (exp 5) + X (exp 12) + X (exp 16), which Is the 
same as the CRC polynomial use<! for most diskette recorclS. 

Sample Layout of the Micro Channel Adapter VPD 

Addreu 
(Hex) 

00 01 

oo oa 
00 14 

00 22 

00 2E 

00 38 

00 42 

00 4C 

00 52 

00 58 

Notee: 

Con111nla of ROM and PROM 
(ASCII numbera In perenth- are decimal, 1-byte value•} 
V P D (00) (40) (252) (18B) 

' P N (06) e 1 B 1 8 8 2 A 

• E C (07) 4 9 5 0 2 e 2 5 3 6 

• S N (06) o o 0 O o 1 9 4 

• F N (05) 1 3 5 7 2 2 

• M F (05) I B M 0 3 7 

'DS(05)8-PORT 

'DG(03)01 

• D D (03) 0 1 

1. The CRC value on data from X'OO 08' through X'OO ST Is the actual calctJlated 
CRC for this example aata. 

2. A- (daSh) Indicates binary zeros. 

3. A ( ) (parenthesis) indicates decimal byte length divided by 2. 

Addreu 
(Hex) 

00 01 

oo oa 
00 14 

00 22 

00 2E 

00 38 

00 42 

00 4C 

00 52 

00 58 
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Content. of ROM and PROM 
(Hex} 

56 50 44 00 2B FC BC 

2A 50 4E 06 36 31 38 31 36 38 32 41 

2A 45 43 07 34 39 35 30 32 36 32 35 33 36 

2A 53 4E 06 30 30 30 30 30 31 39 34 

2A 46 4E 05 31 33 35 37 32 32 

2A 40 46 05 49 42 40 30 33 37 

2A 44 53 05 38 2D 50 4F 52 54 

2A 44 47 03 30 31 

2A 44 47 03 30 31 



Chapter 4. Initial Program Load (IPL) ROM 
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Description 
The initial program load (IPL) is the sequence of events that occurs during the period of time 
following a power-on reset or system reset operation until control of the processor is passed 
to loaded code. 

The IPL consists of initializing and testing the base hardware, and then finding, loading, and 
executing code. The task of the read-only memory (ROM) resident IPL function is to verify 
the portion of the machine necessary to initialize the IPL function, and then to start the IPL if 
possible. 

ROM Hardware 
• ROM is located on the processor board. 

• ROM addressing begins at X'FFFOOOOO'. 

• IPL ROM code entry point address is X'FFF00100'. 

• The configuration information is contained in ROM. The following configuration 
infonnation is required: 

- Processor board engineering change (EC) level and part number 

- Processor serial number 

- ROM part number and ID 

- ROM copyright 

- ROM version and level. 

Hardware lnltlallzatlon 
Prior to execution of IPL ROM code, hardware initialization puts the processor Into a known 
working state. 

For system units with the on card sequencer (OCS), hardware initialization Is performed by 
the OCS before control Is passed to IPL ROM COde. 

Cold System Reset 
Cold system reset occurs at initial startup and in system units with on card sequencer (OCS) 
when a hardware event (such as check stop) triggers the system reset finite state machine 
and the resulting system reset count is not equal to o. Following hardware initialization by 
OCS, e System Reset Interrupt occurs at X'FFF00100' In IPL ROM. 

warm System Reset 
A wann system reset occurs when a hardware event triggers the system reset finite state 
machine and the resulting system reset count is equal to 1 . A System Reset interrupt occurs 
and normally (machine state register (MSR) IP bit equals O) execution proceeds at location 
X'00000100' in the operating system. The operating system can perform actions such as 
dumping all or part of memory or invoking a debugger and then can reload the operating 
system kemel. (If the MSR IP bit equals 1, execution proceeds at X'FFF00100', and a cold 
IPL occurs.) 
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ROM Warm IPL Function 
An entry point is provided in IPL ROM to facilitate reloading of the code specified in the IPL 
record. The ROM warm IPL function reloads the IPL record and code specified in the IPL 
record and passes control to the code while disturbing the existing machine state as little as 
possible. The hardware is not reinitialized. The IPL device is redetermined. 

Note: Upon receipt of a warm system reset interrupt, an operating system can elect to 
reload itseH without branching to ROM. 

Hardware-Initiated IPL 
The following events cause hardware to generate a System Reset Interrupt: 

• Power-on reset (POR). 
• Reset button on operator panel pushed. Keyswitch lock enables the Reset button. 
• Check stop for system units with OCS. 

Software-Initiated IPL 
A ROM warm IPL can be achieved by branching to the wann IPL entry point in ROM. 

Software can designate the IPL device by way of the device lists in nonvolatile random 
access memory (NVRAM). Software can expedite the IPL process by designating a known 
IPL device near the front of the device lists. Only devices for which there is an IPL control 
block entry Indicating the device is present and functional are eligible as IPL devices. 
Software must provide a method for the operator to customize the device lists in NVRAM. If 
the operator elects not to specify a device list, the ROM uses a predefined default list. 

No special entry point has been defined in the IPL ROM to facilitate a software-initiated cold 
IPL. 

Check Stop 

LEDs 

For system units without OCS, (a check stop event causes a halt) the check stop count in 
NVRAM Is always a value of O. 

For system units with OCS, a check stop event causes a cold system reset. 

Before executing the power-on sett test (POST), the IPL ROM inspects the check stop count 
inNVRAM: 

• A value of O Indicates that a check stop event did not occur. The IPL ROM continues 
normal execution. 

• A value of 1 indicates that a check stop event occurred and that OCS logged out check 
stop data in NVRAM. The IPL ROM continues normal execution. 

• A value greater than 1 indicates that an error occurred, which caused a check stop event. 
The error was not detected by the OCS built-in self test (BIST). The IPL ROM puts an 
error code in the light-emitting diodes (LEDs) and halts. 

The system units have three 7-segment LEDs on the operator panel. The IPL ROM displays 
appropriate values In the LEDs to indicate the progress of the IPL and to identify the point of 
the error should a fatal error occur. 

4-4 General Architectures 



NV RAM 
The system units have at least 8K bytes of NVRAM. 

If NVRAM is valid, the IPL ROM reads the following information from NVRAM: 

• IPL expansion code 
• Nonna! device list 
• Service device list 
• Network boot information. 

IPL Record 

Security 

In order to perfonn an IPL, a valid IPL record must reside on a valid IPL media. This record 
consists of the following: 

• An ID uniquely identifying it as an IPL record. 

• A media description, such as characteristics of the IPL device. 

• One or more load descriptions, such as location, length, and entry point of code to be 
loaded (service or normal). 

• The address where the code must load. 

The IPL record tonnat is common for all devices. 

A Keylock switch In the secure position disables the Reset button on the operator panel. In 
the normal position, the Kaylock switch permits the IPL to Initialize only from trusted IPL 
devices. In the service position, the Keylock switch allows the IPL to Initialize from any IPL 
device. 

The following are characteristics of the IPL device: 

• Disabling of Reset button is a hardware function. Disabling stops the machine from 
perfonning an IPL 

• Disabling of the IPL from devices other than trusted IPL devices Is Implemented In the IPL 
ROM. The IPL ROM controller code senses the posttlon of the keyswltch and If In the 
normal position, only permits an IPL from trusted IPL devices. If a valid IPL record and 
IPL code are found on a trusted IPL device, the IPL sequence completes; otherwise, the 
IPL ROM loops, polling the trusted IPL devices for an IPL record and testing for a change 
In keyswitch position. 

Service IPL 
The IPL ROM supports an IPL from an alternate load description. For systems with a service 
keyswltch position, when the keyswltch is in the service position, the IPL ROM Ignores the 
primary (normal) load description in an IPL record and loads the software described by the 
alternate (service) load description. The IPL ROM Inspects the code length fields in the 
primary and alternate load descriptions to determine what can be loaded from a particular 
device. The length field must be a value of o If the code is not present. 

This function is provided so that diagnostics or another alternate operating environment can 
initialize the IPL from the same device as the operating system. 
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IPL ROM Components 
The IPL ROM code is functionally divided into the power-on sett tests, the device interface 
routines, and three control programs: 

• Initial sequence controller (ISC) 
• Core sequence controller (CSC) 
• IPL controller (IPLC). 

Initial Sequence Controller 
The initial sequence controller (ISC) accepts control after hardware initialization and passes 
control to the Core sequence controller (CSC) after completion. The following diagram gives 
a general idea of what the ISC does. 

Entry from ROM 
Hardware lnltiallzatlon 

lnltlallzatJon 

ROM Cyclk: 
Redundancy Check 
(CRC)Teat 

Check Stop 
Count>1? 

Execute 
RAM POST 

Enough Good 
RAM tor IPL? 

v .. 
Exit to csc 

(MIKOmpare)----

v--------

No--------91 

Halt 

Figure 94. Initial Sequence Controller Logic Flow 
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The following are major initial sequence controller functions: 

• Performing initialization 

- Reading ROM configuration information from non-CRC checked part of ROM and set 
ROM size and speed In the Storage Control Unit Configuration register (SCCR) 

- Setting Initial LED values 

- Performing other Initialization as required. 

• Activating system ROM cyclic redundancy check 

- Halting if mlscompare. 

• Inspecting check stop count 

- If o or 1, continuing normal execution 

- If greater than 1, halting with an error code In LEDs. 

• Executing RAM POST 

- Determining memory configuration (Includes setting configuration register extents). 

- Finding enough good memory. At least 1 M-byte memory is required. (2M-bytes 
memory are required on some systems.) 

- Testing memory and creating a bit map. 

- Storing results of RAM POST into the IPL control block. 

• Inspecting retum code from the RAM POST. 

- Halting if the amount of good memory is less than required for the system. 
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Core Sequence Controller 
The core sequence controller accepts control from the initial sequence controller and passes 
control to the IPL controller. The core sequence controller sequences through the POSTs. 
These POSTs complete the testing performed by the IPL ROM. The following diagram gives 
a general idea of what the core sequence controller does. 

Entry from lnltlal Sequence Controller 

ROM Wann 
Syatem ReMt 

Call Next POST 

No 
l..aet POST? 

Yu 

Exit to IPL Controller 

Figure 95. Core Sequence Controller 

Fatal 
Error 

The following are functions of the core sequence controller. 

• Executing POSTs in a predefined order 

HALT 

• Passing a pointer from POSTs to the IPL control block to record results 
• Passing return codes from POSTs to the Core sequence controller. 
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IPL Controller 
The IPL controller accepts control from the core sequence controller and passes control to 
loaded code. The following diagram gives a general idea of what the IPL controller does. It Is 
the job of the IPL controller to find a successful IPL path. If an IPL attempt Is not successful, 
the IPL controller continues to cycle through the IPL device list (Devllst), trying to Initiate an 
IPL from each IPL device. 

Entry from Core $equence Controller 

No 

No 

No 

Keyawltch 
Secure? 

CheckNVRAM 
for Device um 

Device Ll8t 
Empty? 

Bulld Default 
Device Llet 

Get Device 
from Llet 

lolldlPL 
Record 

Valld IPL 
Record? 

Wiii Boot 
Code Flt? 

Load OK? 

Figure 96. IPL controller 

No 

lnlUallze 
System State Exit to 

Code 
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IPL Controller Functions 
The following are functions of the IPL controller. 

1. NVRAM CRC test. Run NVRAM cyclic redundancy check on portions of NVRAM 
containing configured IPL device selection sequence . . 

2. Builds the list of IPL device candidates based on the following: 

- Keyswitch position 

- Device lists (if present). 

3. Cycles through created device lists. 

4. Gets the candidate from the list. 

5. Otherwise attempts to toad the IPL record from candidate device. (If the device ls the 
small computer systems interface (SCSI) disk, the IPL controller finds a memory area to 
store the bad block map.) 

6. If the keyswitch is not in the serviee position, looks for an IPL record in which the primary 
code description length field Is not o. 

7. If the keyswltch Is In the service position, looks tor an IPL record in which the alternate 
code descliptlon length field Is not o. 

8. If the valid IPL record is not loaded, gets the next candidate from the list. 

9. If all candidates have been attempted, rebuilds the list and retry. 

10.Loads code. The code loaded in the system's minimum required good memory space is 
loaded contiguously. Beyond that boundary, the loading skips around memory bad blocks 
If the flag byte in the IPL record says to do fragmentation. 

- If the code does not fit in RAM, gets the next candidate from the list. 

- If all candidates have been attempted, rebuilds the list and retry. 

11. Initializes machine state for execution of loaded code. 

12.lf an IPL was performed from a diik, the volume ID (unique ID) is saved in the IPL control 
block. 

The syslem is left In real mode with the following: 

- External interrupts disabled 

- All good memory initialized with good error checking and correction (ECC). 
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IPL Devices 

- Any IPL device used inactive 

- Memory contents as shown in Figure 97. 

Loaded Code 
I Low 

-------------------------
Bad Block Map 

IPL Record/CR Record (1 K byte) 

IPL ROM S1ack Arm (32K bylm) 

Expeneion Code from NVRAM (H 
p.....,t) 

IPL Controller and Device 
lnterfac:e Routlna (32K bylee) 

IPL Control Block (Varlable) 

Location of Lut Bad Memory 
Block 

: Area of < ROM Requirements 

Figure 97. RAM map 

13. Pass control to code loaded. The following parameters are passed to the loaded code in 
registers: 

- Pointer to IPL control block. 

- The IPL control block contains pointers to other things (such as memory bit map). 

The IPL devices supported are: 

• Standard feature 3.5-inch diskette 
• 5.25-inch diskette 
• 7012 direct bus-attached (OBA) disk drive 
• SCSI adapter-attached IPL devices 
• ROMscan 
• Ethernet adapter 
• Token Ring adapter. 
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Trusted (Normal) Default IPL Device Selection Sequence 
The following sequence is the trusted (normal) default IPL device order. 

1. ROMscan 
2. Direct bus-attached file (7012 disk drive) 
3. SCSI device 
4. Token Ring adapter 
5. Ethemet adapter. 

Service Default IPL Device Selection Sequence 
The default service IPL device list Is as follows: 

1. Standard VO diskette 0, and then 1 
2. OBA file (7012 disk drive) 
3. SCSI device (CD-ROM, tape) 
4. ROMscan 
5. SCSI device (disk) 
6. Token Ring adapter 
7. Ethemet adapter. 

Power-On Self Tests 
Tests run during the execution of the IPL ROM, before any load from an IPL device, are 
referred to as power-on sett tests (POSTs). The IPL ROM executes POSTs to determine the 
presence and functionality of those portions of the system required for a successful IPL The 
results of these tests are collected in a data structure in RAM called the IPL control block. 
The IPL ROM testing Is limited to those portions of the machine necessary for an IPL: the 
base system (RAM and 1/0 Channel Controller) and the IPL devices. The IPL ROM code 
does not halt due to the absence or failure of hardware except where that absence or failure 
directly precludes the IPL. 

If an error is detected during a POST, lnfonnatlon about the error is retumed for resolution. 

Except for base system function, testing performed by IPL ROM POSTs is minimal. The IPL 
device POSTs test an adapter's functionality and device presence. The following tests are 
performed: 

• RAMPOST 
• VO channel controller (IOCC) POST 
• IPL device POSTS. 

RAM POST 
• Processor and memory interface tests (Memory Control Unit) 
• Memory test. 

IOCCPOST 
• Processor and IOCC interface tests 
• IOCC register tests 
• Bus test (IOCC to Standard VO) 
• Direct memory access (OMA) test 
• Test interrupts. 
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IPL device POST• 
• Standard and feature diskette drive test 

- Adapter 
- Device presence. 

• 7012 OBA disk drive test 
- Adapter ID which is detennined and saved 
- Adapter 
- Device presence. 

• SCSI disk test 
- Adapter IDs which are determined and saved 
- Adapter 
- Device presence. 

• Token Ring adapter test 
- Adapter 
- Adapter initialization. 

• Ethernet adapter test 
- Adapter 
- Adapter initlaJlzatlon. 

Before calling a POST routine, the controller puts a value In the LEOS identifying the POST 
so that If an error occurs while a POST is running and control does not return, the error Is 
Identifiable. 

POST routines are passed a pointer that Identifies to the area of the IPL control block In 
which to store the test results. See Figure 97 on page 4-11 for more infonnatlon. 

IPL ROM Functional Characteristics 
The following section describes the IPL ROM entry points, control block, configuration 
records, NVRAM, expansion code, and LED operation. 

Cold IPL Entry Point 
The ROM entry point Is at real address X'FFF00100'. This is the nonnal entry point following 
poviter-on reset. 

ROM Warm IPL Entry Point 
An entry point is provided In IPL ROM to facilitate the reloading of the system after a warm 
system reset. The entry point results in an IPL record and code being reloaded. On a warm 
IPL, the system must pass the IPL control block pointer In general purpose register 3. The 
pointers in the IPL control block are considered valid and reusable. 

The ROM warm IPL entry point is stored in the ROM entry point table. A pointer to the ROM 
entry point table is stored In the IPL control block by the IPL ROM. 

The following requirements must be met to perform a ROM warm IPL: 

• IPL ROM code operates In reaJ mode. 

• ROM is mapped to real address X'FFFOOOOO' at startup. 

• The IPL control block must be in memory, and a pointer to It must be passed to ROM In 
register 3. 
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• The contents of the IPL control block, as saved by the previous execution of the IPL 
ROM, must be intact. (The operating system must not delete the existing contents of the 
IPL control block.) 

• The linkage conventions and the register conventions established by the IPL ROM must 
be followed. 

• The IPL ROM code can alter the contents of memory. 

IPL Control Block 
The IPL control block is created In RAM during the execution of ROM. The IPL control block 
size Is variable. The IPL controller is dependent on the IPL control block for the results of 
power-on self tests executed for IPL devices. Loading of the IPL record and the code by the 
IPL ROM does not overwrite the IPL control block. A pointer to the IPL control block is 
passed to the loaded code. Loaded software can relocate the IPL control block and add 
entries for IPL devices, but should preserve the rest of the IPL control block. The IPL control 
block must be intact in order for the ROM warm IPL to work and loaded software must pass 
ROM a pointer to the IPL control block. 

The following shows some of the information that is stored in the IPL control block: 

• NVRAM tests results 
• Actual IPL device 
• Service IPL flag 
• Pointer to ROM entry point table 
• Pointer to IPL record 
• IPL ROM date stamp (IPL ROM build date) 
• POST results (a unique structure for each POST) 
• Results of expansion code CRC test 
• A pointer to a memory bit map 
• Pointer to the bad block map 
• ROM part number and ID 
• An area reserved for future use by IPL ROM. 

IPL Record 
The IPL record is located in a predefined area on all devices. The record formats are the 
same for all devices. The IPL ROM loads the IPL record into a known location in RAM. The 
record is 512 bytes long and contains the following: 

• A unique ID to Identify the record as an IPL record 

• A description of the media: for example, device characteristics 

• Descriptions: for example, location, length, and entry point, of one or more code areas to 
be loaded. 

- The primary load description describes how to load the normal operating system if the 
operating system is present on the device. If it is not present, the length field of the 
primary load description must be o. 

- The alternate load description describes how to a load an alternate operating 
environment, such as diagnostics, if the altemate operating environment is present on 
the device. If it is not present, the length field of the alternate load description must 
beO. 
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Interface to the Loaded Code 

NV RAM 

The IPL ROM loads code into memory and passes the pointer to IPL control block in general 
purpose register 3. 

All machines have NVRAM as described in ·NVRAM" on page 4-5. 

The following are read from NVRAM by ROM IPL code: 

• Check stop count {stored by hardware) 

• Device lists stored by software (trusted and service) 

• Cyclic redundancy check (CRC) values for the areas of NVRAM from which data Is read 
by the IPL ROM. 

LED Operation 

Errors 

ROM displays the appropriate values in the LEDs before executing hardware tests so that If 
the POST does not return to ROM, the appropriate value Is displayed as follows: 

1. At the stan of each POST, the LEDs are set to the value for that POST. 

2. If the POST completes correctly, the next POST Is started. Some POSTs execute so 
quickly that if no error occurs, the display of the corresponding vaJue Is not visible to the 
operator. 

3. If the POST code does not complete correctly, the POST LED value remains displayed 
Indicating the error. 

4. If the POST detects an error, the sequence controller determines by way of the return 
code whether the error is a fatal or nonfatal error. 

5. If the error Is nonfatal, the error information Is preserved in the IPL control block, and the 
sequence controller continues. 

8. If the POST error Is fatal. the LEDs display an appropriate vaJue steadily, and operation 
of the system halts. 

Errors occurring during IPL ROM execution can be fatal or nonfatal. The fatal errors are 
those that prevent an IPL. Nonfatal errors are those that leave the machine In a state to 
Initiate an IPL. The operating system can Interrogate the IPL control block to determine If 
errors occurred during IPL ROM execution. 

ROM LED Values During IPL 
ROM has been assigned a LED range of 200 to 299. Specific values are assigned during 
code development. There are special cases where a series of informational data should be 
presented in the LEDS. Refer to the problem solving section of the product-specific 
operator's guide for more information on ROM LED values. 

The LED codes are displayed during execution of the IPL ROM. Refer to the problem 
soMng section of the product-specific operator's guide for a list of the LED codes. 
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ROM Entry Point Table 
The IPL control block contains a pointer to the ROM entry point table. The ROM entry point 
table contains the entry point for the ROM warm IPL. 

Error Codes 
For the list of system error codes, refer to the problem solving section of the product-specific 
operator's guide. 
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date (continued) 
handling, i-38 
internal, 2-85 
security, 2-7 
transfer, 2-49 

data cache synchronize (des) instruction, i -97 
decrementer (DEC}, 1-85 
decrementer interrupt, 1-86 
default result, i -39 
denormalization, 1 -36 
denormalized numbers (+DEN), 1-35 
dirty, 2-43, 2-56 
disabled exponent overflow, 1-89 
disabled exponent underflow, i-87 
disabled state, 1 -44 
OMA channels, 2-49 
DMAslave 

channel, 2-49 
controller, 2-49 
data transfer, 2-49 
loading, 2-50 
operations using tags 

bus protocols, 2-60 
description, 2-50 
error conditions, 2-62 
special sequences, 2-62 
TCWs, 2-57 
transfer, 2-53 
transfers to bus memory, 2-61 
transfers to system memory, 2-si 

registers, 2-49, 2-54 
registers using flags, 2-55 
suspending an operation, 2-50 
terminating an operation, 2-50 

do not care state, 2-65 
document conventions, 1-1 o 
E 
effecttve address 

calculation, 1-20 
definition, 1-19 

enabled exponent overflow, 1-90 
enabled exponent underflow, 1-88 
enabled state, 1-44 
enclosure record 

descriptors, 3- i 3 
implementation notes, 3-13 

error codes, initial program load ROM, 4-16 
errors 

bus, 2-19 
bus master, 2-47 
detection, 2-90 
OMA slave, 2-62 
IPL ROM, 4-15 
load conditions, 2-3i 
store conditions, 2-31 

exceptions 
handling, 2-85 
reporting, 2-85 
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execution model 
IEEE operations, 1-45 
multiply-add type instructions, 1-47 

extended PCS register space, 3-i 9 
external interrupt mechanism 

accessing the EICRs, 1-65 

F 

addressing the EICRs, i-64 
control registers, 1-84 
EICR Mapping, i -66 
EISBID registers, i-68 
enable, 1-63 
functions, i -64 

EIM register, i -84 
EIS register, 1 -64 

Interrupt level control register, 1 -67 
MFSPR RT, ILCR, i-68 
MTSPR ILCR, RS, 1-68 
PEIS registers, i-69 
POWER, i-62 
POWER2, 1-67 
reading from the EICRs, 1-65 
sources, 1-66 
submitting interrupts, 1-66 
writing to the EiC Rs, 1 -66 

faimess mode, 2· 16 
fixed-point exception register, 1-26 
ftXed-point processor 

fixed-point exception register, 1-26 
general purpose registers, 1-25 
multiply quotient register, 1-26 
registers, 1-25 

flags,2-53 
floating-point control register, 1-29 
floating-point data representation, i-33 
floating-point exceptions 

inexact exception, 1-44 
invalid operation, i-40 
overflow, i -42 
types, 1-39 
underflow, 1-44 
zero divide, i -41 

floating-point execution models 
IEEE operations, i -45 
multiply-add type instructions, i -4 7 

floating-point integer conversion 
infinity operand, 1-93 
Large Operand, i-94 
QNaN, i-94 
results, 1 ·92 
round Integer, 1-92 
SNaN operand, 1-94 

floating-point processor 
binary floating-point numbers, i -34 
control register, i-29 
data format, 1 -33 
data handling, i -38 
denonnalization, 1-36 



floating-point processor (continued) 
denormalized numbers (+DEN), 1-35 
execution models, 1-45 
infinities (+INF), 1-35 
nonnalization, 1-36 
normalized numbers (+NOR), 1-35 
not a number, 1-36 
overview, 1-27 
precision, 1-37 
registers, 1-28 
resource management, 1-45 
rounding, 1 -37 
status register, 1 -29 
value representation, 1-34 
zero values, 1-35 

floating-point round to single model 
description, 1-87 
disabled exponent overflow, 1-89 
disabled exponent underflow, 1 -87 
enabled Exponent overflow, 1 -90 
enabled exponent underflow, 1-88 
infinity operand, 1-90 
normal operand, 1-91 
QNaN operand, 1-90 
round single (sign, exp, frac, G, R, X), 1-91 
SNaN operand, 1-90 

floating-point status register, 1 -29 
forms, Instruction, 1-12 

G 
general purpose registers, 1-25 

H 
hardWare, Initialization, 4-3 
hardware VPD descriptor 

enclosure record, 3-13 
extra VO board record, 3-15 
VO board records, 3-14 
memory records, 3-14 
minimum requirements, 3-13 
processor board record, 3-14 
rack record, 3-13 
SCSI attached device records, 3-15 
standard VO attached devices, 3-15 

hung bus, 2-20 

I 
VO architecture, deviations from, 2-93 
VO board records 

descriptors, 3-14 
extra, 3-15 
Implementation notes, 3-14 

VO buS protocols 
arbitration 

cycle, 2-14, 2·15 
description, 2-13 
OMA slave selection, 2-16 
fairness modes, 2·16 

non-preemptive burst, 2·16 
preemptive burst, 2-16 
priority assignment, 2·15 

basic transfer cycle, 2-17 
bus errors, 2·19 
interrupt, 2-20 
IOCC,2-13 

1/0 interrupts 
bus, 2-88 
coded method, 2-90 
mechanism, 2-69 
miscellaneous, 2-68 
native, 2-68 
registers, 2-70 
reserved, 2-68 

1/0 segment register 
address alignment, 2-28 
data alignment, 2-28 
definition, 2·26 
fields, 2-26 
load access authority checking, 2-29 
load error conditions, 2-31 
store access authority checking, 2-29 
store error conditions, 2·31 
string operations, 2-28 

l/O space rules, 1 -94 
implementation 

board configuration register, 2-86 
component reset register, 2·90 
error detection, 2-90 
UO interrupts, 2-90 
IOCC configuration register, 2-86 
Models 320, 32E, 32H, 520, 52H, 530, 530E, 

53H,540,550,550E,550S, 730,930,and 
950E, 2-86, 2-93 

nonvolatile RAM, 2-87 
streaming data protocol, 2-86 
system VO structure, 2-86 

implementation details 
bus master transfers, 2-89 
bus timeout, 2-90 
deviations from the VO architecture, 2-93 
IPL procedures, 2·91 
power-on reset, 2-90 
standard 1/0, 2-89 
system registers, 2-87 

inexact exception 
action, 1-45 
definition, 1-44 

infinities (+INF), 1 ·35 
infinity operand, 1 -90, 1-93 
initial program load (IPL), 4-3 
initial program load (IPL) ROM, 4-3 
initial program load ROM 

error codes, 4-16 
functional characteristics, 4-13 
NVRAM,4-5 
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initial sequence controller 
check stop count, 4-7 
Initialization, 4-7 
logic flow, 4-6 
RAM POST, 4-7 
retum code, 4-7 
ROM cycle redundancy check, 4-7 

instruction, fields, 1-14 
instruction cache synchronize (ics) instruction, 1-96 
instruction formats 

A form, 1-14 
Bform, 1-12 
D form, 1-12 
description I 1 • 12 
OS form, 1-12 
fields, 1-14 
I form, 1-12 
M form, 1-14 
SCfonn, 1-13 
X form, 1-13 
XFL form, 1-13 
XFX form, 1-13 
XL form, 1-13 
XOform, 1-13 

instructions 
data cache synchronize, 1-97 
Instruction cache synchronize, 1-96 
others possibly requiring serialization, 1-97 
serializing semantics, 1-95 

interface, to the loaded code, 4-15 
Interrupt definitions 

alignment, 1-54 
data storage, 1-51 
extemal, 1-57 
floating-point imprecise, 1-59 
floating-point unavailable, 1-58 
Instruction storage, 1·53 
machine check, 1-50 
program, 1-58 
supervisor call, 1-60 
system reset, 1-50 
trace, 1·58 

Interrupts, External Interrupt mechanism, 1-82 
interrupts 

control, 1-48 
definitions for the system processor 

architecture, 1-50 
extemal interrupt mechanism, 1-87 
function, 1-48 
VO, 2-88, 2-90 
1/0 bus protocols, 2·20 
priorities, 1-60 

invalid operation exception 
action, 1-41 
definition, 1-40 

IOCC commands 
buffer flush, 2-66 
disable,2-65 
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enable, 2-65 
end of Interrupt, 2-64 
list of, 2-63 
time delay, 2-63 

IOCC configuration register, 2-74, 2-86 
IOCC control registers, 2-7 
IPL 

controller, 4·9 
hardware initiated, 4-4 
procedures, 2-91 
record, 4-5, 4-14 
service, 4-5 
software Initiated, 4-4 

IPL control block, 4-14 
IPL controller 

devices 
service default IPL device selection 

sequence, 4-12 
supported, 4-11 
trusted (normal) default IPL device 

selection sequence, 4-12 
functions, 4-1 o 

IPL entry point 
cold, 4-13 
ROM warm, 4-13 

IPL ROM 
check stop, 4-4 
functional characteristics 

cold IPL entry point, 4-13 
errors, 4-15 
interface to the loaded code, 4-15 
IPL control block, 4-14 
IPL record, 4-14 
LEO operation, 4-15 
NVRAM,4-15 
ROM entry point table, 4-16 
ROM LEO values during IPL, 4-15 
ROM warm IPL entry point, 4-13 

hardware, 4-3 
hardware initialization, 4-3 
hardware Initiated IPL, 4-4 
IPL, service, 4-5 
LEDs, 4-4 
security, 4-5 
service IPL, 4-5 
software initiated IPL, 4-4 
system reset 

cold, 4-3 
wann, 4-3 

warm IPL function, 4-4 
IPL ROM components 

core sequence controller, 4-8 
functional divisions, 4-8 
initial sequence controller, 4-8 
IPL controller, 4-9 
power-on self tests, 4-12 



K 
keyword descriptor summary 

A through C, 3-5 
D through E, 3-7 
F through M, 3-8 
torVPD, 3-5 
N through R, 3-1 D 
S through Z, 3-11 

keywords 

L 

conditionally required tor Micro Channel, 3-16 
optional tor Micro Channel, 3-17 
required tor Micro Channel, 3-16 

large operand, 1-94 
LEOS,4-4 
LEDs, operation, 4-15 
llttle.andlan notation 

addressing, 2-10 
definition, 2-8 

load instruction 
access authority checking, 2-29 
addressing model, 2-23 
effective addresses, 2-21 
l/O addressing, 2-21 
l/O effective address operating modes 

IOCC control, 2-22 
~occ effective addresses, 2-25 
RT compatiblllty, 2-22, 2-24 
standard bus, 2-21, 2-24 

VO segment register, 2-26 
issUlng. 2-21 

loS8 of accuracy, 1-37, 1-44 

M 
memory 

addressing, 1-19 
effective address calculation, 1-20 

memory records 
descriptors, 3-14 
Implementation notes, 3-15 

Micro Channel 
adapter requirements, 3-18 
adapter VPD, sample layout, 3-20 
extended POS register space, 3-19 
keywords, 3-16 
POS configuration registers, 3-17 
preferred implementation, 3-17 
system configuration protocol, 3-18 

mode.I. floating-point Integer convert, 1-92 
models, floating-point round to single, 1-87 
multiply quotient register, 1-26 

N 
N pages, 2-33 
Next pft, 1 • 75 
no trap occurs, 1 ·39 
nonvolatile RAM, 2-87 

normal operand, 1-91 
normalization, 1-36 
normalized numbers {+Nor), 1-35 
not a numbers (NaNs), 1-36 
numbering conventions 

bit, 2-7, 2-8 
bus notation, 2-7 
byte, 2-7 
full- word store Instruction, 2-9 
half-word store Instruction, 2·9 
IOCC byte steering, 2-11 
Pf'OC6SSOr notation, 2-7 

NVRAM, 4-5, 4-15 

0 
overflow, 1-43 
overflow exception 

action, 1-42 
definition, 1-43 

p 

insuring correct results, 1-43 
resultant value, 1-43 

port, 3-16 
power-on reset, 2-90 
power-on self test (POST) 

description, 4-12 
IOCC POST, 4-12 
IPL device POSTs, 4-13 
RAM POST, 4-12 

precision, 1 -37 
processor board record 

descriptors, 3-14 
Implementation notes, 3-14 

processor notation 
big-endian, 2-7 
llttle-endian, 2-8 

processors 
branch, 1-21 
central electronics complex, 1·5 
description, 1-5 
document conventions, 1-10 
fixed-point processor registers, 1-25 
floating-point, 1 ·27, 1-33 
instruction formats, 1-12 
interrupts, 1-48 
memory addressing, 1·19 
systems overview, 1·11 
timerfacillties, 1-82 

programmable option select (POS), 3-16 
programming model 

bus master, 2-39 
data flow, 2-37 
OMA slave, 2-49 
OMS slave, operations using tags, 2-50 
1/0 bus support functions, 2-21 
110 interrupts, 2-68 
VO segment register, 2·26 
IOCC commands, 2-83 
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programming model (continued) 
load instruction, 2-2i 
maintaining consistency, 2-36 
protection, 2-33 
stare instruction, 2·21 
TCW table, 2-33 
translation, 2-33 

Q 
ONaN operand, 1 -90, 1-94 
quiet NaN, 1-36 

R 
rack record 

descriptors, 3-13 
implementation notes, 3-13 

read-only memory (ROM), 4-3 
real address, 2-21, 2-53, 2·57 
real memory, 1-20 
real-time clock (RTC) 

decrementer 
description, 1-85 
interrupts, 1-86 
reading, 1-86 
setting, 1-86 
usage, 1-86 

initializing, 1-84 
reading, 1-84 
RTCL, 1-82, 1-83 
RTCU, 1-82, 1-84 
setting, 1-84 

registers 
board configuration, 2-86 
branch processor, 1-21 
buffered bus master control, 2-41 
bus mapping, 2-82 
bus status, 2-79 
component reset, 2-81, 2-90 
OMA slave control, 2-50 
fixed-point processor, 1-25 
floating-point, 1-28 
floating-point status and control, 1-29 
VO interrupt, 2-70 
VO segment, 2-26 
interrupt level control, 1-67 
IOCC configuration, 2-74, 2-86 
POS configuration, 3-17 
storage control, 1-70 
system, 2-84, 2-87 
tag control elements, 2-54 
TCW/tag anchor address, 2-80 
unbuffered bus master control, 2-46 

ROM 
hardware, 4-3 
warm IPL function, 4-4 

ROM entry point table, 4-1 B 
ROM LED values, during IPL, 4-15 
round integer, (sign, frac, gblt, rbit, xblt, 

round_mode), 1-92 
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round single, (sign, exp, frac, G, R, X), 1-91 
rounding, 1-37 

s 
sample layout, Micro Channel adapter VPO, 3-20 
SCSI attached device records 

device required descriptors, 3-15 
optional descriptors, 3-i 5 

security, 4-5 
semantics 

other Instructions possibly requiring 
serialization, 1-97 

serializing, 1 ·95 
cases, 1-95 

serialization 
cases. i-95 
data cache synchronize, 1-97 
instruction cache synchronize, 1 -96 
other Instructions possibly requiring 

serialization 
ctt, 1·98 
ell, 1-98 
deist, 1-98 
dclz, 1-98 
load/store to 110, 1-98 
mtrnsr, 1 -97 
mtspr, 1-98 
mtspr SOR 0, 1 -98 
mtspr TIO, 1 ·98 
mtsr, 1-98 
mtsri, 1-98 
rfi, 1-97 
rfsvc, 1-97 
SVC, 1-97 
tibi, 1-97 

semantics of Instructions 
cases, 1-95 
instruction modification, 1-95 
page in, 1-95 
page out, 1 -96 
synchronization on local 110 operations, 

1-95 
signaling NaN, 1-36 
SNaN operand, 1-90, 1-94 
special facilities 

board configuration data, 2-74 
bus mapping register, 2-82 
bus status register, 2· 79 
component reset register, 2-81 
IOCC configuration register, 2-74 
IOCC registers. 2-72 
TCW/tag anchor address register, 2-80 

standard 110 
address map, 2-89 
attached devices 

conditionally required optional descriptors, 
3-16 

device required descriptors, 3-15 



standard 110 (continued) 
definition, 2.a.4 
description, 2.a.4 

storage control 
features, 1-69 
registers, 1-70 
segment registers, 1-70 
storage description register, 1-72 
virtual address translation, 1-72 

Storage control registers, Storage description, 1-71 
store Instruction 

access au1hority checking, 2-29 
address spaces, 2-21 
effective addresses, 2-21 
UO addressing, 2-21 
UO effective address operating modes 

IOCC control, 2-22 
IOCC effective addresses, 2-25 
RT compatibility, 2-22, 2-24 
standard bus, 2-21, 2-24 

l/O segment register, 2-26 
issuing, 2-21 

streaming data protocol, 2-86 
structural overview 

configuration tree, 3-4 
VPD,3-4 

system configuration protocol, 3-18 
system data set, 3-5 
system VO 

definition, 2-84 
description, 2-84 
nonvolatile RAM, 2-84 
system registers, 2-84 

system UO structure 
bus VO, 2·7 
description, 2-3 
exception handling, 2-85 
exception reporting, 2-85 
implementation, 2-86 
programming model, 2-21 
special facflltles, 2-72 
standard VO, 2-84 
system l/O, 2-84 

system memory 
description 1 2-6 
OMA slave transfers, 2-61 
protection, 2-33 

system registers, 2-87 
system reset 

cold, 4-3 
wann, 4-3 

system structure 
bus memory, 2-8 
data security, 2-7 
IOCC, 2-4 
IOCC control registers, 2-7 
programming model, 2-4 

system memory, 2-6 
virtual memory, 2-6 

systems overview, 1-11 

T 
tag 

description, 2-50 
OMA slave, 2-53 
table, 2-51, 2-52 
word 0, 2-53 
word 4, 2-53 

TCWtable 
mapping, 2-33 
organization, 2-34 
protection information, 2-33 

TCW/tag anchor address register, 2-80 
t!mer facilities, real-time clock, 1-82 
tiny, 1-36 
tiny result, 1-44 
translate control word (TCW), 2-5, 2-57 
trap 

enabled, 1-39 
not implemented, 1-39 

u 
underflow exception 

action, 1 -44 
definition, 1-44 
denormalizing a number, 1 -37 

v 
value representation, 1-34 
virtual address, 1 -20 
virtual address translation 

address aliasing, 1-80 
description, 1-72 
hash table entry group (HTEG), 1-76 
hashed page table (HTAB), 1-73, 1-76 
hashed page table search, 1-n 
page protection, 1-81 
page table entry (PTE). 1-n 
storage access. recording mechanism, 1-81 

. storage protecnon mechanism, 1-81 
virtual memory, 2-6 
vital product data (VPD) 

characteristics, 3-3 
customer assistance, 3-4 
description, 3-3 
hardware descriptor summary, 3-13 
Importance, 3-3 
keyword descriptor, 3-5 
Micro Channel adapter requirements 3-16 
seivice personnel assistance, 3-4 ' 
structural overview, 3-4 
system data set, 3-5 
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z 
zero divide exception 
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