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About This Book

This n{anual describes architecture features that are common to the system family.
Note: The information in this book can also be found in the CD-ROM Hypertext Information

Base Library. This online documentation is designed for use with the InfoExplorer
hypertext retrieval system.

Who Should Use This Book

This book is an overview of the operation of the system. It is intended for programmers and
engineers who understand computer architacture and programming concepts and who
develop hardware and software products for the system family.

How to Use This Book

Overview of Contents
This book contains the following chapters:

o Chapter 1, “Processors,” describes the central electronics complex, the document

conventions, a general systems overview, instruction formats, and memory addressing.

Chapter 2, “System /O Structure,” describes bit and byte numbering conventions, /O bus
protocols, the programming model, ioad and store instructions, the translation, protection,
and TCW table, the bus master, the DMA slave, IOCC Commands, Buffer Flush
commands, /O interrupts, special facilities, the system 1/O and standard /O, exception
reporting and handling, and implementation details.

Chapter 3, “Vital Product Data,” contains the keyword descriptor summary, the hardware
VPD descriptor summary, the Micro Channel adapter requirements, and a sample layout
of the Micro Channel adapter VPD.

Chapter 4, “Initial Program Load (IPL) ROM,” describes IPL ROM components, |IPL ROM
functional characteristics, and error codes.

Overview of Reference Library Contents
This general information manual, is one part of the hardware technical information library.
This manual describes features that are common to the system family. Since the last edition,
new products have evolved that feature economy of cost and size. Check the front of each
chapter in this manual for a note specifying which models are covered in the chapter. The
General Architectures manual should be used in conjunction with the following hardware
technical information manuais:

POWERSstation and POWERserver Hardware Technical Information-Options and Devices
(SA23-2646)

7011 POWERstation and POWERserver Hardware Technical Information (SA23-2666)

7012 POWERSstation and POWERserver Models 34x, 35x, 36x, and 37x Hardware
Technical Information (SA23-2680)

7013 POWERstation and POWERserver Models 550L, 57x, 58x, 58H, and 590 Hardware
Technical Information (SA23-2684)

7015 POWERserver Models 97x, 98x, and 99x Hardware Technical information
(SA23-2686).
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Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories. and other items whose
names are predefined by the system.

halics Identifies parameters whose actual names or values are to be supphed by
the user.

Monospace Identifies examples of specific data values, exampies of lext simdar 10 what
you might see displayed, exampies of porbons of program code simiar 10
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following is a list of related publications. For information on ordering these publications,
contact your authorized dealer or marketing representative.
¢ IBM RISC System/8000 System Overview (GC23-2408)
¢ Personal Systemv2 Hardware Interface Technical Reference: Architectures (S84F-9808)

o AIX Version 3.2 Assembier Language Reference (SC23-2197)

o AIX Version 3.2 Kemel Extensions and Device Support Programmeng Concepts
(SC23-2207)

e AIX Version 3.2 Problem Solving Guide and Reference (SC23-2204).

Ordering Publications
You can order |BM publications from your IBM sales representatrve or, in the U.S., from IBM
Customer Publications Support at 1 800 879-2755. H you believe you are entitied 10
publications that were not shipped with your RISC System/8000 or ALX purchases. contact
your |BM sales representative or Customer Publications Support for assastance.

To order additional copies of this book, use Order Number SA23-2643.
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Description

This section describas the central electronics complex (CEC) for the POWER2 and POWER
Implementations of the RISC System/6000, the document conventions, a general systems
overview, instruction formats, and memory addressing.

A POWER processor is used in this system family. Like earlier processors, the POWER
processor employs a simple register-oriented instruction set that is complstely hardwired,
and features a pipslined implemsntation and an efficient storage hierarchy. This enables the
processor chip set to run an instruction almost every cycle. Unlike earlier processors,
however, this unit employs several advanced architectural and implementation features
including separate instruction and data caches, zero-cycle branches, multiple instruction
dispatch, simultaneous running of fixed- and fioating-point operations, and overlapped
running of register-register (RR) operations and load and store commands. As such, the unit
combines the simplicity of an instruction set with sophisticated hardware design techniques
to achieve a short cycle time and a low cycles-per-instruction (CPI) ratio.

In the POWERZ2 implementation, six instructions can be executed in a single cycle: a
branch, two fixed-point, two floating-point, and a Condition register logical instruction.
Counting the fioating-point multiply-add instruction as two operations, this yields a peak run
rate of eight operations per cycle. In the POWER implementation, four instructions can be
executed In a single cycle: a branch, a fixed-point, a floating-point, and a Condition register
logical instruction. Counting the ficating-point multiply-add instruction as two operations, this
yields a peak run rate of five operations per cycle.

Note: This chapter provides information for system models 32x, 34x, 35x, 36x, 37X, 52x,
53x, 540, 55x, 56x, 57x, 58x, 58H, 59x, 730, 930, 95x, 97x, 88x, and 99x.
Information for other system models can be found in the product-specific technical
information manual for those models.

The processor chip sets described in this chapter are representative of the chip sets used in
the models mentioned in the preceding paragraph. The megahertz number of the processor
chip set varies depending on the system model.

Central Electronics Complex

The POWER and POWER2 processor chip sets form the central electronics complex (CEC)
and have up to eleven semi-custom chips: a fixed-point unit (FXU), a floating-point unit
(FPU), an instruction cache and branch processing unit (ICU), four data cache units (DCU),
a memory control unit (MCU), an Input/Output (/O) Channel controlier a Serial Optical
Channel converter, and a clock chip (CLK). Every memory board contains two data
multiplexing modules and one control module for interleaving.

There are four basic processor chip sets in this family of system units. The first chip set
shown in Figure 1 on page 1-6 is the POWER2 implementation having the following
characteristics:

¢ Fixed-point unit with two execution units

¢ Floating-point unit with two multiply add units
o 32K-byte instruction cache

o 258K-byte data cache.

System Processors 15



This implementation supports configurations with two, four, or eight memory boards. A two
memory board configuration supports a 128K-byte data cache and a 128-bit memory
interface. A four or eight board configuration supports a 256K-byte data cache and a 256-bit
memory interface. The eight chips (ICU, FXU, FPU, 4X DCU, and MCU) are packaged on a
multichip carrier. The VO subsystem can contain up to two extended input/output (XIO)

modules.
Multi-Chip CPU Module
ICache
Reload Bus
(Quad Word) | PBUS
cu Micro
Channel
Instruction Bus
Dispatch Bus cm
(Quad Word) — 1 Bus
FPU || FXU MCU
FPU Data FXU Data X110 XiO || ROM
(2 Quad Words)| | (2 Single Words)
DCU || DCU || DCV || DCU SI0 Bus
ROM Dats Bus

Memory Data Bus (8 Words)

Note: Some systems have only two memory boards.
Some systems have only one XIO module.

POWER2 System Configuration, 8 Word Memory Bus
Figure 1.  First Processor Chip Set
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The second chip set has two data cache units and a system memory interface that is 64 bits
wide.

The third chip set uses the same modules, but has four data cache units and a 128-bit bus
to system memory.

The second and third chip sets a have an instruction cache unit with 8K bytes. It has an
input and output unit (IOU) that combines the I/O channel controller (for Micro Channel bus)
and the serial link logic. Figure 2 shows the chip sets described previously with four data
cache units like the second chip set.

o LTy
@ e ' |ocul| | M
- R
IcU Bus (2W) i DCUI :. . ?
: ‘ : M-Bus d
L « |DCU : (4W) 2

] |
] ! a
] ] r

P-BUS (1W) E pcu| | d r-g
| 1 | a
__l_

tem /O Bus

0

IPL

ROM[—" Mcu |j¢—>

System O Bus (2W)

R T

O Channel Controller
and Serial Optical
Channel Converter

x::‘lﬁm Control Optical Channel Converter
VO Intertace Loglc Optical Fiber

Micro Channel Prime
Figure 2. Second and Third Processor Chip Sets
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The fourth chip set is shown in Figure 3. This chip set has an instruction cache unit with 32K
bytes of chip memory. The IO subsystem can contain up to two XIO modules and a serial
link logic for system serial optical channels. The XIO module, contains the VO channel
control unit that generates the Micro Channel interface.

I I-Bus (2W) r_l__

ICU FXU FPU
P-Bus (1W)
MCU
System /O
ROM Bus (2W)
Xio Xio* Serial*
Number 1 Number 2 :-'c""l l'-°9n'°
TCW Local TCW
Memoryle— vo
o .
Micro Channel Micro Channel Serial
Prime to the Prime to the gm
Combination Optional VO
Board Board Converters

*The serial link logic is optional on some modeis.
"*The XIO Number 2 Iis only avaliable on some models.

Figure 3. Fourth Processor Chip Set
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The POWER2 and POWER implementations have an ICU that contains a two-way
set-associative instruction cache. It runs branch instructions and Condition register logical
instructions, and supports interrupts. In many cases, branches cost zero cycles because the
ICU looks ahead in the instruction stream and removes branches from the stream. In a
given cycle, the ICU in the POWER implementation can dispatch two instructions (two to the
FXU, or two to the FPU, or one to the FXU and one to the FPU) by way of the I-bus shown
in Figure 1 on page 1-6. The ICU in the POWER2 Implementation can dispatch four
instructions. The fioating-point unit contains a full 64-bit double-precision fioating-point data
fiow and conforms to the IEEE 754 binary floating-point standard with software support.
Floating-point instructions can run in parallel with fixed-point instructions for maximum
performance. The FXU contains the general purpose registers and the arithmetic logic units,
and runs all fixed-point instructions. The FXU includes an address transiation and data
protection unit that makes precise interrupts easier to implement with minimal performance
penalty. The FXU also provides the directories and control for the data cache, and controls
the running of fixed-point load, floating-point load, and store instructions.

In the POWER2 implementation four DCUs provide a four-way set-associative data cache.
The DCUs form an eight-word (four or eight memory boards) and a four-word (two memory
boards) interface to memory, two four-word (4W) interfaces to FPU, and two single-word
(1W) interfaces to FXU. In the POWER implementation four DCUs provide a four-way
set-agsociative data cache. The DCUs form a four-word (4W) interface to memory, a
two-word (2W) interface to FPU, and a single-word (1W) interface to FXU. DCUs contain
error checking and correction (ECC) and bit steering logic. They provide the data path for
Direct Memory Accesses (DMA), and supply the path for instruction cache (I-cache) reloads.
The MCU contains the controls and configuration registers for systemn memory. The MCU
provides the data path between /O and processor chip set for 1/O load and store
instructions. The MCU also interfaces to the ROM that contains the system inltialization
code for tha processor chip set, also referred to as the initial program load read-onty
memory (IPL ROM).

The processor bus (P-bus) shown in Figure 1 on page 1-6 is used to send the address to
the MCU for D-cache (data cache) reloads (by FXU) and for I-cache reloads (by ICU). It is
used for |-cache translation look-aside buffar (TLB) reloads (by FXU), and for /O loads and
stores (by FXU). The P-bus is also used for moves to and from special registers (for
example, Segment registers, Link register, and Machine State register) between FXU and
ICU. The system L/O bus is used to transfer the DMA data between the IOU and system
memory by way of the DCU, and provides a path for I/O load and store operations between
the FXU and the IOU by way of the MCU.

The /O unit contains an /O channel control unit that generates the Micro Channel interface.
The /O channel control unit uses the data stored in transiation control word (TCW) and tag
tables for address translation and data protection during I/O operations.
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Document Conventions
The following conventions are used throughout this document:

¢ Quadwords are 128 bits, doublewords are 64 bits, words are 32 bits, halfwords are
16 bits, bytes are 8 bits.

¢ All numbers are decimal uniess specified in some special way.
e b'nnn’ means a number expressed in binary format.

e X'nnn’ means a number expressed in hexadecimal format.

* nx b'0' means n zeros.

o n xb'1’ means nones.

» (RAIO) means the contents of register RA if the RA field has the value 1 through 31, or
the value O if the RA field is 0.

¢ (Rx) means the contents of register Rx.

¢ (FRx) means the contents of register FRx.

o X(p) means bit p of register or field X.

* X sub , means bit p of register or field X.

¢ X(p—q) means bits p through q of register or field X.

e X(p..q) means bits p through q of register or fieid X.

e Xsub, 4 means bits p through q of register or field X.

e —(RA) means the ones complement of the contents of register RA.
e [,/ /.. means a field that is ignored by the hardware.

o The symbol |l is used to describe two fields that are appended or concatenated to each
other. For example, 01011111 is the same as 010111.

» All bits in registers that are raserved are 0 on read and can be either 0 or 1 on write.
e 2"*"means 2 raised to the n** ¥ power.

o Field i refers to bits 4 x i to (4 x i) + 3 of a register.

¢ Positive means greater than 0.

¢ Negative means less than 0.

* Instructions are assumed to be nonprivileged unless stated otherwise in the instruction
description.
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Systems Overview

The processor or processor unit contains the sequencing and processing controls for
instruction fetch, instruction execution, and interrupt action. The following classes of
instructions can be executed by the processing unit:

¢ Branch processor instructions
o Fixed-point processor instructions
« Floating-point processor instructions.

Refer to AIX Version 3.2 Assembler Language Reference for information on a specific
instruction.

See Figure 4 for a representation of the logical partitioning provided by the system
architecture. The processing unit is a word-oriented fixed-point processor and in a
doubleword-oriented floating-point processor. The system architecture uses 32-bit
word-aligned instructions and provides for byte, halfword, word, and doubleword operand
fetches and stores between system memory and a set of 32 general purpose registers
(GPRs), and between system memory and a set of 32 floating-point registers (FPRs).

Programmed
Vo N J
Fixed-Point
Processor ‘__J—
Branch
Processor T GPRs
XER MQ
Data
CR SRRO Cache
LR SRR1
CTR MSR L_J
Floating-Point
instruction Processor
Cache
FPRs
I FPSCR
Main Memory

!

Direct Memory Access

Figure 4. System Architecture View
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Instruction Formats
All instructions are 4 bytes long and are located on word boundaries. Thus, whenever
instruction addresses are presented to the processing unit (as in branch instructions) the
two low-order bits are ignored. Similarly, whenever the processing unit develops an
instruction address, its two low-order bits are 0.

Bits O through 5 always specify the opcode. For XO-form instructions, an extended opcode
is specified in bits 22 through 30. For all other X-form instructions, an extended opcode is
specified in bits 21 through 30. For A-form instructions, an extended opcode is specified in
bits 26 through 30.

The remaining bits contain one or more altemative fields for the different instruction formats.

Forms
D Form
(] 6 1 16
OPCD RT RA D
RS s
FRT ul
TO
BF
FRS
DS Form
0 6 1 16 30
OPCD RT RA DS x0 |
RS RA
B Form
0 6 1 18 0 31
OPCD BO Bl BD AA| LK
| Form
0 8 30 31
OPCD u AA L]
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SC Form

0 6 1 16 20 27 30 31
OPCD /] /] FL1 LEV FL2|SA | LK
sV
X Form
0 8 1 16 21 31
OPCD RT RA RB EO Rc
FRT FRA FRB
BF BFA SH
RS SPR NB
FRS |
TO
BT
XL Form
0o . 11 16 21 31
OPCD BT BA BB EO LK
BO Bl
XFX Form
0 1 21 31
OPCD RT FXM EO Rc
XFL Form
0 6 16 21 31
OPCD FLM FRB | EO Rc
XO Form
0 6 1 16 21 22 31
OPCD RT RA RB OE | EO- Re
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A Form
A-form instructions are used for four operand instructions. The operands, all fioating-point
registers, are specified by the FRT, FRA, FRB, and FRC fields. The short extended opcode,

XO, is in bits 26 through 30.

0 6 1 16 21 26 31
OPCD FRT FRA FRB FRC X0 Rc
M Form
0 6 11 16 21 28 31
OPCD RS RA RB MB ME Re¢
SH
Instruction Fields

The following instruction fields are defined for the various instruction formats:

Fields Description

AA (30) Following is the description of the Absolute Address bit.

Bit Description

0 The immediate field represents an address reiative to the
current instruction address. For I-form branches, the
effective address of the branch is the sum of the LI field
sign extended to 32 bits and the address of the branch
instruction. For B-form branches, the effective address of
the branch is the sum of the BD field sign extended to
32 bits and the address of the branch instruction.

1 The immediate field represents an absolute address. For
I-form branches, the effective address of the branch is the
LI field sign extended to 32 bits. For B-form branches, the
effective address of the branch is the BD field sign
extended to 32 bits.

BA (11-15) Field used to specify a bit in the Condition register (CR) to be used as a
source.

BB (16-20) Field used to specify a bit in the CR to be used as a source.

BD (16-29) Immediate field specifying a 14-bit signed twos complement branch
displacement, which is concatenated on the right with b'00’ and sign
extended to 32 bits.

BF (6-8) Field used to specify one of the CR compare result fields or one of the
FPSCR fields as a target. If i = BF(6-8), then field i refers to bits i x 4 to
(i x 4) + 3 of the register.

BFA (11-13)  Field used to specify one of the CR compare result fields, one of the
FPSCR fields, or one of the XER fields as a source. If j = BFA(11-13), then
field j refers to bits j x 4 to (j x 4) + 3 of the register.

Bl (11-15) Field used to specify the bit in the CR to be used as the condition of the
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Fields Description

BO (6-10) Field used to specify different options that can be used in conditional branch
instructions. Following is the encoding for the BO field:

BO Description

0000x Decrement the CTR, then branch if the decremented
CTR # 0 and condition is false.

0001x Decrement the CTR, then branch if the decremented
CTR = 0 and condition is false.

001xx Branch if condition is false.

0100x Decrement the CTR, then branch if the decremented
CTR = 0 and condition is true.

0101x Decrement the CTR, then branch if the decremented
CTR = 0 and condition is true.

011xx Branch if condition is true.

1x00x Decrement the CTR, then branch if the decremented
CTR=0.

1x01x Decrement the CTR, then branch if the decremented
CTR=0.

1x1xx Branch always.

BT (6-10) Field used to specify a bit in the CR as the target of the result of an
instruction.
D (16-31) immediate field specifying a 16-bit signed twos complement integer sign
extended to 32 bits.

DS (16-29) Immediate field specifying a 14-bit signed twos complement integer to
which a b'00’ is concatenated on the right.

EO (21-30) A 10-bit extended opcode used in X-form instructions.
EO’ (22-30) A 8-bit extended opcode used in XO-form instructions.
FL1(16-19) A 4-bit field in the Supervisor Call (SVC) instruction.
FL2(27-29) A 3-bit field in the SVC instruction.

FXM (12-19) Field mask, identifies which CR field is to be updated.

Bit Description

12 CR Field 0 (bits 00-03)
13 CR Field 1 (bits 04-07)
14 CR Field 2 (bits 08-11)
18 CR Field 3 (bits 12-15)
16 CR Field 4 (bits 16-19)
17 CR Field 5 (bits 20-23)
18 CR Field 6 (bits 24-27)
19 CR Field 7 (bits 28-31).
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Flelds Description
FLM (7-14)  Field mask, identifies which FPSCR field is to be updated.

Bit Description

7 FPSCR Field 0 (bits 00-03)
8 FPSCR Field 1 (bits 04—07)
9 FPSCR Field 2 (bits 08—11)
10 FPSCR Field 3 (bits 12-15)
1 FPSCR Field 4 (bits 16—18)
12 FPSCR Field 5 (bits 20—-23)
13 FPSCR Fieid 6 (bits 24-27)
14 FPSCR Field 7 (bits 286—31).

FRA (11-15) Field used to specify an FPR as a source of an operation.

FRB (16-20) Field used to specify an FPR as a source of an operation.

FRC (21-25) Field used to specify an FPR as a source of an operation.

FRS (6-10)  Field used to specify an FPR as a source of an operation.

FRT (6-10) Field used to specify an FPR as the target of an operation.

1(16-18) Immediate field used as the data to be placed into a field in the FPSCR.

LEV (20-26) Immediate field in the SVC instruction that addresses the SVC routine by
b*1* Il LEV Il b'00000’ if SA = 0.

Ll (629 Immediate field specifying a 24-bit signed two's complement integer that is
concatenated on the right with b'00' and sign extended to 32 bits.

LK (31) Following is the description of the Link bit.
Bit Description
0 Do not set the Link register.

1 Set the Link register. If the instruction is a branch, the
addrass of the instruction following the branch instruction is
placed into the Link register. if the instruction is an SVC, the
address of the instruction following the SVC instruction is
placed into the Link register.
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Flelds

Description

MB (21-25) & ME (26-30)

NB (16-20)

OPCD (0-5)
OE (21)

RA (11-15)
RB (16-20)
Re (31)

RS (6-10)
RT (6-10)

Fields used to specify a 32-bit string, consisting of either a substring of ones
surrounded by zeros or a substring of zeros surrounded by ones. The
encoding is as follows:

Fields Deacription

MB (21-25) Index to start bit of substring of ones.

ME (26-30) Index to stop bit of substring of ones.
Let mstart = MB and mstop = ME.

It mstart < mstop +1
then mask (mstart..mstop) = ones
mask (all other) = zeroes.

If mstart= mstop + 1 then
mask (0—31) = ones.

If mstart > mstop + 1 then
mask (mstop + 1..mstart—1) = zeros
mask (all other) = ones.

Field used to specify the number of bytes to move in a load or store string
immediate.

The basic opcode field of the instruction.

Used for extended arithmetic to inhibit the setting of OV and SO in XER.
Field used to specify a GPR to be used as a source or as a target.

Field used to specify a8 GPR to be used as a source.

Following is the description of the Record bit.

Setting Description

0 Do not set the Condition register (CR).
Set the Condition register to refiect the result of the
operation.

For fixed-point instructions, CR bits (0 to 3) are set to reflect the result as a
signed quantity. The result as an unsigned quantity or a bit string can be
deduced from the EQ bit.

For floating-point instructions, CR bits (4 to 7) are set to reflect
Floating-Point Exception, Floating-Point Enabled Exception, Floating-Point
Invalid Operation Exception, and Floating-Point Overflow Exception.

Field used to specify a GPR to be used as a source.
Field used to specify a GPR to be used as a target.
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Fields
SA (30)

SH (16-20)
Sl (16-31)
SPR (11-15)

TO (6-10)

Ul (16-31)
X0 (26-30)
X0 (30, 31)
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Description

The following describes the SVC Absolute.

Setting Description

0 SVC routine at address ‘1’ Il LEV 1l b'00000".
1 SVC routine at address X'1FEQ'.
Field used to specify a shift amount.

Immediate field used to specify a 16-bit signed integer.
Special Purpose register.

SPR Special Purpose Reglater
00000 (00) MQ

00001 (01) XER

00100 (04) from RTCU

00101 (05) from RTCL

00110 (08) from DEC

01000 (08) LR

01001 (08) CTR

10100 (20) to RTCU

10101 (21) to RTCL

10110 (22) to DEC

11010 (26) SRR O

11011 (27) SRR 1.

TO bit ANDed with condition.

TO bit ANDed with Condition

6 Compares less than.

7 Compares greater than.

8 Compares equal.

9 Compares logically less than.

10 Compares logically greater than.

Immediate field used to specify a 16-bit unsigned integer.
A-form instructions contain a 5-bit extended opcode.
DS-form instructions contain a 2-bit extended opcode.



Memory Addressing

Within the context of a program executing on the processing unit (PU), system memory is
organized into doublewords, words, halfwords, and bytes, which are constrained to lie on
boundaries that are multiples of their sizes. See Figure 5 for an example of byte, halfword,
word, doubleword, and quadword memory addressing.

Bits Addresses
Byte Haliword Word Doubleword | Quadword
0000
0001
0-31 0000
0010
0010
0011
0000
0100
0100
0101
31-63 0100
0110
0110
0111
0000
1000
1000
1001
32-63 1000
1010
1010
101
1000
1100
1100
1101
64-127 110 1100
110 ’
1M1

Figure 5. Memory Organization

Bytes in system memory are consecutively numbered starting with 0. Each number is the
address of the corresponding byte. The 32-bit addresses computed for system memory
access are termed effective addresses and specify a byte in memory. System memory
address arithmetic wraps around from the maximum byte address, 232 — 1, to address Q.

System memory can be accessed by quadword, doubleword, word, halfword, or byte. The
required number of bytes are fetched from a property aligned area of memory. The rules
when the operands are not properly aligned are controlled by a mode bit, MSR(AL). See
“Machine State Register” on page 1-22.
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The mapping to real memory addresses is controlled by relocate (address translation)
facilities. When the relocate facility is active, effective addresses generated by program
execution are first transformed to 52-bit virtual address, which in turn are mapped to real
memory.

In general, the terms memory and address are used within the context of the effective
addresses generated by the PU.

All processor computations are performed in registers in the processing unit (PU). There are
no instructions, for instance, to add two numbers, one of which is in memory.

Effective Address Calculation
Effective addresses (EAs) are generated by instructions that reference data in system
memory and by taken branch instructions. Address calculations use 32-bit two's
complement binary arithmetic. A carry from bit 0 is ignored.

A value of 0 in the RA field indicates the absence of the corresponding address component.
For the absent component, a 0 value is used in forming the address. This is shown in the

instruction descriptions as (RAIO).

X-form instructions are used for data references. Address computation adds the GPR
contents designated by the RA field or the value 0 if RA equals a value of 0 with the GPR
contents designated by the RB field. The computation is shown as (RAIO) + (RB).

With D-form instructions, the 16-bit D field Is sign extended to form a 32-bit address
component. In computing the effective address of a data element, this address component is
added to the GPR contents designated by the RA field or the value 0 if RA equals a value

of 0.

With DS-form instructions, the 2-bits of zeros are added to the 14-bit DS field which is then
sign extended to form a 32-bit address component. In computing the effective address of a
data element, this address component is added to the GPR contents designated by the RA

field or the value 0 if RA equals a value of 0.

With I-form branch instructions, the 24-bit LI field is concatenated on the right with b'00' and
sign extended to form a 32-bit address. When AA equals a value of 0, this address is added
to the address of the branch instruction to form the effective address. If AA equals a value
of 1, this 32-bit value is the effective address.

With B-form branch instructions, the 14-bit BD field is concatenated on the right with b'00’
and sign extended to form a 32-bit value. If AA equals a value of 0, this 32-bit value is added
to the address of the branch instruction to form the effective address. If AA equals a value

of 1, this 32-bit value is the effective address.

With XL-form branch instructions, bits 0 to 29 of the Link register or the Count register are
concatenated on the right with b‘00’ to form the effective address.
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Branch Processor

This section describes the registers and instructions that make up the branch processor
facilities.

Branch Processor Registers
This section describes the branch processor registers and their bit definitions.

Condition Register
The Condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing (and branching).

0 31
CR

Bits Name

00-03 CRField 0

04-07 CR Field 1

08-11 CR Field 2

12-15 CR Field 3

16-19 CRField 4

20-23 CRField 5

24-27 CR Field 8

28-31 CR Field 7.

The Condition register bits are grouped info eight 4-bit fields, named CR Field 0 through
CR Field 7, which are set in one of the following ways:

» A load or copy operation into a specific CR field.

¢ CR Field O can be set as the implicit result of a fixed-point operation.

¢ CR Field 1 can be set as the implicit result of a floating-point operation.

o As the result of either a fixed or floating-point compare operation into a specified CR fieid.

Instructions are provided to test these bits singly and in combination.

When the record bit (Rc) is set to 1 in most fixed-point instructions, the first three bits of CR
Field 0 are set by a comparison of the result, which is interpreted as a signed integer, to a
value of 0. The fourth bit of CR Field 0 Is copied from the SO field of the XER. Add
Immediate, Add Immediate Lower, and Add Immediate Upper Instructions set these four bits
implicitly. These bits are interpreted as shown in the following list:

Bit Description

0 Compares Less Than, Negative (LT). For arithmetic operations, the result is
negative or less than a value of 0. For compare operations, (RA) < S|, Ul,
or (RB).

1 Compares Greater Than, Positive (RB). For arithmetic operations, the resuft
is positive or greater than a value of 0. For compare operations, (RA) > S,
Ul, or (RB).

2 Compares Equal, Zero (EQ). For arithmetic operations, the result is a value
of 0 or equal to a value of 0. For compare operations, (RA) = Si, U|, or (RB).

3 Summary Overfiow (SO). This is a copy of the final state of XER(SO) at the

completion of the instruction.
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When the Rc bit equals a value of 1 in all floating-point instructions except the Floating-Point
Compare instruction, CR Field 1 (Condition register bits 4 to 7) is set to the floating-point
exceptions status. These bits are interpreted as shown in the following list:

Bit Description

4 Floating-Point Exception (FX). This is a copy of the final state of
FPSCR(FX) at the completion of the instruction.

5 Floating-Point Enable Exception (FEX). This is a copy of the final state of
FPSCR(FEX) at the completion of the instruction.

6 Floating-Point Invalid Operation Exception (VX). This is a copy of the final
state of FPSCR(VX) at the completion of the instruction.

7 Floating-Point Overflow Exception (OX). This is a copy of the final state of

FPSCR(OX) at the completion of the instruction.

Condition register bits 4 to 7 are copies of bits 0 to 3 in the Floating-Point Status and Control
register.

Link Register
The Link register (LR) is a 32-bit register. The Link register provides the branch target
address for the Branch Conditional Register instruction and holds the return address (link
address) for branch and link type instructions and SVC instructions.

0 31
LR

Count Register
The Count register (CTR) is a 32-bit register. The Count registsr contains a loop count and
is automatically decremented during execution of the branch and count instructions,
wrapping from X‘00000000' around through X'FFFFFFFF'. The Count register also provides
the branch target address for the Branch to Count Register instruction. The Count register
contains a copy of bits 16 to 31 of MSR and bits 16 to 31 of the SVC instruction after
execution of that SVC instruction. Both registers can be copied to and from any GPR.

0 31
CTR

Machine State Register
The Machine State register (MSR) is a 32-bit register that defines the modal state of the
processor. When the RFI instruction is executed, bits 16 to 31 of SRR 1 are placed into bits
16 to 31 of the MSR. The MSR can also be modified by the Move to Machine State Register

instruction.

0 31
MSR

Bit Name Description

00-15 Reserved

16 EE External interrupt Enable

17 PR Problem State

18 FP FP Avallable

19 ME Machine Check Enable

20 FE FP Exception Enable
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21
22
23
24
25
26
27
28

29
30-31

SE
BE
FE
AL
P

IR

DR

PM

Single-Step Enable

Branch and Trap Enable

FP Imprecise Enable
Alignment Check

Interrupt Prefix

Instruction Relocate

Data Relocate

Reserved

Performance Monitor Control
Reserved.

The following are the Machine State register bit definitions and settings:

Bits
0-15
16

17

18

19

Description

Reserved

External Interrupt Enable (EE)

Setting Description

o The processor is disabled against extemal interrupts.

1 The processor is enabled to take extemal interrupts.

Problem State (PR)

Setting Description

o The processor is privileged to execute any instruction.

1 The processor can only execute the nonprivileged
instructions.

Floating-Point (FP) Available

Setting Description

0 The processor cannot execute any floating-point
instructions, including floating-point loads, stores and
moves.

1 The processor can execute fioating-point instructions.

Machine Check Enable (ME)

Setting Description

0 Machine check interrupts are disabled.

1 Machine check interrupts are enabied.

Floating-Point Exception Interrupt Enable (FE)

Setting Description

o Program interrupts on floating-point enabled exception are
disabled.

1 Program interrupts on fioating-point enabled exception are
enabled.
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Bits
21

24
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Description

Single-Step Enable (SE)

Setting Description

0 The processor executes instructions normally.

1 The processor generates a Single-Step type Trace Interrupt
upon the successful execution of an instruction (the
instruction does not cause any other type of interrupt).

Branch and Trap Enable (BE)

Setting Description

0 The processor executes branch instructions normally.

1

The processor generates a Branch and Trap type Trace
Interrupt after completing the execution of a branch

instruction.

FP Imprecise Enable (FE)

Setting Description

0 FP Imprecise interrupts are disabled.

1 FP Imprecise interrupts are enabled if MSR(FE) = 0.

Alignment Check (AL)

Setting Deacription

0 Alignment checking is off and the low-order bits of the
address are ignored.

1 Alignment checking is on; alignment checking proceeds as

follows:

If bits 29, 30, or 31 of an address generated by a
doubleword data memory reference instruction are nonzero,
an alignment interrup! is generated if the hardware cannot

perform the unaligned access.

if bits 30 or 31 of an address generated by a word data
memory reference instruction are nonzero, an alignment
interrupt is generated if the hardware cannot perform the
unaligned access.

If bit 31 of an address generated by a halfword data
memory reference instruction is nonzero, an alignment
interrupt is generated if the hardware cannot perform the
unaligned access.

This checking does not apply to the load and store
string-type instructions since these instructions always
perform the unaligned access. Load and store multiple-type
instructions always generate an alignment interrupt if bits
30 to 31 of the effective address are nonzero.

When the memory reference is to an /O segment, the
address is sent to /O unmodified, regardless of the setting
of the MSR(AL).



Bits Description

25 Interrupt Prefix (IP)
Setting Description
0 Interrupts vectored to the effective address X'000x0000¢
where »oo0x is the interrupt offset.
1 Interrupts vectored to the effective address X'FFF o0

where x00x is the interrupt offset. This is intended to direct
the interrupt to read only memory (ROM).

26 Instruction Relocate (IR)
Setting Description
0 Instruction address translation is off.
1 Instruction address translation is on.
27 Data Relocate (DR)
0 Data address translation is off.
1 Data address translation is on.
28 Reserved
29 Controls performance monitoring functions.
30-31 Reserved.

Fixed-Point Processor Registers
This section describes the registers in the fixed-point processor facility.

General Purpose Registers
All manipulation of information is done in registers intemnal to the processing unit (PU).The
principal storage within the fixed-point processor is a set of 32 general purpose registers
(GPRs). Each GPR consists of 32 bits. See Figure 6 for an example of the general purpose

registers.
0 31
GPR 00
GPR 01
GPR 30
GPR 31

Figure 6. General Purpose Registers
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Fixed-Point Exception Register
The Fixed-Paint Exception register (XER) is in the fixed-point unit and is 32 bits wide.

N

XER

Bit

3-156
16-23

24
25-31

Description
Summary Overfiow (SO)

The Summary Overflow bit is set to 1 whenever an instruction sets the
Overfiow bit to indicate overfiow and remains set until software resets it.
The SO bit is not altered by the compare instructions.

Overfiow (OV)

The Overtlow bit is set to indicate that an overflow has occurred during an
instruction operation. in the case of add and subtract instructions, it is set to
1 if the carry out of bit 0 is not equal to the carry out of bit 1. Otherwise the
OV bit is set to 0. The OV bit is not altered by the compare instructions.

Carry (CA)

The Carry bit is set to indicate a carry from bit 0 of the computed result. In
the case of add and subtract instructions, it is set to 1 if the operation
generates a carry out of bit 0. Otherwise, the CA bit is set to 0. The CA bit is
not altered by the compare instructions.

Reserved

Used by the Load String and Compare Byte Indexed instructions as the
byte being compared against.

Reserved

Used by Load String Indexed, Load String and Compare Byte Indexed, and
Store String Indexed instructions to indicate the number of bytes loaded or

stored.

Multiply Quotient Register
The Muitiply Quotient (MQ) register is a 32-bit register that provides a register extension to
accommodate the product for the multiply instructions and the dividend for the divide
instructions. The MQ register is also used as an operand of long rotate and shift instructions
and as a temporary storage facility for store string instructions.

0

K]

MQ
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Floating-Point Processor Overview

The fioating-point processor (FPP) provides high-performance execution of floating-point
operations. Instructions are provided to perform arithmetic operations in floating-point
registers and move floating-point data between memory and these registers.

This architecture provides for hardware to implement a floating-point system as defined in
ANSINEEE Standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic, but is
dependent on supporting software to be in conformance with that standard.

A fioating-point number consists of a signed exponent and a signed significand. The quantity
expressed by this number is the product of the significand and the number 2**exponent.
Encodings are provided in the data format to represent finite numeric values, + Infinity and
Not-a-Number (NaN) values. Operations involving infinities produce results obeying
traditional mathematical conventions. NaN values have no mathematical interpretation. Their
encoding permits a variable diagnostic-information field. They can indicate such things as
uninitialized variables and can be produced by certain invalid operations.

There are two classes of exceptional events that occur during instruction execution that are
unique to the FPP:

¢ FPP unavalilable
¢ Floating-point exception.

The FPP unavailable event is signaled with a Floating-Point Not Available Interrupt.
Floating-point exceptions are signaled with bits set in the Floating-Point Status and Control
register and can generate a precise interrupt with the proper bits enabled.

The Floating-Point Available bit is defined to enhance context switching performance for
programs that do not require the use of FPP. The Floating-Point Available bit is defined in
“Machine State Register,” on page 1-22.

if the Machine State Register (Floating-Point) (MSR(FP)) bit equals 1, the FPP is available
for use and fioating-point instructions can be successfully executed. If the MSR(FP) bit
equals 0, the FPP is unavailable for use, execution of any fioating-point instruction is
suppressed, and a Floating-Point Unavailable Interrupt is generated to signal the attempted
use of the FPP in the unavailable state.

The following fioating-point exceptions are detected by the hardware:

¢ Invalid Operation Exception
SNaN

Infinity - Infinity

Infinity x Zero

Infinity + Infinity

Zero + Zero

f. Ordered Compare With a NaN
Zero Divide Exception
Overflow Exception
Underfiow Exception
Inexact Exception.

cooop
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Each floating-point exception and exception sub-class (in the case of invalid Operation
Exception) has an Exception bit defined in the Floating-Point Status and Control Register.
Each floating-point exception has an Enable bit defined in the Floating-Point Status and
Control Register. See “Floating-Point Status and Control Register” on page 1-29 for
definitions of these bits. A bit is defined in the MSR, Floating-Point Exception Interrupt
Enable, or MSR(FE), which allows a precise program interrupt to be generated when an

enabled fioating-point exception occurs.

Floating-Point Registers
Implementations of this architecture provide 32 floating-point registers (FPR). The
fioating-point instruction formats provide a 5-bit field for specifying the FPRs used in the
instruction execution. The FPRs are numbered 0 to 31. See Figure 7 for a representation of
the flioating-point registers. A Floating-Point Status and Control register controis the handling
of fioating-point exceptions and records status resulting from the floating-point operations.

FPR 00
FPR 01

FPR 30
FPR 31

Figure 7. Floating-Point Registers

Each FPR contains 84 bits, which support the double-precision floating-point format. All
operations that interpret the contents of an FPR as a fioating-point value use the
double-precision floating-point format for this interpretation.

All floating-point operations other than load and store operations are performed on operands
located In FPRs and place the result value in an FPR. Status information is placed in the
Floating-Point Status and Control register and in some cases in the Condition register.

Load and store double instructions are provided that transfer 64 bits of data between
memory and the FPRs in the FPP with no conversion. Load single instructions are provided
to transfer and convert floating-point values in single floating format from memory to the
same value in double fioating format in the FPRs. Store single instructions are provided to
transfer and convert fioating-point values in double floating format from the FPRs to the
same value in single-floating format in memory.

1-28 General Architectures



Floating-Point Status and Control Register

The Floating-Point Status and Control register (FPSCR) contains the status and control flags
for floating-point operations. Bits 0 to 19 are Status bits. Bits 20 to 31 are Control bits.

0 31
FPSCR
Bit Name Description
00 FX Floating-Point Exception Summary
01 FEX Floating-Point Enabled Exception Summary
02 vX Floating-Point invalid Operation Exception Summary
03 OX Floating-Point Overflow Exception
04 UX Floating-Point Underflow Exception
05 ZX Floating-Point Zero Divide Exception
06 XX Floating-Point inexact Exception
07 VXSNAN Floating-Point Invalid Operation Exception (SNaN)
08 VXISI Floating-Point Invalid Operation Exception INF — INF)
09 VXIDI Floating-Point Invalid Operation Exception (INF + INF)
10 VXzZDZ Floating-Point Invalid Operation Exception (0 + 0)
1" VvXIMZ Floating-Point Invalid Operation Exception (INF x 0)
12 VXVC Floating-Point Invalid Operation Exception
(Invalid Compare)
13 FR Floating-Point Fraction Rounded
14 Fl Floating-Point Fraction Inexact
15 C Floating-Point Result Class Descriptor
16 FL Floating-Point Less Than
17 FG Floating-Point Greater Than
18 FE Floating-Point Equal
19 FU Floating-Point Unordered
20 Reserved
21 Reserved
22 VXSQRT Floating-Point Invalid Operation Exception
(Invalid Square Root)
23 VXCVI Floating-Point Invalid Operation Exception
(Invalid Integer Convert)
24 VE Floating-Point Invalid Operation Exception Enable
25 OE Floating-Point Overflow Exception Enable
26 UE Floating-Point Underflow Exception Enable
7 ZE Floating-Point Zero Divide Exception Enable
28 XE Floating-Point Inexact Exception Enable
29 Reserved
30 RN Floating-Point Rounding Control
31 RN Floating-Point Rounding Control.
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The format of the FPSCR follows:

Bit
o

10

1"

12

13

14
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Description

Floating-Point Exception Summary (FX). Every floating-point arithmetic
instruction, floating-point compare instruction, and the Floating Round to
Single instruction shall implicitly set FPSCR(FX) if that instruction causes
any of the Floating-Point Exception bits in the FPSCR to transition from
0 to 1. Also, use of the mifsb1 instruction, which causes any of the
Floating-Point Exception bits in the FPSCR to transition from O to 1 shall
implicitly set FPSCR(FX). The mcris instruction shall be able to implicitly
reset the FPSCR(FX). And finally, the mtfsf, mtfsfi, mtfsb1, and mifsb0
instructions are able to set or clear FPSCR(FX) explicitly.

Floating-Point Enabled Exception Summary (FEX). This bit signals the
occurrence of any of the enabled exception conditions. It is the ‘OR’ of all
the floating-point exceptions masked with their respective enable.

Floating-Point Invalid Operation Exception Summary (VX). This bit signals
the occurrence of any invalid operation axceptions. It is the ‘OR’ of all the
invalid operation exceptions.

Floating-Point Overflow Exception (OX). See “Overflow Exception” on
page 1-42 for information about this register.

Floating-Point Undertiow Excaption (UX). See “Underflow Exception” on
page 1-44 for information about this register.

Floating-Point Zero Divide Exception (ZX). See *Zero Divide Exception” on
page 1-41 for information about this register.

Floating-Point Inexact Exception (XX). See “Inexact Exception™on page 1-44
for information about this register.

Floating-Point Invalid Operation Exception (SNaN) (VXSNAN). See “Invalid
Operation Exception” on page 1-40 for information about this register.

Floating-Point Invalid Operation Exception (INF — INF) (VXISI). See “Invalid
Operation Exception” on page 1-40 for information about this register.

Floating-Point Invalid Operation Exception (INF + INF) (VXIDI). See “Invalid
Operation Exception” on page 1-40 for information about this register.

Floating-Point Invalid Operation Exception (0 + 0) (VXZDZ). See “Invalid
Operation Exception” on page 1-40 for information about this register.

Floating-Paint Invalid Operation Exception (INF x 0) (VXIMZ). See “Invalid
Operation Exception” on page 1-40 for information about this register.

Floating-Point Invalid Operation Exception (Invalid Compare) (VXVC). See
“Invalid Operation Exception” on page 1-40 for information about this
register.

Floating-Point Fraction Rounded (FR). The last floating-point instruction that
rounded the intermediate resuilt incremented the fraction.

Floating-Point Fraction Inexact (FI). The last floating-point instruction that
rounded the intermediate result produced an inexact fraction or a disabled
exponent overfiow.



Bit
15-19

Description
Floating-Point Result Flags (FPRF).
Bit Description
15 Floating-Point Result Class Descriptor (C)
16-19 Floating-Point Condition Code (FPCC).
Bit Description
16 Floating-point less than or negative
(FL or <)
17 Floating-point greater than or positive
(FG or >)
18 Floating-point equal or zero (FE or equals)
19 Floating-point unordered or NaN (FU).
Floating-point compare instructions always
set one of the FPCC bits to 1 and the other
three FPCC bits to 0. Other instructions
can set the FPCC bits with the C bit to
encode these 5 bits to indicate the class of
the stored result. See the following table for
the floating-point result flags. Notice that in
this case the three high-order bits of the
FPCC retain their relational significance
indicating that the value is less than,
greater than, or equal to zero.
Floating-Point Resuit Flags
Result Flags
Cc>=7? Result Value Class
10001 - Quiet NaN
01001 - Infinity
01000 - Normalized number
11000 - Denomalized number
10010 - 2Zero
00010 + Zero
10111 + Denormalized number
00100 + Normalized number
00101 + Infinity
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Bit Description

20-21 Reserved.

22 Floating-Point Invalid Square Root Exception. See “Invalid Operation
Exception” on page 1-40 for information about this register.

23 Floating-Point Invalid Integer Convert Exception. See “Invalid Operation
Exception” on page 1-40 for information about this register.

24 Floating-Point Invalid Operation Exception Enable (VE). Ses “invalid
Operation Exception” on page 1-40 for information about this register.

25 Floating-Point Overflow Exception Enable (OE). See “Overflow Exception®
on page 1-42 for information about this register.

26 Floating-Point Underflow Exception Enable (UE). See “Underflow
Exception™ on page 1-44 for information about this register.

27 Floating-Point Zero Divide Exception Enable (ZE). See “Zero Divide
Exception” on page 1-41 for information about this register.

28 Floating-Point Inexact Exception Enable (XE). See “Inexact Exception™ on
page 1-44 for information about this register.

29 Reservaed.

30-31 Fioating-Point Rounding Control (RN). See “Rounding” on page 1-37 for
information about this register.

Setting Description

00 Round to Nearest

01 Round toward Zero

10 Round toward +Infinity
1 Round toward —Infinity.

Note: Every exception bit in the FPSCR Is sticky (bits O to 12) except the Floating-Point
Enabled Exception Summary and Floating-Point Invalid Operation Exception
Summary bits. That is, once set they remain set until one of the following instructions
possibly changes them: mtfsf, mtfsfi, mtfsb0, and meris.
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Floating-Point Data Representation
This section describes how data is represented in the Fioating-Point Procassor.

Data Format
This architecture defines the representation of a floating-point vaiue in two different binary
fixed-length formats. The format can be a one-word format for a single-precision fioating-
point value or a two-word format for a double-precision fioating-point value. The single
format (see Figure 8) can be used for data in memory. The double format (see Figure 9) can
be used for data in memory and for data in Floating-Point registers. The length of the
exponent and the fraction fields differ between these two formats.

S| EXP FRACTION
0 1 ) 31
Figure 8. Floating-Point Single Format

S EXP FRACTION
0 1 12 a3

Figure 8. Floating-Point Double Format
Values in fioating-point format are composed of the following fields:

Fleld Description
S Sign bit
EXP Exponent + Bias

FRACTION  Fraction.

Bit 0 is the Sign bit. The xMSB bit is the most significant bit of the EXP field, the xL.SB bit Is
the least significant bit of the EXP field. The fMSB bit is the most significant bit of the
FRACTION field. The fLSB bit is the least significant bit of the FRACTION field.

Representation of numerical values in the floating-point formats consist of a Sign bit S, a
blased exponent EXP, and the fraction portion FRACTION, of the significand. The
significand consists of a Leading Implied bit concatenated on the right with the FRACTION
field. This Leading Implied bit is a 1 for normalized numbers and a 0 for denormalized
numbers and is located in the Unit bit position (the first bit to the left of the binary point).
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Values represented within the two floating point formats can be specified by the parameters
listed in Figure 10.

Parameter Format
Single Double
Exponent bias +127 +1023
Maximum exponent +127 +1023
Minimum exponent -126 -1022
Widths (bits)
Format 32 64
gsn X 1 1
ponen 8 11
Fraction 23 52
Significand 24 53

Figure 10. |EEE Floating-Point Fleids

The architecture requires that the FPRs of the FPP support the arithmetic instructions on
values in the double-precision fioating-point format only.

Value Representation
This architecture defines numerical and nonnumerical values representable within each of
the two supported formats. The numerical values are approximations to the real numbers
and include the normalized numbers, denormalized numbers, and zero values. The
nonnumerical values representable are the infinities and the NaN values. The infinities are
adjoined to the real numbers but are not numbers themselves, and the standard rules of
arithmetic do not hold when they appear in an operation. They are related to the real
numbers by order alone. Restricted operations among numbers and infinities can be
defined. Figure 11 shows the relative location on the real number line for each of the defined

entities.
;INF] —NOR |-DEN| -0 ] +0 | +DEN | +NOR [+IN5
] | 1 | I |

Figure 11, Approximation to Real Numbers

The NaN values are not related to the numbers or infinities by order or value, but are
encodings used to convey diagnostic information such as the representation of uninitialized

variables.
The following sections describe the different floating-point values defined in the architecture.

Binary Floating-Point Numbers
Machine-representable values are used as approximations to real numbers. Three
categories of numbers are supported: normalized numbers, denormalized numbers, and

zero values.
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Normalized Numbers (+NOR)

The following are values that have a biased exponent value in the range:

» 1to 254 in single format
e 1 to 2048 in double format.

They are values in which the implied Unit bit is 1. Normalized numbers are interpreted as
follows:

NOR equals (—1)**8 x 2**E x (1.fraction)

where s is the sign, E is the unbiased exponent, and 1.fraction is the significand that is
composed of a leading Unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normalized fioating-point number are
approximately equal to:

Single format:

1.2x10**-38 s M 5 3.4x10"38
Double format:

2.2x10"*-308 < M < 1.8x10**08

Zero Values (+0)
Zero values are values that have a biased exponent value of 0 and a fraction value of O.
Zeros can have a positive or negative sign.

Denormalized Numbers (+DEN)
Denomnalized numbers are values that have a biased exponent value of 0 and a nonzero
fraction value. They are nonzero numbers smaller in magnitude than the representable
normalized numbers. They are values in which the implied Unit bit is 0. Denormalized
numbers are intarpreted as follows:
DEN equals (—1)**8 x 2**Emin x (0.fraction)

where Emin is the minimum representable exponent value (-1286 for single precision, —1022
for double precision).

Infinities (+INF)

Infinities are values that have the maximum biased exponent value of:

e 255 in the single format
e 2047 in the double format.

The fraction value of an infinity is zero. They are used to approximate values greater in
magnitude than the maximum normalized value.

Infinity arithmetic is defined as the limiting case of real arithmetic, with restricted operations
defined among numbers and infinities. Infinities and the real numbers can be related by
ordering in the affine sense:

—INF < every finite number < + INF

Arithmetic on infinities is exact and usually does not signal an exception. Exceptions occur
because of invalid operations. See “Invalid Operation Exception® on page 1-40 for
information.
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Not a Numbers (NaNs)
NaN values are values that have the maximum biased exponent value and a nonzero
fraction value. The Sign bit is ignored (NaN values are neither positive nor negative). If the
high-order bit of the fraction field is 1, it is defined as a quiet NaN (QNaN); otherwise, it is
defined as a signaling NaN. Quiet NaNs are used to represent the result of certain invalid
operations. When the Invalid Operation Exception is disabled, FPSCR(VE) equals 0.
Examples include undefined arithmetic operations on infinities or NaNs. NaNs used in this
manner can convey diagnostic information to help identify results from these invalid
operations. Signaling NaNs are used to signal exceptions when they appear as arithmetic
operands, while quiet NaNs propagate through most operations without signaling exceptions
regardiess of the condition of the operation. Specific encoding can thus be preserved
through a number of arithmetic operations for its intended use as dlagnostic information.
When a QNaN is the result of an operation because one of the operands is a NaN or
because a QNaN was generated due to a disabled Invalid Operation Exception, then the
following rule is applied to determine the NaN with the High-Order Fraction bit set to 1 that is

to be stored as the result.

if (FRA) is a NaN
Then (FRT) « (FRA)
Else if (FRB) is a NaN
Then (FRT) « (FRB)
Eise if (FRC) is a NaN
Then (FRT) « (FRC)
Else if generated QNaN
Then (FRT) « generated QNaN

If the operand specified by the FRA is a NaN, that NaN is stored as the result. If the operand
specified by the FRB is a NaN (if the instruction specifies an FRB operand), that NaN is
stored as the result. If the operand specified by the FRC is a NaN (if the instruction specifies
an FRC operand), that NaN is stored as the result. If a QNaN was generated due to a
disabled Invalid Operation Exception, that QNaN is stored as the result. If a QNaN is to be
generated as a result, the QNaN generated has a Sign bit of 0, an exponent field of all ones
and a High-Order Fraction bit of 1 with all other fraction bits 0. Any instruction that generates
a QNaN as the result of a disabled invalid Operation generates this QNaN.

Normalization and Denormalization
When an arithmetic operation produces an intermediate result, consisting of a Sign bit, an
exponent, and a nonzero significand with a 0 leading bit, it is not a normalized number and
must be normalized before it is stored.

To normalize a number, the significand is shifted left while the exponent is decremented by
one for each bit shifted, until the leading significand bit becomes 1. The Guard bit and the
Round bit (See “Execution Model for IEEE Operations” on page 1-45) participate in the shift
with zeros shifted into the Round bit. The exponent is regarded as if its range were
unlimited. If the resulting exponent value is less than the minimum value that can be
represented in the format specified for the result, the intermediate result is said to be Tiny.
The stored result is determined by the rules described in “Underflow Exception” on

page 1-44. The sign of the number does not change.

When an arithmetic operation produces a nonzero intermediate result with an exponent
value less than the minimum value that can be represented in the format specified for the
result, the stored result is determined by the rules described in “Underfiow Exception” on
page 1-44. This process may require denormalization.
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Precision

Rounding

To denormalize a number, the significand is shifted right while the exponent is incremented
by one for each bit shifted until the exponent is equal to the format minimum value. If any
significant bits are lost in this shifting process then Loss of Accuracy has occurred and
Underflow Exception is signaled. See “Underflow Exception® on page 1-44 for more
information. The sign of the number does not change.

When denormalized numbers are operands of multiply and divide operations they are
prenormalized internally before the operations are periormed.

All arithmetic operations are performed in fioating-point double-precision. Floating-point
single-precision is obtained with the implementation of four forms of instructions:

1. Load Floating-Point Single

This form of instruction accesses a single-precision operand in memory, converts it to
double-precision operand, and loads it into an FPR. No exceptions are detected on the
load operation.

2. Arithmetic operation performed in double precision
3. Round to Floating-Point Single

This form of instruction rounds a double-precision operand to single-precision, checks
the exponent for single-precision range, handles any exceptions according to respective
enable bits, and stores that operand into an FPR as a double-precision operand.

4, Store Floating-Point Single

This form of instruction converts a double-precision operand to single-precision and
stores that operand into memory. If the operand requires denormalization in order to fit in
single-precision, it is denormalized prior to storing it. No exceptions are detected on the
store operation. (Assumes step 3 has been executed.)

All arithmetic instructions defined by this architecture produce an intermediate result that can
be regarded as being infinitely precise. This result must then be written with a precision of
finite length into an FPR. After normalization or denormalization, if the infinitely precise
intermediate result is not representable, it must be rounded.

Four modes of rounding are provided that are user-selectable through the Floating-Point
Rounding Control field in the FPSCR. These are encoded as follows:

RN Rounding Mode

00 Round to Nearest

01 Round towards Zero

10 Round towards + Infinity
1 Round towards —Infinity.

Let Z be the infinitely precise intermediate arithmetic result or the operand of a convert
operation. If Zcan be represented exactly in the target format, rounding in all modes is
equivalent to truncation of Z. If Z cannot be represented exactly in the target format, let 27
and Z2 be the next largest and next smallest numbers representable in the target format that
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bound Z, then Z1 or Z2 can be used to approximate the result in the target format. Figure 12
shows the relation of Z, Z1, and Z2.

By Iincrementing LSB of Z

, Infinitely Precise Value
l l By Truncating after LSB 1 l
1 1 ] [ |
1 T 11
2 0 2 5 Z1
Negative Values < + — Posltive Values
Figure 12, Selection of Z1 and Z2
The following rules specify the rounding in the four modas:
Round To Nearest Choose the best approximation of Z1 or Z2. In case of a tie,
choose the one that is even (least significant bit 0).
Round Toward Zero Choose the smaller in magnitude (21 or Z2).

Round Toward +Infinity Choose Z1.
Round Toward ~Iinfinity Choose Z2.

The arithmetic instructions are defined for operations on values that are in the double
format.

See “Execution Model for IEEE Operations” on page 1-45 for a detailed explanation of
rounding.

Data Handling
Instructions are defined to move floating-point data between the FPRs and memory. For
double format the data is not altered during the move. For single-format data, a format
conversion from single to double is performed when loading from memory into an FPR and
a format conversion from double to single is performed when storing from an FPR to
memory. No floating-point exceptions are raised during these operations.

The arithmetic instructions interpret the operand data and produce result data only in the
double format.

Note: The Round Floating-Point Double to Single instruction is provided to allow value
conversion from double to single precision with appropriate exception checking and
rounding. This instruction should be used after every arithmetic operation for
obtaining conforming IEEE single-precision results.

1-38 General Architectures



Floating-Point Exceptions
This architecture defines the following fioating-point exceptions:

¢ Invalid Operation Exception
- SNaN

Infinity — Infinity

Infinity x Zero

Infinity + Infinity

- Zero +Zero

Ordered Compare with a NaN

Zero Divide Exception

Overflow Exception

Underflow Exception

Inexact Exception.

These exceptions can occur during the fioating-point arithmetic and conversion operations.
For each exception, there is one FPSCR bit to indicate occurrence of the exception and
another FPSCR bit to indicate whether the exception is enabled or disabled. If any of these
exceptions are recognized during the execution of a fioating-point instruction, the exception
condition is signalled by setting the corresponding exception bit for the condition in the
FPSCR. A Floating-Point Exception Summary bit in the FPSCR is set when any of the
exception bits changes from 0 to 1, or when explicitly set by software. A Floating-Point
Enabled Exception Summary bit in the FPSCR is set when any of the exceptions are set and
the exception is enabled (enable bit is 1).

Multiple exceptions can be set in four cases:
¢ Inexact Exception can be set with Overflow Exception.
¢ Inexact Exception can be set with Underflow Exception.

« Invalid Operation Exception (SNaN) can be set with Invalid Operation Exception (Inf x 0)
for multiply-add type instructions.

¢ Invalld Operation Exception (SNaN) can be set with Invalid Operation Exception (NaN
Compare) for compare instructions.

When an exception occurs, a result can be delivered or the instruction execution can be
suppressed depending on the exception. When a result is to be delivered, it can be a
different value for the enabled and disabled conditions for some of the exceptions.

The IEEE standard specifies the handling of the exceptional conditions in terms of traps and
trap handlers. In this architecture, an Exception Enable bit of 1 causes the generation of
result values as specified in the IEEE standard for the trap enabled case. An Exception
Enable bit of O causes the generation of default result values as specified for the trap
disabled (or no trap occurs or trap is not implemented) case. The result to be delivered in
each case for each exception is described in the following sections.

In this architecture the detection of the floating-point exception conditions requires either a
programmed test or enabling of program interrupts to be generated on enabled fioating-
point exceptions. For the programmed test to uniquely and precisely detect all exceptions
that occur, each instruction that can cause a fioating-point exception should be followed by a
software branch to a handling routine. For program Interrupt detection, MSR(FE) or MSR(IE)
must be set to one and the desired floating-point exception enable bits must also be set to
ones.
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If MSR(FE) is a one and a floating-point operation causes an enabled exception, a precise
PRogram Interrupt is generated. For a precise interrupt, the address saved in SRRO is the
address of the instruction that caused the interrupt, all instructions prior to the instruction
casing the exception have completed, and no instruction subsequent to the instruction
causing their exception has been executed. A Floating-Point Imprecise Interrupt is

generated when MSR(FE) is a zero, MSR(IE) is a one, and a floating-point operation causes
an enabled exception. For an imprecise interrupt, some number of instructions beyond the
instruction causing the exception may have been executed and the address saved in SRRO
points to an instruction that has not been executed.

Note: This program interrupt is generated every cycle that FPSCR(FEX) equals 1 and
MSR(FE) equals 1. It is the responsibility of the exception handler to clear the
exception bit that caused the interrupt. Also, the address of the instruction that
causes the interrupt is the address that is saved in the SRR 0 register, and, if the
SRR 0 register is unaltered, that instruction is the instruction retumed to and
re-executed. For certain types of floating-point exceptions, retuming to the instruction
following the instruction that caused the interrupt may be required; therefore, the
exception handler is required to increment the address in the SRR 0 register by 4.

System performance with the MSR(FE) bit set to 1 can be significantly degraded.

Floating-Point Exception bits in the FPSCR are sticky. That is, once set, they remain set until
software resets them with either a mtfsf, mtfsfi, mtfsb1, mtfsb0, or mterfs instruction.

Instruction execution is suppressed in some cases when an exception occurs, so there is no
possibility that one of the operands would be lost. These cases are:

e Enabled Invalid Operation
o Enabled Zero Divide.

In all other cases, a specified result is generated and written to the destination specified for
the instruction causing the exception. These cases are:

Disabled Invalid Operation
Disabled Zero Divide
Disabled Overflow
Disabled Underflow
Disabled Inexact

Enabled Overflow
Enabled Underfiow
Enabled Inexact.

The following sections define each of the floating-point exceptions and specify the action to
be taken when they are detected. For single-precision applications, the exception detection
and handling can be slightly different. See the Floating Round to Single Precision instruction
in the Assembler Language Reference for exceptions and handling of exceptions for
single-precision floating-point arithmetic.

invalid Operation Exception

Definition
An Invalid Operation Exception occurs when an operand is invalid for the specified

operation. The invalid operations follow:

¢ Any operation on a signaling NaN (SNaN)

o For add or subtract operations, magnitude subtraction of infinities (INF — INF)
o Multiplication of zero by infinity (INF x 0)

Division of zero by zero (0 + 0)

Division of infinity by infinity (INF + INF)
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Action

¢ Ordered comparison invoiving a NaN (NaN Compare)
e Square Root of a number that is both negative and nonzero (Invalid Square Root)
¢ Integer conversion of a NaN or a number that is too large (Invalid Integer Conversion).

The action to be taken depends on the setting of the Invalid Operation Exception Enable bit
of the FPSCR.

When the Invalid Operation Exception Enable bit is enabled, FPSCR(VE) equals 1, and
invalid operation occurs, the following actions are taken:

1. Instruction execution is suppressed; operands are unmodified.
2. One of the following invalid operation exceptions is set:

FPSCR(VXSNAN) (if SNaN)

FPSCR(VXISI) (if INF — INF)
FPSCR(VXIDI) (if INF + INF)
FPSCR(VXZD2) (if 0 +0)

FPSCR(VXIMZ) (if INF x 0)
FPSCR(VXVC) (if NaN Compare)
FPSCR(VXSQRT) (if Invalid Square Root)
FPSCR(VXCVI) (if Invalid Integer Convert).

3. If the operation is a compare operation, the FPCC field is set to reflect the Floating-Point
Unordered bit. Refer to the “Floating-Point Status and Control Register” on page 1-29 for
more detalls.

When the Invalid Operation Exception Enable bit is disabled, FPSCR(VE) equals 0, and
invalid operation occurs, the following actions are taken:

1. One of the invalid operation exceptions is set:

FPSCR(VXSNAN) (if SNaN)
FPSCR(VXISI) (it INF = INF)
FPSCR(VXIDI) (it INF + INF)
FPSCR(VXZD2) (it 0+ 0)

FPSCR(VXIMZ) (if INF x 0)
FPSCR(VXCVI) (if Invalid Integer Convert).

2. It the operation destination is an FPR, the result is a QNaN.

3. If a result is generated, the FPRF field in the FPSCR is set to reflect the quiet NaN result.
If the operation is a compare operation, the FPCC field is set to reflect the Floating-Point
Unordered bit. Refer to the “Floating-Point Status and Control Register” on page 1-29 for
more details.

Zero Divide Exception

Definition

Action

A Zero Divide Exception occurs when a divide instruction is executed with a zero divisor
value and a finite nonzero dividend value.

The action taken depends on the setting of the Zero Divide Exception Enabie bit of the
FPSCR.

System Processors 1-41



When the Zero Divide Exception Enabile bit is enabled, FPSCR(ZE) equals 1, and a zero
divide exception occurs, the following actions are taken: FPSCR(ZX) « 1. (A value of 1 is
stored in the 2x bit of the FPSCR.

1. Instruction execution is suppressed; operands are unmodified.
2. The Zero Divide Exception bit is set: FPSCR(ZX) «1.

When the Zero Divide Exception Enable bit is disabled, FPSCR(ZE) equals 0, and a zero
divide exception occurs, the following actions are taken:

1. The Zero Divide Exception bit is set: FPSCR(ZX) « 1.

2. The result is set to t infinity, where the sign is determined by the exclusive ‘OR’ of the
sign of the operands.

3. The FPRF field in the FPSCR is set to indicate an infinity with the proper sign.
4. The resuit is placed into the target FPR.

Overflow Exception

Definition

Action

An overflow occurs when the magnitude of what would have been the rounded resutlt, if the
exponent range were unbounded, exceeds the magnitude of the largest finite number of the
specified result precision.

The action to be taken depends on the setting of the Overflow Exception Enable bit of the
FPSCR.

When the Overfiow Exception Enable bit Is enabled, FPSCR(OE) equals 1, and exponent
overflow occurs, the following actions are taken:

1. The Overflow Exception is set: FPSCR(OX) « 1.

2. The exponent of the normalized intermediate result is adjusted by subtracting 1536.

3 T_he FPRF field in the FPSCR is set to indicate a normalized number with the proper
sign.

4. The rounded result is placed into the specified FPR.

When the Overflow Exception Enable bit is disabled, FPSCR(OE) equals 0, and overflow

occurs, the following actions are taken:

1. The Overflow Exception bit is set: FPSCR(OX) « 1.

2. The Inexact Exception bit is set: FPSCR(XX) « 1.

3. The result is determined by the rounding mode, FPSCR(RN), and the sign of the
intermediate result as follows: for negative overflows, store —Infinity; and, for positive
overflows, store the format’s largest finite number.

a. Round To Nearest: Store t Infinity, where the sign is the sign of the intermediate
result,

b. Round To Zero: Store the format’s largest finite number with the sign of the
intermediate resuit.
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¢. Round To + Infinity: For negative overflows, store the format's most negative finite
number, and, for positive overflows, store + infinity.

d. Round To - Infinity: For negative overfiows, store — infinity and, for positive overflows,
store the format’s largest finite number.

4. The FPRF field in the FPSCR is set to indicate the class and sign of the resuilt.
5. The result is placed into the specified FPR.

FPA 2.4 Implementation Note
An Overflow Exception applies to machines with an FPA level of 2.4. To identify the level of
the FPA, run the lscfg command with a -v flag. This produces a list of the vital product data.
Under the processor component near the beginning of the list, there is a line similar to the
following:

Device Specific. (Z20)........ 01XXyy
This exception applies only if the Xx equals a value of 24.

Overflow occurs when the magnitude of the rounded intermediate result exceeds that of the
largest finite number of the specified result precision.

The Floating Round to Single Precision instruction may produce incorrect results when all
the following conditions are met:

¢ The Floating Round to Single Precision instruction is dependent on a previous
floating-point arithmetic operation. Dependent means that it uses the target register of the
arithmetic operation as the source register.

¢ Less than two nondependent fioating-point arithmetic operations occur between the
Floating Round to Single Precision instruction and the operation on which it is dependent.

« The magnitude of the double-precision result of the arithmetic operation is less than
2**128 before rounding.

» The magnitude of the double-precision result after rounding is exactly 2**128.

Resultant Value
It the error occurs, the magnitude of the result placed in the target register is 2**128:

X‘47F0000000000000' or X'‘C7F0000000000000

This is not a valid single precision value. The setting of the FPSCR and Condition register
(CR) will be the same as if the result did not overflow.

insuring Correct Rasults

If after considering the results described previously, the programmer decides that the error
will cause significant problems for the application, either of the following methods may be
used to avoid the error:

¢ Ensure that two nondependent floating-point operations are placed between a floating-
point arithmetic operation and the dependent round to single. The target register for these
operations should not be the same register that the Floating Round to Single Precision
instruction uses as a source register.

¢ Insert two fioating-round-to-single-precision operations when the
fioating-round-to-single-precision operation may be dependent on an arithmetic operation
that precedaes it by less than three fioating-point instructions.

Either solution degrades performance by an amount dependent on the particular application.
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Underflow Exception

Definition

Action

Underflow Exception is defined separately for the enabled and disabled states:

Enabled: Underflow occurs when the intermediate result is Tiny.

Disabled. Underflow occurs when the intermediate result is Tiny and there is Loss of
Accuracy.

A Tiny result is detected before rounding when a nonzero result value, computed as though
the exponent range were unbounded, would be less in magnitude than the smallest

nomalized number.

If the intermediate result is Tiny and the Underflow Exception Enable bit is off, FPSCR(UE)
equals 0, the intermediate result is to be denormalized and rounded. See “Normalization
and Denormalization” on page 1-36 and “Rounding” on page 1-37 for information about
denormalizing and rounding results.

Loss of Accuracy is detected as an inexact result when the delivered result value differs
from what would have been computed werse both the exponent range and precision
unbounded.

The -action to be taken depends on the setting of the Underflow Exception Enable bit of the

FPSCR.

When the Underflow Exception Enable bit is enabled, FPSCR(UE) equals 1, and exponent

underfiow occurs, the following actions are taken:

1. The Underflow Exception bit is set: FPSCR(UX) « 1.

2. The exponent of the normalized intermediate result is adjusted by adding 1536.

3. The FPRF field in the FPSCR is set to indicate a normalized number with the proper
sign.

4. The rounded result is placed into the specified FPR.

Note: The FR and FI bits in the FPSCR allow the trap handler to simulate a trap disabled
environment. The bits provide enough information to unround the result prior to

denormalization.

When the Underflow Exception Enable bit is disabled, FPSCR(UE) equals 0, and underflow
occurs, the following actions are taken:

1. The Underfiow Exception bit is set: FPSCR(UX) « 1.

2. The FPREF field in the FPSCR is set to indicate the class and sign of the resutlt
(xDenormalized Number or +zero).

3. The rounded result is placed into the specified FPR.

Inexact Exception

Definition

The Inexact Exception occurs when one of two conditions occurs during rounding:

o The rounded result differs from the intermediate result assuming the intermediate result
exponent range and precision to be unbounded.

¢ The rounded result overflows and the Overflow Exception is disabled.
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Action
When the Inexact Exception occurs, the following actions are taken:

1. The Inexact Exception bit is set: FPSCR(XX) « 1.
2. The FPRF field in the FPSCR is set to indicate the class and sign of the result.
3. The rounded or overflowed result is placed into the destination FPR.

Floating-Point Resource Management

Facilities are defined to allow control of the use of the Floating-Point Processor. MSR(FP) is
the Floating-Point Available bit. It controls the execution of floating-point instructions. When
the FPP is avallable, MSR(FP) equals 1 and the fioating-point instructions can be executed.
Otherwise the FPP is unavailable, and MSR(FP) equals 0. An attempt to execute a
floating-point instruction in this state causes a Floating-Point Unavailable Interrupt and the
instruction execution is suppressed.

The test for an invalid processor op code is made before the MSR(FP) bit is inspected.

Floating-Point Execution Models

All implementations of this architecture must provide the equivalent of the following
execution models to ensure that identical results are obtained.

Special rules are provided in the definition of the arithmetic instructions for the infinities,
denormalized numbers, and NaNs.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
makes use of two additional bit positions to avoid potential transient overflow conditions.
One extra bit is required when denormalized double-precision numbers are prenormalized.
The second bit is required to permit the computation of the adjusted exponent value in each
of the following cases when the corresponding Exception Enable bit is 1:

e Underflow during multiplication using a denommalized factor.
o Overflow during division using a denormalized divisor.

Execution Model for IEEE Operations

IEEE conforming significand arithmetic is considered to be performed with a fioating-point
accumulator. Figure 13 shows the format of the accumulator.

s|C| L FRACTION G|R| X
0 1 52
Figure 13. IEEE Execution Model
Fleid Description
S Sign bit
Cc Carry bit that captures the carry out of the significand
L Leading Unit bit of the significand that receives the Implicit bit from the
operands

FRACTION Fraction, a 52-bit field that accepts the fraction of the operands.
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The Guard (G), Round (R), and Sticky (X) bits are extensions to the low-order bits of the
accumulator. The G and R bits are required for post normalization of the result. The G, R,
and X bits are required during rounding to determine if the intermediate result is equally near
the two nearest representable values. The X bit serves as an extension to the G and R bits
by representing the logical ‘'OR’ of all bits that can appear to the low-order side of the R bit,
either due to shifting the accumulator right or other generation of low-order result bits. The G
and R bits participate in the left shifts with zeros being shifted into the R bit. Figure 14 shows
the significance of the G, R, and X bits with respect to the intermediate result (IR), the next
lower in magnitude representable number (NL), and the next higher in magnitude

representable number (NH).
GRX Interpretation
000 IR Is exact
001
010 IR closer to NL
011
100 IR midway between NL and NH
101
110 IR closer to NH
111

Figure 14. Interpretation of G, R, and X Bits

The significand of the intermediate result is made up of the L bit, the FRACTION field, and
the G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in the L,
FRACTION, G, R, and X bits of the fioating-point accumulator.

Before the results are stored into an FPR, the significand is rounded using the rounding
mode specified by the Floating-Point Rounding Control field (RM) of the FPSCR. If rounding
results in a carry into the C bit, the significand is shifted right one position and the exponent
is incremented by one. This, in tum, can result in an exponent overflow. Fraction bits to the
left of the bit position used for rounding are stored in the FPR, and low-order bit positions, if

any, are sett0 0.

Four modes of rounding are provided that are user-selectable through the Floating-Point
Rounding Control field (RM) of the FPSCR. This field is encoded as follows:

RN Rounding Mode

00 Round To Nearest

o1 Round Toward Zero

10 Round Toward + infinity
11 Round Toward — Infinity

For rounding, the conceptual Guard, Round, and Sticky bits are defined in terms of
accumulator bits. The following table refers to the bit positions of Guard, Round, and Sticky
for double and single-precision FP numbers.
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Location of the Guard, Round, and Sticky Bits
Format Guard Round Sticky
Double G bit R bit X bit
Single 24 25 26-52G, R, X

Rounding can be treated as though the significand were shifted right, if required, until the
least significant bit to be retained is in the low-order bit position of the FRACTION field. If
any of the Guard, Round, or Sticky bits are nonzero, the result is inexact.

Z1 and Z2, as defined in “Rounding,” on page 1-37 can be used to approximate the result in
the target format when one of the following rules is used.

If rounding results in a carry into the C bit, the significand must be shifted right one position
and the exponent is increased by one. This can result in signaling an inexact result if the low
order bit of the fraction had been a 1.

Where the result is to have fewer than 53 bits of precision because the instruction is a round
to single-precision, the intermediate result is either normalized, or is placed in correct
denormalized form before the result is rounded.

Execution Model for Multiply-Add Type Instructions
The architecture makes use of a special form of instruction that performs up to three
operations in ane instruction (a muitiply, an add, and a negate operation). With this added
capability is the special feature of being able to produce a more exact intermediate resuft as
an input to the rounder. Figure15 shows the intermediate results produced by the
multiply-add operations.

S| C| L FRACTION G|R |X
0 1 105
Figure 15. Multiply Add Execution Model

The first part of the operation is a multiply operation. The multiply opsration has two 53-bit
significands as inputs, which are assumed to be prenormalized, and produces a result
conforming to the preceding model. The sign produced by the multiply operation portion is
defined to be the XOR of the signs of the two multiply input operands. If there is a carry out
of the significand (C), the significand is shifted to the right by one bit, shifting the L bit
(Leading Unit bit) into the most significant bit of the fraction, shifting the C bit (carry out) into
the L bit. All 106 bits (L bit, the fraction) of the product take part in the add operation. If the
exponents of the two inputs to the adder are not equal, the significand of the operand with
the smaller exponent is aligned (shifted) to the right by an amount that is added to that
exponent to make it equal to the other inputs’ exponent. Zeros are shifted into the left of the
significand as it is aligned and bits shifted out of bit 105 of the significand are ORed into the
X bit. The add operation also produces a result conforming to the preceding model with the
X bit taking part in the add operation. The sign produced by the add portion is defined to be
the sign of the largest of the two add input operands. When the sum of two operands with
opposite signs is exactly zero, the sign of that sum is positive in all rounding modes except
Round Toward — Infinity, in which mode that sign is negative. The sum of operands with the
same sign retains the sign of the operands, even if the operands are zeros.

The result of the add is then normalized, with all bits of the add result, except the X bit,
participating in the shift. The normalized result provides an intermediate result as input to
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the rounder that conforms to the model described in “Execution Model for IEEE Operations.”
on page 1-45 The intermediate result has the following characteristics:

¢ The Guard bit is bit 53 of the intermediate result.

¢ The Round bit is bit 54 of the intermediate result.

¢ The Sticky bit is the OR of all remaining bits to the right of bit 55, inclusive.

The rules of rounding the intermediate result are the same as the described in “Execution
Model for IEEE Operations” on page 1-45.

if the Instruction is Floating Negative Multiply Add or Floating Negative Multiply Subtract, the
negation occurs after rounding.

Iinterrupts

This section describes the function of and control over the System Interrupt mechanism.
Except for the Supervisor Call Interrupt, an interrupt is composed of the following actions:

1.

Loading SRR 0 with the address of the current or the next instruction (bits 30 and 31
are 0).
Loading bits 0 to 15 of SRR 1 with information specific to each interrupt.

3. Loading bits 16 to 31 of SRR 1 from bits 16 to 31 of the MSR.
4. Setting the MSR according to the following table.

Machine Stats Register Setting Due to interrupt
interrupt Type EE PR FP ME FE AL IP IR DR
System Reset 06 0 O N 0 o N O 0
Machine Check 0 0 0 0 0 0 N 0 0
Data Storage 0 0 0 N 0 0 N 0 0
Instruction Storage 0 0 (4] N 0 0 N 0 0
Alignment 0 0 0 N 0 0 N 0 0
Program 0 0 0 N 0 0 N 0 0
External 0 0 0 N 0 0 N 0 0
FP Unavailable 0 o 0 N 0 0 N 0 0
Trace 0 0 0 N o (0] N 0 0
FP Imprecise 0 0 0 N o] 0 N 0 0
Supervisor Call 0 0 N N 0 N N N N

The preceding table uses the following representations:

Setting Decode
0 Bit is set to 0.
N Bit is not altered.

Beginning the instruction fetch and execution operations using the new MSR value at a
location specific to each interrupt type. This location is determined by knowing the base
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address, as determined in “Machine State Register” on page 1-22, and by knowing the
offset of the interrupt as shown in the following list:

Offset Interrupt Type

X‘00100° System Reset Interrupt
X'00200° Machine Check Interrupt
X‘'00300° Data Storage Interrupt
X‘'00400° Instruction Storage Interrupt
X‘'00500’ External Interrupt
X'00600°  Alignment Interrupt
X‘'00700° Program Interrupt
X‘00800°  Floating Unavailable Interrupt

X‘'00900°  Trace Interrupt (POWER2 only)

X‘00A00’  Floating-Point Imprecise Interrupt (POWER2 only)
X‘'00B00' Reserved

X'00FO0°  Reserved
X'01000°  Supervisor Call interrupt
X'01020°  Supervisor Call Interrupt

X‘'01FCO'  Supervisor Call interrupt
X‘01FE0’  Supervisor Call Interrupt.
Note: The ranges of memory locations from X'00000800’ to X'00000FFF" and from

X'FFF00B00' to X'FFFOOFFF are reserved. Use of these locations risks possible
incompatibility with future implementations.

In the case of an SVC Interrupt, the Link register is used instead of SRR 0 and the Count
register instead of SRR 1. The execution begins at one of 128 entry points starting at offset
X'01000' to the base address indicated by the setting of MSR(IP). In addition, the following
bits in the MSR are tumed off:

¢ Extermnal Interrupt Enable (EE)
¢ Problem State (PR)
o FP Exception Interrupt Enable (FE).

The remaining bits are not modified.

Note: Except for the SVC Interrupt, the actions taken at an interrupt include tuming off both
the instruction and the data translation. Thus, the locations of the first instruction for
each of these interrupts are interpreted in a real context. See “Storage Control” on
page 1-89 for more information.

All interrupts are precise except the Floating-Point Imprecise, Machine Check and System
Reset Interrupts. For Program, Alignment, and Data Storage interrupts, the address
contained in SRR 0 points to the instruction that caused the interrupt. For the Floating-Point
imprecise Interrupt, the address contained in SRR 0 points to an instruction beyond the
instruction that caused the interrupt. For External and Instruction Storage Interrupts, the
address loaded into SRR 0 points to the instruction that would have executed next. For
System Reset and Machine Check Interrupts, the address loaded into SRR 0 points to the
instruction currently being executed if that instruction also causes an interrupt; otherwise, it
points to the instruction that would have executed next. For SVC Interrupts, the address
loaded into the Link register points to the instruction that should be retumed to after the SVC
Interrupt and does not affect SRR 0.
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All instructions prior to the instruction pointed to by SRR 0 (the Link register for SVC) have
logically completed at the time of the interrupt and no instruction logically subsequent to it

has executed.

In the case of a Data Storage Interrupt or an Alignment Interrupt, neither the RT register in
Load instructions nor the RA register in Load/Store with Update instructions are to be
altered.

Interrupt Definitions
The following section describes the interrupt definitions for the system processor
architecture.

System Reset Iinterrupt
A System reset begins with a System Reset Interrupt.

The following registers are set as indicated:

SRR O
Bit Description
0-31 Set to the address of the instruction currently being
executed if that instruction also causes an interrupt;
otherwise, set to the address of the instruction that would
have executed next.
SRR 1
Bit Description
0-15 Set to 0.
16-31 Loaded from bits 16 to 31 of the MSR.
MSR
Bit Description
0-15 Reserved.
16 EE Set to 0.
17PR Set to 0.
18 FP Setto 0.
19 ME Not altered.
20 FE Setto 0.
21-23 Reserved.
24 AL Setto 0.
251P Not altered.
26 IR Set 10 0.
27 DR Set t0 0.
28-31 Reserved.
Execution resumes at offset X'00100’ from the base address indicated by the setting of
MSR(IP).
Machine Check Interrupt

Typical machine failures reported with this interrupt include:

= Instruction Cache Reloads
-~ Memory Address Parity Error
= Uncorrectable ECC Error
— Address Exception (no extents match)

1-50 General Architectures



¢ Data Cache Reloads

- Memory Address Parity Error

- Uncorrectable ECC Error

- Address Exception (no extents match)
o Data Cache Storebacks

- Memory Address Parity Error

-~ Address Exception (no extents match).

Machine Check Interrupts are enabled when MSR(ME) = 1. If MSR(ME) = 0 and a Machine
Check occurs, the Processor Check stops.

The following registers are set as indicated:

SRRO

Bit Description

0-31 Set to the address of the instruction currently being

executed if the instruction has an exception; otherwise, set
to the instruction that would have executed next.

SRR 1

Bit Description

0-15 Setto 0.

16-31 Loaded from bits 16 to 31 of the MSR.
MSR

Bit Description

0-15 Reserved.

16 EE Setto 0.

17 PR Set to 0.

18 FP Setto 0.

18 ME Set to 0.

20 FE Setto 0.

21-23 Reserved.

24 AL Setto 0.

251P Not altered.

26 IR Set to 0.

27DR Set to 0.

28-31 Reserved.
Execution resumes at offset X'00200' from the base address indicated by the setting of
MSR(IP).

A Machine Check Interrupt with MSR(ME) = 0 produces a Check Stop condition and the
processor halts execution. The machine goes through a self-test and IPL again. See the
hardware technical referesnce manual for your system for more information on the Initial
Program Load procedure. Certain hardware failures, such as intemnal parity errors, hardware
hang conditions, and hardware error detection logic can also cause a Check Stop.

Data Storage Interrupt
A Data Storage Interrupt occurs when a data storage access cannot be performed for any of
the following reasons:

e /O Exception, when the execution of a storage access instruction is attempted and the
I/O subsystem indicates a failure detecled as part of the synchronous execution of that
instruction.

e Accessed virtual address cannot be translated.
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o Access is a floating load or store to an /O segment.

o Access violates storage protection.

o Access caused a loop in the hardware translation mechanism.
e Access caused a segment crossing fromT=0to T=1.

Such accesses can be generated by load and store type instructions, certain storage
controls, and the cache control instructions.

The interrupt cause is defined in a Data Storage Interrupt Status register. These interrupts
also use the Data Address register.

The following registers are set as indicated when the interrupt occurs:

SRR O

SRR 1

DSISR
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Bit
0-31

Blt
0-15
16-31

Bit
0-15
16 EE
17 PR
18 FP
19 ME
20 FE
21-23
24 AL
251P
26 IR
27DR
28-31

Description
Set to the address of the falling instruction.

Description
Setto 0.
Loaded from bits 16 to 31 of the MSR.

Description
Reserved.
Setto 0.
Set to 0.
Set t0 0.
Not altered.
Setto 0.
Reserved.
Setto 0.
Not altered.
Set to 0.
Set to 0.
Reserved.

Deacription
Set to 1 for an I/O Exception, otherwise t0 0.
Set to 1 if the end of the selected PTE chain is reached and

the translation of an attempted access is not found,
otherwise to 0.

Set to 1 if a storage access is not permitted by the
data-locking mechanism.

Set to 1 if a floating load or store instruction references an
1/0 segment (for example, a segment whose Segment
register's T bit equals 1); otherwise, set to 0.



Bit Description

4 Set to 1 if a storage access is not permitted by the page
protection mechanism described in “Page Protection” on
page 1-81; otherwiss, set to 0.

5 Set to 1 if an access causes a loop in the translation
mechanism (for example, the PTE search has gone on for
more than 127 attempts)); otherwise, set to0 0.

6 Set to 1 for a store operation and to zero for a load
operation
7 Set to 1 if a data storage access crosses a segment

boundary where the first segment accessed had T = 0 and
the segment crossed into has T = 1); otherwise, set to 0.

8-14 Setto 0.
15-31 Undefined.
DAR
Bit Description
0-31 Set to 1 of the following:

¢ An effective address of a byte in the first word accessed
in the page that caused the Data Storage Interrupt, for
floating single- and fixed-storage accesses

¢ An effective address of a byte in the first doubleword
accessed in the page that caused the Data Storage
Interrupt, for floating double accesses

¢ The effective address referenced in the 'O space for VO
exceptions.

Execution resumes at offset X'00300' from the base address indicated by the setting of
MSR(IP).

instruction Storage Interrupt
An Instruction Storage Interrupt occurs when an instruction fetch operation cannot be
performed for of any of the following reasons:

Address cannot be translated.

Address is in a Special sagment.

Address is in an /O segment.

Address is in a protected page.

Address caused a loop in the hardware translation mechanism.

Such accessas can only be generated by instruction fetch operations. The following
registers are set as indicated:

Bit Description
0-31 Set to the address of the instruction that was being fetched.
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SRR 1
Bit

6-15
16-31

Bit
0-15
16 EE
17PR
18 FP
19 ME
20 FE
21-23
24 AL
251P
26IR
27 DR
28-31

Description
Set t0 0.

Set to 1 if the end of the selected PTE chain is reached and-
the translation of an attempted access is not found,
otherwise, set to 0.

Set to 1 if the virtual address used to fetch an instruction is
in a Special Segment (SR S bit one); otherwise, set to 0.

Set to 1 if the address used to fetch an instruction is in an
IO segment (for example, a segmant whose Segment
register's T bit equals 1) and Instruction Relocate is on;
otherwise, set to 0.

Set to 1 if a storage access is not permitted by the page
protection mechanism described in “Page Protection” on
page 1-81; otherwise, set to 0.

Set to 1 if the fetch causes a loop in the translation
mechanism (for example, the PTE search has gone on for
more than 127 attempts); otherwise, set to 0.

Setto 0.
Loaded from bits 16 to 31 of the MSR.

Description
Reserved.
Set to 0.
Set to 0.
Set 0 0.
Not altered.
Set 10 0.
Reserved.
Set to 0.
Not altered.
Set to 0.
Set to 0.
Reserved.

Execution resumes at offset X'00400' from the base address indicated by the setting of

MSR(IP).

Alignment Interrupt

An Alignment Interrupt is raised when MSR(AL) = 1 and one the following conditions is met:

* The effective address generated by a halfword load or store type instruction is not on a
halfword storage boundary and the hardware cannot perform the unaligned storage

access.

¢ The effective address generated by a word load or store type instruction is not on a word
storage boundary and the hardware cannot perform the unaligned storage access.

1-54 General Architectures



+ The effective address generated by a doubleword load or store type instruction is not on a
doubleword storage boundary and the hardware cannot perform the unaligned storage
access.

o The effective address generated by a Load/Store Multiple instruction is not on a word
storage boundary.

The following registers are set as indicated. Set the registers to bits 1 to 4 of the instruction if
utilizing a D-form instruction.

SRRO

Bit Description

0-31 Set to the address of the instruction that caused the
interrupt.

SRR 1

Bit Description

0-15 Set to 0.

16-31 Load from bits 16 to 31 of the MSR.

MSR

Bit Description

0-15 Reserved.

16 EE Set 10 0.

17 PR Setto 0.

18 FP Set to 0.

18 ME Not altered.

20 FE Set to 0.

21-23 Resarved.

24 AL Setto 0.

251P Not altered.

26 IR Setto 0.

27 DR Set to 0.

28-31 Reserved.

DSISR

Bhit Description

0-13 Setto 0.

14 Set to value of the T-bit of the Segment register of the
storage access that caused the Alignment Interrupt.

15-16 Set to bits 28 to 30 of the instruction if an X-form
instruction. Set to bit b‘00’ if a D-form instruction.

17 Set to bit 25 of the instruction if an X-form instruction. Set to
bit 5 of the instruction if a D-form instruction.

18-21 Set to bits 21 to 24 of the instruction if an X-form
instruction. Set to bits 1 to 4 of the instruction if a D-form
instruction.

22-31 Set to bits 6 to 15 of the instruction.
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DAR

Bit Description
0-31 Set to the effective address that caused the Alignment
Interrupt.
Execution resumes at offset X'00600’ from the base address indicated by the setting of

MSR(IP).

Program Interrupt
A Program Interrupt is generated by any of the following exceptions:
¢ Floating-Point Enabled Exception

A Floating-Point Exception Program Interrupt is generated when the MSR(FE) = 1 and
the FPSCR(FEX) = 1. FPSCR(FEX) is tumed on by the execution of a fioating-point
instruction that causes an enabled exception or by the execution of a “Move to FPSCR"
type instruction which sets both an exception and its corresponding enable.

o Invalid Operation

An Invalid Operation Program Interrupt is generated when the execution of an instruction
is attempted with an undefined opcode or undefined combination of opcode and
extended opcode fields.

* Privileged Instruction

A Privileged Instruction Program Interrupt is generated when the execution of a
privileged instruction is attempted and MSR(PR) = 1.

e Trap

A Trap Program Interrupt is generated when any of the specified set of conditions in a
Trap instruction is met.

The following registers are set as indicated:

SRRO
Bit Description
0-31 Set to the address of the instruction that caused the
Program Interrupt.
SRA 1
Bit Description
0-10 Setto 0.
1" Set to 1 for a Floating-Point Enablad Exception Program
Interrupt; otherwiss, to 0.
12 Set to 1 for an Invalid Operation Program Interrupt;
otherwiss, to 0.
13 Set to 1 for a Privileged Instruction Program Interrupt;
otherwise, to 0.
14 Set to 1 for a Trap Program Interrupt; otherwise, to 0.
15 Setto 0.
16-31 Loaded from bits 16 to 31 of the MSR.
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MSR

Bit
0-15
16 EE
17 PR
18 FP
19 ME
20 FE
21-23
24 AL
251P
26 IR
27DR
28-31

Description
Reserved.
Setto 0.
Setto 0.
Setto 0.
Not altered.
Setto 0.
Reserved.
Setto 0.
Not altered.
Setto 0.
Setto 0.
Reserved.

Execution resumes at offset X'00700' from the base address indicated by the setting of

MSR(IP).

Note: If FPSCR(FEX) = 1 and MSR(FE) = 0, a Floating-Point Enabled Exception type
Program Interrupt can be generated by setting MSR(FE) to one with any instruction
that can set the MSR (for example, mtmsr, rfi, and risvc). When this occurs, SRR 0 is
loaded with the address of the instruction that would have executed next and not to
the address of the instruction that modified the MSR causing the interrupt.

External Interrupt

External Interrupts are requested by a signal presented by the External Interrupt
mechanism. An External Interrupt occurs when an External Interrupt signal is present and

MSR(EE) = 1.

The following registers are set as indicated:

Bit
0-a1

SRR 1

Bit
0-15
16-31

Bit
0-15
16 EE
17PR
18 FP
19 ME
20 FE
21-23
24 AL
251P
26 IR

Description

Set to the address of the instruction that the processor
would have attempted to execute next if no interrupt
conditions were present.

Description
Setto 0.

Loaded from bits 16 to 31 of the MSR.

Description
Reserved.
Setto 0.
Setto 0.
Setto 0.
Not altered.
Setto 0.
Reserved.
Setto 0.
Not altered.
Setto 0.
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27 DR Setto 0.
28-31 Reserved.

Execution resumes at offset X'00500' from the base address indicated by the setting of
MSR(IP).

Floating-Point Unavailable Iinterrupt
A Floating-Point Unavailable Interrupt is generated when the execution of any floating-point

instruction is attempted and MSR(FP) = 0.
The following registers are set as indicated:

SRR O
Bit Description
0-31 Set to the address of the instruction that caused the
interrupt.
SRR 1
Bit Description
0-15 Setto 0.
16-31 Loaded from bits 16 to 31 of the MSR.
MSR
Bit Description
0-15 Reserved.
18 EE Setto 0.
17PR Setto 0.
18 FP Setto 0.
19 ME Not altered.
20 FE Setto 0.
21-23 Reserved.
24 AL Setto 0.
251P Not altered.
26IR Setto 0.
27DR Setto 0.
28-31 Reserved.
Execution resumes at offset X'00800' from the base address indicated by the setting of
MSR(IP).
Trace Interrupt (POWER2 Only)

A Trace Interrupt is generated after every instruction that completes without causing any
other interrupt.

The following registers are set as indicated:

SRR O
Bit Description
0-31 Set to the address of the instruction to be executed next
(next sequential instruction or the instruction that is the
target of a taken branch).
SRR 1
Bit Description
0-15 Setto 0.
16-31 Loaded from bits 16 to 31 of the MSR.

1-58 General Architectures



MSR

Bit
0-15
16 EE
17PR
18 FP
19 ME
20 FE
21 SE
22 BE
23 FE
24 AL
251P
26 IR
27DR
28

29 PM
30-31

Description
Reserved.
Setto 0.
Set to 0.
Setto 0.
Not altered.
Setto 0.
Set to 0.
Setto 0.
Set to 0.
Set to 0.
Not altered.
Set to 0.
Setto 0.
Reserved.
Setto 0.
Reserved.

Execution resumes at offset X'00A00’ from the base address indicated by the setting of

MSR(IP).

Floating-Point Imprecise Interrupt (POWER2 only)

A Floating-Point Imprecise Interrupt is generated when FPSCR(FEX) = 1, MSR(FE) = 0, and

MSR(IE) = 1.

The following registers are set as indicated:

SRR 1

Bit
0-31

Bit
0-15
1631

Bit
0-15
16 EE
17PR
18 FP
19 ME
20 FE
21 SE
22 BE
23 FE
24 AL
251P
26 IR
27 DR

Description

Set to the address of some instruction beyond the
instruction that created the condition where
FPSCR(FEX) = 1, MSR(FE) = 0, and MSR(IE) = 1.

Description
Set to 0.

Loaded from bits 16 to 31 of the MSR.

Description
Reserved.
Setto 0.
Setto 0.
Set to 0.
Not altered.
Setto 0.
Set to 0.
Setto 0.
Set to 0.
Sett0 0.
Not altered.
Setto 0.
Set to 0.
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Bit Description

28 Reserved.
29 PM Setto 0.
30-31 Reserved.
Execution resumaes at offset X'00A00' from the base address indicated by the setting of
MSR(IP).
Supervisor Call interrupt

An SVC Interrupt occurs when an SVC instruction is executed.
The registers are set as foliows:

LR
Bit Description
0-31 The Link register is set to the address of the instruction
following the SVC instruction if LK = 1 in the instruction.
CTR
Bit Description
0-15 Loaded from bits 16-31 of the SVC instruction.
16-31 Loaded from bits 1631 of the MSR.
MSR
Bhit Description
0-15 Reserved.
16 EE Setto 0.
17 PR Sett0 0.
18 FP Not altered.
19 ME Not altered.
20 FE Set 10 0.
21-23 Reserved.
24 AL Not altered.
251P Not altered.
26 IR Not altered.
27 DR Not altered.
28-31 Reserved.

it SA = 0, execution resumes at one of 128 entry points starting at offset b'00001' Il LEV Il
b'00000’ from the base effective address indicated by the setting of MSR(IP). If SA =1,
execution resumes at offset X'01FEQ’ from the base eflective address indicated by the

sefting of MSR(IP).

Interrupt Priorities
Interrupts are either unordered or ordered with respect to the Save Restore registers.
Machine Check and System Reset Interrupts are unordered. That is, either can occur at any
time. When either occurs, the machine immediately changes state according to the rules
specified in “"System Reset Interrupt” on page 1-50 and “Machine Check Interrupt” on
page 1-50. State change Is such that any previous interrupt information contained in SRR 0
and SRR 1is lost. Any other pending interrupt is suppressed. To prevent indefinite looping
on System Reset, the interrupt should be viewed as a trigger caused by a system or
operator action. The triggering action must be repeated to cause another System Reset.
Looping on Machine Check is already prevented by MSR(ME).
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The remaining interrupts are ordered, that is, one and only one interrupt can occur at a time.
This is due to the serial reusable nature of the SRR 0 and SRR 1 registers. Insuring one and
only one interrupt at a time is both a hardware and software responsibility. Hardware must
test and present interrupts in the order that foliows. Finding an interrupt condition present,
the hardware does not continue testing for additional interrupt conditions. Thus, even when
there are multiple interruptible conditions present, the hardware does not know about the
additional conditions and therefore does not present the associated interrupts. Software, for
its part, must save the state of the machine (including SRR 0 and SRR 1) in such a manner
that the saving operation does not cause an interrupt.

The Instruction Storage Interrupt is the lowest ordered interrupt. It is generated when the
machine is unable to fetch the next instruction.

External Interrupt requires special handling. This is the only maskable ordered interrupt. It is
also the lowest ordered interrupt. If the External Interrupt signal is present and is allowed,
the hardware cannot present this interrupt until it is determined that no other ordered
interrupt condition is present. According to the rules of “interrupt Definitions,” on page 1-50
when any interrupt occurs, External Interrupt is automatically masked. This ensures that an
External Interrupt does not immediately follow any other interrupt. After any interrupt,
software must not allow an External interrupt until it has safely saved the state of the
machine.

The next higher-ordered interrupt s Instruction Storage Interrupt. This interrupt occurs when
the machine is unable to fetch the next instruction. The remalining interrupts are instruction
dependent for loads/stores, SVC, Trap, floating, privilege, and undefined instructions. The
associated interrupts occur next in the ordering. Each of these typas of instructions can only
generate one interrupt condition so there is no need for additiona! ordering in these
situations.

For floating load or store instructions, Floating Unavailable Interrupt is ordered higher than
Alignment Interrupt, which is ordered higher than Data Storage Interrupt.

For fixed load or store instructions when not accessing an /O sagment, Alignment Interrupt
Is ordered higher than Data Storage Interrupt.

For fixed load or store instructions when accessing an O segment, the only interrupt is an
/O Exception-type Data Storage Interrupt, which can be caused by alignment, privilege, or
other YO conditions. There is no processor architecture definition about the ordering of
these conditions.

The following summarizes the interrupts that can be caused due to the direct execution of
the listed types of instructions and their relative priority. Not listed are System Reset,
Machine Check, Instruction Storage, and External Interrupts.

¢ For fixed-point loads and stores (T = 0)
1. Alignment
2. Data Storage
3. Trace.

o For fixed-point loads and stores (T = 1)
1. Data Storage
2. Trace.

e For floating-point loads and stores (T = 0)
1. Floating-Point Unavailable
2. Alignment
3. Data Storage
4. Trace.
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For floating-point loads and stores (T = 1)
1. Floating-Point Unavailable

2. Data Storage

3. Trace.

Note: Some implementations generate an Alignment Interrupt instead of a Data Storage
Interrupt in the event the effective address generated is unaligned (not a word or
doubleword address). In this case, bit 14 of the DSISR is set to the value of the
T bit of the Segment register selected by the effective address.

For fioating-point arithmetic, compare, floating round to single, floating square root,
floating covert to integer, and any move to FPSCR instructions
1. Floating-Point Unavalilable

2. Program (Floating-Point Enabled Exception)

3. Trace.

For remaining floating-point instructions

1. Floating-Point Unavailable

2. Trace.

For rfi, tscv, and mtmsr instructions

1. Program (Privileged Instruction)

2. Program (Floating-Point Enabled Exception).

For trap instructions

1. Program (Trap).

Any privileged instructions

1. Program (Privileged Instruction)

2. Trace.

Any undefined instructions

1. Program (Invalid Operation).

External Interrupt Mechanism for POWER
The Extemnal Interrupt mechanism provides for the collection and presentation of interrupt
requests from extemal (non-PU) sources. Software and hardware control External Interrupt
requests using the following mechanisms:

Extemal interrupt Enable MSR(EE).

External Interrupt Mask (EIM) register (64 bits).

External Interrupt Summary (EIS) register (64 bits).

Load and store instructions addressing the EIM, the EIS, and other I/O resources.
Sources of External Iinterrupts.

Figure 16 shows the logical structure of the External interrupt mechanism. This mechanism
supports 64 separate External Interrupt sources that are collected into one single External
Interrupt Request signal (EIRS). An External Interrupt Request (EIR) is sent to the processor
only if the EIRS is present and MSR(EE) = 1.

The EIM register is used as a mask to enable or suppress the requests that have been
latched in the EIS register. These registers are referred to as the External Interrupt Control
registers (EICR). The EICRs are in the I/O address space in BUID 0. They are manipulated
using load register and store register instructions addressing the 1/O space.
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There is no hardware priority among the bits of the EIS and software can service the
requests in any order.

Processor MSR
EE
EIR «— AND |
EIRS 7 1 I Load/Store
/O Space
63-bit OR
? e
AND
T 1
64? % 64
EIM EIS
ik
| 1
Source 1 Source 2 . e . Source n
AN AL
DEvV| _ |DEV DEV._.DEV DEV.__DEV
11 1.1] |21 2] n.1 nk

Where:
EIR = External Interrupt Request
EIRS = External interrupt Request Signal.

Figure 16. External Interrupt Control Mechanism

External Interrupt Enable
MSR(EE) controls the presentation of an extemal interrupt to the processor. EIR is true only
when the following conditions are met:

¢ MSR(EE) =1
¢ One or more enabled External Interrupt requests are pending (the state of EIRS is true).

See “Machine State Register” on page 1-22 for the description of the MSR and MSR(EE).
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External Interrupt Control Registers
Both the EIM and the EIS are 64-bit registers in the /O space. These registers serve
different functions but have the same mapping between Extemnal Interrupt sources and
register bits. See “EICR Mapping” on page 1-86 for the mapping.

Functions
The EICRs, the hardware control of the EICRs, and the instructions that manipulate them

provide the functions that control the presentation of and identify the source of External
Interrupts.

EIM Register The EIM register provides the programmer with a mechanism to selectively
inhibit or enable any Extenal Interrupt request. Setting any bit of the EIM to
one enables the interrupt request represented by the associated bit in the
EIS. Setting the bit to zero causes the request to be ignored.

EIS Register When an interrupt is requested by an external sourcse, the bit of the EIS
mapped to that source is set to one. It retains all latched requests until reset
by software. The EIS always latches an interrupt request from an extemal
source regardiess of the state of the associated bit in the EIM.

If any request is latched by the EIS and the corresponding EIM bit is a one, an External
Interrupt is signalled, that is EIRS is true. See Figure 16 on page 1-63.

Addressing the EICRs
A Segment register must be loaded such that it addresses the architectural resources in

BUID 0. The effective address must then select this Segment register and contain the
address of the EICR to be accessed. The content of the Segment register used to access
the EICRs is shown in Figure 17.

T|IK|E|R BUID Adapter Specific
01 2 3 4 12 31
Bit Value Use
T b‘1’ /O Space
K b0’ Privileged Access
E b0’ Reserved
R b‘0’ Reserved
BUID X'00’ Bus UnitID O
AS X'00000' Adapter Specific.
Figure 17. Segment Register
Notes:

1. For architectural resources in BUID 0, the adapter specific field contains 0.

2. If the K bit is equal to one and a load or store register instruction is issued
addressing the EICRs, an I/O Exception-type Data Storage Interrupt resuits and no
changes are made elther to the target or source register.
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Figure 18 shows the effective address used to access the EICRs.

SR Address
0 4 31
Figure 18. Effective Address
SR These four bits must select the Segment register set up to access the
architectural resources of BUID 0.
Address This field contains the address of the EICRs being accessad.

The address assignments for the EICR are shown in the following list:
Register Hex Address
EIMO 0000000
EIM1 0000004
Reserved 0000008
Reserved 000000C
EISO 0000010

EIS1 0000014
Reserved 0000018
Reserved 000001C
DEC EISBID  0000020.

Accessing the EICRs
The EICRs can be accessed using load or store instructions that conform to the following
requirements:

¢ All accesses must be on a word boundary.
¢ Data transfers must be multiples of four bytes (one word).
e Multiple word transfers are not interruptible.

¢ When the EIS is the target of a load or store instruction and any extemal interrupt
requests are signalled to the EIS during the execution of that instruction, the result is the
same as If the events occurred sequentially. The signalled interrupts are not lost or
duplicated.

o Accesses that address reserved locations either directly or through muitiple word
transfers cause a data storage interrupt when the reserved location is addressed.
Registers or locations altered before the interrupt are not restored.

Reading from the EICRs
The content of the EICRSs can be copied to one or more GPRs using load instructions
addressing the registers. The instruction used must conform to requirements previously

specified.
¢ The content of the addressed registers replaces the content of the target registers.
« When the EIM is the source for the load, the content of the EIM is not altered.

¢ When the EIS is the source for the load, the content of the addressed portion of the EIS is
set to zero.
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Writing to the EICRs
The content of the EICRs can be altered using a store instruction addressing them. The

Store Register instructions used must conform to the requirements specified previously.

Executing a Store Register instruction addressing the EICRs results in the following actions:

¢ When the EIM is the target of a store instruction, the content of the source registers
replaces the content of the spacified portion of the EIM.

* When the EIS is the target of a store instruction, the content of the source registers is
ORed with the content of the specified portion of the EIS (one or two words) and the
result replaces that portion of the EIS.

¢ The change may affect the EIR or the EIRS, 6r both.
Notes:
1. Instructions addressing the EICRs that transter more than 4 bytes are not
interruptible.

2. The bits of the EIS can be mapped to hardware interrupt sources. However, any of
the EIS bits can be set by software.

External Interrupt Sources
The description is necessary to define the interface between the processor and the 1/0

process.
An External Interrupt source is a logical entity that is associated with a specific bit in the

EICRs. Whenever a source recognizes the need to be serviced by the processor, it submits
a request to have that bit set to 1. The association of bits in the EICRSs and interrupt sources

is programmable and set by software as needed.

Submitting Interrupts
Submission of interrupt requests to set bits in the EIS must conform to the following

requirements:

o The source must not lose any interrupt requests.

¢ The source should minimize the redundant submission of interrupt requests for any single
event that requires servicing by the processor.

o The source should not submit any requests if it can determine that a previous request it
submitted is still pending.

Note: This function may require the implementation of a latch that is set when a request is
first submitted and must be reset by software after the interrupt is serviced.

EICR Mapping
An interrupt source sets the bit of the EIS to which it has been programmed to by software.

This feature requires additional functions of the interrupt source.
* A source contains a location (EISBID) that can be read and altered as desired by
software.

o Transfer EISBID Content to GPR: A load instruction addressing any EISBID must transfer
at least one word. EISBID is placed in bits 26 to 31 of register RT. Bits 0 to 25 of register

RT are undefined.
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o Transfer GPR to EISBID: A store instruction addressing any EISBID must transfer at least
one word. The contents of bits 26 to 31 of register RS are placed in the addressed
EISBID.

+ When signalling an interrupt, the source causes the bit in the EIS that is indicated by the
content of the EISBID to be set to one. Only six bits are used to select the EIS bit to be

set.

Note: The Decrementer (DEC) causes an External Interrupt that is associated with a bit in
the EICRs. The EISBID for the Decrementer is located in the /O space as shown in
“Addressing the EICRs” on page 1-64.

External Interrupt Mechanism for POWER2
This interrupt mechanism provides a means for sensing, presenting, and controlling
interrupts. All interrupts are classified by level. The interrupts are presented to the processor
in order of most favored interrupt first.

The External Interrupt mechanism is composed of the Interrupt Level Control register and
associated hardware that provides the means by which software can manage External
Interrupts. The Interrupt Level Control register (accessibie as a Special Purpose register)
and the External Interrupt mechanism provide a means for software to perform the following

tasks:

Sense the current interrupt level.

Sense the pending interrupt level.

Clear a pending interrupt at any selected level.
Set an interrupt at any selected level.

An interrupt level can be one of 64 levels (0 to 63). Level 0 is the most favored level and
level 63 is the least favored level. The current interrupt level (CIL) can be set to any value
between 0 and 255. A processor can accept interrupts only when pending interrupt level is
more favored than the Iyel indicated by ILCR(CIL).

For example, if the content of ILCR(CIL) = 37, the processor accepts interrupt levels 0
through 36. Interrupt levels 37 through 63 are masked.

When an interrupt is signalled, it is posted and remains pending until software dispatches or
resets the interrupt.

interrupt Level Control Registers
The Interrupt Level Control register (ILCR) is a 32-bit register that provides the interface

through which software manages the External Interrupt mechanism. See Figure 19.

ICO mn CiL PiL
0 8 16 24 )|

Figure 19. interrupt Level Control Register

The ILCR contains three 8-bit fields (ICO, PIL, CiL). The content and function of these fields
depend on the instruction executed.

The register is manipulated with the mfspr and mtspr instructions. The following sections
describe the resuit of executing those instructions.
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MFSPR RT, ILCR
This instruction copies the content of the ILCR into the RT register.

¢ CIL contains the interrupt level at which the processor is executing. The processor
accepts only an interrupt that is at a more favored level than the level indicated by the
CIL.

¢ PIL contains 255 if no interrupt is pending. Otherwise, it contains the level of the most
favored pending interrupt. The returned interrupt level is removed from the list of pending
interrupt levels.

» Bits 0 to 15 of the RT register are set to x'0000.’

MTSPR ILCR, RS
This instruction causes the interrupt control mechanism to execute the command contained

in bits 0 to 7 of the RS register.
iICO interrupt Mechanism Action

00000000 Update CIL (UCIL)

Copies the content of bits 16 to 23 of the RS register to the CIL field of the
ILCR.

00000001 Clear Interrupt Level (CIL)

Clears the interrupt level specified by bits 24 to 31 of the RS register.
00000010 Set Interrupt Level (SIL)

Sets the interrupt level specified by bits 24 to 31 of the RS register.
All other values of the ICO field are ignored.
Notes:

1. An mfiler instruction clossely following an mitilcr instruction does not obtain the
actual values of the ILCR register.

2. External interrupts need not be disabled to write to ILCR.

EISBID Registers
A 6-bit External Interrupt Status Bit ID register (EISBID) is associated with each interrupt
source. Software can write the EISBID register to assign the priority at which that source will
signal that an interrupt is pending. In addition to external sources, each of the three local
interrupt sources also have an associated EISBID.

¢ One per interrupt source in /0
o Three for local interrupts

- Decrementer

- External check (memory error on DMA)

- Early power-off warning (EPOW).
The following are the EISBID address assignments in BUID 0:
Register EISBID Address
Decrementer 0000020
External Check 0000024
EPOW 0000034
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PEIS Registers
The pending External Interrupt Status registers contain pending interrupt status for the 64
interrupt levels. Using the addresses in BUID 0, software can read these registers.

The following are the address assignments in BUID 0:

Rogister Address

PEISO X'0000 0010’

PEIS1 X'0000 0014’
Storage Control

This section describes the function of and control over the storage mechanism. Brief
motivation is given, but the primary purpose of this section is to serve as a reference. Some
of the major features of the storage mechanism are as follows:

Page size is 212 bytes.

Maximum real memory size is 232 bytes.

Presumed minimum real memory size is 224 bytes.

Virtual memory size is 252 bytes.

Number of segments is 224,

Number of transaction IDs is 216,

Hardware support for Special Segments (physical iock management on a 128-byte line).
Automatic granting of locks in Special Segments in some cases.

Memory-mapped /O into VO segments.

IPL ROM origin at address X'FFF0 0000'.

The memory hierarchy of the system consists of the following two levels:

e Cache

- Instruction cache

— Data cache that is managed store-in.
e Main memory.

Instructions are provided to manage a data cache and an instruction cache. The /O goes
directly into main memory with no hardware interrogation of the caches. Software must issue
the necessary cache control instructions before issuing an /O to ensure consistency of the
data cache, instruction cache, and main memory. Instructions can be changed by treating
them as data in the normal way. A store to the data cache is not guaranteed to update the
instruction cache. Again, software must issue the necessary cachs control instructions to
maintain the consistency of the two caches, instruction prefetch and main memory.

Page faults cause precise Data Storage Interrupts. Precise means that the address of the
faulting instruction is identified, and after the fault is satisfied, execution resumes at that
address. For instruction page fault, the precision is obvious.

Crossing segment boundaries can also cause Data Storage Interrupts. Refer to Figure 28
on page 1-77 for more information.

For Data Storage Interrupts, the precision is present but there may be side effects. In
general, an instruction that makes a reference that causes a Data Storage Interrupt does not
change the contents of any register that can be changed in nonprivileged state, which would
prohibit restarting the instruction after the interrupt is serviced by software.
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In those cases where registers or storage are changed, they are not changed in a way that
would prevent the restart of the faulting instruction. Examples of such instructions are Load
Multiple (Im), Load String indexed (Isx), Load String and Compare Indexed (Iscbx), Load
String Immediate (Isi), Store Multiple (stm), Store String Indexed (stsx), and Store String
Immediate (stsi). The Im, Isx, Isi, or Iscbx instruction may fauit part-way through its execution
with only some of the specified registers actually loaded. The Im, Isx, Isi, and Iscbx
instructions are restartable since the base registers are not altered, even if they are in the
range to be loaded. The stm, stsx, and stsi instructions may also fault part-way through. In
this case, some of the storage locations destined to hold the registers being stored may
have changed as well as respective page table entries. However, stm, stsx, and stsi are
restartable since the base registers are not altered. Unaligned stores may update storage
prior to the fault and leave the job up to the relevant interrupt handler to complete.

Crossing page or segment boundaries by a single instruction is not necessarily prohibited by
this architecture. However, each side of the boundary must adhere to the specific rules for
protecting that side. Crossing a segment boundary, however, results in a Data Storage
Interrupt if the first segment accessed has T = 0 and the second segment has T = 1.
Crossing a segment boundary cannot occur when the first segment has T = 1. The Segment
register of the calculated effective address indicates T = 1, and the processor sends the
load/store command with the Segment register and effective address to I/O with no further

checking of the Segment registers.

Storage Control Registers
The following section describes the Segment registers and the Storage Description

registers.

Segment Registers
There are sixteen 32-bit Segment registers (SR) as shown in Figure 20. The most significant

bit of a Segment register is called the T bit. When T = 0, the segment named in the Segment
register is a normal segment. When T = 1, as shown in Figure 22, the segment named in the
Segment register is an /O segment. Unless explicitly noted, all discussions of segments
from this point on deal only with normal segments.

SR 00
SR 01

SR 14
SR 15

0 31

Figure 20. Segment Registers
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Segment ragisters, when T = 0, contain a 24-bit Segment ID (SID), a Special Segment (S)
bit, and a 1-bit sesgment access key (K), in the format presented in Figure 21.

TIK|S n SID
0123 8 31
Figure 21. Segment Register Format (T = 0)

T|k|e[R{ BUID Adapter Specific
01234 12 31
Figure 22. Segment Register Format (T = 1)

Storage Description Registers for POWER
The Storage Description registers (SDR0 / SDR1) shown in Figure 23 are 32-bit registers.
SDRO contains the high-order bits of the real address of the Page Frame Table (PFT). SDR1
contains the high order-bits of the real address of the Hash Anchor Table (HAT) and the HAT
mask. Access to these registers by software is privileged.

SDRO
PFTORG Reserved
0 16 31
SDR1
HATORG Reserved HAT Mask
0 16 24 31

Figure 23. Storage Description Registers

Bits 0 to 15 of SDRO (PFTORG) concatenated on the right with 18 zeros is the real address
of the origin of PFT. Bits 0 to 15 of SDR1 (HATORG) concatenated on the right with 15
2eroes is the real address of the origin of HAT. Bits 24 to 31 of SDR1 (HAT mask) to contain
the mask to be used when indexing into the HAT. This constrains the origin of HAT to be on
a 32K-byte boundary and the origin of the PFT to be on a 84K-byte boundary. These
alignment constraints permit the relocation hardware to index into the tables without addition
when the machine implements the smallest presumed main memory size (16M byte).

The reason this limit is presumed is that the actual amount of real memory may be less, but
the hardware addressing through the HAT assumes the limit. If less memory than the
presumed minimum is actually installed, then software cannot use any PFT entry that
comesponds to the noninstalled page of real memory as a legitimate entry without causing
an error. As the size of main memory increases, the number of bits used to index the HAT
increases. Thus software must adjust the base address of the HAT such that this address
has at least the same number of low-order zeros as the hardware has additional bits of
index.
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This implies a hardware variable merger based on actual real memory size. The number of
entries in the HAT is a trade-off between HAT size and the average PFT chain length. It is

recommended that the number of entries in the HAT = 2"+ 1,
where 2" 2 size of memory > 2", The HAT mask is used to assist the hardware merger. The

HAT mask is set by software to contain r — 12 one bits, right-justified with leading zero bits.

Note: The size of memory is expressed in units of 4K-byte pages, where 12<r<20
(presumed MIN and absolute MAX number of 4K-byte pages).

The situation for the PFT is different. The size of the PFT is agaln determined by the size of
main memory, but the assignment of indexes is strictly software-controlied. While the width
of the Index field is set to handle the maximum main memory size, no value can be bigger
than the actual memory instalied and identify a legitimate PFT entry.

For the PFT, hardware ORs the index with the base independent of the instalied memory

size. Software must adjust the base of the PFT (PFTORG) so that there are sufficient
low-order zeros not to conflict with the maximum index value for the installed size.

Storage Description Register for POWER2
The Storage Description register 1 (SDR1) is a 32-bit registers (shown in Figure 24). SDR1

contains the high-order bits of the origin address of the hashed page table (HTAB) and the
HTABmask. Access to these registers by software is privileged.

SDR1

HTABorg n HTABmask
16 24 31

Figure 24. Storage Description Register

Bits 0 to 14 of SDR1 (HTABorg) concatenated on the right with 17 zeroes is the real address
of the origin of HTAB. Bits 24 to 31 of SDR1 (HTABmask) contain the mask used when
indexing into the HTAB. This constrains the origin of HTAB to be on a 128K-byte boundary.
Thus software must adjust the origin address of the HTAB to have at least the same number
of low-order zeros as the hardware has additional bits of index.

This implies a hardware variable merge based on actual real memory size. The HTABmask
is usad to assist the hardware merge. The HTABmask is set by software to contain
r — 12 one bits, right-justified with leading zero bits.

Assume r is the smallest integer such that 2" is greater than or equal to the number of
4K-byte page frames of real memory. Since the memory size is between 16M bytes and 4G

bytes, 12<r < 20.

Virtual Address Translation
Translation is enabled by 2 bits in the MSR; there is one bit for data address transiation
MSR(DR) and one bit for instruction address translation MSR(IR). MSR(IR) and MSR(DR)
are independent bits and can be set differently. These bits are changed by the mtmsr
instruction which must be executed in privileged mode. Changing either of these bits with
mtmsr is synchronizing. That is, fetching and executing the instructions after the mtmsr
instruction is performed according to the new settings of the MSR. The new settings of the
MSR may not immediately affect the fetching of instructions because an instruction beyond
the mtmsr instruction may have been fetched prior to the execution to the mtmsr. ICS can be
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used to discard the prefetched instructions and begin fetching instructions foliowing the ICS
in the mode specified by the new setting of the MSR.

Note: Accessing of VO is independent of MSR(DR) because access to /O is controlled
only by the T bit in SRs. Instructions cannot be fetched from 1/O space. With
instruction-relocate on, the T bit in the Segment register selected by the effective
address of the next sequential instruction must be zero, or else an Instruction
Storage Interrupt is generated. When MSR(IR) = 0 the T bit is ignored for instruction
fetches.

When data translation is off, MSR(DR) = 0, the Segment register is only accessed to
determine it it is an /O segment for data storage accesses. If the T bit is zero, the effective
address is the real address, and its numerical value is the address of a byte in main
memory. If the T bit is one, the effective address is sent to I/O.

When address translation is enabled, the hardware supports a 52-bit single virtual address
space consisting of up to 224 segments of 256M bytes each in 4K-byte pages. This address
is formed by the processor generating a 32-bit effective address that refers either to an
instruction or to data.

The translation hardware has 16 Segment registers. Bits 0 to 3 of the effective address are
used to address a Segment register. The 24-bit SID field of the accessed Segment register
is concatenated with bits 4 to 31 of the effective address to form a 52-bit virtual address. Bits
4 to 19 of the effective address are called the Virtual Page Index (VP!) and bits 20 to 31 are
called the byte offset in the page.

inverted Page Table (POWER Only)
The address tables that define the mapping from virtual to real addresses are comprised of
the Hash Anchor Table (HAT) and Page Frame Table (PFT). These tables are maintained by
software and are searched by the relocation hardware as a hash table.

Remember, as described previously, r is the smallest integer such that 2" is greater than or
equal to the number of 4K-byte page frames of real memory. Because the memory size is
between 16M byte and 4G byte, 12 s r < 20. The HAT has 2™ 32-bit entries and each entry
in the HAT contains an index into the PFT with an invalid bit, i. See Figure 25.

i Reserved Next PFT

01 12 31
Figure 25. Hash Anchor Table Entry (One Word)
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Word 00
Word 01
Word 10
Word 11

The number of entries in the PFT is 2", for example, one per real page frame of memory in
the case when the size of real memory is a power of 2. Each entry in the PFT spans one
quadword (four words) and has the format shown in Figure 26.

Note: Bits 1 to 11 of each HAT entry, bits 1 to 11 of word 1, and bits 4 to 15 of word 3 of

each PFT entry should not be used by software and should be treated as reserved
for future use. Some of these bits may be inadvertently aitered by hardware when

updating PFT information.

SID p |v|f|e] pp
| Reserved Next PFT
b|b .. 32 tid locK byteits ... bl b
) |wir al Reserved tid
0 31
Bits Symbol Description
Word 00 00-23 SID Segment ID
24-26 P 3 high-order bits of VPI
27 v SID valid
28 f Reference bit
29 c Change bit
30-31 PP Page Protection Keys
Word01 00 i Invalid bit
01-11 Reserved
12-31 Next PFT  Frame number of next PFT entry
Word 10  00-31 b Lock byteits for lines
Word11 00 | Locktype
01 w Grant Write Locks
02 r Grant Read Locks
03 a Allow Read
04-15 Reserved
16-31 tid Transiation ID

Figure 26. Page Frame Table Entry (One Quadword)

To translate a virtual address to real the HAT and PFT are searched by the relocation
hardware as follows.

Bits 0 to 3 of the effactive address are used to select a Segment register. The selected
Segment register contains the 24-bit SID. Eight zercs concatenated with the VPI (bits 4 to
19 of the effective address) are XORed with the 24-bit SID. The low order r + 1 bits
(specified by the HAT mask) of the result are used as an index into HAT. The real address
formed to look up the entry in the HAT is as follows:

opa =b'0’' || HATORG Il 15 x b0’
opb1 = (X'00' Il VPI) xor SID

opb2 = b'000’ || HAT mask Il 13 x b'1’
opb3 = opb1 and opb2

opb =6 x b‘0’ Il opb3 Il b'00’

real address = opa or opb
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If the next pft field of the selected entry in the HAT is invalid (i = 1), then the search fails.
Otherwise, the next pft field is an index used to select an entry from the PFT. The real
address formed to select an entry in the PFT is:

opa=PFTORG Il 16 x b'0’
opb = X'00’ Il next pft Il X‘0'
real = opa or opb

where next pft comss initially from the HAT, and subsequently from the PFT.

Having selected an entry in the PFT, SIDII(bits 0 to 2 of the VP!) are compared to bits 0 to
26 of word O of that entry. If they compare equally and the SID valid bit (V) is a one, the
search succeeds.

Otherwise, the search continues by accessing the next PFT entry indexed by next pft (bits
12 to 31 of word 1 of the current PFT entry) if the Invalid bit (bit 0 of word 1 of the current
PFT entry) is 0, and repeating the process. If the Invalid bit is 1 then the search fails.

Note: All hardware lookups are done through the cache using real addressing.

To prevent an infinite loop in this search, the hardware searches for a maximum of 127
entries during a single translation. If this limit is exceeded, the search fails.

When the search succeeds, the real page frame is the index of the PFT entry that contained
the matching virtual address, and the real address is obtained by concatenating that index
with bits 20 to 31 of the effective address. When the search fails there is no real address
associated with the virtual address, and a Data/Instruction Storage Interrupt is generated.

The translation between virtual and real addresses is defined by the HAT and PFT, and
conceptually these tables are searched by the address relocation hardware to translate
every reference. However, for performance reasons the hardware keeps a Translation
Look-aside Buffer (TLB) that holds portions of the PFT that it has recently used, and the TLB
is searched before referring to the tables in storage. As a consequence, when software
makes changes to these tables, it must issue the appropriate TLB purge Instructions to
maintain the consistency of the TLB and the tables.

When a TLB entry is loaded, hardware must insure that either all of the lock and TID
information is loaded from the PFT entry, or that the information is marked invalid in the TLB
entry, even if the segment is not special. This is required because software may change the
S bit of a segment without invalidating the TLB entry.

Notes:

1. It is possible for the hardware to actually implement two sets of SRs (one for data
and one for instruction). In this case, hardware must insure that the same
numbered register in both sets have the same value. Likewise, it is possible for
the hardware to implement two TLBs. In this case, the size, shape, and valuas
contained may be difterent, but the hardware must invalidate both TLBs as part of
the execution of a single TLB instruction.

2. If floating stores are used to update PFT entries, a Data Cache Synchronize (dcs)
should be used to insure the store operation completes.

The physical location (in cache) of data or instructions is governed by bits 12 to 31 of the
effective address regardiess of whether the address translation is enabled or disabled. For
this reason, care must be exercised by software in referencing data with transiate off which
have been previously referenced with translate on, and the oposite situation. Let ra denote
the real address corresponding to an effective address after translation. Since only bits 20 to
31 are unaffected by translation, bits 12 to 18 of ra and ea may differ. When they do differ,
an effective address of ra with translate off refers to a different physical location in cache
than ea with translate on, potentially leading to inconsistent results. This can be avoided by
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software restricting the data that are referenced with translate on and off to have bits 12 to
31 of the real and virtual addresses agree, or by the appropriate use of the Flush/Invalidate

Cache instructions.

Note: The HAT and PFT are accessed by hardware using real addresses. Care must be
taken if software accesses these with translation on.

If a storage access has the effect of updating the corresponding PFT entry, then that PFT
entry is updated prior to the next storage access.

Hashed Page Table (POWER2 Only)
The HTAB contains a maximum of 212 Hash Table Entry Groups (HTEGs). Fewer HTEGS

can be allocated if software sets HTABmask appropriately. For a system with N pages of
real memory installed, the proposed number of HTEGSs that should be allocated is N/2. See

Figure 27.
The HTAB must be located in a contiguous block of storage and cannot contain any
defective areas.
HTAB HTEG |
HTEG 0 PTEI_O
PTEI_2
PTEI_1
' . Wordi 2 0
' ' PTEi_2
' [ Word |_2_1
' ' PTEI_3
' ' PTEi_4
PTEI_5
HTEG i
PTEI_6
, ' PTEI_7
HTEG n
Notes:
1. n=(N/2) — 1 where N is the number of real pages
of storage.

2. HTEG(I) is one of N2 hash table entry groups.
3. PTE(I_]) is one of 8 page table entries in HTEG(l)

Figure 27. Virtual Address Translation Data Structure

An HTEG contains eight page table entries (PTEs). HTEGs are the addressable element in
the HTAB. Hashing the virtual address, described in the following discussion, produces a
pointer to the first of two HTEGs that could contain the translation for the virtual address, if a
transiation exists. If the translation is not found in the initial HTEG, the virtual address is

rehashed and a secondary HTEG is searched.
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Each two-word PTE contains fields to specify the Segment ID (SID), the abbreviated virtual
page index, the real address, page protection, the reference bit, and the change bit. The
contents of the PTEs are shown in Figure 28.

The two words in the PTE describe the real page. The 20-bit RPN field specifies the real
page number (RPN) of the page transiated by Word 0 of this entry.

Note: Resarved bits in the PTE should not be used by software. Some of these bits can be
inadvertently altered by hardware when updating information.

v sid /|h avpl
RPN m flclpp
Figure 28. Page Table Entry (Two Words)
Word Bit Symbol Description
(1] 0 v entry valid
1-24 sid segment id
25 reserved
26 h hash function salector
27-31 avpi abbreviated vpi, EA(4-8) = VPI(0—4)
1 0-19 RPN real page number
20-27 reserved
28 f reference bit
29 c change bit
30-31 PP page protection keys
Hashed Page Table Search

To transiate a virtual address to a real address, the relocation hardware searches the HTAB
as follows: bits O to 3 of the effective address are used to selact a Segment register. The
24-bit SID is extracted from bits 8 through 31 of the selected Segment register. Then bits 4
through 19 of the effective address (VP!), the 24-bit SID, the HTABorg, and the HTABmask
are used to select one of N/2 HTEGs within the HTAB (where N is the number of pages of
configured memory). Software sets the size of the HTAB by satting the HTABmask in SDR1.
The real address (HTEGaddr), formed to access the initial HTEG, is shown in Figure 29.

HTABmask Il 11b*1’ L » HTABhash
AND
3b'0’' | EA(4-19) ——
EAl ) XOR
SID(5—-23)
HTABorg 1 170" —— —» HTEGaddr

7b'0’ || HTABhash Il 6b'0' ——— OR

Figure 29. Hash Table Entry Group Access
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If a second hash is required (see step 8 ), the real address (HTEGaddr ) formed to access
the second HTEG is shown in Figure 30. The initial and secondary HTEGs are searched for
the missing transiation as follows:

1. PTEaddr <« HTEGaddr
2. Access PTE at memory location PTEaddr
3. If PTE(v) = 0 or PTE(h) = 1, then go to step 5
4. If SID |l EA(4-8) = PTE(sid Il avpi) then
a. Translation succeeds
b. Real page number < PTE(RPN)
c. Exit
PTEaddr « PTEaddr + 8
If PTEaddr = HTEGaddr + 64 then
a. All eight entries are searched; no match is found
b. Rehash virtual address (see Figure 30)
c. Gotostep8
Go to step 2
PTEaddr < HTEGaddr'
. Access PTE at memory location PTEaddr
10 It PTE(v) = 0 or PTE(h) = 0 then go to step 12
11.1f SID Il EA[4-8] = PTE(sid Il avpi) then
a. Translation succeeds
b. Real page number < PTE(RPN)
c. Exit
12.PTEaddr « PTEaddr + 8
13.1f PTEaddr = HTEGaddr + 64 then
a. All eight entries are searched; no match is found
b. Translation fails
c. Generate Data/Instruction Storage interrupt
d. Exit
14.Go to step 9

X

© o~

HTABmask Il 11b‘1’ — HTABhash
AND

3b‘0’ Il EA(4-19) XOR

SID(5-23)

INV

HTABorg 1 17b'0" — | t—» HTEGaddr’

OR
7b'0’ Il HTABhash 1l 6b'0’

Figure 30. Hash Table Entry Group Access (Hash 2)
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All eight PTEs in the primary HTEG and all eight PTEs in the secondary HTEG are checked
until a matching entry is found. If no matching PTE is found in either HTEG, the translation
fails and a Data/Instruction Storage interrupt is generated.

Notes:
1. HTAB entries may or may not be cached by hardware.
2. All hardware lookups are done through the cache using real addressing.

3. If software will access the HTAB in translated mode, it must avoid cache line
synonyms by mapping this table to make the real and virtual address bits used for
cache set selection are the same.

4. As memory size increases, the origin must be set to make as many low-order bits
of the origin zero as there are significant bits on in the oftset.

5. SDR1: HTABorg and HTABhash must be valid for the installed memory size.
HTAB contains:

- Minimum: 2" HTEGs — 214 PTEs— 212 real pages
- Maximum: 2'® HTEGs— 222 PTEs — 220 real pages

When the search succeeds, the real page number is the RPN in the selected page table
entry that contained the matching virtual address, and the real address is obtained by
concatenating that RPN with bits 20 to 31 of the effective address.

The translation between virtual and real addresses is defined by the HTAB. Conceptually,
this table are searched by the address relocation hardware to translate every reference.
However, for performance reasons the hardware keeps a translation look-aside buffer (TLB)
that holds recently used PTESs, and the TLB is searched before referring to the table in
storage. As a consequence when software makes changes to this table it must issue the
appropriate TLB invalidate instructions to maintain the consistency of the TLB and the table.
See Figure 31.

Note: If floating-point stores are used to update HTAB entries, a data cache synchronize
(DCS) should be used to insure the store operation completes.

—— HTEGaddr
Primary HTEG
. Yes Real Page Number
Hash Page Table Mitch: | T2%  Page Protection
> EA (4-8) Reforence and
Change
B Min: 128K Bytes |__ Searchupto 8 N°TL Rehash
Max: 32M Bytes | Entries in HTEG
HTEGaddr’
' Secondary HTEG
Yes Real Page Number
Match: — Page Protsction
SiD Reference and
EA (4-8) Change
L—» Searchupto8 No  Translation Failed

Entries In HTEG > (DSus))

Figure 31. Virtual Address Transiation
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Address Aliasing
In multiple tasking systems, aliasing as used in reference to the virtual address mechanism

means the concurrent use of multiple virtual addresses to access a single storage element.
This architecture supports aliasing. To maintain storage consistency in this environment,
software must obey the following rules:

¢ Write Shared Data

The aliases used to access write shared data must be aligned on 256K-byte boundaries
(bits 14 through 31 of the addresses used to access the data must be identical).

e Read Shared Data

The allowed synonyms used to access read shared data (read only data or instructions)
must be aligned on 4K-byte boundaries.

e Data Shared with /0

The /O architecture defines a storage model that is not consistent with VO. Cache
consistency must be managed by software using the cache management instructions to
insure that changes to storage caused by I/O operations are visible to the processor, and
those caused by the processor are vigible to /O.

These restrictions are necessary to avoid the creation of synonyms that could cause storage
to be inconsistent. A synonym is created when the main memory copy of a storage element
residing in one set of the cache is copied from main memory into a different set of the cache
because a second virtual address was used for a subsequent access and bits 16 through 31
of the addresses differ. The creation of synonyms when accessing read only data is not a
problem unless that storage must be consistent with L/O.

When a storage element is addressed using muitiple addresses but accesses using different
addresses are not concurrent, aliasing can be avoided. This approach is useful only in cases
where the storage is accessed by one address for a long period and then by a different
address for a long period as in the case of cooperating processes that are not allowed to run
concurrently. When a change of address spaces occurs:

o Purge the cache of the shared address space
¢ Delete the existing translation (PTE)
» Create the altemate translation (PTE).

The following software options for supporting applications can create cache synonyms:

» Software avoids cache synonyms by allocating large pages. This had effects on the ease
with which software can port the OSF OS and possible performance effects on address
space usage.

¢ When applications create unaligned aliases, they will suffer the performance penalties

caused by cache flushing and translation swapping since only one translation for the
page is allowed at any time.

» Software avoids cache synonyms by cancslling jobs that attempt to create cache
synonyms.
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A similar effect results when storage is accessed in both real and translated modes. In this
casse there are two aliases, the real address and the virtual address. The same rules hold for
these accesses. The addresses’ spaces must be aligned or the data must be purged from
the cache between accesses using one address and accesses using the other.

Storage Access Recording Mechanism

Reference and Change bits are maintained in the PTE, if address translation is enabled, for
each real page, and can be accessed by software directly through ordinary load and store
instructions. These bits are set automatically by hardware in conjunction with normal TLB

processing as follows:

Reference bit When a storage access (load, store, or cache instruction, or instruction
fetch) rasults in a TLB miss and the resulting translation is loaded into the
TLB, the reference bit may be set to 1 immediately, or its setting may be
delayed until the storage access is determined to be successful. If the
reference bit is not set because the access failed, the implementation must
set the reference bit on the next successful access.

Change bit Whenever a data store is executed, as part of the TLB look-up procedure,
the change bit in the TLB is checked and if it is already set to 1, no further
action is taken. However, if the TLB change bitis 0, it Is set to 1, and the
comesponding change bit in the PTE is set to 1.

Note: Since hardware only sets the Reference and Change bits on the basis of TLB
activity, when software resets these bits to zero, it must synchronize the TLBs
actions by invalidating the TLB entries associated with the pages whose reference
and change bits are reset.

Also, since some implementations may not set the Reference bit when a TLB entry is
loaded due to an unsuccessful storage access, this indicates there may exist an
entry in the TLB for the page even though the reference bit in the PTE is 0.

Storage Protection Mechanism

The protection mechanism is provided to protect the contents of main storage from
destruction or misuse caused by unauthorized accesses by a program.

page Protection

Page protection is provided at the granularity of a page and the mechanism uses two
separate fields:

« K bit in the Segment register
o Page Protection (PP) bits in the PTE.

System Processors 1-81



Storage protection applies only when address translation is enabled. A reference made with
translation enabled is associated with a Segment register (SR) and a PTE by the address
translation procedure described in the preceding section. The following table describes the
access permitted in terms of the value of the access key in the Segment register and Page

Protection bits in the PTE.

Protection Key Processing
Load Store
Access Access
K PP Page Type Permitted Permitted
0 00 Read and Write Yes Yes
0o 01 Read and Write Yes Yes
0 10 Read and Write Yes Yes
o N Read only Yes No
1 00 No access No No
1 0 Read only Yes No
1 10 Read and Write Yes Yes
1 1" Read only Yes No
Where:

K = Segment register access key
PP = PTE page protect bits.

When a reference is not permitted because of the protection mechanism, a Data Storage
Interrupt (Instruction Storage Interrupt) occurs and bit 4 of the DSISR (SRR 1) is setto 1.

The I/O protection mechanism provided in the case of an /O segment, the K bit, provided
with the effective address, is used to protect I/O facilities.

Timer Facilities
The real-time clock (RTC) and the decrementsr (DEC) provide the timing functions for the
system. Both functions are manipulated as Special Purpose registers.

Real Time Clock
The RTC provides a high-resolution measure of real-time suitable for the

indication of date and time of day. This is a volatile resource and must be
initialized during start-up.

Decrementer The decrementer provides a means of signalling an interrupt after a
specified amount of time has elapsed unless the decrementer is altered in
the interim.

Real-Time Clock

Note: This architecture provides no functions to synchronize clocks in a cluster.

The real-time clock is composed of two Special Purpose registers as shown in Figure 32.
RTCU is the count of seconds since the epoch specified by software architecture. RTCL is a
measure of the fraction of the current second in nanoseconds such that when used with
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RTCU it provides a high-resolution measurement of the real time. The RTC provides a
calendar range of 136.19 years. The following requirements apply to both registers:

o The RTC runs continuously when powered on, but has no provision for retaining the
correct time during power-off periods.

e On power up, the RTC begins running but the content is undefined.

o The RTC can be used to measure elapsed time prior to initialization by first setting RTCL
to 0 and then comparing the values read from the RTC at times bracketing the period of
interest.

Notes:
1. Software must initialize the RTC from a time source extemal to the processor.

2. If RTCL is not initialized, or if it is initialized with a value greater than 999,999,999,
the elapsed time until the count is reset to O by hardware is undefined but less than

four seconds.
RTCU
RTCL
[} 3
Register Description
RTCU Represents time in seconds.
RTCL Represents time in nanoseconds.

Figure 32. Real Time Clock (RTC)
Note: All bits in the RTCL need not be implemented.

ATCL Description
All 32 bits of RTCL need not be implemented. The driving frequancy, insertion bit, controls,

and number of bits must be implemented such that the following requirements are satisfied:
o If all bits are implemented, bit 31 of RTCL changes state each nanosecond.

¢ The implemented bits function as a binary counter.

o The initial implementation has a resolution of 256 nanoseconds.

¢ The period of RTCL is one billion nanoseconds (one second) once the content Is set to 0
by software or hardware. This occurs within four seconds of power up if not initialized by
software.

+ When not being altered by software, the RTCL operates such that:

-~ Only 998,999,899 nanoseconds after it has been set to 0, the content is equal to the
terminal count (a value less than and as near to 999,999,399 as the implemented bits
allow).

- One nanosecond later the content is set to 0.

¢ Moving the content of RTCL to a GPR has no effect on the counter. After the move, bits in
the GPR corresponding to the unimplemented bits in the counter are 0's.

o Moving the content of a GPR to the counter causes the contents of the implemented bits
of RTCL to be replaced by the contents of the associated bits of the source GPR. Bits in
the GPR corresponding to the unimplemented bits in RTCL are ignored.
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RTCU Description
RTCU is a 32-bit binary counter which satisfies the following requirements:

o When the next state of RTCL is to become O because it has reached terminal count,
RTCU is incremented in synchronism with the setting of RTCL to 0.

s All 32 bits of RTCU are implemented.
¢ When the content of RTCU is all 1s, the next time it is incremented the content becomes
all 0s.

¢ The counter runs continuously while powered on.
* Moving the content of RTCU to a GPR has no effect on the counter.

¢ Moving the content of a GPR to RTCU causes the content of RTCU to be replaced by the
content of the source GPR.

Setting and Reading the RTC
The RTC is accessed as two Special Purpose registers, RTCU and RTCL. The contents of
the RTC can be copied to GPRs or initialized from GPRs using the mtspr and mfspr
instructions. The RTCL or RTCU can only be altered in Privileged mode. If an attempt to
alter thess registers is made In Non-Privileged mode, a program interrupt results.

Initializing the RTC

The content of the RTC can be altered using the mtspr instruction. This is a privileged
access.

The RTC can be initialized by the following sequence of instructions and commands:
Load the value X'0000 FFFF' into Rx.

Obtain the correct time from a source external to the processor.

Compute a 32-bit representation of this value in saconds and place in Ry.
Compute the residual fractions of a second in nanoseconds and place in Rz.
Issue mtspr RTCL,Rx. Set lower register to zero to avoid carry.

Issue mtspr RTCU,Ry. Set upper register to time in seconds.

Issue mispr RTCL,Rz. Set lower register to correct fraction of a second.

At the completion of this sequence, the RTC contains the correct time unless a delay such
as an interrupt occurs during this sequence.

Neosoen

Reading the RTC
The content of either half of the RTC can be copied to a GPR using the mfspr instruction.
This instruction does not change the content of the RTC. This is not a privileged access.

When the current time is required in a form that includes more than the upper or lower word
of the RTC, the following procedure should be used:

1. Execute the following instruction sequence:
mispr Rx,RTCU
mispr Ry,RTCL
mispr Rz,RTCU.
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2. IFRz=Rx
THEN the correct value has been obtained.
ELSE go to step 1.
This procedure guarantees that the comrect value is obtained.
Note: If the following instruction sequence is executed:
mtspr RTCU,Rx
mfspr  RyRTCU,

then the contents of register Rx differ from the contents of register Ry by at most one
unless the sequencs is interrupted.

Decrementer
The Decrementer (DEC) is a decrementing counter that provides a mechanism for causing
an external interrupt after a programmable delay. The period of bit 0 of DEC is
approximately 4.3 seconds. See Figure 33.

DEC
0 31
Register Description
DEC Represents delay in nanoseconds

Figure 33. Decrementer
Note: All bits in DEC need not be implemented.

The driving frequency, insertion bit, and controls for the Decrementer must be impiemented
such that the following requirements are satisfied:

« The impiemented bits function as a binary down counter.

e The operation of the RTC and the DEC are coherent; for example, both counters are
driven by the same fundamental time base.

¢ The resolution of the initial implementation is 256 nanoseconds.
« If all bits are implemented, DEC(31) changes state each nanosecond.

« Loading a GPR from DEC has no effect on the counter. After the load, bits in the GPR
corresponding to the unimplemented bits in the counter are 0's.

¢ Moving the content of a GPR to the DEC replaces the implemented bits of DEC with the
associated bits of the GPR. Bits in the GPR corresponding to the unimplemented bits in
the DEC are ignored.

o The Decrementer never stops running. When its contents are 0 and it is decremented, all
the implemented bits are set to 1.

* Whenever bit 0 of DEC changes from 0 to 1, an interrupt request is signalled.

o If the DEC is altered by software and the content of bit 0 of DEC is changed from 0 to 1,
an interrupt request is signaled.
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Decrementer Interrupts
The Decrementer interrupt is an External Interrupt and conforms to the specification as

defined in “External Interrupt Mechanism” on page 1-67. The Decrementer Interrupt
mechanism contains an EISBID located in the /O space.

DEC EISBID Address
Segment Register Fields
BUID X'00
Adapter Specific
X'00000’
Effective Address
EAo-3 Must select a Segment register with a content as specified
previously
Easesi X'0000020'
Decrementer Usage

The content of the Decrementer can be read or altered using the Special Purpose registers
control instructions. The mtspr instruction is privileged when the DEC is the target register.

Setting the DEC
The content of the Decrementer is altered by software using the following mtspr instruction:
mtspr DEC,Rx.

Note: If the execution of this instruction causes bit 0 of DEC to be changed from a value of
0 to a value of 1, an interrupt request is signalled.

Reading the DEC
The content of the Decrementer can be copied to a GPR by executing a mfspr instruction.
Copying the Decrementer to a GPR has no effect on the Decrementer content or interrupt

mechanism.
mispr Rx,DEC
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Floating-Point Round to Single Model

The following describes the model for Floating-Point Round to Single-Precision instruction.

Floating-Point Round to Single Model

It FRB(1-11)<897 and FRB(1-63)>0 then
Do
If FPSCR(UE) = 0 then goto Disabled Exponent Underflow
If FPSCR(UE) = 1 then goto Enabled Exponent Underflow
End

If FRB(1-11)>1150 and FRB(1-11)<2047 then

Do
If FPSCR(OE) = 0 then goto Disabled Exponent Overflow
It FPSCR(OE) = 1 then goto Enabled Exponent Overflow
End '

If FRB(1-11)>896 and FRB(1-11)<1151 then goto Normal Operand
If FRB(1-63) = 0 then goto Zero Operand
If FRB(1-11) = 2047 then

Do

If FRB(12-63) = 0 then goto Infinity Operand

If FRB(12) = 1 then goto QNaN Operand

if FRB(12) = 0 and FRB(13-63)>0 then goto SNaN Operand
End

pisabled Exponent Underflow

sign « FRB(0)
If FRB(1-11) = 0 then
Do
exp « —1022
frac « b'0’ || FRB(12-83)
End
If FRB(1-11)>0 then
Do

exp « FRB(1-11) — 1023
frac « b'1’ || FRB(12-83)
End
Denormalize operand:
G IR I X « b'000’
Do while exp<—126
exp «— exp + 1
frac IGIIRIIX < b0 llfracll G Il Ror X
End
FPSCR(UX) « frac(24-52)iIGIIRIIX>0
If frac(24-52)IIGIIRIIX>0 then FPSCR(XX) « b'1’
Round single(sign,exp frac,G,R,X)
If frac = 0 then
Do

FRT(00) « sign

FRT(01-63) « 0
If sign = 0 then FPSCR(FPRF) « “+zero”
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If sign = 1 then FPSCR(FPRF) ¢« “—zero"
End

if frac>0 then
Do
If frac(0) = 1 then
Do
If sign = 0 then FPSCR(FPRF) « “+normal number”
If sign = 1 then FPSCR(FPRF) « “~normal number”
End
If frac(0) = O then
Do

If sign = 0 then FPSCR(FPRF) « “+denomalized number”
If sign = 1 then FPSCR(FPRF) « “—denormalized number”
End
Normmalize operand:
Do while frac(0) =0
exp « exp—1
fracll G Il R « frac(1-52) Il G Il R 1l b0’
End
FRT(0) « sign
FRT(1-11) « oxp + 1023
FRT(12-63) « frac(1-23) Il 29*b'0’
End
Done

Enabled Exponent Underflow

FPSCR(UX) « b't’
sign « FRB(0)
If FRB(1-11) = 0 then
Do
exp « -1022
frac « b'0’ Il FRB{12-63)
End
If FRB(1-11)>0 then
Do

exp « FRB(1-11) — 1023
frac « b'1’ Il FRB(12-63)
End
Normmnalize opserand:
Do while frac(0) = 0
exp « exp — 1
frac « frac(1-52) Il b'0’
End
It frac(24—52)>0 then FPSCR(XX) « b'1’
Round single(sign,exp,frac,0,0,0)
oxp « exp + 192
FRT(0) « sign
FRT(1-11) « exp + 1023
FRT(12-63) « frac(1-23) Il 28"b'0’
it sign = 0 then FPSCR(FPRF) « “+normal number”
It sign = 1 then FPSCR(FPRF) « “—nomal number”
Done
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Disabled Exponent Overflow

FPSCR(OX) « b1’

FPSCR(XX) ¢ b'1’

if FPSCR(RN) = b'00' then (Round to Nearest)
Do

If FRB(0) = b'0’ then
Do

FRT(0-63) « x'7FF0000000000000'
FPSCR(FPRF) « “+infinity”
End
if FRB(0) = b*1’ then
Do

FRT(0-63) « x'FFF0000000000000"
FPSCR(FPRF) « “—infinity”
End
End
If FPSCR(RN) = b'01’ then (Round Truncate)
Do

If FRB(0) = b'0’ then
Do

FRT(0-83) « x'47EF FFFF E000 0000’
FPSCR(FPRF) « “+normal number”
End
If FRB(0) = b'1’ then
Do

FRT(0-83) « x‘C7EF FFFF E00O 0000’
FPSCR(FPRF) « “—nomal number”

End
If FPSCR(RN) = b'10’ then (Round to +Infinity)
Do

if FRB(0) = b'0’ then
Do

FRT(0-63) «— x'7FFO 0000 0000 0000’
FPSCR(FPRF) « "+nfinity”

If FRB(0) = b1’ then
Do

FRT(0-83) « x'‘C7EF FFFF E00O0 0000'
FPSCR(FPRF) « “~normal number

End
If FPSCR(RN) = b*11’ then (Round to —infinity)
Do

if FRB(0) = b‘0’ then
Do
FRT(0-83) « x'47EF FFFF E000 0000’
FPSCR(FPRF) « “+normal number”
End
If FRB(0) = b*1’ then
Do

FRT(0-83) « x'FFF0 0000 0000 0000’
FPSCR(FPRF) « “—infinity”
End
End
Done
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Enabled Exponent Overflow

sign « FRB(0)
exp « FRB(1-11) - 1023
frac « b'1’ Il FRB{12-63)
If frac(24—52)>0 then FPSCR(XX) « b'1’
Round single(sign,exp,frac,0,0,0)
Enabled Overflow:
FPSCR(OX) « b1’
exp « exp — 192
FRT(0) « sign
FRT(1-11) « exp + 1023
FRT(12-63) « frac(1—23) |l 29°b‘0’
If sign = 0 then FPSCR(FPRF) « “+normal number”
If sign = 1 then FPSCR(FPRF) « “—normal number”
Done

Zero Operand

FRT(0—63) « FRB(0—63)

If FRB(0) = b'0’ then FPSCR(FPRF) « “+zero”
If FRB(0) = b*1’' then FPSCR(FPRF) « “-zero”
Done

Infinity Operand

FRT(0—63) «— FRB(0-83)
if FRB(0) = b*1’ then FPSCR(FPRF) « “—infinity”
Done

QNaN Operand

FRT(0-63) « FRB(0-34) || 28*b‘0"’
FPSCR(FPRF) « “QNaN"
Done

SNaN Operand

FPSCR(VXSNAN) « b'1’
It FPSCR(VE) = 0 then
Do

FRT(0—11) « FRB(0-11)
FRT(12) « b't’
FRT(13—63) « FRB(13-34) |l 29*b‘0’
FPSCR(FPRF) « “QNaN"
End
Done
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Normal Operand

sign < FRB(0)

exp « FRB(1-11) — 1023

frac « b*1’ Il FRB(12-63)

it frac(24-52)>0 then FPSCR(XX) « b‘1’

Round single(sign,exp,frac,0,0,0)

If exp>+127 and FPSCR(OE ) = 0 then go to Disabled Exponent Overfiow
If exp>+127 and FPSCR(OE) = 1 then go to Enabled Overflow
FRT(0) « sign

FRT(1-11) « exp + 1023

FRT(12-63) « frac(1-23) || 29°b'0’

If sign = 0 then FPSCR(FPRF) « “+normal number”

It sign = 1 then FPSCR(FPRF) « “~normal number

Done

Round Single (sign, exp, frac, G, R, X)

inc « b'0’
Isb « frac(23)
gbit « frac(24)
bit « frac(25)
xbit « frac(26-52)IIGIIRIIX>0
If FPSCR(RN) = b'00' then
Do
It sign Il Isb Il gbit Il rbit Il xbit = b'’x11xx’ then inc « b'1’
If sign |1 Isb Il gbit Il rbit || xbit = b'x011x’ then inc « b*1’
If sign Il Isb Il gbit || rbit |1 xbit = b'x01x1’ then inc « b'1’
End
If FPSCR(RN)=b‘10' then
Do
if sign Il Isb |l gbit 11 rbit |l xbit = b'Ox1xx’ then in¢c « b‘1’
If sign Il Isb Il gbit Il rbit 11 xbit = b'®x1x’ then inc « b'1’
If sign Il Isb Il gbit Il rbit |1 xbit = b‘Oxoxx1’ then inc « b'1’
End
If FPSCR(RN)=b'11’ then
Do

If sign Il Isb 11 gbit Il rbit 1l xbit = b*1x1xx’ then inc « b'1’
If sign Il Isb Il gbit Il rbit Il xbit = b*1xx1x’ then inc « b‘1’
If sign Il Isb 11 gbit Il rbit 1l xbit = b*1>00x1’ then inc « b'1’
End
frac(0—23) « frac(0-23) + inc
I carry out=1 then
Do

frac(0—23) « b'1’ Il frac(0-22)
exp « exp + 1
End
FPSCR(FR) « inc
FPSCR(FI) « gbit or rbit or xbit
Retum
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Floating-Point Integer Convert Model

This section describes the conversion of the fioating-point double precision value contained
in register FRB into an integer or a special number if the conversion cannot be successfully
completed. This function converts a 64-bit fioating-point value to a 32-bit integer. Whether
the conversion is successful or is an exception case, the high order 32 bits of RT are
undfined. If the conversion is successful, the low order 32 bits of RT contain the integer
resulting from the conversion. The 32 undefined bits are indicated by “xooox oooc™ in hex

representations of the 64-bit register.

Floating-Point Integer Conversion
The follow segments describe the expected result based on the content of FRB:

If [Fioating Convert to Integer and Round]
Then round_mode < FPSCR(RN)

If [Floating Convert 10 Integer and Round toward Zero)
Then round_mode « b'1’

FPSCR(FPRF) « “undefined”

Iif FRB(1:11) = 2047 and FRB(12:63) = 0 then goto Infinity Operand
It FRB(1:11) = 2047 and FRB(12) = 0 then goto SNaN Operand

If FRB(1:11) = 2047 and FRB(12) = 1 then goto QNaN Operand

It FRB(1:11) > 1087 then goto Large Operand

sign « FRB (0)
If FRB(1:11) > 0 then exp « FRB(1:11) — 1023 /** exp — bias **/

If FRB(1:11) = 0 then exp « —1022
it FRB(1:11) > 0 then frac(0:63) « b‘01' Il FRB(12:63) Il b'00000000000' /** normal **/
It FRB(1:11) = 0 then frac(0:63) « b‘00’ Il FRB(12:63) Il b'00000000000' /** denomal **/

gbit Il rbit Il xbit < b'000’
Doi=1, 64—exp

frac(0:63) I gbit || rbit Il xbit « b'0’ Il frac (0:83) il gbit I rbit or xbit
End

If gbit or rbit or xbit then FPSCR(XX) « 1

Round Integer (sign, frac, gbit, rbit, xbit, round_mode)
Round Integer (sign, frac, gbit, rbit, xbit, round_mode)
If sign = 1 then frac(0:63) « —frac (0:63) + 1
If frac (0:63) > +2**(31-1) then goto Large Operand
If frac (0:63) < -2**(31) then goto Large Operand

FRT « x“000x 000 Il frac (32:63) /** where x»00x x0x' is undefined **/

Done (exit conversion)
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Round Integer (sign, frac, gbit, rbit, xbit, round_mode)
{

inc « b'0
If round_mode = b‘00’ then

If sign Il frac(63) Il gbit Il rbit |1 xbit = b'’x11xx’ then inc « 1
If sign 1l frac(63) Il gbit il rbit [l xbit = b'x011x’ then inc « 1
If sign 1l frac(63) Il gbit 11 rbit |1 xbit = b'x01x1’ then inc « 1
End
If round_mode = b*10’ then
Do
If sign Il frac(63) |1 gbit 11 rbit Il xbit = b'Ox1xx’ then inc « 1
It sign Il frac(63) Il gbit Il rbit Il xbit = b'Oxox1x’ then inc « 1
If sign Il frac(63) Il gbit 1| rbit Il xbit = b'0xxx1' then inc « 1
End
If round_mode = b'11’ then
Do
If sign Il frac(63) |1 gbit II rbit |l xbit = b'1x1xx' then in¢ « 1
I sign || frac(63) I gbit |1 rbit Il xbit = b*1xx1x' then inc « 1
If sign |l frac(83) |1 gbit |1 rbit Il xbit = b'1x00(1' then inc « 1
End
frac({0:63) « frac(0:63) + inc
FPSCR(FR) « inc
FPSCR(FI) « gbit or rbit or xbit
Returmn /* end of Round Integer */

}

Infinity Operand
Infinity

{
If the content of FRB is a representation of infinity, the following is required:
1. FPSCR(FR, Fl, VXCVI) « b'001

2. IfFPSCR(VE)=0
THEN DO
If the sign =0
then do
FPSCR(FPRF) « “+infinity”
FAT « xo0x xoxx 7FFF FFFF
end do

If the sign = 1
then do
FPSCR(FPRF) « “—infinity”
FRT « x>0 x000¢ 8000 0000’
end do
END DO
Done (exit conversion)

}
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SNaN Operand
SNaN Operand

If the content of FRB is an SNaN, the following is required:
FPSCR(FR, Fl, VXCVI) « b'001'
If FPSCR(VE) =0
THEN DO
FPSCR(FPRF) &ldarrow. “quiet NaN"
FRT &ldarrow. « x"00 o0 8000 0000
END DO
Done (exit conversion)

}

QNaN Operand
QNaN Operand

If the content of FRB is a QNaN, the following is required:
FPSCR(FR, Fl, VXCVI) « b'001’
It FPSCR(VE) =0
THEN DO
FPSCR(FPRF) &ldarrow. “quiet NaN"
FRT &ldarrow. « x"oox xxx 8000 0000’
END DO
Done (exit conversion)

}

Large Operand
Large Operand

If the content of FRB, rounded as indicated by the instruction being executed, is too
large to be represented in 32 bits, the following is required:
FPSCR(FR, Fi, VXCVI) « b'001’
It FPSCR(VE) =0
then if the sign = 0
then FRT &ldarrow. « x>0 o 7FFF FFFF
else FRT &ldarrow. « x000¢ o0xx 8000 0000’
Done (exit conversion)

}

/O Space Rules

The following rules should be adhered to when addressing /O segments using loads and
stores:

» All references, both loads and stores, must be generated.

» The order of the references to shared variables must not be change by the compiler. This
is with respect to all shared variables, not just the same shared variable.

* No references can be moved outside of their basic block (for example, before an if test or
outside of a loop).
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o Multiple references to adjacent locations cannot be combined into a single reference (for
example, a load byte from 1fe combined with a load byte from 1ff to create a load
halfword from 1fe).

« Read-modify-write cannot be supported and should produce a compile time error. The
programmer must be forced to explicitly program to the underlining storage classes
(character, halfword, word) for all references.

Serlalizing Semantics of Various Instructions

Some Serialization Cases

In order to arrive at the definitions of ics and dcs instructions, the following cases where
synchronization is required were considered:

o Synchronization on local I/O operations:

Assume memory contro! registers are being updated. The sequence of instructions occur
as follows:

Store ram bank control
<sync>.

In this case the synchronization can be taken care of by an ics instruction. The ics must
wait for the store to complete (at this time It is removed from the PCS).

¢ Instruction modification:
The following is a possible sequence:

Store (changed instruction)

cif

<sync> (wait for store-back to complete, invalidate prefetch buffers)
Branch (to changed instruction).

This synchronization is accomplished by issuing a dcs instruction first, followed by an ics
instruction. The entire sequence then becomes the following:

Store (changed instruction)
cif

dcs

ics

Branch (to changed instruction).

The dcs instruction waits for the store-back to main memory to finish at the Fixed-Point
unit. The ics forces the Instruction Cache Unit to wait until the dcs is complete. Any
prefetched instructions are invalidaled, and the instruction following the ics is fetched
again. The fetching of the branch target causes an instruction cache miss and the new
version of the line is fetched from memory.

¢ Pagein:

cli

<multiple clis>

<sync>

(Invalidate prefetch instructions and wait for last cli to complete).
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This case is also handled by an ics instruction. The cli and clf instructions are placed on
the Program Counter Stack (PCS) (see the following). The ics instruction waits for the
PCS to empty before it can complete.

¢ Page out

cif

<multiple cifs>

<sync> (serialize Fixed-Point Unit, wait for store-back of last clf)
<start VO>,

In this case the synchronization is handled by a dcs instruction. The Instruction Cache
Unit is not synchronized; it continues dispatching instructions beyond the dcs instruction
as there is no need to synchronize the Instruction Cache Unit.

Iinstruction Cache Synchronize and Data Cache Synchronize Definitions
The following sections describe the instruction cache synchronize (ics) and data cache
synchronize (DCS) instructions.

ics Instruction
The ics instruction should have the following semantics:

¢ Any prefetched instructions are discarded.

e The PCS is emptied. The PCS maintains a hardware list of outstanding instructions in the
Fixed-Point Unit which can cause an interrupt. They include loads, stores, and traps.

* Any outstanding operations from the following list must have executed (meaning that
none of the following instructions causes an interrupt, and are completely executed with
respect to the state of processor registers, but perhaps not memory):

— dcs

- tibi

— mtsr and mtsrni

- cli

- dclst, dclz, and cif.

(To the point they cannot interrupt by way of the PCS, the line may not be valid in main
memory for clf and dclst, and the cache line may not be entirely zeroed for dciz.)

The previous three conditions are referred to as the three serializing operations. Upon
encountering ics, the Instruction Cache Unit waits until these conditions are satisfied before
considering any subsequent Instructions for dispatch.

There are actually two problems related to SDR1 and SDRO. The primary problem is what
the correct behavior of ics should be relative to these SPR moves. The second is what the
Instruction Cache Unit should do with respect to misses for prefetched instructions when
these registers are in the process of being updated.

There is a delay between the time an mtspr. SDR0O/SDR1 is dispatched by the Instruction
Cache Unit and the time it is actually executed by the Fixed-Point Unit. During this time the
Instruction Cache Unit must be prevented from presenting a translation request to the
Fixed-Point Unit, otherwise an incorrect translation could possibly be performed. We
recommend that this case be handled in the following way.
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Update SDRO and SDR1 in real mode only. In this case thers is no possibility of an ITLB
miss, §0 an incorrect translation cannot be performed.

If this is unacceptable and software wishes to update SDR0 and SDR1 in virtual mode, then
an Ics must follow the mtspr SDRO/SDR1 in order to ensure correct operation. (This solution
will not work if the ics and mtspr are on different pages and ics is on a page affected by the
new value of SDR0O/SDR1.)

des Instruction
The dcs instruction walits for all outstanding data cache operations (cif, dcist, dciz) to
complete. (By virtue of the present design of the Fixed-Point Unit, cli, tibi, mtsr, and mtsri will
all have completed prior to the des completing.) The des instruction does not synchronize
the Instruction Cache Unit. (However, an interlock bit Is set in order to allow ics to interfock
until the dcs instruction completes.)

Other Instructions Possibly Requiring Serialization
The semantics of other serializing or potentially serializing instructions are listed as follows:

e SVC

As part of the execution of this instruction all three serializing operations listed previously
for ics are performed. (Although the svc instruction is not presently defined as a
serializing instruction, the initial implementation implements it as such.) In addition, the
SVC cannot be executed until the Link register is not interlocked (if the LK bit is set) and
the Count register and MSR are not interfocked.

e mtmsr

The mtmsr instruction will not be dispatched until the MSR is not interiocked. When it is
dispatched no subsequent instructions will be dispatched until the MSR has been
updated. At this point any prefetched instructions will be invalidated, and the instruction
following mtmsr will be refetched using the new MSR value. (Currently it is not necessary
to walt for the PCS to empty because the Fixed-Point Unit will not be able to perform the
mimsr until all instructions that could cause an interrupt in the Fixed-Point Unit have been
compieted.)

o ffi

All three serializing operations will be performed. Additionally, the rfi instruction will not
execute until SRRO, SRR1, and the MSR are not interlocked.

o rfsvc

All three serializing operations will be performed. The risvc will not be executed until the
Link register, the Count register, and the MSR are not interiocked.

o tibi

This instruction does not serialize the Instruction Cache Unit. An explicit ics must be
issued if TLB entries pertaining to the page from which instructions are being fetched or
pre-fetched are being invalidated.
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o misr and mtsri

These instructions do not serialize the Instruction Cache Unit. Instructions past the mtsr
or misri instructions are dispatched. Prefetched instructions are not invalidated. If a
Segment register from which instructions are being fetched is to be updated, the
Segment register update must be followed by an ics instruction.

These instructions are self-serializing with raspect to data references.
o Load/Store to VO

There is no known serialization since all of these operations must complete before any
subsequent operations are executed by the Fixed-Point Unit, and we are not aware of
any effect of these operations on the Instruction Cache Unit which requires implicit
serialization.

o cif and cli

These instructions do not serialize the Instruction Cache Unit. An ics instruction must be
issued to cause the Instruction Cache Unit to wait until all outstanding cif/cli operations
have been executed, and to fetch again any fetched instructions.

e dciz and dcist

These instructions cause no serialization in the instruction cache unit, but are
self-gerializing in the Fixed-Point Unit.

e mtspr TID

This instruction is presently self-serializing in the Fixed-Point Unit so it requires no
special handling by software.

o mtspr SDRO
e mtspr

Instructions which move to SPRs in the Instruction Cache Unit, such as SRR0, SRR1,
LR, and CTR, are all handled by a standard interlock scheme. When the instruction is
dispatched, an interlock bit for the affected register is set. When the data retums from the
Fixed-Point Unit, the interlock bit is reset. No subsequent read or write operation to a
register can be performed while the interlock bit is set. These instructions are not
serializing.
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Chapter 2. System /O Structure
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Description

This chapter describes the Input/Output (/O) architecture. General /O bus support functions
for Load and Store instructions, interrupt, and channel control are provided by the /O
Channel Controller (IOCC). A number of feature /O siots are associated with the |0CC for
pluggable YO devices. Also attached to the I/O bus, but not occupying featurs slots, is the
Standard I/0. See “System /O and Standard I/O" on page 2-84.

The I0CC design allows certain variations of function and performance to optimize its use
across multiple machine environments. The spacific personalization is established with the
contents of the IOCC Configuration register. (See “IOCC Configuration Register” on page
2-74) and “Implementation Detalls™ on page 2-86.)

Reasonable efforts were made to implement this architecture correctly and completely.
However, the implementations may deviate to some extent from the /O architecture,
documented in this chapter. The specifics of the various implementation deviations are
documented in the “Implementation Details™ on page 2-88 or in the /O architecture
implementation details section in the product-specific manual.

Figure 34 shows the logical view of the IOCC in the units.

Processor System Bus
Chip Set Memory

Bos |
10CC us VO Slots

]-sundmlvo

Figure 34. System Block Diagram
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System Structure
Figure 35 shows a more detailed logical view of the IOCC. Functions provided by the IOCC
include data buffering, address translation, access protection, direct memory access (DMA),
and interrupt support.

Virtual
Processor Y
:_—-h Data i4— L/ST Data
Processor Cache
Chip Set (Ra;l')“
8
Xiate |— L/ST Address amoty ||
Chgnml Bus
| L/ST | * o X
Data " BFR Date—1—1—"
[P
DMA Addr » —> IBE:I.'nory
Ctri
* Tag
Table
TCW, Addr
U——Addr—- H Bus
— Bus +—p1 Master
Mesmory
Inharrupﬂ
Ctrl
— Bus VO - — Addr——» Bus VO
Range

Note: * May be implementation specific. (See “implementation Details” on page 2-86).
Figure 35. Programming Model
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The operating system can access all system facilities, for example, virtual memory, system
memory, bus /O, bus memory, and the IOCC. The IOCC contains special facilities needed
by the system for translation, protection, and other functions.

Problem state programmers are normally restricted to virtual memory. The virtual address is
always mapped to system memory by way of the translation mechanism associated with the
processor chip set.

For certain applications, the operating system also grants conditional access authority to the
bus /O and bus memory. Accesses to bus memory and bus 1/O devices are checked for
proper access authority, restricting user programs to access only the devices that they are
authorized to usse. Accesses to bus /O are verified by an address range check. Accesses to
bus memory are verified by way of a key in the translate control word (TCW) table described
in *Translation, Protection, and TCW Table” on page 2-33.

The /O architecture includes the definition of 16 independent YO channels. One channel
(X'F) is used by the system master for Load and Store transfers, leaving 15 that can be
programmed for bus master transfers. The number of channels that can be programmed for
DMA slave transfers is Implementation specific. (See “lOCC Configuration Register” on page
2.74 and "implementation Details’on page 2-86.)

A bus master is a Micro Channel device that contains its own direct memory access
controller. A DMA slave is a Micro Channel device that requires the system to provide the
direct memory access control.

The VO architecture also includes a provision for 16 I0OCC bufters that can be associated
with each of the /O channels previously described. The presence and the number of IOCC
buffers is implementation specific. In addition, the architecture optionally allows for each of
these 16 buffers to be dual buffers. The dual buffer option enhances /O performance by
allowing overlap of operations between the Micro Channel and system buses. The option
allows the IOCC to read-ahead of the device so that the data is there when the device
requests it, or to write data to the system memory while the devics fills the other buffer. For
detalils, see "IOCC Configuration Register” on page 2-74 and "Implementation Details” on
page 2-86. Normally this dual buffering mode is transparent to the software. However, under
certain circumstances the software may need to know of the buffers existence. See “next
buffer invalidate Command™ on page 2-68.

Normally, all processor accesses to system memory go through the processor data cache.
However, if accesses are sharing memory areas with /O devices, a means must be
provided for maintaining consistency among the processor data cache, the system memory,
and the /O buffers. How cache coherency is provided is implementation specific. Briefly, in
the unbuffered mode, the hardware provides consistency. In the buffered mode, the software
must provide consistency (by way of hidden pages, by the use of programmed I/0O (PIO) to
system memory through the IOCC, or by other techniques). For more detalls, see
*Maintaining Consistency” on page 2-36, “IOCC Configuration Register” on page 2-74 and
“/mplementation Details™ on page 2-86. All caches can be visible to programmers, including
selected application level programmers.

A bus master on the /O bus accesses bus memory and bus /O, and if mapped, system
memory. Pages in the bus memory address space are mapped to system memory by way of
the TCW table and by a bit in each Channel Status register indicating the target (bus or
system memory) of the access. Mapped pages are checked for proper accass authority
before allowing an access to proceed. Since the IOCC cannot intercept or stop accesses
from a bus master to bus attached memory or bus /O devices, no access checking is
performed when a bus master addresses devices on the /O bus.
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The DMA slave controller provides a convenient mechanism for moving data between an IO
device and system or bus memory. It provides addressing and control functions on behalf of
the I1/O device. Two methods for providing addresses for the DMA slave operations are
supported in the architecture. In the first, memory addresses are obtained from a tag table in
the IOCC. This table provides translation facilities similar to the System/370 indirect address
word list, with additional capabilities allowing data chaining down to the byte level. In the
second method, a TCW table provides the Real Page Number (RPN) used along with an
offset as the memory address. Both methods are described in more detail later in this
document. For implementation specific details, see “lOCC Configuration Register” on page
2-74 and “Implementation Details” on page 2-86.

Virtual Memory

Virtual memory is a large address space containing logical system objects such as programs
and data. Each object Is assigned a unique address in the virtual memory space at the time
of creation. This address is used thereafter to reference that object.

Virtual memory objects are mapped to system memory on a demand basis. At the time of
reference by a system or user program, the translate unit associated with the processor chip
set verifies whether that object is currently in system memory. If so, the unit supplies the
appropriate (real) memory address. If the object is not in system memory, the operating
system is called to obtain the requested object, place it in system memory, and update the
tables used by the translate unit. The original faulting instruction is then retried and control is
retumed to the original system or user program. As long as the (virtual) access does not
have any real-time dependencies, this demand mapping is transparent.

System Memory

System memory is closely associated with the processor chip set complex. The system
architecture provides for up to 4G bytes of system memory.

Bus master and DMA slave operations to this memory neither synchronize nor update the
processor data cache or Page Frame Table (PFT). Without proper programming
precautions, this can cause the processor data cache and its associated system memory to
be inconsistent, resulting in the loss or corruption of data (for example, when the processor
chip set and an IO device both attempt to access the same memory area). For more details,
see "Maintaining Consistency” on page 2-36.

Bus Memory

2-6

/O bus memory is the memory that logically resides on the I/O bus. The I/O bus includes 32
address bits, providing up to 4G bytes of addressability. PC family I/O buses utilize
disjointed address spaces for bus memory and VO devices. In the system units, these two
address spaces are mapped together as shown in Figure 46 on page 2-21. This address
space is differentiated from the /O address space by an address decode. /O bus memory is
referanced when the address is above 64K bytes. Processor accesses to this memory
space do not go through the processor data cache and do not suffer from the cache
consistency problems described in the preceding section, “System Memory."

Bus memory is generally packaged on feature I/O cards and is associated with specific
devices. Devices are generally mapped into the bus memory space when they have large
addressability requirements, such as video display buffers and floating-point work space.
Any bus master on the I/O bus has unconditional access to other devices on the Micro
Channel! I/O bus. As such, access to bus memory is unprotectsd.
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Bus memory references are redirected to system memory by way of the TCW mechanism,
the Channel Status register mapping bit, and, for systems that implement the optional Bus
Mapping registers, by way of the Bus Mapping registers. Refer to the “Translation,
Protection, and TCW Table” on page 2-33 for a description of this mapping process.
Accesses to system memory are translated and checked for appropriate authority before
allowing them to proceed. If allowed to proceed, this mapping of bus addresses to system
memory is transparent to the requesting bus master or DMA slave. Special rules must be
followed to guarantee the consistency of this memory it it is shared with the processor chip
set. See “Maintaining Consistency” on page 2-36 for a description of these rules.

Bus VO
The I/O bus includes a special address space for accessing VO Control registers. This

address space is mapped together with the bus memory and is referenced when the
address is within the lower 64K bytes. It includes16 address bits and provides up to 84K
bytes of addressability. VO devices do not decode address bits A31 to A16 and these
address bits are considered undefined relative to I/O devices. Note that the addressing
nomenciature on the VO bus follows the Micro Channel format shown in Figure 36 on page
2-8.

JOCC Control Registers
1I0CC Control registers are special facilities managed by the system supervisor that control
all aspects of the Load and Store instructions, channel, and interrupt operations. They are
only accessible to Load and Store instructions from the system processor. They are
addressed in a disjoint address space inaccessible to /O bus devices. This address space
is defined so that it can be mapped onto the VO bus, providing flexible implementation in
distributing IOCC control facilities across multiple chip packages. Refer to the “Special
Facilities” on page 2-72 for a description of these registers.

Data Security
The system unit is intended to be used In shared environments and contains mechanisms to
malintain data security. The IOCC supports attachment of user-supplied /O devices and
device drivers. The IOCC includes extensive hardware and operating system mechanisms
to insulate the system and other users from them. All accesses to memory or the /O bus are
checked to verify that the user has authority to use that resource. Shared resources, such
as |I0CC or memory buffers, are controlled (for example, zeroed) so that no task gets
access to some other task’s data.

Bit and Byte Numbering Conventions

This section describes the processor and Micro Channel bus notations used for addressing
bits, bytes, and multibyte fields, as well as the effects of these notations on the IOCC
architecture.

processor and Bus Notation
Two different methods are used to address the individual bytes in a multibyte scalar
(numeric value) field. The methods differ in whether the field is addressed from the
most-significant byte (the “big” end) or the Ieast-significant byte (the “littie” end).

The big-endian notation addresses scalar fields in ascending order from left to right. This
results in the most-significant byte (MSB) always having the lowest address. This practice
provides consistency in addressing that is independent of the word size of the machine. Bits
are always numbered from left to right. This notation is used in all processor, channel, and
serial protocol descriptions.
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The little-endian notation reverses both bit and byte addressing for scalar fields. This
notation is used in the Micro Channel architecture.

Regardless of which method is used to address scalar fields, all systems address string
fields the same way, with the MSB having the lowest address.

Figure 36 shows the differences between big-endian and littie-endian notation.

Big-Endian Notation (Scalars and Strings)

0
7
BEEEE
0 1
MSB LSB
(4] 7|8 1
Lttt e e
0 1 2 3
MSB LSB
TR AN LT & L AL

Little-Endian Notation (Scalars only)

0
7 o
L1
1 0
MSB LSB
1151114118|71||1111°
3 2 1 0
MSB LSB
al1lllllj4lzlallLlITBI1PIIJ_1LIBI7IIIIIIP

Figure 36. Data Addressing and Bit Numbering Notations

The little-endian practice of numbering bytes in ascending order from right to left results in
the most significant byte of a word having the highest address. This poses problems in byte
ordering on 2- or 4-byte buses. For byte sirings such as text to be compatible across
different word lengths and between different systems, the strings must be organized with the
most significant byte having the lowest address. Figure 37 on page 2-9 shows the address
consistency with the big-endian notation. Figure 38 on page 2-10 shows the address
inconsistency when using the little-endian notation. With the little-endian numbering scheme,
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there is no consistency in addressing across the various word sizes; two half-word stores

produce a different result in memory than one full-word store.

Two Half-Word Store Instructions from the Processor Register to Memory

Processor Register Data in Memory  Address
0 1
Ly U4 o
A" “B- 14 0 IIJIII7
°|||1|117J°4L11111
| — “B~ 1
oJlIlIIT
0 1
“C» 2
«Cw “D~ 1| _’oll . 7
°|||||||7181||||||5 L
[ “D~ 3
>
011111117

Full-Word Store Instruction from the Processor Register to Memory

Processor Register
0 1 2 3
LY ~B~ «Cw «D~
olIIJlll7I8IIIIll]sll‘lslllll?slzflllll%1
— |
Data in Memory  Address
~fpw 0
* lo 7
L1111l
. ~“B~ 1
— o
£ 111111
a ~C~ 2
— |,
j W |
R sD~ 3
0 7
L4 11111

Figure 37. Addressing Consistency Using Big-Endian Notation
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Two Half-Word Store Instructions from the Processor Register to Memory

Processor Register Data in Memory  Address
1 0

“pw -1 0 F——b ‘7

5llllllﬂTILLllll

l J_. , “A» 1

[N
1 0
D~ 2
-c- an —'—.7
15 8J7 0 1L 11111}
AR EEEN AN EN NN
T > “C~ 3
J NN

Full-Word Store Instruction from the Processor Register to Memory

Processor Register
3 2 1 0
"A" “gw nCn nD-
3I1JJ [| lL?lzlsl Ll lLlsl1lsl L1 1.1 18I7Ll 1.1 11 o
Data in Memory  Address
L |, D= 0
L1111
»C= 1
—

7l L11 lJ_lo
> “B~ 2

71 Lidt uo
> “pw 3

7
) 111l

Figure 38. Addressing Inconsistency When Using Little-Endian Notation
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IOCC Byte Steering

The compilers use big-endian addressing notation to handle data in the system unit. To
match the littie-endian notation of the Micro Channel bus, the bytes from the systemn must be
steered to the appropriate bytes on the Micro Channel bus. The IOCC and the system board
are designed to provide byte-order steering as shown in Figure 39. Steering occurs in both
directions as information passes through the IOCC.

(4-Byte) Organization
0 1 2 3
a«pw =B~ '] o1 d -Dn
oI lIJJlI7Iallllll1ls|1I‘Illllzlalaflll llal1
T L T T T Byt Stoering |
) SE— | — ] I by the 10CC |
1 0
an’u D~ whwfuCn
1lsl P11 Isl7l L1111 Io
2-Byte Micro Channel Device
(4-Byte) Organization
0 1 2 3
mwpn «B~ “Cw ~Dw
o.||1|||7|°||||||15|1|°|1|||?3|2f1|1||311
fo=|******sscscscospoecsscrscscscsnn= P e v m e ne e e et ee s e e e e e . -:
: Byte Steering .
: byy:mocg’;
S PR o N :
3 2 1 0
nDl nc. uan .A.

3’11111?‘]2?“1||1|6|1|5|141|J°|7n|1|||P

4-Byte Micro Channel Device
Figure 39. |IOCC Byte Steering
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The I/O data bits require renaming but otherwise maintain a one-ta-one ordering with
standards.

Combining both examples gives the byte steering shown in Figure 40.

Processor Register
0 1 2 3
"A" uBn uCn MD-
0 7|B 15|16 23|24 31
O N O O el O B O O I IO O A el O B I O B
R R it b tbddatd SEEELEEEELES
: Byte Steering .
' by the IOCC !
1 RO P P R e eeeee )
3 2 1 0
On the
nDn ac.n uBn nAn
Micro
M B s 81T 0 0 channe
IancroChaLnnoIMomory
"Data in Memory  Address'
“A~ 0
7
> 7 B~ 1
o ~Cw 2
v7
1111
R uDw 3
111111

Figure 40. Example Showing IOCC Byte Steering
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This architecture optionally aliows for the implementation of the 8-byte Micro Channel
Streaming Data protocol. For implementations that support the optional 8-byte Micro
Channel Streaming Data operations (see “Implementation Details” on page 2-86 for details
on which systems support the 8-byte Streaming Data protocol), the words are steered
appropriately, as well as the bytes within the words, as shown in Figure 41. Steering occurs
in both directions as information passes though the IOCC.

(8-Byte) Organization
Word 0 Word 1
A= R~ UDH .E. ~En e wH~
o, A 78,77 1518 "5 28 2,723 o 718,57 15,18 “S" 23,24 "3
o N L & 2 3 o 1 2 3
 Byts Stoering by the IOCC
R PR 2 1 0 3 2T '

a—

Iﬁlllﬁ?lllllllpllllllJP

1, 'D" 24, 23%C" 16,15 “B" g7 “A" o

L1131 L1l Ll

uH'
E[Illl

Micro Channel Address Bus

Micro Channel Data Bus
Figure 41. IOCC Byte Steering for 8-Byte Streaming Data Protocol

/O Bus Protocols

The IOCC is optimized to use the Micro Channel. If the IOCC must drive another bus,
conversion logic translates the Micro Channel protocols to the target bus.

A brief description of the Micro Channel protocols is summarized in this section. For
reference to other Micro Channel architecture information, refer to the Personal System/2
Hardware Interface Technical Reference: Architectures manual.

Note: This document uses the abbreviated signal names as they appear in the Personal
System/2 Hardware Interface Technical Reference: Architectures manual. For
example, ‘cd chrdy’ represents ‘card channel ready’.

Arbitration

Arbitration is the resolution of multiple bus requests, awarding use of the bus to the highest
priority requester. It applies to all devices that request bus use such as processors, bus
master devices, and DMA slave devices. Characteristics of the Micro Channel arbitration
mechanism include:

One to 16 bus masters
Multidrop (dot-OR) mechanism
Parallel prioritization
Asynchronous operation
Cycle-by-cycie arbitration
Programmable priority levels
Programmable faimess mode
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¢ Mixable linear and faimess modes
¢ Preemptive burst capability
e Multiple bus extension.

The arbitration mechanism distributes prioritization among the arbiters but retains control
and clocking functions within the IOCC. Bus arbitration timing is programmable and is
established by a field in the IOCC Configuration register.

Figure 42 shows the typical device arbiters and their relationship in the system. Parameters
such as arbitration level and burst characteristics are programmable by way of Configuration
registers in each device. There are no restrictions on changing operating modes following

system startup.
Micro Channel
Arbiter loCC
Drq Proeempt Preempt
Dack Arb/Gn <{- Arb/Gnt
Burst Burst Burst
Rotational
Protocol
Priority Arb
Level Bus 10CC
Clock
Arbitration
Micro Channel Bus
Arbiter
—-ﬁ Drq Preempt
4— Dack Arb/Gn ﬂ
— Burst Burst j
— Rotational
Protocol
Priority Arb
Level Bus

Figure 42. /O Bus Arbitration

Figure 43 on page 2-15 shows an arbitration cycle. Devices request service by activating the
‘preempt’ signal. The IOCC responds by deactivating the ‘arb/gnt’ signal when the current
bus owner completes its bus activity. Each requesting arbiter then presents its arbitration
level on the arbitration bus. The IOCC then reactivates the ‘arb/gnt’ signal. If the device sees
its arbitration level value on the arbitration bus, the device knows it has been granted use of
the bus. Device Request (Drq) is a signal (internal to each of the device arbiters) that signals
a request to arbitrate for the bus. Device Acknowledge (Dack) is a signal (intemal to each of
the device arbiters) that signals acknowledgement of being granted the bus.

Note: In some implementation, the arbitration bus might be multiple buses to the arbitration
control logic, but the bus can be viewed as one logical bus from the device's

perspective.
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At the end of the bus cycle, the arbitration cycle is repeated if the ‘burst’ signal is not active.
If there are no requesters, control is returned to the default arbiter at the arbitration bus level
XF'.

_J Drq S\
g Preemet I /

—_[:4—“ Arb/Gnt .7/_—_

X Arbitration Bus
S\ Dack >
\ sos1 o/

\ ©omd g4
Figure 43. Arbitration Cycle

Both DMA slave and bus master devices utilize the arbitration mechanism to initiate bus
cycles. The difference is that once granted use of the bus, the bus master device controls
bus cycles, while the IOCC controls the bus cycles for DMA slave devices.

Priority Assignment ,
At startup, each device supporting arbitration is assigned a unique priority level ranging from
X'0-F'. This priority level establishes the selection criteria to be used when contention exists.
If multiple requests occur simultaneously, the device with the lowest numbered priority level
is awarded use of the bus.

Arbitration level X'F is always assigned to the system processor. If there are no other bus
requesters, bus ownership defaults to level X'F". Thus, the IOCC owns the /O bus during
idle conditions. Since /O bus utilization is normally low, the IOCC does not normally
arbitrate for the bus for VO Load and Store instructions. Some IOCC implementations
execute any pending /O Load or Store instruction during the arbltration cycle (that is, when
the ‘arb/gnt’ signal is in the ‘arb’ state), and extend the arbitration cycle as needed to
complete the /O Load or Store (up to the maximum time specified in the burst control field
of the IOCC Configuration register). See “implementation Details” on page 2-88.

Micro Channel /O davices with long bursting characteristics should be designed using the
Faimess (rotational) Arbitration Protocol, without which it is possible to lock out system
processor VO Load or Store instructions until the O device transfer is complete. If a lockout
occurs for an extended period of time, a bus timeout error is posted, the ‘arb/gnt’ signal is
set to the ‘arb’ state, and the ‘reset’ signals are activated to all slots. While the bus timeout
error is active, all system processor I/0 Load and Store instructions are guaranteed access
to the bus.
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NonPreemptive Burst
Devices can force nonpreemptive burst operations if it is necessary to retain control of the

bus for short periods of time. Examples include use of a read-modify-write sequence in
setting locks and use of a burst to allow the completion of a word-organized transfer
sequence. The device signals the arbiter that a forced burst is required by activating the
‘burst’ signal to the arbiter. When the burst sequence is complete, the device must

deactivate the ‘burst’ signal.

Preemptive Burst
This function allows a device to use consecutive bus cycles without any arbitration
overhead, as long as no other device is requesting bus service. It takes advantage of the
low average utilization of most I/O buses, and increases the effective data rate of a device.
Devices programmed for preemptive burst mode conditionally activate the ‘burst’ signal
when the ‘preempt’ signal is inactive. A device can remain temporarily nonpreemptive for up
to 7.8 microseconds following a preemption request. This delay allows completion of, for
example, block transfers.

Fairness Modes
Devices operating in burst mode or devices with high bus requesi rates can cause severe

interference to devices assigned lower priority levels. The problem is compounded when
muttiple high-bandwidth devices are present in the system. The programmable faimess
mode makes these high-bandwidth devices subject to preemption by any device. |f multiple
high-bandwidth devices are active simultaneously, service is rotated in a priority sequence,
and each receives a percentage of bus cycles inversaly proportional to the number of active
bus requesters.

To meet wide variations in device operating requirements, arbiters are programmable to
operate in either linear or faimess mode. Operating modes can be mixed on the same bus.
Linear priority mode is provided to meet low latency requirements of unbuffered devices,
while faimess mode provides a more equitable distribution of bus cycles in a high-demand
environment, for example, with two or more high-bandwidth bus masters.

Faimess mode is a special case of preemptive burst. If there is only one bus requester, the
current bus owner can utilize all of the bus bandwidth. As with preemptive burst, a device
programmed in faimess mode can remain temporarily nonpreemptive for up to 7.8
microseconds following a preemption request.

DMA Slave Selection
The Micro Channel architecture allows a DMA slave to be selected either by its arbitration

level or, optionally, by its /O address (but not both). In these systems, the method supported
for selection of DMA slave devices is by its arbitration level, status (‘'s0’ exclusive-ored with
's1’), and an I/O cycle (‘m/io’ signal in the 10 state).
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Basic Transfer Cycle

Although the /O architecture defined in this chapter is generic and allows the attachment of
a number of unique buses, the intended design point is the Micro Channel bus. These bus
protocols are shown in Figure 44.

0 100 200

X | asttono, Mo X
Ty
T N\sworw) / N\
cmd |/

— ()

Figure 44. /O Bus Cycles

The Micro Channel offers a 32-bit data path with 4G bytes of address space. It includes
extensive support for rellability, avallability, serviceability, extendibllity, and configurability.
The physical package and connector are designed to improve electrical characteristics.

Two status lines, ‘'s0’ and 's1’, define the initiation of bus write and read cycles respectively,
while the ‘m/io’ line differentiates between /O memory and /O devices. All addresses for the
next cycle are overiapped with the processing of the current cycle. The bus architecture
includes a special protocol for transferring sequential blocks of data. This is known as the
Streaming Data protocol, and is described in the next section.

Streaming Data

The Streaming Data protocol is a single-address, multiple-data protocol that improves bus
efficiency by amortizing bus-cycle arbitration and address setup across multiple data cycles.
it has particular value in transferring data between a memory and a processor cache or
betwesn a memory and a high-performance /O device.

Streaming data begins with a cycle similar to a standard basic transter cycie, but switches to
a clock synchronous transfer protocol.

Streaming data operations are supported for all IOCC transactions including Load and Store
instructions, DMA slave, and bus master operations.

Following the activation of the ‘cmd’ signal, the bus master indicates Streaming Data
Protoco! capability by starting a bus clock called the ‘sd strobe’ signal. This clock is used by
both the bus master and slave to clock data onto and off of the bus. As the operation
proceeds, new data is placed on the bus every time the ‘sd strobe’ signal makes a
high-to-low transition. For additional information on the Streaming Data Protocol, refer to
*Implementation Details” on page 2-86 for system implementation specific information. For
other Micro Channel architecture information, refer to the Personal Systern/2 Hardware
Interface Technical Reference: Architectures.
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Dynamic Bus Sizing
I/O bus read or write operations do not necessarily have to match the physical width of the

device. The Micro Channel architecture requires that the current bus master automatically
manage discrepancies in data transter widths. The IOCC is considered to be the current bus
master for processor initiated I/O Load and Store instructions, and thus, must manage
logical data-width transformations.

A Load or Store instruction issued to a device of lesser width than the command causes
multipie /O cycles to be taken until the transfer width is satisfied. This automatic data-width
matching Is referred to as dynamic bus sizing in the Micro Channel architecture. The
multiple I/O cycles complete as a preemptable operation in the system unit, allowing bus
master and DMA slave cycles to break in for service. As such, bus master or DMA slave
latency is unaffected by use of dynamic bus sizing.

Protocols and sequencing of dynamic bus sizing are shown in Figure 45.

Bus Protocols Bus Sequencing
S
Transfer | BE (B:
Size |Ena Y;” H 32-Bit 16-Bit 8-Bit
0123 A1l th Slave Slave Slave
4B|0000[{0 o o] _»32]| »16; »>8
2B|0011{0]|]0 O »16 | » 16 » 88—
2B|1100] 0 1 0 16 | » 16 »16| » 8 -
1BJ|j0O111] 1 0 0 8 8 »>8
181011/ 0|0 1 -8 8 »8 »>8 8
1Bj1101] 1 1 0 »>8 »8 »8 -8
1Bl1110/ 01 1 »8 | »8 »>slps  log

Figure 45. Dynamic Bus Sizing

It is generally recommended that the programmer writing an /O device driver be aware of
the physical characteristics of the target device. One should be aware when dynamic bus
sizing is invoked by IOCC hardware since this operation requires more time to complete.
See “String Operations” on page 2-28 for details on where this could be a problem.

Partial Transfer Cycles
Partial write operations (for example, writing one byte of a 2-byte device, or two bytes of a
4-byte device) are permitted in the bus architecture. The operations are useful in performing
unaligned moves. The Micro Channel supports partial write operations when operating with

both memory and /O devices.

Bus write operations issued on address boundaries matching the device width allow
completion of the operation in the minimum number of bus cycles. Operations issued to
nonaligned addresses transfer the data to the device using multiple (partial write) cycles.
These write operations use the bus 'sbhe’/'a0’ and ‘be0 to be3' protocols to write the desired
portion of the word. Partial transfers apply to I/O Load and Store instructions and
(potentially) to bus master and DMA slave operations when operating with bus memory.

Partial transfers can take two to four times the normal number of bus cycles and caution
should be exercised in their use. If nonaligned, IO Load and Store instructions halt the
processor for a ionger period of time, adding latency to system interrupt service. See “String
Operations” on page 2-28 for details on where this could be a problem.
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Bus Refresh

Bus refresh cycles are provided as a convenience to /O devices with embedded random
access memory (RAM). Refrash cycles occur at one of several periodic rates selectable by
the Configuration register. Refer to “IOCC Configuration Register” on page 2-74 and
“Implementation Details™ on page 2-86 for a description of refresh options. The refresh cycle
occurs with the ‘arb/gnt’ signal high and does not consume a bus arbitration level.

A refresh cycle is similar to an I/O memory read operation, except that the ‘'refresh’ line is
also activated. Address bits 0 through 11 (using the Micro Channel notation shown in Figure
36 on page 2-8) are incremented by one, and are placed on the bus during the refresh

cycle.

Bus Errors

Four different kinds of errors are detectable on the Micro Channel:

invalid address
Parity

Channel check
Bus timeout.

When an error occurs, the error status is logged in IOCC registers as an aid in error
recovery. Individual error status is kept for each /O device (by arbitration level) to assist in
recovery of multiple errors and is stored in the Channel Status register associated with that
device. /O Load and Store instructions utilize channe! 15 in regular operation and error
status for those operations is saved in that set of registers. Refer to “Load and Store Error
Conditions" on page 2-31 for a description of this error status.

invalid Address

parity Errors

Cchannel Ch

The Micro Channel architecture requires a positive response to all addresses. Address
response is signalled on the Micro Channel by driving the ‘cd stdbk’ signal low. Failure to
respond indicates that the address is invalid, or is issued to a missing or mis-seated card.

If an VO Load or Store Instruction is issued with Segment Register bit 12 on, the IOCC
checks for this address response. If none is received, a Data Storage Interrupt (DSI) is
issued and a card selected feedback eror code is set in Channel Status register 15. Refer
to “/O Segment Register Definition™ on page 2-26 for additional details.

The Micro Channel architecture definition includes address and data parity functions.
Checking is performed only when both the bus master and slave support parity. Refer to
“Exception Reporting and Handling” on page 2-85 for details of the /O parity support.

eck
The Micro Channel includes a ‘chck’ signal that indicates an unusual event occurred during
the bus cycie. Examples include data parity error and page fault.

For details on the usa of the ‘chck’ signal in reporting exception conditions within the unit,
see "Exception Reporting and Handling" on page 2-85.

It is important to note that the unit is designed to recover from synchronous channel checks.
Adapters that use the ‘chck’ signal asynchronously make an Initial Program Load (IPL), the
only recovery that is possible.
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Bus Time Out

Interrupt

A number of conditions can result in a hung bus or in grossly extended /O bus cycles.
These errors can result in overrun conditions to other devices on the YO bus and are
checked by the IOCC using a bus timeout mechanism. Although the minimum architected
bus timeout value is 7.8 microseconds, the IOCC does not attempt to check that finely and
should impiement a timeout that varies between 15 and 120 microseconds. See
“implementation Details” on page 2-86.

Bus hang problems are caused by either hardware or software errors. These errors are
generally associated with arbitration for the I/O bus followed by failure to complete the bus
cycle.

On a bus timeout error, the IOCC deactivates the ‘arb/gnt’ signal, and sets bit 1 (the bus
timeout bit) in the IOCC Miscellaneous Interrupt register, and generates an interrupt. This
error is considered to be uncorrectable and the master enable control in the I0CC
Configuration register is reset. This disables all interrupt and channel requests. Also, a
‘reset’ signal is applied to all /O slots. in addition, If an VO Load or Store instruction is
pending in the IOCC when the bus timeout occurs, and the target of that Load or Store
instruction is the Micro Channel bus, then a Data Storage interrupt is sent for the terminated
Load or Store Instruction. If an /O Load or Store instruction is pending in the IOCC when the
bus timeout occurs and the target of that Load or Store instruction is an IOCC facility, then
the load or store instruction will be completed after the Micro Channel bus is cleared by the
I0CC. The IOCC intemal status is unchanged, so that channel conditions at the time of the
error can be logged. As an aid in determining the cause of the error, extraneous bus status
is also captured in the Bus Status register.

Incorrect programming of the DMA controller can result in a hung bus. The DMA controller
includes multiple channels; each can be personalized to control either a bus master or DMA
slave device. Personalization can be dynamically performed. If a programmer should
personalize a channel for bus master operation, but the device is actually a DMA slave
device, the bus will hang on the first DMA request that the device makes.

Eleven Micro Channel interrupt lines are supported by the IOCC. Interrupts on the Micro
Channel are level-sensitive, active-low, and exhibit natural interrupt-sharing capabilities. The
IO Board provides pull-up resistors on all Micro Channel interrupt signals so that unused
lines float to the inactive state. Refer to “I/O Interrupts” on page 2-68 for additional details.
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Programming Model

The following section describes the programming model for the I/O bus support functions
provided by the IOCC.

Load and Store Instructions
The Load and Store instructions can be issued to devices on the /O bus in a similar manner
that they are issued to system memory. The programmer specifies a Segment register
identifying a specific address space and supplies an offset into that space. The offset is
obtained from the effective address and is not translated prior to being applied as a bus
address. Figure 46 shows the process.

YO Load and Store instructions are under control of the Segment registers. A command is
directed to the /O bus when the type (T) bit of the Segment register is set to a value of 1
and the bus unit id (BUID) address Is set to select the IOCC. Some I/O operations require
that the privileged key (K) be set to a value of 0 (the privileged mode).

Effective Address

e
Reg #
4 .07

01 MR LN ITENTE i o AR T RN &
a 28 e—P
Segment Registers Bus 1S
[ c Yo
t1euo |t - | DD
.lJ lllIIll l 1ii1atitl All L1l
FFE LT
>
TK éggcctw Ctrl

Figure 46. VO Addressing

Address Spaces and Effective Addresses
Figure 47 on page 2-23 illustrates the addressing modes. I/O addressing requirements are
met by having multiple address spaces. These address spaces are selected by way of
control bits in the Segment register (see Figure 51 on page 2-26) resulting in three /O
effective address operating modes as follows:

1. Standard Bus Mode: This I/O effective address mode provides for 32-bit addressing of
the VO bus. In this mode the Segment register control bits are in the following state:
T=1,1=0,and M=0.

The 32 bit bus memory address is formed by concatenating 28 bits of the effective
address with the 4 extent (EXT) bits from the Segment register. This partitions the bus
memory device space into 16 pages of 256M bytes each (4G bytes of total address
space), and separate Segment registers must be used to address adjacent 256 M-byte
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address spaces. The 16 bit VO device address is taken directly from the effective
address. To address a device within the 64K byte Micro Channel! /O space, effective
address bits 4 through 15 and Segment register bits 28 through 31 must all be setto a
value of 0. Effective addresses are not translated, but are used as rea/ addresses into
the /O space.

For a pictorial representation of this addressing mode, see Figure 48 on page 2-24.

2. RT Compatibility Mode: This addressing mode assists in the simulation of the RT system
allowing for 24 bit addressing. In this mode the Segment register control bits are in the
following state: T=1,1=0,M =1, and EXT = x.

In this mode, 16M bytes of bus memory is selecled using an effective address of X'x4
0 ¢, and 84K bytes of bus I/O using X'x0 00 xx x¢. Any other eftective addressing
range other than these two rasults in a Data Storage interrupt and an invalid operation
error status is set in the Channel Status register (CSR) 15. This mode maintains
compatibility with the VO structure of the RT system and provides the ability to replace an
RT object code Load or Store instruction with its system equivalent, and the simulator
does not have to worry about differences in the effective address format.

In this mode, the hardware sets the effective addrass high order 8 bits (A0 to A7) to a
value of 0 before placing the address on the bus. Note that with this definition of the bus,
no bus memory devices can reside in the address range from 0 to 64K bytes. Also note
that in the RT compatibility mode, no bus memory devices can reside in the lower
64K-byte range of the bus memory address space (64M bytes 10 64M bytes +

64 K bytes). If the Segment register X'F is usad to provide access to the I0CC address
spaces, all user Load and Store instruction effective addresses operate the same as
those in the RT system.

For a pictorial representation of this addressing mode, see Figure 49 on page 2-24.

3. 10CC Control Mode: This addressing mode provides for access to the IOCC facilities. In
this mode the Segment register control bits are in the following state, T=1,1=1, M =X,
EXT=x,and K=0.

Included in this address space are IOCC registers, the tag and TCW tables, the System
registers and Nonvolatile Random Access Memory (NVRAM).

Note: Some references to the IOCC control space are on word boundaries only and
require that the data length be a multiple of 4 bytes (for example, the tag tables,
the TCW tables, and the IOCC registers).

The IOCC control space Is privileged and is only accessible when the Segment register
privileged bit is set to a value of 0. Attempts to access this address space when the
Segment register privileged bit is set to a value of 1 causes a Data Storage interrupt to
be posted and and invalid operation error status to be set in the Channel Status register
15. Attempts to access undefined effective addresses in the IOCC control address space
also results in a Data Storage interrupt (invalid operation).

For a pictorial representation of this addressing mode, see Figure 50 on page 2-25.
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Although bus memory and bus VO are disjointed in PC products, the system unit maps
these two address spaces together. Since bus VO only requires 64K bytes of addressing,
this address space easily maps into the low addresses of the (4G bytes) bus memory
address space. The architecture of PC products is such that no bus memory feature cards
may be hardwired in the address range of 0 to 84K bytes, and no address conflicts exist.
Note that the 84K bytes of Micro Channel /O space can be accessed when utilizing each of
the three effective address operating modes as shown in Figure 47, The values forthe T, |
and M bits for each of the three /O effective address operating modes were previously
described and are illustrated in Figure 47.

Systom Address (T = 0) VO Address (T = 1, BUID = 10CC)
| I
' ' 'StandardBus  RT Compatibliiy 10CC Control
m
Mode Mode Mode :
I=X,M=X 1=0,M=0 1=0,M=1 l=1,M=X,K=0
256M 266M - 256M [~ 256M
k o p— e
e e e P
192M — 192M — 192M — 192M —
- - - _ "
128M | Mom | | 128M = Bus 11 128m - 128M |-
B B ;—16 B
8aM [ 84M [— eambF0—— eam—
o L 0 ool 0ol
sakvo |

Space
Figure 47. Addressing Model
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Figures 48, 49, and 50 summarize the system effective addresses. Effective addresses are
obtained from the processor general purpose registers and are under user control. If a bus
memory page is mapped to system memory, the bus address is translated to the address of
the mapped system memory page.

Standard Bus Mode I=0,M=0
Bus VO Address
000000000000, (Seg Reg bits 26 to 31 = 0) %s
Jj_lllllll[l MBS EN NN
Se9 1000000000000x000000011100|DLY| Time
Reg # Delay
111 llllllillLLlllll_lllJ [ |
Bus Memory Address Bus
v it s ey e by g vttt Memory
0 34 78 15 16 23 24 31
Figure 48. User Effective Addresses: Standard Bus Mode
RT Compatibllity Mode I=0,M=1
000000000000 Bus /O Address Bus
llllllJllJl L1 it 1111 1 vo
Seg 1000000000000x000000011100|DLY| Time
Reg # Delay
[ | lllllll'lljlj_lllLlJl L
010 Bus Memory Address Bus
aa vt e a s e v e eyt be et Memory
0 34 78 15 16 23 24 3

Figure 49. User Effective Addresses: RT Compatibility Mode
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1OCC Addressing I=1,M=X,K=0

Seg [0000/00000000 VO Device Address Bus
HCQ# lLJlJA?{WIIIILllLIIILI lvo
0100 0000 0 00X|l0CC 0 o] locc
Chnl/
‘ Slot#| | 441111 Aldldﬂsl | Registers
Sys Reg | System
0100000000000000/11 Y& nzgtmn
141t 1111 1114111 1 L1 |

100000000 Tag Table Address [0 0| Tag Table
1 llll',llLJllJlllIl 1

101 NVRAM Address NVRAM
1 11 1 1 Illlellllllllllll 1
0000{11 TCW Number 0 ol TCW Table
Ll L1 LJlll_LIlllIJlLJLllJl 1
0 34 78 15 16 23 24 31
I0CC Commands I=1,M=X,K=0
Seg OOOOIOOOOOOOC—)IXOOOOOOO11100 Dly | Time
Reg # ct bt aeaaatyaggty | Delay
010 0000!00000000'00110000ﬂ ~Reserved~
Ll1l 111
1000110 0| End Of
L1l L1111 3| Interrupt
Bfr # 0110100 0| Invalidate
111 L1111
0111000 o Enable/Disable
Chnl ¢ L1y | Channel (Arb L)
0111100 0| Flush DMA
111 1 1 1 1.1 Li el 111 L1ttt 1 SIGVQBU"QT
0001j1 0 TCW Number 001 Next Buffer
l I Invalidate
1 i 1 11 111 4111111 L1 11111
RC|Ctl|1 1 TCW Number FR| Flush Bus
I | Master Buffer
Ll bt adaai11l )] and Replace RC
0o 34 78 15 16 2324 3

Figure 50. I0CC Effective Addresses
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/O Segment Register Definition

Segment registers provide access authority to the I/0 bus for O Load and Store
instructions. They are protected resources within the system and generally cannot be
changed except by the system control program. Some personalizations of I/O bus
operations are provided to match unique device (or /O bus) characteristics. This
personalization is controlled by control bits in the Segment registers shown in Figure 51,

[+
t
TK| - BUID :’ - IMB |-| EXT
0 3|4 78 1112 15,16 23|24 28 31
1 lJJIlll LlJ_lllllll L L1 1
B l
Lt Reserved Reserved K?ldm
Privileged Key Address Bypass
MemoryO Increment RT Compatibliity Select
Address Cheack IOCC Select

Figure 51. I/O Segmant Register

The following Segment register definition applies only to IOCC and /O bus applications. Bits
0 and 1 are system control bits defining system state. Bits 4 to 11 select system facilities

such as the IOCC. Bits 12, 13, 25 and 26 mediate IOCC operations, while bit 24 provides
access to IOCC facilities. Bits 2, 3,14 to 23 and bit 27 are reserved, and bits 28 to 31 are

used as an address extension for the I/O bus address. A complete description of all fields in
the Segment register is given in the following list:

Bits
0

2-3
4-1

12
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Description

Type: This bit defines whether a Load or Store instruction is targeted to
system memory or the I/O address spaces. System memory is selected
when this bit is set to a value of 0, and /O is selected when this bit is set to
a value of 1. The definition of the Segment register, lllustrated in Figure 51,
is only valid for /O operations, that is when bit 0 is set to a value of 1, and

the BUID selects the IOCC.

Privileged Key: This bit is generally set to a value of O when the operating
system is in control and set to a value of 1 when in the user mode.

Reserved: These bits are reserved and must be set to a value of 0.

Bus Unit Identification (BUID): The BUID field is decoded to select the
IOCC. Addresses between X'20 - 23' are assigned to the IOCC. Hardware
strapping options on the IOCC allow specification of its exact BUID field
value on some implementations. Implementations on machines that support
a single I0CC must have a BUID of X'20'.

Address Check: This bit provides for conditional checking of I/O addresses
during Load and Store instructions. The Micro Channel provides for a
positive address response by device activation of the ‘cd sfdbk’ line. if this
line is not activated, the davice address is invalid. See “Invalid Address” on
page 2-19. An /O Load or Store instruction that does not receive a positive
address response is allowed to proceed when bit 12 in the Segment register
is set to a value of 0. A command issued to an invalid device address when
bit 12 is set to a value of 1 causes a Data Storage interrupt to be posted
and a card selected feedback error code to be set in Channel Status



13

SRz
§

28-31

register 15. Figure 52 summarizes all the combinations of bit 12 and the
address response by an /O board (the address response is true if the
device has activated the ‘cd stdbk’ line).

Bit 12
rr Address Response
0 0 | Command Can Proceed
0 1| Command Can Proceed
1 0 | Data Storage interrupt
1 1 | Command Can Procesd

Figure 52. Bit 12 and Address Response Definition

Address Increment: This bit controls incrementing of the I/O bus address If
a Load or Store instruction is issued to a bus VO device with a physical data
width less than that of the instruction. The IOCC breaks the transfer into
multiple 1O bus cycles. See “Dynamic Bus Sizing® on page 2-18 for a
description of this function. This bit controls whether the address is
incremented betwesen the /O bus cycles. Addresses are incremented when
bit 13 is set to a value of 1. Addresses are not incremented if bit 13 is set to
a value of 0. The addrass increment function is controllable on a
device-by-device basis. In the case of a Load or Store instruction to bus
memory, bit 13 is ignored and the bus addresses are always incremented.

The Micro Channel architecture specifies that all addresses are to be
incremented when performing dynamic bus sizing. This bit should be set to
a value of 1 when working with devices designed to this architecture.

Use caution when using string operations as csrtain devices can support
multicycle operations up to a particular word size, but not to exceed that
word size. Consult the particular device specifications for details.

Reserved: These bits are reserved and must be set to a value of 0.
I0OCC Select: This bit selects the IOCC control mode.

RT Compatibility Select: This bit selects the RT Compatibility Mode when
the I0CC Select (1) bit = 0.

Bypass: When this bit is set to a value of 1, the IOCC bypasses TCW
checking and memory mapping. Only direct bus access is possible.

When this bit is set to a value of 0, the extended functions of authority
checking, access validation, and system consistency are invoked.

This bit is ignored if the | bit equals 1.
Reserved: This bit is reserved and must be set to a value of 0.

Extent: This field is concatenated with effective address bits 4 to 31, to form
a 32-bit VO bus address when working in standard bus mode. It is gated to
address bits ‘A31' to ‘A28’ on the /O bus.
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Address and Data Alignment
Data for Load and Store instructions is normally right-justified in the Processor register.

One-byte operands are located in byte 3. Two-byte operands are located in bytes 2 and 3.
String operations are an exception and are left-justified in the starting Processor register.

Target |/O device addresses should normally be aligned on boundaries equal to the device
width. This maintains optimal performance when performing Load and Store instructions. If
this rule is not observed, the IOCC performs the operation using multiple (narrower) /O bus
cycles. This can take up to four times longer to complete the Load or Store operation. Refer
to "Partial Transfer Cycles” on page 2-18 for additional details.

String Operations
String operations allow the issuance of Load or Store instructions with data widths from 1 to

128 bytes. The bus protocol used in the data transfer is dependent on the /O device. String
operations are applicable to any addressable device on the Micro Channel and to the tag
tables, TCW tables, and to the NVRAM within the IOCC address space. However, for some
I/O devices, applicability of string operations may be limited by the device itself.

String operations issued to normal PC devices are performed using standard bus protocols.
Multiple bus cycles are issued, using dynamic bus sizing, until the transfer length is satisfied.
These muitiple cycles operate under preemptive burst arbitration rules and Load or Store
string instructions are momentarily suspended if any I/O device requests DMA slave or bus

master operation.

String operations issued to devices supporting the streaming data transfer protocol use that
protocol where appropriate. This protocol operates under non-preemptive burst arbitration
rules. In the case of string operations, however, the amount of time from the preempt
request by a device until the IOCC releases the bus is controlled by the Burst Control bits in
the IOCC Configuration register (ses “IOCC Configuration Register” on page 2-74 and
“Implementation Details” on page 2-86).

It is generally recommended that the programmer writing an I/O device driver be aware of
the physical characteristics of the target device when using string operations. One should be
aware of the effects of dynamic bus sizing and partial transters, since these operations
require more time to complets. Refer to “Dynamic Bus Sizing” on page 2-18 and “Partial
Transfer Cycles” on page 2-18 for details of these functions. Slower than expected 1/O
instruction processing can have detrimental effects on system performance. For exampie,
the system processor cannot accept an interrupt while O Load or Store instructions are in
process. Both dynamic bus sizing and unaligned moves (partial transfers) take longer to
complete, adding latency to system interrupt service. Altthough most devices are reasonably
fast and do not cause any problems, this latency can be large if extended string operations
are performed against slow devices.
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Load and Store Access Authority Checking

/O Load and Store instructions are subject to access authority checking. Separate
mechanisms are used for checking bus /O and bus memory, as shown in Figure 53. Bus /O
accesses are checked by way of a base and bounds (range) check, while memory accesses
are verified by way of a storage key in the TCW table. If the page is mapped to system
memory, write authority is also verified. Load and Store instructions to bus memory or

(shared) system memory are treated like a bus master operating on channel 15 and use
I0CC registers associated with that channel.

r Low Limit High Limit Rogiste
ollllllI7L8LJlllljl51Js_llJllzlsjzflllll§l140 40
16 16
Segment Key =0
Time Delay Command
O Bus —LTEQ
Address
GTEQ| And| Or [— Access
OK
Bus 1O Op —
TCW Table
--------------- Bypess = 1 —1and
Buffer #|—| Key| Ctri Bus Memory ‘
16 |20 23| [2527]28 31 op _E
---------- i s Mem and[— | And
3 1L Writs Enable{ o, )_LF_
_And
Channel Status register 15 — 18
Status - - Authority Mas - Register
on i 1341 | |78Lljlll1l 11 |L11:32‘1‘| 1 111:11 4F 00 60

Figure 53. Load and Store Access Authority Checking
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Operations to bus I/O have fine address granularities. The operations are verified by way of
address range checking. Address ranges are controlled by the operating system and restrict
access of user programs to authorized devices. Address range information is considered
part of the user (program) context and is loaded into an IOCC register by the operating
system. This register defines a contiguous range of authorized VO addresses with a
minimum address granularity of 1 byte. Invalid access attempts cause a Data Storage
interrupt to be posted and a limit check error code to be set in Channel Status register 15.
This Interrupt is precise for all O Load and Store instructions. Address range checking is
suspended if the Segment register privileged key is set to a value of 0, or if a time delay
command is issued. Refer to “Time Delay Command” on page 2-63 for detalils of this
command. Also note that if the address increment is off (bit 13 of the /O Segment register
equals 0), only the starting address is tested. If address increment is on, the full length of the
access must be within the limit bounds.

Operations to bus memory have coarser address granularities and are protected on page
boundaries. Each page in the bus memory address space has a 3-bit storage protect key
associated with the page that defines the protection class of the page. An 8-bit authority
mask in Channel Status register 15 specifies the key values (and by inference, pages) that
this program is authorized to access. This mechanism is identical to the memory protect
mechanism used for bus master devices. Memory protect keys are kept in the TCW table
and are described in “Translation, Protection, and TCW Table” on page 2-33. The mask
information is considered part of the user (program) context and is loaded by the operating

system.

Bus memory access checking is suspended if the Segment register privileged key (K) is set
to a value of 0 or if the bypass control bit (B) is set to a value of 1 in the Segment register.
Refter to “l/O Segment Register Definition” on page 2-26 for details.

The TCW table and IOCC registers containing limit check information and authority masks
are protected system resources and are only accessible when the Segment register
privileged key is set to a value of 0. Attempts to access these facllities when the privileged
key is set to 1 causes a Data Storage interrupt to be posted and invalid operation status to
be set in Channel Status register 15.
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Load and Store Error Conditions
Error conditions that arise in Load and Store instructions include bus errors, programming
errors, and hardware errors. If no previous error remains in the Channel Status register 15,
then the specific cause of the error is placed into the Channel Status register 15 bits 0 to 3.
The IOCC only places the first error code into Channel Status register 15. Figure 54 shows

the resuitant register contents.
Processor Effective Address
g:gcolooooowonnooooooooo11ooooo
olll 41||7|°||||111511P||1||P|2f|1|L1§’
Channel{ Status Register 15
Status [ X X
] SI 6 7,8 15,16 23124 31
S W T A e AN N TR L
o ojo o] OK

0 1| Invalid Operation

10 -

1 1] Limit Check
0 10 0 -

0 1| Authority Error

1 0| Page Fauit

11 -
1 o{o o] ChannelCheck

0 1| Data Parity Error

1 0] VO BusEror

1 1| Card Selected Feedback Error
1 110 0 ECC Error

0 1| System Address Error

1 0| TCW Reload Error

1 1| OCCErmor

Figure 54. Load and Store Emor Status

Load and Store instruction errors are synchronous and generate a Data Storage interrupt.
No device should asynchronously report errors by activating the ‘chck’ signal. However, if
this occurs, the error is not reported here, but is reported as an miscellaneous interrupt as
described in /O Interrupts” on page 2-68. Refer to “Exception Reporting and Handling” on
page 2-85 for more information. Load and store error codes are summarized as follows:

Error Code  Description

0001 Invalid Operation: This error code is set if an attempt is made to access a
facility or device not authorized by the system supervisor. It is also set if an
attempt is made to access a bus address for which a TCW does not exist
(except when the bypass bit is on).

0011 Limit Check: This error code is set if an attempt is made to access a bus VO
device not within the address range established by the limit registers.
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Error Code
0101

0110

1000

1001

1010

1011

1100

1101

1110

1111

Description

Authority Error: This error code is set if an attempt is made to access a bus
or system memory page and the storage key in the TCW does not match
the authority mask in Channe! Status register 15. It can also be set if a write
operation is attempted to a read-only page in system memory.

Page Fauit: This error code is set if an attempt is made to access a page
with TCW bits 30 and 31 set to B‘01'. This should occur in normal operation.

Channel Check: This error code is set if a device responds with a channel
check indication. For example, a device might respond with a channel
check for a write operation to that device where there is bad parity on the
data or for other device detected errors during an operation to that device.
This error cannot be reported if a card selected feedback error is reported.
(The card selected feedback error takes precedence over channel check

error).

Data Parity: This error code is set if the IOCC detects bad parity on a Load
operation from an I/O device. (However, in the case of a Load operation, a
channel check error takes precedence over a data parity error.) This error
code is also set if the IOCC detects bad data parity or an uncorrectable
ECC error during a load of a TCW.

|/O Bus Error: This error code is set if an error on the Micro Channel has
been detected during transfer. The types of errors detected here are
implementation dependent (see “Implementation Details” on page 2-86).

Card Selected Feedback Error: This error code is set if, after a device is
addressed, it does not respond by driving the ‘cd sfdbk’ line, and the
address check bit is on in the [/O Segment register. Conditions which could
cause this to occur are the device is not present, the device is not seated in
the card slot properly, the device is not enabled, or the device detects bad
address parity and does not respond to that address. This error code takes
precedence over a channel check.

Error Correcting Code (ECC) Error: This error code is set if the IOCC
received an uncorrectable ECC error response from the intemal system bus
during a Load or Store instruction that is mapped to system memory. (This
process is similar to a bus master operation).

System Address Error: This error code is set if the IOCC sends an address
over the system bus and does not receive an address acknowledgement.
This can occur if the real page number in the address is invalid. Software
should make sure that the real page number in the TCW is valid.

TCW Reload Error: This error code is set if the IOCC detects a parity or
uncorrectable ECC error during an indirect TCW reload (with the bypass bit
off).

I0CC Error: This error code is set if the IOCC detects an internal error

during a Load or Store instruction. This error only occurs in a TCW and Tag
table access or flush command. All other IOCC errors result in a check

stop.

No provision is made to capture status for multipie errors. If this should occur, Channel
Status register 15 contains error information relating to the first error. On some
implementations, Channel Status register 15 bits 6 to 31 may be indeterminate after an
error. Therefore, software should restore Channel Status register to a known state after an

error.
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Translatio

Channel 15 always remains enabled following an error, or a deadlock situation would exist.

Synchronous errors are precise, and a retry may be attempted as part of the error recovery.
Certain other errors associated with an /O Load or Store instruction may not be
synchronous, and are not reflected in this register. An example of these errors include
delayed channel check response (see “Exception Reporting and Handling™ on page 2-85)
and a bus timeout condition (see “Bus Timeout™ on page 2-20 for more information).

VO bus errors such as address or data parity errors can be caused by hardware
malfunctions or transient electrical noise. Refer to “Exception Reporting and Handling” on
page 2-85 for more information.

On a Load instruction, if bits 0-3 are all 0, the value of CSR15 bits 4 to 31 are whatever
software previously had written into them with a Store instruction.

IO Load and Store instructions to the IOCC facilities (for examples, the CSRs) do not
generate an error except for a machine check.

n, Protection, and the TCW Table

The 10CC provides address translation for all Load, Stors, bus master and DMA slave
operations to system memory and access protection for all Load, Store and bus master
operations to system memory. Access protection is also provided for all Load and Store
operations to bus VO or bus memory. Translation allows the organizing of /O buffers within
the context of the virtual page map and assists in eliminating a subsequent move operation.
Protection insulates the system from non-well behaved devices or programs.

Bus memory protection or system memory translate and protection information is contained
in a TCW table. Each TCW entry identifies whether that page is mapped to system memory.
If a page is mapped, the TCW entry also contains mapping and access authority
information. This table is an IOCC analogue of the system translation tables, and is
generally managed in concert with those tables. Address translation and protection
mechanisms apply to 4K-byte memory pages, matching the system page size.

Load or Store operation protection of bus /O is by a base and bounds address check. The
high- and low-limit addresses are contained in I0CC registers. Refer to “Load and Store
Access Authority Checking” on page 2-29 for a detailed description.

The TCW table organization is shown in Figure 56 on page 2-34. The TCW table has a
one-to-one correspondence with the first n pages of /O bus memory addresses. The first
64K bytes of bus memory can never exist since bus I/O is mapped at those addresses, and
the first 16 TCWs should be initialized as invalid, that is, set to page fault. Thus, the first
valid TCW entry maps I/O bus addresses X'00 01 00 00’ to X'00 01 OF FF’; the second entry
controls mapping of addresses X'00 01 10 00’ to X'00 01 1F FF', and so on.

The number of bus memory addresses that can be mapped depends on how much TCW
Random Access Memory (RAM) is supplied by the IOCC. This amount is product
dependent. A field in the I0OCC Configuration register is used to specify the amount of TCW
RAM supplied. Refer to “lOCC Configuration Register” on page 2-74 and “Implementation
Details” on page 2-86 for details. Access to the TCW table entries must be 4-byte aligned
and must be an exact multiple of four bytes in length.

If the bus memory VO address is mapped to system memory, the Real Page Number (RPN)
in the TCW is used to access system memory. Otherwise, the address is directly applied to
the /O bus.

On a load instruction, if bits 0 to 3 all have a value ot 0, the value of CSR 15 bits 4 to 31 is
whatever software previously had written into them with a store instruction.

System I/O Structure 2-33



2-34

IO load and store instructions to the IOCC tacility (for example, the CSRs) does not
generate an error except for a machine check.

The TCW table is a protected system resource located in the IOCC address space between
addresses X'-x C0 00 00’ and X'~x FF FF FF' (where x indicates any hexadecimal digit
between 0 and F). It is only accessible to Load and Store instructions from the system
processor when the Segment register privileged key is set to a value of 0. Attempts to
access this table when the privileged key is set to a value of 1 causes a Data Storage
interrupt to be posted and invalid operation error status to be set in Channel Status

register 15.
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10 15,16 23]34 31
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Bus Memory |o
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Sys Memory Read—-Writs

-0 40

Figure 55. TCW Table

TCWs can be used for both bus master and DMA slave operations. A TCW entry is
described in detall as follows. (Some fields described in the following section may be
implementation-dependent as noted.)

Bits Description

0-19 Real Page Number: This field in the TCW contains the real page address
that the bus address Is mapped to in system memory. Software should
ensure that the RPN is valid (for example, is not outside the range of real
memory).

20-23 Buffer Number: On buffered implementations, this field contains a 4-bit
number specifying which of 16 butfers can be used by the IOCC when
operating with this page. Although any bufier number may generally be
assigned to any page, exercise caution since buffer sharing is not possible
with DMA slave channels when tags are used. Personalization of a channel
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26-29

30-31

for a DMA slave operation causes that channel to use the same buffer
number. On implementations not buffered, these bits are indsterminate.

Note: Butfer number ‘F" has some special restrictions and uses:

» Should always be used for Load and Stores instructions to bus memory
when the bypass bit in the Segment register is off.

o Should never be assigned for any operations involving system memory
(that is, where bit 30 of TCW word 0 is set to a value of 1).

Resarved and must be set to a value of 0.

Page Protect Key: This field contains a 3-bit key specifying the protection
class of the page. Memory pages are assigned to one of eight protection
classes. When a device initialty arbitrates for the bus, an 8-bit access
authority mask is obtained from the Channel Status register assoclated with
that device. When a page is accassed, the key obtained from the TCW
specifies the mask bit to be tested. i the selected bit is set to a value of 1,
the access is permitted. Mask information for /0 Load and Store
instructions are contained in Channel Status register 15. Load or store
references to a bus memory page without the appropriate authority cause a
Data Storage interrupt and set an access authority error code in Channel
Status register 15. Refer to "Load and Store Access Authority Checking™ on
page 2-29 for details. Similarly, invalid access attempts by a bus master
device terminate the operation for this device and set an access authority
error code in the Channel Status register assoclated with the device. Refer
to “Bus Master Access Authority Checking” on page 2-46 for detalls.

Reference and Change (RC): These bits are equivalent to the RC bits in the
systemn page frame table. Bus master transfers and shared memory Load
and Store instructions do not modify the page frame table. As an aid in
page management, the IOCC provides the reference and change history of
all of its pages. This can be used to improve system performance in paging
operations. Whenever a page is accessed, the IDCC sets its associated
reference bit in the TCW table to a value of 1. Similarty, whenever a page is
written, the IOCC sets both the reference and change bits to a value of 1.
The B'01' code point is never naturally set by hardware and s only set by
software to assist in page management. Note that these bits only apply to
pages mapped to system memory.

Page Mapping and Control: These bits define page mapping and read-write
authority. They are coded as shown in Figure 56.

30 N

o0 o] Bus Memory
Page Fault (No Access)

01
1 W System Memory
Figure 56. Page Mapping and Control Bits
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Code points B'OX' signify that the page is not mapped to system memory. Code point B‘'00’
should be set to allow accesses to memory devices on the I/0 bus. Code point B'01’ should
be set when a page is not mapped and no device is present at that address. It causes a
Data Storage interrupt if the operation is a load or a store, and a synchronous channel
check response if the operation is a bus master transfer. Both of these actions are
interpreted as an |/O bus page fault. Bus master devices designed to take advantage of this
function are expected to halt and wait for the system to take corrective action.

Code point B'1X’ signifies that the page is mapped to system memory. For Programmed I/O
(PI1O) operations, it causes the IOCC to redirect references to system memory using the
TCW mechanism. Note that PIO to system memory using the TCW mechanism is
implementation dependent. (See “Implementation Details” on page 2-86.) Bit 27 of the IOCC
Configuration register is set at a value of 0 if PIO to system memory is supported. If not
supported (bit 27 equals 1), a PIO Load and Store instruction results in a Data Storage
interrupt.

Bus master operations are mapped by channel and enabled as defined by bits 2 and 3 of
the status field of the Channel Status register. Note that bit 30 should match bit 2 of the
status field of the Channel Status register; otherwiss, it is treated as a page fault error
condition as described in the preceding text.

Bit 31 controls write authority; If set to a value of 1, the page can be written. Note that the K
bit (bit 1, or the Privileged bit) in the Segment register overrides bit 31, that is, privileged
access is not limited by the Read-Write or Read-Only bit.

Maintaining Consistency
With various caches and buffers in a system, it is possible that the same data might exist in
several places in the system. It then becomes the challenge of the hardware and software to
maintain the consistency of these various copies. The I/O Architecture features that assist in

maintaining consistency are the subject of this saction.

Currently the /O architecture defines two differant modes of operation when it comes to
Cache Buffer Support and Cache Coherency (as specified by two bits in the IOCC
Configuration register). These are:

e Unbufferad Mode

o Buffered Mode.

Each of these modes has slightly different characteristics when it comes to keeping
consistency among the various copies of the data in the system. These modes are
discussed in the following sections.

Unbuffered Mode
In this mode, it is the responsibility of the hardware to keep everything consistent.
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Buffered M

ode

Figure 57 is a simplified version of Figure 35 on page 2-4, with only the data flow shown.
Notice that there are (potentially) three copies of the same data in the system (shown as
shaded boxes); one copy in the system memory, one copy in the processor data cache, and
one copy in the IOCC buffer. In this mode, the software is responsible for keeping the data
consistent. The /O architecture along with the processor architecture provides the ‘tools’ to
do this.

Processor — Data
Chip Set
10CC Micro
Channel Bus
— g.s; BFR - Data /O Device

BFR #

TCW

Figure 57. Data Flow in the Programming Model
The following architectural tools assist in providing consistency:
e Processor data cache flush instructions

- Write data that has been modified in the processor data cache to system memory.

Forces subsequent processor accesses to go to system memory, so that you no longer
have two different (inconsistant) sets of data in the processor data cache and system

memory.

- Must be executed after setting up YO data and before a bus master or DMA Slave can
read the data. The data is taken from system memory, not the processor data cache.

« Hiding of VO pages from software processes

~ Can hide the page (4K bytes) of memory so that a software process cannot access it
after the data is set up for /O in the system memory.

— Works well with large block sizes.

System /O Structure 2-37



« /O buffer invalidate command

- Throws away the copy of data in the I/O buffer so that the O device cannot access
that copy again.

— Can be used after setting up the data in systam memory in the same 64-byte area as
the /O device is accessing, so that the device now accessas the new data from
system memory instead of the old data in the /O buffer.

/O next buffer invalidate command

— Used in systems that implement dual buffer support.

- Throws away the copy of data in the 1/O buffer that is reading ahead of the device so
that the /O device cannot access that data.

- Can be used after setting up the data in system memory in the next 64-byte area
ahead of where the I/O device is accessing, so that the device now accesses the new
data from system memory instead of the old data in the next buffer.

VO DMA Slave buffer flush command

- Given the buffer number, writes to system memory any data in the VO buffer, that has
been modified but not yet written to system memory, and eliminates the copy in the
buffer by invalidating it.

— Must be used at the end of a DMA Slave transfer to or from system memory |f the
transfer did not complete to termination by the length count.
IO bus master buffer flush command

- Given the TCW number, writes to system memory any data in the buffer pointed to by
the TCW, that has been modified but not yet written to system memory, and eliminates
the copy in the buffer by invalidating it.

- Must be used at the end of a bus master transfer to system memory under all
conditions.

IOCC PIO to system memory support

- Can be used during a DMA Slave or bus master data transfer 10 access data in the
same page and even the same 64-byte area as the /O device is accessing.

-~ Guarantess consistency.

- Works well for small data transfers, but there can be a performance penalty on long
data transfers.

I0CC DMA read-modify-write support

— Provides support to transfer less than 64 bytes of good data from the /O buffer to
system memory.

- May be implemanted by prefetching the data before the device writes the first byte to
the buffer or by postfetching data frorn memory and merging it with the bytes in the
buffer which have been written by the device.

- Is not atomic with the processor (processor can access the same location in system
memory between the IOCC's read and the IOCC’s write), so for example, it does not
eliminate the need for hiding memory pages.

2-38 General Architectures



Bus Master

puffered Bu

Bus master transfers refer to data transfers between a bus master /O device and memory
where the bus master device supplies the memory addresses and controls all aspects of the
data transfer.

The system /O architecture supports both buffered and unbuffered bus master transfers. In
the buffered mode, VO buffers are provided as a performance feature and may also include
caching of the current TCW table entry in a Buffer Control register. The following sections
include descriptions of both the buffered and unbuffered bus master operations. The mode
of operation Is implementation specific (see “IOCC Configuration Register” on page 2-74
and “implementation Detalls” on page 2-86) and determines what must be done to maintain
consistency of the data (¢ee “Maintaining Consistency” on page 2-36).

s Master

Figure 58 shows the bus master operations to system memory. Sequential data transters
are transterred on IOCC buffer boundaries, and the IOCC provides a set of 64-byte data
buffers. The actual bus master transfer cycies operate only against these buffers.

To initiate bus master transfers, the system first loads the TCW table with the appropriate
mapping information. When the TCW mapping is complete, the channel can be initialized to
run by loading the control registers with a set of values starting the demand reload process.
The easiest way to do this is to load the control registers with the following:

1. Channe! Status register — B'0O0me 0100 0000 1111 auth auth 0000 0000
2. Cache Butfer register 4 — B'0000 0000 0000 0000 0000 0000 0000 0000
3. Cache Status register 8 — B‘'0010 0000 0000 0000 0000 0000 0000 0000’

These values cause the IOCC to reload the control registers from the TCW table on the first
access attempt by the /O device.

Following device arbitration, the appropriate Channel Status register is selected. The buffer
number field in that register is then used to select the Buffer Control registers used by this
device. The /O bus address is compared with the address contained in the Butfer Control
register. If a match occurs, the associated buffer is correct, and the operation can proceed
against the buffer.

If the /O bus address does not match the address contained in the Buffer Control register, a
TCW access is required. The /O bus address is used to select the appropriate TCW, and
the buffer number field obtained is used to select the appropriate set of Buffer Control
registers. These registers are then tested to ses if the /O address matches. If a match
occurs, the contents of the buffer are valid and the operation can proceed. If not, the butfer
needs to be loaded.

Prior to loading of the buffer, the current buffer is checked to see if it can be cast out. A bit in
the Buffer Control register indicates whether that buffer is dirty. If so, the buffer is written
back to system memory prior to access of the new buffer. Following access of a new buffer,
the /O bus address and new TCW are written into the Bufter Control registers.
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The IOCC must perform a read-modify-write sequence to guarantee that the buffer space,
which has not been written to, does not change the data in system memory when that buffer

is written to memory.

/O Bus Address /O Bus Data
llllllllIlI]J_LlIllllllllLLlllJ_l 1JlllJI|llJ_lLLlJlllllllllJlLLll
a 32
20 32, 6 6
For 8-B '
Streaml;bm:
(SeeNote)
Compare To Last Access l
—b 64-Byte Buffers
TCW Table l
20 fz
Ctri —j m

Note: Implementation of the Micro Channel 8-byte Streaming Data protocol is optional.
(See “Implementation Details™ on page 2-86.)

Figure 58. Buffered Bus Master Data Transfer Operation
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As shown in Figure 59, each bus master channel is dynamically associated with two 32-bit
controlling registers. These registers are also used for DMA slave operations but are defined
differently when personalized for bus master data transfer operations.

Processor Effective Address
%# 00000100]0!111!# 0000000001140000
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s “la
Buffer Control Registers
—
sﬂail 11 - TCW Number Buffer Line
T 23 { 6|7|8“ 111 l?ﬂ‘llsil |¢|g324 111 :11
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E" 0 i A8 0 1}5|118|Ez|°|?3 2597128 3
Channel Status Register . 4
s daa
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0 1| Authority Error
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1 0| Address Parity Error
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1 1|0 o] ECCError
o 1| System Address Error
1 o| TCW Reload Error
1 1] l0CCError
Figure 59. Buffered Bus Master Control Registers

System IO Structure 2-41



Each of the 16 channels has its own Channel Status register. This register contains channel
status, some personalization controls, a buffer pointer, and an 8-bit memory access authority

mask.

The Buffer Control registers are associated with a specific buffer and can be dynamically
coupled to any channel. These registers cache the TCW associated with the buffer and
provide faster operation for sequential accesses. Selection of the Buffer and Buffer Control
registers to be used is determined by the buffer number field in the TCW.

Register fields are described in the following saction;
¢ Register 0 — Channel Status Register

Bits
0-3

6-11
12-15

16-23

24-31

Description

Control and Status: This field contains channel control and status, and
may be set by both the control program or the IOCC. Values betwaen
X'0-3' are control channel operations while values between X'04-15' are
error codes. Refer to “Bus Master Error Conditions™ on page 2-47 for a
description of bus master error conditions. When bits 0 to 1 are B‘00',
Bits 2 to 3 provide control of channel operations. Bit 2 is sat by a Store
instruction to the appropriate Channel Status register and indicates
whether the channel is mapped (Bit 2 equals 1), or not-mapped (Bit 2
equals 0). The architecture optionally allows for the mapping of bus
master operations to be controlled by address as well as by channel; see
the information on the Bus Mapping registers for more details. Bit 3 is
controlied by channel enable and disable commands. Refer to “enable
and disable Commands” on page 2-65 for more information on the
enable and disable commands.

DMA Slave Flag: This bit is set to a value of 0 using an I/O Store
instruction to personalize a channel for bus master data transfer
operation. The IOCC never changes the value of this bit.

Reserved: This bit is reserved and must be set to a value of 1.
Reserved: These bits are reserved and must be set to a value of 0.

Buffer Number: This field is loaded from TCW bits 20 to 23 and is used
as an indirect address to select the correct 64-byte buffer and Buffer
Control registers.

Authority Mask: This field defines the memory access authority granted 1o
this channel. Each bit corresponds to one memory protection class,
where bit 0 corresponds to class 0 (TCW key 0), bit 1 corresponds to
class 1 (TCW key 1), and so forth.

Reserved: These bits are reserved and must be set to a value of 0.

» Register 4 — Buffer Control Register

This register contains a copy of the current TCW associated with this buffer. This register
functions as a TCW cache and improves performance of bus master operations and
Load and Store instructions. Refer to “Translation, Protection and TCW Table” on page
2-33 for a description of the bit fields in this register.
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+ Register 8 — Buffer Control Register

This register contains a copy of the VO bus address associated with the TCW register
described in the preceding text. Whenever a bus master operation or a Load and Store
instruction references a memory object, the I/O bus address is first checked against this
register to see if the object is contained in the associated buffer. The bit usage follows:

Bits
0

Description

Buffer Dirty: This bit indicates that the buffer associated with this channel
is dirty, that is, has been written to and therefore contains data that is
inconsistent with data in system memory. This bit is reset by the I0CC
when the buffer is written to system memory and is set when the first byte
is written to the buffer. Though hardware normally sets and resets this bit,
software has both read and write access.

Buffered: This bit indicates that the buffer contains data that has been
prefetched. It is set upon initial prefetching of the buffer and is reset at
the time the butfer is written to system memory. Though hardware
normally sets and resets this bit, software has both read and write
access. When the operation completes and the device interrupts, the
buffer must be flushed to system memory by software using the buffer
flush command.

Buffer Invalidate: This bit is used to indicate that the buffer has been
invalidated. When this bit is set to a value of 1 it forces a prefetch from
system memory to this buffer. The bit is reset to a value of 0 at the time
the bufter is prefetched from system memory and set to a value of 1
when the buffer is flushed to system memory. Though hardware normally
sets and resets this bit, software has both read and write access. When
the invalidate bit is set to a value of 1, it overrides the buffer dirty and the
butfer prefetched bits.

Next Buffer Prefetched: This bit indicates that the next butter of data has
been prefetched. It is set upon initial prefetching of the next buffer. It is
reset at the time the buffer is flushed to system memory or by the butfer
invalidate or next buffer invalidate commands. Though hardware
normally sets and resaets this bit, software has both read and write
access. If the hardware does not support dual buffering, then it will not
read-ahead of the device, and this bit, on a load of this register, will have
a value equal to whatever the software has previously written into the bit.
The dual buffering function is an optional feature of the architecture; see

4OCC Configuration Register” on page 2-74 and “impiementation
Details” on page 2-86.

Reserved: These bits are reserved and must be set to a value of 0.
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6-25

26-31

Unbuffered Bus Master

IO Bus Address A31 to A12: This field is used by the IOCC to detect
when a page changes. It contains a copy of the I/O bus address that
caused the last TCW to be fetched. This field is referred to on a
cycle-by-cycle basis to determine if the current TCW in register 4 is valid.
If a page is changed, that is, address bits A31 to A12 change, the IOCC
accesses the TCW table again.

IO Bus Address A11 to A6: This field is used by the IOCC to detect when
a buffer changes. It contains a copy of the /O bus address relating to the
current 64-byte /O buffer within the 4 K-byte system page. If a bus
master changes buffers within the 4 K-byte system page, that is, address
bits A11 to A6 change, the IOCC accesses system memory as
appropriate to make a new 64-byte VO buffer available.

Figure 60 shows the unbuffered bus master operations to system memory. Note that the
64-byte IOCC buffers are not shown as with the buffered mode previously described. The
caching of the current TCW table entry is not shown. Figure 60 assumes direct access of the
TCW table entry on each I/O access by the bus master.

VO Bus Address VO Bus Data
lllllllllijj_ljlllllllIlIlLlllll lIll]llllllliLllllllllLl_llllLL
5 ¥
20 X 12 32
R
For 8-B :
Strumz\hbm '
(See Note :
TCW Entry :
v
20 112
System
Ctrl Memory
P

Note: Implementation of the Micro Channel 8-byte Streaming Data protocol is optional
(See “Implementation Details” on page 2-86).

Figure 60. Unbuffered Bus Master Data Transfer Operation
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The Bus Master Channel Status register for the unbuffered case is shown in Figure 61. Each
of the 18 channels has its own Channel Status register. This register contains status, some
personalization controls, and an 8-bit memory access authority mask.
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P N| Control Storage Key

0 1100 -
0 1| Authority Error
1 0| Page Fault
1 1| TCW Extent

1 0/0 0 VO BusError
0 1| Data Parity
1 0| Address Parity Error
1 _1]| Card Selected Feedback Error

1 1|0 0| ECC Error
0 1| System Address Error
1 0/ TCW Reload Error
1 1] 10CC Error

Figure 61. Unbuffered Bus Master Control Registers

Note: The Buffer Control registers shown in Figure 59 on page 2-41 are not supported in
this mode. A Load instruction to register 8 retums all zeroes. On a Store instruction
to register 8, data is ignored. Register 4 is used for DMA slave operations. A Load or
Store instruction to register 4 is treated as described in “DMA Slave” on page 2-49.

Following device arbitration, the appropriate Channel Status register is selected. The I/O bus
address is used to select the appropriate TCW. The RPN from the TCW entry and 12 bits
from the /O bus address are used to address system memory.
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Register fields are described as follows:
+ Register 0 — Channel Status Register

Bits
0-3

6-15
16-23

24-31

Description

Control and Status: These bits are defined the same as the corresponding
bits in Register 0 for the buffered bus master case. See “Register 0 -

Channel Status Register " on page 2-42.

DMA Slave Flag: This bit is defined the same as the corresponding bit in
Register 0 for the buffered bus master case. See “Register 0 — Channel

Status Register " on page 2-42.
Reserved: This bits is reserved and must be set to a value of 1.
Reserved: These bits are reserved and must be set to a value of 0.

Authority Mask: These bits are defined the same as the corresponding bits
in Register 0 for the buffered bus master case. See “Register 0 — Channel
Status Ragister " on page 2-42.

Reserved: These bits are reserved and must be set to a value of 0.

Bus Master Access Authority Checking
Bus master operations are subject to access authority checking. As shown in Figure 62,
accesses are verified by checking the TCW memory protect key against an authority mask
assoclated with the requesting channel.

TCW Table VO Bus Address
- Key | Ctrl
20 24|25 2728 31 Acceas OK
3 I 2 And
Sys Mem and Write Enable - o,
Read ——
SEL
8:1
Channel Status Register — L
[
Stusio 1 - - 5|Authority Mask - J
1 i 1 |7lal L1 111 lsl L)l szf_LLLlL311

Figure 62. Bus Master Access Authority Checking
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Bus master operations are protected on page boundaries. Each page in the bus memory
address space has a 3-bit storage protect key associated with that page, that defines the
protection class of the page. These keys are kept in the TCW table described in the
"Translation, Protection and TCW Table” on page 2-33. An B8-bit mask in each channel
specifies the key values (and by inference, pages) that this channel is authorized to access.
For information on what action occurs on an authority error, see “Bus Master Error
Conditions" on page 2-47.

Authority mask information is considered part of the context and is loadad into the
appropriate Channel Status register by the operating system. The Channel Status registers
are protected system resources and are only accessible when the Segment register
privileged key is set to a value of 0. Attempts to access these registers when the privileged
key is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation
status to be set in Channel Status register 15.

Bus to Bus Data Transfers
For performance reasons, the system memory is put on a separate bus from the Micro
Channel bus. Transfers from a bus master to an address space have to be directed either to
bus memory (for bus to bus operations) or to system memory. For implementations that
impiement the optional Bus Mapping registers, certain blocks of bus address space can be
allocated for bus to bus data transfers by way of the Bus Mapping registers. Alternately, all
data transfers from a bus master can be directed to the bus address space by setting bit 2 of
that bus master's CSR to a value of 0.

Bus Master Error Conditions
Error conditions that arise in bus master operations include bus errors, programming errors,
and hardware errors. On an error, an error code identifying the specific error cause is set
into the Channel Status register (bits 0 to 3) corresponding to that channel. The VO bus
address bits A31 to A12 are also logged into the Channel Status register (bits 6 to 25) to
identify the page in error. After the error code is set into the status field, the IOCC does not
respond to bus requests for this channel, effectively disabling the channel. The Channe!
Status registers thus capture the channel status untii the error code is reset by a Store
instruction from the system supervisor.

All errors cause the ‘chck’ signal to be pulsed. In addition, on TCW extent and address parity
errors, the I0CC will not activate the ‘sfdbkrtn’ line. When a bus master device sees this
error condition, it should suspend operations and post an Interrupt. For additional
information refer to “Exception Reporting and Handling” on page 2-85.

After tha error condition, it the bus master device tries to continue accesses with the channel
effectively disabled (also, if the bus master tries to make an access and the channe! was
never enabled), the IOCC activates ‘chck’ and will not activate ‘sfdbkrtn’. It the access is
directed to the IOCC, the |OCC does not take or supply data, and continued read accesses
by the device after the error results in the IOCC bus drivers being disabled which resuits in
all ones on the /O data bus.
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I/O bus errors such as an address or data parity errors may be caused by hardware
malfunctions or transient electrical noise. Refar to “Parity Errors” on page 2-19 and “Channel
Check” on page 2-19 for a description of these errors. Error codes are summarized as

follows:
Error Code
0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111
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Description

Authority Error: This error code is set if the storage key in the TCW does not
match the authority mask in the Channel Status register or an attempt is
made to write to a read-only page.

Page Fault Error: This error code is set if an attempt is made to access a
page with TCW bits 30 and 31 set to B‘01". This can occur in normal
operation. Devices attempting to take advantage of this function must
present an interrupt after receiving a ‘chck’ signal on the I/O bus.

TCW Extent Error: This error code is set if an attempt is made to access a
bus address for which a TCW does not exist.

1/O Bus Error: This error code is set if an error on the Micro Channel bus
has been detected during a transfer. The types of errors detected here are
implementation dependent (see “Implementation Details.” on page 2-86.)

Data Parity Error: This error code is set if the IOCC detects bad parity when
operating as a slave on the bus (when the transter is from device to system

memory).

Address Parity: This error code is set if the IOCC detects bad parity on the
address bus. This error is detected even when the IOCC is not involved in
the transfer (that is, on a bus-to-bus transfer). This is a bus monitoring
function of the IOCC.

Card Selected Feedback Emor: This error code is sst if, after a device is
addressed it does not respond by driving the ‘cd sfbk’ line. This is a bus
monitoring function of the IOCC.

ECC Error: This error code is set if the IOCC received an uncorrectable
ECC error response from the system bus during a bus master transfer
request to system memory.

System Address Error: This error code is set if the IOCC sends data over
the system bus and does not receive an address acknowledgement. This
can occur if the real page number in the TCW is invalid. Software should
make sure that the real page number in the TCW is valid.

TCW Reload Error: This error code is set if the IOCC detects a parity or
uncorrectable ECC error during a TCW access.

IOCC Error: This error code is set if the IOCC detects an intemnal error
(except those dealing with the Channel Status registers or Buffer Control
registers) during any bus master channel operation. An error with the
Channel Status or Buffer Control registers results in a check stop.



DMA Slave

DMA controller is the name given to a system-supplied resource that mediates data
transfers between memory and DMA slaves. The IOCC contains a DMA controller for the VO
bus. Three parties are involved in this type of DMA operation: the DMA slave, the memory,
and the DMA controller. This type of DMA operation is often used for the following reasons:

e Cost

A DMA controller must provide interfaces to both system addresses and data and is
highly pin-intensive. The data flow is quite regular and lends itself well to implementation
using RAM arrays. Thus, multiple-channel DMA controllers are relatively easy to
implement. Since most systems require at least one DMA device, a common practice in
low-and systems is to provide a multi-channel DMA controller as a shared resource and
amortize its cost across multiple devices.

o Protection

DMA controllers manage all address, control, and byte count functions associated with
data transfer. As such, it is relatively easy for a system to protect its memory from the
extemal environment by using DMA channels, and making channel setup a privileged
operation.

Using the DMA controller, data can be transferred between a device and bus memory, or
between a device and system memory. Data transfers to or from system memory may or
may not be buffered. The system /O architecture supports both buffered and unbuffered
DMA siave transfers. In the buffered mode, /O data buffers are provided as a performance
feature for transfers between VO and system memory, and can also include caching of the
current TCW table entry in a Bufter Control register. Data transfers to or from bus memory
are never buffered. The following sections include descriptions of both the buffered and
unbuffered DMA slave operations. The mode of operation is implementation specific (see
*JOCC Configuration Register” on page 2-74 and “implementation Details” on page 2-86)
and determines what must be done to maintain consistency of the data (see “Maintaining
Consistency” on page 2-36).

All memory is partitioned into 4K-byte pages, and the DMA controlier is organized to handle
physical transfers of this size. The architecture supports two modes of managing each
4K-byte page of memory for DMA slave operations. One mode uses TCWs and the other
uses tag elements to handle this management of memory pages. See “DMA Slave
Operations Using Tags" on page 2-50 and "DMA Slave Operations Using TCWs" on page
2-57 for a description of these two modes. The choice of using TCWs or tags for the
management of the 4K-byte pages is implementation dependent. (See “IOCC Configuration
Register” on page 2-74 and “Implementation Details” on page 2-86.)

Each DMA slave channel includes a pair of 32-bit registers used to contain the current
memory address and control information corresponding to the current page being accessed.
The IOCC implements up to 15 DMA channels. Each channel is associated with one of 16
VO bus arbitration levels. One of these arbitration levels (level 15) must be allocated to the
system processor for issuing Load and Store instructions to the /O bus, reducing the
maximum number of useable DMA channels to 15. For implementations using tags, the
number of channels implemented must be 15. For implementations using TCWs, the
number of useable DMA channels Is implementation dependent (see “IOCC Configuration
Register” on page 2-74 and “iImplementation Details” on page 2-86).
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The DMA Slave Control registers are accessible by way of Load and Store instructions from
the system processor, and are located in the IOCC address space. DMA Slave Control
registers are a protected system resource and are only accessible when the Segment
register privileged key is set to 0. Attempts to access these registers when the privileged key
is set to a value of 1 will cause a Data Storage interrupt to be posted and invalid operation
error status to be set in Channel Status register 15.

Each channel is personalized to operate with either a bus master or DMA slave. Bit 4 of the
Channel Status register (DMA register 0) must be set to a value of 1 when controlling a DMA
slave device, and set to 0 when controlling a bus master device.

Note: Software should program unallocated channels as bus master channels.

The system supervisor must first load the DMA slave control registers prior to enabling a
channel. Following setup, the channel is enabled using the DMA enable command
described in the “enable and disable Commands” on page 2-65. The IOCC is then ready to
control DMA operations on behalf of a DMA slave device.

The action taken when loading a Channel Status register for DMA slave operation where
there are fewer channels than Channe! Status registers, with a channel number greater than
that indicated in the IOCC Configuration register is implementation-dependent. (See
“Implementation Details” on page 2-88.) Software supports assignment of DMA channels to
arbitration levels on a first come first serve basis. If a channel is not available, the resource
request is rejected. Hardware does not check for the mapping of a DMA channel to more
than one arbitration level at a time. This must be controlled by the software.

If the operation completes without error, the IOCC terminates the DMA slave operation and
disables the channel. It an error occurs during the DMA slave operation, the IOCC sets a
code identifying the error into the Channel Status register status field and terminates the
DMA slave operation. No additional DMA slave requests or enable commands will be
accepted by this channel! until the error is cleared by way of a Store instruction. The DMA
Slave Control registers are frozen, capturing details on channel status at the time of error.
Reter to “DMA Slave Error Conditions® on page 2-62 for detalls.

To suspend or terminate a DMA operation prior to its normal ending point, it is
recommended that a DMA disable command be used. This command provides a soft
termination of a DMA operation without destroying the current state of the DMA slave control
registers. Refer to “enable and disable Commands” on page 2-85 for details on this
command.

DMA slave termination is accompanied by the IOCC pulsing the ‘tc’ signal. Devices are
expected to post an interrupt when this occurs, notifying the system that the DMA operation
is complete. The system supervisor can then inspect the DMA registers to determine if the
operation completed normally.

DMA Slave Operations Using Tags
Tags provide support for byte-level scatter and gather DMA slave operations. A DMA slave
transfer is described by the DMA Siave Control registers and a list of tag entries. The DMA
Slave Control registers describe the initial partial transfer and each of the tags describes
another part of the transfer.

DMA Slave Control registers 0 and 4 contain a copy of the tag except for the status field as
described in “DMA Slave Error Conditions” on page 2-62 and “enable and disable
Commands” on page 2-65.
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The tags are organized as a heap in a special memory space called a tag table. The tag
table includes 4096 entries. During the course of a DMA slave operation, the IOCC will

reload the DMA Slave Control registers from the tag table on a demand basis. The DMA
Siave registars must be loaded directly using a Store instruction with the initial tag entry.

To allow for management of large logical buffers, the DMA controller allows chaining of tags.
Whenever a page boundary is crossed or the length count expires, the DMA controller
automatically fetches the tag containing the mapping information for the next page and
reloads the DMA Siave Control registers for that channel. Since each tag also includes
length count information, this structure provides natural data chaining down to the byte level.

Figure 63 shows the DMA slave operations using tag elements. Data may be transferred
between a device and system memory or between a device and bus memory. In the
buffered mode, the IOCC must provide a 64 byte data buffer (or dual buffer; see “System

" Structure” on page 2-4) for each channel, and this buffer must be managed by the software.
The actual YO bus DMA cycle operates only against these buffers. In the unbuffered mode,
the IOCC must provide some read-modify-write capability 8o that transfers from the device,
that are less than the memory read and write granularity, can be matched to the system
memory interface. Data transfers to or from bus memory are not butfared.

DMA Slave Control
I stem
emory
Memory Address >
Ctrl | Next | Length—
Tag Table —
Data Buffers ]
(In Buffered Mode)
*
| For&-Byte '
. s:'umrnh Data
+ (See Note
VO Bus Address L | /O Bus Data

Note: Implementation of the Micro Channel 8-byte Streaming Data protocol is optional
(See “Implementation Details” on page 2-88).

Figure 63. DMA Slave, Using Tags
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The tag table is a protected system resource located in the IOCC address space between
addresses X'-0 80 00 00' and X'-0 80 7F FF". Figure 84 shows this address space. It is only
accessible to Load and Store instructions from the system processor when the Segment
register privileged key is set to a value of 0. Attempts to access this table when the
privileged key is set to a value of 1 causes a Data Storage interrupt to be posted and invalid
operation error status to be set in Channel Status register 15.

Processor Effective Address

L1

Seg
Reg #/0000 100000000

NN NN

Tag Table Entry

]5171J 1 lflz?lJ 1 1

:
b

18

Tag Table L
4| Memory Address
R NEERL AT . L SN EEE « NN A
o[ - |ctr Next Tag Length Count
oJ;l_l;l 11 8J_ILI 1 l1ls|1lsl1l9 2]91 2lslzl IL1L131
Direction (0 —~ Mamory to VVO)

Systemn Memory

Figure 64. Tag Table Addressing
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Each 4K-byte page involved in a DMA slave transfer, except for the first, has at least one
g8-byte tag element in the tag table. The first tag is set up in the DMA Slave Control registers.
These lags contain relevant information required for the DMA slave operation such as the
memory address, length count, and direction. Tags may be chained together to control DMA
across multiple memory pages, or to provide a data chaining function. Each tag represents
the Initial set of values to be loaded into the DMA Slave Control registers every time a page
is crossed or the length count of the current transfer expires. Access to the tag table entries
is word access only. The bit definition of a tag entry is defined as follows:

« Word 0 of a tag contains control information relating to the current 4K-byte page and
Includes the following:

Bits
04

8-18

20-31

Description

Reserved: This field is reserved and must be set to a value of 0. The

hardware does not update the Channel Status register bits O to 3 with
these bits.

System Memory Flag: This bit selects whether system memory or bus
memory is to take part in a DMA slave transaction. This bitis setto a
value of 1 for DMA slave transfers to system memory and set to a value
of 0 for DMA slave transfers to bus memory.

Enable Terminal Count Flag: This bit causes the IOCC to pulse the ‘ic’
signal whenever the length count expires. This signal terminates the
DMA slave operation and causes the device to post an /O interrupt. Note
that this function is independent of DMA termination by the channel, and
tag chaining may be continued. This can be used to advantage in
assisting emulation of channel command chaining, or in emulating the
auto-reload function available in the 8237 DMA controller. Note also that
the IOCC always pulses ‘tc' signal when the next tag field is X'FFF and
the length count expires, regardless of the setting of this bit.

Direction Flag: This bit selects the direction (device to memory or
memory to device) of a DMA slave transfer. This bit is set to a value of 0

to transfer data from memory to the IO device and is set to a value of 1
to transfer data from the YO device to memory.

Next Tag Field: This field contains a 12-bit index into the tag table. This
index is a pointer to the next tag to be used when the length count
expires. When this condition occurs, the DMA controller automatically
fetches the tag containing the mapping information for the next piece of
the transfer and reloads the DMA Slave Control registers for that
channel. A next tag field of all 1's indicates that this Is the last tag in a
chain. If this field is all 1's and the length count expires, the IOCC
disables the channel and does not accept any further DMA slave
requests from the device. The last tag in the tag table has an address of
all 1's and therefore cannot be used.

Length Count Field: This field contains a length count for the data
transfer. The length count is a binary number one less than the number of

bytes to be transferred and cannot be greater than the number of bytes
left to the end of the pags.

+ Word 4 of a tag contains a 32-bit real address to either the bus memory space or system

memory space.
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Figure 65 shows the register definitions when tag control elements are used to manage
memory. Bits 28 and 29 (r) in the effective address indicate which word is being addressed.

Processor Effective Address
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DMA Slave Control Registers
L T T Ister 8
8 HBHNI Reserved | ]-Evm
o LA L JENENE u AN A
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ol ll3 5‘ l7e|llJJl1|5|1lel"szloll”J2[l||l13|1
L’DMASM
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0 0|0 0| Disabled cce
0 1| Enabled J
10 -
11 - IT—— Direction (0 — Memory to /O)
0 1/0 0| ExtraReq Enable Terminal Count
01 - System Memory
10 -
1 1 -
1 0|0 o] Channel Check
0 1| Data Parity Error
1 0 VOBusError
1 1| Card Selected Feedback Error
1 110 0| ECCError
0 1| System Address Error
1 0| Tag Reload Error
1 1] 10CCError

Figure 85. DMA Slave Registers Using Tags
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The register fields are described in the following section.
« Register 0 - Channel Status register

There are 16 Channe! Status registers (CSR) each having a one-to one correspondence
to one of 16 arbitration levels. The bit assignments for this register are as follows:

Bits
03

8-19

20-31

Deacription

Contro! and Status: This 4-bit field contains control information when bits
0 and 1 are B'00'. When bits 2 and 3 are at B'00’, the channe! associated
with this arbitration level is In the disabled state. When bits 2 and 3 are at
B‘01’, the channel is enabled. Bit 3 is set using the channel enable
command and reset using the channel disable command. Code points
B'10' and B*11’ for bits 2 and 3 are reserved. When bits 0 and 1 are not at
B'00’, the contents of bits 0 and 3 represents error codes. See “DMA

Slave Error Conditions” on page 2-62 for a description of these error
codes.

DMA Slave Flag: This bit is defined the same as for the tag table word 0
defined on page 2-53.

System Memory Flag: This bit is defined the same as for the tag table
word 0 defined on page 2-53.

Enable T/C Fiag: This bit is defined the same as for the tag table word 0
defined on page 2-53.

Direction Flag: This bit is defined the same as for the tag table word 0
defined on page 2-53.

Next Tag Field: This bit is defined the same as tor the tag table word 0
defined on page 2-53.

Length Count Field: This bit is defined the same as for the tag table word
0 defined on page 2-53.

« Register 4 — Memory Address Register
This register is defined the same as tag table word 4 on page 2-53.
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» Register 8 — Buffer Control Register
This register only exists for buffered implementations. The bits assignments are as

follows:
Bits
0
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Description

Buffer Dirty: This bit is used to indicate that the buffer associated with this
channel is dirty, that is, has been written to and therefore contains data
which is inconsistent with data in system memory.

Buftered: This bit indicates that the buffer contains data that was
prefetched. It is set upon initial prefetching of the buffer and is reset at
the time the buffer is flushed to system memory. Though hardware
normally sets and resets this bit, software has both read and write

access.

Buffer Invalidate: This bil indicates that the buffer was invalidated. When
this bit is set to a value of 1 it forces a prefetch from system memory to
this butfer. The bit is reset to a value of 0 at the time the buffer is
prefetched from system memory and set to a value of 1 when the buffer
is flushed to system memory. Though hardware nommally sets and resets
this bit, software has both read and write access.

Next Buffer Prefetched: This bit indicates that the next buffer of data has
been prefetched. It is set upon initial prefetching of the next buffer. It is
reset at the time the buffer is flushed to system memory or by the buffer
invalidate or next buffer invallidats commands. Though hardware
normally sets and resets this bit, software has both read and write
access. If the hardware doas not support dual buffering, then it will not
read-ahead of the davice, and this bit will always be retumed as a value
of 0 on a load of this register. The dual buffering function is an optional
feature of the architecture; see “IOCC Configuration Register” on page
2-74 and “Implementation Detalils® on page 2-86.

Reserved: These bits are reserved and must be set to a value of 0.



DMA Slave Operations Using TCWs
TCWs provide support for page level scatter and gather DMA slave operations. The DMA
Slave Control register is initialized with the first page TCW; the rest of the TCWs involived in
the transfer are sequential. Figure 66 on page 2-57 shows the DMA slave operations using
TCWs. Notice that the memory address consists of a TCW number and an offset (unlike the
tag which contains a rea/ address to system memory).

When TCW entries are used for DMA slave operations, bits 20 to 31 of the TCW entry are
not used and software must set these 1o a value of 0. See “Translation, Protection and TCW
Table" on page 2-33 for a description of the TCW table.

DMA Slave Control Registers
—
Ctri |Chnl # ] Length
Memory Address
TCW# | Oftset
20 12 12 )ﬁ
stom
TCW Table . ory
[ 20,
RPN
1 ;
Data Buffers
(in Buffered Mode)
_____________________ ¥
' For 8-Byte Strsaming )
& v ¢ Data (See Nots)
VO Bus Address VO Bus Data

| | | | | |

Note: Implementation of the Micro Channel 8-byte Streaming Data i i
(See "Implementation Details™ on page 2-86). o protocolis optional

Figure 68. DMA Siave, Using TCWs

Figure 67 on page 2-58 shows the register definitions when TCWs are us
slave operation. ed to control DMA
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The register fields are described in the foillowing section.
« Register 0 — Channel Status register

There are 16 Channel Status registers (CSR) each having a one to one correspondence
to one of 16 arbitration levels. The bit assignments for this register are as follows.

Bits Description

0-3 Control and Status: This 4-bit field contains control information when bits
0 and 1 are B'00’. When bits 2 and 3 are at B‘'00’, the channe! associated
with this arbitration level is in the disabled state. When bits 2 and 3 are at
B'01', the channel is enabled. Bit 3 is set using the channel enable and
reset using the disable command. Code points B'10' and B'11’ for bits 2
and 3 are reserved. When bits O and 1 are not at B'00’, the contents of
bits 0 and 3 represents error codes. See “DMA Slave Error Conditions”
on page 2-82 for a description of these error codes.

4 DMA Slave Flag: This bit is set to a value of 1 using an /O Store

instruction to personalize a DMA channel! for DMA slave operation. The
|OCC never changes the value of this bit.

5-7 Controt: The definition of these bits are the same whether the DMA slave
operation uses TCWs or tags (except for TCWs, there is no T/C enable).
These operations are described under the same numbered bits of tag
table word 0 defined on page 2-53. This field only exists for channel

numbers (as specified in bits 8 to 11 of this register) less than or equal to
the number of DMA slave channels impiemented.

8-11 Channel Number: This field is used to assign a DMA channel to a specific
Channel Status register. Storing a value which is larger than the number
of DMA Slave channels supported minus 1 (as indicated by the number
of DMA Slave channels field in the IOCC Configuration register) to this
field will produce implementation-dependent resuits.

12-31 Length Count: This field is used to indicate the length of the DMA slave
transfer (byte count minus 1). This field only exists tor channel numbers
(as specified in bits 8 to 11 of this register) less than or equal to the
number of DMA slave channels implemented. A terminal count is
generated by a device when this field goes negative, that is, when the
most gignificant bit goes from a value of 0 to a value of 1.

o Rogister 4 — Memory Address

This register contains the memory address for the DMA slave operation. The number of
registers available of this type is implementation dependent (see “IOCC Configuration
Register” on page 2-74 and “implementation Details" on page 2-86). However, the
number available must equal the number of DMA channels impiemented. These registers
are dynamically associated to the arbitration level based on the channel number
assigned in the Channel Status register (CSR). Software must Insure that the same
channel number is never assigned to more than one CSR (arbitration level) at any given
time.
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If the transfer is to or from bus memory (Channel Status register bit 5 equal to 0) this
register is applied as a 32-bit address directly to the /O address bus. if the transfer is to
or from the system memory, this register is defined as follows:

Bits Description

0-19 TCW Number: The TCW number in the memory address provides an
index into the TCW table where the RPN is obtained if the channel is
mapped to system memory. When mapped to system memory, the
address used to address system memory consists of the RPN from the
TCW concatenated with the offset.

20-31 Offset: These bits are the lower 12 bits of the memory address.

The DMA address is incremented by tha size of the transfer, and the length count is
decremented by the same amount. Each time the TCW number is incremented in
register 4, the next sequential TCW entry is obtained. Note that if software tries to access
register 4 with a channel number greater than the number of channels supported (as
indicated in the IOCC Configuration register), the results are implementation-dependent
(see “Implementation Details™ on page 2-86). Also note that only one DMA channel can
be assigned per arbitration level.

* Roegister 8 — Buffer Contro! Register

This register only exists for buffered implementations. The bit assignments are described
in “Register 8 — Buffer Control Register” on page 2-56.

DMA Siave Bus Protocols
Conventional bus protocols are used in DMA operations and are documented in “Basic

Transfer Cycle” on page 2-17.

I/O devices request DMA service on a demand basis by arbitrating for the bus using the
‘preempt’ line. This causes the ‘grant’ line to be deactivated, causing an arbitration cycle.
When the ‘grant’ line is reactivated, the IOCC inspects the Control register associated with
the bus requester to determine if any DMA service is required. If it is, the IOCC performs a
DMA slave sequence on behalf of the requester.

Typical requests are for one or two bytes. On occasion, multiple requests from different
devices are received at the same time. When this occurs, service is sequential with the
highest priority requester serviced first.

When service is granted to a device, data is transferred between the device and memory.
The sequence to be used depends on whether the memory is bus or system memory. The
number of bytes transferred is generally equal to the data width of the device. The DMA
address is incremented by the size of the transfer and the length count is decremented by
the same amount.

If the specified DMA address doeas not have the same boundary as the I/O device data
width, the operation proceeds using a Partial Transfer Protocol as described in “Partial
Transfer Cycles” on page 2-18. For example, a DMA transfer involving a 2-byte /O device
and a buffer starting on an odd address results in two 1-byte DMA sequences being
performed. This retains the functional integrity of the operation, but requires additional time
to complete the operation. As a result, it is suggested that buffers in system memory be
located on address boundaries matching the physical width of the /O device.
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DMA Slave

Transfers to Bus Memory
DMA slave transfers between a device and bus memory consist of two bus cycles: one to
read the data from the source and one to write the data to the target. An input operation
consists of an /O device read cycle followed by a bus memory write cycle. An output
operation is reversed.

There is no buffering on transtars to or from bus memory.

DMA Slave Transfers to System Memory

DMA slave transfers between a device and system memory have only one apparent bus
cycle: an VO device read or write cycle. These transters are described as follows:

¢ Buffered

The memory operation is directed to the IOCC buffer and does not appear as a bus
cycle. The buffer operation is overlapped with the /O cycle, and a sequence of DMA
cycles to system memory appears on the bus as a sequence of VO read or write
operations. As a result, the average instantaneous performance of DMA slave transfer to
system memory may be much better than to bus memory..

Whenever the address crosses an IOCC buffer boundary or the length count expires, the
|0CC transters the data between the buffer and system memory. This operation ma);
increase the worst case bus latency (depending on the IOCC implementation)
decreasing effective DMA performance. '

No restriction is placed on having DMA addresses begin or end on IOCC bufter
boundaries. The DMA controller performs read-modify-write sequencas to system

memory as required. As this potentially occurs only on the first and last bufters to be
transferred, addressing has little effect on performance.

When performing DMA slave transters to system memory, and the first address does not
start on a 64-b'te boundary or the remaining count is less than 64, the DMA controller
automatically performs either a buffer prefetch before storing the DMA data into the
butfer or does some sort of read-modify-write before storing the data to system memory
(depending on the implementation). If a buffer flush command Is issued before the
jength count expires and the buffer cache contains less than 64-bytes (the memory
address is not B‘xx..xx000000’), the remainder of the bufter transter to system memory
may consist of zeros (implementation dependent). See “Buffer Flush Commands” on
page 2-66 for additional details.

¢ Unbuffered

DMA slave transfers between a device and system memory have only one rent b

. us
cycle: an VO Qevnoe read or write. The memory operation is directed to the Iapc pac C. is
overlapped with the /O cycle, and therefore does not appear as a bus cycle. As a result
the average instantaneous performance of DMA slave transfers to system ' '
be twice that of bus memory. ystem memory may
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Special Sequences
Special mechanisms are provided to improve the relative data transfer efficiency of highly

buffered devices.

The Micro Channel supports preemptive burst operations to take advantage of low average
I/0 bus loading. A device starts this mode by activating the ‘burst’ line prior to the end of the
DMA slave cycle. No arbitration cycle occurs, and the DMA controller concatenates
successive DMA sequences until the ‘burst’ line is deactivated. Micro Channel arbitration
rules require preemptive burst devices to deactivate the ‘burst’ line request if any other

device requires bus service.

The DMA controller also supports a special transfer mode called streaming data transfer.
This mode is a single-addrass, multiple-data protocol, and is described in “Streaming Data"

on page 2-17.

DMA Slave Error Conditions
Error conditions that arise in DMA operations include bus errors, programming errors, and
hardware errors. The specific cause of the error is coded and sat into the status field (bits 0
to 3) in the Channel Status register. The ‘tc’ signal Is then pulsed, which should cause the
I/O device to suspend DMA operations and post an interrupt. If it does not, but continues to
request DMA servics, the IOCC services the DMA requests with dummy cycles, pulsing the
‘tc’ signal on every cycle. Error codes are summarized as follows:

Error Codes Description

0100 Extra Request Error: This error code is set if a DMA slave request is
received by a DMA channel when the channel is disabled. Receipt of an
unsolicited DMA request is an error unigue to a8 DMA slave. This error is
generally caused by /O device malfunctions and the IOCC pulses the ‘tc’
signal in an attempt to shut off the DMA slave. This error can also occur
with incorrect programming of the channel.

0111 TCW Extent Error: This error code is set if a DMA slave request is received
and the DMA slave control register 4 contains a TCW number for which

there does not exist a corresponding TCW.

1000 Channel Check Error: This error code is set if the device responds with a
channel check indication during a DMA slave operation.

As an example, a device might respond with a ‘chck’ signal for a Write
operation to that device where there is bad party on the data, or for other
device-detected errors during an operation to that device. This error will not
be reported if a card selected feedback error is reported (a card selected
feedback error takes precedence over a channel check error).

1001 Data Parity: This error code is set if the IOCC detects bad parity on the data
bus when the IOCC is reading data. (See “Exception Reporting and
Handling” on page 2-85 for details.)

1010 I/0 Bus Error: This error code is set if an error on the Micro Channel bus
has been detected during a transfer. The types of errors detected here are
implementation dependent see “Implementation Details” on page 2-86).
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Error Codes Description

1011 Card Selected Feedback Error: This error code is set if, after a device is
addressed, it does not respond by driving the ‘cd sfok’ line. Conditions that
could cause this to occur are: if the device is not present; is not seated in
the card slot properly; is not enabled or detects bad address parity and

does not respond to that address. This error code takes precedence over a
channel check error.

1100 ECC Error: This error code is set it the IOCC receives an uncorrectable
ECC ervor response from the systermn /O bus during a DMA slave request to
system memory.

1101 System Address Error: This error code is set if the IOCC sends data over

the system O bus and does not receive an address acknowledgement.
This can occur if the real page number in the address is invalid.

1110 TCW or Tag Reload Error: This error code is set if the IOCC detects a parity
or uncorrectable ECC error during a TCW or Tag table access.
1111 IOCC Error: This eror code is set if the I0CC detects an intemnal error

during any DMA slave operation. If the IOCC error is on accass to the DMA
Slave registers; this error will not occur and the machine will check stop
instead.

JO0CC Commands

Tlme Delay

JOCC commands are used to change the state of the IOCC or control special bus actions.
They take the form of Load and Store instructions to special (effective) addresses, where the
addresses specify the actions to be taken. In most cases, the Load or Store instruction can
be either a string or nonstring operation. The IOCC include supports the following
commands:

time delay

end of Interrupt
enable and disable
buffer flush

buffer invalidate

next buffer invalidate.

User applications can only issue the time delay command, and then only i they have
Segment register authority to access the /O bus. All the other commands are protected and
must have the Segment register privileged key set to a value of 0 (bit 1) and the IOCC select
bit set to a value of 1 (bit 24). IOCC commands are not placed on the I/O bus.

All |OCC commands are 4-byte operations except the time delay command,which can be 1
2, or 4 bytes. ,

e & ¢ o & O

Command
A number of Micro Channel devices have strict rules regarding minimum periodicity of
programmed VO commands. Using program path lengths for timing is not a good
programming practice, since program performance varies widely by processor type and
(current) operating environment. To assist in programming devices with real-time

dependencies, the IOCC supports & special time delay command that can guarantee
separation of bus /O commands.
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The time delay command is coded as a 1-, 2-, or 4-byte Load or Store instruction and is
shown in Figure 68 on page 2-64. It is normally inserted between successive Load and
Store instructions to devices with time sensitivities and enforces minimum time spacing
between the I/O bus cycles. This command is similar to the time delay command in the RT
system but allows additional time delay increments. The command provides delay
increments ranging from 1 to 8 microseconds and is specified using the effective address
and the logical (byte) length. If a Load instruction is used to call the time delay function, the
data retumed is indeterminate. If a Store instruction is used, the data is ignored.

Effective Address for the Time Delay Command

Reg # 000000000000X00000001 110 0|Del
0 34,78 ., 1518 3328 2823

Delay in Microseconds
1 Byte 2 Byte 4 Byte

1 2 4 000
2 2 4 001
3 2 4 010
4 2 4 011
5 2 4 100
6 2 4 101
7 2 4 110
8 2 4 111

Figure 68. Time Delay Command

The time delay command is issued by any user application having Segment register
authority to access the /O bus. Command execution is overlapped with succeeding
processor instructions as long as they do not attempt to access any /O space. If, however,
another /O Load or Store instruction is issued to the /O space before the time delay has
expired, that command is synchronously halted until the pending delay is completed. This
command affects only programmed I/O and has no effect on DMA or other /O operations
run by hardware.

The time delay command is issued with the | bit in the YO Segment register equal to 1 or 0.
The time delay command can be a string operation, but the length must be 1, 2, or 4 bytes.
Implementation accuracy of the time delay command is to -0 and +1 microseconds (for
example, a 1 microsecaond delay is greater than or equal to 1 microsecond but less than 2

microssconds).

End of Interrupt Command
Following presentation of an /O interrupt to the system External Interrupt Source (EIS)
register, the IOCC automatically masks off that interrupt so the presentation is only made
once. An end of interrupt command reenables this mask, causing any active interrupts to
be presented (or re-presented) to the system EIS register. On a Store instruction, the data is
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ignored. On a Load instruction, the data is indeterminate. This command, shown in
Figure 69, should be issued following the interrupt service.

Effective Address for the End of Interrupt Command
Seg
Reg #

000001000000 oooooooo1ooo11o:d
_ol 1 L34l i |7|8| 1 11 |]}sl1161 114 l?ilz?lll 1.1

Figure 69. End of Interrupt Command

This command is privileged and is only accessible when the Segment register privileged bit
is set to a value of 0. Attempts to run this command when the Segment register privileged bit
is set to a value of 1 causes a Data Storage interrupt to be posted and invalld operation
error status to be set in Channel Status register 15.

Enable and Disable Commands
The enable and disable commands allow system initiation and suspension of DMA slave
and bus master operations for devices attached to the Micro Channel. Each command is
directed to a specific channel as specified by the channel field in the effective address. The
command formats are shown in Figure 70. Bits 12 to 15 of the effective address specify the
channel to be started or stopped.

Effective Address for the Enable (Load) and Disable (Store) Commands

‘!i' 00100 chni#|000000000111
of'jﬂ}l?“ﬁ '{121115 16 23,24 °°°s?\

N NN N EEE NS NN

Figure 70. Enable and Disable Commands (Load equals enabie and Store equals disable).

The enable command initializes a channel to accept requests by changing the channel
status in the Channel Status register from the disabled (B'00X0’) state to the enabled
(B'00X1’) state. This command is coded as a Load instruction and returns the original
contents of the selected Channel Status register to the target processor register. The
channe! status field must initially be B'00X0' for this command to update the channel status
to the enabled state. This command always retums a status consisting of the full contents ot
the associated Channel Status register. The status field is the only field changed by this
command.

The disable command disables operation for a particular channel by changing the channel
status from the enabled state (B'00X1’) to the disabled (B'00X0’) state and is coded as a
Store instruction (data is ignored). It does not disrupt any other data in the channel registers,
allowing restart of the operation if the device is designed accordingly. The channel status
field must initially be B'00X1' for this command to be run. If it is not B'00X1’, a no operation
(NOP) instruction occurs when this command is issued.

The X in the preceding paragraphs does not indicate a do not care state, but indicates that
the enable and disable commands do not change the current state of the status bit 2
(mapped or not-mapped).

A request from a DMA slave when the channel is disabled is considered to be an error and
sets an extra request error code in the Channel Status register associated with that device.
The ‘tc’ signal on the Micro Channel bus is pulsed in an attempt to shut off the device.
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if a bus master makes a request to a disabled bus master channel, the IOCC does not
activate the 'sfdbkrtn’ signal and synchronously activates the ‘chck’ signal, but does not
update the error status.

Notice that an enable or disable command to channel X'F results in an NOP. Channel X‘F
is dedicated to the default master and remains enabled at all times.

These commands are protected system functions and are only issued when the Segment
register privileged key is set to a value of 0. Attempts to issue these commands when the
privileged key is set to a value of 1 causes a Data Storage interrupt to be posted and invalid
operation error status to be set in Channel Status register 15.

Buffer Flush Commands
The buffer flush commands are provided for implementations that support IOCC buffers. If
the buffers are supported, the IOCC buffers must be flushed to system memory at the end of
a transfer. The buffer flush commands provide the flush and Invalidate functions. Using
these commands will result in a NOP (data ignored on a Store instruction, indeterminate on
a Load instruction) if the buffers are not supported. For more information on why and when
these commands might be necessary, see “Maintaining Consistency” on page 2-36 and
“Implementation Detalls” on page 2-86.

The buffer flush commands are protected system functions and can only be issued when
the Segment register privileged key is set to a value of 0. Attempts to issue these
commands when the privileged key is set to a value of 1 causes a Data Storage interrupt
(DSI) to be posted and invalid operation error status to be set in Channel Status register 15.

Bus Master Buffer Flush Command

I0CC butters for bus master transfers are managed similar to the processor data cache, and
a flush operation is performed by address. To improve performance, the buffer flush
command is defined so the buffer flush can be performed simultaneously with normal TCW
maintenance. The command utilizes a bit in the effective address to optionally fiush the
buffer while accessing a TCW table entry. Figure 71 shows the effective address format. The
buffer associated with the TCW is conditionally transferred to system memory if the buffer
data has been changed (only flushed if dirty and valid). The IOCC remains busy until the
buffer transfer is completed and does not accept any new commands. Independent of
whether the transfer takes place or not, the buffer is invalidated by setting Buffer Control
register 8 to 0 including the D, B, and N bits, the TCW number and the offset, but not
including the invalidate bit (1) which gets set to a value of 1. This causes any subsequent
accesses to this buffer to have 1o access again the TCWSs and system memory. If on, the
Dirty bit is tumed off, so any subsequent buffer flush commands will not cause a buffer

transfer.
Effective Address for the Bus Master Buffer Flush Command
- TCW Number FR| Bus Master
0 4 | 8] 1? 111 15I 16] 1111 ?alzhl 1 1 311 Buffer Flush

4
| ﬂ‘—- Replace
Mask Flush
Figure 71. Bus Master Buffer Flush
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Bit 30 of the effective address causes any buffers associated with this memory page to be
flushed, while bit 31 causes the 4-bit mask value to replace the reference, change and
control bits in the TCW. The following list shows what happens for the various combinations
of the Flush and Replace bits:

» Flush equals 0, Replace squalis 0.
This is just a Load or Store instruction to the TCW table.
¢ Flush equals 0, Replace equals 1.

The TCW is updated based on the R, C, and CTL bits in the mask field. On a Load
instruction, retum the old value of the TCW. On a Store instruction, data is ignored.

o Flush equals 1, Replace equals 0.

©On a Load instruction, return the old value of the TCW. If operating in buffered mode,
flush the buffer, update the Buffer Control registers, and on a Store instruction, ignore the
data. In unbuffered mode, the Store instruction is a NOP. '

o Flush equals 1, Replace equals 1.

On a Load instruction, retumn the old value of the TCW. On a Store instruction, data is
ignored. If operating in buftered mode, fiush the bufter, update the Buffer Cont'rola >
registers. The TCW is updated based on the R, C, and CTL bits in the mask field.

DMA Slave Butfer Flush Command

The IOCC butters for the DMA slaves are managed as simple buffers, and the flush
Soeraion is performed by channel number. The DMA Siave butter flush command s
shown in Figure 72 and is issued by way of an /O Store instruction. Bits 12 to 15 of the
effective address specifies the buffer that the command is directed to.

Effective Address for the DMA Slave Butfer Flush Command

‘3.9
Reg # 0000010(1 Btr# |0000000001111000
_°| 94 78 e, 18 B LJ&SB?JJ Y

Figure 72. DMA Siave Bufter Flush

The DMA Slave buffer flush command conditionally causes the b associ

specified DMA channe! tobe }ransforrad to system memory if the I:Sf?err data :;:db::: e
changed, that is, the Dirty bit is on. The IOCC remains busy until the buffer transfer is
completed and does not accept any new commands. independent of whether the transter
takes place or not, the bufter is invalidated by setting Buffer Control register 8 D, B, and N
bits to a value of 0, and the invalidate bit (1) equal to a value of 1. T

On a Store instruction, the data is ignored. A Load instruction causes a Data S
torage

Interrupt. In the unbuffered mode, a Store instruction is a NOP and i

retums indeterminate data. a Load instruction

Buffer invalidate Command
Figure 73 shows the effective address format for this command.

Effective Address for Butfer Invalidate Command

Seg
Reg # 0000010%“# 0000000001101000
°|||34III 8llJ 41151Plllllgalz?lllllq1

Figure 73. Buffer Invalidate Command
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The buffer invalidate command assists in the management of DMA slave and bus master
operations. This command forces the hardware to reload the buffer on the next DMA slave
operation or bus master operation. On bus master operations, the Buffer Control register 4 is
also reloaded. A Load instruction retums the state of the bits, but does not invalidate the
buffer. On a Store Instruction, the data must be X'20000000'. (This is just a store to buffer
control register 8 with the buffer invalidate bit tumed on.)

If operating in the unbuffered mode, this Store instruction is a NOP, and a Load instruction
retums zeroes.

This command is privileged and is only accessible when the Segment register privileged bit
is set to a value of 0. Attempts 1o use this command when the Segment register privileged
bit is set to a value of 1 causes a Data Storage interrupt to be posted and invalid operation
error status to be set in Channel Status register 15.

Next Buffer Invalidate Command
Figure 74 shows the effective address format for this command.

Effective Address for Next Buffer Invalidate Command

mglooﬂ11(1 TCW Number 00
v METAN L TETE WL JEEETE u o AT A

(O |
Figure 74. Next Buffer Invalidate Command

The next buffer invalidate command is provided to assist in the management of bus
master operations. This command forces the hardware to throw away any buffers of data
that were read-ahead of where the bus master device is currently reading (the next bit is
tumed off). This is useful to ensure consistency between the IOCC next buffer and data that
may have been modified in system memory. Note that the hardware will read-ahead of the
device only if the implementation supports the dual buffering option of the architecture (see
“IOCC Configuration Register” on page 2-74 and “Implementation Dstails” on page 2-86).

This is not the only method which is available to ensure consistency in implementations
which support read-ahead. Other methods include hiding the DMA page in system memory
from the processor during the transfer to the device and the use of PIO to system memory.

This command must be issued with a full word Store instruction. The data must be a value of
0. A Load Instruction causes a Data Storage Interrupt.

If operating in the unbuffered mode or if operating in buffered mode but the dual buffer
option is not supported, this command causes a Data Storage Interrupt.

If operating in the buffered mode with dual buffer support, this command is guaranteed not
to return an error to the processor (with the exception of a privileged error). Should an error
occur, this command invalidates the next buffers for all 16 buffers instead of retuming an
error indication.

This command is privileged and is only accessible when the Segment register privileged bit
is set to a value of 0. Attempts to use this command when the Segment register privileged
bit is set t0 a value of 1 causes a Data Storage interrupt to be posted and invalid operation
error status to be set in Channel Status register 15.

/O Interrupts

The IOCC supports 11 bus /O interrupts, 3 native I/O interrupts, 1 miscellaneous interrupt,
and 1 reserved interrupt level. The miscellaneous interrupts are collected together and are
presented as one logical level. This results in a total of 16 IOCC interrupt levels.

[ |
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The architecture supports both a direct and a coded mapping of the I/O interrupt requests
(IRQs) to the External Interrupt Summary (EIS) register. The specific approach supported is
implementation dependent (see “implementation Details™ on page 2-86). When the direct

mapping approach is supported, the mapping is a direct one for one map (Interrupt level 0
maps directly to EIS bit 0, level 1 maps directly to EIS bit 1 and so on).

The following information describes the coded mapping approach in detail including a
description of an Interrupt Vector table used in the mapping.

When the coded mapping is supported, the 16 interrupt levels are coded and are mappable
to any EIS bit between 0 and 63. Figure 75 shows the interrupt mechanism.

Interrupt — 16 I ot
- nterru
Enable AND-16 —> Request
Data — 16 -16 ‘
Reg

AND|Enc | 4| LOOkuP| ¢ _,, System

RAM
Write s 16 Interrupt
End Of Reg
|ﬂmm R
1¢—{ Ded
interrupt Enable Register 80
1 1 111 1 I T | 1
MI Ser| Buas Interrupt = | Bus Interrupt [Par|Bus Infj 84 Interrupt
34 5 6 7/8]9 1011 12 14451 Request
Register
0 7 8 15
Encoding and Mapping

[ ) Interrupt Vector 80
1 I R N D
8 16

Figure 75. interrupt Mechanism

Interrupts are presented to the system with a special sequence, setting a bit in the system
EIS register corresponding to the vector code presented. Refer to Chapter 1, “System
Processors,” in this manual, for additional detalls.

The presentation cycle begins when an interrupt occurs. If the interrupt is enabled, its
corresponding bit in the interrupt request field is set to a value of 1. An IOCC sequence then
codes the interrupt, looks up a vector value, and presents that value to the system as an
interrupt. If multiple interrupts occur simultaneously, the hardware resolves which interrupt is
presented first. Following the presentation of each interrupt, a special hardware mask bit is
reset to ensure that each interrupt is presented only once.

When the system responds to the interrupt, the current processor state is saved, and a
device-specific interrupt handler is invoked. As part of that service, the interrupt source is
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raset. When the device service is complete, an end of Interrupt command is issued, which
sets the special hardware mask, reenabling the presentation of interrupts on this level. If
another interrupt is pending at this level, the EIS register in the system is set again.

Interrupt registers are shown in Figure 76. These registers are a protected system resource
located in the IOCC address space between addresses X'-0 40 00 80’ and X'—0 40 00 9F,
and are only accessible to Load and Store instructions from the system processor when the
Segment register privileged key is set to a value of 0. Attempts to access this address space
when the privileged key is set to 1 results in a Data Storage interrupt to be posted and
invalid operation error status to be set in Channel Status register 15.

Processor Effective Address
4|0000010000000000000010 rrroﬂ
Lil LlllllljllllJlllllllJlJIII
0 34 78 15 16 2324 A
Control Registers
Interrupt Enables
11 L1111l I L1 11111 -
interrupt Requests 84
JlLJJlllJ|||J4 Reserved -
Miscellaneous Interrupts 88
1 4 1111 lJ L1110 111
0 34 78 15 16 23 24 31
Vector Table
Miscellaneous| Keyboard Ser Port A'B IRQ3 20
11111131 Lt 1111 [ | Li 1111
IRQ 4 IRQ S IRQ 6 IRQ7
[ | Lil1 1111 L1t 1)1 1] 11 14411
IRQ 8
R ' IRQ 9 IRQ 10 IRQ 11 98
11 1111 1 111111 1111111 L1 11111
iRQ 12 Paralie! Port IRQ 14 IRQ 15
1 111111 L1 11111 HEEEEEEENE NN
0 34 78 15 16 2324 31

Figure 76. Interrupt Registers
* Register 80 — Interrupt Enable Register

This register provides the ability to enable or disable any of the primary 16 interrupt
requests. Bits 16 to 31 are reserved and should be set to a value of 0 on a Store
instruction. On a Load instruction, bits 16 to 31 are indeterminate. No dynamic
management of this register is necessary during interrupt service. It is provided primarily
to allow disabling of unused, potentially noisy interrupts.
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« Register 84 - Interrupt Request Register

This register provides access to the device interrupt sources and can be read using an
YO Load instruction. Bits 16 to 31 are reserved and on a Load instruction are
indeterminate. A Store instruction to this address is a NOP. A detalled description of each
bit follows:

Bits Description

0 Miscellaneous Interrupt: Miscellaneous interrupts are not directly
vectored to the EIS register. The system unit provides one EIS register
with 64 interrupts, of which the IOCC is allocated 16 levels. To fit within
this maximum, the IOCC presents miscellaneous interrupts as a class
interrupt, consuming one logical level. This appears in bit O (vector
lookup 0), and is an OR of all the bits in register 88. If this interrupt is
posted, the system is required to read IOCC register 88 to determine the
cause of the interrupt. Bit 0 is set to a value of 1 when any miscellaneous
interrupt occurs and bit 0 in the Enable register is set to a value of 1. This
bit is @ summary OR of register 88 and cannot be written. During an VO
Store instruction to this register, bit 0 is ignored. This bit is reset when
register 88 is reset.

1 Keyboard Interrupt: This bit is set to a value of 1 when a keyboard
Interrupt occurs and bit 1 in the Enable register is set to a value of 1. This

interrupt is level-sensitive and must be reset within the device prior to an
interrupt retum.

2 Seria! Port Interrupts: This bit is set to a value of 1 when a board serial
port 1 or serial port 2 interrupt occurs (Shared Interrupt) and bit 2 in the
Enable register is set to a value of 1. This interrupt is level-sensitive and
must be reset within the device prior to an interrupt retum.

3-7, 9-12, 1415
YO Bus Interrupts: These bits are set to a value of 1 when /O bus
interrupts occur and their cormesponding bits in the Enable register are
set to a value of 1. These bits reflect the current signal level of each of

the Micro Channel interrupt lines and are not latched. it is not necessary
to reset these bits as part of interrupt service.

8 Reserved: This bit is reserved and must be set to a valuae of 0.

13 Paraliel Port Interrupt: This bit is set to a value of 1 when a Standard VO
paraliel port interrupt occurs and bit 13 in the Enable register is set to a

value of 1. This interrupt is level-sensitive and must be reset within the
device prior to an interrupt retum.

16-31 Reserved: These bits are reserved and must be set 1o a value ot 0. On a
Load instruction, the value of bits 16 to 31 are indeterminate.

« Register 88 — Miscellaneous Interrupts Register

The first two bits of this register contain IOCC errors not reported in the Channel Status
registers. These errors are caused by asynchronous events or are associated with

situations where no device interrupt is posted. As such, the IOCC reports these errors by
way of its own interrupt.

The third bit of this register provides an interrupt for the Standard VO keyboard
Ctri-Alt-Anything sequence and is called a Keyboard External interrupt.

The summary OR of this register is presented as bit O of register 80.
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This register is both read and written using I/O Load and Store instructions. Store
instructions function only as a masked reset. Writing a value of 0 to a bit position resets
that bit, while writing a value of 1 does nothing. A detailed description of each bit follows:

Bits
0

3-31

Description

Channel Check: This bit is set if the /O bus ‘chck’ line is active during a
Micro Channel operation (PIO or DMA slave) at the beginning of a cycle
(after ‘arb/gnt’ signal falls and befare the first time the ‘cmd’ signal falls).
There should be no devices that asynchronously report errors by
activating the ‘chck’ signal. However, if this occurs, the channel check
posts an asynchronous |OCC error interrupt. Normally, in the system unit,
the ‘chck’ signal is presented as a synchronous exception and a Data
Storage interrupt is posted instead. Refer to “Exception Reporting and
Handling” on page 2-85 and “Channel Check” on page 2-19 for more
information.

Bus Timeout: This bit is set if an /O bus timeout occurred. See “Bus
Timeout” on page 2-20 for additional details. While this bit is active, the
‘arb/gnt’ signal is forced high, bus arbitration is suspended, and control of
the YO bus is unconditionally given to the I0CC.

Keyboard External: This bit is set when the Ctri-Alt-Anything sequence is
pressed at the Standard I/O keyboard and is called a Keyboard External
Interrupt. It is presented to the system as an external interrupt. Software
is then able to determine which key caused the interrupt and takes the
appropriate action. This bit is implementation dependent. (See
“Implementation Details” on page 2-86).

Reserved: These bits are reserved and must be set to a value of 0. On a
Load instruction, the value of bits 16 to 31 are indeterminate.

¢ Register 80 to 9F — Vactor Table

This set of registers contains the interrupt vectors to be presented to the system EIS
register. One vector is provided for each bit in register 84. The operating system loads
this table with a set of 8-bit values corresponding to the interrupt priority desired.

Note: The vector table is implementation-specific. (See “Implementation Details” on
page 2-86.) Implementations that support a single I/O bus can fix the conversion
of interrupt level to the EIS bit. This fixed conversion is the identify transform (that
is, interrupt 0 to EIS bit 0, interrupt 5 to EIS bit 5, and so on.) When the vector
table is not supported, a Load or Store instruction to the vector table addresses
results in a Data Storage interrupt (invalid operation).

Special Facilities

Figure 77 shows the register organization within the IOCC. (For implementation details, see
“Implementation Details” on page 2-86.)
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Address
From To

0400000 04F 0000

0400004 04F 0004

0400010

04000 20

04000 24

04000 2C

0 40 00 40

0400060 04F 0060

0400084 04F00 64

0400088 O04F 0068

0 40 00 80
0400084

0400088

040 00 90
04000 94

0 40 00 98
04000 8C

040 0200
0400204
0400208

Figure 77. I0OCC Registers
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Board Configuration Data
The Micro Channel defines a slot select mechanism for accessing board-unique
configuration data (byte-only access). Eight bytes of addressing are provided per board,
which includes a unique 2-byte board identification and up to 4 bytes of programmable
parameters. This mechanism is called setup, and is used at startup time to determine the
boards in the system and to sat configuration paramseters on each board. Support is
provided for up to 16 boards.

The Board Configuration registers are shown in Figure 78. They are a protected system
resource located in the IODCC address space. These registers are only accessible to Load
and Store instructions from the system processor when the segment register privileged key
is set to a value of 0. Attempts to access these registers when the privileged key is set to a
value of 1 causes a Data Storage Interrupt and an invalid operation status to be set in
Channel Status register 15.

Processor Effective Address
Seg 00000100 Siot oooooooxooooolrrr

*
JR:EL L1l 1111 111 | | I L1 11 [ |
0 34 78 15 16 23 24 31
Data
Board Identification Dev Unique El Dev Unique | 0
ILISI 1 I(lxol) 1 IMIs IBvlui 1 I | | I O |
Dev Unique  |Sta|Dev u,,,q,,.i Sub-Addressing 4
L1 1t11 1 L1111 11"??‘”11'1“?45“@
0 34 78 15 16 23 24 31

Figure 78. Board Configuration Registers

Refer to Personal System/2 Hardware Interface Technical Reference: Architectures manual
for more information on Micro Channel architecture and a description of the setup
mechanism. Even though the architecture specifies that only address bits 0 to 2 are to be
used In the address decode operation, some boards are developed with a dependency on
setup addresses being between X'01 00' and X'01 07'. To accommodate these boards, bit
23 is allowed to be a value of either a 1 or 0. The small rin bit positions 29 to 31 is a
variable designating the byte being addressed within the 2-word field.

Board configuration data is unique to each specific board. Refer to each board specification
for details.

Note that the software should do a byte reversal on 2-byte entities that are targeted for the
Board Configuration registers used during setup cycles; for example, the most significant
byte of the board identification should be placed in the register as shown in Figure 79.

I0CC Configuration Register
The IOCC design allows for certain variations of function and performance that optimize its
usage across multiple machine environments. The specific personalization is established
with the contents of the IOCC Configuration register. For the contents of this register for
specific implementations, see “Implementation Details” on page 2-86.
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This register is a protected system resource located in the IOCC address space at address
X'-0 40 00 10'. it is only accessible to Load and Store instructions from the system
processor when the segment register privileged key is set to a value of 0. Attempits to
access this register when the privileged key is set to a value of 1 result in a Data Storage
Interrupt and an invalid operation error status set in Channel Status register 15.

This register is set up by hardware and ROM code and is treated as a read-only register by
the operating software with the exception of the master enablie bit.

Figure 79 shows the organization of the configuration register. Bit 0 in this register is
initialized to a value of 0 at startup.

Processor Effective Address

m. 0000/]010000000000000000010000

IR NN |1¢11|111111111|11|11|1

0 34 78 15 16 23 24 N

Configuration Data

E[_ Ref|_|RAM |_| Arb - #of

lq Bur|Dis | i~ | Size || Time S1P171C €| chnis
1 1 1 L1 ) T O O | | 111

0 34 78 15 16 23 24 31

Figure 79. I0OCC Configuration Register
The various fields in the Configuration register are described as follows:
Bits Description

0 Master Enable: This bit functions as a master enable control for channel
and interrupt operations only. It is intended to disable channel operations
until the system has initialized the Channel Control registers, tag table, and
TCW table, but alsc could be used following startup to assist recovery from
catastrophic errors. Normally, this bit is set to a value of 1 following initial
program load (IPL) and is never changed thereafter.

1 Reserved: This bit is reserved and must be set to a value of 0.

2-3 Burst Control: Programmable burst control is an optional implementation. A
Load instruction to these bits indicates the state implemented or currently
assigned (see also "implementation Details” on page 2-86). If not
supported, a Store instruction to these bits is a NOP. These bits control the
maximum time that the IOCC continues to utilize the YO bus by way of the
Load and Store instructions under bursting protocol following a bus request
from another device. This set of controls Is provided as a protective
measure to retain reasonable interrupt response time in the presence of an
IYO bus hog. The Micro Channel architecture places few restrictions on
device bursting, and it is possible for a device to be designed with long
(non-preemptive) burst sequences, even if operating in the faimess mode.
The device then receives a disproportionate number of bus cycles if the
I0CC does not also utilize non-preemptive burst sequences to increase the
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6-7

8-11
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blocking factor. It is the responsibility of the IOCC to ensure that the
7.8-microsecond bus timeout constraint is adhered to.

Complete Current Cycle
1.6 microsscond
3.2 microsecond
6.4 microsecond

- 00N
-0 =20 W

Figure 80. Bit 2 and 3 Burst Control Setting

The IOCC nomally uses a Preemptive Burst protocol when executing Load
and Store instructions. Under normal bus loading, this provides high
statistical data rates while also providing the lowest latency to DMA slave
and bus master devices.

Reserved: These two bits are reserved but the value that they must be set
to is implementation dependent (see “Implementation Details” on page
2-86).

Refresh Control: These bits allow specification of bus refresh periodicity and
the number of (burst) refresh cycles taken. This provides for a certain
amount of flexibility to handle new memory technologies with different
refresh rate requirements. The refresh control setting is defined as shown in
Figure 81 (rates are maximum times allowed).

6 7 Rate # Cycles
0 0| Off -
0 1 | 60 microsecond 4
1 0| 30 microsecond 4
1 1| 15 microsecond 4

Figure 81. Refresh Contro!l Setting
Reserved: This bit is reserved and must be set to a value of 0.

TCW Table Size Specification: These bits allow specification of the amount
of control RAM (TCW and Tag) to be packaged with the IOCC. Different
applications require different amounts of TCW table, and the IOCC design
allows this size to be varied. This provides the flexibility to optimize cost and
function across a wide range of system applications. These bits should be
personalized to match the size of the RAM provided with the IOCC (in terms
of the number of TCWs supported). The TCW Table Sizes for



12

Combination TCW and Tag table shows the bit settings for
implementations where tags are used for DMA slave operations.

TCW Table Sizes for Combination TCW and Tag
Bit TCW Table Skze

910 11 (# of TCW entries)
000 24K

001 56K

010 120K

011 248K

100 504K

101 1018K

The following table shows the bit settings for implementations that use

TCWs to support DMA slave operations.

TCW Table Sizes When Tags Are Not Supported
Bit TCW Table Size

91011 (# of TCW entries)
00 8K

001 16K
010 32K
011 64K
100 128K
101 256K
110 512K
111 1024K

The Tag table has 4096 entries, and the remainder of the RAM is allocated
to the TCW table. If both the DMA slave and the bus master operations are
handled using TCWs, all of the RAM is available for the TCW table. Due to
the mapping of bus /O and bus memory into one addrass space, no bus
memory is allowed between 0 and 64K bytes, and the first 16 TCW entries
are never accessed.

Reserved: This bit is reserved and must be set to a value of 0.
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Bits
13-15

16-22
a3

24

25
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Description

Arbitration Time: These bits allow specification of the arbitration time on the
Micro Channel. Different systems applications have different bus
configurations and loading, and require different arbitration values. These
values can be varied from the architected minimum to a value greater than
that provided by the RT system bus application. Each arbitration value in
the Arbitration Time Configurations table represents a range, for example,
100 nanoseconds equals 100 to 200 nanoseconds.

Arbitration Time Configurations
Bits Arbitration Time
131415 (nanoseconds)
000 100
001 200
010 300
011 400
100 500
101 600
110 700
111 800

Reserved: These bits are reserved and should be a value of 0.

TCW and Tag Tables in System Memory: A value of 1 in this bit indicates
that the TCW and tag tables are in system memory. The register for
anchoring the address of a system memory based TCW and tag table is at
X'-0 40 00 24".

All pages in system memory provided for TCW and tag tables are
continuous in real memory and permanently pinned. The TCW and tag
tables are only accessed through the IOCC space and are not mapped into
the PFT. Any error while accessing this memory results in a TCW and Tag
access error. This area is not scrubbed.

A value of 0 in this bit indicates that nonsystem memory is used for the
TCW and tag tables.

Dual Buffer Support and Bus Mapping Register: This bit indicates whether
or not the dual buffering and Bus Mapping register option of the architecture
is supported. A value of 1 in this bit indicates that the dual buffer and Bus
Mapping register option of the architecture is supported. A value of 0 in this
bit indicates that it is not supported. For implementation details, see
“Implementation Details” on page 2-86.

DMA Siave TCW or Tag Bit: This bit indicates whether the DMA supports
the use of tags or TCWs for DMA slave operations. A value of 0 indicates
tags are supponted.



Bits

28-31

Bus Status Register

Description

Cache Buffer Support and Cache Coherency: These bits have the following
meanings:

26 27

0 0 | Buffered Mode, Software Enforced Consistency
0 1 | Unbuffered Mode

1 0 | Reserved

1 1| Reserved

Figure 82. Cache Moas Bits

In the buffered mode, the IOCC buffers exist, and PIOs to system memory
are allowed. In the unbuffered mode, there are no IOCC buffers and PiOs to
system memory are not allowed. See “Maintaining Consistency” on page
2-36.

Number of DMA Slave Channels: These bits indicate the number of DMA
slave channels (that is, the number of DMA Slave Control registers) that are
supported. Both B'0000’ and B'1111’ indicate that 15 channels are
supported. Also, B'0001’, B‘0010', B'0011’ indicate that one, two, and three
channels are supported, respectively. The number of channels supported is
implementation-specific. However, the number of arbitration levels
supported is not implementation-dependent, and must be equal to 16. (See
“Implementation Details” on page 2-86). If the implementation supports
tags, then all 15 DMA slave channels must be supported. The minimum
required by the Micro Channe! architecture is 2. The minimum required by
the system architecture is the number of slots plus the number required by
the Standard VO devices. If buffers are supported, the number of buffers
must equal the number of channels supported.

The Bus Status register (BSR) is a diagnostic facllity that aids in VO error isolation. It is
comprised of one R/W register and provides the abllity to set and sample signals on the /O

bus.

The BSR is a protected system resource located in the IOCC address space at address
X'-0 40 00 20'. It is only accessible to Load and Store instructions from the system
processor when the segment register privileged key is set to a value of 0. Attempts to
access these registers when the privileged key is sat to a value of 1 causes a Data Storage
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Interrupt and an invalid operation error status to be set in Channel Status register 15.
Figure 83 shows the Bus Status register.

Processor Effective Address
Seg 00000100000000000000001 ooooj

Reg #

¢191 |||l|1111|||11141|1|||||11

0 34 78 15 16 23 24 31

BSR Data

Reserved ArbBuiBCS

llllJJlllluurllll1142130111213|011

0 __
— Burst
— Cd Chrdy
— SDR (0)
— SDR (1)

Figure 83. Bus Status Register

The ‘arb’ bus lines, ‘burst’ signal, ‘cd chrdy’ signal, and ‘sdr (0)’ and ‘sdr (1 ) signals are
latched in the BSR latches when a bus timeout error occurs. The ‘arb’ bus bit 0 is the least
significant and bit 3 is the most significant bit. If a bus timeout error occurs during an /O
cycle, further bus errors will not be trapped until the error interrupt is cleared out of the
Miscellaneous Interrupt register. As such, the BSR contains a copy of the sampled O bus
signal lines at the time of the first error. No provision is made for saving bus states for
successive errors.

Results of a Store instruction are implementation-dependent (see “Implementation Details”
on page 2-86) On a Load instruction, the data retumed is the contents of the register as
described, if an error has occurred (bit 1 of the Miscellaneous Interrupt register is on); the
contents of bits 0 to 23 are indeterminate.

TCW and Tag Anchor Address Register

This register specifies the starting address of the TCW and tag table when that table is in
system memory (as indicated by bit 23 of the IOCC Configuration register). This register is
undefined when bit 23 of the IOCC Configuration register is a 0, and a Store instruction to
this register when bit 23 is a 0 will cause a Data Storage Interrupt, and an invalid operation
status to be set in Channel Status register 15.

The TCW and Tag Anchor Address register is a protected system resource located in the
IOCC address space at address X'-0 40 00 24'. It is only accessible to Load and Store
instructions from the system processor when the Segment register privileged key is set to a
value of 0. Attempts to access this register when the privileged key is set to a value of 1
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causes a Data Storage Interrupt and invalid operation status to be set in Channel Status
register 15. Figure 84 shows the TCW and Tag Anchor Address register.

Processor Effective Address
Ses (000001000000 oooooooooo1oo163|

In°lgl#IllllllllllllllIllllllllllI
0 34 78 15 16 2324 K) |
Anchor Address Register Data

Start of TCW and Tags in System Memory
lIIlJllllllLJillllllJl_llIIIIIIl

0 78 15 16 2324 31

Figure 84. TCW and Tag Anchor Address Register

Software must guarantes that the table starting address is on a boundary which is equal to
the size of the table. For exampie, for a 128K-byte table must start on a 128K byte
boundary.

Component Reset Register

The Component Reset register (CRR) is comprised of one register and provides the ability
to individually drive the resets to each 1O slot. Writing a value of 0 into a bit position resets
that slot, and writing a value of 1 removes the reset.

The CRR is a protected system resource located in the IOCC address space at the address
X'-0 40 00 2C". it is accessible to Load and Store instructions from the system processor
when the segment register privileged key is set to a value of 0. Attempts to store into this

register when the privileged key is set to a value of 1 causes a Data Storage Interrupt and
an invalid operation error status to be set in Channel Status register 15.

Figure 85 shows the Component Reset register. The actual number of siots supported is
implementation dependent and is consistent with the IOCC configuration definition. The use
of the reserved bits is also implementation dependent, and the usage includes resets for the
Standard /O devices. On a Load instruction to this register, the value of the unused bits is
implementation dependent. See “Implementation Details” on page 2-86.

Processor Effective Address

“9‘ooooo1oooooooooooooooo1o11oo
ln°|°| IlllJlJJllllllJllllllLllll|
0 34 78 15 16 2324 31
Component Reset Register Data

Slots Reserved

ollllJJJ7lqllllJ] I_llIILJIIJllIII
0 78 15 16 23 24 31

Figure 85. Component Reset Register
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The CRR is initialized to a value of 0 at startup. This sets and holds a bus reset to all the /O
boards until explicitly enabled by a startup diagnostic utility.

After a reset operation occurs, the software removes the reset by writing a value of 1 to the
board slots. To ensure proper timing relationships, the software must make sure the reset is
held a minimum of 100 milliseconds before removing the reset.

Software can determine if a slot exists and contains a board by removing the reset to the
slot and reading the board identification. A board identification of X'FFFF means that no slot

exists, or that the slot is empty.
On a bus timeout error, hardware sets the implemented CRR bits to a value of 0.

Bus Mapping Registers
The Bus Mapping registers provide a means to specify that certain blocks of bus address
space are allocated for bus to bus (that is, Micro Channel peer to peer) data transfers by
bus masters. Altemately, all data transfers from a bus master can be directed to the bus
address space by setting bit 2 of that bus master's CSR to a value of 0. These registers
allow for the flexibility of directing some of a bus masters transfers to the bus memory and
some to system memory without having software intervene to change the setting of CSR bit
2 for that bus master. The Bus Mapping registers are an optional feature of the architecture.
Their presence is indicated by bit 24 in the IOCC Configuration register being set to a value
of 1.

The following Tables 1, 2, and 3, show the address ranges mapped by each bit of each Bus
Mapping register. If a bus master has its CSR bit 2 (mapping bit) set to a value of 1 and a bit
in the Bus Mapping registers is set to a value of 0, then the comesponding range of bus
address space will NOT be mapped to system memory for that bus master (that is, a bus
master access to this range wiil result in a bus to bus transfer cycle). If a bus master has its
CSR bit 2 (mapping bit) set to a value of 1 and a bit in the Bus Mapping registers is set to a
value of 1, then the comesponding range of bus address space is mapped to system
memory for that bus master. A bus master whose CSR bit 2 is set to a value of 0 will always
be accessing the bus address space (doing a bus-to-bus operation), regardless of the
setting of the corresponding Bus Mapping register bit (that is, the cycle is a bus to bus cycle
if either the CSR bit 2 of the bus master doing the access or the corresponding bit of the Bus
Mapping register is set to a value of 0). Natice that there are three granularities of the
mapping depending on the address range mapped.

Table 1. Bus Mapping Register 0 (X'00 40 02 00')
Register Bit Address Range Mapped Size of Address Range
(Hexadecimal)
0 00 00 00 00-00 03 FF FF 256K
00 04 00 00-00 07 FF FF 256K
2 00 08 00 00-00 0B FF FF 256K
31 00 7C 00 00-00 7F FF FF 256K
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Table 2. Bus Mapping Register 4 (X'00 40 02 04')

Register Bit Address Range Mapped Size of Address Range
(Hexadecimal)
0 00 80 00 00-00 B3 FF FF 256K
1 00 84 00 00-00 87 FF FF 256K
2 00 88 00 00-00 8B FF FF 256K
31 00 FC 00 00-00 FF FF FF 256K
Table 3. Bus Mapping Register 8 (X‘00 40 02 08')
Register Bit Address Range Mapped Size of Address Range
(Hexadecimal)
0 01 00 00 00-03 FF FF FF 48M
1 04 00 00 00-07 FF FF FF 64M
2 08 00 00 00-0B FF FF FF 684M
15 40 00 00 00-43 FF FF FF 64M

These registers are protected system resources located in the IOCC address space at the
address X'00 40 02 00' to X'00 40 02 08'. They are accessible to Load and Store
instructions from the system processor when the segment register privileged key is set to a
value of 0. Attempts to store into these registers with the privileged key is set to a value of 1
will cause a Data Storage Interrupted and an inviaid operation error status to be set in

Channel Status register 15.
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System /O and Standard I/O

Two classes of devices are described in this section, the System VO and the Standard /0.

Systemn /O is defined as facilities in the I/O space intrinsic to the system but not normally
considered I/0 devices. Included in this category are NVRAM, clock and calendar, operator
panel, system registers, and on card sequencers (OCS). System /O, though in the I/O
space, is isolated from the I/O bus by way of an intemal bus and is a protected resource.

Standard I/O devices in the system unit are defined as those 1/0 devices intrinsic to a basic
workstation, and as such, are included as part of the base machine. These devices do not
necessarily occupy feature slots because these devices are not optional features. The list of
items which fall into this category is implementation specific (see “Implementation Details”
on page 2-86).

System /O
Systemn I/O is located in the IOCC control space, is privileged, and is only accessible when
the segment register privileged bit is set to a value of 0. Attempts to access this address
space when the privileged bit is set to a value of 1 causes a Data Storage Interrupt to be
posted and an invalid operation error status to be set in Channel Status register 15. The
remainder of this section contains information describing System 1/O.

System Registers
System registers are located in the IOCC control space between the addresses X'-0 40 00
C0’ and X'-0 40 00 FF’ defining a contiguous space of 64 bytes. These registers are
implementation-dependent (see “Implementation Details” on page 2-88).

Nonvolatile RAM
The Nonvolatile Random Access Memory (NVRAM) is located in the IOCC control space
between X'-0 A0 00 00’ and X'-0 BF FF FF' and occupies 2M-bytes of address space. The
amount of NVRAM in the system is implementation-specific (see “Implementation Details”
on page 2-86).

Standard 1/0
The Micro Channe! provides for a 16-bit bus /O address. To access a device within this
address space, effective address bits 4 to 15 and segment register bits 28 to 31 must all be
a value of 0.

Accesses to the I/O bus are checked for proper access authority by way of an address
range check, restricting user programs to access only authorized devices. However, since
the IOCC cannot intercept or stop accesses to bus attached memory or bus /O devices by a
bus master on the I/O bus, no access checking is performed when a bus master addresses
these devices.

Actual Standard I/0O address assignment are implementation dependent (see
“iImplementation Detalls” on page 2-86).
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Exception Reporting and Handling

Refer to Personal Systenmv/2 Hardware interface Technical Reference: Architectures manual
for more information on Micro Channel architecture and for definitions of the data and
address parity on the Micro Channel.

The following are general guidelines that were followed in designing the system units and
adapters, and should be followed in designing new adapter boards for the machines:

Full parity support is recommended for all address and data buses for all adapter boards,
internal boards, and intemal devices (such as Standard I/O devices, NVRAM, and
System registers). Full address and data parity support Is defined as traversing the
complete paths of the address and data buses (generate parity at the signal source and
check parity at each destination point where the address and data will be used).

Internal boards (Standard /O and /O Boards) provide both address and data parity
support to each of their devices.

Adapter boards to be supported for system units should provide both address and data
parity support at the board connector and on all intemnal data and address buses.

- 8- and 16-bit devices should provide the 32 bit board connector to gain access to all
the required parity signals.

- 8- and 16-bit devices, should also implement a notch in the board tab so they can be
installed in a 16-bit board slot.

Note: Suitable pull-up resisters should be utilized as appropriate.

Adapters that do not use the 32-bit board connector (8- and 16-bit data), should support
data parity as a minimum requirement. The objective is to include the 32-bit connector
described previously to allow address parity, also, if possible.

Devices and boards should meet the signal timing specifications described in the Micro
Channel architecture documents. For Micro Channel architecture information, refer to the
Personal System/2 Hardware Interface Technical Reference: Architectures manual.
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Implementation Details

This section provides implementation details for system Models 320, 32E, 32H, 520, 52H,
530, 530E, 53H, 540, 550, 550E, 5508, 560, 560F, 730, 930, 950 and 950E.

Implementation details for other models can be found in the Input/Output (VO) architecture
implementation details sections of the product-specific technical information manuals.

Streaming Data Protocol
These models support the 4-byte Streaming Data protocol.

Board Configuration Register
Figure 78 on page 2-74 shows the board configuration register assignments.

I0CC Configuration Register
Some of the bits in the IOCC Configuration register indicate support or nonsupport of
various implementation-dependent features. The following is a summary of the definition of
the IOCC Configuration register implementation for these models. In the case of read-only
memory (ROM) code initialized bits, the value that the ROM must initialize these bits to is
shown. For the bits of the IOCC Configuration register that are not documented in the
following descriptions, the ROM code must initialize those bits to a value of 0.

Bits
2-3

6-7

9-11

13-15

23

24

25

26-27

28-31
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Description

Burst Control: These modsls support the programmable burst control in bits
2 and 3 of the IOCC Configuration register. These bits are set to B'11’ (6.4
microsecond) by the ROM code.

Reserved: Thess bits are reserved and must be set to B‘'01'. Reserved bits
are set to B'01' by the ROM code.

Refresh Control: These bits are set to B‘01' (60 microseconds refresh) by
the ROM code.

TCW Table Size Specification: These bits are set to B'010' by the ROM
code.

Arbitration Time: These bits are set to B‘011’' (400 nanoseconds) by the
ROM code.

TCW and Tag Tables in System Memory: These models support nonsystem
memory for TCW and tag tables as indicated by a 0 in this bit.

Dual Buffer and Bus Mapping Register Support: Thesa models do not
support the dual buffer and Bus Mapping register option of the architecture,
as indicated by a 0 in this bit.

DMA Slave TCW and Tag: These models support the use of tags for DMA
slave operations as indicated by a 0 in this bit.

Bufter Support and Coherency: These models support the use of buffers for
bus master and DMA slave operations that are managed by software, as
indicated by a B'00' in these bits. This also indicates that PIO operations to
system memory are supported.

Number of DMA Slave Channels: These models support the use of 15
channels for DMA slave operations as indicated by B‘0000' in these bits.



System Registers
Figure 86 shows the register assignments within this area.

Software polls the Power Status and Keylock Decode register (address X'0 40 00 E4’) to
determine if any bit within that register changes state, and then tests to determine the bit
that caused the state change in order to take the proper action. Bits 28 to 31 in this register
are the cover keylock switch-position decode bits and are used by ROM and software to
determine proper IPL procedures based on the switch paosition. (The keyboard lock on these
models is a software function.)

Address Data
04000 CO0 Time of Day Clock and Alarm

| 1 1
04000 C4 ﬂimofDuycllockandAIm
04000Cs8 ﬂlrlmeofDlyCIocknndAle
04000CC ﬂrnofDayToeknndAJh:m
04000 DO TllmoofblycllockandAlTrm
04000 D4 Time of Day Clock and Alarm

] 1 |
0 40 00 D8 TI;noofDuyilocknndAErm
040 00DC Time of Day Clock and Alarm

| | 1 System
040 00 EO System lzeut Count Registers

| |
040 00 E4 Power Status and Keylock Decode

] | |
0 40 00 E8 :’owarcomroJllndRuolt
04000 EC Dlagnostic Control

] 1 |
04000 F0 Reserved

] ] |
04000 F4 | Ruelrvod l
040 00 F8 Reserved

] ] |
04000 FC VO?oardPartNoandECLovel

| |

Figure 86. System Registers

Nonvolatile RAM

At least 32K bytes of nonvolatile random access memory (NVRAM) are implemented and
are located in the lower range of tha NVRAM address space. Figure 87 on page 2-88
shows the address assignments for the NVRAM area.
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Address

0 AD 00 00 (4 Bytes)
0 AO 00 04 (4 Bytes)
0 AO 00 08 (4 Bytes)
0 AD 00 OC (4 Bytes)
0 A0 00 10 (4 Bytes)
0 A0 00 14 (4 Bytes)
0 A0 00 18 (4 Bytes)
0 A0 00 1C (4 Bytes)
0 A0 00 20 (224 Bytes)

0 A0 01 00 (256 Bytes)

0 AO 02 00 (36 Bytes)
0 AO 02 24 (216 Bytes)

0 A0 02 FC (4 Bytos)
0 A0 03 00 (4 Bytes)

0 A0 03 04 (4 Bytes)

0 A0 03 08 (4 Bytes)

0 A0 03 0C (4 Bytes)

0 A0 03 10 (4 Bytes)

0 AO 03 14 (4 Bytes)

0 A0 03 18 (4 Bytes)
0 A0 03 1C (4 Bytes)

0 A0 03 20 (64 Bytes)
0 A0 03 60 (4 Bytes)
0 AO 03 64 (4 Bytss)

0 AO 03 68 (20 Bytes)
0 A0 03 7C (4 Bytes)
0 A0 03 80 (128 Bytos)
0 AD 04 00 (16K Bytes)
0 AD 44 00 (15,360 Bytes)

Data

Reserved

NVRAM Size

Date and Time NVRAM Initialized

Reserved

Protected
~ Software or ROM

SCSI Initiator Address Slot 1-16

Access Only

Reserved

Hardware
Prevents OCS

Reserved

Writs to This
Area

Reserved

Memory Control And Error Registers
Mapped From BUID 0 Address 1000-10D0

Memory Error Summary Data

Previous IPL Device Descriptor

Reserved

Software CRC Value For A0 00 00 - A0 02 FB

LEDs (Mirrored)

LEDs (Mirrored)

Check Stop Count

PTR To OCS Logout Area Lt 00 A0 44 00

OCS Code EC Level

| Shared Access
OCS, Software,

Seeds ROM, EC Level

ROM

Manufacturing Control Word

Pointer To Manufacturing Data Area

OCS LED String Output Area

Pointer to OCS Code Exec. Area

Pointer to OCS Work Area

Machine Check Error Save

OCS and RS Command Interface

Reserved for OCS Buffer to RS Proc.

OCS Work and Code Area

} ocs Area

Software Data Area

T Software Area

Note: For systems with greater than 32K bytes of Nonvolatile RAM, the extra RAM increases
the software data area.

Figure 87. NVRAM Addressing
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Standard /O

The Standard I/O Address Map table shows a Standard /O address map indicating the
address assignments for each Standard I/O device.

Standard /O Address Map

Hex Address Range Standard /O Device
0000 — 002F Reserved

0030 — 0037 Serial Port 1 (See note)
0038 - 003F Serial Port 2 (See nota)
0040 - 0041 Serial DMA Registers
0042 - 0047 Reserved

0048 - 004F Mouse

0050 - 0059 Keyboard, Tablet and Sound
DO5A - 0061 Reserved

0062 - 0067 Diskette

0068 - 0077 Reservad

0078 - 007A Parallel Port

007B - 00DF Reserved

00EQ - 00E7 Time Delay Command
00E8 - 00FF Reserved

Note: Serial ports 1 and 2 are referred to in the software documentation as serial ports A

and B, respectively.

Bus Master Transfers

Bus master operations follow the butfered mode of operation (see “Buffered Bus Master” on

page 2-39).
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Component Reset Register
Up to eight slots plus the Standard /O are supported. Bits 0 to 7 of this register represent
the eight slots. Bit 31 is for the Standard I/0. On a Load instruction, the value of bits 8 fo 30
are indeterminate. The CRR and Board Configuration Register Assignments table shows the
logical stot number (Component Reset register bit) for the devices.

CRR and Board Configuration Register Assignments
Logical Slot Board
Number Configuration
(CRR bit Register Siot Physical
Number) Number Slot Number | Comments
0 0 1
1 2
2 2 3
3 3 4
4 4 5 Not used in 4-slot models
5 5 6 Not used in 4-slot models
6 6 7 For 4-slot models, used for
the Direct Bus Attached file
7 7 8 For 4-slot models, used for
the Direct Bus Attached file
81030 not used
31 X'F Standard VO

Notes on Error Detection
e |OCC and I/O bus protocol errors are not logged in the Channel Status register.
e TCW errors are parity errors, not ECC errors.

Bus Timeout
The time period is the time between refresh cycles (which is programmable through bits 6
and 7 of the IOCC Configuration register; see “IOCC Configuration Register” on page 2-74)
plus the amount of time the device was on the bus prior to the first refresh cycle. For
- @xample, for a 15 microsecond refresh, the time range would be 15 to 30 microseconds, and
for a 60 microsecond refresh, the time range would be 60 to 120 microseconds.

/O Interrupts
The coded method of handling /O interrupts is supported, including the use of the interrupt
vector tables.

Power-On Reset
A power-on reset, system reset, or bus timeout, resets the master enable bit in the
Configuration register. When this bit is a value of 0, the following is accomplished:

o The ‘preempt’ signal is de-gated, disabling channel arbitration.
o Interrupt presentation is inhibited to the system.
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Also, on power-on resel, system reset, or bus timeout, the following is accomplished:

¢ The Component Reset register is reset.
» A reset condition is forced to all /O siots.

The master enable bit can be set or reset by a Store Instruction to the IOCC Configuration
register. Figure 88 shows the system implementation. )

Micro
,------.---.-!99? ............. - Channel Bus
' WRT Data ——»{ |
' —9 Intorruptj¢-— [¢&—» VO Siots
. . B S
. Enable Bit .
EBU' — CRR
' Time Reg X
: Out .
. .n (] -
. ‘—————>» Reg
X 0 .
Power-On . : | . >
M ] ) o
: : |

Figure 88. System Reset

IPL Procedures
Figure 89 on page 2-92 shows the power-on state of the IOCC registers. Indeterminate
power-on states are indicated with an x, and undefined states are indicated with a dash (-).
Attempts to read an IOCC register with an x before it has been initialized can result in a
parity error, and the IOCC error interrupt mask should be disabled. The Channel Control
registers and the interrupt vector table must be initialized with the Store Instruction to
establish good parity in these registers.

The TCW table, tag table, and IOCC memory also tum on in an indeterminate state.
Attempts to read these address spaces before they have been initialized can result in parity
ermors, and the IOCC error interrupt mask should be disabled until after these spaces are -
initialized. These facilities must be initialized with a sequence of Store instructions to
establish good parity.

Hardware provides a means for ROM to set the buffers and registers in the appropriate
invalid state at power-on. Following a power-on condition, the following procedure must be
followed to initialize the IOCC:

1. Initialize the IOCC Configuration register.
2. Reset the interrupt Control registers.

3. Initialize the Channel Control registers, register 8 bit 2(l) to a value of 1, all other bits to a
value of 0. Register 0 and 4 should be reset to a value of 0.

4. Reset the Load and Store Limit registers.

System /O Structure  2-91



5. Initialize the interrupt vector table.
6. Initialize the TCW table.
7. Initialize the tag table.

Except for the master enable bit being reset, the IOCC does not lose any state information
following a check stop reset. Thus, it is not necessary to reinitialize the I0CC following a

check stop condition.
Address
From To Frmmsss-sossssssscscccommmomomooos :
' Board
0400000 04F 0000 Boardldorlnlﬂutton | DevlcoDorondom ,1 gma?:n" n
» Heg
0400004 04FO0004 Device t -
1 Dopendent | ’
(1) ¢4 4 Configuratio
XX 300X 200¢K] - gu n
0400010 | | Register
Bus
0400020 - 0000 0000 Status
| ] Register
Component
04000 2C 0000 0000 Reset
Register
Load and
0400040 000X 3000¢ | Imxxml 30000 XXNX Store Limit
| et Al A S i -
0400060 04F 0060 . Channel
000K X000 | nmxxxxxl | ". Gontrol
0400064 04F 00 64 | o0 000X | xxxxxxxxlxoommtxJ xmxm_j Reglsters
0400068 04F 00 68 | 000X 000X Lxxxxxmlmtxxml 000X 000K _;
040 00 80 mamxlxxxxxxxx
- Interry
0400084 3000 JOOX ~ XXXX XXXX _ Ct:untro'l,t
| - Registars
0400088 000K 000K XX KKK
]
040 00 90 xxxxxxxxlxxxxmxlxxxxxxxx lxxxxxxxx
0 40 00 94 000 X000 J00KK XX 00K JOOK  3000¢ I00K mm
1 | | Table
0 40 00 98 006K 300X xxxxmexxxxxxxx lxxxxxxxx
|
04000 9C mxxxxxlxmxxxxixxxxxxxx Ixxxxxxn

Figure 89. IOCC Power-On States
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Deviations from the /O Architecture
The following deviations are specific to system Models 320, 32E, 32H, 520, 52H, 530, 530E,
§3H, 540, 550, 550E, 5508, 560, 560F, 730, 930, 850 and 950E. It has been verified that
these systems, with these stated deviations, function satisfactorily. While this listing refiects
good faith reasonable effort, no representation or guarantee is made that this listing is
exhaustive.

o A Load or Store instruction with the bypass bit off and with a previous emor set in the CSR
results in a Data Storage interrupt. Load and Store instructions with the bypass bit on and
with a previous error set in the CSR are processed. On a Data Storage interrupt, software
must clear the error before allowing any more Load and Store instructions with the
bypass bit off.

o On an /O Load or Store instruction, an Invalid Operation error is not logged into Channe!
Status register 15 if the instruction was preceded by a Load or Store to a Channel Status
register. Software must prevent this by following any access to a Channel Status register
with a non-l/O instruction. (The supervisory code is the only code that accesses the
Channel Status registers.)

¢ The bus address is not put into the Channel Status register if a system address error is
preceded by a TCW reload. This can only be caused by a supervisory level software
problem.

o The time delay command is implemented with time delays of 1, 2, 3, 4, 5, and 6
microsaconds; delays of 7 or 8 microseconds should not be used.

o For bus master operations, the ‘chck’ signal is not activated on succeeding cycies
following a data parity error. Bus masters should terminate on first occurrence of ‘chek’
signal.

¢ Bus master buffer flush command through a Load instruction is not supported; a Store
instruction should be used.

« The Streaming Data protocol is not supported for IOCC initiated Load or Store, and DMA
Slave operations.

System O Structure  2-93



2-94 General Architectures



—
Chapter 3. Vital Product Data

Chapter Contents
DO CHPtON . ... e e e e 3-3
IMPORANCE ... .o i e e e e 3-3
Characterisics ............coiuiiniiiiiii i 3-3
Customer and Service Personnel Assistance .............................. 34
VPD Structural Overview .............oiiiiiiiiiiiii i 34
SystemDataSel ... e e e e 3-5
Keyword Descriptor Summary . ...........ooiiiiiniin i 3-5
Hardware VPD Descriptor Summary ...................oo 313
RACK ROCOM . . ...\ttt e e e et e e e e et ee et e e e e 3-13
Enclosure Record .......... .. ... . i 3-13
ProcessorBoard Record .................occooiiiiii i 314
MOBoard ReCords . ..... ..ottt i 3-14
Memory ReCOMdS ..ottt it it e, 3-14
Extral/OBoardRecord ...............ccoviiiiiiiiiiii 3-15
SCSI Attached Device Records ....................oooiiiiin i, 3-15
Standard /O AttachedDevices .....................coiiii i 3-15
Micro Channel Adapter Requirements ...................................... 3-16
Proferred implementation — POS Configuration Registers ................... 317
System Configuration Protocol ................ . ... .. .. 3-18
Extended POS RegisterSpace ......................oooo oo 3-18
Sample Layout of the Micro Channel Adapter VPD ........................... 3-20

Vital Product Data ~ 3~1



3-2  General Architectures



Description

Vital product data (VPD) uniquely defines each hardware, software, and microcode element
of a system. Configuration data identifies the physical and logical location of each hardware
element of a system including addressing information. The combination of configuration and
VPD provides the system with a bill of material description that typically includes the
assembly part number, Engineering Change (EC) level, serial number, and other detailed
information. The objsctive from a system point of view is to determine this information by
reading this data directly from the hardware, software, and microcode components.

Note: This chapter provides information for system models 32x, 34x, 35x, 36x, 52x, 53x,
540, 55x, 56x, 58x, 730, 930, 85x, 87x, and 98x. Information for other system models
can be found in the product-specific technical information manual for those models.

Certain information such as machine type, model and external serial number (for exampia,
deskside system numbers) is not in machine-readable form. This information is provided in
Nonvolatile Random Access Memory (NVRAM) during manufacturing. Access to
configuration and VPD intormation is provided by the Operating System with the System
Management Interface Tools. This interface allows the user to add VPD (such as a serial
number) as well as other user information such as owner, physical location, and information
applicabile to inventory or asset control.

Importance
The collection of configuration and VPD offers the following advantages:

o Assists the operating system in auto-configuring the system and its components.
Assists diagnostics in problem determination and fault isolation:

- Error logging includes VPD information so that a historical entry is associated with a
serialized unit (such as an adapter).

- Identifying the physical and logical location of failing units for replacement.

Assists the operating system in determining the proper device driver and loadable
microcode level.

« Assists the user in maintaining asset and inventory control.

o Provides a means of licensing software on a processor ID or serial number basis.

Characteristics
Configuration and VPD have the following characteristics:

e VPD is available at the rack, drawer, and field replaceable unit (FRU) level.

o For compatibllity verification and testing, pluggable FRUs or potentially pluggable FRUs
must to be known to the system.

o Uniquely identifies each system hardware, softwara, and microcode element.
o Becomes part of the VPD record during installation or upgrade.

» When elements do not support VPD in directly readable form, it can be entered manually.
Data enterad manually is flagged by the operating system software.

» Accessed locally or from a remote console by way of a configuration and VPD facility
provided by software.
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Customer and Service Personnel Assistance
When field upgrades are made to a system, for example, adding a disk drive drawer to a
rack system, the user or service personnel must enter information regarding its physical
location and properties using the System Management Interface Tools (SMIT).

VPD Structural Overview
A system-level file or data set contains the fully expanded information on all VPD elements
for each enclosure component. The tree structure so formed, shown in Figure 90, begins
with a rack or an enclosure level and goes on to identify all system components logically

connected.
Rack
Enclosure
Processor
Board

Memory

Boards

VO Board
Slot 1 — FD1
SCS! L— FD2
Slot 2 L—FD3
Display Adpt [~ Sraprice
Siot 3
Display Adpt
Siot4 L
Token Ring Network
Siot 5 =
8 Port 232 T3
Slot 6
Siot 7
Siot 8

—— Ksyboard
Standard vo [ Dolse
Board | £iA232 Serlal Port
Parallel Port

Figure 80. Configuration Tree
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System Data Set
The format of the data representing the configuration tree described previously is defined by
software. The preferred hardware implementation of vital product data is in the form of
keyword descriptors. The VPD is gathered by a software device driver that interfaces with
the hardware. if the VPD is stored in a format other than the preferred method, the individual
device driver must convert that data into the keyword descriptor format and store that data in
a format required by the system configuration and management software method.

Keyword Descriptor Summary

Each keyword header is composed of four bytes of information. The first character is the

* (asterisk) character in ASCIlI format. The next two characters are an abbreviated
mnemonic associated with a specific descriptor. The last byte Is binary and represents the
total length of the keyword descriptor including its header. The length is the total byte count
divided by two. Hence, descriptor data is always an even number of bytes with padding as
defined by each keyword.

The descriptors listed are a combination of all descriptor keywords used throughout the

system. Certain specific types of adapters require pointer values based on the method of
implementing VPD.

If a descriptor is manualty entered, it must be extended to its full size by the configuration
and VPD utility. In addition, the characters ME (for manual entry) are inserted in the
high-order positions, adding two characters to its length.

The following list identifiles the descriptor keywords currently defined:
o *AD L = addressing field

The addressing field format is unique to each component described. it must include the
Bus Unit ID and slot designation if appropriate. In addition, it specifies sufficient
addressing information to program the adapter. The format of the addressing field is
specified by software. This descriptor is not present within the machine-readable VPD
field contained within an adapter or channel. It is added by software to the configuration
and the VPD file or the NVRAM area for VPD.

e *AT L = adapter type

To support different system field-replacement strategies, this keyword defines a category
of Micro Channel adapters. Used in conjunction with the part number (defined by the *PN
L and *EC L keywords), this keyword defines a FRU. Its use is not currently planned for
the system.

e *CD L =board ID (adapter board ID)

The board ID field is supplied by software after reading the board ID from POS 0 and
POS 1 registers. (Programmable Option Select (POS), replaces switches on feature
boards. It is defined under “Micro Channe! Adapter Requirements” on page 3-16.) This
descriptor only applies to Micro Channel adapters. This descriptor is not present within
the machine-readable VPD field contained within an adapter or channel. It is added by
software to the configuration and VPD file or the NVRAM area for VPD.

Following the two bytes of the board ID is a field generated and used by software, which
contains mask bytes and POS data used to initialize the adapter. It also contains a flag
byte to indicate whether this adapter was successfully configured. The detalled
specification of this field is defined by the software operating system.
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This descriptor is not present within the machine-readable VPD field contained within an
adapter or channel. It is added by software to the Configuration and VPD file or the
NVRAM area for VPD.

e *CN L = customer number
The data portion of this descriptor is in ASCII format. It represents the customer number

assigned to the customer owning this machine. The source of this data is the
administrative ordering system.

e *DC L = action code and date

This field is a combined action code and date and time stamp when the action took
place. The format of the field is shown in Figure 91:

*DC ac yyyymmddhhmmss

|
I seconds
minutes
hours
day
month
year
action code
keyword “DC”

Figure 91. Format of a Combined Action Code and Date and Time Stamp
The following action codes are currently supported:

Action Code  Description
Plant BD Build date (manufacturer)
Plant AM Added as MES (MES diskettes)
Piant AB Added as BULK MES (Bulk MES diskettes)
Plant Al Available at install (manufacturer and fieid)
Field ID install date (fisld)
Field AC Added with ED (field)
Field AU Added from unknown source (field)
Field AR Added in repair action (field and CIT)
Field AT Added temporarily (field)
Field AH Added manually (field)
Field RU Removed unknown (field)
Field RR Removed in repalr action (field and CIT)
Field RC Removed with EC (field)
Field RT Removed temporarily or powered off (field)
Field RM Removed permanently (field)
Field RN Removad to another system (field)

36  General Architecturas



* *DD L = device driver level (minimum required)

The data portion of this descriptor is in ASCII format. It represents the minimum device
driver level required. The first release is level 00. Levels are incremented by one for each
successive level independentiy of operating system version and of modification level.
The minimum value for L is 3, which is two bytes or two ASCII character numbers of
descriptor data plus the header.

The device driver level represents a generic interface level to software. If the interface
changes between software and hardware such that a new interface is required by
hardware, the value of this level is incremented. This level is independent of the
operating system being used.

If this keyword is not explicitly specified, level 00 is implied.
» *DG L = diagnostic level (minimum required)

The data portion of this descriptor is in ASCII format. It represents the minimum
diagnostic level required. The first releass is level 00. Levels are increamented by one for
sach successive level independently of operating system version and modification level.
The minimum value for L is 3, which is two bytes or two ASCII character numbers of
descriptor data plus header.

The diagnostic level represents a generic interface level to diagnostics. If the interface
changes between software and hardware such that a new interface is required by
hardware, the value of this level is incremented. This level is indepsndent of the
operating system being used.

If this keyword is not explicitly specified, level 00 is implied.
e *DL L = drawer level

The data portion of this descriptor is in ASCIl format and specifies a drawer location in
Electronics Industries of America (EIA) units. It represents the drawer location within a
rack for an enclosure. The EIA unit values are marked on the rear panel of the rack.
These values are captured during manufacturing while a rack is in its final manufacturing
test. In the field, configuration changes that alter drawer information must be supplied by
the trained customer or customer engineer installing the change.

¢ *DS L = displayable message (ASCII format)

This is an optional field that can include a message to be printed or displayed for this
record type. Avoid the ASCII character * (asterisk) within the data content of this
message.

Micro Channel adapters designed for the system unit require this keyword with a brief
description of the adapter function.

e *DUL = drawer unit

This field is used at the system level to describe the contents of a drawer unit within a
rack system. The number in this field can be a feature code, a machine type and model
number, or other alphanumeric field used to dascribe the drawer unit. The data portion is
in ASCII format.

e °"EAL = slectronic address

The data portion of this descriptor is in ASCII format. The value represants an electronic
address where this machine can be contacted. This field must be entered manually by
the “Product Topology Service Aid.”
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*EC L = engineering change level

The data portion of this descriptor is in ASCII format. The characters are alphanumeric
and represent the engineering change leve! for this element. The values of L, which
range from 6 to 8, represent descriptor data counts of 8 to 12 alphanumeric characters.
This descriptor number is left justified and can be padded with low-order blanks. For IBM
released parts, this field must contain the IBM EC number.

*FC L = feature code

This field contains the feature code or RPQ number used to order or specity the
hardware described after it in the product topology data hierarchy. The designation must
match precisely the nomenclature used by the order process for the device. The source
of this data is the administrative order entry system.

*FN L = FRU number

The data portion of this descriptor is in ASCII format. The characters are alphanumeric
and represent the assigned Field Replaceable Unit part number for this element of the
system product. The value of L ranges from 6 to 8 representing descriptor data counts
from 8 to 12 alphanumeric characters. The data is right justified and padded with
high-order zero. For IBM released parts, this field must contain the IBM FRU Part
Number.

*LA L = pointer to loadable microcode on the adapter

This keyword is an optional descriptor type avallable for use. If an adapter chooses to
implement loadable microcode using the POS registers for writing and reading of
microcode, this field is required. Micro Channel adapters can use the POS subaddress
facility or any other method to implement loadable microcode. Data in the field can be
encoded in binary on the device but is externalized in ASCIl or a hexadecimal
representation of a binary value in ASCII.

The data portion of this descriptor is an address pointer in the POS subaddress space.
Byte 0 is the most significant address byte, and byte 1 Is the least significant address
byte in binary.

e 'LL L = loadable microcode leve! (minimum required)

The data portion of this descriptor is in ASCIl format. it represents the minimum loadable
microcode level required for functional operation. The first release is level 00. Levels are
incremented by one for each successive level. Loadable microcode is associated with a
given board ID rather than a part number or EC level. Therefore, as changes are made
to a particular adapter, a comesponding microcode level can be required for correct
operation. This field is required if loadable microcode is required for functional operation
of the adapter. The field's presence notifies the initialization code of this additional
requirement. The minimum value for L is 3, which is two bytes or two ASCII character
numbers of descriptor data plus the header.

This is a generic level equivalent in use to a device driver or a diagnostic level. it
indicates that a significant change was implemented on the adapter and that a new
minimum level of loadable microcode is required.

e *LOL = location (internal or external)

This descriptor is optional. The data portion of this optional descriptor contains the ASCI|
characters IN for internal devices or EX for external devices or for other components.
The default value for this descriptor is EX and is implied if this field is not specified. This
field is generated dynamically by software for fixed disks attached to a SCS| adapter that
provides intemal reset capability. For other devices, it can be entered by the user in the
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configuration and VPD utillty. It is required for power domain and security domain
requirements. The value of L is 3.

*MF L = manufacturer

The manufacturer descriptor field is typically six characters of ASCI| data. For our
components, the first three characters are alpha characters. The next three characters
are alphanumeric and are a code assigned to each location. For six characters of
descriptor data, L equals 5.

Vendor manufacturers are identified by a 8-digit number assigned by the purchasing
department when a contract is established. An abbreviation for the location establishing
the contract is concatenated to the purchase order number.

The *MF L keyword is being retired and replaced with the *“MN Keyword.
*‘MN L = Manufacturer and location
The manufacturer descriptor field is 4 or 10 characters of ASCI| data.

- For an IBM manufactured component (bullt for IBM), the first character is an ASCII
number “1” character. The next 3 characters are assigned by IBM and are a location
code (LOC) assigned to each IBM location (described in the following list).

- For an IBM manufactured component (built for an OEM), the first character is an ASCI|
number “2” character. The next 3 characters are assigned by IBM and are a location
code (LOC) assigned to each IBM location (described in the following list).

- For a Vendor manufactured component (built for IBM) The first character is an ASCII
number “3" character. The next 3 characters are assigned by IBM and are a location
code (LOC) assigned to each IBM location (described in the following list). This is
followed by a 6—digit number (NNNNNN) assigned by the IBM purchasing department
when a contract is established.

- For an OEM manutactured component. The first character is an ASCIl number 4
character. Up to 9 additional characters may be assigned as a manufacturer
identification. These 9 additional characters are assigned by the OEM.

Location

Code Manufacturing Location
966 Austin, ESD plant

7N Austin, ESD card manufacturer
975 Boca Raton, ESD plant

BONX Boca Raton, Card vendor
98J Boulder, |PD plant

884 Burlington, GTD piant

983 Charlotte, Card manufacturer
955 Endicott, CP manufacturer
991 Endicott, SP manufacturer
981 Lexington, IPD plant

997 Manassas, GTD

888 Raleigh, CPD plant

888 Rochester, SPD plant

88K Tucson, CP plant

20S Bromont, plant

90w Greenock, plant

90F Toronto, plant

90Q Vimercate, plant
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¢ *NA L = network address

This is an optional field used by those adapters which require a unique network address
for a local area network. Adapters such as token ring and baseband use this field. Data
in the field can be encoded in binary on the device but is externalized in ASCII or a
hexadecimal representation of a binary value in ASCII.

When specified, this field must be implemented as the first descriptor keyword and
therefore “NA L" is located at address 00 08. The first data byte is, therefore, located at
byte 12 (decimal) or 00 0C Hex within the extended storage area located by POS
Registers 6 and 7.

* “NX L = pointer to next adapter VPD for multiboard adapters

This is used by multicard adapters including those occupying more than one card slot.
The primary card must provide POS registers. Additional (secondary) cards must be
plugged into slots adjacent to the primary card. This field specifies the VPD address to
be specified in POS registers 7 and 6, respectively, in order to access VPD data on the
adjacent (secondary) adapters. Data in the field can be encoded in binary on the device
but is externalized in ASCI! or a hexadecimal representation of a binary value in ASCII.

e *OS L = Operating System level

The data portion of this descriptor contains the name of the operating system (for
example, “AlX") followed by version, modification, and PTF level. All characters are
specified In ASCII. Additional data can be included to specify specific options being used
(such as cluster). This descriptor is required in the Enclosure Record store in NVRAM
and in the configuration and VPD file.

* *PC L = processor component definition
This data represents binary information that details the processor speed and model.
¢ *PI L = processor ID

The data portion of this descriptor is an ASCII alphanumeric field that represents the
processor ID for a processor enclosure. This data is normally extracted from IPL ROM
associated with the processor board. This serial number is often used for software
licensing.

e *PN L = part number

The data portion of this descriptor is in ASCII format. The characters are alphanumeric
and represent the part number for this element. The values of L, which range from 6 to 8,
represent descriptor data counts of 8 to 12 alphanumeric characters. This descriptor
number is right justified and can be padded with high-order zeros. For IBM released
parts, this field must contain the IBM Part Number.

* "RA L = pointer to ROM code on adapter

It an adapter chooses to access on-board ROM using the POS registers for reading
microcode, then this field is used. Data in the field can be encoded on the device in
binary, but is extemalized in ASCII or a hexadecimal representation of a binary value in
ASCIL. The first data byte represents a POS register to use as a Port to read and write
data to the adapter for purposes of reading microcode on the adapter. Any POS register
(0-5) can be specified. The second byte specifies the number of low-order bit positions
of POS register 5 to use for expanding the address range of POS registers 6 and 7. The
address so formed is specified as follows:

POS 5 (n low-order bits), Pos 7, POS 6
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The second byte can specify from 0 to 6 bits of additional addressability. Data bytes 3, 4,
5, and 6 specify the initial address for reading microcode. This is an optional descriptor
type available for use.

e *‘RLL =ROMievel and ID

This descriptor identifies the part number of any nonalterable ROM code on the adapter.
The data field of the keyword is defined as follows:

Bytes 0-11 Part number of the ROM code (alphanumeric ASCII).

Bytes 12-23  EC level of ROM code (alphanumeric ASCII), this is optional if the ROM
code PN is not changed when updated.

e *RML D = Alterable ROM ID

This descriptor identifies the part number of any alterable ROM code on the adapter. The
data field of the keyword is defined as follows:

Byte O An optional “field patch level.” A value of 0 indicates no field patch
applied (ASCH).

Bytes 1-12 Part number of the ROM code (alphanumeric ASCH).

Bytes 13-24  EC level of ROM code (alphanumeric ASCII), this is optional if the ROM
code PN is not changed when updated.

¢ *RN L = rack name (letter designation)

This keyword is a required descriptor for records describing a rack enclosure. The
abbreviated name consists of a 2 ASCII character field, such as “space A" or “space B,”
that matches the letter installed on the rear of the rack unit. It is used by diagnostics for
FRU location specification.

e *RWL = pointer to Read and Write adapter registers

This keyword is an optional descriptor type available for use. If an adapter chooses to
implement Read and Write registers using POS registers, then this field is used.
Adapters can use the POS extended addressing facility or any other method to
implement access to Read and Write registers and storage.

Data in the field can be encoded in binary on the device byte is externalized in ASCli or a
hexadecimal representation of a binary value in ASCII. This first data byte represents a
POS register to use as a port to read and write data to the adapter for specific adapter
purposes. Any POS register (0-5) can be specified. The second byte specifies the
number of low-order bit positions of POS register 5 to use for expanding the address
range of POS registers 6 and 7. The address so formed is specified as follows:

POS 5 (n low-order bits), Pos 7, POS 6

The second byte can specify from O to 6 bits of additional addressability. Data bytes 3, 4,
5, and 8 specify the initial address for accessing Read and Write registers or storage.
The size and use of this Read and Write area is adapter specific. The minimum value for
L is 5, which represents 6 bytes of descriptor data plus a keyword.

s *SC L = specify codes

This field contains all the specify codes selected for this machine. The source of this data
is the administrative order entry system.
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e *SE L = machine serial number

This field contains the serial number assigned to the processor machine type by the
manufacturing location. The number normally begins with two digits which uniqusty
identify the plant of manufacture. These are followed by a 5 character serial number. For
example, in the serial number 2605668, “26" is the Austin plant designation and “05668”
represents the serial number of this machine. The source of this data is the
administrative order entry system.

e *SL L = slot location

Memory board adapters use this description to specify board slot location. The data field
is 2 bytes in size.

e *SN L = serial number

The data portion of this descriptor is in ASCIl format. The characters are alphanumeric
and represent the serial number of the machine or device. The value of L is 6,
representing a descriptor data count of 8. The descriptor number is left justified and can
be padded with low-order blanks.

e *SY L = system number

This field contains the systam number assigned to this system. The source of this data is
the administrative order entry system.

e "SZL =size
Memory board adapters use this description to specify the size in M bytes. The data

portion contains 1 to 8 digits, left-justified, with no leading zeros and padded on the right
with blanks as required.

¢ *“TM L = machine type and model

The data portion of this descriptor specifies the machine type in ASCII format. The data
portion is 4 characters long, followed by & dash (-) and the 3 character machine model.
The total data length is 8 characters. Therefore, L is specified as 6, representing 8
characters of data plus the header (for example, ‘7207—001").

e *US L =userdata

The data portion of this field is an ASCII character string specified by the user utilizing
the configuration and VPD utility. It could be used to specify owner, location, or similar
information. It must contain an even number of bytes.

e *VE L = pointer to VPD extended data on adapter

This optional descriptor Is used as an address pointer in the subaddress space of VPD
for a Micro Channel adapter. It points to a storage location that contains additional
keyword descriptors in order to support an implementation of noncontiguous keyword
descriptor data.

The data portion of this descriptor is an address pointer in the POS subaddress space.
Byte 0 is the most significant address byte, and byte 1 is the least significant address
byte in binary form.

o *Z20~-*Z9, ZA-ZZ | = available for adapter-specific use.
Refer to the specific adapter section for a description.
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Hardware VPD Descriptor Summary

The following sections define the minimum requirements of various hardware components of

a system.
Rack Record
Descriptors
The required descriptors for the rack record are as follows:
Keyword Description
‘PNL Part number
‘ECL Engineering change level
‘FNL Field replacement unit number
‘TML Machine type and model! (for the primary rack)
*FCL Feature code (for secondary, attached racks)
*SNL Serial number
*MFL Manufacturer
*RNL Rack name (letter designation).

Implementation Notes
Rack configuration data is supplied by manufacturing in NVRAM. The rack name is a letter
designation (A, B, C) used by diagnostic programs to locate problem FRUs. This information
must be input by a customer engineer from the hard card using a configuration and system
management utility if this unit is field installed. The serial number specified must match the
external label on the system unit.

Enclosure Record

Descriptors
The required descriptors for the enclosure record are as follows:

Keyword Description

*PNL Part number

*‘ECL Engineering change level

*FN L Fisld replacement unit number
*SNL Serial number (externally visible)
‘™ L Machine type and model

*‘DLL Drawer level (if rack-mounted)
*MF L Manufacturer.

implementation Notes
An enclosura represents a physical package. It can be a drawer in a rack, a deskside
system, a table-top system, a portable file, a free-standing tape drive, or other free-standing
unit. Enclosures are normally machine type and models; however, feature codes can also be
designated.

This information must be input by a customer engineer from the hard card using a
configuration and system management utility if this unit is field-installed. The serial number
specified must match the external label.
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Processor Board Record

Descriptors
The required descriptors for the processor board record are as follows:

Keyword Description

‘PNL Board part number

‘ECL Engineering change level

‘PIL Processor ID

*FNL Field replacement unit number

*RLL ROM level and ID (IPL ROM)

‘RLL ROM lavel and ID (on card sequencer (OCS) ROM)

‘RLL ROM level and ID (seeds ROM)

‘PCL Processor component definition (specifies speed and processor model)

*20L-"29L  Processor module information.

Implementation Notes
The board description represents a refiection of the physical packaging of a processor unit.

The processor board is the physical unit that contains the processor modules.

VO Board Records

Descriptors
The required descriptor for the /O Board record is as follows:

Keyword Description
*ECL Engineering change level.

implementation Notes
The /O Board contains the O siots for installing VO adapters. If a model contains only a

system board or a combination board, the value in the System /O register designates the
level of the hardware components supporting the interface to the logic normally associated
with the /O Board.

As currently implemented in most models, the I/O Board level is identified by an 8-bit code in
a System /O register. Each level is incremented by ons. Software locates the corresponding
part number and the EC level by table lookup.

Memory Records
Descriptors

The required descriptors for the memory records are as follows:

Keyword Description

*PNL Part number

*SNL Serial number

*FNL Field replacement unit number

*‘MFL Manufacturer

*SZ L Size in megabytes

‘ECL Engineering change level

*SLL Slot location (software)

‘20 L EC level Left Data Multiplexer module
*Z1L EC level Right Data data multiplexer module
Z2L EC level Controller module

*Z3L SIMM product definition (PD) code.
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Implementation Notes :
The initial memory board does not support VPD. The default data of all zeros is written to
the board immediately after startup. If the board is revision level 2 or higher, the real VPD is
returned on the first read operation. If the board is revision level 1 (initial release), all zeros
are retumed on the first read operation.

Extra VO Board Record

The keywords specified depend on the function provided by the board. The function should
be compatible with the requirements for a system, an YO Board, or other adapters. The
minimum requirements always include the *PN and *EC keywords.

SCSI Attached Device Records

The exact information can vary from vendor to vendor; however, the data supplied by the
inquiry command on the SCSt interface contains machine type and model, part number, EC
or ravision level, serial number, and microcode information (the AL and LL keywords as
appropriate). Some units provide VPD for the device enclosure unit as well as data for the
logic board associated with the unit, where each can be a FRU. Serialization is always
required. Software must provide a FRU number If one is not contained in the
machine-readable VPD.

pDevice Required Descriptors
The required device descriptors are as follows:

Keyword Description

‘PNL Part number

‘ECL Engineering change level

*FNL Field replacement unit number

‘TML Machine type and model

*SNL Serial number (matches external bar code label)
‘MF L Manufacturer.

Optional Descriptors
The optional device descriptors are as follows:

Description
*‘RLL ROM level and ID (if ROM is present)
*‘LLL Loadable ROM level and ID (minimum lsvel required).
Standard VO Attached Devices

The exact data can vary from device to device making the ROM level (RL) and loadable
microcode leve! (LL) conditionally required.

pDevice Required Descriptors
The required device descriptors are as follows:

Keyword Description

*PNL Part number

*ECL Engineering change level

‘™L Machine type and model

*FNL Field replacement unit number

*SNL Serial number (matches external bar code label)
*MF L Manufacturer.

Vital Product Data  3-15



Conditionally Required Optional Descriptors
The optional device descriptors are as follows:

Keyword Description
*RLL ROM level and ID (if ROM is present)
*‘LLL Loadable ROM levsl and ID (minimum level required).

Micro Channel Adapter Requirements

The preferred method of implementation is to use the Programmable Option Select (POS)
register subaddressing space during board setup. When POS registers 6 and 7 contain
values other than X'0000’, POS register 3 is a port that accesses a read-only memory (ROM
or EPROM) module containing vital product data in the keyword descriptor format. For
example, when POS register 6 equals X'01' and POS register 7 equals X'00', a one-byte
load operation from POS register 3 reads data from address X'0001' in the EPROM
containing VPD. When POS register 6 equals X'02’ and a load from POS register 3 of 1 byte
reads from the address X'0002', and so forth. An altemnative address is X'FF01'.

A header Is defined that immediately precedes memory containing the descriptor keywords.
It is recommended that a pluggable EPROM be written at the time of manufacture on a
part-by-part basis (for serialization and incorporation of the latest EC level information).

An alterative method of machine-readable vital product data (VPD) allows the adapter to
provide the data in an adapter-specific manner. For example, available ROM locations could
be used in a fixed-memory location known to the device driver for this adapter. The device
driver must gather and convert the VPD into the keyword format described for the preferred
method. The device driver then provides the information to the operating system in the
manner required by the individual operating system. This alternative method allows existing
adapters to add VPD with the least hardware impact.

Most adapters designed for the system have implemented the preferred method with the
required keywords defined in the following lists:

* Required keywords:
Keyword Description

“PNL Part number

*ECL EC level

*FNL FRU number for field replacement unit
*SNL Serial number

*MF L Manufacturer and location.

o Conditionally required keywords:
Keyword Description

*DSL Brief description (for example, SCSI, token ring, and 8-port asynchronous
adapter)

*RLL ROM level and ID information (if ROM is present)

“LLL Loadable microcode level (if loadable code is present)

*NAL Network address (if adapter type requires a network address)

*DDL Device driver level

‘DG L Diagnostic level.
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e Optional keywords:
Keyword Description

*RAL Pointer to ROM code on adapter

*RWL Pointer to Read and Write Adapter registers
‘DS L Displayable message (additional description)
*LAL Pointer to loadable ROM code on adapter

*20 L -*2ZZ L Available for adapter-specific use.

Preferred Implementation — POS Configuration Registers
The POS addresses for the POS reglsters are shown in Figure 92.

POS POS
Addresses Reglsters
MSB LSB
7.6, 5 4,3 2 1,0
xxx0 (LSB) Device ID Low
xxx1 (MSB) Device ID High
02 (LSB) Device Unique |CEN
— 003 (MSB) | R/W Port for Ext Config Data (VPD) '
04 (LSB) Device Unique 01'x
05 (MSB) [CHCKISTAT|  Device Unique 258x8
xx6 (LSB) CHCK / Extended Address b
xxx7 (MSB) CHCK / Extended Address ‘FF'x
‘ Extended POS
_ Register Space
stem writes addresses into
S register 6. This address
points into extended POS
L register space.
™ System reads POS register 3 to
access data stored in extended
POS register space.

Note: POS register 6 is initialized to a value of 0 when the power is tumed on. A nonzero
value must be written to POS register 8 to access the extended POS register space.

Figure 82. POS Configuration Registers

Term Description
MSB Most significant byte
LSB Least significant byte.
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TL

CRC Value

The total length in 2-byte words 1o read from this facillty beginning at
address X'00 08' to the end of the last data field. This field is two bytes in
binary format.

This 2-byte value is a cyclic redundancy check (CRC) value starting at
address X'00 08' through the end of storage (TL).

The CRC polynamial is 1 + X (exp 5) + X (exp 12) + X (exp 16), which is the
same as the CRC polynomial used for most diskette records.

Sample Layout of the Micro Channel Adapter VPD

Address
(Hex)

00 01
00 08
00 14
00 22
00 2E
00 38
00 42
00 4C
00 52
00 58

Notes:

Contents of ROM and PROM
(ASCIl numbers in parentheses are decimal, 1-byte values)
V P D (00) (40) (252) (188)
“PN(BE181682A
"EC (074860262536
*SN@)O00000194
*FN(@5 135722
*MF(@©0518M037
“DS(58~-~-PORT
"DG(03) 01

“DD@3) 0

1. The CRC value on dala from X'00 08" through X‘00 57 is lhe actual calculated
CRC for this example data.

2. A - (dash) indicates binary zeros.
3. A () (parenthesis) indicates decimal byte length divided by 2.

Address
(Hex)

00 01
00 08
00 14
00 22
00 2€
00 38
00 42
00 4C
00 52
00 58
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Contents of ROM and PROM

(Hex)

56 50 44 00 28 FC BC

2A 50 4E 06 36 31 38 31 36 38 32 41
2A 45 43 07 34 39 35 30 32 36 32 35 33 36
2A 53 4E 06 30 30 30 30 30 31 39 34
2A 46 4E 05 31 33 35 37 32 32

2A 4D 46 05 49 42 4D 30 33 37

2A 44 53 05 38 2D 50 4F 52 54

2A 44 47 03 30 31

2A 44 47 03 30 31
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Description

The initial program load (IPL) is the sequence of events that occurs during the period of time
following a power-on reset or system reset operation until control of the processor is passed
to loaded code.

The IPL consists of initializing and testing the base hardware, and then finding, loading, and
executing code. The task of the read-only memory (ROM) resident IPL function is to verify
the portion of the machine necessary to initialize the IPL function, and then to start the IPL if

possible.

ROM Hardware
» ROM is located on the processor board.

 ROM addressing begins at X'FFF00000’.
¢ IPL ROM code entry point address is X'FFF00100'.

¢ The configuration information is contained in ROM. The following configuration
information is required:

-~ Processor board engineering change (EC) level and part number
-~ Processor serial number
ROM part number and ID

ROM copyright
ROM version and level.

Hardware Initialization

Prior to execution of IPL ROM code, hardware initialization puts the processor into a known
working state.

For system units with the on card sequencer (OCS), hardwara initialization Is performed by
the OCS before control is passed to IPL ROM code.

Cold System Reset
Cold system resst occurs &t initial startup and in system units with on card sequencer (OCS)
when a hardware event (such as check stop) triggers the system reset finite state machine
and the resulting system reset count is not equal to 0. Following hardware initialization by
OCS, a System Reset interrupt occurs at X'FFF00100’ in IPL ROM.

warm System Reset
A warm system reset occurs when a hardware event triggers the system reset finite state
machine and the resulting system reset count is equal to 1. A System Reset interrupt occurs
and normally (machine slate register (MSR) IP bit equals 0) execution proceeds at location
X'00000100' in the operating system. The operating system can perform actions such as
dumping all or part of memory or invoking a debugger and then can reload the operating
system kemel. (If the MSR IP bit equals 1, execution proceeds at X'FFF00100’, and a cold
IPL occurs.)
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ROM Warm IPL Function

An entry point is provided in IPL ROM to facilitate reloading of the code spacified in the IPL
record. The ROM warm IPL function reloads the IPL record and code specified in the IPL
record and passes control to the code while disturbing the existing machine state as little as
possible. The hardware is not reinitialized. The IPL device is redetermined.

Nots: Upon receipt of a warm system reset interrupt, an operating system can elect to
reload itself without branching to ROM.

Hardware-Initiated IPL

The following events cause hardware to generate a System Reset Interrupt:

¢ Power-on reset (POR).
« Reset button on operator panel pushed. Keyswitch lock enables the Reset button.
¢ Check stop for system units with OCS.

Software-initiated IPL

A ROM warm IPL can be achieved by branching to the warm IPL entry point in ROM.

Software can designate the IPL device by way of the device lists in nonvolatile random
access memory (NVRAM). Software can expedite the IPL process by designating a known
IPL device near the front of the device lists. Only devices for which there is an IPL control
block entry indicating the device is present and functional are eligible as IPL devices.
Software must provide a method for the operator to customize the device lists in NVRAM. If
the operator elects not to specify a device list, the ROM uses a predefined default list.

No special entry point has been defined in the IPL ROM to facilitate a software-initiated cold
IPL.

Check Stop

LEDs

For system units without OCS, (a check stop event causes a halt) the check stop count in
NVRAM is always a value of 0.

For system units with OCS, a check stop event causas a cold system resat.

Before executing the power-on self test (POST), the IPL ROM inspects the check stop count
in NVRAM:

» Avalue of 0 indicates that a check stop event did not occur. The IPL ROM continues
normal execution.

» Avalue of 1 indicates that a check stop event occurred and that OCS logged out check
stop data in NVRAM. The IPL ROM continues normal execution.

* Avalue greater than 1 indicates that an error occurred, which caused a check stop event.
The error was not detected by the OCS built-in self test (BIST). The IPL ROM puts an
error code in the light-emitting diodes (LEDs) and halts.

The system units have three 7-segment LEDs on the operator panel. The IPL ROM displays
appropriate values in the LEDs to indicate the progress of the IPL and to identify the point of
the error should a fatal error occur.
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NVRAM

The system units have at least 8K bytes of NVRAM.
If NVRAM is valid, the IPL ROM reads the following information from NVRAM:

IPL expansion code
Normal device list
Service device list
Network boot information.

IPL Record

Security

In order to perform an IPL, a valid IPL record must reside on a valid IPL media. This record
consists of the following:

« An ID uniquely identifying it as an IPL record.
« A media description, such as characteristics of the IPL device.

* One or more load descriptions, such as location, length, and entry point of code to be
loaded (service or normal).

¢ The address where the code must load.
The IPL record format is common for all devices.

A Keylock switch in the secure position disables the Resat button on the operator panel. In
the normal position, the Keylock switch permits the IPL to initialize only from trusted IPL
devices. In the service position, the Keylock switch aliows the IPL to initialize from any IPL
device.

The following are characteristics of the IPL device:

« Disabling of Reset button is a hardware function. Disabling stops the machine from
performing an IPL.

¢ Disabling of the IPL from devices other than trusted IPL devices is implemented in the IPL
ROM. The IPL ROM controller code senses the position of the keyswitch and If in the
normal position, only permits an IPL from trusted IPL devices. If a valid IPL record and
IPL code are found on a trusted IPL davics, the IPL sequence completes; otherwiss, the
IPL ROM loops, poliing the trusted IPL devices for an IPL record and testing for a change
in keyswitch position.

Service IPL

The IPL ROM supports an IPL from an alternate load description. For systems with a service
keyswitch position, when the keyswitch is in the service position, the IPL ROM ignores the
primary (normal) load description in an IPL record and loads the software described by the
altemnate (service) load description. The IPL ROM inspects the code length fields in the
primary and altemate load descriptions to determine what can be loaded from a particular
device. The length field must be a value of O if the code is not present.

This function is provided so that diagnostics or another alternate operating environment can
initialize the IPL from the same device as the operating system.
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IPL ROM Components

The IPL ROM code is functionally divided into the power-on self tests, the device interface
routines, and three control programs:

o Initial sequence controller (ISC)
¢ Core sequence controller (CSC)
« IPL controller (IPLC).

Initial Sequence Controller

The initial sequence controller (ISC) accepts control after hardware initialization and passes
control to the Core sequence controller (CSC) after completion. The following diagram gives
a general idea of what the ISC does.

Entry from ROM
Ha re initialization

Cold IPL—i

initialization

|

ROM %ollc —— (Miscompare) ————»
Redu cy Check
(CRC) Test

!

Check Sto
Count> 1 Yes

y
Enough Good No J
RAM for IPL?

Yes Vv
Exit to CSC

Figure 94. Initial Sequence Controller Logic Flow

Halt
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The following are major initial sequence controller functions:
« Performing initialization

- Reading ROM configuration information from non-CRC checked part of ROM and set
ROM size and speed in the Storage Control Unit Configuration register (SCCR)

- Setting initial LED values

- Performing other initialization as required.
Activating system ROM cyclic redundancy check
- Halting if miscompare.

Inspecting check stop count

- 1t 0 or 1, continuing normal execution

- If greater than 1, halting with an error code in LEDs.

Executing RAM POST

- Determining memory configuration (Includes setting configuration register extents).

- Finding enough good memory. At least 1M-byte memory is required. (2M-bytes
memory are required on some systems.)

- Testing memory and creating a bit map.

— Storing results of RAM POST into the IPL control block.

Inspecting retum code from the RAM POST.

- Halting if the amount of good memory is less than required for the system.
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Core Sequence Controller
The core saquence controller accepts control from the initial sequence controller and passes
control to the IPL controller. The core sequence controller sequences through the POSTs.
These POSTs complete the testing performed by the IPL ROM. The following diagram gives
a general idea of what the core sequence controller does.

Entry from Initial Sequence Controller

AOM Wamn
System Reset
Call Next POST Fatal
Error
No L
Last POST ? HALT
[
Exit to IPL Controlier

Figure 85. Core Sequence Controller
The following are functions of the core sequence controller:

e Executing POSTs in a predefined order
* Passing a pointer from POSTs to the IPL control block to record results
¢ Passing retum codes from POSTs to the Core sequence controller.
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IPL Controller

The IPL controller accepts control from the core sequence controlier and passes control to
loaded code. The following diagram gives a general idea of what the IPL controller does. It is
the job of the IPL controller to find a successful IPL path. If an IPL attempt is not successful,
the IPL controller continues to cycle through the IPL device list (DevList), trying to initiate an

(PL from each IPL device.

Entry from Core Sequence Controller

Keyswitch
Securs ?

e

!

Check NVRAM
for Device Lists

.

Device List
Empty ?

—— NO ——

|

Sense
Keyswitch

|

Build Default
Device List

)

Get Device
from List

:

Load IPL
Record

:

Valid IPL
Record ?

I

¢ Will Boot
Code Fit ?

No
Load OK ?

— System State

Figure 96. IPL controlier
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IPL Controller Functions
The following are functions of the IPL controller:

4-10

1

. NVRAM CRC test. Run NVRAM cyclic redundancy check on portions of NVRAM

containing configured IPL device selection sequence.

2. Builds the list of IPL device candidates based on the following:

— Keyswitch position
— Device lists (if presant).

3. Cycles through created device lists.
4. Gets the candidate from the list.

8.
9.

. Otherwise attempts to load the IPL record from candidate device. (If the devica is the

small computer systems interface (SCSI) disk, the IPL controller finds a memory area to
store the bad block map.)

If the keyswitch is not in the service position, looks for an IPL record in which the primary
cade description length field is not 0.

If the keyswitch is in the service position, looks for an IPL record in which the alternate
code description length field is not 0.

If the valid IPL record is not loaded, gets the next candidate from the list.
If all candidates have been attempted, rebuilds the list and retry.

10.Loads code. The code loaded in the system'’s minimum required good memory space is

loaded contiguously. Beyond that boundary, the loading skips around memory bad blocks
if the fiag byte in the IPL record says to do fragmentation.

- It the code does not fit in RAM, gets the next candidate from the list.
- [If all candidates have been attempted, rebuilds the list and retry.

11.Initializes machine state for execution of loaded code.
12.1f an IPL was performed from a disk, the volume ID (unique ID) is saved in the IPL control

block.

The system is left in real mode with the following:

- Extemal intertupts disabled

- All good memory initialized with good error checking and comrection (ECC).
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- Any IPL device used inactive
- Memory contents as shown in Figure 97.

Bad Block Map
IPL Record/CR Record (1K byte)
IPL. ROM Stack Area (32K bytes)

Expansion Code from NVRAM (if
Present)

IPL Controller and Device
interface Routines (32K bytes)

IPL Control Block (Variable)

Location of Last Bad Memory
Block

: Area of < ROM Requirements :
| | High

Figure 97. RAM map

13.Pass control to code loaded. The following parameters are passed to the loaded code in
registers:

-~ Pointer to IPL control block.
- The IPL control block contains pointers to other things (such as memory bit map).

IPL Devices
The IPL devices suppornted are:

Standard feature 3.5-inch diskette
5.25-inch diskette

7012 direct bus-attached (DBA) disk drive
SCSI adapter-attached IPL devices

ROM scan

Ethemet adapter

Token Ring adapter.
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Trusted (Normal) Default IPL Device Selection Sequence
The following sequence is the trusted (normal) default IPL device order:

ROM scan

Direct bus-attached file (7012 disk drive)
SCSI device

Token Ring adapter

Ethernet adapter.

Service Default IPL Device Selection Sequence
The default service IPL device list Is as follows:

Standard VO diskette 0, and then 1
DBA file (7012 disk drive)

SCS! device (CD-ROM, tape)
ROM scan

SCS| device (disk)

Token Ring adapter

Ethemet adapter.

Power-On Self Tests
Tests run during the execution of the IPL ROM, before any load from an IPL device, are
referred to as power-on self tests (POSTs). The IPL ROM executes POSTs to determine the
presence and functionality of those portions of the system required for a successtul IPL. The
results of these tests are collected in a data structure in RAM called the IPL control block.
The IPL ROM testing is limited to those portions of the machine necessary for an IPL: the
base system (RAM and /O Channel Controlier) and the IPL devices. The IPL ROM code
does not halt due to the absence or failure of hardware except where that absence or failure
directly preciudes the IPL.

If an error is detected during a POST, information about the error is retumed for resolution.

Except for base system function, testing performed by IPL ROM POSTs is minimal. The IPL
device POSTs test an adapter’s functionality and device presence. The following tests are
performed:

» RAM POST
s I/O channel controller (IOCC) POST
¢ IPL device POSTs.

mrOND~

Neoksrwn-~

RAM POST

¢ Processor and memory interface tests (Memory Control Unit)
¢ Memory test.

IOCC POST

¢ Processor and IOCC interface tests
IOCC register tests

Bus test (I0OCC to Standard |/O)
Direct memory access (DMA) test
Test interrupts.
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IPL device POSTs

¢ Standard and feature disketts drive test
- Adapter
- Device presence.

7012 DBA disk drive test

~ Adapter ID which is determined and saved
- Adapter

- Device presence.

SCSI disk test

- Adapter |Ds which are determined and saved
— Adapter

- Device presence.

Token Ring adapter test

- Adapter

- Adapter initialization.

Ethemet adapter test

- Adapter

- Adapter initialization.

Before calling a POST routine, the controlier puts a valuse in the LEDs identifying the POST
so that if an error occurs while a POST is running and control does not retumn, the error is
identifiable.

POST routines are passed a pointer that identifies to the area of the IPL control block in
which to store the test results. See Figure 87 on page 4-11 for moré information.

IPL ROM Functional Characteristics

The following section describes the IPL ROM entry points, control block, configuration
records, NVRAM, expansion code, and LED operation.

Cold IPL Entry Point

The ROM entry point is at real address X‘FFF00100'". This is the normal entry point following
power-on reset.

ROM Warm IPL Entry Point

An entry point is provided in IPL ROM to facilitate the reloading of the system after a warm
system reset. The entry point results in an IPL record and code being reloaded. On a warm
IPL, the system must pass the IPL control block pointer in general purpose register 3, The
pointers in the IPL control block are considered valid and reusable.

The ROM warm IPL entry point is stored in the ROM entry point table. A pointer to the ROM
entry point table is stored in the IPL control block by the IPL ROM.

The following requirements must be met to perform a ROM warm IPL:
o |IPL ROM code operates in real mode.
e ROM is mapped to real address X'FFFO0000' at startup.

e The IPL control block must be in memory, and a pointer to it must be passed to ROM In
register 3.
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¢ The contents of the IPL control block, as saved by the previous execution of the IPL
ROM, must be intact. (The operating system must not delete the existing contents of the
IPL control block.)

¢ The linkage conventions and the register conventions established by the IPL ROM must
be foliowed.

« The IPL ROM code can alter the contents of memory.

IPL Control Block
The IPL control block is created in RAM during the execution of ROM. The IPL control block
size Is variable. The IPL controller is dependent on the IPL control block for the results of
power-on self tests executed for IPL devices. Loading of the IPL record and the code by the
IPL ROM does not overwrite the IPL control block. A pointer to the IPL control block is
passed to the loaded code. Loaded software can relocate the IPL control block and add
entries for IPL devices, but should preserve the rest of the IPL control block. The IPL control
block must be intact in order for the ROM warm IPL to work and loaded software must pass
ROM a pointer to the IPL control block.

The following shows some of the information that is stored in the IPL control block:

NVRAM tests results

Actual IPL device

Service IPL flag

Pointer to ROM entry point table

Pointer to IPL record

IPL ROM date stamp (IPL ROM build date)
POST results (a unique structure for each POST)
Resuits of expansion code CRC test

A pointer to a memory bit map

Pointer to the bad block map

ROM part number and ID

An area reserved for future use by IPL ROM.

IPL Record

The IPL record is located in a predefined area on all devices. The record formats are the
same for all devices. The IPL ROM loads the IPL record into a known location in RAM. The
record is 512 bytes long and contains the following:

e A unique ID to identify the record as an IPL record
¢ A description of the media: for example, device characteristics

¢ Descriptions: for example, location, length, and entry point, of one or more code areas to
be loaded.

— The primary load description describes how to load the normal operating system if the
operating system is present on the device. If it is not present, the length field of the
primary load description must be 0.

- The altemate load description describes how to a load an alternate operating
environment, such as diagnostics, if the altemate operating environment is present on
the device. If it is not present, the length field of the alternate load description must
be 0.
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Interface to the Loaded Code

The IPL ROM loads code into memory and passes the pointer to IPL control block in general
purpose register 3.

NVRAM

All machines have NVRAM as described in “NVRAM” on page 4-5.

The following are read from NVRAM by ROM IPL code:

¢ Check stop count (stored by hardware)

o Device lists stored by software (trusted and service)

e Cyclic redundancy check (CRC) values for the areas of NVRAM from which data is read
by the IPL ROM.

LED Operation

ROM displays the appropriate values in the LEDs before executing hardware tests so that if

the POST does not retum to ROM, the appropriate value is displayed as follows:

1. Atthe start of each POST, the LEDs are set to the value for that POST.

2. If the POST completes correctly, the next POST is started. Some POSTs execute 8o
quickly that if no error occurs, the display of the corresponding value is not visible to the
operator.

3. If the POST code does not complete correctly, the POST LED value remains displayed
indicating the error.

4. If the POST detects an error, the sequence controlier determines by way of the retum
code whether the error is a fatal or nonfatal error.

5. If the error is nonfatal, the error information is preserved in the IPL control block, and the
sequence controller continues.

8. If the POST error is fatal, the LEDs display an appropriate value steadily, and operation
of the system halts.

Errors

Errors occurring during IPL ROM exacution can be fatal or nonfatal. The fatal errors are
those that prevent an IPL. Nonfatal errors are those that leave the machine in a state to
initiate an IPL. The operating system can interrogate the IPL control block to determine it
errors occurred during IPL ROM execution.

ROM LED Values During IPL

ROM has been assigned a LED range of 200 to 299. Specific values are assigned during
code development. There are special cases where a series of informational data should be
presented in the LEDS. Refer to the problem solving section of the product-specific
operator's guide for more information on ROM LED values.

The LED codes are displayed during execution of the IPL ROM. Refer to the problem
solving section of the product-specific operator's guide for a list of the LED codes.
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ROM Entry Point Table

The IPL control block contains a pointer to the ROM entry point table. The ROM entry point
table contains the entry point for the ROM warm IPL.

Error Codes

For the list of system error codes, refer to the problem solving section of the product-specific
operator's guide.
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A

address
calculation, 1-20
translation, 2-33
addressing model, 2-23
arbitration
definition, 2-13
DMA siave selection, 2-16
faimess modes, 2-16
non-preemptive burst, 2-16
ownership, 2-15
preemptive burst, 2-16
priority assignment, 2-15

basic transfer cycle
bus refresh, 2-19
dynamic bus sizing
description, 2-18
protocols, 2-18
sequencing, 2-18
/O bus cycles, 2-17
partial transfer cycles, 2-18
streaming data, 2-17
big-endian notation
addressing, 2-9
definition, 2-7
binary fioating-point numbers, 1-34
bit, numbering conventions, 2-7
board configuration data, 2-74
board configuration register, 2-86
branch processor
condition register, 1-21
count register, 1-22
link register, 1-22
machine state register, 1-22
registers, 1-21
buffer flush commands
bufter invalidate, 2-67
bus master, 2-66
DMA slave, 2-67
I0CC buffers, 2-66
next buffer invalidate, 2-68
bus
status register, 2-79
timeout, 2-80
bus errors
bus time out
DMA, 2-20
10CC, 2-20
channel check, 2-19
invalid address, 2-19
parity errors, 2-19

bus /O, 2-7, 2-33
bus mapping registers, 2-82
bus master
access authority checking, 2-46
buffered
control registers, 2-41
data transfer operation, 2-40
operations to system memory, 2-39
bus to bus data transfers, 2-47
error conditions, 2-47
transfers, 2-89
types supported, 2-39
unbuffered
control registers, 2-45
data transfer operation, 2-44
operations to system memory, 2-44
bus memory
DMA slave transfers, 2-61
packaging, 2-6
protection, 2-33
references, 2-6
bus notation
big-endian, 2-7
litle-endian, 2-8
byte, numbering conventions, 2-7
byte steering
8-byte streaming data protocol, 2-13
I0CC example, 2-12
Iitle-endian steering, 2-11
PC bus byte, 2-11

C

central electronics complex, 1-5
check stop, 4-4
commands
disable, 2-50
enable, 2-50
I0CC, 2-63
component raeset register, 2-81, 2-890
consistency
architectural tools, 2-37
buffered mode, 2-37
programming model, 2-36
unbuffered model, 2-36
core sequence controller, 4-8

D

data
addressing, 2-8
bus to bus transfers, 2-47
chaining, 2-51
fiow in the programming model, 2-37
format, 1-33
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data (continued)
handling, 1-38
intemal, 2-85
security, 2-7
transfer, 2-49
data cache synchronize (dcs) instruction, 1-97
decrementer (DEC), 1-85
decrementer interrupt, 1-86
default result, 1-39
denormalization, 1-36
denormalized numbers (+DEN), 1-35
dirty, 2-43, 2-56
disabled exponent overflow, 1-89
disabled exponent underflow, 1-87
disabled state, 1-44
DMA channels, 2-49
DMA slave
channel, 2-49
controller, 2-49
data transfer, 2-49
loading, 2-50
operations using tags
bus protocols, 2-60
description, 2-50
error conditions, 2-62
special sequences, 2-62
TCWs, 2-57
transfer, 2-53
transfers to bus memory, 2-61
transfers to system memory, 2-61
registers, 2-49, 2-54
registers using flags, 2-55
suspending an operation, 2-50
terminating an operation, 2-50
do not care state, 2-65
document conventions, 1-10

effective address

calculation, 1-20

definition, 1-19
enabled exponent overflow, 1-80
enabled exponent underflow, 1-88
enabled state, 1-44
enclosure record

descriptors, 3-13

implementation notes, 3-13
error codes, initial program load ROM, 4-16
errors

bus, 2-19

bus master, 2-47

detection, 2-90

DMA slave, 2-62

IPL ROM, 4-15

load conditions, 2-31

store conditions, 2-31
exceptions

handling, 2-85

reporting, 2-85
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execution model

IEEE operations, 1-45

multiply-add type instructions, 1-47
extended POS register space, 3-19
extemal interrupt mechanism

accessing the EICRs, 1-65

addressing the EICRs, 1-64

control registers, 1-64

EICR Mapping, 1-66

EISBID registers, 1-68

enable, 1-63

functions, 1-64

EIM register, 1-84
EIS register, 1-64

interrupt level control register, 1-67

MFSPR RT, ILCR, 1-68

MTSPR ILCR, RS, 1-68

PEIS registers, 1-69

POWER, 1-62

POWER2, 1-67

reading from the EICRs, 1-65

sources, 1-66

submitting interrupts, 1-66

writing to the EICRs, 1-66

F

faimess mode, 2-16
fixed-point exception register, 1-26
fixed-point processor
fixed-point exception register, 1-26
general purpose registers, 1-25
multiply quotient register, 1-26
registers, 1-25
flags, 2-53
floating-point control register, 1-29
fioating-point data representation, 1-33
floating-point exceptions
inexact exception, 1-44
invalid operation, 1-40
overflow, 1-42
types, 1-39
underflow, 1-44
zero divide, 1-41
floating-point execution models
IEEE operations, 1-45
multiply-add type instructions, 1-47
floating-point integer conversion
infinity operand, 1-83
Large Operand, 1-94
QNaN, 1-84
results, 1-92
round integer, 1-82
SNaN operand, 1-94
floating-point processor
binary floating-point numbers, 1-34
control register, 1-29
data format, 1-33
data handling, 1-38
denormalization, 1-36



fioating-point processor (continued)
denormalized numbers (+DEN), 1-35
execution models, 1-45
infinities (+INF), 1-35
normalization, 1-36
nomalized numbers (+NOR), 1-35
not a number, 1-36
overview, 1-27
precision, 1-37
registers, 1-28
resource management, 1-45
rounding, 1-37
status register, 1-29
value representation, 1-34
2ero values, 1-35
fioating-point round to single model
description, 1-87
disabled expanent overfiow, 1-89
disabled exponent underflow, 1-87
enabled Exponent overfiow, 1-80
enabled exponent underfiow, 1-88
infinity operand, 1-90
normal operand, 1-91
QNaN operand, 1-80
round single (sign, exp, frac, G, R, X), 1-91
SNaN operand, 1-80
fioating-point status register, 1-29
forms, Instruction, 1-12

G

general purpose registers, 1-25
H

hardware, initialization, 4-3
hardware VPD descriptor
enclosure record, 3-13
extra VO board record, 3-15
VO board records, 3-14
memory records, 3-14
minimum requirements, 3-13
processor board record, 3-14
rack record, 3-13
SCSI attached device records, 3-15
standard /O attached devices, 3-15
hung bus, 2-20

/O architecture, deviations from, 2-93
VO board records
descriptors, 3-14
extra, 3-15
implementation notes, 3-14
VO bus protocols
arbitration
cycle, 2-14, 2-15
description, 2-13
DMA slave selection, 2-16
faimess modes, 2-16

non-presmptive burst, 2-16
preemptive burst, 2-16
priority assignment, 2-15
basic transfer cycle, 2-17
bus errors, 2-19
interrupt, 2-20
I0CC, 2-13
/O interrupts
bus, 2-68
coded method, 2-90
mechanism, 2-69
miscellaneous, 2-68
native, 2-68
registers, 2-70
reserved, 2-68
/O segment register
address alignment, 2-28
data alignment, 2-28
definition, 2-26
fields, 2-26
load access authority checking, 2-29
load error conditions, 2-31
store access authority checking, 2-29
store error conditions, 2-31
string operations, 2-28
YO space rules, 1-94
implementation
board configuration register, 2-86
component reset register, 2-90
error detection, 2-80
/O interrupts, 2-80
I0CC configuration register, 2-86
Models 320, 32E, 32H, 520, 52H, 530, 530E,
53H, 540, 550, 550E, 5508, 730, 830, and
950E, 2-86, 2-93
nonvolatile RAM, 2-87
streaming data protocol, 2-88
system /O structure, 2-86
implementation details
bus master transfers, 2-89
bus timeout, 2-80
deviations from the /O architecture, 2-93
IPL procedures, 2-91
power-on reset, 2-80
standard /O, 2-89
system registers, 2-87
inaxact exception
action, 1-45
definition, 1-44
infinities (+INF), 1-35
infinity operand, 1-90, 1-93
initial program load (IPL), 4-3
initial program load (IPL) ROM, 4-3
initial program load ROM
error codes, 4-16
functional characteristics, 4-13
NVRAM, 4-5
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initial sequence controller

check stop count, 4-7

initialization, 4-7

logic flow, 4-6

RAM POST, 4-7

retum code, 4-7

ROM cycle redundancy check, 4-7
instruction, fields, 1-14
instruction cache synchronize (ics) instruction, 1-86
instruction formats

Aform, 1-14

B form, 1-12

D form, 1-12

description, 1-12

DS form, 1-12

fields, 1-14

| fom, 1-12

M form, 1-14

SC form, 1-13

X form, 1-13

XFL form, 1-13

XFX form, 1-13

XL form, 1-13

XO form, 1-13
instructions

data cache synchronize, 1-97

instruction cache synchronize, 1-96

others possibly requiring serialization, 1-87

serializing semantics, 1-95
interface, to the loaded code, 4-15
interrupt definitions

alignment, 1-54

data storage, 1-51

external, 1-57

floating-point imprecise, 1-59

fioating-point unavailable, 1-58

instruction storage, 1-53

machine check, 1-50

program, 1-56

supervisor call, 1-80

system reset, 1-50

trace, 1-58
Interrupts, External interrupt mechanism, 1-62
interrupts

control, 1-48

definitions for the system processor

architecture, 1-50

external interrupt mechanism, 1-67

function, 1-48

/O, 2-88, 2-90

/O bus protocols, 2-20

priorities, 1-60
invalid operation exception

action, 141

definition, 1-40
I0CC commands

buffer flush, 2-66

disable, 2-65
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enable, 2-65
end of interrupt, 2-64
list of, 2-63
time delay, 2-63
IOCC configuration register, 2-74, 2-86
|OCC control registers, 2-7
IPL
controller, 4-9
hardwars initiated, 4-4
procedures, 2-981
record, 4-5, 4-14
service, 4-5
software initiated, 4-4
IPL controf block, 4-14
IPL controller
devices
service default IPL device selection
sequencs, 4-12
supported, 4-11
trusted (normal) default IPL device
selection sequence, 4-12
functions, 4-10
IPL entry point
cold, 4-13
ROM warm, 4-13
IPL ROM
check stop, 4-4
functional characteristics
cold IPL entry point, 4-13
errors, 4-15
interface to the loaded code, 4-15
IPL control block, 4-14
IPL record, 4-14
LED operation, 4-15
NVRAM, 4-15
ROM entry point table, 4-16
ROM LED values during IPL, 4-15
ROM warm IPL entry point, 4-13
hardware, 4-3
hardware initialization, 4-3
hardware initiated IPL, 4-4
IPL, service, 4-5
LEDs, 44
security, 4-5
service IPL, 4-5
software Initiated IPL, 4-4
system reset
cold, 4-3
warm, 4-3
wam IPL function, 4-4
IPL ROM components
core sequence controller, 4-8
functional divisions, 4-6
initial sequence controller, 4-8
IPL controller, 4-9
power-on self tests, 4-12



K

keyword descriptor summary
A through C, 3-5
D through E, 3-7
F through M, 3-8
for VPD, 3-5
N through R, 3-10
S through Z, 3-11
keywords
conditionally required for Micro Channel, 3-16
optional for Micro Channel, 3-17
required for Micro Channel, 3-16

L

large operand, 1-84
LEDS, 44
LEDs, operation, 4-15
litte-endian notation
addressing, 2-10
definition, 2-8
load instruction
access authority checking, 2-29
addressing model, 2-23
effective addresses, 2-21
/O addressing, 2-21
/O effective address operating modes
IOCC control, 2-22
!OCC effective addresses, 2-25
RT compatibllity, 2-22, 2-24
standard bus, 2-21, 2-24
O segment register, 2-26
issuing, 2-21
loss of accuracy, 1-37, 144

memory
addressing, 1-19
effective address calculation, 1-20
records
descriptors, 3-14
implementation notes, 3-15
Micro Channel
adapter requirements, 3-16
adapter VPD, sample layout, 3-20
extended POS register space, 3-19
keywords, 3-16
POS configuration registers, 3-17
preferred implementation, 3-17
system configuration protocol, 3-18
model, floating-point integer convert, 1-92
modeis, floating-point round to single, 1-87
multiply quotient register, 1-26

N pages, 2-33

Next pft, 1-75

no trap occurs, 1-39
nonvolatile RAM, 2-87

nomal operand, 1-81
normalization, 1-36
normalized numbers (+Nor), 1-356
not a numbers (NaNs), 1-36
numbering conventions
bit, 2-7, 2-8
bus notation, 2-7
byte, 2-7
full- word store instruction, 2-8
half-word store instruction, 2-9
I0CC byte steering, 2-11
processor notation, 2-7
NVRAM, 4-5, 4-15

o)

overflow, 1-43
overflow exception
action, 142
definition, 1-43
insuring correct results, 143
resultant value, 1-43

P

port, 3-16
power-on resst, 2-90
power-on self test (POST)
description, 4-12
I0CC POST, 4-12
IPL device POSTs, 4-13
RAM POST, 4-12
precision, 1-37
processor board record
descriptors, 3-14
implementation notes, 3-14
processar notation
big-endian, 2-7
little-endian, 2-8
processors
branch, 1-21
central electronkcs complex, 1-S
description, 1-5
document conventions, 1-10
fixed-point processor registers, 1-25
fioating-point, 1-27, 1-33
instruction formats, 1-12
interrupts, 1-48
memory addressing, 1-19
systems overview, 1-11
timer tacilities, 1-82
programmable option select (POS), 3-16
programming model
bus master, 2-39
data flow, 2-37
DMA slave, 2-49
DMS slave, operations using tags, 2-50
I/0 bus support functions, 2-21
IO interrupts, 2-68
YO segment register, 2-26
IOCC commands, 2-83
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programming model (continued)
load instruction, 2-21
maintaining consistency, 2-36
protection, 2-33
store instruction, 2-21
TCW table, 2-33
translation, 2-33

Q

QNaN operand, 1-90, 1-84
quiet NaN, 1-36

rack record
descriptors, 3-13
implementation notes, 3-13
read-only memory (ROM), 4-3
real address, 2-21, 2-53, 2-57
real memory, 1-20
real-time clock (RTC)
decrementer
description, 1-85
interrupts, 1-86
reading, 1-86
setting, 1-86
usage, 1-86
initializing, 1-84
reading, 1-84
RTCL, 1-82, 1-83
RTCU, 1-82, 1-84
setting, 1-84
registars
board configuration, 2-86
branch processor, 1-21
buffered bus master control, 2-41
bus mapping, 2-82
bus status, 2-79
component reset, 2-81, 2-90
DMA slave control, 2-50
fixed-point processor, 1-25
fioating-point, 1-28
floating-point status and control, 1-29
VO interrupt, 2-70
VO segment, 2-26
interrupt level control, 1-67
I0CC configuration, 2-74, 2-86
POS configuration, 3-17
storage control, 1-70
system, 2-84, 2-87
tag control elements, 2-54
TCWrhag anchor address, 2-80
unbuffered bus master control, 2-45
ROM
hardware, 4-3
warm IPL function, 4-4
ROM entry point table, 4-16
ROM LED values, during IPL, 4-15
round integer, (sign, frac, gbit, rbit, xbit,
round_mode), 1-82
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round single, (sign, exp, frac, G, R, X), 1-91
rounding, 1-37

S

sample layout, Micro Channel adapter VPD, 3-20
SCSI attached device records
device required descriptors, 3-15
optional descriptors, 3-15
security, 4-5
semantics
other Iinstructions possibly requiring
serialization, 1-97
serializing, 1-95
cases, 1-95
serialization
cases, 1-95
data cache synchronize, 1-97
instruction cache synchronize, 1-96
other instructions possibly requiring
serialization
cif, 1-98
cli, 1-98
dclst, 1-88
delz, 1-98
load/store to VO, 1-98
mtmsr, 1-97
mtspr, 1-98
mtspr SDR 0, 1-98
mtspr TID, 1-88
mtsr, 1-98
mtsri, 1-98
i, 1-97
rfsvc, 1-97
sve, 1-97
tibi, 1-97
semantics of instructions
cases, 1-95
instruction modification, 1-85
page in, 1-85
page out, 1-88
synchronization on local VO operations,
1-95
signaling NaN, 1-36
SNaN operand, 1-80, 1-94
special facilities
board configuration data, 2-74
bus mapping register, 2-82
bus status register, 2-79
component reset register, 2-81
IOCC configuration register, 2-74
IOCC registers, 2-72
TCW/ag anchor address register, 2-80
standard VO
address map, 2-89
attached devices
conditionally required optional descriptors,
3-16
device required descriptors, 3-15



standard VO (continued)
definition, 2-84
description, 2-84
storage control
features, 1-69
registers, 1-70
segment registers, 1-70
storage description register, 1-72
virtual address translation, 1-72
Storage control registers, Storage description, 1-71
store instruction
access authority checking, 2-29
address spaces, 2-21
effective addresses, 2-21
/O addressing, 2-21
/O effective address operating modes
IOCC control, 2-22
IOCC effective addresses, 2-25
RT compatiblility, 2-22, 2-24
standard bus, 2-21, 2-24
/O segment register, 2-26
issuing, 2-21
streaming data protocol, 2-86
structural overview
configuration tree, 3-4
VPD, 34
system configuration protocol, 3-18
system data set, 3-5
system /O -
definition, 2-84
description, 2-84
nonvolatile RAM, 2-84
system registers, 2-84
system |/O structure
bus /O, 2-7
description, 2-3
exception handling, 2-85
exception reporting, 2-85
implementation, 2-86
programming model, 2-21
special facilities, 2-72
standard /O, 2-84
system /O, 2-84
system memory
description, 2-6
DMA slave transfers, 2-61
protection, 2-33
system registers, 2-87
system reset
cold, 4-3
wam, 4-3
system structure
bus memory, 2-6
data security, 2-7
10CC, 24
I0OCC control registers, 2-7
programming model, 2-4

system memory, 2-6
virtual memory, 2-6
systems overview, 1-11

T

tag

description, 2-50

DMA slave, 2-53

table, 2-51, 2-52

word 0, 2-53

word 4, 2-53
TCW table

mapping, 2-33

organization, 2-34

protection information, 2-33
TCWhag anchor address register, 2-80
timer tacilities, real-time clock, 1-82
tiny, 1-36
tiny result, 1-44
translate control word (TCW), 2-5, 2-57
trap

enabled, 1-39

not implemented, 1-39

U

underflow exception
action, 1-44
definition, 1-44
denomalizing a number, 1-37

v

value representation, 1-34
virtual address, 1-20
virtual address transiation
address aliasing, 1-80
description, 1-72
hash table entry group (HTEG), 1-76
hashed page table (HTAB), 1-73, 1-76
hashed page table search, 1-77
page protection, 1-81
page table entry (PTE), 1-77
storage access recording mechanism, 1-81
storage protection mechanism, 1-81
virtual memory, 2-6
vital product data (VPD)
characteristics, 3-3
customer assistance, 34
description, 3-3
hardware descriptor summary, 3-13
importance, 3-3
keyword descriptor, 3-5
Micro Channel adapter requirements, 3-16
service personnel assistance, 3-4
structural overview, 3-4
system data set, 3-5
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z

zero divide exception
action, 1-41
definition, 1-41

zero values (+0), 1-35
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