Presentation Manager

Programming Reference Vol 11

052V

nF

Presentation Manager

Programming Reference Vol 11

0S2Wa

RF

—— Note

Before using this information and the product it supports, be sure to read the general
information under Appendix I, “Notices” on page I-1.

First Edition (October 1994)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS I1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. |BM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such |BM products,
programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM authorized reseller or
IBM marketing representative.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the 1BM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source
language, which illustrate OS/2 programming techniques. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: “© (your company name) (year). All rights reserved.”

© Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures XXV
Chapter 9. Introduction to Message Processing 9-1
Message TYpes e e 9-1
Default Window and Dialog Procedure Message Processing 9-2
Control Window Message Processing 9-2
Notation Conventions L 9-4
Chapter 10. Default Window Procedure Message Processing 10-1
Purpose e e e e 10-1
Reserved Messages e 10-1
General Window Styles 10-1
Window Class Styles 10-2
Window Styles 10-3
General Window Messages e 10-5
PL ALTERED e e 10-5
WM_ACTIVATE e e e 10-5
WM_APPTERMINATENOTIFY o . 10-7
WM_ADJUSTWINDOWPOS e e e 10-7
WM_BEGINDRAG e 10-9
WM_BEGINSELECT it e e e e 10-10
WM_BUTTONICLICK e 10-11
WM_BUTTONIDBLCLK e 10-12
WM_BUTTONTDOWN e e e e 10-13
WM_BUTTONTMOTIONEND 10-14
WM_BUTTONTMOTIONSTART i 10-15
WM BUTTONTUP e 10-16
WM_BUTTON2CLICK e e e e 10-17
WM_BUTTON2DBLCLK i 10-18
WM_BUTTON2DOWN i e e e e 10-19
WM_BUTTON2MOTIONEND e 10-20
WM_BUTTON2MOTIONSTART e 10-21
WM_BUTTON2UP e e e 10-22
WM_BUTTONSCLICK s e 10-23
WM _BUTTONSDBLCLK e e 10-24
WM_BUTTON3DOWN e e 10-25
WM_BUTTONSMOTIONEND e 10-26
WM_BUTTON3MOTIONSTART e 10-27
WM_BUTTONBUP e e e e e 10-28
WM_CALCFRAMERECT ittt 10-29
WM_CALCVALIDRECTS S 10-30
WM_CHAR . . . e e e e 10-32
WM_CHORD e 10-35
WM_CLOSE e 10-35
WM_COMMAND . . . e 10-37

© Copyright IBM Corp. 1994 iii

WM_CONTEXTMENU 10-38

WM_CONTROL . . . oot e e e e e e e 10-39
WM_CONTROLPOINTER o o voet e oo e 10-40
WM_CREATE\ ot ot 10-41
WM_DESTROY . . . ot o i et e e e 10-42
WM_DRAWITEM . . . oot e e e e e 10-42
WM_ENABLEot oo e e e 10-43
WM_ENDDRAG ot ot e e e e 10-44
WM_ENDSELECT oot oot 10-45
WM_ERROR . . .ottt 10-46
WM_FOCUSCHANGEo oot 10-47
WM_FORMATFRAME\ i 10-48
WM_HELP . . . o 10-49
WM_HITTEST . . . oot e 10-50
WM_HSCROLL P R 10-51
WM_INITDLG . . o o oo e e e e ... 1052
WM_INITMENU . . oo oo e e e 10-53
WM_JOURNALNOTIFY oo e 10-54
WM_MATCHMNEMONICot 10-55
WM_MEASUREITEMo 10-55
WM_MENUEND oot e e 10-56
WM_MENUSELECTo oottt 10-57
WM_MINMAXFRAME o oo e e e 10-58
WM_MOUSEMAP 10-59
WM_MOUSEMOVE o\ oot o e 10-59
WM_MOVE . . .ottt e e 10-60
WM_MSGBOXDISMISS o o oot e 10-62
WM_MSGBOXINIT . . . oot e 10-62
WM_NEXTMENU . . . oot e oo e e 10-63
WM NULL . oo R 10-64
WM_OPEN . . . oo 10-65
WM_PACTIVATE oot e e e e 10-65
WM_PAINT ..o 10-66
WM_PCONTROLot o et et 10-67
WM_PPAINT . ..o 10-68
WM_PRESPARAMCHANGEDo oo oo 10-69
WM_PSETFOCUS ottt e e e 10-69
WM _PSIZE . . . ot oo e e 10-70
WM_PSYSCOLORCHANGE e, 10-71
WM_QUERYACCELTABLE o ot ot e 10-72
WM_QUERYCONVERTPOS\ oot 10-72
WM_QUERYHELPINFOot 10-74
WM_QUERYTRACKINFO oot 10-74
WM_QUERYWINDOWPARAMS oot 10-75
WM_QUIT . oo e 10-76
WM_REALIZEPALETTE o oo e e 10-78
WM_SAVEAPPLICATIONot 10-78
WM_SEMT . .ot 10-79

iV PM Programming Reference Vol Il

WM_SEM2 . . .o 10-80

WM_SEM3 . . . 10-81
WM_SEM4 . . . e ... 10-82
WM_SETACCELTABLE o 10-83
WM_SETFOCUS e 10-83
WM_SETHELPINFO e 10-84
WM_SETSELECTION e e e 10-85
WM_SETWINDOWPARAMS i e 10-86
WM_SHOW . . . e 10-87
WM_SINGLESELECT i 10-87
WM_SIZE . . . e 10-88
WM_SUBSTITUTESTRING 10-89
WM_SYSCOLORCHANGE i 10-90
WM_SYSCOMMAND e 10-91
WM_SYSVALUECHANGED e 10-92
WM_TEXTEDIT e 10-93
WM_TIMER . . . e 10-94
WM_TRACKFRAME e 10-95
WM_TRANSLATEACCEL e 10-95
WM_TRANSLATEMNEMONIC e 10-96
WM_UPDATEFRAME e 10-97
WM_VRNDISABLED 10-98
WM_VRNENABLED i 10-98
WM_VSCROLL e 10-99
WM_WINDOWPOSCHANGED 10-101
Default Dialog Processing 10-103
WM_CHAR (Default Dialogs) 10-103
WM_CLOSE (Default Dialogs) 10-104
WM_COMMAND (Default Dialogs) 10-104
WM_INITDLG (Default Dialogs) 10-104
WM_MATCHMNEMONIC (Default Dialogs) 10-105
WM_QUERYDLGCODE i 10-105
Default File Dialog Processingo 10-106
FDM_ERROR e 10-107
FDM_FILTER e 10-108
FDM_VALIDATE e e 10-108
Default Font Dialog Processing e 10-109
WM_DRAWITEM (in FontDialog) 10-110
FNTM_FACENAMECHANGED 10-111
FNTM_FILTERLIST et e e 10-112
FNTM_POINTSIZECHANGED 10-113
FNTM_STYLECHANGED e it eie 10-114
FNTM_UPDATEPREVIEW oo 10-115
Language Support Window Processing, 10-116
WM_ACTIVATE (Language Support Window) 10-116
WM_CONTROL (Language Support Window) 10-116
WM_PAINT (Langauge Support Window) 10-117
WM_PPAINT (Language Support Window) 10-117

Contents . V

WM_SETFOCUS (Language Support Window) e
WM_SIZE (Language Support Window)
WM_SYSCOLORCHANGE (Language Support Window)
Language Support Dialog Processingo
WM_ACTIVATE (Language Support Dialog)
WM_CONTROL (Language Support Dialog)
WM_PAINT (Language Support Dialog)
WM_PPAINT (Language Support Dialog)
WM_SETFOCUS (Language Support Dialog)
'WM_SIZE (Language Suppori Dialog)
WM_SYSCOLORCHANGE (Language Support Dialog)

Chapter 11. Button Control Window Processing
Purpose e
Button Control Styles L
Button Control Data
Default Colors
Button Control Notification Messages
WM_COMMAND (in Button Controls)
WM_CONTROL (in Button Controls)
WM_HELP (in Button Controls)
WM_SYSCOMMAND e
Button Control Window Messages
BM _CLICK . . .
BM_QUERYCHECK e e
BM_QUERYCHECKINDEX
BM_QUERYHILITE e
BM_SETCHECK e
BM_SETDEFAULT e
BM_SETHILITE e
WM_ENABLE (in Button Controls)

. WM_MATCHMNEMONIC (in ButtonControls)
WM_QUERYCONVERTPOS (in Button Controls)
WM_QUERYWINDOWPARAMS (in Button Controls)
WM_SETWINDOWPARAMS (in Button Controls)

Chapter 12. Entry Field Control Window Processing
Purpose e
Entry Field Control Styles e
Entry Field Control Data
Default Colors
Entry Field Control Notification Messages
WM_CONTROL (in Entry Fields)
Entry Field Control Window Messages e e e e
EM_CLEAR e
EM_COPY . . . e
EM_CUT . . e e
EM_PASTE e

vi PM Programming Reference Vol Il

AN dbdhaal

—_
—_ o b ek kb A
]

EM_QUERYCHANGED T
EM_QUERYFIRSTCHAR ot et e
EM_QUERYREADONLY . . .\ ot oo
EM_QUERYSEL . . . ot toe e et
EM_SETFIRSTCHAR o\ oot oo
EM_SETINSERTMODE\ ot oot e et e e
EM_SETREADONLY . . . o o oot e
EM_SETSEL o v oot e e e e
EM_SETTEXTLIMIT oot
WM_CHAR (in Entry Fields) oo oo
WM_QUERYCONVERTPOS (in Entry Fields)
WM_QUERYWINDOWPARAMS (in Entry Fields)
WM_SETWINDOWPARAMS (in Entry Fields)

Chapter 13. Frame Control Window Processing

Purpose e

Frame Creation Flags e
Frame Control Styles
Frame Control Data
Default Colors L
Frame Control Notification Messages

WM_MINMAXFRAME (in Frame Controls) e

Frame Control Window Messages

WM_ACTIVATE (in Frame Controls)
WM_ADJUSTFRAMEPOS
WM_BUTTON1DBLCLK (in Frame Controls)
WM_BUTTON2DBLCLK (in Frame Controls)
WM_BUTTON1DOWN (in Frame Controls)
WM_BUTTON2DOWN (in Frame Controls)
WM_BUTTON1UP (in Frame Controls)
WM_BUTTON2UP (in Frame Controls)
WM_CALCFRAMERECT (in Frame Controls)
WM_CHAR (in Frame Controls) e
WM_CLOSE (in Frame Controls)
WM_COMMAND
WM_DRAWITEM (in Frame Controls) e e
WM_ERASEBACKGROUND,
WM_FLASHWINDOW e
WM_FOCUSCHANGE (in Frame Controls)
- WM_FORMATFRAME (in Frame Controls)
WM_INITMENU (in Frame Controls)
WM_MEASUREITEM (in Frame Controls)
WM_MENUSELECT (in Frame Controls) e
WM_NEXTMENU (in Frame Controls)
WM _OWNERPOSCHANGE
WM_PAINT (in Frame Confrols)
WM_QUERYBORDERSIZE e
WM_QUERYCONVERTPOS (in Frame Controls)

Contents

Vil

WM_QUERYFOCUSCHAIN 13-21

WM_QUERYFRAMECTLCOUNT, 13-22
WM_QUERYFRAMEINFO 13-23
WM_QUERYICON e 13-24
WM_QUERYWINDOWPARAMS (in Frame Controls) 13-24
WM_SETBORDERSIZE i 13-25
WM_SETICON e 13-25
WM_SETWINDOWPARAMS (in Frame Controls) 13-26
WM_SIZE (in Frame Controls) 13-26
WM_SYSCOMMAND e e e 13-27
WM_TRACKFRAME (in Frame Controls) 13-29
WM_TRANSLATEACCEL (in Frame Controls) 13-30
WM_TRANSLATEMNEMONIC (in Frame Controls) 13-30
WM_UPDATEFRAME (in Frame Controls) 13-30
Chapter 14. List Box Control Window Processing 14-1
Purpose 14-1
List Box Control Styles e 14-1
ListBoxControl Data e 14-1
Default Colors. 14-1
List Box Control Notification Messages 14-3
WM_CONTROL (in ListBoxes) o.... 14-3
WM_DRAWITEM (in List Boxes) 14-4
WM_MEASUREITEM (in ListBoxes) 14-5
List Box Control Window Messages 14-7
LM_DELETEALL e 14-7
LM_DELETEITEM e e 14-7
LM_INSERTITEM e 14-8
LM_INSERTMULTITEMS e 14-9
LM_QUERYITEMCOUNT e e e 14-10
LM_QUERYITEMHANDLE 14-11
LM_QUERYITEMTEXT e e e e 14-12
LM_QUERYITEMTEXTLENGTH - 14-13
LM_QUERYSELECTION 14-13
LM_QUERYTOPINDEX 14-15
LM_SEARCHSTRING e 14-15
LM_SELECTITEM e 14-17
LM_SETITEMHANDLE e e 14-18
LM_SETITEMHEIGHT e 14-19
LM_SETITEMTEXT e 14-19
LM_SETITEMWIDTH i e e e 14-20
LM_SETTOPINDEX S 14-21
WM_CHAR (in ListBoxes) 14-22
WM_QUERYCONVERTPOS (inListBoxes) 14-23
WM_QUERYWINDOWPARAMS (in ListBoxes) 14-23
WM_SETWINDOWPARAMS (in ListBoxes) * 14-23
Chapter 15. Menu Control Window Processing 15-1

viii PM Programming Reference Vol I

Purpose e 15-1

Menu Control Styles 15-1
Menu ltem Styles L e 15-2
Menu ltem Attributes 15-3
Default Colors 15-3
Menu Control Notification Messages 15-5
WM_COMMAND (in Menu Controls) 15-5
WM_DRAWITEM (in Menu Controls) 15-5
WM_HELP (inMenuControls) 15-6
WM_INITMENU (in Menu Controls) 15-7
WM_MEASUREITEM (in Menu Controls) 15-7
WM_MENUEND (in Menu Controls) 15-8
WM_MENUSELECT (in Menu Controls) 15-8
WM_NEXTMENU (in Menu Controls) 15-9
Menu Control Window Messages 15-10
MM_DELETEITEM e 15-10
MM_ENDMENUMODE e 15-11
MM_INSERTITEM 15-11
MM_ISITEMVALID e 15-12
MM_ITEMIDFROMPOSITION e 15-13
MM_ITEMPOSITIONFROMID e 15-14
MM_QUERYDEFAULTITEMID e 15-15
MM_QUERYITEM e 15-16
MM_QUERYITEMATTR e 15-17
MM_QUERYITEMCOUNT e 15-18
MM_QUERYITEMRECT e 15-18
MM_QUERYITEMTEXT e e 15-19
MM_QUERYITEMTEXTLENGTH 15-20
MM_QUERYSELITEMID e 15-21
MM_REMOVEITEM e 15-22
MM_SELECTITEM e 15-23
MM_SETDEFAULTITEMID 15-24
MM_SETITEM e 15-25
MM_SETITEMATTR e e e 15-26
MM_SETITEMHANDLE 15-27
MM_SETITEMTEXT e e e e e 15-28
MM_STARTMENUMODE i 15-29
WM_QUERYCONVERTPOS (inMenu Controls) 15-30
WM_QUERYWINDOWPARAMS (in Menu Controls) 15-30
WM_SETWINDOWPARAMS (in Menu Controls) 15-30
WM_SYSCOMMAND 15-31
Chapter 16. Multi-Line Entry Field Control Window Processing 16-1
Purpose e 16-1
HowtoUse e 16-1
Multi-Line Entry Field Control Styles 16-2
Multi-Line Entry Field ControlData 16-2
Multi-Line Entry Field Control Notification Messages 16-3

Contents IX

WM_CONTROL (in"Multiine Entry Fields) 16-3

Multi-Line Entry Field Window Messages 169
MLM_CHARFROMLINE 16-9
MLM_CLEAR e 16-9
MLM COPY R 16-10
MLM CUT T 16-11
MLM_DELETE e 16-12
MLM_DISABLEREFRESH 16-12
MLM_ENABLEREFRESH 16-13
MLM_EXPORT e e 16-14
MLM_FORMAT e e e 16-15
MUMIMPORT . . oot oo e e e e e 16-16
MLM_INSERT e 16-17
MLM_LINEFROMCHAR e 16-18
MLM_PASTE e 16-18
MLM_QUERYBACKCOLOR e e e 16-19
MLM_QUERYCHANGED e 16-20
MLM_QUERYFIRSTCHAR e 16-20
MLM_QUERYFONT e e 16-21
MLM_QUERYFORMATLINELENGTH 16-22
MLM_QUERYFORMATRECT it 16-22
MLM_QUERYFORMATTEXTLENGTH 16-23
MLM_QUERYIMPORTEXPORT e 16-24
MLM_QUERYLINECOUNT e 16-25
MLM_QUERYLINELENGTH 16-25
MLM_QUERYREADONLY e 16-26
MLM_QUERYSEL e 16-27
MLM_QUERYSELTEXT e e e e 16-29
MLM_QUERYTABSTOP [16-29
MLM_QUERYTEXTCOLOR 16-30
MLM_QUERYTEXTLENGTH 16-31
MLM_QUERYTEXTLIMIT e 16-31
MLM_QUERYUNDO e 16-32
MLM_QUERYWRAP e 16-33
MLM_RESETUNDO e e 16-33
MLM_SEARCH e 16-35
MLM_SETBACKCOLOR e e e e e 16-37
MLM_SETCHANGED e e e 16-38
MLM_SETFIRSTCHAR T, 16-38
MLM_SETFONT e e e e 16-39
MLM_SETFORMATRECT e e e e 16-40
MLM_SETREADONLY e 16-43
MLM_SETIMPORTEXPORT e e e e 16-43
MLM_SETSEL . . o o v ooe o oo e e e 16-45
MLM_SETTABSTOP e 16-46
MLM_SETTEXTCOLOR e e e 16-46
MLM_SETTEXTLIMIT e e e e e e 16-47
MLM_SETWRAP S 16-48

X PM Programming Reference Vol Il

MLM_UNDO e 16-49

WM_BUTTON1DBLCLK (in Multiline Entry Fields) 16-50
WM_BUTTON1DOWN (in Multiline Entry Fields) 16-51
WM_BUTTON1UP (in Multiline Entry Fields) 16-51
WM_CHAR (in Multiline Entry Fields) 16-52
WM_ENABLE (in Multiline Entry Fields) 16-55
WM_MOUSEMOVE (in Mulitline Entry Fields) 16-56
WM_QUERYWINDOWPARAMS (in Multiline Entry Fields) 16-56
WM_SETWINDOWPARAMS (in Multiline Entry Fields) 16-57
Chapter 17. Combination-Box Control Window Processing 17-1
Purpose L 17-1
Combination Box Control Styles 17-1
Combination Box Control Data 17-1
Default Colors e 17-2
Combo Box Control Notification Messages 17-3
WM_CONTROL (in CombinationBoxes) 17-3
Combo Box Control Window Messages 17-5
CBM_HILITE e 17-6
CBM_ISLISTSHOWING ottt CLo177
CBM_SHOWLIST e e e e e e e 17-7
Chapter 18. Scroll Bar Control Window Processing 18-1
Purpose e e 18-1
Scroll Bar Control Styles L 18-1
Scroll BarControlData 18-1
Default Colors e 18-1
Scroll Bar System Values L 18-2
Scroll Bar Control Notification Messages 18-3
WM_HSCROLL (in Horizontal ScrollBars) 18-3
WM_VSCROLL (in Vertical Scroll Bars) 18-3
Scroll Bar Control Window Messages 18-4
SBM_QUERYPOS e 18-4
SBM_QUERYRANGE e 18-4
SBM_SETPOS 18-5
SBM_SETSCROLLBAR e 18-6
SBM_SETTHUMBSIZE e e 18-7
WM_QUERYCONVERTPOS (in ScrollBars) 18-8
WM_QUERYWINDOWPARAMS (in ScrollBars) 18-8
WM_SETWINDOWPARAMS (in ScrollBars) 18-9
Chapter 19. Spin Button Control Window Processing 19-1
Purpose L e e e e 19-1
Spin Button Control Styles 19-1
Spin Button Control Data i 19-2
Spin Button Control Notification Message 19-3
" WM_CONTROL (in Spin Button Controls) 19-3
Spin Button Control Window Messages 19-4

Contents Xi

xii

SPBM_OVERRIDESETLIMITS ~ 19-4

SPBM_QUERYLIMITS 19-5
SPBM_QUERYVALUE 19-6
SPBM_SETARRAY e 19-8
SPBM_SETCURRENTVALUE 19-9
SPBM_SETLIMITS 19-9
SPBM_SETMASTER 19-10
SPBM_SETTEXTLIMIT e e 19-11
SPBM_SPINDOWN e 19-12
SPBM_SPINUP e 19-13
Chapter 20. Static Control Window Processing 20-1
Purpose L e e 20-1
Static Control Styles 20-1
Static Control Data 20-2
DefauitColors e e e e e 20-2
Static Control Notification Messages 20-3
Static Control Window Messages 20-4
SM_QUERYHANDLE e 20-4
SM_SETHANDLE e 20-5
WM_MATCHMNEMONIC (in Static Controls) O 20-5
WM_QUERYCONVERTPOS (in Static Controls) 20-6
WM_QUERYWINDOWPARAMS (in Static Controls) 20-6
WM_SETWINDOWPARAMS (in Static Controls) 20-7
Chapter 21. Title Bar Control Window Processing 211
PUrpose e e e 21-1
Title Bar Control Styles L 211
Titte Bar Control Data 211
Default Colors e 21-1
Title Bar Control Notification Messages 21-2
WM_SYSCOMMAND (in Title Bar Controls) 21-2
WM_TRACKFRAME (in Title Bar Controls 21-2
Title Bar Control Window Messages 21-3
TBM_QUERYHILITE 21-3
TBM_SETHILITE = e 21-4
WM_QUERYCONVERTPOS (in Title Bar Controls) 21-4
WM_QUERYWINDOWPARAMS (in TitleBars) 21-5
WM_SETWINDOWPARAMS (in Title Bar Controls) 21-5
Chapter 22. Container Control Window Processing 22-1
Purpose 22-1
Container Control Window Words 222
Container Control Styles and Selection Types 22-2
Container Control Styles, 22-2
Container Control Selection Types 22-3
Container Control Data 22-4
Container Control Notification Messages 22-5

PM Prograrhming Reference Vol il

WM_CONTROL (in Container Controls) 22-5

WM_CONTROLPOINTER (in Container Controls) 22-6
WM_DRAWITEM (in Container Controls) 22-7
Container Control Notification Codes 22-10
CN_BEGINEDIT e e e e e e e e e e e e 22-10
CN_COLLAPSETREE e e 22-11
CN_CONTEXTMENU e 22-12
CN_DRAGAFTER e e e 22-12
CN_DRAGLEAVE e 22-15
CN_DRAGOVER e e e 22-16
CN_DROP e 22-18
CN_DROPNOTIFY . . . e e e e e e e e e 22-19
CN_DROPHELP 22-19
CN_EMPHASIS e 22-20
CN_ENDEDIT e e 22-21
CN_ENTER e 22-22
CN_EXPANDTREE e 22-23
CN_HELP . . e 22-23
CN_INITDRAG e e e e e 22-24
CN_KILLFOCUS e e 22-25
CN_PICKUP . . . e 22-26
CN_QUERYDELTA e e e e e e e 22-27
CN_REALLOCPSZ e e e e e e e e s 22-28
CN_SCROLL 22-29
CN_SETFOCUS e e e e e e s 22-29
Container Control Window Messages 22-31
CM_ALLOCDETAILFIELDINFO e e 22-31
CM_ALLOCRECORD o ittt e e e e e e 22-32
CM_ARRANGE e e 22-34
CM_CLOSEEDIT e e e s e 22-35
CM_COLLAPSETREE e e e e 22-36
CM_ERASERECORD s e e 22-37
CM_EXPANDTREE e 22-38
CM_FILTER e e e e 22-39
CM_FREEDETAILFIELDINFO 22-40
CM_FREERECORD e e 22-42
CM_HORZSCROLLSPLITWINDOW 22-43
CM_INSERTDETAILFIELDINFO e 22-44
CM_INSERTRECORD e e e 22-45
CM_INSERTRECORDARRAY e 22-47
CM_INVALIDATEDETAILFIELDINFO e 22-49
CM_INVALIDATERECORD it 22-50
CM_MOVETREE i e e e e 22-52
CM_OPENEDIT e e e e e 22-54
CM_PAINTBACKGROUND i 22-55
CM_QUERYCNRINFO e 22-56
CM_QUERYDETAILFIELDINFO 22-56
CM_QUERYDRAGIMAGE 22-57

Contents Xiil

CM_QUERYRECORD i 22-59

CM_QUERYRECORDEMPHASIS 22-60
CM_QUERYRECORDFROMRECT 22-62
CM_QUERYRECORDINFO e 22-63
CM_QUERYRECORDRECT e 22-64
CM_QUERYVIEWPORTRECTttt 22-65
CM_REMOVEDETAILFIELDINFO 22-66
CM_REMOVERECORD e 22-68
CM_SCROLLWINDOW e e e 22-70
CM_SEARCHSTRING i 22-71
CM_SETCNRINFO s 22-72
CM_SETRECORDEMPHASIS 22-74
CM_SORTRECORD s 22-76
CM_SETTEXTVISIBILITY e 22-77
WM_PICKUP . . e 22-78
WM_PRESPARAMCHANGED (in Container Controls) 22-79
Chapter 23. Notebook Control Window Processing 23-1
Purpose e 23-1
Notebook Control Styles 23-1
Notebook Control Data 23-2
Notebook Control Notification Messages 23-3
WM_CONTROL (in Notebook Controls) 23-3
WM_CONTROLPOINTER (in Notebook Controls) 234
WM_DRAWITEM (in Notebook Controls) 23-4
Notebook Control Window Messages «..... 23-7
BKM_CALCPAGERECT e e ... 237
BKM_DELETEPAGE e 23-8
BKM_INSERTPAGE 239
BKM_INVALIDATETABS 23-11
BKM_QUERYPAGECOUNT e 23-11
BKM_QUERYPAGEDATA 23-13
BKM_QUERYPAGEID e 23-13
BKM_QUERYPAGEINFO 23-15
BKM_QUERYPAGESTYLE i 23-16
BKM_QUERYPAGEWINDOWHWND 23-17
BKM_QUERYSTATUSLINETEXT 23-18
BKM_QUERYTABBITMAP e 23-19
BKM_QUERYTABTEXT it 23-20
BKM_SETDIMENSIONS 23-21
BKM_SETNOTEBOOKCOLORS e 23-22
BKM_SETPAGEDATA 23-23
BKM_SETPAGEINFO e 23-24
BKM_SETPAGEWINDOWHWND e 23-25
BKM_SETSTATUSLINETEXT ittt 23-26
BKM_SETTABBITMAP 23-26
BKM_SETTABTEXT e e e 23-28
BKM_TURNTOPAGE i 23-29

Xiv PM Programming Reference Vol Il

WM_CHAR (in Notebook Controls) 23-30

WM_PRESPARAMCHANGED (in Notebook Controls) 23-31
WM_SIZE (in Notebook Controls) 23-32
Chapter 24. Slider Control Window Processing 24-1
Purpose e 241
Slider Control Styles 24-1
Slider Control Data e 24-4
Slider Control Notification Messages 24-5
WM_CONTROL (in Slider Controls) 24-5
WM_CONTROLPOINTER (in Slider Controls) 24-6
WM_DRAWITEM (in Slider Controls) 24-6
Slider Control Window Messages 24-8
SLM_ADDDETENT e 24-8
SLM_QUERYDETENTPOS e 24-9
SLM_QUERYSCALETEXT e 24-10
SLM_QUERYSLIDERINFO e 24-11
SLM_QUERYTICKPOS e 24-13
SLM_QUERYTICKSIZE e 24-14
SLM_REMOVEDETENT e 24-15
SLM_SETSCALETEXT i, ... 2416
SLM_SETSLIDERINFO PR 24-17
SLM_SETTICKSIZE S 24-19
WM_CHAR (in Slider Controls) 24-20
WM_PRESPARAMCHANGED (in Slider Controls) 24-22
WM_QUERYWINDOWPARAMS (in Slider Controls) 2423
WM_SETWINDOWPARAMS (in Slider Controls) 24-24
Chapter 25. Circular Slider Control Window Messages 25-1
Purpose L e 25-1
Circular Slider Control Styles 25-1
Circular Slider Control Data 25-2
Default Colors 25-2
Circular Slider Control Notification Messages 25-3
WM_CONTROL (in Circular Slider Controls) 25-3
WM_CONTROLPOINTER (in Circular Slider Controls) 25-4
Circular Slider Control Window Messages 25-5
CSM_QUERYINCREMENT E 25-5
CSM_QUERYRADIUS e 25-5
CSM_QUERYRANGE e 25-6
CSM_QUERYVALUE e 25-6
CSM_SETBITMAPDATA e e e 25-7
CSM_SETINCREMENT e 25-7
CSM_SETRANGE e 25-8
CSM_SETVALUE e 25-9
WM_CHAR (in Circular Slider Controls) e 25-9
WM_PRESPARAMCHANGED (in Circular Slider Controls) 25-10
WM_QUERYWINDOWPARAMS (in Circular Slider Controls) 25-11

Contents XV

WM_SETWINDOWPARAMS (in Circular Slider Controls) 25412

Chapter 26. Value Set Control Window Processing 26-1
Purpose e e 26-1
Value Set Control Styles 26-1
Value Set Control Data e 26-5
Value Set Control Notification Messages e 26-6
WM_CONTROL (in Value Set Controls) 26-6
WM_CONTROLPOINTER (in Value Set Controls) 26-7
WM_DRAWITEM (in Value Set Controls) 26-8
Value Set Control Window Messages 26-10
VM_QUERYITEM e 26-10
VM_QUERYITEMATTR e 26-12
VM_QUERYMETRICS 26-14
VM_QUERYSELECTEDITEM e 26-15
VM_SELECTITEM e .. 26-16
VM_SETITEM 26-17
VM_SETITEMATTR e e e 26-19
VM_SETMETRICS 26-21
WM_CHAR (in Value Set Controls) 26-22
WM_PRESPARAMCHANGED (in Value Set Controls) 26-24
WM_QUERYWINDOWPARAMS (in Value Set Controls) 26-25
WM_SETWINDOWPARAMS (in Value Set Controls) 26-26
WM_SIZE (inValue Set Controls) 26-26
Chapter 27. Clipboard Messages 27-1
Purpose e 271
WM_DESTROYCLIPBOARD e 271
WM_DRAWCLIPBOARD oo 27-2
WM_HSCROLLCLIPBOARD it 27-2
WM_PAINTCLIPBOARD 27-4
WM_RENDERALLFMTS 27-4
WM_RENDERFMT 27-5
WM_SIZECLIPBOARD e 27-6
WM_VSCROLLCLIPBOARD i e 27-7
Chapter 28. Direct Manipulation (Drag) Messages 28-1
Purpose . . . L 28-1
DM_DISCARDOBJECT it 28-1
DM_DRAGERROR e 28-2
DM_DRAGFILECOMPLETE e 28-3
DM_DRAGLEAVE e 28-4
DM _DRAGOVER e 28-4
DM_DRAGOVERNOTIFY e e 28-7
DM_DROP e 28-8
DM_DROPHELP e 28-9
DM _DROPNOTIFY e e e 28-10
DM_EMPHASIZETARGET e e 28-11

XVi PM Programming Reference Vol Il

DM_ENDCONVERSATION 28-11

DM_FILERENDERED e 28-12
DM_PRINTOBJECT e e 28-13
DM_RENDER 28-14
DM_RENDERCOMPLETE e e e 28-15
DM_RENDERFILE 28-17
DM_RENDERPREPARE 28-18
Chapter 29. Dynamic Data Exchange Messages 29-1
Purpose L 29-1
WM_DDE _ACK e 29-1
WM_DDE_ADVISE 29-2
WM_DDE_DATA e 29-3
WM_DDE_EXECUTE e 29-4
WM_DDE_INITIATE e 29-4
WM_DDE_INITIATEACK 29-6
WM_DDE_POKE 29-6
WM_DDE_REQUEST 29-7
WM_DDE_TERMINATE e 29-8
WM_DDE_UNADVISE e 29-9
Chapter 30. Help Manager Messages 30-1
Purpose L e 30-1
HM_ACTIONBAR_COMMAND 30-1
HM_CONTROL s e 30-1
HM_CREATE_HELP_TABLE 30-2
HM_DISMISS WINDOW 30-3
HM_DISPLAY_HELP e 30-4
HM_ERROR 30-5
HM_EXT HELP 30-7
HM_EXT_HELP_UNDEFINED 30-8
HM_GENERAL HELP e 30-8
HM_GENERAL_HELP_UNDEFINED 30-9
HM_HELP_CONTENTS e e 30-10
HM_HELP INDEX e 30-10
HM_HELPSUBITEM_NOT_FOUND 30-11
HM_INFORM . . . e 30-12
HM_INVALIDATE_DDF_DATA e 30-13
HM_KEYS_HELP 30-14
HM_LOAD_HELP _TABLE e 30-15
HM_NOTIFY 30-15
HM_QUERY e 30-17
HM_QUERY_DDF DATA e e e 30-19
HM_QUERY_KEYS HELP 30-20
HM_REPLACE_HELP_FOR_HELP 30-20
HM_REPLACE_USING_HELP 30-21
HM_SET_ACTIVE_WINDOW o e 30-22
HM_SET_COVERPAGE_SIZE 30-23

Contents XVii

XViii

HM_SET_HELP_LIBRARY_NAME 30-24

HM_SET_HELP_WINDOW _TITLE 30-25
HM_SET OBJCOM_WINDOW 30-25
HM_SET SHOW PANEL ID S . 30-26
HM_SET _USERDATA e 30-27
HM_TUTORIAL e e e e e e e 30-27
HM_UPDATE_OBJCOM_WINDOW _CHAIN 30-28
Chapter 31. ResourceFiles 31-1
How to Read the Syntax Definitions 311
Definitions Used in all Resources 31-2
Specification of Values 31-2
Resource Load and Memory Options 31-2
Resource Script File Specification, . 31-2
Single-Line Statements o Lo 31-3
User-Defined Resources 31-4
RCDATA statement 31-5
Directives e 31-6
Multiple-Line Statements 31-9
Keyboard Resources 31-10
ACCELTABLE Statement 31-10
ASSOCTABLE Statement e e e e e e e e e e 31-12
Dialog and Window Template Statements 31-13
MENU Statement 31-16
STRINGTABLE Statement 31-22
Templates, Control Data, and Presentation Parameters 31-24
Dialog Template e 31-24
Dialog Coordinates 31-24
Dialog Template Format and Contents 31-24
Header e PP 31-26
ltems e 31-26
Data Area e e 31-27
Control Data Statement 31-28
Presentation Parameters Statement L oo oL L 31-28
Parent/Child/Owner Relationship 31-29
Predefined Window Classes i 31-30
Predefined Control Statements 31-30
Resource (.RES) File Specification 31-35
Chapter 32. CodePages, 32-1
Windowed PM Applications e 32-1
08S/2 Code Page Options for PM Applications 32-3
0S/2 Font Support for Multiple Code Pages P 32-4
Font Code-Page Functions, 32-4
FontLayout e 32-4
ASClICode Pages e 32-12
EBCDIC Code Pages e e e 32-21

PM Programming Reference Vol i

Appendix A. DataTypes A-1

ACCEL S A-1
ACCELTABLE e e A-1
APIRET . . . e A-2
APSZ e A-2
ARCPARAMS A
AREABUNDLE e e A-3
ATOM . e A-4
BITMAPARRAYFILEHEADER e e e e e A-4
BITMAPARRAYFILEHEADER2 o i e et e e A-5
BITMAPFILEHEADER e e A-6
BITMAPFILEHEADER2 e A7
BITMAPINFO e e e e e e A-8
BITMAPINFO2 e A-9
BITMAPINFOHEADER e e e e A-14
BITMAPINFOHEADER2 e A-15
BIT16 e A-20
BIT32 . . . A-20
BIT8 e A-20
BOOL e e e e e A-21
BOOKPAGEINFO e A-21
BOOKTEXT e A-23
BTNCDATA e A-24
BYTE . . . e A-24
CATCHBUF e e A-25
CDATE e e A-25
CHAR . . . s, A-26
CHARBUNDLE e e A-26
CLASSINFO R, A-27
CNRDRAGINFO e A-28
CNRDRAWITEMINFO e s e, A-28
CNREDITDATA e e e e e e e e e A-29
CNRDRAGINIT e A-32
CNRINFO e A-33
CNRLAZYDRAGINFO e e A-39
COLOR . . . e e A-40
CONVCONTEXT o e e s e e e s s e e A-40
CREATESTRUCT e e s e A-41
CSBITMAPDATA e e A-42
CURSORINFO e e e e e e e e e A-43
CTIME . . . e A-44
Control-Data e A-44
DDEINIT e e e A-45
DELETENOTIFY o e e e e A-46
DDESTRUCT o e e e e e e e e e e A-46
DESKTOP e e e A-48
DEVOPENSTRUC e e e e e A-49
DLGTEMPLATE e e e e e e A-53

Contents XiX

DLGTITEM . . . e A-54

DRAGIMAGE A-56
DRAGINFO . . . A-57
DRAGITEM . . . o o e A-58
DRAGTRANSFER o ot e e e s A-61
DRIVDATA . . o o A-63
ENTRYFDATA e, A-64
ERRORID ot e e, A-65
ERRINFO . . . o A-65
ESCMODE . . . o v ot e e e, A-66
ESCSETMODE o ot o e e e, A-67
FACENAMEDESC oo A-68
FATTRS o e e A-69
FFDESCS . . . o o o e A-72
FIELDINFO . . . o o e o e e s e A-72
FIELDINFOINSERT o o o e e s, A-75
FILEDLG . . . o o oo e e e, A-77
FIXED . . o A-81
FONTDLG . . . o o e e s, A-82
FONTMETRICS o o e s, A-88
FRAMECDATA i e, S A-99
GRADIENTL A-100
HAB . . A-100
HACCEL . . . o o o e A-101
HAPP . . A-101
HATOMTBL o o A-101
HBITMAP . . . o ... A-101
HDC . . A-102
HCINFO . . . A-102
HDDF . . . e, A-103
HELPINIT . . . o A-104
HELPSUBTABLE A-106
HELPTABLE . . & . . . o A-108
HENUM . . A-108
HEV . A-108
HINL A-109
HLIB . . . e A-109
HMF A-109
HMODULE A-109
HMQ e A-110
HMTX - A-110
HMUX . . A-110
HOBUECT . . . o o o e o e A-110
HPOINTER . . . o o o e e e A-111
HPROGRAM A-111
HPS . o A-111
HRGN . . A-111
HSAVEWP . . . A-112

XX PM Programming Reference Vol li

HSPL . . e A-112
HSTR . . e A-112
HSWITCH A-113
HWND .. A-113
ICONINFO A-113
IMAGEBUNDLE A-114
PT A-115
KERNINGPAIRS A-115
LBOXINFO A-116
LHANDLE e A-117
LINEBUNDLE e A-117
LONG . . . A-118
MARKERBUNDLE e A-119
MATRIXLF . . . A-120
MB2D . .. A-121
MB2INFO . . . e e A-121
MENUITEM . .. A-123
MINIRECORDCORE A-124
MLE_SEARCHDATA A-125
MLEMARGSTRUCT i AR A-126
MLECTLDATA e A-127
MPARAM . . e A-129
MQINFO e e A-129
MRESULT A-130
NOTIFYDELTA e A-130
NOTIFYRECORDEMPHASIS A-131
NOTIFYRECORDENTER e, A-132
NOTIFYSCROLL e e e A-133
OBJCLASS . . . e A-134
OWNERBACKGROUND e A-135
OWNERITEM A-136
MLEOVERFLOW e A-137
PAGEINFO A-138
PAGESELECTNOTIFY e A-140
PANOSE e A-140
PARAM . . . e A-144
PCH . . A-147
PCSZ - . . A-147
PDEVOPENDATA e A-147
PEN A-148
PENWP . A-148
PID . e A-148
PIX e A-149
PRDINFO3 e A-149
PRDRIVINFO e A-151
PRESPARAMS A-151
PRINTDEST e A-152

Contents XXI

PRINTERINFO e A-153

PRFPROFILE o o s A-154
CPRJINFO2 . o A-155
PRJNFOS . . . o o . A-157
PROGRAMENTRY . . . o o oo e A-159
PROGCATEGORY . . o . oot e e e e e s, A-160
S PROGDETAILS . . . o o e e e A-160
PROGTYPE oo e s A-161
PRPORTINFO . . . o o o e e s A-162
PRPORTINFOT . . . o o e e s, A-163
PRQINFO3 . . o o e A-164
PRQINFOB o o e A-166
PRQPROCINFO o oo, A-169
POINTERINFO o e e e s, A-169
POINTL . o . o e e A-170
POINTS . o A-171
PQMOPENDATA . . o o o e e e e A-171
PSZ P e A-171
PWPOINT . . o A-172
PVOID . . . o A-172
QMSG o A-172
QUERYRECFROMRECT o o v e e e s s, A-173
QUERYRECORDRECT . . . o o o v e e o e e e s, A-174
RECORDCORE . . .« o o oot e e e s, A-175
RECORDINSERT . . . o o ot e e e e A-177
RECTL . . o ot A-179
RENDERFILE o o ot e A-179
RGB . . . o A-180
RGB2 . . . A-181
RGNRECT o e e, A-182
SBCDATA . . o o P A-182
SEARCHSTRING o o A-184
SEGOFF A-185
SFACTORS . . . o o A-185
SHORT . . o o A-186
SIZEF . A-186
SIZEL . . o A-186
SLDCDATA . o o o A-187
SMHSTRUCT . . . o e e e e A-188
SPBCDATA . . o e A-189
SPLERR . . . o o ot A-190
STRIB . o o o A-190
STRB2 . . o A-190
STRBA . . o o A-190
STR8 . o o s A9
STYLECHANGE o A-191
SWBLOCK o o e A-193
SWCNTRL . . . o o A-193

xXii PM Programming Reference Vol I

SWENTRY . . . e A-195

SWP e A-195
TID e e A-197
TRACKINFO e A-197
TREEITEMDESC e e A-199
TREEMOVE e A-200
UCHAR . . e e A-201
ULONG e A-201
USERBUTTON s e e e A-202
USHORT e e A-202
VIOSIZECOUNT e e e s e e e e A-203
VIOFONTCELLSIZE e A-203
VOID . . e e A-204
VSCDATA . . . e e A-204
VSDRAGINFO e A-205
VSDRAGINIT e A-205
VSTEXT e e e e A-206
WNDPARAMS e A-207
WPOINT . . . e e e A-208
WRECT e A-208
XYWINSIZE e A-208
Appendix B. ErrorCodes B-1
Appendix C. Error Explanations C-1
Appendix D. Standard Bit-Map Formats D-1
Bit-Map Datao D-1
Bit-Map Information Tables D-1
Bit-Map Example O D-2
Bit-Map File Format D-2
Appendix E. Fonts Supplied with the 0S/2 Operating System E-1
0S/2 Outline Fonts e E-1
Presentation Manager Bit Map Fonts E-2
Fonts Supplied for ISO 9241 Non-Conforming Hardware E-2
Fonts Supplied for ISO 9241 Conforming Hardware E-5
International Standards Organization (1ISO) 9241 E-7
Appendix F. Format of Interchange Filess F-1
Metafile Restrictions F-1
Metafile Data Format F-3
Structured Field Formats F-4
Appendix G. Initialization File Information G-1
Appendix H. Virtual Key Definitions H-1

Contents XXill

Appendix I. Notices

................................... I-1
Trademarks e I-1
Glossary X-1
Glossary Listing e X-1

Index X-29

XXiV PM Programming Reference Vol Il

Figures

23-1.
26-1.
26-2.
26-3.
26-4.
26-5.
26-6.
31-1.
32-1.
32-2.
32-3.
32-4.
32-5.
32-6.
32-7.
32-8.
32-9.
32-10.
32-11.
32-12.
32-13.
32-14.
32-15.
32-16.

32-17.

32-18.

32-19.
32-20.
32-21.
32-22.
32-23.
32-24.

Tabs Showing Rectangular Area Used to Size aBitMap
Value Setwith BitMaps
Value Set withlcons
Value Set with Text Strings
Value Set with Colors
Value Set withBorder
Value Set with tem Borders
Dialog Template
0S8/2 Code Page Options for PM Applications
US-English: ASCIl Code Page 437
Latin 1 Multilingual: ASCIl Code Page 850
Latin 2 Multilingual: ASCIl Code Page 852
Turkey: ASCIl Code Page 857
Portuguese: ASCIl Code Page 860
Iceland: ASCII Code Page 861
Canadian-French: ASCIl Code Page 863
Norwegian: ASCIl Code Page 865
Desktop Publishing: ASCIl Code Page 1004
US-English: EBCDIC Code Page 037
Austrian/German: EBCDIC Code Page 273
Belgian: EBCDIC Code Page 274 (supported for migration purposes) .
Danish/Norwegian: EBCDIC Code Page 277
Finnish/Swedish: EBCDIC Code Page 278
ltalian: EBCDIC Code Page 280
Portuguese: EBCDIC Code Page 282 (supported for migration purposes) .
Spanish: EBCDIC Code Page 284
UK-English: EBCDIC Code Page 285
French: EBCDIC Code Page 297
International: EBCDIC Code Page 500
Czechoslovakia/Hungary/Poland/Yugoslovia: EBCDIC Code Page 870 . .
Iceland: EBCDIC Code Page 871
Turkey: EBCDIC Code Page 1026

© Copyright IBM Corp. 1994

XXVi PM Programming Reference Vol Il

Chapter 9. Introduction to Message Processing

Messages are processed by window and dialog procedures.

Every window has a window procedure. Windows can also be combined into standard
windows or dialog boxes. These are special cases of groups of windows that also have their
own procedures. A window or dialog procedure must be capable of processing any
message. This can be achieved by delegating some message types to the default window,
or dialog, procedures by use of the WinDefWindowProc and WinDefDIgProc functions
respectively.

Control windows are a special type of child windows. They take the form of objects such as
buttons, scroll bars, list boxes, and text entry fields. These child windows process mouse
and keyboard input and notify its owner of significant input events. Procedures for these
child window controls are inside the Presentation Manager and are often called
system-provided window procedures.

All messages have the same form as QMSG. structure, which has the following form:

Message Types
There are two types of window procedure message processing:
e Default window and dialog procedure message processing
* Control window message processing.

These types are described below along with the notation conventions used in the message
descriptions. - The messages are described in the following chapters.

© Copyright IBM Corp. 1994 : . 9-1

Default Window and Dialog Procedure Message Processing

These window procedures provide default processing for application window procedures:
¢ Default window and dialog procedure

¢ Language support window and dialog procedures, which are used if the application
specifies a null window procedure

+ Default AVIO window procedure.
These messages are described in Chapter 10, “Default Window Procedure Message

Processing” on page 10-1. The system-provided window procedures take no action on
messages that are not defined in this chapter, and return NULL.

Control Window Message Processing

9-2

Controls are predefined classes of child windows that any application can use for input and
output. These control classes are predefined:

WC_BUTTON Consists of buttons and boxes that the operator can select by
clicking the pointing device or using the keyboard. These
messages are described in Chapter 11, “Button Control
Window Processing” on page 11-1.

WC_CIRCULARSLIDER Consists of a visual component whose specific purpose is to
allow a user to set, display, or modify a value by moving the
slider arm around the circular slider dial. Messages are
described in Chapter 25, “Circular Slider Control Window
Messages” on page 25-1.

wWC_COMBOBOX Consists of an entry field control and a list box control merged
' into a single control. The list, which is usually limited in size,
is displayed below the entry field and offset one dialog box
unit to its right. These messages are described in
Chapter 17, “Combination-Box Control Window Processing”
on page 17-1.

WC_CONTAINER Consists of a visual component whose specific purpose is to
hold objects such as executable programs, word processing
files, graphics images, and database records. Messages are
described in Chapter 22, “Container Control Window ‘
Processing” on page 22-1.

WC_ENTRYFIELD Consists of a single line of text that the operator can edit.
These messages are described in Chapter 12, “Entry Field
Control Window Processing” on page 12-1.

WC_FRAME Consists of a composite window. These messages are
described in Chapter 13, “Frame Control Window Processing”
on page 13-1.

WC_LISTBOX Presents a list of text items from which the operator can make

selections. These messages are described in Chapter 14,
“List Box Control Window Processing” on page 14-1.

PM Programming Reference Vol Il

WC_MENU

WC_MLE

WC_NOTEBOOK

WC_SCROLLBAR

WC_SLIDER

WC_SPINBUTTON

WC_STATIC

WC_TITLEBAR

WC_VALUESET

Presents a list of items, which may be text displayed
horizontally as action bars or vertically as pull-down menus.
Menus are usually used to provide a command interface to
applications. These messages are described in Chapter 15,
“Menu Control Window Processing” on page 15-1.

Consists of a rectangular window that displays multiple lines
of text that the operator can edit. When it has the focus, the
cursor marks the current insertion or replacement point.
These messages are described in Chapter 16, “Multi-Line
Entry Field Control Window Processing” on page 16-1.

Consists of a visual component whose specific purpose is to
organize information on individual pages so that a user can
find and display that information quickly and easily.
Messages are described in Chapter 23, “Notebook Control
Window Processing” on page 23-1.

Consists of window scroll bars that allow the operator to make
a request to scroll the contents of an associated window.
These messages are described in Chapter 18, “Scroll Bar
Control Window Processing” on page 18-1.

Consists of a visual component whose specific purpose is to
allow a user to set, display, or modify a value by moving the
slider arm along the slider shaft. Messages are described in
Chapter 24, “Slider Control Window Processing” on

page 24-1.

Presents a scrollable ring of choices from which the operator
can select. These messages are described in Chapter 19,
“Spin Button Control Window Processing” on page 19-1.

Consists of simple display items that do not respond to
keyboard or pointing device events. These messages are
described in Chapter 20, “Static Control Window Processing”
on page 20-1.

Displays the window title or caption and allows the operator to
move its owner. These messages are described in

Chapter 21, “Title Bar Control Window Processing” on

page 21-1.

Consists of a visual component whose specific purpose is to
allow a user to select one choice from a group of mutually
exclusive choices. A value set can use graphical images (bit
maps or icons), as well as colors, text, and numbers, to
represent the items that a user can select. Messages are
described in Chapter 26, “Value Set Control Window
Processing” on page 26-1.

Chapter 9. Introduction to Message Processing 9-3

Owner-Notification Messages: Controls are useful because they notify their owners
when significant events take place. A control notifies its owner by sending a WM_CONTROL
message or by posting a WM_COMMAND or WM_HELP message.

+ WM_CONTROL
« WM_COMMAND

Param2 contains information that indicates the source of the WM_COMMAND message:

CMDSRC_PUSHBUTTON Posted by a pushbutton control
CMDSRC_MENU Posted by a menu control
CMDSRC_ACCELERATOR Posted by WinTranslateAccel
CMDSRC_FONTDLG Posted by a font dialog.
CMDSRC_OTHER Other source.

e WM_HELP
Param1 contains information that indicates the source of the WM_HELP message:
CMDSRC_PUSHBUTTON Posted by a pushbutton control
CMDSRC_MENU Posted by a menu control
CMDSRC_ACCELERATOR Posted by WinTranslateAccel
CMDSRC_OTHER Other source.

Notation Conventions
Each message description contains:
Name The message name; a 2-byte identity unique to a message..

Some message identity values are reserved for the use of the operating
system, some are available for use by an application. See “Reserved
Messages” on page 10-1.

For all messages, the first two or three characters of the name indicate the
type of window that is related to the message; for example:

LM List box control
SBM Scroll bar control.

Cause The principal reason that caused the generation of the message.
Parameters Input and output parameters pertinent to the message.

There are always two parameters (param1 and param2) and one return
value. Any or all of the parameters can be NULL.

Remarks An explanation of the relationship between the parameters in the context of
the message and an indication of the expected processing of the message.

Default A definition of how the default window procedures (provided by the system)
process the message.

Note: A message is not equivalent to a call of the same name.

9-4 Pm Programming Reference Vol Il

Chapter 10. Default Window Procedure Message

Processing

This system-provided window procedure processes the actions that control the operation of

windows.

Purpose

General window messages are used for standard processing. These messages can be
requested from the system or sent to the system for information, or for actions such as
create window, validate window, track mouse movement, and select and deselect actions.

Reserved Messages

These message ranges are reserved:

WM_USER All messages below this value are reserved for system use. Private
messages must have an identifier with a value of WM_USER or higher.

Note: The operating system uses certain message values higher than

WM_USER. These message values should not be used by an
application. A partial listing of these messages is in the following
figure:

From PMSTDDLG.H:

#define FDM_FILTER WM_USER+40
#define FDM_VALIDATE WM_USER+41
#define FDM_ERROR WM_USER+42

#define FNTM_FACENAMECHANGED WM_USER+50
#define FNTM_POINTSIZECHANGED WM_USER+51

#define FNTM_STYLECHANGED WM_USER+52
#define FNTM_COLORCHANGED WM_USER+53
#define FNTM_UPDATEPREVIEW WM_USER+54
#define FNTM_FILTERLIST WM_USER+55

You should scan your header files to see if other messages have
defined with values higher than WM_USER.

been

General Window Styles

The window is the mechanism by which the application communicates with the operator.
Each window can have a window style that controls the appearance and behavior of the

window. There are also class styles that apply to all the windows of a particular class (class
being FRAME, BUTTON, and so on).

© Copyright IBM Corp. 1994

10-1

Window Class Styles

10-2

These window class styles are available:

CS_SIZEREDRAW

CS_SYNCPAINT

CS_MOVENOTIFY

CS_CLIPCHILDREN

CS_CLIPSIBLINGS

CS_PARENTCLIP

CS_SAVEBITS

CS_PUBLIC

CS_HITTEST

CS_FRAME

Determines whether a window will be redrawn when sized.
This style is to be used for a window whose contents are
sensitive to the size of the window. For example, the data
in some windows can be scaled up or down to fit the size of
the Client Area. In other windows, the data remains the
same size whatever the size of the window; it is merely
clipped if the window is made smaller. The -
CS_SIZEREDRAW style is to be used in the first instance
but not in the second. For more information, see
WM_CALCVALIDRECTS.

Window is synchronously repainted. This style causes
WS_SYNCPAINT to be set for all windows of this class.

This class style should be used by a child window if it wants
to be notified with a WM_MOVE message when its parent is
moved. For more detail, see the WM_MOVE message
description.

Causes a window of style WS_CLIPCHILDREN to be
created, regardless of whether this style bit is specified on
the create window function.

Causes a window of style WS_CLIPSIBLINGS to be
created, regardless of whether this style bit is specified on
the create window function.

Causes a window of style WS_PARENTCLIP to be created,
regardless of whether this style bit is specified on the create
window function.

Causes a window of style WS_SAVEBITS to be created,
regardless of whether this style bit is specified on the create
window function.

Causes a public window class to be registered. Itis an
error if this parameter is specified on any process other than
the shell process.

If set, causes a WM_HITTEST message to be sent to the
window, before sending any pointing device message.

If not set, no WM_HITTEST message is sent, and it is
assumed that the window returns HT_NORMAL if the -
window is not disabled, and HT_ERROR if the window is
disabled.

Top-level frame windows do not have CS_HITTEST set.

If set, all windows of this class are expected o behave as
frame windows.

PM Programming Reference Vol |l

Window Styles

These window styles are available:
WS_SYNCPAINT Window is synchronously repainted.

This style is set for windows that have Class Style
CS_SYNCPAINT. Applications can then turn this style on
and off to vary the window processing.

System-Provided Window Styles:

WS_ANIMATE This specifies that window animation will be turned on.
Windows animation is a visual effect that occurs when the
window is opened or closed; the window seems to zoom
out when it is opened, and zoom in when it is closed.

This visual effect also depends on the Animation setting in
the System-Settings notebook. If Animation is enabled and
this window style is set, window animation occurs when the
window is opened or closed. When Animation is disabled in
the System-Settings notebook, this style has no effect and
no window animation occurs.

WS_CLIPCHILDREN This specifies that the area occupied by the children of a
window is to be excluded when drawing in that window.
Normally, it is included.

WS_CLIPSIBLINGS This specifies that the area occupied by the siblings of a
window is to be excluded when drawing in that window.
Normally, it is included.

WS_DISABLED This specifies that the window is disabled. The default is
enabled.

WS_MAXIMIZED This specifies that the frame window is to be created
maximized.

When a window is moved or sized in the normal way at
least one border should remain on the screen. When a
window is maximized and the maximum size is as large as
the screen all borders should be positioned just outside the

screen.
WS_MINIMIZED This specifies that the frame window is to be created
minimized.
WS_PARENTCLIP This controls how a window is clipped when a drawing

action takes place into the window.

Generally, a WS_PARENTCLIP window is not to draw
outside its window rectangle.

WS_SAVEBITS This specifies that the screen image of the area under a
window of this style be saved when the window is made
visible.

Chapter 10. Default Window Procedure Message Processing 10-3

WS_VISIBLE This specifies that the window is visible. The default.is
invisible.

Note: A window can still be visible, in this sense, even if it
cannot be seen because it is covered by other
windows.

Styles for Windows in Dialogs
WS_GROUP This identifies the dialog items that make up a group.

This style is to be specified on the first window of any group.
Subsequent windows of the group must not have this style.
The windows of the group must be adjacent siblings. This
can be done by listing the windows consecutively in
templates (see “Dialog Template” on page 31-24) or by
inserting each new window in the group behind the previous
one (WinCreateWindow).

WS_TABSTOP: This identifies a dialog item as one to which the operator
can TAB.

10-4 PM Programming Reference Vol I

General Window Messages
This section describes the window procedure actions upon receiving the following messages.

PL_ALTERED

This message is broadcast to all frame windows when the PrfReset function is issued.

Parameters
paramt

hiniUser (HINI) ;
Handle of the new user profile.

param2

hiniSystem (HINI)
Handle of the new system profile.

Returns
ulReserved (ULONG)
Reserved value, must be 0.

Remarks
Applications should refresh their defaults from the user or system profile.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to 0.

WM_ACTIVATE

This message occurs when an application causes the activation or deactivation of a window.

Parameters
param1

usactive (USHORT)
Active indicator.

TRUE The window is being activated
FALSE The window is being deactivated.

Chapter 10. Default Window Procedure Message Processing - 10-5

param2

hwnd (HWND)
Window handle.

In the case of activation, hwnd identifies the window being activated. In the case of
deactivation, hwnd identifies the window being deactivated.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

A deactivation message (that is, a WM_ACTIVATE message with usactive set to FALSE) is
sent first to the window procedure of the main window being deactivated, before an activation
message (that is, a WM_ACTIVATE message with usactive set to TRUE) is sent to the
window procedure of the main window being activated.

Any WM_SETFOCUS messages with usfocus set to FALSE, are sent before the deactivation
message. Any WM_SETFOCUS messages with usfocus set to TRUE, are sent after the
activation message.

If WinSetFocus is called during the processing of a WM_ACTIVATE message, a
WM_SETFOCUS message with usfocus set to FALSE is not sent, as no window has the
focus.

If a window is activated before any of its children have the focus, this message is sent to the
frame window or to its FID_CLIENT, if it exists.

Note: Except in the instance of a WM_ACTIVATE message, with usactive set to TRUE, an
application processing a WM_ACTIVATE, or a WM_SETFOCUS message should not
change the focus window or the active window. If it does, the focus and active
windows must be restored before the window procedure returns from processing the
message. For this reason, any dialog boxes or windows brought up during the
processing of a WM_ACTIVATE, or a WM_SETFOCUS message should be system
modal.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Related Messages
¢ WM_ACTIVATE (in Frame Controls)
¢ WM_ACTIVATE (Language Support Dialog)
* WM_ACTIVATE (Language Support Window)

10-6 PM Programming Reference Vol il

WM_APPTERMINATENOTIFY

This message is posted when an application (started by another application) terminates.

Parameters
param1i

happ (HAPP)
Application handle.

param2

firetcode (ULONG)
Return code from the terminating application.

Returns
ulReserved (ULONG)
Reserved value, must be 0.

Remarks
The WM_APPTERMINATENOTIFY message provides the capability for the starting
application to be notified when the started application terminates.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to 0.

WM_ADJUSTWINDOWPOS
This message is sent by the WinSetWindowPos call to enable the window to adjust its new
position or size whenever it is about to be moved.

Parameters
parami

pswp (PSWP)
SWP structure pointer.

The structure has been filled in by the WinSetWindowPos function with the
proposed move or size data. The control can adjust this new position by changing
the contents of the SWP structure. It can change the x or y fields to adjust its new
position; or the cx or cy fields to adjust its new size, or the hwndlnsertBehind field to
adjust its new z-order.

Chapter 10. Default Window Procedure Message Processing 10-7

param2

flzero (ULONG)
Zero.

Returns
fiResult (ULONG)
Window-adjustment status indicators.

These indicators are passed on to the WM_WINDOWPOSCHANGED message that is
sent after the window state change has occurred. Bits 0 through 15 of this parameter
are reserved for system use and bits 16 through 31 are available for application use.

0 No changes have been made
AWP_MINIMIZED The frame window has been minimized.
AWP-MAXIMIZED The frame window has been maximized.
AWP_RESTORED The frame window has been restored.
AWP_ACTIVATE The frame window has been activated.
AWP_DEACTIVATE The frame window has been deactivated.

Remarks
Frame controls can respond to this message to reposition themselves or resize themselves
in the window frame.

Menu controls respond to this message as follows:

MS_ACTIONBAR not specified: The SWP cx and SWP cy fields are set so that the
menu window exactly contains all of the items in the menu. The SWP x and SWP y fields
are not changed. ,

MS_ACTIONBAR specified and MS_TITLEBUTTON not specified: The items in
the menu are arranged such that all of the items are visible within the width specified by the
SWP cx field. This formatting may cause the menu items to be arranged in multiple lines.
The SWP cx field is set to include all of the lines of the menu. The SWP x and SWP y fields
are not changed.

" MS_ACTIONBAR specified and MS_TITLEBUTTON specified: The SWP cx value
is set to the accumulated width of the items in the menu. The height specified in the SWP
cy field is not changed. In both instances, the SWP cx and SWP cy fields are only altered if
SWP_SIZE is specified in the ! field. Instead, the width of MS_TITLEBUTTON menus is

- determined by the accumulated width of the items in the menu.

A list box does two things:

¢ Changes the height so as to accommodate an exact number of items.

¢ Automatically outsets its border. This means, for example, that the x, y, width, and
height fields in the resource file specify the working area of the listbox. The border is
drawn outside this area.

10-8 PM Programming Reference Vol Il

The entry field control, if ES_MARGIN is specified, outsets its margin. This means that in
the resource file, the numbers specified as the x-, and y-position of an entry field control are
taken to be the position where the first character of text is drawn, not where the lower-left
corner of the surrounding box is drawn. Similarly, the height and width parameters apply to
the editable area of the control; consequently, they do not include the margin.

When a dialog is created with WinCreateDlg or WinLoadDlg, a WM_ADJUSTWINDOWPOS
message is sent to each child window after the dialog window is created, with a pointer to a
SWP structure containing f/ equal to SWP_SIZE | SWP_MOVE and the x, y, ¢y, and cx fields
initialized to the current size and position of the window. The message enables the control
to adjust its size or position, usually to compensate for its border, or margin, or both.

Default Processing
The default window procedure takes no action on this message, other than to set fiResult to
0.

WM_BEGINDRAG

This message occurs when the operator initiates a drag operation.

Parameters
param1i

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

param2

fPointer (USHORT)
Input device flag.

TRUE Message resuited from pointer event
FALSE Message resulted from keyboard event.

rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV_BEGINDRAG.

Chapter 10. Default Window Procedure Message Processing 10-9

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

WM_BEGINSELECT

This message occurs when the operator initiates a swipe selection.

Parameters
param1i

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

param2

fPointer (USHORT)
Input device flag.

TRUE Message resulted from pointer event
FALSE Message resulted from keyboard event.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV_BEGINSELECT.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

10-10 PM Programming Reference Vol Il

WM_BUTTON1CLICK

This message occurs when the operator presses and then releases button 1 of the pointing
device within a specified period of time, and without moving the mouse.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, othervwse
it takes no action on this message, other than to set rc to FALSE.

Chapter 10. Default Window Procedure Message Processing 10-11

WM_BUTTON1DBLCLK

This message occurs when the operator presses button 1 of the pointing device twice within
a specified time, as detailed below.

Parameters
paramt

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param?2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the \}alue returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.
A double-click is recognized if all of the following are true:
e Two clicks are of the same button.
* No intervening pointing device button is pressed.

* The two clicks occur within the double-click time interval as defined by the
SV_DBLCLKTIME system value.

10-12 PM Programming Reference Vol i

* The two clicks occur within a small spatial distance. This is defined by the rectangle, the
length of whose sides parallel to the x- and y-axes are respectively, the
SV_CXDBLCLICK and SV_CYDBLCLICK system values. The first click is assumed to
be at the center of this rectangle.

The keyboard control codes specified by “flags” refiects the keyboard state at the time the
mouse message was initiated. This may or may not reflect the current keyboard state.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

Related Messages
¢ WM_BUTTON1DBLCLK (in Frame Controls)
¢ WM_BUTTON1DBLCLK (in Multiline Entry Fields)

WM_BUTTON1DOWN

This message occurs when the operator presses pointer button one.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.

Chapter 10. Default Window Procedure Message Processing 10-13

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks ,
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

It is the responsibility of the application to ensure that the appropriate frame window is
activated and that the focus is to the appropriate window, by using the WinSetFocus function.
The keyboard control codes specified by “flags” reflects the keyboard state at the time the
mouse message was initiated. This may or may not refiect the current keyboard state.

Default Processing
The default window procedure activates the window using WinSetActiveWindow, and then
sets rc to FALSE.

Related Messages
¢ WM_BUTTON1DOWN (in Frame Controls)
* WM_BUTTON1DOWN (in Multiline Entry Fields)

WM_BUTTON1MOTIONEND

“This message occurs when the operator completes a drag operatnon which was initiated by
pressing button one on the pointing device.

Parameters
parami

. ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is terminated.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

10-14 PM Programming Reference Voi I

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_BUTTONTMOTIONSTART

This message occurs when the operator initiates a drag operation by moving the mouse
while pressing button one on the pointing device.

Parameters
param1i

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is started.

param2

fsHitTestres (USHORT)
Hit-test resuit.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Chapter 10. Default Window Procedure Message Processing 10-15

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_BUTTON1UP

This message occurs when the operator releases button 1 of the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the ‘
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks ~

This message is posted to the application queue associated with the window that is to
receive the pointing device button information. The keyboard control codes specified by
“flags” reflects the keyboard state at the time the mouse message was initiated. This may or
may not reflect the current keyboard state.

10-16 PM Programming Reference Vol I

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message other than to set rc to FALSE.

Related Messages
¢ WM_BUTTON1UP (in Frame Controls)
e WM_BUTTON1UP (in Multiline Entry Fields)

WM_BUTTON2CLICK

This message occurs when the operator presses and then releases button 2 of the pointing
device within a specified period of time, and without moving the mouse.

Parameters
param1i

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.
Returns

rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks

This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Chapter 10. Default Window Procedure Message Processing 10-17

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_BUTTON2DBLCLK

This message occurs when the operator presses button 2 of the pointing device twice within
a specified time, as detailed in “WM_BUTTON1DBLCLK” on page 10-12.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks -

This message is posted to the application queue associated with the window that is to
receive the pointer-button information. The keyboard control codes specified by “flags”
reflects the keyboard state at the time the mouse message was initiated. This may or may
not reflect the current keyboard state.

10-18 PM Programming Reference Vol I

Default Processing
The default window procedure processes this message identically to
WM_BUTTON1DBLCLK.

Related Messages
¢ WM _BUTTON2DBLCLK (in Frame Controls)

WM_BUTTON2DOWN

This message occurs when the operator presses button 2 on the pointing device.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test resuit.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see “WM_HITTEST” on page 10-50. ,

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointing device button information. :

Chapter 10. Default Window Procedure Message Processing 10-19

It is the responsibility of the application to ensure that the appropriate frame window is
activated and that the focus is to the appropriate window, by using the WinSetFocus function.
The keyboard control codes specified by “flags” reflects the keyboard state at the time the
mouse message was initiated. This may or may not reflect the current keyboard state.

Default Processing
The default window procedure processes this message identically to “WM_BUTTON1DOWN”
on page 10-13. »

Related Messages
¢ WM_BUTTON2DOWN (in Frame Controls)

WM_BUTTON2MOTIONEND

This message occurs when the operator completes a drag operation which was initiated by
pressing button two on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is terminated.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

10-20 PM Programming Reference Vol I

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_BUTTON2MOTIONSTART

This message occurs when the operator initiates a drag operation by moving the mouse
while pressing button two on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is started.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns,
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks :
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Defauit Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

Chapter 10. Default Window Procedure Message Processing 10-21

WM_BUTTON2UP

This message occurs when the operator releases button 2 of the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks

This message is posted to the application queue associated with the window that is to
receive the pointing device button information. The keyboard control codes specified by
“flags” reflects the keyboard state at the time the mouse message was initiated. This may or
may not reflect the current keyboard state.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message other than to set rc to FALSE.

10-22 PM Programming Reference Vol 1I

Related Messages
* WM_BUTTON2UP (in Frame Controls)

WM_BUTTONS3CLICK

This message occurs when the operator presses and then releases button 3 of the pointing
device within a specified period of time, and without moving the mouse.

Parameters
paramt

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.
*>>> Removed per M.Ng S.Kipp 7/22/94

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing .
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

Chapter 10. Default Window Procedure Message Processing 10-23

WM_BUTTON3DBLCLK
This message occurs when the operator presses button 3 of the pointing device twice within
a specified time, as detailed in “WM_BUTTON1DBLCLK” on page 10-12.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. 1t contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks . ,

This message is posted to the application queue associated with the window that is to
receive the pointer button information. The keyboard control codes specified by “flags”
reflects the keyboard state at the time the mouse message was initiated. This may or may
not reflect the current keyboard state.

Default Processing .
The default window procedure processes this message identically to
WM_BUTTON1DBLCLK.

10-24 PM Programming Reference Vol il

WM_BUTTON3DOWN

This message occurs when the operator presses button 3 on the pointing device.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointing device button information.

It is the responsibility of the application to ensure that the appropriate frame window is
activated and that the focus is to the appropriate window, by using the WinSetFocus function.
The keyboard control codes specified by “flags” reflects the keyboard state at the time the
mouse message was initiated. This may or may not reflect the current keyboard state.

Default Processing
The default window procedure processes this message identically to “WM_BUTTON1DOWN”
on page 10-13.

Chapter 10. Default Window Procedure Message Processing 10-25

WM_BUTTON3MOTIONEND

This message occurs when the operator complétes a drag operation which was initiated by
pressing button three on the pointing device. ‘

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is terminated.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. it contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

10-26 PM Programming Reference Vol Il

WM_BUTTON3MOTIONSTART

This message occurs when the operator initiates a drag operation by moving the mouse
while pressing button three on the pointing device.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is started.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. it contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns !
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

Chapter 10. Default Window Procedure Message Processing 10-27

WM_BUTTON3UP

This message occurs when the operator releases button 3 of the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param?2

fsHitTestres (USHORT)
Hit-test resuilt.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see “WM_HITTEST” on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard contro! codes are valid.

KC_NONE Indicates that no key is pressed.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks

This message is posted to the application queue associated with the window that is to
receive the pointing device button information. The keyboard control codes specified by
“flags” reflects the keyboard state at the time the mouse message was initiated. This may or
may not reflect the current keyboard state.

Default Processing
The default window procedure processes this message identically to WM_| BUTTON1UP

10-28 PM Programming Reference Vol II

WM_CALCFRAMERECT

This message occurs when an application uses the WinCalcFrameRect function.

Parameters
param1

pRect (PRECTL)
Rectangle structure.

This points to a RECTL structure.
param2

usFrame (USHORT)
Frame indicator.

TRUE Frame rectangle provided
FALSE Client area rectangle provided.

Returns
rc (BOOL)
Rectangle-calculated indicator.

TRUE Successful completion
FALSE Error occurred or the calculated rectangle is empty.

Remarks

This message is sent to the frame control to perform the appropriate calculation. If the low
word of MP2 is TRUE, the RECTL structure in MP1 contains a frame window and this
message calculates the RECTL of the client. If the low word of MP2 is FALSE, MP1
contains a client window and this message calculates the RECTL of the frame.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
e WM_CALCFRAMERECT (in Frame Controls)

Chapter 10. Default Window Procedure Message Processing 10-29

WM_CALCVALIDRECTS

This message is sent from WinSetWindowPos and WinSetMultWindowPos to determine
which areas of a window can be preserved if a window is sized, and which should be
redisplayed.

Parameters
parami

pOldNew (PRECTL)
Window-rectangle structures.

This points to two RECTL structures. The first structure contains the rectangle of
the window before the move, the second contains the rectangle of the window after
the move. The coordinates of the rectangles are relative to the parent window.

param2

pNew (PSWP)
New window position.

This points to a SWP structure that contains information about the window after it is
resized (see the WinSetWindowPos function).

Returns
usAlign (USHORT)
Alignment control.

This instructs WinSetWindowPos how to align valid window bits. This value is made up
from CVR_* flags, as follows:

CVR_ALIGNLEFT Align with the left edge of the window.
CVR_ALIGNBOTTOM Align with the bottom edge of the window.
CVR_ALIGNTOP Align with the top edge of the window.

CVR_ALIGNRIGHT Align with the right edge of the window.

CVR_REDRAW The whole window is invalid. If kCVR__REDRAW, is set, the

whole window is assumed invalid, otherwise, the remaining
flags can be ORed together to get different kinds of alignment.
For example:

(CVR_ALIGNLEFT | CVR_ALIGNTOP)
aligns the valid window area with the top-left of the window.

0 It is assumed the application has changed the rectangles
pointed to by pOldNew and pNew itself.

10-30 PM Programming Reference Vol i

Remarks
This message is not sent if this window has the CS_SIZEREDRAW style, indicating
size-sensitive window content that must be totally redrawn if sized.

This enables the application to determine if the position of the window has changed as well
as its size; this can aid alignment processing.

These rectangles can be modified by the window procedure to cause parts of the window to
be redrawn and not preserved.

The window manager tries to preserve the screen image by copying the image described by
the old rectangle into the image described by the new rectangle. In this way, an application
can control the alignment of the preserved image as well, by changing the origin of the first
rectangle.

If no change is made to either rectangle, the entire window area is preserved. If either
rectangle is empty, the entire window area is completely redrawn by the operation.

Note: This functionality can be used to optimize window updating when the window is
resized. For example, if the application returns that the window is to be aligned with
the top-left corner, and the top border is sized, the screen data of the window moves
with the top border.

In all instances, the rectangles are intersected with the area of the screen that is
actually visible and the valid area of the window. That is, only the window area that
contains window information is copied.

For example, consider an application that has two scroll bars, that are children of the
client window. When the window is resized, the scroll bars must be completely
redrawn. By returning rectangles that exclude the scroll bars, the area of the scroll
bars is completely redrawn, thereby preserving only the part of the screen that is
worth preserving.

Default Processing
The default window procedure processing is to align the valid area with the top-left of the
window by returning:

(CVR_ALIGNTOP | CVR_ALIGNLEFT)

In addition, any child windows intersecting the source rectangle pointed to by pOldNew of
this message, are also offset with the aligned window area.

Chapter 10. Default Window Procedure Message Processing 10-31

WM_CHAR

This message is sent when an operator presses a key.

Parameters
param1i

fsflags (USHORT)

Keyboard control codes.

KC_CHAR
KC_SCANCODE

KC_VIRTUALKEY

KC_KEYUP
KC_PREVDOWN

KC_DEADKEY

KC_COMPOSITE

KC_INVALIDCOMP

KC_LONEKEY

KC_SHIFT

KC_ALT

Indicates that usch value is valid.
Indicates that ucscancode is valid.

Generally, this is set in all WM_CHAR messages generated
from actual operator input. However, if the message has
been generated by an application that has issued the
WinSetHook function to filter keystrokes, or posted to the
application queue, this may not be set.

Indicates that usvk is valid.

Normally usvk should be given precedence when processing
the message.

Note: For those using hooks, when this bit is set,
KC_SCANCODE should usually be set as well.

The event is a key-up transition; otherwise it is a down
transition.

The key has been previously down; otherwise it has been
previously up.

The character code is a dead key. The application is
responsible for displaying the glyph for the dead key without
advancing the cursor.

The character code is formed by combining the current key
with the previous dead key.

The character code is not a valid combination with the
preceding dead key. The application is responsible for
advancing the cursor past the dead-key glyph and then, if the
current character is not a space, sounding the alarm and
displaying the new character code.

Indicates if the key is pressed and released without any other
keys being pressed or released between the time the key
goes down and up.

The SHIFT state is active when key press or release
occurred.

The ALT state is active when key press or release occurred.

10-32 PM Programming Reference Vol Il

KC_CTRL The CTRL state was active when key press or release
occurred.

ucrepeat (UCHAR)
Repeat count.

ucscancode (UCHAR)
Hardware scan code.

A keyboard-generated value that identifies the keyboard event. This is the raw scan
code, not the translated scan code.

param2

usch (USHORT)
Character code.

The character value transiation of the keyboard event resulting from the current
code page that would apply if the CTRL or ALT keys were not depressed.

usvk (USHORT)
Virtual key codes.

A virtual key value translation of the keyboard event resulting from the virtual key
code table. The low-order byte contains the vk value, and the high-order byte is
always set to zero by the standard translate table.

0 This value applies if fsflags does not contain KC_VIRTUALKEY.
Returns

rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks _
This message is posted to the queue associated with the window that has the focus.

The set of keys that causes a WM_CHAR message is device-dependent.

When this message is processed, precedence should normally be given to a valid virtual key
if there is one contained in the message.

There are several instances when a window procedure may receive this message with the
KC_KEYUP bit set, although it did not receive this message for the down transition of the
key.

For example,

¢ The down transition of the key is translated by the function WinTrahsIateAcceI, into a
WM_COMMAND, WM_SYSCOMMAND, WM_HELP, or a WM_NULL message.

Chapter 10. Default Window Procedure Message Processing 10-33

¢ The key down causes the input focus to change (tab to another window, dismiss a
dialog, exit a program, and so on). ’

* Some other event happens that changes the focus between the time that the key is
pressed down and the time that it is released.

Applications should normally only process WM_CHAR messages that do not have the
KC_KEYUP bit set.

Except for the special instance where the LONEKEY flag is set on an accelerator key
definition, all translations are done on the down stroke of the character.

When {he current character is a double-byte character then param2 contains both bytes of
the double-byte character. These bytes are in the order CHAR1FROMMP,
CHAR2FROMMP. When the current character is a single-byte character, CHAR2FROMMP
contains 0.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message other than to set rc to FALSE.

Related Messages
¢ WM_CHAR (Default Dialogs)
¢ WM_CHAR (in Entry Fields)
* WM_CHAR (in Frame Controls)
¢ WM_CHAR (in List Boxes)
e WM_CHAR (in Multiline Entry Fields)

Examples

This example uses the CHARMSG macro to process a WM_CHAR message. It first uses
the macro to determine if a key was released. It then uses the macro to generate a switch
statement based on the character received.

10-34 PM Programming Reference Vol Il

WM_CHORD

This message occurs when the operator presses both button one and button two on the
pointing device.

Parameters
param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_CLOSE

This message is sent to a frame window to indicate that the window is being closed by the
user.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Chapter 10. Default Window Procedure Message Processing 10-35

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

This message is sent by the frame to itself as a result of receiving a WM_SYSCOMMAND
message with SC_CLOSE code set. If this message is passed to WinDefDIgProc, this
function calls WinDismissDIlg and passes the DID_CANCEL result code to it.

Default Processing
The default window procedure posts a WM_QUIT message to the appropriate queue and
sets ulReserved to 0.

Related Messages
¢ WM_CLOSE (Default Dialogs)
¢ WM_CLOSE (in Frame Controls)

Examples

In this example, the fChanges variable is checked. If it is TRUE, the user is asked if he
wants to exit without saving any changes. |f the user responds by choosing the No button,
zero is returned and the application does not exit. If the user responds by choosing the Yes
button, a WM_QUIT message is posted and the application terminates.

10-36 PM Programming Reference Vol Il

WM_COMMAND

This message occurs when a control has a significant event to notify to its owner, or when a
key stroke has been translated by an accelerator table. :

Parameters
param1i

uscmd (USHORT)
Command value.

It is the responsibility of the application to be able to relate uscmd to an application
function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control. uscmd is the
window identity of the push button.

CMDSRC_MENU Posted by a menu control. uscmd is the identity of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

CMDSRC_FONTDLG Font dialog. uscmd is the identity of the font dialog.
CMDSRC_FILEDLG File dialog. uscmd is the identity of the file dialog.
CMDSRC_OTHER Other source. uscmd gives further control-specific

information defined for each control type.

uspointer (USHORT)
Pointer-device indicator.

TRUE The message is posted as a result of a pointer-device operation.
FALSE The message is posted as a result of a keyboard operation.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Chapter 10. Default Window Procedure Message Processing 10-37

Remarks
This message is posted to the queue of the owner of the control.

WM_Command handles popup menu command identifiers for pickup, putdown and cancel
drag operations. It determines which items to display based on the state of the lazy drag
and droppability of the lazy drag set.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

Related Messages
e WM_COMMAND (Default Dialogs)
¢ WM_COMMAND (in Button Controls)
* WM_COMMAND (in Menu Controls)
* WM_SYSCOMMAND (in Title Bar Controls)

WM_CONTEXTMENU

This message occurs when the operator requests a pop-up menu.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

param2

usReserved (USHORT)
Reserved value, 0.

fPointer (USHORT)
Input device flag.

TRUE Message resulted from keyboard event.
FALSE Message resulted from mouse pointer event.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

10-38 PM Programming Reference Vol Il

Remarks

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV_CONTEXTMENU, or a
keyboard event, specified by the system value SV_CONTEXTMENUB.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

WM_CONTROL

This message occurs when a control has a significant event to notify to its owner.

Parameters
param1

id (USHORT)
Control-window identity.

This is either the id parameter of the WinCreateWindow function or the identity of an
item in a dialog template.

usnotifycode (USHORT)
Notify code.

The meaning of the notify code depends on the type of the control. For details,
refer to the section describing that control.

param2

ulcontrolspec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of the control.
For details, refer to the section describing that control.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
This message is sent to the owner of the control, thereby offering it the opportunity to
perform some activity before returning to the control.

Chapter 10. Default Window Procedure Message Processing 10-39

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Related Messages

¢ WM_CONTROL (in Button Controls)
WM_CONTROL (in Entry Fields)
WM_CONTROL (Language Support Dialog)
WM_CONTROL (Language Support Window)
WM_CONTROL (in List Boxes)
WM_CONTROL (in Multiline Entry Fields)
WM_CONTROL (in Combination Boxes)
WM_CONTROL (in Spin Button Controls)

WM_CONTROLPOINTER

This message is sent to a owner window of a control when the pointing device pointer moves
over the control window, allowing the owner to set the pointing device pointer.

Parameters
param1

usidCtl (USHORT)
Control.identifier.

param2

hptrNew (HPOINTER)
Handle of the pointing device pointer that the control is to use.

Returns
hptrRet (HPOINTER)
Returned pointing device-pointer handle that is then used by the control.

Remarks
The recommended approach for an application, that does not have specific reasons for
controlling the pointer appearance, is to pass the message to the default window procedure.

Default Processing
The defauit window procedure returns hptrNew.

10-40 PM Programming Reference Vol Ii

WM_CREATE

This message occurs when an application requests the creation of a window.

Parameters
param1

ctidata (PVOID)
Pointer to control data.
This points to a Control-Data data structure initialized with the data provided in the
pCtiData parameter of the WinCreateWindow function. This pointer is also
contained in the pCREATE parameter.

This parameter MUST be a pointer rather than a long.

The first 2 bytes in the data referenced by this pointer should be the total size of the
data referenced by the pointer, (for example, see the ENTRYFDATA or the
FRAMECDATA structure). PM requires this information to enable it to ensure that
the referenced data is accessible to both 16-bit and 32-bit code.

param2

PCREATE (PCREATESTRUCT)
Create structure.

This points to a CREATESTRUCT data structure. See the description of ctidata for
a complete description.

Returns
rc (BOOL)
Error indicator.

TRUE Discontinue window creation
FALSE Continue window creation.

Remarks
This message is sent to the window procedure of the window being created, thus offering it
an opportunity to initialize that window.

The window procedure receives this after the window is created but before the window
becomes visible.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE, which is equivalent to continuing the creation of the window.

Chapter.10. Default Window Procedure Message Processing 10-41

WM_DESTROY

This message occurs when an application requests the destruction of a window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

This message is sent to the window procedure of the window being destroyed after it has
been hidden on the device, thereby offering it an opportunity to perform some termination
action for that window.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0. ‘

WM_DRAWITEM

This notification is sent to the owner of a control each time an item is to be drawn.

Parameters
parami

ididentity (USHORT)

Window identifier.
The window identity of the control sending this notification message.

10-42 PM Programming Reference Vol Ii

param2

ulcontrolspec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of control. For
details of each control type, refer to the appropriate section.

Returns
rc (BOOL)
ltem-drawn indicator.

TRUE The owner has drawn the item; and so the control does not draw it.
FALSE If the item contains text and the owner does not draw the item, the owner
returns this value and the control draws the item.

Remarks

A control can only display some types of information, and emphasize items in a
control-specific manner. Therefore, if special items are to be displayed or emphasized in a
special manner, this must be done by the owner window of the control.

The control window procedure generates this message and sends it to the owner of the
control, informing the owner that an item is to be drawn, offering the owner the opportunity to
draw that item and to indicate that either the item has been drawn or that the control is to
draw it.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Related Messages
* WM_DRAWITEM (in Frame Controls)
e WM_DRAWITEM (in List Boxes)
* WM_DRAWITEM (in Menu Controls)

WM_ENABLE

This message notifies a windows of a change to its enable state.

Parameters
param1i

usnewenabledstate (USHORT)
New enabled state indicator.

TRUE The window was set to the enabled state.
FALSE The window was set to the disabled state,

Chapter 10. Default Window Procedure Message Processing 10-43

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

This message is sent to the window procedure of the window whose enable state has been
changed, thereby giving it an opportunity to perform some action appropriate to new state of
the window.

This is just a notification message. If you want to change the enable state of a window, you
would use WinEnableWindow

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to 0.

Related Messages
¢ WM_ENABLE (in Button Controls)
e WM_ENABLE (in Multiline Entry Fields)

WM_ENDDRAG

This message occurs when the operator completes a drag operation.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

1

10-44 PM Programming Reference Vol Il

param2

fPointer (USHORT)
Input device flag.

TRUE Message resulted from pointer event
FALSE - Message resulted from keyboard event.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV_ENDDRAG.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

WM_ENDSELECT

This message occurs when the operator either makes a selection or completes a swipe
selection.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

param2

fPointer (USHORT)
Input device flag.

TRUE Message resulted from pointer event
FALSE Message resulted from keyboard event.

Chapter 10. Default Window Procedure Message Processing 10-45

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV_ENDSELECT.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE. -

WM_ERROR

This message occurs when an error is detected in a WinGetMsg or a WinPeekMsg function.

Parameters
param1i

userrorcode (USHORT)
Error code.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The application can detect the error situation after the WinGetMsg or the WinPeekMsg
function and before the WinDispatchMsg function.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

10-46 PM Programming Reference Vol il

WM_FOCUSCHANGE

This message occurs when the window possessing the focus is changed.

Parameters
param1

hwndFocus (HWND)
Focus window handle.

param2

usSetFocus (USHORT)
Focus flag.

TRUE The window is receiving the focus and hwndFocus identifies the window
losing the focus.

FALSE The window is losing the focus and hwndFocus identifies the window
receiving the focus.

fsFocusChange (USHORT)
Focus changing indicators.

The indicators are passed from the WinFocusChange function.

Returns
ulReserved (ULONG)
Reserved value, shouid be 0.

Remarks
This message is sent to both the windows gaining and losing the focus.

Default Processing
The default window procedure sends this message to the owner or parent, if it exists and is
not the desktop. Otherwise, it sets u/lReserved to 0.

Related Messages
¢ WM_FOCUSCHANGE (in Frame Controls)

Chapter 10. Default Window Procedure Message Processing 10-47

WM_FORMATFRAME

This message is sent to a frame window to calculate the sizes and positions of all of the
frame controls and the client window.

Parameters
param1

pswp (PSWP)
Structure array.

This points to an array that is to hold the SWP structures.

param2

pprectl (PRECTL)
Pointer to client window rectangle.

This is typically the window rectangle of pswp, bﬁt where the window has a wide
border, as specified by FCF_DLGBORDER for example, the rectangle is inset by
the size of the border.

Returns
ccount (USHORT)
Count of the number of SWP arrays returned.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set ccount to the default value of 0.

Related Messages
» WM_FORMATFRAME (in Frame Controls)

10-48 PM Programming Reference Vol It

WM_HELP

This message occurs when a control has a significant event to notify to its owner or when a
key stroke has been translated by an accelerator table into a WM_HELP.

Parameters
param1i

uscmd (USHORT)
Command value.

It is the responsibility of the application to be able to relate uscmd to an application
function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control. uscmd is the
window identity of the push button.

CMDSRC_MENU Posted by a menu control. uscmd is the identity of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

CMDSRC_OTHER Other source. uscmd gives further control-specific
information defined for each control type.

uspointer (USHORT)
Pointer-device indicator.

TRUE If the message is posted as a result of a pointer-device operation
FALSE If the message is posted as a result of a keyboard operation.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
This message is identical to a WM_COMMAND message, but implies that the application
should respond to this message by displaying help information.

This message is posted to the queue of the owner of the control.

Chapter 10. Default Window Procedure Message Processing 10-49

Default Processing
The default window procedure sends this message to the parent window, if it exists and is
not the desktop. Otherwise, it sets u/Reserved to 0.

Related Messages
¢ WM_HELP (in Button Controls)
¢ WM_HELP (in Menu Controls)

WM_HITTEST

This message is sent to determine which window is associated with an input from the
pointing device.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulresult (ULONG)
Hit-test indicator.

The application may return one of these values:

HT_NORMAL The message should be processed as normal. A
WM_MOUSEMOVE, WM_BUTTON2DOWN, or
WM_BUTTON1DOWN message is posted to the window.

HT_TRANSPARENT The part of the window underneath the pointer is transparent;
hit-testing should continue on windows underneath this window,
as if the window did not exist.

HT_DISCARD The message should be discarded; no message is posted to the
application.
HT_ERROR v As HT_DISCARD, except that if the message is a button-down

message, an alarm sounds and the window concerned is
brought to the foreground.

10-50 PM Programming Reference Vol II

Remarks
This message occurs when an apphcatlon requests a message by issuing a WinPeekMsg or
a WinGetMsg function.

If the message that is to be retrieved represents a pointer related event, this message is sent
to a window to determine whether the message is in fact destined for that window.

This message is only sent if the window class has the CS_HITTEST style set.

Note: The handling of this message determines whether a disabled window can process
pointing device events.

Default Processing
The default window procedure takes no action on this message, other than to set ulresult to
HT_ERROR if the window is disabled, or to HT_NORMAL otherwise.

WM_HSCROLL

This message occurs when a horizontal scroll bar control has a significant event to notify to
its owner.

Parameters
param1

usidentifier (USHORT)
Scroll bar control window identifier.

param2

sslider (SHORT)
Slider position.

0 Either the operator is not moving the slider with the pointer device, or for
the instance where uscmd is SB_SLIDERPOSITION the pointer is outside
the tracking rectangle when the button is released.

Other Slider position.
uscmd (USHORT)

Command.

SB_LINELEFT Sent if the operator.clicks on the left arrow of the scroll
bar, or depresses the VK_LEFT key.

SB_LINERIGHT Sent if the operator clicks on the right arrow of the scroll
bar, or depresses the VK_RIGHT key.

SB_PAGELEFT Sent if the operator clicks on the area to the left of the

slider, or depresses the VK_PAGELEFT key.

Chapter 10. Default Window Procedure Message Processing 10-51

SB_PAGERIGHT Sent if the operator clicks on the area to the right of the
slider, or depresses the VK_PAGERIGHT key.

SB_SLIDERPOSITION Sent to indicate the final position of the slider.

SB_SLIDERTRACK If the operator moves the scroll bar slider with the pointer
device, this is sent every time the slider position changes.
SB_ENDSCROLL Sent when the operator has finished scrolling, but only if
- the operator has not been doing any absolute slider
positioning.
Returns

ulReserved (ULONG)
Reserved value, should be 0.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to 0.

Related Messages
¢ WM_HSCROLL (in Horizontal Scroll Bars)

WM_INITDLG v

This message occurs when a dialog box is being created.

Parameters
param1

hwnd (HWND)
Focus window handle.

The handle of the control window that is to receive the input focus.

param2

pcreate (PVOID)
" Application-defined data area.

This points to the data area and is passed by the WinLoadDlg, WinCreateDlg, and
WinDIgBox functions in their pCreateParams parameter.

This parameter MUST be a bointer rather than a long.

The first 2 bytes in the data referenced by this pointer should be the total size of the
data referenced by the pointer, (for example, see the ENTRYFDATA or the
FRAMECDATA structure). PM requires this information to enable it to ensure that
the referenced data is accessible to both 16-bit and 32-bit code.

10-52 PM Programming Reference Vol Il

Returns
rc (BOOL)
Focus set indicator.

TRUE Focus window is changed. The dialog procedure can change the window to
receive the focus, by issuing a WinSetFocus whose hwndNewFocus specifies
the handle of another control within the dialog box.

FALSE Focus window is not changed.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE. ,

Related Messages
* WM_INITDLG (Default Dialogs)

WM_INITMENU

This message occurs when a menu control is about to become active.

Parameters
parami

smenuid (SHORT)
Menu-control identifier.

param2

hwnd (HWND)
Menu-window handie.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

Related Messages
¢ WM_INITMENU (in Frame Controls)
¢ WM_INITMENU (in Menu Controls)

Chapter 10. Default Window Procedure Message Processing 10-53

WM_JOURNALNOTIFY

This message is used to maintain correct operation during journal playback.

Parameters
param1i

ulCommand (ULONG)
Command to journal.

JRN_QUEUESTATUS The WinQueryQueueStatus command must be journaled.
JRN_PHYSKEYSTATE The WinGetPhysKeyState command must be journaled.

param2
Data.

fsQueueStatus (USHORT)
Queue status.

See the Summary parameter of the WinQueryQueueStatus function.

usScanCode (USHORT)
Scan code.

See the sc parameter of the WinGetPhysKeyState function.

param2 contains usScanCode and usKeyState if ulCommand has the value
JRN_PHYSKEYSTATE.

usKeyState (USHORT)
Key State.

See the IKeyState parameter of the WinGetPhysKeyState function.

paramé contains usScanCode and usKeyState if ulCommand has the value
JRN_PHYSKEYSTATE.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

If the WinQueryQueueStatus or the WinGetPhysKeyState functions have new information
since the last time they were called and there is a journal record hook installed, the journal
record hook is called with this message to record this new information.

During playback, this message is interpreted by the system and the appropriate state
restored.

Data values of the param2 parameter depend on which command is to be journaled.

10-54 PM Programming Reference Vol i

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set u/Reserved to 0.

WM_MATCHMNEMONIC

This message is sent by the dialog box to a control window to determine whether a typed
character matches a mnemonic in its window text.

Parameters
parami

usmatch (USHORT)
Match character.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Match indicator.

TRUE Mnemonic found
FALSE Mnemonic not found, or an error occurred.

Default Processing
The default dialog procedure takes no action on this message, other than to set rc to FALSE.

Related Messages
* WM_MATCHMNEMONIC (in Button Controls)
¢ WM_MATCHMNEMONIC (Default Dialogs)
¢ WM_MATCHMNEMONIC (in Static Controls)

WM_MEASUREITEM

This notification is sent to the owner of a specific control to establish the height and width for
an item in that control.

Parameters
paramt

sldentity (SHORT)
Control identifier.

Chapter 10. Default Window Procedure Message Processing 10-55

param?2

ulControlSpec (ULONG)
Controi-specific information.

The meaning of the control-specific information depends on the type of control. For
details of each control type, refer to the appropriate control section.

Returns
ReturnCode

sHeight (SHORT)
Height of item.

sWidth (SHORT)
Width of item.

Remarks
When the owner receives this message, it must calculate and return the height and width (for
a horizontally-scrollable list box control) of an item to the control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set ReturnCode to the default value of 0.

Related Messages
« WM_MEASUREITEM (in Frame Controls)
* WM_MEASUREITEM (in List Boxes)
* WM_MEASUREITEM (in Menu Controls)

WM_MENUEND

This message occurs when a menu control is about to terminate.

Parameters
parami

usmenuid (USHORT)
Menu-control identifier.

param2

hwnd (HWND)
Menu-control window handle.

10-56 PM Programming Reference Vol II

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

Related Messages
* WM_MENUEND (in Menu Controls)

WM_MENUSELECT

This message occurs when a menu item has been selected.

Parameters
param1i

usltem (USHORT)
Identifier of selected item.

usPostCommand (USHORT)
Post-command flag.

TRUE Indicates that either a WM_COMMAND, WM_SYSCOMMAND, or
WM_HELP message is being posted by the menu control on return from
the owner, subject to rc.

FALSE Indicates that no message is being posted by the menu control on return
from the owner, subject to rc.

param2

hwnd (HWND)
Menu-control window handle.

Returns
rc (BOOL)
Post indicator.

TRUE Indicates that either a WM_COMMAND, WM_SYSCOMMAND, or WM_HELP
message is to be posted by the menu control window procedure. The menu
is dismissed if the selected item does not have a style of MIA_NODISMISS.

FALSE Indicates that no message is to be posted by the menu control window
procedure and that the menu is not dismissed.

Chapter 10. Default Window Procedure Message Processing 10-57

Default Processing
The default window procedure takes no action on this message, other than to set rc to
TRUE.

Related Messages
* WM_MENUSELECT (in Frame Controls)
¢ WM_MENUSELECT (in Menu Controls)

WM_MINMAXFRAME

This message is sent to a frame window that is being minimized, maximized, or restored.

Parameters
parami

pswp (PSWP)
Set window position structure.

This points to a SWP structure. The structure has the appropriate SWP_*
indicators set to describe the operation that is occurring to the window.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Processed indicator.

TRUE The message has been processed; the default system actions for the
operation specified by the pswp parameter to the window are not to be
performed.

FALSE The message has been ignored; the default system actions for the operation
specified by the pswp parameter to the window are to be performed.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
« WM_MINMAXFRAME {(in Frame Controls)

10-58 PM Programming Reference Vol Ii

WM_MOUSEMAP

This message is specific to version 2.1, or higher, of the OS/2 operating system.

This message is used only by applications that wish to remap mouse messages in the PM
input queue. It is not recommended for general application usage, and applications should
NOT process this message in their window procedures.

Parameters
param1i

ulPhysButton (ULONG)
The physical button number (1, 2, or 3).

param2

ulMappedButton (ULONG)
The button to be mapped to (1, 2, or 3).

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

PM will interpret this message when it is read from the PM input queue, as a request to
remap all subsequent mouse events for the desired button, until another WM_MOUSEMAP
message is received, cancelling that remap request. This message has no meaning to an
application.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

WM_MOUSEMOVE

This message occurs when the pointing device pointer moves.

Parameters
parami

sxMouse (SHORT)
Pointing device x-coordinate.

syMouse (SHORT)
Pointing device y-coordinate.

Chapter 10. Default Window Procedure Message Processing 10-59

param2

uswHitTest (USHORT)
Message result.

Zero A pointing device capture is currently in progress
Other The result of the WM_HITTEST message.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

Returns
rc (BOOL)
Processed indicator.

TRUE The window procedure did process the message.
FALSE The window procedure did not process the message.

Remarks
The keyboard control codes specified by “flags” reflects the keyboard state at the time the
mouse message was initiated. This may or may not reflect the current keyboard state.

param1 contains the position of the pointing device in window coordinates relative to the
bottom-left corner of the window.

Default Processing
The default window procedure sets the pointer shape using the WinSetPointer function and
sets rc to FALSE.

Related Messages
« WM_MOUSEMOVE (in Mulitiine Entry Fields)

WM_MOVE

This message occurs when a window with style CS_MOVENOTIFY changes its absolute
position.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

10-60 PM Programming Reference Vol Ii

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks ‘
The message is sent from WinSetWindowPos, WinSetMultWindowPos, and
WinScrollWindow.

The message is sent to any window when it is moved relative to its parent window. In
addition, a WM_MOVE message is also sent to any children of that window that have style
CS_MOVENOTIFY.

The new position of the window is obtained by calling WinQueryWindowRect, and can make
those rectangle coordinates relative to any window by calling WinMapWindowPoints.

Note: There are several instances where windows have cause to know if they have been
moved, and these include the occasions when the window does not change position
relative to its parent, but does change position relative to the screen (its absolute
position).

An example is menus. When a top-level menu control (child of the frame window)
moves its absolute position as a result of the frame window being moved, the
top-level menu control causes the movement of any pull-down menus along with its
movement. The same applies to application/dialog box positional grouping. In some
instances, a dialog box might cause to be moved as the main window is moved, to
make room for other applications.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Chapter 10. Default Window Procedure Message Processing 10-61

WM_MSGBOXDISMISS

This message notifies the owner of the message when a non-modal message box has been
dismissed (the message box is no longer visible).

Parameters
param1i

hwnd (HWND)
Non-modal window handle.

param2

ulButtonid (ULONG)
Identity of the selected button in the message box.

Returns
ulReserved (ULONG)
Reserved value, must be 0.

Remarks
This message is processed within the owner’s window procedure when a non-modal
message box is dismissed. It is up to the parent to destroy the message box.

WM_MSGBOXINIT

This message notifies the owner of the message when a non-modal message box has been
created and is currently being displayed.

Parameters
param1

hwnd (HWND)
Non-modal window handie.

param2

idWindow (LONG)
Window identity of the message box.

Returns
ulReserved (ULONG)
Reserved value, must be 0.

10-62 PM Programming Reference Vol Il

Remarks

This message is processed within the owner’s window procedure when a non-modal
WinMessageBox2 is created. It is up to the owner to store the window handie returned by
this function. This handie is then used to properly destroy the message box when
WM_MSGBOXDISMISS is received or when the parent chooses to destroy it.

WM_NEXTMENU

This message occurs when either the beginning or the end of the menu is reached by use of
the cursor control keys.

Parameters
param1i

hwndMenu (HWND)
Menu-control window handie.

param2

usPrev (USHORT)
Previous-menu indicator.

TRUE Beginning of the menu has been reached
FALSE End of the menu has been reached.

Returns
hwndNewMenu (HWND)
New menu window handle.

NULLHANDLE No new menu
Other New menu window handle.

Default Processing
The default window procedure takes no action on this message, other than to set
hwndNewMenu to NULLHANDLE.

Related Messages
« WM_NEXTMENU (in Frame Controls)
¢ WM_NEXTMENU (in Menu Controls)

Chapter 10. Default Window Procedure Message Processing 10-63

WM_NULL

This message is posted to activate message queues or modal loops.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
On receiving this message, the application should simply let the default processing take
place.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

10-64 PM Programming Reference Vol Ii

WM_OPEN

This message occurs when the operator makes an OPEN request.

Parameters
param1i

usPointer (USHORT)
Input device flag.

TRUE Message resulted from pointer event
FALSE Message resulted from keyboard event

param2

ptspoi nterpbs (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV_OPEN.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

WM_PACTIVATE

This message is posted when the Language Support Window or Dialog Procedure processes
a WM_ACTIVATE message.

Parameters
parami

usactive (USHORT)
Active indicator.

Chapter 10. Default Window Procedure Message Processing 10-65

TRUE The window was activated
FALSE The window was deactivated.

param2

hwnd (HWND)
Window handle.

In the case of activation, hwnd identifies the window which was activated. In the
case of deactivation, hwnd identifies the window which was deactivated.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The activation change has already occurred when the application receives this message.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

WM_PAINT

This message occurs when a window needs repainting.

Parameters
param1i

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and
then sets ulReserved to 0.

10-66 PM Programming Reference Vol i

Related Messages
¢« WM_PAINT (in Frame Controls)
« WM_PAINT (Language Support Dialog)
* WM_PAINT (Langauge Support Window)

Examples

This example shows how an application gets a presentation space for drawing by calling the
WinBeginPaint function. When drawing is complete, the WinEndPaint function is called to
release the presentation space.

WM_PCONTROL ,
This message is posted when the Language Support Window or Dialog Procedure processes
a WM_CONTROL message.

Parameters
param1

id (USHORT)
Control-window identity.

This is either the id parameter of the WinCreateWindow function or the identity ofan -
item in a dialog template.

usnotifycode (USHORT)
Notify code.

The meaning of the notify code depends on the type of the control. For details,
refer to the section describing that control.

param2

ulZero (ULONG)
Zero.

0 The control-specific information in ulcontrolspec of the WM_CONTROL
message is not available because the information might not be valid when the
application receives this message.

Chapter 10. Default Window Procedure Message Processing 10-67

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The notification from the control has already been processed when the application receives
this message.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0. '

WM_PPAINT

This message is posted when the Language Support Window or Dialog Procedure processes
a WM_PAINT message.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and
then sets ulReserved to 0.

Related Messages
* WM_PPAINT (Language Support Dialog)
¢ WM_PPAINT (Language Support Window)

10-68 PM Programming Reference Vol Il

WM_PRESPARAMCHANGED

This message is sent when a presentation parameter is set or removed dynamically from a
window instance using the WinSetPresParam or WinRemovePresParam functions. It is also
sent to all windows owned by the window whose presentation parameter was changed.

Parameters
param1i

idAttrType (ULONG)
Presentation parameter attribute identity.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
This message notifies a control when an inherited presentation parameter changes.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

WM_PSETFOCUS

This message is posted when the Language Support Window or Dialog Procedure processes
a WM_SETFOCUS message.

Parameters
param1

hwnd (HWND)
Focus-window handle.

NULLHANDLE No window lost or received the focus.
Other Window handle.

Chapter 10. Default Window Procedure Message Processing 10-69

param2

usfocus (USHORT)
Focus flag.

TRUE The window received the focus. hwnd is the window handle of the
window which lost the focus, or NULLHANDLE if no window previously
had the focus.

FALSE The window lost the focus. hwnd is the window handle of the window
which received the focus, or NULLHANDLE if no window received the
focus.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The focus change has already occurred when the application receives this message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved

to 0.

WM_PSIZE
This message is posted when the Language Support Window or Dialog Procedure processes
a WM_SIZE message.

Parameters
parami

scxold (SHORT)
Old horizontal size.

scyold (SHORT)
Old vertical size.

param2

scxnew (SHORT)
New horizontal size.

scynew (SHORT)
New vertical size.

10-70 PM Programming Reference Vol I

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The size change has already occurred when the application receives this message.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

WM_PSYSCOLORCHANGE

This message is posted when the Language Support Window or Dialog Procedure processes
a WM_SYSCOLORCHANGE message.

Parameters
param1

floptions (ULONG)
Options.

Copied from the fiOptions parameter of the WinSetSysColors function.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
All windows in the system are invalidated so that they will be redrawn with the new system
color.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Chapter 10. Default Window Procedure Message Processing 10-71

WM_QUERYACCELTABLE

This message returns the handle to the accelerator table of a window.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
haccel (HACCEL)
Accelerator table handle.

NULLHANDLE No accelerator table is associated with the window.
Other The handle of the accelerator table associated with the window.

Default Processing
The default window procedure takes no action on this message, other than to set haccel to
NULLHANDLE.

WM_QUERYCONVERTPOS

This message is sent by an application to determine whether it is appropriate to begin
conversion of DBCS characters.

Parameters
parami

pCursorPos (PRECTL)
Cursor position.

If usCode = QCP_CONVERT, pCursorPos should be updated to contain the position
of the cursor in the window receiving this message. The position is specified as a
rectangle in screen coordinates.

If usCode = QCP_NOCONVERT, pCursorPos should not be updated.

10-72 PM Programming Reference Vol Ii

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
usCode (USHORT)

Conversion code.

QCP_CONVERT Conversion may be performed for the window with the input
focus, pCursorPos has been updated to contain the position of
the cursor.

QCP_NOCONVERT Conversion should not be performed, the window with the input
focus cannot receive DBCS characters, pCursorPos has not
been updated.

Remarks

This message enables a DBCS application to determine whether the window with the input
focus can handle DBCS characters. The pCursorPos parameter can be used as a guide for
positioning any conversion window that the application requires.

Default Processing
The default window procedure returns QCP_CONVERT, and updates pCursorPos to the
following values:

xleft = -1
ybottom = -1
xright = 0
ytop = 0

Related Messages

WM_QUERYCONVERTPOS (in Button Controls)
WM_QUERYCONVERTPOS (in Title Bar Controls)
WM_QUERYCONVERTPOS (in Entry Fields)
WM_QUERYCONVERTPOS (in Frame Controls)
WM_QUERYCONVERTPOS (in List Boxes)
WM_QUERYCONVERTPOS (in Menu Controls)
WM_QUERYCONVERTPOS (in Scroll Bars)
WM_QUERYCONVERTPOS (in Static Controls)

Chapter 10. Default Window Procedure Message Processing 10-73

WM_QUERYHELPINFO

This message returns the help instance associated with a frame window.

Parameters
param1i

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
lhelpinfo (LONG)
Help information.

0 No help information associated with the window.
Other The help information associated with the window.

Default Processing

The default window procedure takes no action on this message, other than to set lhelpinfo to
0.

WM_QUERYTRACKINFO

The frame control generates this message on receiving a WM_TRACKFRAME (in Frame
Controls) message.

Parameters
param1i

ustflags (USHORT)
Tracking flags.

Contains a combination of one or more TF_* flags as defined in the TRACKINFO
structure.

param2

ptrackinfo (PTRACKINFO)
Track information structure.

This points to a TRACKINFO structure. The receiver of this message must modify
this structure.

10-74 PM Programming Reference Vol Ii

Returns
rc (BOOL)
Continue indicator.

TRUE Continue sizing or moving
FALSE Terminate sizing or moving.

Remarks
This message is sent to the window procedure of the owner of a frame control or title bar
control respectively.

The TRACKINFO data structure specified by the ptrackinfo parameter is not initialized before
the message is sent. It must be correctly completed before returning.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
¢ WM_TRACKFRAME (in Title Bar Controls

WM_QUERYWINDOWPARAMS

This message occurs when an application queries the window parameters.

Parameters
parami

pwndparams (PWNDPARAMS)
Window parameter structure.

This points to a window parameter structure; see “WNDPARAMS” on page A-207.

The valid values of fsStatus are WPM_CCHTEXT, WPM_TEXT,
WPM_CBCTLDATA, and WPM_CTLDATA.

The flags in fsStatus are cleared as each item is processed. If the call is
successful, fsStatus is 0. If any item has not been processed, the flag for that item
is still set. '

param2

ulReserved (ULONG)
Reserved value, should be 0.

Chapter 10. Default Window Procedure Message Processing 10-75

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks v
If this message is sent to a window of another process, the information in, or identified by,
pwndparams must be in memory shared by both processes.

Default Processing

The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure identified by the pwndparams to 0, and sets rc to
FALSE.

Related Messages

WM_QUERYWINDOWPARAMS (in Button Controls)
WM_QUERYWINDOWPARAMS (in Entry Fields)
WM_QUERYWINDOWPARAMS (in Frame Controls)
WM_QUERYWINDOWPARAMS (in List Boxes)
WM_QUERYWINDOWPARAMS (in Menu Controls)
WM_QUERYWINDOWPARAMS (in Multiline Entry Fields)
WM_QUERYWINDOWPARAMS (in Scroll Bars)
WM_QUERYWINDOWPARAMS (in Static Controls)
WM_QUERYWINDOWPARAMS (in Title Bars)

WM_QUIT

This message is posted to terminate the application.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

10-76 PM Programming Reference Vol II

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
It causes WinGetMsg to return rc set to FALSE, rather than to TRUE, as for all other
messages.

Note: Applications that call WinPeekMsg rather than WinGetMsg should test explicitly for
WM_QUIT.

This message should not be dispatched to the default window procedure. The intent
of this message is to cause the WinGetMsg loop to terminate.

Typically this message is posted by the application when the application exit
command is selected from the action bar.

This message is also sent to all applications when the system is closing down. To
reply to this, the application should either cancel the request by issuing an
WinCancelShutdown function or close itself down by issuing a WinDestroyMsgQueue
function.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

Examples

In this example, a WM_CLOSE message is received. If the fChanges flag is set, the
application calls a function to determine if the user wants to save the changes before exiting.
This function (called QuerySaveFile in this example) asks the user if he wants to save the
changes. If the user selects OK, the changes are saved. If the user selects cancel, the
function returns this value and the application continues normal execution. Otherwise, it
posts a WM_QUIT message to terminate the application.

Chapter 10.. Default Window Procedure Message Processing 10-77

WM_REALIZEPALETTE

This message is sent to an application whenever changes have been made to the display
hardware physical color table as a result of another application calling WinRealizePalette.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The application should call WinRealizePalette if it has a palette, or pass it on to the default
window procedure if it does not.

If the return value from WinRealizePalette is greater than 0, the application should invalidate
its window to cause a repaint using the newly-realized palette.

Default Processing

The default window procedure calls WinRealizePalette with a NULL hps parameter. This.
causes the default palette to be realized. If the return value from WinRealizePalette is
greater than 0, the default window procedure invalidates the window, causing it to be
repainted with the newly-realized paleite.

WM_SAVEAPPLICATION

This message is sent by the system to notify an application to save its current state.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

10-78 PM Programming Reference Vol il

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
When an application receives this message, it is expected to save its current state by any
convenient method, for example, in a profile or in an auxiliary file.

It is the responsibility of the application to use the saved information, as appropriate, when it
is resumed.

Even if the application processes this message, it should also pass it to the default window
procedure, by using the WinDefwWindowProc call.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

WM_SEM1

This message is sent or posted by an application.

Parameters
param1i

flJAccumBits (ULONG)
Semaphore value.

The semaphore values from all the WM_SEM1 messages posted to a queue, are
accumulated by a logical-OR operation.

param2

“ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Chapter 10. Default Window Procedure Message Processing 10-79

Remarks
If the message is posted, it is merged with any existing WM_SEM1 message on the queue
by-combining the two flAccumBits values using a logical-OR operation.

The WM_SEM1 messages are queuéd higher than any other type of message.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Examples

In this example, a thread notifies the client window that it is about to terminate. It sends the
constant THREAD3 as the fIFlags parameter so that when the client window receives the
message, it can tell which thread terminated.

WM_SEM2

This message is sent or posted by an application.

Parameters
param1

flAccumBits (ULONG)
Semaphore value.

The semaphore values from all the WM_SEM2 messages posted to a queue, are
accumulated by a logical-OR operation.

param2

ulReserved (ULONG)
Reserved value, should be 0.

10-80 PM Programming Reference Vol Il

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
If the message is posted, it is merged with any existing WM_SEM2 message on the queue
by combining the two flAccumBits values using a logical-OR operation.

The WM_SEM2 messages are queued above WM_SEM3 and WM_SEM4 messages, and
above any WM_PAINT or WM_TIMER messages generated by the system, but lower than
any other message.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

WM_SEM3

This message is sent or posted by an application.

Parameters
parami

flAccumBits (ULONG)
Semaphore value.

The semaphore values from all the WM_SEM3 messages posted to a queue, ate
accumulated by a logical-OR operation.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
If the message is posted, it is merged with any existing WM_SEM3 message on the queue
by combining the two fl/AccumBits values using a logical-OR operation.

The WM_SEM3 messages are queued above WM_SEM4 messages, and any WM_TIMER
messages generated by the system, but lower than any other message.

Chapter 10. Default Window Procedure Message Processing 10-81

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

WM_SEM4

This message is sent or posted by an application.

Parameters
parami

flAccumBits (ULONG)
Semaphore value.

The semaphore values from all the WM_SEM4 messages‘posted to a queue, are
accumulated by a logical-OR operation.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks :
If the message is posted, it is merged with any existing WM_SEM4 message on the queue
by combining the two flAccumBits values using a logical-OR operation.

The WM_SEM4 messages are queued lower than any other type of message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to 0.

10-82 PM Programming Reference Vol Ii

WM_SETACCELTABLE

This message establishes the window accelerator table to be used for translation, when the

window is active.

Parameters
parami

haccelNew (HACCEL)
New accelerator table.

param2

ulReserved (ULONG)

Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion

FALSE Error occurred.

Default Processing

The default window procedure takes no action on this message, other than to set rc to

FALSE.

WM_SETFOCUS

This message occurs when a window is to receive or lose the input focus.

Parameters
parami

hwnd (HWND)
Focus-window handle.

NULLHANDLE No window is losing or receiving the focus.
Other Window handle.

Chapter 10. Default Window Procedure Message Processing

10-83

param2

usfocus (USHORT)
Focus flag.

TRUE The window is receiving the focus. hwnd is the window handle of the
window losing the focus, or NULLHANDLE if no window previously had
the focus.

FALSE The window is losing the focus. hwnd is the window handle of the
window receiving the focus, or NULLHANDLE if no window is receiving
the focus.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks ‘
This message is sent to the window receiving or losing the focus, thereby giving it the
opportunity to perform some appropriate processing.

Note: Except in the instance of WM_ACTIVATE, with usactive set to TRUE, an application
processing WM_SETFOCUS or WM_ACTIVATE messages should not change the
focus window or active window. If it does, the focus and active window must be -
restored before the application returns from processing the message. For this
reason, any dialog boxes or windows brought up during the processing of
WM_SETFOCUS or WM_ACTIVATE messages should be system modal.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

Related Messages
¢ WM_SETFOCUS (Language Support Dialog)
¢ WM_SETFOCUS (Language Support Window)

WM_SETHELPINFO
This message sets the help instance associated with this frame window when the window is
active. ‘

Parameters
param1

Ihelpinfo (LONG)
New help information.

10-84 PM Programming Reference Vol I

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Default Processing :
The default window procedure takes no action on this message, other than to set rc to
FALSE.

WM_SETSELECTION

This message occurs when a window is selected or deselected.

Parameters
parami

usselection (USHORT)
Selection flag.

TRUE The window is selected.
FALSE The window is deselected.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The window procedure is expected to highlight or unhighlight the selected item of the
window, as appropriate. :

This message is sent to a window when it loses the focus to another window that it does not

own. It allows an application to remove the selection when the focus is removed to another
application, but to keep it if, for example, the same application displays a dialog box.

Chapter 10. Default Window Procedure Message Processing 10-85

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

WM_SETWINDOWPARAMS

This message occurs when an application sets or changes the window parameters.

Parameters
param1i

pwndparams (PWNDPARAMS)
Window parameter structure.

This points to a window parameter structure; see “WNDPARAMS” on page A-207.
The valid values of fsStatus are WPM_TEXT and WPM_CTLDATA.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful operation
FALSE Error occurred.

Remarks
If this message is sent to a window of another process, the information in, or identified by,
pwndparams must be in memory shared by both processes.

Default Processing

The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages

WM_SETWINDOWPARAMS (in Bution Controls)
WM_SETWINDOWPARAMS (in Entry Fields)
WM_SETWINDOWPARAMS (in Frame Controls)
WM_SETWINDOWPARAMS (in List Boxes)
WM_SETWINDOWPARAMS (in Menu Controls)-
WM_SETWINDOWPARAMS (in Muttiline Entry Fields)
WM_SETWINDOWPARAMS (in Scroll Bars)
WM_SETWINDOWPARAMS (in Static Controls)

10-86 PM Programming Reference Vol Il

e WM_SETWINDOWPARAMS (in Title Bar Controls)

WM_SHOW

This message occurs when the WS_VISIBLE state of a window is being changed.

Parameters
param1

usshow (USHORT)
Show indicator.

TRUE Show the window
FALSE Hide the window.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The message is sent after the visibility state has changed.

ln this context, the terms “shown” or “hidden” refer to the state of the WS_VISIBLE style bit.
This message is not sent when a window is obscured by other windows above it.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

WM_SINGLESELECT

This message occurs when the operator selects a single object.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

Chapter 10. Default Window Procedure Message Processing 10-87

param2

usPointer (USHORT)
Input device flag.

TRUE Message resulted from pointer event
FALSE Message resulted from keyboard event.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV_SINGLESELECT.

Default Processmg

The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_SIZE

This message occurs when a window changes its size.

Parameters
parami

scxold (SHORT)
Old horizontal size.

scyold (SHORT)
Old vertical size..

param2

scxnew (SHORT)
New horizontal size.

scynew (SHORT)
New vertical size.

10-88 PM Programming Reference Vol Il

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

This message is not sent by WinCreateWindow when a window is created, and so any
size-related processing must be done during the WM_CREATE message processing in this
instance.

This message is sent after the window has been actually sized, but before any repainting has
been done. Any resizing or repositioning of child windows that might be necessary a a result
of the size change is usually done during the processing of this message.

Note: It is generally unwise to output to the window during the processing of this message,
because the area drawn might be redrawn, after the WM_SIZE processing is
complete, by the WinSetWindowPos function.

The processing of this message for a window which is displaying an advanced VIO
presentation space must be carried out by the default advanced VIO window
procedure.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Related Messages
¢ WM_SIZE (in Frame Controls)
* WM_SIZE (Language Support Dialog)
¢ WM_SIZE (Language Support Window)

WM_SUBSTITUTESTRING

This message is sent from the WinSubstituteStrings call.

Parameters
param1

iindex (USHORT)
Substitution index.

A value corresponding to the decimal character in the substitution phrase.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Chapter 10. Default Window Procedure Message Processing 10-89

Returns
pString (PS2)
String to be substituted.

This points to a string (character) buffer.

0 No substitution string
Other Substitution string.)

Remarks

The WinSubstituteStrings call has encountered a substitution phrase in a string. The
substitution phrase takes the form “%<digit>,” where <digit> is a single decimal character;
that is, O through 9.

Default Processing
The default window procedure takes no action on this message, other than to set pString to
0.

WM_SYSCOLORCHANGE

This message is sent to all main windows when a change is made to the system colors by
the WinSetSysColors function.

Parameters
param1

flOptions (ULONG)
Options.

Copied from the flOptions parameter of the WinSetSysColors function and therefore
specifies which palette has been changed.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

All windows are invalidated, so that they are redrawn with the new colors. When this
message is received, applications that depend on the system colors can query the new color
values with the WinQuerySysColor call.

10-90 PM Programming Reference Vol il

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

Related Messages
* WM_SYSCOLORCHANGE (Language Support Dialog)
* WM_SYSCOLORCHANGE (Language Support Window)

WM_SYSCOMMAND

This message occurs when a control has a significant event to report to its owner or when a
key stroke has been translated by an accelerator table.

Parameters
parami

uscmd (USHORT)
Command value.

The command value can be one of the SC_* values. It is the responsibility of the
application to be able to relate uscmd to an application function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:
CMDSRC_PUSHBUTTON Posted by a push-button control. uscmd is the
window identifier of the push button.

CMDSRC_MENU Posted by a menu control. uscmd is the identifier of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

CMDSRC_OTHER Other source. uscmd gives further control-specific
information defined for each control type.

uspointer (USHORT)
Pointing-device indicator.

TRUE The message is posted as a result of a pointing-device operation.
FALSE The message is posted as a result of a keyboard operation.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Chapter 10. Default Window Procedure Message Processing 10-91

Remarks
This message is posted to the queue of the owner of the control, thereby offering it the
opportunity to perform some activity as a result.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

WM_SYSVALUECHANGED

This message is posted to all main windows when one of the settable system values is
changed.

Parameters
param1i

usChangedFirst (USHORT)
First system value.

The first of a contiguous set of system values that has been changed.

param2

usChangedLast (USHORT)
Last system value.

The last of a contiguous set of system values that has been changed.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
If usChangedFirst equals usChangedLast, only one system value has changed.

If an application changes the settable system values, it is the responsibility of the application
to post this message to all main windows.

This message is processed by WC_FRAME windows by doing any frame-specific processing
(such as sending WM_SETBORDERSIZE messages to the size border if
SV_CX/CYSIZEBORDER system values have changed) and then sending the message to
the client window if one exists.

This message is only posted when settable system values change.

10-92 PM Programming Reference Vol Il

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

WM_TEXTEDIT

This message occurs when the operator requests a direct name edit operation.

Parameters
paramt

usPointer (USHORT)
Input device flag.

TRUE Message resulted from pointer event
FALSE Message resulted from keyboard event.

param2

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Remarks :

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from either a mouse event, specified by the system value SV_TEXTEDIT, or a
keyboard event, specified by the system value SV_TEXTEDITKB

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

Chapter 10. Default Window Procedure Message Processing 10-93

WM_TIMER

This message is posted when a timer times out.

Parameters
param1

idTimer (USHORT)
Timer identity.

Any timer Ids that are not being used must be passed on the default window
procedure.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

~ Remarks _
This message is always queued and is processed specially by the WinGetMsg and
WinPeekMsg calls, as follows:

1. Timers are processed only by the WinGetMsg and WinPeekMsg calls.
2. A timer posts only one WM_TIMER message at a time.

3. WM_TIMER messages are queued lower than all other messages except WM_SEM4
messages.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

10-94 PM Programming Reference Vot Il

WM_TRACKFRAME

This message is sent to a window whenever it is to be moved or sized.

Parameters
param1i

fsTrackFlags (USHORT)
Tracking flags.

Contains a combination of one or more TF_* flags; for details, see the TRACKINFO
data structure description.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator

TRUE The operation is successful.
FALSE The operation is unsuccessful, or the operation is terminated.

Remarks
Respond to this message by causing a tracking rectangle to be drawn to move or size the
window. For information, see WinTrackRect.

Default Processing
None.

Related Messages
* WM_TRACKFRAME (in Frame Controls)

WM_TRANSLATEACCEL

This message is sent to the focus window whenever a WM_CHAR message occurs.

Parameters
paramt

pgmsg (PQMSG)
Pointer to a QMSG structure.

Chapter 10. Default Window Procedure Message Processing 10-95

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Translated indicator.

TRUE The character exists in the accelerator table and has been translated in the
QMSG structure. '

FALSE The character does not exist in the accelerator table or the window does not
have an accelerator table.

Remarks :
Normally, this message is not processed by the focus window, but is passed to its parent,
which passes it to its parent, until a frame window is reached.

Default Processing

The default window procedure takes no action on this message, other than to set rc to
FALSE. '

Related Messages
« WM_TRANSLATEACCEL (in Frame Controls)

WM_TRANSLATEMNEMONIC

This message occurs during frame control processing of a WM_TRANSLATEACCEL
message.

Parameters
param1

pamsg (PQMSG)
Pointer to a
QMSG structure. QMSG structure.

param2

ulReserved (ULONG)
Reserved value, should be 0.

10-96 PM Programming Reference Vol I

Returns
rc (BOOL)
Success indicator.

TRUE The character has been translated into an accelerator.
FALSE The character has not been transiated into an accelerator.

Remarks

This message is sent by the frame control to itself during the processing of a
WM_TRANSLATEACCEL message, if the frame control does not translate a character into
an accelerator by use of the frame window or queue accelerator tables.

When the frame control receives this message, it sends it to the application menu window,
that is the window with identity FID_MENU.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
¢ WM_TRANSLATEMNEMONIC (in Frame Controls)

WM_UPDATEFRAM E‘

This message is sent by an application after frame controls have been added or removed
from the window frame.

Parameters
param1i

fiCreateFlags (ULONG)
Frame-creation fiags.

Contains the FCF_* flags that indicate which frame controls have been added or
removed.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Processed indicator.

TRUE Message processed
FALSE Message ignored.

Chapter 10. Default Window Procedure Message Processing 10-97

Default Processing »
The default window procedure takes no action on this message, other than to set rc to
- FALSE.

Related Messages
* WM_UPDATEFRAME (in Frame Controls)

WM_VRNDISABLED

This message indicates that the window is being sized, or that a WinLockWindowUpdate has
been issued for the window or one of its parent windows. Direct drawing to the window
should be suspended.

Parameters
param1

mp1 (VOID)
Reserved value.

param2

mp2 (VOID)
Reserved value.

Returns
returns

ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The window procedure is expected to suspend direct drawing to the window.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to 0.

WM_VRNENABLED

This message tells a window that its visible region is now unlocked and is valid for drawing
on. It also contains a message parameter to inform the window if the visible region was
changed.

10-98 PM Programming Reference Vol II

Parameters
param1

ffVisRgnChanged (BOOL)
Flag indicating whether the visible region has been altered.

TRUE The visible region has been altered. The application needs to query the
new visible region.

FALSE The visible region has not been changed.

param2

mp2 (VOID)
Reserved value.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

The visible region, in window coordinates, has been sized, moved or unlocked and drawing
can now resume. The ffVisRgnChanged parameter is TRUE if the visible region was altered,
telling the application whether it needs to recheck the visible area of the window. Direct
drawing to the window can be resumed.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

WM_VSCROLL

This message occurs when a vertical scroll-bar control has a significant event to notify to its
owner.

Parameters
parami

usidentifier (USHORT)
Scroll bar-control window identifier.

Chapter 10. Default Window Procedure Message Processing 10-99

param2

sslider (SHORT)
Slider position.

0 Either the operator is not moving the slider with the pointer device, or for
the instance when uscmd is SB_SLIDERPOSITION the pointer is outside
the tracking rectangle when the button is released.

Other Slider position.

uscmd (USHORT)
Command.

SB_LINEUP
SB_LINEDOWN
SB_PAGEUP
SB_PAGEDOWN

SB_SLIDERPOSITION
SB_SLIDERTRACK

SB_ENDSCROLL

Returns
ulReserved (ULONG)

Reserved value, should be 0.

Default Processing

Sent if the operator clicks on the up arrow of the scroll
bar, or presses the VK_UP key.

Sent if the operator clicks on the down arrow of the scroll
bar, or presses the VK_DOWN key.

Sent if the operator clicks on the area above the slider, or
presses the VK_PAGEUP key.

Sent if the operator clicks on the area below the slider, or
presses the VK_PAGEDOWN key. -

Sent to indicate the final position of the slider.

If the operator moves the scroll bar slider with the pointer
device, this is sent every time the slider position changes.

Sent when the operator has finished scrolling, but only if
the operator has not been doing any absolute slider
positioning.

The default window procedure takes no action on this message, other than to set u/lReserved

to 0.

Related Messages

* WM_VSCROLL (in Vertical Scroll Bars)

10-100 PM Programming Reference Vol II

WM_WINDOWPOSCHANGED

If this message has any of the values of the f/ parameter of the SWP structure set, with the
exception of the SWP_NOADJUST and SWP_NOREDRAW values, it is sent to the window
procedure of the window whose position is changed.

This message is also sent if the return value from the WM_ADJUSTWINDOWPOS is not
NULL.

Parameters
param1i

pswp (PSWP)
SWP structures.

This points to two SWP structures. The first SWP structure describes the entire
new window state, whereas the second structure describes the entire old window
state. The fl parameter of the first structure contains only those indicators
corresponding to the state changes that occurred.

param2

flAwp (ULONG)
Adjust window paosition status indicators.

The AWF_* flags specify the state change of the frame window.
The return value from the WM_ADJUSTWINDOWPQOS message:

0 The SWP_NOADJUST option has been specified.
Other Adjust window position status indicators.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Default Processing
The default window procedure sets ulReserved to 0 and sends the following messages,
based on the values of the f/ parameter of the first SWP data structure:

SWP_SIZE A WM_SIZE with the new window size from the first SWP structure
SWP_HIDE A WM_SHOW to hide the new window
SWP_SHOW A WM_SHOW to show the new window.

Chapter 10. Default Window Procedure Message Processing 10-101

Examples
This example processes the WM_WINDOWPOSCHANGED message and assigns the two

structures to pointers.

s - i
- - . .
; G e
e s e

- =

L
e
s
AL

e - - o

i

10-102 PM Programming Reference Vol I

Default Dialog Processing

This section describes how messages are processed by the default dialog procedure. The
default dialog procedure can be called using WinDefDIgProc. A user dialog procedure
should make this call for all messages that it does not want to process.

For WM_* messages other than those specified in this section the Default Dialog Procedure
takes the same action and sets result to the same value as in Chapter 13, “Frame Control
Window Processing.” In the instance of messages that would be sent to FID_CLIENT, they
are passed to the default window procedure.

For any other messages the default window procedure takes no action, other than to set
reply to NULL.

WM_CHAR (Default Dialogs)
For the cause of this message, see “WM_CHAR” on page 10-32.

For a description of the parameters, see “WM_CHAR” on page 10-32.

Default Processing

If KC_CHAR is the mnemonic for a button that already has the focus, a BM_CLICK is sent to
that button and rc is set to TRUE. If the button does not have the focus, it receives the
focus and rc is set to TRUE.

If usvk contains the value VK_TAB, the focus is set to the next tab item in the dialog. rc is
set to TRUE.

If usvk contains the value VK_BACKTAB, the focus is set to the previous tab item in the
dialog. rc is set to TRUE. ,

If usvk contains the value VK_LEFT or VK_UP, the focus is set to the previous item in the
group. rc is set to TRUE.

If usvk contains the value VK_RIGHT or VK_BOTTOM, the focus is set to the next item in
the group. rc is set to TRUE.

If usvk contains the value VK_ENTER or VK_NEWLINE, and a push button has the focus, a
BM_CLICK is sent to the button and rc is set to TRUE. If another control in the dialog has
the focus the dialog is searched for a push button with style BS_DEFAULT. If a push button
of this style is found, a BM_CLICK is sent to that button and rc is set to TRUE.

If usvk contains the value VK_ESC, WM_COMMAND is posted, with ussource is set to
CMDSRC_PUSHBUTTON and usemd is set to DID_CANCEL. rc is set to TRUE.

In other instances, if an owner exists the message is sent to the owner, otherwise rc is set to
FALSE.

Chapter 10. Default Window Procedure Message Processing 10-103

Related Messages
» WM_CHAR

WM_CLOSE (Default Dialogs)
For the cause of this message, see “WM_CLOSE” on page 10-35.

For a description of the parameters, see “WM_CLOSE” on page 10-35.

Default Processing
The default dialog procedure responds to this message by dismissing the dialog by issuing
the WinDismissDlg function with its rc parameter set to DID_CANCEL.

Related Messages
+ WM_CLOSE

WM_COMMAND (Default Dialogs)
For the cause of this message, see WM_COMMAND.

For a description of the parameters, see WM_COMMAND.

Default Processing

The default dialog procedure responds to this message by dismissing the dialog and passing
uscmd (the control item identifier) as u/Reply of the WinProcessDlg or the WinDigBox
function that initiated the dialog. It sets u/Reserved to 0.

Related Messages
» WM_COMMAND

WM_INITDLG (Default Dialogs)
For the cause of this message, see “WM_INITDLG” on page 10-52.

For a description of the parameters, see “WM_INITDLG” on page 10-52.

Remarks
This message is sent to the dialog procedure, before the dialog box is shown, thereby
offering the dialog procedure the opportunity to perform the initialization of the dialog box.

If any string substitutions are made by the WinSubstituteStrings call when the dialog is
created, the WM_SUBSTITUTESTRING message may have been sent before the
WM_INITDLG message is sent.

Default Processing
The default dialog procedure passes this message to the default window procedure, which

sets rc to FALSE.

10-104 PM Programming Reference Voi Ii

Related Messages
« WM_INITDLG

WM_MATCHMNEMONIC (Default Dialogs)
For the cause of this message, see “WM_MATCHMNEMONIC” on page 10-55.

For a description of the parameters, see “WM_MATCHMNEMONIC” on page 10-55.

Remarks
This message is only processed by Button and Static Controls; all other controls return
FALSE.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
~ *« WM_MATCHMNEMONIC

WM_QUERYDLGCODE

This message is sent by the dialog manager to identify the type of control, to determine what
kinds of messages the control understands, and also to determine whether an input message
may be processed by the dialog manager or passed down to the control.

Parameters
param1

pQmsg (PQMSG)
Message queue structure.

This points to a QMSG structure.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulDialogCode (ULONG)
Dialog code information flags.

DLGC_ENTRYFIELD Identifies an entry field control. Assumed to understand the
EM_SETSEL message.

Chapter 10. Default Window Procedure Message Processing 10-105

DLGC_BUTTON Identifies a button item. Assumed to understand the
BM_CLICK message.

DLGC_RADIOBUTTON Identifies a radio button control. Used with the
DLGC_BUTTON code.

DLGC_STATIC Identifies a static control. Static controls are not included in
arrow key enumeration.

DLGC_DEFAULT Identifies a default push-button control.

DLGC_PUSHBUTTON Identifies a nondefault push button.

DLGC_CHECKBOX Identifies a check-box item. Used with the DLGC_BUTTON
code. A

DLGC_SCROLLBAR Identifies a scroll bar control.

DLGC_MENU Identifies a menu control.

DLGC_TABONCLICK Used by static controls to indicate that a mouse click on this
control will cause focus to be placed on the next control in the
dialog that has the WP_TABSTOP style. This should be
useed in combination with the DLGC_STATIC code.

DLGC_MLE Identifies a multiline entry field control.

Remarks

When processing user input, the dialog manager makes some assumptions about the
operation of specific controls. The dialog manager sends the WM_QUERYDLGCODE
message to obtain a code that governs what assumptions can be made.

If the window receiving this message is not a control as defined above, this message returns
0.

Default Processing
The default dialog procedure takes no action on this message, other than to set
ulDialogCode to NULL.

Default File Dialog Processing

This section describes how messages are processed by the default dialog procedure of the
file dialog. This standard dialog can be used to provide a common, consistent file selection
function. ‘

The file dialog’s default procedure can be called using the WinDefFileDlgProc function. A
user-provided subclassing dialog procedure should make this call for all messages that it
does not process when using the file dialog.

The default dialog procedure of the file dialog sends the messages listed in this section to
itself to perform the requested action.. This design allows a user-provided dialog procedure
to customize the file dialog to its own needs.

10-106 PM Programming Reference Vol If

FDM_ERROR

This message is sent whenever the file dialog is going to display an error message window.
This allows an application to display its own message, if desired, instead of messages
provided by the system.

Parameters
param1i

usErrorld (USHORT)
Error message ID.

This is the ID of the message that is displayed by the file dialog if the default file
dialog procedure processes the message.

param2

g ulReserved (ULONG)
Reserved value, should be 0.

Returns
usUserReply (USHORT)
User’s reply.
0 The file dialog presents the error message for this ID.
MBID_OK The file dialog processes the reply as if the OK push button was

pressed in its message window.

MBID_CANCEL The file dialog processes the reply as if the Cancel push button was
pressed in its message window.

MBID_RETRY The file dialog processes the reply as if the Retry push button was
pressed in its message window.

Remarks

The application uses this message to provide application-specific error messages in
response to file dialog errors that are detected during file dialog processing. The application
can choose whether to allow the dialog to present its message or whether to provide its own
message and return the response from that message window to the dialog for processing.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on
it other than to return NULL.

Chapter 10. Default Window Procedure Message Processing 10-107

FDM_FILTER

This message is sent before a file that meets the current filter criteria is added to the File list
box.

Parameters
parami

pFiIenéme (PS2)
Pointer to the file name.

param2

pEAType (PS2)
Pointer to the .TYPE EA extended attribute.

Returns
rc (BOOL)
Sucqess indicator.

TRUE Add the file.
FALSE Do not add the file.

Remarks

The application checks this message to obtain the name and the .TYPE EA extended
attribute of the file to be added. The application then determines whether or not the file will
be added.

When FALSE is returned, the file is not added io the dialog’s list box.

Default Processing
The WinDefDIgProc function does not expect to receive this message and takes no action on
it other than to return FALSE.

FDM_VALIDATE

This message is sent when the user selects a file and presses Enter or clicks on the OK
button, or double-clicks on a file name in the file list box.

Parameters
param1

pFileName (PSZ) :
Pointer to the fully-qualified file name.

10-108 PM Programming Reference Vol II

param2

usSeltype (USHORT)
Selection type.

rc (BOOL)
Validity indicator.

TRUE File name is valid.
FALSE File name is not valid.

Remarks

This message is only sent just before the dialog returns to the caller with the user-selected
file name. Before this message is sent, pFileName is updated with the user-selected file
name. The application can determine if this file name is acceptable. For instance, if the file
dialog is being used to pick a “SaveAs” file name, the application can check to see if the file
is read-only. If it is, a warning dialog should be brought up to notify the user.

When FALSE is returned from a FDM_VALIDATE message, the dialog will not be dismissed
and the user can continue to use the File Dialog to select an alternate file.

In multiple file selection dialogs this message is sent for each selected entry within the file list
box. When the name of the file being validated comes from a selected entry in the list box,
param2 will contain FDS_LBSELECTION. When the name of the file comes from the file
name entry field, param2 will contain FDS_EFSELECTION. Single file selection dialogs will
always return FDS_EFSELECTION in param2 since the returned file name always comes
from the single line entry field.

Default Processing
The WinDefDIgProc function does not expect to receive this message and takes no action on
it other than to return FALSE.

Default Font Dialog Processing

This section describes how messages are processed by the default dialog procedure of the
font dialog. This standard dialog can be used to provide a common, consistent font selection
function.

The font dialog’s default procedure can be called using the WinDefFontDIgProc function. A
user-provided subclassing dialog procedure should make this call for all messages that it
does not process when using the font dialog.

The default dialog procedure of the font dialog sends the messages listed in this section to
itself to perform the requested action. This design allows a user-provided dialog procedure
to customize the font dialog to its own needs.

Chapter 10. Default Window Procedure Message Processing 10-109

WM_DRAWITEM (in Font Dialog)
If the FNTS_OWNERDRAWPREVIEW style is set for a font dialog, this notification message
is sent to that dialog’s owner whenever the preview window area (sample text) is to be
drawn.

Parameters
parami

id (USHORT)
Window identifier.

The window ID of the sample area (DID_SAMPLE).

param2

pOwneritem (POWNERITEM)
Pointer to an OWNERITEM data structure.

The following list defines the OWNERITEM data structure fields as they apply to the
font dialog. See “OWNERITEM” on page A-136 for the default field values.

hwnd (HWND)

Window handle of the sample area.
hps (HPS)

Presentation-space handle.

fsState (ULONG)
Reserved.

fsAttribute (ULONG)
Reserved.

fsStateOld (ULONG)
Reserved.

fsAttributeOld (ULONG)
Reserved.

relitem (RECTL)
item rectangle to be drawn in window coordinates.

idltem (LONG)
Reserved.

hltem (CNRDRAWITEMINFO)
Reserved.

10-110 PM Programming Reference Vol li

Returns
rc (BOOL)
ltem-drawn indicator.

TRUE The owner draws the item.
FALSE If the owner does not draw the item, the owner returns this value and the font
dialog draws the item.

Remarks
The font dialog provides this message to give the application the opportunity to provide a
custom drawn preview area.

The font dialog default dialog procedure generates this message and sends it to its owner,
informing the owner that the preview area is to be drawn. The owner is then given the
opportunity to draw that area and to indicate that the area has been drawn or that the font
dialog is to draw it.

Default Processing
For a description of the default processing, see WM_DRAWITEM.

FNTM_FACENAMECHANGED

This message notifies the subclassing application whenever the font family name is changed
by the user.

Parameters
parami

pFamilyname (PSZ)
Pointer to the currently-selected face name.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
pFamilyname is the currently selected family name. The application can modify this string if
it desires. The buffer set aside is the maximum size a face name string can be (FACESIZE).

Chapter 10. Default Window Procedure Message Processing 10-111

Default Processing
The WinDefDIgProc function does not expect to receive this message and takes no action on
it other than to return 0.

FNTM_FILTERLIST

This message is sent whenever the Font Dialog is preparing to add a font family name, font
style type, or point size entry to the combination box fields that contain these parameters.

Parameters
param1

pFontname (PSZ)
Pointer to the text string that is being added to the combination box.

param2

usFieldld (USHORT)
Field identifier.

The identifier of the field to which the text string is being added. The identifier can
be one of the following:

FNTI_FAMILYNAME The text string is an addition to the family name combination
box.

FNTI_STYLENAME The text string is an addition to the style combination box.
FNTI_POINTSIZE The text string is an addition to the size combination box.

usFontType (USHORT)
Font information.

The family name, style, or point size that is being added to the combination box.
Use one of the following to identify the font information that is being added:

FNTI_BITMAPFONT A bit-map font is being added or a point size of a
bit-map font is being added.
FNTI_VECTORFONT A vector font is being added.
FNTI_SYNTHESIZED A synthesized font is being added. This value is
valid for the style field only.
FNTI_FIXEDWIDTHFONT A fixed width (monospace) font is being added.
FNTI_PROPORTIONALFONT A proportionally spaced font is being added.
FNTI_DEFAULTLIST A point size from the default list (or the

application-supplied list) is being added.

10-112 PM Programming Reference Vol Ii

Returns
rc (BOOL)
Filter indicator.

TRUE Add the text string to the combination box.
FALSE Do not add the text string to the combination box.

Remarks

The application checks this message to obtain the name and the .TYPE EA extended
attribute of the file being added. The application then determines whether or not the file will
be added.

When FALSE is returned, the file is not added to the dialog’s list box.

Default Processing
The WinDefDIgProc function does not expect to receive this message and takes no action on
it other than to return FALSE.

FNTM_POINTSIZECHANGED

This message notifies subclassing applications when the point size of the font is changed by
the user.

Parameters
parami

pPointSize (PS2)
Pointer to the text in the point-size entry field.

param2

fxPointSize (FIXED)
Point size.

The fxPointSize field in FONTDLG stated in fixed-point notation.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

When the application wants to limit the point sizes the user can select, it should process this
message by changing the pPointSize value and putting up a message box explaining the
limitation to the user.

Chapter 10. Default Window Procedure Message Processing 10-113

Default Processing
The WinDefDIgProc function does not expect to receive this message and takes no action on
it other than to return 0.

FNTM_STYLECHANGED

This message notifies subclassing applications when the user changes any of the atiributes
in the STYLECHANGE structure.

Parameters
parami

styc (STYLECHANGE)
Style changes.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

The “Old” fields show the style attributes before the user made the change. The other
parameters show what the state will be after the application passes this message to
WinDefFontDigProc. When the “Old” field and the “New” field are the same, no change is
made for that attribute.

Default Processing
The WinDefDIgProc function does not expect to receive this message and takes no action on
it other than to return O.

10-114 PM Programming Reference Vol Il

FNTM_UPDATEPREVIEW

This message notifies subclassing applications before the preview window is updated. This
occurs when the font selection is modified.

Parameters
param1

hwndPreview (HWND)
Window handle.

Window handle the preview image is drawn into. This is a static text field.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
This message notifies an application that the dialog is about to update the preview area.

Default Processing
The WinDefDIgProc function does not expect to receive this message and takes no action on
it other than to return 0.

Chapter 10. Default Window Procedure Message Processing 10-115

Language Support Window Processing
This system-provided window procedure processes messages for a window that has been
created with a window class specifying a “NULL” window procedure.

The following describes the WM_* messages and the language support window procedure
action.

For any other messages the Language Support Window Procedure performs the same
actions as the Default Window Procedure.

WM_ACTIVATE (Language Support Window)
For the cause of this message, see “WM_ACTIVATE” on page 10-5.

For a description of the parameters, see “WM_ACTIVATE” on page 10-5.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PACTIVATE message to the application queue and setting u/Reserved to 0.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved

. to 0.

Related Messages
+ WM_ACTIVATE

WM_CONTROL (Language Support Window)
For the cause of this message, see WM_CONTROL.

For a description of the parameters, see WM_CONTROL.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PCONTROL message to the application queue and setting u/Reserved to 0.

Default Processing
The default window procedure takes no action on this message other than to set u/Reserved

to 0.

Related Messages
+ WM_CONTROL

10-116 PM Programming Reference Vol Ii

WM_PAINT (Langauge Support Window)
For the cause of this message, see “WM_PAINT” on page 10-66.

For a description of the parameters, see “WM_PAINT” on page 10-66.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PPAINT message to the application queue and setting ulReserved to 0.

The WinBeginPaint and WinEndPaint functions are issued by the Language Support Window
Procedure, during the processing of the WM_PPAINT message.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and

then sets ulReserved to 0.

Related Messages
+ WM_PAINT

WM_PPAINT (Language Support Window)
For the cause of this message, see “WM_PPAINT” on page 10-68.

For a description of the parameters, see “WM_PPAINT” on page 10-68.

Remarks
The Language Support Window Procedure issues the WinBeginPaint and WinEndPaint

functions, and then sets u/Reserved to 0.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved

t0 0.

Related Messages
* WM_PPAINT

Chapter 10. Default Window Procedure Message Processing 10-117

WM_SETFOCUS (Language Support Window)
For the cause of this message, see “WM_SETFOCUS” on page 10-83.

For a description of the parameters, see “WM_SETFOCUS” on page 10-83.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PSETFOCUS message to the application queue and setting u/lReserved to 0.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved

1o 0.

Related Messages
» WM_SETFOCUS

WM_SIZE (Language Support Window)

For the cause of this message, see WM_SIZE.

For a description of the parameters, see WM_SIZE.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PSIZE message to the application queue and setting u/Reserved to 0.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved

to 0.

Related Messages
¢ WM_SIZE

10-118 PM Programming Reference Vol II

WM_SYSCOLORCHANGE (Language Support Window)
For the cause of this message, see “WM_SYSCOLORCHANGE” on page 10-90.

For a description of the parameters, see “WM_SYSCOLORCHANGE” on page 10-90.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PSYSCOLORCHANGE message to the application queue and setting u/Reserved to 0.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved

to O.

Related Messages
* WM_SYSCOLORCHANGE

Chapter 10. Default Window Procedure Message Processing 10-119

Language Support Dialog Processing
This system-provided window procedure processes messages for a dialog that has been
created or loaded specifying a ‘NULL’ dialog procedure. '

For any other messages the Language Support Dialog Procedure issues and returns the
result of the WinDefDIgProc function.

WM_ACTIVATE (Language Support Dialog)
For the cause of this message, see “WM_ACTIVATE” on page 10-5.

For a description of the parameters, see “WM_ACTIVATE” on page 10-5.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the

WinDefDIgProc function, then posting a WM_PACTIVATE message to the application queue

and setting u/Reserved to the result of the WinDefDIgProc function.

Default Processing

The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

Related Messages
» WM_ACTIVATE

WM_CONTROL (Language Support Dialog)
For the cause of this message, see “WM_CONTROL” on page 10-39.

For a description of the parameters, see “WM_CONTROL” on page 10-39.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the

WinDefDIgProc function, then posting a WM_PCONTROL message to the application queue

and setting u/Reserved to the result of the WinDefDIgProc function.

Default Processing

The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

Related Messages
+ WM_CONTROL

10-120 PM Programming Reference Vol Il

WM_PAINT (Language Support Dialog)
For the cause of this message, see “WM_PAINT” on page 10-66.

For a description of the parameters, see “WM_PAINT” on page 10-66.

Remarks

The Language Support Dialog Procedure responds to this message by issuing the
WinDefDIgProc function, then posting a WM_PPAINT message to the application queue and
setting u/Reserved to the result of the WinDefDIgProc function.

The WinBeginPaint and WinEndPaint functions are issued by the Language Support Dialog
Procedure, during the processing of the WM_PPAINT message.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and
then sets ulReserved to 0.

Related Messages
o WM_PAINT

WM_PPAINT (Language Support Dialog)
For the cause of this message, see “WM_PPAINT” on page 10-68.

For a description of the parameters, see “WM_PPAINT” on page 10-68.

Remarks

The Language Support Dialog Procedure issuing the WinDefDIgProc function, then issues
the WinBeginPaint and WinEndPaint functions, and then setting u/Reserved to the result of
the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved

to 0.

Related Messages
e WM_PPAINT

Chapter 10. Default Window Procedure Message Processing 10-121

WM_SETFOCUS (Language Support Dialog)
For the cause of this message, see “WM_SETFOCUS” on page 10-83.

For a description of the parameters, see “WM_SETFOCUS” on page 10-83.

Remarks

The Language Support Dialog Procedure responds to this message by issuing the
WinDefDIgProc function, then posting a WM_PSETFOCUS message to the application queue
and setting u/lReserved to the result of the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Related Messages
« WM_SETFOCUS

WNM_SIZE (Language Support Dialog)
For the cause of this message, see “WM_SIZE” on page 10-88.

For a description of the parameters, see “WM_SIZE” on page 10-88.

Remarks

The Language Support Dialog Procedure responds to this message by issuing the
WinDefDIgProc function, then posting a WM_PSIZE message to the application queue
andsetting u/Reserved to the result of the WinDefDIgProc function,

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

Related Messages
* WM_SIZE

WM_SYSCOLORCHANGE (Language Support Dialog)
For the cause of this message, see “WM_SYSCOLORCHANGE” on page 10-90.

For a description of the parameters, see “WM_SYSCOLORCHANGE” on page 10-90.

Remarks :

The Language Support Dialog Procedure responds to this message by issuing the
WinDefDIgProc function, then posting a WM_PSYSCOLORCHANGE message to the
application queue and setting ulReserved to the result of the WinDefDIgProc function.

10-122 PM Programming Reference Vol Il

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved

to 0.

Related Messages
* WM_SYSCOLORCHANGE

10-123

Chapter 10. Default Window Procedure Message Processing

10-124 PM Programming Reference Vol II

Chapter 11. Button Control Window Processing

This system-provided window procedure processes the actions on a button control

(WC_BUTTON).

Purpose

A button control is a small rectangular child window representing a button that the operator
can “switch” on or off. Button controls can be used alone or in groups, and can either be
labeled or appear without text. Button controls typically change appearance when the
operator clicks a pointing device on them or pressing the space bar when the button has the

keyboard focus.

Buttons can be disabled to prevent them from responding when the operator clicks on them.
Disabled buttons are displayed using a different emphasis technique (for example, color or

half-toning).

Button Control Styles

These button control styles are available:

BS_AUTOCHECKBOX
BS_AUTORADIOBUTTON

BS_AUTOSIZE

BS_AUTO3STATE
BS_BITMAP

BS_CHECKBOX

BS_DEFAULT

© Copyright IBM Corp. 1994

An automatic check box automatically toggles its state
whenever the user clicks on it.

When clicked, an automatic radio button automatically checks
itself and unchecks all other radio buttons in the same group.

Buttons with this style are sized automatically to make sure the
contents fit.

If BS_AUTOSIZE is selected when the button is created, and a
-1 is specified for either the cx or cy parameter of
WinCreateWindow, (or when creating the button as a resource)
then the button’s optimal size is calculated to display the its
contents.

An automatic three-state check box automatically toggles its
state when the user clicks on it.

Places a bit map instead of text on the push button control.
This style works only with the BS_PUSHBUTTON.

A check box is a small square with a character string to the
right. If it is checked, a small black box appears inside the
small square. When the box or string is clicked, by clicking on
it with the pointing device or pressing the keyboard spacebar
when it is active,

A BS_DEFAULT pushbutton is one with a thick border box. It
has the same properties as a pushbutton. In addition, the user
may press a BS_DEFAULT pushbutton by pressing the
RETURN or ENTER key. The intention is the same for

11-1

BS_HELP

BS_ICON
BS_MINIICON

BS_NOBORDER

BS_NOCURSORSELECT

BS_NOPOINTERFOCUS

BS_PUSHBUTTON

BS_RADIOBUTTON

BS_SYSCOMMAND

user-buttons, but the appearance of a BS_DEFAULT
userbutton is application defined.

This style can be ORed with the BS_PUSHBUTTON and
BS_USERBUTTON styles:

The button posts a WM_HELP message rather than a
WM_COMMAND message.

This style can be ORed with the BS_PUSHBUTTON style.

If both BS_HELP and BS_SYSCOMMAND are set, BS_HELP
takes precedence.

Places an icon instead of text on the push button control. This
style works only with the BS_PUSHBUTTON style.

This enables miniicons (half the size of normal icons) to be
placed on the push button control.

The pushbutton is displayed without a border drawn around it.
There is no other change in the pushbutton’s operation.

This style can be ORed with the BS_PUSHBUTTON style.

The radio button does not select itself when given the focus as
the result of an arrow key or tab key.

This styie can be ORed with the BS_AUTORADIOBUTTON
style.

Buttons with this style do not set the focus to themselves when
clicked with the pointing device. This enables the cursor to
stay on a control for which information is required, rather than
moving to the button. This style has no effect on keyboard
interaction. The tab key can still be used as usual to move the
focus to the button.

This style can be ORed with any of the basic button styles.

A pushbutton is a box that contains a string. When a button is
pushed, by clicking the pointing device on it or pressing the
spacebar when it is active, the parent window is notified.

A radio button is similar to a check box, but is typically used in
groups in which only one button at a time is checked. When a
radio button is clicked or a cursor key is pressed to move
within the group, it notifies its owner window. It is then up to
the owner window to check the clicked radio button and
uncheck all the rest, if necessary.

The button posts a WM_SYSCOMMAND message rather than
a WM_COMMAND message.

This style can be ORed with the BS_PUSHBUTTON style.

If both BS_HELP and BS_SYSCOMMAND are set, BS_HELP
takes

11-2 PM Programming Reference Vol Il

BS_TEXT This enables both text and a bitmap, icon, or miniicon to be
placed on the push button control. This style works only with
the BS_PUSHBUTTON style, and should be used in
conjunction with BS_BITMAP, BS_ICON or BS_MINIICON.

BS_USERBUTTON This is an application-definable button. The owner window of
this style control receives the additional button style
BN_PAINT.

BS_3STATE A three-state check box is identical to a check box control

except that its check box can be half-toned as well as the box
being checked or unchecked.

When BS_ICON, BS_MINIICON or BS_BITMAP is selected, the image can be activated by
specifying the image ID with the button text string. For instance, to load an icon (#define
ICON_ID 300), and display it within a button, the button string is set to “#300.”

When BS_ICON, BS_MINIICON or BS_BITMAP is selected along with BS_TEXT, the image
can still be activated by specifying the following with a zero-terminated text string. format:

"#<image-id>\t<text>"

where:

<image-id> resource id of the icon, miniicon or bitmap
\t tab character

<text> zero-terminated button text string

For example, to load an icon (#define ICON_ID 300) and display it with the button text “My
Button,” the button string is set to “#300\tMy Button.” Notice the “\t” is used to separate the
text from the image-id. The image is displayed above the text within the button.

Button Control Data
See “BTNCDATA” on page A-24.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_BUTTONDEFAULT
SYSCLR_BUTTONLIGHT
SYSCLR_BUTTONMIDDLE
SYSCLR_MENUTEXT
SYSCLR_WINDOW
SYSCLR_WINDOWFRAME.

Chapter 11. Button Control Window Processing 11-3

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_BACKGROUNDCOLOR
PP_BORDERCOLOR
PP_DISABLEDFOREGROUNDCOLOR
PP_FOREGROUNDCOLOR
PP_HILITEFOREGROUNDCOLOR.

11-4 PM Programming Reference Vol Il

Button Control Notification Messages

These messages are initiated by the button control window to notify its owner of significant
events.

WM_COMMAND (in Button Controls)
For the cause of this message, see “WM_COMMAND” on page 10-37.

For a description of the parameters, see “WM_COMMAND” on page 10-37.

Button control sets uscmd to the button identity and ussource to CMDSRC_PUSHBUTTON.

Remarks

The button control generates this message when a push button of style BS_ PUSHBUTTON
is pressed or when it receives a BM_CLICK message. The button control posts the
message to the queue of the control owner.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Related Messages
+ WM_COMMAND

WM_CONTROL (in Button Controls)
For the cause of this message, see “WM_CONTROL” on page 10-39.

Parameters
param1

id (USHORT)
Button control identity.

usnotifycode (USHORT),
Noatification code.

The notification code BN_PAINT is only generated when the button control has a
style of BS_USERBUTTON.

Chapter 11. Button Control Window Processing 11-5

The button control uses these notification codes:

BN_CLICKED The button has been pressed.
BN_DBLCLICKED The button has been double-clicked.

BN_PAINT The button requires painting, using one of the following draw
states:
BDS_DISABLED The disabled state of the button requires
painting.

BDS_HILITED The highlighted state of the button
requires painting.

BDS_DEFAULT The default state of the button requires
painting.

param2

ficontrolspec (ULONG)
Control-specific information.

When usnotifycode is BN_PAINT this parameter is a pointer to a USERBUTTON
structure, otherwise this parameter is the window handle of the button control.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The button control generates this message and sends it to its owner, informing the owner of
this event, when:

¢ |ts style is not BS_PUSHBUTTON and the button is pressed.
e It receives a BM_CLICK message.
¢ lis style is BS_USERBUTTON and the button is clicked or double clicked.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to 0.

Related Messages
* WM_CONTROL

11-6 PM Programming Reference Vol Ii

WM_HELP (in Button Controls)
For the cause of this message, see “WM_HELP” on page 10-49.

For a description of the parameters, see “WM_HELP” on page 10-49.

Button control sets uscmd to the button identity.

Remarks
This message is identical to a WM_COMMAND message, but implies that the application
should respond to this message by displaying help information.

The button control generates this message and posts it to the queue of its owner, if it has the
style of BS_HELP and a push button is pressed, or when it receives a BM_CLICK message.

Default Processing
The default window procedure sends this message to the parent window, if it exists and is
not the desktop. Otherwise, it sets u/Reserved to 0.

Related Messages
« WM_HELP

WM_SYSCOMMAND
For the cause of this message, see “WM_SYSCOMMAND” on page 10-91.

For a description of the parameters, see “WM_SYSCOMMAND” on page 10-91.

Button control sets uscmd to the button identity.

Remarks

If the button control is specified with a style of BS_SYSCOMMAND but not with BS_HELP,
the button control generates this message and posts it to the queue of its owner when a
push button is pressed, or when it receives a BM_CLICK message.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Chapter 11. Button Control Window Processing 11-7

Button Control Window Messages

This section describes the Button Control Window Procedure actions on receiving the
following messages.

BM_CLICK

An application sends this message to cause the effect of the operator clicking a push button.

Parameters
param1i

usUp (USHORT)
Up and down indicator.

TRUE Perform the default upclick action
FALSE Perform the default downclick action.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks .
The button control responds to this message by taking the action that occurs if the button is
clicked by the operator. This causes the following messages to be generated:

» A WM_HELP (in Button Controls) message, if the button has a style of BS_HELP.

¢ AWM_SYSCOMMAND message, if the button has a style of BS_PUSHBUTTON and a
style of BS_SYSCOMMAND and not a style of BS_HELP.

¢ A WM_COMMAND (in Button Controls) message, if the button has a style of
BS_PUSHBUTTON but not a style of BS_SYSCOMMAND and not a style of BS_HELP.

* A WM_CONTROL (in Button Controls) message, whose usnotifycode is set to
BN_CLICKED, if the button has a style of BS_USERBUTTON, BS_PUSHBUTTON,
BS_CHECKBOX, or BS_3STATE, and not a style of BS_SYSCOMMAND or BS_HELP.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set u/lReserved to the default value of 0.

11-8 PM Programming Reference Vol Il

BM_QUERYCHECK

This message returns the checked state of a button control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
usCheck (USHORT)
Check indicator.

0 The button control is in unchecked state.
1 The button control is in checked state.
2 The button control is in indeterminate state.

Remarks

The button control responds to this message, if it has a style of BS_CHECKBOX,
BS_AUTOCHECKBOX, BS_RADIOBUTTON, BS_AUTORADIOBUTTON, BS_3STATE, or
BS_AUTO3STATE, by setting usCheck as appropriate.

if the button has any other style, the button control takes no action other than to set usCheck
to 0.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set usCheck to the default value of 0.

BM_QUERYCHECKINDEX

This message returns the zero-based index of a checked radio button.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

Chapter 11. Button Control Window Processing 11-9

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sindex (SHORT)
Radio-button index.

-1 No radio button of the group is checked, or this bution control does not have the
style BS_RADIOBUTTON or BS_AUTORADIOBUTTON.
Other Zero-based index of the checked radio button of the group.

Remarks
The button control responds to this message by setting s/ndex as appropriate.

This message may be sent to any radio button or autoradio button in a group of buttons. For
details of the WS_GROUP style, see “Window Styles” on page 10-3.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sindex to the default value of 0.

BM_QUERYHILITE

This message returns the highlighting state of a button control.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Highlight indicator.

' TRUE The button control is displayed in highlighted state.
FALSE The button control is displayed in unhighlighted state.

11-10 PM Programming Reference Vol If

Remarks
The button control responds to this message, if it has a style of BS_PUSHBUTTON, by
setting rc as appropriate.

If the button has any other style, the button control takes no action other than to set rc to
FALSE.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, except to set rc to the defauit value of FALSE.

BM_SETCHECK

This message sets the checked state of a button control.

Parameters
param1

uscheck (USHORT)
Check state.

0 Display the button control in the unchecked state
1 Display the button control in the checked state
2 Display a 3-state button control in the indeterminate state.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
usoldstate (USHORT)
Old check state of the button control.

0 Unchecked
1 Checked
2 Indeterminate.

Remarks
The button control responds to this message by displaying it in the appropriate state and
returning the old state.

If the button control has the style of BS_CHECKBOX, BS_AUTOCHECKBOX,
BS_RADIOBUTTON, or BS_AUTORADIOBUTTON, it is displayed in the checked state if
uscheck is set to 1, or in the unchecked state if it is set to 0 and usoldstate is set as
appropriate.

Chapter 11. Button Control Window Processing 11-11

If the button control has the style of BS_RADIOBUTTON or BS_AUTORADIOBUTTON, the
WS_TABSTOP style is modified. If the resulting state of the button is checked, the
WS_TABSTORP style is set, otherwise it is reset.

If the button control has the style of BS_3STATE or BS_AUTOSSTATE, it is displayed in the
unchecked state if uscheck is set to 0, in the checked state if it is set to 1, and in the
indeterminate state if it is set to 2 and usoldstate is set as appropriate.

If the button control has the style of BS_USERBUTTON, a WM_CONTROL (in Button
Controls) message is sent to its owner with usnotifycode set to BN_PAINT and usoidstate is
set as appropriate. .

If the button control has any other style, the button control takes no action other than to set
usoldstate to 0.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, except to set usoldstate to the default value of 0.

BM_SETDEFAULT

This message sets the default state of a button control.

Parameters
param1

usdefault (USHORT)
" Default state.

TRUE Display the button control in the default state
FALSE Display the button control in the nondefault state.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful operation
FALSE Error occurred.

11-12 PM Programming Reference Vol Il

Remarks

The button control responds to this message, if it has a style of BS_USERBUTTON or
BS_PUSHBUTTON, by displaying the button control in the default or nondefault state as
appropriate, and setting rc to TRUE.

If the button control has any other style, the button control takes no action other than to set
rc to FALSE.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

BM_SETHILITE

This message sets the highlight state of a button control.

Parameters
parami

ushilite (USHORT)
Highlight indicator.

TRUE Display the button control in the highlighted state
FALSE Display the button control in the unhighlighted state.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
foldstate (BOOL)
Old highlight state.

TRUE The button control was in highlighted state
FALSE The button control was in unhighlighted state.

Remarks

The button control responds to this message, if it has a style of BS_PUSHBUTTON,
BS_CHECKBOX, BS_AUTOCHECKBOX, BS_RADIOBUTTON, BS_AUTORADIOBUTTON,
BS_3STATE, or BS_AUTO3STATE, by displaying the button control in the appropriate
highlight state and setting foldstate as appropriate.

If the style of the Button Control is BS_USERBUTTON, a WM_CONTROL (in Button
Controls) message is sent to its owner with usnotifycode set to BN_PAINT and with
flcontrolspec pointing to a USERBUTTON structure and sets foldstate as appropriate.

Chapter 11. Button Control Window Processing 11-13

Default Processing
The default window procedure does not expect to receive this message and therefore takes

no action on it, other than to set foldstate to the default value of FALSE.

WM_ENABLE (in Button Controls)
For the cause of this message, see “WM_ENABLE” on page 10-43.

For a description of the parameters, see “WM_ENABLE” on page 10-43.

Remarks
This message notifies the button control window procedure of a change in the enable state of

the button.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

Related Messages
+ WM_ENABLE

WM_MATCHMNEMONIC (in Button Controls)
For the cause of this message, see “WM_MATCHMNEMONIC” on page 10-55.

For a description of the parameters, see “WM_MATCHMNEMONIC” on page 10-55.

Remarks
The button control window procedure responds to this message by setting rc as appropriate.
If MP1 matches the button mnemonic, return rc to TRUE.

Default Processing
The default window procedure takes no action on this message, other than to set rc to

FALSE.

Related Messages
* WM_MATCHMNEMONIC

11-14 PM Programming Reference Vol I

WM_QUERYCONVERTPOS (in Button Controls)
For the cause of this message, see “WM_QUERYCONVERTPOS” on page 10-72.

For a description of the parameters, see “WM_QUERYCONVERTPOS” on page 10-72.

Remarks
The button control window procedure returns QCP_NOCONVERT.

Default Processing
For the default window procedure processing of this message see
“WM_QUERYCONVERTPOS"” on page 10-72.

Related Messages
+ WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in Button Controls)

Occurs when an application queries the button control window procedure window
parameters.

For a description of the parameters, see “WM_QUERYWINDOWPARAMS” on page 10-75.

Remarks .
The button control window procedure responds to this message by passing it to the default
window procedure.

Default Processing

The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure, identified by pwndparams, to zero and sets rc to
FALSE.

Related Messages
+ WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS (in Button Controls)

Occurs when an application sets or changes the button control window procedure window
parameters.

For a description of the parameters, see “WM_SETWINDOWPARAMS” on page 10-86.

Remarks
The button control window procedure responds to this message by passing it to the default
window procedure. ‘

Chapter 11. Button Control Window Processing 11-15

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
* WM_SETWINDOWPARAMS

11-16 PM Programming Reference Vol Il

Chapter 12. Entry Field Control Window Processing

This system-provided window procedure processes the actions on an entry field control

(WC_ENTRYFIELD).

Purpose

An entry field control is a rectangular window that displays a single line of text that the
operator can edit. When it has the focus, the cursor marks the current insertion or

replacement point.

When working with entry fields, the WM_CONTROL message is of major concern. An
entry-field control communicates with its owner by sending WM_CONTROL messages. It
contains a notification code in MP1 and a handle to the current entry field in MP2. The
return value for WM_CONTROL is 0. Notification codes are denoted by an EN prefix.

Entry Field Control Styles

These entry field control styles are available:

ES_LEFT

ES_RIGHT
ES_CENTER
ES_AUTOSIZE
ES_AUTOSCROLL

ES_MARGIN

ES_READONLY

© Copyright IBM Corp. 1994

The text in the control is left-justified. This is the default style if
neither ES_RIGHT nor ES_CENTER is specified.

The text in the control is right-justified.
The text in the control is centered.
The text will be sized to make sure the contents fit.

If the user tries to move off the end of a line, the control
automatically scrolls one-third the width of the window in the
appropriate direction.

This style can be used to cause a border to be drawn around the
control, with a margin around the editable text. The margin is haif a
character-width wide and half a character-height high.

When an entry field control with this style is positioned, it adjusts the
position so that the text is placed at the position specified. This
position differs from the original position by the width of the border
and the margin.

This style causes a single line entry field to be created in read only
state.

When an entry field is in read only state, characters do not get
inserted into the text. However the insertion interface is still
functional.

The entry field read only state can be altered by use of the
EM_SETREADONLY message.

12-1

ES_UNREADABLE This style causes the text to be displayed as an asterisk for each
character. It can be used for passwords.

ES_COMMAND This style identifies the entry field as a command entry field. This
information is used by the Help Manager to provide command help if
the end user requests help for this field.

Not more than one entry field on each dialog should be given this
style.

ES_AUTOTAB This style indicates that when the field is filled by adding a character
to the end of the entry field text, the effect of a tab key will be
generated. Inserting or replacing a character in the middle of the
text, however, does not result in an autotab.

This style is recommended for use with fixed-length, non-scrollable
fields that are filled completely. The maximum length of the entry
field text is held in the control data, see “Entry Field Control Data” on
page 12-3

These entry field controls are intended for countries that use a double-byte character
encoding scheme:

ES_SBCS The text is purely single-byte.

If the number of characters entered exceeds EM_SETTEXTLIMIT, or
a DBCS character is entered, the alarm sounds and the last
character entered is ignored.

ES_DBCS The text is purely double byte.

If the number of bytes in the entry field exceeds EM_SETTEXTLIMIT,
or an SBCS character is entered, the alarm sounds and the last
character entered is ignored.

ES_ANY The text is a mixture of SBCS and DBCS characters.

If the number of bytes in the input field exceeds EM_SETTEXTLIMIT,
the alarm sounds and the last character entered is ignored.

ES_ANY is the default.

Note: If the queue code page is an ASCII code page and the data
in the entry field is to be converted to an EBCDIC code page,
there is a possibility that shift-in and shift-out characters
introduced by the conversion process can cause the
converted data to overrun the target field. Coding ES_MIXED
protects the target field from overrun in this situation.

ES_MIXED The text is a mixture of SBCS and DBCS characters which may
subsequently be converted from an ASCII DBCS code page to an
EBCDIC DBCS code page with a consequent possible increase in
the length of the data.

if
DBCSchars*2 + SBCSchars + N > EM_SETTEXTLIMIT

12-2 PM Programming Reference Vol Il

where N starts at 0 and is incremented whenever the string goes
from SBCS to DBCS or DBCS to SBCS, the alarm sounds and the
last character entered is ignored.

Note: For every conversion from SBCS to DBCS there must be a
corresponding return to SBCS (N must be an even number).

Entry Field Control Data
See “ENTRYFDATA” on page A-64.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_ENTRYFIELD
SYSCLR_BUTTONDARK
SYSCLR_BUTTONLIGHT
SYSCLR_OUTPUTTEXT
SYSCLR_WINDOWTEXT
SYSCLR_HIGHLITEFOREGROUND
SYSCLR_HIGHLITEBACKGROUND

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_FOREGROUNDCOLOR
PP_DISABLEDFOREGROUNDCOLOR
PP_HIGHLIGHTFOREGROUNDCOLOR
PP_FONTNAMESIZE

Chapter 12. Entry Field Control Window Processing 12-3

Entry Field Control Notification Messages

This message is initiated by the entry field control window to notify its owner of significant

events.

WM_CONTROL (in Entry Fields)
For the cause of this message, see “WM_CONTROL” on page 10-39.

Parameters
parami

id (USHORT)

Control window identity.

usnotifycode (USHORT)

Notify code.
-EN_CHANGE

EN_KILLFOCUS
EN.MEMERROR

EN_OVERFLOW

EN_SCROLL

EN_SETFOCUS

param2

The content of the entry field control has changed, and the
change has been displayed on the screen.

The entry field control is losing the focus.

The entry field control cannot allocate the storage necessary o
accommodate window text of the length implied by the
EM_SETTEXTLIMIT message.

The entry field control cannot insert more text than the current
text limit. The text limit may be changed with the
EM_SETTEXTLIMIT message.

If the recipient of this message returns TRUE, then the entry
field control retries the operation, otherwise it terminates the
operation.

The entry field control is about to scroll horizontally. This can
happen in these circumstances:

The application has issued a WinScrollWindow call
The content of the entry field control has changed
The caret has moved

The entry field control must scroll to show the caret
position.

The entry field control is receiving the focus.

hwndcontrolspec (HWND)
Entry field control window handle.

12-4 PM Programming Reference Vol II

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The entry field control window procedure generates this message and sends it to its owner,
informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Related Messages
» WM_CONTROL

Chapter 12. Entry Field Control Window Processing 12-5

Entry Field Control Window Messages

This section describes the entry field control window procedure actions on receiving these
messages:

EM_CLEAR

This message deletes the text that forms the current selection.

Parameters
parami

ulReserve (ULONG)
Reserved value, should be 0.

param2

ulReserve (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks
The entry field control window procedure responds to this message by deleting the text that
forms the current selection and setting usmaxsel equal to usminsel.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_COPY

This message copies the current selection to the clipboard.

Parameters
param1

ulReserved (ULONG)
Reserved value, shouid be 0.

12-6 PM Programming Reference Vol i

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks
The entry field control window procedure responds to this message by copying the text that
forms the current selection to the clipboard in CF_TEXT format.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_CUT

This message copies the text that forms the current selection to the clipboard, and then
deletes it from the entry field control.

Parameters
param1i

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Chapter 12. Entry Field Control Window Processing 12-7

Remarks

The entry field control window procedure responds to this message by copying the text that
forms the current selection to the clipboard in CF_TEXT format, and then deleting it from the
entry field control and setting usmaxsel equal to usminsel.

This meésage is the combination of a EM_COPY message followed by a EM_CLEAR
message. :

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_PASTE

This message replaces the text that forms the current selection with text from the clipboard.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

For example, if the text to be inserted does not fit in the entry field control
without overflowing the text limit set by the EM_SETTEXTLIMIT message, in
which instance no text is inserted.

Remarks
The entry field control window procedure responds to this message by replacing the text that
forms the current selection with text from the clipboard, if the data is in CF_TEXT format.

Only characters from the clipboard up to the first carriage return are used in the replacement.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

12-8 PM Programming Reference Vol Il

EM_QUERYCHANGED

This message enquires if the text of the entry field control has been changed since the last
enquiry.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Changed indicator.

TRUE The text in the entry field control has been changed since the last time it
received this message or a WM_QUERYWINDOWPARAMS message.

FALSE All other situations.

Remarks

The entry field control window procedure responds to this message by setting rc to indicate
whether the text of the entry field has been changed since the last time either this message
or a WM_QUERYWINDOWPARAMS (in Entry Fields) message has been received.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_QUERYFIRSTCHAR

This message returns the zero-based offset of the first character visible at the left edge of an
entry-field control. '

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

Chapter 12. Entry Field Control Window Processing 12-9

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sOffset (SHORT)
Zero-based offset.

Remarks

The entry field control window procedure responds to this message by returning the
zero-based offset into the text that corresponds to the first character displayed in the entry
field control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sOffset to the default value of 0.

EM_QUERYREADONLY

This message returns the read only state of an entry field control.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Read only state indicator.

TRUE Read only state is enabled.
FALSE Read only state is disabled.

Remarks .
The entry field control window procedure responds to this message by returning the read
only state of the entry field control.

12-10 PM Programming Reference Vol I

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_QUERYSEL
This message gets the zero-based offsets of the bounds of the text that forms the current
selection.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ReturnCode

sMinSel (SHORT)
Offset of the first character in the selection.

sMaxSel (SHORT)
Offset of the first character after the selection.

Remarks
The entry field control window procedure responds to this message by returning the
zero-based offsets of the bounds of the text that forms the current selection.

Default Processing

The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sMinSel to the default value of 0, which is equivalent to
setting both sMinSel and sMaxSel to 0.

Chapter 12. Entry Field Control Window Processing 12-11

EM_SETFIRSTCHAR
This message specifies the offset of the character to be displayed in the first position of the
entry field control.

Parameters
paramt

sOffset (SHORT)
Zero-based offset of the first character to be displayed.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred. For example, because sOffset is not valid.

Remarks

The entry field control window procedure responds to this message by setting the text
displayed in the edit control so that the first character displayed on the left of the window has
the zero-based index specified by sOffset.

An EN_SCROLL notification message occurs, if the entry field control scrolls, This message
returns FALSE if the edit control does not have the ES_AUTOSCROLL style or it is center of
right justified.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

12-12 PM Programming Reference Vol Il

EM_SETINSERTMODE

This message sets the insert mode of an entry field.

Parameters
param1i

usinsert (USHORT)
Insert mode indicator.

TRUE Enable insert mode.
FALSE Enable overtype mode.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Previous insert mode indicator.

TRUE Insert mode was previously enabled.
FALSE Overtype mode was previously enabled.

Remarks

The entry field control window procedure responds to this message by setting the insert
mode of the entry field, updating the SV_INSERTMODE system constant and redrawing the
entry field.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_SETREADONLY

This message sets the read only state of an entry field control.

Parameters
parami

usReadOnly (USHORT)
Read only state indicator.

TRUE Enable read only state
FALSE Disable read only state.

Chapter 12. Entry Field Control Window Processing 12-13

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Previous read only state indicator.

TRUE Read only state was previously enabled.
FALSE Read only state was previously disabled.

Remarks
The entry field control window procedure responds to this message by setting the read only
state of the entry field control.

Default Processing
The defauit window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default vaiue of FALSE.

EM_SETSEL

This message sets the zero-based offsets of the bounds of the text that forms the current
selection.

Parameters
param1

usminsel (USHORT)
Offset of the first character in the selection.

usmaxsel (USHORT)
Offset of the first character after the selection.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

. TRUE Successful compietion
FALSE Error occurred.

12-14 PM Programming Reference Vol I

Remarks
The entry field control window procedure responds to this message by setting the zero-based
offsets of the bounds of the text that forms the current selection.

If usminsel equals usmaxsel, the current selection becomes an insertion point.

If usminsel equals 0 and usmaxsel is equal to or greater than the text limit set by the
EM_SETTEXTLIMIT message, the entire text is selected. Selected text is displayed in
reverse color.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_SETTEXTLIMIT

This message sets the maximum number of bytes that an entry field control can contain.

Parameters
parami

sTextLimit (SHORT)
Maximum number of characters in the entry field control.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred. For example, because not enough storage can be allocated.

Remarks
The entry field control window procedure responds to this message by setting the maximum
number of characters that can be contained.

This message is intended only to limit the length of lines that result from the user interacting
with the entry field control. It also limits the length of text that can result from sending a
EM_PASTE or WM_SETWINDOWPARAMS message.

Chapter 12. Entry Field Control Window Processing 12-15

Default Processing
The default window procedure does not expect to receive '(hIS message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

WM_CHAR (in Entry Fields)
For the cause of this message, see “WM_CHAR” on page 10-32.

For a description of the parameters, see “WM_CHAR” on page 10-32.

Remarks

The entry field control window procedure responds to this message by sending it to its owner
if it has not processed the keystroke. This is the most common means by which the input
focus is switched around the various controls in a dialog box.

Unlike other controls, the usvk field of the message “WM_CHAR” on page 10-32 takes
precedence over other fields only when the Shift key is pressed.

If this message contains a valid usch field of the message “WM_CHAR” on page 10-32. that
character is entered into the text in insert or overtype mode.

The keystrokes processed by an entry field control are:

Left arrow Move the cursor one character to the left.

Right arrow Move the cursor one character to the right.

Shift+Left arrow Extend the selection by one character to the left.

Shift+Right arrow Extend the selection by one character to the right.

Home Move the cursor to the beginning of the text.

End Move the cursor to the end of the text.

Backspace Delete the character to the left of the cursor.,

Delete When the selection is an insertion point, delete the character to the

right of the cursor, otherwise delete the current selection, but do not
put it in the clipboard.

Shift+Del Cut the current selection to the clipboard.

Shift+lns Replace the current selection with the text contents from the
clipboard.

Ctrl+Del - Delete to the end of the field.

Ctrl+ins Copy the current selection to the clipboard.

If the control contains more text than can be shown, the actions defined above that move the
cursor cause the text to be scrolled. The amount of scrolling varies from key to key, and the
position of the text within the control varies for the same cursor position.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message other than to set rc to FALSE.

12-16 PM Programming Reference Vol Il

Related Messages
+ WM_CHAR

WM_QUERYCONVERTPOS (in Entry Fields)
For the cause of this message, see “WM_QUERYCONVERTPOS” on page 10-72.

For a description of the parameters, see “WM_QUERYCONVERTPOS” on page 10-72.

Remarks
The entry field control window procedure updates pCursorPos to the position of the cursor

and returns QCP_CONVERT.

Default Processing
For the default window procedure processing of this message see
“WM_QUERYCONVERTPOS” on page 10-72.

Related Messages
« WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in Entry Fields)

This message occurs when an application queries the entry field control window parameters.

For a description of the parameters, see “WM_QUERYWINDOWPARAMS” on page 10-75.

Remarks
The entry field control window procedure responds to this message by returning the window
parameters indicated by the fsStatus parameter of the WNDPARAMS data structure

identified by the pwndparams parameter.

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtiData parameters
of the WNDPARAMS data structure, identified by pwndparams, to 0 and sets rc to FALSE.

Related Messages
+ WM_QUERYWINDOWPARAMS

Chapter 12. Entry Field Control Window Processing 12-17

WM_SETWINDOWPARAMS (in Entry Fields)

This message occurs when an application sets or changes the entry field control window
parameters.

For a description of the parameters, see “WM_SETWINDOWPARAMS” on page 10-86.

Remarks

The entry field control window procedure responds to this message by setting the window
parameters indicated by the fsStatus parameter of the WNDPARAMS data structure,
identified by the pwndparams parameter.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
« WM_SETWINDOWPARAMS

12-18 PM Programming Reference Vol |i

Chapter 13. Frame Control Window Processin‘g-

This system-provided window procedure processes the actions on a frame window
(WC_FRAME). The frame control window procedure sends all messages not processed to
FID_CLIENT and sets reply to O.

Purpose
The window that contains all of the parts listed below is called the frame window. Each of
the parts that make up a window, such as the title bar and menu, are separate child windows
of the frame window. Ali of these child windows, except the client window (FID_CLIENT),
are called frame controls.

FID_CLIENT is not a frame control, it is an instance of a window class implemented by the
application.

The frame window and all of the frame controls are implemented with system-provided
preregistered window classes.

The frame window holds together all of the frame controls and FID_CLIENT that make up an
application window. The frame window is responsible for arranging the frame controls and
the FID_CLIENT as the frame window is sized and moved. It is also responsible for routing
specific messages to its frame controls and the FID_CLIENT.

Each of the frame controls and FID_CLIENT are known to the frame window by a
system-provided window-identifier value as listed below:

FID_CLIENT Client window
FID_HORZSCROLL Horizontal scroll bar
FID_MENU Application menu
FID_MINMAX Minimize/Maximize box
FID_SYSMENU System menu
FID_TITLEBAR Title bar

FID_VERTSCROLL Vertical scroll bar.

For correct operation, only one window per frame must be defined with each of the above
FID_* values.

Frame Creation Flags
These frame creation flags are available:

FCF_TITLEBAR Title bar.

FCF_SYSMENU System menu.

FCF_MENU . Application menu.
FCF_MINMAX Minimize and Maximize buttons.
FCF_MINBUTTON Minimize button.

© Copyright 1BM Corp. 1994 ‘ 13-1

FCF_MAXBUTTON
FCF_VERTSCROLL
FCF_HORZSCROLL
FCF_SIZEBORDER
FCF_BORDER
FCF_DLGBORDER
FCF_ACCELTABLE

FCF_ICON

FCF_SHELLPOSITION

FCF_SYSMODAL
FCF_NOBYTEALIGN

FCF_TASKLIST

FCF_NOMOVEWITHOWNER

13-2 PM Programming Reference Vol Il

Maximize button.

Vertical scroll bar.

Horizontal scroll bar.

Sizing border.

Window is drawn with a thin border.

Window is drawn with a standard dialog border.

Causes an accelerator table to be loaded, for this frame
window, from the resource file identified on the
WinCreateStdWindow function.

Window is created with an icon associated with it that is
used to represent the window when it is minimized.

If present, the Resource parameter of the
WinCreateStdWindow function must be the identity of an
icon. This icon is loaded and associated with the window.
When the window is minimized, the icon is shown if the
screen is capable of showing it. When the window is
destroyed, the icon is also destroyed.

The window is created with a size and position determined
by the shell, rather than explicitly by the application.

The frame window is System Modal.

When this flag is not set, the frame window is adjusted so
that window operations, such as moving, can be
performed in an optimized manner. For example, some
displays can move a window more quickly if the
movement is by a multiple of eight pels.

If this flag is set, such optimizations are not performed and
size and position values are honored.

When this flag is set, the program title is added to the
front of the frame window text, the resulting string is used
as the window title and is also entered on the task list.

In this context, the program title is the text string used by
the Desktop Manager to identify the program, or the text
string specified as a parameter in the START command. If
neither string has been defined, the filename and
extension of the .EXE file are used as the program title.

Note that a WinSetWindowText will not change the entry
in the switch list, a WinChangeSwitchEntry must be done
to affect this.

The window should not be moved when its owner' is
moved.

FCF_STANDARD

FCF_SCREENALIGN
FCF_MOUSEALIGN
FCF_AUTOICON

FCF_HIDEBUTTON
FCF_HIDEMAX

Same as (FCF_TITLEBAR | FCF_SYSMENU |
FCF_MINBUTTON | FCF_MAXBUTTON |
FCF_SIZEBORDER | FCF_ICON | FCF_MENU |
FCF_ACCELTABLE | FCF_SHELLPOSITION |
FCF_TASKLIST).

This value is assumed if any Frame Window is created
with no Control Data.

See FS_SCREENALIGN.
See FS_MOUSEALIGN.

Performance optimization. When repainting iconized
frames, the system will redraw the icon and will not send a
WM_PAINT message to the application.

Hide button.

Hide and maximize buttons.

Frame Control Styles

These frame control styles are available. Frame styles may only be used when the frame is

created from a dialog template.
FS_SCREENALIGN

FS_MOUSEALIGN

FS_SIZEBORDER
FS_BORDER
FS_DLGBORDER
FS_SYSMODAL
FS_NOBYTEALIGN
FS_TASKLIST
FS_NOMOVEWITHOWNER
FS_AUTOICON

The coordinates specifying the location of the dialog box
are relative to the top left corner of the screen, rather than
being relative to the owner window’s origin.

The coordinates specifying the location of the dialog box
are relative to the position of the pointing device pointer at
the time the window was created. The operating system
tries to keep the dialog box on the screen, if possible.

See FCF_SIZEBORDER.

See FCF_BORDER.

See FCF_DLGBORDER.

See FCF_SYSMODAL.

See FCF_NOBYTEALIGN.

See FCF_TASKLIST.

See FCF_NOMOVEWITHOWNER.
See FCF_AUTOICON.

Frame Control Data

See “FRAMECDATA” on page A-99.

Chapter 13. Frame Control Window Processing 13=3

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_DIALOGBACKGROUND
SYSCLR_ACTIVETITLE
SYSCLR_INACTIVETITLE
SYSCLR_APPWORKSPACE
SYSCLR_ACTIVEBORDER
SYSCLR_WINDOW
SYSCLR_SHADOW
SYSCLR_WINDOWFRAME
SYSCLR_FIRST.

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_BACKGROUNDCOLOR
PP_SHADOW
PP_FOREGROUNDCOLOR
PP_BORDERCOLOR
PP_DISABLEDBACKGROUNDCOLOR.

13-4 PM Programming Reference Vol Il

Frame Control Notification Messages
These messages are initiated by the frame control window to notify the FID_CLIENT window.

WM_MINMAXFRAME (in Frame Controls)
For the cause of this message, see “WM_MINMAXFRAME” on page 10-58.

For a description of the parameters, see “WM_MINMAXFRAME” on page 10-58.

Remarks

The window words QWS_XRESTORE, QWS_YRESTORE, QWS_CXRESTORE, and
QWS_CYRESTORE for hwnd are initialized before this message is sent. The window state
has not been changed when this message is sent, and so the WinQueryWindowPos function
can be used.

This message is sent by default to the FID_CLIENT window.

The system default actions, if FALSE is returned to this message, are based on the
operation specified by the pswp parameter.

These actions affect the status of the frame window, and the title button windows and system
menu windows contained within it, as follows:
* Window is maximized from a minimized state.
— Title button windows:

The RESTORE button window is replaced by a MIN button window and the MAX
button window is replaced by a RESTORE button window.

— System menu window:
The MINIMIZE menu entry is enabled and the MAXIMIZE menu entry is disabled.
— Other changes:

The frame window has the WS_MAXIMIZED style bit set and the WS_MINIMIZED
style bit reset. Also the MS_VERTICALFLIP style bit of the system menu window is
reset.

* Window is restored from a minimized state.
— Title button windows:

The RESTORE button window is replaced by a MIN button window (the MAX button
window is unaltered).

— System menu window:

The MINIMIZE menu entry is enabled, the RESTORE menu entry is disabled and
the SIZE menu entry is enabled.

Chapter 13. Frame Control Window Processing 13-5

— Other changes:

The frame window has the WS_MINIMIZED style bit and the MS_VERTICALFLIP
style bit of the system menu window reset.

* Window is minimized from a maximized state.
— Title button windows:

The RESTORE button window is replaced by a MAX button window and the MIN
button window is replaced by a RESTORE button window.

— System menu window:
The MAXIMIZE menu entry is enabled and the MINIMIZE menu entry is disabled.
— Other changes:

The frame window has the WS_MINIMIZED style bit set and the WS_MAXIMIZED
style bit reset. Also the MS_VERTICALFLIP style bit of the system menu window is
set.

¢ Window is restored from a maximized state.
— Title button windows:

The RESTORE button window is replaced by a MAX button window (the MIN button
window is unaltered).

— System menu window:

The MAXIMIZE menu entry is enabled, the RESTORE menu entry is disabled and
the SIZE menu entry is enabled.

— Other changes:
The frame window has the WS_MAXIMIZED style bit reset.
¢ Window is minimized from a restored state.
— Title-button windows:

The MIN button window is replaced by a RESTORE button window (the MAX button
window is unaltered).

— System menu window:

The RESTORE menu entry is enabled, the MINIMIZE menu entry is disabled and
the SIZE menu entry is disabled.

— Other changes:

The frame window has the WS_MINIMIZED style bit set, and the
MS_VERTICALFLIP style bit of the system menu window is set.

13-6 PM Programming Reference Vol Il

¢ Window is maximized from a restored state.
— Title-button windows:

The MAX button window is replaced with a RESTORE button window (the MIN
button window is unaltered).

— System menu window:

The RESTORE menu entry is enabled, the MAXIMIZE menu entry is disabled.
— Other changes:

The frame window has the WS_MAXIMIZED style bit set.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
* WM_MINMAXFRAME

Chapter 13. Frame Control Window Processing

13-7

Frame Control Window Messages

This section describes the frame control window procedure actions on receiving the following
messages.

WM_ACTIVATE (in Frame Controls)
For the cause of this message, see “WM_ACTIVATE” on page 10-5.

For a description of the parameters, see “WM_ACTIVATE” on page 10-5.

Remarks

The frame control window procedure responds to this message by first sending a
TBM_SETHILITE message to the FID_TITLEBAR control, if it exists, to highlight or
unhighlight the title bar. If the style is FCF_DLGBORDER, the border is redrawn in either
highlighted or unhighlighted state, as necessary.

It then sends the WM_ACTIVATE message to the FID_CLIENT window.

Then it sets ulReserved to 0.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0. :

Related Messages
« WM_ACTIVATE

WM_ADJUSTFRAMEPOS

This message is sent to a frame window whose position or size is to be adjusted.

Parameters
parami

pswp (PSWP)
New frame window state.

This points to a SWP structure.

The structure has been filled in by the WinSetWindowPos or WinSetMultWindowPos
functions with the proposed move or size data for the frame window.

param2

hsavewphsvwp (HSAVEWP)
Identifier of the frame window repositioning process.

13-8 PM Programming Reference Vol II

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks

When a WinSetWindowPos or WinSetMultWindowPos function involves adjusting the position
or size of a frame window, a WM_ADJUSTFRAMEPOS message is sent to the frame
window.

The frame control processes the message by informing all the windows in its owner
hierarchy, that is all the windows owned by the frame and all the windows owned by them
and so on, by sending each a WM_OWNERPOSCHANGE message. Each window receiving
the a WM_OWNERPOSCHANGE message is expected to modify the SWP structure
provided as the first parameter in the message to the appropriate values relative to the new
position and/or size of its owner, whose new position and size is specified in a SWP
structure provided as the second parameter in the message.

In this way the frame control can determine the state changes to be made to all the windows
in its owner hierarchy, in accordance with the values specified in the SWP structure
referenced by the pswp parameter. The rules for changing the state of these owned
windows are:

SWP_SIZE and SWP_MOVE
The owned window is moved relative to the top left corner of its owner.

SWP_SHOW
The visibility state of an owned window is changed to agree with that of their owner.

SWP_MINIMIZE
An owned window is made invisible when the owner is minimized.

SWP_MAXIMIZE and SWP_RESTORE
An owned window that was previously made invisible when the owner was minimized
is made visible.

The frame window coordinates the repositioning of the frame window and all its owned
windows, by using the WinSaveWindowPos function to associate those windows whose
states are to change with the identifier of the frame window repositioning process, that is the
hsavewphsvwp parameter. Eventually, the state changes to be made to the owned windows
are contained in the array of SWP structures identified by the pswp parameter.

If the frame window is subclassed, this message must then be passed to the superclass
window procedure for processing. The superclass window procedure is the window
procedure of the window before it was subclassed. This message is passed along the chain
of window procedures and is eventually processed by the system frame window procedure.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

Chapter 13. Frame Control Window Processing 13-9

WM_BUTTON1DBLCLK (in Frame Controls)
For the cause of this message, see “WM_BUTTON1DBLCLK” on page 10-12.

For a description of the parameters, see “WM_BUTTON1DBLCLK” on page 10-12.

Default Processing

If the frame is minimized, the frame control window procedure causes the frame window to
return to its previous state. Otherwise, the message is handled like a WM_BUTTON1DOWN
message.

Related Messages
* WM_BUTTON1DBLCLK

WM_BUTTON2DBLCLK (in Frame Controls)
For the cause of this message, see “WM_BUTTON2DBLCLK” on page 10-18.

For a description of the parameters, see “WM_BUTTON2DBLCLK” on page 10-18.

Default Processing
The frame control window procedure processes this message identically to
WM_BUTTON1DBLCLK (in Frame Controls).

Related Messages
e WM_BUTTON2DBLCLK

WM_BUTTON1DOWN (in Frame Controls)
For the cause of this message, see “WM_BUTTON1DOWN” on page 10-13.

For a description of the parameters, see “WM_BUTTON1DOWN” on page 10-13.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer button information.

Default Processing

The frame control window procedure responds to this message by issuing the
WinSetActiveWindow function and sets rc to TRUE. If this is over a part of the window that
does not have a frame control, it issues a WinSetActiveWindow function. If the click is over
the size border, this window begins tracking by sending a WM_TRACKFRAME message to
itself. If the click is not over the size border, this message is passed on.

Related Messages
e WM_BUTTON1DOWN

13-10 PM Programming Reference Vol i

WM_BUTTON2DOWN (in Frame Controls)
For the cause of this message, see “WM_BUTTON2DOWN” on page 10-19.

For a description of the parameters, see “WM_BUTTON2DOWN” on page 10-19.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer button information.

Default Processing
The frame controt window procedure processes this message identically to
“WM_BUTTON1DOWN (in Frame Controls)” on page 13-10.

Related Messages
« WM_BUTTON2DOWN

WM_BUTTON1UP (in Frame Controls)
For the cause of this message, see “WM_BUTTON1UP” on page 10-16.

For a description of the parameters, see “WM_BUTTON1UP” on page 10-16.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer button information.

Default Processing ,

The frame control window procedure responds to this message by issuing the
WinSetActiveWindow function and sets rc to TRUE. [f the window is not minimized, this
message is not processed. If the frame is minimized, this message causes the system menu

to pop up.

Related Messages
* WM_BUTTON1UP

WM_BUTTON2UP (in Frame Controls)
For the cause of this message, see “WM_BUTTON2UP” on page 10-22.

For a description of the parameters, see “WM_BUTTON2UP” on page 10-22.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer button information.

Chapter 13. Frame Control Window Processing 13-11

Default Processing
The frame control window procedure processes this message identically to
“WM_BUTTON1UP (in Frame Controls)” on page 13-11.

Related Messages
+ WM_BUTTON2UP

WM_CALCFRAMERECT (in Frame Controls)
For the cause of this message, see “WM_CALCFRAMERECT” on page 10-29.

For a description of the parameters, see “WM_CALCFRAMERECT” on page 10-29.

Remarks
Frame control calculates the appropriate rectangle, taking into account byte alignment, or
nonbyte alignment if FCF_NOBYTEALIGN is specified.

Default Processing

The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
+ WM_CALCFRAMERECT

WM_CHAR (in Frame Controls)

This message is sent by controls to their owner window if they do not process the key stroke
themselves. It is the most common means by which the input focus is switched around the
various controls in a dialog box.

For a description of the parameters, see “WM_CHAR” on page 10-32.

Default Processing
The frame control window procedure responds to this message as follows:

¢ |f the message contains a valid VK _ value, that value is processed before any valid
character in the message.

¢ [f the character matches a mnemonic in the text of a button or static control child
window, the focus is set to that window.

* If the character is Tab or Backtab, the focus is set to the next or previous tabstop
window.

* If the character is Up or Left Arrow, the focus is set to the previous item in the group.

¢ If the character is Down or Right Arrow, the focus is set to the next item in the group.

13-12 PM Programming Reference Vol I

¢ [f the Enter key is pressed, a WM_COMMAND message is posted to itself, containing
the identity of the button with the focus, or, if none, the identity of the default push
button.

» If the Escape key is pressed, a WM_COMMAND message is posted to itself with the
command value DID_CANCEL.

Related Messages
+ WM_CHAR

WM_CLOSE (in Frame Controls)
For the cause of this message, see “WM_CLOSE” on page 10-35.

For a description of the parameters, see “WM_CLOSE” on page 10-35.

Remarks

Frame control sends this message to the client window (FID_CLIENT) if it exists, otherwise it

calls the WinDefWindowProc function.

Default Processing
The default window procedure posts a WM_QUIT message to the appropriate queue and

sets u/Reserved to 0.

Related Messages
+ WM_CLOSE

WM_COMMAND
For the cause of this message, see “WM_COMMAND?” on page 10-37.

For a description of the parameters, see “WM_COMMAND” on page 10-37.

Default Processing
The Frame Control window procedure responds to this message by sending it the client
window if it exists, otherwise the message is thrown away.

WM_DRAWITEM (in Frame Controls)
For the cause of this message, see “WM_DRAWITEM” on page 10-42.

For a description of the parameters, see “WM_DRAWITEM” on page 10-42.

Remarks
The identity of the top-level action-bar menu that generated this message is found. If the
identity is FID_MENU, the message is passed to the window with identity FID_CLIENT.

Chapter 13. Frame Control Window Processing 13-13

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Related Messages
* WM_DRAWITEM

WM_ERASEBACKGROUND

This message causes a client window to be filled with the background, should this be
appropriate.

Parameters
param1i

hpsFrame (HPS)
Presentation-space handle for the frame window.

param2

pprcPaint (PRECTL)
Rectangie structure of rectangle to be painted.

This points to a RECTL structure.

Returns
rc (BOOL)
Processed indicator.

TRUE If a FID_CLIENT window exists, the area of the frame covered by the
FID_CLIENT window is erased in the system-window background color.

If no FID_CLIENT window exists, the entire frame window is erased in the
system-window background color.

FALSE The client window did process the message.

Remarks
The frame window procedure processes this message in the following manner:

1. The frame window sends this message to the client in response to the frame
WM_PAINT message, with the presentation-space handle of the frame window (obtained
from WinBeginPaint).

2. If the client window returns TRUE, the frame window procedure erases the rectangle of
the frame window covered by the client window, by filling it with the system color
SCLR_WINDOW. ‘

3. If the client window returns FALSE, no action is taken. This is the defauit behavior, as
“WinDefWindowProc returns FALSE if passed this message.

13-14 PM Programming Reference Vol I

4. Also, the client window can use the presentation-space handle passed in this message
to selectively erase parts of the screen. If the client window processes the message in
this way, FALSE should be returned to avoid the erasure being done automatically by

the frame window procedure.

It should be noted again that the presentation space is not a client window presentation
space; it is a presentation space for the frame window returned by WinBeginPaint, that
is, a cached presentation space in frame (not client) window coordinates, clipped to the
area of the frame that needs to be updated (possibly including areas outside the client

window).

Default Processing

The default window procedure takes no action on this message, other than to set rc to

FALSE.

WM_FLASHWINDOW

An application has issued a WinFlashWindow function.

Parameters
parami

usFlash (USHORT)
Flash indicator.

TRUE Start the window border flashing

FALSE Stop the window border flashing.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Default Processing

The frame control window procedure responds to this message from an application by

starting or stopping the flashing of the window border, and by setting rc as appropriate.

Chapter 13. Frame Control Window Processing

13-15

WM_FOCUSCHANGE (in Frame Controls)
For the cause of this message, see “WM_FOCUSCHANGE” on page 10-47.

For a description of the parameters, see “WM_FOCUSCHANGE” on page 10-47.

Remarks

The frame control responds to this message by sending the other messages depending on
the value of the fsFocusChange parameter. These messages, if sent, are sent in the
foliowing order:

WM_SETFOCUS to the window losing the focus.
WM_SETSELECTION to the windows losing their selection.
WM_ACTIVATE to the windows being deactivated.
WM_ACTIVATE to the windows being activated.
WM_SETSELECTION to the windows being selected.
WM_SETFOCUS to the window receiving the focus.

ook ON~

Default Processing
The default window procedure sends this message to either the owner, if one exists, or to
the parent of the window, if it is not the desktop window, otherwise it sets ulReserved to 0.

Related Messages
* WM_FOCUSCHANGE

WM_FORMATFRAME (in Frame Controls)
For the cause of this message, see “WM_FORMATFRAME” on page 10-48.

For a description of the parameters, see “WM_FORMATFRAME” on page 10-48.

Remarks
Applications that subclass frame controls may find that the frame is already subclassed; the
number of frame controls is variable.

. The WM_FORMATFRAME and WM_QUERYFRAMECTLCOUNT messages must always be
subclassed by calling the previous window procedure and modifying its result.

Default Processing

The SWP structure for the FID_CLIENT frame control, if present, is the last element of the
pswp parameter, unless additional frame controls are added by subclassing; the SWP
structures for these follow that for FID_CLIENT if present. The frame control window
procedure first sends the message to the FID_CLIENT window. If FID_CLIENT returns
ccount to indicate that the message has been processed, no additional processing is
performed.

If not processed by the client, the frame control window procedure calculates the size and
position of all the standard frame controls.

13-16 PM Programming Reference Vol I

Related Messages
+ WM_FORMATFRAME

WM_INITMENU (in Frame Controls)
For the cause of this message, see “WM_INITMENU” on page 10-53.

For a description of the parameters, see “WM_INITMENU” on page 10-53.

Remarks

The identity of the top-level action-bar menu that generated this message is found. If the
identity is FID_MENU, the message is passed to the window with identity FID_CLIENT. If
the identity is FID_SYSMENU the system menu state is initialized according to the current
state of the window.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved

to 0.

Related Messages
* WM_INITMENU

WM_MEASUREITEM (in Frame Controls)
For the cause of this message, see “WM_MEASUREITEM” on page 10-55.

For a description of the parameters, see “WM_MEASUREITEM” on page 10-55.

Remarks
The identity of the top-level action bar menu that generated this message is found. If the
identity is FID_MENU, the message is passed to the window with identity FID_CLIENT.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sHeight to the default value of 0.

Related Messages
» WM_MEASUREITEM

Chapter 13. Frame Control Window Pfocessing 13-17

WM_MENUSELECT (in Frame Controls)
For the cause of this message, see “WM_| MENUSELECT (in Frame Controls).”

For a description of the parameters, see “WM_MENUSELECT (in Frame Controls).”

Remarks
The identity of the top-level action-bar menu that generated this message is found. - If the
identity is FID_MENU, the message is passed to the window with identity FID_CLIENT.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
TRUE.

Related Messages
* WM_MENUSELECT

WM_NEXTMENU (in Frame Controls)
For the cause of this message, see “WM_NEXTMENU” on page 10-63.

For a description of the parameters, see “WM_NEXTMENU” on page 10-63.

Remarks

The frame control window procedure processes the message by returning the handle of the
system menu window if hwndMenu is the handle of the main action bar window, or by
returning the handle of the main action bar window if hwndMenu is the handle of the system
menu window.

Default Processing
The defauit window procedure takes no action on this message, other than to set
hwndNewMenu to NULLHANDLE.

Related Messages
e WM_NEXTMENU

WM_OWNERPOSCHANGE
This message is sent by a frame window processing the WM_ADJUSTFRAMEPOS
message.

13-18 PM Programming Reference Vol Il

Parameters
param1

ppswp (PSWP)
Owned window state.

This points to a SWP structure.

The receiver of this message is expected to alter this SWP parameter to the
appropriate values relative to the new position and/or size of its owner, whose new
position and size is specified in a SWP structure in the ppswpOwner parameter.

param2

ppswpOwner (PSWP)
Owner window state.

This points to a SWP structure.
This represents the new position and size of the owner window.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

WM_PAINT (in Frame Controls)
For the cause of this message, see “WM_PAINT” on page 10-66.

For a description of the parameters, see “WM_PAINT” on page 10-66.

Default Processing

The frame is redrawn as governed by the FCF_BORDER or FCF_DLGBORDER style. A
WM_ERASEBACKGROUND message is sent to FID_CLIENT window, and if it returns
FALSE, then the FID_CLIENT window is erased to the system-provided window background
color and sets ulReserved to 0.

Related Messages
» WM_PAINT

Chapter 13. Frame Control Window Processing 13-19

WM_QUERYBORDERSIZE

This message is sent to the frame window to determine the width and height of the border of
the window.

Parameters
param1

pSize (PWPOINT)
Width and height of size border control.

This points to a POINTL structure, that is used to hold the width in the x parameter
and the height in the y parameter.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks
The frame window responds to this message by returning the width and height of its border
in the pSize parameter, as follows:

* SV_CX/CYSIZEBORDER if FCF_SIZEBORDER is specified
* SV_CX/CYDLGFRAME if FCF_DLGBORDER is specified
» SV_CX/CYBORDER if FS_BORDER is specified.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

WM_QUERYCONVERTPOS (in Frame Controls)
For the cause of this message, see “WM_QUERYCONVERTPOS” on page 10-72.

For a description of the parameters, see “WM_QUERYCONVERTPOS” on page 10-72.

Remarks
The frame control window procedure returns QCP_NOCONVERT.

13-20 PM Programming Reference Vol Il

Default Processing
For the default window procedure processing of this message see
WM_QUERYCONVERTPOS

Related Messages
+ WM_QUERYCONVERTPOS

WM_QUERYFOCUSCHAIN

This message is used to request the handle of a window in the focus chain.

Parameters
parami

fsCmd (USHORT)
Command to be performed.

This field contains a flag to indicate what action is to be performed:
QFC_NEXTINCHAIN Return the next window in the focus chain.
The hwndParent parameter is not used.

QFC_ACTIVE Return the handle of the frame window that would be
activated or deactivated, if this window gains or loses the
focus.

The window handle returned is a child of the window
specified by the hwndParent parameter.

QFC_FRAME Return the handle of the first frame window associated
with this window.

The hwndParent parameter is not used.

QFC_SELECTACTIVE Return the handle of the window from the group of owned
windows to which this window belongs which either
currently has the focus or, if no window has the focus,
previously had the focus.

Return NULL, if no window in the owner group has had
the focus.

The hwndParent parameter is not used.

QFC_PARTOFCHAIN Return TRUE if the handle of the window identified by the
\ hwndParent parameter is in the focus chain, otherwise
return FALSE.

Because this message is passed along the focus chain,
this is equivalent to returning TRUE, if the handle of the
window receiving this message is hwndParent or to
returning FALSE, if it is not.

Chapter 13. Frame Control Window Processing 13-21

param2

hwndParent (HWND)
Parent window.

Returns
hwndResult (HWND)
Handle of the window requested.

0 No window handle exists for this case of the fsCmd parameter

This value js also to be interpreted as FALSE for the case when the fsCmd is
set to QFC_PARTOFCHAIN.

Other Handle of the window requested.

This value is also to be interpreted as TRUE for the cases when the fsCmd is
set to QFC_PARTOFCHAIN.

Remarks
The frame control window procedure responds to this message by returning the appropriate
window handle, as described under the fsCmd field.

Default Processing
The default window procedure takes the same action as the frame control window procedure.

WM_QUERYFRAMECTLCOUNT

This message is sent to the frame window in response to the receipt of a WM_SIZE or a
WM_UPDATEFRAME (in Frame Controls) message.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sControlCount (SHORT)
Count of frame controls.

13-22 PM Programming Reference Vol Il

Remarks

By sending this message to itself, any procedures that subclass the frame window become
aware that the number of frame controls is being calculated and include any special frame
controls of the subclass in the count.

This count is used to allocate the appropriate number of SWP structures that are passed in
the WM_FORMATFRAME (in Frame Controls) message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sContro/Count to the default value of 0.

WM_QUERYFRAMEINFO

This message enables an application to query information about frame windows.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
fIFlags (ULONG)
Frame information flags.

FI_FRAME Identifies a frame window.

FI_OWNERHIDE The frame window is hidden when its owner is hidden.
FI_NOMOVEWITHOWNER The frame window does not move with its owner.
FI_ACTIVATEOK The frame window may be activated. This means, for

example, that the frame window is not disabled.

Remarks
This message can be used to query whether or not a particular window is a frame window.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

Chapter 13. Frame Control Window Processing 13-23

WM_QUERYICON

This message is sent to a frame window to query its associated icon.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
hptricon (HPOINTER)
Handle to the icon.

Default Processing
The icon for the frame is returned.

WM_QUERYWINDOWPARAMS (in Frame Controls)

This message occurs when an application queries the frame control window parameters.

For a description of the parameters, see “WM_QUERYWINDOWPARAMS” on page 10-75.

Default Processing

The frame control window procedure queries the appropriate window parameters in
accordance with pwndparams and sets rc to TRUE if the operation is successful, otherwise
to FALSE.

The window text of a frame control is obtained by sending this message to its
FID_TITLEBAR.

Related Messages
* WM_QUERYWINDOWPARAMS

13-24 PM Programming Reference Vol |

WM_SETBORDERSIZE

This message is sent to the frame window to change the width and height of the border.

Parameters
paramt

uscx (USHORT)
Width of border.

param2

uscy (USHORT)
Height of border.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks

The frame control sets the width and height to uscx and uscy respectively.

Default Processing

The default window procedure takes no action on this message, other than to set rc to

FALSE.

WM_SETICON

This message is sent to a frame window to set its associated icon.

Parameters
param1

hptricon (HPOINTER)
New icon handle.

param2

ulReserved (ULONG)

Reserved value, should be 0.

Chapter 13. Frame Control Window Processing 13-25

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Default Processing
The icon for the frame is set.

WM_SETWINDOWPARAMS (in Frame Controls)

This message occurs when an application sets or changes the frame control window
parameters.

For a description of the parameters, see “WM_SETWINDOWPARAMS” on page 10-86.

Default Processing
The frame control window procedure sets the appropriate window parameters in accordance
with pwndparams and sets rc to TRUE if the operation is successful, otherwise to FALSE.

The window text of a frame control is set by sending this message to its FID_TITLEBAR.

Related Messages
* WM_SETWINDOWPARAMS

WM_SIZE (in Frame Controls)

For the cause of this message, see “WM_SIZE” on page 10-88.

For a description of the parameters, see “WM_SIZE” on page 10-88.

Default Processing
The frame control window procedure responds to this message by sending a
WM_FORMATFRAME (in Frame Controls) message to itself and by setting u/lReserved to 0.

Related Messages
* WM_SIZE

13-26 PM Programming Reference Vol Il

WM_SYSCOMMAND

This message occurs when a control window has a significant event to notify to its owner, or
when a key stroke has been translated by an accelerator table into a WM_SYSCOMMAND.

Parameters
parami

uscmd (USHORT)
Command value.

The frame control takes the action described on these uscmd values:

SC_SIZE
SC_MOVE

SC_MINIMIZE

SC_MAXIMIZE

SC_RESTORE
SC_NEXT

SC_APPMENU
SC_SYSMENU

SC_CLOSE

SC_NEXTFRAME

SC_NEXTWINDOW

Sends a WM_TRACKFRAME (in Frame Controls) to the
frame window.

Sends a WM_TRACKFRAME (in Frame Controls) to the
frame window.

If a control with the identifier FID_MINMAX is present,
minimizes the frame window, or restores it to a
remembered size and position.

If a control with the identifier FID_MINMAX is present,
maximizes the frame window, or restores it to a

“remembered size and position.

When a window is moved or sized in the normal way at
least one border should remain on the screen. When a
window is maximized and the maximum size is as large as
the screen, all borders should be positioned just outside
the screen.

If a control with the identifier FID_MINMAX is present,
restores a maximized frame window to its previous size
and position.

Cycles the active window status to the next main window.

Sends a MM_STARTMENUMODE message to the control
with the identifier FID_MENU.

Sends a MM_STARTMENUMODE message to the control
with the identifier FID_SYSMENU.

If Close is not enabled in the system menu, this message
is ignored. Otherwise the frame posts a WM_CLOSE
message to the client if it exists or to itself, if not.

The next frame window that is a child of the desktop
window is activated.

The next window with the same owner window is
activated.

Chapter 13. Frame Control Window Processing 13-27

SC_TASKMANAGER The Task List is activated.

SC_HELPEXTENDED The frame manager sends HM_EXT_HELP to the
associated Help Manager Object Window. If there is no
such associated window, the original message is sent to
the client.

SC_HELPKEYS The frame manager sends HM_KEYS_HELP to the
associated Help Manager Object Window. If there is no
such associated window, the original message is sent to
the client.

SC_HELPINDEX The frame manager sends HM_HELP_INDEX to the
associated Help Manager Object Window. [f there is no
such associated window, the original message is sent to
the client.

SC_HIDE Sets the visibility state of the frame window to off causing
it to appear hidden or invisible.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control: uscmd is the
window identifier of the push button.

CMDSRC_MENU Posted by a menu control: uscmd is the identifier of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator: usemd is the
accelerator command value.

CMDSRC_OTHER Other source: uscmd gives further control-specific
information defined for each control type.

fpointer (BOOL)
Pointing-device indicator.

TRUE The message is posted as a result of a pointing-device operation.
FALSE The message is posted as a result of a keyboard operation.

ulReserved (ULONG)
Reserved value, should be 0.

Remarks
This message is posted to the window procedure of the owner of the frame control.
ulReserved is set to 0.

13-28 PM Programming Reference Vol Il

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved

to 0.

WM_TRACKFRAME (in Frame Controls)

This message is sent to a frame window whenever it is to be moved or sized.

Parameters
parami

fsTrackFlags (USHORT)
Tracking flags.

Contains a combination of one or more TF_* flags; for details, see the TRACKINFO
data structure.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred, or the operation is terminated.

Remarks

The frame control window procedure responds to this message by causing a tracking
rectangle to be drawn to move or size the window. For information, see the WinTrackRect
function.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
TRUE.

Related Messages
+ WM_TRACKFRAME

Chapter 13. Frame Control Window Processing 13-29

WM_TRANSLATEACCEL (in Frame Controls)
For the cause of this message, see “WM_TRANSLATEACCEL” on page 10-95.

For a description of the parameters, see “WM_TRANSLATEACCEL” on page 10-95.

Remarks
The frame control window procedure processes the message by checking whether the
character is in the accelerator table, by using the WinTranslateAccel function.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
* WM_TRANSLATEACCEL

WM_TRANSLATEMNEMONIC (in Frame Controls)
For the cause of this message, see “WM_TRANSLATEMNEMONIC” on page 10-96.

For a description of the parameters, see “WM_TRANSLATEMNEMONIC” on page 10-96.

Remarks

The frame control window procedure processes the message by sending it to the application

menu window, that is, the window with the identity FID_MENU.

Default Processing
For the default window procedure processing of this message, see
“WM_TRANSLATEMNEMONIC” on page 10-96.

Related Messages
» WM_TRANSLATEMNEMONIC

WM_UPDATEFRAME (in Frame Controls)
For the cause of this message, see “WM_UPDATEFRAME” on page 10-97.

For a description of the parameters, see “WM_UPDATEFRAME” on page 10-97.

Remarks

This message must be sent to the frame window whenever an application adds or removes

one of the frame controls identified by the FCF_* flags. It must also be sent if the
application adds or removes a submenu of the menu bar of the frame window.

The frame control window procedure first sends the message on to the FID_CLIENT window.

The FID_CLIENT window might either reformat the frame window and set rc to TRUE, in

13-30 PM Programming Reference Vol Ii

which case the frame control window procedure takes no further action, or it might set rc to
FALSE, in which case the frame control window procedure performs the reformatting.

If fiCreateFlags contains FCF_SIZEBORDER, reformatting the frame window includes
invalidating the area occupied by the size border.

The frame control window procedure sets rc to TRUE.

Default Processing

The default window procedure takes no action on this message, other than to set rc to
TRUE.

Related Messages
+ WM_UPDATEFRAME

Chapter 13. Frame Control Window Processing 13-31

13-32 PM Programming Reference Vol Il

Chapter 14. List Box Control Window Processing

This system-provided window procedure processes the actions on a list box control
(WC_LISTBOX).

Purpose
A list box control is a window containing a list of items. Each item in a list box contains a
text string (0 or more characters) and a handle. The text string is displayed in the list box
window. The handle can be used by the application to refer to other data associated with
each item.

List Box Control Styles
These list box control styles are available:

LS_HORZSCROLL The list box control enables the operator to scroll the list box
horizontally.

LS_MULTIPLESEL The list box control enables the operator to select more than one
item at any one time. Lists that do not have this style allow only a
single selection at any one time. [f this style is specified,

‘LS_EXTENDEDSEL should also be specified.

LS_EXTENDEDSEL If this style is specified, the extended selection user interface is
enabled.

LS_OWNERDRAW The list box control has one or more items that can be drawn by the
owner. Typically, these items are represented by bit maps rather
than by text strings.

LS_NOADJUSTPOS If this style is included, the list box control is drawn at the size
specified. This can cause parts of an item to be shown.

List Box Control Data
None.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_FIELDBACKRGOUND
SYSCLR_BUTTONDARK
SYSCLR_WINDOW
SYSCLR_WINDOWTEXT
SYSCLR_ENTRYFIELD
SYSCLR_HILITEFOREGROUND
SYSCLR_HILITEBACKGROUND
SYSCLR_WINDOWFRAME

© Copyright IBM Corp. 1994 14-1

Some of these defauits can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_DISABLEDFOREGROUNDCOLOR
PP_FOREGROUNDCOLOR
PP_HILITEFOREGROUNDCOLOR
PP_BORDERCOLOR

14-2 PM Programming Reference Vol Il

List Box Control Notification Messages

These messages are initiated by the list box control window to notify its owner of significant
events.

WM_CONTROL (in List Boxes)
For the cause of this message, see “WM_CONTROL” on page 10-39.

Parameters
param1

id (USHORT)
Control-window identity.

usnotifycode (USHORT)
Notify code.

The list box control window procedure uses these notification codes:

LN_ENTER Either the Enter or Return key has been pressed while the list
box control has the focus, or the list box control has been
double-clicked.

LN_KILLFOCUS The list box control loses the focus.

LN_SCROLL The list box control is about to scroll horizontally. This can
happen when the application has issued a WinScrollWindow
function.

LN_SETFOCUS The list box control receives the focus.

LN_SELECT An item is being selected (or deselected).

Note: To discover the index of the selected item, the
application must use the LM_QUERYSELECTION
message.

param2

hwndcontrolspec (HWND)
List box control window handle.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Chapter 14. List Box Control Window Processing 14-3

Remarks
The list box control window procedure generates this message and sends it to its owner,
informing the owner of this event.

Default Processing
The default window procedure takes no action on this message, other than to set u/lReserved
to 0.

Related Messages
+ WM_CONTROL

WM_DRAWITEM (in List Boxes)

This notification is sent to the owner of a list box control each time an item is to be drawn.

Parameters
param1

idListBox (USHORT)
Window identifier.

The window identity of the list box control sending this notification message.

param?2

pOwnerltem (POWNERITEM)
Owner-item structure.

This points to an owner-item struciure; see “OWNERITEM” on page A-136.

Returns
rc (BOOL)
ltem-drawn indicator.

TRUE The owner draws the item, so the list box control does not draw it.
FALSE If the item contains text and the owner does not draw the item, the owner
returns this value, and the list box control draws the item.

Remarks
The list box control window procedure only draws items that are represented by text strings
and emphasizes selected items by inverting them.

If an application uses list box controls containing items that are not represented by text
strings, or requires that the emphasized state of an item is to be drawn in a special manner,
the list box control must specify the style LS_OWNERDRAW and those items must be drawn
by the owner.

14-4 PM Programming Reference Vol Il

The list box control window procedure generates this message and sends it to the owner of
the list box control, informing the owner that an item is to be drawn, offering the owner the
opportunity to draw that item, and indicating that either the item has been drawn, or that the
list box control is to draw it.

The item text must not be changed during the processing of this message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Related Messages
« WM_DRAWITEM

WM_MEASUREITEM (in List Boxes)

This notification is sent to the owner of a list box control to establish the height and width for
an item in that control.

Parameters
parami

sListBox (SHORT)
List-box identifier.

param2

sltemindex (SHORT)
Item index.

The zero-based index of the item which has changed.

Returns
ReturnCode

sHeight (SHORT)
Height of item.

sWidth (SHORT)
Width of item.

This value is required only if the list box control is scrollable horizontally, that is, it
has a style of LS_HORZSCROLL.

Remarks
This message is sent to the owner of a list box that has a style of LS_OWNERDRAW, to
offer the owner an opportunity to establish the height and width (for a horizontally scrollable

Chapter 14. List Box Control Window Processing 14-5 -

list box control) of an item that accommodates any special requirements for the drawing of
items in that list box. It is sent when items in the list box are inserted or deleted, and also
when presentation parameters for the list box change.

All items in a list box must have the same height, which must be greater than or equal to the
height of the current font.

In particular, this notification is sent to the owner of a list box that has a style of
LS_OWNERDRAW, to offer the owner an opportunity to establish the height and width (for a
-horizontally scrollable list box control) of an item that accommodates any special
requirements for the drawing of items in that list box.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sHeight to the default value of 0.

Related Messages
+ WM_MEASUREITEM

14-6 pPM Programming Reference Vol I}

List Box Control Window Messages

This section describes the list box control window procedure actions on receiving the
following messages.

LM_DELETEALL

This message is sent to a list-box control to delete all the items in the list box.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks
The list box control window procedure responds to this message by deleting all the items in
the list box and by setting rc to TRUE.

Default Processing
The default window procedure does not expect to receive this message and, therefore, takes
no action on it, other than to set rc to the default value of FALSE.

LM_DELETEITEM

This message deletes an item from the list box control.

Parameters
param1i

sltemindex (SHORT)
item index. -

The zero-based index of the item to be deleted.

Chapter 14. List Box Control Window Processing 14=7

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sltemsLeft (SHORT)
Number remaining.

The number of items in the list after the item is deleted.

Remarks

The list box control window procedure responds to this message by deleting the indexed item
of the list box and by setting s/temsLeft to the count of the items in the list after the item is
deleted.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set s/temsLeft to the default value of 0.

LM_INSERTITEM

This message inserts an item into a list box control.

Parameters
param1

sitemindex (SHORT)
ltem index.

LIT_END Add the item to the end of the list.

LIT_SORTASCENDING Insert the item into the list sorted in ascending order.

LIT_SORTDESCENDING Insert the item into the list sorted in descending order.

Other Insert the item into the list at the offset specified by this
zero-based index.

param2
pszitemText (PSZ)

ltem text.

This points to a string containing the item text.

14-8 PM Programming Reference Vol II

Returns
sindexinserted (SHORT)
Index of inserted item.

LIT_MEMERROR The list box control cannot allocate space to insert the list item in

the list.
LIT_ERROR An error, other than LIT_MEMERROR, occurred.
Other The zero-based index of the offset of the item within the list.

Remarks

The list box control window procedure responds to this message by inserting the item text
identified by the pszltemText parameter into the position in the list specified by the
sltemindex parameter.

The sorting sequence used is that defined by the WinCompareStrings function.

The list box control sets sindex/nserted to the zero-based index of the offset of the item
within the list.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set s/indexinserted to the default value of 0.

LM_INSERTMULTITEMS

This message inserts one or more items into a list box.

Parameters
param1

pListboxinfo (PLBOXINFO)
Pointer to a structure containing list box information.

param2

papszText (PSZ *)
Pointer to an array of pointers to text strings.
This parameter is a pointer to an array of pointers to zero-terminated strings. The

array must contain at least ulltemCount items. (ulltemCount is a field in
LBOXINFO.)

If this parameter is set to NULL, a ulltemCount number of empty items are inserted
into the list. This is useful for ownerdraw listboxes that do not make use of text
strings. '

Chapter 14. List'Box Control Window Processing 14-9

Returns
ICount (LONG)
Number of items successfully inserted into the list. -

If the number of items is not the same as ulltemCount, an error has occured.

Remarks
LM_INSERTMULTITEMS inserts multiple items into a list box at one time, up to 32768
items. '

If either LIT_SORTASCENDING or LIT_SORTDESCENDING is specified in the litemindex
field of LBOXINFQ, then the complete list is sorted after the items have been inserted. If
items are being added using several LM_INSERTMULTITEMS messages, it is faster to
specify LIT_END for all the insert messages except the last one, and then set one of the sort
flags to sort the entire list after the last set of items have been inserted.

The sorting sequence is the same as that defined for WinCompareStrings.

WM_MEASUREITEM (in List Boxes) is sent to the owner of an ownerdraw list box for every
item inserted into the list box.

Default Processing
The default message procedure sets /Count to zero.

LM_QUERYITEMCOUNT

This message returns a count of the number of items in the list box control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sltemCount (SHORT)
Iltem count.

Remarks
The list box control window procedure responds to this message by setting sitemCount to the
number of items in the list.

14-10 PM Programming Reference Vol 1l

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sftemCount to the default value of 0.

LM_QUERYITEMHANDLE

This message returns the handle of the indexed item of the list box control.

Parameters
param1

sltemindex (SHORT)
ltem index.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulitem (ULONG)
Iitem handle.

0 The indexed item does not exist.
Other Item handle.

Remarks
The meaning of the item handle is defined by the application. It may, for example, be a
pointer to an application defined data structure. .

Item handles are initialized to NULLHANDLE when an item is created. The list box control
window procedure responds to this message by setting ulltem to the handle of the item
whose index is specified by sltemindex.

Default Processing
The default window procedure does not expect to receive thls message and therefore takes
no action on it, other than to set ulltem to the default value of NULLHANDLE.

The item handle is initialized to NULLHANDLE.

Chapter 14. List Box Control Window Processing 14=11

LM_QUERYITEMTEXT

This message returns the text of the specified list box item.

Parameters
param1

sltemindex (SHORT)
Item index.

smaxcount (SHORT)
Maximum count.

0 No text is copied.
Other Copy the item text as a null-terminated string, but limit the number of
characters copied, including the null termination character, to this value.

param2

pszitemText (PSZ)
Buffer into which the item text is to be copied.

This points to a string (character) buffer.

Returns
sTextLength (SHORT)
Length of item text.

The length of the text string, excluding the null termination character.

Remarks

The list box control window procedure responds to this message by copying up to smaxcount
characters, as a null-terminated string, from the text of the item specified by s/itemindex into
the buffer identified by pszlitemText.

The length of the item text can be determined by using the LM_QUERYITEMTEXTLENGTH
message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sTextLength to the default value of 0.

14-12 PM Programming Reference Vol II

LM_QUERYITEMTEXTLENGTH

This message returns the length of the text of the specified list box item.

Parameters
param1i

sltemIndex (SHORT)
ltem index.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sTextLength (SHORT)
Length of item text.

The length of the text string, excluding the null termination character.

LIT_ERROR Error occurred. For example, the item specified by its index does not
exist.

Other Length of item text.

Remarks
The list box control window procedure responds to this message by setting sTextLength to
the length in characters of the text of the item specified by sltemindex.

Default Processing :
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than set sTextLength to the default value of 0.

LM_QUERYSELECTION

This message is used to enumerate the selected item, or items, in a list box.

Parameters
param1

sitemStart (SHORT)
Index of the start item.

If the list box allows multiple selected items, that is, if it has a style of
LS_MULTIPLESEL, then this parameter indicates the index of the item from which
the search for the next selected item is to begin. Therefore, to get all the selected

Chapter 14. List Box Control Window Processing 14-13

items of the list, this message is sent repeatedly, each time setting this parameter to
the index of the item returned by the previous usage of this message.

If this parameter is set to LIT_CURSOR the index of the |tem in the list box which
currently has the cursor is returned.

If the list box only allows a single selection, this parameter is ignored.

LIT_CURSOR Return the index of the item in the list box which currently has the

cursor. ,
LIT_FIRST Start the search at the first item.
Other Start the search after the item specified by this index.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sltemSelected (SHORT)
Index of the selected item.

LIT_NONE No selected item.

For a single selection list box, this implies that there is no selected item in
the list box. For a multiple selection list box, this impiies that there is no
selected item in the list box whose index is higher than the index specified
by the sltemStart parameter.

Other Index of selected item. For a single selection list box, this is the index of
the only selected item in the list box. For a multiple selection list box, this
is the index of the next selected item in the list box whose index is higher
than the index specified by the sltemStart parameter.

If SItemStart is set to LIT_CURSOR, the index of the list-box item which
currently has the cursor is returned.

Remarks

The list box control window procedure responds to this message by returning in
sltemSelected the zero-based index of the selected item or next selected item after
sltemStart, if any.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
.no action on it, other than set sltemSelected to the default value of 0.

14-14 PM Programming Reference Vol Il

LM_QUERYTOPINDEX

_ This message obtains the index of the item currently at the top of the list box.

Parameters
paramt

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sitemTop (SHORT)
Index of the item currently at the top of the list box:

LIT_NONE No items in the list box
Other Index of the item currently at the top of the list box.

Remarks
The list box control window procedure responds to this message by returning in sltemTop the
zero-based index of the item currently at the top of the list box.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sltemTop to the default value of 0.

LM_SEARCHSTRING

This message returns the index of the list box item whose text matches the string.

Parameters
param1i

uscmd (USHORT)
Command.

Defines the criteria by which the string specified by the pszSearchString parameter
is to be compared with the text of the items, to determine the index of the first
matching item.

These values can be combined using the logical-OR operator:

Chapter 14. List Box Control Window Processing 14=15

LSS_CASESENSITIVE Matching occurs if the item contains the characters
specified by the pszSearchString parameter exactly.

This value is mandatory.

LSS_PREFIX Matching occurs if the leading characters of the item
contain the characters specified by the pszSearchString
parameter.

If this value is specified, LSS_SUBSTRING must not be
specified.

LSS_SUBSTRING Matching occurs if the item contains a substring of the
characters specified by the pszSearchString parameter.

If this value is specified, LSS_PREFIX must not be
specified.

sitemStart (SHORT)
Index of the start item.

LIT_FIRST Start the search at the first item.
Other Start the search after the item specified by this index.

param2

pszSearchString (PS2)
Search string.

This pointé to the string to search for.

Returns
sltemMatched (SHORT)
Index item whose text matches the string.

LIT_ERROR Error occurred
LIT_NONE No item found
Other Index item whose text matches the string.

Remarks ‘
The list box control window procedure responds to this message by setting sitemMatched to
the index of the next item whose text matches the string specified by pszSearchString.

All the items of the list are searched until a match is found, that is, the search wraps from the
end to the start of the list.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sifemMaiched 1o the defauit value of 0.

14-16 PM Programming Reference Vol Ii

LM_SELECTITEM

This message is used to set the selection state of an item in a list box.

Parameters
param1

sltemindex (SHORT)
Index of the item to be selected or deselected:

LIT_NONE All items are to be deselected
Other Index of the item to be selected or deselected.

param2

usselect (USHORT)
Select flag.

(Ignored if sitemindex is set to LIT_NONE).

TRUE The item is selected. If the control is a single selection list box (that is, it
does not have the style of LS_MULTIPLESEL), any previously selected
item is deselected.

FALSE The item is deselected.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred. For example, when the item does not exist in the list box, or
when an item that is not selected is deselected.

Remarks
The list box control window procedure responds to this message by setting the selection
state, as indicated by usselect, of the item whose index is specified in sltemindex.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Chapter 14. List Box Control Window Processing 14-17

LM_SETITEMHANDLE

This message sets the handle of the specified list box item.

Parameters
parami

sitemindex (SHORT)
Item index.

param2

ulitemHandle (ULONG)
Iltem handle.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks
The meaning of the item handle is defined by the application. It may, for example, be a
pointer to an application defined data structure.

ltem handles are initialized to NULLHANDLE when an item is created.

The list box control window procedure responds to this message by setting the handle of the
item whose index is specified by sitemindex to the value specified by ulltemHandle.

Default Processing
The defauit window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

14-18 PM Programming Reference Vol il

LM_SETITEMHEIGHT

This message sets the height of the items in a list box.

Parameters
param1

fiINewHeight (ULONG)
Height of items in list box.

param2

ulReserved (ULONG)

Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful operation
FALSE Error occurred.

Remarks

The list box control window procedure responds to this message by setting the height of the
items in a list box to that specified by fINewHeight.

This message does not send a WM_MEASUREITEM message.

Default Processing

The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

LM_SETITEMTEXT

This message sets the text into the specified list box item.

Parameters
parami

sitemindex (SHORT)
ltem index.

Chapter 14. List Box Control Window Processing

14-19

param2

pszitemText (PSZ)
ltem text.

This points to a string containing the text to set the list-box item to.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks

The list box control window procedure responds to this message by copying the text
identified by the pszltemText parameter into the item in the list specified by the sltemindex
parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

LM_SETITEMWIDTH

This message sets the width of the items in a list box.

Parameters
paramt

INewWidth (ULONG)
Width of items in list box.

param2

reserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

14-20 PM Programming Reference Vol lI

Remarks
The list box control window procedure responds to this message by setting the width of the
items in a list box to that specified by INewWidth.

Note: Only list boxes with the LS_HORZSCROLL style set will respond to this message.
This message does not send a WM_MEASUREITEM message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

LM_SETTOPINDEX

This message is used to scroll a particular item to the top of the list box.

Parameters
param1

sltemindex (SHORT)
Index of the item to be made top.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

" TRUE Successful completion
FALSE Error occurred.

Remarks
The list box control window procedure responds to this message by scroliing the item whose
index is identified by slftemindex to the top of the list box.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Chapter 14. List Box Control Window Processing 14-21

WM_CHAR (in List Boxes)
For the cause of this message, see “WM_CHAR” on page 10-32.

For a description of the parameters, see “WM_CHAR” on page 10-32.

Remarks

The list box control window procedure responds to this message by sending it to its owner if
it has not processed the key stroke. This is the most common means by which the input
focus is switched around the various controls in a dialog box.

The key strokes processed by a list box control are:

Down Arrow

Up Arrow

Page Down

Page Up

Moves the selection down one item, scrolling the list box by one item, if
necessary, to make the next item visible. When the selection reaches the
bottom, the Down Arrow has no effect.

Moves the selection up one item, scrolling the list box by one item, if
necessary, to make the previous item visible. When the selection reaches
the top, the Up Arrow has no effect

Moves the selection down one page, scrolling the list box by the number of
items visible in the list box.

For example, if the list box displays seven items and item 1 is selected and
positioned at the top of the list box, pressing the Page Down key causes
item 8 to be selected and displayed at the top of the list box. Pressing

Page Down when the last item is selected has no effect.

Moves the selection up one page, scrolling the list box by the number of
items visible in the list box.

For example, if the list box displays seven items and item 8 is selected and
positioned at the top of the list box, pressing the Page Up key causes item
1 to be selected and displayed at the top of the list box. Pressing the
Page Up key when the first item is selected has no effect.

Default Processing
The default window procedure takes no action on this message, other than to set rc to

FALSE

Related Messages

« WM_CHAR

14-22 PM Programming Reference Vol I

WM_QUERYCONVERTPOS (in List Boxes)
For the cause of this message, see “WM_QUERYCONVERTPOS” on page 10-72.

For a description of the parameters, see “WM_QUERYCONVERTPOS” on page 10-72.

Remarks
The list box control window procedure returns QCP_NOCONVERT.

Default Processing
For the default window procedure processing of this message see
“WM_QUERYCONVERTPOS” on page 10-72.

Related Messages
+ WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in List Boxes)

Occurs when an application queries the list box control window parameters.

For a description of the parameters, see “WM_QUERYWINDOWPARAMS” on page 10-75.

Remarks
The list box control window procedure responds to this message by passing it to the default
window procedure.

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtiData parameters
of the WNDPARAMS data structure, identified by pwndparams, to 0 and sets rc to FALSE.

Related Messages
+ WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS (in List Boxes)

This message occurs when an application sets or changes the list box control window
parameters.

For a description of the parameters, see “WM_SETWINDOWPARAMS” on page 10-86.

Remarks
The list box control window procedure responds to this message by passing it to the default
window procedure.

Default Processing ,
The default window procedure takes no action on this message, other than to set result to
FALSE.

Chapter 14. List Box Control Window Processing 14-23

Related Messages
e WM_SETWINDOWPARAMS

14-24 PM Programming Reference Vol Il

Chapter 15. Menu Control Window Processing

This system-provided window procedure processes the actions on a menu control
(WGC_MENU).

Purpose
A menu control is a child or pull-down window that contains a list of selection items. These
items can be represented by text strings, separators, bit maps or menu buttons. Menu
templates can be loaded as resources and the menu can be created automatically when the
parent window is created. The application can build the menu dynamically by sending
MM_INSERTITEM messages. An application can change a menu by sending messages to
it.

Menus enable the operator to select one of the items in the list, using the pointing device or
the keyboard. When a selection is made, the menu parent is notified by posting a
WM_COMMAND, WM_SYSCOMMAND, or WM_HELP message and a unique identifier
representing the operator’s selection.

Menus automatically resize themselves when items are added and removed. Menus are
automatically destroyed when their owner is destroyed.

Typically, an application has an action bar menu and several submenus. The action bar is
normally visible, and is a child window in the parent window frame. The submenus are
normally hidden and become visible when selections are made on the action bar.

Menu Control Styles
These menu control styles are available:

MS_ACTIONBAR The items in the list are displayed side-by-side. This
style is used to implement a top level menu. Menus that
do not have this style are displayed in one or more
columns and are submenus associated with an action
bar.

All menu controls have styles CS_SYNCPAINT and
CS_PARENTCLIP.

MS_CONDITIONALCASCADE This style is used to specify that the items in this list are
a conditional cascade menu. Conditional cascade menus
act like normal cascade menus with the exception that
the cascade does not automatically open when the user
selects it. To open the conditional cascade menu, the
mini-pushbutton on the menu item must be selected. If
the menu is selected without opening the cascade, the
default item in the cascade is selected. The default
action on the cascade is identified by a check mark.

© Copyright IBM Corp. 1994 15-1

MS_TITLEBUTTON

MS_VERTICALFLIP

Used to identify menus that can be used as buttons in
the title bar. Can only be used with MS_ACTIONBAR.

This style causes the menu to be drawn using the CUA
colors specified for the title bar rather than the action bar.

Normally, pull-down menus (the default, without the
MS_VERTICALFLIP style) are displayed below their
associated action bar item. [f there is not room on the
screen to display the entire pull-down in this manner, and
if there is room to display the pull-down above the action
bar, it is displayed above the action bar. Pull-down
menus with the MS_VERTICALFLIP style are flipped
vertically. That is, they are displayed above the menu if
possible, otherwise below it. The vertical flip style must
be set explicitly by the application when the window is
minimized, and must be reset when it is restored.

If an application action bar contains this style, the style is
applied to all puli-down menus belonging to the action
bar (the style does not directly affect the display of the
action bar). This provides a convenient means for the
application to flip the appearance of all pull-down menus.

Menu ltem Styles

These menu item styles are available:

MIS_SUBMENU

MIS_SEPARATOR

MIS_BITMAP
MIS_TEXT

The item is a submenu. When the user selects this type of
item, a submenu is displayed from which the user must make
further selection. ltems that are not submenu items are
command items.

The display object is a horizontal dividing line. This type of
item can only be used in pull-down menus. This type of item
cannot be enabled, checked, disabled, highlighted, or selected
by the user. The functional object is NULL when this style is
specified.

The display object is a bit map.
The display object is a text string.

MIS_BUTTONSEPARATOR The item is a menu button. Any menu can have zero, one, or

MIS_BREAK

two items of this type. These are the last items in a menu and
are automatically displayed after a separator bar. The user
cannot move the cursor to these items, but can select them
with the pointing device or with the appropriate key.

The item begins a new row or column.

15-2 PM Programming Reference Vol Ii

MIS_BREAKSEPARATOR Same as MIS_BREAK, except that it draws a separator
between rows or columns of a pull-down menu. This style can
only be used within a submenu.

MIS_SYSCOMMAND If this item is selected, the menu notifies the owner by posting
a WM_SYSCOMMAND message rather than a
WM_COMMAND message.

MIS_OWNERDRAW Items with this style are drawn by the owner. WM_DRAWITEM
: and WM_MEASUREITEM notification messages are sent to the
owner to draw the item or determine its size.

MIS_HELP If the item is selected, the menu notifies the owner by posting a
WM_HELP message rather than a WM_COMMAND message.
MIS_STATIC This type of item exists for information purposes only. It cannot

be selected with the pointing device or keyboard.

Menu Item Attributes

Applications can get and set the state of these attributes by sending MM_QUERYITEMATTR
and MM_SETITEMATTR messages.

These menu item attributes are available:

MIA_HILITED The state of this attribute is TRUE, if and only if, the item is
selected.

MIA_CHECKED If this attribute is TRUE a check mark appears next to the item.

MIA_DISABLED This attribute is TRUE if the item is disabled and cannot be
selected. The item is drawn in a disabled state.

MIA_FRAMED If this attribute is TRUE a frame is drawn around the item.

MIA_NODISMISS If this item is selected, the pull-down menu containing this item

should not be hidden before notifying the application window of
the selection. A menu with this attribute is not hidden unti
such time as the application or user explicitly does so, for
example by selecting either another menu on the action bar or
by pressing the escape key.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_WINDOWFRAME
SYSCLR_BUTTONDARK
SYSCLR_BUTTONLIGHT
SYSCLR_SHADOW
SYSCLR_TITLEBOTTOM
SYSCLR_DIALOGBACKGROUND

Chapter 15. Menu Control Window Processing 15-3

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_FOREGROUNDCOLOR
PP_HILITEFOREGROUNDCOLOR
PP_BORDERCOLOR
PP_DISABLEDFOREGROUNDCOLOR

15-4 PM Programming Reference Vol I

Menu Control Notification Messages

These messages are initiated by the menu control window procedure to notify its owner of
significant events.

WM_COMMAND (in Menu Controls)
For the cause of this message, see “WM_COMMAND?” on page 10-37.

For a description of the parameters, see “WM_COMMAND” on page 10-37.

The menu control window procedure sets uscmd to the menu-item identity.

Remarks

The menu control window procedure generates this message if the WM_MENUSELECT (in
Menu Controls) message returns a rc of TRUE. when an item is selected that does not have
the style of MIS_SYSCOMMAND or MIS_HELP. The menu control window procedure posts
the message to the queue of the window owner.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

Related Messages
* WM_COMMAND

WM_DRAWITEM (in Menu Controls)

This notification is sent to the owner of a menu control each time an item is to be drawn.

Parameters ;
parami

idMenu (USHORT)
Window identifier.

The window identity of the menu control sending this notification message.
param2
pOwnerltem (POWNERITEM)

Owner-item structure.
This points to an owner-item structure; see “OWNERITEM” on page A-136.

Chapter 15. Menu Control Window Processing 15-5

Returns
rc (BOOL)
Item-drawn indicator.

TRUE The owner draws the item, and so the menu control does not draw it.
FALSE [f the item contains text and the owner does not draw the item, the owner
returns this value and the menu control draws the item.

Remarks
The menu control window procedure only draws items that are represented by text strings
and emphasizes selected items by inverting them.

If an application uses menu controls containing items that are not represented by text strings,
or requires that the emphasized state of an item is to be drawn in a special manner, then the
menu control must specify the style MIS_ OWNERDRAW and those items must be drawn by
the owner.

The menu control window procedure generates this message and sends it to its owner,
informing the owner that an item is to be drawn, offering the owner the opportunity to draw
that item, and to indicate that either the item has been drawn, or that the menu control is to
draw it.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Related Messages
* WM_DRAWITEM

WM_HELP (in Menu Controls)
For the cause of this message, see “WM_HELP” on page 10-49.

For a description of the parameters, see “WM_HELP” on page 10-49.

The menu control window procedure sets uscmd to the menu-item identity.

Remarks
This message is identical to a WM_COMMAND message, but implies that the application
should respond to this message by displaying help information.

The menu control window procedure generates this message and posts it to the queue of its
owner when an item is selected that has the style of MIS_HELP, but only if .
WM_MENUSELECT (in Menu Controls) returns a rc of TRUE.

Default Processing
The default window procedure sends this message to the parent window, if it exists and is
not the deskiop. Otherwise, it sets ulReserved to 0.

15-6 PM Programming Reference Vol Il

Related Messages
+ WM_HELP

WM_INITMENU (in Menu Controls)
For the cause of this message, see “WM_INITMENU” on page 10-53.

For a description of the parameters, see “WM_INITMENU” on page 10-53.

Remarks
This message offers the owner the opportunity to perform some initialization on the menu
items before they are presented.

The menu control window procedure generates this message and sends it to its owner,
informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Related Messages
» WM_INITMENU

WM_MEASUREITEM (in Menu Controls)
This notification is sent to the owner of a menu control to establish the height for an item in
that control.

Parameters
parami

sMenu (SHORT)
Menu identifier.

param2
pOwneritem (POWNERITEM)

Owner-item structure.
This points to an OWNERITEM structure.

Chapter 15. Menu Control Window Processing 15-7

Returns
sHeight (SHORT)
Height of item.

Remarks v
This message is only sent at the time the menu control is created. When the owner receives
this message, it must calculate and return the height of an item to the control.

All items in a menu must have the same height, and that must be greater than or equal to
the height of the current font.

In particular, this notification is sent to the owner of a menu that has a style of
MIS_OWNERDRAW, to offer the owner an opportunity to establish the height of an item that
accommodates any special requirements for the drawing of items in that menu.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sHeight to the default value of 0.

Related Messages
* WM_MEASUREITEM

WM_MENUEND (in Menu Controls)
For the cause of this message, see “WM_MENUEND” on page 10-56.

For a description of the parameters, see “WM_MENUEND” on page 10-56.

Remarks
The menu control window procedure generates this message and sends it to its owner,
informing the owner of this event.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to 0.

Related Messages
» WM_MENUEND

WM_MENUSELECT (in Menu Controls)
For the cause of this message, see “WM_MENUSELECT” on page 10-57.

For a description of the parameters, see “WM_MENUSELECT” on page 10-57.

15-8 PM Programming Reference Vol li

Remarks
The menu control window procedure generates this message and sends it to its owner,

informing the owner of this event.
When the message is returned from its owner, menu control acts on rc as appropriate.

It must not be posted to the menu control.

Default Processing
The default window procedure takes no action on this message, other than to set rc to

TRUE.

Related Messages
e WM_MENUSELECT

WM_NEXTMENU (in Menu Controls)
For the cause of this message, see “WM_NEXTMENU" on page 10-63.

For a description of the parameters, see “WM_NEXTMENU" on page 10-63.

Remarks
The menu control generates this message and sends it to its owner, informing the owner of

this event.

Default Processing
The default window procedure takes no action on this message, other than to set
hwndNewMenu to NULLHANDLE.

Related Messages
e WM_NEXTMENU

Chapter 15. Menu Control Window Processing 15-9

Menu Control Window Messages

This section describes the menu control window procedure actions on receiving the following
messages.

MM_DELETEITEM

This message deletes a menu item.

Parameters
param1

usitem (USHORT)
ltem identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and delete it.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sltemsLeft (SHORT)
Number remaining.

The number of items in the menu after the item is deleted.

Remarks
The menu control window procedure responds to this message by deleting the identified item
from the menu or its submenus.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sitemsLeft to the default value of 0.

15-10 PM Programming Reference Vol i

MM_ENDMENUMODE

This message is sent to a menu control to terminate menu selection.

Parameters
param1

usdismiss (USHORT)
Dismiss menu indicator.

TRUE Dismiss the submenu or subdialog window
FALSE Do not dismiss the submenu or subdialog window.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Remarks
The menu control window procedure responds to this message by terminating menu
selection.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and, therefore, takes
no action on it, other than to set u/Reserved to the default value of 0.

MM_INSERTITEM

This message inserts a menu item into a menu.

Parameters
param1

pmenuitem (PMENUITEM)

Menu-item data structure.
This points to a MENUITEM structure.

Chapter 15. Menu Control Window Processing 15-11

param2

pszitemText (PSZ)
ltem text.

This points to a string containing the text to be inserted.

Returns
sindexinserted (SHORT)
Index of inserted item.

MIT_MEMERROR The menu control cannot allocate space to insert the menu item in

the menu.
MIT_ERROR An error other than MIT_MEMERROR occurred.
Other The zero-based index of the offset of the item within the menu.

Remarks

The menu control window procedure responds to this message by inserting the identified
item into the menu at the position indicated by the specified MENUITEM data structure
(contained within the menu-item structure). If the position is MIT_END, the item is added to
the end of the menu. If the style of the item includes MIS_TEXT, the text of the item is
specified by pszltemText

The menu control window procedure sets sindexinserted to the zero-based index of the
position of the item within the menu.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sindexinserted to the default value of 0.

MM_ISITEMVALID

This message returns the selectable status of a specified menu item.

Parameters
paramt

usitem (USHORT)
ltem identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier. .

15-12 PM Programming Reference Vol Il

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Selectable indication.

A menu item can be selected and entered under these conditions:

e The item is enabled and, if it is a submenu item, the item in the action bar
associated with the submenu is enabled. If the action bar item is not enabled, the
user cannot display the submenu. :

¢ The item is enabled, and the submenu is displayed and being tracked with the
pointing device or keyboard. It is unlikely, but possible, that the associated action
bar is disabled in this instance.

TRUE The user can select and enter the specified item.
FALSE The user cannot select and enter the specified item.

Remarks
The menu control window procedure responds to this message by setting the return value
depending on the selectable status of the specified item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

MM_ITEMIDFROMPOSITION

This message returns the identity of a menu item of a specified index.

Parameters
parami

sltemindex (SHORT)
ltem index.

Chapter 15. Menu Control Window Processing 15-13

param2.

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sldentity (SHORT)
Item identity.

MIT_ERROR Error occurred; for example, because sltemindex is not valid.
Other Item identity.

Remarks
The menu control window procedure responds to this message by setting sidentity to the
identity of the item whose position is identified by the index specified in sltemindex.

Note: It must be sent, not posted, to the menu control.

Default Processing .
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sidentity to the default value of 0.

MM_ITEMPOSITIONFROMID

This message returns the index of a menu item of a particular identity.

Parameters
parami

usitem (USHORT)
ltem identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE if the menu does not have an item with the specified identifier, search the
"~ submenus and subdialogs of the menu for an item with the specified
identifier.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier. ’ ‘

param?2

ulReserved (ULONG)
Reserved value, should be 0.

15-14 PM Programming Reference Vol I

Returns
sindex (SHORT)
ltem index.

MIT_NONE Item does not exist
Other Item index.

Remarks
The menu control window procedure responds to this message by setting s/index to the
zero-based index of the item identified by s/ndex.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set s/ndex to the default value of MIT_NONE.

MM_QUERYDEFAULTITEMID

This message returns the default item id for a conditional cascade menu. For any other type
of menu or submenu, this message returns zero.

Parameters
paramt

ulReserved (ULONG)
Reserved value, must be 0.

param2

ulReserved (ULONG)
Reserved value, must be 0.

Returns
ulDefltemiD (ULONG)
Menu id of the default menu item.

Default Processing
The default window procedure takes no action other than to return 0.

Related Messages
* WM_DRAWITEM (in Frame Controls)
¢ WM_DRAWITEM (in List Boxes)
e WM_DRAWITEM (in Menu Controls)

Chapter 15. Menu Control Window Processing 15-15

MM_QUERYITEM

This message returns the definition of the specified menu item.

Parameters
param1i

usitem (USHORT)
ltem identifier.

usincludesubmenus (USHORT)
Include submenus flag.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and copy its definition.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

pmenuitem (PMENUITEM)
Menu-item data structure.

This points to a MENUITEM structure.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks
The menu control window procedure responds to this message by copying the item definition
specified by usitem, from the menu, to the structure specified by pmenuitem.

Note: This message does not retrieve the text for items with a style of MIS_TEXT. The
item text is obtained by use of the MM_QUERYITEMTEXT message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

15-16 PM Programming Reference Vol Ii

MM_QUERYITEMATTR

This message returns the attributes of a menu item.

Parameters
param1

usitem (USHORT)
Item identity.

usincludeSubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and return its state.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

usattributemask (USHORT)
Attribute mask.

Returns
usState (USHORT)
State.

Remarks
The menu control responds to this message by returning the state of the specified attributes
of the identified menu item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set usState to the default value of 0.

Examples

This example sends an MM_QUERYITEMATTR message to find the state of the ‘idCase’
menu item. It then toggles the state of the item and sends an MM_SETITEMATTR message
to set the new state.

Chapter 15. Menu Control Window Processing 15-17

MM_QUERYITEMCOUNT

This message returns the number of items in the menu.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sresult (SHORT)
Iltem count.

Remarks
The menu control window procedure responds to this message by returning the count of the
number of items in the menu.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sresult to the default value of 0.

MM_QUERYITEMRECT

This message returns the bounding rectangle of a menu item.

Parameters
parami

usitem (USHORT)
ltem identity.

15-18 PM Programming Reference Vol Ii

fincludeSubmenus (BOOL)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and return its state.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

prect (PRECTL)
Bounding rectangle of the menu item in device coordinates relative to the menu
window.

Returns
rc (BOOL)
Success indicator.

TRUE Specified item was found.
FALSE Specified item was not found.

Remarks
The menu control responds to this message by returning the bounding rectangle of identified
menu item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of 0 (FALSE).

MM_QUERYITEMTEXT

This message returns the text of the specified menu item.

Parameters
parami

usitem (USHORT)
Item identifier.

smaxcount (SHORT)
Maximum count.

Copy the item text as a null-terminated string, but limit the number of characters
copied, including the null termination character, to this value, which must be greater
than 0. '

Chapter 15. Menu Control Window Processing 15-19

param2

pszitemText (PSZ)
Buffer into which the item text is to be copied.

This points to a string (character) buffer.

Returns
sTextLength (SHORT)
Length of item text.

The length of the text string, excluding the null termination character.

0 Error occurred. For example, no item of the specified identity exists or the item
has no text. No text is copied.

Other Length of item text.

Remarks

The menu control window procedure responds to this message by copying up to smaxcount
characters as a null-terminated string from the text of the item specified by usitem, if it has
the style MIS_TEXT, into the buffer specified by pszitemText.

The length of the item text can be determined by using the MM_QUERYITEMTEXTLENGTH
message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sTextLength to the default value of 0.

MM_QUERYITEMTEXTLENGTH

This message returns the text length of the specified menu item.

Parameters
param1i

usitem (USHORT)
ltem identifier.

param2

ulReserved (ULONG)
Reserved value, should be 0.

15-20 PM Programming Reference Vol i

Returns
sLength (SHORT)
Length of item text.

The length of the text string, excluding the null termination character.

0 Error occurred. For example, no item of the specified identity exists or the item
has no text. No text is copied.

Other Length of item text.

Remarks
The menu control window procedure responds to this message by returning the length in
characters of the text of the identified item, if it has a style of MIS_TEXT.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sLength to the default value of 0.

MM_QUERYSELITEMID

This message returns the identity of the selected menu item.

Parameters
parami

usReserve (USHORT)
Reserved value, should be 0.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for a selected item with the
specified identifier.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for a selected item with
the specified identifier.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Chapter 15. Menu Control Window Processing 15-21

Returns
sresult (SHORT)
Selected item identifier.

MID_ERROR Error occurred
MIT_NONE No item selected
Other Selected item identifier.

Remarks

The menu control window procedure responds to this message by returning the identity of
the selected item in the menu. Submenus and subdialogs are not searched unless
usincludesubmenus is set to TRUE.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sresult to the default value of 0.

MM_REMOVEITEM

This message removes a menu item.

Parameters
paramt

usitem (USHORT)
ltem identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and delete it.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
sltemsleft (SHORT)
Count of remaining items.

15-22 PM Programming Reference Vol Il

Remarks A

The menu control window procedure responds to this message by removing the identified
item from the menu and setting sitemsLeft to the count of items in the menu after the item is
deleted.

The difference between this message and MM_DELETEITEM is that MM_DELETEITEM
destroys any submenu window, and deletes any bit map associated with the item, whereas
MM_REMOVEITEM does not.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this-message and therefore takes
no action on it, other than to set slfemsLeft to the defauit value of 0.

MM_SELECTITEM

This message selects or deselects a menu item.

Parameters
parami

sitem (SHORT)
Iltem identifier.

MIT_NONE Deselect all the items in the menu.
Other Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and select or deselect it.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

usReserve (USHORT)
Reserved value, should be 0.

usdismissed (USHORT)
Dismissed flag.

TRUE Dismiss the menu
FALSE Do not dismiss the menu.

Chapter 15. Menu Control Window Processing 15-23

Returns
rc (BOOL)
Success indicator.

TRUE - A selection has been made, or sitem is MIT_NONE.
FALSE A selection has not been made, or a deselection has been made, or sitem is
not MIT_NONE.

Remarks

The menu control window procedure responds to this message by setting the selection state
of the (sub)menu which contains the specified item to indicate that the item is selected or
deselected. If usincludesubmenus is set to TRUE, the selection state of the (sub)menu
owning the submenu which contains the specified item is also set. This process continues up
the menu hierarchy until the top level menu is reached.

If an item is selected, and usdismissed is set to TRUE, a WM_COMMAND,
WM_SYSCOMMAND, or WM_HELP message, as appropriate, is posted to the owner, and
the menu is dismissed.

Note: This message must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

MM_SETDEFAULTITEMID

This message is used to set the default item in a conditional cascade menu.

Parameters
param1

ulDefltemID (ULONG)
The menu id of the item to become the new default.

param2

ulReserved (ULONG)
Reserved value, must be 0.

Returns
rc (BOOL)
Success of failure indicator.

TRUE The conditional cascade default was set.
FALSE The conditional cascade default was not set.

15-24 PM Programming Reference Vol |I

Remarks
The default item is the menu-id that will be returned if the main menu option is clicked on.

Open (-=>)| Icon 1d=MID_ICON
*Tree id=MID_TREE
Details id=MID_DETAILS

In the example above, where MID_TREE is currently the default, if the user clicked on the
“Open” option without opening the conditional cascade menu, the menu would send back a
notification that MID_TREE was selected.

Default Processing
The default window procedure takes no action other than to return 0.

MM_SETITEM

This message sets the definition of a menu item.

Parameters
parami

usReserve (USHORT)
Reserved value, should be 0.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and set its definition.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

pmenuitem (PMENUITEM)
Menu-item data structure.

This points to a MENUITEM structure.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Chapter 15. Menu Control Window Processing 15-25

Remarks

The menu control window procedure responds to this message by using the specified
structure to update the definition of the identified menu item.

The iPosition field of the structure specified by pmenuitem is ignored, as the position of the
item cannot be changed by use of this message.

Note: It must be sent, not posted, to the menu control.

Default Processing

The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

MM_SETITEMATTR

This message sets the attributes of a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and set its attributes.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the

specified identifier.

param2

usattributemask (USHORT)
Attribute mask.

usattributedata (USHORT)
Attribute data.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

15-26 PM Programming Reference Vol Il

Remarks
The menu control window procedure responds to this message by setting the state of the
specified attributes for the identified item.

Note: it must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Examples

This example sends an MM_SETITEMATTR message to set the IDM_LARGE menu item’s
state to checked, and then sends another MM_SETITEMATTR message to set the
IDM_MEDIUM menu item’s state to unchecked.

MM_SETITEMHANDLE

This message sets the handle of a menu item.

Parameters
parami

usitem (USHORT)
item index.

param2

ulitemhandle (ULONG)
ltem handle.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred. '

Chapter 15. Menu Control Window Processing 15-27

Remarks
The menu control window procedure responds to this message by setting the handle of the
indexed menu item.

This is used to set a handle for menu items that have a style of MIS_BITMAP or
MIS_OWNERDRAW. '

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the defauit value of FALSE.

‘MM_SETITEMTEXT

This message sets the text of a menu item.

Parameters
param1

usitem (USHORT)
ltem identifier.

param2

pszitemText (PSZ)
ltem text.

This points to a string containing the text to set the menu item to.

" Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks
The menu control responds to this message by setting the text of the identified item, if it has
a style of MIS_TEXT, using the specified null-terminated string.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

15-28 PM Programming Reference Vol |l

MM_STARTMENUMODE

This message is used to begin menu selection.

Parameters
parami

usshowsubmenu (USHORT)
Show submenu flag.

TRUE Show the submenu (pull-down menu) of the selected action bar item
when the menu enters selection mode. If the action bar is not visible, the
submenu is shown, otherwise it is not shown. If the item selected does
not have a submenu, this parameter is ignored.

FALSE Do not show the submenu (pull-down menu) of the selected action bar
item when the menu enters selection mode.

usresumemenu (USHORT)
Resume menu mode flag.

TRUE Resume the user interaction with the menu from where it left off. The
menu is assumed to have been used previously and left without
dismissing one of the submenus, and therefore is resumed in that
submenu.

FALSE Begin user interaction with the menu from the action bar, subject to the
value of the usshowsubmenu parameter.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks
It is posted to the menu when the operator presses the menu key.

Note: It must be posted, not sent, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Chapter 15. Menu Control Window Processing 1529

WM_QUERYCONVERTPOS (in Menu Controls)
For the cause of this message, see “WM_QUERYCONVERTPOS” on page 10-72.

For a description of the parameters, see “WM_QUERYCONVERTPOS” on page 10-72.

Remarks
The menu control window procedure returns QCP_NOCONVERT.

Default Processing
For the default window procedure processing of this message see
“WM_QUERYCONVERTPOS” on page 10-72.

Related Messages
+ WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in Menu Controls)

"Occurs when an application queries the menu control window procedure parameters.

- For a description of the parameters, see “WM_QUERYWINDOWPARAMS” on page 10-75.

Remarks
The menu control window procedure responds to this message by passing it to the default
window procedure.

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtiData parameters
of the WNDPARAMS data structure, identified by pwndparams, to 0 and sets rc to FALSE.

Related Messages
* WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS (in Menu Controls)

This message occurs when an application sets or changes the menu control window
procedure parameters. »

For a description of the parameters, see “WM_SETWINDOWPARAMS"” on page 10-86.

Remarks ~
The menu control window procedure responds to this message by passing it to the default
window procedure.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE. ‘

15-30 PM Programming Reference Vol i

Related Messages
* WM_SETWINDOWPARAMS

WM_SYSCOMMAND
For the cause of this message, see “WM_SYSCOMMAND” on page 10-91.

For a description of the parameters, see “WM_SYSCOMMAND” on page 10-91.

The menu control window procedure sets uscmd to the menu-item identity.

Remarks

The menu control window procedure generates this message and posts it to the queue of its
owner, when an item is selected that has the style of MIS_SYSCOMMAND, but only if the
WM_MENUSELECT (in Menu Controls) message returns a rc of TRUE.

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved

to 0.

" Chapter 15. Menu Control Window Processing 15-31

15-32 PM Programming Reference Voi Il

Chapter 16. Multi-Line Entry Field Control Window
Processing

This system-provided window procedure processes the actions on a multi-line entry field
control (WC_MLE).

Purpose
A multi-line entry field control is a rectangular window that displays multiple lines of text that
the operator can edit. When it has the focus, the cursor marks the current insertion or
replacement point.

How to Use
The text is displayed within a rectangular window. Scroll bars appear if requested.

On all four sides of the text within the window there exists a thin margin area. This margin
remains drawn in the window’s background color, and characters are never drawn into this
margin. Mouse events that occur in the margin are processed differently from mouse events
that occur in the text area. The margin should be large enough to be easily clicked on, but
not so large as to take up a large quantity of screen space. It is suggested, but not required,
that the left and right margins be half the average character width of the system font, and
that the top and bottom margins be half the maximum baseline extent of the system font.

Text is defined as a stream of characters, with hard line-break characters in the text.
Between any two bytes in the text stream, and at either end of the document, there is an
insertion point. Note that in a DBCS environment, it is possible to have an insertion point in
the middle of a DBCS character. If such an insertion point is specified in a function, the
function will either round the insertion point in a sensible way, or the function will fail with an
error code indicating the problem.

The text always contains a selection region, defined by an anchor point and a cursor point.
The anchor and cursor points are insertion points. If the MLE window has the focus, the text
between these two points is drawn highlighted and the cursor point is indicated by a flashing
text cursor. The selection region can be affected by some import/export operations.

The cursor point and the anchor point define the range of the selection. These two points
are often the same, in which case no text is selected and only a text cursor (but no
highlighting) is displayed. A user can use SHIFT+cursor movement combinations to extend
the selection, which leaves the anchor point alone, and moves the cursor point to a new
position in the document.

The MLE has three modes:

READ-ONLY The keyboard user interface disallows any operations that would change
the content of the text, although applications using the MLE can still
change the text contents. The application can query this mode, in order
that it can disallow application-specific operations.

© Copyright IBM Corp. 1994 16-1

WORD-WRAP When this mode is in effect, soft line-breaks are inserted into the text at
word boundaries so that the user need not scroll the display horizontally
to see all the text. When this mode is off, text is allowed to trail off the
right-hand edge of the window. .

INSERT/OVERTYPE This mode determines whether keystrokes are inserted into the text, or
whether they overtype existing text. Unlike the other two modes, this
mode is maintained by the system. The MLE must merely be aware of
the system mode.

Notes:

1. The MLE is intended for text under 4Kb in size. Performance will be fast for text up to
32KB in size. Text greater than this will be supported but performance may not be
acceptable.

2. In this chapter ‘YCR’ denotes carriage-return, and ‘LF’ denotes line-feed.

Multi-Line Entry Field Control Styles
These multi-line entry field control styles are available:
MLS_BORDER A thin border is drawn around the muiti-line entry field window.
MLS_READONLY The multi-line entry field is initially in read-only mode.
MLS_WORDWRAP The multi-line entry field initially word-wraps text.
MLS_HSCROLL The multi-line entry field displays and handies a horizontal scroll bar.
MLS_VSCROLL The multi-line entry field displays and handles a vertical scroll bar.

MLS_IGNORETAB The multi-line entry field ignores tab key strokes. It passes the
appropriate WM_CHAR to its owner window.

MLS_DISABLEUNDO The multi-line entry field will not allow undo actions.

Multi-Line Entry Field Control Data
See “MLECTLDATA” on page A-127.

16-2 PM Programming Reference Vol i

Multi-Line Entry Field Control Notification Messages

This message is initiated by the multi-line entry field window procedure to notify its owner of
significant events.

WM_CONTROL (in Multiline Entry Fields)
For the cause of this message, see “WM_CONTROL” on page 10-39.

Parameters
parami

usid (USHORT)
Control window identity.

usnotifycode (USHORT)
Notify code.

MLN_TEXTOVERFLOW A key stroke causes the amount of text to exceed
the limit on the number of bytes of data (refer to
MLM_SETTEXTLIMIT). The parameter contains the
number of bytes of data which would not fit within
the current text limit. For character key strokes this
can be 1 or 2 (DBCS). For Shift+Ins (paste) it can
be any amount up to the paste limit.

The default rc of FALSE causes the default error
handling, which is to ignore the key stroke, and
beep.

An rc of TRUE implies that corrective action has
been taken (such as deleting existing text or raising
the limit) and the WM_CHAR (in Multiline Entry
Fields) should be reprocessed as if just entered.

MLN_PIXHORZOVERFLOW A key stroke causes the size of the display bit map
to exceed the horizontal limit of the format rectangle
(refer to MLM_SETFORMATRECT). The parameter
contains the number of pels that would not fit within
the current text limit.

The default rc of FALSE causes the default error
handling, which is to ignore the key stroke, and
beep.

An rc of TRUE implies that corrective action has
been taken (such as changing to a smaller font or
raising the limit) and the WM_CHAR (in Multiline
Entry Fields) should be reprocessed as if just
entered.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-3

MLN_PIXVERTOVERFLOW

MLN_OVERFLOW

MLN_HSCROLL

MLN_VSCROLL

MLN_CHANGE

MLN_UNDOOVERFLOW

16-4 PM Programming Reference Vol I

A key stroke causes the size of the dispiay bit map
to exceed the vertical limit of the format rectangle
(refer to MLM_SETFORMATRECT). The parameter
contains the number of pels that would not fit within
the current text limit. :

The default rc of FALSE causes the default error
handling, which is to ignore the key stroke, and
beep.

An rc of TRUE implies that corrective action has
been taken (such as changing to a smaller font or -
raising the limit) and the WM_CHAR (in Multiline
Entry Fields) should be reprocessed as if just
entered.

An action other than entry of a key stroke causes a
condition involving the text limit or format rectangle
limit, such that either the limit becomes inadequate
to contain the text or the text exceeds the limit.

This can be caused by:

MLM_SETWRAP
MLM_SETTABSTOP
MLM_SETFONT
MLM_IMPORT
MLM_PASTE
MLM_CUT
MLM_UNDO
MLM_DELETE
WM_SIZE.

Indicates that the MLE has completed a scrolling
calculation and is about to update the display
accordingly. All queries return values as if the
scrolling were complete. However, no scrolling
action is visible on the user interface.

Indicates that the MLE has completed a scroliing

" calculation and is about to update the display

accordingly. All queries return values as if the
scroiling were complete. However, no scrolling
action is visible on the user interface.

Signals that the text has changed. This notification
is sent whenever any text change occurs.

Signals that the text change operation, which could
normally be undone, cannot be undone because the
amount of text involved exceeds the undo capability.
This includes text entry, deletion, cutting, and
pasting.

MLN_CLPBDFAIL
MLN_MEMERROR

MLN_SETFOCUS
MLN_KILLFOCUS

MLN_MARGIN

MLN_SEARCHPAUSE

param2

ulOver (ULONG)

Number of bytes that do not fit.

Signals that a clipboard operation failed.

Signals that the required storage cannot be
obtained. The action that results in the increased
storage requirement fails.

Sent whenever the MLE window receives the input
focus.

Sent whenever the MLE window loses the input
focus.

Whenever the user moves the mouse into the left,
right top, or bottom margins, this message is sent to
the owner of the window.

If the owner returns an rc of TRUE, the mouse
move is assumed to have been processed by the
owner and no further action need be taken.

If the owner returns an rc of FALSE, the MLE
performs a default action appropriate to each
different mouse action.

The exceptions to this are all mouse messages that
occur after a button-down inside the margin, until
and including the matching button-up. Conceptually
the drag (button-down until button-up) is a single
macro event. Therefore, if FALSE is returned for a
button-down event, no further margin notifications
are given until after the drag has ended (button-up).

Note: If the application receives a notification of
button-down in the margin and processes it,
it must capture the mouse until the button-up
event.

This notification is sent periodically by the MLE,
while an MLM_SEARCH message is being
processed, to give an application the opportunity to
stop excessively long searches, and to provide
search progress information. The owner window
can respond either with TRUE or FALSE. FALSE
causes the MLE to continue searching; TRUE
causes the MLE to stop the search immediately.
For further information, see MLM_SEARCH

param2 contains ul/Over for a usnotifycode of MLN_TEXTOVERFLOW.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-5

pixOver (PIX)

Linear distance of overflow in pels.

param2 contains pixOver for a usnotifycode of MLN_PIXHORZOVERFLOW or
MLN_PIXVERTOVERFLOW.

pErrinfo (POVERFLOW)

Overflow error information structure.
param2 contains pErrinfo for a usnotifycode of MLN_OVERFLOW.
The afErrind field of the MLEOVERFLOW structure can take one br more of the

following values:

MLFEFR_RESIZE

MLFEFR_TABSTOP

MLFEFR_FONT

MLFEFR_WORDWRAP

MLFEFR_TEXT

16-6 PM Programming Reference Vol Il

The window is resized, and the format rectangle is tied to
the window size and limited either horizontally, vertically,
or both. The implicit change of the format rectangle to the
new size does not contain the text. The format rectangle
is made static at the previous size, and the
MLESFR_MATCHWINDOW style is turned off until set
again by the application. This is done in response to a
WM_SIZE message, and therefore the multi-line entry
field does not forward the return value from this
notification message.

A tab stop location change is requested, and the text is
limited either horizontally, vertically, or both. Changing
the tab stops causes the text to exceed the limit. The tab
stop change is rejected.

A font change is requested, and the text is limited either
horizontally, vertically, or both. Changing the font causes
the text to exceed the limit. The font change is rejected.

The word-wrap state is requested to be changed, and the
text is limited either horizontally, vertically, or both.
Wrapping the text differently exceeds the limit, and the
request is rejected. This happens in situations where the
horizontal limit is not set, there are lines exceeding it, and
word-wrap is being changed from off to on, such that it
creates soft line breaks resulting in increased vertical size.
This happens if word-wrap is being changed from on to
off, and there is at least one line created by a soft
line-break, such that when that line-break is removed, the
full line (up to the hard line break) exceeds the horizontal
limit.

Text is changed by MLM_IMPORT, MLM_PASTE,
MLM_CUT, MLM_UNDO, or MLM_DELETE, and the text
is limited either horizontally, vertically, or both within the
format rectangle. The change causes the text to exceed
the format rectangle in a dimension that is limited. For

example, Delete and EOL joins text from two lines into
one line long enough to exceed the horizontal limit.

MLFETL_TEXTBYTES Text is changed by MLM_IMPORT MLM_PASTE, or
MLM_UNDO, and the text is limited to a maximum
number of bytes. The change causes the text to exceed
that maximum.

ulErrind (ULONG) N
Clipboard fail flag.
param2 contains ulErrind for a usnotifycode of MLN_CLPBDFAIL.

MLFCPBD_TOOMUCHTEXT Text amount exceeds clipboard capacity
MLFCPBD_CLPBDERROR A clipboard error occurred.

pmrg (PMARGSTRUCT)
Margin structure.

param2 contains pmrg for a usnotifycode of MLN_MARGIN.

The left and right margins are defined-as going all the way to the top and bottom
such that the top and bottom margins are contained between them. Therefore, the
corners are included in the sides.

usMouMsg contains the mouse message that signals the event.

iptNear contains the insertion point of the nearest point in the text. For situations
where the nearest location is beyond the end of a line, the insertion point for the
end of the line is returned. (The EOL character is considered to be beyond the end
of the line.) :

iptSearchedTo (IPT)
Current insertion point of search.

param2 contains iptSearchedTo for a usnotifycode of MLN_SEARCHPAUSE.

ulReserved (ULONG)
Reserved value, should be 0.

param2 contains ulReserved for a usnotifycode of MLN_HSCROLL,
MLN_VSCROLL, MLN_CHANGE, MLN_UNDOOVERFLOW, MLN_MEMERROR,
MLN_SETFOCUS, or MLN_KILLFOCUS.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-7

Returns
ReturnCode

rc (BOOL)
Action taken by application.

ReturnCode contains rc for a usnotifycode of MLN_TEXTOVERFLOW,
MLN_PIXHORZOVERFLOW, MLN_PIXVERTOVERFLOW, MLN_MARGIN, or
MLN_SEARCHPAUSE.

TRUE The multiline entry field control assumes that appropriate action has been
taken by the application. Appropriate action depends on the MLN_*
notification code, and is documented under the usnotifycode field.

FALSE The multiline entry field control assumes that the application has ignored
this WM_CONTROL (in Multiline Entry Fields) message, and takes action
appropriate to the MLN_* notification code, as documented under the
usnotifycode field.

ulReserved (ULONG)
Reserved value, should be 0.

ReturnCode contains ulReserved for a usnotifycode of MLN_OVERFLOW,
MLN_HSCROLL, MLN_VSCROLL, MLN_CHANGE, MLN_UNDOOVERFLOW,
MLN_CLPBDFAIL, MLN_MEMERROR, MLN_SETFOCUS, or MLN_KILLFOCUS.

Remarks

The multiline entry field control window procedure generates this message and sends it to its
owner, informing the owner of the event.

param2 depends on the MLN_* notification code.

Default Processing

The default window procedure takes no action on this message, other than to set ulReserved
to 0.

Related Messages
+ WM_CONTROL

16-8 PM Programming Reference Vol Il

Multi-Line Entry Field Window Messages

This section describes the muiti-line entry field control window procedure actions on receiving
the following messages.

MLM_CHARFROMLINE

This message returns the first insertion point on a given line.

Parameters
param1i

ILineNum (LONG)
Line number of interest.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
iptFirst (IPT)

First insertion point on line.

Remarks
For any line number, the insertion point just before the first character on that line is returned.
If the line number is -1, the line containing the cursor is used.

The term line means a line on the display after the application of word-wrap. It does not
mean a line as defined by the CR LF line-break sequence.

Default Processing
The default window procedure takes no action on this message, other than to set iptFirst to
0.

MLM_CLEAR

This message clears the current selection.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

Chapter 16. Multi-Line Entry Field Control Window Processing 169

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulClear (ULONG)
Number of bytes deleted, counted in CF_TEXT format.

Remarks
The multi-line entry field control window procedure responds to this message by clearing the
current selection and returning the number of bytes cleared.

Default Processing
The default window procedure takes no action on this message, other than to set u/Clear to
0.

MLM_COPY

This message copies the current selection to the clipboard.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulCopy (ULONG)
Number of bytes transferred, counted in CF_TEXT format.

Remarks

The multi-line entry field control window procedure responds to this message by copying the
selected text to the clipboard. The text is translated to standard clipboard format, which is
the same as exporting with MLE_CFTEXT format.

The text is placed on the clipboard as a single contiguous data segment. This restricts the
amount to the maximum segment size (64KB).

16-10 PM Programming Reference Vol II

This may cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set u/Copy to
0.

MLM_CUT

This message copies the text that forms the current selection to the clipboard and then
deletes it from the MLE control.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulCopy (ULONG)
Number of bytes transferred, counted in CF_TEXT format.

Remarks

The muiti-line entry field control window procedure responds to this message by copying the
selected text to the clipboard and then deleting it. The text is translated to standard
clipboard format, which is the same as exporting with MLE_CFTEXT format.

The text is placed on the clipboard as a single contiguous data segment. This restricts the
amount to the maximum segment size (64KB).

This may cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set u/Copy to
0.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-11

MLM_DELETE

This message deletes text.

Parameters
param1

iptBegin (IPT)
Starting point of deletion.

param2

ulDel (ULONG)
Number of bytes to delete.

Returns
ulSuccess (ULONG)
Number of bytes successfully deleted.

Remarks

This message takes an insertion point and a length, and deletes that number of characters
from the text. If the insertion point is -1, the selection is used and the effect is identical to
the MLM_CLEAR message. ,

This may cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set u/Success
to O.

MLM_DISABLEREFRESH

This message disables screen refresh.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

16-12 PM Programming Reference Vol i

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion.
-FALSE Error occurred.

Remarks

This message disables screen refreshes. This allows an application to make changes
throughout a document while avoiding unnecessary overhead caused by attempts to keep
the screen display current. When an MLM_ENABLEREFRESH message is sent, the screen
display is brought up to date with the contents of the text.

While refresh is disabled, mouse and keyboard messages are processed by beeping and
ignoring them, except for mouse moves, which do not beep; the mouse pointer changes to
the system standard wait symbol (a clock face).

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_ENABLEREFRESH

This message enables screen refresh.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

0 Reserved value, 0.
Returns

rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE An error occurred.

Remarks :
This message enables screen refreshes. This allows an application to make changes
throughout a document while avoiding unnecessary overhead caused by attempts to keep

Chapter 16. Multi-Line Entry Field Control Window Processing 16-13

the screen display current. When an MLM_ENABLEREFRESH message is sent, the screen
display is brought up to date with the contents of the text.

While refresh is disabled, mouse and keyboard messages are processed by beeping and
ignoring them, except for mouse moves, which do not beep; the mouse pointer changes to
the system standard wait symbol (a clock face).

Default Processing

The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_EXPORT |

This message exports text to a buffer.

Parameters
param1

pBegin (PIPT)
Starting point.

Updated to follow the last character exported.

param2

pCopy (PULONG)
Number of bytes being exported.

Decremented by the number of bytes actually exported.

Returns
ulSuccess (ULONG)
Number of bytes successfully exported.

Remarks

This message takes an insertion point and length as parameters, and copies text, starting
from that insertion point, into the buffer set by MLM_SETIMPORTEXPORT. Text is in the
format set by MLM_FORMAT. If the insertion point is -1, the selection is used for both
pBegin and pCopy.

On return, pBegin is updated to follow the last byte exported, and the number of bytes to be
exported is decremented by the number actually exported. This is done to prepare those
parameter values for the next export. The return value indicates the number of bytes
actually put into the buffer. This number is less than, or equal to, the buffer size (see
MLM_SETIMPORTEXPORT).

16-14 PM Programming Reference Vol li

Note: All exports are done in full characters. Therefore, if either the length of the buffer or
the number of bytes to be exported result in the last byte transferred being only half
of a DBCS character, the MLE will not transfer that byte.

It returns the number of bytes placed in the export buffer.

Default Processing
The default window procedure takes no action on this message, other than to set u/Success
to 0.

MLM_FORMAT

This message sets the format to be used for buffer importing and exporting.

Parameters
paramt

usFormat (USHORT)
Format to be used for import and export.

MLFIE_CFTEXT Text format. Each line ends with a carriage-return/line-feed
combination. Tab characters separate fields within a line. A
NULL character signals the end of the data.

MLFIE_NOTRANS Uses LF for line delineation, and guarantees that any text
imported into the MLE in this format can be recovered in
exactly the same form on export.

MLFIE_WINFMT (Windows MLE format.) On import, recognizes CR LF as
denoting hard line-breaks, and ignores the sequence CR
CR LF. On export, uses CR LF to denote a hard line-break
and CR CR LF to denote a soft line-break caused by
word-wrapping.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
usFormat (USHORT)
Previous format value.

Remarks
The default format is MLFIE_CFTEXT.

The keyword MLFIE_RTF is reserved.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-15

Default Processing
The default window procedure takes no action on this message, other than to set usFormat
to 0.

MLM_IMPORT

This message imports text from a buffer.

Parameters
param1

pBegin (PIPT)
Insertion point.

Updated to insertion point following last insert.

param2

ulCopy (ULONG)
Number of bytes in buffer.

Returns
ulSuccess (ULONG)
Number of bytes successfully inserted.

Remarks

This message takes an insertion point and length as parameters. It assumes a buffer has
been set using MLM_SETIMPORTEXPORT, and inserts the contents of the buffer at the
insertion point in the text. The contents are interpreted as being in the format set by
MLM_FORMAT. If the insertion point is -1, the cursor point is used.

The insertion point pBegin is updated by the MLE to the point after the last character
imported. This provides the application with the location for the next import.

The return value indicates how many bytes were actually transferred.

All imports are done in full characters, therefore, if the number of bytes to be imported results
in the last byte transferred being only half of a DBCS character, or part of a line-break
sequence (CR LF or CR CR LF), the MLE does not transfer that byte. If the return value
indicates that less than the full amount was transferred, a check must be made to determine
if it is the beginning of a multi-byte sequence, and if so, the parts must be mated and
imported as a whole.

This can cause an overflow, see MLN_OVERFLOW.
Note: The buffer is not zero-terminated; NULL characters can be inserted into the text.

16-16 PM Programming Reference Vol Il

Default Processing
The default window procedure takes no action on this message, other than to set ulSuccess
to 0.

MLM_INSERT

This message deletes the current selection and replaces it with a text string.

Parameters
param1

pchText (PCHAR)
Null-terminated text string.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulCount (ULONG)

Number of bytes actually inserted.

Remarks

This message inserts the text string at the current selection, deleting that selection in the
same manner as typing at the keyboard would. The text string must be in CF_TEXT format
(or one of the formats acceptable to MLM_IMPORT) and null-terminated. The line-break
(CR LF, LF, and so on) is counted as one byte, regardless of the number of bytes occupied
in the buffer, and the null terminator is not counted.

This interacts with the format rectangle and text limits, and a return of less than the full count
can be the result. If so, a notification message is sent.

Default Processing
The default window procedure takes no action on this message, other than to set u/Count to
0.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-17

MLM_LINEFROMCHAR

This message returns the line number corresponding to a given insertion point.

Parameters
parami

iptFirst (IPT)
Insertion point of interest.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ILineNum (LONG)
Line number of insertion point.

Remarks
For any insertion point, the corresponding line number is returned. If the insertion point is
-1, the number of the line containing the first insertion point of the selection is returned.

The term line means a line on the display after the application of word-wrap. It does not
mean a line as defined by the CR LF line-break sequence.

Default Processing
The default window procedure takes no action on this message, other than to set ILineNum
1o 0.

MLM_PASTE

This message replaces the text that forms the current selection, with text from the clipboard.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

16-18 PM Programming Reference Vol Il

Returns
ulCopy (ULONG)
Number of bytes transferred, counted in. CF_TEXT format.

Remarks

The multi-line entry field control window procedure responds to this message by replacing
the selected text with text from the clipboard. The text is translated from standard clipboard
format, which is the same as importing with MLE_CFTEXT format.

The text is assumed to be in the clipboard as a single contiguous data segment. This
restricts the amount to the maximum segment size (64Kb).

This can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set u/Copy to
0.

MLM_QUERYBACKCOLOR

This message queries the background color.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, shouid be 0.

Returns
IColor (LONG)
Text color.

Remarks
This message returns the color in which the background is to be drawn.

The color values are the same as those used by GpiSetColor.

Default Processing
The default window procedure takes no action on this message, other than to set /Color to 0.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-19

MLM_QUERYCHANGED

This message queries the changed flag.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Current changed status.

TRUE Text has changed since the last time that the change flag was cleared.
FALSE Text has not changed since the last time that the change flag was cleared.

Remarks
The multi-line entry field control window procedure responds to this message by returning the
changed flag for the text without altering it. See also MLN_CHANGE.

Default Processing
The default window procedure takes no action on this message, other than to setrcto 0
(FALSE).

MLM_QUERYFIRSTCHAR

This message queries the first visible character.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG) .
Reserved value, should be 0.

16-20 PM Programming Reference Vol Il

Returns
iptFVC (IPT)
First visible character.

Remarks

Returns the insertion point immediately preceding the character visible in the upper left-hand
corner of the screen. If a partial character is displayed, that character counts as the first
visible character.

Note: In situations where no character is visible, because the text is scrolled to the right
beyond the end of the top line, this returns the insertion point of the last character on
the line (EOL not considered). In situations where there are no characters on the
line, the insertion point at the beginning is returned.

Default Processing
The default window procedure takes no action on this message, other than to set iptFVC to
0.

MLM_QUERYFONT

This message queries which font is in use.

Parameters
parami

pFattrs (PFATTRS)
Font attribute structure.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
System font indicator.

TRUE The system font is in use.
FALSE The system font is not in use.

Remarks
This message puts the attributes of the current drawing font into the font attribute structure.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-21

MLM_QUERYFORMATLINELENGTH

This message returns the number of bytes to end of line after formatting has been applied.

Parameters
parami

iptStart (IPT)
Insertion point to count from.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
iptLine (IPT)
Count of bytes to end of line.

Remarks

For any insertion point, the number of bytes between that insertion point and the end of the
line is returned, after the current formatting is applied. If the insertion point is -1, the cursor
position is used. This message differs from MLM_QUERYLINELENGTH in that the byte
count returned reflects the effects of the current formatting set by MLM_FORMAT.

Default Processing
The default window procedure takes no action on this message, other than to set iptLine to
0. ~

MLM_QUERYFORMATRECT

This message queries the format dimensions and mode.

Parameters
param1i

pFormatRect (PPOINTL)

Format dimensions.

The size of the current limiting dimensions.

16-22 PM Programming Reference Vol Il

param2

fIFlags (ULONG) .
Flags governing interpretation of dimensions.

An array of MLFFMTRECT_* flags defined under the fIFlags field of the
MLM_SETFORMATRECT message.

Returns
ulReserved (ULONG)
Reserved value.

Default Processing

The default window procedure takes no action on this message, other than to set u/lReserved

1o 0.

MLM_QUERYFORMATTEXTLENGTH

This message returns the length of a specified range of characters after the current
formatting has been applied.

Parameters
parami

iptStart (IPT)
Insertion point to start from.

param2

ulScan (ULONG)
Number of characters to convert to bytes.

OxFFFFFFFF Convert until end of line
other Convert specified number of characters.

Returns
ulText (ULONG)
Count of bytes in text after formatting.

Chapter 16. Multi-Line Entry Field Control Window Processing

16-23

Remarks ‘
This message returns the length in bytes of a range of characters after the current formatting
is applied. This differs from MLM_QUERYTEXTLENGTH in that:

* A range of insertion points can be queried.

* The byte count returned reflects the effects of the current formatting set by
MLM_FORMAT. ‘

Default Processing
The default window procedure takes no action on this message, other than to set ulText to 0.

MLM_QUERYIMPORTEXPORT

This message queries the current transfer buffer.

Parameters
parami

Buff (PVOID *)
Transfer buffer.

param2

pulLength (PULONG)
Size of transfer buffer in bytes.

Returns
rc (ULONG)
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Remarks
This message returns the values from the most recent MLM_SETIMPORTEXPORT, or 0 for
either value if it has not been set.

Default Processing
The default window procedure takes no action on this message, other than to set rc to 0
(FALSE).

16-24 PM Programming Reference Vol |

MLM_QUERYLINECOUNT

This message queries the number of lines of text.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ullines (ULONG)
The number of lines of text.

Remarks
The term line means a line on the display after the application of word-wrap. It does not
mean a line as defined by the CR LF line-break sequence.

The multi-line edit control always maintains one CR LF line-break in the buffer, therefore the
number of lines returned may be one greater than the number actually visible.

Default Processing
The default window procedure takes no action on this message, other than to set ulLines to
0.

MLM_QUERYLINELENGTH

This message returns the number of bytes between a given insertion point and the end of
line.

Parameters
parami

iptStart (IPT)
Insertion point to count from.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-25

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
iptLine (IPT)
Count of bytes to end of line.

Remarks

For any insertion point, the number of bytes between that insertion point and the end of the
line is returned. If the insertion point is —1, the cursor position is used. If the line contains a
hard line-break, it is counted as one byte.

The term line means a line on the display after the application of word-wrap. It does not
mean a line as defined by the CR LF line-break sequence.

Default Processing
The default window procedure takes no action on this message, other than to set iptLine to
0.

MLM_QUERYREADONLY

This message queries the read-only mode.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Current read-only status.

TRUE Read-only mode is set.
FALSE Read-only mode is cleared.

16-26 PM Programming Reference Vol Il

Default Processing

The default window procedure takes no action on this message, other than to set rc to

FALSE.

MLM_QUERYSEL

This message returns the location of the selection.

Parameters
param1

usQueryMode (USHORT)
Query Mode.

MLFQS_MINMAXSEL Return both minimum and maximum points of selection in
a format compatible with the EM_QUERYSEL message.

MLFQS_MINSEL Return minimum insertion point of selection.
MLFQS_MAXSEL Return maximum insertion point of selection.
MLFQS_ANCHORSEL Return anchor point of selection.
MLFQS_CURSORSEL Return cursor point of selection.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ReturnCode

sMinSel (SHORT)
Minimum insertion point of selection.

This value is rounded down to 65 535, if necessary.

ReturnCode contains sMinSel and sMaxSel for a usQueryMode of
MLFQS_MINMAXSEL.

sMaxSel (SHORT)
Maximum insertion point of selection.

This value is rounded down to 65 535 if necessary.

ReturnCode contains sMinSel and sMaxSel for a usQueryMode of
MLFQS_MINMAXSEL.

Chapter 16. Multi-Line Entry Field Control Window Processing

16-27

ipt (IPT)
Requested insertion point.

ReturnCode contains jpt for a usQueryMode of MLFQS_MINSEL,
MLFQS_MAXSEL, MLFQS_ANCHORSEL, or MLFQS_CURSORSEL.

Remarks

This message returns the location of the selection in several different forms. The insertion
points lie between characters, and start at a zero origin before the first character in the MLE.
Subtracting the minimum from the maximum gives the number of characters in the selection.
This is not necessarily the number of bytes of ASCII. The line-break character is a CR LF (2
bytes) and all DBCS characters are 2 bytes. To determine the number of bytes, use
MLM_QUERYFORMATTEXTLENGTH, being sure that the format choice set by
MLM_FORMAT is set to what is used when the data is exported from the MLE (for example,
MLE_CFTEXT for MLM_QUERYSELTEXT).

Note the following:

¢ If anchor point > cursor point, minimum point = cursor point and maximum point =
anchor point. '

¢ If anchor point < cursor point, minimum point = anchor point and maximum point =
cursor point.

Default Processing
The default window procedure takes no action on this message, other than to set
ReturnCode to 0.

Examples

This example sends two MLM_QUERYSEL messages to obtain the beginning and ending
points of the current selection, sends an MLM_SETIMPORTEXPORT message to set up the
export buffer, and then sends an MLM_EXPORT message to export the selection into the
buffer.

16-28 PM Programming Reference Vol Il

MLM_QUERYSELTEXT

This message copies the currently selected text into a buffer.

Parameters
parami

pchBuff (PCHAR)
Character buffer for text string.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulCount (ULONG)
Number of bytes to put into text string.

Remarks

This message copies the currently selected text into the buffer pointed to by pchBuff. The
text string is null-terminated. The byte count includes the text in CF_TEXT format (CR LF)
and the null terminator.

Default Processing
The default window procedure takes no action on this message, other than to set u/Count to
0.

MLM_QUERYTABSTOP

This message queries the pel interval at which tab stops are placed.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ufReserved (ULONG)
Reserved value, should be 0.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-29

Returns
pixTabset (PIX)
Tab width in pels.

<0 An error occurred.
Other The pel interval at which tab stops are placed.

Remarks
This message fails and returns a negative value, if the reserved values are not 0.

Default Processing
The default window procedure takes no action on this message, other than to set pixTabset
to 0.

MLM_QUERYTEXTCOLOR

This message queries the text color.

Parameters
- parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
IColor (LONG)
Text color.

Remarks
This message returns the color in which text is to be drawn.

The color values are the same as those used by GpiSetColor.

Default Processing
The default window procedure takes no action on this message, other than to set /Color to 0.

16-30 PM Programming Reference Vol i

MLM_QUERYTEXTLENGTH

This message returns the number of characters in the text.

Parameters
param1i

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, shouild be 0.

Returns
iptText (IPT)
Count of text in bytes.

Remarks
This message returns the number of characters in the text. Hard line-breaks are counted as
1 and soft line-breaks as 0.

This message differs from the WinQueryWindowTextLength call in that it returns a LONG.

Default Processing |
The default window procedure takes no action on this message, other than to set jptText to
0.

MLM_QUERYTEXTLIMIT

This message queries the maximum number of bytes that a multi-line entry field control can
contain.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Chapter 16. Muiti-Line Entry Field Control Window Processing 16-31

Returns
ISize (LONG)
Maximum number of bytes allowed in the MLE.

Remarks

The multi-line entry field control window procedure responds to this message by returning the
current limit set, either by default, or by MLM_SETTEXTLIMIT. If the limit is unbounded, a
non-positive value is returned.

Default Processing
The default window procedure takes no action on this message, other than to set /Size to 0.

MLM_QUERYUNDO

This message queries the undo or redo operations that are possible.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ReturnCode

usOperation (USHORT)
Operation that can be undone or redone.

0 An undo or redo operation is not possible.

WM_CHAR A WM_CHAR message, or messages for a simple string
. - of keystrokes, can be undone or redone.

MLM_SETFONT A MLM_SETFONT message can be undone or redone.

MLM_SETTEXTCOLOR A MLM_SETTEXTCOLOR message can be undone or
redone for both background and foreground color.

MLM_CUT A MLM_CUT message can be undone or redone.
MLM_PASTE A MLM_PASTE message can be undone or redone.
MLM_CLEAR A MLM_CLEAR message can be undone or redone.

16-32 PM Programming Reference Vol I

rc (BOOL)
Undo or redo indicator.

TRUE An undo is possible.
FALSE A redo is possible.

Default Processing
The default window procedure takes no action on this message, other than to set reply to 0.

MLM_QUERYWRAP

This message queries the wrap flag.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Wrap flag.

TRUE Word-wrap enabled
FALSE Word-wrap disabled.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_RESETUNDO

This message resets the undo state to indicate that no undo operations are possible.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-33

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ReturnCode

usOperation (USHORT)
Operation that can be undone or redone.

0 An undo or redo opération is not possible.

WM_CHAR A WM_CHAR message, or messages for a simple string
of keystrokes, can be undone or redone.

MLM_SETFONT A MLM_SETFONT message can be undone or redone.

MLM_SETTEXTCOLOR A MLM_SETTEXTCOLOR message can be undone or
redone for both background and foreground color.

MLM_CUT A MLM_CUT message can be undone or redone.

MLM_PASTE A MLM_PASTE message can be undone or redone.
. MLM_CLEAR A MLM_CLEAR message can be undone or redone.
rc (BOOL) '

Undo or redo indicator.

TRUE An undo is possible.
FALSE A redo is possible.

Remarks

This message resets the undo state of the MLE to indicate that the last operation cannot be
undone (null return from MLM_QUERYUNDO). This can be used by the application when it
performs an operation that it can undo, that supersedes the last MLE operation. The
application can then reset its own undo state upon receipt of an MLN_CHANGE, indicating
that later changes have occurred through the MLE.

Default Processing
The default window procedure takes no action on this message, other than to set
ReturnCode to 0.

16-34 PM Programming Reference Vol I

MLM_SEARCH

This message searches for a specified text string.

Parameters
param1i

ulStyle (ULONG)
Style flags.

MLFSEARCH_CASESENSITIVE

MLFSEARCH_SELECTMATCH

MLFSEARCH_CHANGEALL

param2

pse (PMLE_SEARCHDATA)
Search specification structure.

Returns
rc (BOOL)
Success indicator.

TRUE The search was successful.
FALSE The search was unsuccessful.

If set, only exact matches are considered a
successful match. If not set, any
case-combination of the correct characters in
the correct sequence is considered a successful
match. '

If set, the MLE selects the text and scrolls it into
view when found, just as if the application had
sent an MLM_SETSEL message. This is not
done if MLFSEARCH_CHANGEALL is also
indicated.

Using the MLE_SEARCHDATA structure
specified in pse, all occurrences of pchFind are
found, searching from jptStart to iptStop, and
replacing them with pchReplace. If this style is
selected, the cchFound field has no meaning,
and the iptStart value points to the place where
the search stopped, or is the same as iptStop
because the search has not been stopped at
any of the found strings. The current cursor
location is not moved. However, any existing
selection is deselected.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-35

Remarks

This message searches the MLE text for a specified string, startlng at a specified insertion
point and continuing until the second specified insertion point has been reached, or the
requested string has been matched.

When an MLM_SEARCH message is sent, the text is scanned starting with the character
that follows the insertion point indicated in the iptStart field of the MLE_SEARCHDATA
structure. The search proceeds until the point indicated in the iptStop field, until a match is
found, or until TRUE is returned from MLN_SEARCHPAUSE notification (see
WM_CONTROL (in Muitiline Entry Fields)). If a negative value is specified for the iptStart,
the current cursor point is used. If a negative value is specified for iptStop, the end of the
text is used. If iptStop, is less than or equal to iptStart, after performing the two indicated
substitutions, the search wraps from the end of the text to the beginning of the text.

If the MLFSEARCH_CASESENSITIVE option is specified, the bytes of the search string must
exactly match those in the text. If MLFSEARCH_CASESENSITIVE is not specified, the
WinUpperChar of the search string must match the WinUpperChar of the text.

When a match is found, the iptStart field of the search specification structure is set to
indicate the insertion point immediately preceding the first character of the match, and the
cchFind field is set to indicate the number of characters in the match. The cursor selection is
not altered unless MLFSEARCH_SELECTMATCH is specified. If it is, an MLM_SETSEL is
done with the anchor point at iptStart and the cursor at iptStart + cchFind.

While searching, the MLE occasionally sends an MLN_SEARCHPAUSE notification
message. If the owner responds to this message with the value TRUE, the MLE stops the
search. When a search is stopped from MLN_SEARCHPAUSE, iptStart is set to the point
where the search terminated. [f the response is FALSE, the search continues (see also the
definition of MLN_SEARCHPAUSE). The interval at which MLN_SEARCHPAUSE
notifications are sent is implementation-dependent, but must not exceed reasonable
user-response thresholds, nor should it be so often as to introduce undue messaging
overhead. Sending this notification every half second is a reasonable compromise.

When no match is found the iptStart value is unchanged.
If the application needs to continue the search, the proper way is to change the iptStart value
to be the point following the string found, adjusting for any text changes done after the

search that may have moved the relative location of the point.

Applications using this message are advised to change the system pointer to the wait |con
(clock face) if it is expected that the search will take some time.

Defauit Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

16-36 PM Programming Reference Vol Ii

Examples
This example searches for all occurrences of the word “Bonnie” and replaces them with the
word “Jeannette.”

~‘MLE_SEARCHDATA search;
search.ch = sizeof(search);
~-search.pchFind = "bonnie";
search.pchReplace = "jeannette";
‘- “search.cchFind ='6;) :
:search.cchReplace =9; -
.search.iptStart = 0; /* from the beginning of the text */
‘search.iptStop = -1; - /* to the end of the text */ ,
_ WinSendMsg(hwndMle, MLM_SEARCH, MLFSEARCH_CHANGEALL, (MPARAM) &search)

MLM_SETBACKCOLOR

This message sets the background color.

Parameters
param1i

IColor (LONG)
Color.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
I0ldColor (LONG)
Color previously used.

Remarks
This message sets the color in which the MLE background is to be drawn, and updates the
display as necessary.

The color values are the same as those used by GpiSetColor.

Default Processing
The default window procedure takes no action on this message, other than to set /OldColor
to 0.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-37

MLM_SETCHANGED

This message sets or clears the changed flag.

Parameters
param1

usChangedNew (USHORT)
Value to set changed flag to.

TRUE Changed flag set.
FALSE Changed flag cleared.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Changed status before message was processed.

TRUE Text has changed since the last time that the change flag was cleared.
FALSE Text has not changed since the last time that the change flag was cleared.

Remarks
This message can generate a MLN_CHANGE notification.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_SETFIRSTCHAR

This message sets the first visible character.

Parameters
parami

iptFVC (IPT)
Insertion point to place in top left-hand corner.

16-38 PM Programming Reference Vol Il

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE An error occurred.

Remarks

This message scrolls the text to place the character following the insertion point into the
upper left-hand corner of the window. If the insertion point specified is beyond the end of a
line, or the end of the file, it is resolved in the same way as it is for a mouse click.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_SETFONT

This message sets a font.

Parameters
parami

pFattrs (PFATTRS)
Font attribute structure.

NULL The system font is set.
other The specified font is set.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
re (BOOL)
Success indicator.

TRUE The font was successfully set.
FALSE An error occurred.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-39

Remarks
For any PFATTRS, this message sets the display to use the appropriate font lf NULL, the
system font is used. The screen is updated appropriately.

This can cause an overflow, see MLN_OVERFLOW.

When setting an outline font it is necessary to ensure that the FATTRS structure contains the
correct maximum baseline extent and average character width for the desired point size and
that the font use is marked as FATTR_FONTUSE_TRANSFORMABLE.

Baseline extent and character width are calculated by multiplying the desired point size by
the current display device font resolution (CAPS_VERTICAL_FONT_RES and
CAPS_HORIZONTAL_FONT_RES; see DevQueryCaps) and dividing by 72, the number of
points in an inch.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Examples
This example retrieves the current font information, changes it to italic, and sets it using the
MLM_SETFONT message.

MLM_SETFORMATRECT

This message sets the format dimensions and mode.

Parameters
param1

pFormatRect (PPOINTL)
New format dimensions.

NULL A null value sets both dimensions to the current window size.

other The structure is a pair of LONGs designating the diagonally-opposite corner
of the rectangle, assuming 0,0 for the first. Therefore, they are the width
and height in pels of the format rectangle. These dimensions are used as
the word-wrap and text-size limiting boundaries. Negative values for either

16-40 PM Programming Reference Vol 1i

dimension cause the MLE to substitute the current window size (the MLE
window rectangle minus margins).

If the rectangle specified has either, or both, of the limits set, and the size is
inadequate to contain the text, rc is set to FALSE and the rectangle
dimensions are replaced with the overflow amounts.

param2

fiFlags (ULONG)

Flags governing interpretation of dimensions.

MLFFMTRECT_MATCHWINDOW

MLFFMTRECT_LIMITHORZ

MLFFMTRECT_LIMITVERT

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE An error occurred.

Remarks

The dimensions of the format rectangle are
always to be kept the same as the window
size minus the margins. This causes the MLE
implicitly to do a MLM_SETFORMATRECT
each time the window is resized, and
effectively causes any other dimensions to be
ignored. Resizing of the window can cause
this setting to be automatically negated (see
MLN_OVERFLOW).

The width of any line in the MLE cannot
exceed the given horizontal dimension. If
word-wrap is on, this limit has no effect.
Word-wrap can result in trailing blanks beyond
the right limit. These do not cause an overflow
notification.

The vertical height of the total text, as
displayed, is limited to that which fits totally
within the vertical dimension of the format
rectangle.

The multi-line entry field control window procedure responds to this message by setting

formatting dimensions and mode.

Any addition of text that causes the text to exceed the rectangle limits causes a notification
before proceeding (see MLN_PIXHORZOVERFLOW and MLN_PIXVERTOVERFLOW).

Chapter 16. Multi-Line Entry Field Control Window Processing 16-41

Any activity that would cause the rectangle to be unable to contain the existing text (resize, -
undo, increasing font size, or word-wrap on -or off) is rejected and results in a notification
message for information (see MLN_OVERFLOW).

Default Processing

The default window procedure takes no action on this message, other than to set rc to
FALSE.

16-42 PM Programming Reference Vol Il

MLM_SETREADONLY

This message sets or clears read-only mode.

Parameters
parami

usReadOnly (USHORT)
New read-only value.

TRUE Read-only mode set.
FALSE Read-only mode cleared.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Previous read-only value.

TRUE Read-only mode was set.
FALSE Read-only mode was cleared.

Remarks

When read-only mode is set, characters typed at the keyboard do not get inserted into the
MLE text. The API insertion interface, however, is still functional, as are
selection-manipulation activities and copy-to-clipboard operations. This is useful as a means
of preventing text modification (such as in a help system), and for providing a minimal
blocking printing semaphore.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_SETIMPORTEXPORT

This message sets the current transfer buffer.

Parameters
param1

pBuff (PCHAR)
Transfer buffer.

Chapter 16. Muiti-Line Entry Field Control Window Processing 16-43

param2

ulLength (ULONG)
Size of transfer buffer in bytes.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE An error occurred.

Remarks

Given a far pointer to a buffer, and the size of the buffer, this message sets it as the current
transfer buffer for the MLE. This buffer is used by the MLM_IMPORT and MLM_EXPORT
messages. The system segment limit must be observed when specifying the buffer size.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

16-44 PM Programming Reference Vol Il

MLM_SETSEL

This message sets a selection.

Parameters
parami

iptAnchor (IPT)
Insertion point for new anchor point.

param2

iptCursor (IPT)
Insertion point for new cursor point.

Returns
rc (BOOL)
Success indicator.

TRUE Selection successfully set
FALSE An error occurred.

Remarks

This message sets the anchor and cursor points. The screen display is updated
appropriately, ensuring that the cursor point is visible (which may involve scrolling). Note
that the text cursor and inversion are not displayed if the MLE window does not have the
input focus. A negative value for a point leaves that point alone.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Examples
This example highlights the second, third, and fourth characters of the text, and places the
cursor to the right of the fourth character.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-45

/

MLM_SETTABSTOP

This message sets the pel interval at which tab stops are placed.

Parameters
param1

pixTab (PIX)
Pel interval for tab stops.

param?2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
pixTabset (PIX)
Success indicator.

<0 An error occurred.
Other The value to which the width was set.

Remarks
This message fails if the reserved value is not 0.

This message can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set pixTabset
to 0.

MLM_SETTEXTCOLOR

This message sets the text color.

Parameters
param1

IColor (LONG)
Color.

16-46 PM Programming Reference Vol Il

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
10IdColor (LONG)
Color previously used.

Remarks
This message sets the color in which the MLE text is to be drawn, and updates the display
as necessary.

The color values are the same as those used by GpiSetColor.

Default Processing
The default window procedure takes no action on this message, other than to set /OldColor
to O.

MLM_SETTEXTLIMIT
This message sets the maximum number of bytes that a multi-line entry field control can
contain.

Parameters
param1i

ISize (LONG)
Maximum number of characters in MLFIE_NOTRANS format.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
ulFit (ULONG)
Success indicator.

0 Successful completion. Current text fits within the new limit.
Other The number of bytes by which the current text exceeds the proposed limit. The
limit is not changed. :

Chapter 16. Muiti-Line Entry Field Control Window Processing 16-47

Remarks _ ,

The multi-line entry field control window procedure responds to this message by limiting the
text size to /Size bytes. Text size is calculated using the MLFIE_NOTRANS format. Note
that this is bytes and not characters; DBCS programmers should calculate accordingly.

This message returns 0 if the text limit exceeds or is equal to the existing text. Otherwise it
returns the number of bytes by which the text would have overflowed, and does not change
the limit.

The default, which is unbounded, can be specified by entering a non-positive limit.

Default Processing
The default window procedure takes no action on this message, other than to set ulFit to 0.

MLM_SETWRAP

This message sets the wrap flag.

Parameters
paramt

usWrap (USHORT)
New value for wrap flag.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (BOOL)
Success indicator.

TRUE Successful completion
FALSE An error occurred.

Remarks
The multi-line entry field control window procedure responds to this message by setting the
‘word wrap mode and updating the screen as appropriate.

When word-wrap is turned on, the text is wrapped to fit the formatting rectangle width. When
word-wrap is turned off, the text is aliowed to trail off to the nght until it reaches an
end-of-line marker.

Word-wrapping is defined as follows. Words are sequences of non-white-space. characters
(white-space characters are space, line break, and tab). When word-wrapping is enabled,
the whole word must appear on one line within the formatting rectangle, unless the word by

16-48 PM Programming Reference Vol Il

itself is too long to fit. In this case the word is split following the last character that fits, and
the remainder starts a new line.

This definition then applies recursively to the remainder of the word. The word continues to
be visible. For editing purposes (for example, for word-selection) the word is viewed as a
single word drawn over multiple lines.

Blank characters are always accumulated onto the current line, even if they exceed the
horizontal formatting dimension, that is, blanks are allowed to trail off the right-hand edge.
Line-break characters are also allowed to exceed the horizontal dimension, and any
subsequent text must begin on a new line. The line-break following a line-break character is
sometimes referred to as a hard line-break. Other line breaks, due to word-wrapping, and
not to explicit formatting characters, are referred to as soft line-breaks.

Tab characters must always be visible. If a tab character occurs after the last tab stop within
the horizontal formatting dimension, a soft line-break occurs after the tab.

This message can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_UNDO

This message performs any available undo operation.

Parameters
parami

ulReserved (ULONG)
Reserved value, should be 0.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
rc (USHORT)
Success indicator.

TRUE An undo operation was performed.
FALSE No undo operation was performed.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-49

Remarks
The last operation is undone (note that an undo can be undone).

This can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE. ’

WM_BUTTON1DBLCLK (in Multiline Entry Fields)

For the cause of this message, see “WM_BUTTON1DBLCLK” on page 10-12.

For a description of the parameters, see “WM_BUTTON1DBLCLK” on page 10-12.

Remarks
This message indicates that mouse button 1 has clicked twice within the system double-click
time.

Double-Click

If the click point is in the middle of a non-white-space character, the token (word)

surrounding the clicked-on character, and any trailing spaces, are selected. If the click point

is in a space character, the previous word (along with the trailing spaces including the

clicked-on space) is selected. If there is no preceding word (either because the spaces are

at the beginning of the text or immediately follow a line-break character) the run of spaces is
“selected. If the click point is on a tab or line-break character, that character is selected.

Shift-Double-Click :
Double-clicking while the Shift key is pressed leaves the anchor point alone, and moves the
cursor point to the beginning or end of the clicked-on token. If the click point is before the
anchor point in the text, the cursor point is moved to the beginning of the surrounding word,
otherwise, the cursor point is moved to the end of the surrounding word. When
shift-double-clicking, the selection is extended to include the token that was double-clicked
on. ‘

Margin Mouse Event

All mouse events in a margin cause the MLE to send a MLN_MARGIN notification to the
owner window of the MLE. This message has, as its parameters, the original mouse
message. The owner can process the notification or not. If the owner does not process the
message, the event is treated as if it occurred on the closest point in the text.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
* WM_BUTTON1DBLCLK

16-50 PM Programming Reference Vol I

WM_BUTTON1DOWN (in Multiline Entry Fields)
For the cause of this message, see “WM_BUTTON1DOWN?” on page 10-13.

For a description of the parameters, see “WM_BUTTON1DOWN" on page 10-13.

Remarks

This message delimits mouse button click events. Between a button-down and a button-up
event, the mouse is considered to be dragging. A mouse click is considered to happen on
button-down, and dragging is terminated by a button-up.

Click

Clicking in the text sets the cursor and anchor points to the nearest insertion point. If the
MLE is in overtype mode, the anchor is extended one character further in the text, subject to
the end-of-text and new-line boundary conditions, defined under WM_CHAR (in Multiline
Entry Fields).

Shift-Click
Clicking while the shift key is held down sets the cursor point to the nearest insertion point,
while leaving the anchor point alone.

Margin Mouse Event

All mouse events in a margin cause the MLE to send a MLN_MARGIN notification to the
owner window of the MLE. This message has, as its parameters, the original mouse
message. The owner can process the notification or not. If the owner does not process the
message, the event is treated as if it occurred on the closest point in the text.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
+ WM_BUTTON1DOWN

WM_BUTTON1UP (in Multiline Entry Fields)
For the cause of this message, see “WM_BUTTON1UP” on page 10-16.

_For a description of the parameters, see “WM_BUTTON1UP” on page 10-16.

Remarks

This message delimits mouse button click events. Between a button-down and a button-up
event the mouse is considered to be dragging. A mouse click is considered to happen on
button-down, and dragging is terminated by a button-up.

Margin Mouse Event

All mouse events in a margin cause the MLE to send a MLN_MARGIN notification to the
owner window of the MLE. This message has, as its parameters, the original mouse
message. The owner can process the notification or not. If the owner does not process the
message, the event is treated as if it occurred on the closest point in the text.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-51

Default Processing
The default window procedure takes no action on this message, other than to set rc to
. FALSE.

Related Messages
* WM_BUTTON1UP

WM_CHAR (in Multiline Entry Fields)
For the cause of this message, see “WM_CHAR” on page 10-32.

For a description of the parameters, see “WM_CHAR” on page 10-32.

Remarks

The behavior of the MLE, when typing, depends on whether it is in insert or overtype mode,
and whether the selection is empty or not. The selection is defined to be empty when the
cursor point is equal to the anchor point.

When a character is typed, it replaces the current selection. If the selection is empty, the
character is viewed as replacing nothing, so the character is effectively inserted into the text.
If one or more characters are selected, those characters are deleted from the text and
replaced by the typed character.

If the MLE is in insert mode, the cursor and anchor points are moved to immediately follow
the newly typed character.

if the MLE is in overtype mode, the cursor is moved to immediately follow the newly typed
character. If there is no character after the cursor (the new character is at the end of the
text) or if the character after the cursor is a line-break character, the anchor is set to be
equal to the cursor point. In any other case, the anchor is extended one character past the
cursor point, defining the next character as the current selection.

If the typing causes the cursor to go off the screen in any direction, the display is
automatically scrolled. If word-wrap is on, text continues on a new line, otherwise, the
screen is scrolled horizontally.

Scrolling of the text in the window is independent of cursor movement. The cursor and
selection remain unaltered at the same location within the text during all scrolling but the
converse is not true. Any movement of the cursor causes auto-scrolling, if necessary, to
ensure that the text location of the cursor is visible within the window.

Tabs: Tabs are represented as a single character in the text model, and are displayed as
enough white-space to reach the next tab stop. Tab stops are set at pel intervals, starting
with zero and occurring every n pels, where n is a value set by the MLM_SETTABSTOP
message, and defaulting to eight times the average character width of the system font.
When a tab is drawn, it uses the number of pels defined by the following formula:

pelWidth = pelTab - (peiDraw mod pelTab))

16-52 PM Programming Reference Vol Ii

where pelTab is the tab interval, in pels, and pelDraw is the pel at which drawing is to begin.

Return: Return (ASCIl newline) causes a hard line-break, and the following text begins on
a new line. A line-break character is inserted in the text, which is drawn as a few pels of
white-space (for selection purposes).

Keystroke commands: For all the following keys, unless otherwise noted, the display is
scrolled, if necessary, to keep the cursor point visible. Where noted, the cursor setting
behaves differently in insert mode than in overtype mode. This is subject to the boundary

conditions noted above.

Del

Shift+Del
Insert
Shift+lns
Ctri+ins

Backspace

Down Arrow

Shift+Down Arrow

Up Arrow

Shift+Up

Causes the contents of the selection region to be deleted. If
the selection region contains no text, it causes the character

- to the right of the cursor to be deleted.

Causes the contents of the selection region to be cut to the
clipboard.

Toggles between insert and overtype mode. The MLE
ignores the Insert key when it occurs without a modifier.

Causes the contents of the clipboard to replace the selection
region.

Causes the selection region to be copied to the clipboard.
The selection region is not otherwise affected.

Functions similar to Del. If the selection is not empty,
Backspace deletes the selection. If the selection is empty,
Backspace deletes the character to the left of the cursor point.
If the MLE is in overtype mode, the anchor point is set, and
the cursor point is moved to be one character previous in the
text. If no such character exists (because the anchor is set to
the beginning of the text) the cursor is set to the anchor point.
If the MLE is in insert mode, the cursor and anchor points are
set, as defined at the start of this chapter.

Sets the cursor point to the closest insertion point on the
following line, then sets the anchor point to the cursor point
(insertion mode) or one character following (overtype mode).

Causes the cursor point to be moved to the closest insertion
point on the following line. The anchor point does not move.

Sets the cursor point to the closest insertion point on the
preceding line, then sets the anchor point to the cursor point
(insert mode) or one character following (overtype mode).

Sets the cursor point to the closest insertion point on the
preceding line. The anchor point is not moved.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-53

Right Arrow

Shift+Right

Left and Shift+Left
Ctrl+Right

Ctri+Shift+Right

Ctrl+Left

Ctrl+Shift+Left

Pagedown and Pageup

Sets the cursor point to the insertion point one character
following the cursor point. The anchor point is set to the
cursor point (insert mode) or one character following (overtype
mode).

Causes the cursor point to be set to the insertion point
immediately following the previous cursor point. The anchor
point is not moved.

Work analogously.

Moves the cursor point to the insertion point immediately
preceding the next word in the text including trailing spaces,
and sets the anchor point to be equal to (insert mode) or one
character following (overtype mode) the cursor point. The
EOL (hard line-break) and tab characters are treated as
words.

Moves only the cursor point in the same way as Ctrl+Right,
but leaves the anchor point unmoved.

Moves the cursor point to the preceding insertion point at the
beginning of a word, and sets the anchor point to be equal to
(insert mode) or one character following (overtype mode) the
cursor point. The EOL (hard line-break) and tab characters
are treated as words. ’

Moves only the cursor point in the same way as Ctri+Left but
leaves the anchor point unmoved.

Cause the display to be scrolled one screen at a time in either
direction. This behavior is the same as would be encountered
during a page-down or page-up caused by the scroll-bar.

Ctrl+Pagedown and Ctrl+Pageup Cause the display to be scrolled one screen at a time to

Home

Shift+Home

End

the right or left respectively. This behavior is the same as
would be encountered during a page-right or page-left caused
by the scroll-bar.

Sets the cursor point to the insertion point at the beginning of
the line containing the cursor point, and sets the anchor point
equal to (insert mode) or one character following (overtype
mode).

Moves the cursor point to the insertion point at the beginning
of the line. The anchor point is not moved.

Sets the anchor point to the insertion point at the end. of the
line containing the cursor point.” If the last character on the
line is a line-break character, the anchor is positioned just