
Presentation Manager
Programming Reference Vol II

Version 3

--------- - ------- - ---- - - ---
--~----- , -

Presentation Manager
Programming Reference Vol II

Version 3

--...- ------- - -------- -. ---- - - -----_ .. -----_.-

Note --­

Before using this information and the product it supports, be sure to read the general
information under Appendix I, "Notices" on page 1-1.

First Edition (October 1994)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM authorized reseller or
IBM marketing representative.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source
language, which illustrate OS/2 programming techniques. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: "© (your company name) (year). All rights reserved." .

© Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures

Chapter 9. Introduction to Message Processing
Message Types

Default Window and Dialog Procedure Message Processing
Control Window Message Processing

Notation Conventions

Chapter 10. Default Window·Procedure Message Processing
Purpose

Reserved Messages
General Window Styles

Window Class Styles
Window Styles ...

General Window Messages
PL_ALTERED
WM_ACTIVATE
WM_APPTERMINATENOTIFY
WM _ ADJUSTWINDOWPOS
WM_BEGINDRAG .,
WM_BEGINSELECT
WM_BUTTON1 CLICK
WM_BUTTON1 DBLCLK
WM_BUTTON1 DOWN
WM_BUTTON1 MOTIONEND
WM_BUTTON1 MOTIONSTART
WM_BUTTON1 UP ...
WM_BUTTON2CLlCK .
WM_BUTTON2DBLCLK
WM_BUTTON2DOWN
WM_BUTTON2MOTIONEND
WM_BUTTON2MOTIONSTART
WM_BUTTON2UP ...
WM_BUTTON3CLlCK .
WM_BUTTON3DBLCLK
WM _ BUTTON3DOWN
WM_BUTTON3MOTIONEND
WM_BUTTON3MOTIONSTART
WM_BUTTON3UP
WM_ CALCFRAMERECT
WM_ CALCVALIDRECTS
WM_CHAR
WM_CHORD
WM_CLOSE
WM_COMMAND

© Copyright IBM Corp. 1994

xxv

9-1
9-1
9-2
9-2
9-4

10-1
10-1
10-1
10-1
10-2
10-3
10-5
10-5
10-5
10-7
10-7
10-9

10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28
10-29
10-30
10-32
10-35
10-35
10-37

iii

WM_CONTEXTMENU .. 10-38
WM_CONTROL · 10-39
WM_CONTROLPOINTER 10-40
WM_CREATE · 10-41
WM_DESTROY 10-42
WM_DRAWITEM I ••••• 10-42
WM ENABLE 10-43
WM...:ENDDRAG 10-44
WM_ENDSELECT 10-45
WM_ERROR 10-46
WM_FOCUSCHANGE 10-47
WM_FORMATFRAME 10-48
WM_HELP · .. 10-49
WM_HITTEST · ... 10-50
WM_HSCROLL 10-51
WM_INITDLG · 10-52
WMJNITMENU · 10-53
WM_JOURNALNOTIFY 10-54
WM_MATCHMNEMONIC 10-55
WM_MEASUREITEM 10-55
WM_MENUEND · .. 10-56
WM_MENUSELECT 10-57
WM_MINMAXFRAME 10-58
WM_MOUSEMAP 10-59
WM_MOUSEMOVE 10-59
WM_MOVE · 10-60
WM_MSGBOXDISMISS 10-62
WM_MSGBOXINIT 10-62
WM_NEXTMENU 10-63
WM_NULL · ... 10-64
WM_OPEN · 10-65
WM_PACTIVATE 10-65
WM_PAINT 10-66
WM_PCONTROL 10-67
WM_PPAINT · 10-68
WM_PRESPARAMCHANGED 10-69
WM_PSETFOCUS 10-69
WM_PSIZE · 10-70
WM_PSYSCOLORCHANGE 10-71
WM_ QUERYACCEL TABLE 10-72
WM_QUERYCONVERTPOS 10-72
WM_QUERYHELPINFO .. 10-74
WM_ QUERYTRACKINFO 10-74
WM_QUERYWINDOWPARAMS 10-75
WM_QUIT · 10-76
WM _ REALIZEPALETTE 10-78
WM_SAVEAPPLICATION 10-78
WM_SEM1 · 10-79

iv PM Programming Reference Vol II

WM_SEM2
WM_SEM3
WM SEM4
WM_SETACCELTABLE
WM_SETFOCUS
WM_SETHELPINFO
WM_SETSELECTION
WM_SETWINDOWPARAMS
WM SHOW
WM_SINGLESELECT .. .
WM_SIZE
WM_ SUBSTITUTESTRING
WM_SYSCOLORCHANGE
WM _ SYSCOMMAND
WM_SYSVALUECHANGED
WM TEXTEDIT ..
WM TIMER
WM TRACKFRAME . . .
WM_ TRANSLATEACCEL
WM_ TRANSLATEMNEMONIC
WM_UPDATEFRAME
WM_ VRNDISABLED
WM VRNENABLED .
WM_VSCROLL
WM_WINDOWPOSCHANGED

Default Dialog Processing
WM _CHAR (Default Dialogs)
WM_CLOSE (Default Dialogs)
WM_COMMAND (Default Dialogs)
WM_INITDLG (Default Dialogs) .
WM_MATCHMNEMONIC (Default Dialogs)
WM_QUERYDLGCODE ..

Default File Dialog Processing
FDM_ERROR
FDM FILTER
FDM VALIDATE

Default Font Dialog Processing
WM_DRAWITEM (in Font Dialog)
FNTM_FACENAMECHANGED
FNTM FIL TERLIST
FNTM POINTSIZECHANGED
FNTM STYLECHANGED ..
FNTM_ UPDATEPREVIEW

Language Support Window Processing
WM _ACTIVATE (Language Support Window)
WM_CONTROL (Language Support Window)
WM_PAINT (Langauge Support Window) .
WM_PPAINT (Language Support Window) .

10-80
10-81
10-82
10-83
10-83
10-84
10-85
10-86
10-87
10-87
10-88
10-89
10-90
10-91
10-92
10-93
10-94
10-95
10-95
10-96
10-97
10-98
10-98
10-99

10-101
10-103
10-103
10-104
10-104
10-104
10-105
10-105
10-106
10-107
10-108
10-108
10-109
10-110
10-111
10-112
10-113
10-114
10-115
10-116
10-116
10-116
10-117
10-117

Contents V

WM _ SETFOCUS (Language Support Window)
WM_SIZE (Language Support Window)
WM_SYSCOLORCHANGE (Language Support Window)

Language Support Dialog Processing
WM _ACTIVATE (Language Support Dialog)
WM _CONTROL (Language Support Dialog)
WM_PAINT (Language Support Dialog)
WM_PPAINT (Language Support Dialog) .
WM _ SETFOCUS (Language Support Dialog)
WM _SIZE (Language Support Dialog)
WM_SYSCOLORCHANGE (Language Support Dialog)

Chapter 11. Button Control Window Processing
Purpose

Button Control Styles
Button Control Data .
Default Colors
Button Control Notification Messages

WM_COMMAND (in Button Controls)
WM_CONTROL (in Button Controls)
WM_HELP (in Button Controls)
WM_SYSCOMMAND

Button Control Window Messages
BM_CLlCK
BM_QUERYCHECK
BM_ QUERYCHECKINDEX
BM_QUERYHILITE
BM_SETCHECK .
BM_SETDEFAULT
BM _SETH ILiTE
WM_ENABLE (in Button Controls)
WM_MATCHMNEMONIC (in Button Controls)
WM_QUERYCONVERTPOS (in Button Controls)
WM_QUERYWINDOWPARAMS (in Button Controls)
WM_SETWINDOWPARAMS (in Button Controls)

Chapter 12. Entry Field Control Window Processing
Purpose

Entry Field Control Styles
Entry Field Control Data
Default Colors
Entry Field Control Notification Messages

WM_CONTROL (in Entry Fields)
Entry Field Control Window Messages

EM_CLEAR
EM_COPY
EM_CUT .
EM_PASTE

vi PM Programming Reference Vol II

10-118
10-118
10-119
10-120
10-120
10-120
10-121
10-121
10-122
10-122
10-122

11-1
11-1
11-1
11-3
11-3
11-5
11-5
11-5
11-7
11-7
11-8
11-8
11-9
11-9

11-10
11-11
11-12
11-13
11-14
11-14
11-15
11-15
11-15

12-1
12-1
12-1
12-3
12-3
12-4
12-4
12-6
12-6
12-6
12-7
12-8

EM_QUERYCHANGED .
EM_QUERYFIRSTCHAR
EM_QUERYREADONLY
EM_QUERYSEL
EM_SETFIRSTCHAR
EM SETINSERTMODE
EM SETREADONL Y
EM SETSEL
EM _ SETTEXTLI M IT ..
WM_CHAR (in Entry Fields)
WM_QUERYCONVERTPOS (in Entry Fields)
WM_QUERYWINDOWPARAMS (in Entry Fields)
WM_SETWINDOWPARAMS (in Entry Fields)

Chapter 13. Frame Control Window Processing
Purpose

Frame Creation Flags
Frame Control Styles
Frame Control Data .
Default Colors
Frame Control Notification Messages

WM_MINMAXFRAME (in Frame Controls)
Frame Control Window Messages

WM_ACTIVATE (in Frame Controls)
WM ADJUSTFRAMEPOS
WM_BUTTON1 DBLCLK (in Frame Controls)
WM_BUTTON2DBLCLK (in Frame Controls)
WM_BUTTON1 DOWN (in Frame Controls)
WM_BUTTON2DOWN (in Frame Controls)
WM_BUTTON1 UP (in Frame Controls) ..
WM_BUTTON2UP (in Frame Controls) ..
WM_CALCFRAMERECT (in Frame Controls)
WM_CHAR (in Frame Controls) .
WM_CLOSE (in Frame Controls)
WM COMMAND
WM_DRAWITEM (in Frame Controls)
WM ERASEBACKGROUND
WM FLASHWINDOW
WM_FOCUSCHANGE (in Frame Controls)
WM_FORMATFRAME (in Frame Controls)
WMJNITMENU (in Frame Controls)
WM_MEASUREITEM (in Frame Controls)
WM_MENUSELECT (in Frame Controls)
WM_NEXTMENU (in Frame Controls)
WM OWNERPOSCHANGE . .
WM_PAINT (in Frame Controls)
WM_QUERYBORDERSIZE ..
WM_QUERYCONVERTPOS (in Frame Controls)

12-9
12-9

12-10
12-11
12-12
12-13
12-13
12-14
12-15
12-16
12-17
12-17
12-18

13-1
13-1
13-1
13-3
13-3
13-4
13-5
13-5
13-8
13-8
13-8

13-10
13-10
13-10
13-11
13-11
13-11
13-12
13-12
13-13
13-13
13-13
13-14
13-15
13-16
13-16
13-17
13-17
13-18
13-18
13-18
13-19
13-20
13-20

Contents vii

WM_QUERYFOCUSCHAIN ...
WM _ QUERYFRAMECTLCOUNT
WM_QUERYFRAMEINFO
WM_QUERYICON
WM_QUERYWINDOWPARAMS (in Frame Controls)
WM _ SETBORDERSIZE
WM SETICON
WM_SETWINDOWPARAMS (in Frame Controls)
WM_SIZE (in Frame Controls)
WM_SYSCOMMAND
WM_TRACKFRAME (in Frame Controls) .. .
WM _ TRANSLA TEACCEL (in Frame Controls)
WM_TRANSLATEMNEMONIC (in Frame Controls)
WM_UPDATEFRAME (in Frame Controls)

Chapter 14. List Box Control Window Processing
Purpose

List Box Control Styles
List Box Control Data .
Default Colors
List Box Control Notification Messages

WM_CONTROL (in List Boxes) ..
WM_DRAWITEM (in List Boxes)
WM_MEASUREITEM (in List Boxes)

List Box Control Window Messages
LM DELETEALL
LM DELETEITEM
LM INSERTITEM
LM INSERTMULTITEMS
LM_QUERYITEMCOUNT
LM_ QUERYITEMHANDLE
LM_QUERYITEMTEXT
LM _ QUERYITEMTEXTLENGTH
LM _ QUERYSELECTION
LM_QUERYTOPINDEX
LM_SEARCHSTRING
LM _ SELECTITEM ..
LM SETITEMHANDLE
LM_ SETITEMHEIGHT
LM_ SETITEMTEXT
LM _ SETITEMWIDTH
LM_SETTOPINDEX
WM _CHAR (in List Boxes)
WM_QUERYCONVERTPOS (in List Boxes)
WM_QUERYWINDOWPARAMS (in List Boxes)
WM_SETWINDOWPARAMS (in List Boxes)

Chapter 15. Menu Control Window Processing

viii PM Programming Reference Vol II

13-21
13-22
13-23
13-24
13-24
13-25
13-25
13-26
13-26
13-27
13-29
13-30
13-30
13-30

14-1
14-1
14-1
14-1
14-1
14-3
14-3
14-4
14-5
14-7
14-7
14-7
14-8
14-9

14-10
14-11
14-12
14-13
14-13
14-15
14-15
14-17
14-18
14-19
14-19
14-20
14-21
14-22
14-23
14-23

~. 14-23

15-1

Purpose
Menu Control Styles
Menu Item Styles .
Menu Item Attributes
Default Colors
Menu Control Notification Messages

WM_COMMAND (in Menu Controls)
WM_DRAWITEM (in Menu Controls)
WM _HELP (in Menu Controls)
WM_INITMENU (in Menu Controls) .
WM_MEASUREITEM (in Menu Controls)
WM_MENUEND (in Menu Controls)
WM_MENUSELECT (in Menu Controls)
WM_NEXTMENU (in Menu Controls)

Menu Control Window Messages
MM DELETEITEM
MM_ENDMENUMODE
MMJNSERTITEM .,
MMJSITEMVALID
MM_ITEMIDFROMPOSITION
MMJTEMPOSITIONFROMID
MM_ QUERYDEFAUL TITEMID
MM_QUERYITEM
MM_QUERYITEMATTR .
MM_ QUERYITEMCOUNT
MM_QUERYITEMRECT .
MM_QUERYITEMTEXT .
MM _ QUERYITEMTEXTLENGTH
MM_QUERYSELITEMID
MM_REMOVEITEM ...
MM_SELECTITEM
MM_SETDEFAULTITEMID
MM SETITEM
MM_SETITEMATTR ..
MM_SETITEMHANDLE
MM SETITEMTEXT ..
MM_STARTMENUMODE
WM_QUERYCONVERTPOS (in Menu Controls)
WM_QUERYWINDOWPARAMS (in Menu Controls)
WM_SETWINDOWPARAMS (in Menu Controls) ..
WM_SYSCOMMAND

Chapter 16. Multi-Line Entry Field Control Window Processing
Purpose

How to Use
Multi-Line Entry Field Control Styles
Multi-Line Entry Field Control Data .
Multi-Line Entry Field Control Notification Messages

15-1
15-1
15-2
15-3
15-3
15-5
15-5
15-5
15-6
15-7
15-7
15-8
15-8
15-9

15-10
15-10
15-11
15-11
15-12
15-13
15-14
15-15
15-16
15-17
15-18
15-18
15-19
15-20
15-21
15-22
15-23
15-24
15-25
15-26
15-27
15-28
15-29
15-30
15-30
15-30
15-31

16-1
16-1
16-1
16-2
16-2
16-3

Contents ix

WM _CONTROL (in Multiline Entry Fields)
Multi-Line Entry Field Window Messages

MLM_CHARFROMLINE
MLM_CLEAR
MLM_COPY .
MLM_CUT ..
MLM_DELETE
MLM_DISABLEREFRESH
MLM_ENABLEREFRESH
MLM_EXPORT
MLM_FORMAT
MLMJMPORT
MLM_INSERT
MLM_L1NEFROMCHAR
MLM_PASTE
MLM_QUERYBACKCOLOR
MLM_QUERYCHANGED
MLM_QUERYFIRSTCHAR
MLM_QUERYFONT ...
MLM_QUERYFORMATLINELENGTH
MLM_QUERYFORMATRECT
MLM_QUERYFORMATTEXTLENGTH
MLM_QUERYIMPORTEXPORT
MLM_QUERYLINECOUNT
MLM_QUERYLINELENGTH
MLM_QUERYREADONLY
MLM_QUERYSEL ...
MLM_QUERYSELTEXT .
MLM_QUERYTABSTOP
MLM_QUERYTEXTCOLOR
MLM_QUERYTEXTLENGTH
MLM _ QUERYTEXTLI M IT
MLM_QUERYUNDO
MLM_QUERYWRAP
MLM_RESETUNDO
MLM_SEARCH
MLM_SETBACKCOLOR
MLM_SETCHANGED .
MLM_SETFIRSTCHAR
MLM_SETFONT
MLM_SETFORMATRECT
MLM_SETREADONLY
MLM_SETIMPORTEXPORT
MLM_SETSEL
MLM_SETTABSTOP
MLM_SETTEXTCOLOR
MLM_SETTEXTLIMIT
MLM_SETWRAP

X PM Programming Reference Vol II

16-3
16-9
16-9
16-9

16-10
16-11
16-12
16-12
16-13
16-14
16-15
16-16
16-17
16-18
16-18
16-19
16-20
16-20
16-21
16-22
16-22
16-23
16-24
16-25
16-25
16-26
16-27
16-29
16-29
16-30
16-31
16-31
16-32
16-33
16-33
16-35
16-37
16-38
16-38
16-39
16-40
16-43
16-43
16-45
16-46
16-46
16-47
16-48

MLM_UNDO
WM_BUTTON1 DBLCLK (in Multiline Entry Fields)
WM_BUTTON1 DOWN (in Multiline Entry Fields)
WM_BUTTON1 UP (in Multiline Entry Fields)
WM_CHAR (in Multiline Entry Fields)
WM_ENABLE (in Multiline Entry Fields)
WM_MOUSEMOVE (in Mulitline Entry Fields)
WM_QUERYWINDOWPARAMS (in Multiline Entry Fields)
WM_SETWINDOWPARAMS (in Multiline Entry Fields) ..

Chapter 17. Combination-Box Control Window Processing
Purpose

Combination Box Control Styles
Combination Box Control Data
Default Colors
Combo Box Control Notification Messages

WM_CONTROL (in Combination Boxes)
Combo Box Control Window Messages

CBM HILITE
CBM_ISLISTSHOWING
CBM_ SHOWLIST

Chapter 18. Scroll Bar Control Window Processing
Purpose

Scroll Bar Control Styles
Scroll Bar Control Data .
Default Colors
Scroll Bar System Values
Scroll Bar Control Notification Messages

WM_HSCROLL (in Horizontal Scroll Bars)
WM_ VSCROLL (in Vertical Scroll Bars)

Scroll Bar Control Window Messages
SBM_QUERYPOS ..
SBM_QUERYRANGE .
SBM_SETPOS
SBM_SETSCROLLBAR
SBM_SETTHUMBSIZE
WM_ QUERYCONVERTPOS (in Scroll Bars)
WM_QUERYWINDOWPARAMS (in Scroll Bars)
WM_SETWINDOWPARAMS (in Scroll Bars) ..

Chapter 19. Spin Button Control Window Processing
Purpose
Spin Button Control Styles
Spin Button Control Data
Spin Button Control Notification Message

WM _CONTROL (in Spin Button Controls)
Spin Button Control Window Messages

16-49
16-50
16-51
16-51
16-52
16-55
16-56
16-56
16-57

17-1
17-1
17-1
17-1
17-2
17-3
17-3
17-5
17-6
17-7
17-7

18-1
18-1
18-1
18-1
18-1
18-2
18-3
18-3
18-3
18-4
18-4
18-4
18-5
18-6
18-7
18-8
1R·8
18-9

19-1
19-1
19-1
19-2
19-3
19-3
19-4

Contents xi

SPBM _ OVERRIDESETLIMITS
SPBM_QUERYLIMITS
SPBM_QUERYVALUE
SPBM_SETARRAY
SPBM_SETCURRENTVALUE
SPBM_SETLIMITS
SPBM_SETMASTER
SPBM_SETTEXTLIMIT
SPBM_SPINDOWN
SPBM_SPINUP

Chapter 20. Static Control Window Processing
Purpose

Static Control Styles
Static Control Data
Default Colors
Static Control Notification Messages
Static Control Window Messages

SM_QUERYHANDLE
SM_SETHANDLE
WM_MATCHMNEMONIC (in Static Controls)
WM_QUERYCONVERTPOS (in Static Controls)
WM_QUERYWINDOWPARAMS (in Static Controls)
WM_SETWINDOWPARAMS (in Static Controls)

Chapter 21. Title Bar Control Window Processing
Purpose

Title Bar Control Styles
Title Bar Control Data
Default Colors
Title Bar Control Notification Messages

WM_SYSCOMMAND (in Title Bar Controls)
WM_TRACKFRAME (in Title Bar Controls

Title Bar Control Window Messages
TBM_QUERYHILITE
TBM_SETHILITE
WM_QUERYCONVERTPOS (in Title Bar Controls)
WM_QUERYWINDOWPARAMS (in Title Bars) ..
WM_SETWINDOWPARAMS (in Title Bar Controls)

Chapter 22. Container Control Window Processing
Purpose
Container Control Window Words
Container Control Styles and Selection Types

Container Control Styles
Container Control Selection Types

Container Control Data
Container Control Notification Messages

xii PM Programming Reference Vol II

19-4
19-5
19-6
19-8
19-9
19-9

19-10
19-11
19-12
19-13

20-1
20-1
20-1
20-2
20-2
20-3
20-4
20-4
20-5
20-5
20-6
20-6
20-7

21-1
21-1
21-1
21-1
21-1
21-2
21-2
21-2
21-3
21-3
21-4
21-4
21-5
21-5

22-1
22-1
22-2
22-2
22-2
22-3
22-4
22-5

WM_CONTROL (in Container Controls)
WM_CONTROLPOINTER (in Container Controls)
WM_DRAWITEM (in Container Controls)

Container Control Notification Codes
CN_BEGINEDIT ...
CN _ COLLAPSETREE
CN_CONTEXTMENU
CN_DRAGAFTER
CN_D RAG LEAVE
CN_DRAGOVER
CN_DROP
CN_DROPNOTIFY
CN_DROPHELP
CN_EMPHASIS
CN_ENDEDIT .
CN_ENTER
CN_EXPANDTREE
CN_HELP
CNJNITDRAG
CN_KILLFOCUS
CN_PICKUP ..
CN_QUERYDELTA
CN _ REALLOCPSZ
CN_SCROLL
CN_SETFOCUS ..

Container Control Window Messages
CM_ALLOCDETAILFIELDINFO
CM_ALLOCRECORD
CM_ARRANGE
CM_ CLOSEEDIT
CM_ COLLAPSETREE
CM_ERASERECORD
CM_EXPANDTREE .
CM_FILTER
CM_FREEDETAILFIELDINFO
CM_FREERECORD
CM_HORZSCROLLSPLITWINDOW
CM JNSERTDETAILFIELDINFO
CMJNSERTRECORD
CMJNSERTRECORDARRAY
CMJNVALIDATEDETAILFIELDINFO
CMJ NVALI DATERECORD
CM_ MOVETREE
CM_OPENEDIT
CM_PAINTBACKGROUND
CM_QUERYCNRINFO
CM_ QUERYDETAILFIELDINFO
CM_ QUERYDRAGIMAGE

22-5
22-6
22-7

22-10
22-10
22-11
22-12
22-12
22-15
22-16
22-18
22-19
22-19
22-20
22-21
22-22
22-23
22-23
22-24
22-25
22-26
22-27
22-28
22-29
22-29
22-31
22-31
22-32
22-34
22-35
22-36
22-37
22-38
22-39
22-40
22-42
22-43
22-44
22-45
22-47
22-49
22-50
22-52
22-54
22-55
22-56
22-56
22-57

Contents xiii

CM_QUERYRECORD
CM_ QUERYRECORDEMPHASIS
CM_QUERYRECORDFROMRECT
CM_QUERYRECORDINFO ..
CM_QUERYRECORDRECT
CM_ QUERYVIEWPORTRECT
CM_REMOVEDETAILFIELDINFO
CM_REMOVERECORD
CM_SCROLLWINDOW .
CM_SEARCHSTRING ..
CM_SETCNRINFO
CM _SETRECORDEMPHASIS
CM_SORTRECORD . . .
CM_SETTEXTVISIBILITY .. .
WM_PICKUP
WM_PRESPARAMCHANGED (in Container Controls)

Chapter 23. Notebook Control Window Processing
Purpose
Notebook Control Styles
Notebook Control Data
Notebook Control Notification Messages

WM_CONTROL (in Notebook Controls)
WM_CONTROLPOINTER (in Notebook Controls)
WM _DRAWITEM (in Notebook Controls)

Notebook Control Window Messages
BKM_CALCPAGERECT
BKM_DELETEPAGE
BKMJNSERTPAGE ..
BKM JNVALIDATETABS
BKM_QUERYPAGECOUNT
BKM_QUERYPAGEDATA
BKM_QUERYPAGEID ...
BKM_QUERYPAGEINFO .
BKM_QU ERYPAG ESTYLE
BKM_QUERYPAGEWINDOWHWND
BKM_QUERYSTATUSLINETEXT
BKM_ QUERYT ABBITMAP
BKM_QUERYTABTEXT
BKM_SETDIMENSIONS
BKM_SETNOTEBOOKCOLORS
BKM_SETPAGEDATA
BKM_SETPAGEINFO
BKM_SETPAGEWINDOWHWND
BKM _ SETSTATUSLINETEXT
BKM_SETT ABBITMAP
BKM_SETTABTEXT .
BKM_TURNTOPAGE

xiv PM Programming Reference Vol II

22-59
22-60
22-62
22-63
22-64
22-65
22-66
22-68
22-70
22-71
22-72
22-74
22-76
22-77
22-78 '
22-79

23-1
23-1
23-1
23-2
23-3
23-3
23-4
23-4
23-7
23-7
23-8
23-9

23-11
23-11
23-13
23-13
23-15
23-16
23-17
23-18
23-19
23-20
23-21
23-22
23-23
23-24
23-25
23-26
23-26
23-28
23-29

WM_CHAR (in Notebook Controls)
WM_PRESPARAMCHANGED (in Notebook Controls)
WM _SIZE (in Notebook Controls)

Chapter 24. Slider Control Window Processing
Purpose
Slider Control Styles
Slider Control Data
Slider Control Notification Messages

WM_CONTROL (in Slider Controls)
WM_CONTROLPOINTER (in Slider Controls)
WM_DRAWITEM (in Slider Controls)

Slider Control Window Messages
SLM_ADDDETENT
SLM_QUERYDETENTPOS
SLM_QUERYSCALETEXT
SLM_QUERYSLIDERINFO
SLM_QUERYTICKPOS
SLM_ QUERYTICKSIZE
SLM_REMOVEDETENT
SLM SETSCALETEXT
SLM _ SETSLI DERI NFO
SLM_SETTICKSIZE ..
WM_CHAR (in Slider Controls)
WM_PRESPARAMCHANGED (in Slider Controls)
WM_QUERYWINDOWPARAMS (in Slider Controls)
WM_SETWINDOWPARAMS (in Slider Controls) ..

Chapter 25. Circular Slider Control Window Messages
Purpose

Circular Slider Control Styles
Circular Slider Control Data
Default Colors
Circular Slider Control Notification Messages

WM _CONTROL (in Circular Slider Controls)
WM_CONTROLPOINTER (in Circular Slider Controls)

Circular Slider Control Window Messages
CSM _ QUERYINCREMENT
CSM_QUERYRADIUS
CSM_QUERYRANGE .
CSM_QUERYVALUE
CSM SETBITMAPDATA
CSM SETINCREMENT
CSM_SETRANGE ...
CSM_SETVALUE
WM_CHAR (in Circular Slider Controls)
WM_PRESPARAMCHANGED (in Circular Slider Controls)
WM_ QUERYWINDOWPARAMS (in Circular Slider Controls)

23-30
23-31
23-32

24-1
24-1
24-1
24-4
24-5
24-5
24-6
24-6
24-8
24-8
24-9

24-10
24-11
24-13
24-14
24-15
24-16
24-17
24-19
24-20
24-22
24-23
24-24

25-1
25-1
25-1
25-2
25-2
25-3
25-3
25-4
25-5
25-5
25-5
25-6
25-6
25-7
25-7
25-8
25-9
25-9

25-10
25-11

Contents XV

WM_SETWINDOWPARAMS (in Circular Slider Controls)

Chapter 26. Value Set Control Window Processing
Purpose
Value Set Control Styles
Value Set Control Data
Value Set Control Notification Messages

WM _CONTROL (in Value Set Controls)
WM_CONTROLPOINTER (in Value Set Controls)
WM_DRAWITEM (in Value Set Controls)

Value Set Control Window Messages
VM_QUERYITEM
VM_QUERYITEMATTR ...
VM_QUERYMETRICS
VM_ QUERYSELECTEDITEM
VM SELECTITEM .
VM_SETITEM
VM_SETITEMATTR
VM SETMETRICS
WM_CHAR (in Value Set Controls)
WM_PRESPARAMCHANGED (in Value Set Controls)
WM_QUERYWINDOWPARAMS (in Value Set Controls)
WM_SETWINDOWPARAMS (in Value Set Controls)
WM _SIZE (in Value Set Controls)

Chapter 27. Clipboard Messages
Purpose
WM_DESTROYCUPBOARD
WM DRAWCUPBOARD
WM HSCROLLCUPBOARD
WM_PAINTCUPBOARD
WM_RENDERALLFMTS
WM RENDERFMT
WM SIZECUPBOARD
WM_ VSCROLLCUPBOARD

Chapter 28. Direct Manipulation (Drag) Messages
Purpose
DM_DISCARDOBJECT ..
DM_DRAGERROR
DM_DRAGFILECOMPLETE
DM DRAGLEAVE
DM_DRAGOVER
DM_DRAGOVERNOTIFY
DM_DROP
DM_DROPHELP
DM DROPNOTIFY
DM_EMPHASIZETARGET

xvi PM Programming Reference Vol II

25-12

26-1
26-1
26-1
26-5
26-6
26-6
26-7
26-8

26-10
26-10
26-12
26-14
26-15
26-16
26-17
26-19
26-21
26-22
26-24
26-25
26-26
26-26

27-1
27-1
27-1
27-2
27-2
27-4
27-4
27-5
27-6
27-7

28-1
28-1
28-1
28-2
28-3
28-4
28-4
28-7
28-8
28-9

28-10
28-11

DM_ ENDCONVERSATION
DM_FILERENDERED
DM_PRINTOBJECT .. .
DM RENDER
DM_RENDERCOMPLETE
DM RENDERFILE
DM_RENDERPREPARE

Chapter 29. Dynamic Data Exchange Messages
Purpose
WM DDE ACK
WM_DDE_ADVISE
WM DDE DATA
WM_DDE_EXECUTE .
WM DDE INITIATE ..
WM _ DDE JNITIATEACK
WM_DDE_POKE
WM_DDE_REQUEST .
WM DDE TERMINATE
WM_DDE_UNADVISE

Chapter 30. Help Manager Messages
Purpose
HM_ACTIONBAR_COMMAND
HM_CONTROL
HM_CREATE_HELP_TABLE
HM_DISMISS_WINDOW
HM_DISPLAY _HELP
HM_ERROR
HM_EXT_HELP
HM_EXT _HELP_UNDEFINED
HM GENERAL HELP - -
HM_GENERAL_HELP _UNDEFINED
HM_HELP _CONTENTS
HM_HELP _INDEX
HM_HELPSUBITEM_NOT_FOUND
HM_INFORM
HM_INVALIDATE_DDF _DATA
HM KEYS HELP - -
HM_LOAD_HELP_TABLE
HM_NOTIFY
HM_QUERY
HM_QUERY_DDF_DATA
HM_QUERY_KEYS_HELP
HM_REPLACE_HELP_FOR_HELP
HM_REPLACE_USING_HELP
HM_SET _ACTIVE_WINDOW
HM_SET_COVERPAGE_SIZE

28-11
28-12
28-13
28-14
28-15
28-17
28-18

29-1
29-1
29-1
29-2
29-3
29-4
29-4
29-6
29-6
29-7
29-8
29-9

30-1
30-1
30-1
30-1
30-2
30-3
30-4
30-5
30-7
30-8
30-8
30-9

30-10
30-10
30-11
30-12
30-13
30-14
30-15
30-15
30-17
30-19
30-20
30-20
30-21
30-22
30-23

Contents xvii

HM_SET _HELP _LIBRARY_NAME
HM_SET_HELP _WINDOW_TITLE
HM_SET _OBJCOM_WINDOW
HM_SET _SHOW_PANELJD
HM_SET _USERDATA
HM TUTORIAL
HM_UPDATE_OBJCOM_WINDOW_CHAIN

Chapter 31. Resource Files
How to Read the Syntax Definitions
Definitions Used in all Resources

Specification of Values
Resource Load and Memory Options

Resource Script File Specification
Single-Line Statements
User-Defined Resources

RCDAT A statement
Directives
Multiple-Line Statements
Keyboard Resources

ACCEL TABLE Statement
ASSOCTABLE Statement
Dialog and Window Template Statements
MENU Statement
STRINGTABLE Statement

Templates, Control Data, and Presentation Parameters
Dialog Template
Dialog Coordinates
Dialog Template Format and Contents
Header ..
Items
Data Area
Control Data Statement
Presentation Parameters Statement
Parent/Child/Owner Relationship
Predefined Window Classes
Predefined Control Statements

Resource (.RES) File Specification

Chapter 32. Code Pages
Windowed PM Applications
OS/2 Code Page Options for PM Applications
OS/2 Font Support for Multiple Code Pages

Font Code-Page Functions
Font Layout

ASCII Code Pages
EBCDIC Code Pages

xviii PM Programming Reference Vol II

30-24
30-25
30-25
30-26
30-27
30-27
30-28

31-1
31-1
31-2
31-2
31-2
31-2
31-3
31-4
31-5
31-6
31-9

31-10
31-10
31-12
31-13
31-16
31-22
31-24
31-24
31-24
31-24
31-26
31-26
31-27
31-28
31-28
31-29
31-30
31-30
31-35

32-1
32-1
32-3
32-4
32-4
32-4

32-12
32-21

Appendix A. Data Types
ACCEL
ACCELTABLE
APIRET
APSZ
ARCPARAMS
AREABUNDLE
ATOM
BITMAPARRAYFILEHEADER
BITMAPARRAYFILEHEADER2
BITMAPFILEHEADER .
BITMAPFI LEHEADER2
BITMAPINFO
BITMAPINF02
BITMAPINFOHEADER
BITMAPINFOHEADER2
BIT16
BIT32
BIT8
BOOL
BOOKPAGEINFO
BOOKTEXT
BTNCDATA
BYTE
CATCHBUF
CDATE
CHAR
CHARBUNDLE
CLASSINFO .
CNRDRAGINFO .
CNRDRAWITEMINFO
CNREDITDATA
CNRDRAGINIT
CNRINFO
CNRLAZVDRAGINFO
COLOR
CONVCONTEXT
CREATESTRUCT
CSBITMAPDATA
CURSORINFO
CTIME ...
Control-Data .
DDEINIT ...
DELETENOTIFY
DDESTRUCT
DESKTOP ...
DEVOPENSTRUC
DLGTEMPLATE .

A-1
A-1
A-1
A-2
A-2
A-3
A-3
A-4
A-4
A-5
A-6
A-7
A-8
A-9

A-14
A-15
A-20
A-20
A-20
A-21
A-21
A-23
A-24
A-24
A-25
A-25
A-26
A-26
A-27
A-28
A-28
A-29
A-32
A-33
A-39
A-40
A-40
A-41
A-42
A-43
A-44
A-44
A-45
A-46
A-46
A-48
A-49
A-53

Contents xix

DLGTITEM
DRAGIMAGE
DRAGINFO
DRAGITEM
DRAGTRANSFER
DRIVDATA
ENTRYFDATA
ERRORID
ERRINFO
ESCMODE
ESCSETMODE
FACENAMEDESC
FATTRS .
FFDESCS
FIELDINFO
FIELDINFOINSERT
FILEDLG .
FIXED
FONTDLG '"
FONTMETRICS
FRAMECDATA
GRADIENTL
HAB
HACCEL ..
HAPP
HATOMTBL
HBITMAP
HOC ..
HCINFO
HOOF
HELPINIT
HELPSUBTABLE
HELPTABLE .
HENUM
HEV
HINI
HUB
HMF
HMODULE
HMQ .
HMTX
HMUX
HOBJECT
HPOINTER
HPROGRAM
HPS
HRGN
HSAVEWP

xx PM Programming Reference Vol II

A-54
A-56
A-57
A-58
A-61
A-63
A-64
A-65
A-65
A-66
A-67
A-68
A-69
A-72
A-72
A-75
A-77
A-81
A-82
A-88
A-99

A-100
A-100
A-101
A-101
A-101
A-101
A-102
A-102
A-103
A-104
A-106
A-108
A-108
A-108
A-109
A-109
A-109
A-109
A-110
A-110
A-110
A-110
A-111
A-111
A-111
A-111
A-112

HSEM
HSPL
HSTR
HSWITCH
HWND
ICONINFO
IMAGEBUNDLE
IPT ,
KERNINGPAIRS ,
LBOXINFO
LHANDLE
LlNEBUNDLE

A-112
A-112
A-112
A-113
A-113
A-113
A-114
A-115
A-115
A-116
A-117
A-117
A-118
A-119
A-120
A-121
A-121
A-123
A-124
A-125
A-126
A-127
A-129
A-129
A-130
A-130
A-131
A-132
A-133
A-134
A-135
A-136
A-137
A-138
A-140
A-140
A-144
A-147
A-147
A-147
A-148
A-148
A-148
A-149
A-149
A-151
A-151
A-152

LONG
MARKERBUNDLE
MATRIXLF
MB2D
MB21NFO
MENUITEM
MINIRECORDCORE
MLE_SEARCHDATA
MLEMARGSTRUCT
MLECTLDATA
MPARAM
MQINFO
MRESULT
NOTIFYDEL TA
NOTIFYRECORDEMPHASIS ..
NOTIFYRECORDENTER
NOTIFYSCROLL
OBJCLASS
OWNERBACKGROUND
OWNERITEM
MLEOVERFLOW
PAGEINFO
PAGESELECTNOTIFY
PANOSE
PARAM
PCH
PCSZ·
PDEVOPENDATA .
PFN
PFNWP
PID .. .
PIX .. .
PRDINF03
PRDRIVINFO
PRESPARAMS
PRINTDEST

Contents xxi

PRINTERINFO A-153
PRFPROFILE A-154
PRJINF02 A-155
PRJINF03 A-157
PROGRAMENTRY A-159
PROGCATEGORY A-160
PROGDETAILS A-160
PROGTYPE A-161
PRPORTINFO A-162
PRPORTINF01 A-163
PRQINF03 A-164
PRQINF06 A-166
PRQPROCINFO A-169
POINTERINFO A-169
POINTL A-170
POINTS A-171
PQMOPENDATA A-171
PSZ ... A-171
PWPOINT A-172
PVOID .. A-172
QMSG : A-172
QUERYRECFROMRECT A-173
QUERYRECORDRECT A-174
RECORDCORE A-175
RECORDINSERT A-177
RECTL .. A-179
RENDERFILE A-179
RGB ... A-180
RGB2 A-181
RGNRECT A-182
SBCDATA A-182
SEARCHSTRING A-184
SEGOFF . A-185
SFACTORS A-185
SHORT A-186
SIZEF .. A-186
SIZEL .. A-186
SLDCDATA A-187
SMHSTRUCT A-188
SPBCDATA A-189
SPLERR A-190
STR16 .. A-190
STR32 .. A-190
STR64 .. A-190
STR8 .. A-191
STYLECHANGE A-191
SWBLOCK . A-193
SWCNTRL A-193

xxii PM Programming Reference Vol II

SWENTRY
SWP .. .
TID
TRACKINFO
TREEITEMDESC
TREEMOVE
UCHAR
ULONG
USERBUTTON
USHORT
VIOSIZECOUNT
VIOFONTCELLSIZE
VOID
VSCDATA
VSDRAGINFO
VSDRAGINIT
VSTEXT
WNDPARAMS
WPOINT ..
WRECT
XYWINSIZE

Appendix B. Error Codes

Appendix C. Error Explanations

Appendix D. Standard Bit-Map Formats
Bit-Map Data
Bit-Map Information Tables
Bit-Map Example
Bit-Map File Format

Appendix E. Fonts Supplied with the OS/2 Operating System
OS/2 Outline Fonts
Presentation Manager Bit Map Fonts

Fonts Supplied for ISO 9241 Non-Conforming Hardware
Fonts Supplied for ISO 9241 Conforming Hardware

International Standards Organization (ISO) 9241

Appendix F. Format of Interchange Files
Metafile Restrictions
Metafile Data Format ..
Structured Field Formats

Appendix G. Initialization File Information

Appendix H. Virtual Key Definitions

A-195
A-195
A-197
A-197
A-199
A-200
A·201
A-201
A-202
A-202
A-203
A-203
A-204
A-204
A-205
A-205
A-206
A-207
A-208
A-208
A-208

B-1

C-1

D-1
D-1
D-1
D-2
D-2

E-1
E-1
E-2
E-2
E-5
E-7

F-1
F-1
F-3
F-4

G-1

H-1

Contents xxiii

Appendix I. Notices
Trademarks

Glossary
Glossary Listing

Index

xxiv PM Programming Reference Vol II

1-1
1-1

X-1
X-1

X-29

Figures

23-1.
26-1.
26-2.
26-3.
26-4.
26-5.
26-6.
31-1.
32-1.
32-2.
32-3.
32-4.
32-5.
32-6.
32-7.
32-8.
32-9.

32-10.
32-11.
32-12.
32-13.
32-14.
32-15.
32-16.
32-17.
32-18.
32-19.
32-20.
32-21.
32-22.
32-23.
32-24.

Tabs Showing Rectangular Area Used to Size a Bit Map
Value Set with Bit Maps
Value Set with Icons ...
Value Set with Text Strings
Value Set with Colors
Value Set with Border
Value Set with Item Borders
Dialog Template
OS/2 Code Page Options for PM Applications
US-English: ASCII Code Page 437
Latin 1 Multilingual: ASCII Code Page 850
Latin 2 Multilingual: ASCII Code Page 852
Turkey: ASCII Code Page 857 . . .
Portuguese: ASCII Code Page 860
Iceland: ASCII Code Page 861
Canadian-French: ASCII Code Page 863
Norwegian: ASCII Code Page 865
Desktop Publishing: ASCII Code Page 1004
US-English: EBCDIC Code Page 037 '"
Austrian/German: EBCDIC Code Page 273
Belgian: EBCDIC Code Page 274 (supported for migration purposes)
Danish/Norwegian: EBCDIC Code Page 277
Finnish/Swedish: EBCDIC Code Page 278
Italian: EBCDIC Code Page 280
Portuguese: EBCDIC Code Page 282 (supported for migration purposes)
Spanish: EBCDIC Code Page 284
UK-English: EBCDIC Code Page 285
French: EBCDIC Code Page 297
International: EBCDIC Code Page 500
Czechoslovakia/Hungary/Poland/Yugoslovia: EBCDIC Code Page 870
Iceland: EBCDIC Code Page 871
Turkey: EBCDIC Code Page 1026

© Copyright IBM Corp. 1994

23-27
26-2
26-2
26-3
26-3
26-4
26-4

31-25
32-3

32-12
32-13
32-14
32-15
32-16
32-17
32-18
32-19
32-20
32-21
32-22
32-23
32-24
32-25
32-26
32-27
32-28
32-29
32-30
32-31
32-32
32-33
32-34

xxv

xxvi PM Programming Reference Vol II

Chapter 9. Introduction to Message Processing

Messages are processed by window and dialog procedures.

Every window has a window procedure. Windows can also be combined into standard
windows or dialog boxes. These are special cases of groups of windows that also have their
own procedures. A window or dialog procedure must be capable of processing any
message. This can be achieved by delegating some message types to the default window,
or dialog, procedures by use of the WinDefWindowProc and WinDefDlgProc functions
respectively.

Control windows are a special type of child windows. They take the form of objects such as
buttons, scroll bars, list boxes, and text entry fields. These child windows process mouse
and keyboard input and notify its owner of significant input events. Procedures for these
child window controls are inside the Presentation Manager and are often called
system-provided window procedures.

All messages have the same form as QMSG. structure, which has the following form:

't,Ypedefsfruct ··.QMSG. {
HWNO hwnd;
ULONG
MPARAM
MPARAM
ULONG
POINTL
ULONG
lQt4SG~

Message Types
There are two types of window procedure message processing:

• Default window and dialog procedure message processing
• Control window message processing.

These types are described below along with the notation conventions used in the message
descriptions. The messages are described in the following chapters.

© Copyright IBM Corp. 1994 9-1

Default Window and Dialog Procedure Message Processing
These window procedures provide default processing for application window procedures:

• Default window and dialog procedure

• Language support window and dialog procedures, which are used if the application
specifies a null window procedure

• Default AVIO window procedure.

These messages are described in Chapter 10, "Default Window Procedure Message
Processing" on page 10-1. The system-provided window procedures take no action on
messages that are not defined in this chapter, and return NULL.

Control Window Message Processing
Controls are predefined classes of child windows that any application can use for input and
output. These control classes are predefined:

WC_ CIRCULARSLIDER

WC_COMBOBOX

WC_ENTRYFIElD

WC_LlSTBOX

Consists of buttons and boxes that the operator can select by
clicking the pointing device or using the keyboard. These
messages are described in Chapter 11, "Button Control
Window Processing" on page 11-1.

Consists of a visual component whose specific purpose is to
allow a user to set, display, or modify a value by moving the
slider arm around the circular slider dial. Messages are
described in Chapter 25, "Circular Slider Control Window
Messages" on page 25-1.

Consists of an entry field control and a list box control merged
into a single control. The list, which is usually limited in size,
is displayed below the entry field and offset one dialog box
unit to its right. These messages are described in
Chapter 17, "Combination-Box Control Window Processing"
on page 17-1.

Consists of a visual component whose specific purpose is to
hold objects such as executable programs, word processing
files, graphics images, and database records~ Messages are
described in Chapter 22, "Container Control Window
Processing" on page 22-1.

Consists of a single line of text that the operator can edit.
These messages are described in Chapter 12, "Entry Field
Control Window Processing" on page 12-1.

Consists of a composite window. These messages are
described in Chapter 13, "Frame Control Window Processing"
on page 13-1.

Presents a list of text items from which the operator can make
selections. These messages are described in Chapter 14,
"List Box Control Window Processing" on page 14-1.

9-2 PM Programming Reference Vol II

WC_SLIDER

WC_SPINBUTTON

WC_STATIC

WC_ TITLE BAR

Presents a list of items,. which may be text displayed
horizontally as action bars or vertically as pull-down menus.
Menus are usually used to provide a command interface to
applications. These messages are described in Chapter 15,
"Menu Control Window Processing" on page 15-1.

Consists of a rectangular window that displays multiple lines
of text that the operator can edit. When it has the focus, the
cursor marks the current insertion or replacement pOint.
These messages are described in Chapter 16, "Multi-Line
Entry Field Control Window Processing" on page 16-1.

Consists of a visual component whose specific purpose is to
organize information on individual pages so that a user can
find and display that information quickly and easily.
Messages are described in Chapter 23, "Notebook Control
Window Processing" on page 23-1.

Consists of window scroll bars that allow the operator to make
a request to scroll the contents of an associated window.
These messages are described in Chapter 18, "Scroll Bar
Control Window Processing" on page 18-1.

Consists of a visual component whose specific purpose is to
allow a user to set, display, or modify a value by moving the
slider arm along the slider shaft. Messages are described in
Chapter 24, "Slider Control Window Processing" on
page 24-1.

Presents a scrollable ring of choices from which the operator
can select. These messages are described in Chapter 19,
"Spin Button Control Window Processing" on page 19-1.

Consists of simple display items that do not respond to
keyboard or pointing device events. These messages are
described in Chapter 20, "Static Control Window Processing"
on page 20-1.

Displays the window title or caption and allows the operator to
move its owner. These messages are described in
Chapter 21, "Title Bar Control Window Processing" on
page 21-1.

Consists of a visual component whose specific purpose is to
allow a user to select one choice from a group of mutually
exclusive choices. A value set can use graphical images (bit
maps or icons), as well as colors, text, and numbers, to
represent the items that a user can select. Messages are
described in Chapter 26, "Value Set Control Window
Processing" on page 26-1.

Chapter 9. Introduction to Message Processing 9-3

Owner-Notification Messages: Controls are useful because they notify their owners
when significant events take place. A control notifies its owner by sending a WM_CONTROL
message or by posting a WM_COMMAND or WM_HELP message.

• WM_CONTROL

• WM_COMMAND

Param2 contains information that indicates the source of the WM_COMMAND message:

CMDSRC_PUSHBUTTON Posted by a pushbutton control
CMDSRC_MENU Posted by a menu control
CMDSRC_ACCELERATOR Posted by WinTranslateAccel
CMDSRC_FONTDLG Posted by a font dialog.
CMDSRC_OTHER Other source.

• WM_HELP

Param1 contains information that indicates the source of the WM_HELP message:

CMDSRC_PUSHBUTTON
CMDSRC_MENU
CMDSRC_ACCELERATOR
CMDSRC_OTHER

Notation Conventions
Each message description contains:

Posted by a pushbutton control
Posted by a menu control
Posted by WinTranslateAccel
Other source.

Name The message name; a 2-byteidentity unique to a message.

Some message identity values are reserved for the use of the operating
system, some are available for use by an application. See "Reserved
Messages" on page 10-1.

For all messages, the first two or three characters of the name indicate the
type of window that is related to the message; for example:

LM List box control
SBM Scroll bar control.

Cause The principal reason that caused the generation of the message.

Parameters Input and output parameters pertinent to the message.

There are always two parameters (param 1 and param2) and one return
value. Any or all of the parameters can be NULL.

Remarks An explanation of the relationship between the parameters in the context of
the message and an indication of the expected processing of the message.

Default A definition of how the default window procedures (provided by the system)
process the message.

Note: A message is not equivalent to a call of the same name.

9-4 PM Programming Reference Vol II

Chapter 10. Default Window Procedure Message
Processing

This system-provided window procedure processes the actions that control the operation of
windows.

Purpose
General window messages are used for standard processing. These messages can be
requested from the system or sent to the system for information, or for actions such as
create window, validate window, track mouse movement, and select and deselect actions.

Reserved Messages
These message ranges are reserved:

WM_USER All messages below this value are reserved for system use. Private
messages must have an identifier with a value of WM_USER or higher.

Note: The operating system uses certain message values higher than
WM_USER. These message values should not be used by an
application. A partial listing of these messages is in the following
figure:

From PMSTDDLG.H:

#define FDM_FILTER
#define FDM_VALIDATE
#define FDM_ERROR

WM_USER+40
WM_USER+41
WM_USER+42

#define FNTM_FACENAMECHANGED
#define FNTM_POINTSIZECHANGED
#define FNTM_STYLECHANGED
#define FNTM_COLORCHANGED
#define FNTM_UPDATEPREVIEW
#define FNTM_FILTERLIST

WM_USER+50
WM_USER+51
WM_USER+52
WM_USER+53
WM_USER+54
WM_USER+55

You should scan your header files to see if other messages have been
defined with values higher than WM_USER.

General Window Styles
The window is the mechanism by which the application communicates with the operator.
Each window can have a window style that controls the appearance and behavior of the
window. There are also class styles that apply to all the windows of a particular class (class
being FRAME, BUTTON, and so on).

© Copyright I BM Corp. 1994 10-1

Window Class Styles
These window class styles are available:

CS_SIZEREDRAW

CS_CLlPCHILDREN

CS_CLlPSIBLINGS

CS_SAVEBITS

Determines whether a window will be redrawn when sized.
This style is to be used for a window whose contents are
sensitive to the size of the window. For example, the data
in some windows can be scaled up or down to fit the size of
the Client Area. In other windows, the data remains the
same size whatever the size of the window; it is merely
clipped if the window is made smaller. The
CS_SIZEREDRAW style is to be used in the first instance
but not in the second. For more information, see
WM CALCVALIDRECTS.

Window is synchronously repainted. This style causes
WS SYNCPAINT to be set for all windows of this class.

This class style should be used by a child window if it wants
to be notified with a WM _ MOVE message when its parent is
moved. For more detail, see the WM_MOVE message
description.

Causes a window of style WS_CLlPCHILDREN to be
created, regardless of whether this style bit is specified on
the create window function.

Causes a window of style WS_CLlPSIBLINGS to be
created, regardless of whether this style bit is specified on
the create window function.

Causes a window of style WS_PARENTCLIP to be created,
regardless of whether this style bit is specified on the create
window function.

Causes a window of style WS_SAVEBITS to be created,
regardless of whether this style bit is specified on the create
window function.

Causes a public window class to be registered. It is an
error if this parameter is specified on any process other than
the shell process.

If set, causes a WM_HITTEST message to be sent to the
window, before sending any pointing device message.

If not set, no WM_HITTEST message is sent, and it is
assumed that the window returns HT_NORMAL if the
window is not disabled, and HT _ERROR if the window is
disabled.

Top-level frame windows do not have CS_HITTEST set.

If set, all windows of this class are expected to behave as
frame windows.

1 0-2 PM Programming Reference Vol II

Window Styles
These window styles are available:

WS_SVNCPAINT Window is synchronously repainted.

This style is set for windows that have Class Style
CS_SYNCPAINT. Applications can then turn this style on
and off to vary the window processing.

System-Provided Window Styles:

WS_CLIPCHILDREN

WS _ CLiPSIBLINGS

WS_SAVEBITS

This specifies that window animation will be turned on.
Windows animation is a visual effect that occurs when the
window is opened or closed; the window seems to zoom
out when it is opened, and zoom in when it is closed.

This visual effect also depends on the Animation setting in
the System-Settings notebook. If Animation is enabled and
this window style is set, window animation occurs when the
window is opened or closed. When Animation is disabled in
the System-Settings notebook, this style has no effect and
no window animation occurs.

This specifies that the area occupied by the children of a
window is to be excluded when drawing in that window.
Normally, it is included.

This specifies that the area occupied by the siblings of a
window is to be excluded when drawing in that window.
Normally, it is included.

This specifies that the window is disabled. The default is
enabled.

This specifies that the frame window is to be created
maximized.

When a window is moved or sized in the normal way at
least one border should remain on the screen. When a
window is maximized and the maximum size is as large as
the screen all borders should be positioned just outside the
screen.

This specifies that the frame window is to be created
minimized.

This controls how a window is clipped when a drawing
action takes place into the window.

Generally, a WS_PARENTCLIP window is not to draw
outside its window rectangle.

This specifies that the screen image of the area under a
window of this style be saved when the window is made
visible.

Chapter 10. Default Window Procedure Message Processing 10-3

Styles for Windows in Dialogs

WS_GROUP

This specifies that the window is visible. The default is
invisible.

Note: A window can still be visible, in this sense, even if it
cannot be seen because it is covered by other
windows.

This identifies the dialog items that make up a group.

This style is to be specified on the first window of any group.
Subsequent windows of the group must not have this style.
The windows of the group must be adjacent siblings. This
can be done by listing the windows consecutively in
templates (see "Dialog Template" on page 31-24) or by
inserting each new window in the group behind the previous
one (WinCreateWindow).

This identifies a dialog item as one to which the operator
can TAB.

10-4 PM Programming Reference Vol II

General Window Messages
This section describes the window procedure actions upon receiving the following messages.

PL ALTERED
This message is broadcast to all frame windows when the PrfReset function is issued.

Parameters
param1

hiniUser (HINI)
Handle of the new user profile.

param2

hiniSystem (HINI)
Handle of the new system profile.

Returns
ulReserved (ULONG)

Reserved value, must be o.

Remarks
Applications should refresh their defaults from the user or system profile.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

WM_ACTIVATE
This message occurs when an application causes the activation or deactivation of a window.

Parameters
param1

usactive (USHORT)
Active indicator.

TRUE
FALSE

The window is being activated
The windo~ is being deactivated.

Chapter 10. Default Window Procedure Message Processing 10-5

param2

hwnd (HWND)
Window handle.

In the case of activation, hwnd identifies the window being activated. In the case of
deactivation, hwnd identifies the window being deactivated.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
A deactivation message (that is, a WM_ACTIVATE message with usactive set to FALSE) is
sent first to the window procedure of the main window being deactivated, before an activation
message (that is, a WM_ACTIVATE message with usactive set to TRUE) is sent to the
window procedure of the main window being activated.

Any WM_SETFOCUS messages with usfocus set to FALSE, are sent before the deactivation
message. Any WM_SETFOCUS messages with usfocus set to TRUE, are sent after the
activation message.

If WinSetFocus is called during the processing of a WM_ACTIVATE message, a
WM_SETFOCUS message with usfocus set to FALSE is not sent, as no window has the
focus.

If a window is activated before any of its children have the focus, this message is sent to the
frame window or to its FlO_CLIENT, if it exists.

Note: Except in the instance of a WM_ACTIVATE message, with usactive set to TRUE, an
application processing a WM_ACTIVATE, or a WM_SETFOCUS message should not
change the focus window or the active window. If it does, the focus and active
windows must be restored before the window procedure returns from processing the
message. For this reason, any dialog boxes or windows brought up during the
processing of a WM_ACTIVATE, or a WM_SETFOCUS message should be system
modal.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ACTIVATE (in Frame Controls)
• WM _ACTIVATE (Language Support Dialog)
• WM _ACTIVATE (Language Support Window)

10-6 PM Programming Reference Vol "

WM APPTERMINATENOTIFY
This message is posted when an application (started by another application) terminates.

Parameters
param1

happ (HAPP)
Application handle.

param2

flretcode (ULONG)
Return code from the terminating application.

Returns
ulReserved (ULONG)

Reserved value, must be O.

Remarks
The WM_APPTERMINATENOTIFY message provides the capability for the starting
application to be notified when the started application terminates.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM_ADJUSTWINDOWPOS
This message is sent by the WinSetWindowPos call to enable the window to adjust its new
position or size whenever it is about to be moved.

Parameters
param1

pswp (PSWP)
SWP structure pointer.

The structure has been filled in by the WinSetWindowPos function with the
proposed move or size data. The control can adjust this new position by changing
the contents of the SWP structure. It can change the x or y fields to adjust its new
position; or the ex or ey fields to adjust its new size, or the hwndlnsertBehind field to
adjust its new z-order.

Chapter 10. Default Window Procedure Message Processing 10-7

param2

flzero (ULONG)
Zero.

Returns
flResult (ULONG)

Window-adjustment status indicators.

These indicators are passed on to the WM_WINDOWPOSCHANGED message that is
sent after the window state change has occurred. Bits 0 through 15 of this parameter
are reserved for system use and bits 16 through 31 are available for application use.

o
AWP _MINIMIZED
AWP MAXIMIZED
AWP _RESTORED
AWP _ACTIVATE
AWP _DEACTIVATE

Remarks

No changes have been made
The frame window has been minimized.
The frame window has been maximized.
The frame window has been restored.
The frame window has been activated.
The frame window has been deactivated.

·Frame controls can respond to this message to reposition themselves or resize themselves
in the window frame.

Menu controls respond to this message as follows:

MS_ACTIONBAR not specified: The SWP ex and SWP ey fields are set so that the
menu window exactly contains all of the items in the menu. The SWP x and SWP y fields
are not changed.

MS_ACTIONBAR specified and MS_TITLEBUTTON not specified: The items in
the menu are arranged such that all of the items are visible within the width specified by the
SWP ex field. This formatting may cause the menu items to be arranged in multiple lines.
The SWP ex field is set to include all of the lines of the menu. The SWP x and SWP y fields
are not changed.

MS_ACTIONBAR specified and MS_ TITLEBUTTON specified: The SWP ex value
is set to the accumulated width of the items in the menu. The height specified in the SWP
ey field is not changed. In both instances, the SWP ex and SWP ey fields are only altered if
SWP _SIZE is specified in the fI field. Instead, the width of MS_ TITLEBUTTON menus is

c determined by the accumulated width of the items in the menu. .

A list box does two things:

• Changes the height so as to accommodate an exact number of items.

• Automatically outsets its border. This means, for example, that the x, y, width, and
height fields in the resource file specify the working area of the listbox. The border is
drawn outside this area.

10-8 PM Programming Reference Vol II

The entry field control, if ES_MARGIN is specified, outsets its margin. This means that in
the resource file, the numbers specified as the X-, and y-position of an entry field control are
taken to be the position where the first character of text is drawn, not where the lower-left
corner of the surrounding box is drawn. Similarly, the height and width parameters apply to
the editable area of the control; consequently, they do not include the margin.

When a dialog is created with WinCreateDlg or WinloadDlg, a WM_ADJUSTWINDOWPOS
message is sent to each child window after the dialog window is created, with a pointer to a
SWP structure containing fI equal to SWP _SIZE I SWP _MOVE and the x, y, cy, and ex fields
initialized to the current size and position of the window. The message enables the control
to adjust its size or position, usually to compensate for its border, or margin, or both.

Default Processing
The default window procedure takes no action on this message, other than to set flResult to
O.

WM_BEGINDRAG
This message occurs when the 0p!3rator initiates a drag operation.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

param2

fPointer (USHORT)
Input device flag.

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event.

rc (BOOl)
Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted/to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV _BEGINDRAG.

Chapter 10. Default Window Procedure Message ProceSSing 10-9

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

WM_BEGINSELECT
This message occurs when the operator initiates a swipe selection.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

param2

fPointer (USHORT)
Input device flag.

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pOinter-button information. This message will
result from a mouse event, specified by the system value SV _BEGINSElECT.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

1 0-10 PM Programming Reference Vol II

WM_BUTTON1 CLICK
This message occurs when the operator presses and then releases button 1 of the pointing
device within a specified period of time, and without moving the mouse.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (Baal)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing \
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

Chapter 10. Default Window Procedure Message Processing 1 0-11

WM_BUTTON1 DBLCLK
This message occurs when the operator presses button 1 of the pointing device twice within
a specified time, as detailed below.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC NONE Indicates that no key is pressed.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated wIth the window that is to
receive the pointer-button information.

A double-click is recognized if aU of the following are true:

• Two)clicks are of the same button.

• No intervening pOinting device button is pressed.

• The two clicks occur within the double-click time interval as defined by the
SV _DBlClKTIME system value.

10-12 PM Programming Reference Vol II

• The two clicks occur within a small spatial distance. This is defined by the rectangle, the
length of whose sides parallel to the x- and y-axes are respectively, the
SV _ CXDBLCLICK and SV _ CYDBLCLICK system values. The first click is assumed to
be at the center of this rectangle.

The keyboard control codes specified by "flags" reflects the keyboard state at the time the
mouse message was initiated. This mayor may not reflect the current keyboard state.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

Related Messages
• WM_BUTTON1DBLCLK (in Frame Controls)
• WM_BUTTON1DBLCLK (in Multiline Entry Fields)

WM_BUTTON1 DOWN
This message occurs when the operator presses pointer button one.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORn
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see "WM_HITTEST" on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Indicates that no key is pressed.

Chapter 10. Default Window Procedure Message Processing 10-13

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

It is the responsibility of the application to ensure that the appropriate frame window is
activated and that the focus is to the appropriate window, by using the WinSetFocus function.
The keyboard control codes specified by ''flags'' reflects the keyboard state at the time the
mouse message was initiated. This mayor may not reflect the current keyboard state.

Default Processing
The default window procedure activates the window using WinSetActiveWindow, and then
sets rc to FALSE.

Related Messages
• WM_BUTTON1 DOWN (in Frame Controls)
• WM_BUTTON1 DOWN (in Multiline Entry Fields)

WM_BUTTON1 MOTIONEND
This message occurs when the operator completes a drag operation which was initiated by
pressing button one on the pOinting device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is terminated.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

10-14 PM Programming Reference Vol II

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_BUTTON1 MOTIONSTART
This message occurs when the operator initiates a drag operation by moving the mouse
while pressing button one on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is started.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Chapter 10. Default Window Procedure Message Processing 10-15

Default Processing
The default window procedure sends the message to the owner window if it exists, otherWise
it takes no action on this message, other than t~ set rc to FALSE.

WM_BunON1UP
This message occurs when the operator releases button 1 of the pOinting device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pOinter position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOL)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointing device button information. The keyboard control codes specified by
''flags'' reflects the keyboard state at the time the mouse message was initiated. This mayor
may not reflect the current keyboard state.

10-16 PM Programming Reference Vol II

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message other than to set rc to FALSE.

Related Messages
• WM_BUTTON1 UP (in Frame Controls)
• WM_BUTTON1 UP (in Multiline Entry Fields)

WM_BUTTON2CLICK
This message occurs when the operator presses and then releases button 2 of the pointing
device within a specified period of time, and without moving the mouse.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Chapter 10. Default Window Procedure Message Processing 1 0-17

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM BUTTON2DBLCLK
This message occurs when the operator presses button 2 of the pOinting device twice within
a specified time, as detailed in "WM _BUTTON 1 DBlClK" on page 1 0-12.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer-button information. The keyboard control codes specified by "flags"
reflects the keyboard state at the time the mouse message was initiated. This mayor may
not reflect the current keyboard state.

10-18 PM Programming Reference Vol II

Default Processing
The default window procedure processes this message identically to
WM_ BUTTON1 DBlClK.

Related Messages
• WM _ BUTTON2DBlClK (in Frame Controls)

WM_BUTTON2DOWN
This message occurs when the operator presses button 2 on the pOinting device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see "WM_HITTEST" on page 10-50.

fsfla9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC NONE Indicates that no key is pressed.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointing device button information.

Chapter 10. Default Window Procedure Message Processing 1 0-19

It is the responsibility of the application to ensure that the appropriate frame window is
activated and that the focus is to the appropriate window, by using the WinSetFocus function.
The keyboard control codes specified by "flags" reflects the keyboard state at the time the
mouse message was initiated. This mayor may not reflect the current keyboard state.

Default Processing
The default window procedure processes this message identically to "WM_BUTTON1 DOWN"
on page 1 0-13.

Related Messages
• WM_BUTTON2DOWN (in Frame Controls)

WM_BUTTON2MOTIONEND
This message occurs when the operator completes a drag operation which was initiated by
pressing button two on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is terminated.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

10-20 PM Programming Reference Vol 11

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_BUTTON2MOTIONSTART
This message occurs when the operator initiates a drag operation by moving the mouse
while pressing button two on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is started.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns I

rc (BOOl)
Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

Chapter 10. Default Window Procedure Message Processing 10-21

WM~BUTTON2UP
This message occurs when the operator releases button 2 of the pointing device.

Parameters
param1

ptspointerpos (POI NTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (Baal)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointing device button information. The keyboard control codes specified by
"flags" reflects the keyboard state at the time the mouse message was initiated. This mayor
may not reflect the current keyboard state.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message other than to set rc to FALSE.

10-22 PM Programming Reference Vol II

Related Messages
• WM_BUTTON2UP (in Frame Controls)

WM_BUTTON3CLICK
This message occurs when the operator presses and then releases button 3 of the pointing
device within a specified period of time, and without moving the mouse.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

1sHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 10-50.

1s11ags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Processed indicator.

Indicates that no key is pressed .
. *»> Removed per M.Ng S.Kipp 7/22/94

TRUE
FALSE

Message processed
Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

Chapter 10. Default Window Procedure Message Processing 10-23

WM_BunON3DBLCLK
This message occurs when the operator presses button 3 of the pointing device twice within
a specified time, as detailed in "WM_BUTTON1DBlClK" on page 10-12.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer button information. The keyboard control codes specified by ''flags''
reflects the keyboard state at the time the mouse message was initiated. This mayor may
not reflect the current keyboard state.

Default Processing
The default window procedure processes this message identically to
WM_BUTTON1DBlClK.

10-24 PM Programming Reference Vol II

WM_BUTTON3DOWN
This message occurs when the operator presses button 3 on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see "WM_HITTEST" on page 10-50.

fsfla9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_ CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Processed indicator.

Indicates that no key is pressed.

TRUE
FALSE

Message processed
Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointing device button information.

It is the responsibility of the application to ensure that the appropriate frame window is
activated and that the focus is to the appropriate window, by using the WinSetFocus function.
The keyboard control codes specified by ''flags'' reflects the keyboard state at the time the
mouse message was initiated. This mayor may not reflect the current keyboard state.

Default Processing
The default window procedure processes this message identically to "WM_BUTTON1 DOWN"
on page 10-13.

Chapter 1 O. Default Window Procedure Message Processing 1 0-25

WM_BUTTON3MOTIONEND
This message occurs when the operator completes a drag operation which was initiated by
pressing button three on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is terminated.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

10-26 PM Programming Reference Vol II

WM BUTTON3MOTIONSTART
This message occurs when the operator initiates a drag operation by moving the mouse
while pressing button three on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
hit-tested window, when the drag operation is started.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns
rc (Baal)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

Chapter 10. Default Window Procedure Message Processing 1 0-27

WM_BUTTON3UP
This message occurs when the operator releases button 3 of the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 10-50.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to
receive the pOinting device button information. 'The keyboard control codes specified by
"flags" reflects the keyboard state at the time the mouse message was initiated. This mayor
may not reflect the current keyboard state.

Default Processing
The default window procedure processes this message identically to WM_BUTTON1 UP.

10-28 PM Programming Reference Vol II

WM_CALCFRAMERECT
This message occurs when an application uses the WinCalcFrameRect function.

Parameters
param1

pRect (PRECTL)
Rectangle structure.

This points to a RECTL structure.

param2

usFrame (USHORT)
Frame indicator.

TRUE
FALSE

Frame rectangle provided
Client area rectangle provided.

Returns
rc (BOOL)

Rectangle-calculated indicator.

TRUE
FALSE

Successful completion
Error occurred or the calculated rectangle is empty.

Remarks
This message is sent to the frame control to perform the appropriate calculation. If the low
word of MP2 is TRUE, the RECTL structure in MP1 contains a frame window and this
message calculates the RECTL of the client. If the low word of MP2 is FALSE, MP1
contains a client window and this message calculates the RECTL of the frame.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_CALCFRAMERECT (in Frame Controls)

Chapter 10. Default Window Procedure Message Processing 10-29

WM_CALCVALIDRECTS
This message is sent from WinSetWindowPos and WinSetMultWindowPos to determine
which areas of a window can be preserved if a window is sized, and which should be
redisplayed.

Parameters
param1

pOldNew (PRECTL)
Window-rectangle structures.

param2

This points to two RECTL structures. The first structure contains the rectangle of
the window before the move, the second contains the rectangle of the window after
the move. The coordinates of the rectangles are relative to the parent window.

pNew (PSWP)
New window position.

This points to a SWP structure that contains information about the window after it is
resized (see the WinSetWindowPos function).

Returns
usAlign (USHORT)

Alignment control.

This instructs WinSetWindowPos how to align valid window bits. This value is made up
from CVR_* flags, as follows:

CVR_ALlGNLEFT Align with the left edge of the window.

CVR_ALlGNBOTTOM Align with the bottom edge of the window.

CVR_ALlGNTOP Align with the top edge of the window.

CVR_ALlGNRIGHT Align with the right edge of the window.

CVR_REDRAW The whole window is invalid. If eVR_REDRAW, is set, the
whole window is assumed invalid, otherwise, the remaining
flags can be ORed together to get different kinds of alignment.
For example:

o

(CVR_ALIGNLEFT I CVR_ALIGNTOP)

aligns the valid window area with the top-left of the window.

It is assumed the application has changed the rectangles
pointed to by pOldNew and pNew itself.

10-30 PM Programming Reference Vol II

Remarks
This message is not sent if this window has the CS_SIZEREDRAW style, indicating
size-sensitive window content that must be totally redrawn if sized.

This enables the application to determine if the position of the window has changed as well
as its size; this can aid alignment processing.

These rectangles can be modified by the window procedure to cause parts of the window to
be redrawn and not preserved.

The window manager tries to preserve the screen image by copying the image described by
the old rectangle into the image described by the new rectangle. In this way, an application
can control the alignment of the preserved image as well, by changing the origin of the first
rectangle.

If no change is made to either rectangle, the entire window area is preserved. If either
rectangle is empty, the entire window area is completely redrawn by the operation.

Note: This functionality can be used to optimize window updating when the window is
resized. For example, if the application returns that the window is to be aligned with
the top-left corner, and the top border is sized, the screen data of the window moves
with the top border.

In all instances, the rectangles are intersected with the area of the screen that is
actually visible and the valid area of the window. That is, only the window area that
contains window information is copied.

For example, consider an application that has two scroll bars, that are children of the
client window. When the window is resized, the scroll bars must be completely
redrawn. By returning rectangles that exclude the scroll bars, the area of the scroll
bars is completely redrawn, thereby preserving only the part of the screen that is
worth preserving.

Default Processing
The default window procedure processing is to align the valid area with the top-left of the
window by returning:

(CVR_ALIGNTOP I CVR_ALIGNLEFT)

In addition, any child windows intersecting the source rectangle pointed to by pOldNew'of
this message, are also offset with the aligned window area.

Chapter 10. Default Window Procedure Message Processing 10-31

WM CHAR
This message is sent when an operator presses a key.

parameters
param1

f5flag5 (USHORT)
Keyboard control codes.

KC_CHAR

KC _ SCANGODE

KC VIRTUALKEY

Indicates that usch value is valid.

Indicates that ucscancode is valid.

Generally, this is set in all WM _CHAR messages generated
from actual operator input. However, if the message has
been generated by an application that has issued the
WinSetHook function to filter keystrokes, or posted to the
application queue, this may not be set.

Indicates that usvk is valid.

Normally usvk should be given precedence when processing
the message.

Note: For those using hooks, when this bit is set,
KC _ SCANCODE should usually be set as well.

KG_KEYUP The event is a key-up transition; otherwise it is a down
transition.

KG _PREVDOWN The key has been previously down; otherwise it has been
previously up.

KG DEADKEY The character code is a dead key. The application is
responsible for displaying the glyph for the dead key without
advancing the cursor.

KG_COMPOSITE The character code is formed by combining the current key
with the previous dead key.

KGJNVALIDCOMP The chara.cter code is not a valid combination with the
preceding dead key. The application is responsible for
advanCing the cursor past the dead-key glyph and then, if the
current character is not a space, sounding the alarm and
displaying the new character code.

KC _LONEKEY Indicates if the key is pressed and released without any other
keys being pressed or released between the time the key
goes down and up.

KC_SHIFT The SHIFT state is active when key press or release
occurred.

KC AL T The AL T state is active when key press or release occurred.

10-32 PM Programming Reference Vol II

ucrepeat (UCHAR)
Repeat count.

ucscancode (UCHAR)
Hardware scan code.

The CTRl state was active when key press or release
occurred.

A keyboard-generated value that identifies the keyboard event. This is the raw scan
code, not the translated scan code.

param2

usch (USHORn
Character code.

The character value translation of the keyboard event resulting from the current
code page that would apply if the CTRl or AlT keys were not depressed.

usvk (USHORn
Virtual key codes.

A virtual key value translation of the keyboard event resulting from the virtual key
code table. The low-order byte contains the vk value, and the high-order byte is
always set to zero by the standard translate table.

D This value applies if fsflags does not contain KC_ VIRTUAlKEY.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the queue associated with the window that has the focus.

The set of keys that causes a WM_CHAR message is device-dependent.

When this message is processed, precedence should normally be given to a valid virtual key
if there is one contained in the message.

There are several instances when a window procedure may receive this message with the
KC _ KEYUP bit set, although it did not receive this message for the down transition of the
key.

For example,

• The down transition of the key is translated by the function WinTranslateAccel, into a
WM_COMMAND, WM_SYSCOMMAND, WM_HElP, or a WM_NUll message.

Chapter 10. Default Window Procedure Message Processing 10-33

• The key down causes the input focus to change (tab to another window, dismiss a
dialog, exit a program, and so on).

• Some other event happens that changes the focus between the time that the key is
pressed down and the time that it is released.

Applications should normally only process WM_CHAR messages that do not have the
KC KEYUP bit set.

Except for the special instance where the LONEKEY flag is set on an accelerator key
definition, all translations are done on the down stroke of the character.

When the current character is a double-byte character then param2 contains both bytes of
the double-byte character. These bytes are in the order CHAR1 FROMMP,
CHAR2FROMMP. When the current character is a single-byte character, CHAR2FROMMP
contains O.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message other than to set rc to FALSE.

Related Messages
• WM_CHAR (Default Dialogs)
• WM_CHAR (in Entry Fields)
• WM _CHAR (in Frame Controls)
• WM_CHAR (in List Boxes)
• WM_CHAR (in Multiline Entry Fields)

Examples
This example uses the CHARMSG macro to process a WM _CHAR message. It first uses
the macro to determine if a key was released. It then uses the macro to generate a switch
statement based on the character received.

10-34 PM Programming Reference Vol II

WM_CHORD
This message occurs when the operator presses both button one and button two on the
pointing device.

Parameters
param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

Returns
rc (Baal)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_CLOSE
This message is sent to a frame window to indicate that the window is being closed by the
user.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Chapter 10. Default Window Procedure Message Processing 10-35

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is sent by the frame to itself as a result of receiving a WM_SYSCOMMAND
message with SC _CLOSE code set. If this message is passed to WinDefDlgProc, this
function calls WinDismissDlg and passes the DID_CANCEL result code to it.

Default Processing
The default window procedure posts a WM_QUIT message to the appropriate queue and
sets ulReserved to O.

Related Messages
• WM _CLOSE (Default Dialogs)
• WM _CLOSE (in Frame Controls)

Examples
In this example, the fChanges variable is checked. If it is TRUE, the user is asked if he
wants to exit without saving any changes. If the user responds by choosing the No button,
zero is returned and the application does not exit. If the user responds by choosing the Yes
button, a WM_QUIT message is posted and the application terminates.

10-36 PM Programming Reference Vol \I

WM_COMMAND
This message occurs when a control has a significant event to notify to its owner, or when a
key stroke has been translated by an accelerator table.

Parameters
param1

uscmd (USHORT)
Command value.

It is the responsibility of the application to be able to relate uscmd to an application
function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC _PUSHBUTTON Posted by a push-button control. uscmd is the
window identity of the push button.

CMDSRC_MENU Posted by a menu control. uscmd is the identity of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

CMDSRC _FONTDLG

CMDSRC _FILEDLG

CMDSRC _OTHER

uspointer (USHORT)
Pointer-device indicator.

Font dialog. uscmd is the identity of the font dialog.

File dialog. uscmd is the identity of the file dialog.

Other source. uscmd gives further control-specific
information defined for each control type.

TRUE
FALSE

The message is posted as a result of a pointer-device operation.
The message is posted as a result of a keyboard operation.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 10. Default Window Procedure Message Processing 10 .. 37

Remarks
This message is posted to the queue of the owner of the control.

WM.,;..Command handles popup menu command identifiers for pickup, putdown and cancel
drag operations. It determines which items to display based on the state of the lazy drag
and droppability of the lazy drag set.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM_COMMAND (Default Dialogs)
• WM _COMMAND (in Button Controls)
• WM_COMMAND (in Menu Controls)
• WM_SYSCOMMAND (in Title Bar Controls)

WM_CONTEXTMENU
This message occurs when the operator requests a pop-up menu.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

param2

us Reserved (USHORT)
Reserved value, o.

fPointer (USHORT)
Input device flag.

TRUE
FALSE

Message resulted from keyboard event.
Message resulted from mouse pointer event.

Returns
rc (BOOL)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

10-38 PM Programming Reference Vol II

Remarks
This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV _CONTEXTMENU, or a
keyboard event, specified by the system value SV _ CONTEXTMENUB.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

WM_CONTROL
This message occurs when a control has a significant event to notify to its owner.

Parameters
param1

id (USHORT)
Control-window identity.

This is either the id parameter of the WinCreateWindow function or the identity of an
item in a dialog template.

usnotifycode (USHORT)
Notify code.

param2

The meaning of the notify code depends on the type of the control. For details,
refer to the section describing that control.

ulcontrolspec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of the control.
For detailS, refer to the section describing that control.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is sent to the owner of the control, thereby offering it the opportunity to
perform some activity before returning to the control.

Chapter 10. Default Window Procedure Message Processing 10-39

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_CONTROL (in Button Controls)
• WM_CONTROL (in Entry Fields)
• WM _CONTROL (Language Support Dialog)
• WM_CONTROL (Language Support Window)
• WM_CONTROL (in List Boxes)
• WM_ CONTROL (in Multiline Entry Fields)
• WM_CONTROL (in Combination Boxes)
• WM_ CONTROL (in Spin Button Controls)

WM_CONTROLPOINTER
This message is sent to a owner window of a control when the pointing device pointer moves
over the control window, allowing the owner to set the pointing device pointer.

Parameters
param1

usidCtl (USHORT)
Control. identifier.

param2

hptrNew (HPOINTER)
Handle of the pointing device pOinter that the control is to use.

Returns
hptrRet (HPOINTER)

Return~d pointing device-pointer handle that is then used by the control.

Remarks
The recommended approach for an application, that does not have specific reasons for
controlling the pointer appearance, is to pass the message to the default window procedure.

Default Processing
The default window procedure returns hptrNew.

10-40 PM Programming Reference Vol II

WM CREATE
This message occurs when an application requests the creation of a window.

Parameters
param1

ctldata (PVOID)

param2

Pointer to control data.

This points to a Control-Data data structure initialized with the data provided in the
pCt/Data parameter of the WinCreateWindow function. This pointer is also
contained in the pCREATE parameter.

This parameter MUST be a pointer rather than a long.

The first 2 bytes in the data referenced by this pointer should be the total size of the
data referenced by the pointer, (for example, see the ENTRYFDATA or the
FRAMECDATA structure). PM requires this information to enable it to ensure that
the referenced data is accessible to both 16-bit and 32-bit code.

pCREATE(PCREATESTRUC~

Create structure.

This points to a CREATESTRUCT data structure. See the description of ctJdata for
a complete description.

Returns
rc (BOOl)

Error indicator.

TRUE Discontinue window creation
FALSE Continue window creation.

Remarks
This message is sent to the window procedure of the window being created, thus offering it
an opportunity to initialize that window.

The window procedure receives this after the window is created but before the window
becomes visible.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE, which is equivalent to continuing the creation of the window.

Chapter 1 O. Default Window Procedure Message Processing 10-41

WM_DESTROY
This message occurs when an application requests the destruction of a window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is sent to the window procedure of the window being destroyed after it has
been hidden on the device, thereby offering it an opportunity to perform some termination
action for that window.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM DRAWITEM
This notification is sent to the owner of a control each time an item is to be drawn.

Parameters
param1

idldentity (U8HORT)
Window identifier.

The window identity of the control sending this notification message.

10-42 PM Programming Reference Vol II

param2

ulcontrolspec (UlONG)
Control-specific information.

The meaning of the control-specific information depends on the type of control. For
details of each control type, refer to the appropriate section.

Returns
rc (Baal)

Item-drawn indicator.

TRUE
FALSE

The owner has drawn the item, and so the control does not draw it.
If the item contains text and the owner does not draw the item, the owner
returns this value and the control draws the item.

Remarks
A control can only display some types of information, and emphasize items in a
control-specific manner. Therefore, if special items are to be displayed or emphasized in a
special manner, this must be done by the owner window of the control.

The control window procedure generates this message and sends it to the owner of the
control, informing the owner that an item is to be drawn, offering the owner the opportunity to
draw that item and to indicate that either the item has been drawn or that the control is to
draw it.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Related Messages
• WM_DRAWITEM (in Frame Controls)
• WM_DRAWITEM (in List Boxes)
• WM_DRAWITEM (in Menu Controls)

WM ENABLE
This message notifies a windows of a change to its enable state.

Parameters
param1

usnewenabledstate (USHORn
New enabled state indicator.

TRUE The window was set to the enabled state.
FALSE The window was set to the disabled state,

Chapter 10. Default Window Procedure Message Processing 10-43

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is sent to the window procedure of the window whose enable state has been
changed, thereby giving it an opportunity to perform some action appro[)riate to new state of
the window.

This is just a notification message. If you want to change the enable state of a window, you
would use WinEnableWindow

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM_ENABLE (in Button Controls)
• WM_ENABLE (in Multiline Entry Fields)

WM_ENDDRAG
This message occurs when the operator completes a drag operation.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

10-44 PM Programming Reference Vol II

param2

fPointer (USHORT)
Input device flag.

TRUE Message resulted from pointer event
FALSE . Message resulted from keyboard event.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Remarks
This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV _ENDDRAG.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

WM_ENDSELECT
This message occurs when the operator either makes a selection or completes a swipe
selection.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

fPointer (USHORT)
Input device flag.

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event.

Chapter 10. Default Window Procedure Message Processing 10-45

Returns
rc (BOOL)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV _ENDSELECT.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE. '

WM_ERROR
This message occurs when an error is detected in a WinGetMsg or a WinPeekMsg function.

Parameters
param1

userrorcode (USHORT)
Error code.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The application can detect the error situation after the WinGetMsg or the WinPeekMsg
function and before the WinDispatchMsg function.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

10-46 PM Programming Reference Vol II

WM FOCUSCHANGE
This message occurs when the window possessing the focus is changed.

Parameters
param1

hwndFocus (HWNO)
Focus window handle.

param2

usSetFocus (USHORT)
Focus flag.

TRUE The window is receiving the focus and hwndFocus identifies the window
losing the focus.

FALSE The window is losing the focus and hwndFocus identifies the window
receiving the focus.

fsFocusChange (USHORT)
Focus changing indicators.

The indicators are passed from the WinFocusChange function.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is sent to both the windows gaining and losing the focus.

Default ProceSSing
The default window procedure sends this message to the owner or parent, if it exists and is
not the desktop. Otherwise, it sets ulReserved to O.

Related Messages
• WM_FOCUSCHANGE (in Frame Controls)

Chapter 10. Default Window Procedure Message Processing 10-47

WM_FORMATFRAME
This message is sent to a frame window to calculate the sizes and positions of all of the
frame controls and the client window.

Parameters
param1

pswp (PSWP)
Structure array.

This points to an array that is to hold the SWP structures.

param2

pprectl (PRECTL)
Pointer to client window rectangle.

This is typically the window rectangle of pswp, but where the window has a wide
border, as specified by FCF _DLGBORDER for example, the rectangle is inset by
the size of the border.

Returns
ccount (USHORT)

Count of the number of SWP arrays returned.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set ccount to the default value of O.

Related Messages
• WM_FORMATFRAME (in Frame Controls)

10-48 PM Programming Reference Vol II

WM HELP
This message occurs when a control has a significant event to notify to its owner or when a
key stroke has been translated by an accelerator table into a WM_HELP.

Parameters
param1

uscmd (USHORT)
Command value.

It is the responsibility of the application to be able to relate uscmd to an application
function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control. uscmd is the
window identity of the push button.

CMDSRC_MENU Posted by a menu control. uscmd is the identity of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

CMDSRC_OTHER

uspointer (USHORT)
Pointer-device indicator.

Other source. uscmd gives further control-specific
information defined for each control type.

TRUE
FALSE

If the message is posted as a result of a pointer-device operation
If the message is posted as a result of a keyboard operation.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is identical to a WM_COMMAND message, but implies that the application
should respond to this message by displaying help information.

This message is posted to the queue of the owner of the control.

Chapter 1 O. Default Window Procedure Message Processing 1 0-49

Default Processing
The default window procedure sends this message to the parent window, if it exists and is
not the desktop. Otherwise, it sets ulReserved to O.

Related Messages
• WM_HELP (in Button Controls)
• WM_HELP (in Menu Controls)

WM HITTEST
This message is sent to determine which window is associated with an input from the
pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulresult (ULONG)

Hit-test indicator.

The application may return one of these values:

HT _NORMAL The message should be processed as normal. A
WM_MOUSEMOVE, WM_BUTTON2DOWN, or
WM _BUTTON 1 DOWN message is posted to the window.

HT TRANSPARENT The part of the window underneath the pointer is transparent;
hit-testing should continue on windows underneath this window,
as if the window did not exist.

HT _DISCARD The message should be discarded; no message is posted to the
application.

HT _ERROR As HT _DISCARD, except that if the message is a button-down
message, an alarm sounds and the window concerned is
brought to the foreground.

1 0-50 PM Programming Reference Vol II

Remarks
This message occurs when an application requests a message by issuing a WinPeekMsg or
a WinGetMsg function.

If the message that is to be retrieved represents a pointer related event, this message is sent
to a window to determine whether the message is in fact destined for that window.

This message is only sent if the window class has the CS_HITTEST style set.

Note: The handling of this message determines whether a disabled window can process
pointing device events.

Default Processing
The default window procedure takes no action on this message, other than to set ulresult to
HT _ERROR if the window is disabled, or to HT _NORMAL otherwise.

WM HSCROLL
This message occurs when a horizontal scroll bar control has a significant event to notify to
its owner.

Parameters
param1

usidentifier (USHORT)
Scroll bar control window identifier.

param2

sslider (SHORT)
Slider position.

o Either the operator is not moving the slider with the pointer device, or for
the instance where uscmd is SB_SLlDERPOSITION the pointer is outside
the tracking rectangle when the button is released.

Other Slider position.

uscmd (USHORT)
Command.

Sent if the operator-clicks on the left arrow of the scroll
bar, or depresses the VK_LEFT key.

Sent if the operator clicks on the right arrow of the scroll
bar, or depresses the VK_RIGHT key.

Sent if the operator clicks on the area to the left of the
slider, or depresses the VK_PAGELEFT key.

Chapter 10. Default Window Procedure Message Processing 10-51

SB_PAGERIGHT Sent if the operator clicks on the area to the right of the
slider, or depresses the VK_PAGERIGHT key.

SB_SLlDERPOSITION Sent to indicate the final position of the slider.

SB_SLlDERTRACK If the operator moves the scroll bar slider with the pOinter
device, this is sent every time the slider position changes.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if
the operator has not been doing any absolute slider
positioning.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_HSCROLL (in Horizontal Scroll Bars)

WM_INITDLG
This message occurs when a dialog box is being created.

Parameters
param1

hwnd (HWND)
Focus window handle.

The handle of the control window that is to receive the input focus.

param2

pcreate (PVOID)
Application-defined data area.

This points to the data area and is passed by the WinLoadDlg, WinCreateDlg, and
WinDlgBox functions in their pCreateParams parameter.

This parameter MUST be a pointer rather than a long.

The first 2 bytes in the data referenced by this pointer should be the total size of the
data referenced by the pointer, (for example, see the ENTRYFDATA or the
FRAMECDATA structure). PM requires this information to enable it to ensure that
the referenced data is accessible to both 16-bit and 32-bit code.

10-52 PM Programming Reference Vol II

Returns
rc (BOOl)

Focus set indicator.

TRUE Focus window is changed. The dialog procedure can change the window to
receive the focus, by issuing a WinSetFocus whose hwndNewFocus specifies
the handle of another control within the dialog box.

FALSE Focus window is not changed.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WMJNITDlG (Default Dialogs)

WM_INITMENU
This message occurs when a menu control is about to become active.

Parameters
param1

smenuid (SHORT)
Menu-control identifier.

param2

hwnd (HWND)
Menu-window handle.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WMJNITMENU (in Frame Controls)
• WMJNITMENU (in Menu Controls)

Chapter 10. Default Window Procedure Message Processing 10-53

WM_JOURNALNOTIFY
This message is used to maintain correct operation during journal playback.

Parameters
param1

ulCommand (ULONG)
Command to journal.

JRN_QUEUESTATUS
JRN_PHYSKEYSTATE

param2
Data.

fsQueueStatus (USHORT)
Queue status.

The WinQueryQueueStatus command must be journaled.
The WinGetPhysKeyState command must be journaled.

See the Summary parameter of the WinQueryQueueStatus function.

usScanCode (USHORT)
Scan code.

See the sc parameter of the WinGetPhysKeyState function.

param2 contains usScanCode and usKeyState if ulCommand has the value
JRN _PHYSKEYSTATE.

usKeyState (USHORT)
Key State.

See the IKeyState parameter of the WinGetPhysKeyState function.

param2 contains usScanCode and usKeyState if ulCommand has the value
JRN_PHYSKEYSTATE.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
If the WinQueryQueueStatus or the WinGetPhysKeyState functions have new information
since the last time they were called and there is a journal record hook installed, the journal
record.hook is called with this message to record this new information.

During playback, this message is interpreted by the system and the appropriate state
restored.

Data values of the param2 parameter depend on which command is to be journaled.

10-54 PM Programming Reference Vol II

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set ulReserved to O.

WM_MATCHMNEMONIC
This message is sent by the dialog box to a control window to determine whether a typed
character matches a mnemonic in its window text.

Parameters
param1

usmatch (USHORT)
Match character.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Match indicator.

TRUE Mnemonic found
FALSE Mnemonic not found, or an error occurred.

Default Processing
The default dialog procedure takes no action on this message, other than to set rc to FALSE.

Related Messages
• WM_MATCHMNEMONIC (in Button Controls)
• WM_MATCHMNEMONIC (Default Dialogs)
• WM_MATCHMNEMONIC (in Static Controls)

WM_MEASUREITEM
This notification is sent to the owner of a specific control to establish the height and width for
an item in that control.

Parameters
param1

sldentity (SHORT)
Control identifier.

Chapter 10. Default Window Procedure Message Processing 10-55

param2

ulControlSpec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of control. For
details of each control type, refer to the appropriate control section.

Returns
ReturnCode

sHeight (SHORT)
Height of item.

sWidth (SHORT)
Width of item.

Remarks
When the owner receives this message, it must calculate and return the height and width (for
a horizontally-scroll able list box control) of an item to the control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set ReturnCode to the default value of o.

Related Messages
• WM_MEASUREITEM (in Frame Controls)
• WM_MEASUREITEM (in List Boxes)
• WM_MEASUREITEM (in Menu Controls)

WM_MENUEND
This message occurs when a menu control is about to terminate.

Parameters
param1

usmenuid (USHORT)
Menu-control identifier.

param2

hwnd (HWNO)
Menu-control window handle.

10-56 PM Programming Reference Vol II

Returns
ulReserved (UlONG)

Reserved value, should be o.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM_MENUEND (in Menu Controls)

WM_MENUSELECT
This message occurs when a menu item has been selected.

Parameters
param1

usltem (USHORT)
Identifier of selected item.

usPostCommand (USHORT)
Post-command flag.

param2

TRUE Indicates that either a WM_COMMAND, WM_SYSCOMMAND, or
WM_HElP message is being posted by the menu control on return from
the owner, subject to rc.

FALSE Indicates that no message is being posted by the menu control on return
from the owner, subject to rc.

hwnd (HWND)
Menu-control window handle.

Returns
rc (BOOl)

Post indicator.

TRUE Indicates that either a WM_COMMAND, WM_SYSCOMMAND, or WM_HElP
message is to be posted by the menu control window procedure. The menu
is dismissed if the selected item does not have a style of MIA_NODISMISS.

FALSE Indicates that no message is to be posted by the menu control window
procedure and that the menu is not dismissed.

Chapter 10. Default Window Procedure Message Processing 1 0-57

Default Processing
The default window procedure takes no action on this message, other than to set rc to
TRUE.

Related Messages
• WM_MENUSElECT (in Frame Controls)
• WM_MENUSElECT (in Menu Controls)

WM MINMAXFRAME
This message is sent to a frame window that is being minimized, maximized, or restored.

Parameters
param1

pswp (PSWP)

param2

Set window position structure.

This points to a SWP structure. The structure has the appropriate SWP _ *
indicators set to describe the operation that is occurring to the window.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (Baal)

Processed indicator.

TRUE The message has been processed; the default system actions for the
operation specified by the pswp parameter to the window are not to be
performed.

FALSE The message has been ignored; the default system actions for the operation
specified by the pswp parameter to the window are to be performed.

Default ProceSSing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_MINMAXFRAME (in Frame Controls)

10-58 PM Programming Reference Vol II

WM MOUSEMAP
This message is specific to version 2.1, or higher, of the OS/2 operating system.

This message is used only by applications that wish to remap mouse messages in the PM
input queue. It is not recommended for general application usage, and applications should
NOT process this message in their window procedures.

Parameters
param1

ulPhysButton (ULONG)
The physical button number (1, 2, or 3).

param2

ulMappedButton (ULONG)
The button to be mapped to (1, 2, or 3).

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
PM will interpret this message when it is read from the PM input queue, as a request to
remap all subsequent mouse events for the desired button, until another WM_MOUSEMAP
message is received, cancelling that remap request. This message has no meaning to an
application.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM_MOUSEMOVE
This message occurs when the pointing device pointer moves.

Parameters
param1

sxMouse (SHORT)
Pointing device x-coordinate.

syMouse (SHORT)
Pointing device y-coordinate.

Chapter 10. Default Window Procedure Message Processing 1 0-59

param2

uswHitTest (USHORT)
Message result.

Zero A pointing device capture is currently in progress
Other The result of the WM_HITTEST message.

fsfla9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC NONE

Returns
rc (BOOl)

Processed indicator.

Indicates that no key is pressed

TRUE
FALSE

The window procedure did process the message.
The window procedure did not process the message.

Remarks
The keyboard control codes specified by "flags" reflects the keyboard state at the time the
mouse message was initiated. This mayor may not reflect the current keyboard state.

param1 contains the position of the pointing device in window coordinates relative to the
bottom-left corner of the window.

Default Processing
The default window procedure sets the pointer shape using the WinSetPointer function and
sets rc to FALSE.

Related Messages
• WM_MOUSEMOVE (in Mulitline Entry Fields)

WM_MOVE
This message occurs when a window with style CS_MOVENOTIFY changes its absolute
position.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

1 0-60 PM Programming Reference Vol II

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The message is sent from WinSetWindowPos, WinSetMultWindowPos, and
WinScroliWindow.

The message is sent to any window when it is moved relative to its parent window. In
addition, a WM_MOVE message is also sent to any children of that window that have style
CS_MOVENOTIFY.

The new position of the window is obtained by calling WinQueryWindowRect, and can make
those rectangle coordinates relative to any window by calling WinMapWindowPoints.

Note: There are several instances where windows have cause to know if they have been
moved, and these include the occasions when the window does not change position
relative to its parent, but does change position relative to the screen (its absolute
position).

An example is menus. When a top-level menu control (child of the frame window)
moves its absolute position as a result of the frame window being moved, the
top-level menu control causes the movement of any pull-down menus along with its
movement. The same applies to application/dialog box positional grouping. In some
instances, a dialog box might cause to be moved as the main window is moved, to
make room for other applications.

Default ProceSSing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Chapter 10. Default Window Procedure Message Processing 10-61

WM_MSGBOXDISMISS
This message notifies the owner of the message when a non-modal message box has been
dismissed (the message box is no longer visible).

Parameters
param1

hwnd (HWNO)
Non-modal window handle.

param2

ulButtonld (ULONG)
Identity of the selected button in the message box.

Returns
ulReserved (ULONG)

Reserved value, must be o.

Remarks
This message is processed within the owner's window procedure when a non-modal
message box is dismissed. It is up to the parent to destroy the message box.

WM_MSGBOXINIT
This message notifies the owner of the message when a non-modal message box has been
created and is currently being displayed.

Parameters
param1

hwnd (HWNO)
Non-modal window handle.

param2

idWindow (LONG)
Window identity of the message box.

Returns
ulReserved (ULONG)

Reserved value, must be o.

10-62 PM Programming Reference Vol II

Remarks
This message is processed within the owner's window procedure when a non-modal
WinMessageBox2 is created. It is up to the owner to store the window handle returned by
this function. This handle is then used to properly destroy the message box when
WM_MSGBOXDISMISS is received or when the parent chooses to destroy it.

WM NEXTMENU
This message occurs when either the beginning or the end of the menu is reached by use of
the cursor control keys.

Parameters
param1

hwndMenu (HWND)
Menu-control window handle.

param2

usPrev (USHORT)
Previous-menu indicator.

TRUE
FALSE

Beginning of the menu has been reached
End of the menu has been reached.

Returns
hwndNewMenu (HWND)

New menu window handle.

NULLHANDLE No new menu
Other New menu window handle.

Default Processing
The default window procedure takes no action on this message, other than to set
hwndNewMenu to NULLHANDLE.

Related Messages
• WM _ NEXTMENU (in Frame Controls)
• WM_NEXTMENU (in Menu Controls)

Chapter 10. Default Window Procedure Message Processing 10-63

WM_NULL
This message is posted to activate message queues or modal loops.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulRe~erved (ULONG)

Reserved value, should be O.

Remarks
On receiving this message, the application should simply let the default processing take
place.

Default Processing
The default window procedure takes no action on this message, other than to set ulReseNed
to o.

10-64 PM Programming Reference Vol II

WM_OPEN
This message occurs when the operator makes an OPEN request.

Parameters
param1

usPointer (USHORT)
Input device flag.

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event

param2

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Remarks
This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV _OPEN.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

WM_PACTIVATE
This message is posted when the language Support Window or Dialog Procedure processes
a WM_ ACTIVATE message.

Parameters
param1

usactive (USHORT)
Active indicator.

Chapter 10. Default Window Procedure Message Processing 10-65

TRUE The window was activated
FALSE The window was deactivated.

param2

hwnd (HWND)
Window handle.

In the case of activation, hwnd identifies the window which was activated. In the
case of deactivation, hwnd identifies the window which was deactivated.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The activation change has already occurred when the application receives this message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM PAINT
This message occurs when a window needs repainting.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and
then sets ulReserved to o.

10-66 PM Programming Reference Vol II

Related Messages
• WM_PAINT (in Frame Controls)
• WM_PAINT (Language Support Dialog)
• WM_PAINT (Langauge Support Window)

Examples
This example shows how an application gets a presentation space for drawing by calling the
WinBeginPaint function. When drawing is complete, the WinEndPaint function is called to
release the presentation space.

case WM PAINT:
hps-= WinBeginPaint(hwnd. NULL. &rcl);

• /* drawing routines would go here */

WinEndPaint(hp~);
return C0l);

WM PCONTROL
This message is posted when the Language Support Window or Dialog Procedure processes
a WM_CONTROL message.

Parameters
param1

id (USHORn
Control-window identity.

This is either the id parameter of the WinCreateWindow function or the identity of an
item in a dialog template.

usnotifycode (USHORn
Notify code.

param2

The meaning of the notify code depends on the type of the control. For details,
refer to the section describing that control.

ulZero (ULONG)
Zero.

o The control-specific information in ulcontrolspec of the WM _CONTROL
message is not available because the information might not be valid when the
application receives this message.

Chapter 10. Default Window Procedure Message Processing 10-67

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The notification from the control has already been processed when the application receives
this message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM PPAINT
This message is posted when the Language Support Window or Dialog Procedure processes
a WM_PAINT message.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and
then sets ulReserved to o.

Related Messages
• WM_PPAINT (Language Support Dialog)
• WM_PPAINT (Language Support Window)

10-68 PM Programming Reference Vol \I

WM_PRESPARAMCHANGED
This message is sent when a presentation parameter is set or removed dynamically from a
window instance using the WinSetPresParam or WinRemovePresParam functions. It is also
sent to all windows owned by the window whose presentation parameter was changed.

Parameters
param1

idAttrType (ULONG)
Presentation parameter attribute identity.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
This message notifies a control when an inherited presentation parameter changes.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

WM_PSETFOCUS
This message is posted when the Language Support Window or Dialog Procedure processes
a WM _ SETFOCUS message.

Parameters
param1

hwnd (HWND)
Focus-window handle.

NULLHANDLE No window lost or received the focus.
Other Window handle.

Chapter 10. Default Window Procedure Message Processing 1 0-69

param2

usfocus (USHORT)
Focus flag.

TRUE The window received the focus. hwnd is the window handle of the
window which lost the focus, or NULLHANDLE if no window previously
had the focus.

FALSE The window lost the focus. hwnd is the window handle of the window
which received the focus, or NULLHANDLE if no window received the
focus.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The focus change has already occurred when the application receives this message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReseNed
to O.

WM_PSIZE
This message is posted when the Language Support Window or Dialog Procedure processes
a WM_SIZE message.

Parameters
param1

scxold (SHORT)
Old horizontal size.

scyold (SHORT)
Old vertical size.

param2

scxnew (SHORT)
New horizontal size.

scynew (SHORT)
New vertical size.

10-70 PM Programming Reference Vol II

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The size change has already occurred when the application receives this message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM_PSVSCOLORCHANGE
This message is posted when the Language Support Window or Dialog Procedure processes
a WM_SYSCOLORCHANGE message.

Parameters
param1

flOptions (ULONG)
Options.

Copied from the flOptions parameter of the WinSetSysColors function.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
All windows in the system are invalidated so that they will be redrawn with the new system
color.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Chapter 10. Default Window Procedure Message Processing 10-71

WM_QUERYACCELTABLE
This message returns the handle to the accelerator table' of a window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
haccel (HACCEL)

Accelerator table handle.

NULLHANDLE No accelerator table is associated with the window.
Other The handle of the accelerator table associated with the window.

Default Processing
The default windowproced,ure takes no action on this message, other than to set haeee/ to
NULLHANDLE.

WM_QUERYCONVERTPOS
This message is sent by an application to determine whether it is appropriate to begin
conversion of DSCS characters.

Parameters
param1

pCursorPos (PRECTL)
Cursor position.

If usCode = QCP _CONVERT, pCursorPos should be updated to contain the position
of the cursor in the window receiving this message. The position is specified as a
rectangle in screen coordinates.

If usCode = QCP _NOCONVERT, pCursorPos should not be updated.

10-72 PM Programming Reference Vol II

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
usCode (USHORT)

Conversion code.

QCP _CONVERT Conversion may be performed for the window with the input
focus, pCursorPos has been updated to contain the position of
the cursor.

QCP _NOCONVERT Conversion should not be performed, the window with the input
focus cannot receive OBCS characters, pCursorPos has not
been updated.

Remarks
This message enables a OBCS application to determine whether the window with the input
focus can handle OBCS characters. The pCursorPos parameter can be used as a guide for
positioning any conversion window that the application requires.

Default Processing
The default window procedure returns QCP _CONVERT, and updates pCursorPos to the
following values:

• xleft = -1
• ybottom = -1
• xright = 0
• ytop = 0

Related Messages
• WM_QUERYCONVERTPOS (in Button Controls)
• WM_QUERYCONVERTPOS (in Title Bar Controls)
• WM_QUERYCONVERTPOS (in Entry Fields)
• WM_QUERYCONVERTPOS (in Frame Controls)
• WM_QUERYCONVERTPOS (in List Boxes)
• WM_QUERYCONVERTPOS (in Menu Controls)
• WM_QUERYCONVERTPOS (in Scroll Bars)
• WM_QUERYCONVERTPOS (in Static Controls)

Chapter 10. Default Window Procedure Message Processing' 1 0-73

WM_QUERYHELPINFO
This message returns the help instance associated with a frame window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
Ihelpinfo (LONG)

Help information.

o No help information associated with the window.
Other The help information associated with the window.

Default Processing
The default window procedure takes no action on this message, other than to set the/pinto to
o.

WM_QUERYTRACKINFO
The frame control generates this message on receiving a WM_TRACKFRAME (in Frame
Controls) message.

Parameters
param1

ustflags (U8HORT)
Tracking flags.

param2

Contains a combination of one or more TF _ * flags as defined in the TRACKINFO
structure.

ptrackinfo (PTRACKINFO)
Track information structure.

This points to a TRACKINFO structure. The receiver of this message must modify
this structure.

10-74 PM Programming Reference Vol II

Returns
rc (BOOl)

Continue indicator.

TRUE
FALSE

Continue sizing or moving
Terminate sizing or moving.

Remarks
This message is sent to the window procedure of the owner of a frame control or title bar
control respectively.

The TRACKINFO data structure specified by the ptrackinfo parameter is not initialized before
the message is sent. It must be correctly completed before returning.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_TRACKFRAME (in Title Bar Controls

WM_ QUERYWINDOWPARAMS
This message occurs when an application queries the window parameters.

Parameters
param1

pwndparams (PWNDPARAMS)
Window parameter structure.

param2

This points to a window parameter structure; see "WNDPARAMS" on page A-207.

The valid values of fsStatus are WPM_CCHTEXT, WPM_TEXT,
WPM_CBCTlDATA, and WPM_CTlDATA.

The flags in fsStatus are cleared as each item is processed. If the call is
successful, fsStatus is O. If any item has not been processed, the flag for that item
is still set.

ulReserved (UlONG)
Reserved value, should be o.

Chapter 10. Default Window Procedure Message Processing 10-75

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

If this message is sent to a window of another process, the information in, or identified by,
pwndparams must be in memory shared by both processes.

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure identified by the pwndparams to 0, and sets rc to
FALSE.

Related Messages
• WM_QUERYWINDOWPARAMS (in Button Controls)
• WM_QUERYWINDOWPARAMS (in Entry Fields)
• WM_QUERYWINDOWPARAMS (in Frame Controls)
• WM_QUERYWINDOWPARAMS (in List Boxes)
• WM_QUERYWINDOWPARAMS (in Menu Controls)
• WM_QUERYWINDOWPARAMS (in Multiline Entry Fields)
• WM_QUERYWINDOWPARAMS (in Scroll Bars)
• WM-,"QUERYWINDOWPARAMS (in Static Controls)
• WM_QUERYWINDOWPARAMS (in Title Bars)

WM_QUIT
This message is posted to terminate the application.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be 0.

param2

ulReserved (UlONG)
Reserved value, should be 0.

10-76 PM Programming Reference Vol II

Returns
ulReserved (ULONG)
. Reserved value, should be o.

Remarks
It causes WinGetMsg to return rc set to FALSE, rather than to TRUE, as for all other
messages.

Note: Applications that call WinPeekMsg rather than WinGetMsg should test explicitly for
WM_QUIT.

This message should not be dispatched to the default window procedure. The intent
of this message is to cause the WinGetMsg loop to terminate.

Typically this message is posted by the application when the application exit
command is selected from the action bar.

This message is also sent to all applications when the system is closing down. To
reply to this, the application should either cancel the request by issuing an
WinCancelShutdown function or close itself down by issuing a WinOestroyMsgQueue
function.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Examples
In this example, a WM_CLOSE message is received. If the fChanges flag is set, the
application calls a function to determine if the user wants to save the changes before exiting.
This function (called QuerySaveFile in this example) asks the user if he wants to save the
changes. If the user selects OK, the changes are saved. If the user selects cancel, the
function returns this value and the application continues normal execution. Otherwise, it
posts a WM_ QUIT message to terminate the application.

case WM CLOSE;
if If Changes) { .'. ". /* changes have. not been saved * I

. if (Query,SaveFile(hwnd)' ==MB_CANCEl) {
r~turm Cal); /*dO not exit <after a 11

}
WinpostMsg(hwnd.WMQUIT. ali ell;
r.e.tl,Al"n (el); -

Chapter 10. Default Window Procedure Message Processing 10-77

WM REALIZEPALETTE
This message is sent to an application whenever changes have been made to the display
hardware physical color table as a result of another application calling WinRealizePalette.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The application should call WinRealizePalette if it has a palette, or pass it on to the default
window procedure if it does not.

If the return value from WinRealizePalette is greater than 0, the application should invalidate
its window to cause a repaint using the newly-realized palette.

Default Processing
The default window procedure calls WinRealizePalette with a NULL hps parameter. This
causes the default palette to be realized. If the return value from WinRealizePalette is
greater than 0, the default window procedure invalidates the window, causing it to be
repainted with the newly-realized palette.

WM_SAVEAPPLICATION
This message is sent by the system to notify an application to save its current state.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

10-78 PM Programming Reference Vol II

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
When an application receives this message, it is expected to save its current state by any
convenient method, for example, in a profile or in an auxiliary file.

It is the responsibility of the application to use the saved information, as appropriate, when it
is resumed.

Even if the application processes this message, it should also pass it to the default window
procedure, by using the WinDefWindowProc call.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM_SEM1
This message is sent or posted by an application.

Parameters
param1

flAccumBits (ULONG)
Semaphore value.

The semaphore values from all the WM_SEM1 messages posted to a queue, are
accumulated by a logical-OR operation.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 10. Default Window Procedure Message Processing 10-79

Remarks
If the message is posted, it is merged with any existing WM_SEM1 message on the queue
by combining the two flAccumBits values using a logical-OR operation.

The WM_SEM1 messages are queued higher than any other type of message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Examples
In this example, a thread notifies the client window that it is about to terminate. It sends the
constant THREAD3 as the flFlags parameter so that when the client window receives the
message, it can tell which thread terminated.

WM_SEM2
This message is sent or posted by an application.

Parameters
param1

flAccumBits (ULONG)
Semaphore value.

param2

The semaphore values from all the WM _ SEM2 messages posted to a queue, are
accumulated by a logical-OR operation.

ulReserved (ULONG)
Reserved value, should be o.

10-80 PM Programming Reference Vol II

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
If the message is posted, it is merged with any existing WM_SEM2 message on the queue
by combining the two flAccumBits values using a logical-OR operation.

The WM_SEM2 messages are queued above WM_SEM3 and WM_SEM4 messages, and
above any WM_PAINT or WM_ TIMER messages generated by the system, but lower than
any other message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

WM SEM3
This message is sent or posted by an application.

Parameters
param1

flAccumBits (ULONG)
Semaphore value.

The semaphore values from all the WM _ SEM3 messages posted to a queue, are
accumulated by a logical-OR operation.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
If the message is posted, it is merged with any existing WM_SEM3 message on the queue
by combining the two flAccumBits values using a logical-OR operation.

The WM_SEM3 messages are queued above WM_SEM4 messages, and any WM_TIMER
messages generated by the system, but lower than any other message.

Chapter 10. Default Window Procedure Message Processing 10-81

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

WM SEM4
This message is sent or posted by an application.

Parameters
param1

flAccumBits (ULONG)
Semaphore value.

param2

The semaphore values from all the WM _ SEM4 messages posted to a queue, are
accumulated by a logical-OR operation.

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
If the message is posted, it is merged with any existing WM _ SEM4 message on the queue
by combining the two flAccumBits values using a logical-OR operation.

The WM _ SEM4 messages are queued lower than any other type of message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

10-82 PM Programming Reference Vol II

WM_SETACCELTABLE
This message establishes the window accelerator table to be used for translation, when the
window is active.

Parameters
param1

haccelNew (HACCEl)
New accelerator table.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

WM_SETFOCUS
This message occurs when a window is to receive or lose the input focus.

Parameters
param1

hwnd (HWND)
Focus-window handle.

NUllHANDlE No window is losing or receiving the focus.
Other Window handle.

Chapter 10. Default Window Procedure Message Processing 1 0-83

param2

usfocus (USHORT)
Focus flag.

TRUE The window is receiving the focus. hwnd is the window handle of the
window losing the focus, or NULLHANDLE if no window previously had
the focus.

FALSE The window is losing the focus. hwnd is the window handle of the
window receiving the focus, or NULLHANDLE if no window is receiving
the focus.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
This message is sent to the window receiving or losing the focus, thereby giving it the
opportunity to perform some appropriate processing.

Note: Except in the instance of WM_ACTIVATE, with usactive set to TRUE, an application
processing WM_SETFOCUS or WM_ACTIVATE messages should not change the
focus window or active window. If it does, the focus and active window must be
restored before the application returns from processing the message. For this
reason, any dialog boxes or windows brought up during the processing of
WM_SETFOCUS or WM_ACTIVATE messages should be system modal.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM _ SETFOCUS (Language Support Dialog)
• WM_SETFOCUS (Language Support Window)

WM_SETHELPINFO
This message sets the help instance associated with this frame window when the window is
active.

Parameters
param1

Ihelpinfo (LONG)
New help information.

10-84 PM Programming Reference Vol II

param2

ulReserved (UlONG)
ReseNed value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

WM_SETSELECTION
This message occurs when a window is selected or deselected.

Parameters
param1

usselection (USHORT)
Selection flag.

TRUE The window is selected.
FALSE The window is deselected.

param2

ulReserved (UlONG)
ReseNed value, should be o.

Returns
ulReserved (UlONG)

ReseNed value, should be o.

Remarks
The window procedure is expected to highlight or unhighlight the selected item of the
window, as appropriate.

This message is sent to a window when it loses the focus to another window that it does not
own. It allows an application to remove the selection when the focus is removed to another
application, but to keep it if, for example, the same application displays a dialog box.

Chapter 10 .. Default Window Procedure Message Processing 10-85

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM_SETWINDOWPARAMS
This message occurs when an application sets or changes the window parameters.

Parameters
param1

pwndparams (PWNDPARAMS)
Window parameter structure.

param2

This points to a window parameter structure; see "WNDPARAMS" on page A-207.

The valid values of fsStatus are WPM _TEXT and WPM _ CTlDAT A.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE Successful operation
FALSE Error occurred.

Remarks
If this message is sent to a window of another process, the information in, or identified by,
pwndparams must be in memory shared by both processes.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_SETWINDOWPARAMS (in Button Controls)
• WM_SETWINDOWPARAMS (in Entry Fields)
• WM_SETWINDOWPARAMS (in Frame Controls)
• WM_SETWINDOWPARAMS (in List Boxes)
• WM_SETWINDOWPARAMS (in Menu Controls)
• WM_SETWINDOWPARAMS (in Multiline Entry Fields)
• WM_SETWINDOWPARAMS (in Scroll Bars)
• WM_SETWINDOWPARAMS (in Static Controls)

10-86 PM Programming Reference Vol II

• WM_SETWINDOWPARAMS (in Title Bar Controls)

WM_SHOW
This message occurs when the WS_VISIBLE state of a window is being changed.

Parameters
param1

usshow (USHORT)
Show indicator.

TRUE Show the window
FALSE Hide the window.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The message is sent after the visibility state has changed.

In this context, the terms "shown" or "hidden" refer to the state of the WS _VISIBLE style bit.
This message is not sent when a window is obscured by other windows above it.

Default ProceSSing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM_SINGLESELECT
This message occurs when the operator selects a single object.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pOinter position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

Chapter 10. Default Window Procedure Message Processing 10-87

param2

usPointer (USHORT)
Input device flag.

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event.

Returns
rc (Baal)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from a mouse event, specified by the system value SV_SINGlESElECT.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set rc to FALSE.

WM_SIZE
This message occurs when a window changes its size.

Parameters
param1

scxold (SHORT)
Old horizontal size.

scyold (SHORT)
Old vertical size.

param2

scxnew (SHORT)
New horizontal size.

scynew (SHORT)
New vertical size.

10-88 PM Programming Reference Vol II

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is not sent by WinCreateWindow when a window is created, and so any
size-related processing must be done during the WM_CREATE message processing in this
instance.

This message is sent after the window has been actually sized, but before any repainting has
been done. Any resizing or repositioning of child windows that might be necessary a a result
of the size change is usually done during the processing of this message.

Note: It is generally unwise to output to the window during the processing of this message,
because the area drawn might be redrawn, after the WM_SIZE processing is
complete, by the WinSetWindowPos function.

The processing of this message for a window which is displaying an advanced VIO
presentation space must be carried out by the default advanced VIO window
procedure.

Default ProceSSing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ SIZE (in Frame Controls)
• WM _SIZE (Language Support Dialog)
• WM_ SIZE (Language Support Window)

WM SUBSTITUTESTRING
This message is sent from the WinSubstituteStrings call.

Parameters
param1

iindex (USHORT)
Substitution index.

A value corresponding to the decimal character in the substitution phrase.

param2

ulReserved (ULONG)
Reserved value, should be O.

Chapter 10. Default Window Procedure Message Processing 10-89

Returns
pString (PSZ)

String to be substituted.

This points to a string (character) buffer.

o No substitution string
Other Substitution string.

Remarks
The WinSubstituteStrings call has encountered a substitution phrase in a string. The
substitution phrase takes the form "%<digit>," where <digit> is a single decimal character;
that is, 0 through 9.

Default Processing
The default window procedure takes no action on this message, other than to set pString to
O.

WM_SYSCOLORCHANGE
This message is sent to all main windows when a change is made to the system colors by
the WinSetSysColors function.

Parameters
param1

flOptions (ULONG)
Options.

param2

Copied from the flOptions parameter of the WinSetSysColors function and therefore
specifies which palette has been changed.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
All windows are invalidated, so that they are redrawn with the new colors. When this
message is received, applications that depend on the system colors can query the new color
values with the WinQuerySysColor call.

10-90 PM Programming Reference Vol II

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ SYSCOLORCHANGE (Language Support Dialog)
• WM _ SYSCOLORCHANGE (Language Support Window)

WM SYSCOMMAND
This message occurs when a control has a significant event to report to its owner or when a
key stroke has been translated by an accelerator table.

Parameters
param1

uscmd (USHORT)
Command value.

The command value can be one of the SC_* values. It is the responsibility of the
application to be able to relate uscmd to an application function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control. uscmd is the
window identifier of the push button.

CMDSRC_MENU Posted by a menu control. uscmd is the identifier of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

uspointer (USHORT)
Pointing-device indicator.

Other source. uscmd gives further control-specific
information defined for each control type.

TRUE
FALSE

The message is posted as a result of a pOinting-device operation.
The message is posted as a result of a keyboard operation.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 10. Default Window Procedure Message Processing 10-91

Remarks
This message is posted to the queue of the owner of the control, thereby offering it the
opportunity to perform some activity as a result.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

WM SYSVALUECHANGED
This message is posted to all main windows when one of the settable system values is
changed.

Parameters
param1

usChangedFirst (USHORT)
First system value.

The first of a contiguous set of system values that has been changed.

param2

usChangedLast (USHORT)
Last system value.

The last of a contiguous set of system values that has been changed.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
If usChangedFirst equals us ChangedLast , only one system value has changed.

If an application changes the settable system values, it is the responsibility of the application
to post this message to all main windows.

This message is processed by WC_FRAME windows by doing any frame-specific processing
(such as sending WM _ SETBORDERSIZE messages to the size border if
SV _ CX/CYSIZEBORDER system values have changed) and then sending the message to
the client window if one exists.

This message is only posted when settable system values change.

10-92 PM Programming Reference Vol II

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM TEXTEDIT
This message occurs when the operator requests a direct name edit operation.

Parameters
param1

usPointer (USHORT)
Input device flag.

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event.

param2

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Remarks

Message processed
Message ignored.

This message is posted to the application queue associated with the window that has the
focus, or with the window that is to receive the pointer-button information. This message will
result from either a mouse event, specified by the system value SV _ TEXTEDIT, or a
keyboard event, specified by the system value SV _ TEXTEDITKB

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message, other than to set result to FALSE.

Chapter 10. Default Window Procedure Message Processing 10-93

WM_TIMER
This message is posted when a timer times out.

Parameters
param1

idTimer (USHORT)
Timer identity.

param2

Any timer Ids that are not being used must be passed on the default window
procedure.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
This message is always queued and is processed specially by the WinGetMsg and
WinPeekMsg calls, as follows:

1. Timers are processed only by the WinGetMsg and WinPeekMsg calls.

2. A timer posts only one WM_TIMER message at a time.

3. WM_TIMER messages are queued lower than all other messages except WM_SEM4
messages.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

10-94 PM Programming Reference Vol II

WM_ TRACKFRAME
This message is sent to a window whenever it is to be moved or sized.

Parameters
pararn1

fsTrackFlags (USHORT)
Tracking flags.

Contains a combination of one or more TF _* flags; for details, see the TRACKINFO
data structure description.

pararn2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (BOOL)

Success indicator

TRUE
FALSE

The operation is successful.
The operation is unsuccessful, or the operation is terminated.

Remarks
Respond to this message by causing a tracking rectangle to be drawn to move or size the
window. For information, see WinTrackRect.

Default Processing
None.

Related Messages
• WM_ TRACKFRAME (in Frame Controls)

WM_TRANSLATEACCEL
This message is sent to the focus window whenever a WM _CHAR message occurs.

Parameters
pararn1

pqrnsg (PQMSG)
Pointer to a QMSG structure.

Chapter 10. Default Window Procedure Message Processing 10-95

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Translated indicator.

TRUE The character exists in the accelerator table and has been translated in the
QMSG structure.

FALSE The character does not exist in the accelerator table or the window does not
have an accelerator table.

Remarks
Normally, this message is not processed by the focus window, but is passed to its parent,
which passes it to its parent, until a frame window is reached.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_TRANSLATEACCEl (in Frame Controls)

WM_ TRANSLATEMNEMONIC
This message occurs during frame control processing of a WM_ TRANSLATEACCEl
message.

Parameters
param1

pqmsg (PQMSG)
Pointer to a

QMSG structure. QMSG structure.

param2

ulReserved (ULONG)
Reserved value, should be o.

10-96 PM Programming Reference Vol II

Returns
rc (BOOl)

Success indicator.

TRUE The character has been translated into an accelerator.
FALSE The character has not been translated into an accelerator.

Remarks
This message is sent by the frame control to itself during the processing of a
WM_TRANSLATEACCEl message, if the frame control does not translate a character into
an accelerator by use of the frame window or queue accelerator tables.

When the frame control receives this message, it sends it to the application menu window,
that is the window with identity FID_MENU.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_TRANSLATEMNEMONIC (in Frame Controls)

WM UPDATEFRAME
This message is sent by an application after frame controls have been added or removed
from the window frame.

Parameters
param1

flCreateFlags (UlONG)
Frame-creation flags.

Contains the FCF _ * flags that indicate which frame controls have been added or
removed.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Chapter 10. Default Window Procedure Message Processing 10-97

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_UPDATEFRAME (in Frame Controls)

WM VRNDISABLED
This message indicates that the window is being sized, or that a WinLockWindowUpdate has
been issued for the window or one of its parent windows. Direct drawing to the window
should be suspended.

Parameters
param1

mp1 (VOID)
Reserved value.

param2

mp2 (VOID)
Reserved value.

Returns
returns

ulReserved (ULONG)
Reserved value, should be O.

Remarks
The window procedure is expected to suspend direct drawing to the window.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM VRNENABLED
This message tells a window that its visible region is now unlocked and is valid for drawing
on. It also contains a message parameter to inform the window if the visible region was
changed.

1 0-98 PM Programming Reference Vol II

Parameters
param1

ffVisRgnChanged (BOOl)
Flag indicating whether the visible region has been altered.

TRUE The visible region has been altered. The application needs to query the
new visible region.

FALSE The visible region has not been changed.

param2

mp2 (VOID)
Reserved value.

Returns
ulReserved (UlONG)

Reserved value, should be O.

Remarks
The visible region, in window coordinates, has been sized, moved or unlocked and drawing
can now resume. The ffVisRgnChanged parameter is TRUE if the visible region was altered,
telling the application whether it needs to recheck the visible area of the window. Direct
drawing to the window can be resumed.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

WM VSCROLL
This message occurs when a vertical scroll-bar control has a significant event to notify to its
owner.

Parameters
param1

usidentifier (USHORT)
Scroll bar-control window identifier.

Chapter 10. Default Window Procedure Message Processing 10-99

param2

sslider (SHORT)
Slider position.

o Either the operator is not moving the slider with the pOinter device, or for
the instance when uscmd is SB_SLlDERPOSITION the pointer is outside
the tracking rectangle when the button is released.

Other Slider position.

uscmd (USHORT)
Command.

SB LINEUP Sent if the operator clicks on the up arrow of the scroll
bar, or presses the VK_UP key.

SB_LlNEDOWN Sent if the operator clicks on the down arrow of the scroll
bar, or presses the VK_DOWN key.

SB_P~GEUP Sent if the operator clicks on the area above the slider, or
presses the VK_PAGEUP key.

SB_PAGEDOWN Sent if the operator clicks on the area below the slider, or
presses the VK_PAGEDOWN key.

SB_SLlDERPOSITION Sent to indicate the final position of the slider.

SB_SLlDERTRACK If the operator moves the scroll bar slider with the pointer
device, this is sent every time the slider position changes.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if
the operator has not been doing any absolute slider
positioning.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ VSCROLL (in Vertical Scroll Bars)

10-100 PM Programming Reference Vol II

WM_ WINDOWPOSCHANGED
If this message has any of the values of the fI parameter of the SWP structure set, with the
exception of the SWP _NOADJUST and SWP _NOREDRAW values, it is sent to the window
procedure of the window whose position is changed.

This message is also sent if the return value from the WM_ADJUSlWINDOWPOS is not
NULL.

Parameters
param1

pswp (PSWP)

param2

SWP structures.

This points to two SWP structures. The first SWP structure describes the entire
new window state, whereas the second structure describes the entire old window
state. The fI parameter of the first structure contains only those indicators
corresponding to the state changes that occurred.

flAwp (ULONG)
Adjust window position status indicators.

The AWF _ * flags specify the state change of the frame window.

The return value from the WM_ADJUSlWINDOWPOS message:

o The SWP _NOADJUST option has been specified.
Other Adjust window position status indicators.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Default Processing
The default window procedure sets ulReserved to 0 and sends the following messages,
based on the values of the fI parameter of the first SWP data structure:

SWP_SIZE
SWP_HIDE
SWP_SHOW

A WM _SIZE with the new window size from the first SWP structure
A WM _SHOW to hide the new window
A WM_SHOW to show the new window.

Chapter 10. Default Window Procedure Message Processing 10-101

Examples
This example processes the WM_WINDOWPOSCHANGED message and assigns the two
structures to pointers. .

10-102 PM Programming Reference Vol II

Default Dialog Processing
This section describes how messages are processed by the default dialog procedure. The
default dialog procedure can be called using WinDefDlgProc. A user dialog procedure
should make this call for all messages that it does not want to process.

For WM_ * messages other than those specified in this section the Default Dialog Procedure
takes the same action and sets result to the same value as in Chapter 13, "Frame Control
Window Processing." In the instance of messages that would be sent to FID_CLlENT, they
are passed to the default window procedure.

For any other messages the default window procedure takes no action, other than to set
reply to NULL.

WM_ CHAR (Default Dialogs)
For the cause of this message, see "WM_CHAR" on page 10-32.

For a description of the parameters, see "WM_ CHAR" on page 1 0-32.

Default Processing
If KC_CHAR is the mnemonic for a button that already has the focus, a BM_CLlCK is sent to
that button and rc is set to TRUE. If the button does not have the focus, it receives the
focus and rc is set to TRUE.

If usvk contains the value VK_TAB, the focus is set to the next tab item in the dialog. rc is
set to TRUE.

If usvk contains the value VK_BACKTAB, the focus is set to the previous tab item in the
dialog. rc is set to TRUE.

If usvk contains the value VK_LEFT or V~UP, the focus is set to the previous item in the
group. rc is set to TRUE.

If usvk contains the value V~RIGHT or VK_BOTTOM, the focus is set to the next item in
the group. rc is set to TRUE.

If usvk contains the value VK_ENTER or VK_NEWLlNE, and a push button has the focus, a
BM_CLlCK is sent to the button and rc is set to TRUE. If another control in the dialog has
the focus the dialog is searched for a push button with style BS_DEFAULT. If a push button
of this style is found, a BM_CLlCK is sent to that button and rc is set to TRUE.

If usvk contains the value VK_ESC, WM_COMMAND is posted, with ussource is set to
CMDSRC_PUSHBUTTON and uscmd is set to DID_CANCEL. rc is set to TRUE.

In other instances, if an owner exists the message is sent to the owner, otherwise rc is set to
FALSE.

Chapter 10. Default Window Procedure Message Processing 10-103

Related Messages
• WM_CHAR

WM_CLOSE (Default Dialogs),
For the cause of this message, see "WM_CLOSE" on page 10-35.

For a description of the parameters, see "WM _CLOSE" on page 1 0-35.

Default Processing
The default dialog procedure responds to this message by dismissing the dialog by issuing
the WinDismissDlg function with its rc parameter set to DID_CANCEL.

Related Messages
• WM_CLOSE

WM_COMMAND (Default Dialogs)
For the cause of this message, see WM_COMMAND.

For a description of the parameters, see WM_COMMAND.

Default Processing
The default dialog procedure responds to this message by dismissing the dialog and passing
uscmd (the control item identifier) as ulReply of the WinProcessDlg or the WinDlgBox
function that initiated the dialog. It sets ulReserved to o.

Related Messages
• WM_COMMAND

WM_INITDLG (Default Dialogs)
For the cause of this message, see "WM_INITDLG" on page 1 0-52.

For a description of the parameters, see "WMJNITDLG" on page 1 0-52.

Remarks
This message is sent to the dialog procedure, before the dialog box is shown, thereby
offering the dialog procedure the opportunity to perform the initialization of the dialog box.

If any string substitutions are made by the WinSubstituteStrings call when the dialog is
created, the WM_SUBSTITUTESTRING message may have been sent before the
WMJNITDLG message is sent.

Default Processing
The default dialog procedure passes this message to the default window procedure, which
sets rc to FALSE.

10-104 PM Programming Reference Vol II

Related Messages
• WMJNITDLG

WM_MATCHMNEMONIC (Default Dialogs)
For the cause of this message, see "WM_MATCHMNEMONIC" on page 1 0-55.

For a description of the parameters, see "WM_MATCHMNEMONIC" on page 1 0-55.

Remarks
This message is only processed by Button and Static Controls; all other controls return
FALSE.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
, • WM_MATCHMNEMONIC

WM_ QUERYDLGCODE
This message is sent by the dialog manager to identify the type of control, to determine what
kinds of messages the control understands, and also to determine whether an input message
may be processed by the dialog manager or passed down to the control.

Parameters
pararn1

pQrnsg (PQMSG)
Message queue structure.

This points to a QMSG structure.

pararn2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulDialogCode (ULONG)

Dialog code information flags.

DLGC _ ENTRYFI ELD Identifies an entry field control. Assumed to understand the
EM_SETSEL message.

Chapter 10. Default Window Procedure Message Processing 10-105

DLGC_BUTTON Identifies a button item. Assumed to understand the
BM_CLlCK message. '

DLGC _ RADIOBUTTON Identifies a radio button control. Used with the
DLGC BUTTON code.

DLGC _ STATIC Identifies a static control. Static controls are not included in
arrow key enumeration.

DLGC_DEFAULT

DLGC _PUSHBUTTON

DLGC _CHECKBOX

DLGC _ SCROLLBAR

DLGC_MENU

DLGC _ TABONCLICK

Remarks

Identifies a default push-button control.

Identifies a nondefault push button.

Identifies a check-box item. Used with the DLGC_BUTTON
code.

Identifies a scroll bar control.

Identifies a menu control.

Used by static controls to indicate that a mouse click on this
control will cause focus to be placed on the next control in the
dialog that has the WP _ TABSTOP style. This should be
useed in combination with the DLGC_STATIC code.

Identifies a multiline entry field control.

When processing user input, the dialog manager makes some assumptions about the
operation of specific controls. The dialog manager sends the WM_QUERYDLGCODE
message to obtain a code that governs what assumptions can be made.

If the window receiving this message is not a control as defined above, this message returns
o.

Default Processing
The default dialog procedure takes no action on this message, other than to set
ulDialogCode to NULL.

Default File Dialog Processing
This section describes how messages are processed by the default dialog procedure of the
file dialog. This standard dialog can be used to provide a common, consistent file selection
function.

The file dialog's default procedure can be called using the WinDefFileDlgProc function. A
user-provided subclassing dialog procedure should make this call for all messages that it
does not process when using the file dialog.

The default dialog procedure of the file dialog sends the messages listed in this section to
itself to perform the requested action. This design allows a user-provided dialog procedure
to customize the file dialog to its own needs.

10-1 06 PM Programming Reference Vol II

FDM ERROR
This message is sent whenever the file dialog is going to display an error message window.
This allows an application to display its own message, if desired, instead of messages
provided by the system.

Parameters
param1

usErrorld (USHORT)
Error message 10.

This is the 10 of the message that is displayed by the file dialog if the default file
dialog procedure processes the message.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
usUserReply (USHORT)

'User's reply.

o The file dialog presents the error message for this 10.

MBID:. .. .DK The file dialog processes the reply as if the OK push button was
pressed in its message window.

MBID_CANCEL The file dialog processes the reply as if the Cancel push button was
pressed in its message window.

MBID _RETRY The file dialog processes the reply as if the Retry push button was
pressed in its message window.

Remarks
The application uses this message to provide application-specific error messages in
response to file dialog errors that are detected during file dialog processing. The application
can choose whether to -allow the dialog to present its message or whether to provide its own
message and return the response from that message window to the dialog for processing.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on
it other than to return NULL.

Chapter 10. Default Window Procedure Message Processing 10-107

FDM FILTER
This message is sent before a file that meets the current filter criteria is added to the File list
box.

Parameters
param1

pFilename (PSZ)
Pointer to the file name.

param2

pEAType (PSZ)
Pointer to the .TYPE EA extended attribute.

Returns
rc (BOOl)

Success indicator.

TRUE Add the file.
FALSE Do not add the file.

Remarks
The application checks this message to obtain the name and the .TYPE EA extended
attribute of the file to be added. The application then determines whether or not the file will
be added.

When FALSE is returned, the file is not added to the dialog's list box.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on
it other than to return FALSE.

FDM VALIDATE
This message is sent when the user selects a file and presses Enter or clicks on the OK
button, or double-clicks on a file name in the file list box.

Parameters
param1

pFileName (PSZ)
Pointer to the fully-qualified file name.

10-1 08 PM Programming Reference Vol II

param2

usSeltype (USHORT)
Selection type.

rc (BOOl)
Validity indicator.

TRUE File name is valid.
FALSE File name is not valid.

Remarks
This message is only sent just before the dialog returns to the caller with the user-selected
file name. Before this message is sent, pFileName is updated with the user-selected file
name. The application can determine if this file name is acceptable. For instance, if the file
dialog is being used to pick a "SaveAs" file name, the application can check to see if the file
is read-only. If it is, a warning dialog should be brought up to notify the user.

When FALSE is returned from a FDM_ VALIDATE message, the dialog will not be dismissed
and the user can continue to use the File Dialog to select an alternate file.

In multiple file selection dialogs this message is sent for each selected entry within the file list
box. When the name of the file being validated comes from a selected entry in the list box,
param2 will contain FDS_lBSElECTION. When the name of the file comes from the file
name entry field, param2 will contain FDS_EFSElECTION. Single file selection dialogs will
always return FDS_EFSElECTION in param2 since the returned file name always comes
from the single line entry field.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on
it other than to return FALSE.

Default Font Dialog Processing
This section describes how messages are processed by the default dialog procedure of the
font dialog. This standard dialog can be used to provide a common, consistent font selection
function.

The font dialog's default procedure can be called using the WinDefFontDlgProc function. A
user-provided subclassing dialog procedure should make this call for all messages that it
does not process when using the font dialog.

The default dialog procedure of the font dialog sends the messages listed in this section to
itself to perform the requested action. This design allows a user-provided dialog procedure
to customize the font dialog to its own needs.

Chapter 10. Default Window Procedure Message Processing 1 0-1 09

WM_DRAWITEM (in Font Dialog)
If the FNTS_OWNERDRAWPREVIEW style is set for a font dialog, this notification message
is sent to that dialog's owner whenever the preview window area (sample text) is to be
drawn.

Parameters
param1

id (USHORT)
Window identifier.

The window 10 of the sample area (DID_SAMPLE).

param2

pOwnerltem (POWNERITEM)
Pointer to an OWNERITEM data structure.

The following list defines the OWNERITEM data structure fields as they apply to the
font dialog. See "OWNERITEM" on page A-136 for the default field values.

hwnd (HWND)
Window handle of the sample area.

hps (HPS)
Presentation-space handle.

fsState (ULONG)
Reserved.

fsAttribute (ULONG)
Reserved.

fsStateOld (ULONG)
Reserved.

fsAttributeOld (ULONG)
Reserved.

rclltem (RECTL)
Item rectangle to be drawn in window coordinates.

idltem (LONG)
Reserved.

hltem (CNRDRAWITEMINFO)
Reserved.

10-110 PM Programming Reference Vol II

Returns
rc (BOOl)

Item-drawn indicator.

TRUE
FALSE

The owner draws the item.
If the owner does not draw the item, the owner returns this value and the font
dialog draws the item.

Remarks
The font dialog provides this message to give the application the opportunity to provide a
custom drawn preview area.

The font dialog default dialog procedure generates this message and sends it to its owner,
informing the owner that the preview area is to be drawn. The owner is then given the
opportunity to draw that area and to indicate that the area has been drawn or that the font
dialog is to draw it.

Default Processing
For a description of the default processing, see WM_DRAWITEM.

FNTM_FACENAMECHANGED
This message notifies the subclassing application whenever the font family name is changed
by the user.

Parameters
param1

pFamilyname (PSZ)
Pointer to the currently-selected face name.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
ulReserved (UlONG)

Reserved value, should be O.

Remarks
pFamilyname is the currently selected family name. The application can modify this string if
it desires. The buffer set aside is the maximum size a face name string can be (FACESIZE).

Chapter 10. Default Window Procedure Message Processing 10-111

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on
it other than to return O.

FNTM FILTERLIST
This message is sent whenever the Font Dialog is preparing to add a font family name, font
style type, or point size entry to the combination box fields that contain these parameters.

Parameters
param1

pFontname (PSZ)
Pointer to the text string that is being added to the combination box.

param2

usFieldld (USHORT)
Field identifier.

The identifier of the field to which the text string is being added. The identifier can
be one of the following:

FNTI_FAMIL YNAME The text string is an addition to the family name combination
box.

FNTI_STYLENAME The text string is an addition to the style combination box.

FNTI_POINTSIZE The text string is an addition to the size combination box.

usFontType (USHORT)
Font information.

The family name, style, or point size that is being added to the combination box.
Use one of the following to identify the font information that is being added:

FNTI_BITMAPFONT A bit-map font is being added or a point size of a
bit-map font is being added.

FNTI_ VECTORFONT A vector font is being added.

FNTI_SYNTHESIZED A synthesized font is being added. This value is
valid for the style field only.

FNTI_FIXEDWIDTHFONT A fixed width (monospace) font is being added.

FNTI_PROPORTIONALFONT A proportionally spaced font is being added.

FNTI_DEFAULTLIST A point size from the default list (or the
application-supplied list) is being added.

10-112 PM Programming Reference Vol II

Returns
rc (BOOl)

Filter indicator.

TRUE
FALSE

Add the text string to the combination box.
Do not add the text string to the combination box.

Remarks
The application checks this message to obtain the name and the .TYPE EA extended
attribute of the file being added. The application then determines whether or not the file will
be added.

When FALSE is returned, the file is not added to the dialog's list box.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on
it other than to return FALSE.

FNTM_POINTSIZECHANGED
This message notifies subclassing applications when the point size of the font is changed by
the user.

Parameters
param1

pPointSize (PSZ)
Pointer to the text in the point-size entry field.

param2

fxPointSize (FIXED)
Point size.

The fxPointSize field in FONTDlG stated in fixed-point notation.

Returns
ulReserved (UlONG)

Reserved value, should be O.

Remarks
When the application wants to limit the point sizes the user can select, it should process this
message by changing the pPointSize value and putting up a message box explaining the
limitation to the user.

Chapter 10. Default Window Procedure Message Processing 10-113

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on
it other than to return O.

FNTM STYLECHANGED
This message notifies subclassing applications when the user changes any of the attributes
in the STYLECHANGE structure.

Parameters
param1

stye (STYLECHANGE)
Style changes.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The "Old" fields show the style attributes before the user made the change. The other
parameters show what the state will be after the application passes this message to
WinDefFontDlgProc. When the "Old" field and the "New" field are the same, no change is
made for that attribute.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on
it other than to return O.

10-114 PM Programming Reference Vol II

FNTM_ UPDATEPREVIEW
This message notifies subclassing applications before the preview window is updated. This
occurs when the font selection is modified.

Parameters
param1

hwndPreview (HWND)
Window handle.

Window handle the preview image is drawn into. This is a static text field.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message notifies an application that the dialog is about to update the preview area.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on
it other than to return O.

Chapter 10. Default Window Procedure Message Processing 10-115

Language Support Window Processing
This system-provided window procedure processes messages for a window that has been
created with a window class specifying a "NULL" window procedure.

The following describes the WM _ * messages and the language support window procedure
action.

For any other messages the Language Support Window Procedure performs the same
actions as the Default Window Procedure ..

WM_ACTIVATE (Language Support Window)
For the cause of this message, see "WM_ACTIVATE" on page 10-5.

For a description of the parameters, see "WM_ACTIVATE" on page 10-5.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PACTIVATE message to the application queue and setting ulReserved to O.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved

. to O.

Related Messages
• WM ACTIVATE

WM_CONTROL (Language Support Window)
For the cause of this message, see WM_CONTROL.

For a description of the parameters, see WM _CONTROL.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PCONTROL message to the application queue and setting ulReserved to O.

Defau It Processi ng
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ CONTROL

10-116 PM Programming Reference Vol II

WM_PAINT (Langauge Support Window)
For the cause of this message, see "WM_PAINT" on page 10-66.

For a description of the parameters, see "WM_PAINT" on page 10-66.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PPAINT message to the application queue and setting ulReserved to O.

The WinBeginPaint and Win End Paint functions are issued by the Language Support Window
Procedure, during the processing of the WM_PPAINT message.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and
then sets ulReserved to O.

Related Messages
• WM PAINT

WM_PPAINT (Language Support Window)
For the cause of this message, see "WM_PPAINT' on page 10-68.

For a description of the parameters, see "WM_PPAINT" on page 1 0-68.

Remarks
The Language Support Window Procedure issues the WinBeginPaint and WinEndPaint
functions, and then sets ulReserved to O.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_PPAINT

Chapter 10. Default Window Procedure Message Processing 10-117

WM_SETFOCUS (Language Support Window)
For the cause of this message, see "WM _ SETFOCUS" on page 1 0-83.

For a description of the parameters, see "WM_SETFOCUS" on page 10-83.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PSETFOCUS message to the application queue and setting ulReserved to O.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_SETFOCUS

WM_SIZE (Language Support Window)
For the cause of this message, see WM_SIZE.

For a description of the parameters, see WM _SIZE.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PSIZE message to the application queue and setting ulReserved to O.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_SIZE

10-118 PM Programming Reference Vol II

WM_SYSCOLORCHANGE (Language Support Window)
For the cause of this message, see "WM_SYSCOLORCHANGE" on page 10-90.

For a description of the parameters, see "WM_SYSCOLORCHANGE" on page 10-90.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PSYSCOLORCHANGE message to the application queue and setting ulReserved to o.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM_SYSCOLORCHANGE

Chapter 10. Default Window Procedure Message Processing 10-119

Language Support Dialog Processing
This system-provided window procedure processes messages for a dialog that has been
created or loaded specifying a 'NULL' dialog procedure.

For any other messages the Language Support Dialog Procedure issues and returns the
result of the WinDefDlgProc function.

WM_ACTIVATE (Language Support Dialog)
For the cause of this message, see "WM_ACTIVATE" on page 10-5.

For a description of the parameters, see "WM_ACTIVATE" on page 10-5.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the
WinDefDlgProc function, then posting a WM_PACTIVATE message to the application queue
and setting ulReserved to the result of the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM ACTIVATE

WM_CONTROL (Language Support Dialog)
For the cause of this message, see "WM _CONTROL" on page 1 0-39.

For a description of the parameters, see "WM_CONTROL" on page 10-39.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the
WinDefDlgProc function, then posting a WM_PCONTROL message to the application queue
and setting ulReserved to the result of the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_CONTROL

10-120 PM Programming Reference Vol II

WM_PAINT (Language Support Dialog)
For the cause of this message, see "WM_PAINT" on page 10-66.

For a description of the parameters, see "WM_PAINT" on page 1 0-66.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the
WinDefDlgProc function, then posting a WM_PPAINT message to the application queue and
setting ulReserved to the result of the WinDefDlgProc function.

The WinBeginPaint and Win End Paint functions are issued by the Language Support Dialog
Procedure, during the processing of the WM_PPAINT message.

Default Processing
The default window procedure issues the WinBeginPaint and Win End Paint functions, and
then sets ulReserved to O.

Related Messages
• WM PAINT

WM_PPAINT (Language Support Dialog)
For the cause of this message, see "WM_PPAINT" on page 1 0-68.

For a description of the parameters, see "WM_PPAINT" on page 1 0-68.

Remarks
The Language Support Dialog Procedure issuing the WinDefDlgProc function, then issues
the WinBeginPaint and WinEndPaint functions, and then setting ulReserved to the result of
the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_PPAINT

Chapter 10. Default Window Procedure Message Processing 10-121

WM_SETFOCUS (Language Support Dialog)
For the cause of this message, see "WM_SETFOCUS" on page 10-83.

For a description of the parameters, see "WM_SETFOCUS" on page 10-83.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the
WinDefDlgProc function, then posting a WM_PSETFOCUS message to the application queue
and setting ulReserved to the result of the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM SETFOCUS

WM_SIZE (Language Support Dialog)
For the cause of this message, see "WM_SIZE" on page 1 0-88.

For a description of the parameters, see "WM_SIZE" on page 1 0-88.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the
WinDefDlgProc function, then posting a WM_PSIZE message to the application queue
andsetting ulReserved to the result of the WinDefDlgProc function,

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM_SIZE

WM_SYSCOLORCHANGE (Language Support Dialog)
For the cause of this message, see "WM_SYSCOLORCHANGE" on page 10-90.

For a description of the parameters, see "WM _ SYSCOLORCHANGE" on page 1 0-90.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the
WinDefDlgProc function, then posting a WM_PSYSCOLORCHANGE message to the
application queue and setting ulReserved to the result of the WinDefDlgProc function.

10-122 PM Programming Reference Vol II

Default Processing
The default window procedure takes no action on this message, other than to set u/Reserved
to o.

Related Messages
• WM_SYSCOLORCHANGE

Chapter 10. Default Window Procedure Message Processing 10-123

10-124 PM Programming Reference Vol II

Chapter 11. Button Control Window Processing

This system-provided window procedure processes the actions on a button control
(VVC _ BUTTON).

Purpose
A button control is a small rectangular child window representing a button that the operator
can "switch" on or off. Button controls can be used alone or in groups, and can either be
labeled or appear without text. Button controls typically change appearance when the
operator clicks a pointing device on them or pressing the space bar when the button has the
keyboard focus.

Buttons can be disabled to prevent them from responding when the operator clicks on them.
Disabled buttons are displayed using a different emphasis technique (for example, color or
half-toning) .

Button Control Styles
These button control styles are available:

BS_AUTOCHECKBOX An automatic check box automatically toggles its state
whenever the user clicks on it.

BS_AUTORADIOBUTTON When clicked, an automatic radio button automatically checks
itself and unchecks all other radio buttons in the same group.

BS_AUTOSIZE Buttons with this style are sized automatically to make sure the
contents fit.

BS_AUT03STATE

BS_BITMAP

© Copyright IBM Corp. 1994

If BS_AUTOSIZE is selected when the button is created, and a
-1 is specified for either the ex or ey parameter of
WinCreateWindow, (or when creating the button as a resource)
then the button's optimal size is calculated to display the its
contents.

An automatic three-state check box automatically toggles its
state when the user clicks on it.

Places a bit map instead of text on the push button control.
This style works only with the BS_PUSHBUTTON.

A check box is a small square with a character string to the
right. If it is checked, a small black box appears inside the
small square. When the box or string is clicked, by clicking on
it with the pointing device or pressing the keyboard spacebar
when it is active,

A BS_DEFAULT pushbutton is one with a thick border box. It
has the same properties as a pushbutton. In addition, the user
may press a BS_DEFAULT pushbutton by pressing the
RETURN or ENTER key. The intention is the same for

11-1

BS_MINIICON

BS_NOBORDER

user-buttons,but the appearance of a BS_DEFAULT
userbutton is application defined.

This style can be ORed with the BS _PUSHBUTTON and
BS _ USER BUTTON styles:

The button posts a WM_HELP message rather than a
WM_COMMAND message.

This style can be ORed with the BS _PUSHBUTTON style.

If both BS_HELP and BS_SYSCOMMAND are set, BS_HELP
takes precedence.

Places an icon instead of text on the push button control. This
style works only with the BS _PUSHBUTTON style.

This enables miniicons (half the size of normal icons) to be
placed on the push button control.

The pushbutton is displayed without a border drawn around it.
There is no other change in the pushbutton's operation.

This style can be ORed with the BS _PUSHBUTTON style.

BS_NOCURSORSELECT The radio button does not select itself when given the focus as
the result of an arrow key or tab key.

BS_NOPOINTERFOCUS

BS_RADIOBUTTON

This style can be ORed with the BS _AUTORADIOBUTTON
style.

Buttons with this style do not set the focus to themselves when
clicked with the pOinting device. This enables the cursor to
stay on a control for which information is required, rather than
moving to the button. This style has no effect on keyboard
interaction. The tab key can still be used as usual to move the
focus to the button.

This style can be ORed with any of the basic button styles.

A pushbutton is a box that contains a string. When a button is
pushed, by clicking the pointing device on it or pressing the
spacebar when it is active, the parent window is notified.

A radio button is similar to a check box, but is typically used in
groups in which only one button at a time is checked. When a
radio button is clicked or a cursor key is pressed to move
within the group, it notifies its owner window. It is then up to
the owner window to check the clicked radio button and
uncheck all the rest, if necessary.

The button posts a WM_SYSCOMMAND message rather than
a WM_COMMAND message.

This style can be ORed with the BS _PUSHBUTTON style.

If both BS_HELP and BS_SYSCOMMAND are set, BS_HELP
takes

11-2 PM Programming Reference Vol II

BS_TEXT

BS_USERBUTTON

This enables both text and a bitmap, icon, or miniicon to be
placed on the push button control. This style works only with
the BS_PUSHBUTTON style, and should be used in
conjunction with BS_BITMAP, BSJCON or BS_MINIICON.

This is an application-definable button. The owner window of
this style control receives the additional button style
BN_PAINT.

A three-state check box is identical to a check box control
except that its check box can be half-toned as well as the box
being checked or unchecked.

When BSJCON, BS_MINIICON or BS_BITMAP is selected, the image can be activated by
specifying the image ID with the button text string. For instance, to load an icon (#defi ne
ICON_ID 300), and display it within a button, the button string is set to "#300."

When BSJCON, BS_MINIICON or BS_BITMAP is selected along with BS_TEXT, the image
can still be activated by specifying the following with a zero-terminated text string. format:

"#<image-id>\t<text>"

where:

<image-id>
\t

resource id of the icon, miniicon or bitmap
tab character

<text> zero-terminated button text string

For example, to load an icon (#define ICON_ID 300) and display it with the button text "My
Button," the button string is set to "#300\tMy Button." Notice the "\t" is used to separate the
text from the image-id. The image is displayed above the text within the button.

Button Control Data
See "BTNCDATA" on page A-24.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_BUTTONDEFAULT
SYSCLR_ BUTTON LIGHT
SYSCLR_BUTTONMIDDLE
SYSCLR_MENUTEXT
SYSCLR_WINDOW
SYSCLR_ WINDOWFRAME.

Chapter 11. Button Control Window Processing 11-3

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_BACKGROUNDCOLOR
PP _BORDERCOLOR
PP _DISABLEDFOREGROUNDCOLOR
PP_FOREGROUNDCOLOR
PP _HILITEFOREGROUNDCOLOR.

11-4 PM Programming Reference Vol \I

Button Control Notification Messages
These messages are initiated by the button control window to notify its owner of significant
events.

WM_COMMAND (in Button Controls)
For the cause of this message, see "WM_ COMMAND" on page 1 0-37.

For a description of the parameters, see "WM_COMMAND" on page 10-37.

Button control sets uscmd to the button identity and ussource to CMDSRC_PUSHBUnON.

Remarks
The button control generates this message when a push button of style BS_PUSHBUnON
is pressed or when it receives a BM_ CLICK message. The button control posts the
message to the queue of the control owner.

Default ProceSSing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM_COMMAND

WM_CONTROL (in Button Controls)
For the cause of this message, see "WM_CONTROL" on page 10-39.

Parameters
param1

id (USHORT)
Button control identity.

usnotifycode (USHORT),
Notification code.

The notification code BN_PAINT is only generated when the button control has a
style of BS _ USERBUnON.

Chapter 11. Button Control Window ProceSSing 11-5

param2

The button control uses these notification codes:

BN_CLlCKED The button has been pressed.

BN DBLCLICKED The button has been double-clicked.

BN_PAINT The button requires painting, using one of the following draw
states:

BDS_DISABLED The disabled state of the button requires
painting.

BDS HILITED The highlighted state of the button
requires painting.

BDS_DEFAULT The default state of the button requires
painting.

flcontrolspec (ULONG)
Control-specific information.

When usnotifycode is BN_PAINT this parameter is a pointer to a USERBUTTON
structure, otherwise this parameter is the window handle of the button control.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The button control generates this message and sends it to its owner, informing the owner of
this event, when:

• Its style is not BS_PUSHBUTTON and the button is pressed.
• It receives a BM_CLlCK message.
• Its style is BS _ USERBUTTON and the button is clicked or double clicked.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_CONTROL

11-6 PM Programming Reference Vol II

WM_HELP (in Button Controls)
For the cause of this message, see "WM_HELP" on page 1 0-49.

For a description of the parameters, see "WM_HELP" on page 1 0-49.

Button control sets uscmd to the button identity.

Remarks
This message is identical to a WM_COMMAND message, but implies that the application
should respond to this message by displaying help information.

The button control generates this message and posts it to the queue of its owner, if it has the
style of BS_HELP and a push button is pressed, or when it receives a BM_CLlCK message.

Default Processing
The default window procedure sends this message to the parent window, if it exists and is
not the desktop. Otherwise, it sets ulReserved to o.

Related Messages
• WM_HELP

WM SYSCOMMAND
For the cause of this message, see "WM_SYSCOMMAND" on page 1 0-91.

For a description of the parameters, see "WM_SYSCOMMAND" on page 1 0-91.

Button control sets uscmd to the button identity.

Remarks
If the button control is specified with a style of BS_SYSCOMMAND but not with BS_HELP,
the button control generates this message and posts it to the queue of its owner when a
push button is pressed, or when it receives a BM_CLlCK message.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Chapter 11. Button Control Window Processing 11-7

Button Control Window Messages
This section describes the Button Control Window Procedure actions on receiving the
following messages.

BM CLICK
An application sends this message to cause the effect of the operator clicking a push button.

Parameters
param1

usUp (USHORT)

param2

Up and down indicator.

TRUE
FALSE

Perform the default upclick action
Perform the default downclick action.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The button control responds to this message by taking the action that occurs if the button is
clicked by the operator. This causes the following messages to be generated:

• A WM_HELP (in Button Controls) message, if the button has a style of BS_HELP.

• A WM_SYSCOMMAND message, if the button has a style of BS_PUSHBUTTON and a
style of BS_SYSCOMMAND and not a style of BS_HELP.

• A WM_COMMAND (in Button Controls) message, if the button has a style of
BS_PUSHBUTTON but not a style of BS_SYSCOMMAND and not a style of BS_HELP.

• A WM_CONTROL (in Button Controls) message, whose usnotifycode is set to
BN_CLlCKED, if the button has a style of BS_USERBUTTON, BS_PUSHBUTTON,
BS_CHECKBOX, or BS_3STATE, and not a style of BS_SYSCOMMAND or BS_HELP.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set ulReserved to the default value of O.

11-8 PM Programming Reference Vol II

BM_QUERYCHECK
This message returns the checked state of a button control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
usCheck (USHORn

Check indicator.

o The button control is in unchecked state.
The button control is in checked state.

2 The button control is in indeterminate state.

Remarks
The button control responds to this message, if it has a style of BS_ CHECKBOX,
BS_AUTOCHECKBOX, BS_RADIOBUTTON, BS_AUTORADIOBUTTON, BS_3STATE, or
BS_AUT03STATE, by setting usCheck as appropriate.

If the button has any other style, the button control takes no action other than to set usCheck
to O.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set usCheck to the default value of O.

BM_QUERYCHECKINDEX
This message returns the zero-based index of a checked radio button.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

Chapter 11. Button Control Window Processing 11-9

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
slndex (SHORT)

Radio-button index.

-1 No radio button of the group is checked, or this button control does not have the
style BS_RADIOBUTTON or BS_AUTORADIOBUTTON.

Other Zero-based index of the checked radio button of the group.

Remarks
The button control responds to this message by setting slndex as appropriate.

This message may be sent to any radio button or autoradio button in a group of buttons. For
details of the WS _GROUP style, see "Window Styles" on page 10-3.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set slndex to the default value of o.

BM_QUERYHILITE
This message returns the highlighting state of a button control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (BOOL)

Highlight indicator.

TRUE
FALSE

The button control is displayed in highlighted state.
The button control is displayed in unhighlighted state.

11-10 PM Programming Reference Vol II

Remarks
The button control responds to this message, if it has a style of BS_PUSHBUTTON, by
setting rc as appropriate.

If the button has any other style, the button control takes no action other than to set rc to
FALSE.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, except to set rc to the default value of FALSE.

8M SETCHECK
This message sets the checked state of a button control.

Parameters
param1

uscheck (USHORT)
Check state.

o Display the button control in the unchecked state
Display the button control in the checked state

2 Display a 3-state button control in the indeterminate state.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
usoldstate (USHORT)

Old check state of the button control.

o Unchecked
Checked

2 Indeterminate.

Remarks
The button control responds to this message by displaying it in the appropriate state and
returning the old state.

If the button control has the style of BS_CHECKBOX, BS_AUTOCHECKBOX,
BS_RADIOBUTTON, or BS_AUTORADIOBUTTON, it is displayed in the checked state if
uscheck is set to 1, or in the unchecked state if it is set to 0 and usoldstate is set as
appropriate.

Chapter 11. Button Control Window Processing 11-11

If the button control has the style of BS_RADIOBUTTON or BS_AUTORADIOBUTTON, the
WS_TABSTOP style is modified. If the resulting state of the button is checked, the
WS _ T ABSTOP style is set, otherwise it is reset.

If the button control has the style of BS_3STATE or BS_AUT03STATE, it is displayed in the
unchecked state if uscheck is set to 0, in the checked state if it is set to 1, and in the
indeterminate state if it is set to 2 and usoldstate is set as appropriate.

If the button control has the style of BS_USERBUTTON, a WM_CONTROL (in Button
Controls) message is sent to its owner with usnotifycode set to BN_PAINT and usoldstate is
set as appropriate.

If the button control has any other style, the button control takes no action other than to set
usoldstate to O.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, except to set usoldstate to the default value of o.

8M SETDEFAULT
This message sets the default state of a button control.

Parameters
param1

usdefault (USHORT)
Default state.

TRUE
FALSE

Display the button control in the default state
Display the button control in the nondefault state.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful operation
Error occurred.

11-12 PM Programming Reference Vol II

Remarks
The button control responds to this message, if it has a style of BS _ USERBUTTON or
BS_PUSHBUTTON, by displaying the button control in the default or nondefault state as
appropriate, and setting rc to TRUE.

If the button control has any other style, the button control takes no action other than to set
rc to FALSE.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

8M SETHILITE
This message sets the highlight state of a button control.

Parameters
param1

ushilite (USHORT)
Highlight indicator.

TRUE
FALSE

Display the button control in the highlighted state
Display the button control in the unhighlighted state.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
foldstate (BOOl)

Old highlight state.

TRUE
FALSE

The button control was in highlighted state
The button control was in unhighlighted state.

Remarks
The button control responds to this message, if it has a style of BS_PUSHBUTTON,
BS_CHECKBOX, BS_AUTOCHECKBOX, BS_RADIOBUTTON, BS_AUTORADIOBUTTON,
BS_3STATE, or BS_AUT03STATE, by displaying the button control in the appropriate
highlight state and setting fo/dstate as appropriate.

If the style of the Button Control is BS_USERBUTTON, a WM_CONTROl (in Button
Controls) message is sent to its owner with usnotifycode set to BN_PAINT and with
flcontro/spec pointing to a USERBUTTON structure and sets fo/dstate as appropriate.

Chapter 11. Button Control Window Processing 11-13

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set foldstate to the default value of FALSE.

WM_ENABLE (in Button Controls)
For the cause of this message, see "WM_ENABLE" on page 10-43.

For a description of the parameters, see "WM_ENABLE" on page 1 0-43.

Remarks
This message notifies the button control window procedure of a change in the enable state of
the button.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ENABLE

WM_MATCHMNEMONIC (in Button Controls)
For the cause of this message, see "WM_MATCHMNEMONIC" on page 10-55.

For a description of the parameters, see "WM_MATCHMNEMONIC" on page 10-55.

Remarks
The button control window procedure responds to this message by setting rc as appropriate.
If MP1 matches the button mnemonic, return rc to TRUE.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_MATCHMNEMONIC

11-14 PM Programming Reference Vol II

WM_QUERYCONVERTPOS (in Button Controls)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 10-72.

For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 10-72.

Remarks
The button control window procedure returns QCP _ NOCONVERT.

Default Processing
For the default window procedure processing of this message see
"WM_QUERYCONVERTPOS" on page 10-72.

Related Messages
• WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in Button Controls)
Occurs when an application queries the button control window procedure window
parameters.

For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 10-75.

Remarks
The button control window procedure responds to this message by passing it to the default
window procedure.

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure, identified by pwndparams, to zero and sets rc to
FALSE.

Related Messages
• WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS (in Button Controls)
Occurs when an application sets or changes the button control window procedure window
parameters.

For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 10-86.

Remarks
The button control window procedure responds to this message by passing it to the default
window procedure.

Chapter 11. Button Control Window Processing 11-15

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_SETWINDOWPARAMS

11-16 PM Programming Reference Vol II

Chapter 12. Entry Field Control Window Processing

This system-provided w.indow procedure processes the actions on an entry field control
(yVC _ ENTRYFI ELD).

Purpose
An entry field control is a rectangular window that displays a single line of text that the
operator can edit. When it has the focus, the cursor marks the current insertion or
replacement point.

When working with entry fields, the WM_CONTROL message is of major concern. An
entry-field control communicates with its owner by sending WM_CONTROL messages. It
contains a notification code in MP1 and a handle to the current entry field in MP2. The
return value for WM_ CONTROL is o. Notification codes are denoted by an EN prefix.

Entry Field Control Styles
These entry field control styles are available:

ES_LEFT The text in the control is left-justified. This is the default style if
neither ES_RIGHT nor ES_CENTER is specified.

ES_RIGHT The text in the control is right-justified.

ES_CENTER The text in the control is centered.

ES_AUTOSIZE The text will be sized to make sure the contents fit.

ES_AUTOSCROLL If the user tries to move off the end of a line, the control
automatically scrolls one-third the width of the window in the
appropriate direction.

ES_MARGIN This style can be used to cause a border to be drawn around the
control, with a margin around the editable text. The margin is half a
character-width wide and half a character-height high.

© Copyright IBM Corp. 1994

When an entry field control with this style is positioned, it adjusts the
position so that the text is placed at the position specified. This
position differs from the original position by the width of the border
and the margin.

This style causes a single line entry field to be created in read only
state.

When an entry field is in read only state, characters do not get
inserted into the text. However the insertion interface is still
functional.

The entry field read only state can be altered by use of the
EM_SETREADONLY message.

12-1

ES_UNREADABLE This style causes the text to be displayed as an asterisk for each
character. It can be used for passwords.

ES_COMMAND This style identifies the entry field as a command entry field. This
information is used by the Help Manager to provide command help if
the end user requests help for this field.

ES_AUTOTAB

Not more than one entry field on each dialog should be given this
style.

This style indicates that when the field is filled by adding a character
to the end of the entry field text, the effect of a tab key will be
generated. Inserting or replacing a character in the middle of the
text, however, does not result in an autotab.

This style is recommended for use with fixed-length, non-scrollable
fields that are filled completely. The maximum length of the entry
field text is held in the control data, see "Entry Field Control Data" on
page 12-3

These entry field controls are intended for countries that use a double-byte character
encoding scheme:

The text is purely single-byte.

If the number of characters entered exceeds EM_SETTEXTLIMIT, or
a DBCS character is entered, the alarm sounds and the last
character entered is ignored.

The text is purely double byte.

If the number of bytes in the entry field exceeds EM_SETTEXTLIMIT,
or an SBCS character is entered, the alarm sounds and the last
character entered is ignored.

The text is a mixture of SBCS and DBCS characters.

If the number of bytes in the input field exceeds EM_SETTEXTLIMIT,
the alarm sounds and the last character entered is ignored.

ES _ANY is the default.

Note: If the queue code page is an ASCII code page and the data
in the entry field is to be converted to an EBCDIC code page,
there is a possibility that shift-in and shift-out characters
introduced by the conversion process can cause the
converted data to overrun the target field. Coding ES_MIXED
protects the target field from overrun in this situation.

The text is a mixture of SBCS and DBCS characters which may
subsequently be converted from an ASCII DBCS code page to an
EBCDIC DBCS code page with a consequent possible increase in
the length of the data.

If

DBCSchars*2 + SBCSchars + N > EM_SETTEXTLIMIT

12-2 PM Programming Reference Vol II

where N starts at 0 and is incremented whenever the string goes
from SBCS to DBCS or DBCS to SBCS, the alarm sounds and the
last character entered is ignored.

Note: For every conversion from SBeS to DBCS there must be a
corresponding return to SBCS (N must be an even number).

Entry Field Control Data
See "ENTRYFDATA" on page A-64.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR _ ENTRYFIELD
SYSCLR_BUTTONDARK
SYSCLR _ BUTTON LIGHT
SYSCLR_OUTPUTTEXT
SYSCLR_ WINDOWTEXT
SYSCLR_HIGHLITEFOREGROUND
SYSCLR _ HIGHLITEBACKGROUND

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_FOREGROUNDCOLOR
PP _DISABLEDFOREGROUNDCOLOR
PP _HIGHLIGHTFOREGROUNDCOLOR
PP _FONTNAMESIZE

Chapter 12. Entry Field Control Window Processing 12-3

Entry Field Control Notification Messages
This message is initiated by the entry field control window to notify its owner of significant
events.

WM_CONTROL (in Entry Fields)
For the cause of this message, see "WM_CONTROL" on page 10-39.

Parameters
param1

id (USHORT)
Control window identity.

usnotifycode (USHORT)
Notify code.

param2

EN_CHANGE The content of the entry field control has changed, and the
change has been displayed on the screen.

EN_KILLFOCUS The entry field control is losing the focus.

EN_MEMERROR The entry field control cannot allocate the storage necessary to
accommodate window text of the length implied by the
EM_SETTEXTLIMIT message.

EN_OVERFLOW The entry field control cannot insert more text than the current
text limit. The text limit may be changed with the
EM_SETTEXTLIMIT message.

If the recipient of this message returns TRUE, then the entry
field control retries the operation, otherwise it terminates the
operation.

EN_SCROLL The entry field control is about to scroll horizontally. This can
happen in these circumstances:

• The application has issued a WinScroliWindow call
• The content of the entry field control has changed
• The caret has moved
• The entry field control must scroll to show the caret

position.

EN _ SETFOCUS The entry field control is receiving the focus.

hwndcontrolspec (HWND)
Entry field control window handle.

12-4 PM Programming Reference Vol II

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The entry field control window procedure generates this message and sends it to its owner,
informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_CONTROL

Chapter 12. Entry Field Control Window Processing 12-5

Entry Field Control Window Messages
This section describes the entry field control window procedure actions on receiving these
messages:

EM CLEAR
This message deletes the text that forms the current selection.

Parameters
param1

ulReserve (UlONG)
Reserved value, should be O.

param2

ulReserve (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred. i

Remarks
The entry field control window procedure responds to this message by deleting the text that
forms the current selection and setting usmaxsel equal to usminsel.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set fC to the default value of FALSE.

EM COpy
This message copies the current selection to the clipboard.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

12-6 PM Programming Reference Vol II

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The entry field control window procedure responds to this message by copying the text that
forms the current selection to the clipboard in CF _TEXT format.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM CUT
This message copies the text that forms the current selection to the clipboard, and then
deletes it from the entry field control.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 12. Entry Field Control Window Processing 12-7

Remarks
The entry field control window procedure responds to this message by copying the text that
forms the current selection to the clipboard in CF _TEXT format, and then deleting it from the
entry field control and setting usmaxsel equal to usminsel.

This message is the combination of a EM_COPY message followed by a EM_CLEAR
message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM PASTE
This message replaces the text that forms the current selection with text from the clipboard.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be o.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

For example, if the text to be inserted does not fit in the entry field control
without overflowing the text limit set by the EM_SETTEXTLIMIT message, in
which instance no text is inserted.

The entry field control window procedure responds to this message by replacing the text that
forms the current selection with text from the clipboard, if the data is in CF _TEXT format.

Only characters from the clipboard up to the first carriage return are used in the replacement.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

12-8 PM Programming Reference Vol II

EM_QUERYCHANGED
This message enquires if the text of the entry field control has been changed since the last
enquiry.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Changed indicator.

TRUE The text in the entry field control has been changed since the last time it
received this message or a WM_QUERYWINDOWPARAMS message.

FALSE All other situations.

Remarks
The entry field control window procedure responds to ,this message by setting rc to indicate
whether the text of the entry field has been changed since the last time either this message
or a WM_QUERYWINDOWPARAMS (in Entry Fields) message has been received.

Default Processing ,
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_QUERYFIRSTCHAR
This message returns the zero-based offset of the first character visible at the left edge of an
entry-field control.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

Chapter 12. Entry Field Control Window Processing 12-9

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
sOffset (SHORT)

Zero-based offset.

Remarks
The entry field control window procedure responds to this message by returning the
zero-based offset into the text that corresponds to the first character displayed in the entry
field control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sOffset to the default value of o.

EM_QUERYREADONLY
This message returns the read only state of an entry field control.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be o.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Read only state indicator.

TRUE
FALSE

Remarks

Read only state is enabled.
Read only state is disabled.

The entry field control window procedure responds to this message by returning the read
only state of the entry field control.

12·10 PM Programming Reference Vol II

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_QUERYSEL
This message gets the zero-based offsets of the bounds of the text that forms the current
selection.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

sMinSel (SHORT)
Offset of the first character in the selection.

sMaxSel (SHORT)
Offset of the first character after the selection.

Remarks
The entry field control window procedure responds to this message by returning the
zero-based offsets of the bounds of the text that forms the current selection.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sMinSe/ to the default value of 0, which is equivalent to
setting both sMinSe/ and sMaxSe/ to O.

Chapter 12. Entry Field Control Window Processing 12-11

EM_SETFIRSTCHAR
This message specifies the offset of the character to be displayed in the first position of the
entry field control.

Parameters
param1

sOffset (SHORT)
Zero-based offset of the first character to be displayed.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred. For example, because sOffset is not valid.

The entry field control window procedure responds to this message by setting the text
displayed in the edit control so that the first character displayed on the left of the window has
the zero-based index specified by sOffset.

An EN_SCROll notification message occurs, if the entry field control scrolls. This message
returns FALSE if the edit control does not have the ES_AUTOSCROll style or it is center of
right justified.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

12-12 PM Programming Reference Vol II

EM SETINSERTMODE
This message sets the insert mode of an entry field.

Parameters
param1

uslnsert (USHORT)
Insert mode indicator.

TRUE Enable insert mode.
FALSE Enable overtype mode.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Previous insert mode indicator.

TRUE
FALSE

Insert mode was previously enabled.
Overtype mode was previously enabled.

Remarks
The entry field control window procedure responds to this message by setting the insert
mode of the entry field, updating the SV JNSERTMODE system constant and redrawing the
entry field.

Default ProceSSing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM_SETREADONLY
This message sets the read only state of an entry field control.

Parameters
param1

usReadOnly (USHORT)
Read only state indicator.

TRUE
FALSE

Enable read only state
Disable read only state.

Chapter 12. Entry Field Control Window Processing 12-13

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Previous read only state indicator.

TRUE
FALSE

Remarks

Read only state was previously enabled.
Read only state was previously disabled.

The entry field control window procedure responds to this message by setting the read only
state of the entry field control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set fC to the default value of FALSE.

EM SETSEL
This message sets the zero-based offsets of the bounds of the text that forms the current
selection.

Parameters
param1

usminsel (USHORT)
Offset of the first character in the selection.

usmaxsel (USHORT)
Offset of the first character after the selection.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

12-14 PM Programming Reference Vol II

Remarks
The entry field control window procedure responds to this message by setting the zero-based
offsets of the bounds of the text that forms the current selection.

If usminsel equals usmaxsel, the current selection becomes an insertion point.

If usminsel equals 0 and usmaxsel is equal to or greater than the text limit set by the
EM_SETTEXTLIMIT message, the entire text is selected. Selected text is displayed in
reverse color.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

EM SETTEXTLIMIT
This message sets the maximum number of bytes that an entry field control can contain.

Parameters
param1

sTextLimit (SHORT)
Maximum number of characters in the entry field control.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred. For example, because not enough storage can be allocated.

The entry field control window procedure responds to this message by setting the maximum
number of characters that can be contained.

This message is intended only to limit the length of lines that result from the user interacting
with the entry field control. It also limits the length of text that can result from sending a
EM_PASTE or WM_SETWINDOWPARAMS message.

Chapter 12. Entry Field Control Window Processing 12-15

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

WM_CHAR (in Entry Fields)
For the cause of this message, see "WM_CHAR" on page 10-32.

For a description of the parameters, see "WM _CHAR" on page 1 0-32.

Remarks
The entry field control window procedure responds to this message by sending it to its owner
if it has not processed the keystroke. This is the most common means by which the input
focus is switched around the various controls in a dialog box.

Unlike other controls, the usvk field of the message "WM _CHAR" on page 1 0-32 takes
precedence over other fields only when the Shift key is pressed.

If this message contains a valid usch field of the message "WM _CHAR" on page 1 0-32. that
character is entered into the text in insert or overtype mode.

The keystrokes processed by an entry field control are:

Left arrow
Right arrow
Shift+Left arrow
Shift+Right arrow
Home
End
Backspace
Delete

Shift+Del
Shift+lns

Ctrl+Del
Ctrl+lns

Move the cursor one character to the left.
Move the cursor one character to the right.
Extend the selection by one character to the left.
Extend the selection by one character to the right.
Move the cursor to the beginning of the text.
Move the cursor to the end of the text.
Delete the character to the left of the cursor.,
When the selection is an insertion point, delete the character to the
right of the cursor, otherwise delete the current selection, but do not
put it in the clipboard.
Cut the current selection to the clipboard.
Replace the current selection with. the text contents from the
clipboard.
Delete to the end of the field.
Copy the current selection to the clipboard.

If the control contains more text than can be shown, the actions defined above that move the
cursor cause the text to be scrolled. The amount of scrolling varies from key to key, and the
position of the text within the control varies for the same cursor position.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise
it takes no action on this message other than to set rc to FALSE.

12-16 PM Programming Reference Vol II

Related Messages
• WM_CHAR

WM_QUERVCONVERTPOS (in Entry Fields)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 10-72.

For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 10-72.

Remarks
The entry field control window procedure updates pCursorPos to the position of the cursor
and returns QCP _CONVERT.

Default Processing
For the default window procedure processing of this message see
"WM_QUERYCONVERTPOS" on page 10-72.

Related Messages
• WM_ QUERYCONVERTPOS

WM_QUERVWINDOWPARAMS (in Entry Fields)
This message occurs when an application queries the entry field control window parameters.

For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 10-75.

Remarks
The entry field control window procedure responds to this message by returning the window
parameters indicated by the fsStatus parameter of the WNDPARAMS data structure
identified by the pwndparams parameter.

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure, identified by pwndparams, to 0 and sets rc to FALSE.

Related Messages
• WM_QUERYWINDOWPARAMS

Chapter 12. Entry Field Control Window Processing 12-17

WM_SETWINDOWPARAMS (in Entry Fields)
This message occurs when an application sets or changes the entry field control window
parameters.

For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 10-86.

Remarks
The entry field control window procedure responds to this message by setting the window
parameters indicated by the fsStatus parameter of the WNDPARAMS data structure,
identified by the pwndparams parameter.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_SETWINDOWPARAMS

12-18 PM Programming Reference Vol II

Chapter 13. Frame Control Window Processing

This system-provided window procedure processes the actions on a frame window
(WC_FRAME). The frame control window procedure sends all messages not processed to
FlO _ CLI ENT and sets reply to o.

Purpose
The window that contains all of the parts listed below is called the frame window. Each of
the parts that make up a window, such as'the title bar and menu, are separate child windows
of the frame window. All of these child windows, except the client window (FlO_CLIENT),
are called frame controls.

FlO_CLIENT is not a frame control, it is an instance of a window class implemented by the
application.

The frame window and all of the frame controls are implemented with system-provided
preregistered window classes.

The frame window holds together all of the frame controls and FlO_CLIENT that make up an
application window. The frame window is responsible for arranging the frame controls and
the FlO_CLIENT as the frame window is sized and moved. It is also responsible for routing
specific messages to its frame controls and the FlO_CLIENT.

Each of the frame controls and FlO_CLIENT are known to the frame window by a
system-provided window-identifier value as listed below:

FlO_CLIENT
FIO_HORZSCROLL
FlO_MENU
FIO_MINMAX
FIO_SYSMENU
FlO _ TITLE BAR
FlO _ VERTSCROLL

Client window
Horizontal scroll bar
Application menu
Minimize/Maximize box
System menu
Title bar
Vertical scroll bar.

For correct operation, only one window per frame must be defined with each of the above
FIO_* values.

Frame Creation Flags
These frame creation flags are available:

FCF _ TITLE BAR Title bar.

FCF _SYSMENU System menu.

FCF_MENU

FCF_MINMAX

FCF _MINBUTTON

© Copyright IBM Corp. 1994

Application menu.

Minimize and Maximize buttons.

Minimize button.

13-1

FCF_MAXBUTTON

FCF _ VERTSCROLL

FCF _HORZSCROLL

FCF _SIZEBORDER

FCF_BORDER

FCF _DLGBORDER

FCF_ACCELTABLE

FCF _SHELLPOSITION

FCF _SYSMODAL

FCF _NOBYTEALIGN

FCF _NOMOVEWITHOWNER

13-2 PM Programming Reference Vol II

Maximize button.

Vertical scroll bar.

Horizontal scroll bar.

Sizing border.

Window is drawn with a thin border.

Window is drawn with a standard dialog border.

Causes an accelerator table to be loaded, for this frame
window, from the resource file identified on the
WinCreateStdWindow function.

Window is created with an icon associated with it that is
used to represent the window when it is minimized.

If present, the Resource parameter of the
WinCreateStdWindow function must be the identity of an
icon. This icon is loaded and associated with the window.
When the window is minimized, the icon is shown if the
screen is capable of showing it. When the window is
destroyed, the icon is also destroyed.

The window is created with a size and position determined
by the shell, rather than explicitly by the application.'

The frame window is System Modal.

When this flag is not set, the frame window is adjusted so
that window operations, such as moving, can be
performed in an optimized manner. For example, some
displays can move a window more quickly if the
movement is by a multiple of eight pels.

If this flag is set, such optimizations are not performed and
size and position values are honored.

When this flag is set, the program title is added to the
front of the frame window text, the resulting string is used
as the window title and is also entered on the task list.

In this context, the program title is the text string used by
the Desktop Manager to identify the program, or the text
string specified as a parameter in the START command. If
neither string has been defined, the filename and
extension of the .EXE file are used as the program title.

Note that a WinSetWindowText will not change the entry
in the switch list, a WinChangeSwitchEntry must be done
to affect this.

The window should not be moved when its owner is
moved.

FCF _SCREENALIGN

FCF _MOUSEALIGN

FCF _AUTOICON

FCF _HIDEBUTTON

FCF _HIDEMAX

Frame Control Styles

Same as (FCF _ TITLEBAR I FCF _ SYSMENU I
FCF _MINBUTTON I FCF _MAXBUTTON I
FCF _SIZEBORDER I FCF -,CON I FCF _MENU I
FCF _ACCELTABLE I FCF _SHELLPOSITION I
FCF _TASKLlST).

This value is assumed if any Frame Window is created
with no Control Data.

See FS_SCREENALIGN.

See FS_MOUSEALIGN.

Performance optimization. When repainting iconized
frames, the system will redraw the icon and will not send a
WM_PAINT message to the application.

Hide button.

Hide and maximize buttons.

These frame control styles are available. Frame styles may only be used when the frame is
created from a dialog template.

FS_ SCREENALIGN

FS_SIZEBORDER

FS_BORDER

FS_DLGBORDER

FS_SYSMODAL

FS_NOBYTEALIGN

FS _ TASKLIST

FS_NOMOVEWITHOWNER

FS_AUTOICON

Frame Control Data

The coordinates specifying the location of the dialog box
are relative to the top left corner of the screen, rather than
being relative to the owner window's origin.

The coordinates specifying the location of the dialog box
are relative to the position of the pointing device pOinter at
the time the window was created. The operating system
tries to keep the dialog box on the screen, if possible.

See FCF _SIZEBORDER.

See FCF BORDER.

See FCF _DLGBORDER.

See FCF SYSMODAL.

See FCF NOBYTEALIGN.

See FCF _ TASKLIST.

See FCF _NOMOVEWITHOWNER.

See FCF AUTOICON.

See "FRAMECDATA" on page A-99.

Chapter 13. Frame Control Window Processing 13-3

Default Colors
The following system colors are used when the system draws button controls:

• SYSCLR_DIALOGBACKGROUND
• SYSCLR _ACTIVETITLE
• SYSCLR_INACTIVETITLE
• SYSCLR_APPWORKSPACE
• SYSCLR_ACTIVEBORDER
• SYSCLR_WINDOW
• SYSCLR_SHADOW
• SYSCLR_WINDOWFRAME
• SYSCLR_FIRST.

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_BACKGROUNDCOLOR
PP_SHADOW
PP_FOREGROUNDCOLOR
PP _BORDERCOLOR
PP _DISABLEDBACKGROUNDCOLOR.

13-4 PM Programming Reference Vol II

Frame Control Notification Messages
These messages are initiated by the frame control window to notify the FID_CLlENT window.

WM_MINMAXFRAME (in Frame Controls)
For the cause of this message, see "WM_MINMAXFRAME" on page 1 0-58.

For a description of the parameters, see "WM_MINMAXFRAME" on page 10-58.

Remarks
The window words QWS _ XRESTORE, QWS _ YRESTORE, QWS _ CXRESTORE, and
QWS _ CYRESTORE for hwnd are initialized before this message is sent. The window state
has not been changed when this message is sent, and so the WinQueryWindowPos function
can be used.

This message is sent by default to the FID_CLlENT window.

The system default actions, if FALSE is returned to this message, are based on the
operation specified by the pswp parameter.

These actions affect the status of the frame window, and the title button windows and system
menu windows contained within it, as follows:

• Window is maximized from a minimized state.

- Title button windows:

The RESTORE button window is replaced by a MIN button window and the MAX
button window is replaced by a RESTORE button window.

- System menu window:

The MINIMIZE menu entry is enabled and the MAXIMIZE menu entry is disabled.

- Other changes:

The frame window has the WS_MAXIMIZED style bit set and the WS_MINIMIZED
style bit reset. Also the MS_ VERTICALFLIP style bit of the system menu window is
reset.

• Window is restored from a minimized state.

- Title button windows:

The RESTORE button window is replaced by a MIN button window (the MAX button
window is unaltered).

- System menu window:

The MINIMIZE menu entry is enabled, the RESTORE menu entry is disabled and
the SIZE menu entry is enabled.

Chapter 13. Frame Control Window Processing 13-5

- Other changes:

The frame window has the WS_MINIMIZED style bit and the MS_VERTICALFLIP
style bit of the system menu window reset.

• Window is minimized from a maximized state.

- Title button windows:

The RESTORE button window is replaced by a MAX button window and the MIN
button window is replaced by a RESTORE button window.

- System menu window:

The MAXIMIZE menu entry is enabled and the MINIMIZE menu entry is disabled.

- Other changes:

The frame window has the WS_MINIMIZED style bit set and the WS_MAXIMIZED
style bit reset. Also the MS_ VERTICALFLIP style bit of the system menu window is
set.

• Window is restored from a maximized state.

- Title button windows:

The RESTORE button window is replaced by a MAX button window (the MIN button
window is unaltered).

- System menu window:

The MAXIMIZE menu entry is enabled, the RESTORE menu entry is disabled and
the SIZE menu entry is enabled.

- Other changes:

The frame window has the WS_MAXIMIZED style bit reset.

• Window is minimized from a restored state.

- Title-button windows:

The MIN button window is replaced by a RESTORE button window (the MAX button
window is unaltered).

- System menu window:

The RESTORE menu entry is enabled, the MINIMIZE menu entry is disabled and
the SIZE menu entry is disabled.

- Other changes:

The frame window has the WS_MINIMIZED style bit set, and the
MS_ VERTICALFLIP style bit of the system menu window is set.

13-6 PM Programming Reference Vol II

• Window is maximized from a restored state.

- Title-button windows:

The MAX button window is replaced with a RESTORE button window (the MIN
button window is unaltered).

- System menu window:

The RESTORE menu entry is enabled, the MAXIMIZE menu entry is disabled.

- Other changes:

The frame window has the WS_MAXIMIZED style bit set.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_MINMAXFRAME

Chapter 13. Frame Control Window Processing 13-7

Frame Control Window Messages
This section describes the frame control window procedure actions on receiving the following
messages.

WM_ACTIVATE (in Frame Controls)
For the cause of this message, see "WM_ACTIVATE" on page 10-5.

For a description of the parameters, see "WM_ACTIVATE" on page 1 0-5.

Remarks
The frame control window procedure responds to this message by first sending a
TBM_SETHILITE message to the FID_TITLEBAR control, if it exists, to highlight or
unhighlight the title bar. If the style is FCF _DLGBORDER, the border is redrawn in either
highlighted or unhighlighted state, as necessary.

It then sends the WM_ACTIVATE message to the FID_CLlENT window.

Then it sets ulReserved to o.

Default ProceSSing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM_ACTIVATE

WM_ADJUSTFRAMEPOS
This message is sent to a frame window whose position or size is to be adjusted.

Parameters
param1

pswp (PSWP)

param2

New frame window state.

This points to a SWP structure.

The structure has been filled in by the WinSetWindowPos or WinSetMultWindowPos
functions with the proposed move or size data for the frame window.

hsavewphsvwp (HSAVEWP)
Identifier of the frame window repositioning process.

13-8 PM Programming Reference Vol II

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
When a WinSetWindowPos or WinSetMultWindowPos function involves adjusting the position
or size of a frame window, a WM_ADJUSTFRAMEPOS message is sent to the frame
window.

The frame control processes the message by informing all the windows in its owner
hierarchy, that is all the windows owned by the frame and all the windows owned by them
and so on, by sending each a WM_OWNERPOSCHANGE message. Each window receiving
the a WM_OWNERPOSCHANGE message is expected to modify the SWP structure
provided as the first parameter in the message to the appropriate values relative to the new
position and/or size of its owner, whose new position and size is specified in a SWP
structure provided as the second parameter in the message.

In this way the frame control can determine the state changes to be made to all the windows
in its owner hierarchy, in accordance with the values specified in the SWP structure
referenced by the pswp parameter. The rules for changing the state of these owned
windows are:

SWP _SIZE and SWP _MOVE
The owned window is moved relative to the top left corner of its owner.

SWP_SHOW
The visibility state of an owned window is changed to agree with that of their owner.

SWP _MINIMIZE
An owned window is made invisible when the owner is minimized.

SWP _MAXIMIZE and SWP _RESTORE
An owned window that was previously made invisible when the owner was minimized
is made visible.

The frame window coordinates the repositioning of the frame window and all its owned
windows, by using the WinSaveWindowPos function to associate those windows whose
states are to change with the identifier of the frame window repositioning process, that is the
hsavewphsvwp parameter. Eventually, the state changes to be made to the owned windows
are contained in the array of SWP structures identified by the pswp parameter.

If the frame window is subclassed, this message must then be passed to the superclass
window procedure for processing. The superclass window procedure is the window
procedure of the window before it was subclassed. This message is passed along the chain
of window procedures and is eventually processed by the system frame window procedure.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Chapter 13. Frame Control Window Processing 13-9

WM BUTTON1 DBLCLK (in Frame Controls) - .
For the cause of this message, see "WM _BUTTON 1 DBLCLK" on page 1 0-12.

For a description of the parameters, see "WM_BUTTON1DBLCLK" on page 10-12.

Default Processing
If the frame is minimized, the frame control window procedure causes the frame window to
return to its previous state. Otherwise, the message is handled like a WM_BUTTON1 DOWN
message.

Related Messages
• WM_BUTTON1 DBLCLK

WM_BUTTON2DBLCLK (in Frame Controls)
For the cause of this message, see "WM_BUTTON2DBLCLK" on page 10-18.

For a description of the parameters, see "WM_BUTTON2DBLCLK" on page 10-18.

Default Processing
The frame control window procedure processes this message identically to
WM_BUTTON1 DBLCLK (in Frame Controls).

Related Messages
• WM_BUTTON2DBLCLK

WM_BUTTON1 DOWN (in Frame Controls)
For the cause of this message, see "WM _BUTTON 1 DOWN" on page 10-13.

For a description of the parameters, see "WM _BUTTON 1 DOWN" on page 10-13.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer button information.

Default Processing
The frame control window procedure responds to this message by issuing the
WinSetActiveWindow function and sets rc to TRUE. If this is over a part of the window that
does not have a frame control, it issues a WinSetActiveWindow function. If the click is over
the size border, this window begins tracking by sending a WM_TRACKFRAME message to
itself. If the click is not over the size border, this message is passed on.

Related Messages
• WM_BUTTON1 DOWN

13-10 PM Programming Reference Vol II

WM_BUTTON2DOWN (in Frame Controls)
For the cause of this message, see "WM _ BUTTON2DOWN" on page 1 0-19.

For a description of the parameters, see "WM_BUTTON2DOWN" on page 10-19.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer button information.

Default Processing
The frame control window procedure processes this message identically to
"WM_BUTTON1 DOWN (in Frame Controls)" on page 13-10.

Related Messages
• WM BUTTON2DOWN

WM_BUTTON1 UP (in Frame Controls)
For the cause of this message, see "WM_BUTTON1UP" on page 10-16.

For a description of the parameters, see "WM_BUTTON1UP" on page 10-16.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer button information.

Default Processing
The frame control window procedure responds to this message by issuing the
WinSetActiveWindow function and sets rc to TRUE. If the window is not minimized, this
message is not processed. If the frame is minimized, this message causes the system menu
to pop up.

Related Messages
• WM_BUTTON1 UP

WM_BUTTON2UP (in Frame Controls)
For the cause of this message, see "WM_BUTTON2UP" on page 10-22.

For a description of the parameters, see "WM_BUTTON2UP" on page 10-22.

Remarks
This message is posted to the application queue associated with the window that is to
receive the pointer button information.

Chapter 13. Frame Control Window Processing 13-11

Default Processing
The frame control window procedure processes this message identically to
"WM_BUTTON1 UP (in Frame Controls)" on page 13-11.

Related Messages
• WM BUTTON2UP

WM_CALCFRAMERECT (in Frame Controls)
For the cause of this message, see "WM_CALCFRAMERECT" on page 10-29.

For a description of the parameters, see "WM_CALCFRAMERECT" on page 10-29.

Remarks
Frame control calculates the appropriate rectangle, taking into account byte alignment, or
non byte alignment if FCF _NOBYTEALIGN is specified.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_CALCFRAMERECT

WM_CHAR (in Frame Controls)
This message is sent by controls to their owner window if they do not process the key stroke
themselves. It is the most common means by which the input focus is switched around the
various controls in a dialog box.

For a description of the parameters, see "WM_CHAR" on page 1 0-32.

Default Processing
The frame control window procedure responds to this message as follows:

• If the message contains a valid VK_ value, that value is processed before any valid
character in the message.

• If the character matches a mnemonic in the text of a button or static control child
window, the focus is set to that window.

• If the character is Tab or Backtab, the focus is set to the next or previous tabstop
window.

• If the character is Up or Left Arrow, the focus is set to the previous item in the group.

• If the character is Down or Right Arrow, the focus is set to the next item in the group.

13-12 PM Programming Reference Vol II

• If the Enter key is pressed, a WM_ COMMAND message is posted to itself, containing
the identity of the button with the focus, or, if none, the identity of the default push
button.

• If the Escape key is pressed, a WM_COMMAND message is posted to itself with the
command value DID_CANCEL.

Related Messages
• WM_CHAR

WM_CLOSE (in Frame Controls)
For the cause of this message, see "WM_CLOSE" on page 10-35.

For a description of the parameters, see "WM_CLOSE" on page 10-35.

Remarks
Frame control sends this message to the client window (FID _CLIENT) if it exists, otherwise it
calls the WinpefWindowProc function.

Default Processing
The default window procedure posts a WM_QUIT message to the appropriate queue and
sets ulReserved to O.

Related Messages
• WM_CLOSE

WM COMMAND
For the cause of this message, see "WM_COMMAND" on page 10-37.

For a description of the parameters, see "WM_COMMAND" on page 10-37.

Default Processing
The Frame Control window procedure responds to this message by sending it the client
window if it exists, otherwise the message is thrown away.

WM_DRAWITEM (in Frame Controls)
For the cause of this message, see "WM_DRAWITEM" on page 1 0-42.

For a description of the parameters, see "WM_DRAWITEM" on page 1 0-42.

Remarks
The identity of the top-level action-bar menu that generated this message is found. If the
identity is FID_MENU, the message is passed to the window with identity FID_CLlENT.

Chapter 13. Frame Control Window Processing 13-13

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM_DRAWITEM

WM_ERASEBACKGROUND
This message causes a client window to be filled with the background, should this be
appropriate.

Parameters
param1

hpsFrame (HPS)
Presentation-space handle for the frame window.

param2

pprcPaint (PRECTl)
Rectangle structure of rectangle to be painted.

This points to a RECTL structure.

Returns
rc (Baal)

Processed indicator.

TRUE If a FID_CLlENT window exists, the area of the frame covered by the
FID_CLlENT window is erased in the system-window background color.

If no FID _CLIENT window exists, the entire frame window is erased in the
system-window background color.

FALSE The client window did process the message.

Remarks
The frame window procedure processes this message in the following manner:

1. The frame window sends this message to the client in response to the frame
WM_PAINT message, with the presentation-space handle of the frame window (obtained
from WinBeginPaint).

2. If the client window returns TRUE, ,the frame Window procedure erases the rectangle of
the frame window covered by the client window, by filling it with the system color
SClR WINDOW.

3. If the client window returns FALSE, no action is taken. This is the default behavior, as
WinDefWindowProc returns FALSE if passed this message.

13-14 PM Programming Reference Vol II

4. Also, the client window can use the presentation-space handle passed in this message
to selectively erase parts of the screen. If the client window processes the message in
this way, FALSE should be returned to avoid the erasure being done automatically by
the frame window procedure.

It should be noted again that the presentation space is not a client window presentation
space; it is a presentation space for the frame window returned by WinBeginPaint, that
is, a cached presentation space in frame (not client) window coordinates, clipped to the
area of the frame that needs to be updated (possibly including areas outside the client
window).

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

WM_FLASHWINDOW
An application has issued a WinFlashWindow function.

Parameters
param1

usFlash (USHORT)
Flash indicator.

TRUE
FALSE

Start the window border flashing
Stop the window border flashing.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Default Processing
The frame control window procedure responds to this message from an application by
starting or stopping the flashing of the window border, and by setting rc as appropriate.

Chapter 13. Frame Control Window Processing 13-15

WM_FOCUSCHANGE (in Frame Controls)
For the cause of this message, see "WM_FOCUSCHANGE" on page 1 0-47.

For a description of the parameters, see "WM_FOCUSCHANGE" on page 10-47.

Remarks
The frame control responds to this message by sending the other messages depending on
the value of the fsFocusChange parameter. These messages, if sent, are sent in the
following order:

1. WM_SETFOCUS to the window losing the focus.
2. WM_SETSELECTION to the windows losing their selection.
3. WM _ACTIVATE to the windows being deactivated.
4. WM_ACTIVATE to the windows being activated.
5. WM_SETSELECTION to the windows being selected.
6. WM_SETFOCUS to the window receiving the focus.

Default Processing
The default window procedure sends this message to either the owner, if one exists, or to
the parent of the window, if it is not the desktop window, otherwise it sets ulReserved to O.

Related Messages
• WM_FOCUSCHANGE

WM_FORMATFRAME (in Frame Controls)
For the cause of this message, see "WM_FORMATFRAME" on page 10-48.

For a description of the parameters, see "WM_FORMATFRAME" on page 10-48.

Remarks
Applications that subclass frame controls may find that the frame is already subclassed; the
number of frame controls is variable.

The WM_FORMATFRAME and WM_QUERYFRAMECTLCOUNT messages must always be
subclassed by calling the previous window procedure and modifying its result.

Default Processing
The SWP structure for the FlO_CLIENT frame control, if present, is the last element of the
pswp parameter, unless additional frame controls are added by subclassing; the SWP
structures for these follow that for FlO_CLIENT if present. The frame control window
procedure first sends the message to the FlO_CLIENT window. If FlO_CLIENT returns
ccount to indicate that the message has been processed, no additional processing is
performed.

If not processed by the client, the frame control window procedure calculates the size and
position of all the standard frame controls.

13-16 PM Programming Reference Vol I!

Related Messages
• WM_FORMATFRAME

WM_INITMENU (in Frame Controls)
For the cause of this message, see "WM-'NITMENU" on page 1 0-53.

For a description of the parameters, see "WM-'NITMENU" on page 1 0-53.

Remarks
The identity of the top-level action-bar menu that generated this message is found. If the
identity is FlO_MENU, the message is passed to the window with identity FlO_CLIENT. If
the identity is FIO_SYSMENU the system menu state is initialized according to the current
state of the window.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM-,NITMENU

WM_MEASUREITEM (in Frame Controls)
For the cause of this message, see "WM_MEASUREITEM" on page 1 0-55.

For a description of the parameters, see "WM_MEASUREITEM" on page 1 0-55.

Remarks
The identity of the top-level action bar menu that generated this message is found. If the
identity is FlO_MENU, the message is passed to the window with identity FlO_CLIENT.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sHeight to the default value of O.

Related Messages
• WM_MEASUREITEM

Chapter 13. Frame Control Window Processing 13-17

WM_MENUSELECT (in Frame Controls)
For the cause of this message, see "WM_MENUSELECT (in Frame Controls)."

For a description of the parameters, see "WM_MENUSELECT (in Frame Controls}."

Remarks
The identity of the top-level action-bar menu that generated this message is found. If the
identity is FlO_MENU, the message is passed to the window with identity FlO_CLIENT.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
TRUE.

Related Messages
• WM_MENUSELECT

WM_NEXTMENU (in Frame Controls)
For the cause of this message, see "WM_NEXTMENU" on page 1 0-63.

For a description of the parameters, see "WM_NEXTMENU" on page 10-63.

Remarks
The frame control window procedure processes the message by returning the handle of the
system menu window if hwndMenu is the handle of the main action bar window, or by
returning the handle of the main action bar window if hwndMenu is the handle of the system
menu window.

Default Processing
The default window procedure takes no action on this message, other than to set
hwndNewMenu to NULLHANOLE.

Related Messages
• WM_NEXTMENU

WM_OWNERPOSCHANGE
This message is sent by a frame window processing the WM_AOJUSTFRAMEPOS
message.

13-18 PM Programming Reference Vol II

Parameters
param1

ppswp (PSWP)
Owned window state.

This points to a SWP structure.

The receiver of this message is expected to alter this SWP parameter to the
appropriate values relative to the new position and/or size of its owner, whose new
position and size is specified in a SWP structure in the ppswpOwner parameter.

param2

ppswpOwner (PSWP)
Owner window state.

This points to a SWP structure.

This represents the new position and size of the owner window.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

WM_PAINT (in Frame Controls)
For the cause of this message, see "WM_PAINT" on page 10-66.

For a description of the parameters, see "WM_PAINT" on page 10-66.

Default Processing
The frame is redrawn as governed by the FCF _BORDER or FCF _ DLGBORDER style. A
WM_ERASEBACKGROUND message is sent to FID_CLlENT window, and if it returns
FALSE, then the FID_CLlENT window is erased to the system-provided window background
color and sets ulReserved to o.

Related Messages
• WM PAINT

Chapter 13. Frame Control Window Processing 13-19

WM_QUERYBORDERSIZE
This message is sent to the frame window to determine the width and height of the border of
the window.

Parameters
param1

pSize (PWPOINT)

param2

Width and height of size border control.

This points to a POINTl structure, that is used to hold the width in the x parameter
and the height in the y parameter.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

Remarks
The frame window responds to this message by returning the width and height of its border
in the pSize parameter, as follows:

• SV _ CX/CYSIZEBORDER if FCF _ SIZE BORDER is specified
• SV _ CX/CYDlGFRAME if FCF _DlGBORDER is specified
• SV _CX/CYBORDER if FS_BORDER is specified.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

WM_QUERYCONVERTPOS (in Frame Controls)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 10-72.

For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 10-72.

Remarks
The frame control window procedure returns QCP _NOCONVERT.

13-20 PM Programming Reference Vol II

Default Processing
For the default window procedure processing of this message see
WM_QUERYCONVERTPOS

Related Messages
• WM_QUERYCONVERTPOS

WM_QUERYFOCUSCHAIN
This message is used to request the handle of a window in the focus chain.

Parameters
param1

fsCmd (USHORT)
Command to be performed.

This field contains a flag to indicate what action is to be performed:

QFC_NEXTINCHAIN

QFC_ACTIVE

Return the next window in the focus chain.

The hwndParent parameter is not used.

Return the handle of the frame window that would be
activated or deactivated, if this window gains or loses the
focus.

The window handle returned is a child of the window
specified by the hwndParent parameter.

Return the handle of the first frame window associated
with this window.

The hwndParent parameter is not used.

QFC _ SELECT ACTIVE Return the handle of the window from the group of owned
windows to which this window belongs which either
currently has the focus or, if no window has the focus,
previously had the focus.

Return NULL, if no window in the owner group has had
the focus.

The hwndParent parameter is not used.

QFC_PARTOFCHAIN Return TRUE if the handle of the window identified by the
hwndParent parameter is in the focus chain, otherwise
return FALSE.

Because this message is passed along the focus chain,
this is equivalent to returning TRUE, if the handle of the
window receiving this message is hwndParent or to
returning FALSE, if it is not.

Chapter 13. Frame Control Window Processing 13-21

param2

hwndParent (HWND)
Parent window.

Returns
hwndResult (HWND)

Handle of the window requested.

o No window handle exists for this case of the fsCmd parameter

This value ls also to be interpreted as FALSE for the case when the fsCmd is
set to QFC_PARTOFCHAIN.

Other Handle of the window requested.

Remarks

This value is also to be interpreted as TRUE for the cases when the fsCmd is
set to QFC_PARTOFCHAIN.

The frame control window procedure responds to this message by returning the appropriate
window handle, as described under the fsCmd field.

Default Processing
The default window procedure takes the same action as the frame control window procedure.

WM_QUERYFRAMECTLCOUNT
This message is sent to the frame window in response to the receipt of a WM_SIZE or a
WM_UPDATEFRAME (in Frame Controls) message.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sControlCount (SHORT)

Count of frame controls.

13-22 PM Programming Reference Vol II

Remarks
By sending this message to itself, any procedures that subclass the frame window become
aware that the number of frame controls is being calculated and include any special frame
controls of the subclass in the count.

This count is used to allocate the appropriate number of SWP structures that are passed in
the WM_FORMATFRAME (in Frame Controls) message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sControlCount to the default value of O.

WM_QUERYFRAMEINFO
This message enables an application to query information about frame windows.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
flFlags (ULONG)

Frame information flags.

FI_FRAME
FI_ OWNERHIDE
FI_NOMOVEWITHOWNER
FI_ACTIVATEOK

Remarks

Identifies a frame window.
The frame window is hidden when its owner is hidden.
The frame window does not move with its owner.
The frame window may be activated. This means, for
example, that the frame window is not disabled.

This message can be used to query whether or not a particular window is a frame window.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Chapter 13. Frame Control Window Processing 13-23

WM_QUERYICON
This message is sent to a frame window to query its associated icon.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
hptrlcon (HPOINTER)

Handle to the icon.

Default Processing
The icon for the frame is returned.

'.

WM_QUERYWINDOWPARAMS (in Frame Controls)
This message occurs when an application queries the frame control window parameters.

For a description of the parameters, see "WM_QUERYWINOOWPARAMS" on page 1 0-75.

Default Processing
The frame control window procedure queries the appropriate window parameters in
accordance with pwndparams and sets rc to TRUE if the operation is successful, otherwise
to FALSE.

The window text of a frame control is obtained by sending this message to its
FlO _ TITLEBAR.

Related Messages
• WM_QUERYWINOOWPARAMS

13·24 PM Programming Reference Vol II

WM_SETBORDERSIZE
This message is sent to the frame window to change the width and height of the border.

Parameters
param1

uscx (USHORT)
Width of border.

param2

uscy (USHORT)
Height of border.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The frame control sets the width and height to usex and usey respectively.

Default Processing
The default window procedure takes no action on this message, other than to set re to
FALSE.

WM_SETICON
This message is sent to a frame window to set its associated icon.

Parameters
param1

hptrlcon (HPOINTER)
New icon handle.

param2

ulReserved (UlONG)
Reserved value, should be O.

Chapter 13. Frame Control Window Processing 13-25

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Default Processing
The icon for the frame is set.

WM_SETWINDOWPARAMS (in Frame Controls)
This message occurs when an application sets or changes the frame control window
parameters.

For a description of the parameters, see "WM_SETWINOOWPARAMS" on page 10-86.

Default Processing
The frame control window procedure sets the appropriate window parameters in accordance
with pwndparams and sets rc to TRUE if the operation is successful, otherwise to FALSE.

The window text of a frame control is set by sending this message to its FlO _ TITlEBAR.

Related Messages
• WM_SETWINOOWPARAMS

WM_SIZE (in Frame Controls)
For the cause of this message, see "WM _SIZE" on page 1 0-88.

For a description of the parameters, see "WM_SIZE" on page 10-88.

Default Processing
The frame control window procedure responds to this message by sending a
WM_FORMATFRAME (in Frame Controls) message to itself and by setting ulReserved to o.

Related Messages
• WM_SIZE

13-26 PM Programming Reference Vol II

WM_SVSCOMMAND
This message occurs when a control window has a significant event to notify to its owner, or
when a key stroke has been translated by an accelerator table into a WM_SYSCOMMAND.

Parameters
param1

uscmd (USHORT)
Command value.

The frame control takes the action described on these uscmd values:

SC MAXIMIZE

SC NEXT

SC_APPMENU

SC_CLOSE

SC NEXTFRAME

SC NEXTWINDOW

Sends a WM_TRACKFRAME (in Frame Controls) to the
frame window.

Sends a WM_TRACKFRAME (in Frame Controls) to the
frame window.

If a control with the identifier FID_MINMAX is present,
minimizes the frame window, or restores it to a
remembered size and position.

If a control with the identifier FID_MINMAX is present,
maximizes the frame window, or restores it to a
remembered size and position.

When a window is moved or sized in the normal way at
least one border should remain on the screen. When a
window is maximized and ttle maximum size is as large as
the screen, all borders should be positioned just outside
the screen.

If a control with the identifier FID_MINMAX is present,
restores a maximized frame window to its previous size
and position.

Cycles the active window status to the next main window.

Sends a MM_STARTMENUMODE message to the control
with the identifier FID_MENU.

Sends a MM_STARTMENUMODE message to the control
with the identifier FID_SYSMENU.

If Close is not enabled in the system menu, this message
is ignored. Otherwise the frame posts a WM_CLOSE
message to the client if it exists or to itself, if not.

The next frame window that is a child of the desktop
window is activated.

The next window with the same owner window is
activated.

Chapter 13. Frame Control Window Processing 13-27

param2

SC_ TASKMANAGER The Task List is activated.

SC_HElPEXTENDED The frame manager sends HM_EXT_HElP to the
associated Help Manager Object Window. If there is no
such associated window, the original message is sent to
the client.

SC HElPKEYS The frame manager sends HM_KEYS_HElP to the
associated Help Manager Object Window. If there is no
such associated window, the original message is sent to
the client.

SC HElPINDEX The frame manager sends HM_HElP JNDEX to the
associated Help Manager Object Window. If there is no
such associated window, the original message is sent to
the client.

SC_HIDE Sets the visibility state of the frame window to off causing
it to appear hidden or invisible.

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control: uscmd is the
window identifier of the push button.

CMDSRC_MENU Posted by a menu control: uscmd is the identifier of
the menu item.

CMDSRC_ACCElERATOR Posted as the result of an accelerator: uscmd is the
accelerator command value.

fpointer (BOOl)
Pointing-device indicator.

Other source: uscmd gives further control-specific
information defined for each control type.

TRUE
FALSE

The message is posted as a result of a pOinting-device operation.
The message is posted as a result of a keyboard operation.

ulReserved (UlONG)
Reserved value, should be O.

Remarks
This message is posted to the window procedure of the owner of the frame control.
ulReserved is set to O.

13-28 PM Programming Reference Vol II

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

WM_ TRACKFRAME (in Frame Controls)
This message is sent to a frame window whenever it is to be moved or sized.

Parameters
param1

fsTrackFlags (USHORT)
Tracking flags.

Contains a combination of one or more TF _ * flags; for details, see the TRACKINFO
data structure.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

Successful completion TRUE
FALSE Error occurred, or the operation is terminated.

Remarks
The frame control window procedure responds to this message by causing a tracking
rectangle to be drawn to move or size the window. For information, see the WinTrackRect
function.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
TRUE.

Related Messages
• WM TRACKFRAME

Chapter 13. Frame Control Window Processing 13-29

WM_TRANSLATEACCEL (in Frame Controls)
For the cause of this message, see "WM _ TRANSLA TEACCEL" on page 1 0-95.

For a description of the parameters, see "WM_TRANSLATEACCEL" on page 10-95.

Remarks
The frame control window procedure processes the message by checking whether the
character is in the accelerator table, by using the WinTranslateAccel function.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_TRANSLATEACCEL

WM_TRANSLATEMNEMONIC (in Frame Controls)
For the cause of this message, see "WM_TRANSLATEMNEMONIC" on page 10-96.

For a description of the parameters, see "WM_TRANSLATEMNEMONIC" on page 10-96.

Remarks
The frame control window procedure processes the message by sending it to the application
menu window, that is, the window with the identity FlO_MENU.

Default Processing
For the default window procedure processing of this message, see
"WM_TRANSLATEMNEMONIC" on page 10-96.

Related Messages
• WM_TRANSLATEMNEMONIC

WM_UPDATEFRAME (in Frame Controls)
For the cause of this message, see "WM_UPOATEFRAME" on page 10-97.

For a description of the parameters, see "WM_UPOATEFRAME" on page 10-97.

Remarks
This message must be sent to the frame window whenever an application adds or removes
one of the frame controls identified by the FCF _ * flags. It must also be sent if the
application adds or removes a submenu of the menu bar of the frame window.

The frame control window procedure first sends the message on to the FlO_CLIENT window.
The FlO_CLIENT window might either reformat the frame window and set rc to TRUE, in

13-30 PM Programming Reference Vol II

which case the frame control window procedure takes no further action, or it might set rc to
FALSE, in which case the frame control window procedure performs the reformatting.

If flCreateFlags contains FCF _ SIZEBORDER, reformatting the frame window includes
invalidating the area occupied by the size border.

The frame control window procedure sets rc to TRUE.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
TRUE.

Related Messages
• WM_UPDATEFRAME

Chapter 13. Frame Control Window Processing 13-31

13-32 PM Programming Reference Vol II

Chapter 14. List Box Control Window Processing

This system-provided window procedure processes the actions on a list box control
(VIIC _ LlSTBOX).

Purpose
A list box control is a window containing a list of items. Each item in a list box contains a
text string (0 or more characters) and a handle. The text string is displayed in the list box
window. The handle can be used by the application to refer to other data associated with
each item.

List Box Control Styles
These list box control styles are available:

LS_HORZSCROLL The list box control enables the operator to scroll the list box
horizontally.

LS_MUL TIPLESEL The list box control enables the operator to select more than one
item at anyone time. Lists that do not have this style allow only a
single selection at anyone time. If this style is specified,

~ LS_EXTENDEDSEL should also be specified.

LS_EXTENDEDSEL If this style is specified, the extended selection user interface is
enabled.

LS_OWNERDRAW The list box control has one or more items that can be drawn by the
owner. Typically, these items are represented by bit maps rather
than by text strings.

LS_NOADJUSTPOS If this style is included, the list box control is drawn at the size
specified. This can cause parts of an item to be shown.

List Box Control Data
None.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_FIELDBACKRGOUND
SYSCLR_BUTTONDARK
SYSCLR_WINDOW
SYSCLR_ WINDOWTEXT
SYSCLR _ ENTRYFIELD
SYSCLR_HILITEFOREGROUND
SYSCLR_HILITEBACKGROUND
SYSCLR_ WINDOWFRAME

© Copyright IBM Corp. 1994 14-1

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP _DISABLEDFOREGROUNDCOLOR
PP_FOREGROUNDCOLOR
PP _HILITEFOREGROUNDCOLOR
PP _BORDERCOLOR

14-2 PM Programming Reference Vol II

List Box Control Notification Messages
These messages are initiated by the list box control window to notify its owner of significant
events.

WM_CONTROL (in List Boxes)
For the cause of this message, see "WM_ CONTROL" on page 1 0-39.

Parameters
param1

id (USHORT)
Control-window identity.

usnotifycode (USHORT)
Notify code.

param2

The list box control window procedure uses these notification codes:

LN_ENTER Either the Enter or Return key has been pressed while the list
box control has the focus, or the list box control has been
double-clicked.

LN_KILLFOCUS The list box control loses the focus.

LN_SCROLL The list box control is about to scroll horizontally. This can
happen when the application has issued a WinScrollWindow
function.

LN _ SETFOCUS The list box control receives the focus.

LN_SELECT An item is being selected (or deselected).

Note: To discover the index of the selected item, the
application must use the LM_QUERYSELECTION
message.

hwndcontrolspec (HWNO)
List box control window handle.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 14. List Box Control Window Processing 14-3

Remarks
The list box control window procedure generates this message and sends it to its owner,
informing the owner of this event.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_CONTROl

WM_DRAWITEM (in List Boxes)
This notification is sent to the owner of a list box control each time an item is to be drawn.

Parameters
param1

idListBox (USHORT)
Window identifier.

The window identity of the list box control sending this notification message.

param2

pOwnerltem (POWNERITEM)
Owner-item structure.

This points to an owner-item structure; see "OWNERITEM" on page A-136.

Returns
rc (BOOl)

Item-drawn indicator.

TRUE
FALSE

Remarks

The owner draws the item, so the list box control does not draw it.
If the item contains text and the owner does not draw the item, the owner
returns this value, and the list box control draws the item.

The list box control window procedure only draws items that are represented by text strings
and emphasizes selected items by inverting them.

If an application uses list box controls containing items that are not represented by text
strings, or requires that the emphasized state of an item is to be drawn in a special manner,
the list box control must specify the style lS_OWNERDRAW and those items must be drawn
by the owner.

14-4 PM Programming Reference Vol II

The list box control window procedure generates this message and sends it to the owner of
the list box control, informing the owner that an item is to be drawn, offering the owner the
opportunity to draw that item, and indicating that either the item has been drawn, or that the
list box control is to draw it.

The item text must not be changed during the processing of this message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Related Messages
• WM_DRAWITEM

WM_MEASUREITEM (in List Boxes)
This notification is sent to the owner of a list box control to establish the height and width for
an item in that control.

Parameters
param1

sListBox (SHORT)
List-box identifier.

param2

sltemlndex (SHORT)
Item index.

The zero-based index of the item which has changed.

Returns
ReturnCode

sHeight (SHORT)
Height of item.

sWidth (SHORT)
Width of item.

This value is required only if the list box control is scrollable horizontally, that is, it
has a style of LS_HORZSCROLL.

Remarks
This message is sent to the owner of a list box that has a style of LS_OWNERDRAW, to
offer the owner an opportunity to establish the height and width (for a horizontally scrollable

Chapter 14. List Box Control Window Processing 14-5

list box control) of an item that accommodates any spe<;:ial requirements for the drawing of
items in that list box. It is sent when items in the list box are inserted or deleted, and also
when presentation parameters for the list box change.

All items in a list box must have the same height, which must be greater than or equal to the
height of the current font.

In particular, this notification is sent to the owner of a list box that has a style of
LS_OWNERDRAW, to offer the owner an opportunity to establish the height and width (for a
horizontally scrollable list box control) of an item that accommodates any special
requirements for the drawing of items in that list box.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sHeight to the default value of O.

Related Messages
• WM_MEASUREITEM

14-6 PM Programming Reference Vol II

List Box Control Window Messages
This section describes the list box control window procedure actions on receiving the
following messages.

LM DELETEALL
This message is sent to a list· box control to delete all the items in the list box.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be o.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The list box control window procedure responds to this message by deleting all the items in
the list box and by setting rc to TRUE.

Default Processing
The default window procedure does not expect to receive this message and, therefore, takes
no action on it, other than to set rc to the default value of FALSE.

LM_DELETEITEM
This message deletes an item from the list box control.

Parameters
param1

sltemlndex (SHORT)
Item index.

The zero-based index of the item to be deleted.

Chapter 14. List Box Control Window Processing 14-7

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sltemsLeft (SHORT)

Number remaining.

The number of items in the list after the item is deleted.

Remarks
The list box control window procedure tesponds to this message by deleting the indexed item
of the list box and by setting s/temsLeft to the count of the items in the list after the item is
deleted.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sltemsLeft to the default value of O.

LM INSERTITEM
This message inserts an item into a list box control.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

LIT END
LIT _SORTASCENDING
LIT _ SORTDESCENDI NG
Other

pszltemText (PSZ)
Item text.

Add the item to the end of the list.
Insert the item into the list sorted in ascending order.
Insert the item into the list sorted in descending order.
Insert the item into the list at the offset specified by this
zero-based index.

This points to a string containing the item text.

14-8 PM Programming Reference Vol II

Returns
slndexlnserted (SHORT)

Index of inserted item.

LIT _MEMERROR The list box control cannot allocate space to insert the list item in
the list.

LIT_ERROR An error, other than LlT_MEMERROR, occurred.

Other The zero-based index of the offset of the item within the list.

Remarks
The list box control window procedure responds to this message by inserting the item text
identified by the pszltemText parameter into the position in the list specified by the
sltemlndex parameter.

The sorting sequence used is that defined by the WinCompareStrings function.

The list box control sets slndexlnserted to the zero-based index of the offset of the item
within the list.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set slndexlnserted to the default value of o.

LM_INSERTMUL TITEMS
This message inserts one or more items into a list box.

Parameters
param1

pListboxlnfo (PLBOXINFO)
Pointer to a structure containing list box information.

param2

papszText (PSZ *)
Pointer to an array of pointers to text strings.

This parameter is a pOinter to an array of pOinters to zero-terminated strings. The
array must contain at least ulltemCount items. (ulltemCount is a field in
LBOXINFO.)

If this parameter is set to NULL, a ulltemCount number of empty items are inserted
into the list. This is useful for ownerdraw listboxes that do not make use of text
strings.

Chapter 14. List 'Box Control Window Processing 14-9

Returns
ICount (LONG)

Number of items successfully inserted into the list. -

If the number of items is not the same as uJltemCount,an error has occured.

Remarks
LMJNSERTMULTITEMS inserts multiple items into a list box at one time, up to 32768
items.

If either LIT _SORTASCENDING or LIT _SORTDESCENDING is specified in the Jltemlndex
field of LBOXINFO, then the complete list is sorted after the items have been inserted. If
items are being added using several LM_INSERTMUL TITEMS messages, it is faster to
specify LIT_END for all the insert messages except the last one, and then set one of the sort
flags to sort the entire list after the last set of items have been inserted.

The sorting sequence is the same as that defined for WinCompareStrings.

WM_MEASUREITEM (in List Boxes) is sent to the owner of an ownerdraw list box for every
item inserted into the list box.

Default Processing
The default message procedure sets ICount to zero.

LM_ QUERYITEMCOUNT
This message returns a count of the number of items in the list box control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sltemCount (SHORT)

Item count.

Remarks
The list box control window procedure responds to this message by setting sltemCount to the
number of items in the list.

14-10 PM Programming Reference Vol II

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sltemCount to the default value of O.

LM_QUERYITEMHANDLE
This message returns the handle of the indexed item of the list box control.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

ulReserved (ULONG)
Reserved value, should be O~

Returns
ulltem (ULONG)

Item handle.

o The indexed item does not exist.
Other Item handle.

Remarks
The meaning of the item handle is defined by the application. It may, for example, be a
pointer to an application defined data structure.

Item handles are initialized to NULLHANDLE when an item is created. The list box control
window procedure responds to this message by setting ulltem to the handle of the item
whose index is specified by sltemlndex.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set ulltem to the default value of NULLHANDLE.

The item handle is initialized to NULLHANDLE.

Chapter 14. List Box Control Window Processing 14-11

LM_QUERYITEMTEXT
This message returns the text of the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

smaxcount (SHORT)
Maximum count.

param2

o No text is copied.
Other Copy the item text as a null-terminated string, but limit the number of

characters copied, including the null termination character, to this value.

pszltemText (PSZ)
Buffer into which the item text is to be copied.

This points to a string (character) buffer.

Returns
sTextLength (SHORT)

Length of item text.

The length of the text string, excluding the null termination character.

Remarks
The list box control window procedure responds to this message by copying up to smaxcount
characters, as a null-terminated string, from the text of the item specified by sltemlndex into
the buffer identified by pszltemText.

The length of the item text can be determined by using the LM_QUERYITEMTEXTLENGTH
message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sTextLength to the default value of O.

14-12 PM Programming Reference Vol II

LM_QUERVITEMTEXTLENGTH
This message returns the length of the text of the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sTextLength (SHORT)

Length of item text.

The length of the text string, excluding the null termination character.

LIT_ERROR Error occurred. For example, the item specified by its index does not
exist.

Other Length of item text.

Remarks
The list box control window procedure responds to this message by setting sTextLength to
the length in characters of the text of the item specified by sltemlndex.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than set sTextLength to the default value of O.

LM_QUERVSELECTION
This message is used to enumerate the selected item, or items, in a list box.

Parameters
param1

sltemStart (SHORT)
Index of the start item.

If the list box allows multiple selected items, that is, if it has a style of
LS_MULTIPLESEL, then this parameter !ndicates the index of the item from which
the search for the next selected item is to begin. Therefore, to get all the selected

Chapter 14. List Box Control Window Processing 14-13

param2

items of the list, this message is sent repeatedly, each time setting this parameter to
the index of the item returned by the previous usage of this message.

If this parameter is set to LIT_CURSOR the index of the item in the list box which
currently has the cursor is returned.

If the list box only allows a single selection, this parameter is ignored.

LIT_CURSOR Return the index of the item in the list box which currently has the
cursor.

LIT_FIRST

Other

Start the search at the first item.

Start the search after the item specified by this index.

ulReserved (ULONG)
, Reserved value, should be o.

Returns
sltemSelected (SHORT)

Index of the selected item.

LIT_NONE No selected item.

For a single selection list box, this implies that there is no selected item in
the list box. For a multiple selection list box, this implies that there is no
selected item in the list box whose index is higher than the index specified
by the sltemStart parameter.

Other Index of selected item. For a single selection list box, this is the index of
the only selected item in the list box. For a multiple selection list box, this
is the index of the next selected item in the list box whose index is higher
than the index specified by the sltemStart parameter.

Remarks

If s/temStart is set to LIT_CURSOR, the index of the list-box item which
currently has the cursor is returned.

The list box control window procedure responds to this message by returning in
sltemSelected the zero-based index of the selected item or next selected item after
sltemStart, if any.

Default Processing
The default window procedure does not expect to receive this message and therefore takes

,no action on it, other than set sltemSelected to the default value of o.

14-14 PM Programming Reference Vol II

LM_QUERYTOPINDEX
This message obtains the index of the item currently at the top of the list box.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
sltemTop (SHORT)

Index of the item currently at the top of the list box:

LIT_NONE No items in the list box
Other Index of the item currently at the top of the list box.

Remarks
The list box control window procedure responds to this message by returning in sltemTop the
zero-based index of the item currently at the top of the list box.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sltemTop to the default value of o.

LM_SEARCHSTRING
This message returns the index of the list box item whose text matches the string.

Parameters
param1

uscmd (USHORT)
Command.

Defines the criteria by which the string specified by the pszSearchString parameter
is to be compared with the text of the items, to determine the index of the first
matching item.

These values can be combined using the logical-OR operator:

Chapter 14. List Box Control Window Processing 14-15

LSS _ CASESENSITIVE Matching occurs if the item contains the characters
specified by the pszSearchString parameter exactly.

LSS_SUBSTRING

sltemStart (SHORT)
Index of the start item.

This value is mandatory.

Matching occurs if the leading characters of the item
contain the characters specified by the pszSearchString
parameter.

If this value is specified, LSS_SUBSTRING must not be
specified.

Matching occurs if the item contains a substring of the
characters specified by the pszSearchString parameter.

If this value is specified, LSS_PREFIX must not be
specified.

LIT FIRST Start the search at the first item.
Other Start the search after the item specified by this index.

param2

pszSearchString (PSZ)
Search string.

This points to the string to search for.

Returns
sltemMatched (SHORT)

Index item whose text matches the string.

LIT_ERROR
LIT_NONE
Other

Remarks

Error occurred
No item found
Index item whose text matches the string.

The list box control window procedure responds to this message by setting sltemMatched to
the index of the next item whose text matches the string specified by pszSearchString.

All the items of the list are searched until a match is found, that is, the search wraps from the
end to the start of the list.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sltemMatched to the default value of o.

14-16 PM Programming Reference Vol II

LM_ SELECTITEM
This message is used to set the selection state of an item in a list box.

Parameters
param1

sltemlndex (SHORT)
Index of the item to be selected or deselected:

LIT_NONE All items are to be deselected
Other Index of the item to be selected or deselected.

param2

usselect (USHORT)
Select flag.

(Ignored if sltemlndex is set to LIT_NONE).

TRUE The item is selected. If the control is a single selection list box (that is, it
does not have the style of lS_MUlTIPlESEl), any previously selected
item is deselected.

FALSE The item is deselected.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred. For example, when the item does not exist in the list box, or
when an item that is not selected is deselected.

The list box control window procedure responds to this message by setting the selection
state, as indicated .by usselect, of the item whose index is specified in sltemlndex.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Chapter 14. List Box Control Window Processing 14-17

LM_SETITEMHANDLE
This message sets the handle of the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

ulltemHandle (UlONG)
Item handle.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The meaning of the item handle is defined by the application. It may, for example, be a
pointer to an application defined data structure.

Item handles are initialized to NUllHANDlE when an item is created.

The list box control window procedure responds to this message by setting the handle of the
item whose index is specified by sltemlndex to the value specified by ulltemHandle.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

14-18 PM Programming Reference Vol II

LM_SETITEMHEIGHT
This message sets the height of the items in a list box.

Parameters
param1

flNewHeight (UlONG)
Height of items in list box.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful operation
Error occurred.

The list box control window procedure responds to this message by setting the height of the
items in a list box to that specified by flNewHeight.

This message does not send a WM_MEASUREITEM message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

LM SETITEMTEXT
This message sets the text into the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

Chapter 14. List Box Control Window Processing 14-19

param2

pszltemText (PSZ)
Item text.

This points to a string containing the text to set the list-box item to.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The list box control window procedure responds to this message by copying the text
identified by the pszltemTextparameter into the item in the list specified by the sltemlndex
parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

LM_SETITEMWIDTH
This message sets the width of the items in a list box.

Parameters
param1

INewWidth (UlONG)
Width of items in list box.

param2

reserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

14-20 PM Programming Reference Vol II

Remarks
The list box control window procedure responds to this message by setting the width of the
items in a list box to that specified by INewWidth.

Note: Only list boxes with the lS_HORZSCROll style set will respond to this message.

This message does not send a WM_MEASUREITEM message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

LM SETTOPINDEX
This message is used to scroll a particular item to the top of the list box.

Parameters
param1

sltemlndex (SHORT)
Index of the item to be made top.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The list box control window procedure responds to this message by scrolling the item whose
index is identified by sltemlndex to the top of the list box.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Chapter 14. List Box Control Window Processing 14-21

WM_CHAR (in List Boxes)
For the cause of this message, see "WM _CHAR" on page 1 0-32.

For a description of the parameters, see "WM _CHAR" on page 1 0-32.

Remarks
The list box control window procedure responds to this message by sending it to its owner if
it has not processed the key stroke. This is the most common means by which the input
focus is switched around the various controls in a dialog box.

The key strokes processed by a list box control are:

Down Arrow

Up Arrow

Page Down

Page Up

Moves the selection down one item, scrolling the list box by one item, if
necessary, to make the next item visible. When the selection reaches the
bottom, the Down Arrow has no effect.

Moves the selection up one item, scrolling the list box by one item, if
necessary, to make the previous item visible. When the selection reaches
the top, the Up Arrow has no effect

Moves the selection down one page, scrolling the list box by the number of
items visible in the list box.

For example, if the list box displays seven items and item 1 is selected and
positioned at the top of the list box, pressing the Page Down key causes
item 8 to be selected and displayed at the top of the list box. Pressing
Page Down when the last item is selected has no effect.

Moves the selection up one page, scrolling the list box by the number of
items visible in the list box.

For example, if the list box displays seven items and item 8 is selected and
positioned at the top of the list box, pressing the Page Up key causes item
1 to be selected and displayed at the top of the list box. Pressing the
Page Up key when the first item is selected has no effect.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE

Related Messages
• WM_CHAR

14-22 PM Programming Reference Vol II

WM_QUERYCONVERTPOS (in List Boxes)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 10-72.

For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 10-72.

Remarks
The list box control window procedure returns QCP _NOCONVERT.

Default Processing
For the default window procedure processing of this message see
"WM_QUERYCONVERTPOS" on page 10-72.

Related Messages
• WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in List Boxes)
Occurs when an application queries the list box control window parameters.

For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 10-75.

Remarks
The list box control window procedure responds to this message by passing it to the default
window procedure'.

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure, identified by pwndparams, to 0 and sets rc to FALSE.

Related Messages
• WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS (in List Boxes)
This message occurs when an application sets or changes the list box control window
parameters.

For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 10-86.

Remarks
The list box control window procedure responds to this message by passing it to the default
window procedure.

Default Processing
The default window procedure takes no action on this message, other than to set result to
FALSE.

Chapter 14. List Box Control Window Processing 14-23

Related Messages
• WM_SETWINDOWPARAMS

14-24 PM Programming Reference Vol II

Chapter 15. Menu Control Window Processing

This system-provided window procedure processes the actions on a menu control
(WC_MENU).

Purpose
A menu control is a child or pull-down window that contains a list of selection items. These
items can be represented by text strings, separators, bit maps or menu buttons. Menu
templates can be loaded as resources and the menu can be created automatically when the
parent window is created. The application can build the menu dynamically by sending
MMJNSERTITEM messages. An application can change a menu by sending messages to
it.

Menus enable the operator to select one of the items in the list, using the pointing device or
the keyboard. When a selection is made, the menu parent is notified by posting a
WM_COMMAND, WM_SYSCOMMAND, or WM_HELP message and a unique identifier
representing the operator's selection.

Menus automatically resize themselves when items are added and removed. Menus are
automatically destroyed when their owner is destroyed.

Typically, an application has an action bar menu and several submenus. The action bar is
normally visible, and is a child window in the parent window frame. The submenus are
normally hidden and become visible when selections are made on the action bar.

Menu Control Styles
These menu control styles are available:

MS_ACTIONBAR The items in the list are displayed side-by-side. This
style is used to implement a top level menu. Menus that
do not have this style are displayed in one or more
columns and are submenus associated with an action
bar.

MS_ CONDITIONALCASCADE

© Copyright IBM Corp. 1994

All menu controls have styles CS_SYNCPAINT and
CS PARENTCLIP.

This style is used to specify that the items in this list are
a conditional cascade menu. Conditional cascade menus
act like normal cascade menus with the exception that
the cascade does not automatically open when the user
selects it. To open the conditional cascade menu, the
mini-pushbutton on the menu item must be selected. If
the menu is selected without opening the cascade, the
default item in the cascade is selected. The default
action on the cascade is identified by a check mark.

15-1

MS_ TITLEBUlTON

MS_ VERTICALFLIP

Menu Item Styles

Used to identify menus that can be used as buttons in
the title bar. Can only be used with MS_ACTIONBAR.

This style causes the menu to be drawn using the CUA
colors specified for the title bar rather than the action bar.

Normally, pull-down menus (the default, without the
MS_VERTICALFLIP style) are displayed below their
associated action bar item. If there is not room on the
screen to display the entire pull-down in this manner, and
if there is room to display the pull-down above the action
bar, it is displayed above the action bar. Pull-down
menus with the MS_ VERTICALFLIP style are flipped
vertically. That is, they are displayed above the menu if
possible, otherwise below it. The vertical flip style must
be set explicitly by the application when the window is
minimized, and must be reset when it is restored.

If an application action bar contains this style, the style is
applied to all pull-down menus belonging to the action
bar (the style does not directly affect the display of the
action bar). This provides a convenient means for the
application to flip the appearance of all pull-down menus.

These menu item styles are available:

MIS_SUBMENU

MIS_SEPARATOR

MIS_BITMAP

MIS_TEXT

The item is a submenu. When the user selects this type of
item, a submenu is displayed from which the user must make
further selection. Items that are not submenu items are
command items.

The display object is a horizontal dividing line. This type of
item can only be used in pull-down menus. This type of item
cannot be enabled, checked, disabled, highlighted, or selected
by the user. The functional object is NULL when this style is
specified.

The display object is a bit map.

The display object is a text string.

MIS_BUlTONSEPARATOR The item is a menu button. Any menu can have zero, one, or
two items of this type. These are the last items in a menu and
are automatically displayed after a separator bar. The user
cannot move the cursor to these items, but can select them
with the pointing device or with the appropriate key.

MIS_BREAK The item begins a new row or column.

15-2 PM Programming Reference Vol II

MIS_BREAKSEPARATOR Same as MIS_BREAK, except that it draws a separator
between rows or columns of a pull-down menu. This style can
only be used within a submenu.

MIS_SYSCOMMAND If this item is selected, the menu notifies the owner by posting
a WM_SYSCOMMAND message rather than a
WM_ COMMAND message.

MIS_OWNERDRAW Items with this style are drawn by the owner. WM_DRAWITEM
and WM_MEASUREITEM notification messages are sent to the
owner to draw the item or determine its size.

MIS_HELP If the item is selected, the menu notifies the owner by posting a
WM_HELP message rather than a WM_COMMAND message.

MIS_STATIC This type of item exists for information purposes only. It cannot
be selected with the pointing device or keyboard.

Menu Item Attributes
Applications can get and set the state of these attributes by sending MM_QUERYITEMATTR
and MM_SETITEMATTR messages.

These menu item attributes are available:

MIA_CHECKED

MIA_DISABLED

MIA_FRAMED

MI~NODISMISS

Default Colors

The state of this attribute is TRUE, if and only if, the item is
selected.

If this attribute is TRUE a check mark appears next to the item.

This attribute is TRUE if the item is disabled and cannot be
selected. The item is drawn in a disabled state.

If this attribute is TRUE a frame is drawn around the item.

If this item is selected, the pull-down menu containing this item
should not be hidden before notifying the application window of
the selection. A menu with this attribute is not hidden until
such time as the application or user explicitly does so, for
example by selecting either another menu on the action bar or
by pressing the escape key.

The following system colors are used when the system draws button controls:

SYSCLR WINDOWFRAME
SYSCLR_BUTTONDARK
SYSCLR_ BUTTONLIGHT
SYSCLR_ SHADOW
SYSCLR TITLE BOTTOM
SYSCLR _ DIALOGBACKGROUND

Chapter 15. Menu Control Window Processing 15-3

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_FOREGROUNDCOLOR
PP _HILITEFOREGROUNDCOLOR
PP _BORDERCOLOR
PP _DISABLEDFOREGROUNDCOLOR

15-4 PM Programming Reference Vol II

Menu Control Notification Messages
These messages are initiated by the menu control window procedure to notify its owner of
significant events.

WM_COMMAND (in Menu Controls)
For the cause of this message, see "WM_COMMAND" on page 10-37.

For a description of the parameters, see "WM_COMMAND" on page 10-37.

The menu control window procedure sets uscmd to the menu-item identity.

Remarks
The menu control window procedure generates this message if the WM_MENUSELECT (in
Menu Controls) message returns a rc of TRUE. when an item is selected that does not have
the style of MIS_SYSCOMMAND or MIS_HELP. The menu control window procedure posts
the message to the queue of the window owner.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ COMMAND

WM_DRAWITEM (in Menu Controls)
This notification is sent to the owner of a menu control each time an item is to be drawn.

Parameters
param1

idMenu (USHORT)
Window identifier.

The window identity of the menu control sending this notification message.

param2

pOwnerltem (POWNERITEM)
Owner-item structure.

This points to an owner-item structure; see "OWNER ITEM" on page A-136.

Chapter 15. Menu Control Window Processing 15-5

Returns
rc (Baal)

Item-drawn indicator.

TRUE
FALSE

Remarks

The owner draws the item, and so the menu control does not draw it.
If the item contains text and the owner does not draw the item, the owner
returns this value and the menu control draws the item.

The menu control window procedure only draws items that are represented by text strings
and emphasizes selected items by inverting them.

If an application uses menu controls containing items that are not represented by text strings,
or requires that the emphasized state of an item is to be drawn in a special manner, then the
menu control must specify the style MIS_OWNERDRAW and those items must be drawn by
the owner.

The menu control window procedure generates this message and sends it to its owner,
informing the owner that an item is to be drawn, offering the owner the opportunity to draw
that item, and to indicate that either the item has been drawn, or that the menu control is to
draw it.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Related Messages
• WM DRAWITEM

WM_HELP (in Menu Controls)
For the cause of this message, see "WM_HElP" on page 10-49.

For a description of the parameters, see "WM _HELP" on page 1 0-49.

The menu control window procedure sets uscmd to the menu-item identity.

Remarks
This message is identical to a WM_COMMAND message, but implies that the application
should respond to this message by displaying help information.

The menu control window procedure generates this message and posts it to the queue of its
owner when an item is selected that has the style of MIS_HELP, but only if
WM_MENUSElECT (in Menu Controls) returns a rc of TRUE.

Default Processing
The default window procedure sends this message to the parent window, if it exists and is
not the desktop. Otherwise, it sets ulReserved to O.

15-6 PM Programming Reference Vol II

Related Messages
• WM HELP

WM_INITMENU (in Menu Controls)
For the cause of this message, see "WM_'N'TMENU" on page 1 0-53.

For a description of the parameters, see "WM-'NITMENU" on page 1 0-53.

Remarks
This message offers the owner the opportunity to perform some initialization on the menu
items before they are presented.

The menu control window procedure generates this message and sends it to its owner,
informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

Related Messages
• WM-,NITMENU

WM_MEASUREITEM (in Menu Controls)
This notification is sent to the owner of a menu control to establish the height for an item in
that contro/.

Parameters
param1

sMenu (SHORT)
Menu identifier.

param2

pOwnerltem (POWNERITEM)
Owner-item structure.

This points to an OWNER ITEM structure.

Chapter 15. Menu Control Window Processing 15-7

Returns
sHeight (SHORT)

Height of item.

Remarks
This message is only sent at the time the menu control is created. When the owner receives
this message, it must calculate and return the height of an item to the control.

All items in a menu must have the same height, and that must be greater than or equal to
the height of the current font.

In particular, this notification is sent to the owner of a menu that has a style of
MIS_OWNERDRAW, to offer the owner an opportunity to establish the height of an item that
accommodates any special requirements for the drawing of items in that menu.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sHeight to the default value of O.

Related Messages
• WM_MEASUREITEM

WM_MENUEND (in Menu Controls)
For the cause of this message, see "WM_MENUEND" on page 1 0-56.

For a description of the parameters, see "WM_MENUEND" on page 10-56.

Remarks
The menu control window procedure generates this message and sends it to its owner,
informing the owner of this event.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM _ MENUEND

WM_MENUSELECT (in Menu Controls)
For the cause of this message, see "WM_MENUSELECT" on page 1 0-57.

For a description of the parameters, see 'WM_MENUSELECT" on page 10-57.

15-8 PM Programming Reference Vol II

Remarks
The menu control window procedure generates this message and sends it to its owner,
informing the owner of this event.

When the message is returned from its owner, menu control acts on rc as appropriate.

It must not be posted to the menu control.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
TRUE.

Related Messages
• WM_MENUSELECT

WM_NEXTMENU (in Menu Controls)
For the cause of this message, see "WM_NEXTMENU" on page 10-63.

For a description of the parameters, see "WM_NEXTMENU" on page 10-63.

Remarks
The menu control generates this message and sends it to its owner, informing the owner of
this event.

Default Processing
The default window procedure takes no action on this message, other than to set
hwndNewMenu to NULLHANDLE.

Related Messages
• WM_NEXTMENU

Chapter 15. Menu Control Window Processing 15-9

Menu Control Window Messages
This section describes the menu control window procedure actions on receiving the following
messages.

MM_DELETEITEM
This message deletes a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and delete it.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

ulReserved (ULONG)
Reserved value, should be o.

Returns
sltemsLeft (SHORT)

Number remaining.

The number of items in the menu after the item is deleted.

Remarks
The menu control window procedure responds to this message by deleting the identified item
from the menu or its submenus.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sltemsLeft to the default value of O.

15-10 PM Programming Reference Vol II

MM_ENDMENUMODE
This message is sent to a menu control to terminate menu selection.

Parameters
param1

usdismiss (USHORT)
Dismiss menu indicator.

TRUE
FALSE

Dismiss the submenu or subdialog window
Do not dismiss the submenu or subdialog window.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The menu control window procedure responds to this message by terminating menu
selection.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and, therefore, takes
no action on it, other than to set ulReserved to the default value of O.

MM_INSERTITEM
This message inserts a menu item into a menu.

Parameters
param1

pmenuitem (PMENUITEM)
Menu-item data structure.

This pOints to a MENU ITEM structure.

Chapter 15. Menu Control Window Processing 15-11

param2

pszltemText (PSZ)
Item text.

This pOints to a string containing the text to be inserted.

Returns
slndexlnserted (SHORT)

Index of inserted item.

MIT _MEMERROR The menu control cannot allocate space to insert the menu item in
the menu.

MIT_ERROR An error other than MIT _MEMERROR occurred.

Other The zero-based index of the offset of the item within the menu.

Remarks
The menu control window procedure responds to this message by inserting the identified
item into the menu at the position indicated by the specified MENU ITEM data structure
(contained within the menu-item structure). If the position is MIT_END, the item is added to
the end of the menu. If the style of the item includes MIS_TEXT, the text of the item is
specified by pszltem Text

The menu control window procedure sets slndexlnserted to the zero-based index of the
position of the item within the menu.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set slndexlnserted to the default value of O.

MM ISITEMVALID
This message returns the selectable status of a specified menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier.

15-12 PM Programming Reference Vol II

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Selectable indication.

A menu item can be selected and entered under these conditions:

• The item is enabled and, if it is a submenu item, the item in the action bar
associated with the submenu is enabled. If the action bar item is not enabled, the
user cannot display the submenu.

• The item is enabled, and the submenu is displayed and being tracked with the
pointing device or keyboard. It is unlikely, but possible, that the associated action
bar is disabled in this instance.

TRUE
FALSE

The user can select and enter the specified item.
The user cannot select and enter the specified item.

Remarks
The menu control window procedure responds to this message by setting the return value
depending on the selectable status of the specified item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

MM_ITEMIDFROMPOSITION
This message returns the identity of a menu item of a specified index.

Parameters
param1

sltemlndex (SHORT)
Item index.

Chapter 15. Menu Control Window Processing 15-13

param2,

ulReserved (ULONG)
Reserved value, should be O.

Returns
sldentity (SHORT)

Item identity.

MIT_ERROR Error occurred; for example, because sltemlndex is not valid.
Other Item identity.

Remarks
The menu control window procedure responds to this message by setting sldentity to the
identity of the item whose position is identified by the index specified in sltemlndex.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sldentity to the default value of O.

MM_ITEMPOSITIONFROMID
This message returns the index of a menu item of a particular identity.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

ulReserved (ULONG)
Reserved value, should be O.

15-14 PM Programming Reference Vol II

Returns
slndex (SHORT)

Item index.

MIT_NONE Item does not exist
Other Item index.

Remarks
The menu control window procedure responds to this message by setting slndex to the
zero-based index of the item identified by slndex.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set slndex to the default value of MIT_NONE.

MM_ QUERYDEFAUL TITEMID
This message returns the default item id for a conditional cascade menu. For any other type
of menu or submenu, this message returns zero.

Parameters
param1

ulReserved (ULONG)
Reserved value, must be O.

param2

ulReserved (ULONG)
Reserved value, must be O.

Returns
ulDefltemlD (ULONG)

Menu id of the default menu item.

Default Processing
The default window procedure takes no action other than to return O.

Related Messages
• WM_DRAWITEM (in Frame Controls)
• WM_DRAWITEM (in List Boxes)
• WM_DRAWITEM (in Menu Controls)

Chapter 15. Menu Control Window Processing 15-15

MM_QUERYITEM
This message returns the definition of the specified menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus flag.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and copy its definition.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

pmenuitem (PMENUITEM)
Menu-item data structure.

This points to a MENU ITEM structure.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The menu control window procedure responds to this message by copying the item definition
specified by uSitem, from the menu" to the structure specified by pmenuitem.

Note: This message does not retrieve the text for items with a style of MIS_TEXT. The
item text is obtained by use of the MM_QUERYITEMTEXT message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

15-16 PM Programming Reference Vol "

MM_QUERYITEMATTR
This message returns the attributes of a menu item.

Parameters
param1

usitem (USHORT)
Item identity.

uslncludeSubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and return its state.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

usattributemask (USHORT)
Attribute mask.

Returns
usState (USHORT)

State.

Remarks
The menu control responds to this message by returning the state of the specified attributes
of the identified menu item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set usState to the default value of O.

Examples
This example sends an MM_QUERYITEMATTR message to find the state of the 'idCase'
menu item. It then toggles the state of the item and sends an MM_SETITEMATTR message
to set the new state.

Chapter 15. Menu Control Window Processing 15-17

MM_ QUERYITEMCOUNT
This message returns the number of items in the menu.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sresult (SHORT)

Item count.

Remarks
The menu control window procedure responds to this message by returning the count of the
number of items in the menu.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sresult to the default value of O.

MM_ QUERYITEMRECT
This message returns the bounding rectangle of a menu item.

Parameters
param1

usitem (USHORT)
Item identity.

15-18 PM Programming Reference Vol II

flncludeSubmenus (BOOl)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and return its state.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

prect (PRECTl)
Bounding rectangle of the menu item in device coordinates relative to the menu
window.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Specified item was found.
Specified item was not found.

Remarks
The menu control responds to this message by returning the bounding rectangle of identified
menu item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of 0 (FALSE).

MM_QUERYITEMTEXT
This message returns the text of the specified menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

smaxcount (SHORT)
Maximum count.

Copy the item text as a null-terminated string, but limit the number of characters
copied, including the null termination character, to this value, which must be greater
than O.

Chapter 15. Menu Control Window Processing 15-19

param2

pszltemText (PSZ)
Buffer into which the item text is to be copied.

This points to a string (character) buffer.

Returns
sTextLength (SHORT)

Length of item text.

The length of the text string, excluding the null termination character.

o Error occurred. For example, no item of the specified identity exists or the item
has no text. No text is copied.

Other Length of item text.

Remarks
The menu control window procedure responds to this message by copying up to smaxcount
characters as a null-terminated string from the text of the item specified by usitem, if it has
the style MIS_TEXT, into the buffer specified by pszltemText.

The length of the item text can be determined by using the MM_QUERYITEMTEXTLENGTH
message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sTextLength to the default value of O.

MM_ QUERYITEMTEXTLENGTH
This message returns the text length of the specified menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

param2

ulReserved (ULONG)
Reserved value, should be O.

15-20 PM Programming Reference Vol II

Returns
sLength (SHORT)

Length of item text.

The length of the text string, excluding the null termination character.

o Error occurred. For example, no item of the specified identity exists or the item
has no text. No text is copied.

Other Length of item text.

Remarks
The menu control window procedure responds to this message by returning the length in
characters of the text of the identified item, if it has a style of MIS_TEXT.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sLength to the default value of o.

MM_QUERYSELITEMID
This message returns the identity of the selected menu item.

Parameters
param1

usReserve (USHORT)
Reserved value, should be o.

usincludesubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for a selected item with the
specified. identifier.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for a selected item with
the specified identifier.

ulReserved (ULONG)
Reserved value, should be O.

Chapter 15. Menu Control Window Processing 15·21

Returns
sresult (SHORT)

Selected item identifier.

MID_ERROR
MIT_NONE
Other

Remarks

Error occurred·
No item selected
Selected item identifier.

The menu control window procedure responds to this message by returning the identity of
the selected item in the menu. Submenus and subdialogs are not searched unless
usincludesubmenus is set to TRUE.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sresult to the default value of o.

MM REMOVEITEM
This message removes a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and delete it.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

ulReserved (ULONG)
Reserved value, should be O.

Returns
sltemsLeft (SHORT)

Count of remaining items.

15-22 PM Programming Reference Vol II

Remarks
The menu control window procedure responds to this message by removing the identified
item from the menu and setting sltemsLeft to the count of items in the menu after the item is
deleted.

The difference between this message and MM_DELETEITEM is that MM_DELETEITEM
destroys any submenu window, and deletes any bit map associated with the item, whereas
MM_REMOVEITEM does not.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this-message and therefore takes
no action on it, other than to set sltemsLeft to the default value of o.

MM_SELECTITEM
This message selects or deselects a menu item.

Parameters
param1

sitem (SHORT)
Item identifier.

MIT_NONE Deselect all the items in the menu.
Other Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and select or deselect it.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

usReserve (USHORT)
Reserved value, should be o.

usdismissed (USHORT)
Dismissed flag.

TRUE Dismiss the menu
FALSE Do not dismiss the menu.

Chapter 15. Menu Control Window Processing 15-23

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

A selection has been made, or sitem is MIT_NONE.
A selection has not been made, or a deselection has been made, or sitem is
not MIT_NONE.

The menu control window procedure responds to this message by setting the selection state
of the (sub)menu which contains the specified item to indicate that the item is selected or
deselected. If usincludesubmenus is set to TRUE, the selection state of the (sub)menu
owning the submenu which contains the specified item is also set. This process continues up
the menu hierarchy until the top level menu is reached.

If an item is selected, and usdismissed is set to TRUE, a WM_COMMANO,
WM_SYSCOMMANO, or WM_HElP message, as appropriate, is posted to the owner, and
the menu is dismissed.

Note: This message must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

MM_SETDEFAUL TITEMID
This message is used to set the default item in a conditional cascade menu.

Parameters
param1

ulDefltemlD (UlONG)
The menu id of the item to become the new default.

param2

ulReserved (UlONG)
Reserved value, must be O.

Returns
rc (BOOl)

Success of failure indicator.

TRUE The conditional cascade default was set.
FALSE The conditional cascade default was not set.

15-24 PM Programming Reference Vol II

Remarks
The default item is the menu-id that will be returned if the main menu option is clicked on.

~open (-» Icon id=MID ICON
*Tree

Detail s
i d=MID-TREE
id=MID=DETAILS

In the example above, where MID_TREE is currently the default, if the user clicked on the
"Open" option without opening the conditional cascade menu, the menu would send back a
notification that MID_TREE was selected.

Default Processing
The default window procedure takes no action other than to return O.

MM SETITEM
This message sets the definition of a menu item.

Parameters
param1

usReserve (USHORT)
Reserved value, should be o.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and set its definition.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

pmenuitem (PMENUITEM)
Menu-item data structure.

This points to a MENUITEM structure.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 15. Menu Control Window Processing 15-25

Remarks
The menu control window procedure responds to this message by using the specified
structure to update the definition of the identified menu item.

The iPosition field of the structure specified by pmenuitem is ignored, as the position of the
item cannot be changed by use of this message.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

MM_SETITEMATTR
This message sets the attributes of a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and set its attributes.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

usattributemask (USHORT)
Attribute mask.

usattributedata (USHORT)
Attribute data.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

15-26 PM Programming Reference Vol II

Remarks
The menu control window procedure responds to this message by setting the state of the
specified attributes for the identified item.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Examples
This example sends an MM_SETITEMATTR message to set the 10M_LARGE menu item's
state to checked, and then sends another MM_SETITEMATTR message to set the
10M_MEDIUM menu item's state to unchecked.

·Wi;n$e~dM$g(hwn4~c~i •• ·()nBar.· ... M~LS~:;IJEMiTrR~
.... MPFR9M2?IiORltIDM, .'. LAR~E~ •. TRU.E> ~< .•... , .
. : ·.··M~f-'R9M,2SHORT:(M,1:(G~~~.~~O.,:MI~""'G~ECKEO).) •• ;

Win~:~r~.Mf.~:fliwnQ;t\cti~n;Bar:t:M~~~~~ITEMATrR~
......•.• :::M~FIID~2~:a()RH·JI)Mg~EP·IUM, •.• ··· rR~s)~<:
• " .. ' .•. ; ..•. M~:~R9~~~~O~I.(M,IAS~H~C~EDt:F:AtS.~J).:;

MM SETITEMHANDLE
This message sets the handle of a menu item.

Parameters
param1

usitem (USHORT)
Item index.

param2

ulitemhandle (ULONG)
Item handle.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 15. Menu Control Window Processing 15-27

Remarks
The menu control window procedure responds to this message by setting the handle of the
indexed menu item.

This is used to set a handle for menu items that have a style of MIS_BITMAP or
MIS_OWNERDRAW.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

MM_SETITEMTEXT
This message sets the text of a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

param2

pszltemText (PSZ)
Item text.

This points to a string containing the text to set the menu item to.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The menu control responds to this message by setting the text of the identified item, if it has
a style of MIS_TEXT, using the specified null-terminated string.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

15-28 PM Programming Reference Vol II

MM_STARTMENUMODE
This message is used to begin menu selection.

Parameters
param1

usshowsubmenu (USHORT)
Show submenu flag.

TRUE Show the submenu (pull-down menu) of the selected action bar item
when the menu enters selection mode. If the action bar is not visible, the
submenu is shown, otherwise it is not shown. If the item selected does
not have a submenu, this parameter is ignored.

FALSE Do not show the submenu (pull-down menu) of the selected action bar
item when the menu enters selection mode.

usresumemenu (USHORT)
Resume menu mode flag.

TRUE Resume the user interaction with the menu from where it left off. The
menu is assumed to have been used previously and left without
dismissing one of the submenus, and therefore is resumed in that
submenu.

FALSE Begin user interaction with the menu from the action bar, subject to the
value of the usshowsubmenu parameter.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (Baal)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

It is posted to the menu when the operator presses the menu key.

Note: It must be posted, not sent, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Chapter 15. Menu Control Window Processing 15-29

WM_QUERYCONVERTPOS (in Menu Controls)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 10-72.

For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 10-72.

Remarks
The menu control window procedure returns QCP _NOCONVERT.

Default Processing
For the d~fault window procedure processing of this message see
"WM_QUERYCONVERTPOS" on page 10-72.

Related Messages
• WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in Menu Controls)
Occurs when an application queries the menu control window procedure parameters.

For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 10-75.

Remarks
The menu control window procedure responds to this message by passing it to the default
window procedure.

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure, identified by pwndparams, to 0 and sets rc to FALSE.

Related Messages
• WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS (in Menu Controls)
This message occurs when an application sets or changes the menu control window
procedure parameters.

For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 10-86.

Remarks
The menu control window procedure responds to this message by passing it to the default
window procedure.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

15-30 PM Programming Reference Vol II

Related Messages
• WM_SETWINDOWPARAMS

WM_SVSCOMMAND
For the cause of this message, see "WM_SYSCOMMAND" on page 10-91.

For a description of the parameters, see "WM_ SYSCOMMAND" on page 1 0-91 .

The menu control window procedure sets uscmd to the menu-item identity.

Remarks
The menu control window procedure generates this message and posts it to the queue of its
owner, when an item is selected that has the style of MIS_SYSCOMMAND, but only if the
WM_MENUSELECT (in Menu Controls) message returns a rc of TRUE.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Chapter 15. Menu Control Window Processing 15-31

15-32 PM Programming Reference Vol II

Chapter 16. Multi-Line Entry Field Control Window
Processing

This system-provided window procedure processes the actions on a multi-line entry field
control (WC_MLE).

Purpose
A multi-line entry field control is a rectangular window that displays multiple lines of text that
the operator can edit. When it has the focus, the cursor marks the current insertion or
replacement point.

How to Use
The text is displayed within a rectangular window. Scroll bars appear if requested.

On all four sides of the text within the window there exists a thin margin area. This margin
remains drawn in the window's background color, and characters are never drawn into this
margin. Mouse events that occur in the margin are processed differently from mouse events
that occur in the text area. The margin should be large enough to be easily clicked on, but
not so large as to take up a large quantity of screen space. It is suggested, but not required,
that the left and right margins be half the average character width of the system font, and
that the top and bottom margins be half the maximum baseline extent of the system font.

Text is defined as a stream of characters, with hard line-break characters in the text.
Setween any two bytes in the text stream, and at either end of the document, there is an
insertion point. Note that in a OSCS environment, it is possible to have an insertion point in
the middle of a OSCS character. If such an insertion point is specified in a function, the
function will either round the insertion point in a sensible way, or the function will fail with an
error code indicating the problem.

The text always contains a selection region, defined by an anchor point and a cursor point.
The anchor and cursor points are insertion points. If the MLE window has the focus, the text
between these two points is drawn highlighted and the cursor point is indicated by a flashing
text cursor. The selection region can be affected by some import/export operations.

The cursor point and the anchor point define the range of the selection. These two points
are often the same, in which case no text is selected and only a text cursor (but no
highlighting) is displayed. A user can use SHIFT +cursor movement combinations to extend
the selection, which leaves the anchor point alone, and moves the cursor point to a new
position in the document.

The MLE has three modes:

READ-ONLY The keyboard user interface disallows any operations that would change
the content of the text, although applications using the MLE can still
change the text contents. The application can query this mode, in order
that it can disallow application-specific operations.

© Copyright IBM Corp. 1994 16-1

WORD-WRAP When this mode is in effect, soft line-breaks are inserted into the text at
word boundaries so that the user need not scroll the display horizontally
to see all the text. When this mode is off, text is allowed to trail off the
right-hand edge ofthe window.

INSERT/OVERTYPE This mode determines whether keystrokes are inserted into the text, or
whether they overtype existing text. Unlike the other two modes, this
mode is maintained by the system. The MLE must merely be aware of
the system mode.

Notes:

1. The MLE is intended for text under 4Kb in size. Performance will be fast for text up to
32KB in size. Text greater than this will be supported but performance may not be
acceptable.

2. In this chapter oCR' denotes carriage-return, and 'LF' denotes line-feed.

Multi-Line Entry Field Control Styles
These multi-line entry field control styles are available:

MLS_WORDWRAP

MLS_HSCROLL

MLS_IGNORETAB

A thin border is drawn around the multi-line entry field window.

The multi-line entry field is initially in read-only mode.

The multi-line entry field initially word-wraps text.

The multi-line entry field displays and handles a horizontal scroll bar.

The multi-line entry field displays and handles a vertical scroll bar.

The multi-line entry field ignores tab key strokes. It passes the
appropriate WM_CHAR to its owner window.

MLS_DISABLEUNDO The multi-line entry field will not allow undo actions.

Multi-Line Entry Field Control Data
See "MLECTLDATA" on page A-127.

16-2 PM Programming Reference Vol II

Multi-Line Entry Field Control Notification Messages
This message is initiated by the multi-line entry field window procedure to notify its owner of
significant events.

WM_ CONTROL (in Multiline Entry Fields)
For the cause of this message, see "WM_CONTROL" on page 10-39.

Parameters
param1

usid (USHORT)
Control window identity.

usnotifycode (USHORT)
Notify code.

MLN TEXTOVERFLOW A key stroke causes the amount of text to exceed
the limit on the number of bytes of data (refer to
MLM_SETTEXTLlMIT). The parameter contains the
number of bytes of data which would not fit within
the current text limit. For character key strokes this
can be 1 or 2 (DBCS). For Shift+lns (paste) it can
be any amount up to the paste limit.

The default rc of FALSE causes the default error
handling, which is to ignore the key stroke, and
beep.

An rc of TRUE implies that corrective action has
been taken (such as deleting existing text or raising
the limi,t) and the WM _CHAR (in Multiline Entry
Fields) should be reprocessed as if just entered.

MLN PIXHORZOVERFLOW A key stroke causes the size of the display bit map
to exceed the horizontal limit of the format rectangle
(refer to MLM_SETFORMATRECT). The parameter
contains the number of pels that would not fit within
the current text limit.

The default rc of FALSE causes the default error
handling, which is to ignore the key stroke, and
beep.

An rc of TRUE implies that corrective action has
been taken (such as changing to a smaller font or
raising the limit) and the WM_CHAR (in Multiline
Entry Fields) should be reprocessed as if just
entered.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-3

MLN PIXVERTOVERFLOW A key stroke causes the size of the display bit map
to exceed the vertical limit of the format rectangle
(refer to MLM_SETFORMATRECT). The parameter
contains the number of pels that would not fit within
the current text limit.

MLN OVERFLOW

MLN VSCROLL

MLN CHANGE

MLN_UNDOOVERFLOW

16-4 PM Programming Reference Vol II

The default fC of FALSE causes the default error
handling, which is to ignore the key stroke, and
beep.

An fC of TRUE implies that corrective action has
been taken (such as changing to a smaller font or
raising the limit) and the WM_CHAR (in Multiline
Entry Fields) should be reprocessed as if just
entered.

An action other than entry of a key stroke causes a
condition involving the text limit or format rectangle
limit, such that either the limit becomes inadequate
to contain the text or the text exceeds the limit.

This can be caused by:

MLM_SETWRAP
MLM SETTABSTOP
MLM_SETFONT
MLM IMPORT
MLM PASTE
MLM CUT
MLM UNDO
MLM DELETE
WM SIZE.

Indicates that the MLE has completed a scrolling
calculation and is about to update the display
accordingly. All queries return values as if the
scrolling were complete. However, no scrolling
action is visible on the user interface.

Indicates that the MLE has completed a scrolling
calculation and is about to update the display
accordingly. All queries return values as if the
scrolling were complete. However, no scrolling
action is visible on the user interface.

Signals that the text has changed. This notification
is sent whenever any text change occurs.

Signals that the text change operation, which could
normally be undone, cannot be undone because the
amount of text involved exceeds the undo capability.
This includes text entry, deletion, cutting, and
pasting.

param2

MLN_CLPBDFAIL

MLN_MEMERROR

MLN_KILLFOCUS

MLN_SEARCHPAUSE

Signals that a clipboard operation failed.

Signals that the required storage cannot be
obtained. The action that results in the increased
storage requirement fails.

Sent whenever the MLE window receives the input
focus.

Sent whenever the MLE window loses the input
focus.

Whenever the user moves the mouse into the left,
right top, or bottom margins, this message is sent to
the owner of the window.

If the owner returns an rc of TRUE, the mouse
move is assumed to have been processed by the
owner and no further action need be taken.

If the owner returns an rc of FALSE, the MLE
performs a default action appropriate to each
different mouse action.

The exceptions to this are all mouse messages that
occur after a button-down inside the margin, until
and including the matching button-up. Conceptually
the drag (button-down until button-up) is a single
macro event. Therefore, if FALSE is returned for a
button-down event, no further margin notifications
are given until after the drag has ended (button-up).

Note: If the application receives a notification of
button-down in the margin and processes it,
it must capture the mouse until the button-up
event.

This notification is sent periodically by the MLE,
while an MLM_SEARCH message is being
processed, to give an application the opportunity to
stop excessively long searches, and to provide
search progress information. The owner window
can respond either with TRUE or FALSE. FALSE
causes the MLE to continue searching; TRUE
causes the MLE to stop the search immediately.
For further information, see MLM_SEARCH

ulOver (ULONG)
Number of bytes that do not fit.

param2 contains ulOver for a usnotifycode of MLN_ TEXTOVERFLOW.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-5

pixOver (PIX)
Linear distance of overflow in pels.

param2 contains pixOver for a usnotifycode of MLN_PIXHORZOVERFLOW or
MLN_PIXVERTOVERFLOW.

pErrlnfo (POVERFLOW)
Overflow error information structure.

param2 contains pErrlnfo for a usnotifycode of MLN _OVERFLOW.

The afErrlnd field of the MLEOVERFLOW structure can take one or more of the
following values:

MLFEFR RESIZE The window is resized, and the format rectangle is tied to
the window size and limited either horizontally, vertically,
or both. The implicit change of the format rectangle to the
new size does not contain the text. The format rectangle
is made static at the previous size, and the
MLESFR_MATCHWINDOW style is turned off until set
again by the application. This is done in response to a
WM_SIZE message, and therefore the multi-line entry
field does not forward the return value from this
notification message.

M LFEFR _ T ABSTOP A tab stop location change is requested, and the text is
limited either horizontally, vertically, or both. Changing
the tab stops causes the text to exceed the limit. The tab
stop change is rejected.

MLFEFR_FONT A font change is requested, and the text is limited either
horizontally, vertically, or both. Changing the font causes
the text to exceed the limit. The font change is rejected.

MLFEFR WORDWRAP The word-wrap state is requested to be changed, and the
text is limited either horizontally, vertically, or both.
Wrapping the text differently exceeds the limit, and the
request is rejected. This happens in situations where the
horizontal limit is not set, there are lines exceeding it, and
word-wrap is being changed from off to on, such that it
creates soft line breaks resulting in increased vertical size.
This happens if word-wrap is being changed from on to
off, and there is at least one line created by a soft
line-break, such that when that line-break is removed, the
full line (up to the hard line break) exceeds the horizontal
limit.

MLFEFR_ TEXT Text is changed by MLM_IMPORT, MLM_PASTE,
MLM_CUT, MLM_UNDO, or MLM_DELETE, and the text
is limited either horizontally, vertically, or both within the
format rectangle. The change causes the text to exceed
the format rectangle in a dimension that is limited. For

16-6 PM Programming Reference Vol II

example, Delete and EOl joins text from two lines into
one line long enough to exceed the horizontal limit.

MlFETL_TEXTBYTES Text is changed by MLMJMPORT MLM_PASTE, or
MLM_UNDO, and the text is limited to a maximum
number of bytes. The change causes the text to exceed
that maximum.

ulErrlnd (ULONG)
Clipboard fail flag.

param2 contains ulErrlnd for a usnotifycode of MLN_CLPBDFAIL.

MLFCPBD_TOOMUCHTEXT
MLFCPBD_CLPBDERROR

pmrg (PMARGSTRUCT)
Margin structure.

Text amount exceeds clipboard capacity
A clipboard error occurred.

param2 contains pmrg for a usnotifycode of MlN_MARGIN.

The left and right margins are defined as going all the way to the top and bottom
such that the top and bottom margins are contained between them. Therefore, the
corners are included in the sides.

usMouMsg contains the mouse message that signals the event.

iptNear contains the insertion point of the nearest point in the text. For situations
where the nearest location is beyond the end of a line, the insertion point for the
end of the line is returned. (The EOL character is considered to be beyond the end
of the line.)

iptSearchedTo (IPT)
Current insertion point of search.

param2 contains iptSearchedTo for a usnotifycode of MLN_SEARCHPAUSE.

ulReserved (ULONG)
Reserved value, should be O.

param2 contains ulReserved for a usnotifycode of MLN_HSCROLL,
MLN_VSCROLL, MlN_CHANGE, MLN_UNDOOVERFLOW, MLN_MEMERROR,
MLN_SETFOCUS, or MLN_KllLFOCUS.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-7

Returns
ReturnCode

rc (BOOl)
Action taken by application.

ReturnCode contains rc for a usnotifycode of MLN_ TEXTOVERFlOW,
MLN_PIXHORZOVERFLOW, MLN_PIXVERTOVERFLOW, MlN_MARGIN, or
MLN_SEARCHPAUSE.

TRUE The multiline entry field control assumes that appropriate action has been
taken by the application. Appropriate action depends on the MlN _ *
notification code, and is documented under the usnotifycode field.

FALSE The multiline entry field control assumes that the application has ignored
this WM_CONTROl (in Multiline Entry Fields) message, and takes action
appropriate to the MLN_* notification code, as documented under the
usnotifycode field.

ulReserved (ULONG)
Reserved value, should be o.
ReturnCode contains ulReserved for a usnotifycode of MLN_OVERFLOW,
MLN_HSCROLL, MLN_VSCROLL, MLN_CHANGE, MLN_UNDOOVERFLOW,
MlN_CLPBDFAIL, MLN_MEMERROR, MLN_SETFOCUS, or MLN_KILlFOCUS.

Remarks
The multiline entry field control window procedure generates this message and sends it to its
owner, informing the owner of the event.

param2 depends on the MLN_* notification code.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_CONTROL

16-8 PM Programming Reference Vol II

Multi-Line Entry Field Window Messages
This section describes the multi-line entry field control window procedure actions on receiving
the following messages.

MLM_ CHARFROMLINE
This message returns the first insertion pOint on a given line.

Parameters
param1

ILineNum (LONG)
Line number of interest.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
iptFirst (lPT)

First insertion point on line.

Remarks
For any line number, the insertion point just before the first character on that line is returned.
If the line number is -1, the line containing the cursor is used.

The term line means a line on the display after the application of word-wrap. It does not
mean a line as defined by the CR LF line-break sequence.

Default Processing
The default window procedure takes no action on this message, other than to set iptFirst to
O.

MLM_CLEAR
This message clears the current selection.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-9

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulClear (ULONG)

Number of bytes deleted, counted in CF _TEXT format.

Remarks
The multi-line entry field control window procedure responds to this message by clearing the
current selection and returning the number of bytes cleared.

Default Processing
The default window procedure takes no action on this message, other than to set ulClear to
O.

MLM_COPY
This message copies the current selection to the clipboard.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulCopy (ULONG)

Number of bytes transferred, counted in CF _TEXT format.

Remarks
The multi-line entry field control window procedure responds to this message by copying the
selected text to the clipboard. The text is translated to standard clipboard format, which is
the same as exporting with MLE_CFTEXT format.

The text is placed on the clipboard as a single contiguous data segment. This restricts the
amount to the maximum segment size (64KB).

16-10 PM Programming Reference Vol II

This may cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set ulCopy to
o.

MLM_CUT
This message copies the text that forms the current selection to the clipboard and then
deletes it from the MLE control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulCopy (ULONG)

Number of bytes transferred; counted in CF _TEXT format.

Remarks
The multi-line entry field control window procedure responds to this message by copying the
selected text to the clipboard and then deleting it. The text is translated to standard
clipboard format, which is the same as exporting with MLE_CFTEXT format.

The text is placed on the clipboard as a single contiguous data segment. This restricts the
amount to the maximum segment size (64KB).

This may cause an overflow, see MLN_ OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set ulCopy to
O.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-11

MLM DELETE
This message deletes text.

Parameters
param1

iptBegin (IPT)
Starting point of deletion.

param2

ulDel (ULONG)
Number of bytes to delete.

Returns
ulSuccess (ULONG)

Number of bytes successfully deleted.

Remarks
This message takes an insertion point and a length, and deletes that number of characters
from the text. If the insertion point is -1, the selection is used and the effect is identical to
the MLM_CLEAR message.

This may cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set ulSuccess
to O.

MLM_DISABLEREFRESH
This message disables screen refresh.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

16-12 PM Programming Reference Vol II

Returns
rc (Baal)

Success indicator.

TRUE
,FALSE

Successful completion.
Error occurred.

Remarks
This message disables screen refreshes. This allows an application to make changes
throughout a document while avoiding unnecessary overhead caused by attempts to keep
the screen display current. When an MlM_ENABlEREFRESH message is sent, the screen
display is brought up to date with the contents of the text.

While refresh is disabled, mouse and keyboard messages are processed by beeping and
ignoring them, except for mouse moves, which do not beep; the mouse pointer changes to
the system standard wait symbol (a clock face).

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_ENABLEREFRESH
This message enables screen refresh.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be o.

param2

ulReserved (UlONG)
Reserved value, should be o.
o Reserved value, o.

Returns
rc (Baal)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
An error occurred.

This message enables screen refreshes. This allows an application to make changes
throughout a document while avoiding unnecessary overhead caused by attempts to keep

Chapter 16. MUlti-line Entry Field Control Window Processing 16-13

the screen display current. When an MLM_ENABLEREFRESH message is sent, the screen
display is brought up to date with the contents of the text.

While refresh is disabled, mouse and keyboard messages are processed by beeping and
ignoring them, except for mouse moves, which do not beep; the mouse pointer changes to
the system standard wait symbol (a clock face).

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM EXPORT
This message exports text to a buffer.

Parameters
param1

pBegin (PIPT)
Starting point.

Updated to follow the last character exported.

param2

pCopy (PULONG)
Number of bytes being exported.

Decremented by the number of bytes actually exported.

Returns
ulSuccess (ULONG)

Number of bytes successfully exported.

Remarks
This message takes an insertion point and length as parameters, and copies text, starting
from that insertion point, into the buffer set by MLM_SETIMPORTEXPORT. Text is in the
format set by MLM_FORMAT. If the insertion pOint is -1, the selection is used for both
p8egin and peopy.

On return, p8egin is updated to follow the last byte exported, and the number of bytes to be
exported is decremented by the number actually exported. This is done to prepare those
parameter values for the next export. The return value indicates the number of bytes
actually put into the buffer. This number is less than, or equal to, the buffer size (see
MLM_ SETIMPORTEXPORT).

16-14 PM Programming Reference Vol 11

Note: All exports are done in full characters. Therefore, if either the length of the buffer or
the number of bytes to be exported result in the last byte transferred being only half
of a OSCS character, the MLE will not transfer that byte.

It returns the number of bytes placed in the export buffer.

Default Processing
The default window procedure takes no action on this message, other than to set ulSuccess
to o.

MLM_FORMAT
This message sets the format to be used for buffer importing and exporting.

Parameters
param1

usFormat (USHORT)

param2

Format to be used for import and export.

MLFIE_CFTEXT Text format. Each line ends with a carriage-return/line-feed
combination. Tab characters separate fields within a line. A
NULL character signals the end of the data.

MLFIE_NOTRANS Uses LF for line delineation, and guarantees that any text
imported into the MLE in this format can be recovered in
exactly the same form on export.

MLFIE_WINFMT (Windows MLE format.) On import, recognizes CR LF as
denoting hard line-breaks, and ignores the sequence CR
CR LF. On export, uses CR LF to denote a hard line-break
and CR CR LF to denote a soft line-break caused by
word-wrapping.

ulReserved (ULONG)
Reserved value, should be o.

Returns
usFormat (USHORT)

Previous format value.

Remarks
The default format is MLFIE_CFTEXT.

The keyword MLFIE_RTF is reserved.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-15

Default Processing
The default window procedure takes no action on this message, other than to set usFormat
to O.

MLM_IMPORT
This message imports text from a buffer.

Parameters
param1

p8egin (PIPT)
Insertion point.

Updated to insertion point following last insert.

param2

ulCopy (ULONG)
Number of bytes in buffer.

Returns
ulSuccess (ULONG)

Number of bytes successfully inserted.

Remarks
This message takes an insertion point and length as parameters. It assumes a buffer has
been set using MLM_SETIMPORTEXPORT, and inserts the contents of the buffer at the
insertion point in the text. The contents are interpreted as being in the format set by
MLM_FORMAT. If the insertion point is -1, the cursor point is used.

The insertion point p8egin is updated by the MLE to the point after the last character
imported. This provides the application with the location for the next import.

The return value indicates how many bytes were actually transferred.

All imports are done in full characters, therefore, if the number of bytes to be imported results
in the last byte transferred being only half of a DSCS character, or part of a line-break
sequence (CR LF or CR CR LF), the MLE does not transfer that byte. If the return value
indicates that less than the full amount was transferred, a check must be made to determine
if it is the beginning of a multi-byte sequence, and if so, the parts must be mated and
imported as a whole.

This can cause an overflow, see MLN_OVERFLOW.

Note: The buffer is not zero-terminated; NULL characters can be inserted into the text.

16-16 PM Programming Reference Vol II

Default Processing
The default window procedure takes no action on this message, other than to set ulSuccess
to O.

MLM_INSERT
This message deletes the current selection and replaces it with a text string.

Parameters
param1

pchText (PCHAR)
Null-terminated text string.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulCount (ULONG)

Number of bytes actually inserted.

Remarks
This message inserts the text string at the current selection, deleting that selection in the
same manner as typing at the keyboard would. The text string must be in CF _TEXT format
(or one of the formats acceptable to MLM_IMPORT) and null-terminated. The line-break
(CR LF, LF, and so on) is counted as one byte, regardless of the number of bytes occupied
in the buffer, and the null terminator is not counted.

This interacts with the format rectangle and text limits, and a return of less than the full count
can be the result. If so, a notification message is sent.

Default Processing
The default window procedure takes no action on this message, other than to set ulCount to
O.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-17

MLM_LINEFROMCHAR
This message returns the line number corresponding to a given insertion point.

Parameters
param1

iptFirst (IPT)
Insertion point of interest.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ILineNum (LONG)

Line number of insertion point.

Remarks
For any insertion point, the corresponding line number is returned. If the insertion point is
-1; the number of the line containing the first insertion point of the selection is returned.

The term line means a line on the display after the application of word-wrap. It does not
mean a line as defined by the CR LF line-break sequence.

Default Processing
The default window procedure takes no action on this message, other than to set ILineNum
to O.

MLM_PASTE
This message replaces the text that forms the current selection, with text from the clipboard.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

16-18 PM Programming Reference Vol II

Returns
ulCopy (ULONG)

Number of bytes transferred, counted in. CF _TEXT format.

Remarks
The multi-line entry field control window procedure responds to this message by replacing
the selected text with text from the clipboard. The text is translated from standard clipboard
format, which is the same as importing with MLE_CFTEXT format.

The text is assumed to be in the clipboard as a single contiguous data segment. This
restricts the amount to the maximum segment size (64Kb).

This can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set ulCopy to
o.

MLM_QUERYBACKCOLOR
This message queries the background color.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
IColor (LONG)

Text color.

Remarks
This message returns the color in which the background is to be drawn.

The color values are the same as those used by GpiSetColor.

Default Processing
The default window procedure takes no action on this message, other than to set IColor to O.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-19

MLM_QUERYCHANGED
This message queries the changed flag.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Current changed status.

TRUE Text has changed since the last time that the change flag was cleared.
FALSE Text has not changed since the last time that the change flag was cleared.

Remarks
The multi-line entry field control window procedure responds to this message by returning the
changed flag for the text without altering it. See also MlN_CHANGE.

Default Processing
The default window procedure takes no action on this message, other than to set rc to 0
(FALSE).

MLM_QUERYFIRSTCHAR
This message queries the first visible character.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

16-20 PM Programming Reference Vol II

Returns
iptFVC (IPT)

First visible character.

Remarks
Returns the insertion point immediately preceding the character visible in the upper left-hand
corner of the screen. If a partial character is displayed, that character counts as the first
visible character.

Note: In situations where no character is visible, because the text is scrolled to the right
beyond the end of the top line, this returns the insertion point of the last character on
the line (EOl not considered). In situations where there are no characters on the
line, the insertion point at the beginning is returned.

Default Processing
The default window procedure takes no action on this message, other than to set iptFVC to
O.

MLM_QUERYFONT
This message queries which font is in use.

Parameters
param1

pFaHrs (PFATTRS)
Font attribute structure.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

System font indicator.

TRUE
FALSE

Remarks

The system font is in use.
The system font is not in use.

This message puts the attributes of the current drawing font into the font attribute structure.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-21

MLM_QUERYFORMATLINELENGTH
This message returns the. number of bytes to end of line after formatting has been applied.

Parameters
param1

iptStart (IPT)
Insertion point to count from.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
iptLine (IPT)

Count of bytes to end of line.

Remarks
For any insertion point, the number of bytes between that insertion point and the end of the
line is returned, after the current formatting is applied. If the insertion point is -1, the cursor
position is used. This message differs from MLM_QUERYLINELENGTH in that the byte
count returned reflects the effects of the current formatting set by MLM_FORMAT.

Default Processing
The default window procedure takes no action on this message, other than to set iptLine to
o.

MLM~QUERYFORMATRECT
This message queries the format dimensions and mode.

Parameters
param1

pFormatRect (PPOINTL)
Format dimensions.

The size of the current limiting dimensions.

16-22 PM Programming Reference Vol II

param2

flFlags (ULONG)
Flags governing interpretation of dimensions.

An array of MLFFMTRECT _ * flags defined under the flFlags field of the
MLM_SETFORMATRECT message.

Returns
ulReserved (ULONG)

Reserved value.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to o.

MLM_QUERYFORMATTEXTLENGTH
This message returns the length of a specified range of characters after the current
formatting has been applied.

Parameters
param1

iptStart (IPn
Insertion point to start from.

param2

ulScan (ULONG)
Number of characters to convert to bytes.

OxFFFFFFFF Convert until end of line
other Convert specified number of characters.

Returns
ulText (ULONG)

Count of bytes in text after formatting.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-23

Remarks
This message returns the length in bytes of a range of characters after the current formatting
is applied. This differs from MLM_QUERYTEXTLENGTH in that:

• A range of insertion pOints can be queried.

• The byte count returned reflects the effects of the current formatting set by
MLM_FORMAT.

Default Processing
The default window procedure takes no action on this message, other than to set ulText to O.

MLM_ QUERYIMPORTEXPORT
This message queries the current transfer buffer.

Parameters
param1

Buff (PVOID *)
Transfer buffer.

param2

pulLength (PULONG)
Size of transfer buffer in bytes.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Remarks

Successful completion.
Error occurred.

This message returns the values from the most recent MLM_SETIMPORTEXPORT, or 0 for
either value if it has not been set.

Default Processing
The default window procedure takes no action on this message, other than to set rc to 0
(FALSE).

16-24 PM Programming Reference Vol II

MLM_ QUERYLINECOUNT
This message queries the number of lines of text.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulLines (ULONG)

The number of lines of text.

Remarks
The term line means a line on the display after the application of word-wrap. It does not
mean a line as defined by the CR LF line-break sequence.

The multi-line edit control always maintains one CR LF line-break in the buffer, therefore the
number of lines returned may be one greater than the number actually visible.

Default Processing
The default window procedure takes no action on this message, other than to set ulLines to
O.

MLM_QUERYLINELENGTH
This message returns the number of bytes between a given insertion point and the end of
line.

Parameters
param1

iptStart (IPT)
Insertion point to count from.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-25

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
iptLine (IPT)

Count of bytes to end of line.

Remarks
For any insertion point, the number of bytes between that insertion point and the end of the
line is returned. If the insertion point is -1, the cursor position is used. If the line contains a
hard line-break, it is counted as one byte.

The term line means a line on the display after the application of word-wrap. It does not
mean a line as defined by the CR LF line-break sequence.

Default Processing
The default window procedure takes no action on this message, other than to set iptLine to
O.

MLM_QUERYREADONLY
This message queries the read-only mode.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (BOOL)

Current read-only status.

TRUE
FALSE

Read-only mode is set.
Read-only mode is cleared.

16-26 PM Programming Reference Vol II

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_QUERYSEL
This message returns the location of the selection.

Parameters
param1

usQueryMode (USHORT)
Query Mode.

param2

MLFQS_MINMAXSEL Return both minimum and maximum points of selection in
a format compatible with the EM _ QUERYSEL message.

MLFQS_MINSEL Return minimum insertion point of selection.

MLFQS_MAXSEL Return maximum insertion point of selection.

MLFQS_ANCHORSEL Return anchor point of selection.

MLFQS_CURSORSEL Return cursor point of selection.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

sMinSel (SHORT)
Minimum insertion point of selection.

This value is rounded down to 65 535, if necessary.

RetumCode contains sMinSel and sMaxSe/ for a usQueryMode of
MLFQS_MINMAXSEL.

sMaxSel (SHORT)
Maximum insertion point of selection.

This value is rounded down to 65 535 if necessary.

RetumCode contains sMinSel and sMaxSel for a usQueryMode of
MLFQS_MINMAXSEL.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-27

ipt (IPT)
Requested insertion point.

ReturnCode contains ipt for a usQueryMode of MLFQS_MINSEL,
MLFQS_MAXSEL, MLFQS_ANCHORSEL, or MLFQS_CURSORSEL.

Remarks
This message returns the location of the selection in several different forms. The insertion
points lie between characters, and start at a zero origin before the first character in the MLE.
Subtracting the minimum from the maximum gives the number of characters in the selection.
This is not necessarily the number of bytes of ASCII. The line-break character is a CR LF (2
bytes) and all DSCS characters are 2 bytes. To determine the number of bytes, use
MLM_QUERYFORMATTEXTLENGTH, being sure that the format choice set by
MLM_FORMAT is set to what is used when the data is exported from the MLE (for example,
MLE_CFTEXTforMLM_QUERYSELTEXT).

Note the following:

• If anchor point> cursor point, minimum point = cursor point and maximum point =

anchor point.

• If anchor point < cursor point, minimum point = anchor point and maximum point =
cursor point.

Default Processing
The default window procedure takes no action on this message, other than to set
ReturnCode to O.

Examples
This example sends two MLM_QUERYSEL messages to obtain the beginning and ending
points of the current selection, sends an MLM_SETIMPORTEXPORT message to set up the
export buffer, and then sends an MLM_EXPORT message to export the selection into the
buffer.

16-28 PM Programming Reference Vol II

MLM_QUERYSELTEXT
This message copies the currently selected text into a buffer.

Parameters
param1

pchBuff (PCHAR)
Character buffer for text string.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulCount (ULONG)

Number of bytes to put into text string.

Remarks
This message copies the currently selected text into the buffer pOinted to by pchBuff. The
text string is null-terminated. The byte count includes the text in CF _TEXT format (CR LF)
and the null terminator.

Default Processing
The default window procedure takes no action on this message, other than to set ulCount to
o.

MLM_QUERYTABSTOP
This message queries the pel interval at which tab stops are placed.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-29

Returns
pixTabset (PIX)

Tab width in pels.

< 0 An error occurred.
Other The pel interval at which tab stops are placed.

Remarks
This message fails and returns a negative value, if the reserved values are not O.

Default Processing
The default window procedure takes no action on this message, other than to set pixTabset
to O.

MLM_QUERVTEXTCOLOR
This message queries the text color.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
IColor (LONG)

Text color.

Remarks
This message returns .the color in which text is to be drawn.

The color values are the same as those used by GpiSetColor.

Default Processing
The default window procedure takes no action on this message, other than to set IColor to O.

16-30 PM Programming Reference Vol II

MLM_QUERYTEXTLENGTH
This message returns the number of characters in the text.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
iptText (IPT)

Count of text in bytes.

Remarks
This message returns the number of characters in the text. Hard line-breaks are counted as
1 and soft line-breaks as O.

This message differs from the WinQueryWindowTextLength call in that it returns a LONG.

Default Processing
The default window procedure takes no action on this message, other than to set iptText to
O.

MLM_QUERYTEXTLIMIT
This message queries the maximum number of bytes that a multi-line entry field control can
contain.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-31

Returns
ISize (LONG)

Maximum number of bytes allowed in the MLE.

Remarks
The multi-line entry field control window procedure responds to this message by returning the
current limit set, either by default, or by MLM_SETTEXTLIMIT. If the limit is unbounded, a
non-positive value is returned.

Default Processing
The default window procedure takes no action on this message, other than to set ISize to O.

MLM_QUERVUNDO
This message queries the undo or redo operations that are possible.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

usOperation (USHORT)
Operation that can be undone or redone.

MLM_SETFONT

MLM_SETTEXTCOLOR

MLM_CUT

MLM_PASTE

MLM_CLEAR

16-32 PM Programming Reference Vol II

An undo or redo operation is not possible.

A WM_CHAR message, or messages for a simple string
of keystrokes, can be undone or redone.

A MLM_SETFONT message can be undone or redone.

A MLM_SETTEXTCOLOR message can be undone or
redone for both background and foreground color.

A MLM_CUT message can be undone or redone.

A MLM_PASTE message can be undone or redone.

A MLM_CLEAR message can be undone or redone.

rc (BOOl)
Undo or redo indicator.

TRUE
FALSE

An undo is possible.
A redo is possible.

Default Processing
The default window procedure takes no action on this message, other than to set reply to o.

MLM_QUERYWRAP
This message queries the wrap flag.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Wrap flag.

TRUE
FALSE

Word-wrap enabled
Word-wrap disabled.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_RESETUNDO
This message resets the undo state to indicate that no undo operations are possible.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be o.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-33

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

usOperation (USHORT)
Operation that can be undone or redone.

o An undo or redo operation is not possible.

WM _CHAR A WM _CHAR message, or messages for a simple string
of keystrokes, can be undone or redone.

MLM_SETFONT A MLM_SETFONT message can be undone or redone.

MLM_SETTEXTCOLOR A MLM_SETTEXTCOLOR message can be undone or
redone for both background and foreground color.

MLM_CUT A MLM_CUT message can be undone or redone.

MLM_PASTE A MLM_PASTE message can be undone or redone.

MLM_CLEAR A MLM_CLEAR message can be undone or redone.

rc (BOOL)
Undo or redo indicator.

TRUE
FALSE

Remarks

An undo is possible.
A redo is possible.

This message resets the undo state of the MLE to indicate that the last operation cannot be
undone (null return from MLM_QUERYUNDO). This can be used by the application when it
performs an operation that it can undo, that supersedes the last MLE operation. The
application can then reset its own undo state upon receipt of an MLN_CHANGE, indicating
that later changes have occurred through the MLE.

Default Processing
The default window procedure takes no action on this message, other than to set
ReturnCode to O.

16-34 PM Programming Reference Vol II

MLM_SEARCH
This message searches for a specified text string.

Parameters
param1

ulStyle (ULONG)
Style flags.

MLFSEARCH_CASESENSITIVE If set, only exact matches are considered a
successful match. If not set, any
case-combination of the correct characters in
the correct sequence is considered a successful
match.

MLFSEARCH_SELECTMATCH

MLFSEARCH_CHANGEALL

param2

pse (PMLE_SEARCHDATA)
Search specification structure.

Returns
rc (BOOL)

Success indicator.

TRUE The search was successful.

If set, the MLE selects the text and scrolls it into
view when found, just as if the application had
sent an MLM _ SETSEL message. This is not
done if MLFSEARCH_CHANGEALL is also
indicated.

Using the MLE_SEARCHDATA structure
specified inpse, all occurrences of pchFind are
found, searching from iptStart to iptStop, and
replacing them with pchRep/ace. If this style is
selected, the cchFound field has no meaning,
and the iptStart value points to the place where
the search stopped, or is the same as iptStop
because the search has not been stopped at
any of the found strings. The current cursor
location is not moved. However, any existing
selection is deselected.

FALSE The search was unsuccessful.

Chapter 16. MUlti-line Entry Field Control Window Processing 16-35

Remarks
This message searches the MLE text for a specified string, starting at a specified insertion
point and continuing until the second specified insertion point has been reached, or the
requested string has been matched.

When an MLM_SEARCH message is sent, the text is scanned starting with the character
that follows the insertion point indicated in the iptStart field of the MLE_SEARCHDATA
structure. The search proceeds until the point indicated in the iptStop field, until a match is
found, or until TRUE is returned from MLN_SEARCHPAUSE notification (see
WM _CONTROL (in Multiline Entry Fields)). If a negative value is specified for the iptStart,
the current cursor pOint is used. If a negative value is specified for iptStop, the end of the
text is used. If iptStop, is less than or equal to iptStart, after performing the two indicated
substitutions, the search wraps from the end of the text to the beginning of the text.

If the MLFSEARCH_CASESENSITIVE option is specified, the bytes of the search string must
exactly match those in the text. If MLFSEARCH_CASESENSITIVE is not specified, the
WinUpperChar of the search string must match the WinUpperChar of the text.

When a match is found, the iptStart field of the search specification structure is set to
indicate the insertion point immediately preceding the first character of the match, and the
cchFind field is set to indicate the number of characters in the match. The cursor selection is
not altered unless MLFSEARCH_SELECTMATCH is specified. If it is, an MLM_SETSEL is
done with the anchor point at iptStart and the cursor at iptStart + cchFind.

While searching, the MLE occasionally sends an MLN_SEARCHPAUSE notification
message. If the owner responds to this message with the value TRUE, the MLE stops the
search. When a search is stopped from MLN_SEARCHPAUSE, iptStart is set to the point
where the search terminated. If the response is FALSE, the search continues (see also the
definition of MLN_SEARCHPAUSE). The interval at which MLN_SEARCHPAUSE
notifications are sent is implementation-dependent, but must not exceed reasonable
user-response thresholds, nor should it be so often as to introduce undue messaging
overhead. Sending this notification every half second is a reasonable compromise.

When no match is found the iptStart value is unchanged.

If the application needs to continue the search, the proper way is to change the iptStart value
to be the point following the string found, adjusting for any text changes done after the
search that may have moved the relative location of the point.

Applications using this message are advised to change the system pointer to the wait icon
(clock face) if it is expected that the search will take some time.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

16-36 PM Programming Reference Vol II

Examples
This example searches for all occurrences of the word "Bonnie" and replaces them with the
word "Jeannette."

MLE SEARCHDATA search;
search.cb = s;zeof(search);
search.pchFind = "bonnie";
search.pchReplace = IIjeannette";
search.cchFind = 6;
search.cchReplace = 9;
search.iptStart = 0; /* from the beginning of the text */
search.iptStop = -1; /* to the end of the text */
WinSendMsg(hwndMle. MLM_SEARCH. MLFSEARCH_CHANGEALL. (MPARAM) &search)

MLM_SETBACKCOLOR
This message sets the background color.

Parameters
param1

IColor (LONG)
Color.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
IOldColor (LONG)

Color previously used.

Remarks
This message sets the color in which the MLE background is to be drawn, and updates the
display as necessary.

The color values are the same as those used by GpiSetColor.

Default Processing
The default window procedure takes no action on this message, other than to set IOldealar
to O.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-37

MLM SETCHANGED
This message sets or clears the changed flag.

Parameters
param1

usChangedNew (USHORT)
Value to set changed flag to.

param2

TRUE
FALSE

Changed flag set.
Changed flag cleared.

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Changed status before message was processed.

TRUE
FALSE

Remarks

Text has changed since the last time that the change flag was cleared.
Text has not changed since the last time that the change flag was cleared.

This message can generate a MlN _CHANGE notification.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_SETFIRSTCHAR
This message sets the first visible character.

Parameters
param1

iptFVC (IPT)
Insertion point to place in top left-hand corner.

16-38 PM Programming Reference Vol \I

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
An error occurred.

Remarks
This message scrolls the text to place the character following the insertion point into the
upper left-hand corner of the window. If the insertion point specified is beyond the end of a
line, or the end of the file, it is resolved in the same way as it is for a mouse click.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_SETFONT
This message sets a font.

Parameters
param1

pFattrs (PFATTRS)
Font attribute structure.

NUll The system font is set.
other The specified font is set.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

The font was successfully set.
An error occurred.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-39

Remarks
For any PFA TTRS, this message sets the display to use the appropriate font. If NULL, the
system font is used. The screen is updated appropriately.

This can cause an overflow, see MLN_OVERFLOW.

When setting an outline font it is necessary to ensure that the FATTRS structure contains the
correct maximum baseline extent and average character width for the desired point size and
that the font use is marked as FATTR_FONTUSE_ TRANSFORMABLE.

Baseline extent and character width are calculated by multiplying the desired point size by
the current display device font resolution (CAPS_ VERTICAL_FONT _RES and
CAPS_HORIZONTAL_FONT_RES; see DevQueryCaps) and dividing by 72, the number of
points in an inch.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Examples
This example retrieves the current font information, changes it to italic, and sets it using the
MLM_SETFONT message.

MLM_SETFORMATRECT
This message sets the format dimensions and mode.

Parameters
param1

pFormatRect (PPOINTL)
New format dimensions.

NULL A null value sets both dimensions to the current window size.

other The structure is a pair of LONGs designating the diagonally-opposite corner
of the rectangle, assuming 0,0 for the first. Therefore, they are the width
and .height in pels of the format rectangle. These dimensions are used as
the word,.wrap and text-size limiting boundaries. Negative values for either

16-40 PM Programming Reference Vol II

param2

dimension cause the MLE to substitute the current window size (the MLE
window rectangle minus margins).

If the rectangle specified has either, or both, of the limits set, and the size is
inadequate to contain the text, rc is set to FALSE and the rectangle
dimensions are replaced with the overflow amounts.

flFlags (ULONG)
Flags governing interpretation of dimensions.

MLFFMTRECT_MATCHWINDOW The dimensions of the format rectangle are
always to be kept the same as the window
size minus the margins. This causes the MLE
implicitly to do a MLM_SETFORMATRECT
each time the window is resized, and
effectively causes any other dimensions to be
ignored. Resizing of the window can cause
this setting to be automatically negated (see
MLN_OVERFLOW).

MLFFMTRECT_LlMITHORZ The width of any line in the MLE cannot
exceed the given horizontal dimension. If
word-wrap is on, this limit has no effect.
Word-wrap can result in trailing blanks beyond
the right limit. These do not cause an overflow
notification.

MLFFMTRECT_LlMITVERT The vertical height of the total text, as
displayed, is limited to that which fits totally
within the vertical dimension of the format
rectangle.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
An error occurred.

The multi-line entry field control window procedure responds to this message by setting
formatting dimensions and mode.

Any addition of text that causes the text to exceed the rectangle limits causes a notification
before proceeding (see MLN_PIXHORZOVERFLOW and MLN_PIXVERTOVERFLOW).

Chapter 16. Multi-Line Entry Field Control Window Processing 16-41

Any activity that would cause the rectangle to be unable to contain the existing text (resize,
undo, increasing font size, or word-wrap on or off) is rejected and results in a notification
message for information (see MLN_OVERFLOW).

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

16-42 PM Programming Reference Vol II

MLM_SETREADONLY
This message sets or clears read-only mode.

Parameters
param1

usReadOnly (USHORT)
New read-only value.

TRUE
FALSE

Read-only mode set.
Read-only mode cleared.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Previous read-only value.

TRUE
FALSE

Read-only mode was set.
Read-only mode was cleared.

Remarks
When read-only mode is set, characters typed at the keyboard do not get inserted into the
MlE text. The API insertion interface, however, is still functional, as are
selection-manipulation activities and copy-to-clipboard operations. This is useful as a means
of preventing text modification (such as in a help system), and for providing a minimal
blocking printing semaphore.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_ SETIMPORTEXPORT
This message sets the current transfer buffer.

Parameters
param1

pBuff (PCHAR)
Transfer buffer.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-43

param2

ulLength (UlONG)
Size of transfer buffer in bytes.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
An error occurred.

Given a far pOinter to a buffer, and the size of the buffer, this message sets it as the current
transfer buffer for the MlE. This buffer is used by the MlMJMPORT and MlM_EXPORT
messages. The system segment limit must be observed when specifying the buffer size.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

16-44 PM Programming Reference Vol II

MLM SETSEL
This message sets a selection.

Parameters
param1

iptAnchor (IPT)
Insertion point for new anchor point.

param2

iptCursor (IPT)
Insertion point for new cursor point.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Selection successfully set
An error occurred.

This message sets the anchor and cursor points. The screen display is updated
appropriately, ensuring that the cursor point is visible (which may involve scrolling). Note
that the text cursor and inversion are not displayed if the MlE window does not have the
input focus. A negative value for a point leaves that point alone.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Examples
This example highlights the second, third, and fourth characters of the text, and places the
cursor to the right of the fourth character.

WfnSendMsg{hwndMle ,MLM_SETSEL. (MPARAM) Il •. (MPARAM) ··.4L) ;

Chapter 16. Multi-Line Entry Field Control Window Processing 16-45

MLM_SETTABSTOP
This message sets the pel interval atwhich tab stops are placed.

Parameters
param1

pixTab (PIX)
Pel interval for tab stops.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
pixTabset (PIX)

Success indicator.

< 0 An error occurred.
Other The value to which the width was set.

Remarks
This message fails if the reserved value is not O.

This message can cause an overflow, see MLN_OVERFLOW.

Defau It Processi ng
The default window procedure takes no action on this message, other than to set pixTabset
to O.

MLM_SETTEXTCOLOR
This message sets the text color.

Parameters
param1

IColor (LONG)
Color.

16-46 PM Programming Reference Vol II

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
IOldColor (LONG)

Color previously used.

Remarks
This message sets the color in which the MLE text is to be drawn, and updates the display
as necessary.

The color values are the same as those used by GpiSetColor.

Default Processing
The default window procedure takes no action on this message, other than to set IOldeolor
to O.

MLM_SETTEXTLIMIT
This message sets the maximum number of bytes that a mUlti-line entry tield control can
contain.

Parameters
param1

ISize (LONG)
Maximum number of characters in MLFIE_NOTRANS format.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulFit (ULONG)

Success indicator.

o Successful completion. Current text fits within the new limit.
Other The number of bytes by which the current text exceeds the proposed limit. The

limit is not changed.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-47

Remarks
The mUlti-line entry field control window procedure responds to this message by limiting the
text size to ISize bytes. Text size. is calculated using the MLFIE_NOTRANS format. Note
that this is bytes and not characters; DBCS programmers should calculate accordingly.

This message returns 0 if the text limit exceeds or is equal to the existing text. Otherwise it
returns the number of bytes by which the text would have overflowed, and does not change
the limit.

The default, which is unbounded, can be specified by entering a non-positive limit.

Default Processing
The default window procedure takes no action on this message, other than to set ulFit to O.

MLM_SETWRAP
This message sets the wrap flag.

Parameters
param1

usWrap (USHORT)
New value for wrap flag.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
An error occurred.

The multi-line entry field control window procedure responds to this message by setting the
word wrap mode and updating the screen as appropriate.

When word-wrap is turned on, the text is wrapped to fit the formatting rectangle width. When
word-wrap is turned off, the text is allowed to trail off to the right until it reaches an
end-of-line marker.

Word-wrapping is defined as follows. Words are sequences of non-white-space characters
(white-space characters are space, line break, and tab). When word-wrapping is enabled,
the whole word must appear on one line within the formatting rectangle, unless the word by

16-48 PM Programming Reference Vol II

itself is too long to fit. In this case the word is split following the last character that fits, and
the remainder starts a new line.

This definition then applies recursively to the remainder of the word. The word continues to
be visible. For editing purposes (for example, for word-selection) the word is viewed as a
single word drawn over multiple lines.

Blank characters are always accumulated onto the current line, even if they exceed the
horizontal formatting dimension, that is, blanks are allowed to trail off the right-hand edge.
Line-break characters are also allowed to exceed the horizontal dimension, and any
subsequent text must begin on a new line. The line-break following a line-break character is
sometimes referred to as a hard line-break. Other line breaks, due to word-wrapping, and
not to explicit formatting characters, are referred to as soft line-breaks.

Tab characters must always be visible. If a tab character occurs after the last tab stop within
the horizontal formatting dimension, a soft line-break occurs after the tab.

This message can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

MLM_UNDO
This message performs any available undo operation.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (USHORT)

Success indicator.

TRUE
FALSE

An undo operation was performed.
No undo operation was performed.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-49

Remarks
The last operation is undone (note that an undo can be undone).

This can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

WM_BUTTON1 DBLCLK (in Multiline Entry Fields)
For the cause of this message, see "WM_BUTTON1DBLCLK" on page 10-12.

For a description of the parameters, see "WM _BUTTON 1 DBLCLK" on page 1 0-12.

Remarks
This message indicates that mouse button 1 has click~d twice within the system double-click
time.

Double-Click
If the click point is in the middle of a non-white-space character, the token (word)
surrounding the clicked-on character, and any trailing spaces, are selected. If the click point
is in a space character, the previous word (along with the trailing spaces including the
clicked-on space) is selected. If there is no preceding word (either because the spaces are
at the beginning of the text or immediately follow a line-break character) the run of spaces is
selected. If the click point is on a tab or line-break character, that character is selected.

Shift-Double-Click
Double-clicking while the Shift key is pressed leaves the anchor point alone, and moves the
cursor point to the beginning or end of the clicked-on token. If the click point is before the
anchor point in the text, the cursor pOint is moved to the beginning of the surrounding word,
otherwise, the cursor point is moved to the end of the surrounding word. When
shift-double-clicking, the selection is extended to include the token that was double-clicked
on.

Margin Mouse Event
All mouse events in a margin cause the MLE to send a MLN_MARGIN notification to the
owner window of the MLE. This message has, as its parameters, the original mouse
message. The owner can process the notification or not. If the owner does not process the
message, the event is treated as if it occurred on the closest point in the text.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM _BUTTON 1 DBLCLK

16-50 PM Programming Reference Vol II

WM_BUTTON1 DOWN (in Multiline Entry Fields)
For the cause of this message, see·"WM_BUTTON1DOWN" on page 10-13.

For a description of the parameters, see "WM _ BUTTON 1 DOWN" on page 1 0-13.

Remarks
This message delimits mouse button click events. Between a button-down and a button-up
event, the mouse is considered to be dragging. A mouse click is considered to happen on
button-down, and dragging is terminated by a button-up.

Click
Clicking in the text sets the cursor and anchor points to the nearest insertion point. If the
MLE is in overtype mode, the anchor is extended one character further in the text, subject to
the end-of-text and new-line boundary conditions, defined under WM_CHAR (in Multiline
Entry Fields).

Shift-Click
Clicking while the shift key is held down sets the cursor point to the nearest insertion point,
while leaving the anchor point alone.

Margin Mouse Event
All mouse events in a margin cause the MLE to send a MLN_MARGIN notification to the
owner window of the MLE. This message has, as its parameters, the original mouse
message. The owner can process the notification or not. If the owner does not process the
message, the event is treated as if it occurred on the closest point in the text.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_BUTTON 1 DOWN

WM_BUTTON1 UP (in Multiline Entry Fields)
For the cause of this message, see "WM_BUTTON1UP" on page 10-16.

For a description of the parameters, see "WM_BUTTON1UP" on page 10-16.

Remarks
This message delimits mouse button click events. Between a button-down and a button-up
event the mouse is considered to be dragging. A mouse click is considered to happen on
button-down, and dragging is terminated by a button-up.

Margin Mouse Event
All mouse events in a margin cause the MLE to send a MLN_MARGIN notification to the
owner window of the MLE. This message has, as its parameters, the original mouse
message. The owner can process the notification or not. If the owner does not process the
message, the event is treated as if it occurred on the closest point in the text.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-51

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_BUTTON1 UP

WM_ CHAR (in Multiline Entry Fields)
For the cause of this message, see "WM _CHAR" on page 1 0-32.

For a description of the parameters, see "WM_CHAR" on page 10-32.

Remarks
The behavior of the MLE, when typing, depends on whether it is in insert or overtype mode,
and whether the selection is empty or not. The selection is defined to be empty when the
cursor point is equal to the anchor point.

When a character is typed, it replaces the current selection. If the selection is empty, the
character is viewed as replacing nothing, so the character is effectively inserted into the text.
If one or more characters are selected, those characters are deleted from the text and
replaced by the typed character.

If the MLE is in insert mode, the cursor and anchor points are moved to immediately follow
the newly typed character.

If the MLE is in overtype mode, the cursor is moved to immediately follow the newly typed
character. If there is no character after the cursor (the new character is at the end of the
text) or if the character after the cursor is a line-break character, the anchor is set to be
equal to the cursor point. In any other case, the anchor is extended one character past the
cursor point, defining the next character as the current selection.

If the typing causes the cursor to go off the screen in any direction, the display is
automatically scrolled. If word-wrap is on, text continues on a new line, otherwise, the
screen is scrolled horizontally.

Scrolling of the text in the window is independent of cursor movement. The cursor and
selection remain unaltered at the same location within the text during all scrolling but the
converse is not true. Any movement of the cursor causes auto-scrolling, if necessary, to
ensure that the text location of the cursor is visible within the window.

Tabs: Tabs are represented as a single character in the text model, and are displayed as
enough white-space to reach the next tab stop. Tab stops are set at pel intervals, starting
with zero and occurring every n pels, where n is a value set by the MLM_SETTABSTOP
message, and defaulting to eight times the average character width of the system font.
When a tab is drawn, it uses the number of pels defined by the following formula:

pelWidth = pelTab - (pel Draw mod pel Tab»

16-52 PM Programming Reference Vol II

where pelTab is the tab interval, in pels, and pelDraw is the pel at which drawing is to begin.

Return: Return (ASCII newline) causes a hard line-break, and the following text begins on
a new line. A line-break character is inserted in the text, which is drawn as a few pels of
white-space (for selection purposes).

Keystroke commands: For all the following keys, unless otherwise noted, the display is
scrolled, if necessary, to keep the cursor point visible. Where noted, the cursor setting
behaves differently in insert mode than in overtype mode. This is subject to the boundary
conditions noted above.

Del

Shift+Del

Insert

Shift+lns

Ctrl+lns

Backspace

Down Arrow

Shift+Down Arrow

Up Arrow

Shift+Up

Causes the contents of the selection region to be deleted. If
the selection region contains no text, it causes the character
to the right of the cursor to be deleted.

Causes the contents of the selection region to be cut to the
clipboard.

Toggles between insert and overtype mode. The MLE
ignores the Insert key when it occurs without a modifier.

Causes the contents of the clipboard to replace the selection
region.

Causes the selection region to be copied to the clipboard.
The selection region is not otherwise affected.

Functions similar to Del. If the selection is not empty,
Backspace deletes the selection. If the selection is empty,
Backspace deletes the character to the left of the cursor point.
If the MLE is in overtype mode, the anchor point is set, and
the cursor point is moved to be one character previous in the
text. If no such character exists (because the anchor is set to
the beginning of the text) the cursor is set to the anchor point.
If the MLE is in insert mode, the cursor and anchor points are
set, as defined at the start of this chapter.

Sets the cursor point to the closest insertion point on the
following line, then sets the anchor point to the cursor point
(insertion mode) or one character following (overtype mode).

Causes the cursor point to be moved to the closest insertion
point on the following line. The anchor point does not move.

Sets the cursor point to the closest insertion pOint on the
preceding line, then sets the anchor point to the cursor point
(insert mode) or one character following (overtype mode).

Sets the cursor point to the closest insertion point on the
preceding line. The anchor point is not moved.

Chapter 16. Multi-Line Entry Field Control Window Processing 16-53

Right Arrow

Shift+Right

Left and Shift+Left

Ctrl+Right

Ctrl+Shift+Right

Ctrl+Left

Ctrl+Shift+Left

Pagedown and Pageup

Sets the cursor point to the insertion point one character
following the cursor point. The anchor point is set to the
cursor point (insert mode) or one character following (overtype
mode).

Causes the cursor pOint to be set to the insertion pOint
immediately following the previous cursor point. The anchor
point is not moved.

Work analogously.

Moves the cursor pOint to the insertion point immediately
preceding the next word in the text including trailing spaces,
and sets the anchor point to be equal to (insert mode) or one
character following (overtype mode) the cursor point. The
EOl (hard line-break) and tab characters are treated as
words.

Moves only the cursor pOint in the same way as Ctrl+Right,
but leaves the anchor point unmoved.

Moves the cursor point to the preceding insertion point at the
beginning of a word, and sets the anchor point to be equal to
(insert mode) or one character following (overtype mode) the
cursor point. The EOl (hard line-break) and tab characters
are treated as words.

Moves only the cursor point in the same way as Ctrl+left but
leaves the anchor pOint unmoved.

Cause the display to be scrolled one screen at a time in either
direction. This behavior is the same as would be encountered
during a page-down or page-up caused by the scroll-bar.

Ctrl+Pagedown and Ctrl+Pageup Cause the display to be scrolled one screen at a time to
the right or left respectively. This behavior is the same as
would be encountered during a page-right or page-left caused
by the scroll-bat

Home

Shift+Home

End

Sets the cursor point to the insertion pOint at the beginning of
the line containing the cursor point, and sets the anchor point
equal to (insert mode) or one character following (overtype
mode).

Moves the cursor point to the insertion point at the beginning
of the line. The anchor point is not moved.

Sets the anchor point to the insertion point at the end of the
line containing the cursor point. If the last character on the
line is a line~break character, the anchor is positioned just
before it. The cursor is set equal to (insert mode) or one
character previous to (overtype mode) the anchor.

16-54 PM Programming Reference Vol II

Shift+End

Ctrl+Home

Ctrl+End

Ctrl+Shift+Home

Ctrl+Shift+End

Default Processing

Moves the cursor point to the insertion paint at the end of the
line, as above. The anchor point is not moved.

Moves the cursor point to the insertion point at the beginning
of the document. The anchor point is set equal to (insert
mode) or one character following it (overtype mode).

Moves the anchor point to the insertion point at the end of the
document. The cursor point is set to be equal to the anchor
point (insert mode) or one character preceding it (overtype
mode).

Moves the cursor point in the same way as Ctrl+Home, but
leaves the anchor point unmoved.

Moves the cursor point in the same way as Ctrl+End, but
leaves the anchor point unmoved.

The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_CHAR

WM_ENABLE (in Multiline Entry Fields)
For the cause of this message, see "WM_ENABLE" on page 10-43.

For a description of the parameters, see "WM_ENABLE" on page 10-43.

Remarks
The multi-line entry field control window procedure responds to this message by setting the
enable state and by setting ulReserved to O.

Disabling the window is similar, but not identical, to MLM_DISABLEREFRESH. Enabling the
window is similar, but not identical, to MLM_ENABLEREFRESH. (Note that this also applies
to window styles.) The difference is that a disabled window receives no mouse or keyboard
input whereas with MLM_DISABLEREFRESH it receives the input but discards it.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ENABLE

Chapter 16. MUlti-line Entry Field Control Window Processing 16-55

WM_MOUSEMOVE (in Mulitline Entry Fields)
For the cause of this message, see "WM_MOUSEMOVE" on page 10-59.

For a description of the parameters, see "WM_MOUSEMOVE" on page 1 0-59.

Remarks
The mouse pointer moves and is of interest to the MLE. If refresh is disabled, the pointer is
set to the wait icon (a clock face). If refresh is enabled, the pointer is set to an I-beam. This
message can occur during dragging or when simply tracking the mouse.

Dragging Dragging sets the selection anchor to be the point where dragging
begins, and moves the cursor point along with it as the mouse is
moved. Moving the pointer into the margins while dragging
produces a scroll in the appropriate direction and continues
selecting.

Margin Mouse Event All mouse events in a margin cause the MLE to send a
MLN_MARGIN notification to the owner window MLE. This
message has, as its parameters, the original mouse message. The
owner can process the notification or not. If the owner does not
process the message, the event is treated as if it occurred on the
closest pOint in the text.

Default Processing
The default window procedure takes no action on this message, other than to set rc to 0
(FALSE).

Related Messages
• WM _ MOUSEMOVE

WM_QUERYWINDOWPARAMS (in Multiline Entry Fields)
This message occurs when an application queries the entry field control window parameters.

For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 10-75.

Remarks
The mUlti-line entry field control window procedure responds to this message by returning the
window parameters indicated by the fsStatus parameter of the WNDPARAMS data structure,
identified by the pwndparams parameter.

In response to the WPM_CCHTEXT flag, the text length is reported in the CF _TEXT format.
If it exceeds 64KB-1, then this value is reported. In response to the WPM_TEXT flag, text
up to the amount returned for the WPM _ CCHTEXT value is placed at the indicated location
in CF _ TEXT format.

16-56 PM Programming Reference Vol II

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure, identified by pwndparams, to 0 and sets rc to FALSE.

Related Messages
• WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS (in Multiline Entry Fields)
This message occurs when an application sets or changes the entry field control window
parameters.

For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 1 0-86.

Remarks
The multi-line entry field control window procedure responds to this message by setting the
window parameters indicated by the fsStatus parameter of the WNDPARAMS data structure,
identified by the pwndparams parameter.

If the MLE text is to be set by this message, it is assumed to be in CF _TEXT format (see
MLM_FORMAT) and all existing text is deleted before the new text is inserted. Note that a
Control Data structure can be associated with the window parameters, in which case any
field in that structure can cause a change to the MLE.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_SETWINDOWPARAMS

Chapter 16. Multi-Line Entry Field Control Window Processing 16-57

16-58 PM Programming Reference Vol II

Chapter 17. Combination-Box Control Window Processing

This system-provided window procedure processes the actions on a prompted entry field
(combination-box) control rNC _ COMBOBOX).

Purpose
A combination-box consists of an entry field control and a list box control merged into a
single control. The list, which is usually limited in size, is displayed below the entry field, and
offset one dialog-box unit to its right.

When the combination-box control has the focus, the text in the entry field is given selected
emphasis and, if the list box control has a matching entry, it is scrolled to show that match at
the top of the list.

A combination-box, while sometimes only showing the entryfield, also owns the area
occupied by the invisible list box. Another window can and will be clipped to it if they have
clipping flags set.

Combination Box Control Styles
These combination-box control styles are available:

CBS_DROPDOWN

CBS_DROPDOWNLIST

Both the entry field control and the list box control are visible.
When the selection changes in the list box control, the text of
the selected item in the list box control is placed in the entry
field. Also, the text in the entry field is completed by extending
the text of the entry field with the closest match from the list
box.

Inherits all the properties of a combination-box control with a
style of CBS_SIMPLE and, in addition, the list box control is
hidden until the user requests that it should be displayed.

In which the entry field control is replaced by a static control,
that displays the current selection from the list box control. The
user must explicitly cause the display of the list box control in
order to make alternative selections in the list box.

Combination Box Control Data
None.

© Copyright IBM Corp. 1994 17-1

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_ WINDOWFRAME
SYSCLR _ ENTRYFIELD
SYSCLR_WINDOW
SYSCLR_BUTTONMIDDLE
SYSCLR_BUTTONDARK
SYSCLR_BUTTONLIGHT
SYSCLR_OUTPUTTEXT
SYSCLR_ WINDOWTEXT
SYSCLR_HIGHLITEFOREGROUND
SYSCLR_HIGHLITEBACKGROUND
SYSCLR_FIELDBACKRGOUND
SYSCLR_WINDOWFRAME.

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_FOREGROUNDCOLOR
PP _ DISABLEDFOREGROUNDCOLOR
PP _HIGHLIGHTFOREGROUNDCOLOR
PP _FONTNAMESIZE
PP _BORDERCOLOR.

17 -2 PM Programming Reference Vol II

Combo Box Control Notification Messages
The combo box control uses most of the same window messages as the entry field control
and the list box control to notify its owner of significant events.

WM_CONTROL (in Combination Boxes)
For the cause of this message, see "WM _CONTROL" on page 1 0-39.

Parameters
param1

usid (USHORT)
Control window identity.

usnotifycode (USHORT)
Notify code.

param2

CBN_EFCHANGE The content of the entry field control has changed, and the
change has been displayed on the screen.

CBN_MEMERROR The entry field control cannot allocate the storage necessary
to accommodate window text of the length implied by the
EM_SETTEXTLIMIT message.

CBN_EFSCROLL The entry field control is about to scroll horizontally. This can

CBN_LBSELECT

CBN _ LBSCROLL

CBN_SHOWLIST

CBN_ENTER

happen in these circumstances:

• The application has issued a WinScroliWindow call.
• The content of the entry field control has changed.
• The caret has moved.

The entry field control must scroll to show the caret position.

An item in the list box control has been selected.

The list box is about to scroll.

The list box is about to be displayed.

The user has depressed the ENTER key or double clicked
(single clicked in the case of a drop-down list) on an item in
the list box control.

hwndcontrolspec (HWNO)
Combination (combo) window handle.

Chapter 17. Combination-Box Control Window Processing 17-3

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The entry field control window procedure generates this message and sends it to its owner,
informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ CONTROL

17 -4 PM Programming Reference Vol II

Combo Box Control Window Messages
The combo box control uses most of the same messages as the entry field control and the
list box control. In particular, the following messages are supported to achieve the functions
of a combo box. These messages are explained in detail in the entry field control window
messages and the list box control window messages sections.

WM_SETWINDOWPARAMS (in Entry Fields) To set the text of the entry field.

WM_QUERVWINDOWPARAMS (in Entry Fields) To obtain the text of the entry field.

LM_QUERYITEMCOUNT To obtain the count of items in the list box control.

LM_INSERTITEM

LM_SETTOPINDEX

LM_ QUERYTOPINDEX

LM_DELETEITEM

LM_SELECTITEM

LM_ QUERYSELECTION

LM_SETITEMTEXT

LM_QUERYITEMTEXT

LM_ QUERYITEMTEXTLENGTH

LM_SEARCHSTRING

LM_DELETEALL

WM_ENABLE

EM_ QUERYFIRSTCHAR

EM_SETFIRSTCHAR

EM_QUERYCHANGED

To insert an item into the list box control.

To scroll the list box control so that the specified item is
at the top.

To obtain the index of the item at the top of the list box
control.

To delete an item from the list box control. If
necessary, this also changes the content of the entry
field to the item at the top of the list box control.

To select a specified item in the list box control. Also,
this changes the content of the entry field to the item at
the top of the list box control and, if the list box control
is not visible, causes the list box control to 'dropdown'
below the entry field control.

To obtain the current selection in the list box control.

To change the text of an item in the list box control. If
necessary, this also changes the content of the entry
field control.

To obtain the text of an item in the list box control.

To obtain the length of the text of an item in the list box
control.

To obtain the index of an item in the list box control
containing a specified string.

To delete all the items in the list box control.

To enable the combo box control to respond to input.

To obtain the character displayed at the left edge of the
entry field control.

To scroll the entry field control so that the specified
character is displayed at the left edge of the entry field
control.

To obtain the changes to the entry field control.

Chapter 17. Combination-Box Control Window Processing 17-5

EM_QUERYSEL

EM_SETSEL

EM_SETTEXTLIMIT

To obtain the current selection of the entry field control.

To set the current selection of the entry field control.

To set the maximum number of characters to be
contained in the entry field control.

To place the contents of the selection of the entry field
control into the clipboard and then delete those contents
from the entry field control.

To place the contents of the clipboard into the entry
field control.

To place the contents of the selection of the entry field
control into the clipboard.

To clear the current selection of the entry field control.

This section describes the combo box control window procedure actions on receiving these
messages:

CBM_HILITE
This message sets the highlighting state of the entry field control.

Parameters
param1

usHilite (USHORT)
Highlighting indicator.

TRUE
FALSE

Highlight the entry field control.
Do not highlight the entry field control.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Changed indicator.

TRUE
FALSE

Remarks

The highlighting state of the entry field has been changed.
The highlighting state of the entry field has not been changed.

The combo box control window procedure responds to this message by setting the
highlighting state of the entry field control.

17-6 PM Programming Reference Vol II

Default Processing
WinDefWindowProc does not expect to receive this message and therefore takes no action
on it, other than to set rc to the default value of FALSE.

CBM_ISLISTSHOWING
This message determines if the list box control is showing.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Showing indicator.

TRUE
FALSE

The list box control is showing.
The list box control is not showing.

Remarks
The combo box control window procedure responds to this message by indicating if the list
box control is showing.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

CBM_SHOWLIST
This message sets the showing state of the list box control.

Parameters
param1

usShowing (USHORT)
Showing indicator.

TRUE Show the list box control.
FALSE Do not show the list box control.

Chapter 17. Combination-Box Control Window Processing 17-7

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Changed indicator.

TRUE
FALSE

Remarks

The list box showing state has been changed.
The list box showing state has not been changed.

The combo box control window procedure responds to this message by setting the showing
state of the list box control.

This message has no effect on a combo box control whose style is CBS_SIMPLE.

Hiding the list box control has no effect on the selection in the list box control. The selection
in the list box control must be changed by the use of a lM_SElECTITEM message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

17 -8 PM Programming Reference Vol II

Chapter 18. Scroll Bar Control Window Processing

This system-provided window procedure processes the actions on a scroll bar control
(WC_SCROLLBAR).

Purpose
Scroll bars are controls used to indicate that additional information can be displayed in a
window, logically to the left or right for horizontal scroll bars, logically above or below for
vertical scroll bars. The user interface for scroll bars allows for scrolling one unit or one
page at a time, or alternatively picking up the scroll bar slider and moving it to a position in
the scroll bar that indicates a logical position in the data.

Scroll Bar Control Styles
These scroll bar control styles are available:

SBS_HORZ Create a horizontal scroll bar.

SBS _VERT Create a vertical scroll bar.

SBS_ THUMBSIZE Indicates the presence of the cVisible and cTotal parameters in the
SBCDATA data structure.

SBS_AUTOTRACK The slider scrolls as more information is being displayed on the
screen.

SBS_AUTOSIZE The scroll bar slider changes size to reflect the amount of data
contained in the window.

Scroll Bar Control Data
See "SBCDATA" on page A-182.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_SCROLLBAR
SYSCLR_ WINDOWFRAME
SYSCLR_FIELDBACKGROUND
SYSCLR_WINDOW
SYSCLR_BUTTONMIDDLE.

© Copyright IBM Corp. 1994 18-1

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_FOREGROUNOCOLOR
PP _BOROERCOLOR
PP _HILITEFOREGROUNOCOLOR.

Scroll Bar System Values
Applications can use the following system values to create and add control scroll bars:

SV _ CXVSCROLL Width of the vertical scroll-bar.

SV _ CYHSCROLL Height of the horizontal scroll-bar.

SV _ CYVSCROLLARROW Height of the vertical scroll-bar arrow bit maps.

SV _ CXHSCROLLARROW Height of the vertical scroll-bar arrow bit maps.

SV_FIRSTSCROLLRATE The delay (in milliseconds) before autoscrolling starts, when
using a scroll bar.

SV_SCROLLRATE The delay (in milliseconds) between scroll operations, when
using a scroll bar.

SYSCLR_SCROLLBAR Color for drawing scroll-bar backgrounds.

TID_SCROLL Timer 10 for a reserved scrolling time. This is used for sending
notification messages when a scroll-arrow or scroll-bar
background is selected.

18-2 PM Programming Reference Vol 1\

Scroll Bar Control Notification Messages
These messages are initiated by the scroll bar control window procedure to notify its owner
of significant events.

WM_HSCROLL (in Horizontal Scroll Bars)
For the cause of this message, see "WM_HSCROLL" on page 1 0-51.

For a description of the parameters, see "WM_HSCROLL" on page 1 0-51.

Remarks
The scroll bar control window procedure generates this message and posts it to its owner,
informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_HSCROLL

WM_ VSCROLL (in Vertical Scroll Bars)
For the cause of this message, see "WM_ VSCROLL" on page 1 0-99.

For a description of the parameters, see "WM_ VSCROLL" on page 1 0-99.

Remarks
The scroll bar control window procedure generates this message and posts the message to
the owner of the procedure, informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_ VSCROLL

Chapter 18. Scroll Bar Control Window Processing 18-3

Scroll Bar Control Window Messages
This section describes the scroll bar control window procedure actions on receiving the
following messages. '

SBM_QUERYPOS
This message returns the current slider position in a scroll bar window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sslider (SHORT)

Slider position.

Remarks
The scroll bar control window procedure responds to this message by returning the current
slider position.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set sslider to the default value of O.

SBM_QUERYRANGE
This message returns the scroll bar range minimum and maximum values.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

18-4 PM Programming Reference Vol II

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

sfirst (SHORT)
First bound.

slast (SHORT)
Last bound.

Remarks
The scroll bar control window procedure responds to this message by returning the first and
last bounds of the scroll bar range.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set RetumCode to the default value of stirst and slast to O.

SBM_SETPOS
This message sets the position of the slider in a scroll bar window.

Parameters
param1

sslider (SHORT)
Position of slider.

If this value is outside the scroll-bar range, the slider is moved to the nearest valid
position within the range.

param2

ulReserved (ULONG)
Reserved value, should be O.

Chapter 18. Scroll Bar Control Window Processing 18-5

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred

Remarks
The scroll bar control window procedure responds to this message by setting the position of
the slider.

The scroll bar control is redrawn to reflect the change.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it.

SBM_SETSCROLLBAR
This message sets the scroll-bar range and slider position.

Parameters
param1

sslider (SHORT)
Position of slider.

param2

If this value is outside the scroll-bar range, the slider is moved to the nearest valid
position within the range.

sfirst (SHORT)
First bound.

This value must not be less than O. If a value less than 0 is supplied, 0 is used as
the value.

slast (SHORT)
Last bound.

The value must not be less than 0 or stirst. If a value less than this is supplied, the
higher of 0 or stirst is used as the value.

18-6 PM Programming Reference Vol II

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The scroll bar control window procedure responds to this message by setting the values of
the information range and the position of the slider.

The scroll bar is redrawn to reflect the change.

For example, if a scroll-bar is to allow scrolling through 100 lines of text, of which 50 are
visible at anyone time, and the top display line is currently number 25, sfirst should be set to
1, s/ast to 51 (since there are only 51 positions at which the slider may be placed), and
sslider to 25. The SBM_SETTHUMBSIZE message should be used in this example to set
the slider size to 50 visible parts out of 100.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it.

SBM_SETTHUMBSIZE
This message sets the scroll bar slider size.

Parameters
param1

svisible (SHORT)
Size of the visible part of the document.

stotal (SHORT)
Size of the entire document.

param2

ulReserved (UlONG)
Reserved value, should be o.

Chapter 18. Scroll Bar Control Window Processing 18-7

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The scroll bar control window procedure responds to this message by setting the size of the
slider proportional to the visible part of the document. If the visible part exceeds or is equal
to the entire document the scroll bar is disabled, otherwise the scroll bar is enabled.

The scroll bar is redrawn to reflect the change.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it.

WM_QUERYCONVERTPOS (in Scroll Bars)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 10-72.

For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 10-72.

Remarks
The scroll bar control window procedure returns QCP _ NOCONVERT.

Default Processing
For the default window procedure processing of this message see
"WM_QUERYCONVERTPOS" on page 10-72.

Related Messages
• WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in Scroll Bars)
This message occurs when an application queries the scroll bar control window parameters.

For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 10-75.

Remarks
The scroll bar control window procedure responds to this message by returning the window
parameters indicated by the fsStatus parameter of the WNDPARAMS data structure
identified by the pwndparams parameter.

Default Processing

18-8 PM Programming Reference Vol II

The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure, identified by pwndparams, to 0 and sets rc to FALSE.

Related Messages
• WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS (in Scroll Bars)
This message occurs when an application sets or changes the scroll bar control window
parameters.

For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 10-86.

Remarks
The scroll bar control window procedure responds to this message by setting the window
parameters indicated by the fsStatus parameter of the WNDPARAMS data structure
identified by the pwndparams parameter.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_SETWINDOWPARAMS

~"
Chapter 18. Scroll Bar Control Window Processing 18-9

18-10 PM Programming Reference Vol II

Chapter 19. Spin Button Control Window Processing

This system-provided window procedure processes the actions on a spin button control
(WC_SPINBUTTON).

Purpose
A spin button control (WC_SPINBUTTON window class) is a visual component whose
specific purpose is to give users quick access to a finite set of data. The spin button allows
users to select from a scrollable ring of choices. Since users can see only one item at a
time, the spin button control should be used only with data that is intuitively related, such as
a list of months of the year, or an alphabetic list of cities or states.

A spin button consists of at least one spin field that is a single-line entry field (SLE), and up
and down arrows that are stacked on top of one another. These arrows are positioned at the
right of the SLE.

You can create multifield spin buttons for those applications in which users must select more
than one value. For example, in setting a date the spin button control can provide individual
fields for setting the month, day, and year. The first spin field in the spin button could
contain a list of months, the second spin field could contain a list of numbers and the third
spin field could contain a list of years.

Spin Button Control Styles
Create a spin button using the style bits listed below. These styles can be joined together by
using logical ORs (I).

• Specify one of the following to determine whether a spin field will be a master or a
servant. If neither is specified, SPBS_SERVANT is the default.

SPBS_MASTER The spin button component consists of at least one single
line entry field (SLE), or spin field, and two arrows, the Up
Arrow and the Down Arrow. When a spin button contains
more than one spin field, the master component contains
the spin arrows. If the component contains only one spin
field, it should be a master.

You can create a multifield spin button by spinning
servants from the master.

• Specify one of the following to determine the type of characters allowed in the spin field:

SPBS_ALLCHARACTERS Any character can be typed in the spin field. This is the
default.

SPBS_NUMERICONL Y

SPBS_READONL Y

© Copyright IBM Corp. 1994

Only the digits 0-9 and the minus sign (-) can be typed in
the spin field.

Nothing can be typed in the spin field.

19-1

• Specify one of the following to determine how the text is to be presented in the spin
field: '

SPBS_JUSTLEFT
SPBS_JUSTRIGHT
SPBS_JUSTCENTER

Left-justify the text. This is the default.
Right-justify the text.
Center the text.

• Specify the following when you do not want a border around the spin button:

SPBS_NOBORDER Suppresses drawing a border.

• Specify the following to increase the spin speed:

SPBS_FASTSPIN Enables the spin button to increase the spin speed with
time. The speed doubles every two seconds.

Note: The spin button skips information when this option is specified. Do not use
SPBS_FASTSPIN if the application requires that this field be checked each time
a spin up or spin down occurs. Do not specify this option on a master
component that has servants spun from it.

• Specify the following to pad numeric fields with Os. This is useful when the spin field
contains values that represent time or money.

SPBS_PADWITHZEROS The output number is padded at the front between the first
non-zero digit and the field width, or 11 characters,
whichever is the lesser. The negative sign, if there is one,
is retained. The maximum number of characters required
to display a LONG number is 11.

Spin Button Control Data
See SPBCDATA

19-2 PM Programming Reference Vol II

Spin Button Control Notification Message
This message is initiated by the spin button control window to notify its owner of significant
events.

WM_CONTROL (in Spin Button Controls)
For the cause of this message, see "WM_CONTROL" on page 10-39.

Parameters
param1

id (USHORT)
Identity of the spin button component window.

notifycode (USHORT)

param2

Notification code.

SPBN_UPARROW Tells the application that the Up Arrow was clicked on, or
the Up Arrow key was pressed.

SPBN_DOWNARROW Tells the application that the Down Arrow was clicked on,
or the Down Arrow key was pressed.

SPBN_SETFOCUS Tells the application which spin field was selected.

SPBN_KILLFOCUS Tells the application when the spin field loses focus.

SPBN_ENDSPIN Tells the application that the user released the select
button or one of the arrow keys while spinning a button.

SPBN_CHANGE Tells the application that the contents of the spin field
changed. '

hwnd (HWND)
Window handle.

The interpretation of this handle is dependent upon the following notification codes:

• SPBN_UPARROW, SPBN_DOWNARROW, and SPBN_ENDSPIN.

The param2 parameter is the handle to the currently selected spin field in a
particular master-servant setup. If either the Up or Down Arrow is clicked on
and none of a spin button's servants are currently selected, the master will
return a handle to itself.

• SPBN_ SETFOCUS

The param2 parameter is the handle of the currently selected spin field.

This message tells the application which spin field is selected.

Chapter 19. Spin Button Control Window Processing 19-3

• SPBN_KILLFOCUS

The param2 parameter is NULLHANDLE if the spin field loses focus or no spin
field is currently selected.

This message tells the application when a spin field loses focus.

Note: Both SPBN_KILLFOCUS and SPBN_SETFOCUS are set independently.
You must check this message only when the application does not
specify a master-servant relationship.

• SPBN_CHANGE

The param2 parameter is the handle of the spin button in which the spin field
text changed.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is sent when, as specified by notifycode, the spin button component must tell
its owner of a significant event.

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return O.

Spin Button Control Window Messages
This section describes the spin button control window procedure actions on receiving the
following messages.

SPBM_OVERRIDESETLIMITS
This message causes the component to set or reset numeric limits.

Parameters
param1

IUpLimit (LONG)
Upper limit.

param2

ILowLimit (LONG)
Lower limit.

19-4 PM Programming Reference Vol II

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Successful completion.
Error occurred.

The application sends this message to the component to set or reset numeric limits.

This message is functionally identical to SPBM_SETLIMITS, except that the current value of
the spin button does not change if it is out of range.

When the upper limit is less than the lower limit, FALSE is returned.

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return FALSE.

SPBM_QUERYLIMITS
This message enables an application to query the limits of a numeric spin field.

Parameters
param1

plUpLimit (PLONG)
Pointer to a LONG that will receive the returned upper limit.

param2

plLowLimit (PLONG)
Pointer to a LONG that will receive the returned lower limit.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The application sends this message to the component to determine the limits of a numeric
spin field.

When the spin button has no data, or when it is spinning an array, FALSE is returned.

Chapter 19. Spin Button Control Window Processing 19-5

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return FALSE

SPBM_QUERYVALUE
This message causes the component to show the value in the spin field.

Parameters
param1

pStorage (PVOID)

param2

Place for returned value.

A place for the returned value. This value is either the address of a string or the
address of-a long variable.

If the usBufSize is 0, param1 is assumed to be an address of a long variable.

If param1 is Other, it is assumed to be an address of a string.

NULL Causes the spin button to process the reset or update as specified, but it
will not try to return a value to the application.

Other The address where the value is returned.

usBufSize (USHORT)
Buffer size.

If usBufSize is too small to return all of the text, the spin button returns as much of
the text as it can.

o The spin button assumes that param 1 is the address of a long variable. If
the· data in the spin button is spinning between an upper and lower limit,
the current value is passed back in the variable.

If the data in the spin button is in an array, the index of the current array
value (or last valid value) is passed back in the variable.

Other The spin button assumes that param 1 is the address of a string. The
information passed back in the string is dependent upon the flags in the
usValue parameter.

19-6 PM Programming Reference Vol II

usValue (USHORT)
Update/reset value.

Controls how the spin field is updated.

SPBQ_UPDATEIFVALI0 Update the contents of the spin field if the value is valid.
This is the default.

Specifying this flag on a query will not update the
contents of the spin field if it is exactly the same as an
item in the spin button list.

If an item in the list is Monday, specifying
SPBQ_UPDATEIFVALID updates the spin field contents
when MONDAY, monday, or mONDAY are typed, but
not when Monday is typed. This prevents recursion if
the application checks for the validity each time a
SPBN_CHANGE message is sent from the component.

SPBQ_AlWAYSUPDATE Update the contents of the spin field if the value is valid.
Reset the contents of the spin field to the last valid
value if the field contains data that is not valid.

If the spin button is spinning numbers between an upper
and a lower limit, and the content of the spin field is a
valid number that is out of range, the spin button does
not reset itself to the last valid value. It sets the current
position at the upper limit when the out-of-range number .
specified is above the upper limit. It sets the current
position at the lower limit when the out-of-range number
is below the lower limit.

When the current value is changed, the return of the
query message is still FALSE.

SPBQ_DONOTUPDATE Do not update the contents of the spin field, even if the
value is valid.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion.
Error occurred.

The application sends this message to the component to determine what value is in the spin
field. The application sets up a field for the component to deposit the value, and sets a flag
to determine what the function does when the value matches or does not match the given
spin-list values.

TRUE is returned when a matched value is found, or the data is in the range.

Chapter 19. Spin Button Control Window Processing 19-7

FALSE is returned when no match is found, the value is out of range, or no spin data exists.

Default Processing
The default' window procedure does not expect to receive this message and takes no action
other than to return FALSE.

SPBM_SETARRAY
This message causes the component to set or reset the array of data.

Parameters
param1

pStrl (PSZ)
Pointer to the new array of values.

param2

usltems (USHORT)
Number of items in the array.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The application sends this message to the component to set or reset the array of data.

The component tries to leave the current value unchanged. However, if the current value is
out of range for the new array, it is moved to the closest extreme. Thus, if the current value
is less than 0, it is moved to 0. If the current value is greater than the previous value, it is
set to the previous value.

If the data exceeds 64KB, or if param1 or param2 equal 0, FALSE is returned.

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return FALSE.

19-8 PM Programming Reference Vol II

SPBM_SETCURRENTVALUE
This message causes the component to set or reset the current numeric value or array
index.

Parameters
param1

IValue (lONG)
Array value or index.

Current value or index of array.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (Baal)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The application sends this message to the component to set or reset the current numeric
value or array index.

FALSE is returned when the value is out of range or there is no spin data.

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return FALSE.

SPBM_SETLIMITS
This message causes the component to set or reset numeric limits.

Parameters
param1

IUpLimit (lONG)
Upper limit.

Chapter 19. Spin Button Control Window Processing 19-9

param2

ILowLimit (lONG)
lower limit.

rc (BOOl)
Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The application sends this message to the component to set or reset numeric limits. The
component sets the current value to the content in the spin field when it is a valid number.
When the current value is out of the range of the limits, it is moved to the nearest limit, upper
or lower.

If the upper limit is less than the lower limit, FALSE is returned.

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return FALSE.

SPBM SETMASTER
This message causes the component to identify its master.

Parameters
param1

hwnd (HWND)
Handle of master component.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

, Successful completion
Error occurred.

19-10 PM Programming Reference Vol II

Remarks
The application sends this message to the component to tell a component who its master is.

When the application wants to take control of the spin button, it must set the param1 of each
spin button to NULLHANDLE. This must be done, for example, when a spin button with a
non-contiguous list of spin values is created (2,4,6,8, 10 ...). When the par am 1 of a spin
button is NULLHANDLE, the spin button does not perform the following default functions:

• Spin up or down on its own when the Up or Down Arrow key is pressed.
• Spin up or down when the Up or Down Arrow of the master is pressed.
• A master does not take the focus when its arrows are pressed and none of its servants

have focus.
• The spin button does not send itself an SPBM_QUERYVALUE message with the

SPBQ_ALWAYSUPDATE flag to update the current value when an SPBM_SPINUP or
SPBM_SPINDOWN message is received.

• The spin button does not fast spin.

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return FALSE.

SPBM_SETTEXTLIMIT
This message sets the maximum number of characters allowed in a spin field.

Parameters
param1

usLimit (USHORT)
Character limit.

Number of characters to allow.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 19. Spin Button Control Window Processing 19-11

Remarks
The application sends this message to set the maximum number of characters allowed in the
spin field. The size limit of the spin field is 255 characters. This is the default.

When the size exceeds 255 characters, FALSE is returned,

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return FALSE.

SPBM_SPINDOWN
This message causes the component to show the previous value (spin backward).

Parameters
param1

ulltem (ULONG)
Number of values to spin down.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The application sends this message to the component when it wants the previous value
shown (spin backward).

When there is no data to spin, FALSE is returned.

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return FALSE.

19-12 PM Programming Reference Vol II

SPBM_SPINUP
This message causes the component to show the next value (spin forward).

Parameters
param1

ulltem (UlONG)
Number of values to spin up.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The application sends this message to the component when it wants the next value shown
(spin forward).

When there is no data to spin, FALSE is returned.

Default Processing
The default window procedure does not expect to receive this message and takes no action
other than to return FALSE.

Chapter 19. Spin Button Control Window Processing 19-13

19-14 PM Programming Reference Vol II

Chapter 20. Static Control Window Processing

This system-provided window procedure processes the actions on a static control
(VVC _STATIC).

Purpose
Static controls are simple text fields, bit maps, icons, and boxes that can be used to label or
box other controls. Static controls do not accept user input, nor do they send notification
messages to their owner.

Static Control Styles
These static control styles are available:

SS_TEXT Creates a box with formatted text. The text is formatted before
it is displayed according to the setting of these text
drawing-style flags:

© Copyright IBM Corp. 1994

DT_LEFT
DT_CENTER
DT_RIGHT

ORed with one of:

DT_TOP
DT_VCENTER

Left-justified text
Centered text
Right-justified text

Text is aligned to top of window
Text is aligned vertically in center of
window

DT _BOTTOM Text is aligned to bottom of window

The following text drawing style can also be ORed, but only if
DT_TOP and DT_LEFT are also specified:

DT _ WORDBREAK Text is multi-line with word-wrapping at
ends of lines.

Note: For "static" text that can be selected, a Button Control
with a style of BS_NOBORDER can be used.

A group box static control is a box that has an identifying text
string in its upper left corner. Group boxes are used to collect
a group of radio buttons or other controls into a single unit.

Draws an icon. The text of the static control is a string that is
used to derive the resource 10 from which the icon is loaded.
The format of the string is:

• The first byte is OxFF, the second byte is the low byte of
the resource 10, and the third byte is the high byte of the
resource 10.

• The first character is "#"; subsequent characters make up
the decimal text representation of the resource 10. This

20-1

SS_SYSICON

SS_FGNDRECT

SS_BKGNDRECT

SS_FGNDFRAME

SS_BKGNDFRAME

SS_HALFTONERECT

SS_HALFTONEFRAME

SS_AUTOSIZE

Static Control Data
None.

Default Colors

format can be used for specifying a system icon in a
resource file. The decimal string is the value of the
appropriate SPTR _ * constant

If the string is empty or does not follow the format above, no
resource is loaded.

The resource is assumed to reside in the resource file of the
current process.

This control is resized to the size of the icon.

This style is the same as SS_ICON except that the icon ID is
specified as one of the system pointer ID values (SPTR_*
values) rather than a resource ID. This style provides a
convenient way to include system icons in application dialog
boxes.

Draws a bit map. The text of the static control names the
bit-map resource, as for SSJCON.

Creates a rectangle filled with the color of the foreground.

Creates a rectangle filled with the color of the background.

Creates a box with frame color equal to the foreground color.

Creates a box with frame color equal to the background color.

Creates a rectangle filled with halftone shading.

Creates a box with halftone shading frame.

The static control will be sized to make sure the contents fit.

The following system colors are used when the system draws button controls:

SYSCLR_ WINDOWFRAME
SYSCLR_ WINDOWSTATICTEXT
SYSCLR_WINDOW
SYSCLR_BACKGROUND.

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP _BORDERCOLOR
PP _FOREGROUNDCOLOR.

20-2 PM Programming Reference Vol II

Static Control Notification Messages
No notification messages are initiated by the static control window procedure.

Chapter 20. Static Control Window Processing 20-3

Static Control Window Messages
This section describes the static control window procedure actions on receiving the following
messages.

SM_QUERYHANDLE
This message returns the icon or bit-map handle of a static control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
hbmHandle (HBITMAP)

Icon or bit-map handle of the static control.

NULLHANDLE No icon or bit-map handle of the static control exists, or an error
occurred.

Other Icon or bit-map handle of the static control.

Remarks
The static control window procedure responds to this message by setting hbmHandle to the
handle of the icon or bit-map of the static control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set hbmHandle to the default value of NULLHANDLE.

20-4 PM Programming Reference Vol II

SM SETHANDLE
This message sets the icon or bit-map handle of a static control.

Parameters
param1

hbmHandle (HBITMAP)
Icon or bit-map handle of a static control.

This is an icon handle when sent to a control with a style of SS -,CON or
SS_SYSICON, and a bit-map handle when sent to a control with a style of
SS_BITMAP.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
hbmHandle (HBITMAP)

Icon or bit-map handle of the static control.

NULLHANDLE No icon or bit-map handle of the static control exists, or an error
occurred.

Other Icon or bit-map handle of the static control.

Remarks
The static control window procedure responds to this message by setting the icon or bit-map
handle of a static control to the value specified by hbmHandle, and causes the static control
to be redrawn, using the new item handle.

It should only be sent to a control with a style of SS_BITMAP, SS-,CON, or SS_SYSICON.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set hbmHandle to the default value of NULLHANDLE.

WM_MATCHMNEMONIC (in Static Controls)
For the cause of this message, see "WM_MATCHMNEMONIC" on page 10-55.

For a description of the parameters, see "WM_MATCHMNEMONIC" on page 10-55.

Remarks
The static control window procedure responds to this message by setting rc as appropriate.

Chapter 20. Static Control Window Processing 20-5

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_MATCHMNEMONIC

WM_QUERYCONVERTPOS (in Static Controls)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 10-72.

For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 10-72.

Remarks
The static control window procedure returns QCP _NOCONVERT.

Default Processing
For the default window procedure processing of this message see
"WM_QUERYCONVERTPOS" on page 10-72.

Related Messages
• WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in Static Controls)
This message occurs when an application queries the static control window procedure
Window parameters.

For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 10-75.

Remarks
The static control window procedure responds to this message by passing it to the default
window procedure.

Default Processing
The default window procedure sets the cchText, cbPresParams, and cbCtlData parameters
of the WNDPARAMS data structure, identified by pwndparams, to zero and sets rc to
FALSE.

Related Messages
• WM_QUERYWINDOWPARAMS

20-6 PM Programming Reference Vol II

WM_SETWINDOWPARAMS (in Static Controls)
This message occurs when an application sets or changes the static control window
procedure window parameters.

For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 10-86.

Remarks
The static control window procedure responds to this message by passing it to the default
window procedure.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_SETWINDOWPARAMS

Chapter 20. Static Control Window Processing 20-7

20-8 PM Programming Reference Vol II

Chapter 21. Title Bar Control Window Processing

This system-provided window procedure processes the actions on a title bar control
0NC _ TITLEBAR).

Purpose
The title bar control is the frame control that is used to display the application window title. It
is also used to display the active or inactive status of the frame window.

The title bar control also implements the user interface for moving the frame window.

The standard identifier for a title bar control in a frame window is FI D _ TITLE BAR.

Title Bar Control Styles
There is only one title bar style, the default.

Title Bar Control Data
None.

Default Colors
The following system colors are used when the system draws button controls:

• SYSCLR_ ACTIVETITLETEXTBGND
• SYSCLR _ ACTIVETITLE
• SYSCLR ACTIVETITLETEXT
• SYSCLR _ ACTIVETITLETEXTBGND
• SYSCLR _INACTIVETITLE
• SYSCLRJNACTIVETITLETEXT
• SYSCLRJNACTIVETITLETEXTBGND
• SYSCLR _ TITLEBOnOM
• SYSCLR_(IN)ACTIVETITLETEXTBGND
• SYSCLR_(IN)ACTIVETITLE.

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

• PP _FONTNAMESIZE
• PP _ACTIVECOLOR
• PP JNACTIVECOLOR
• PP _ACTIVETEXT*COLOR
• PP _INACTIVETEXT*COLOR
• PP _ACTIVETEXTFGNDCOLOR
• PP JNACTIVETEXTFGNDCOLOR
• PP _BORDERCOLOR.

© Copyright IBM Corp. 1994 21-1

Title Bar Control Notification Messages
These messages are initiated by the title bar control to notify its owner of significant events.

WM_SYSCOMMAND (in Title Bar Controls)
For the cause of this message, see "WM _ SYSCOMMAND" on page 1 0-91.

For a description of the parameters, see "WM_SYSCOMMAND" on page 10-91.

The title bar control window procedure sets uscmd to the title bar control identity and
ussource to CMDSRC _OTHER.

Remarks
The title bar control window procedure generates this message when a mouse input
message is received. The window procedure posts the message to the queue of the window
owner.

The purpose of this message is to notify the owner window to maximize or restore depending
on its current state.

Default Processing
The default window procedure takes no action on this message, other than to set ulReserved
to O.

Related Messages
• WM_COMMAND

WM_ TRACKFRAME {in Title Bar Controls
For the cause of this message, see "WM_TRACKFRAME" on page 10-95.

For a description of the parameters, see "WM_ TRACKFRAME" on page 1 0-95.

Remarks
The title bar control window procedure generates this message and sends it to its owner,
informing the owner that a mouse button down message has been received.

Default Processing
The default window procedure takes no action on this message, other than to set rc to
FALSE.

Related Messages
• WM_QUERYTRACKINFO

21-2 PM Programming Reference Vol \I

Title Bar Control Window Messages
This section describes the title bar control window procedure actions on receiving the
following messages.

TBM_QUERYHILITE
This message returns the highlighting state of a title-bar control.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Highlighting state.

TRUE
FALSE

Title-bar control is highlighted
Title-bar control is not highlighted.

Remarks
The title bar control window procedure responds to this message by returning the highlighting
state of the title-bar window.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

Chapter 21. Title Bar Control Window Processing 21-3

TBM_SETHILITE
This message is used to highlight or unhighlight a title-bar control.

Parameters
param1

usHighlighted (USHORT)
Highlighting indicator.

param2

TRUE
FALSE

Highlightthe title-bar control
Remove highlight from the title-bar control.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

The title bar control window procedure responds to this message by setting the highlighting
state according to usHighlighted. If the title bar highlighting state is changed by this
message, the title bar will repaint.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it, other than to set rc to the default value of FALSE.

WM_QUERYCONVERTPOS (in Title Bar Controls)
For the cause of this message, see"WM_QUERYCONVERTPOS" on page 10-72.

For a description of the parameters, see "WM_QUERYCONVERTPQS" on page 10-72.

Remarks
The title bar control window procedure returns QCP _NOCONVERT.

Default Processing
For the default window procedure processing of this message see
"WM_QUERYCONVERTPOS" on page 10-72.

21-4 PM Programming Reference Vol II

Related Messages
• WM_ QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS (in Title Bars)
This message occurs when an application queries the title bar control window procedure
window parameters.

For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 10-75.

Default Processing
The title bar control window procedure queries the appropriate window parameters in
accordance with pwndparams and sets rc to TRUE if the operation is successful, otherwise
to FALSE.

Related Messages
• WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS (in Title Bar Controls)
This message occurs when an application sets or changes the title bar control window
procedure window parameters.

For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 10-86.

Default Processing
The title bar control window procedure sets the appropriate window parameters in
accordance with pwndparams and sets rc to TRUE if the operation is successful, otherwise
to FALSE.

Related Messages
• WM_SETWINDOWPARAMS

Chapter 21. Title Bar Control Window Processing 21-5

21·6 PM Programming Reference Vol II

Chapter 22. Container Control Window Processing

This system-provided window procedure processes the actions on a container control
(WC_CONTAINER).

Purpose
A container control is a visual component whose specific purpose is to hold objects. These
objects, or container items, can be anything that either your application or a user might store
in a container. Examples are executable programs, word processing files, graphics images,
and database records.

Container item data is stored in RECORDCORE or MINIRECORDCORE data structures.
Both the application and the container have access to the data stored in these records. See
"RECORDCORE" on page A-175 and "MINIRECORDCORE" on page A-124 for descriptions
of these data structures.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

The maximum number of records is limited by the amount of memory in the user's computer.
The container control does not limit the number of records that a container can have.

The following list shows which types of data can be displayed for each container view. Refer
to the description of the container control in the OS/2 Programming Guide for more
information about the types of views.

View Types
Icon view
Name view
Text view
Tree view
Details view

Data
Icons or bit maps with text strings beneath
Icons or bit maps with text strings to the right
Text strings
Icons or bit maps, and text strings
Icons or bit maps, text strings, numbers, times, and dates.

Direct editing of container item text is supported in all views, including blank text fields.

The container control is designed according to the Common User Access (CUA) guidelines.
For example, the CUA direct manipulation protocol is fully supported, enabling a user to
visually drag an object in a container window and drop it on another object or container
window. In addition, the container control supports CUA-defined selection types and
techniques for selecting container items, as well as selection mechanisms, such as pointing
devices and the keyboard, and multiple forms of emphasis. For a complete description of
CUA containers, refer to the SAA eUA Guide to User Interface Design and to the SAA eUA
Advanced Interface Design Reference.

_ © Copyright IBM Corp. 1994 22-1

The container control automatically provides or enables either horizontal or vertical scroll
bars, or both, whenever all or part of one or more container items are not visible in a
container window's client area.

Container Control Window Words
The container control reserves 4 bytes in its window words for application use. This memory
can be accessed using the WinSetWindowUlong andWinQueryWindowUlong functions at
offset QWl_USER.

Container Control Styles and Selection Types
Containers are WC_CONTAINER class windows that have the following CCS_container
styles and selection types. Container control styles and selection types are specified when
the container control is created.

Container Control Styles
The following list defines container style bits that your application can use. These style bits
must be set by your application.

CCS_AUTOPOSITION
Automatic positioning, which causes container items displayed in the icon view to be
arranged when any of the following occur:

• The window size changes
• Container items are inserted, removed, sorted, invalidated, or filtered
• The font or font size changes
• The window title text changes.

In all of these cases, container items are arranged the same as when the
CM_ARRANGE message is sent. The CCS_AUTOPOSITION style bit is valid only when
it is used with the icon view (CV JCON).

CCS_MINIRECORDCORE
A record style bit that causes the container to interpret all container records as being
smaller than they would otherwise be. If a CM _AllOCRECORD message is received,
all records are interpreted and allocated according to the information in the
MINIRECORDCORE data structure instead of the RECORDCORE data structure, which
is used if this style bit is not specified.

CCS_READONLY
A read-only style bit for an entire container, which prevents a user from editing any of the
text in a container window. If you do not set this style bit, a user can edit any of the text
in a container window unless you set the following read-only attributes in the appropriate
data structures:

CA_ TITLEREADONL Y
Sets the container title to read-only. This is an attribute of the CNRINFO data
structure's flWindowAttr field.

22-2 PM Programming Reference Vol II

CRA_RECORDREADONLY
Sets text fields in records to read-only. This is an attribute of the RECORDCORE
and MINIRECORDCORE data structures' flRecordAttr field.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, the MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

CFA_FIREADONL Y
Sets column data to read-only. This is an attribute of the FIELDINFO data
structure's flData field.

CFA_FITITLEREADONL Y
Sets column headings to read-only. This is an attribute of the FIELDINFO data
structure's flTitle field.

CCS_ VERIFYPOINTERS
A pOinter verification style bit, which verifies that the application pOinters are members of
the container's linked list before they are used. If it is not set, the container does not
verify the pOinters.

Notes:

1. The CCS_ VERIFYPOINTERS style bit does not verify the validity of a pointer. It
only verifies whether a pOinter is a member of a container's linked list.

2. After your code has been developed and tested, you may want to remove the
CCS_VERIFYPOINTERS style bit in order to improve the container's performance.
Otherwise, the container will attempt to verify all pOinters, which will slow its
response to actions that users perform.

Container Control Selection Types
If a selection type is not specified, single selection is the default. For the tree view, single
selection is the only type supported. Refer to the description of the selection types in the
8AA eUA Advanced Interface Design Reference for more information.

CCS_SINGLESEL
Single selection, which allows a user to select only one container item at a time. Each
time a user selects a container item, the selection of any other container item is
cancelled.

CCS_EXTENDSEL
Extended selection, which allows a user to select one or more container items. A user
can select one item, a range of items, or multiple ranges of items.

CCS_MULTIPLESEL
Multiple selection, which allows a user to select zero or more container items.

Chapter 22. Container Control Window Processing 22-3

Container Control Data
See the following for information on the container control data structures:

• "CDATE" on page A-25
• "CNRDRAGINFO" on page A-28
• "CNRDRAGINIT" on page A-32
• "CNRDRAWITEMINFO" on page A-28
• "CNREDITDATA" on page A-29
• "CNRINFO" on page A-33
• "CTIME" on page A-44
• "FIELDINFO" on pageA-72
• "FIELDINFOINSERT" on page A-75
• "MINIRECORDCORE" on page A-124
• "NOTI FYDEL TA" on page A-130
• "NOTIFYRECORDEMPHASIS" on page A-131
• "NOTIFYRECORDENTER" on page A-132
• "NOTIFYSCROLL" on page A-133
• "OWNERBACKGROUND" on page A-135
• "QUERYRECFROMRECT" on page A-173
• "QUERYRECORDRECT" on page A-174
• "RECORDCORE" on page A-175
• "RECORDINSERT" on page A-177
• "SEARCHSTRING" on page A-184
• "TREEITEMDESC" on page A-199.

22-4 PM Programming Reference Vol II

Container Control Notification Messages
These messages are initiated by the container control window to notify its owner of
significant events.

WM_CONTROL (in Container Controls)
For the cause of this message, see WM_CONTROL.

Parameters
param1

id (USHORT)
Container control 10.

notifycode (USHORT)
Notify code.

The container control uses the following notification codes. For the complete
description of the specified notifycode, see "Container Control Notification Codes" on
page 22-10.

CN_BEGINEDIT Container text is about to be edited.

CN_COLLAPSETREE A parent item was collapsed in the tree view.

CN_CONTEXTMENU The container received a WM_CONTEXTMENU message.

CN_DRAGAFTER The container received a DM_DRAGOVER message. The
CN_DRAGAFTER notification code is sent only if either
the CA-ORDEREDTARGETEMPH or
CA_MIXEDTARGETEMPH attribute of the CNRINFO data
structure is set and the current view is the name, text, or
details view.

CN_D RAG LEAVE

CN_DRAGOVER

CN_DROP

CN_DROPNOTIFY

CN_DROPHELP

CN_EMPHASIS

CN_ENDEDIT

The container received a DM_DRAGLEAVE message.

The container received a DM_ DRAGOVER message. The
CN_DRAGOVER notification code is sent only if the
CA_ORDEREDTARGETEMPH attribute of the CNRINFO
data structure is not set or the current view is the icon
view or tree view.

The container received a OM_DROP message.

The container received a DM_DROPNOTIFY message.

The container received a DM_DROPHELP message.

A container record's attributes changed.

Direct editing of container text has ended.

Chapter 22. Container Control Window Processing 22-5

param2

CN_EXPANDTREE

CN_HELP

CNJNITDRAG

CN_KILLFOCUS

CN_PICKUP

CN_QUERYDELTA

CN_REALLOCPSZ

CN_SCROLL

CN_SETFOCUS

notifyinfo (ULONG)
Notify code information.

The Enter key is pressed while the container window has
the focus, or the select button is double-clicked while the
pointer is over the container window.

A parent item is expanded in the tree view.

The container received a WM_HELP message.

The drag button was pressed and the pointer was moved
while the pointer was over the container control.

The container is losing the focus.

The container received a WM_PICKUP message.

Queries for more data when a user scrolls to a preset
delta value.

Container text is edited. This message is sent before the
CN_ENDEDIT notification code is sent.

The container window scrolled.

The container is receiving the focus.

For the definition of this parameter, see the description of the specified
notifycode"Container Control Notification Codes" on page 22-10 .

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The container control window procedure generates this message and sends it to its owner,
informing the owner of this event.

Default Processing
For a description of the default processing, see WM_CONTROL.

WM_CONTROLPOINTER (in Container Controls)
For the cause of this message, see WM_CONTROLPOINTER.

For a description of the parameters, see WM_CONTROLPOINTER.

22-6 PM Programming Reference Vol I(

Remarks
For the appropriate remarks, see WM_CONTROLPOINTER.

Default Processing
For the default processing, see WM_CONTROLPOINTER.

WM_DRAWITEM (in Container Controls)
For the cause of this message, see WM_DRAWITEM.

Parameters
param1

id (USHORT)
Container control ID.

param2

pOwnerltem (POWNERITEM)
Pointer to an OWNERITEM data structure.

The following list defines the OWNERITEM data structure fields as they apply to the
container control. See OWNERITEM for the default field values.

hwnd (HWND)
Handle of the window in which ownerdraw will occur. The following is a list of
the window handles that can be specified for ownerdraw:

• The container window handle of the icon, name, text, and tree views
• The container title window handle
• The left or right window handles of the details view
• The left or right column heading windows of the details view.

hps (HPS)
Handle of the presentation space of the container window. For the details view
that uses a split bar, the presentation space handle is either for the left or right
window, depending upon the position of the column. If the details view does
not have a split bar, the presentation space handle is for the left window.

fsState (ULONG)
Specifies emphasis flags. This state is not used by the container control
because the application is responsible for drawing the emphasis states during
ownerdraw.

fsAttribute (ULONG)
Attributes of the record as given in the flRecordAttr field in the RECORDCORE
data structure.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container
is created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of

Chapter 22. Container Control Window Processing 22-7

PRECORDCORE in all applicable data structures and messages. See
"RECORDCORE" on page A-175 and "MINIRECORDCORE" on
page A-124 for descriptions of these data structures.

fsStateOld (ULONG)
Previous emphasis. This state is not used by the container control because
the application is responsible for drawing the emphasis states during
ownerdraw.

fsAttributeOld (ULONG)
Previous attribute. This state is not used by the container control because the
application is responsible for drawing the emphasis states during ownerdraw.

rclltem (RECTL)
This is the bounding rectangle into which the container item is drawn.

If the container item is an icon/text or bit-map/text pair, two WM_DRAWITEM
messages are sent to the application. The first WM_DRAWITEM message
contains the rectangle bounding the icon or bit map and the second contains
the rectangle bounding the text.

If the container item contains only text, or only an icon or bit map, only one
WM_DRAWITEM message is sent. However, if the current view is the tree
icon or tree text view and if the item is a parent item, the application will
receive an additional WM_DRAWITEM (in Container Controls) message. The
additional message is for the icon or bit map that indicates whether the parent
item is expanded or collapsed.

If the current view is the details view and the CFA_OWNER attribute is set, the
rectangle's size is equal to the width of the column and the height of the tallest
field in the container item. CFA_OWNER is an attribute of the FIELDINFO
data structure's flData field.

idltem (ULONG)
Identifies the item being drawn. It can be one of the following:

• CMA CNRTITLE
• CMAJCON
• CMA_TEXT
• CMA_ TREEICON.

This field is not used for the details view and is set to O.

hltem (CNRDRAWITEMINFO)
Pointer to a CNRDRAWITEMINFO structure. This field is set to NULL if idltem
is CMA_CNRTITLE.

See "CNRDRAWITEMINFO" on page A-28 for descriptions of this structure's
fields.

22-8 PM Programming Reference Vol II

Returns
rc (BOOl)

Item-drawn indicator.

TRUE
FALSE

Remarks

The owner draws the item, and so the container control does not draw it.
If the owner does not draw the item, the owner returns this value and the
container control draws the item.

CA_ OWNERDRAW is an attribute of the CNRINFO data structure's flWindowAttr field.

The container control window procedure generates this message and sends it to the owner
of the container control to offer the owner the opportunity to draw that item.

Default Processing
For a description of the default processing, see WM_DRAWITEM.

Chapter 22. Container Control Window Processing 22-9

Container Control Notification Codes
The following WM_CONTROL (in Container Controls) notification codes are sent by the
container control to its owner.

CN BEGINEDIT
The container control sends the WM_CONTROL (in Container Controls) message with the
CN_BEGINEDIT notification code to its owner whenever container text is about to be edited.

Parameters
param1

id (USHORT)
Container control ID.

CN_BEGINEDIT (USHORT)
Notification code.

param2

pCnrEditData (PCNREDITDATA)
Pointer to the CNREDITDATA structure.

See "CNREDITDATA" on page A-29 for definitions of this structure's fields as they
apply to the CN_BEGINEDIT notification code.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The CN_BEGINEDIT notification code is sent when direct editing of container text begins.
Warning: Once your application receives the CN_BEGINEDIT notification code, it must not
send any messages to the container until it receives the CN_ENDEDIT notification code,
which indicates that direct editing of container text has ended. If any messages are sent to
the container before your application receives the CN_ENDEDIT notification code, the results
of direct editing are unpredictable.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

22-10 PM Programming Reference Vol II

CN_COLLAPSETREE
The container control sends the WM_CONTROL (in Container Controls) message with the
CN_COLLAPSETREE notification code to its owner whenever the container collapses a
parent item in the tree view.

Parameters
param1

id (USHORT)
Container control ID.

CN_ COLLAPSETREE (USHORT)
Notification code.

param2

pRecord (PRECORDCORE)
Pointer to the record that was collapsed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

Chapter 22. Container Control Window Processing 22-11

CN_CONTEXTMENU
The container control sends the WM_CONTROL (in Container Controls) message with the
CN _ CONTEXTMENU notification code to its owner when the container receives a
WM_CONTEXTMENU message.

Parameters
param1

id (USHORT)
Container control 10.

CN_CONTEXTMENU(USHORT)
Notification code.

param2

pRecord (PRECORDCORE)
Pointer to the RECORDCORE structure.

If the user is using a pointing device,this RECORDCORE structure is the structure
that the pointing device pointer is over. If the pOinting device pointer is over white
space, this field is NULL.

If the user is using the keyboard, this RECORDCORE structure is the structure that
has the selection cursor.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

CN_DRAGAFTER
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_DRAGAFTER notification code to its owner whenever the container receives a
DM_DRAGOVER message. The CN_DRAGAFTER notification code is sent only if the
CA_ORDEREDTARGETEMPHASIS or CA_MIXEDTARGETEMPHASIS attribute of the
CNRINFO data structure is set and the current view is the name, text, or details view.

22-12 PM Programming Reference Vol II

Parameters
param1

id (USHORT)
Container control ID.

CN_DRAGAFTER(USHORT)
Notification code.

param2

pCnrDraglnfo (PCNRDRAGINFO)
Pointer to a CNRDRAGINFO structure.

See "CNRDRAGINFO" on page A-28 for definitions of this structure's fields as they
apply to the CN _ DRAGAFTER notification code.

Returns
ReturnCode

usDrop (USHORT)
Drop indicator.

DOR_NODROPOP

The record can be dropped. The drop will not occur unless
DOR_ DROP is returned. When this response is returned,
the container control applies ordered target emphasis to the
target record.

The record is acceptable and the current operation is
supported by the target, but the record cannot be dropped in
the current location. For example, the container control
returns DOR_NODROP if the record being dragged is
positioned over another record on which it cannot be
dropped.

If the container returns DOR_NODROP, the
DM_DRAGOVER message will continue to be sent to it
when the user does any of the following:

• Moves the pointer
• Presses a keyboard key
• Moves the pOinter out of and back into the container

window.

The record is acceptable, but the target does not support the
current operation. This response implies that the drop may
be valid if the drag operation changes. For example, if the
default operation is copy and the target does not support this
operation, the drop may become valid if the user presses a

Chapter 22. Container Control Window Processing 22-13

keyboard augmentation key to change to a different
operation, such as move.

If the container returns DOR_NODROPOP, no further
DM_DRAGOVER messages are sent until the user does any
of the follow.ing:

• Presses a keyboard key
• Moves the pointer out of and back into the container

window.

DOR NEVERDROP The record cannot be dropped. Ordered target emphasis is
not drawn. If the container returns DOR_NEVERDROP, no
further DM_DRAGOVER messages are sent until the user
drags the record outside of and back into the container
window.

usDefaultOp (USHORT)
Default operation.

Target-defined default operation.

DO_COPY Operation is a copy.

DO_DEFAULT Operation is the default drag operation. No modifier keys are
pressed.

DO_LINK Operation is a link.

DO_MOVE Operation is a move.

DO_UNKNOWN Operation is application-defined.

Remarks
The container control draws ordered target emphasis of container records. The target
emphasis provided by the container control is a black line that i.s drawn below the target
record. Therefore, it is not necessary for the application to draw any emphasis for the
container when it receives this notification code.

If the container returns anything except DOR_DROP, the target emphasis is automatically
changed to a symbol that indicates no drop is allowed. This gives the user a visual cue that
a drop cannot occur. The symbol reverts to the black line when the container returns a
DOR_DROP reply.

The CN_DRAGAFTER notification code is sent only for the details, name, and text views
when the CA_ORDEREDTARGETEMPHASIS or CA_MIXEDTARGETEMPHASIS attribute of
the CNRINFO data structure is set. If this attribute is not set, the CN_DRAGOVER
notification code is sent.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return o.

22-14 PM Programming Reference Vol II

CN_DRAGLEAVE
The container control sends a WM_ CONTROL (in Container Controls) message with the
CN _ DRAG LEAVE notification code to its owner when the container receives a
DM_DRAGLEAVE message.

Parameters
param1

id (USHORn
Container control 10.

CN_DRAGLEAVE(USHORn
Notification code.

param2

pCnrDraglnfo (PCNRDRAGINFO)
Pointer to a CNRDRAGINFO structure.

See "CNRDRAGINFO" on page A-28 for definitions of this structure's fields as they
apply to the CN_DRAGLEAVE notification code.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This notification code is sent to the owner of the container control in response to a
OM _ DRAGLEAVE message. It informs the owner that one of the following has occurred:

• A container record was being dragged over the container and has left the container's
boundaries.

• The drag ended when help was requested or a user pressed the Esc key while the
container record was over the container.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

Chapter 22. Container Control Window Processing 22-15

CN_DRAGOVER
The container control sends a WM_CONTROL (in Container Controls) message with the
CN _ DRAGOVER notification code to its owner when the container receives a
DM_DRAGOVER message. The CN_DRAGOVER notification code is sent only if the
CA_ORDEREDTARGETEMPH attribute of the CNRINFO data structure is not set or the
current view is the icon view or tree view.

Parameters
param1

id (USHORT)
Container controllD.

CN_DRAGOVER(USHORT)
Notification code.

param2

pCnrDraglnfo (PCNRDRAGINFO)
Pointer to a CNRDRAGINFO structure.

See "CNRDRAGINFO" on page A-28 for definitions of this structure's fields as they
apply to the CN_DRAGOVER notification code.

Returns
ReturnCode

usDrop (USHORT)
Drop indicator.

DOR_DROP

DOR_NODROP

The record can be dropped. When this response is
returned, the container control applies target emphasis.

The record is acceptable and the current operation is
supported by the target, but the record cannot be dropped in
the current location. For example, the container control
returns DOR _DROP if the record being dragged is
positioned over another record on which it cannot be
dropped.

If the container returns DOR_NODROP, the
DM_DRAGOVER message will continue to be sent to it
when the user does any of the following:

• Moves the pointer
• Presses a keyboard key
• Moves the pointer out of and back into the container

window.

22-16 PM Programming Reference Vol II

DOR_NODROPOP The record is acceptable, but the target does not support the
current operation. This response implies that the drop may
be valid if the drag operation changes. For example, if the
default operation is copy and the target does not support this
operation, the drop may become valid if the user presses a
keyboard augmentation key to change to a different
operation, such as move.

If the container returns DOR_NODROPOP, no further
DM_DRAGOVER messages are sent until the user does any
of the following:

• Presses a keyboard key
• Moves the pointer out of and back into the container

window.

DOR_NEVERDROP The record cannot be dropped. Target emphasis is not
drawn. If the container returns DOR_NEVERDROP, no
further DM_DRAGOVER messages are sent until the user
drags the record outside of and back into the container
window.

usDefaultOp (USHORT)
Default operation.

Target-defined default operation.

DO COpy
DO DEFAULT

DO_LINK
DO_MOVE
DO_UNKNOWN

Remarks

Operation is a copy.
Operation is the default drag operation. No modifier keys are
pressed.
Operation is a link.
Operation is a move.
Operation is application-defined.

This notification code shows where direct manipulation is occurring by applying target
emphasis to indicate whether an item that is being dragged over the container can be
dropped. It is not necessary for the application to draw any target emphasis for the container
when it receives this notification code.

If the pointer is over a container record and the item that is being dragged can be dropped
on that record, the container draws a black rectangle around the target record. If the pointer
is over white space and the item that is being dragged can be dropped on the white space,
the container draws a black border around the edge of the client area.

If the container returns anything except DOR_DROP, the target emphasis is automatically
changed to a symbol that indicates no drop is allowed. This gives the user a visual cue that
a drop cannot occur. The symbol reverts to the black rectangle or black border when the
container returns a DOR_DROP reply.

Chapter 22. Container Control Window Processing 22-17

The CN _ DRAGOVER notification code is sent only for the icon and tree views, or when the
CA_ORDEREDTARGETEMPH attribute of the CNRINFO data structure is not set. If this
attribute is set and the current view is the name, text, or details view, the CN_DRAGAFTER
notification code is sent.

The return parameter is reserved.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

eN_DROP
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_DROP notification code to its owner when the container receives a OM_DROP message.

Parameters
param1

id (USHORT)
Container control 10.

CN_DROP(USHORT)
Notification code.

param2

pCnrDraglnfo (PCNRDRAGINFO)
Pointer to a CNRDRAGINFO structure.

See "CNRDRAGINFO" on page A-28 for definitions of this structure's fields as they
apply to the CN_DROP notification code.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This notification code is sent to the container's owner when dragged container records are
dropped over the container window.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes noaction on it other than to return O.

22-18 PM Programming Reference Vol II

CN_DROPNOTIFY
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_DROPNOTIFY notification code to its owner when a pickup set is dropped over the
container.

Parameters
param1

id (U8HORT)
Container control ID.

CN_DROPNOTIFY (U8HORT)
Notification code.

param2

pCnrLazyDraglnfo (PCNRLAZYDRAGINFO)
Pointer to the CNRLAZYDRAGINFO structure.

This structure contains information about the DRAGINFO, the RECORDCORE that
was dropped on, and the window handle of the target window.

Returns
ulReserved (ULONG)

Reserved value, must be O.

Remarks
This notification code is sent to the owner of the container when a lazy drag set is dropped
over the container. (The container control receives a DM_DROP message.)

Default Processing
The default window procedure does not expect to receive this notification and so takes no
action on it other than returning O.

CN_DROPHELP
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_DROPHELP notification code to its owner when the container receives a
DM_DROPHELP message.

Parameters
param1

id (U8HORT)
Container control ID.

Chapter 22. Container Control Window Processing 22-19

CN_DROPHELP(USHOR~

Notification code.

param2

pCnrDraglnfo (PCNRDRAGINFO)
Pointer to a CNRDRAGINFO structure.

See "CNRDRAGINFO" on page A-28 for definitions of this structure's fields as they
apply to the CN_DROPHELP notification code.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This notification code is sent to the container's owner when help for direct manipulation is
requested over the container window.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

eN_EMPHASIS
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_EMPHASIS notification code to its owner whenever a container record's attributes
change.

Parameters
param1

id (USHORT)
Container control ID.

CN_EMPHASIS (USHORT)
Notification code.

param2

pNotifyRecordEmphasis (PNOTI FYRECORDEMPHASIS)
Pointer to the NOTIFYRECORDEMPHASIS structure.

See "NOTIFYRECORDEMPHASIS" on page A-131 for definitions of this structure's
fields as they apply to the CN_EMPHASIS notification code.

22-20 PM Programming Reference Vol II

Returns
ulReserved (ULONG)

Reserved value, should be o.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return o.

CN_ENDEDIT
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_ENDEDIT notification code to its owner whenever direct editing of container text has
ended.

Parameters
param1

id (USHORT)
Container control 10.

CN_ENDEDIT~SHORT)

Notification code.

param2

pCnrEditData (PCN REDITDATA)
Pointer to the CNREDITDATA structure.

See "CNREDITDATA" on page A-29 for definitions of this structure's fields as they
apply to the CN_ENDEDIT notification code.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
Direct editing of container text is completed. Any changes made to the text are saved when
a user presses the select button outside the window that contains the multiple-line entry
(MLE) field used to edit text in a container. However, a user can end the direct editing of
text without saving any changes to the text by doing any of the following:

• Pressing the Esc key
• Dragging the container item that is being edited
• Pressing the Alt key and the select button before direct editing of container text has

ended
• Scrolling the container window.

Chapter 22. Container Control Window Processing 22-21

The CN _ENDEDIT notification code is sent to the application in each of these cases.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

eN_ENTER
The container control sends a WM _CONTROL (in Container Controls) message with the
CN _ENTER notification code to its owner when either of the following occurs:

• The Enter key is pressed while the container window has the focus
• The select button is double-clicked while the pointer is over the container window.

Parameters
param1

id (USHORT)
Container control ID.

CN_ENTER(USHORT)
Notification code.

param2

pNotifyRecordEnter (PNOTIFYRECORDENTER)
Pointer to the NOTIFYRECORDENTER structure.

See "NOTIFYRECORDENTER" on page A-132 for definitions of this structure's
fields as they apply to the CN_ENTER notification code.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return o.

22-22 PM Programming Reference Vol II

CN_EXPANDTREE
The container control sends the WM _CONTROL (in Container Controls) message with the
CN_EXPANDTREE notification code to its owner whenever the container expands a parent
item in the tree view.

Parameters
param1

id (USHORT)
Container control 10.

CN_EXPANDTREE(USHORT)
Notification code.

param2

pRecord (PRECORDCORE)
Pointer to the record that was expanded.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return o.

CN_HELP
The container control sends a WM_ CONTROL (in Container Controls) message with the
CN_HELP notification code to its owner whenever the container receives a WM_HELP
message.

Parameters
param1

id (USHORT)
Container control 10.

Chapter 22. Container Control Window Processing 22-23

CN_HELP (USHORT)
Notification code.

param2

pRecord (PRECORDCORE)
Pointer to the record that has the selection cursor.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This notification code is sent to the container's owner when help is requested for a container
item.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

CN_INITDRAG
The container control sends a WM_CONTROL (in Container Controls) message with the
CNJNITDRAG notification code to its owner when the drag button is pressed and the pointer
is moved while the pOinter is over the container control.

Parameters
param1

id (USHORT)
Container control ID.

CN_INITDRAG (USHORT)
Notification code.

param2

pCnrDraglnit (PCNRDRAGINIT)
Pointer to the CNRDRAGINIT structure.

See "CNRDRAGINIT" on page A-32 for descriptions of this structure's fields as they
apply to the CNJNITDRAG notification code.

22-24 PM Programming Reference Vol II

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This notification code is sent to the container's owner when the drag button is pressed and
the pointer is moved while the pOinter is over the container control.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

CN_KILLFOCUS
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_KILLFOCUS notification code to its owner whenever the container is losing the focus.

Parameters
param1

id (USHORT)
Container control 10.

CN_KILLFOCUS (USHORT)
Notification code.

param2

hwndCnr (HWND)
Container control handle.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

Chapter 22. Container Control Window Processing 22-25

CN PICKUP
The container control sends a WM _CONTROL (in Container Controls) message with the
CN_PICKUP notification code to its owner when a pickup and drop operation is initiated over
a container. .

Parameters
param1

id (USHORT)
Container controllD.

CN_PICKUP (USHORT)
Notification code.

param2

pCnrDraglnit (PCNRDRAGINIT)
Pointer to the CNRDRAGINIT structure containing direct-manipulation information
initiated in a container.

The CNRDRAGINIT structure is the same as the one used for standard drag
notifications.

Returns
returns

ulReserved (ULONG)
Reserved value, must be O.

Remarks
This notification code is sent to the. owner of the container when a lazy drag operation is
commenced over a container. (The container control receives a WM_PICKUP message.)

The CN_PICKUP message handler determines if the mouse is over an object or in white
space of the client window.

If a pickup object is not selected, only that pickup object is added to the lazy drag set. If the
pickup object is selected, all selected items in the container are added to the lazy drag set.
The shell sets the CRA_PICKED attributes for all objects that are picked.

Default Processing
The default message procedure sets ulReserved to O.

22-26 PM Programming Reference Vol II

CN_QUERYDELTA
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_QUERYDELTA notification code to its owner to query for more data when a user scrolls
to a preset delta value.

Parameters
param1

id (USHORT)
Container control 10.

CN_QUERVDELTA(USHORT)
Notification code.

param2

pNotifyDelta (PNOTIFYDELTA)
Pointer to the NOTIFYDELTA structure.

See "NOTI FYDEL TA" on page A-130 for definitions of this structure's fields as they
apply to the CN _ QUERYDEL TA notification code.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
The delta value is specified by the cDelta field of the CNRINFO data structure and is set with
the CMA_DELTA attribute of the CM_SETCNRINFO message. If the value of the cDelta
field is greater than 0 and a user scrolls to the threshold record, the container control sends
a CN_QUERYDELTA notification code to the application. The application can then insert
more records into the container. It may be necessary for the application to remove some
records before inserting records.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

Chapter 22. Container Control Window ProceSSing 22-27

CN REALLOCPSZ
The container control sends a WM _CONTROL (in Container Controls) message with the
CN_REALLOCPSZ notification code to its owner whenever container text is edited. It is sent
before the CN_ENDEDIT notification code is sent.

Parameters
param1

id (USHORT)
Container control 10.

CN_REALLOCPSZ (USHORT)
Notification code.

param2

pCnrEditData (PCNREDITDATA)
Pointer to the CNREDITDATA structure.

See "CNREDITDATA" on page A-29 for definitions of this structure's fields as they
apply to the CN_REALLOCPSZ notification code.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

The application has sufficient memory for the new text string.
The application has insufficient memory for the new text string or does not
want the string to be copied.

The CN_REALLOCPSZ notification code is sent after direct editing of container text is
complete. It notifies the application that the container is about to copy the changed text to
the application's text string. This allows the application to ensure that the correct amount of
memory is allocated to accommodate the change.

If TRUE is returned by the application, the container control copies the new text to the
application's text string. However, if the application returns FALSE, changed text is
disregarded. Warning: Once your application receives the CN_REALLOCPSZ notification
code, it must not send any messages to the container until it receives the CN_ENDEDIT
notification code, which indicates that direct editing of container text has ended. If any
messages are sent to the container before your application receives the CN_ENDEDIT
notification code, the results of direct editing are unpredictable.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return FALSE.

22-28 PM Programming Reference Vol II

CN_SCROLL
The container control sends a WM_ CONTROL (in Container Controls) message with the
CN_ SCROLL notification code to its owner whenever the container window scrolls.

Parameters
param1

id (USHORT)
Container control 10.

CN_SCROLL (USHORT)
Notification code.

param2

pNotifyScroll (PNOTIFYSCROLL)
Pointer to the NOTIFYSCROLL structure.

See "NOTIFYSCROLL" on page A';133 for definitions of this structure's fields as
they apply to the CN_SCROLL notification code.

Returns
rc (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

CN SETFOCUS
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_ SETFOCUS notification code to its owner whenever the container receives the focus.

Parameters
param1

id (USHORT)
Container control 10.

CN_SETFOCUS (USHORT)
Notification code.

Chapter 22. Container Control Window Processing 22-29

param2

hwndCnr (HWND)
Container control handle.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure does not expect to receive this notification code and therefore
takes no action on it other than to return O.

22-30 PM Programming Reference Vol II

Container Control Window Messages
This section describes the container control window procedure actions on receiving the
following messages.

CM_ ALLOCDETAILFIELDINFO
This message allocates memory for one or more FIELDINFO structures.

Parameters
param1

nFieldlnfo (USHORT)
Number of FIELDINFO structures to be allocated.

The value of this parameter must be greater than O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
pFieldlnfo (PFIELDINFO)

Pointer or error.

o Reserved value, O. The WinGetLastError function may return the following
errors:

• PMERRJNSUFFICIENT _MEMORY
• PMERR_INVALlD_PARAMETERS.

Other If the nFieldlnfo parameter has a value of 1, a pointer to a FIELDINFO data
structure is returned.

A pointer to the first FIELDINFO structure in a linked list of FIELDINFO
structures is returned if the nFieldlnfo parameter has a value greater than 1.
The pointer to the next FIELDINFO structure is set in each pNextFieldlnfo field
of the FIELDINFO data structure. The last pointer is set to NULL.

Chapter 22. Container Control Window Processing 22-31

Remarks
The container control requires that the application use the CM_ALLOCDETAILFIELDINFO
message to allocate memory for any FIELDINFO structures that are used.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULL.

CM.-ALLOCRECORD
This message allocates memory for one or more RECORDCORE structures.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages.

Parameters
param1

cbRecordData (ULONG)

param2

Bytes of additional memory.

The number of bytes of additional memory that you want to reserve for your
application's private use. This parameter must have a value between 0 and 64,000.
If the value is 0, no additional memory is allocated, but a RECORDCORE data
structure is allocated.

nRecords (USHORT)
Number of records.

The number of container records to be allocated. This parameter must have a
value greater than O.

22-32 PM Programming Reference Vol II

Returns
pRecord (PRECORDCORE)

Returns a pointer or an error.

NULL Allocation failed. The WinGetLastError function may return the following errors:

• PMERRJNSUFFICIENT_MEMORY
• PMERRJNVALlD_PARAMETERS.

Other If the nRecords parameter has a value of 1, a pointer to a RECORDCORE
structure is returned.

Remarks

If the nRecords parameter has a value greater than 1, a pointer to the first
RECORDCORE structure in the linked list of records is returned. The pOinter to
the next container record is set in the preccNextRecord field in each
RECORDCORE data structure. The last pOinter is set to NULL.

The container control requires that the application use the CM_ALLOCRECORD message to
allocate memory for container records.

When a record is allocated, the cb field of the record will be initialized with the size of the
record structure type currently in use, either RECORDCORE or MINIRECORDCORE. If the
CCS_MINIRECORDCORE style bit is not specified, the record is allocated according to the
size of the RECORDCORE data structure. However, if the CCS_MINIRECORDCORE style
bit is specified, the record is allocated according to the size of the MINIRECORDCORE data
structure. This size should not be modified by the application.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULL.

Chapter 22. Container Control Window Processing 22-33

eM_ARRANGE
This message arranges the container records in the icon view of the container control.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Icon/text or bit-map/text pairs were successfully arranged.
An error occurred.

The container items fill the topmost row until the width of the client area is reached. The
container items then wrap to form another row immediately below the filled row. This
process is repeated until all of the container items are positioned in rows. Default spacing is
implemented according to the guidelines for the CUA user interface. A vertical scroll bar is
enabled, if necessary.

Before the relocation of the container items, the origin of the client area rectangle is reset to
coincide with the origin of the container's workspace. Arranging the container items does not
affect the record attributes.

If the CCS_AUTOPOSITION style bit is set, you do not need to send the CM_ARRANGE
message, since this style bit causes the container control to arrange the container items for
the application.

If the current view is not the icon view, no visible change occurs until the current view is
switched to the icon view. For example, if the name view is the current view and the
CM_ARRANGE message is sent, the display does not change.

The container updates the ptllcon field of the RECORDCORE structure with the new
coordinates.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

22-34 PM Programming Reference Vol II

CM_CLOSEEDIT
This message closes the window that contains the multiple-line entry (MlE) field used to edit
container text directly.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

The direct editing of container item text was successfully ended.

Remarks

The direct editing of container item text was not successfully ended. The
WinGetlastError function may return the following error:

PMERR_INSUFFICIENT _MEMORY.

The application sends this message to the container control to end the direct editing of
container text. The application can assign this message to a key or key combination, a
menu choice, or both so that the user can end the direct editing of container text from the
keyboard.

When the container control receives this message, it sends the CN_ REAllOCPSZ and
CN_ENDEDIT notification codes to the application.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 22. Container Control Window Processing 22-35

CM_COLLAPSETREE
This message causes one parent item in the tree view to be collapsed.

Parameters
param1

pRecord (PRECORDCORE)

param2

Pointer to the RECORDCORE structure that is to be collapsed.

If this is NUll, all expanded parent items are collapsed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

The item was successfully collapsed.
An error occurred. The WinGetlastError function may return the following
error:

PMERRJ NVALI D_PARAMETERS.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

22-36 PM Programming Reference Vol II

CM_ERASERECORD
This message erases the source record from the current view when a move occurs as a
result of direct manipulation.

Parameters
param1

pRecord (PRECORDCORE)
Pointer to the container record that is to be erased from the current view.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
~ECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

The record was successfully erased.
The record was not erased. The WinGetlastError function may return the
following errors:

• PMERR INVALID PARAMETERS - -
• PMERRJNSUFFICIENT_MEMORY.

The container record is not removed and memory is not freed; only the visual appearance is
changed. The visibility flag associated with the container record is not changed.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 22. Container Control Window Processing 22-37

eM EXPANDTREE
This message causes one parent item in the tree view to be expanded.

Parameters
param1

pRecord (PRECORDCORE)

param2

Pointer to the RECORDCORE structure that is to be expanded.

If this is NUll, all collapsed parent items are expanded.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE The item was successfully expanded.

FALSE An error occurred. The WinGetlastError function may return the following
error:

PMERRJNVALlD_PARAMETERS.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

22-38 PM Programming Reference Vol II

eM FILTER
This message filters the contents of a container so that a subset of the container items is
viewable.

Parameters'
param1

pfnFilter (PFN)
Pointer to an application-supplied filter function.

param2

pStorage (PVOID)
Application use.

Available for application use.

Returns
rc (BOOl)

Success indicator.

TRUE A subset was successfully created.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_NO_FllTEREDJTEMS
• PMERRJNSUFFICIENT_MEMORY.

Remarks
Filtering is enabled by setting the CRA _FI l TERED attribute of container records that are to
be excluded from the viewable subset.

The pfnFilter parameter points to an application-provided function that determines whether a
record is to be included in the viewable subset. The pfnFilter parameter must be declared
as:

BOOl PFN pfnFilter (PRECORDCORE P. PYOID pStorage);

where p pOints to a RECORDCORE structure that describes the container record to be
tested. The pfnFilter parameter returns TRUE if the record is to be included in the viewable
subset, or FALSE if it is to be excluded. The container sets the CRA_FllTERED attribute for
the record based on the return from the pfnFilter parameter.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Chapter 22. Container Control Window Processing 22-39

If the CRA_FILTERED attribute is set for the record, the record is not visible. If the
CCS_AUTOPOSITION style bit is set and the container is showing the icon view, the
container records are arranged when a record is filtered out.

The eM_FILTER message supports only one level of filtering.

It is the application's responsibility to provide a National Language Support-enabled
(NLS-enabled) function for the pfnFilter parameter.

If the pfnFilter parameter value is NULL, a container is returned to an unfiltered state. If
functions such as inserting a record into a container, arranging the records, or sorting the
records are performed on a container whose records have been filtered, the effect of these
functions remains if the container records are later unfiltered.

All messages act on the entire container. For example, a record that is filtered and is
removed from the container will be removed from the container entirely; it is not present in
the container when the container records are unfiltered.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

eM FREEDETAILFIELDINFO
This message frees the memory associated with one or more FIELDINFO structures.

Parameters
param1

pFieldlnfoArray (PVOID)
Pointer to an array of pointers to FIELDINFO structures that are to be freed.

param2

cNumFieldlnfo (USHORT)
Number of structures.

Number of FIELDINFO structures to be freed.

22-40 PM Programming Reference Vol II

Returns
rc (BOOL)

Success indicator.

TRUE Memory associated with a specified FIELDINFO structure or structures in the
container was freed.

FALSE Associated memory was not freed. The WinGetLastError function may return
the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR
• PMERR _FI_ CURRENTLY JNSERTED.

Remarks
It is the application's responsibility to free all application-allocated memory associated with
the structures, such as user data.

If a specified FIELDINFO structure is currently inserted into the container, the structure is not
freed and the PMERR_FI_CURRENTL Y JNSERTED error is set. FIELDINFO structures
must be removed with the CM_REMOVEDETAILFIELDINFO message before the
CM_FREEDETAILFIELDINFO message is used.

If the number of pointers to FIELDINFO structures in the array exceeds the count of
structures to be freed, only the number of structures in the cNumFieldlnfo parameter is freed.
If either the pFieldlnfoArray or the cNumFieldlnfo parameter is invalid, the
PMERRJNVALlD_PARAMETERS error is set and no FIELDINFO structures are freed.

If the PMERR_MEMORY _DEALLOCATION_ERR error occurs, any further processing is
unreliable.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 22. Container Control Window Processing 22-41

CM FREERECORD
This message frees the memory associated with one or more RECORDCORE structures.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecordArray (PVOID)
Pointer to an array of pointers to RECORDCORE structures that are to be freed.

param2

cNumRecord (USHORT)
Number of records.

Number of container records to be freed.

Returns
rc (BOOl)

Success indicator.

TRUE Memory associated with a record or records in the container was freed.

FALSE Associated memory was not freed. The WinGetlastError function may return
the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_MEMORY _DEAllOCATION_ERR
• PMERR_RECORD_CURRENTlYJNSERTED.

Remarks
It is the application's responsibility to free all application-allocated memory associated with
the container records, such as text strings.

If a specified record is currently inserted into the container, the record is not freed and the
PMERR_RECORD_CURRENTlY_INSERTED error is set. Container records must be
removed with the CM _ REMOVE RECORD message before the CM _FREE RECORD message
is used.

If the number of pointers to container records in the array exceeds the count of records to be
freed, only the number of records in the cNumRecord parameter is freed. If either the
pRecordArray or the cNumRecord parameter is invalid, the
PMERR_INVALlD_PARAMETERS error is set and no container records are freed.

22-42 PM Programming Reference Vol II

If the PMERR_MEMORY _DEAllOCATION_ERR error occurs, any further processing is
unreliable.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

CM_HORZSCROLLSPLITWINDOW
This message scrolls a split window in the split details view.

Parameters
param1

usWindow (USHORT)
Window indicator.

CMA lEFT The left split window is scrolled.

CMA RIGHT The right split window is scrolled.

param2

IScrollinc (lONG)
Amount to scroll.

Amount (in pixels) by which to scroll the window.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
An error occurred. The WinGetlastError function may return the following
error:

The IScrolllnc parameter indicates a change in position. If the IScrolllnc parameter value is
greater than 0, the window specified in the usWindow parameter is scrolled to the right by
the number of pixels specified in the IScrolllnc parameter. If the value of the IScrolllnc
parameter is less than 0, the window specified in the usWindow parameter is scrolled to the
left by the number of pixels specified in the IScrolllnc parameter. This message is used to
scroll either the left or right split window by an absolute amount.

The columns that are to appear in each split window are determined at the time the split
window is created. Thereafter, columns in the left split window cannot be seen in the right
split window, and vice versa.

Chapter 22. Container Control Window Processing 22-43

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

CM_INSERTDETAILFIELDINFO
This message inserts one or more FIELDINFO structures into a container control.

Parameters
param1

pFieldlnfo (PFIELDINFO)
Pointer to the FIELDINFO structure or structures to insert.

param2

pFieldlnfolnsert (PFI ELDI N FOI NSERT)
Pointer to the FIELDINFOINSERT data structure.

See "FIELDINFOINSERT" on page A-75 for the descriptions of this structure's fields
as they apply to the CMJNSERTDETAILFIELDINFO message.

Returns
cFields (USHORT)

Number of structures.

o The FIELDINFO structure or structures were not inserted. The WinGetLastError
function may return the following errors:

• PMERR_INVALlD_PARAMETERS
• PMERR_INSUFFICIENT_MEMORY
• PMERR_FI_CURRENTLYJNSERTED.

Other The number of FIELDINFO structures in the container.

Remarks
The pFieldlnfolnsert parameter is used to insert FIELDINFO structures into the container.
The pFieldlnfoOrder field of the FIELDINFOINSERT data structure is used to place
FIELDINFO structures into the container in order, relative to the other structures. Specifying
the CMA_FIRST attribute places the FIELDINFO structure at the front of the list of structures.
If the CMA_END attribute is specified, the FIELDINFO structure is placed at the end of the
list of structures. Otherwise, if the value of the pFieldlnfoOrder field is a pointer to a
FIELDINFO structure, the structure being inserted is placed after this structure.

If the value of the cFieldlnfolnsert field of the FIELDINFOINSERT data structure is greater
than 1, a linked list of FIELDINFO structures is inserted in the order specified by the
pFieldlnfoOrder field. Here, the pFieldlnfo parameter points to the first of a linked list of
FIELDINFO structures. This list of structures is linked together as they were when the
FIELDINFO structures were allocated.

22-44 PM Programming Reference Vol II

If one FIELDINFO structure is to be inserted, the cFieldlnfolnsert field has a value of 1 and
the pFieldlnfo parameter points to the FIELDINFO structure to be inserted.

After the FIELDINFO structures have been inserted, if the flnvalidateFieldlnfo field of the
FIELDINFOINSERT data structure is FALSE, the CM_INVALIDATEDETAILFIELDINFO
message must be sent to update the display with the inserted structures.

If the CCS_ VERIFYPOINTERS style bit is set and the pFieldlnfo parameter contains a
pointer to a FIELDINFO structure that is currently inserted, the
PMERR_FI_CURRENTLY _INSERTED error is set and no FIELDINFO structures are
inserted.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return o.

CM_INSERTRECORD
This message inserts one or more RECORDCORE structures into a container control.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecord (PRECORDCORE)
Pointer to the RECORDCORE structure or structures to insert.

param2

pRecordlnsert (PRECORDINSERn
Pointer to the RECORDINSERT data structure.

See "RECORDINSERT" on page A-177 for definitions of this structure's fields as
they apply to the CMJNSERTRECORD message.

Chapter 22. Container Control Window Processing 22-45

Returns
cRecords (ULONG)

Number of structures.

o The RECORDCORE structure was not inserted. The WinGetLastError function
may return the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERRJNSUFFICIENT _MEMORY
• PMERR_RECORD_CURRENTLY JNSERTED.

Other The number of RECORDCORE structures in the container.

Remarks
The pRecordlnsert parameter is used to insert RECORDCORE structures into the container.
The pRecordOrder and pRecordParent fields of the RECORDINSERT data structure are
used to place each record into the container in order, relative to the other records. If the
CMA_FIRST or CMA_END attributes are specified, records are inserted before the first.child
or after the last child of the record specified in the pRecordParent field. If the value of the
pRecordParent field is NULL, the record or records are inserted before the first record or
after the last record, respectively, at the root level. Otherwise, if the value of the
pRecordOrder field is a pointer to a record, the record or records to be inserted are placed
after this record.

A z-ordering of the records is maintained by the container control. The zOrder field of the
RECORDINSERT data structure is used to specify the record's z-order in the container,
relative to the other records. The CMA_ TOP attribute is used to place the record at the end
of the z-order list, while the CMA_BOTTOM attribute places the record at the beginning of
the z-order list. Z-ordering is used for the icon view only.

If the value of the cRecordslnsert field of the RECORDINSERT data structure is greater than
1, a linked list of RECORDCORE structures is inserted in the order specified by the
pRecordOrder, pRecordParent, and zOrder fields. Here, the pRecord parameter points to
the first RECORDCORE structure of a linked list of structures.

If one RECORDCORE structure is to be inserted, the cRecordslnsert field has a value of 1
and the pRecord parameter points to the RECORDCORE structure to be inserted.

When containers display the icon view, the coordinates specified by the RECORDCORE
structure's ptllcon field are used to position inserted container records in the container's
workspace. If the coordinates are not specified and the CCS_AUTOPOSITION style bit is
not set, all of the inserted container records are positioned at (0,0) and a CM_ARRANGE
message must be sent to position them elsewhere. If the CCS_AUTOPOSITION style bit is
set, the container· records are positioned without the CM_ARRANGE message being sent.

After the container records have been inserted:

• If the flnvalidateRecord field of the RECORDINSERT data structure is FALSE, the
CMJNVALIDATERECORD message must be sent to update the display with the
inserted records. If the current view is the icon view and either the

22-46 PM Programming Reference Vol II

CCS_AUTOPOSITION style bit is set or the flnvalidateRecord field is TRUE, the view is
updated without the CMJNVALIDATERECORD message being sent.

• The preccNextRecord, f1RecordAttr, and ptllcon fields of the external RECORDCORE
structure are not updated as changes occur within the container. However, if records
are shared among multiple containers, the flRecordAttr and ptllcon fields are modified
internally. Refer to the OS/2 2.00 Programming Guide for more information about the
modification of these fields.

If the CCS_ VERIFYPOINTERS style bit is set and the pRecord parameter contains a pointer
to a RECORDCORE structure that is currently inserted, the
PMERR_RECORD_CURRENTLYJNSERTED error is set and no RECORDCORE structures
are inserted.

If the RECORDCORE structures are sorted on insertion, the pRecordOrder and zOrder fields
are ignored.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return o.

CM_INSERTRECORDARRAY
This message inserts one or more RECORDCORE structures into a container control.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container control is
created, then MINIRECORDCORE should be used instead of RECORDCORE, and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecordArray (PVOID)
Pointer to an array of pointers to RECORDCORE structures that are to be inserted
into the container.

param2

pRecordlnsert (PRECORDINSERT)
Pointer to the RECORDINSERT structure.

Chapter 22. Container Control Window Processing 22-47

Returns
cRecords (ULONG)

Number of RECORDCORE structures in the root level of the container.

° No RECORDCORE structures were inserted.

The WinGetLastError function may return the following errors:

PMERR JNVALID _PARAMETERS
PMERRJNSUFFICIENT _MEMORY
PMERR_RECORD _ CURRENTLY_INSERTED

Other The number of RECORDCORE structures in the container.

Remarks
The pRecordlnsert parameter is used to insert RECORDCORE structures into the container.
The pRecordOrder and pRecordParent fields of the RECORDINSERT data structure are
used to place each record into the container in order, relative to the other records. If the
CMA_FIRST or CMA_END attributes are specified, records are inserted before the first child
or after the last child of the record specified in the pRecordParent field. If the value of the
pRecordParent field is NULL, the record or records are inserted before the first record or
after the last record, respectively, at the root level. Otherwise, if the value of the
pRecordOrder field is a pOinter to a record, the record or records to be inserted are placed
after this record.

A z-ordering of the records is maintained by the container control. The zOrder field of the
RECORDINSERT data structure is used to specify the record's z-order in the container,
relative to the other records. The CMA_ TOP attribute is used to place the record at the end
of the z-order list, while the CMA_BOTTOM attribute places the record at the beginning of
the z-order list. Z-ordering is used for the icon view only.

The cRecords parameter always specifies an array of pOinters to RECORDCORE structures
to be inserted into the container. The number of pointers contained in the array must equal
the value specified in the cRecordslnsert field of the RECORDINSERT structure.

When containers display the icon view, the coordinates specified by the RECORDCORE
structure's ptllcon field are used to position inserted container records in the container's
workspace. If the coordinates are not specified and the CCS_AUTOPOSITION style bit is
not set, all of the inserted container records are positioned at (0,0) and a CM_ARRANGE
message must be sent to position them elsewhere. If the CCS_AUTOPOSITION style bit is
set, the container records are pOSitioned without the CM_ARRANGE message being sent.

22-48 PM Programming Reference Vol II

After the container records have been inserted:

• If the flnvalidateRecord field of the RECORDINSERT data structure is FALSE, the
CMJNVALIDATERECORD message must be sent to update the display with the
inserted records. If the current view is the icon view and either the
CCS_AUTOPOSITION style bit is set or the flnvalidateRecord field is TRUE, the view is
updated without the CMJNVALIDATERECORD message being sent.

• The preccNextRecord, flRecordAttr, and ptllcon fields of the external RECORDCORE
structure are not updated as changes occur within the container. However, if records
are shared among multiple containers, the flRecordAttr and ptllcon fields are modified
internally.

If the CCS_ VERIFYPOINTERS style bit is set and the pRecordArray parameter contains a
pointer to a RECORDCORE structure that is currently inserted, the
PMERR_RECORD_CURRENTlY_INSERTED error is set and no RECORDCORE structures
are inserted.

If the RECORDCORE structures are sorted on insertion, the pRecordOrder and zOrder fields
are ignored.

Default Processing
The default window procedure does not expect to receive this message and, therefore, takes
no action on it other than to return FALSE.

eM_I NV ALI DATEDET AI LFI E LDI N FO
This message notifies the container control that any or all FIElDINFO structures are not valid
and that the view must be refreshed.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

FIElDINFO structures were successfully refreshed.
FIElDINFO structures were not successfully refreshed.

Chapter 22. Container Control Window Processing 22-49

Remarks
If any or all FIELDINFO structures are changed, removed, or inserted, the
CMJNVALIDATEDETAILFIELDINFO message must be sent. Since each FIELDINFO
structure potentially affects every record in the container, the entire view is refreshed, even if
only one FIELDINFO structure has changed.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

CM _INVALIDATERECORD
This message notifies the container control that a RECORDCORE structure or structures are
not valid and must be refreshed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecordArray (PVOID)

param2

Pointer to an array of pointers to RECORDCORE structures that are to be
refreshed.

cNumRecord (USHORT)
Number of container records to be refreshed.

If the cNumRecord parameter has a value of 0, all of the records in the container
are refreshed and the pRecordArray parameter is ignored.

flnvalidateRecord (USHORT)
Flags used to optimize container record invalidation.

The CMA_REPOSITION, CMA_NOREPOSITION, and CMA_ TEXTCHANGED
attributes are mutually exclusive. However, any of them can be combined with the
CMA_ERASE attribute by using a logical OR operator (I).

22-50 PM Programming Reference Vol II

Flag used when the icon view is displayed to minimize
painting of a container record's background when it has
changed. If specified, the background is erased when the
display is refreshed. The default is to not erase the
background when the display is refreshed.

CMA_REPOSITION Flag used to reposition all container records. This flag
must be used if container records are inserted or
removed, or if many changes have occurred. If a
container record is inserted, the pRecordArray parameter
points to the inserted record. If a container record is
removed, the pRecordArray parameter pOints to the
record that precedes the removed one. If several
container records have changed, an array of container
record pointers must be used. The container determines
the first record to be invalidated. This is the default.

CMA_NOREPOSITION Flag used to indicate that container records do not need
to be repositioned. The container draws the record or
records pointed to in the pRecordArray parameter. The
container does not do any validation; therefore it is the
application's responsibility to make sure repositioning is
not needed or changing the longest text line is not
necessary.

CMA_ TEXTCHANGED Flag used if text has changed and you do not know
whether repositioning is needed. The container
determines whether the longest line or the height of the
record has changed. If so, the container repositions and
redraws the necessary visible container records.

Returns
rc (BOOL)

It may be necessary to reposition the container records if
the number of lines of text has changed. Warning: The
application must send a CMJNVALIDATERECORD
message if text changes. Otherwise, any further
processing is unreliable.

Success indicator.

TRUE Records were successfully refreshed.

FALSE An error occurred. The WinGetLastError function may return the following
errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_INSUFFICIENT _MEMORY.

Remarks
If the number of pointers to container records in the array exceeds the count of records to be
refreshed, only the number of records specified in the cNumRecord parameter is refreshed.
If the CCS_ VERIFYPOINTERS style bit is set and the pRecordArray parameter contains
pointers to a RECORDCORE structure or structures that do not exist, the
PMERR_INVALlD_PARAMETERS error is set and nothing is refreshed.

Chapter 22. Container Control Window Processing 22-51

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

CM_MOVETREE
This message is used to move a record to a new parent in the container control.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container control is
created, then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters'
param1

pTreeMove (PTREEMOVE)
Pointer to a TREEMOVE structure.

See TREEMOVE for definitions of this structure's fields as they apply to the
CM _ MOVETREE message.

param2

Reserved (UlONG)
Reserved value, must be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Record and associated subtrees were moved successfully.
Error occurred, and tree structure remains unchanged.

This message is used to change the parent of a record in the container control. The fields of
the TREEMOVE structure describe the record to be moved, the record to become its new
parent, and where to insert the record relative to other records with the same parent.

If the preccNewParent field of the TREEMOVE structure is NUll, the record being moved is
moved to the root level; otherwise, it is moved to preccNewParent. The pRecordOrder field
of the TREEMOVE structure determines where the record being moved is placed relative to
other records with the same parent (the one specified by preccNewParent). If flMoveSiblings
of the TREEMOVE structure is TRUE, all siblings that follow the record being moved
(preccMove) are moved to the new parent as well. Siblings that precede preccMove are not
moved regardless of the value of the flMoveSiblings field. For normal Tree Move operations,
the flMoveSiblings field of the TREEMOVE structure should be set to FALSE.

22-52 PM Programming Reference Vol II

WinGetLastError returns PMERR-,NVALlD_PARAMETERS if any of the following illegal
combinations are used:

• flMoveSiblings is either the first or last root level record in the container, and the
flMoveSiblings flag is TRUE.

• preccMove is a root level record, and preccNewParent is currently one of its children.

• pRecordOrder is a pointer to a RECORDCORE structure (not CMA_FIRST or
(CMA_LAST) tha does not exist in the list of children of the new parent.

• preccNewParent is NULL, and pRecordOrder is not a root level record.

For example, the following tree contains two parents, each with three children:

Parent A

1-----ICh il d Al

1-----ICh il d A2

1-----ICh il d A3

Parent B

t=Child Bl

Child B2

Chil d B3

If preccMove is Child A2, preccNewParent is Parent B, pRecordOrder = CMA_LAST and
flMoveSiblings = TRUE, after the Tree Move operation, the new tree structure is as follows:

Parent A

~hild Al

Parent B

1-----IChild Bl

1-----IChild B2

1-----IChil d B3

I-----Ch i 1 d A2

I-----Chil d A3

Default Processing
The default window procedure does not expect to receive this message and, therefore, takes
no action on it other than to return FALSE.

Chapter 22. Container Control Window Processing 22-53

eM OPENEDIT
This message opens the window that contains·the multiple-line entry (MLE) field used to edit
container text directly.

Parameters
param1

pCnrEditData (PCNREDITDATA)
Pointer to the CNREDlTDATA structure.

See "CNREDITDATA" on page A-29 for definitions of this structure's fields as they
apply to the CM_OPENEDIT message.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Direct editing of container text was successfully started.
Direct editing of container text was not successfully started. The
WinGetLastError function may return the following error:

PMERR_INVALID _PARAMETERS.

The application sends this message to the container control to start the direct editing of
container text. The application can assign this message to a key or key combination, a
menu choice, or both so that the user can start editing container text directly from the
keyboard.

When the container control receives this message, it sends the CN_BEGINEDIT notification
code to the application.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

22-54 PM Programming Reference Vol II

CM_PAINTBACKGROUND
This message informs an application whenever a container's background is painted if the
CA_OWNERPAINTBACKGROUND attribute of the CNRINFO data structure is specified.

Parameters
param1

pOwnerBackground (POWNERBACKGROUND)
Pointer to the OWNERBACKGROUND structure.

See "OWNERBACKGROUND" on page A-135 for definitions of this structure's fields
as they apply to the CM_PAINTBACKGROUND message.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Process indicator.

TRUE
FALSE

The application processed the CM_PAINTBACKGROUND message.
The application did not process the CM_PAINTBACKGROUND message.

Remarks
The CM_PAINTBACKGROUND message is provided so that an application can subclass the
container control and paint its own background. If the application does not subclass the
container control or subclasses the container control and returns FALSE, the container uses
the system window color, which is specified by SYSClR_WINDOW. This color can be
changed by using the PP _BACKGROUNDCOlOR or PP _BACKGROUNDCOlORINDEX
presentation parameter of the WM_PRESPARAMCHANGED (in Container Controls)
message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 22. Container Control Window Processing 22-55

CM_QUERYCNRINFO
This message returns the container's CNRINFO structure.

Parameters
param1

pCnrlnfo (PCNRINFO)
Pointer to a buffer into which the CNRINFO structure is copied.

param2

cbBuffer (USHORT)
Number of bytes.

Maximum number of bytes to copy.

Returns
cbBytes (USHORT)

Success indicator.

o Container data was not successfully returned. The WinGetLastError function
may return the following error:

PMERR_INVALlD_PARAMETERS.

Other Actual number of bytes copied.

Remarks
The number of bytes specified in the cbBuffer parameter is returned in the buffer addressed
by the pCnrlnfo parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

CM_QUERYDETAILFIELDINFO
This message returns a pointer to the requested FIELDINFO structure.

Parameters
param1

pfldinfoBase (PFIELDINFO)
Pointer to the FIELDINFO structure used to search for the next or previous column.

If the CMA_FIRST or CMA_LAST attribute is specified, this is ignored.

22-56 PM Programming Reference Vol II

param2

cmd (USHORT)
Command that indicates which FIELDINFO structure to retrieve.

CMA_FIRST First column in the container.
CMA_LAST Last column in the container.
CMA_NEXT Next column in the container.
CMA_PREV Previous column in the container.

Returns
pFieldlnfo (PFIELDINFO)

Pointer to the FIELDINFO structure for which data was requested.

NULL No FIELDINFO structures to retrieve.

-1 The data from the FIELDINFO structure was not returned. The WinGetLastError
function may return the following error:

PMERR-,NVALID _PARAMETERS.

Other Pointer to the FIELDINFO structure for which data was requested.

Remarks
If the cmd parameter has the value of the CMA_FIRST or CMA_LAST attribute, the
pfldinfoBase parameter is ignored and the first or last column data, respectively, is returned.
If the CMA_NEXT or the CMA_PREV attribute is set in the cmd parameter, the column data
next to or before the column pointed to by the pFie/d/nfo parameter is returned.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULL.

CM_ QUERVDRAGIMAGE
This message returns a handle to the icon or bit map for the record in the current view.

Parameters
param1

pRecord (PRECORDCORE)
Pointer to the RECORDCORE structure that is to be queried for the image.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

Chapter 22. Container Control Window Processing 22-57

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
hlmage (LHANDLE)

Image handle.

NULLHANDLE If no image is defined, NULLHANDLE is returned.

Other Handle of an icon or bit map.

Remarks

• If the CA_DRAWICON attribute and the CV_MINI style bit are
specified, the RECORDCORE structure's hptrMinilcon field is
returned.

• If the CA_DRAWICON attribute is specified without the CV _MINI
style bit, the RECORDCORE structure's hptr/con field is returned.

• If the CA_DRAWBITMAP attribute and the CV _MINI style bit are
specified, the RECORDCORE structure's hbmMiniBitmap field is
returned.

• If the CA_DRAWBITMAP attribute is specified without the
CV _MINI style bit, the RECORDCORE structure's hbmBitmap field
is returned.

If the CCS_MINIRECORDCORE style bit is specified, this function will always return the
MINIRECORDCORE structure's hptr/con field.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULLHANDLE.

22-58 PM Programming Reference Vol II

CM_QUERYRECORD
This message returns a pointer to the requested RECORDCORE structure.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecord (PRECORDCORE)

param2

Pointer to the RECORDCORE structure used to search for the next or previous
container record.

If the CMA_FIRST or CMA_LAST attribute is specified, this is ignored.

cmd (USHORn
Command that indicates which container record to retrieve:

CMA_FIRST
CMA_FIRSTCHILD
CMA_LAST
CMA_LASTCHILD
CMA_NEXT
CMA_PARENT
CM~PREV

fsSearch (USHORT)
Enumeration order.

First record in the container.
First child record of pRecord specified in param 1.
Last record in the container.
Last child record of pRecord specified in param 1.
Next record of pRecord specified in param 1.
Parent of pRecord specified in param1.
Previous record of pRecord specified in param 1 .

Specifies the enumeration order. This value is one of the following:

CMA_ITEMORDER

CMA_ZORDER

Container records are enumerated in item order, first to last.

Container records are enumerated by z-order, from first
record in the z-order to the last record. The last z-order
record is the last record to be drawn. This flag is valid for
the icon view only.

Chapter 22. Container Control Window Processing 22-59

Returns
pRecord (PRECORDCORE)

Pointer to the RECORDCORE structure for which data was requested.

NULL No RECORDCORE structures to retrieve.

-1 The container record data was not returned. The WinGetLastError function may
return the following error:

PMERRJNVALID _PARAMETERS.

Other Pointer to the container record for which data was requested.

Remarks
If the cmd parameter has the value of CMA _FI RST or CMA _LAST, the pRecord parameter in
param1 is ignored and the first or last record, respectively, in the container is returned.

Depending on the value of the fsSearch parameter, the container records are enumerated in
item order or in z-order.

See "RECORDCORE" on page A-175 or "MINIRECORDCORE" on page A-124 for a
complete list and descriptions of all container record attributes.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULL.

CM_QUERYRECORDEMPHASIS
This message queries for a container record with the specified emphasis attributes.

Parameters
param1

pSearchAfter (PRECORDCORE)
Pointer to the specified container record.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

The values of this parameter can be:

CM_FIRST Start the search with the first record in the container.
Other Start the search after the record specified by this pointer.

22-60 PM Programming Reference Vol II

param2

fEmphasisMask (USHORT)
Emphasis attribute.

Specifies the emphasis attribute of the container record. The following states can
be combined using a logical OR operator (/):

CRA _COLLAPSED
CRA_CURSORED

CRA _DROPONABLE

CRA EXPANDED
CRA_FILTERED

CRAJNUSE
CRA_PICKED

CRA_SELECTED

Returns
pRecord (PRECORDCORE)

Specifies that a record is collapsed.
Specifies that a record will be drawn with a selection
cursor.
Specifies that a record will be drawn with unavailable-state
emphasis.
Specifies that a record can be a target for direct
manipulation.
Specifies that a record is expanded.
Specifies that a record is filtered and, therefore, hidden
from view.
Specifies that a record will be drawn with in-use emphasis.
Specifies that the container record willi be picked up as part
of the drag set.
Specifies that a record will be drawn with selected-state
emphasis.
Specifies that a record will be drawn with source-menu
emphasis.

Pointer to the record with the specified emphasis.

NULL This implies that none of the records that follow the pointer specified in the
pSearchAfter parameter meet those specifications.

-1 The container record data was not returned.

The WinGetLastError function may return the following error:

PMERR_INVALID _PARAMETERS (1208)

Other Pointer to a container record with the specified emphasis.

This is the first record that follows the record pointed to by the pSearchAfter
parameter and satisfies the criteria specified in the fEmphasisMask parameter. To
find the next record that satisfies this criteria, send this message again, but this
time use the value returned· in the pRecord parameter for the value of the
pSearchAfter parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULL.

Chapter 22. Container Control Window Processing 22-61

CM_QUERYRECORDFROMRECT
This message queries for a container record that is bounded by the specified rectangle.

Parameters
param1

pSearchAfter (PRECORDCORE)

param2

Pointer to the specified container record.

To get all the container records within the specified rectangle, this message is sent
repeatedly, each time this parameter is set to the pOinter that is returned by the
previous usage of this message.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

The values of this parameter can be:

CMA_FIRST Start the search with the first record in the container.
Other Start the search after the record specified by this pointer.

pQueryRecFromRect (PQUERYRECFROMRECT)
Pointer to the QUERYRECFROMRECT data structure.

See "QUERYRECFROMRECT" on page A-173 for definitions of this structure's
fields as they apply to the CM _ QUERYRECORDFROMRECT message.

Returns
pRecord (PRECORDCORE)

Pointer to the container records within the bounding rectangle.

NULL No container records are within the bounding rectangle.

-1 The container record data was not returned. The WinGetLastError function may
return the following error:

PMERRJNVALlD_PARAMETERS.

Other Pointer to the container record within the bounding rectangle.

22-62 PM Programming Reference Vol II

Remarks
This message returns the pointer to the first container record found in the rectangle after the
starting position specified in the pSearchAfter parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULL.

CM_ QUERYRECORDINFO
This message updates the specified records with the current information for the container.

Parameters
param1

pRecordArray (PVOID)

param2

Pointer to an array of pOinters to RECORDCORE structures to which the current
information is to be copied.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE all applicable data structures and messages.

cNumRecord (USHORT)
Number of records.

The number of container records to be updated. If the cNumRecord parameter has
a value of 0, all of the records in the container are updated and the pRecordArray
parameter is ignored.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Record information was successfully updated.
An error occurred. The WinGetlastError function may return the following
error:

This message is needed only if the application is sharing records among multiple containers
in the same process.

Chapter 22. Container Control Window Processing 22-63

The flRecordAttr and ptllcon fields are updated internally when they change, but not in the
external RECORDCORE structure. Therefore, the application's external record does not
always have current information in these fields. This message is only needed if the
application is sharing records among multiple containers in the same process.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

CM_QUERYRECORDRECT
This message returns the rectangle of the specified container record, relative to the container
window origin.

Parameters
param1

prclltem (PRECTl)
Pointer to the RECTl structure, into which the rectangular coordinates are placed.

param2

pQueryRecordRect (PQUERYRECORDRECT)
Pointer to the QUERYRECORDRECT structure.

See "QUERYRECORDRECT" on page A-174 for definitions of this structure's fields
as they apply to the CM_QUERYRECORDRECT message.

Returns
rc (BOOl)

Success indicator.

TRUE A rectangle with valid coordinates is returned.

FALSE The rectangle is not successfully returned. The WinGetLastError function may
return the following error:

PM ERR INVALID PARAMETERS. - -

Remarks
The coordinates of the returned rectangle are in window coordinates.

If the input record is not found in the container, the output rectangle is empty.

For a container using the details view (CV _DETAil), all of the data for a row is returned in
the rectangle. '

22-64 PM Programming Reference Vol II

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

CM_ QUERYVIEWPORTRECT
This message returns a rectangle that contains the coordinates of the container's client area.
These are virtual coordinates that are relative to the origin of the coordinate space
requested.

Parameters
param1

prclViewport (PRECTl)

param2

Pointer to the RECTl structure.

Pointer to the RECTl structure that the virtual coordinates of the client area
rectangle are to be written into.

uslndicator (USHORT)
Coordinate space indicator.

One of the following must be used:

CMA_WINDOW Returns the client area rectangle in container window
coordinates.

CMA_ WORKSPACE Return the client area rectangle in coordinates relative to the
origin of the container's workspace.

fRightSplitWindow (BOOl)
Flag.

Flag that specifies the right or left window in the split details view. This flag is
ignored if the view is not the split details view.

TRUE
FALSE

Right split window is returned.
left split window is returned.

Chapter 22. Container Control Window Processing 22-65

Returns
rc (BOOL)

Success indicator.

TRUE

FALSE

The client area rectangle was returned successfully.

An error occurred. The WinGetLastError function may return the following
error:

PM ERR INVALID PARAMETERS. - -

Remarks
The virtual coordinates of the client area rectangle are written into the structure addressed by
the prelViewport parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

CM_REMOVEDETAILFIELDINFO
This message removes one, multiple, or all FIELDINFO structures from the container control.

Parameters
param1

pFieldlnfoArray (PVOID)
Pointer to an array of pointers to FIELDINFO structures that are to be removed.

param2

cNumFieldlnfo (USHORT)
Number of FIELDINFO structures to be removed.

If the eNumFieldlnfo parameter has a value of 0, all of the FIELDINFO structures in
the container are removed and the pFieldlnfoArray parameter is ignored.

fRemoveFieldlnfo (USHORT)
Flags.

Flags that show whether memory must be freed and FIELDINFO structures
invalidated.

CMA FREE If specified, FIELDINFO structures are removed and memory
associated with the FIELDINFO structures is freed. If not
specified, FIELDINFO structures are removed and no memory
is freed; this is the default.

22-66 PM Programming Reference Vol II

CMAJ NVALI DATE If specified, after FIELDINFO structures are removed, the
container is invalidated, and any necessary repositioning of
the FIELDINFO structures is performed. If not specified,
invalidation is not performed.

Returns
cFields (SHORT)

Number of structures.

-1 An error occurred. The WinGetLastError function may return the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR.

Other The number of FIELDINFO structures that remain in the container.

Remarks
The FIELDINFO structures are removed from the list of columns inserted into the container
control.

If the CMA_FREE attribute is not specified, the container control removes the specified
FIELDINFO structures without freeing the memory. The application is responsible for freeing
the memory associated with the FIELDINFO structures by using the
CM_FREEDETAILFIELDINFO message.

If the cNumFieldlnfo parameter has a value of 0 and the CMA_FREE attribute is specified, all
of the FIELDINFO structures in the container control are removed and the memory
associated with the FIELDINFO structures is freed. It is the application's responsibility to
free all of the application-allocated memory associated with the FIELDINFO structures.

If the number of pointers to FIELDINFO structures in the array exceeds the count of
FIELDINFO structures to be removed, only the number of structures specified in the
cNumFieldlnfo parameter are removed. If the CCS_ VERIFYPOINTERS style bit is set and
the pFieldlnfoArray parameter contains pointers to a FIELDINFO structure or structures that
do not exist, the PMERRJNVALlD_PARAMETERS error is set.

If you do not want to show a column, you can hide it by setting the CFA_INVISIBLE attribute
of the FIELDINFO data structure and notifying the container control with the
CMJNVALIDATEDETAILFIELDINFO message.

If the CMA_INVALIDATE attribute is specified, the container is repainted.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

Chapter 22. Container Control Window Processing 22-67

CM REMOVERECORD
This message removes one, multiple, or all RECORDCORE structures from the container
control.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecordArray (PVOID)
Pointer to an array of pointers to RECORDCORE structures that are to be removed.

param2

cNumRecord (USHORT)
Number of records.

Number of container records to be removed. If the cNumRecord parameter has a
value of 0, all of the records in the container are removed and the pRecordArray
parameter is ignored.

fRemoveRecord (USHORT)
Flags.

Flags that show whether memory must be freed and container records invalidated.

CMA_FREE If specified, RECORDCORE structures are removed and
memory associated with the RECORDCORE structures is
freed. If not specified, RECORDCORE structures are
removed and no memory is freed; this is the default.

CMAJNVALIDATE If specified, after RECORDCORE structures are removed the
container is invalidated and any necessary repositioning of
the container records is performed. If not specified,
invalidation is not performed.

This option is not valid in the icon view unless the
CCS_AUTOPOSITION style bit is not set. In the icon view,
the container record is refreshed if the CCS_AUTOPOSITION
style bit is set. regardless of whether the CMAJNVALIDATE
attribute is set.

22-68 PM Programming Reference Vol II

Returns
cRecords (LONG)

Number of structures.

-1 An error occurred. The WinGetLastError function may return the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR.

Other Number of root level RECORDCORE structures that remain in the container.

Remarks
When parent item records are removed, all associated child item records are removed, as
well.

If the CMA _FREE attribute is not specified, the container control removes the specified
RECORDCORE structures without freeing the memory. The application is responsible for
freeing the memory associated with the RECORDCORE structure by using the
CM_FREERECORD message.

If the cNumRecord parameter has a value of 0 and the CMA_FREE attribute is specified, all
of the RECORDCORE structures in the container control are removed and the memory
associated with the RECORDCORE structures is freed. It is the application's responsibility to
free all of the application-allocated memory associated with the RECORDCORE structures.

If the number of pointers to RECORDCORE structures in the array exceeds the count of
RECORDCORE structures to be removed, only the number of records specified in the
cNumRecord parameter is removed. If the CCS_ VERIFYPOINTERS style bit is set and the
pRecordArray parameter contains pointers to a RECORDCORE structure or structures that
do not exist, the PMERRJNVALlD_PARAMETERS error is set.

If the CMA_INVALIDATE attribute is specified, the container is repainted if the removed
record or records are visible.

Default Processing
The default window procedure does riot expect to receive this message and therefore takes
no action on it other than to return O.

Chapter 22. Container Control Window Processing 22-69

CM_SCROLLWINDOW
This message scrolls an entire container window.

Parameters
param1

fsScroliDirection (USHORT)
Scroll direction.

Direction in which to scroll the container window.

param2

CMA_ VERTICAL
CMA_ HORIZONTAL

IScrolllnc (LONG)
Scroll increment.

Scroll vertically.
Scroll horizontally.

Amount (in pixels) by which to scroll the window.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
An error occurred. The WinGetLastError function may return the following
error:

If the IScrolllnc parameter value is greater than 0 and the CMA_HORIZONTAL attribute is
specified, the container window is scrolled to the right. The container window is scrolled
down if the IScrolllnc parameter value is greater than 0 and the CMA_ VERTICAL attribute is
specified. Similarly, the container window is scrolled left and up, respectively, if the IScrolllnc
parameter value is less than 0 and the same two attributes are specified.

If you want the container window to be scrolled by an amount that is indicated with a key,
such as the PgUp, PgDn, Home, and End keys, the application can send a key event to the
scroll bar.

If the container window is displaying the split details view, the
CM_HORZSCROLLSPLITWINDOW message is used for horizontal scrolling.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

22-70 PM Programming Reference Vol II

CM_ SEARCHSTRING
This message returns the pointer to a container record whose text matches the string.

Parameters
param1

pSearchString (PSEARCHSTRING)

param2

Pointer to the SEARCHSTRING structure.

See "SEARCHSTRING" on page A-184 for definitions of this structure's fields as
they apply to the CM_SEARCHSTRING message.

pSearchAfter (PRECORDCORE)
Pointer to the starting container record.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

CMA_FIRST Start the search at the first container record.

Other Start the search after the container record specified by this pointer.

Returns

To get all of the records in the container whose text matches the
string, this message is sent repeatedly. Each time this message is
sent, the pSearchAfter parameter contains a pOinter to the last
record that was found.

pRecord (PRECORDCORE)
Pointer to the found container record.

NULL No container record's text matches the search string.

-1 An error occurred. The WinGetLastError function may return the following error:

PMERRJNVALID _PARAMETERS.

Other Pointer to the container record whose text matches the search string.

Remarks
The CM_SEARCHSTRING message is NLS-enabled.

In the details view, the string is searched for in each column of each record.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULL.

Chapter 22. Container Control Window Processing 22-71

CM_SETCNRINFO
This message sets or changes the data for the container control.

Parameters
param1

pCnrlnfo (PCNRINFO)
Pointer to the CNRINFO structure from which to set the data for the container.

param2

ulCnrlnfoFI (ULONG)
Flags.

Flags that show which fields are to be set.

CMA_PFIELDINFOOBJECT

CMA_ CNRTITLE

CMA_FLWINDOWATTR

CMA_PTLORIGIN

22-72 PM Programming Reference Vol II

Pointer to the comparison function for sorting
container records. If NULL, which is the default
condition, no sorting is performed. Sorting only
occurs during record insertion and when
changing the value of this field. The third
parameter of the comparison function, pStorage,
must be NULL. See CM_SORTRECORD for a
further description of the comparison function.

Pointer to the last column in the left window of
the split details view. The default is NULL,
causing all columns to be positioned in the left
window.

Pointer to a column that represents an object in
the details view. This FIELDINFO structure must
contain icons or bit maps. In-use emphasis is
applied to this column of icons or bit maps only.
The default is the leftmost column in the unsplit
details view, or the leftmost column in the left
window of the split details view.

Text for the container title. The default is NULL.

Container window attributes.

Lower-left origin of the container window in
virtual workspace coordinates, used in the icon
view. The default origin is (0,0).

An application-defined threshold, or number of
records, from either end of the list of available
records. Used when a container needs to
handle large amounts of data. The default is 0.
Refer to the description of the container control

in the OS/2 Programming Guide for more
information about specifying deltas.

CMA_SlBITMAPORICON The size (in pels) of icons or bit maps. The
default is the system size.

CMA_SlTREEBITMAPORICON The size (in pels) of the expanded and collapsed
icons or bit maps in the tree icon and tree text
views.

CMA_ TREEBITMAP

CMA_L1NESPACING

CMA_CXTREEINDENT

CMA _ XVERTSPLITBAR

rc (BOOl)
Success indicator.

Expanded and collapsed bit maps in the tree
icon and tree text views.

Expanded and collapsed icons in the tree icon
and tree text views.

The amount of vertical space (in pels) between
the records. If this value is less than 0, a default
value is used.

Horizontal distance (in pels) between levels in
the tree view. If this value is less than 0, a
default value is used.

Width of the lines (in pels) that show the
relationship between items in the tree view. If
this value is less than 0, a default value is used.
Also, if the CA_TREELINE container attribute of
the CNRINFO data structure's flWindowAttr field
is not specified, these lines are not drawn.

The initial position of the split bar relative to the
container, used in the details view. If this value
is less than 0, the split bar is not used. The
default value is negative one (-1).

TRUE
FALSE

Container data was successfully set.

Remarks

Container data was not set. The WinGetlastError function may return the
following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_INSUFFICIENT _MEMORY.

The data for a container is set from the buffer addressed by the pCnrlnfo parameter. The
flags in the ulCnrlnfoFI parameter show which part or parts of the pCnrlnfo parameter are
set. The flag values can be combined by using a logical OR operator (I).

Chapter 22. Container Control Window Processing 22-73

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE:

CM_SETRECORDEMPHASIS
This message sets the emphasis attributes of the specified container record.

Parameters
param1

pRecord (PRECORDCORE)

param2

Pointer to the specified container record.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

usChangeEmphasis (USHORT)
Change-emphasis-attribute flag.

TRUE The container record's emphasis attribute is to be set ON if the change
specified is not the same as the current state.

FALSE The container record's emphasis attribute is to be set OFF if the change
specified is not the same as the current state.

fEmphasisAttribute (USHORT)
Emphasis attribute of the container record.

The following states can be combined by using a logical OR operator (I):

CRA_CURSORED

CRA DISABLED

CRAJNUSE

eRA_PICKED

CRA SELECTED

Specifies that a record will be drawn with a selection cursor.

Specifies that a record will be drawn with unavailable-state
emphasis.

Specifies that a record will be drawn with in-use emphasis.

Specifies that the container record willi be picked up as part of
the drag set.

Specifies that a record will be drawn with selected-state
emphasis.

Specifies that a record will be drawn with source-menu
emphasis.

22-74 PM Programming Reference Vol II

Returns
rc (BOOl)

Success indicator.

TRUE Successful completion

FALSE An error occurred.

The WinGetlastError function may return the following errors:

Remarks

PMERR_INVALlD_PARAMETERS (1208)
PMERR_INSUFFICIENT _MEMORY (203E)

For single-selection containers, the selection of the previous container record is cancelled
before another record is selected. The selection cursor is set with the CRA_CURSORED
attribute for Single-selection containers. Only one selection cursor is allowed.

The selection cursor must always be available to the user. Therefore, if you attempt to
disable the selection cursor by specifying FALSE for the usChangeEmphasis parameter and
CRA_CURSORED for the fEmphasisAttribute parameter, the
PMERR-,NVALlD_PARAMETERS error is set. In order to change the selection cursor
attribute, TRUE should be specified for the usChangeEmphasis parameter and
CRA_CURSORED for the fEmphasisAttribute parameter. The pRecord parameter should
point to the record to which the selection cursor should be applied. The container control
removes the selection cursor from the record with the cursor and applies it to the new record.

A CN_EMPHASIS notification code is sent to the container owner if the record emphasis
attribute is changed.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 22. Container Control Window Processing 22-75

CM_SORTRECORD
This message sorts the container records in the container control.

Parameters
param1

pfnCompare (PFN)
Pointer to a comparison function.

param2

pStorage (PVOI D)
Application use.

Available for application use.

Returns
rc (BOOl)

Success indicator.

TRUE The records in the container were sorted.

FALSE The records in the container were not sorted. The WinGetlastError function
may return the following errors:

• PMERR_COMPARISON_FAllED
• PMERRJNSUFFICIENT _MEMORY.

Remarks
The pfnCompare parameter must be declared as:

SHORT EXPENTRY pfnCompare(PRECORDCORE pl, PRECORDCORE p2, PVOID pStorage);

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

The pfnCompare parameter points to an application-provided function that compares two
RECORDCORE structures and returns a SHORT value that specifies their relationship. The
pfnCompare parameter is called one or more times during the sorting process and is passed
pointers to two RECORDCORE structures on each call. The routine must compare the
RECORDCORE structures, and then return one of the following values:

Value
>0
o
<0

Meaning
p1 is less than p2.
p1 is equal to p2.
p 1 is greater than p2.

22-76 PM Programming Reference Vol II

The container records are sorted in increasing order, as defined by the pfnCompare
parameter. The records can be sorted in reverse order by reversing the sense of "greater
than" and "less than" in the pfnCompare parameter.

If the container has only one record, the PMERR_COMPARISON_FAllED error is set.

The application must provide an NlS-enabled function for the pfnCompare parameter. The
container control does not provide NlS enablement for sorting.

An alternative to using the CM _ SORTRECORD message is to provide an application-defined
comparison function to sort the container records, which can be specified in the CNRINFO
structure's pSortRecord field. If this function is provided, the container records are sorted as
they are inserted into the container control. If this field is NUll, the records are not sorted
on insertion.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

CM_SETTEXTVISIBILITV
This message sets the visibility state of text for records in the container control.

Parameters
param1

bVisible (BOOl)
Text visibility state.

TRUE Text is visible.
FALSE Text is not visible.

param2

Reserved (PVOID)
Reserved value, O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Text visibility state was successfully set.
Error occurred.

Chapter 22. Container Control Window Processing 22-77

Remarks
This message is used to set the visibility state of the text for records in the container control.
If bVisible is TRUE, text will appear with the icons in icon view, name view, tree icon view,
and tree name view. If bVisible is FALSE, no text appears.

This message does not apply to any variation of text view (icon text, tree text) or details
view.

This message affects All records within the container. The visibility state of the text cannot
be set for individual records.

Default Processing
The default window procedure does not expect to receive this message and, therefore, takes
no action on itother than to return FALSE.

WM PICKUP
This message adds objects to the drag set during a lazy drag operation.

Parameters
param1

ptlPointerPos (POINTl)

param2

Pointer position in window coordinates relative to the bottom-left corner of the
window.

Reserved (UlONG)
Reserved value, must be o.

Returns
returns

rc (BOOl)
Success indicator.

Possible values are described in the following list:

TRUE
FALSE

Remarks

Message was processed.
Message was ignored.

This message will be posted to the application queue associated with the window that has
the focus, or with the window that is to receive the pointer-button information.

22-78 PM Programming Reference Vol II

WM_PICKUP message is sent to the window under the mouse pointer when the user
presses the direct-manipulation button while holding down the lazy drag augmentation key,
currently the ALT key. This message is used to inform an application that the user is
commencing a lazy drag operation. The container control sends its owner a CN_PICKUP
notification when it receives a message.

Objects are added to the drag set when a WM_PICKUP message is received. The first time
the message is received, the application initiates a lazy drag operation. Each subsequent
WM_PICKUP message that is received during the course of the lazy drag operation indicates
that objects are to be added to the drag set.

Default Processing
The default message procedure sets rc to TRUE.

WM_PRESPARAMCHANGED (in Container Controls)
For the cause of this message, see WM_PRESPARAMCHANGED.

Parameters
param1

attrtype (ULONG)
Presentation parameter attribute identity.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Sets the background color of the container window. This color is initially set
to SYSCLR_WINDOW.

PP _BORDERCOLOR or PP _BORDERCOLORINDEX
Sets the color of the title separators, column separators, and split bar. This
color is initially set to SYSCLR_WINDOWFRAME.

PP _FONTNAMESIZE
Sets the font and font size of the text in the container. This font and font size
defaults to the system font and font size.

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Sets the color of unselected text. This color is initially set to
SYSCLR _ WINDOWTEXT.

PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX
Sets the color of selection emphasis, the color of the cursor of an unselected
item in the details view, and the color of the cursor in all other views. This
color is initially set to SYSCLR_HILITEBACKGROUND.

PP _HILITEFOREGROUNDCOLOR or PP _HILITEFOREGROUNDCOLORINDEX
Sets the color of the text of a selected item in all views and the color of the
cursor of a selected item in the details view. This color is initially set to
SYSCLR_HILITEFOREGROUND.

Chapter 22. Container Control Window Processing 22-79

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The application uses the WinSetPresParam function to change presentation parameters.
This results in a WM_PRESPARAMCHANGED (in Container Controls) message being sent
to the container.

Default Processing
For a description of the default processing, see WM_PRESPARAMCHANGED.

22-80 PM Programming Reference Vol II

Chapter 23. Notebook Control Window Processing

This system-provided window procedure processes the actions on a notebook control
(yVC _NOTEBOOK).

Purpose
A notebook control (WC_NOTEBOOK window class) is a visual component whose specific
purpose is to organize information on individual pages so that a user can find and display
that information quickly and easily. It simulates a real-world notebook while improving it by
overcoming its natural limitations. A user can select and display pages by using either a
pointing device, such as a mouse, or the keyboard.

The notebook is designed to be customizable to meet varying application requirements, while
providing an easy-to-use user interface component that can be used to develop products that
conform to the Common User Access* (CUA*) user interface guidelines. The application can
specify different colors, sizes, and orientations for its notebooks, but the underlying function
of the control remains the same. For a complete description of CUA notebooks, refer to the
BAA eUA Guide to User Interface Design and the BAA eUA Advanced Interface Design
Reference.

Notebook Control Styles
Notebook control window styles can be set with a notebook is created. The following styles
can be set when creating a notebook control window. If no styles are specified, defaults,
which are identified in the following descriptions, are used.

• Specify one of the following to determine whether the control is a a solid bound or spiral
bound notebook, or a catalog:

BKS _ SOLIDBIND

BKS_SPIRALBIND

Paints a solid binding on the notebook. This is the
default.

Paints a spiral binding on the notebook.

• Specify one of the following to determine where the back pages are positioned:

BKS_BACKPAGESBR

BKS_BACKPAGESBL

BKS_BACKPAGESTR

BKS_BACKPAGESTL

© Copyright IBM Corp. 1994

Paints back pages on the notebook's bottom and right
sides. This is the default.

Paints back pages on the notebook's bottom and left
sides.

Paints back pages on the notebook's top and right sides.

Paints back pages on the notebook's top and left sides.

23-1

• Specify one of the following to determine the side of the notebook on which the major
tabs are positioned. Valid combinations with back pages styles are noted in each
definition.

BKS_MAJORTABRIGHT Places major tabs on the notebook's right edge. Only
valid in combination with BKS_BACKPAGESBR or
BKS_BACKPAGESTR. This is the default when either of
these back pages styles is used.

BKS_MAJORTABLEFT Places major tabs on the notebook's left edge. Only valid
in combination with BKS_BACKPAGESBL or
BKS_BACKPAGESTL. This is the default when
BKS_BACKPAGESTL is used.

BKS_MAJORTABTOP Places major tabs on the notebook's top edge. Only valid
in combination with BKS_BACKPAGESTR or
BKS_BACKPAGESTL.

BKS_MAJORTABBOTTOM Places major tabs on the notebook's bottom edge. Only
valid in combination with BKS_BACKPAGESBR or
BKS_BACKPAGESBL. This is the default when
BKS_BACKPAGESBL is used.

• Specify one of the following to set the shape of the notebook tabs:

BKS_SQUARETABS
BKS_ROUNDEDTABS
BKS_POLYGONTABS

Draws tabs with square edges. This is the default.
Draws tabs with rounded edges.
Draws tabs with polygon edges.

• Specify one of the following to position the status line text:

BKS_STATUSTEXTLEFT Left-justifies status line text. This is the default.
BKS_STATUSTEXTRIGHT Right-justifies status line text.
BKS_STATUSTEXTCENTER Centers status line text.

• Specify one of the following to position the tab text:

BKS_TABTEXTCENTER
BKS_TABTEXTLEFT
BKS_ TABTEXTRIGHT

Notebook Control Data

Centers tab text. This is the default.
Left-justifies tab text.
Right-justifies tab text.

See the following for descriptions of the notebook control data structures:

• "BOOKTEXT" on page A-23
• "DELETENOTI FY" on page A-46
• "PAGESELECTNOTIFY" on page A-140.

23-2 PM Programming Reference Vol II

Notebook Control Notification Messages
These messages are initiated by the notebook control window to· notify its owner of
significant events.

WM_CONTROL (in Notebook Controls)
For the cause of this message, see WM_CONTROL.

, Parameters
param1

id (USHORT)
Control-window identity.

notifycode (USHORT)
Notify code.

param2

The notebook control uses these notification codes:

BKN HELP Indicates the notebook control has received a
WM_HELP message.

BKN_NEWPAGESIZE Indicates the dimensions of the application
page window have changed.

BKN PAGEDELETED Indicates a page has been deleted from the
notebook.

BKN_PAGESELECTED Indicates a new page has been brought to the
top of the notebook. This notification is sent
after the page is turned.

BKN_PAGESELECTEDPENDING Indicates a new page is about to be brought to
the top of the notebook. This notification is
sent before the page is actually turned.

If the application does not want the page to be
turned, it sets the ulPageldNew field of the
PAGESELECTNOTIFY structure to NULL
before returning.

notifyinfo (ULONG)
Notify code information.

The value of this parameter depends on the value of the notifycode parameter.
When the value of the notifycode parameter is BKN_HELP, this parameter is the ID
of the notebook page (uIPageld) whose tab contains the selection cursor.

Chapter 23. Notebook Control Window Processing 23-3

When the value of the notifycode parameter is BKN _PAGESELECTED or
BKN_PAGESELECTEDPENDING, this parameter is a pOinter to the
PAGESELECTNOTIFY structure.

When the value of the notifycode parameter is BKN_PAGEDELETED, this
parameter is a pOinter to the DELETENOTIFY structure.

Otherwise, this parameter is the notebook control window handle.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The notebook control window procedure generates this message and sends it to its owner,
informing the owner of this event.

Default Processing
For a description of the default processing, see WM _CONTROL.

WM_CONTROLPOINTER (in Notebook Controls)
For the cause of this message, see WM_CONTROLPOINTER.

For a description of the parameters, see WM_CONTROLPOINTER.

Remarks
For the appropriate remarks, see WM_CONTROLPOINTER.

Default Processing
For the default processing, see WM_CONTROLPOINTER.

WM_DRAWITEM (in Notebook Controls)
This notification message is sent to the owner of a notebook control each time a tab's
content is to be drawn by the owner of the notebook. The tab's content is drawn by the
owner unless the owner sets the tab text or bit map by sending a BKM_SETTABTEXT or
BKM_SETTABBITMAP message, respectively, to the notebook control.

Parameters
param1

id (USHORT)
Window identifier.

The window identifier of the notebook control sending this notification message.

23-4 PM Programming Reference Vol II

param2

powneritem (POWNERITEM)
Pointer to an OWNERITEM data structure.

The following list defines the OWNERITEM data structure fields that apply to the
notebook control. See "OWNERITEM" on page A-136 for the default field values.

hwnd (HWNO)
Notebook window handle.

hps (HPS)
Presentation-space handle.

fsState (UlONG)
Notebook window style flags. See "Notebook Control Styles" on page 23-1 for
descriptions of these style flags.

fsAttribute (UlONG)
Page attribute flags for the tab page. See BKM-,NSERTPAGE for descriptions
of these attribute flags.

fsStateOld (UlONG)
Reserved.

fsAttributeOld (UlONG)
Reserved.

rcl/tem (RECTl)
Tab rectangle to be drawn in window coordinates.

idltem (lONG)
Reserved.

hltem (UlONG)

Returns
rc (BOOl)

Current page 10 (uIPageld) for which the content of a tab is to be drawn.

Content-drawn indicator.

TRUE
FALSE

Remarks

The owner draws the tab's content.
If the owner does not draw the tab's content, the owner returns this value and
the notebook control draws the tab's content.

If an application uses notebook controls that contain tab pages, the default condition is for
the application to draw the contents of the tab each time a tab page is displayed. This
situation applies particularly if the content of the tab is not one of the supported formats.

The notebook control window procedure generates this message and sends it to its owner,
informing the owner that the content of a tab is to be drawn. The owner is given the
opportunity to draw the content of the tab and to indicate that the content of the tab has been

Chapter 23. Notebook Control Window Processing 23·5

drawn or that the notebook control is to draw it. To indicate that the notebook control is to
draw the content of the tab, the owner sends either a BKM_SETTABTEXT or a
BKM_SETTABBITMAP message to the notebook control.

Default Processing
For a description of the default processing, see WM_DRAWITEM.

23-6 PM Programming Reference Vol II

Notebook Control Window Messages
This section describes the notebook control window procedure actions on receiving the
following messages.

BKM_CALCPAGERECT
This message calculates an application page rectangle from a notebook rectangle or
calculates a notebook rectangle from an application page rectangle, depending on the setting
of the bPage parameter.

Parameters
param1

pRectl (PRECTl)

param2

Pointer to the RECTl structure that contains the coordinates of the rectangle.

If the bPage parameter is TRUE, this structure contains the coordinates of a
notebook window on input, and on return it contains the coordinates of an
application page window.

If the bPage parameter is FALSE, this structure contains the coordinates of an
application page window on input, and on return it contains the coordinates of a
notebook window.

bPage (Baal)
Window specifier.

Specifies whether the window coordinates to calculate are for a notebook window or
an application page window.

TRUE
FALSE

An application page window is calculated.
A notebook window is calculated.

Returns
, rc (Baal)

Success indicator.

TRUE
FALSE

Remarks

Coordinates were successfully calculated.
Unable to calculate coordinates. This is returned if an invalid RECTl structure
is specified in the pReetJ parameter.

The application can use this message to determine the size of either the notebook window or
the application page window. It can also be used when the application handles the position
and size of the application page window.

Chapter 23. Notebook Control Window Processing 23-7

To calculate the application page rectangle, specify the coordinates of the notebook window
in the pReetl parameter and TRUE in the bPage parameter. The notebook control then uses
the coordinates specified in the pReetl parameter to calculate and return the coordinates of
the application page window.

To calculate the notebook rectangle, specify the coordinates of the application page window
in the pReetl parameter and FALSE in the bPage parameter. The notebook control then
uses the coordinates specified in the pReetl parameter to calculate and return the
coordinates of the notebook window.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

BKM_DELETEPAGE
This message deletes the specified page or pages from the notebook data list.

Parameters
param1

ulPageld (ULONG)
Page identifier.

param2

Page identifier for deletion. This is ignored if the BKA _ALL attribute of the
usDeleteFlag parameter is specified.

usDeleteFlag (USHORT)
Page range attribute.

Attribute that specifies the range of pages to be deleted.

BKA_SINGLE Delete a single page.

BKA TAB If the page I D specified .is that of a page with a major tab attribute,
delete that page and all subsequent pages up to the next page that
has a major tab attribute.

If the page ID specified is that of a page with a minor tab attribute,
delete that page and all subsequent pages up to the next page that
has either a major or minor tab attribute.

This attribute should only be specified for pages that have major or
minor tab attributes. If a page with neither of these attributes is
specified, FALSE is returned and no pages are deleted.

BKA_ALL Delete all pages in the notebook.

23-8 PM Programming Reference Vol II

Returns
rc (Baal)

Success indicator.

TRUE
FALSE

Pages were successfully deleted.
Unable to delete the page or pages. This is returned if an invalid page 10 is
specified for the ulPageld parameter or if the BKA_TAB attribute is specified
for a page that has neither a major nor a minor tab attribute.

Remarks
The notebook frees all storage that it has allocated for the deleted page or pages. The
application is responsible for deleting the application page window and bit map, if created.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

BKM_INSERTPAGE
This message inserts the specified page into the notebook data list.

Parameters
param1

ulPageld (UlONG)

param2

Page 10 for placement.

Page identifier used for the placement of the inserted page. This identifier is
ignored if the BKA_FIRST or BKA_LAST attribute of the usPageOrder parameter is
specified.

usPageStyle (USHORT)
Style attributes.

Attributes that specify the style to be used for an inserted page. You can specify
one attribute from each of the following groups by using logical OR operators (I) to
combine attributes.

• Specify the following for automatic page position and size:

BKA_AUTOPAGESIZE Notebook handles the positioning and sizing of the
application page window specified in the
BKM_SETPAGEWINOOWHWNO message.

Chapter 23. Notebook Control Window Processing 23-9

• Specify the following to display status area text:

BKA_STATUSTEXTON
Page is to be displayed with status area text. If this attribute is not
specified, the application cannot associate a text string with the status area
of the page being inserted.

• Specify one of the following if the page is to have a major or minor tab attribute:

BKA_MAJOR
BKA_MINOR

uSPageOrder (USHORT)
Order attributes.

Inserted page will have a major tab attribute.
Inserted page will have a minor tab attribute.

Placement of page relative to the previously inserted pages. You can specify one of
the following· attributes:

BKA_FIRST Insert page at the front of the notebook. The page 10 specified in
the ulPageld parameter for param 1 is ignored if this is specified.

BKA_LAST Insert page at the end of the notebook. The page 10 specified in the
ulPageld parameter for param1 is ignored if this is specified.

BKA_NEXT Insert page after the page whose 10 is specified in the ulPageld
parameter for param1. If the page 10 specified in the ulPageld
parameter is invalid, NULL is returned and no page is inserted.

BKA_PREV Insert page before the page whose 10 is specified in the ulPageld
parameter for param1. If the page 10 specified in the ulPageld
parameter is invalid, NULL is returned and no page is inserted.

Returns
ulPageld (ULONG)

Page 10 for insertion.

Identifier for the inserted page.

NULL The page was not inserted into the notebook. An invalid page 10 was specified
for the ulPageld parameter for param 1 or not enough space was available to
allocate the page data.

Other Identifier for the inserted page.

Remarks
The notebook control allocates and manages the storage needed for the new page. If
neither the BKA_MAJOR or BKA_MINOR attribute is specified, the page is inserted with no
tab attributes.

If the application does not specify the BKA~UTOPAGESIZE attribute, it must handle the
positioning and sizing of the application page window when it receives the
BKN_NEWPAGESIZE. notification code.

23-10 PM Programming Reference Vol II

Default Processing
The default window prOcedure does not expect to receive this message and therefore takes
no action on it other than to return O.

BKM_I NVALI DATETABS
This message repaints all of the tabs in the notebook.

Parameters
param1

ulReserved (UlONG)
ReseNed value, should be O.

param2

ulReserved (UlONG)
ReseNed value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Tabs painted successfully.
Tabs were not painted.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

BKM_QUERYPAGECOUNT
This message queries the number of pages.

Parameters
param1

ulPageld (UlONG)
Page ID or O.

Page identifier from which to start the query, or O. If this parameter is set to 0, the
query begins with the first page.

Chapter 23. Notebook Control Window Processing 23-11

param2

usQueryEnd (USHORT)
Query end attribute.

Attribute that ends the page count query.

BKA_MAJOR Query the number of pages between the page 10 specified in the
ulPageld parameter and the next page that has the BKA_MAJOR
attribute. The page that has the BKA_MAJOR attribute is not
included in the page count.

BKA_MINOR Query the number of pages between the page 10 specified in the
ulPageld parameter and the next page that has the BKA_MINOR
attribute. The page that has the BKA_MINOR attribute is not
included in the page count.

BKA_ENO Query the number of pages between the page 10 specified in the
ulPageld parameter and the last page. When this attribute is
specified, the page count includes the last page plus the
notebook's back cover.

Returns
pageCount (SHORT)

Number of pages.

Number of pages in the notebook.

BOOKERRJ NVALI O_PARAMETERS An invalid page 10 was specified for the
ulPageld parameter.

Other Number of pages for the specified range. If the
notebook is empty or no pages are found in the
range, this value is O.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

23-12 PM Programming Reference Vol \I

BKM_QUERVPAGEDATA
This message queries the 4 bytes of application reserved storage associated with the
specified page.

Parameters
param1

ulPageld (ULONG)
Page ID.

The page identifier of the page from which to retrieve the 4 bytes of data.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulPageData (ULONG)

Page data.

Application-defined page data.

BOOKERR_I NVALlD_PARAM ETERS An invalid page ID was specified for the
ulPageld parameter.

o No page data was set for the page specified in
the ulPageld parameter.

Other Application-defined page data.

Remarks
This data is set by using the BKM_SETPAGEDATA message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

BKM_QUERVPAGEID
This message queries the page identifier for the specified page.

Chapter 23. Notebook Control Window Processing 23-13

Parameters
param1

ulPageld (ULONG)
Location page 10.

param2

Page identifier used for locating the requested page. This identifier is ignored if the
BKA_FIRST, BKA_LAST, or BKA_ TOP attribute is specified.

usQueryOrder (USHORT)
Page 10 query order.

Order in which to query the page identifier.

BKA_FIRST Get the page identifier for the first page. The page 10 specified in
the ulPageld parameter for param1 is ignored if this is specified.

BKA LAST Get the page identifier for the last page. The page 10 specified in
the ulPageld parameter for param1 is ignored if this is specified.

BKA_NEXT Get the page identifier for the page after the page whose 10 is
specified in the ulPageld parameter for param1. If the page 10
specified in the ulPageld parameter is invalid,
BOOKERRJNVALlO_PARAMETERS is returned.

BKA_PREV Get the page identifier for the page before the page whose 10 is
specified in the ulPageld parameter for param1. If the page 10
specified in the ulPageld parameter is invalid,
BOOKERRJNVALlO_PARAMETERS is returned.

BKA_ TOP Get the page identifier for the page currently visible in the notebook.
The page 10 specified in the ulPageld parameter for param1 is
ignored if this is specified.

usPageStyle (USHORT)
Page style.

Page style for wh'ich to query the page identifier. If neither of these attributes is
specified, the uSPageStyle parameter is ignored.

BKA --.:MAJOR Query page with major tab attribute.

BKA_MINOR Query page with minor tab attribute. If a major tab page is found
before the minor tab page, the search is ended and 0 is returned.

Returns
ulPageld (ULONG)

Retrieved page 10.

23-14 PM Programming Reference Vol II

BOOKERRJNVALlO_PARAMETERS Returned if the page 10 specified for the
ulPageld parameter for param 1 is invalid when
specifying either the BKA_PREV or BKA_NEXT
attribute in the usQueryOrder parameter.

o Requested page not found. This could be an
indication that the end or front of the list has
been reached, or that the notebook is empty.

Other Retrieved page identifier.

Remarks
If the BKA_FIRST, BKA_LAST, or BKA_TOP attribute is specified, the page 10 in the
ulPageld parameter is ignored.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

BKM_QUERYPAGEINFO
This message queries the page information associated with a notebook page.

Parameters
param1

ulPageld (ULONG)
Id of the notebook page whose information is to be queried.

param2

pPagelnfo (PPAGEINFO)
Pointer to a notebook page information structure.

Chapter 23. Notebook Control Window Processing 23-15

Returns
returns

rc (BOOL)
Success indicator.

Possible values are described in the following list:

TRUE Message was processed.
FALSE Message was ignored.

Remarks
This message handles the following notebook messages:

• BKM_QUERYPAGEDATA
• BKM_QUERYPAGEWINDOWHWND
• BKM_QUERYSTATUSLINETEXT
• BKM_QUERYTABBITMAP
• BKM_QUERYTABTEXT

Default Processing
The default message procedure sets rc to TRUE.

BKM~QUERYPAGESTYLE
This message queries the style that was set when the specified page was inserted.

Parameters
param1

ulPageld (ULONG)
Page 10.

Page identifier of the page from which to query the style setting.

param2.

ulReserved (ULONG)
Reserved value, should be o.

23-16 PM Programming Reference Vol II

Returns
usPageStyle (USHORT)

Page style data.

BOOKERR-, NVALI O_PARAM ETERS An invalid page 10 was specified for the
ulPageld parameter.

Other Page style data.

Remarks
This style data is set when the page is inserted, which is done by using the
BKM-,NSERTPAGE message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

BKM_QUERYPAGEWINDOWHWND
This message queries the application page window handle associated with the specified
page.

Parameters
param1

ulPageld (ULONG)
Page 10.

Page identifier of the page whose window handle is requested.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
hwndPage (HWNO)

Window handle.

Handle of the application page window associated with the specified page identifier.

BOOKERR-, NVALI O_PARAM ETERS An invalid page 10 was sp~cified for the
ulPageld parameter.

NULLHANOLE No application page window handle is
associated for the page specified· in the
ulPageld parameter.

Other Handle of the application page window
associated with the specified page identifier.

Chapter 23. Notebook Control Window Processing 23-17

Remarks
The application page window handle is set by using the BKM_SETPAGEWINDOWHWND
message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULLHANDLE.

BKM_QUERYSTATUSLINETEXT
This message queries the status line text, text size, or both for the specified page.

Parameters
param1

ulPageld (ULONG)
Page 10.

Page identifier of the page whose status line text is requested.

param2

pBookText (PBOOKTEXT)
Pointer to a BOOKTEXT data structure. See "BOOKTEXT" on page A-23 for
definitions of this structure's fields as they apply to the
BKM_QUERYSTATUSLINETEXT message.

Returns
statusTextLen (USHORT)

String length.

Length of the status line text string.

BOOKERRJ NVALI D_PARAMETERS An invalid page 10 was specified for the
ulPageld parameter or the structure specified
for the pBookText parameter is invalid.

o No text data has been set
(BKM_SETSTATUSLINETEXT) for the page
specified in the ulPageld parameter.

Other Length of the returned status line text string.

Remarks
The size of the status line text string can be queried by specifying 0 for the textLen field of
the BOOKTEXT data structure. In this way, the application can determine the size of the
buffer needed to store the status line text string. The null character at the end of the text
string is not included in the returned length.

23-18 PM Programming Reference Vol II

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action other than to return 0.

BKM_ QUERYT ABBITMAP
This message queries the bit-map handle associated with the specified page.

Parameters
param1

ulPageld (ULONG)
Page 10.

Page identifier of the page whose bit-map handle is requested. This should be a
page for which a B~MAJOR or BKA_MINOR attribute has been specified.

param2

ulReserved (ULONG)
Reserved value, should be 0.

Returns
hbm (HBITMAP)

Bit-map handle.

Handle of the bit map associated with the specified page identifier.

BOOKERRJNVALlO_PARAMETERS An invalid page 10 was specified for the
ulPageld parameter.

NULLHANOLE No bit-map handle is associated with the page
specified in the ulPageld parameter.

Other Handle of the bit map associated with the
specified page identifier.

Remarks
The tab bit-map handle is set by using the BKM_SETTABBITMAP message.

If this message is sent for a page having both major and minor tab attributes, the notebook
returns the bit map associated with the major tab.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return NULLHANOLE.

Chapter 23. Notebook Control Window Processing 23-19

BKM_QUERYTABTEXT
This message queries the text, text size, or both for the specified page.

Parameters
para.-n1

ulPageld (ULONG)
Page ID.

Page identifier of the page whose tab text is requested. This should be a page for
which a BKA_MAJOR or BKA_MINOR attribute has been specified.

param2

pBookText (PBOOKTEXT)
Pointer to a BOOKTEXT data structure.

See "BOOKTEXT" on page A-23 for definitions of this structure's fields as they
apply to the BKM_QUERYTABTEXT message.

Returns
tabTextLen (USHORT)

Length of the tab text string.

BOOKERRJ NVALI D_PARAMETERS An invalid page ID was specified for the
ulPageld parameter or the structure specified
for the pBookText parameter is invalid.

o No text data has been set
(BKM _ SETT ABTEXT) for the page specified in
the ulPageld parameter.

Other Length of the returned tab text string.

Remarks
The size of the tab text string can be queried by specifying 0 for the tabTextLen field in the
BOOKTEXT data structure. In this way, the application can determine the size of the buffer
needed to store the tab text string. The null character at the end of the text string is not
included in the returned length.

If this message is sent for a page having both major and minor tab attributes, the notebook
returns the text which is associated with the major tab.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return o.

23-20 PM Programming Reference Vol II

BKM_SETDIMENSIONS
This message sets the height and width for the major tabs, minor tabs, or page buttons.

Parameters
param1

usWidth (USHORT)
Width value to set.

usHeight (USHORT)
Height value to set.

param2

usType (USHORT)
Notebook region.

Notebook region for which the dimensions are to be set. Valid values are:

Returns
rc (BOOl)

• BKA_MAJORTAB
• BKA_MINORTAB
• BKA_PAGEBUTTON.

Success indicator.

TRUE
FALSE

Dimensions were successfully set.

Remarks

Unable to set dimensions. Returned if an invalid value is specified for the
usType parameter or if the dimensions are invalid.

If either the BKA_MAJORTAB or BKA_MINORTAB attribute is specified for the usType
parameter, the minimum width and height for display is 7 pels to allow space for the tab
border and the selection cursor. If the tabs or page buttons are not to be displayed, the
height and width can be set to O.

If the new dimensions cause the notebook size to change, the notebook sends a
BKN_NEWPAGESIZE notification code to the application.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 23. Notebook Control Window Processing 23-21

BKM_SETNOTEBOOKCOLORS
This message sets the colors for the major tab text and background, the minor tab text and
background, and the notebook page background.

Parameters
param1

ulColor (ULONG)
Color value to set.

param2

usBookAttr (USHORT)
Notebook region.

Notebook region whose color is to be set. Valid values are:

BKA_BACKGROUNDPAGECOLOR or BKA_BACKGROUNDPAGECOLORINDEX
Page background. This color is initially set to
SYSCLR _PAGEBACKGROUND.

BKA_BACKGROUNDMAJORCOLOR or
BKA_BACKGROUNDMAJORCOLORINDEX

Major tab background. This color is initially set to
SYSCLR_PAGEBACKGROUND.

BKA_BACKGROUNDMINORCOLOR or BKA_BACKGROUNDMINORCOLORINDEX
Minor tab background. This color is initially set to
SYSCLR_PAGEBACKGROUND.

BKA_FOREGROUNDMAJORCOLOR or
BKA_FOREGROUNDMAJORCOLORINDEX

Major tab text. This color is initially set to SYSCLR_WINDOWTEXT.

BKA_FOREGROUNDMINORCOLOR or BKA_FOREGROUNDMINORCOLORINDEX
Minor tab text. This color is initially set to SYSCLR_WINDOWTEXT.

Returns
rc (BOOL)

Success indicator.

TRUE Colors were successfully set.
FALSE Unable to set colors. Returned if an invalid notebook attribute is specified for

the usBookAttr parameter.

23-22 PM Programming Reference Vol II

Remarks
The notebook background, border, selection cursor, and status line text colors are mapped to
system presentation attributes. See WM_PRESPARAMCHANGED (in Notebook Controls)
for information about setting the color of these regions.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

BKM_SETPAGEDATA
This message sets the 4 bytes of application reserved storage associated with the specified
page.

Parameters
param1

ulPageld (UlONG)
Page 10.

The page identifier of the page from which to set the 4 bytes of data.

param2

ulPageData (UlONG)
Page data.

Application-defined page data.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Page data was successfully set.
Unable to set page data. This value is returned if the page 10 specified in the
ulPageld parameter is invalid.

This data can be queried by using the BKM_QUERYPAGEDATA message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 23. Notebook Control Window Processing 23-23

BKM_SETPAGEINFO
This message sets the page information associated with notebook page which contains a
single message.

Parameters
param1

ulPageld (UlONG)
Id of the notebook page whose information is to be set.

param2

pPagelnfo (PPAGEINFO)
Pointer to a notebook page information structure.

Returns
returns

rc (BOOl)
Success indicator.

Possible values are described in the following list:

TRUE
FALSE

Remarks

Message was processed.
Message was ignored. '

This message provides an application with the ability to associate a window handle, a static
dialog resource or a dynamic dialog resource with a notebook page. The notebook can
automatically load the dialog resource when the resource is associated with the page or
when the page is turned.

This message performs the tasks of the following notebook messages:

• BKM SETPAGEDATA
• BKM_SETPAGEWINDOWHWND
• BKM_SETSTATUSLINETEXT
• BKM_SETTABBITMAP
• BKM_SETTABTEXT

Default Processing
The default message procedure sets rc to TRUE.

23-24 PM Programming Reference Vol II

BKM_SETPAGEWINDOWHWND
This message associates an application page window handle with the specified notebook
page.

Parameters
param1

ulPageld (UlONG)
Page 10.

The page 10 of the notebook page with which the application page window is to be
associated.

param2

hwndPage (HWNO)
Window handle.

The handle of the application page window that is to be associated with the
notebook page identified in the ulPageld parameter.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Application page window handle was successfully set.
Unable to set application page window handle. This value is returned if the
page 10 specified for the ulPageld parameter is invalid.

The notebook shows the application page window specified in the hwndPage parameter
whenever the notebook page specified in the ulPageld parameter is brought to the top of the
notebook. If the BKA_AUTOPAGESIZE attribute is specified when that page is inserted into
the notebook, the notebook also handles the sizing and positioning of the application page
window.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 23. Notebook Control Window Processing 23-25

BKM_SETSTATUSLINETEXT
This message associates a text string with the specified page's status line.

Parameters
param1

ulPageld (UlONG)
Page 10.

The page identifier with which to associate the text string.

param2

pString (PSZ)
Pointer to a text string that ends in a null character.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Status line text was successfully set.
Unable to set status line text. This value is returned if the page 10 specified in
the ulPageld parameter is invalid or if the page was inserted without
specifying the BKA_STATUSTEXTON attribute.

If the text is longer that the status area length, only the text that fits in the status area is
displayed.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

BKM_SETTABBITMAP
This message associates a bit-map handle with the specified page.

Parameters
param1

ulPageld (ULONG)
Page 10.

The page identifier with which to associate the bit-map handle. This should be a
page for which a BKA_MAJOR or BKA_MINOR attribute has been specified.

23-26 PM Programming Reference Vol II

param2

hbm (HBITMAP)
Bit-map handle.

Returns
rc (BOOl)

Success indicator.

TRUE Tab bit map was successfully set.

FALSE Unable to set tab bit map. If the page ID specified in the ulPageld parameter
is invalid or if it identifies a page that does not have a BKA_MAJOR or
BKA_MINOR attribute, FALSE is returned and no bit map is associated with
the page.

Remarks
If this message is sent for a page having both major and minor tab attributes, the notebook
sets both the major and minor tab bit maps.

When displayed, the bit map is stretched to fit the size of the tab. If a tab has rounded or
polygonal edges, the bit map is sized to fit the rectangular area of the tab, as shown in
Figure 23-1.

Square
Tab

Bitmap Stretched to Fit
Rectangular Area

Rounded
Tab

Polygonal
Tab

Figure 23-1. Tabs Showing Rectangular Area Used to Size a Bit Map

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 23. Notebook Control Window Processing 23-27

BKM_SETTABTEXT
This message associates a text string with the specified page.

Parameters
param1

ulPageld (UlONG)
Page 10.

The page identifier with which to associate the text string. This should be a page
for which a BKA_MAJOR or BKA_MINOR attribute has been'specified.

param2

pString (PSZ)
Pointer to a text string that ends with a null character.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Tab text was successfully set.
Unable to set tab text. If the page 10 specified in the ulPageld parameter is
invalid or if it identifies a page that does not have a BKA_MAJOR or
BKA_MINOR attribute, FALSE is returned and no text string is associated with
the page.

The text is centered from the tab edges.

The application can define a mnemonic key when sending this message by placing a tilde n
character before the character that is to be the mnemonic key. The notebook brings this
page to the top whenever the user presses the mnemonic key.

The mnemonic key processing is not case-sensitive, so the user can type the mnemonic
character in either upper or lower case.

The application can remove or change the mnemonic key by sending additional
BKM_SETTABTEXT messages for the specified page.

If this message is sent for a page having both major and minor tab attributes, the notebook
sets both the major and minor tab text.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

23-28 PM Programming Reference Vol II

BKM_TURNTOPAGE
This message brings the specified page to the top of the notebook.

Parameters
param1

ulPageld (UlONG)
Page ID.

The page identifier that is to become the top page.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
fSuccess (BOOl)

Success indicator.

TRUE
FALSE

The page was successfully moved to the top of the notebook.

Remarks

Unable to move the page to the top of the notebook. This value is returned if
the page ID specified in the ulPageld parameter is invalid.

The application receives a BKN_PAGESElECTED notification code when the new page is
brought to the top of the notebook.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 23. Notebook Control Window Processing 23-29

WM_CHAR (in Notebook.Controls)
For the cause of this message, see WM _CHAR.

For a description of the parameters, see WM_CHAR.

Remarks
If the application page window has the focus (for example, the cursor is on a control within
the top page dialog), the notebook handles the following keyboard interaction:

Alt+Up Arrow Sets the focus to the notebook window.

If the notebook control has the focus (for example, the cursor is on the major tab, minor tab
or page turning button), the notebook handles the following keyboard interactions:

Alt+Down Arrow

Tab

Sets the focus to the application page window.

Moves the selection cursor to the next position or control.

Shift+ Tab Moves the selection cursor to the previous position or control.

Down Arrow or Right Arrow

Up Arrow or Left Arrow

Enter or Spacebar

Mnemonics

PgDn or Alt+PgDn

Moves the selection cursor to the next major or minor tab. If
either of these keys is pressed while the selection cursor is on
a major tab, the cursor moves to the next major tab. If either
of these keys is pressed while the selection cursor is on a
minor tab, the cursor moves to the next minor tab. If the next
tab is not visible, the tabs are scrolled to bring the next tab into
view. If the end of the tabs is reached, scrolling ends.

Moves the selection cursor to the previous major or minor tab.
If either of these keys is pressed while the selection cursor is
on a major tab, the cursor moves to the previous major tab. If
either of these keys is pressed while the selection cursor is on
a minor tab, the cursor moves to the previous minor tab. If the
previous tab is not visible, the tabs are scrolled to bring the
previous tab into view. If the beginning of the tabs is reached,
scrolling ends.

The cursored tab page becomes the top page of the notebook.

Brings the page whose tab contains the mnemonic character to
the top of the notebook whenever the user presses the
mnemonic key. Mnemonic key definition is provided by using
the BKM_SETTABTEXT message. Coding a mnemonic
character n before a text character in the BKM _ SETT ABTEXT
message causes that character to be underlined in the tab's
text string and activates it as a mnemonic selection character.
The mnemonic key preSSing is not case-sensitive, so the user
can type the mnemonic character in either upper or lower case.

Brings the next page to the top of the notebook and sets the
selection cursor on the associated tab, if there is one.

23-30 PM Programming Reference Vol II

PgUp or Alt+PgUp Brings the previous page to the top of the notebook and sets
the selection cursor on the associated tab, if there is one.

Home Brings the first page of the notebook to the top and sets the
selection cursor on the associated tab, if there is one.

End Brings the last page of the notebook to the top and sets the
selection cursor on the associated tab, if there is one.

Default Processing
For a description of the default processing, see WM_CHAR.

WM_PRESPARAMCHANGED (in Notebook Controls)
For the cause of this message, see WM_PRESPARAMCHANGED.

Parameters
param1

attrtype (ULONG)
Attribute type.

param2

Presentation parameter attribute identity.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Sets the background color of the notebook window. This color is initially set
to SYSCLR_FIELDBACKGROUND.

PP _BORDERCOLOR or PP _BORDERCOLORINDEX
Sets the color of the notebook outline. This color is initially set to
SYSCLR_ WINDOWFRAME.

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Sets the color of text on the status line. This color is initially set to
SYSCLR_ WINDOWTEXT.

PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX
Sets the color of the selection cursor. This color is initially set to
SYSCLR_HILITEBACKGROUND.

ulReserved (ULONG)
Reserved value, should be O.

Chapter 23. Notebook Control Window Processing 23-31

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The application uses this message to notify the notebook that a given inherited presentation
parameter has changed.

Default Processing
For a description of the default processing, see WM_PRESPARAMCHANGED.

WM_SIZE (in Notebook Controls)
For the cause of this message, see WM_SIZE.

For a description of the para~eters, see WM_SIZE.

Remarks
When the size of the notebook window changes, all of the regions are recalculated. The
notebook sends a BKN_NEWPAGESIZE notification code to the application. The notebook
sets the position and size of application page windows that are associated with pages for
whom the BKA.-AUTOPAGESIZE attribute is set.

Default Processing
For a description of the default processing, see WM_SIZE.

23-32 PM Programming Reference Vol II

Chapter 24. Slider Control Window Processing

This system-provided window procedure processes the actions on a slider control
(WC_SLlDER).

Purpose
A slider control (WC_SLlDER window class) is a visual component whose specific purpose is
to allow a user to set, display, or modify a value by moving a slider arm along a slider shaft.
Sliders are typically used to allow a user to easily set values that have familiar increments,
such as feet, inches, degrees, decibels, and so forth.

However, they can also be used for other purposes when immediate feedback is necessary,
such as to blend colors or to show the percentage of a task that has completed. For
example, an application might allow a user to mix and match color shades by moving a slider
arm, or a read-only slider could be provided that shows how much of a task has completed
by filling in the slider shaft as the task progresses. These are just a few examples to show
you the many ways in which sliders can be used.

The appearance of and user interaction for a slider is similar to the appearance of and user
interaction for a scroll bar. However, these two controls are not interchangeable because
each has a distinct purpose. The scroll bar is used to scroll into view information that is
outside a window's client area, while the slider is used to set, display, or modify that
information, whether it is in the client area or not in the client area.

The slider is designed to be customizable to meet varying application requirements, while
providing an easy-to-use user interface component that can be used to develop products that
conform to the Common User Access (CUA) user interface guidelines. The application can
specify different scales, sizes, and orientations for its sliders, but the underlying function of
the control remains the same. For a complete description of CUA sliders, refer to the SAA
eUA Guide to User Interface Design and the SAA eUA Advanced Interface Design
Reference.

Slider Control Styles
Slider control window styles are set when a slider window is created. The following styles
can be set when creating a slider control window. If no styles are specified, defaults, which
are identified in the following descriptions, are used.

• Specify either of the following to determine the slider's orientation:

SLS_HORIZONTAL
The slider is positioned horizontally. The slider arm can move left and right on the
slider shaft. A scale can be placed on top of the slider shaft, below the slider
shaft, or in both places. This is the default orientation of the slider.

© Copyright IBM Corp. 1994 24-1

SLS_ VERTICAL
The slider is positioned vertically. The slider arm can move up and down the
slider shaft. A scale can be placed on the left side of the slider shaft, on the right

. side of the slider shaft, or in both places.

• SpecifY one of the following to position the 'slider within the slider window:

SLS_CENTER
The slider is centered in the slider window. This is the default positioning of the
slider.

SLS_BOTTOM
The slider is positioned at the bottom of the slider window. This is valid for
horizontal sliders only.

SLS_TOP
The slider is positioned at the top of the slider window. This is valid for horizontal
sliders only.

SLS_LEFT
The slider is positioned at the left edge of the slider window. This is valid for
vertical sliders only.

SLS_RIGHT
The slider is positioned at the right edge of the slider window. This is valid for
vertical sliders only.

• Specify one of the following to determine the location of the scale on the slider shaft:

SLS_PRIMARYSCALE1
The slider uses the increment and spacing specified for scale 1 as the
incremental value for positioning the slider arm. Scale 1 is displayed above the
slider shaft of a horizontal slider and to the right of the slider shaft of a vertical
slider. This is the default for a slider.

SLS_PRIMARYSCALE2
The slider uses the increment and spacing specified for scale 2 as the
incremental value for positioning the slider arm. Scale 2 is displayed below the
slider shaft of a horizontal slider and to the left of the slider shaft of a vertical
slider.

• Specify one of the following to determine the slider arm's home position:

SLS_HOMELEFT
The slider uses the left edge of the slider as the base value for incrementing. This
is the default for horizontal sliders and is valid for horizontal sliders only.

SLS_HOMERIGHT
The slider uses the right edge of the slider as the base value for incrementing.
This is valid for horizontal sliders only.

24-2 PM Programming Reference Vol II

SLS_HOMEBOTTOM
The slider uses the bottom of the slider as the base value for incrementing. This
is the default for vertical sliders and is valid for vertical sliders only.

SLS_HOMETOP
The slider uses the top of the slider as the base value for incrementing. This is
valid for vertical sliders only.

• Specify one of the following to determine the location of the slider buttons. If you do not
specify one of these styles, or if conflicting styles are specified, slider buttons are not
included in the slider control.

SLS_BUTTONSLEFT
The slider includes incremental slider buttons with the control and places them to
the left of the slider shaft. These slider buttons move the slider arm by one
position, either left or right, in the direction that is selected. This is valid for
horizontal sliders only.

SLS_BUTTONSRIGHT
The slider includes incremental slider buttons with the control and places them to
the right of the slider shaft. These slider buttons move the slider arm by one
position, either left or right, in the direction that is selected. This is valid for
horizontal sliders only.

SLS_BUTTONSBOTTOM
The slider includes incremental slider buttons with the control and places them at
the bottom of the slider shaft. These slider buttons move the slider arm by one
position, either up or down, in the direction that is selected. This is valid for
vertical sliders only.

SLS_BUTTONSTOP
The slider includes incremental slider buttons with the control and places them at
the top of the slider shaft. These slider buttons move the slider arm by one
position, either up or down, in the direction that is selected. This is valid for
vertical sliders only.

• Other styles that you can specify:

SLS_SNAPTOINCREMENT
The slider arm, when moved to a position between two specified values on the
slider scale, such as between two tick marks, is positioned on the nearest value
and is redrawn at that position. If this style is not specified, the slider arm remains
at the position to wh ich it is moved.

SLS_READONL Y
The slider is created as a read-only slider. This means that the user cannot
interact with the slider. It is used merely as a mechanism to present a quantity to
the user, such as the percentage of completion of an ongoing task. Visual
differences for a read-only slider include a narrow slider arm, no slider buttons and
no detents.

Chapter 24. Slider Control Window Processing 24-3

SLS_RIBBONSTRIP
As the slider arm moves"the slider fills the slider shaft between the home position
and the slider arm with a color value that is different from the slider shaft color,
similar to the mercury in a thermometer.

SLS_OWNERDRAW
The application is notified whenever the slider shaft, the ribbon strip, the slider
arm, and the slider background are to be drawn.

Slider Control Data
See "SLDCDATA" on page A-187.

24-4 PM Programming Reference Vol II

Slider Control Notification Messages
These messages are initiated by the slider control window to notify its owner of significant
events.

WM_CONTROL (in Slider Controls)
For the cause of this message, see WM_CONTROL.

Parameters
param1

id (USHORT)
Slider control identity.

notifycode (USHORT)
Notification code.

The slider control uses these notification codes:

param2

SLN_CHANGE
SLN_KILLFOCUS
SLN _ SETFOCUS
SLN_SLlDERTRACK

The slider arm position has changed.
The slider control is losing the focus.
The slider control is receiving the focus.
The slider arm is being dragged, but has not been released.

notifyinfo (ULONG)
Control-specific information.

When the value of the notifycode parameter is SLN_ CHANGE or
SLN_SLlDERTRACK, this value is the new arm position, expressed as the number
of pixels from the home position.

Otherwise, this value is the window handle (HWND) of the slider control.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
The slider control window procedure generates this message and sends it to its owner,
informing the owner of this event.

Default Processing
For a description of the default processing, see WM_CONTROL.

Chapter 24. Slider Control Window Processing 24-5

WM_CONTROLPOINTER (in Slider Controls)
For the cause of this message, see WM_CONTROLPOINTER.

For a description of the parameters, see WM_CONTROLPOINTER.

Remarks
For the appropriate remarks, see WM_CONTROLPOINTER.

Default Processing
For the default processing, see WM_CONTROLPOINTER.

WM_DRAWITEM (in Slider Controls)
If the SLS_OWNERDRAW style bit is set for a slider control, this notification message is sent
to that slider control's owner whenever the slider shaft, ribbon strip, slider arm, and slider
background are to be drawn.

Parameters
param1

id (USHORT)
Window identifier.

The window identifier of the slider control sending this notification message.

param2

powneritem (POWNERITEM)
Pointer to an OWNERITEM data structure.

The following list defines the OWNERITEM data structure fields that apply to the
slider control. See OWNERITEM for the default field values.

hwnd (HWND)
Slider window handle.

hps (HPS)
Presentation-space handle.

fsState (ULONG)
Slider window style flags. See "Slider Control Styles" on page 24-1 for
descriptions of these style flags.

fsAttribute (ULONG)
Reserved.

fsStateOld (ULONG)
Reserved.

24-6 PM Programming Reference Vol II

fsAttributeOld (UlONG)
Reserved.

rcl/tem (RECTl)
Item rectangle to. be drawn in window coordinates.

idltem (lONG)
Identity of item to be drawn:

SDA_SLlDERSHAFT Specifies that the slider shaft is to be drawn.

SDA_RIBBONSTRIP Specifies that the slider shaft area that contains a
ribbon strip is to be drawn.

SDA_SLlDERARM Specifies that the slider arm is to be drawn.

SDA_BACKGROUND Specifies that the slider background is to be drawn.

hltem (UlONG)

Returns
rc (BOOl)

Reserved.

Item-drawn indicator.

TRUE
FALSE

Remarks

The owner draws the item.
If the owner does not draw the item, the owner returns this value and the
slider control draws the item.

The slider control provides this message to give the application the opportunity to provide a
custom slider shaft, custom ribbon strip, custom slider arm, and custom background. The
application can specify one or all of these items and is given the opportunity to do so.

The slider control window procedure generates this message and sends it to its owner,
informing the owner that an item is to be drawn. The owner is then given the opportunity to
draw that item, and to indicate that an item has been drawn or that the slider control is to
draw it.

Default Processing
For a description of the default processing, see WM_DRAWITEM.

Chapter 24. Slider Control Window Processing 24-7

Slider Control Window Messages
This section describes the slider control window procedure actions on receiving the following
messages.

SLM-.ADDDETENT
This message places a detent along the slider shaft at the pOSition specified on the primary
scale. A detent is an indicator that represents a predefined value for a quantity. It does not
have to correspond to an increment of the slider.

Parameters
param1

usDetentPos (USHORT)
Detent position.

Number of pixels the detent is positioned from home.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulDetentld (ULONG)

Detent 10.

Unique identifier for the detent being added to the slider. If 0 is returned, an error
occurred. The WinGetLastError function may return the following errors:

• PMERR_HEAP _MAX_SIZE_REACHED
• PMERR_PARAMETER_OUT_OF_RANGE.

Remarks
The application uses this message to add detents along the slider to denote values that do
not fall along an increment setting. An example of this would be a slider that represents
temperature and has increments that are on multiples of 5. A detent could be located at 32,
instead of 30 or 35, for special purposes.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return o.

24-8 PM Programming Reference Vol II

SLM_QUERYDETENTPOS
This message queries for the current position of a detent.

Parameters
param1

ulDetentld (ULONG)
Detent 10.

Unique detent identifier, which indicates the position to be returned.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

usDetentPos (USHORT)
Detent position.

Number of pixels the detent is positioned from home.

>= 0 Number of pixels the detent is positioned
from home.

SLDERR-,NVALlD_PARAMETERS An error occurred. The WinGetLastError
function may return the following error:

PMERR_INVALID _PARAMETERS.

fDetentLocation (USHORT)
Scale.

The scale along which the detent is located. One of the following:

SMA_SCALE1
SMA_SCALE2

Remarks

Detent position is along scale 1.
Detent position is along scale 2.

An application could use this message to place text above the detent or position an item
relative to it.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

Chapter 24. Slider Control Window Processing 24-9

SLM_QUERYSCALETEXT
This message queries for the text associated with a tick mark for the primary scale and
copies that text into a buffer.

Parameters
param1

usTickNum (USHORT)
Tick location.

Tick location to query for the text.

usBufLen (USHORT)
Buffer length.

Length of the buffer to copy the text into. The buffer size should include space for
the null termination character.

param2

pTickText (PSZ)
Pointer to the buffer into which to place the text string for the tick mark.

Returns
sTextLen (SHORT)

Count of bytes.

Count of bytes copied to buffer.

>= 0 Length of the text string, excluding the null
termination character.

SLDERRJNVALlD_PARAMETERS An error occurred. The WinGetLastError function
may return the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

Remarks
This message could be used to return text that represents the current position of the slider
arm orto query the text for use in ownerdraw mode.

By specifying 0 as the value of the usBufLen parameter and then looking at the value
returned in the sTextLen parameter, an application can determine the size of the buffer to
allocate for copying the text. An application can then allocate a buffer of this size, adding
one byte for the null termination character, and then specify this buffer and size on the query
call. .

24-10 PM Programming Reference Vol II

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

SLM_QUERYSLIDERINFO
This message queries the current position or dimensions of a key component of the slider.
The information returned and its format depends on the type of information requested.

Parameters
param1

uslnfoType (USHORT)
Information attribute.

Attribute that identifies the requested information. It can be one of the following:

SMA_SHAFTDIMENSIONS Queries for the length and breadth of the slider
shaft.

SMA SHAFTPOSITION Queries for the X-, y-position of the lower-left
corner of the slider shaft.

SMA_SLlDERARMDIMENSIONS Queries for the length and breadth of the slider
arm.

SMA SLiDERARMPOSITION Queries for the position of the slider arm. The
position can be returned either as an increment
position or a range value.

usArmPosType (USHORT)
Format attribute.

param2

Attribute that identifies the format in which the information should be returned if the
slider arm position is requested. This value is ignored for all other queries and is
one of the following:

SMA RANGEVALUE The value returned represents the number of pixels
between the home position and the current arm
position in the low order byte. The high order byte
represents the pixel count of the entire range of the
slider control.

SMA_INCREMENTVALUE The value returned represents an increment position
using the primary scale.

ulReserved (ULONG)
Reserved value, should be O.

Chapter 24. Slider Control Window Processing 24-11

Returns
ullnfo (ULONG)

Return information.

One of the following items, depending on which SMA _ * message attribute or attributes,
were set with the SLM_SETSLIDERINFO message:

• If the SMA_SHAFTDIMENSIONS attribute is set, the following is returned:

usShaftLength (USHORT)
Length of the slider shaft, in pixels. It is the width of the slider shaft for
horizontal sliders, and the height of the slider shaft for vertical sliders.

usShaftBreadth (USHORT)
Breadth of the slider shaft, in pixels. It is the height of the slider shaft for
horizontal sliders, and the width of the slider shaft for vertical sliders.

• If the SMA _ SHAFTPOSITION attribute is set, the following is returned:

xShaftCoord (USHORT)
X-coordinate of the slider shaft position within the slider window. This value is
expressed in window coordinates and represents the lower-left corner of the
slider shaft.

yShaftCoord (USHORT)
V-coordinate of the slider shaft position within the slider window. This value is
expressed in window coordinates and represents the lower-left corner of the
slider shaft.

• If the SMA_SLlDERARMDIMENSIONS attribute is set, the following is returned:

usArmLength (USHORT)
Length of the slider arm, in pixels. It is the width of the slider arm for horizontal
sliders and the height of the slider arm for vertical sliders.

usArmBreadth (USHORT)
Breadth of the slider arm, in pixels. It is the height of the slider arm for
horizontal sliders and the width of the slider arm for vertical sliders.

• If the SMA_SLlDERARMPOSITION and SMAJNCREMENTVALUE attributes are
set, the following is returned:

usArmPos (USHORT)
Number of pixels from the home position to the slider arm.

usSliderRange (USHORT)
Number of pixels over which the user could select a value on the slider.

• If the SMA_SLlDERARMPOSITION and SMAJNCREMENTVALUE attributes are
set, the following is returned:

uslncrementPos (USHORT)
Increment that corresponds to the current pOSition of the slider arm.

24-12 PM Programming Reference Vol II

• If the SLDERRJNVALlD_PARAMETERS error is returned, an error occurred. The
WinGetLastError function may return the following error:

PMERRJNVALlD_PARAMETERS.

Remarks
The application uses this message to query for information about individual parts of a slider
control, or the value selected by a user.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

SLM_QUERYTICKPOS
This message queries for the current position of a tick mark for the primary scale. This
represents where the tick mark would be located. The tick mark does not have to have a
size (that is, to be visible) to use this message.

Parameters
param1

usTickNum (USHORT)
Tick mark location.

Specifies the tick mark location to query for the position.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

xTickPos (USHORT)
X-coordinate.

X-coordinate of the point that represents the position of the tick mark. It is the
starting position of the tick mark and represents the end of the tick mark closest to
the slider shaft.

yTickPos (USHORT)
V-coordinate.

V-coordinate of the point that represents the position of the tick mark. It is the
starting position of the tick mark and represents the end of the tick mark closest to
the slider shaft.

Chapter 24. Slider Control Window Processing 24-13

If NULL is returned in either parameter, an error occurred. The WinGetLastError
function may return the following error:

Remarks
This message could be used to get the position of a tick mark along the slider for use in
ownerdraw mode if, for example, you want to place something other than text, such as bit
maps or icons, above the tick marks.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

SLM_QUERYTICKSIZE
This message queries for the size of a tick mark for the primary scale. All tick .marks default
to a size of 0 (invisible) if not set by the application with the SLM_SETTICKSIZE message.

Parameters
param1

usTickNum (USHORT)
Tick mark location.

Specifies the tick mark location to query for the size.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
usTickSize (USHORT)

Tick mark length.

Specifies the length of the tick mark at the position queried, in pixels. If this value is 0,
the tick mark is invisible.

If the SLDERRJNVALlD_PARAMETERS error is returned, an error occurred. The
WinGetLastError function may return the following error:

Remarks
The application uses this message to query a scale along the slider to indicate what tick
marks, tick mark sizes, or both are currently set for the slider.

24-14 PM Programming Reference Vol II

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

SLM_REMOVEDETENT
This message removes a previously specified detent. A detent is an indicator that represents
a predefined value for a quantity and does not have to correspond to an increment of the
slider.

Parameters
param1

ulDetentld (UlONG)
Detent 10.

Unique detent identifier for the detent that is to be removed from the slider.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE Detent was successfully removed.

FALSE An error occurred. The WinGetlastError function may return the following
error:

PMERRJNVALID _PARAMETERS.

Remarks
The application uses this message to remove detents added previously to the slider to
denote values that do not fall along an increment setting.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

Chapter 24. Slider Control Window Processing 24-15

SLM_SETSCALETEXT
This message sets text above a tick mark for the primary scale. A tick mark does not have
to be visible to have text set above it. The text is centered on the tick mark.

Parameters
param1

usTickNum (USHORT)
Tick mark location.

Specifies the tick mark location that is to have the text placed with it.

param2

pTickText (PSZ)
Pointer to the text that is to be drawn at the position specified.

If this value is NUll, no text is drawn.

Returns
rc (BOOl)

Success indicator.

TRUE Text was successfully added to the scale.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_HEAP _MAX_SIZE_REACHED
• PMERR_PARAMETER_OUT_OF _RANGE.

Remarks
The application uses this message to draw text along the increments of the slider to clarify
the magnitude of the range. This text could show the exact value for that tick mark, or could
be a general remark, such as low, high, and so forth.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

24-16 PM Programming Reference Vol II

SLM_SETSLIDERINFO
This message sets the current position or dimensions of a key component of the slider. The
component to be changed is indicated by one parameter and the new value is placed in the
other.

Parameters
param1

uslnfoType (USHORT)
Component attribute.

Identifies the slider component that is to be modified. Specify one of the following:

SMA_SHAFTDIMENSIONS Sets the width (for vertical sliders) or height (for
horizontal sliders) of the slider shaft.

SMA_SHAFTPOSITION Sets the X-, y-position of the lower-left corner of
the slider shaft in the slider window.

SMA_SLlDERARMDIMENSIONS Sets the width and height of the slider arm.

SMA_SLlDERARMPOSITION Sets the position of the slider arm. This value
can be specified either as an increment position
or a range value.

usArmPosType (USHORT)
Format attribute.

Identifies the format in which the information should be interpreted by the slider if
setting the slider arm position is requested. This value is a reserved field for other
set requests. The format is one of the following:

SMA_RANGEVALUE Number of pixels between the home position and the
current arm position.

SMA-,NCREMENTVALUE Increment position using the primary scale.

Chapter 24. Slider Control Window Processing 24-17

param2

ullnfo (ULONG)
New value.

New value to change the slider component to. The format of the information
depends on the component being changed and is indicated by the SMA _ * message
attribute or attributes that are set.

• If the SMA_SHAFTDIMENSIONS attribute is set, the ullnfo parameter is as
follows:

usShaftBreadth (USHORn
Width (for vertical sliders) or height (for horizontal sliders) the slider shaft
should be set to, in pixels. This is the breadth the shaft should be.

• If the SMA_SHAFTPOSITION attribute is set, the ullnfo parameter is as follows:

xShaftCoord (USHORn
X-coordinate to set the position of the shaft to within the slider window.
This value is expressed in window coordinates and represents the lower-left
corner of the shaft.

yShaftCoord (USHORn
Y -coordinate to set the position of the shaft to within the slider window.
This value is expressed in window coordinates and represents the lower-left
corner of the shaft.

• If the SMA_SLlDERARMDIMENSIONS attribute is set, the ullnfo parameter is
as follows:

usArmLength (USHORn
Length of the slider arm, in pixels. This is the width of the arm for
horizontal sliders and the height of the arm for vertical sliders.

usArmBreadth (USHORT)
Breadth of the slider arm, in pixels. This is the height of the arm for
horizontal sliders and the width of the arm for vertical sliders.

• If the SMA_SLlDERARMPOSITION and SMA_RANGEVALUE attributes are
set, the ullnfo parameter is as follows:

usArmPos (USHORn
Number of pixels to be set from home to the slider arm.

• If the SMA_SLlDERARMPOSITION and SMA_INCREMENTVALUE attributes
are set, the ullnfo parameter is as follows:

uslncrementPos (USHORn
Increment value which corresponds to the position the slider arm should be
set to.

24-18 PM Programming Reference Vol II

Returns
rc (BOOl)

Success indicator.

TRUE Slider component was successfully set.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_INVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

Remarks
The application uses this message to customize the slider for a specific use. In setting the
shaft dimensions, only the breadth of the slider can be set. The length of the shaft is always
determined by the number of increments and the spacing between increments, both of which
are set for the primary scale when the slider is created.

Positioning of the shaft within the slider window could be used by applications that cannot
use the default positioning provided by the slider control.

Setting of the slider arm dimensions could be used by applications that need a larger slider
arm, such as touch screen applications.

Setting the slider arm position can be used to:

• Set the initial value of the slider before it becomes visible.

• Change the value when it is tied to another control, such as an entry field.

• Show the value of a quantity when the slider is being used to monitor an event, such as
a read-only slider being used as a progress indicator.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

SLM_SETTICKSIZE
This message sets the size of a tick mark for the primary scale. All tick marks are initially
set to a size of 0 (invisible). Each tick mark along a scale can be set to the size desired.

Parameters
param1

usTickNum (USHORT)
Tick mark location.

Tick mark location whose size is to be changed. If the SMA_ SETAll TICKS
attribute is specified for this parameter, all tick marks on the primary scale are set to
the size specified.

Chapter 24. Slider Control Window Processing 24-19

usTickSize (USHORT)
Tick mark length.

length of the tick mark, in pixels. If set to 0, the tick mark will not be drawn.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE Tick mark position was successfully set.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_HEAP _MAX_SIZE_REACHED
• PMERR_PARAMETER_ OUT_OF _RANGE.

Remarks
The application uses this message to draw a scale along the slider to indicate value positions
in relation to the slider arm. The application can set varying lengths for different increments
of the slider to help the user understand the magnitude of the value being set.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

WM_CHAR (in Slider Controls)
For the cause of this message, see WM_CHAR.

For a description of the parameters, see WM _CHAR.

Remarks
The slider control window procedure responds to this message by sending it to its owner if it
has not processed the key stroke. This is the most common means by which the input focus
is switched around the various controls in a dialog box.

The keystrokes processed by a linear slider control are:

Down Arrow Moves the slider arm down one increment. When the slider arm
reaches the bottom of the slider shaft or when a horizontal slider is
being used, the Down Arrow key has no effect.

24-20 PM Programming Reference Vol II

Up Arrow

Left Arrow

Right Arrow

Moves the slider arm up one increment. When the slider arm reaches
the top of the slider shaft or when a horizontal slider is being used, the
Up Arrow key has no effect.

Moves the slider arm left one increment. When the slider arm reaches
the leftmost edge or when a vertical slider is being used, the Left Arrow
key has no effect.

Moves the slider arm right one increment. When the slider arm reaches
the rightmost edge or when a vertical slider is being used, the Right
Arrow key has no effect.

Shift+Down Arrow Moves the slider arm to the next detent below the current position. If
there are no more detents or if a horizontal slider is being used, the
Shift+Down Arrow key combination has no effect.

Shift+Up Arrow Moves the slider arm to the next detent above the current position. If
there are no more detents or if a horizontal slider is being used, the
Shift+Up Arrow key combination has no effect.

Shift+Left Arrow Moves the slider arm to the next detent left of the current position. If
there are no more detents or if a vertical slider is being used, the
Shift+Left Arrow key combination has no effect.

Shift+Right Arrow Moves the slider arm to the next detent right of the current position. If
there are no more detents or if a vertical slider is being used, the
Shift+Right Arrow key combination has no effect.

Home, Ctrl+Home Moves the slider arm to the home position of the slider. Pressing the
Home key or the Ctrl+Home key combination when the slider arm is at
the home position has no effect. The default home position for a slider
is the leftmost edge for horizontal sliders and the bottom edge for
vertical sliders.

End, Ctrl+End Moves the slider arm to the end position of the slider. Pressing the End
key or the Ctrl+End key combination when the slider arm is at the end
position has no effect. The default end position for a slider is the
rightmost edge for horizontal sliders and the top edge for vertical
sliders.

A circular slider control only processes left and right arrow keystrokes. These keys move the
slider arm one increment to the left or right.

Default Processing
For a description of the default processing, see WM_ CHAR.

Chapter 24. Slider Control Window Processing 24-21

WM_PRESPARAMCHANGED (in Slide.r Controls)
For the cause of this message, see WM_PRESPARAMCHANGED.

Parameters
param1

attrtype (ULONG)
Attribute type.

param2

Presentation parameter attribute identity. The following presentation parameters are
initialized by the slider control. The initial value of each is shown in the following
list:

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Item foreground color; used when displaying text and bit maps. This color is
initialized to SYSCLR_WINDOWTEXT.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Slider background color; used for entire control as the background. This color
is initialized to SYSCLR_WINDOW.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, must be O.

Remarks
The application uses this message to notify the slider that a given inherited presentation
parameter has changed.

Default Processing
For a description of the default processing, see WM_PRESPARAMCHANGED.

24-22 PM Programming Reference Vol II

WM_QUERYWINDOWPARAMS (in Slider Controls)
For the cause of this message, see WM_QUERYWINDOWPARAMS.

Parameters
param1

pwndparams (PWNDPARAMS)

param2

Pointer to a WNDPARAMS window parameter structure.

This structure contains:

status (USHORT)
Window parameter selection.

Identifies the window parameters that are to be set or queried. Valid values for
the slider control are:

WPM_CBCTLDATA Window control data length.
WPM_CTLDATA Window control data.

The flags in the status field are cleared as each item is processed. If the call is
successful, the status field is O. If any item has not been processed, the flag for
that item is still set.

length (USHORT)
Length of the window text.

text (PSZ)
Window text.

presparamslength (USHORT)
Length of presentation parameters.

presparams (PVOID)
Presentation parameters.

ctldatalength (USHORT)
Length of window class-specific data.

ctldata (PVOID)
Window class-specific data.

ulReserved (ULONG)
Reserved value, should be O.

Chapter 24. Slider Control Window Processing 24-23

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion.
Error occurred.

The slider control window procedure responds to this message by returning the information in
the buffer provided. If this message is sent to a slider window of another process, the
information in, or identified by, the value of the pwndparams field must be in memory shared
by both processes.

Default Processing
For a description of the default processing, see WM_QUERYWINDOWPARAMS.

WM_SETWINDOWPARAMS (in Slider Controls)
For the cause of this message, see WM_SETWINDOWPARAMS.

Parameters
param1

pwndparams (PWNDPARAMS)
Pointer to a WNDPARAMS window parameter structure.

This structure contains:

status (USHORT)
Window parameter selection.

Identifies the window parameters that are to be set or queried. The valid value
for the slider control is:

Window control data.

The flags in the status field are cleared as each item is processed. If the call is
successful, the status field is O. If any item has not been processed, the flag for
that item is still set.

length (USHORT)
length of the window text.

text (PSZ)
Window text.

presparamslength (USHORT)
length of presentation parameters.

presparams (PVOID)
Presentation parameters.

24-24 PM Programming Reference Vol II

ctldatalength (USHORT)
length of window class-specific data.

ctldata (PVOID)
Window class-specific data.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful operation
Error occurred.

If this message is sent to a slider window of another process, the information in, or identified
by, the value of the pwndparams field must be in memory shared by both processes.

Default Processing
For a description of the default processing, see WM_SETWINDOWPARAMS.

Chapter 24. Slider Control Window Processing 24-25

24-26 PM Programming Reference Vol II

Chapter 25. Circular Slider Control Window Messages

The system-provided window procedure processes the actions on a circular control
(WC _ CI RCULARSLI DER).

Purpose
The circular slider control supports values set in analog rather than digital form. This control
is intended to emulate the actual controls of stereo and video components.

The circular slider can be used instead of a linear slider. While, at present, there are no
particular guidelines as to when a circular slider should replace a linear slider, the circular
slider consumes less space on the screen and, therefore, is practical to represent several
controls in the same window. For example, for an audio attributes dialog that has volume,
balance, bass, and treble controls, you might want to use a linear slider for the volume
control (since it is used frequently); but to conserve space and give a more familiar
appearance, the circular slider could be used for the balance, bass, and treble.

Circular Slider Control Styles
These circular slider control styles are available:

CSS_CIRCULARVALUE

CSS_MIDPOINT

CSS_NOBUTTON

CSS_NONUMBER

CSS_NOTEXT

CSS_POINTSELECT

© Copyright IBM Corp. 1994

Draws a circular thumb, rather than a line, for the value
indicator.

Makes the mid-point tick mark larger.

Does not display value buttons.

Does not display the value on the dial.

Does not display title text under the dial.

Permits the values on the circular slider to change
immediately when dragged.

Direct manipulation is performed by using a mouse to
click on and drag the circular slider. There are two
modes of direct manipulation for the circular slider.

The default direct manipulation mode is to scroll to the
value indicated by the position of the mouse. This could
be important if you used a circular slider for a volume
control, for example. Increasing the volume from 0% to
100% too quickly could result in damage to both the
user's ears and the equipment.

The other mode of direct manipulation permits the value
on the circular slider to change immediately when
dragged. This mode is enabled using the
CSS_POINTSELECT style bit. When this style is used,

25-1

CSS_PROPORTIONALTICKS

Circular Slider Control Data
See CSBITMAPDAT A.

Default Colors

the value of the dial can be changed by tracking the
value with the mouse, which changes values quickly.

Allow the length of the tick marks to be calculated as a
percentage of the radius.

Permits the scroll range to extend 360 degrees.

CSS_360 forces the CSS_NONUMBER style on. This is
necessary to keep the value indicator from corrupting the
number value.

The following system colors are used when the system draws button controls:

SYSCLR_BACKGROUNDCOLOR
SYSCLR_FOREGROUNDCOLOR

Some of these defaults can be replaced by using the following presentation parameters in
the application resource script file or source code:

PP_BACKGROUNDCOLOR
PP _BORDERCOLOR

25-2 PM Programming Reference Vol 1\

Circular Slider Control Notification Messages
These messages are initiated by the circular slider control window to notify its owner of
significant events.

WM_ CONTROL (in Circular Slider Controls)
This message occurs when a control has a significant event to notify to its owner.

Parameters
param1

uslD (USHORT)
Control-window identity.

The identity of the circular slider that generated the notification.

usnotifycode (USHORT)
Notification code.

The notification codes that indicate what action has occurred.

CSN_SETFOCUS

CSN_ TRACKING

This code returns a Boolean indicating
whether the circular slider control sending
the notification message is gaining or
losing the focus.

param2 contains TRUE if the control is
gaining the focus.

This code is sent to notify the application
that the circular slider Value has been
changed.

param2 contains the new value of the
circular slider.

This code is sent to notify the application
that the circular slider is being tracked by
the mouse.

param2 contain the inter-media value of
the circular slider.

Inter-media values are not necessarily
contiguous.

CSN_QUERYBACKGROUNDCOLOR This code gives the application the
opportunity to set the background color of
the circular slider. CLR_* or SYSCLR_*
values can be returned for the background
color.

param2 is NULL.

Chapter 25. Circular Slider Control Window Messages 25-3

param2

ulnotifyspec (ULONG)
Notify control-specific information,

Returns
ulReserved (ULONG)

Reserved value.

Remarks
The circular slider control window procedure generates this message and sends it to its
owner, informing the owner of this event.

WM_CONTROLPOINTER (in Circular Slider Controls)
For the cause of this message, see WM_CONTROLPOINTER.

For a description of the parameters, see WM_CONTROLPOINTER.

Remarks
For the appropriate remarks, see WM_CONTROLPOINTER.

Default Processing
For the default processing, see WM_CONTROLPOINTER.

25-4 PM Programming Reference Vol \I

Circular Slider Control Window Messages
This section describes the Circular Slider Control Window Procedure actions on receiving the
following messages.

CSM_ QUERYINCREMENT
This message queries the increments used to scroll the value and draw the tick marks.

Parameters
param1

Scrollincre (PUSHORT)
The increment value added or subtracted for the value of the control when scrolling.

param2

Ticklncr (PUSHORT)
The increment value used to draw the tick marks.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Errors occurred.

CSM_ QUERYRADIUS
This message queries the current radius of the circular slider.

Parameters
param1

uRadius (PUSHORT)
The radius of the circular slider.

param2

ulReserved (ULONG)
Reserved value.

Chapter 25. Circular Slider Control Window Messages 25-5

Returns
rc (ULONG)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

CSM_QUERVRANGE
This message queries the value range of the control.

Parameters
param1

pLow (PSHORT)
The low range value.

param2

pHigh (PSHORT)
The high range value.

Returns
rc (ULONG)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

CSM_QUERVVALUE
This message queries the value of the control.

Parameters
param1

pValue (PSHORT)
The value of the control.

param2

ulReserved (ULONG)
Reserved value.

25-6 PM Programming Reference Vol II

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

CSM_SETBITMAPDATA
This message is used to change the bit maps for the plus and minus buttons. For example,
you might want to use left or right arrows. The optimal size for these bit maps is 10 x 10
pels.

Parameters
param1

pCSBitmapData (PCSBITMAPDATA)
The structure defining button bit maps.

param2

ulReserved (ULONG)
Reserved value.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Remarks
The optimal size for these bit maps is 10 x 10 pels. Other bit maps are stretched to the
necessary size.

CSM_SETINCREMENT
This message sets the scroll and tick mark increments of the control.

Parameters
param1

usScrollincr (USHORT)
Scroll increment.

This is the number by which the current value is incremented or decremented when
one of the circular slider control button is selected.

Chapter 25. Circular Slider Control Window Messages 25-7

param2

usTicklncr (USHORT)
Tick mark increment.

This represents the number of tick marks to "skip" before drawing tick marks around
the circular slider.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

CSM_SETRANGE
This message sets the range of values which the control sends to the application via
CSN_TRACKING and CSN_CHANGE messages.

Parameters
param1

Low (SHORT)
The minimum value of the circular slider.

param2

High (SHORT)
The maximum value of the circular slider.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

25·8 PM Programming Reference Vol II

CSM_SETVALUE
This message sets the current value of the circular slider control.

Parameters
param1

Value (SHORn
The new value to which to set the circular slider.

param2

ulReserved (ULONG)
Reserved value.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

WM_ CHAR (in Circular Slider Controls)
For the cause of this message, see WM_CHAR.

For a description of the parameters, see WM _ CHAR.

Remarks
The slider control window procedure responds to this message by sending it to its owner if it
has not processed the key stroke. This is the most common means by which the input focus
is switched around the various controls in a dialog box.

The keystrokes processed by a circular slider control are:

Left Arrow Moves the slider arm left one increment.

Right Arrow Moves the slider arm right one increment.

A circular slider control only processes left and right arrow keystrokes. These keys move the
slider arm one increment to the left or right.

Default Processing
For a description of the default processing, see WM_CHAR.

Chapter 25. Circular Slider Control Window Messages 25-9

WM_PRESPARAMCHANGED (in Circular Slider Controls)
For the cause of this message, see WM_PRESPARAMCHANGED.

Parameters
param1

attrtype (ULONG)
Attribute type.

param2

Presentation parameter attribute identity. The following presentation parameters are
initialized by the slider control. The initial value of each is shown in the following
list:

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Item foreground color; used when displaying text and bit maps. This color is
initialized to SYSCLR_WINDOWTEXT.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Slider background color; used for entire control as the background. This color
is initialized to SYSCLR_WINDOW.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, must be O.

Remarks
The application uses this message to notify the slider that a given inherited presentation
parameter has changed.

Default Processing
For a description of the default processing, see WM_PRESPARAMCHANGED.

25-10 PM Programming Reference Vol II

WM_QUERYWINDOWPARAMS (in Circular Slider Controls)
For the cause of this message, see WM_QUERYWINDOWPARAMS.

Parameters
param1

pwndparams (PWNDPARAMS)

param2

Pointer to a WNDPARAMS window parameter structure.

This structure contains:

status (USHORT)
Window parameter selection.

Identifies the window parameters that are to be set or queried. Valid values for
the slider control are:

WPM_CBCTLDATA
WPM_CTLDATA

Window control data length.
Window control data.

The flags in the status field are cleared as each item is processed. If the call is
successful, the status field is o. If any item has not been processed, the flag for
that item is still set.

length (USHORT)
Length of the window text.

text (PSZ)
Window text.

presparamslength (USHORT)
Length of presentation parameters.

presparams (PVOID)
Presentation parameters.

ctldatalength (USHORT)
Length of window class-specific data.

ctldata (PVOID)
Window class-specific data.

ulReserved (ULONG)
Reserved value, should be o.

Chapter 25. Circular Slider Control Window Messages 25-11

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion.
Error occurred.

The slider control window procedure responds to this message by returning the information in
the buffer provided. If this message is sent to a slider window of another process, the
information in, or identified by, the value of the pwndparams field must be in memory shared
by both processes.

Default Processing
For a description of the default processing, see WM_QUERYWINDOWPARAMS.

WM_SETWINDOWPARAMS (in Circular Slider Controls)
For the cause of this message, see WM_SETWINDOWPARAMS.

Parameters
param1

pwndparams (PWNDPARAMS)
Pointer to a WNDPARAMS window parameter structure.

This structure contains:

status (USHORT)
Window parameter selection.

Identifies the window parameters that are to be set or queried. The valid value
for the slider control is:

WPM_CTLDATA
Window control data.

The flags in the status field are cleared as each item is processed. If the call is
successful, the status field is o. If any item has not been processed, the flag for
that item is still set.

length (USHORT)
length of the window text.

text (PSZ)
Window text.

presparamslength (USHORT)
length of presentation parameters.

presparams (PVOID)
Presentation parameters.

25-12 PM Programming Reference Vol II

ctldatalength (USHORT)
length of window class-specific data.

ctldata (PVOID)
Window class-specific data.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful operation
Error occurred.

If this message is sent to a slider window of another process, the information in, or identified
by, the value of the pwndparams field must be in memory shared by both processes.

Default Processing
For a description of the default processing, see WM_SETWINDOWPARAMS.

Chapter 25. Circular Slider Control Window Messages 25-13

25-14 PM Programming Reference Vol II

Chapter 26. Value Set Control Window Processing

This system-provided window procedure processes the actions on a value set control
(WC_VALUESET).

Purpose
Like radio buttons, a value set control (WC_VALUESET window class) is a visual component
whose specific purpose is to allow a user to select one choice from a group of mutually
exclusive choices. However, unlike radio buttons, a value set can use graphical images (bit
maps or icons), as well as colors, text, and numbers, to represent the items that a user can
select.

Even though text is supported, a value set's primary purpose is to display choices as
graphical images. By using graphical images in a value set, you can preserve space on the
display screen. You can also allow the user to see exactly what is being selected instead of
having to rely on descriptions of the choices. This allows a user to make a selection faster
than if the user had to read a description of each choice. For example, if you want to allow a
user to choose from a variety of patterns, you can present those patterns as value set
choices instead of having to provide a list of radio buttons with description of each pattern.

If long strings of data are to be displayed as choices, radio buttons should be used.
However, for small sets of numeric or textual data information, either a value set or radio
buttons can be used.

The value set is designed to be customizable to meet varying application requirements, while
providing an easy-to-use user interface component that can be used to develop products that
conform to the Common User Access (CUA) user interface guidelines. The application can
specify different types of items, sizes, and orientations for its value sets, but the underlying
function of the control remains the same. For a complete description of CUA value sets,
refer to the SAA eUA Guide to User Interface Design and the SAA eUA Advanced Interface
Design Reference.

Value Set Control Styles
Value set control window styles are set when a value set window is created.

• Set one of the following styles when creating a value set control window. You can
override these styles by specifying VIA_BITMAP, VIA_ICON, VIA_TEXT, VIA_RGB, or
VIA_COLORINDEX attributes for individual value set items.

VS_BITMAP

© Copyright IBM Corp. 1994

The attribute for each value set item is set to the VIA_BITMAP
value set item attribute, which means the value set treats each
item as a bit map unless otherwise specified. This is the
default. Figure 26-1 on page 26-2 provides an example of a
value set with bit maps.

26-1

U'lllill (OUlll

~m

Figure 26-1. Value Set with Bit Maps

~
..... -......

The attribute for each value set item is set to the VIA_ICON
value set item attribute, which means the value set treats each
item as an icon unless otherwise specified. Figure 26-2
provides an example of a value set with icons.

Figure 26-2. Value Set with Icons

The attribute for each value set item is set to the VIA_TEXT
value set item attribute, which means the value set treats each
item as a text string unless otherwise specified. Figure 26-3 on
page 26-3 provides an example of a value set with text strings.

26-2 PM Programming Reference Vol II

IQches
Eeet
Yards

Figure 26-3. Value Set with Text Strings

Millimeters
Centimeters

Meters

The attribute for each value set item is set to the VIA RGB
value set item attribute, which means the value set treats each
item as a RGB color value unless otherwise specified. This
style is most often used when you need to create new colors.
Figure 26-4 provides an example of a value set with colors.

The attribute for each value set item is set to the
VIA_COLORINDEX value set item attribute, which means the
value set treats each item as an index into the logical color
table unless otherwise specified. This style is most often used
when the colors currently available are adequate. Figure 26-4
provides an example of a value set with colors.

D

Figure 26-4. Value Set with Colors

• Specify one or more of the following optional window styles, if desired, by using an OR
operator (I) to combine them with the style specified from the preceding list:

Chapter 26. Value Set Control Window Processing 26-3

The value set draws a thin border around itself to delineate the
control. Figure 26-5 on page 26-4 provides an example of a
value set with a border.

D

Figure 26-5. Value Set with Border

VSJTEMBORDER The value set draws a thin border around each item to
delineate it from other items.

Note: The VS_ITEMBORDER style is useful for items that are
hard to see, such as faint colors or patterns.
Figure 26-6 provides an example of a value set with
item borders.

Figure 26-6. Value Set with Item Borders

VS_RIG HTTO LEFT The value set interprets column orientation as right-to-Ieft,
instead of the default left-to-right arrangement. This means
columns are numbered from right-to-Ieft with the rightmost

26-4 PM Programming Reference Vol II

column being 1 and counting up as you move left. Home is the
rightmost column and end is the leftmost column.

There is no visible difference between a value set ordered
left-to-right and a value set ordered right-to-Ieft. Therefore, if
your application uses multiple value sets, the ordering of the
items should be consistent in each value set to avoid confusing
the user.

Note: The VS _ RIGHTTOLEFT style is used on creation of the
control. Changing this style after creation causes
unexpected results.

VS_SCALEBITMAPS The value set automatically scales bit maps to the size of the
cell. If this style is not used, each bit map is centered in its cell.
Also, if the cell is smaller than the bit map, the bit map is
clipped to the size of the cell.

VS_OWNERDRAW The application is notified whenever the background of the
value set window is to be painted.

Value Set Control Data
For information on value set control data, see the following:

• "VSCDATA" on page A-204
• "VSDRAGINFO" on page A-205
• "VSDRAGINIT" on page A-205
• "VSTEXT" on page A-206.

Chapter 26. Value Set Control Window Processing 26-5

Value Set Control Notification Messages
These messages are initiated by the value set control window to notify its owner of significant
events.

WM_CONTROL (in Value Set Controls)
For the cause of this message, see WM_CONTROL.

Parameters
param1

id (USHORT)
Value set control identity.

notifycode (USHORT)
Notify code.

The value set control uses these notification codes:

VN_DRAGLEAVE The value set receives a DM_DRAGLEAVE message.

VN_DRAGOVER The value set receives a DM_DRAGOVER message.

VN DROP The value set receives a OM_DROP message. The
VN _ DROP notification code is sent only when an item is
dropped on an item that has the VIA_DROPONABLE attribute.

VN_DROPHELP The value set receives a DM_DROPHELP message.

VN_ENTER The user presses the Enter key while the value set window
has the focus or double-clicks the select button while the
pointer is over an item in the value set.

VN HELP

VNJNITDRAG

VN_KILLFOCUS

VN SELECT

The value set receives a WM_HELP message.

The drag button was pressed and the painter was moved while
the pointer was over the value set control. The VN_INITDRAG
notification code is sent only for items that have the
VIA DRAGGABLE attribute.

The value set is losing the focus.

An item in the value set has been selected and is given
selected-state emphasis.

The value set receives the focus.

26-6 PM Programming Reference Vol II

param2

notifyinfo (ULONG)
Control-specific information.

When the value of the notifycode parameter is VN_DRAGOVER, VN_DRAGLEAVE,
VN_DROP, or VN_DROPHELP, this parameter is a pointer to a VSDRAGINFO
structure.

When the value of the notifycode parameter is VNJNITDRAG, this parameter is a
pointer to a VSDRAGINIT structure.

When the value of the notifycode parameter is VN_ENTER, VN_HELP, or
VN_SELECT, this parameter contains the row and column of the selection cursor.
The low-order word contains the row index, and the high-order word contains the
column index.

Otherwise, this parameter is the window handle (HWND) of the value set control.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The value set control window procedure generates this message and sends it to its owner,
informing the owner of this event.

Default Processing
For a description of the default processing, see WM _CONTROL.

WM_CONTROLPOINTER (in Value Set Controls)
For the cause of this message, see WM_CONTROLPOINTER.

For a description of the parameters, see WM_CONTROLPOINTER.

Remarks
For the appropriate remarks, see WM_ CONTROLPOINTER.

Default Processing
For the default processing, see WM_CONTROLPOINTER.

Chapter 26. Value Set Control Window Processing 26-7

WM_DRAWITEM (in Value Set Controls)
This notification message is sent to the owner of a value set control each time an item that
has the VIA_OWNERDRAWattribute is to be drawn, or when the background of a value set
window that has the VS_OWNERDRAW style bit is to be drawn.

Parameters
param1

id (USHORT)
Window identifier.

The window identifier of the value set control sending this notification message.

param2

powneritem (POWNERITEM)
Pointer to an OWNERITEM data structure.

The following list defines the OWNERITEM data structure fields that apply to the
value set control. See OWNERITEM for the default field values.

hwnd (HWND)
Value set window handle.

hps (HPS)
Presentation-space handle.

fsState (ULONG)
Value set window style flags. See "Value Set Control Styles" on page 26-1 for
descriptions of these style flags.

fsAttribute (ULONG)
Item attribute flags for the indexed item. See "VM_SETITEMATTR" on
page 26-19 for descriptions of these attribute flags.

fsStateOld (ULONG)
Reserved.

fsAttributeOld (ULONG)
Reserved.

rclltem (RECTL)
Item rectangle to be drawn in window coordinates.

idltem (LONG)
Identity of component to be drawn.

VDA_BACKGROUND Specifies that a part of the value set
background is to be drawn.

VDA_SURROUNDING Specifies that a part of the area surrounding
the value set is to be drawn.

26-8 PM Programming Reference Vol II

VDA_ITEMBACKGROUND

VDA-'TEM

Specifies that the background of an item is to
be drawn.

Specifies that an entire item is to be drawn.

hltem (UlONG)

Returns
rc (BOOl)

If the value of the identity parameter is VDA-,TEMBACKGROUND or
VDA-'TEM, this is the current row and column index of the item to be drawn.
The low-order word contains the row index, and the high-order word contains
the column index. Otherwise, this is reserved.

Item-drawn indicator.

TRUE
FALSE

Remarks

The owner draws the component.
If the owner does not draw the component, the owner returns this value and
the value set control draws the component.

The value set control draws only items that are represented in one of the formats described:
text, color, bit maps, or icons.

If an application uses value set controls that contain items that are not represented by the
supported formats or requires that the emphasized attribute of an item is to be drawn in a
special manner, the application must specify those items as VIA_OWNERDRAW and those
items must be drawn by the owner.

Through this message, the application can provide a custom value set background (the area
between the items) and customize the area surrounding the value set (the area on the top
and right sides of the value set that is left over when the value set calculates its size). The
application can specify how either or both of these areas are drawn and is given the
opportunity to do so.

The value set control window procedure generates this message and sends it to its owner,
informing the owner that something is to be drawn. The owner is given the opportunity to
draw and to indicate whether the value set control should continue with the normal drawing
of that component.

Default Processing
For a description of the default processing, see WM_DRAWITEM.

Chapter 26. Value Set Control Window Processing 26·9

Value Set Control Window Messages
This section describes the value set control window procedure actions on receiving the
following messages.

VM_QUERYITEM
This message queries the contents of the item indicated by the values of the usRow and
us Column fields. The information returned is interpreted based on the attribute of the item.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the item to be queried. Rows have a value from 1 to the value of the
usRowCount field. This value, which is the total number of rows in the value set, is
specified in the VSCDATA data structure when the value set control is created.

usColumn (USHORT)
Column index.

param2

Column index of the item to be queried. Columns have a value from 1 to the value
of the us Column Count field. This value, which is the total number of columns in the
value set, is specified in the VSCDATA data structure when the value set control is
created.

pvsText (PVSTEXT)
Pointer to a VSTEXT data structure or NULL.

If the attribute of the item to query is VIA_TEXT, the value of the param2 parameter
is the same as the value of the pvsText field. For all other attributes, the param2
parameter is reserved and should be set to a NULL value.

See "VSTEXT" on page A-206 for definitions of this structure's fields as they apply
to the VM_QUERYITEM message.

Returns
ulltemld (ULONG)

Item information.

This value depends on the VIA _ * attribute specified for the value set item.

• If the VIA_TEXT attribute is set, the following is returned:

usTextLen (USHORT)
Number of bytes copied to the buffer. This is the length of the text string,
excluding the null termination character.

26-10 PM Programming Reference Vol II

• If the VIA_BITMAP attribute is set, the following is returned:

hbmltem (HBITMAP)
Handle of the bit map associated with the item indexed by the param1
parameter. If the item is empty, a NULL value is returned.

• If the VIAJCON attribute is set, the following is returned:

hptltem (HPOINTER)
Handle of the icon associated with the item indexed by the param1 parameter.
If the item is empty, a NULL value is returned.

• If the VIA_RGB attribute is set, the following is returned:

rgbltem (ULONG)
Color value associated with the item indexed by the param 1 parameter. If the
item is empty, a NULL value is returned. Each color value is a 4-byte integer
with a value of:

(R * 65536) + (G * 256) + B

where:

R Red intensity value
G Green intensity value
B Blue intensity value.

• If the VIA_ COLORINDEX attribute is set, the following is returned:

ulColorlndex (ULONG)
Index of the color associated with the item indexed by the param1 parameter.

The following is returned for any of the items to indicate an error condition:

VSERR_'NVALlD_PARAMETERS
An error occurred. The WinGetLastError function may return the following errors:

• PMERR_'NVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

Remarks
The application uses this message to query the contents of an individual value set item.
When querying a text item, the application must provide a buffer for returning the text
information. By specifying 0 as the value of the usBufLen field and then getting the value
returned in the usTextLen parameter, an application can determine how large this buffer
must be. The value returned is the length of the text string, excluding the null termination
character.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

Chapter 26. Value Set Control Window Processing 26-11

VM QUERYITEMATTR - .

This message queries the attribute or attributes of the item indicated by the values of the
usRow and us Column fields.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the item for which the attribute or attributes are queried. Rows have a
value from 1 to the value of the usRowCount field. This value, which is the total
number of rows in the value set, is specified in the VSCDAT A data structure when
the value set control is created.

usColumn (USHORT)
Column index.

param2

Column index of the item for which the attribute or attributes are queried. Columns
have a value from 1 to the value of the usColumnCount field. This value, which is
the total number of 'columns in the value set, is specified in the VSCDAT A data
structure when the value set control is created.

ulReserved (ULONG)
Reserved value, should be O.

Returns
usltemAttr (USHORT)

Item information.

This value depends on the VIA _ * attribute or attributes specified for the value set item.

• One of the following attributes can be set:

VIA BITMAP If this attribute is set, the item is a bit map. This is the
default.

VIA_COLORINDEX

VIA_ICON

VIA_RGB

VIA TEXT

If this attribute is set, the item is an index into the logical
color table.

If this attribute is set, the item is an icon.

If this attribute is set, the item is a color entry.

If this attribute is set, the item is a text string.

26-12 PM Programming Reference Vol II

• In addition, one or more of the following attributes can be set:

VIA_DRAGGABLE

VIA_DROPONABLE

VIA_OWNERDRAW

If this attribute is set, the item cannot be selected and is
displayed with unavailable-state emphasis, if possible.
Unavailable text items are always displayed with
unavailable-state emphasis, according to CUA guidelines;
for items displayed as color, bit maps, and icons, it is the
application's responsibility to determine the best way to
show that these items are unavailable, if possible.

The selection cursor can be moved to an unavailable item
by using either the keyboard navigation keys or a pointing
device. This allows a user to press the F1 key to find out
why that item cannot be selected.

If this attribute is set, the item can be the source of a direct
manipulation action.

If this attribute is set, the item can be the target of a direct
manipulation action.

If this attribute is set, a paint notification message is sent
whenever this item needs painting.

• The following is returned if an error occurs:

VMERR-,NVALID _PARAMETERS
The WinGetLastError function may return the following errors:

- PMERR_INVALlD_PARAMETERS
- PMERR_PARAMETER_OUT_OF _RANGE.

Remarks
The application uses this message to query the specific attribute or attributes of a value set
item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

Chapter 26. Value Set Control Window Processing 26-13

VM_QUERYMETRICS
This message queries for the current size of each value set item or for the spacing between
items. The value returned is either the width and height of one item, or the spacing between
items.

Parameters
param1

fMetric (USHORT)
Control metric.

param2

Control metric to be queried with this message. This can be either of the following:

VMA ITEMSIZE If this message attribute is set, the width and height of each
item (in pixels) are returned in the usltemWidth and
usltemHeight parameters, respectively.

VMAJTEMSPACING If this message attribute is set, the horizontal and vertical
spacing between items (in pixels) is returned in the
usHorzltemSpacing parameter and in the
usVertltemSpacing parameter, respectively.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulMetric (ULONG)

Metric value queried for.

VSERR JNVALID _PARAMETERS

>= 0

An error occurred. The WinGetLastError function may return the following error:

PMERR _INVALID_PARAMETERS.

This value depends on the VMA_* attribute set in the param1 parameter.

• If the VMAJTEMSIZE attribute is set, the following is returned:

usltemWidth (USHORT)
Width of onevalue set item, in pixels.

usltemHeight (USHORT)
Height of one value set item, in pixels.

26-14 PM Programming Reference Vol II

• If the VMAJTEMSPACING attribute is set, the following is returned:

usHorzltemSpacing (USHORT)
Amount of horizontal space allocated between each value set item, in
pixels. This number does not include the space needed for selected-state
and target emphasis, and for the selection cursor, because the emphasis
and cursor space is automatically allocated by the value set control. The
default space amount is O.

usVertltemSpacing (USHORT)
Amount of vertical space allocated between each value set item, in pixels.
This number does not include the space needed for selected-state and
target emphasis, and for the selection cursor, because the emphasis and
cursor space is automatically allocated by the value set control. The
default space amount is O.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

VM_ QUERVSELECTEDITEM
This message queries for the currently selected value set item indicated by the values of the
usRow and us Column fields.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

usRow (USHORT)
Row index.

Row index of the currently selected value set item. Rows have a value from 1 to
the value of the usRowCount field. This value, which is the total number of rows in
the value set, is specified in the VSCDATA data structure when the value set control
is created.

Chapter 26. Value Set Control Window Processing 26-15

usColumn (USHORT)
Column index.

Column index of the currently selected value set item. Columns have a value from
1 to the value of the usColumnCount field. This value, which is the total number of
columns in the value set, is specified in the VSCDATA data structure when the
value set control is created.

Remarks
The application uses this message to query the index of the currently selected value set
item. If 0 is returned, no item is selected.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return O.

VM_SELECTITEM
This message selects the value set item indicated by the values of the usRow and us Column
parameters. When a new item is selected, the previously selected item is deselected.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the value set item to select. Rows have a value from 1 to the value of
the usRowCount field. This value, which is the total number of rows in the value
set, is specified in the VSCDATA data structure when the value set control is
created.

usColumn (USHORT)
Column index.

param2

Column index of the value set item to select. Columns have a value from 1 to the
value of the usColumnCount field. This value, which is the total number of columns
in the value set, is specified in the VSCDAT A data structure when the value set
control is created.

ulReserved (ULONG)
Reserved value, should be O.

26-16 PM Programming Reference Vol II

Returns
rc (BOOl)

Success· indicator.

TRUE Item was successfully selected.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

Remarks
The application uses this message to select the specified value set item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

VM SETITEM
This message specifies the type of information that will be contained by a value set item.
This item is indicated by the values of the usRow and us Column fields. Each value set item
can contain a different type of information. The value set interprets the information set for
the item based on the attribute of the item. Value set items that are not set (blank items) are
drawn using the background color of the value set.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the value set item for which information is being specified. Rows have
a value from 1 to the value of the usRowCount field. This value, which is the total
number of rows in the value set, is specified in the VSCDATA data structure when
the value set control is created.

usColumn (USHORT)
Column index.

Column index of the value set item for which information is being specified.
Columns have a value from 1 to the value of the us Column Count field. This value,
which is the total number of columns in the value set, is specified in the VSCDATA
data structure when the value set control is created.

Chapter 26. Value Set Control Window Processing 26-17

param2

ulltemld (ULONG)
Item information.

This value depends on the VIA_* attribute set for the item.

Returns
rc (BOOL)

• If the VIA_TEXT attribute is specified, the ulltemld field is as follows:

psz/tem (PSZ)
Pointer to a null terminated string containing the text to be placed in the
item. If NULL is passed in, the item is blank.

• If the VIA_BITMAP attribute is specified, the ulltemld field is as follows:

hbm/tem (HBITMAP)
Handle to a bit map that is to be drawn in the item indicated by the param 1
parameter. If NULLHANDLE is passed in, the item will be blank.

• If the VIAJCON attribute is specified, the ulltemld field is as follows:

hptltem (HPOINTER)
Handle to the icon that is to be drawn in the item indicated by the param1
parameter. If NULLHANDLE is passed in, the item is blank.

• If the VIA_RGB attribute is specified, the ulltemld field is as follows:

rgb/tem (ULONG)
Color value to be drawn in the item indicated by the param1 parameter. If
an invalid value is passed in (a value greater than OxOOFFFFFF), the item is
blank. Each color value is a 4-byte integer with a value of:

(R * 65536) + (G * 256) + B

where:

R Red intensity value
G Green intensity value
B Blue intensity value.

• If the VIA_COLORINDEX attribute is specified, the ulltemld field is as follows:

ulColorlndex (ULONG)
Index of the color in the logical color table to be drawn in the item indicated
by the param 1 parameter.

Success indicator.

TRUE Item was successfully set.

FALSE An error occurred. The WinGetLastError function may return the following
errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

26-18 PM Programming Reference Vol II

Remarks
The application uses this message to set the contents of an individual value set item. To set
the values for the entire value set, an application would loop through the rows and columns,
setting the value of each item during the initial value set window processing before the
window becomes visible.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

VM SETITEMATTR
This message sets the attribute or attributes of the item indicated by the values of the usRow
and us Column parameters.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the value set item for which attributes are being specified. Rows have
a value from 1 to the value of the usRowCount field. This value, which is the total
number of rows in the value set, is specified in the VSCDATA data structure when
the value set control is created.

usColumn (USHORT)
Column index.

param2

Column index of the value set item for which attributes are being specified.
Columns have a value from 1 to the value of the usColumnCount field. This value,
which is the total number of columns in the value set, is specified in the VSCDATA
data structure when the value set control is created.

usltemAttr (USHORT)
Item attributes.

Attribute or attributes of the item to be set or reset based on the value of the fSet
field. These attributes can be as follows:

• One of the following attributes can be set:

VIA BITMAP

VIA_COLORINDEX

VIA_ICON

If this attribute is set, the item is a bit map. This is the
default.

If this attribute is set, the item is an index into the
logical color table.

If this attribute is set, the item is an icon.

Chapter 26. Value Set Control Window Processing 26-19

VIA_RGB

VIA TEXT

If this attribute is set, the item is a color entry.

If this attribute is set, the item is a text string.

• In addition, one or more of the following attributes can be set:

VIA_DRAGGABLE

VIA_DROPONABLE

VIA_OWNERDRAW

If this attribute is set, the item cannot be selected and
is displayed with unavailable-state emphasis, if
possible. Unavailable text items are always displayed
with unavailable-state emphasis, according to CUA
guidelines; for items displayed as color, bit maps, and
icons, it is the application's responsibility to determine
the best way to show that these items are unavailable,
if possible.

The selection cursor can be moved to an unavailable
item by using either the keyboard navigation keys or a
pointing device. This allows a user to press the F1
key to find out why that item cannot be selected.

If this attribute is set, the item can be the source of a
direct manipulation action.

If this attribute is set, the item can be the target of a
direct manipulation action.

If this attribute is set, a paint notification message is
sent whenever this item needs painting.

fSet (USHORT)
Set or reset flag.

TRUE Set the attribute of the indicated item.

FALSE Turn off the attribute of the indicated item.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Attribute or attributes were set successfully.
An error occurred. The WinGetLastError function· may return the following
errors:

• PMERR_INVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

The application uses this message to either set or reset a specific attribute or attributes of a
value set item. This provides customization of a control at the item level, so that applications
can provide their own types of items with a value set, as well as perform direct manipulation
and other actions.

26-20 PM Programming Reference Vol II

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

VM_SETMETRICS
This message sets the size of each item in the value set control, the spacing between items,
or both.

Parameters
param1

fMetric (USHORT)

param2

Units of measurement.

Unit or units of measurement that are to be set for the value set control. This can
be either of the following:

VMA_ITEMSIZE If this message attribute is set, the width and height of each
item is set using the values of the usltemWidth and
usltemHeight parameters, respectively.

VMA_ITEMSPACING If this message attribute is set, the horizontal and vertical
spacing between each item is set using the values of the
usHorzltemSpacing and usVertltemSpacing parameters,
respectively.

ulltemld (ULONG)
Item information.

This value depends on the VMA_ * attribute set for the message.

• If the VMAJTEMSIZE attribute is specified, the ulltemld field is as follows:

usltemWidth (USHORT)
Width to be set for each value set item, in pixels. The number of pixels
specified cannot be less than 2.

usltemHeight (USHORT)
Height to be set for each value set item, in pixels. The number of pixels
specified cannot be less than 2.

• If the VMAJTEMSPACING attribute is specified, ulltemld field is as follows:

usHorzltemSpacing (USHORT)
Amount of horizontal space to be set between each value set item, in
pixels. This number does not include the space needed for selected-state
and target emphasis, and for the selection cursor, because the emphasis

Chapter 26. Value Set Control Window Processing 26-21

Returns
rc (BOOl)

and cursor space is automatically set by the value set control. The default
spacing is O.

usVerlltemSpacing (USHORT)
Amount of vertical space to be set between each value set item, in pixels.
This number does not include the space needed for selected-state and
target emphasis, and for the selection cursor, because the emphasis and
cursor space is automatically set by the value set control. The default
spacing is o.

Success indicator.

TRUE Item size or spacing was successfully set.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_INVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

Remarks
Upon receiving this message, the value set redraws the control with the new width, height,
and spacing specifications for each item. Any items that do not fit within the current window
size are clipped.

When the value set control receives a WM_SIZE (in Value Set Controls) message, which is
sent when the value set window is resized, the value set control defaults the size of each
item by dynamically dividing the window size by the number of rows and columns. It allows
enough room for the border, selection cursor, and selection emphasis, and defaults the
spacing between items to o. To override these default settings, the application must resend
the VM_SETMETRICS message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes
no action on it other than to return FALSE.

WM_CHAR (in Value Set Controls)
For the cause of this message, see WM _CHAR.

For a description of the parameters, see WM_CHAR.

Remarks
The value set control window procedure responds to this message by sending it to its owner
if it has not processed the key stroke. This is the most common means by which the focus
is switched from one control to another in a value set window.

26-22 PM Programming Reference Vol II

The keystrokes processed by a value set control are:

Key Name Action Performed

Down Arrow

Up Arrow

Left Arrow

Right Arrow

Home

End

PgDn

PgUp

Ctrl+Home

Ctrl+End

Enter

(Mnemonic)

Moves the selection cursor down one item. When the selection cursor
reaches the bottom, the Down Arrow has no effect.

Moves the selection cursor up one item. When the selection cursor
reaches the top, the Up Arrow has no effect.

Moves the selection cursor left one item. When the selection cursor
reaches the leftmost column, the Left Arrow has no effect.

Moves the selection cursor right one item. When the selection cursor
reaches the rightmost column, the Right Arrow has no effect.

Moves the selection cursor to the leftmost column of the value set control
(NLS dependent). Pressing the Home key when the leftmost column is
selected has no effect. The row index does not change.

Moves the selection cursor to the rightmost column of the value set control
(NLS dependent). Pressing the End key when the rightmost column is
selected has no effect. The row index does not change.

Moves the selection cursor to the bottom row of the value set control.
Pressing the Page Down key when the bottom row is selected has no
effect. The column index does not change.

Moves the selection cursor to the top row of the value set control.
Pressing the Page Up key when the top row is selected has no effect.
The column index does not change.

Moves the selection cursor to the item in the top row and leftmost column
of the value set control (NLS dependent). Pressing the Ctrl+Home keys
when the top row and leftmost column is selected has no effect.

Moves the selection cursor to the bottom row and rightmost column of the
value set control (NLS dependent). Pressing the Ctrl+End keys when the
bottom row and rightmost column is selected has no effect.

Sends a VN_ENTER notification code to the owner of the value set with
the row and column indices of the selected item.

If the VS _TEXT style bit is set for the value set, any mnemonics specified
can be used to select an item.

Default Processing
For a description of the default processing, see WM_CHAR.

Chapter 26. Value Set Control Window Processing 26-23

WM_PRESPARAMCHANGED (in Value Set Controls)
For the cause of this message, see WM_PRESPARAMCHANGED.

Parameters
param1

attrtype (ULONG)
Attribute type.

param2

Presentation parameter attribute identity. The following presentation parameters are
initialized by the value set control. The initial value of each is shown in the following
list:

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Item foreground color; used when displaying text and bit maps. This color is
initialized to SYSCLR_WINDOWTEXT.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Value set background color; used for entire control as the background. This
color is initialized to SYSCLR_WINDOW.

PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX
Selection color; this is the color used for selected-state and target emphasis.
This color is initialized to SYSCLR_HILITEBACKGROUND.

PP _BORDERCOLOR or PP _BORDERCOLORINDEX
Value set and item border color. This color is initialized to
SYSCLR_ WINDOWFRAME.

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
The application uses this message to notify the value set that a given inherited presentation
parameter has changed.

Default Processing
For a description of the default processing, see WM_PRESPARAMCHANGED.

26-24 PM Programming Reference Vol II

WM_QUERYWINDOWPARAMS (in Value Set Controls)
For the cause of this message, see WM_QUERYWINDOWPARAMS.

Parameters
param1

wndparams (PWNDPARAMS)
Pointer to a WNDPARAMS window parameter structure.

See WNDPARAMS for descriptions of the default fields. For a value set, the valid
values for the fsStatus field are WPM_CBCTLDATA and WPM_CTLDATA.

The flags in the fsStatus field are cleared as each item is processed. If the call is
successful, the fsStatus field is NULL. If any item has not been processed, the flag
for that item is still set.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful operation.
Error occurred.

The value set control window procedure responds to this message by returning the
information in the buffer provided. If this message is sent to a value set window of another
process, the information in, or identified by, the wndparams parameter must be in memory
shared by both processes.

Default Processing
For a description of the default processing, see WM_QUERYWINDOWPARAMS.

Chapter 26. Value Set Control Window Processing 26-25

WM_SETWINDOWPARAMS (in Value Set Controls)
For the cause of this message, see WM_SETWINDOWPARAMS.

Parameters
param1

wndparams (PWNDPARAMS)
Pointer to a WNDPARAMS structure.

See WNDPARAMS for descriptions of the fields. For a value set, the valid value of
the fsStatus field is WPM _ CTlDATA.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful operation
Error occurred.

If this message is sent to a value set window of another process, the information in, or
identified by, the wndparams parameter must be in memory shared by both processes.

Default Processing
For a description of the default processing, see WM_SETWINDOWPARAMS.

WM_SIZE (in Value Set Controls)
For the cause of this message, see WM_SIZE.

For a description of the parameters, see WM_SIZE.

Remarks
When the value set window is sized, the value set control defaults the size of each item by
dynamically dividing the window size by th~ number of rows and columns. It allows enough
room for the border, selection cursor, and selection emphasis, and defaults the spacing
between items to O. To override these default settings, the application must resend the
VM _ SETMETRICS message.

26-26 PM Programming Reference Vol II

Default Processing
For a description of the default processing, see WM_SIZE.

Chapter 26. Value Set Control Window Processing 26-27

26-28 PM Programming Reference Vol II

Chapter 27. Clipboard Messages

Purpose
The clipboard is used by the end-user to transfer data between Presentation Manager* (PM*)
applications using the following operations:

Cut Remove from a window, leaving a gap in the source, and save for later use.
Copy Copy from a window, leaving the source intact, and save for later use.
Paste Paste the cut or copied data into the window of an application (the target).

WM_DESTROYCLIPBOARD
This message is sent to the clipboard owner when the clipboard is emptied through a call to
WinEmptyClipbrd.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
Ifthere is any data that has been set with the CFI_OWNERFREE flag, the clipboard owner
must release the data at this time.

Default Processing
None.

© Copyright IBM Corp. 1994 27-1

WM_DRAWCLIPBOARD
This message is sent to the clipboard viewer window whenever the contents of the clipboard
change; that is, as a result of the WinCloseClipbrd function following a call to
WinSetClipbrdData.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
None.

WM_HSCROLLCUPBOARD
This message is sent to the clipboard-owner window when the clipboard contains a data
handle for the CFI_ OWNERDISPLA Y format, and there is an event in the clipboard viewer's
horizontal scroll bar.

Parameters
param1

hwndViewer (HWND)
Handle.

This contains a handle to the clipboard application window.

param2

sposScroli (SHORT)
Scroll position.

The position is either:

o scodeScroll is other than SB_SLlDERPOSITION

27-2 PM Programming Reference Vol II

Other The position of the slider when scodeScroll is SB_SLlDERPOSITION.

scodeScroll (SHORT)
Scroll-bar code.

This is one of the SB _ * scroll-bar codes as defined in WM _ HSCROLL (in Horizontal
Scroll Bars).

SB_LlNELEFT Sent if the operator clicks the left arrow of the scroll bar,
or presses the VK_LEFT key.

SB_LlNERIGHT Sent if the operator clicks the right arrow of the scroll bar,
or presses the VK_RIGHT key.

SB_PAGELEFT Sent if the operator clicks the area to the left of the slider,
or presses the VK_PAGELEFT key.

SB_PAGERIGHT Sent if the operator clicks the area to the right of the
slider, or presses the VK_PAGERIGHT key.

SB_SLlDERPOSITION Sent to indicate the final position of the slider. sposScroll
contains the final position of the slider.

SB_SLlDERTRACK Sent every time the slider position changes if the operator
moves the scroll bar slider with the pointer device.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if
the operator has not been doing any absolute slider
positioning.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
The clipboard owner is responsible for displaying the clipboard contents. The clipboard
owner should use WinlnvalidateRect or repaint as desired. The scroll-bar position is also
reset.

Default Processing
None.

Chapter 27. Clipboard Messages 27-3

WM_PAINTCLIPBOARD
This message is sent when the clipboard contains a data handle with the
CFI_ OWNERDISPLA Y information flag set.

Parameters
param1

hwndViewer (HWND)
Handle.

This is a handle to the clipboard application window.

param2

'ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
As the clipboard owner is responsible for displaying the clipboard contents, this message
notifies the clipboard application that its client area needs repainting. The
WM_PAINTCLIPBOARD message is sent to the owner of the clipboard to request repainting
of all or part of the client area of the clipboard application.

Note: To determine whether the entire client area needs repainting or just a portion of it, the
clipboard owner must compare the dimensions of the drawing area to the dimensions
given in the most recent WM_SIZECLIPBOARD message.

Default Processing
None.

WM_RENDERALLFMTS
This message is sent to the application that owns the clipboard while the application is being
destroyed.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

27·4 PM Programming Reference Vol II

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The application renders the clipboard data in all formats it is capable of generating and
passes a handle to each format to WinSetClipbrdData. This ensures that the data in the
clipboard can be rendered even though the application has been destroyed.

Default Processing
None.

WM RENDERFMT
This message is a request to the clipboard owner to render the data of the format specified
in usfmt.

Parameters
param1

usfmt (USHORn
Data format.

This is the format of the data to be rendered.

param2

CF_BITMAP

CF _DSPBITMAP

CF _DSPMETAFILE

CF_DSPTEXT

CF _METAFILE

CF_TEXT

ulReserved (ULONG)

A bit map.

A bit-map representation of a private data format.

A metafile representation of a private data format.

A textual representation of a private data format.

A metafile.

An array of text characters.

Reserved value, should be O.

Chapter 27. Clipboard Messages 27-5

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The data is rendered into a global handle, which is then set into the clipboard with
WinSetClipbrdData.

Default Processing
None.

WM_SIZECLIPBOARD
This message is sent when the clipboard contains a data handle for the
CFLOWNERDISPLAY format, and the clipboard application window has changed size.

Parameters
param1

hwndViewer (HWND)
Handle of viewer window.

param2

ppaint (PRECTL)
Rectangle to be re-painted.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The default window procedure takes no action on this message except to set ulReserved to
O.

27 -6 PM Programming Reference Vol II

WM_ VSCROLLCLIPBOARD
This message is sent to the clipboard owner window when the clipboard contains a data
handle for the CFI_ OWNERDISPLA Y format, and there is an event in the clipboard viewer's
vertical scroll bar.

Parameters
param1

hwndViewer (HWND)
Handle.

This contains a handle to the clipboard application window.

param2

sposScroll (SHORT)
Scroll position.

The position is either:

o scodeScrol/ is other than SB_SLlDERPOSITION
Other The position ofthe slider when scodeScrol/ is SB_SLlDERPOSITION.

scodeScroll (SHORT)
Scroll-bar code.

This is one of the SB_ * scroll-bar codes as defined in WM_HSCROLL (in Horizontal
Scroll Bars).

SB_L1NELEFT Sent if the operator clicks the left arrow of the scroll bar,
or depresses the VK_LEFT key.

SB_L1NERIGHT Sent if the operator clicks the right arrow of the scroll bar,
or depresses the VK_RIGHT key.

SB_PAGELEFT Sent if the operator clicks the area to the left of the slider,
or depresses the VK_PAGELEFT key.

SB_PAGERIGHT Sent if the operator clicks the area to the right of the
slider, or depresses the V~PAGERIGHT key.

SB_SLlDERPOSITION Sent to indicate the final position of the slider. sposScrol/
contains the final position of the slider.

SB_SLlDERTRACK Sent every time the slider position changes if the operator
moves the scroll bar slider with the pointer device.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if
the operator has not been doing any absolute slider
positioning.

Chapter 27. Clipboard Messages 27-7

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
The clipboard owner is responsible for displaying the clipboard contents. The clipboard
owner should use WinlnvalidateRect or repaint as desired. The scroll bar position is also
reset.

Default Processing
None.

27-8 PM Programming Reference Valli

Chapter 28. Direct Manipulation (Drag) Messages

Purpose
This section describes the processing that occurs during a direct manipulation operation
when the application sends or receives a direct manipulation (DM_ *) message.

DM_DISCARDOBJECT
This message is sent to a source that supports the "DRM_DISCARD" rendering method.

Parameters
param1

pDraglnfo (PDRAGINFO)
Pointer to the DRAGINFO structure representing the items to be discarded.

mpparam2

ulReserved (MPARAM)
Reserved value, should be NULL.

Returns
ulAction (ULONG)

Flag.

DRR_SOURCE The source window procedure accepts responsibility for the operation.

DRR TARGET The target window procedure is to accept responsibility for the
operation. The OS/2 shell supports the discarding of dragitems that
can be rendered by the DRM_OS2FILE method.

ORR_ABORT Abort the entire DM_DROP action.

Remarks
This message is sent to the source window for the drag action. The source should make a
copy of the parameters and return. The source should also create a separate thread to
execute the discard action if it responds with DRR_SOURCE.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no
action on it, other than to set ulAction to the default value of NULL.

© Copyright IBM Corp. 1994 28-1

DM_DRAGERROR
This message is sent to the caller of DrgDragFiles or DrgAcceptDroppedFiles when an error
occurs during a move or copy operation for a file.

Parameters
param1

usError (USHORT)
Error code.

Returned from DosCopy, DosMove, or DosDelete.

usOperation (USHORT)
Flag.

Flag indicating the operation that failed.

param2

DFF MOVE
DFF_COPY
DFF_DELETE

hstr (HSTR)

DosMove failed.
DosCopy failed.
DosDelete failed.

HSTR of file contributing to the error.

Returns
hstrAction (HSTR)

Action indicator.

DME IGNORECONTINUE Do not retry the operation, but continue with the rest of the
files.

DME IGNOREABORT Do not retry the operation, and do not try any other files.

DME RETRY Retry the operation.

DME_REPLACE Replace the file at the destination. Used if FALSE is not
specified.

Other HSTR of new file name to use for retry.

Remarks
The receiver of this message should return the action that the sender should take.

Default Processing
The WinDefWindowProc function does not expect to. receive this message and takes no
action other than to return FALSE.

28-2 PM Programming Reference Vol II

DM_DRAGFILECOMPLETE
This message is sent when a direct manipulation operation on a file or files is complete.

Parameters
param1

hstr (HSTR)
File handle.

param2

usOperation (USHORT)
Flags.

OF_MOVE The operation was a move. If this flag is not set, the
operation was a copy.

OF_SOURCE The receiving window was the source of the drag. If this flag
is not set, the receiver was the target of the drop.

OF_SUCCESSFUL The drag operation was successful for the file. If this flag is
not set, the operation failed.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
hstr is HSTR for the source file if this message is sent by OrgOragFiles, and is HSTR for the
target file if this message is sent by OrgAcceptOroppedFiJes.

This message is sent by OrgOragFiles to its caller when the move or copy operation is
completed, regardless of success or failure. It is also sent by OrgAcceptOroppedFiles when
a file has been successfully dropped on the caller.

Default Processing
The WinOefWindowProc function does not expect to receive this message and takes no
action other than to return O.

Chapter 28. Direct Manipulation (Drag) Messages . 28-3

OM_DRAG LEAVE
This message is sent to a window that is being dragged over when one of these conditions
occur:

• The object is dragged outside the boundaries of the window.
• The drag operation is terminated while the object is over the window.

Parameters
param1

pDraginfo (PDRAGINFO)
Pointer to the DRAGINFO structure for the drag operation.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message allows for target emphasis and de-emphasis during the direct manipulation
process. This message is not sent when a drop occurs. Use DM_DROP as a signal to
remove the target emphasis.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no
action on it other than to return O.

DM_DRAGOVER
This message allows the window under the mouse pointer to determine if the object or
objects currently being dragged can be dropped.

param2 is the pOinting device pOinter location.

Parameters
param1

pDraginfo (PDRAGINFO)
Pointer to the DRAGINFO structure representing the object being dragged.

28-4 PM Programming Reference Vol II

param2

sxDrop (SHORT)
X-coordinate of the pointing device pOinter in desktop coordinates.

syDrop (SHORT)
Y -coordinate of the pointing device pointer in desktop coordinates.

Returns
ReturnCode

usDrop (USHORT)
Drop indicator.

DOR_DROP Object can be dropped. When this reply is given,
usDefaultOp must be set to indicate which operation is
performed if the user should drop at this location.

DOR_NODROP Object cannot be dropped at this time. 'The target can
accept the object in the specified type and format using the
specified operation, but the current state of the target will not
allow it to be dropped on. The target may change state in
the future so that the same object may be acceptable.

DOR_NODROPOP Object cannot be dropped at this time. The target can
accept the object in the specified type and format, but the
current operation is not acceptable. A change in the drag
operation may change the acceptability of the object.

DOR_NEVERDROP Object cannot be dropped. The target cannot accept the
object now and will not change state so that the object will
be acceptable in the future. If this response is returned, no
more DM _ DRAGOVER messages will be sent to the target
until the pOinter is moved out of and back into the target
window.

usDefaultOp (U8HORT)
Target-defined default operation.

DO_COPY Operation is a copy.

DO_LINK Operation is a link.

DO_MOVE Operation is a move.

Other Operation is defined by the application.

This value should be greater than or equal to (>=) DO_UNKNOWN.

Chapter 28. Direct Manipulation (Drag) Messages 28-5

Remarks
This message is sent to the window that is directly under the hot spot of the mouse pointer
during the drag operation when any of the following conditions are met:

• The user moves the mouse.
• A key is pressed.
• A WM_BUnON1 UP, WM_BUnON2UP, WM_BUnON3UP, or WM_ENDDRAG

message is received. The message corresponds to vkTerminate parameter specified by
the call to DrgDrag indicating that the drag is ending. In this case the message is sent
only if the mouse has moved since the last DM_DRAGOVER message was sent.

The receiver can gain access to the DRAGINFO structure with DrgAccessDraginfo. The
acceptability of the dragged objects can be determined by querying the hstrType and
hstrRMF string handles in each of the DRAGITEM structures carried in DRAGINFO structure.
In order to accept the drop, the target window must be able to accept al/ of the objects that
are being dragged.

The receiver should provide target emphasis for itself. The receiver can use
DrgSetDragPointer to change the bit map while it is being dragged over. A
DM_DRAGLEAVE or OM_DROP message will be sent to the target in the future. Target
emphasis should be removed at that time.

If usOperation in DRAGINFO is DO_DEFAULT or DO_UNKNOWN and the target returns
DOR_DROP for usDrop, usDefaultOp should be set to reflect what the target defines as the
default operation. This information is used to provide the appropriate modification to the drag
pOinter and the target's default operation will be passed in the us Operation field of the
DRAGINFO structure specified in the OM_DROP message.

If the value of the usOperation field is not DO_DEFAULT or DO_UNKNOWN, the
usDefaultOp parameter is ignored.

Note: Lazy drag enabled applications are expected to process this message. It is to be
handled in the same manner as the standard drag enabled applications.

Default Processing
The WinDefWindowProc function returns DOR_NEVERDROP to the sender of this message.

28-6 PM Programming Reference Valli

DM_DRAGOVERNOTIFY
This message is sent to the source of a drag operation immediately after a DM_DRAGOVER
message is sent to a target window.

param2 is the target's reply to the DM_DRAGOVER message.

Parameters
param1

pDraginfo (PDRAGINFO)
Pointer to the DRAGINFO structure that represents the object being dragged.

param2
Target's reply.

usDrop (USHORT)
Drop indicator.

usDefaultOp (USHORT)
Default operation.

Target-defined default operation.

Returns
ulReserved (ULONG)

Reserved value.

Remarks
The source window can use this message to modify its behavior or appearance based on a
target window's response to the DM_ DRAGOVER message.

See OM _ DRAGOVER for a description of the target window's possible responses.

Default Processing
The WinDefWindowProc function does not expect to receive this message and therefore
takes no action on it other than to return NULL.

Chapter 28. Direct Manipulation (Drag) Messages 28-7

OM DROP
This message is sent to the target when the dragged object is dropped.

Parameters
param1

pDraginfo (PDRAGINFO)
Pointer to the DRAGINFO structure.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is sent to the target window directly under the hot spot of the mouse pointer at
the completion of a direct-manipulation operation only if DOR_DROP was returned for the
DM_DRAGOVER message sent to the target window during the drag.

The receiver can obtain access to DRAGINFO structure with DrgAccessDraginfo.

The receiver must immediately remove any target emphasis and post a private message to
itself to initiate the data transfer conversations needed to complete the operation.

The receiver can use the cxOffset and cyOffset fields in the DRAGITEM structure to position
the dropped object within its window relative to the drop point. Multiple objects are moved in
the same relative position to each other in the target window as they were in the source.

With standard drag, DrgDrag does not return until the drag set is dropped on a target
window. Since the source window is the caller of the DrgDrag, it receives the handle of the
target window that the drag set is dropped on when DrgDrag returns.

Lazy Drag is slightly different. Since the drag operation is non-modal, the DrgLazyDrag
returns as soon as it has completed its initialization of the drag. DM_DROPNOTIFY is
posted to the source window after the drag set is dropped.

When the application receiving the DM _DROP message has finished all data transfer
operations, the target window must free the DRAGINFO structure using DrgFreeDraginfo.

28-8 PM Programming Reference Vol 11

Default Processing
The WinDefWindowProc function calls DrgDeleteDraginfoStrHandles and DrgFreeDraginfo for
pOraginfo and returns O.

OM OROPHELP
This message requests help for the current drag operation.

Parameters
param1

pDraginfo (PDRAGINFO)
Pointer to the DRAGINFO structure used in the drag operation.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is posted to the target of a drop when F1 is pressed during a
direct-manipulation operation, and the drag operation is canceled.

The usOperation field of pOraginfo can be used to provide help information in the context of
the drag operation during which it was requested.

The DM_DROPHELP message is not supported for lazy drag operations. Since the drag
operation is non-modal, the user may request help on anything at any time during the drag.
If the application wishes to provide drop help, it must specify the action required to invoke
drop help (for example a menu choice), and code the support for it explicitly.

Default Processing
The WinDefWindowProc function calls DrgDeleteDraginfoStrHandles and DrgFreeDraginfo for
pOraginfo and returns O.

Chapter 28. Direct Manipulation (Drag) Messages 28-9

DM_DROPNOTIFY
This message provides the source window with the target window handle and a pointer to
the DRAGINFO structure allocated by the source window.

Parameters
param1

pDraginfo (PDRAGINFO)

param2

Pointer to the DRAGINFO structure allocated by the source window receiving the
message.

hwndTarget (HWND)
Handle of the target window that the drag set was dropped on.

Note: If hwndTarget is equal to zero, the drag is canceled, and the drag set is not
dropped. DrgCancelLazyDrag posts a DM_DROPNOTIFY message with an
hwndTarget value of zero to the source window.

Returns
returns

ulReserved (ULONG)
Reserved value, must be O.

Remarks
This message is posted to the source window involved in the drag operation when the drag
set is dropped on a valid target window.

The source window must examine hwndTarget to determine if the target window is the same
as the source window. If it is not, the source window must immediately free the DRAGINFO;
if the source and target windows are the same, the DRAGINFO must be freed by the target
window after completing the post-drop conversation.

Note: Lazy drag enabled applications are expected to process this message; standard drag
applications are not.

Default Processing
The default message procedure sets ulReserved to O.

28-10 PM Programming Reference Vol II

DM_EMPHASIZETARGET
This message is sent to the caller of DrgAcceptDroppedFiles to inform it to either apply or
remove target emphasis from itself.

Parameters
param1

sx (SHORT)
X-coordinate.

X-coordinate of the pointing device pOinter in window coordinates.

sy (SHORT)
Y -coordinate.

Y -coordinate of the pointing device pointer in window coordinates.

usparam2

usEmphasis (USHORT)
Flags.

TRUE
FALSE

Apply emphasis.
Remove emphasis.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no
action other than to return O.

DM_ENDCONVERSATION
The target uses this message to notify a source that a drag operation is complete.

Parameters
param1

ulitemlD (ULONG)
Item 10.

The ulltemlD from the DRAG ITEM that was contained within the DRAGINFO
structure when the object was dropped.

Chapter 28. Direct Manipulation (Drag) Messages 28-11

param2

ulFlags (ULONG)
Flags.

The flags are set as follows:

DMFL_TARGETSUCCESSFUL The target successfully completed its portion of
the rendering operation.

DMFL_ TARGETFAIL The target failed to complete its portion of the
rendering operation.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is used to inform a source that the target has completed its part of a rendering
operation. It is sent by the target to the source.

The target must send this message under any of the following circumstances:

• The target receives a DM_RENDERCOMPLETE message and will not retry the
operation.

• The target completes the rendering operation without involvement from the source.
• The target wants to terminate a rendering operation in progress.
• The target chooses not to render an object that was dropped on it.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no
action other than to return O.

OM FILERENOEREO
This message is sent to the window handling the drag conversation for the caller of
DrgDragFiles.

Parameters
param1

rndf (PRENDERFILE)
Pointer to a RENDERFILE structure.

28-12 PM Programming Reference Vol II

param2

usOperation (USHORT)
Flags.

TRUE
FALSE

Operation succeeded
Operation failed.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
This message is sent when the rendering (moving or copying) of a file is complete. The
handle of this window is the hwndDragFiles field of the RENDERFILE structure sent on
DM RENDERFILE.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no
action other than to return O.

DM_PRINTOBJECT
This message is sent to a source that supports the "DRM_PRINT" rendering method when
objects are dropped on a printer object.

Parameters
param1

pDraglnfo (PDRAGINFO)
Pointer to the DRAGINFO structure representing the objects to be printed.

param2

pPrintDest (PPRINTDEST)
Pointer to the PRINTDEST structure representing printer object to print to.

The structure contains all the parameters required to call the functions
DevPostDeviceModes and DevOpenDC.

Chapter 28. Direct Manipulation (Drag) Messages 28-13

Returns
ulAction (ULONG)

Flag.

DRR_SOURCE The source window procedure/object procedure will take responsibility
for the print operation.

DRR_ TARGET The target printer object will take responsibility for the print operation
(this will only work on objects which are of the pre-registered
rendering method; "DRM_OS2FILE."

DRR_ABORT Abort the entire DM_DROP action (do not send any more
DM_PRINTOBJECT messages to any selected source object involved
in this DM_DROP.

Remarks
This message is sent to the source window procedure. The source window procedure is
responsible for interpreting the structure given by param2. It should make a copy of all the
parameters and then return.

The receiver of this message should create a thread in which to dispatch this message in
order to facilitate a prompt reply. The thread can then call DevPostDeviceModes and
DevOpenDC as appropriate.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no
action on it, other than to set ulAction to the default value of NULL.

OM RENDER
This message is used to request a source to provide a rendering of an object in a specified
rendering mechanism and format.

Parameters
param1

pDxfer (PDRAGTRANSFER)
Pointer to the DRAGTRANSFER structure.

param2

ulReserved (ULONG)
Reserved value, should be O.

28-14 PM Programming Reference Vol II

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

Remarks
The target sends this message to a source window to request a rendering of an object. If
the source returns FALSE, it may set flags in the DRAGTRANSFER structure that tell the
target how to perform the rendering operation on its own, or how to retry the operation. If no
flags are set, the source will not allow a rendering of the object.

If TRUE is returned, the message was processed by the recipient and the requested
rendering will take place. The source will post a DM_RENDERCOMPlETE message to the
target when the rendering is complete.

If FALSE is returned, either the message was not processed by the recipient, or the recipient
could not perform the requested rendering. See fsRep/y in DRAGTRANSFER for more
information.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no
action other than to return O.

OM RENOERCOMPLETE
This message is posted by a source to a target window. It informs the target that the source
has completed a requested rendering operation.

Parameters
param1

pDxfer (PDRAGTRANSFER)
Pointer to the DRAGTRANSFER structure.

param2

usFS (USHORT)
Flag field.

Flag field indicating successful completion.

DMFl RENDERFAll The source is unable to perform the rendering operation.
The target may be allowed to retry. If the target is
allowed to retry and chooses not to, it must send a
DM_ENDCONVERSATION message to the source.

Chapter 28. Direct Manipulation (Drag) Messages 28-15

DMFL_RENDEROK The source has completed the rendering operation.
When the target completes its part of the rendering
operation, it must post a DM_RENDERCOMPLETE
message to the source.

DMFL_RENDERRETRY The source has completed the rendering operation and
will allow the target to retry its part of the operation if it
fails. This flag can be set in conjunction with either the
DMFL_RENDERFAIL or DMFL_RENDEROK flags.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
If the rendering operation failed for any reason, the source can allow the target to retry the
operation. The source should return to the state it was in when the drop occurred for that
object. The target resumes the rendering operation from the beginning.

If the rendering operation encounters a permanent failure, the source should fail the
operation and proceed as if the rendering was completed.

If the rendering operation completes successfully, the source should return to the state it was
in when the drop occurred for that object. This allows the target to retry the operation if its
portion of the rendering failed. The target must post a DM_ENDCONVERSATION message
when either of the following occurs:

• It determines that the rendering operation successfully completed
• It chooses not to retry a rendering operation that failed.

Default Processing
The WinDefWindowProc function should send a DM _ ENDCONVERSATION message to the
window indicated in the hwndltem field of the DRAG ITEM structure. The message should
indicate that the target failed in its part of the rendering operation. Sending the
DM_ENDCONVERSATION message allows the source to release the resources it dedicated
to the rendering operation.

28-16 PM Programming Reference Vol II

OM RENOERFILE
This message is sent to the caller of DrgDragFiles to tell it to render a file.

Parameters
param1

rndf (PRENDERFllE)
Pointer to a RENDERFllE structure.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Render handling.

TRUE
FALSE

The receiver handled the rendering.
DrgDragFiles should render this file.

Remarks
This message is sent when TRUE is specified in DrgDragFiles. The receiver should perform
the operation indicated by the TRUE field in the RENDERFllE structure, moving or copying
hstrSource tohstrTarget.

When the operation is complete, a DM_FllERENDERED message should be sent to
hwndDragFiles window.

The RENDERFllE structure is allocated temporarily for the receiver of this message. The
receiver should make a copy if it needs to use the data in this structure after returning.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no
action other than to return O.

Chapter 28. Direct Manipulation (Drag) Messages 28-17

OM RENDERPREPARE
This message tells a source to prepare for the rendering of an object.

Parameters
param1

pDxfer (PDRAGTRANSFER)
Pointer to a DRAGTRANSFER structure.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE The message was processed by the recipient and it is ready to perform the
rendering operation. The target of the drop sends a DM _RENDER message
to request the rendering with a specific rendering mechanism and format.

FALSE The message either was not processed by the recipient, or it is unprepared to
perform the rendering. The hwndltem field in DRAG ITEM may not be properly
initialized, and therefore the target should not send a
DM_ENDCONVERSATION message.

Remarks
This message must be sent when DC_PREPARE is on in the DRAGITEM structure.

This message is used to allow the source to create an invisible window to handle the
conversation required for the data transfer.

Default ProceSSing
The WinDefWindowProc function does not expect to receive this message and takes no
action other than to return O.

28-18 PM Programming Reference Vol II

Chapter 29. Dynamic Data Exchange Messages

Purpose
This section describes the message part of the DDE protocol, which is a set of guidelines
that allows two applications to share data freely between one another; not necessarily driven
directly by user input.

Note: DDE operates between two specific applications, each of which must be aware of the
other, and active.

WinDdelnitiate, WinDdePostMsg, and WinDdeRespond are the functions associated
with these messages.

WM_DDE_ACK
This message notifies an application of the receipt and processing of a
WM_DDE_EXECUTE, WM_DDE_DATA, WM_DDE_ADVISE, WM_DDE_UNADVISE or
WM_DDE_POKE message, and in some cases, of a WM_DDE_REQUEST message.

This message is always posted.

Parameters
param1

hwnd (HWND)
Window handle of the sender.

param2

pDdeStruct (PDDESTRUCT)
DDE structure.

This points to a dynamic data exchange structure. See "DDESTRUCT" on
page A-46.

The acknowledging application modifies the fsStatus field to return information about
the status of the message received:

DDE_FACK
DDE_FBUSY
DDE_NOTPROCESSED
DDE_FAPPSTATUS

1 =request accepted, O=request not accepted
1 =busy, O=not busy
Reserved for application-specific return codes
The message was not understood and was ignored.

An application is expected to set DDE _FBUSY if it is unable to respond to the
request at the time it is received. The DDE_FBUSY flag is defined only when
DDE_FACK is O.

offsz/temName identifies the item for which the acknowledgment is being sent.

© Copyright IBM Corp. 1994 29-1

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
None.

WM_DDE_ADVISE
This message (posted by a client application) requests the receiving application to supply an
update for a data item whenever it changes.

This message is always posted.

Parameters
param1

hwnd (HWND)
Window handle of the sender.

param2

pDdeStruct (PDDESTRUCT)
DOE structure.

This points to a dynamic data exchange structure. See "DDESTRUCT" on
page A-46.

Flags in the fsStatus field are set as follows:

If this bit is 1, the receiving (server) application is requested
to send its WM_DDE_DATA messages with the
acknowledgment-requested (DDE_FACKREQ) bit set. This
offers a flow control technique, whereby the client
application can avoid overload from incoming
WM_DDE_DATA messages.

If this bit is 1, the server is requested to send its
WM_DDE_DATA messages with a zero length data portion.
These messages are alarms that tell the client the source
data has changed. Upon receiving one of these alarms, the
client can choose to call for the latest version of the data
by issuing a WM_DDE,-REQUEST message, or the client
can choose to ignore the alarm. This is typically used when
there is a significant resource cost associated with actually
rendering and/or aSSimilating the data.

offszltemName identifies which data item is being requested.

29-2 PM Programming Reference Vol II

usFormat is the preferred type of data of the client. It must be a registered DDE
data format number.

Returns
ulReserved (ULONG)

Reserved value, should be 0.

Remarks
The receiving application is expected to reply with a positive WM_DDE_ACK message if it
can provide the requested data, or with a negative one if it can not.

Default Processing
None.

WM_DDE_DATA
This message notifies a client application of the availability of data. It is always posted.

Parameters
param1

hwnd (HWND)
Window handle of the sender.

param2

pDdeStruct (PDDESTRUCT)
DDE structure.

This points to a dynamic data exchange structure. See "DDESTRUCT" on
page A-46.

Flags in the fsStatus field are set as follows:

DDE_FRESPONSE

If this bit is 1, the receiving (client) application is expected
to send a WM_DDE_ACK message after the memory
object has been processed. If it is 0, the client application
should not send a WM_DDE_ACK message.

If this bit is 1, this data is offered in response to a
WM_DDE_REQUEST message. If it is 0, this data is
offered in response to a WM_DDE_ADVISE message.

offszltemName identifies which data item is available.

offabData is the data. The format of the data is a registered DDE data format,
identified by the usFormat field.

Chapter 29. Dynamic Data Exchange Messages 29-3

Returns
ulReserved (ULONG)

Reserved value, should be o.

Default Processing
None.

WM_DDE_EXECUTE
This message posts a string to a server application to be processed as a series of
commands. The server application is expected to post a WM _DOE _ ACK message in
response.

This message is always posted.

Parameters
param1

hwnd (HWND)
Window handle of the server.

param2

pDdeStruct (PDDESTRUCT)
DOE structure.

This points to a dynamic data exchange structure. See "DDESTRUCT" on
page A-46.

offabData contains the commands to be executed.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Default Processing
None.

WM_DDE_INITIATE
This message is sent by an application to one or more other applications, to request initiation
of a conversation.

This message is always sent.

29-4 PM Programming Reference Vol II

Parameters
param1

hwnd (HWND)
Window handle of the sender.

param2

pData (PDDEINIT)
Pointer to initiation data.

This points to a DDEINIT structure. pszAppName is the name of the desired server
application; if this is a zero-length string, any application can respond. pszTopic is
the name of the desired topic; if this is a zero-length string, each responding
application responds once for each topic that it can support.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

Upon receiving this message, all applications with names matching the application name
(where specified), that support the topic identified by the topic name, are expected to
acknowledge.

A modal window, for example a message box, must not be invoked during the processing of
this message.

Default Processing
The default window procedure frees the segment referenced by param2.

Chapter 29. Dynamic Data Exchange Messages 29-5

WM_DDE_INITIATEACK
This message is sent by a server application in response to a WM_DDEJNITIATE message,
for each topic that the server application wishes to support.

Parameters
param1

hwnd (HWND)
Window handle of the sender.

param2

pOata (PDDEINIT)
Pointer to initiation data.

This points to a DDEINIT structure. pszAppName is the name of the responding
server application; it must not be a zero-length string. pszTopic is the name of the
topic that the server is willing to support; it must not be a zero-length string.

The DDEINIT structure must be in a shareable segment; it is the responsibility of
the receiving window procedure to free this segment.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Successful completion
Error occurred.

A modal window, such as a message box, must not be posted during the processing of this
message.

Default Processing
The default window procedure frees the segment referenced by param2.

WM_DDE_POKE
This message requests an application to accept an unsolicited data item. It is always
posted.

Parameters
param1

hwnd (HWND)
Window handle of the sender.

29-6 PM Programming Reference Vol II

param2

pDdeStruct (PDDESTRUCT)
DOE structure.

This pOints to a dynamic data exchange structure. See "DDESTRUCT" on
page A-46.

offszltemName identifies the data item to the receiving application.

offabOata is the data. The format of the data is a registered DOE data format,
identified by the usFormat field.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The receiving application is expected to reply with a positive WM _DOE _ ACK message if it
accepts the unsolicited data, or with a negative WM_DDE_ACK if it does not.

Default Processing
None.

WM_DDE_REQUEST
This message is posted from client to server, to request that the server provide a data item
to the client.

This message is always posted.

Parameters
param1

hwnd (HWND)
Window handle of the server.

param2

DdeStruct (PDDESTRUCT)
DOE structure.

This points to a dynamic data exchange structure. See "DDESTRUCT" on
page A-46.

offszltemName identifies which data item is being requested.

usFormat identifies in which registered DOE data format the data item is to be
rendered.

Chapter 29. Dynamic Data Exchange Messages 29-7

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The receiving application is expected to respond with a WM_DDE_DATA message,
containing the requested data, if possible. Otherwise, it is expected to respond with a
negative WM_DDE_ACK message.

Default Processing
None.

WM_DDE_ TERMINATE
This message is posted by either application participating in a DDE conversation, to
terminate that conversation.

This message is always posted.

Parameters
param1

hwnd (HWND)
Window handle of the sender.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
Upon receiving this message, an application is expected to post a WM_DDE_TERMINATE
message in response.

Default Proc,essing
None.

29-8 PM Programming Reference Vol II

WM_DDE_ UNADVISE
This message is posted by a client application to a server application to indicate that the
specified item should no longer be updated.

This message is always posted.

Parameters
param1

hwnd (HWND)
Window handle of a sender.

param2

DdeStruct (PDDESTRUCT)
DOE structure.

This points to a dynamic data exchange structure (see "DDESTRUCT" on
page A-46). offszltemName identifies which data update request is to be retracted.
If this is a zero-length string, data update requests for all items are retracted.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Remarks
The receiving application is expected to reply with a positive WM _ DOE _ ACK message if it
can honor the request, or a negative one if it cannot.

Default Processing
None.

Chapter 29. Dynamic Data Exchange Messages 29·9

29-10 PM Programming Reference Vol II

Chapter 30., Help Manager Messages

Purpose
This section describes the processing of messages sent by the Help Manager or applications
in response to requests for help by the user.

HM_ACTIONBAR_COMMAND
This message is sent to the current active application window by the Help Manager to notify
the application when the user selects a tailored action bar item.

Parameters
param1

idCommand (USHORT)
Identity of the action bar item that was selected.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Default Processing
None.

HM_CONTROL
This message is sent by the Help Manager to the child of the coverpage window to add a
control in the control area of a window.

Parameters
param1

usReserve (USHORT)
Reserved value.

© Copyright IBM Corp. 1994 30-1

control res (USHORT)

param2

Res number of the control that was selected.

For author-defined push buttons, this is the res identification number that was
specified with the push button tag (:pbutton.). For default push buttons, this is the
res identification number defined in the PMHELP.H file.

ulReserved (ULONG)
Reserved value.

Returns
ulReserved (ULONG)

Reserved value, should be 0.·

Remarks
If an application wants to filter any of the controls, it can subclass the child of the coverpage
window and intercept this message. If the application does not intercept this message, the
Help Manager adds the control to the control area.

Default Processing
None.

HM_CREATE_HELP_TABLE
This message is sent by the application to give the Help Manager a new help table.

Parameters
param1

pHELPTABLE (PHELPTABLE)
Help table.

This points to a help table structure; see "HELPTABLE" on page A-10S.

param2

ulReserved (ULONG)
Reserved value, should be O.

30-2 PM Programming Reference Vol II

Returns
rc (ULONG)

Return code.

o The procedure was successfully completed
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM_DISMISS_ WINDOW
This message tells the Help Manager to remove the active help window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (ULONG)

Return code.

o The help window was successfully removed
Other There was no associated help window.

See also the values of the ulErrorCode parameter of the HM_ERROR message.

Remarks
If the user requests help from a primary or secondary window, and then interacts with the
primary or secondary window without leaving help, the currently displayed help window might
not be appropriate for the application window. This message gives the application the ability
to remove that help window.

Default Processing
None.

Chapter 30. Help Manager Messages 30-3

HM_DISPLAY _HELP
This message tells the Help Manager to display a specific help window.

Parameters
param1

idHelpPanelld (USHORT)
Identity of the help window.

This points to a USHORT data type.

For a value of the usTypeFlag parameter of HM_PANELNAME.

pszHelpPanelName (PSZ)
Name of the help window.

This points to a string containing the name of the help window.

param2

usTypeFlag (USHORT)
Flag indicating how to interpret the first parameter.

HM_RESOURCEID Indicates the param1 points to the identity of the help
window.

HM_PANELNAME Indicates the param1 points to the name of the help window.

Returns
rc (ULONG)

Return code.

o The window was successfully displayed
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Remarks
param1 depends on the value of the usTypeFlag parameter.

Default Processing
None.

30-4 PM Programming Reference Vol II

HM ERROR
This message notifies the application of an error caused by a user interaction.

Parameters
param1

ulErrorCode (ULONG)
Error code.

A constant describing the type of error that occurred. The application can also
receive some of these error constants in the ulReserved parameter of messages it
has sent to the Help Manager.

The error constants are:

HMERR_LOAD_DLL
The resource DLL was unable to be loaded.

HMERR _ NO _FRAME _ WND IN_ CHAIN
There is no frame window in the window chain from which to find or set the
associated help instance.

HMERRJNVALlD_ASSOC_APP _WND
The application window handle specified on the WinAssociateHelplnstance
function is not a valid window handle.

HMERRJNVALlD_ASSOC_HELP JNST
The help instance handle specified on the WinAssociateHelplnstance function
is not a valid window handle.

HMERRJNVALlD_DESTROY _HELP _INST
The window handle specified as the help instance to destroy is not of the help
instance class.

HMERR_NO_HELP JNST_IN_CHAIN
The parent or owner chain of the application window specified does not have
an associated help instance.

HMERRJNVALlD_HELP JNSTANCE_HDL
The handle specified to be a help instance does not have the class name of a
Help Manager instance.

HMERRJNVALlD_QUERY _APP _WND
The application window specified on a WinQueryHelplnstance function is not a
valid window handle.

HMERR_HELP JNST_CALLED_INVALID
The handle of the instance specified on a call to the Help Manager does not
have the class name of a Help Manager instance.

HMERR _ HELPTABLE_ UNDEFINE
The application did not provide a help table for context-sensitive help.

Chapter 30. Help Manager Messages 30-5

param2

HMERR_HELP JNSTANCE_UNDEFINE
The help instance handle specified is invalid.

HMERR_HELPITEM_NOT _FOUND
Context-sensitive help was requested but the 10 of the main help item specified
was not found in the help table.

HMERRJNVALlD_HELPSUBITEM_SIZE
The help subtable item size is less than 2.

HMERR_HELPSUBITEM_NOT_FOUND
Context-sensitive help was requested but the 10 of the help item specified was
not found in the help subtable.

HMERRJNDEX_NOT _FOUND
The index is not in the library file.

HMERR_CONTENT_NOT_FOUND
The library file does not have any content.

HMERR_OPEN_L1B_FILE
The library file cannot be opened.

HMERR_READ_L1B_FILE
The library file cannot be read.

HMERR_CLOSE_L1B_FILE
The library file cannot be closed.

HMERR JNVALID _ LIB_FILE
Improper library file provided.

HMERR_NO_MEMORY
Unable to allocate the requested amount of memory.

HMERR~LLOCATE_SEGMENT

Unable to allocate a segment of memory for memory allocation requests from
the Help Manager.

HMERR_FREE_MEMORY
Unable to free allocated memory.

HMERR_PANEL_NOT_FOUND
Unable to find the requested help window.

HMERR_DATABASE_NOT_OPEN
Unable to read the unopened database.

ulReserved (ULONG)
Reserved value, should be O.

30-6 PM Programming Reference Vol II

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
There is no other way to communicate the error to the application since the user initiated
communication, not the application. Other errors which occur when the application sends a
message to the Help Manager are returned as the ulReserved parameter of the message.

The Help Manager does not display any error messages to the user. Instead, the Help
Manager sends or returns all error notifications to the application so that it can display its
own messages. This procedure ensures a consistent message interface for all user
messages.

Default Processing
None.

HM_EXT_HELP
When the Help Manager receives this message, it displays the extended help window for the
active application panel.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (ULONG)

Return code.

o The extended help window was successfully displayed
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Default Processing
None.

Chapter 30. Help Manager Messages 30-7

HM EXT HELP UNDEFINED - - -
This message is sent to the application by the Help Manager to notify it that an extended
help window has not been defined.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
When the extended help window is requested, the Help Manager searches the help table for
its identity. If the extended help window identity associated with the current active window is
zero, the Help Manager sends this message to the application to notify it that an extended
help window has not been defined. The application then can:

• Ignore the request for help and not display a help window.

• Display its own window.

• Use the HM_DISPLAY _HELP message to tell the Help Manager to display a particular
window.

Default Processing
None.

HM GENERAL HELP - -
When the Help Manager receives this message, it displays the general help window for the
active application window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

30-8 PM Programming Reference Vol II

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (ULONG)

Return code.

o The general help window was successfully displayed.
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM_GENERAL_HELP _UNDEFINED
This message is sent to the application by the Help Manager to notify it that a general help
window has not been defined.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved.

o Reserved value, O.

Returns
ulReserved (ULONG)

Reser'i,ad vaiue, should be O.

Remarks
When the general help window is requested, the Help Manager searches the help table for
its identity. If the general help window identity associated with the current active window is
zero, the Help Manager sends this message to the application to notify it that a general help
window has not been defined. The application can then:

• Ignore the request for help and not display a help window.

• Display its own window.

Chapter 30. Help Manager Messages 30-9

• Use the HM_DISPLAY _HELP message to tell the Help Manager to display a particular
window.

Default processing
None.

HM_HELP _CONTENTS
When the Help Manager receives this message, it displays the help contents window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (ULONG)

Return code.

o The help contents window was successfully displayed.
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM_HELP _INDEX
When the Help Manager receives this message, it displays the help index window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be O.

30·10 PM programming Reference Vol II

Returns
rc (ULONG)

Return code.

o The help index window was successfully displayed.
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM_HELPSUBITEM_NOT _FOUND
The Help Manager sends this message to the application when the user requests help on a
field and it cannot find a related entry in the help subtable.

Parameters
param1

usContext (USHORT)

param2

Type of window on which help was requested.

HLPM_WINDOW
HLPM_FRAME
HLPM_MENU

An application window
A frame window
A menu window.

sTopic (SHORT)
Topic identifier.

For a value of the usContext parameter of HLPM_WINDOW or HLPM_FRAME:

window Identity of the window containing the field on which help was requested.
menu Identity of the submenu containing the field on which help was requested.

sSubTopic (SHORT)
Subtopic identifier.

For a value of the usContext parameter of HLPM_WINDOW or HLPM_FRAME:

control Control identity of the cursored field and on which help was requested.

For a value of the usContext parameter of HLPM_MENU:

-1 No menu item was selected

other Menu item identity of the currently selected submenu item on which
help was requested.

Chapter 30. Help Manager Messages 30-11

Retur,ns
rc (BOOl)

Action indicator.

Remarks
If FALSE is returned from this message, the Help Manager displays the extended help
window.

The application has the following options:

• Ignore the notification and not display help for that field or window.

• Display its own window.

• Use the HM_DISPLAY _HELP message to tell the Help Manager to display a particular
window.

Default Processing
None.

HM INFORM
This message is used by the Help Manager to notify the application when the user selects a
hypertext field that was specified with the reftype=inform attribute of the :link. tag.

Parameters
param1

idnum (USHORT)
Window identity.

The identity that is associated with the hypertext field.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
ulReserved (UlONG)

Reserved value, should be O.

o Reserved value, zero.

Default Processing
None.

30-12 PM Programming Reference Vol II

HM INVALIDATE DDF DATA - --
The application sends this message to IPF to indicate that the previous DDF data is no
longer valid.

Parameters
param1

rescount (ULONG)
The count of DDFs to be invalidated.

param2

resarray (PUSHORT)
Pointer to an array.

The pointer to an array of unsigned 16-bit (USHORT) integers that are the res
numbers of DDFs to be invalidated.

Note: If both param1 and param2 are NULL, then all the DDFs in that page will be
invalidated.

Returns
rc (ULONG)

Return code.

o The procedure was successfully completed.
Other See the values of the errorcode parameter of the HM_ERROR message.

Remarks
When IPF receives this message, it discards the current DDF data and sends a new
HM _QUERY _ DDF _DATA message to the object communication window.

This message should be sent to the child of the coverpage window handle.

Default Processing
None.

Chapter 30. Help Manager Messages 30-13

HM KEYS HELP - -
This message is sent by the application and informs the help manager to display the keys
help window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (ULONG)

Return code.

o The keys help window was successfully displayed
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Remarks
When the Help Manager receives this message, it sends a HM_QUERY _KEYS_HELP
message to the active application window. The active application window is the window that
was specified when the last HM_SET_ACTIVE_WINDOW message was sent. If no
HM_SET_ACTIVE_WINDOW message was issued, then the active application window is the
window specified in the WinAssociateHelplnstance call.

The application must return one of the following:

• The identity of a keys help window in the usHelpPanel parameter of the
HM_QUERY _KEYS_HELP message.

• Zero, if no action is to be taken by the Help Manager for keys help.

Default Processing
None.

30-14 PM Programming Reference Vol II

HM_LOAD_HELP_TABLE
The application sends this message to give the Help Manager the module handle that
contains the help table, the help subtable, and the identity of the help table.

Parameters
param1

idHelpTable (USHORT)
Identity of the help table.

fsidentityflag (USHORT)
Help table identity indicator.

OxFFFF Reserved value.

param2

MODULE (HMODULE)
Resource identity.

Handle of the modu1e that contains the help tabie and help subtable.

Returns
rc (ULONG)

Return code.

o The procedure was successfully completed.
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM NOTIFY
This message is used by the application to sub-class and change the behavior or
appearance of the help window.

Parameters
param1

controlres (USHORT)
Res number of the control that was selected.

For author-defined push buttons, this is the res number that was specified with the
push button tag (:pbutton.). For default push buttons, this is the res number
defined in the PMHELP.H file.

Chapter 30. Help Manager Messages 30-15

usReserve (USHORT)
Reserved value, should be O.

Reserved for events other than CONTROL_SELECTED and HELP_REQUESTED.

usevent (USHORT)
, The type of event which has occurred.

param2

CONTROL_SELECTED

HELP _REQUESTED

OPEN_COVERPAGE

OPEN PAGE

SWAP PAGE

OPEN INDEX

OPEN_TOC

OPEN_HISTORY

OPEN LIBRARY

OPEN _SEARCH_HIT _LIST

ulhwnd (UlONG)

A control was selected.

Help was requested.

The coverpage is displayed.

The child window of the coverpage is opened.

The child window of the coverpage is swapped.

The index window is displayed.

The table of contents window is displayed.

The history window is displayed.

The new library is opened.

The search list displayed.

Window handle of relevant window.

Returns
rc (BOOl)

Return code.

TRUE IPF will not format the controls and re-size the window.
FALSE IPF will process as normal.

, Remarks
This message is sent to the application to notify it of events that the application would be
interested in controlling.

Default Processing
None.

30-16 PM Programming Reference Vol II

HM_QUERV
This message is sent to IPF by the application to request IPF-specific information, such as
the current Instance handle, the active communication object window, the active window, or
the group number of the current window.

Parameters
param1

usselectionid (USHORT)
What is being requested.

This parameter should be specified only if the query is for HMQW_ VIEWPORT and
should otherwise be coded as NULL.

Specifies whether a res 10, 10 number, or group number is being requested. The
value can be any of the following constants:

HMQVP_NAME

HMQVP _GROUP

usmessageid (USHORT)
Type of window queried.

A pointer to a USHORT that holds the res 10 of the
window.

A pointer to a null-terminated string that holds the 10
of the window.

The group number of the window.

Specifies the type of window to query. The value can be any of the following
constants:

HMQW_INOEX

HMQW_TOC

HMQW _SEARCH

HMQW_VIEWEOPAGES

HMQW_LlBRARY

HMQW_OBJCOM_WINOOW

HMQW_INSTANCE

HMQW_COVERPAGE

The handle of the index window.

The handle of the Table of Contents window.

The handle of the Search Hitlist window.

The handle of the Viewed Pages window.

The handle of the Library List window.

The handle of the active communication
window.

The handle of the help instance.

The handle of the help manager multiple
document interface (MOl) parent window. It is
where the secondary windows are contained
within the parent window.

The handle of the viewport window specified in
the low-order word of param1 and in param2.

When HMQW_VIEWPORT is specified in
usmessageid, a value must be specified in

Chapter 30. Help Manager Messages 30-17

param2

HMQW_ACTIVEVIEWPORT

USERDATA

usselectionid to indicate whether a res 10, 10
number, or group number is being requested.

The group number of the window whose
handle is specified in param2.

The res number of the window whose handle
is specified in param2.

The handle of the currently active window.

The previously stored user-data.

pyoid (PVOID)
Varies, depending on value selected above.

param2 depends on the value of param1 usmessageid.

If param1 usmessageid is HMQW_ VIEWPORT, then param2 is a pointer to the res
number, 10, or group 10.

If param1 usmessageid is HMQW_GROUP _VIEWPORT, then param2 is the handle
of the viewport for which the group number is assigned.

If param1 usmessageid is HMQW_RES_VIEWPORT, then param2 is the handle of
the viewport for which the res number is requested.

Returns
rc (ULONG)

Return code.

o The procedure was not successfully completed.

Other The handle (HWNO), group number (USHORT), or res number (USHORT) of
the window, or the user data (USHORT), depending on the value of param1
usselectionid.

Default Processing
None.

30-18 PM Programming Reference Vo.1 II

HM_QUERY_DDF_DATA
This message is sent to the communication object window by IPF when it encounters the
dynamic data formatting (:ddf.) tag.

Parameters
param1

pageclienthwnd (HWNO)
Client handle.

The client handle of the page that contains the object communication window.

param2

resid (ULONG)
The res 10 associated with the OOF tag.

Returns
rc (HOOF)

Return code.

o An error has occurred in the application's OOF processing.

Other The OOF handle to be displayed.

Note: Once this handle has been returned, the HOOF handle can no longer be
used by the application.

Remarks
Upon receiving this message, the communication object calls Odflnitialize to indicate the start
of dynamic data formatting (OOF). Any combination of other OOF calls are then made to
describe this data. When this is complete, the communication object finishes processing this
message, indicating that the OOF data is complete. After that time, the OOF handle received
from Odflnitialize is considered invalid.

Default Processing
None.

Chapter 30. Help Manager Messages 30-19

HM_QUERV_KEVS_HELP
When the user requests the keys help function, the Help Manager sends this message to the
application.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
usHelpPanel (USHORT)

Help panel 10.

The identity of the application-defined keys help window to be displayed.

o Do nothing
Other Identity of the keys help window to be displayed.

Remarks
The application responds by returning the identity of the requested keys help window. The
Help Manager then displays that help window. Returning 0 in the usHelpPanel parameter
indicates that the Help Manager should do nothing for the keys help function.

Default Processing
None.

HM_REPLACE_HELP_FOR_HELP
This message tells the Help Manager to display the application-defined Help for Help window
instead of the Help Manager Help for Help window.

Parameters
param1

idHelpForHelpPanel (USHORT)
Identity of the application-defined Help for Help window.

o Use the Help Manager Help for Help window.
Other Identity of the application-defined Help for Help window.

30-20 PM Programming Reference Vol II

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
An application may prefer to provide information that is more specific to itself, rather than the
more general help information provided in the Help Manager Help for Help window.

Default Processing
None.

HM_REPLACE_USING_HELP
This message tells the Help Manager to display the application-defined Using help window
instead of the Help Manager Using help window.

Parameters
param1

idUsingHelpPanel (USHORT)
The identity of the application-defined Using Help window.

o Use the Help Manager Using Help window,.
Other The identity of the application-defined Using Help window.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
An application may prefer to provide information that is more specific to itself, rather than the
more general help information that is provided in the Help Manager Using help window. The
guidelines that define the current CUA interface recommend the Using help choice be
provided in a pull-down menu from the Help choice.

Chapter 30. Help Manager Messages 30-21

Default Processing
None.

HM_SET_ACTIVE_WINDOW
This message allows the application to change the window with which the Help Manager
communicates and the window to which the help window is to be positioned.

Parameters
param1

hwndActiveWindow (HWND)

param2

The handle of the window to be made active.

Its window procedure receives all messages from the Help Manager until the
application changes the active window with another HM_SET_ACTIVE_WINDOW
message.

hwndRelativeWindow (HWND)
The handle of the window next to which the help window is to be positioned.

The handle of the application window next to which the Help Manager will position a
new help window.

HWND_PARENT This Help Manager defined constant tells the Help Manager to
trace the parent chain of the window that had the focus when
the user requested help.

Other Handle of the window next to which the help window is to be
positioned.

Returns
rc (ULONG)

Return code.

o The procedure has been successfully completed.
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Remarks
Normally the Help Manager communicates with the application window with which the Help
Manager instance has been associated. The help window is positioned next to this same
application window.

If the hwndActiveWindow parameter is 0, the hwndRelativeWindow parameter is set to O.
That is, if the active window is NULL HANDLE, the relative window is not used.

30-22 PM Programming Reference Vol II

Default Processing
None.

HM_SET_COVERPAGE_SIZE
This message is sent to IPF by the application to set the size of the coverpage, the window
within which all other IPF windows are displayed.

Parameters
param1

coverpagerectl (PRECTL)
Pointer to RECTL containing the size of the coverpage.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (ULONG)

Return code.

o The procedure was successfully completed.
Other See the values of the errorcode parameter of the HM_ERROR message.

Remarks
The default size for the coverpage of a book is the full width of the screen, while the default
size for a help file is one-half the width of the screen.

This message takes effect immediately, changing the size of the coverpage. If the
coverpage is not currently open, the requested size is saved for the next open.

Default Processing
None.

Chapter 30. Help Manager Messages 30-23

HM_SET _HELP _LIBRARY_NAME
This message identifies a list of help window library names to the Help Manager instance.

Parameters
param1

pszHelpLibraryName (PSZ)
Library name.

param2

This pOints to a string that contains a list of help window library names that will be
searched by the Help Manager for the requested help window. The names must be
separated by a blank.

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (ULONG)

Return code.

o The newly specified library successfully replaced the current help window library
name.

Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Remarks
Any subsequent communication to the Help Manager with this message replaces the current
list of names with the newly specified list.

When help is requested, the Help Manager will search each library in the list for the
requested help window.

Default Processing
None.

30-24 PM Programming Reference Vol II

HM_SET_HELP _WINDOW_TITLE
This message allows the application to change the window text of a help window title.

Parameters
param1

pszHelpWindowTitle (PSZ)
Help window title.

This points to a string containing the new Help Window title.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (ULONG)

Return code.

o The window title was successfully set.
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM_SET_OBJCOM_WINDOW
This message is sent to IPF by the application to identify the communication object window
to which the HMJNFORM and HM_QUERY _DDF _DATA messages will be sent. This
message is not necessary if the communication object does not expect to receive either of
these messages.

Parameters
hwndparam1

objcomhwnd (HWND)
Handle of the communication object window to be set.

param2

ulReserved (ULONG)
Reserved value, should be o.

Chapter 30. Help Manager Messages 30-25

Returns
hwndprevioushwnd (HWND)

The handle of the previous communication object window.

Remarks
HMJNFORM and HM_QUERY_DDF_DATA messages which are not processed must be
passed to the previous communication object window which was returned when
HM_SET_OBJECT...,;WINDOW was sent.

Default Processing
None.

HM_SET _SHOW _PANEL_ID
This message tells the Help Manager to display, hide, or toggle the window identity for each
help window displayed.

Parameters
param1

fsShowPanelid (USHORT)

param2

The show window identity indicator.

CMIC_HIDE_PANEL_ID Sets the show option off and the window identity is
not displayed.

CMIC_SHOW_PANELJD Sets the show option on and the window identity is
displayed.

CMIC_TOGGLE_PANELJD Toggles the display of the window identity.

ulReserved (ULONG)
Reserved value, should be o.

rc (ULONG)
Return code.

o The show window identity indicator was successfully changed.
Other See the values of the ulErrorCode parameter of the HM_ERROR message.

Default Processing
None.

30-26 PM Programming Reference Vol II

HM_SET _USERDATA
The application sends this message to IPF to store data in the IPF data area.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

usrdata (VOID)
4-byte user data area.

rc (ULONG)
Return code.

TRUE
FALSE

The user data was successfully stored.
The call failed.

Default Processing
None.

HM_TUTORIAL
The Help Manager sends this message to the application window when the user selects the
Tutorial choice from a help window.

Parameters
param1

pszTutorialName (PSZ)
Default tutorial name.

This points to a string that contains the name of the default tutorial program
specified in the Help Manager initialization structure. A tutorial name specified in
the help window definition overrides this default tutorial program.

param2

ulReserved (ULONG)
Reserved value, should be O.

Chapter 30. Help Manager Messages 30-27

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The application then calls its own tutorial program.

Default Processing
None.

HM_UPDATE_08JCOM_WINDOW_CHAIN
This message is sent to the currently active communication object by the communication
object who wants to withdraw from the communication chain.

Parameters
param1

hwnd (HWND)
The handle of the object to be withdrawn from the communication chain.

param2

hwnd (HWND)
Window containing the handle of the object to be replaced.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Remarks
The object that receives this message should check to see if the object handle returned from
HM_SET_08JCOM_WINDOW is equal to the handle in param1. If the handle is equal, then
the handle in param1 should be replaced by the handle in param2. If the handle is not equal
and the handle previously received is not NULL HANDLE, then send
HM_UPDATE_08JCOM_WINDOW_CHAIN to that object.

Default Processing
None.

30·28 PM Programming Reference Vol II

Chapter 31. Resource Files

This chapter describes the syntax for the resource language using railroad syntax, and
describes the formats used.

Resource files are used to build dialog templates, menu templates, accelerator tables,
extended attribute association tables, keyboard scancode mapping tables, keyboard names
and fonts. The files must be compiled before they can be used by application programs.

How to Read the Syntax Definitions
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the
line.

The ~ symbol indicates the beginning of a statement.

The --+ symbol indicates that the statement syntax is continued on the next line.

The ~ symbol indicates that a statement is continued from the previous line.

The ---.... symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the ~ symbol
and end with the --+ symbol.

• Required items appear on the horizontal line (the main path).

~STATEMENT requi red_item

• Optional items appear below the main path.

~STATEMENT--"T""-------'-----+.""
~oPtional_ite~

• If a choice can be made from two or more items, they appear vertically, in a stack.

If one of the items must be chosen, one item of the stack appears on the main path.

~STATEMENT~required_choicel=:J
required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

~STATEMENT • OIl

t==0Ptional_choicel~
optional_choice2

• An arrow returning to the left above the main path indicates an item that can be
repeated.

~
~STA TEMENT--repea tab 1 e _ i temf--~---t.~ ...

A repeat arrow above a stack indicates that a choice can be made from the stacked
items, or a single choice can be repeated.

© Copyright IBM Corp. 1994 31-1

• Keywords appear in uppercase, (for example, PARMI). They must be spelled exactly as
shown. Variables appear in all lowercase letters (for example: parrnx). They represent
user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown,
they must be entered as part of the syntax.

Definitions Used in all Resources
The definitions used in all resources are defined in Specification of Values and Resource
Load and Memory Options.

Specification of Values
These rules apply to values specified in resources:

• Coordinates must be integers. There must be no space between the sign of the value
and the value itself. For example, "-1" is allowed but "- 1" is not.

• Resource identifiers must be positive integers or names that resolve to positive integers.

• Real values, containing a decimal point, cannot be used.

Resource Load and Memory Options
The following options define when each resource is loaded and how memory is allocated for
each resource.

LOADOPTION Resource loading options.

PRELOAD Resource is loaded immediately.
LOADONCALL Resource is lo?ded when called.

MEMOPTION Resource memory options.

FIXED
MOVEABLE

DISCARDABLE
SEGALIGN

Resource Script File Specification

Resource remains at a fixed memory location.
Resource can be moved if necessary to
compact.
Resource can be discarded if no longer needed.
Resources are aligned on 64K byte boundaries.

The resource script file defines the names and attributes of the resources to be added to the
executable file of the application. The file consists of one or more resource statements that
define the resource type and original file, if any. See the following for a description of the
resource statements:

• Single-Line Statements
• User-Defined Resources
• Directives
• Multiple-Line Statements.

31-2 PM Programming Reference Vol II

Single-Line Statements
The general form for all single-line statements is:

Single-line statement ------------------------,

~resou rcetype-name i d----,r---------r-----+_
L, oadopti onJ

~. --r-------r--fi , ename--"""
Lmemopt i onJ

resourcetype (USHORT)
One of the following keywords, specifying the type of resource to be loaded:

Resource type Keyword

BITMAP A bit-map resource is a custom bit map that an application intends to
use in its screen display or as an item in a menu.

DEFAUL TICON This keyword installs the filename.ico icon definition under the ICON
EA of the program file.

Example:

DEFAULTICON <filename.ico>

I

DLGINCLUDE This statement tells the dialog editor which file to use as an include
file for the dialogs in the resource file. The nameid is not applicable.

FONT A font resource is a file containing a font.

ICON An icon resource is a bit map defining the shape of the icon to be
used for a given application.

POINTER A pointer resource is a bit map defining the shape of the pointing
device pointer on the display screen.

nameid (USHORT)
is either a unique name or an integer number identifying the resource. For a FONT
resource, the nameid must be a number; it cannot be a name.

loadoption (LOADOPTION)
The default is LOADONCALL.

See "Resource Load and Memory Options" on page 31-2 for a description of
LOADOPTION.

memoption (MEMOPTION)
The default is MOVEABLE and DlSCARDABLE for POINTER, ICON, and FONT
resources. The default for BITMAP resources is MOVEABLE: The FIXED option
overrides both MOVEABLE and DISCARDABLE. The SEGALIGN option can be
specified independently of other options, if it is not present the default (for all resources)
is that the resource is not aligned on a 64KB boundary.

Chapter 31. Resource Files 31-3

See "Resource Load and Memory Options" on page 31-2 for a description of
MEMOPTION.

filename (PCH)
An ASCII string specifying the OS/2* name of the file containing the resource. A full
path must be given if the file is not in the current working directory.

Example
POINTER pointer point.cur
POINTER pOinter DISCARDABLE point.cur
POINTER 10 custom. cur

ICON desk desk.ico
ICON desk DISCARDABLE desk.ico
ICON 11 custom.ico

BITMAP disk disk.bmp
BITMAP disk DISCARDABLE disk.bmp
BITMAP 12 custom.bmp

FONT 5 CMROMAN.FNT

User-Defined Resources
An application can also define its own resource. The resource can be any data that the
application intends to use. A user-defined resource statement has the form:

User-defined resource -------------------------,

~resource-type-typeID-nameID'------------+ •

... ----r-------.--r--------,---fi 1 ename-----"""
~loadoPtion~ ~emoption~

typelD
Either a unique name or an integer number identifying the resource type., If a number is
given, it must be greater than 255. The type numbers 1 through 255 are reserved for
existing and future predefined resource types. Value 1000 is reserved for custom fonts.

namelD
Either a unique name or an integer number identifying the resource.

loadoption (LOADOPTION)
The default is LOADONCALL.

See "Resource Load and Memory Options" on page 31-2 for a description of
LOADOPTION.

memoption (MEMOPTION)
The default is MOVEABLE.

See "Resource Load and Memory Options" on page 31-2 for a description of
MEMOPTION.

31-4 PM Programming Reference Vol II

filename
An ASCII string specifying the OS/2* name of the file containing the cursor bit map. A
full path must be given if the file is not in the current working directory.

When the resource compiler (RC.EXE) encounters one or more font resources, or any
custom resource having type-id of 1000, it creates a font directory resource which it adds to
the output binary data.

Example

RESOURCE MYRES array DATA. RES
RESOURCE 300 14 CUSTOM. RES

RCDATA statement
The RCDATA statement is provided to allow an application to define a simple data resource.

RCDATA statement ------------------------,

~RCDATA-id--loadoption---memoption--.

~i~
..--BEGIN----data---....L--ENDf--.... ~

id Either a unique name or an integer number identifying the resource.

loadoption (LOADOPTION)
The default is LOADONCALL.

See "Resource Load and Memory Options" on page 31-2 for a description of
LOADOPTION.

memoption (MEMOPTION)
The default is MOVEABLE.

See "Resource Load and Memory Options" on page 31-2 for a description of
MEMOPTION.

data
A number or string.

Chapter 31. Resource Files 31·5

Example:

RCDATA 4
BEGIN
"Sample string."
"TEST DATA."
"A message. II

END

Directives
The resource directives are special statements that define actions to perform on the file
before it is compiled. The directives can assign values to names, include the contents of
files, and control compilation of the file.

#include filename

rcinclude filename

These directives copy the contents of the file specified by filename into the resource
before it is compiled. If rcinclude is used, the entire file is copied. If #include is used,
only #define statements are copied.

Note: If an rcinclude is to be commented out, the open comment (/*) must appear on
the same line as the directive.

Filename is an ASCII string. A full path must be given if the file is not in the current
directory or in the directory specified by the INCLUDE environment variable. The file
extensions .1 and .TMP must not be used as these are reserved for system use.

The filename parameter is handled as a C string, and two back-slashes must be given
wherever one is expected in the path name (for example, root\\sub.) or, a single forward
slash (I) can be used instead of double back-slashes (for example, root/sub.)

Example:

#include "wincalls.h"

MENU PenSelect
BEGIN

MENU ITEM "bl ack pen", BLACK_PEN
END

Files included in resource script files constants that use #define statements may not
include any casting of those constants that are used in the resource script. The
resource compiler does not parse this casting syntax. For example, the following
statement may not be included:

#define IDBUTTONl (USHORT) 3

31-6 PM Programming Reference Vol II

If casting is required for C source compilation, you may use two statements such as:

#define IDBUTTONI 3
#define CSRC_IDBUTTONI

#define name value

«USHORT)IDBUTTONl)

This directive assigns the given value to name. All subsequent occurrences of name
are replaced by the value.

name is any combination of letters, digits, or punctuation.

value is any integer, character string, or line of text.

Example:

#define
#define

#undef name

nonzero
USERCLASS IMyControlClass"

This directive removes the current definition of name. All subsequent occurrences of
name are processed without replacement.

name is any combination of letters, digits, or punctuation.

Example:

#undef
#undef

#ifdef name

nonzero
USERCLASS

This directive performs a conditional compilation of the resource. file by checking the
specified name. If the name has been defined using a #define directive, #ifdef directs
the resource compiler to continue with the statement immediately after it. If the name
has not been defined, #ifdef directs the compiler to skip all statements up to the next
#endif directive.

name is the name to be checked by the directive.

Example:

#ifdef Debug
FONT 4 errfont.fnt
#endif

#ifndef name

This directive performs a conditional compilation of the resource file by checking the
specified name. If the name has not been defined or if its definition has been removed
using the #undef directive, #ifndef directs the resource compiler to continue processing

Chapter 31. Resource Files 31-7

statements up to the next #endif, #else, or #elif directive, then skip to the statement after
the #endif. If the name is defined, #ifndef directs the compiler to skip to the next #endif,
#else, or #elif directive.

name is the name to be checked by the directive.

Example:

#ifndef Optimize
FONT 4 errfont.fnt
#endif

#if constant expression

This directive performs a conditional compilation of the resource file by checking the
specified constant-expression. If the constant-expression is nonzero, #if directs the
resource compiler to continue processing statements up to the next#endif, #else, or #elif
directive, then skip to the statement after the #endif. If the constant-expression is zero,
#if directs the compiler to skip to the next #endif, #else, or #elif directive.

constant expression is a defined name, an integer constant, or an expression
consisting of names, integers, and arithmetic and relational operators.

Example:

#if Version<3
FONT 4 errfont.fnt
#endif

#elif constant expression

This directive marks an optional clause of a conditional compilation block defined by an
#ifdef, #ifndef, or #if directive. The directive carries out conditional compilation of the
resource file by checking the specified constant-expression. If the constant-expression
is nonzero, #elif directs the resource compiler to continue processing statements up to
the next #endif, #else, or #elif directive, then skip to the statement after the #endif. If
the constant-expression is zero, #elif directs the compiler to skip to the next #endif,
#else, or #elif directive. Any number of #elif directives can be used in a conditional
block.

constant expression is a defined name, an integer constant, or an expression
consisting of names, integers, and arithmetic and relational operators.

Example:

#if Version<3
FONT 4 italic.fnt
#elif Version<7
FONT 4 bold.fnt
#endif

31-8 PM Programming Reference Vol \I

#else

This directive marks an optional clause of a conditional compilation block defined by an
#ifdef, #ifndef, or #if directive. The #else directive must be the last directive before
#endif.

Example:

#ifdef Debug
FONT 4 italic.fnt
#else
FONT 4 bold.fnt
#endif

#endif

This directive marks the end of a conditional compilation block defined by an #ifdef,
#ifndef, or #if directive. One #endif is required for each #ifdef, #ifndef, and #if directive.

Multiple-Line Statements
This sections covers "Code Page Flagging," "Keyboard Resources" on page 31-10, and the
following multiple-line statements:

• "ACCELTABLE Statement" on page 31-10
• "ASSOCTABLE Statement" on page 31-12
• "MENU Statement" on page 31-16
• "STRINGTABLE Statement" on page 31-22
• "Dialog and Window Template Statements" on page 31-13

Code Page Flagging: The CODEPAGE statement may be placed within the source, to
set the code page used for these resources:

• ACCEL TABLE
• MENU
• STRINGTABLE
• DIALOGTEMPLATE and WINDOWTEMPLATE.

The CODEPAGE statement cannot be encoded within any other statement. All items
following a CODEPAGE statement are assumed to be in that code page. The code page is
encoded in the resource, and the data in the resource is assumed to be in the specified code
page. However, no checking is performed.

These code pages can be specified:

• 437
• 850
• 860
• 863
• 865.

If the code page is not specified, code page 850 is assumed.

Chapter 31. Resource Files 31-9

Keyboard Resources
RT_FKALONG (=17), is defined in BSEDOS.H, and the resource compiler (RC.EXE)
recognizes FKALONG. This type identifies a 256-byte table, that can be used for either
primary or secondary scan-code mapping.

The resource ID contains three bytes, the least significant byte identifying the type of
scan-code mapping table as follows:

o Primary scan-code mapping
Secondary scan-code mapping.

The other two bytes are 0 for the primary mapping table, and the keyboard ID (as defined in
PMWINP.H) for secondary mapping tables. This is to enable simple support to be provided
for future keyboards with conflicting scan codes.

The primary scan-code mapping table in the interrupt handler is stored as a resource of this
type. The secondary scan-code mapping table in the interrupt handler is also stored as a
resource of this type.

Depending on which keyboard is attached, the resources are loaded when the system is
initialized, and transferred to RING-O byte arrays, where they can be accessed by the
interrupt handler as necessary. A default primary scan-code mapping table is transferred if
the resource cannot be loaded.

ACCELTABLE Statement
The ACCELTABLE statement defines a table of accelerator keys for an application.

An accelerator is a keystroke defined by the application to give the user a quick way to
perform a task. The WinGetMsg function automatically translates accelerator messages from
the application queue into WM_COMMAND, WM_HELP, or WM_SYSCOMMAND messages.

The ACCELTABLE statement has the form:

ACCEL TABLE statement -----------------------,

~ACCEL TABLE--.L-,-. d-=:]-..--rr-----]--r----..
L-rnemoption

~BEGIN--------------+.

id (USHORT)
The resource identifier.

31-10 PM Programming Reference Vol II

memoption
Optional. It consists of the following keyword or keywords, specifying whether the
resource is fixed or movable, and whether it can be discarded:

FIXED
MOVEABLE
DISCARDABLE

Resource remains at a fixed memory location.
Resource can be moved if necessary to compact memory.
Resource can be discarded if no longer needed.

See "Resource Load and Memory Options" on page 31-2 for a description of
LOADOPTION.

keyval (USHORT)
The accelerator character code. This can be either a constant or a quoted character. If
it is a quoted character, the CHAR acceloption is assumed. If the quoted character is
preceded with a caret character (A), a control character is specified as if the CONTROL
acceloption had been used.

cmd (USHORT)
The value of the WM_COMMAND, WM_HELP, or WM_SYSCOMMAND message
generated from the accelerator for the indicated key.

acceloption (BIT_ 16)
Defines the kind of accelerator.

The following options are available:

ALT
CHAR
CONTROL
HELP
LONEKEY
SCANCODE
SHIFT
SYSCOMMAND
VIRTUALKEY.

The VIRTUALKEY, SCANCODE, LONEKEY, and CHAR acceloptions specify the type of
message that matches the accelerator. Only one of these options can be specified for
each accelerator. For information on the corresponding KC_* values, see WM_CHAR.

The acceloptions SHIFT, CONTROL, and ALT, cause a match of the accelerator only if
the corresponding key is down.

If there are two accelerators that use the same key with different SHIFT, CONTROL, or
AL T options, the more restrictive accelerator should be specified first in the table. For
example, Shift-Enter should be placed before Enter.

The SYSCOMMAND acceloption causes the keystroke to be passed to the application
as a WM_SYSCOMMAND message. The HELP acceloption causes the keystroke to be
passed to the application as a WM_HELP message. If neither is specified, a
WM_COMMAND message is used.

Example:

Chapter 31. Resource Files 31-11

ACCELTABLE MainAcc
BEGIN

END

VKJl,101,HELP
VK_F3,102,SYSCOMMAND

This generates a WM_HELP with value 101 from VIRTUALKEY accelerator F1 and a
WM_SYSCOMMAND with value 102 from VIRTUALKEY accelerator F3.

ASSOCTABLE Statement
The ASSOCT ABLE statement defines the extended attributes (EA) for an application.

The ASSOCTABLE statement has the form:

ASSOCTABLE statement --------------------,

...-ASSOCTABLE-assoctab 1 ei d------... ~

...-BEGINI--------------+~

~
~assocname,extension~ L J'

flags

The source for the ASSOCTABLE description is contained in the resource file for a particular
project:

ASSOCTABLE assoctableid
BEGIN
"association name", "extension", flags, icon filename
"association name", "extension", flags, icon filename

END

association name
Program recognizes data files of this EA TYPE. This is the same name found in the
TYPE field of data files.

assoctableid
A name or number used to identify the assoctable resource.

extension
3 letter file extension that is used to identify files of this type if they have no EA TYPE
entry. (This may be empty.)

flags

31-12 PM Programming Reference Vol II

EAF _DEFAUl TOWNER
The default application for the file.

EAF_UNCHANGEABlE
This flag is set if the entry in the ASSOCTABLE is not to be edited.

EAF _REUSEICON
This flag is specified if a previously defined icon in the ASSOCT ABLE is to be
reused. Entries with this flag set have no icon data defined. The icon used for this
entry is the icon used for the previous entry (see below). Note that EAF _ * flags may
be ORed together when specified in the ASSOCT ABLE.

icon filename
Filename of the icon used to represent this file type. (This may be empty.)

Example
ASSOCTABLE 3000
BEGIN
"Product XVZ Spreadsheet", "xys", EAF_DEFAULTOWNER, xyzspr.ico
"Product XVZ Chart", "xyc", EAF_DEFAULTOWNER I EAF_REUSEICON
END

Dialog and Window Template Statements
This section describes how to define dialog and window templates.

It also describes the control data and presentation parameter structures that the application
needs to create windows and define dialog templates.

DLGTEMPLATE and WINDOWTEMPLATE statements are us;'?.'d by an application to create
predefined window and dialog resource templates. These statements are treated identically
by the resource compiler and have the following format:

DlG and WINDOW TEMPLATE -----, -----------

.... ~--r-DLGTEMPLATE resource; d----i&»
~WINDOWTEMPLATE~

[1 oadopt; on] lfnemopt; on] L-cndepageJ -~
~B EG I N--l-----D I ALOG s ta tement---'--,---END--t'><li

r··-CONTROL. statement---J
~---WINDOW statement-·~

In the following description of the parts of the DLGTEMPLATE and WINDOWTEMPLATE
statements, data types are shown after each parameter or option. These are the data types
that the parameter or option is converted to when it is compiled.

Purpose
The DLGTEMPLATE or WINDOWTEMPLATE statement marks the beginning of a
window template. It defines the name of the window, and its memory and load options.

Chapter 31. Resource Files 31-13

resourceid (USHORT)
Either a unique name or an integer number identifying the resource.

loadoption (LOADOPTION)
The default is LOADONCALL.

See "Resource Load and Memory Options" on page 31-2 for a description of
LOADOPTION.

memoption (MEMOPTION)
The default is MOVEABLE.

See "Resource Load and Memory Options" on page 31-2 for a description of
MEMOPTION.

code page (USHORT)
The code page of the text in the template.

Alternatively, ({) can be used in place of BEGIN and 0) in place of END.

The DLGTEMPLATE and WINDOWTEMPLATE keywords are synonymous.

The DIALOG statement defines a dialog-box window that can be created by an application
and has the following format:

DIALOG statement --------------------------,

~DIALOG---text-,-id-,-x-,-y-,-cx-,-cy~

[,style]
L,control

"lTLDAT A-statemenJ ~PRESPARAMS-sta tementJr

~BEGINt=DIALOG-statement---r--'--EN[)----+~
CONTROL-statement
WINDOW-statement

31-14 PM Programming Reference Vol II

The WINDOW and CONTROL statements have the format:

WINDOW and CONTROL statements -----------------,

~WINDOW~text,-id,-x,-y,-cx,-cy,-class--.
LCONTROLJ

L,style
L,contro]3

'kTLDATA-statemenJ ~PRESPARAMS-S tatementJr

~BEGINt=DIALOG-statement--"--'--ENo--. ...
CONTROL-statement
WINDOW-statement

Note: The WINDOW and CONTROL keywords are synonymous.

The DIALOG, CONTROL, and WINDOW statements between the BEGIN and END
statements are defined as child windows. Presentation parameters always apply to the
whole control. They cannot be changed for the individual items within the control.

Following is the description of the parameters for these statements.

Purpose
These statements mark the beginning of a window. They define the starting location on
the display screen, its width, its height, and other details such as style.

Note: Not all values may be specified for each statement type. For details, see the call
syntax diagrams.

text (PCH)
A string, enclosed in double quotes, that is displayed in the title-bar control, if it exists.
To insert a double-quote character (") in the text, use two double-quote characters ("").

id (USHORT)
Item identifier.

X,Y (SHORT)
Integer numbers specifying the x- and y-coordinates on the display screen of the lower
left corner of the dialog. X and yare in dialog coordinates. The exact meaning of the
coordinates depends on the style defined by the style argument. For normal dialogs, the
coordinates are relative to the origin of the parent window. For FCF _SCREENALIGN
style boxes, the coordinates are relative to the origin of the display screen. With
FCF _MOUSEALlGN, the coordinates are relative to the position of the pointer at the time
the dialog is created.

Chapter 31. Resource Files 31-15

cX,cy (SHORT)
Integer numbers specifying the width and height of the window.

class (PCH)
The class of the window or control to be created.

Note: For a DIALOG statement the class is fixed as WC _FRAME and cannot be
specified.

style (ULONG)
Any additional window style, frame style, or other class-specific style.

The default style is WS_SYNCPAINT I WS_CLlPSIBLlNGS I WS_SAVEBITS I
FS_DLGBORDER. If the FS_DLGBORDER or WS_SAVEBITS styles are not required,
they should be preceded by the keyword "NOT." For example:

NOT FS_DLGBORDER I FS_BORDER I NOT WS_SAVEBITS

replaces the FS_DLGBORDER default style by the FS_BORDER style and removes the
WS_SAVEBITS style. Note that the logic of the NOT keyword is different from the
corresponding operator in the C language.

It is not possible to remove the default WS_SYNCPAINT and WS_CLlPSIBLlNGS styles.

control (ULONG)
Frame Creation Flags (FCF _ *; see page 13-1) for the window

This data is placed in the control data field in the correct format for a window of class
We_FRAME.

Note: FCF _ SHELLPOSITION has no effect if specified in a template.

CTLDATA Statement
A statement used to define control data for the control. For more information on this
statement, see "Control Data Statement" on page 31-28

PRESPARAMS Statement
A statement used to define presentation parameters. For more information on this
statement, see "Presentation Parameters Statement" on page 31-28

MENU Statement
The MENU statement defines the contents of a menu resource. A menu resource is a
collection of information that defines the appearance and function of an application menu. A
menu can be used to create an action bar.

31~16 PM Programming Reference Vol II

The MENU statement has the form:

MENU statement ----------------------------,

~ENU-menui d-.------.,r------.---.. ~
L 1 oadopt i onJ Lmemopt i onJ

LCOdepage~

~PRESPARAMS-statement~
~BEGIN --- --- ~

~ENUITEM-statement

SUBMENU-statement

menuid (USHORT)

END~

A name or number used to identify the menu resource.

loadoption (LOADOPTlON)
The default is LOADONCALL.

See"Resource Load and Memory Options" on page 31-2 for a description of
LOADOPTION.

memoption (MEMOPTION)
The default is MOVEABLE.

See "Resource Load and Memory Options" on page 31-2 for a description of
MEMOPTION.

codepage (USHORT)
The code page of the text.

PRESPARAMS statement
A special resource statement used to define presentation parameters. These are
discussed in more detail in "Presentation Parameters Statemenf' on page 31-28.

MENUITEM statement
A special resource statement used to define the· items in the menu. These are discussed
in more detail in "Menu Item Statements" on page 31-18.

SUBMENU statement
A special resource statement used to define a submen. SUBMENU statements are
discussed in more detail in "Submenu Statements" on page 31-19.

Chapter 31. Resource Files 31-17

Example: Following is an example of a complete MENU statement:

MENU sample
BEGIN

MENUITEM "-Alpha", 100, MIS_TEXT
SUBMENU "-Beta", 101, MIS_TEXT
BEGIN

END
END

MENUITEM "-Green", 200, MIS_TEXT
MENUITEM "-Blue", 201, MIS_TEXT,MIA_CHECKED

Menu Item Statements: MENUITEM statements are used in the item-definition section
of a MENU statement to define the names and attributes of the actual menu items. Any
number of statements can be given; each defines a unique item. The order of the
statements defines the order of the menu items.

Note: The MENUITEM statements can only be used within an item-definition section of a
MENU statement.

- MENUITEM statement -----------------------,

~ENUITEM-------------+~

T
String-,c:J' L J' I II

cmd styles LattributesJ I
'----------SEPARATOR I

string (PCH)
A string, enclosed in double quotation marks, specifying the text of the menu item.

To insert a double-quote character (") in the text, use two double-quote characters ("").

If the styles parameter does not contain MIS_TEXT, the string is ignored but must still be
specified. An empty string (1111) should be specified in this instance.

To indicate the mnemonic for each item, insert the tilde character n in the string
preceding the mnemonic character.

For MENUITEM statements within a SUBMENU (that is, pull-down menus) text may be
split into a second column with an alignment substring. To right-align items insert "\a" in
the text where alignment should begin. To left-align a second column of text insert "\t" in
the text where alignment should begin. For each SUBMENU the longest item in the
second column determines the width of that column. Only one alignment substring
should be used in a menu item.

cmd (USHORT)
The value of the WM_COMMAND, WM_HELP, or WM_SYSCOMMAND message
generated by the item when it is selected. It identifies the selection made and should be
unique within one menu definition.

31-18 PM Programming Reference Vol II

styles (U5HORT)
One or more menu options defined by the MIS_ * constants, ORed together with the "I"
operator. For definitions of the MIS_ * constants, see "Menu Item Styles" on page 15-2.

attributes (U5HORT)
One or more menu options defined by the MIA_ * constants, ORed together with the "I"
operator. For definitions of the MIA_* constants, see "Menu Item Attributes" on
page 15-3.

The style MIS_SUBMENU must not be used with this statement. See "Submenu
Statements" for the SUBMENU statement.

Examples:

MENU ITEM "Alpha", 1, MIS_TEXT,MIA_ENABLEDIMIA_CHECKED,'A'
MENU ITEM "Beta", 2, MIS_TEXT,,'B'

Submenu Statements: In addition to simple items, a menu definition can contain the
definition of a submenu. A submenu can itself invoke a lower level submenu.

SUBMENU statement ------------------------,

~SUBMENU-------------.....

~stri ng-'T::J' [J' [] ...
cmd styles attributes

~PRESPARAMS-statement~
~BEGIN - -.

string (PCH)

~ENUITEM-statement

SUBMENU-statement

A string, enclosed in double quotation marks, specifying the text of the menu item.

To insert a double-quote character (") in the text, use two double-quote characters ("").

If the styles parameter does not contain MIS_TEXT, the string is ignored but must still be
specified. An empty string ('''') should be specified in this instance.

cmd (U8HORT)
The value of the WM_COMMAND, WM_HELP, or WM_SYSCOMMAND message
generated by the item when it is selected. It identifies the selection made and should be
unique within one menu definition.

Chapter 31. Resource Files 31-19

styles (USHORT)
One or more menu options defined by the MIS_ constants, ORed together with the "I"
operator.

In the SUBMENU statement, the style MIS_SUBMENU is always ORed with the styles
given. If no value is supplied, the default value of MIS_TEXT and MIS_SUBMENU is
used.

attributes (USHORT)
One or more menu options defined by the MIA_ constants, ORed together with the I
operator.

Example:

MENU chern
BEGIN

SUBMENU "-Elements", 2, MIS_TEXT
BEGIN

END

MENUITEM "-Oxygen", 200, MIS_TEXT
MENU ITEM "-Carbon", 201, MIS_TEXT ,MIA_CHECKED
MENUITEM "-Hydrogen", 202, MIS_TEXT

SUBMENU "-Compounds", 3, MIS_TEXT
BEGIN

END

END

MENUITEM "-Glucose", 301, MIS_TEXT
MENUITEM "-Sucrose", 302, MIS TEXT,MIA CHECKED
MENUITEM "-Lactose", 303, MIS)EXT I MIS)REAK
MENUITEM "-Fructose", 304, MIS_TEXT

SEPARATOR Menu Item: There is a special form of the MENUITEM statement that is
used to create a horizontal dividing bar between two active menu items in a pull-down menu.
The SEPARATOR menu item is itself inactive and has no text associated with it nor a cmd
value.

Example

MENUITEM "-Roman", 206, MIS_TEXT
MENUITEM SEPARATOR
MENUITEM "20 -Point", 301, MIS_TEXT

Menu Template: Menu templates are data structures used to define menus. Menu
templates can be loaded as resources or created dynamically, or embedded in dialog
templates, which in turn can be loaded as resources or created dynamically. Templates
loaded as resources cannot contain references to bit maps or owner-drawn items. A menu
template consists of a sequence of variable-length records. Each record in a menu template

31-20 PM Programming Reference Vol II

defines a menu item. If a menu item contains a reference to a submenu, the menu template
that defines that submenu is placed after the definition of that particular menu item.

Template Format: A menu template has the following format:

Length (USHORT)
The length of the menu template.

Version (USHORT)
The template version. Versions 0 and 1 are valid.

Code page (USHORT)
The identifier of the code page used for the text items within the menu (but not any
submenus, which each have their own code pages).

Item offset (USHORT)
The offset of the items from the start of the template, in bytes.

Count (USHORT)
The count of menu items.

Presentation parameters offset (USHORT)
Offset of presentation parameters from the start of the template, in bytes. This field is
only present for version 1 of the template.

Menu Items
A variable-sized array of menu items as follows:

Style (USHORT)
Menu item styles (MIS_*; see page 15-2) combined with the logical-OR operator.

Attributes (USHORT)
Menu item attributes (MIA_ *; see page 15-3) combined with the logical-OR operator.

Item (USHORT)
An application-provided identifier for the menu item.

Variable data
Following the identifier is a variable data structure whose format depends upon the
value of Style:

MIS_TEXT

Text (PSZ)
Null-terminated text string.

MIS_SUBMENU
A menu template structure.

MIS_BITMAP

Text (PCH)
Null-terminated text string.

Chapter 31. Resource Files 31-21

For MIS_BITMAP menu items, the item text string can be used to derive the
resource identifier from which a bit map is loaded. There are three instances:

• The first byte is null; that is, no resource is defined and it is assumed that
the application subsequently provides a bit-map handle for the item.

• The first byte is OxFF, the second byte is the low byte of the resource
identifier, and the third byte is the high byte of the resource 'identifier.

• The first character is "#," and subsequent characters make up the decimal
text representation of the resource identifier.

The resource is assumed to reside in the resource file of the current process.

If the string is empty or does not follow the format above, no resource is
loaded.

STRINGT ABLE Statement
The STRINGTABLE statement defines one or more string resources for an application.
String resources are null-terminated ASCII strings that can be loaded, when needed, from
the executable file, using the WinLoadString function.

Note: The ASCII strings can include no more than 256 characters, including the NULL
termination character.

The STRINGTABLE statement has the form:

STRINGTABLE statement -----------------------,

~STRINGTABLE . ~
Ll oadopti on.J ~emopti on.J

.--BEGIN-stri ng-defi niti ons-END~

String-definitions

1
H~~--i nteger-st ri ng------'---.~ 4

loadoption (LOADOPTlON)
An optional keyword specifying when the resource is to be loaded. It must be one of:

PRELOAD
LOADONCALL

Resource is loaded immediately.
Resource is loaded when called.

The default is LOADONCALL.

See "Resource Load and Memory Options" on page 31-2 for a description of
LOADOPTION.

31-22 PM Programming Reference Vol II

memoption (MEMOPTlON)
Consists of the following keyword or keywords, specifying whether the resource is fixed
or movable and whether it is discardable:

FIXED
MOVEABLE
DISCARDABLE

Resource remains at a fixed memory location.
Resource can be moved if necessary to compact memory.
Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

See "Resource Load and Memory Options" on page 31-2 for a description of
MEMOPTION.

string (PCH)
A string, enclosed in double quotation marks. To insert a double-quote character (") in
the text, use two double-quote characters ("").

Note: A string may be defined on more than one line if each line begins and ends with
a double-quote. If newline characters are desired after each line, there should be
a double-quote at the beginning of the first line and at the end of the last line
only.

The string may contain any ASCII characters. Because (\) is interpreted as an escape
character, use (\\) to generate a (\).

The following escape sequences may be used:

Escape
Sequence
\t

\nnn

Name
Horizontal tab
\a
Bell (alert)
ASCII character (octal)
\xdd
ASCII character (hexadecimal).

The sequences \ddd and \xdd allow any character in the ASCII character set to be
inserted in the character string. Thus, the horizontal tab could be entered as \)(09, \011
or \t.

Example
#define IDS_STRINGl 1
#define IDS_STRING2 2
#define IDS_STRING3 3

STRINGTABLE
BEGIN

IDS_STRINGl, "The first two strings in this table are identical."
IDS_STRING2, "The first two strings"

"in this table are identical."
IDS_STRING3, "This string will contain a newline character

before it continues on this line."
END

Chapter 31. Resource Files 31-23

Templates, Control Data, and Presentation Parameters

Dialog Template
A dialog template is a data structure used to define a dialog box. Dialog templates can be
loaded from resources or created dynamically in memory. Dialog templates define windows
of any window class that contain child windows of any class. For standard dialog windows,
the dialog window itself is created with the WC_FRAME class, and its children are any of the
preregistered control classes.

The dialog template specifies all the information required to create a dialog box and its
children.

Dialog Coordinates
Coordinates in a dialog template are specified in dialog coordinates. These are based on the
default character cell size; a unit in the horizontal direction is 1/4 the default character-cell
width, and a unit in the vertical direction is 1/8 the default character-cell height. The origin is
the bottom left-hand corner of the dialog box.

Dialog Template Format and Contents
A dialog template has these sections:

Header

Items

Data area

Defines the type of template format and contains information about the
location of the other sections of the template. It also contains a summary of
the status of the individual controls contained within the dialog box.

Defines each of the controls that comprise the dialog box.

Contains the data values associated with each control. Each control defined
in the item section contains pointers to the data area section. The data area
also contains presentation parameter definitions. The data area is not
necessarily a contiguous portion of the template. User data can be placed
anywhere in the template if it does not interfere with other defined information.

The sections of a dialog template are illustrated in Figure 31-1 on page 31-25.

Notes:

1. Throughout the dialog template all lengths are in bytes. String lengths do not indude
any null terminator that may be present. When strings are passed to the Presentation
Interface, the length specifications are used and any null terminators are ignored. When
strings are returned by the Presentation Interface, length specifications and null
terminators are both supplied; therefore, space must be allowed for a null terminator.

2. All offsets are in bytes from the start of the dialog template structure.

31-24 PM Programming Reference Vol II

Header

Template Length

Template Type

CodePage

Items Offset

Focus Item

Reserved

Items

Dialog Box Control Window

Control Window Descriptor

Control Window Descriptor

Child Control Window Descriptor

Child Control Window Descriptor

Control Window Descriptor I I I I---

Data Area
I---

I Text I<~

I Class
A

I Control data
~

Figure 31-1. Dialog Template

Chapter 31. Resource Files 31-25

Header
The dialog template header consists of:

Template length (USHORT)
The overall length of the dialog template.

Template type (USHORT)
The dialog template format type. The format defined is type O.

Code page (USHORT)
The code page of the text in the dialog template.

Items offset (USHORT)
The offset of the array of dialog items.

Reserved (USHORT)
Must be O.

Focus item (USHORT)
The index in the array of dialog items of the control to receive the focus. If this value is 0,
or if the identified control cannot receive the focus, for example because it is a static
control, the focus is passed to the first item within the template. that can receive the focus.

Reserved (USHORT)
Must be O.

Items
The dialog template items are specified as elements of an array that also defines the
hierarchy of the control windows of the dialog box. Each element of the array is a control
window descriptor and defines some control or a child of some control, so that every control
within the dialog box is described by this array. The first descriptor is the specification of the
dialog box itself.

The dialog template items consist of:

Reserved (USHORT) (BOOL 16)
Must be O.

Children (USHORT)
The number of dialog item child windows that are owned by this dialog item.

This is the number of elements following in the array that are created as child windows of
this window. Each window can have any number of child windows, which allows for a
tree-structured arrangement.

For example, in Figure 31-1 on page 31-25, assuming that there are no more dialog items
than are shown, the first item, the dialog box control window descriptor, has three children.
The second item has no children, the third item has two children, and the remaining three
items have no children.

31-26 PM Programming Reference Vol II

Class name length (USHORT)
The length of the window class name string.

Class name offset (USHORT)
The offset of the window class name string.

Text length (USHORT)
The length of the text string.

For controls that allow input of text, this is the current text length, not the maximum text
length, and so this value changes when text is put into the control.

Text offset (USHORT)
The offset of the text string.

Style (ULONG) (BOOL32)
The window style of the control.

The standard style bits are 16 bits. The use of the remaining 16 bits depends on the class
of the control.

x (SHORT)
Y (SHORT)

The position of the origin of the dialog item. This is specified in dialog coordinates, with x
and y relative to the origin of the parent window.

cx (SHORT)
cy (SHORT) .

The size of the dialog item in dialog coordinates; it must be greater than O.

Identifier (USHORT)
An application-defined identifier for the dialog item.

Reserved (USHORT)
Must be zero.

Control data offset (USHORT)
The offset of the control-specific data for this dialog item. A value of 0 indicates that there
is no control data for this dialog item.

Data Area
The dialog template data area contains the following different types of objects: text, class
name, presentation parameters, and control data. These objects can be placed anywhere
within the data area. They do not have to be in contiguous storage, and so an application
can place data for its own use between these objects.

The dialog template data area contains:

Text (PCH)
The textual data associated with a dialog item.

Class name (PCH)
The name of the window class.

Chapter 31. Resource Files 31-27

Presentation parameters (PRESPARAMS)
Presentation parameters are defined in "Presentation Parameters Statement" on
page 31-28.

Control data (CTLDATA)
For more information, see "Control Data Statement."

Control Data Statement
The optional CTLDATA statement is used to define control data for the control. Hexadecimal
or decimal word constants follow the CTLDAT A statement, separated with commas.

- CTLDATA statement ------------------------,

1 I
~CTLDATA~decimal-value ~

~exadecimal-value--

stri ng-------'

In addition to hexadecimal or decimal data, the CTLDATA statement can be followed by the
MENU keyword, followed by a menu template in a BEGIN/END block. This creates a menu
template as the control data of the window.

Presentation Parameters Statement
The optional PRESPARAMS statement is used to define presentation parameters. The
syntax of the PRESPARAMS statement is as follows.

~ PRESPARAMS statement

~PRESPARAMS--tYpe-.--r--val~l
A presentation parameter consists of:

type (ULONG)
The presentation parameter attribute type. See the PARAM data type for a description of
valid types.

A string can be used to specify the type for a user type. If this is done, the string type is
converted into a string atom when the dialog template is read into memory. Thereafter, .
this presentation parameter is referred to by this string atom. The application can use the
atom manager API to match the string and the string atom.

31-28 PM Programming Reference Vol II

value (LONG or PSZ)
One or more values depending upon the attribute type.

If the value is enclosed in quotes it is a zero-terminated string. Otherwise, it is converted
to a LONG. There may be more than one value, depending upon the type. See PARAM
data type for a description of the values required for system-defined presentation
parameters.

Examples: The following are examples of PRESPARAMS statements:

PRESPARAMS PP_BORDERCOLOR, 0x00ff00ffL
PRESPARAMS PPJONTNAMESIZE, 112.Helv"
PRESPARAMS limy color", 0x00ff00ffL
PRESPARAMS limy param", 0,1,2,3, "Hi there"

Parent/Child/Owner Relationship
The format of the DLGTEMPLATE and WINDOWTEMPLATE resources is very general to
allow tree-structured relationships within the resource format. The general layout of the
templates is:

WINDOWTEMPLATE id
BEGIN

END

WINDOW winTop
BEGIN

WINDOW wind!
WINDOW wind2
WINDOW wind3
BEGIN

WINDOW wind4
END
WINDOW windS

END

the top-level window

In this example, the top-level window is identified by winTop. It has four child windows:
wind1, wind2, wind3, and windS. wind3 has one child window, wind4. When each of
these windows is created, the parent and the owner are set to be the same.

The only time when the parent and owner windows are not the same is when frame controls
are automatically created by a frame window.

Note that the WINDOW statements in the example above could also have been CONTROL
or DIALOG statements.

Chapter 31. Resource Files 31-29

Predefined Window Classes
The CONTROL statement can be used to define a window control of any class. Window
classes may be user defined of one of a predefined set provided by the operating system.
The following classes are provided in the OS/2 operating system.

WC_FRAME
WC_STATIC
WC BUTTON
WC COMBOBOX
WC _ENTRYFIELD
WC_MLE
WC LlSTBOX
WC MENU
WC SCROLLBAR
WC _ TITLEBAR
WC _ SPINBUTTON
WC _CONTAINER
WC SLIDER
WC_ VALUESET
WC_NOTEBOOK

Application frame control.
Text and group boxes.
Push button, check box or radio button.
Combination of an entry field and list box.
Single line entry field.
Multiple line entry field.
List box.
Application action bar, menus and popup menus.
Horizontal or vertical scroll bar.
Application title bar.
Spin button entry field.
Container list.
Horizontal or vertical slider control.
Value set control.
Notebook control.

These controls make up the standard user interface components for applications. The
following example shows a simple listbox control.

CONTROL "", I, 10, 20, 60, 40, WC_LISTBOX, WS_VISIBLE

Predefined Control Statements
In addition to the general form of the CONTROL statement, there are special control
statements for commonly used controls. These statements define the attributes of the child
control windows that appear in the window.

Control statements have this general form:

Control statements ----------------------,------,

~controltype-text-,-id-,-x-,-y-,-cx-,-cy---.

L,-style'----'

~BEGINt=DIALOG statement-.....--'-END----......
CONTROL statement
WINDOW statement

31-30 PM Programming Reference Vol II

The following six controls are exceptions to this form because they do not take a text field.
See the LlSTBOX control statement for the form of these six controls.

• CONTAINER
• LlSTBOX
• NOTEBOOK
• SLIDER
• SPINBUnON
• VALUESET

controltype
is one of the keywords described below, defining the type of the control.

text (PCH)
is a string specifying the text to be displayed. The string must be enclosed in double
quotation marks. The manner in which the text is displayed depends on the particular
control, as detailed below.

To indicate the mnemonic for each item, insert the tilde character n in the string
preceding the mnemonic character.

The double quotation marks are required for the COMBOBOX title even if no title is used.

id (USHORT)
is a unique integer number identifying the control.

x,y (SHORT)
are integer numbers specifying the x- and y-coordinates of the lower left corner of the
control, in dialog coordinates. The coordinates are relative to the origin of the dialog.

cX,cy (SHORT)
are integer numbers specifying the width and height of the control.

The x, y, cx, and cy fields can use addition and subtraction operators (+ and -). For
example, 15 + 6 can be used for the x-field.

Styles can be combined using the (I) operator.

The control type keywords are shown below, with their classes and default styles:

AUTOCHECKBOX

Class WC_BUnON
Default style WS_TABSTOP, WS_VISIBLE, BS_AUTOCHECKBOX

AUTORADIOBUTTON

Class
Default style

CHECKBOX

Class
Default style

WC_BunON
BS_AUTORADIOBUnON, WS_ TABSTOP, WS_ VISIBLE

WC_BunON
BS_CHECKBOX, WS_TABSTOP, WS_VISIBLE

Chapter 31. Resource Files 31-31

COMBOBOX

Format

Class
Default style

CONTAINER

Format

Class
Default style

CTEXT

..class
Default style

DEFPUSHBUTTON

The form of the COMBOBOX control statement is shown below.

The fields have the same meaning as in the other control statements.

COMBOBOX statement ---------------,

...-COMBOBOX- lI title ll-,-id-,-x-,-y-,-cX

~-cy
, L,-styl e..--J

WC_COMBOBOX
CBS_SIMPLE, WS_TABSTOP, WS_VISIBLE

The CONTAINER control statement does not contain a text field, so it
has the same format as the LlSTBOX statement.

WC_CONTAINER
WS_TABSTOP, WS_VISIBLE, CCS_SINGLESEL

WC_STATIC
SS_TEXT, DT_CENTER, WS_GROUP, WS_VISIBLE

Class WC_BUTTON
Default style BS_DEFAULT, BS_PUSHBUTTON, WS_ TABSTOP, WS_ VISIBLE

EDITTEXT

Class
Default style

ENTRYFIELD

Class
Default style

FRAME

Class
Default style

GROUPBOX

Class
Default style

ICON

Class
Default style

WC _ENTRYFIELD
WS_ENTRYFIELD, WS_ TABSTOP, WS_ VISIBLE, ES_AUTOSCROLL

WC _ENTRYFIELD
WS_TABSTOP, ES_LEFT, WS_VISIBLE

WC_FRAME
WS_VISIBLE

WC_STATIC
SS_GROUPBOX, WS_TABSTOP, WS_VISIBLE

WC_STATIC
SSJCON, WS_ VISIBLE

31-32 PM Programming Reference Vol II

LlSTBOX

Format

Class
Default style

LTEXT

Class
Default style

MLE

Class
Default style

NOTEBOOK

Format

Class
Default style

PUSHBUTTON

Class
Default style

RADIOBUTTON

Class
Default style

RTEXT

Class
Default style

SLIDER

Format

Class
Default style

The form of the LlSTBOX control statement is different from the general
form because it does not take a text field, however the fields have the
same meaning as in the other control statements. The form of the
LlSTBOX control statement is shown below.

LlSTBOX statement ----------------,

~controltype--;d-,-x-,-y-,-cx-+

~-cy
, L,-stYle~

WC_LlSTBOX
LBS_NOTIFY, LBS_SORT, WS_VSCROLL, WS_BORDER,
WS_VISIBLE

WC_STATIC
SS_TEXT, DT_LEFT, WS_GROUP, WS_VISIBLE

WC MLE
WS_MLE, WS_ TABSTOP, WS_ VISIBLE, MLS_BORDER

The NOTEBOOK control statement does not contain a text field, so it
has the same format as the LlSTBOX statement.

WC_NOTEBOOK
WS_NOTEBOOK, WS_TABSTOP, WS_VISIBLE

WC_BUTTON
BS_PUSHBUTTON, WS_TABSTOP, WS_VISIBLE

WC_BUTTON
BS_RADIOBUTTON, WS_TABSTOP, WS_VISIBLE

WC_STATIC
SS_TEXT, DT_RIGHT, WS_GROUP, WS_VISIBLE

The SLIDER control statement does not contain a text field, so it has
the same format as the LlSTBOX statement.

WC_SLlDER
WS_SLlDER, WS_ TABSTOP, WS_ VISIBLE

Chapter 31. Resource Files 31-33

SPINBUTTON

Format

Class
Default style

VALUESET

Format

Class
Default style

The SPINBUTTON control statement does not contain a text field, so it
has the same format as the LlSTBOX statement.

WC_SPINBUTTON
WS _ TABSTOP, WS _VISIBLE, SPBS _MASTER

The VALUESET control statement does not contain a text field, so it
has the'same format as the LlSTBOX statement.

WC_VALUESET
WS_VALUESET, WS_TABSTOP, WS_VISIBLE

Examples: The following is a complete example of a DIALOG statement:

DLGTEMPLATE errmess
BEGIN

DIALOG "Disk Error", 100, 10, 10, 300, 110
BEGIN

END
END

CTEXT "Select One:", 1, 10, 80, 280, 12
RADIOBUTTON "Retry", 2, 75, 50, 60, 12
RADIOBUTTON "Abort", 3, 75, 30, 60, 12
RADIOBUTTON "Ignore", 4, 75, 10, 60, 12

This is an example of a WINDOWTEMPLATE statement that is used to define a specific kind
of window frame. Calling Load Dialog with this resource automatically creates the frame
window, the frame controls, and the client window (of class MyClientClass).

WINDOWTEMPLATE wind1
BEGIN

FRAME "My Window", 1, 10, 10, 320, 130, WS_VISIBLE,
FCF_STANDARD I FCF_VERTSCROLL

BEGIN
WINDOW"", FlD_CLIENT, 0, 0, 0, 0, "MyClientClass",

style
END

END

31.-34 PM Programming Reference Vol II

This example creates a resource template for a parallel dialog identified by the constant
parallel1. It includes a frame with a title bar, a system menu, and a dialog-style border. The
parallel dialog has three auto radio buttons in it.

DLGTEMPLATE parallel1
BEGIN

DIALOG "Parallel Dialog", I, 50, 50, 180, 110
CTLDATA FCF_TITLEBAR I FCF_SYSMENU I FCF_DLGBORDER
BEGIN

END
END

AUTORADIOBUTTON "Retry", 2, 75, 80, 60, 12
AUTORADIOBUTTON "Abort", 3, 75, 50, 60, 12
AUTORADIOBUTTON "Ignore", 4, 75, 30, 60, 12

Resource (.RES) File Specification
The format for the .RES file is:

(/TYPE NAME FLAGS SIZE BYTES/)+

Where:

TYPE is either a null-terminated string or an ordinal, in which instance the first byte is
OxFF followed by an INT that is the ordinal.

/* Predefined resource types */
#define RT_POINTER 1
#define RT_BITMAP 2
#define RT_MENU 3
#define RT_DIALOG 4
#define RT_STRING 5
#define RT_FONTDIR 6
#define RT_FONT 7
#define RT_ACCELTABLE 8
#define RT_RCDATA 9
#define RT_DLGINCLUDE 11
#define RT_FKALONG 17
#define RT_HELPTABLE 18

NAME is the same format as TYPE. There are no predefined names.

Chapter 31. Resource Files 31-35

FLAGS is an unsigned value containing the memory manager flags:

#define NSTYPE 0x0007 /* Segment type mask */
#define NSCODE 0x0000 /* Code segment */
#define NSDATA 0x0001 /* Data segment */
#defi ne NSITER 0x0008 /* Iterated segment flag */
#define NSMOVE 0x0010 /* Moveable segment flag */
#define NSPURE 0x0020 /* Pure segment flag */
#define NSPRELOAD 0x0040 /* Preload segment flag */
#define NSEXRD 0x0080 /* Execute-only (code segment), */

/* or read-only (data segment) */
#defi ne NSRELOC 0x0100 /* Segment has relocations */
#define NSCONFORM 0x0200 /* Segment has debug info */
#define NSDPL 0x0C00 /* 286 DPL bits */
#define NSDISCARD 0x1000 /* Discard bit for segment */
#defi ne NS32BIT 0x2000 /* 32-BIT code segment */
#define NSHUGE 0x4000 /* Huge memory segment */

SIZE is a LONG value defining how many bytes follow in the resource.

BYTES is the stream of bytes that makes up the resource.

Any number of resources can appear one after another in the .RES file.

31-36 PM Programming Reference Valli

Chapter 32. Code Pages

The initialization file contains country information relating to date, time, and numeric formats.
It does not contain code-page information; this is obtained from the CONFIG.SYS file.

Applications start with the default code page. The default code page is set when the
operating system is installed. It can be changed subsequently either by reinstalling the
operating system or by editing the COUNTRY statement in the CONFIG.SYS file.

A GPI presentation space inherits the code page of the process that created it. The code
page changes only when the process calls GpiSetCp

Windowed PM Applications
Windowed PM applications allow the code-page calls to use any of the supported ASCII
code pages. These are:

Canadian-French
Desktop Publishing
Iceland
Latin 1 Multilingual
Latin 2 Multilingual
Nordic
Portuguese
Turkey
U.S. (IBM PC)

Char. Set

993
1146
991
980
982
995
990
987
919

Code Page

863
1004
861
850
852
865
860
857
437

Code page 1004 is compatible with Microsoft** Windows**.

© Copyright IBM Corp. 1994 32-1

The following EBCDIC code pages, based on character set 697, are also available for output:

Char. Set Code Page

Austrian/German 697 273
Belgian 697 500
Brazil 697 037
Czechoslovakia 959 870
Danish/Norwegian 697 277
Finnish/Swedish . 697 278
French 697 297
Hungary 959 870
Iceland 697 871
International 697 500
Italian 697 280
Poland 959 870
Portuguese 697 037
Spanish 697 284
Turkey 1152 1026
U.K.-English 697 285
U.S.-English 697 037
Yugoslavia 959 870

Note: Code pages 274 (Belgian) and 282 (Portuguese) can be used to provide access to
old data.

The operating system provides the following additional code-page setting and query calls for
the supported ASCII and EBCDIC code pages. These calls work independently of the
CONFIG.SYS file.

GpiSetCp
GpiQueryCp
GpiCreateLogFont
WinSetCp
WinQueryCp

Sets the code page for GPI.
Queries the code page for GPI.
Creates fonts in a code page.
Sets the code page for a message queue.
Queries the code page for a message queue.

WinQueryCpList creates a list of code pages supported by the operating system.

Text entered in a 'dialog box is supplied to the application in the code page of the queue
('queue code page'). If possible, the code page of a resource (for example, a menu or dialog
box) should match the code page of the queue. In general, code page 850 is the best
choice for both an application and its resources.

Applications should be able to process data from a variety of sources. Because code page
850 contains most of the characters in other supported code pages, this is usually the best
choice for the queue code page.

32-2 PM Programming Reference Vol II

OS/2 Code Page Options for PM Applications

App 1 i cat i on------------,

DosSetProcessCp (see note 1)----.
Set code page for this process
(keyboard/display not changed).

r-WinQuerYCPList (see note 2)
Query list of supported code pages.

CONFIG.SYS
contains the
default code
page set by
CODEPAGE=

WinSetCp, WinQueryCp (see note 1)
Set or query code page for
translating incoming messages
(keystrokes).

piSetCp, GpiQueryCp (see note 2)
Set or query default GPI code page.

~KeYbOard

I~I Message B-- queue

r:"PicreateLOgFont (see note 2)
Create font in a code page.

WinCpTranslateChar (see note 2)
WinCpTranslateString (see note 2)
Convert character or string from
one code page to another.

-I----+Display

.4--~~Disk

'---------+---.LAN or host

Note 1: Either of the two ASCII code pages specified in CONFIG.SYS.
Code page 1004 is also supported.

Note 2: Any supported ASCII or EBCDIC code page as reported by
WinQueryCpList.
Code page 1004 is also supported.

Figure 32-1. OS/2 Code Page Options for PM Applications

Chapter 32. Code Pages 32-3

OS/2 Font Support for Multiple Code Pages
The operating system supports multiple code pages for text input and output. A single font
resource is used to support all the code pages. This section describes the font resource
format.

Font Code-Page Functions
Many of the characters required by each code page are common; for example, the first 128
characters of all the ASCII code pages are identical. This set of characters is called the
Universal Glyph List (UGL). A code page is simply a set of pOinters into the UGL.

As the characters in every font are in the same order, only one set of code-page translation
tables is necessary.

Note: The fonts of Microsoft Windows support only code page 1004.

Font Layout

32-4

The following table lists the full character set in the order in which the characters occur in the
multi-code-page font. Characters are listed in order of their universal glyph list (UGL)
number; the graphic character global identifier (GCGID) and a description of each character
are also given.

UGL GCGID Description
SSOOOOOO Smiling face

2 S8010000 Smiling face, reverse image
3 SS020000 Heart suit symbol
4 SS030000 Diamond suit symbol
5 SS040000 Club suit symbol
6 SS050000 Spade suit symbol
7 SM570000 Bullet
8 SM570001 Bullet, reverse image
9 8M750000 Open circle

10 SM750002 Open circle, reverse image
11 SM280000 Male symbol
12 SM290000 Female symbol
13 8M930000 Musical note
14 SM91 0000 Two musical notes
15 SM690000 Sun symbol
16 SM590000 Forward arrow indicator
17 SM630000 Back arrow indicator
18 SM760000 Up-down arrow
19 8P330000 Double exclamation point
20 SM250000 Paragraph symbol (USA)
21 SM240000 Section symbol (USA), paragraph (Europe)
22 SM700000 Solid horizontal rectangle
23 SM770000 Up-down arrow, perpendicular
24 SM320000 Up arrow
25 SM330000 Down arrow
26 SM31 0000 Right arrow
27 SM300000 Left arrow
28 SA420000 Right angle symbol

PM Programming Reference Vol II

UGL GCGID Description
29 SM780000 Left-right arrow
30 SM600000 Solid triangle
31 SV040000 Solid triangle, inverted
32 SP010000 Space
33 SP020000 Exclamation point
34 SP040000 Quotation marks
35 SM010000 Number sign
36 SC030000 Dollar sign
37 SM020000 Percent sign
38 SM030000 Ampersand
39 SP050000 Apostrophe
40 SP060000 Left parenthesis
41 SP070000 Right parenthesis
42 SM040000 Asterisk
43 SAO 1 0000 Plus sign
44 SP080000 Comma
45 SP100000 Hyphen/minus sign
46 SP110000 Period/full stop
47 SP120000 Slash
48 ND100000 Zero
49 ND010000 One
50 ND020000 Two
51 ND030000 Three
52 ND040000 Four
53 ND050000 Five
54 ND060000 Six
55 ND070000 Seven
56 ND080000 Eight
57 ND090000 Nine
58 SP130000 Colon
59 SP140000 Semicolon
60 SA030000 Less than sign/greater than (arabic)
61 SA040000 Equal Sign
62 SA050000 Greater than sign/less than (arabic)
63 SP150000 Question mark
64 SM050000 At sign
65 LA020000 A capital
66 LB020000 B capital
67 LC020000 C capital
68 LD020000 D capital
69 LE020000 E capital
70 LF020000 F capital
71 LG020000 G capital
72 LH020000 H capital
73 Ll020000 I capital
74 LJ020000 J capital
75 LK020000 K capital
76 LL020000 L capital
77 LM020000 M capital
78 LN020000 N capital
79 L0020000 o capital
80 LP020000 P capital
81 LQ020000 Q capital

Chapter 32. Code Pages 32-5

UGL GCGID Description
82 LR020000 R capital
83 L8020000 S capital
84 LT020000 T capital
85 LU020000 U capital
86 LV020000 V capital
87 LW020000 W capital
88 LX020000 X capital
89 LY020000 Y capital
90 LZ020000 Z capital
91 8M060000 Left bracket
92 8M070000 Backslash
93 8M080000 Right bracket
94 80150000 Circumflex Accent
95 8P090000 Underline, continuous underscore
96 80130000 Grave accent
97 LAO 1 0000 a small
98 LB010000 b small
99 LC010000 c small

100 L0010000 d small
101 LE010000 e small
102 LF010000 f small
103 LG010000 g small
104 LH010000 h small
105 Ll010000 i small
106 LJ010000 j small
107 LK010000 k small
108 LL010000 I small
109 LM010000 m small
110 LN010000 n small
111 L0010000 o small
112 LP010000 P small
113 LQ010000 q small
114 LR010000 r small
115 L8010000 s small
116 LT010000 t small
117 LU010000 u small
118 LV010000 v small
119 LW010000 wsmall
120 LX010000 x small
121 LY010000 Y small
122 LZ010000 z small
123 8M110000 Left brace
124 8M130000 Vertical line, logical OR
125 8M140000 Right brace
126 80190000 Tilde
127 8M790000 House
128 LC420000 C cedilla capital
129 LU170000 U diaeresis small
130 LE110000 E acute small
131 LA150000 A circumflex small
132 LA170000 A diaeresis small
133 LA130000 A grave small
134 LA270000 A overcircle small

32-6 PM Programming Reference Vol II

UGL GCGID Description
135 LC41 0000 C cedilla small
136 LE150000 E circumflex small
137 LE170000 E diaeresis small
138 LE130000 E grave small
139 Ll170000 I diaeresis small
140 Ll150000 I circumflex small
141 Ll130000 I grave small
142 LA180000 A diaeresis capital
143 LA280000 A overcircle capital
144 LE120000 E acute capital
145 LA510000 AE diphthong small
146 LA520000 AE diphthong capital
147 L0150000 o circumflex small
148 L0170000 o diaeresis small
149 L0130000 o grave small
150 LU150000 U circumflex small
151 LU130000 U grave small
152 LY170000 Y diaeresis small
153 L0180000 o diaeresis capital
154 LU180000 U diaeresis capital
155 L061 0000 o slash small
156 SC020000 Pound sterling sign
157 L0620000 o slash capital
158 SA070000 Multiply sign
159 SC070000 Florin sign
160 LA110000 A acute small
161 Ll110000 I acute small
162 L0110000 o acute small
163 LU110000 U acute small
164 LN190000 N tilde small
165 LN200000 N tilde capital
166 SM21 0000 Ordinal indicator, feminine
167 SM200000 Ordinal indicator, masculine
168 SP160000 Question mark, inverted
169 SM530000 Registered trademark symbol
170 SM660000 Logical NOT, end of line symbol
171 NF010000 One-half
172 NF040000 One-quarter
173 SP030000 Exclamation point, inverted
174 SP170000 Left angled quotes
175 SP180000 Right angled quotes
176 SF140000 Fill character, light
177 SF150000 Fill character, medium
178 SF160000 Fill character, heavy
179 SF110000 Center box bar vertical
180 SF090000 Right middle box side
181 LA120000 A acute capital
182 LA160000 A circumflex capital
183 LA140000 A grave capital
184 SM520000 Copyright symbol
185 SF230000 Right box side double
186 SF240000 Center box bar vertical double
187 SF250000 Upper right box corner double

Chapter 32. Code Pages 32-7

UGL GCGID Description
188 SF260000 Lower right box corner double
189 SC040000 Cent sign
190 SC050000 Yen sign
191 SF030000 Upper right box corner
192 SF020000 Lower left box corner
193 SF070000 Middle box bottom
194 SF060000 Middle box top
195 SF080000 Left middle box side
196 SF100000 Center box bar horizontal
197 SF050000 Box intersection
198 LA190000 A tilde small
199 LA200000 A tilde capital
200 SF380000 Lower left box corner double
201 SF390000 Upper left box corner double
202 SF400000 Middle box bottom double
203 SF41 0000 Middle box top double
204 SF420000 Left box side double
205 SF430000 Center box bar horizontal double
206 SF440000 Box intersection double
207 SC010000 International currency symbol
208 LD630000 eth Icelandic small
209 LD620000 D stroke capital, Eth Icelandic capital
210 LE160000 E circumflex capital
211 LE180000 E diaeresis capital
212 LE140000 E grave capital
213 Ll610000 I dotless small
214 Ll120000 I acute capital
215 Ll160000 I circumflex capital
216 Ll180000 I diaeresis capital
217 SF040000 Lower right box corner
218 SF010000 Upper left box corner
219 SF61000b Solid fill character
220 SF570000 Solid fill character, bottom half
221 SM650000 Vertical line, broken
222 Ll140000 I grave capital
223 SF600000 Solid fill character,top half
224 L0120000 o acute capital
225 LS61 0000 Sharp s small
226 L0160000 o circumflex capital
227 L0140000 o grave capital
228 L0190000 o tilde small
229 L0200000 o tilde capital
230 SM170000 Micro symbol
231 LT630000 Thorn Icelandic small
232 LT640000 Thorn Icelandic capital
233 LU120000 U acute capital
234 LU160000 U circumflex capital
235 LU140000 U grave capital
236 LY110000 Y acute small
237 LY120000 Y acute capital
238 SM150000 Overline
239 SD110000 Acute accent
240 SP320000 Syllable hyphen

32-8 PM Programming Reference Vol II

UGL GCGID Description
241 SA020000 Plus or minus sign
242 SM100000 Double underscore
243 NF050000 Three-quarters
244 SM250000 Paragraph symbol (USA)
245 SM240000 Section symbol (USA), paragraph (Europe)
246 SA060000 Divide sign
247 SD41 0000 Cedilla (or sedila) accent
248 SM190000 Degree symbol
249 SD170000 Diaeresis, umlaut accent
250 SD630000 Middle dot
251 ND011000 One superscript
252 ND031 000 Three superscript
253 ND021 000 Two superscript
254 SM470000 Solid square, histogram, square bullet
255 SP300000 Required space
256 SC060000 Peseta sign
257 SM680000 Start of line symbol
258 SF190000 Right box side double to single
259 SF200000 Right box side single to double
260 SF21 0000 Upper right box corner single to double
261 SF220000 Upper right box corner double to single
262 SF270000 Lower right box corner single to double
263 SF280000 Lower right box corner double to single
264 SF360000 Left box side single to double
265 SF370000 Left box side double to single
266 SF450000 Middle box bottom single to double
267 SF460000 Middle box bottom double to single
268 SF470000 Middle box top double to single
269 SF480000 Middle box top single to double
270 SF490000 Lower left box corner double to single
271 SF500000 Lower left box corner single to double
272 SF51 0000 Upper left box corner single to double
273 SF520000 Upper left box corner double to single
274 SF530000 Box intersection single to double
275 SF540000 Box intersection double to single
276 SF580000 Solid fill character, left half
277 SF590000 Solid fill character, right half
278 GA010000 Alpha small
279 GG020000 Gamma capital
280 GP010000 Pi small
281 GS020000 Sigma capital
282 GS010000 Sigma small
283 GT010000 Tau small
284 GF020000 Phi capital
285 GT620000 Theta capital
286 G0320000 Omega capital
287 GD010000 Delta small
288 SA450000 Infinity symbol
289 GF010000 Phi small
290 GE010000 Epsilon small
291 SA380000 Intersection, logical product
292 SA480000 Indentity symbol, almost equal
293 SA530000 Greater than or equal sign

Chapter 32. Code Pages 32-9

UGL GCGID Description
294 8A520000 Less than or equal sign
295 88260000 Upper integral symbol section
296 88270000 Lower integral symbol section
297 8A700000 Nearly equals symbol
298 8A790000 Product dot
299 8A800000 Radical symbol
300 LN011000 N small superscript
301 80310000 Macron accent
302 80230000 Breve accent
303 80290000 Overdot accent (over small Alpha)
304 80270000 Overcircle accent
305 80250000 Double acute accent
306 80430000 Ogonek accent
307 80210000 Caron accent
308 8P190000 Left single quote
309 8P200000 Right single quote
310 8P21 0000 Left double quotes
311 8P220000 Right double quotes
312 88680000 Endash
313 8M900000 Emdash
314 80150000 Circumflex accent
315 80190000 Tilde accent
316 8P260000 8ingle quote on baseline (German lower)
317 8P230000 Left lower double quotes
318 8V520000 Ellipsis
319 8M340000 Dagger footnote indicator
320 8M350000 Double dagger footnote indicator
321 80150100 Circumflex accent (over small alpha)
322 8M560000 Permille symbol
323 L8220000 8 caron capital
324 8P270000 French single open quote
325 L0520000 OE ligature capital
326 80190100 Tilde accent (over small alpha)
327 8M540000 Trademark symbol
328 L821 0000 s caron small
329 8P280000 French single close quote
330 L051 0000 oe ligature small
331 LY180000 Y diaeresis capital
332 LG230000 g Breve 8mall
333 LG240000 G Breve Capital
334 Ll300000 I Overdot Capital
335 L841 0000 s Cedilla 8mall
336 L8420000 8 Cedilla Capital
337 LA230000 a Breve 8mall
338 LA240000 A Breve Capital
339 LA430000 a Ogonek 8mall
340 LA440000 A Ogonek Capital
341 LC110000 c Acute 8mall
342 LC120000 C Acute Capital
343 LC21 0000 c Caron 8mall
344 LC220000 C Caron Capital
345 L021 0000 d Caron 8mall
346 L0220000 o Caron Capital

32-10 PM Programming Reference Vol II

UGL GCGID Description
347 LD61 0000 d Stroke Small
348 LE21 0000 e Caron Small
349 LE220000 E Caron Capital
350 LE430000 e Ogenek Small
351 LE440000 E Ogonek Capital
352 LL110000 I Acute Small
353 LL120000 L Acute Capital
354 LL210000 I Caron Small
355 LL220000 L Caron Capital
356 LL61 0000 I Stroke Small
357 LL620000 L Stroke Capital
358 LN110000 n Acute Small
359 LN120000 N Acute Capital
360 LN21 0000 n Caron Small
361 LN220000 N Caron Capital
362 L0250000 o Double Acute Small
363 L0260000 o Double Acute Capital
364 LR110000 r Acute Small
365 LR120000 R Acute Capital
366 LR21 0000 r Caron Small
367 LR220000 R Caron Capital
368 LS110000 s Acute Small
369 LS120000 S Acute Capital
370 LT21 0000 t Caron Small
371 LT220000 T Caron Capital
372 LT41 0000 t Cedilla Small
373 LT420000 T Cedilla Capital
374 LU250000 u Double Acute Small
375 LU260000 U Double Acute Capital
376 LU270000 u Overcircle Small
377 LU280000 u Overcircle Capital
378 LZ110000 z Acute Small
379 LZ120000 Z Acute Capital
380 LZ210000 z Caron Small
381 LZ220000 Z Caron Capital
382 LZ290000 z Overdot Small
383 LZ300000 Z Overdot Capital

Chapter 32. Code Pages 32-11

ASCII Code Pages

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F--+-B

0 -0 ~ 0 @ p X P ? ? ? L .J.L a. X ...

1 -1 g ! 1 A Q a q ? ? ? {j ~ - b # -r

2 -2 -t " 2 B R b r ? ? ? n~ II Q / T

3 -3 , " # 3 C S c s ? ? ? I ~ lL f & ..

4 -4 + ? $ 4 D T d t ? ? ? -1 - b S r
5 -5 tit ? % 5 E U e u ? ? ? ~ + F s J

6 -6 t - & 6 F V f ? ? ~ 11 ~ m 9 v II 9

7 -7 • t
-

,
7 G W g w ? ? 2 11 I~ 11- t Z

8 -8 a t (8 H X h x ? ? ? =j ~ =F 0 0

9 -9 0 ~) 9 I Y i y ? ? I ~I Ii
.-J R •

10 -A til ~ * J Z j z ? ? I II ~L L . - r-
11 -B cJ ~ + K [k { ? ? =J1 - • w 1 , II

12 -C C? < L \ 1 I ? ? dJ I~ -B n
L ,

13 -D) ~ - = M] m } ? ¥ ? JJ - I ¢ 2

14 -E fi A > N
A X ? Pt ? d ~L I e • n II

15 -F -¢- ". / ? 0 U ?
0

? ----L - 0 - 0 a I

Figure 32-2. US-English: ASCII Code Page 437

32-12 PM Programming Reference Vol II

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-~B

0 -0 ~ 0 @ p X p ? ? ? L > ? -...

1 -1 ~ ~ ! 1 A Q a q ? ? ?)~ ---L b # -

2 -2 6) t " 2 B R b r ? ? ? W T ? ? =
3 -3 ~ " # 3 C S c s ? ? ? I ~ ? ? ..
4 -4 + ? $ 4 D T d t ? ? ? -i - ? ? ?

5 -5 4 ? % 5 E U e u ? ? ? ? + 1 ? ?

6 -6 ~ - & 6 F V f v ? ? !! ? ? ? m 0

0

7 -7 • t ,
7 G W g w ? ? 2 ?' ? ? 0 =

-

8 -8 a t (8 H X h x ? ? ? + ~ ? 0 0

9 -9 0 ~) 9 I Y 1 Y ? ? . ~I ~ ?
.. , Ii

10 -A • ~ * J Z j z ? ? I

"
.-JL ? . - r-

11 -B c) ~ + K [k { ? ? =jl - • ? 1 , II

12 -C S? L \ 1 I ? ? dJ IF
~ 3

L , < - y

13 -D) ~ - = M] m } ? ? ? ? - I y- i 2 - I

14 -E fi ... > N A X ? ? ¥
.-JL ? - • n x II

15 -F -Q- .- / ? 0 0 - 6 ? a ? I n - ,

Figure 32-3. Latin 1 Multilingual: ASCII Code Page 850

Chapter 32. Code Pages 32-13

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

2~t 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-
0 -0 ~ X

.,. L 0 @ p P ? ? ? ... d ? ? ,.

1 -1 a ,

\j ~ b ! 1 A Q a q ? L ? " -

2 -2 -t " 2 B R b r ? 1 ? IU T D ? £.

3 -3 ~ " I ~
, v .. # 3 C S c s ? ? ? ? N

4 -4 + ? $ 4 D T d t ? ? ~ --1 a. n --

5 -5 ~ ? % 5 E U e u u L '1 ? + N n ?

6 -6 ~ - -
& 6 F V f v C 1 Z ? A ? S 0

0

7 -7 • t ,
7 G W g w ? S z E - ? = a s

-

8 -8 a t (8 H X h x I § 1? ~ ~ e R 0

9 -9 0 ~) 9 I Y i ? ? ~I ~ ?
..

y tt Ii
10 -A • ~ * J Z j z 6 ? I

"
-.JL . - I r

11 -B cJ
~ • ~ + K [k { (5 T Z il

- u u , II

12 -C ¥
~

::dJ I~
.....

L , < L \ 1 I ? t C -y R

13 -D .P ~ - = M] ill } Z L s Z - T Y r -, ,

14 -E fi ~ > N A- n X ? x ? -.JL U t • z II

15 -F -¢- T / ? 0 0
- lJ C c ? I 0 - ,

Figure 32-4. Latin 2 Multilingual: ASCII Code Page 852

32-14 PM Programming Reference Vol II

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F--+-B

0 -0 ~ 0 @ p X P ? ? ? L Q ? ? ...

1 -1 a ~ ! 1 A Q a q ? ? ? }j ~ ~ b ±

2 -2 e t " 2 B R b r ? ? ? HI T ? ?

3 -3 ~ " # 3 C S c s ? ? ? I ~ ? ? ..
4 -4 + ? $ 4 D T d t ? ? ? -1 - ? ? ?

5 -5 4 ? % 5 E U e u ? ? ? ? + ? ?

6 -6 ~ - & 6 F V f v ? ? G ? ? ? m 0

0

7 -7 • t ,
7 G W g w ? ? g ? ? ? =

-

8 -8 a t (8 H X h x ? i ? + l1:: ? x 0

9 -9 0 t) 9 I Y i ? ? 0 ~I ..J ?
..

y , Ii
10 -A • ----. * J Z j z ? ? I II .JL ? . - I

11 -B c) ..- + K [k { ? ? ~
- • ? 1 , II

12 -C S? L , < ,L \ 1 I ? ? :::!J Ip - ? 3

13 -D) ~ - = M] m } 1 ? ? ? - I ? 2 - I

14 -E fi • > N A n X ? ~ ? ¥
.JL ? ? • II

15 -F -¢- ~ / ? 0 0 6 ? ? I D - ,
- ~

Figure 32-5. Turkey: ASCII Code Page 857

Chapter 32. Code Pages 32-15

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E~ F-"B

0 -0 ~ 0 @ p ~ p ? ? ? L ~ a X ...

1 -1 g ! 1 A Q a q ? ? ? H~ ~ - b # -r

2 -2 -t " 2 B R b r ? ? ? H! II Q / T

3 -3 , " # 3 C S c s ? ? ? I ~ U.- f & ..
4 -4 + ? $ 4 D T d t . ? ? ? ~ - b 5 r
5 -5 tit ? % 5 E U e u ? ? ? ~ + F s J

6 -6 ~ - & 6 F V f ? ? !! -11 F m ~ v rI ~

7- -7 • t ,
7 G W g w ? ? 2 Il I~ -#- t Z -

8 -8 a t (8 H X h x ? ? ? =j lb =F 0 0

9 -9 0 t) 9 I Y . i Y ? ? ? ~I If
::J R •

10 -A • ~ * J Z j z ? ? 'I II ~L L . - r-
11 -B cJ .- + K [k { ? ? ~

- • w 1 , II

12 -C 9 < L \ 1 I ? ? =:!J IF -B n
L ,

13 -D ~ ~ - = M] m } ? ? ? JJ - I ¢ 2

14 -E fi ~ > N
A X ? Pts ? d ~L I e • n II

15 -F -¢- T / ? 0 0 LJ ? ? ? I
~ - 0 -

Figure 32-6. Portuguese: ASCII Code Page 860

32-16 PM Programming Reference Vol II

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F--tB

0 -0 ~ 0 @ p ~ P ? ? ? L ~ a X ...

1 -1 a ~ ! 1 A Q a q ? ? ? jj ~ - b # -r
2 -2 -t " 2 B R b r ? ? ? HI II Q / T

3 -3 ~ " # 3 C S c s ? ? ? I ~ lL f & ..
4 -4 + ? $ 4 D T d t ? ? A --1 - b S r
5 -5 tit ? % 5 E U e u ? 0 I ~ + F s J

6 -6 ~ - & 6 F V f ? ? ? ~I F m 0 v rI 0

t ,
I~ * t 7 -7 • ,

7 G W g w ? y ? 11 Z -

8 -8 a t ?
,

? ~ ll::: =F 0 0 (8 H X h x y

9 -9 0 t) 9 I Y i y ? ? I ~I Ii
-.J R •

10 -A [I] ----. * J Z j z ? ? I IIJL L . - I

11 -B cJ ~ + K [k { ? =jl
- • w 1 , - II

12 -C S? L , < L \ 1 I > ? :dJ Ip -B n

13 -D) ~ - = M] m } 6 ? ? ~ - I ¢ 2

14 -E fi ... > N
A X n ? Pts ? dJL I e • II

15 -F -¢- T / ? 0 0 LJ ? a ? I
-L - 0 -

Figure 32-7. Iceland: ASCII Code Page 861

Chapter 32. Code Pages 32-17

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-"'B

0 -0 ~ 0 @ p ~ ? ? I L ~ a X p I ...

1 -1 g ! 1 A Q a q ? ?
, }j ~ - b # ---r

2 -2 e t " 2 "B R b r ? ? ? ill T II Q /
3 -3 ~ " # 3 C S c s ? ? ? I ~ U.- f & ..

4 -4 + ? $ 4 D T d t ? ? > ~ - b 5 r
5 -5 tit ? % 5 E U e u ? ? = ~ + F s J

6 -6 ~ - & 6 F V f ? ? 3 11 F m · v II ·
7 -7 • t ,

7 G W g w ? ? - 11 I~ -tt- t Z -

8 -8 a t (8 H X h x ? n ? ~ ~ =F 0 0

9 -9 0 t) 9 I Y 1 Y ? ? I ~I II
~ R •

10 -A • ~ * J Z j z ? ? I II ~L L · - r-
11 -B c) .- + K [k { ? ? =jl - • W 1 , II

12 -C ~ < L \ 1 I ? ? dJ Ip -B n
L ,

13 -D .j) ~ - = M] m } = ? JJ - I ¢ 2

14 -E fi .. > N
A X ? ? ? d ~L I e • n II

15 -F P- T I ? 0 LJ ?
0

? -.L -0
- 0 a I

Figure 32-8. Canadian-French: ASCII Code Page 863

32-18 PM Programming Reference Vol II

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F--+-B

0 -0 ~ 0 @ p ~ P ? ? ? L -.lL a X ...

1 -1 Q ! 1 A Q a q ? ? ? H~ ~ - b # --r
2 -2 -t " 2 B R b r ? ? ? !1I II Q / T

3 -3 ~ " # 3 C S c s ? ? ? I ~ lL f & ..
4 -4 + ? $ 4 D T d t ? ? ? --1 - b 5 r
5 -5 4- ? % 5 E U e u ? ? ? ~ + F s J

6 -6 ~ - & 6 F V f ? ? ~ 11 ~ m · v [I ·
7 -7 • t ,

7 G W g w ? ? Q Il I~ --H- t Z -

8 -8 a t (8 H X h x ? ? ? =j Lb =f= 0 0

9 -9 0 t) 9 I Y 1 Y ? ? I ~I II
-.J R •

10 -A [I] -----. * J Z J z ? ? I II ~L L · - r-
11 -B cf ~ + K [k { ? ? ~

- • w 1 , II

12 -C S2 < L \ 1 I ? ? ~ Ip -B n
L ,

13 -D)) ~ - = M] m } ? ? ? ~ - I ¢ 2

14 -E fi .. > N
A X ? Pt ? d ~L I e • n II

15 -F -¢- T / ? 0 0 ?
0 n ~ -0

-
0 a I

Figure 32-9. Norwegian: ASCII Code Page 865

Chapter 32. Code Pages 32-19

--.. 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B .. C- D- E- F-{.

-0 (SP) 0 @ p , (RSP) 0
? D ? 0 p

-1 ! 1 A Q a q ,
? b ? ? ? ?

-2 " 2 B R b
,

? 2 ? ? ? ? r ,

-3 # 3 C S c s ? ? 3 ? ? ? ?

-4 -
$ 4 D T d t ? ? D

,
? ? ? ?

-5
~

% 5 E U e u ... • ¥ ~ ? ? ? ?

-6
.

f t I
'IT ? ? ? & 6 F V v ? I ?

-7 I 7 G W g w ± ? § . ? x ?

-8 0 A '" ..
(8 H X h x "" ? ? ? ?

-9) 9 I Y i % TM © 1 ? ? ? ? Y

-A " * J Z j z S s ~ Q ? ? ? ?

-B , + , K [k { < > ? ? ? ? ? ?

-C v
, < L \ 1 I ? ? I X ? ? ? ?

-D - = M] m } (3HY) ~ ? Y
,

? y

-E A
'" > N n ® % ? p ? b

-F / ? 0 0
? ? ? ? ? ? -

Figure 32-10. Desktop Publishing: ASCII Code Page 1004

32 ... 20 PM Programming Reference Vol II

EBCDIC Code Pages

.... 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-~

-0 &
0

{ } \ 0 - (2S 0 fJ ¢

-1 e / E a j
- [A J 1

-2 a e A E b k s ¥ B K S 2

-3 it e A E c 1 t . C L T 3

-4 a e A E d m u © D M U 4

-5 a i A 1 e n v § E N V 5

-6 a i A t f 0 w ~ F 0 W 6

-7 a 1 A I g p x % G P X 7

-8 ~ 1 C i h q y Yz H Q y 8

-9 fi 6 N ,
1 r z % I R Z 9

-A $! I ~ /'\. 1 2 3
I « j -

-B £ # » 2
i.,] 0 u 6 -0 ,

-C < * % @ 0 re D - 0 ii 6 U

-D ()
, , y .. 0 u 0 U

-
y :,

-E + > , = b IE P
,

6 U 6 U

-F I I ? " + a ® v 0 y 6 EO -
Figure 32-11. US-English: EBCDIC Code Page 037

Chapter 32. Code Pages 32·21

~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F--}

-0 & - ? ?
0

fl ? ? ? ? 0

-1 ? / ? a j ? ? A J 1

-2 ? ? ? ? b k s ¥ B K S 2

-3 { ? [? c 1 t . C L T 3

-4 ? ? ? ? d m u © D M U 4

-5 ? ? ? ? e n v @ E N V 5

-6 ? ? ? ? f 0 w ,-r F 0 W 6

-7 ? ? ? ? g P x ~ G P X 7

-8 ? ? ? ? h q y ~ H Q y 8

-9 ?
~ ? , i r z % I R Z 9

-A ? ? ? ? ~
, . ? I ?

1 2 3

-B $ # ?
Q

? I ? ? ? ? ,

-C < * % § 0 ? D - ,
} \]

-D ()
, , , ..

? ? ? ?
-

y ~ y

-E + > = b ? P
,

? ? ? ? ,

-F ! A ? " 7 n ® v ? ? ? EO

Figure 32-12. Austrian/German: EBCDIC Code Page 273

32-22 PM Programming Reference Vol II

~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-~

-0 & ? ?
0

? ? ? ? 0 - ~

-1 { / ? j
00

? A J 1 a

-2 ? ? ? ? b k s ¥ B K S 2

-3 ? ? ? ? c 1 t . C L T 3

-4 @ } ? ? d m u © D M U 4

-5 ? ? ? ? e n v § E N V 5

-6 ? ? ? ? f 0 w ~ F 0 W 6

-7 ? ? ? ? g p x ~ G P X 7

-8 \ ? ? ? h q y % H Q y 8

-9 ? ? ? ,
1 r z % I R Z 9

-A [[? ? ~ ? I ?
1 2 3

-B $ # ? Q ? I ? ? ? ? ,

-C < * % ? (5 ? D - ? ? ? ?

-D ()
, , , "-'

?
,

? ?
-

y '"
y

-E + > = b ? P
,

? ? ? ? ,

-F ! A ? " ~ n ® v ? ? ? EO

Figure 32-13. Belgian: EBCDIC Code Page 274 (supported for migration purposes)

Chapter 32. Code Pages 32-23

~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-...

-0 & I @
0 0

\ 0 - I ~ ¢ re a

-1 e / E a j ii £ A J 1

-2 a e A E b k s ¥ B K S 2

-3 a e A E c 1 t . C L T 3

-4 a e A E d m u· © D M U 4

-5 a i A f e n v § E N V 5

-6 a i A i f 0 w ,-r F 0 W 6

-7 { 1 $ I g p x ~ G P X 7

-8 ~ 1 C; I h q y ~ H Q y 8

-9 fi B N , i r z % I R Z 9

-A # a ~
!!

j I - 1 2 3 «

-B A .tE » Q
~ I 0 t1 6 -0 ,

-C < * % 0 6 } D
- 0 - {) D

-D ()
, , y .. 0 u 0 U

-
y <!>

-E + , > = b [p ,
6 U 6 U

-F ! A ? " +] ® v 6 y 6 EO -
Figure 32-14. Danish/Norwegian: EBCDIC Code Page 277

32-24 PM Programming Reference Vol II

~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-t

-0 & ? ?
0

? ? ? ? 0 - fJ
-1 { / ? j

..
? A J 1 a

-2 ? ? ? ? b k s ¥ B K S 2

-3 ? ? ? ? c 1 t C L T 3

-4 @ } ? ? d m u © D M U 4

-5 ? ? ? ? e n v § E N V 5

-6 ? ? ? ? f 0 w ,-] F 0 W 6

-7 ? ? ? ? g P x X G P X 7

-8 \ ? ? ? h q y Yz H Q y 8

-9 ? ? ? , i r z % I R Z 9

-A [[? ? ~ ? I ?
1 2 3

-B $ # ? Q ? I ? ? ? ? ,

-C < * % ? a ? D - ? ? ? ?

-D ()
, , ,

'" ?
,

? ?
-

y '"
y

-E + > = b ? P
,

? ? ? ? ,

-F ! A. ? " "7 n ® v ? ? ? EO

Figure 32-15. Finnish/Swedish: EBCDIC Code Page 278

Chapter 32. Code Pages 32-25

-. 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-{.

-0 & - ? ? [~ ? ? ? ? 0

-1] / ? a j ? # A J 1

-2 ? ? ? ? b k s ¥ B K S 2

-3 ? ? ? ? c 1 t . C L T 3

-4 { } ? ? d m u © D M U 4

-5 ? ? ? ? e n v @ E N V 5

-6 ? ? ? ? f 0 w ~ F 0 W 6

-7 ? ? ? ? g P x ~ G P X 7

-8 \
'"'-J

? ? h ~ H Q y 8 q y

-9 ? ? ? ? i r z % I R Z 9

-A 0
? ? ? ~ ? I ? 1 2 3

-B $? ? Q ? I ? ? ? ? ,

-C < * % § 0 ? D - ? ? ? ?

-D ()
, , , .. , ,

? ?
- Y ., Y

-E + > b ? P
,

? ? ? ? , =

-F ! A ? " ~ n ® v ? ? ? EO

Figure 32-16. Italian: EBCDIC Code Page 280

32-26 PM Programming Reference Vol II

~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-...

-0 & ? ?
0

fJ ? ?
,

? 0 -

-1 ? / ? a j ? ? A J 1

-2 ? ? ? ? b k s ¥ B K S 2

-3 ? ? ? ? c 1 t . C L T 3

-4 ? ? ? ? d m u © D M U 4

-5 ? ? ? ? e n v § E N V 5

-6 { ? # ? f 0 w ~ F 0 W 6

-7 ? ? ? ? g P x ~ G P X 7

-8
"-.J

? \ ? h Yz H Q y 8 q y

-9 ? ? ? , i r z % I R Z 9

-A [] ? ? ~ ? I ?
1 2 3

-B $? ?
Q ? I ? ? ? ? ,

-C < * % ? a ? D - ? ? ? ?

-D ()
, , , ..

?
,

? ?
-

y '"
y

-E + , > = b ? P } ? ? ? ?

-F ! A ? " 7 D ® v ,
? @ EO

Figure 32-17. Portuguese: EBCDIC Code Page 282 (supported for migration purposes)

Chapter 32. Code Pages 32-27

--

.... 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-.}

-0 & ? ?
0

? { } \ 0 - ~

-1 ? / ? j
..

? A J 1 a

-2 ? ? ? ? b k s ¥ B K S 2

-3 ? ? ? ? c 1 t . C L T 3

-4 ? ? ? ? d m u © D M U 4

-5 ? ? ? ? e n v § E N V 5

-6 ? ? ? ? f 0 w ~ F 0 W 6

-7 ? ? ? ? g P x ~ G P X 7

-8 ? ? ? ? h q y ~ H Q y 8

-9 ,
? # ,

i r z % I R Z 9

-A [] ? ? ~ ?
A

?
1 2 3

-B $? ? 2 ? ! ? ? ? ? ,

-C < * % @ 6 ? D - ? ? ? ?

-D ()
, , ,

'"'.J

? ? ? ?
- y '"

y

-E + > = b ? P
,

? ? ? ? ,

-F I "I ? " -A; :a ® v ? ? ? EO

Figure 32-18. Spanish: EBCDIC Code Page 284

32-28 PM Programming Reference Vol II

-+ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-...

-0 &
0

{ } \ 0 - ~ 0 ~ ¢

-1 e / E a j
- [A J 1

-2 a e A E b k s ¥ B K S 2

-3 a e A E c 1 t . C L T 3

-4 a e A E d rn u © D M U 4

-5 a i A f e n v § E N V 5

-6 a i A j f 0 w ~ F 0 W 6

-7 a 1 A I g p x ~ G P X 7

-8 ~ 1 C; I h q y k H Q y 8

-9 fi B N ,
1 r z % I R Z 9

-A $! I ~ /'.. 1 2 3
I « i -

-B £ # »
Q

~] 0 fi 6 0 ,

-C < * % @ a re D .., 6 ii 6 tJ

-D ()
, , y- .. 0 11 6 U

-
y '"

-E + , > = b .tE P
,

6 U 6 U

-F I I ? " + 0 ® v 6 y <5 EO -

Figure 32-19. UK-English: EBCDIC Code Page 285

Chapter 32. Code Pages 32-29

~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-...

-0 & ? ? [
,

? ? ? ? 0 -

-1 { / ? j
..

A J 1 a

-2 ? ? ? ? b k s ¥ B K S 2

-3 ? ? ? ? c 1 t . C L T 3

-4 @ } ? ? d m u © D M U 4

-5 ? ? ? ? e n v] E N V 5

-6 ? ? ? ? f 0 w ~ F 0 W 6

-7 ? ? ? ? g P x ~ G P X 7

-8 \ ? ? ? h q Y ~ H Q y 8

-9 ? ? ? ~ 1 r z % I R Z 9

-A 0 § ? ? ~ ? I ?
1 2 3

-B $? ?
Q ? I ? ? ? ? ,

-C < * % ? 0 ? D - ? ? ? ?

-D ()
, , ,

~

?
,

? ?
- Y '" Y

-E + > = b ? P
,

? ? ? ? ,

-F ! A ? " "7 D ® v ? ? ? EO

Figure 32-20. French: EBCDIC Code Page 297

32-30 PM Programming Reference Vol II

~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-...

-0 & @
0

{ } \ 0 - ~ fJ ¢

-1 e / E a j ,.., £ A J 1

-2 a e A E b k s ¥ B K S 2

-3 a e A E c 1 t . C L T 3

-4 a e A E d m u © D M U 4

-5 a f A f e n v § E N V 5

-6 a i A I f 0 w ~ F 0 W 6

-7 a 1 A I g p x % G P X 7

-8 ~ 1 <; I h q y k H Q y 8

-9 fi B N , i r z % I R Z 9

-A [] I ~
i I - 1 2 3

I «

-B $ # » 2
~ I 0 ft 6 0 ,

-C < * % @ 0 re D - 0 ii 6 tJ

-D ()
, , ,

00 n it 0 U y :, y
-

-E + > = b LE P
,

6 U 6 U ,

-F ! 1\ ? " + a ® v 0 y 6 EO -

Figure 32-21. International: EBCDIC Code Page 500

Chapter 32. Code Pages 32-31

.... 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-~

-0 &
v '-' 0 .

{ } \ 0 - C\.

-1 ? / ? j
r-..J

A A J 1 a

-2 ? ? ~ b k
.

B K S 2 ~ s z

-3 ? ? ? ? c 1 t T c L T 3

-4 t
0

" 11 d Z D M U 4 u m u

-5 ? ? ? ? e n v § E N V 5

-6
v

f v 6 a ? A ? 0 w z F 0 w

-7 v v v v ,
c 1 C L g P x z G P X 7

-8 ?
,
1 ? L h q

v

y Z H Q y 8

-9 ,
?

, ,
i c C

,
r z Z I R Z 9

-A [] I
, ,

?
v d v

s l S L E D

-B $ # n , N
,

? " ? " , n N u U

-C * % @ S
v

? ? < d D S ? ?

-D ()
, , .. , v , v , y t R T

- Y <> r

-E + > = r it , ? ? ? ? ,
~

-F !
A

? " " e "
§ n $ x 0 0

Figure 32-22. Czechoslovakia/Hungary/Poland/Yugoslovia: EBCDIC Code Page 870

32·32 PM Programming Reference Vol II

~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-...

-0 & ? ?
0

? b ?
,

0 - fJ
-1 ? / ? a j ? ? A J 1

-2 ? ? ? ? b k s ¥ B K S 2

-3 ? ? ? ? c 1 t . C L T 3

-4 ? ? ? ? d ill U © D M U 4

-5 ? ? ? ? e n v § E N V 5

-6 ? ? ? ? f 0 w ~ F 0 W 6

-7 ? ? ? ? g P x ~ G P X 7

-8 ? ? ? ? h q y ~ H Q y 8

-9 ? ? ? a 1 r z % I R Z 9

-A p ? I ? ~ ? I ?
1 2 3

I

-B $ # ? Q ? I ? ? ? ? ,

-C < * % D
,

} @ - '" ? A]

-D ()
, , , ..

? ? ? ?
-

y "
y

-E + , > = {] [\ ? ? ? ?

-F ! ? ? " ? n ® x ? ? ?

Figure 32-23. Iceland: EBCDIC Code Page 871

Chapter 32. Code Pages 32-33

~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-...

-0 & ? ?
0 - ~ ? ? g ? 0

-1 ? / ? a j ? ? A J 1

-2 ? ? ? ? b k s ¥ B K S 2

-3 ? ? ? ? c 1 t C L T 3

-4 ? ? ? ? d m u © D M U 4

-5 ? ? ? ? e n v § E N V 5

-6 ? ? ? ? f 0 w ~ F 0 W 6

-7 ? ? ? ? g p x ~ G P X 7

-8 { ? [? h q Y ~ H Q y 8

-9 ? ? ? 1 i r z % I R Z 9

-A ? G ? ~ ? I ?
1 2 3

~

-B i ? ? 2 ? I ? ? ? ? ,

-C < * % S } ?] - "-.J \ # "
-D ()

, ,
$

..
? ? ? ? ~

-

-E + > = I ? @
,

? ? ? ? , I

-F !
A ? ? 7 D ® ? ? ? x

Figure 32-24. Turkey: EBCDIC Code Page 1026

32-34 PM Programming Reference Vol II

Appendix A. Data Types

The following data types are used in Presentation Manager. They are listed in alphabetic
order.

ACCEL
Accelerator structure.

Syntax

typedef struct ACCEL {
USHORT fs~
USHORT key;
USHORT cl11d;

}. ACCEL;

typedef ACCEL*PACCEL;

Fields
15 (USHORT)

Options.

key (USHORT)
Key.

cmd (USHORT)
Command code.

The value to be placed in the uscmd parameter of a WM_HELP, a WM_COMMAND, or
a WM_SYSCOMMAND.

ACCELTABLE
Accelerator-table structure.

Syntax

© Copyright IBM Corp. 1994 A-1

Fields
cAccel (USHORT)

Number of accelerator entries.

codepage (USHORT)
Code page for accelerator entries.

aaccel[1] (ACCEL)
Accelerator entries.

The default accelerator table has the following 16 entries:

Options Key Command

HELP VIRTUALKEY VKJl 0
SYSCOMMAND ALT VIRTUALKEY VKJ4 SC_CLOSE
SYSCOMMAND ALT VIRTUALKEY VK_ENTER SC_RESTORE
SYSCOMMAND ALT VIRTUALKEY VK_NEWLINE SC_RESTORE
SYSCOMMAND ALT VIRTUALKEY VKJ5 SC_RESTORE
SYSCOMMAND ALT VIRTUALKEY VKJ6 SC_NEXTFRAME
SYSCOMMAND ALT VIRTUALKEY VKJ7 SC_MOVE
SYSCOMMAND ALT VIRTUALKEY VKJ8 SC_SIZE
SYSCOMMAND ALT VIRTUALKEY VKJ9 SC_MINIMIZE
SYSCOMMAND ALT VIRTUALKEY VKJ10 SC_MAXIMIZE
SYSCOMMAND VIRTUALKEY VKJ10 SC_APPMENU
SYSCOMMAND LONEKEY VIRTUALKEY VK_ALT SC_APPMENU
SYSCOMMAND LONEKEY VIRTUALKEY VK_ALTGRAF SC_APPMENU
SYSCOMMAND ALT VIRTUALKEY VK_SPACE SC_SYSMENU
SYSCOMMAND SHIFT VIRTUALKEY VK_ESC SC_SYSMENU
SYSCOMMAND CONTROL VIRTUALKEY VK_ESC SC_TASKMANAGER

APIRET
Unsigned integer in the range 0 through 4 294 967 295.

Syntax

APSZ
An array of pointers to NULL-terminated strings.

Syntax

A-2 PM Programming Reference Vol II

ARCPARAMS
Arc-parameters structure.

Syntax

typedef struct ARCPARAMS {
LONG lP; -
LONG lQ;
LONG 1 R;
LONG lS;
} ARCPARAMS;

typedef ARCPARAMS *PARCPARAMS;

Fields
IP (LONG)

P coefficient.

IQ (LONG)
Q coefficient.

IR (LONG)
R coefficient.

IS (LONG)
S coefficient.

AREABUNDLE
Area-attributes bundle structure.

Syntax

~'ypedefst ruc;t . AREABUNDLE {
;. LONG 1 Color; .
~ONG IBackColor;
USHORT . USMlxMode;
USHORT usBackMixMode;
USf:fORT usSet;
USHORT usSYlllbol;

;POJt9Tl . . ptlRefPoiflt;
r;AREABUNPLE;

.typ~d~f.AREA~U~t1.LE··.···.~·.PAREA,B~ND~F.;

Appendix A. Data Types A-3

Fields
IColor (LONG)

Area foreground color.

IBackColor (LONG)
Area background color.

usMixMode (USHORT)
Area foreground-mix mode.

usBackMixMode (USHORT)
Area background-mix mode.

usSet (USHORT)
Pattern set.

usSymbol (USHORT)
Pattern symbol.

ptlRefPoint (POINTL)
Pattern reference point.

ATOM
Atom identity.

Syntax

BITMAPARRAYFILEHEADER
Bit-map array file header structure.

Syntax

A-4 PM Programming Reference Vol II

Fields
usType (U8HORT)

Type of structure.

Possible values are shown in the following list:

BFT_BITMAPARRAY (Ox4142 - 'BA' for BITMAPARRAYFILEHEADER or
BITMAPARRAYFILEHEADER2)

cbSize (ULONG)
Size of the BITMAPARRAYFILEHEADER structure in bytes.

off Next (ULONG)
Offset of the next BITMAPARRAYFILEHEADER structure from the start of the file.

cxDisplay (U8HORT)
Device width, in pels.

cyDisplay (USHORT)
Device height, in pels.

bfh (BITMAPFILEHEADER)
Bit-map file header structure.

BITMAPARRAYFILEHEADER2
Bit-map array file header structure.

Syntax

, . . . ,

'typede:fstruct·· BITMA·PARRAYFltEHEADER2
USHORT usType;
UlONG cbS;ze;
UI.ONG off Next;
USHORT .c)COi splay;
US~ORT .. '. . .' .. '. ' ,cyO; spi ay;
81TMA~fl LEHEAOER2< bfh2;

}· •.. BITMAPARRAYFlLEHEADER2; .

Fields
usType (U8HORT)

Type of structure.

Possible values are shown in the following list:

BFT_BITMAPARRAY (Ox4142. = 'BA' for BITMAPARRAYFILEHEADER or
BITMAPARRAYFILEHEADER2)

Appendix A. Data Types A-5

cbSize (ULONG)
Size of the BITMAPARRAYFILEHEADER2 structure in bytes.

off Next (ULONG)
Offset of the next BITMAPARRAYFILEHEADER2 structure from the start of the file.

cxDisplay (USHORT)
Device width, in pels.

cyDisplay (USHORT)
Device height, in pels.

bfh2 (BITMAPFILEHEADER2)
Bit-map file header structure.

BITMAPFILEHEADER
Bit-map file header strcuture.

Syntax

Fields
usType (USHORT)

Type of resource the file contains.

Possible values are shown in the following list:

BFT BMAP
BFT_ICON
BFT _POINTER
BFT _ COLORICON
BFT _ COLORPOINTER

cbSize (ULONG)

(Ox4D42 - 'BM' for bitmaps)
(Ox4349 - 'IC' for icons)
(Ox4540 - oPT' for pointers)
(Ox4943 - 'CI' for color icons)
(Ox5043 - 'CP' for color pointers)

Size of the BITMAPFILEHEADER structure in bytes.

A-6 PM Programming Reference Vol II

xHotspot (SHORT)
Width of hotspot for icons and pointers.

This field is ignored for bit maps.

yHotspot (SHORT)
Height of hotspot for icons and pOinters.

This field is ignored for bit maps.

off Bits (USHORT)
Offset in bytes.

Offset in bytes to beginning of bit-map pel data in the file, from the start of the definition.

bmp (BITMAPINFOHEADER)
Bit-map information header structure.

BITMAPFILEHEADER2
Bit-map file header structure.

Syntax

typedef struct BITMAPFILEHEADER2 {
USHORT - usType;
ULONG cbSize;
SHORT xHotspot i
SHORT YHotspot;
USHORT off Bits;
BITMAPINFOHEADER2 bmp2;
,} BlTMAPFILEHEADER2;

Fields
usType (USHORT)

Type of resource the file contains.

Possible values are shown in the following list:

BFT BMAP
8FT ICON
8FT_POINTER
8FT _ COLORICON
BFT _ COLORPOINTER

cbSize (ULONG)

(Ox4D42 - 'BM' for bitmaps)
(Ox4349 - 'IC' for icons)
(Ox4540 - 'PT' for pointers)
(Ox4943 - 'CI' for color icons)
(Ox5043 - 'CP' for color pointers)

Size of the BITMAPFILEHEADER2 structure in bytes.

Appendix A. Data Types A-7

xHotspot (SHORT)
Width of hotspot for icons and pointers.

This field is ignored for bit maps.

yHotspot (SHORT)
Height of hotspot for icons and pointers.

This field is ignored for bit maps.

off Bits (USHORT)
Offset in bytes.

Offset in bytes to beginning of bit-map pel data in the file, from the start of the definition.

bmp2 (BITMAPINFOHEADER2)
Bit-map information header structure.

BITMAPINFO
Bit-map information structure.

Each bit plane logically contains (ex * ey * eBitCount) bits, although the actual length can be
greater because of padding.

See also "BITMAPINF02" on page A-9, which is preferred.

Syntax

Fi.elds
ebFix (ULONG)

Length of fixed portion of structure.

This length can be determined using s;zeof(BITMAPINFOHEADER).

ex (USHORT)
Bit-map width in pels.

A-8 PM Programming Reference Vol II

cy (U8HORT)
Bit-map height in pels.

cPlanes (U8HORT)
Number of bit planes.

cBitCount (U8HORT)
Number of bits per pel within a plane.

argbColor[1] (RGB)
Array of RGB values.

This is a packed array of 24-bit RGB values. If there are N bits per pel (N = ePlanes *
eBitCount) , the array contains 2**N RGB values. However, if N = 24, the bit map does
not need the color color array because the standard-format bit map, with 24 bits per pel,
is assumed to contain RGB values.

BITMAPINF02
Bit-map information structure.

Each bit plane logically contains (ex * ey * eBitCount) bits, although the actual length can be
greater because of padding.

Note: Many functions can accept either this structure or the BITMAPINFO structure. Where
possible, BITMAPINF02 should be used.

The ebFix field is used to find the color table, if any, that goes with the information in this
structure. A color table is an array of color (RGB2) values. If there are N bits per pel
(N = ePlanes * eBitCount), the array contains 2**N color values. However, if N = 24, the
color table is not required (because the standard-format bit map, with 24 bits per pel, is
assumed to contain RGB values), unless either eelrUsed or eelrlmportant is non-zero.

Appendix A. Data Types A-9

Syntax

typedefstrucL BllMAplNF()2 •.• {
ULONGcbFix; ..
ULONGcx;
ULONG cy;
.USHORTcPlal'les;
USBORl ... c~JtC()unt;

. UUONGulCompression;
9LONG cblmage;
ULONG cxResolution;
ULONG ·cyResolution;
ULONG cclrUsed;
ULONG cclrlinportant *
USHORT usUnits;
USHORT usReserved;
USHORT usRecording;
USHORT usRendering;
ULONG cSizel;
ULONG cSi.ze2;
ULONG ulColorEncoding;
ULONG ulIdentifier;·
RGB2 argbColor[l];
l BITMAPINF02;

Fields
cbFix (ULONG)

Length of fixed portion of structure.

The structure can be truncated after cBitCount or any subsequent field.

The length does not include the length of the color table. Where the color table is
present, it is at an offset of cbFix from the start of the BITMAPINF02 structure.

This length can range from 16 (BITMAPINFOHEADER through field cBitCount) up to
sizeof(BITMAPINFOHEADER2) bytes.

ex (ULONG)
Bit-map width in pels.

cy (ULONG)
Bit-map height in pels.

cPlanes (USHORT)
Number of bit planes.

cBitCount (USHORT)
Number of bits per pel within a plane.

ulCompression (ULONG)
Compression scheme used to store the bit map.

A-10 PM Programming Reference Vol II

BCA_UNCOMP
Bit map is uncompressed.

BCA_HUFFMAN1 D
The bit map is compressed by a modified Huffman encoding. This is valid for a
bi-Ievel (one bit per pel) bit map.

BCA_RLE4
The bit map is a 4-bit per pel run-length encoded bit map. See the following section,
"Format of Compressed Data," for a description of the format of the compressed
data.

BCA_RLES
The bit map is an a-bit per pel run-length encoded bit map. See the following
section, "Format of Compressed Data," for a description of the format of the
compressed data.

BCA_RLE24
The bit map is a 24-bit per pel run-length encoded bit map. See the following
section, "Format of Compressed Data," for a description of the format of the
compressed data.

Format of Compressed Data

Encoding a run length:

Run-length encoded bit maps are encoded in the buffer in a controlled format. In all
cases, if the first byte is non-zero, it is the length of a run of pels of a particular color or,
in the case of a BCA_ RLE4 bit map, a run of a length of pels of alternating colors.

1st-byte
2nd-4th bytes
2nd-byte

pel repetition count >= 1
(BCA_RLE24 only) RGB value of pel.
(BCA_RLE8) color index of pel to be repeated
(BCA_RLE4) the second byte contains 2 4-bit
color indexes. The repetition count is
completed by alternately choosing the high-order
nibble followed by the low-order nibble for the
succeeding pels until the count is exhausted.

Unencoded run:

An unencoded run is a string of pels to be placed in consecutive positions in the
destination bit map.

1st-byte I:)

2nd-byte COUNT = a multiple of 3 for BCA RLE24 bit maps, or
COUNT >= 3 (for BCA_RLE4 and BCA_RLE8 bit maps).

Appendix A. Data Types A-11

followed by the bytes as follows:

BCA_RLE24
A string of bytes specifying the RGB color values of succeeding pels. If COUNT is
odd, it must be padded by a zero byte for an even length overall.

BCA_RLES
A string of bytes specifying color indexes for succeeding pels. If COUNT is odd, it
must be padded by a zero byte for an even length overall.

BCA_RLE4
A string of bytes, each byte providing two color indexes, with the high-order nibble
specifying the index of the pel preceding the low-order nibble. The COUNT specifies
the number of indexes. The overall length of the string must be an even number of
bytes, and thus may be padded with a zero byte, and the low order nibble of the last
significant byte may also be zero and not used.

Delta record:

A delta record indicates a shift in position in the destination bit map before the next
record is decoded.

1st-byte
2nd-byte
3rd-byte
4th-byte

o
2
Delta-x (unsigned)
Delta-y (unsigned)

This is a relative jump record. It implies that the next record is to be decoded into a
position in the destination bit map at an offset from the current position, determined by
changing the horizontal and vertical pOSitions by Delta-x and Delta-y, respectively.

End-of-Iine record: The end-of-line record signifies that the data for the current scan
line is complete and that decoding of the next record should begin at the start of the
next scan line.

1st-byte 0
2nd-byte 0

End-of-RLE record:

The end-of-RLE record signifies the end of the data in the RLE compressed bit map.

1st-byte 0
2nd-byte 1

cblmage (ULONG)
Length of bit-map storage data, in bytes.

If the bit map is uncompressed, zero (default) can be specified for this.

cxResolution (ULONG)
Horizontal component of the resolution of target device.

The resolution of the device the bit map is intended for, in the units specified by usUnits.
This information enables an application to select from a resource group the bit map that
best matches the characteristics of the current output device.

A-12 PM Programming Reference Vol II

cyResolution (ULONG)
Vertical component of the resolution of the target device.

See the description of cxResolution.

cclrUsed (ULONG)
Number of color indexes used.

The number of color indexes from the color table that are used by the bit map. If it is
zero (the default), all the indexes are used. If it is non-zero, only the first cclrUsed
entries in the table are accessed by the system, and further entries can be omitted.

For the standard formats with a cBitCount of 1, 4, or 8 (and cPlanes equal to 1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64 colors can use
the 8-bitcount format without having to supply the other 192 entries in the color table.
For the 24-bitcount standard format, cclrUsed is the number of colors used by the bit
map.

cclrlmportant (ULONG)
Minimum number of color indexes for satisfactory appearance of the bit map.

More colors may be used in the bit map, but it is not necessary to assign them to the
device palette. These additional colors may be mapped to the nearest colors available.

Zero (the default) means that all entries are important.

For a 24-bitcount standard format bit map, the cclrlmportant colors are also listed in the
color table following the BITMAPINF02 structure.

usUnits (USHORT)
Units of measure.

Units of measure of the horizontal and vertical components of resolution, cxResolution
and cyResolution.

BRU_METRIC Pels per meter. This is the default value.

us Reserved (USHORT)
Reserved.

This is a reserved field.

usRecording (USHORT)
Recording algorithm.

The format in which the bit map data is recorded.

BRA_BOTTOMUP Scan lines are recorded bottom to top. This is ttie default value.

Appendix A. Data Types A-13

usRendering (USHORT)
Halftoning algorithm.

The algorithm used to record bit map data that has been digitally halftoned.

BRH_NOTHALFTONED
BRH _ ERRORDI FFUSION
BRH PANDA
BRH SUPERCIRCLE

cSize1 (ULONG)
Size value 1.

Bit-map data is not halftoned. This is the default value.
Error Diffusion or Damped Error Diffusion algorithm.
Processing Algorithm for Non-coded Document Acquisition.
Super Circle algorithm.

If BRH_ERRORDIFFUSION is specified in usRendering, eSize1 is the error damping as
a percentage in the range 0 through 100. A value of 100% indicates no damping, and a
value of 0% indicates that any errors are not diffused.

If BRH_PANDA or BRH_SUPERCIRCLE is specified, eSize1 is the x dimension of the
pattern used, in pels.

cSize2 (ULONG)
Size value 2.

If BRH_ERRORDIFFUSION is specified in usRendering, this parameter is ignored.

If BRH_PANDA or BRH_SUPERCIRCLE is specified, eSize2 is the y dimension of the
pattern used, in pels.

ulColorEncoding (ULONG)
Color encoding.

BCE RGB Each element in the color array is an RGB2 datatype. This is the default
value.

ulldentifier (ULONG)
Reserved for application use.

argbColor[1] (RGB2)
Array of RGB values.

This is a packed array of 24-bit RGB values. If there are N bits per pel (N = ePlanes *
eBitCount), the array contains 2**N RGB values. However, if N = 24, the bit map does
not need the color array because the standard-format bit map, with 24 bits per pel, is
assumed to contain RGB values.

BITMAPINFOHEADER
Bit-map information header structure.

Each bit plane logically contains (ex * ey * eBitCount) bits, although the actual length can be
greater because of padding.

See also SITMAPINFOHEADER2, which is preferred.

A-14 PM Programming Reference Vol II

Syntax

typedef struet _BITMAPINFOHEADER {
ULONG ebFix;
USHORT ex;
OSHORT ey;
USHORT ePlanes;
USHORT eBi tCount;
lBITMAPINFOH~ADER;

typedef BITMAPINFOHEAOER *PBITMAPINFOHEADER;

Fields
ebFix (ULONG)

Length of structure.

ex (USHORT)
Bit-map width in pels.

ey (USHORT)
Bit-map height in pels.

ePlanes (USHORT)
Number of bit planes.

eBitCount (USHORT)
Number of bits per pel within a plane.

BITMAPINFOHEADER2
Bit-map information header structure.

Each bit plane logically contains (ex * ey * eBitCount) bits, although the actual length can be
greater because of padding.

Note: Many functions can accept either this structure or the BITMAPINFOHEADER
structure. Where possible, use BITMAPINFOHEADER2.

Appendix A. Data Types A-15

Syntax

:: ·.··.W~~.d~f:·$tt~qt __ ~lIMAPlN.~dH~A6E,R2.· •• ·t······
,.ULQNG . ;'pbfix; ,
··,Ot.ONG C;X;'
iULONG, '·.cY~

USHORi ,.cplan~$,;
USHQRT , .. C;BttCou~t;

'ULQNJ; .··Ql Compress] 90;
'UlONG cblmage;
ULONG, cxRespl\J.tion;
aLoNG ' 'tYResOlutl()n~··
ULQN.G be lrUsed;
ULONG cclrlmpbrtant;
USHORT usUnits;
USHORT usReserved;
USHORTr usRecordi n9;
USHORTusRender; n9;
ULONGc;Sizel;
ULONG cSize2;
ULONG uTColorEncoqing;
ULONG. '. ulldentifier;

} BlTMAPINFOHEADER2;

type4eI,~tTMAPINF()HEAQ~R2*PBIJMAPCtNFOHEADER2;

Fields
ebFix (ULONG)

Length of structure.

The structure can be truncated after cBitCount or any subsequent field.

ex (ULONG)
Bit-map width in pels.

ey (ULONG)
Bit-map height in pels.

ePlanes (USHORT)
Number of bit planes.

eBitCount (USHORT)
Number of bits per pel within a plane.

ulCompression (ULONG)
Compression scheme used to store the bit map.

BCA_UNCOMP
Bit map is uncompressed.

BCA_HUFFMAN1 D
The bit map is compressed by a modified Huffman encoding. This is valid for a
bi-Ievel (one bit per pel) bit map.

A-16 PM Programming Reference Vol II

BCA_RLE4
The bit map is a 4-bit per pel run-length encoded bit map. See the following section,
"Format of Compressed Data," for a description of the format of the compressed
data.

BCA_RLE8
The bit map is an 8-bit per pel run-length encoded bit map. See the following
section, "Format of Compressed Data," for a description of the format of the
compressed data.

BCA_RLE24
The bit map is a 24-bit per pel run-length encoded bit map. See the following
section, "Format of Compressed Data," for a description of the format of the
compressed data.

Format of Compressed Data

Encoding a run length:

Run length encoded bit maps are encoded in the buffer in a controlled format. In all
cases, if the first byte is non-zero, it is the length of a run of pels of a particular color or,
in the case of a BCA_RLE4 bit map, a run of a length of pels of alternating colors.

1st-byte
2nd-4th bytes
2nd-byte

pel repetition count >= 1
(BCA RLE24 only) RGB value of pel.
(BCA-RLE8) color index of pel to be repeated
(BCA=RLE4) the second byte contains 2 4-bit
color indexes. The repetition count is
completed by alternately choosing the high-order
nibble followed by the low-order nibble for the
succeeding pels until the count is exhausted.

Unencoded run:

An unencoded run is a string of pels to be placed in consecutive positions in the
destination bit map.

1st-byte 0
2nd-byte COUNT = a multiple of 3 for BCA_RLE24 bit maps, or

COUNT >= 3 (for BCA_RLE4 and BCA_RLE8 bit maps).

followed by the bytes as follows:

BCA_RLE24
A string of bytes specifying the RGB color values of succeeding pels. If COUNT is
odd, it must be padded by a zero byte for an even length overall.

BCA_RLE8
A string of bytes specifying color indexes for succeeding pels. If COUNT is odd, it
must be padded by a zero byte for an even length overall.

BCA_RLE4
A string of bytes, each byte providing two color indexes, with the high-order nibble
specifying the index of the pel preceding the low-order nibble. The COUNT specifies
the number of indexes. The overall length of the string must be an even number of

Appendix A. Data Types A-17

bytes, and thus may be padded with a zero byte, and the low order nibble of the last
significant byte may also be zero and not used.

Delta record:

A delta record indicates a shift in position in the destination bit map before the next
record is decoded.

1st-byte
2nd-byte
3rd-byte
4th-byte

o
2
Delta-x (unsigned)
Delta-y (unsigned)

This is a relative jump record. It implies that the next record is to be decoded into a
pOSition in the destination bit map at an offset from the current position, determined by
changing the horizontal and vertical positions by Delta-x and Delta-y, respectively.

End-of-Iine record:

The end-of-line record signifies that the data for the current scan line is complete and
that decoding of the next record should begin at the start of the next scan line.

1st-byte 0
2nd-byte 0

End-of-RLE record:

The end-of-RLE record signifies the end of the data in the RLE compressed bit map.

1st-byte 0
2nd-byte 1

cblmage (ULONG)
Length of bit-map storage data, in bytes.

If the bit map is uncompressed, zero (the default) can be specified for this.

cxResolution (ULONG)
Horizontal component of the resolution of target device.

The resolution of the device the bit map is intended for, in the units specified by usUnits.
This information enables applications to select from a resource group the bit map that
best matches the characteristics of the current output device.

cyResolution (ULONG)
Vertical component of the resolution of target device.

See the description of cxResolution.

cclrUsed (ULONG)
Number of color indexes used.

The number of color indexes from the color table that are used by the bit map. If this is
zero (the default), aU the indexes are used. If it is non-zero, only the first cclrUsed
entries in the table are accessed by the system, and further entries can be omitted.

For the standard formats with a cBitCount of 1, 4, or 8 (and cPlanes equal to 1), any
indexes beyond cclrUsed are invalid. For example, a bit map with 64 colors can use the

A-18 PM Programming Reference Vol II

8-bitcount format without having to supply the other 192 entries in the color table. For
the 24-bitcount standard format, cclrUsed is the number of colors used by the bit map.

cclrlmportant (ULONG)
Minimum number of color indexes for satisfactory appearance of the bit map.

More colors may be used in the bit map, but it is not necessary to assign them to the
device palette. These additional colors may be mapped to the nearest colors available.

Zero (the default) means that all entries are important.

For a 24-bitcount standard format bit map, the cc/r/mportant colors are also listed in the
color table relating to this bit map.

usUnits (USHORT)
Units of measure.

Units of measure of the horizontal and vertical resolution, cxReso/ution and
cyReso/ution.

BRU_METRIC Pels per meter. This is the default value.

usReserved (USHORT)
Reserved.

This is a reserved field. If present, it must be zero.

usRecording (USHORT)
Recording algorithm.

The format in which the bit-map data is recorded.

BRA_BOTTOMUP Scan lines are recorded bottom to top. This is the default value.

usRendering (USHORT)
Halftoning algorithm.

The algorithm used to record bit-map data that has been digitally halftoned.

BRH_NOTHALFTONED
BRH_ERRORDIFFUSION
BRH_PANDA
BRH_ SUPERCI RCLE

cSize1 (ULONG)
Size value 1.

Bit-map data is not halftoned. This is the default value.
Error Diffusion or Damped Error Diffusion algorithm.
Processing Algorithm for Non-coded Document Acquisition.
Super Circle algorithm.

If BRH_ERRORDIFFUSION is specified in usRendering, cSize1 is the error damping as
a percentage in the range 0 through 100. A value of 100% indicates no damping, and a
value of 0% indicates that any errors are not diffused.

If BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the x dimension of the
pattern used, in pels.

cSize2 (ULONG)
Size value 2.

If BRH_ERRORDIFFUSION is specified in usRendering, this parameter is ignored.

Appendix A. Data Types A-19

If BRH_PANDA or BRH_SUPERCIRClE is specified, cSize2 is the y dimension of the
pattern used, in pels.

ulColorEncoding (UlONG)
Color encoding.

BeE RGB Each element in the color array is an RGB2 datatype. This is the default
value.

ulldentifier (UlONG)
Reserved for application use.

BIT16
Defines 16 independent BOOl values.

Syntax

BIT32
Defines 32 independent BOOl values.

Syntax

BITS
Defines eight independent BOOl values.

Syntax

A-20 PM Programming Reference Vol II

BOOl
Boolean.

Valid values are FALSE, which is 0, and TRUE, which is 1.

Syntax

typedef unsigned long BOOL;

BOOKPAGEINFO
Notebook page information structure.

Syntax

typedef struct _BOOKPAGElNFO{
ULONG cb;
ULONG fl;
BOOL bLoadDlg;
ULONG ulPageData;
HWND hwndPage;
PFN pfnPageDl gProc;
ULONG idPageDlg;
HMODULE hmodPageDl g;
PYOID pPageDl gCreatePa ram;
PDLGTEMPLATE pdlgtPage;
ULONG cbStatusLine;
PSZ pszStatusLine;
HBITMAP hbmM~jorTab;
HBITMAP hbmMinorTab;
ULONG cbMajorTab;
PSZ pszMajorTab;
ULONG cbMinorTab;
PSZ. pszMi norTab;
PYOID pBidilnfo;
} . BOOKPAGEINFO;

ty~edefBOOKPAGEINFO *PBOOKPAGEINFO;

Fields
cb (ULONG)

Size of the page information structure.

fl (ULONG)
Flag indicating which page attributes are to be set.

Reserved for bi-directional support.

Appendix A. Data Types A-21

BFA _MAJORTABBITMAP
BFA_MAJORTABTEXT
BFA_MINORTABBITMAP
BFA MINORTABTEXT
BFA_PAGEDATA
BFA_PAGEFROMDLGRES

BFA _PAGEFROMDLGTEMPLATE

BFA_PAGEFROMHWND
BFA_STATUSLINE

bLoadDlg (BOOL)
Load dialog flag.

TRUE Load dialog immediately.
FALSE Load dialog on page turn.

ulPageData (ULONG)

Set/query major tab bit map.
Set/query major tab text.
Set/query minor tab bit map.
Set/query minor tab text.
Set/query page data.
Set/query page window handle from a dialog
resource.
Set/query page window handle from a dialog
template.
Set/query page window handle.
Set/query status text.

Data to associate with the notebook page.

hwndPage (HWND)
Handle to associate with the notebook page.

pfnPageDlgProc (PFN)
Dialog procedure.

idPageDlg (ULONG)
Dialog id.

hmodPageDlg (HMODULE)
Resource handle.

pPageDlgCreateParam (PVOI D)
Dialog create parameters.

pdlgtPage (PDLGTEMPLA TE)
Dialog template.

cbStatusLine (ULONG)
Length of status line text.

pszStatusLine (PSZ)
Status line text string.

hbmMajorTab (HBITMAP)
Major tab bit map handle.

hbmMinorTab (HBITMAP)
Minor tab bit map handle.

cbMajorTab (ULONG)
Length of major tab text.

A-22 PM Programming Reference Vol II

pszMajorTab (PSZ)
Major tab text string.

cbMinorTab (ULONG)
Length of minor tab text.

pszMinorTab (PSZ)
Minor tab text string.

pBidiinfo (PVOID)
Reserved for bi-directional support.

BOOKTEXT
Notebook data structure that contains text strings for notebook status lines and tabs. This
data structure is used with the BKM_QUERYSTATUSLINETEXT and the
BKM_QUERYTABTEXT messages only. See "BKM_QUERYSTATUSLINETEXT" on
page 23-18 and "BKM_QUERYTABTEXT" on page 23-20 for information about those
messages.

Syntax

typedef struct BOOKTEXT{
PSZ pString;
ULONG text Len;
} ... BOOKTEXT;

typedef.BOOKTEXT *PBOOKTEXT;

Fields
pString (PSZ)

Pointer to a string buffer.

Buffer in which the text string is to be placed. For the BKM_QUERYSTATUSLINETEXT
message, this is the buffer in which the status line text is placed.

For the BKM_QUERYTABTEXT message, this is the buffer in which the tab text is
placed.

textLen (ULONG)
String length.

Length of the text string. For the BKM_QUERYSTATUSLINETEXT message, this is the
length of the status line text string.

For the BKM_QUERYTABTEXT message, this is the length of the tab text string.

Appendix A. Data Types A-23

BTNCDATA
Button-control-data structure.

Syntax

Fields
cb (USHORT)

Length of the control data in bytes.

This is the length of the control data for a button control.

fsCheckState (USHORT)
Check state of button.

This is the same value as returned by the BM _ QUERYCHECK message and passed to
the BM_SETCHECK message.

fsHiliteState (USHORT)
Highlighting state of button.

This is the same value as returned by the BM_QUERYHILlTE message and passed to
the BM_SETHILlTE message.

hlmage (LHANDLE)
Resource handle for icon or bit map.

BYTE
A byte.

Syntax

A-24 PM Programming Reference Vol II

CATCHBUF
Saved execution environment buffer.

Syntax

typedefstruct ~CATCHBUF {
ULONG reserved [41;
} CAiCHBUF;

typedef CATCHBUF *PCATCHBUF;

Fields
reserved[4] (ULONG)

Save area.

COATE
Structure that contains date information for a data element in the details view of a container
control.

Syntax

Fields
day (UCHAR)

Current day.

month (UCHAR)
Current month.

year (USHORT)
Current year.

Appendix A. Data Types A-25

CHAR
Single-byte character.

Syntax

CHARBUNDLE
Character-attributes bundle structure.

Syntax

ty:pedef struct_CHAR~UNDL>E{
LONG '1 CoTor;, ' , " , "

'.", LONG 1 Bac~CQl~r;;:
USHORT usMjx~oM;
USHORT usBatkMixMode; .
USHORT 'usSe't;"
USHORT usPrecision;
SIZ£F slzfXtell;
POlNTl p,~lA~g' e;
POINTl pt1 Stlear;
USHORT . usDitection;

,USHORT usTextAlignJ
. FIXED: fXE~tra;
~IXEDfx~reakEJ<tra;
},' CHARBUNDL~;

typedef.,CHAR~LJNDL;t;*ptHARBUN,OLE;

Fields
IColor (LONG)

Character foreground color.

IBackColor (LONG)
Character background color.

usMixMode (USHORT)
Character foreground-mix mode.

usBackMixMode (USHORT)
Character background-mix mode.

usSet (USHORT)
Character set.

A-26 PM Programming Reference Vol II

usPrecision (USHORT)
Character precision.

sizfxCell (SIZEF)
Character cell size.

ptlAngle (POINTL)
Character angle.

ptlShear (POINTL)
Character shear.

usDirection (USHORT)
Character direction.

usTextAlign (USHORT)
Text alignment.

fxExtra (FIXED)
Character extra.

fxBreakExtra (FIXED)
Character break extra.

CLASSINFO
Class-information structure.

Syntax

typedf:!fstruct_CLASSINFO {
ULONG flClassStyle;
PFNWP pfnWindowProc;
ULONG cbWindowData;

}CLAS$INFO;

Fields
flClassStyle (ULONG)

Class-style flags.

pfnWindowProc (PFNWP)
Window procedure.

cbWindowData (ULONG)
Number of additional window words.

Appendix A. Data Types A-27

CNRDRAGINFO
Structure that contains information about a direct manipulation event that is occurring over
the container. The information specified for this structure depends on the container
notification code with which it is used. The differences are specified in the following field
descriptions. The applicable notification codes are:

• "CN_DRAGAFTER" on page 22-12
• "CN_DRAGLEAVE" on page 22-15
• "CN_DRAGOVER" on page 22-16
• "CN_DROP" on page 22-18
• "CN_DROPHELP" on page 22-19

Syntax

typedefstruct._CNRDRAGINFO{
PDRAGINFO '. pDraglnfo;
;PRECORPCP~E .pRecord;
rt~RPRJ.\GINFO;·

.typedefCNRD~AGINFO.*PCNRDRAGINFO;

Fields
pDraglnfo (PDRAGINFO)

Pointer to a DRAGINFO structure.

pRecord (PRECORDCORE)
Pointer to a RECORDCORE structure.

The structure that is pointed to depends on the notification code being used.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages. For the CN_DRAGAFTER notification code, this field contains
a pointer to the RECORDCORE structure after which ordered target emphasis is drawn.
If ordered target emphasis is applied above the first record in item order, the CM_FIRST
attribute is returned.

For the CN_DRAGLEAVE notification code, this field is NULL.

For the CN_DRAGOVER, CN_DROP, and CN_DROPHELP notification codes, this field
contains a pointer to a container record over which direct manipulation occurred. This
field has a value of NULL if the direct manipulation event occurs over white space.

, CNRDRAWITEMINFO
Structure that contains information about the container item being drawn. This structure is
used with the WM_DRAWITEM (in Container Controls) message only. See
"WM_DRAWITEM (in Container Controls)" on page 22-7 for information about that message.

A-28 PM Programming Reference Vol II

Syntax

typedef struct CNRDRAWITEMINFO· {
PRECORDCORE - pRecord;
PFIELOINFO pFieldlnfo;

} .CNRDRAWITEMINFO;

typedef CNRDRAWITEMINFO *PCNRDRAWITEMINFO;

Fields
pRecord (PRECORDCORE)

Pointer to the RECORDCORE structure for the record being drawn.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE
and PMINIRECORDCORE should be used instead of PRECORDCORE in all
applicable data structures and messages.

pFieldlnfo (PFIELDINFO)
Pointer to the FIELDINFO structure for the container column being drawn in the details
view.

For all other views, this field is NULL.

CNREDITDATA
Structure that contains information about the direct editing of container text. The information
specified for this structure depends on the container notification code or message with which
it is used. The differences are specified in the following field descriptions. The applicable
notification codes and message are:

• "CN_BEGINEDIT" on page 22-10
• "CN_ENDEDIT" on page 22-21
• "CN_REALLOCPSZ" on page 22-28
• "CM_OPENEDIT" on page 22-54

Appendix A. Data Types A-29

Syntax

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the CNREDITDATA data structure.

hwndCnr (HWND)
Container window handle.

pRecord (PRECORDCORE)
Pointer to a RECORDCORE data structure, or NULL.

This field is NULL if container titles are to be edited.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE
and PMINIRECORDCORE should be used instead of PRECORDCORE in all
applicable data structures and messages.

For the CN_BEGINEDIT, CN_ENDEDIT, and CN_REALLOCPSZ notification codes, this
field is a pointer to the edited RECORDCORE data structure.

For the CM_OPENEDIT message, this field is a pointer to the RECORDCORE data
structure to be edited.

pFieldlnfo (PFIELDINFO)
Pointer to a FIELDINFO data structure, or NULL.

Pointer to a FIELDINFO data structure if the current view is the details view and the user
is not editing the container title. Otherwise, this field is NULL.

If the current view is the details view:

• For the CN_BEGINEDIT, CN_ENDEDIT, and CN_REALLOCPSZ notification codes,
this field contains a pointer to the FIELDINFO structure being edited.

• For the CM_OPENEDIT message, this field is a pOinter to the FIELDINFO data
structure to be edited.

A-30 PM Programming Reference Vol II

ppszText (PSZ *)
Pointer to a PSZ text string.

For the CN_BEGINEDIT and CN_REALLOCPSZ notification codes, this field is a pointer
to the current PSZ text string.

For the CN_ENDEDIT notification code, this field is a pointer to the new PSZ text string.

For the CM_OPENEDIT message, this field is NULL.

cbText (ULONG)
Number of bytes in the text string.

For the CN_BEGINEDIT notification code, this field is o.
For the CN_ENDEDIT and CN_REALLOCPSZ notification codes, this field is the number
of bytes in the new text string.

For the CM_OPENEDIT message, this field is O.

id (ULONG)
ID of the window to be edited.

The ID can be one of the following:

CID CNRTITLEWND
Title window.

CID_LEFTDVWND
Left details view window; default if unsplit window.

CID_RIGHTDVWND
Right details view window.

CID _ LEFTCOL TITLEWND
Left details view column headings window; default if unsplit window.

CID _ RIGHTCOL TITLEWND
Right details'view column headings window.

An application-defined container-ID
Container window.

Appendix A. Data Types A-31

CNRDRAGINIT
Structure that contains information about a direct manipulation event that is initiated in a
container. This structure is used with the CNJNITDRAG notification code only. See
"CNJNITDRAG" on page 22-24 for information about that notification code.

Syntax

Fields
hwndCnr (HWND)

Container control handle.

pReeord (PRECORDCORE)
Pointer to the RECORDCORE where direct manipulation started.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages.

The pRecord field can have one of the following values:

NULL Direct manipulation started over white space.
Other Container record overwhich direct manipulation started.

x (LONG)
X-coordinate of the pointer of the pointing device in desktop coordinates.

y (LONG)
V-coordinate of the pointer of the pOinting device in desktop coordinates.

ex (LONG)
X-offset from the hot spot of the pointer of the pointing device (in pels) to the record
origin.

ey (LONG)
Y -offset from the hot spot of the pointer of the pointing device (in pels) to the record
origin.

A-32 PM Programming Reference Vol II

CNRINFO
Structure that contains information about the container.

Syntax

typedef struct _CNRINFO {
ULONG
PYOID.
PFIELDINFO
PFIELDINFO
PSZ
ULONG
POINTL
ULONG
ULONG
SIZEL
SIZEL
HBITMAP
HBITMAP
HPOINTER
HPOINTER
LONG
LONG
LONG
ULONG
LONG
} CNRINFO;

cb;
pSortRecord;
pFieldlnfoLast;
pFie1dlnfoObject;
pszCnrTitle;
flWindowAttr;
ptlOrigin;
cDelta;
cRecords;
sl BitmapOrlcon;
sl TreeBi tmapOrlcon;
hbmExpanded;
hbmCo11apsed;
hptrExpanded;
hptrCollapsed;
cyLineSpacing;
cxTreelndent;
cxTreeLine;
cFields;
xVertSplitbar;

typedef CNRINFO *PCNRINFO;

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the CNRINFO data structure.

pSortRecord (PVOID)
Pointer to the comparison function for sorting container records, or NULL.

If NULL, which is the default condition, no sorting is performed. Sorting only occurs
during record insertion and when changing the value of this field. The third parameter of
the comparison function, pStorage, must be NULL. See "CM_SORTRECORD" in the
Presentation Manager Programming Reference for a further description of the
comparison function.

pFieldlnfoLast (PFIELDINFO)
Pointer to last column in the left window of the split details view, or NULL.

The default is NULL, causing all colu~ns to be positioned in the left window.

Appendix A. Data Types A-33

pFieldlnfoObject (PFIELDINFO)
Pointer to a column that represents an object in the details view.

The data for this FIELDINFO structure must contain icons or bit maps. In-use emphasis
is applied to this column of icons or bit maps only. The default is the leftmost column in
the unsplit details view, or the leftmost column in the left window of the split details view.

pszCnrTitle (PSZ)
Title text, or NULL.

Text for the container title. The default is NULL.

flWindowAttr (ULONG)
Window attributes.

Consists of the following container window attributes:

• Specify one of the following container views, which determine the presentation
format of items in a container:

CV_ICON
In the icon view, the container items are represented as icon/text or bit-map/text
pairs, with text beneath the icons or bit maps. This is the default view. This
view can be combined with the CV_MINI style bit by using an OR operator (I).
See CV_MINI on page A-35 for more information.

CV_NAME
In the name view, the container items are represented as icon/text or
bit-map/text pairs, with text to the right of the icons or bit maps. This view can
be combined with the CV _MINI and CV _FLOW style bits by using OR operators
(I). See CV _MINion page A-35 and CV _FLOW on page A-35 for more
information.

CV_TEXT
In the text view, the container items are displayed as a list of text strings. This
view can be combined with the CV _FLOW style bit by using an OR operator (I).
See CV _FLOW on page A-35 for more information.

CV_TREE
In the tree view, the container items are represented in a hierarchical manner. "
The tree view has three forms, which are defined in the following list. If you
specify CV _ TREE by itself, the tree icon view is used.

- Tree icon view

The tree icon view is specified by using a logical OR operator to combine
the tree view with the icon view (CV _TREE I CV JCON). Container items
in this view are represented as icon/text pairs or bit-map/text pairs, with text
to the right of the icons or bit maps. Also, a collapsed or expanded icon or
bit map is displayed to the left of parent items. If this icon or bit map is a
collapsed icon or bit map, selecting it will cause the parent item to be
expanded so that its child items are displayed below it. If this icon or bit
map is an expanded icon or bit map, selecting it will cause the parent's
child items to be removed from the display. The default collapsed and

A-34 PM Programming Reference Vol II

expanded bit maps provided by the container use a plus sign (+) and a
minus sign (-), respectively, to indicate that items can be added to or
subtracted from the display.

- Tree name view

The tree name view is specified by using a logical OR operator to combine
the tree view with the name view (CV_TREE I CV_NAME). Container
items in this view are displayed as either icon/text pairs or bit-map/text
pairs, with text to the right of the icons or bit maps. However, the indicator
that represents whether an item can be collapsed or expanded, such as a
plus or minus sign, is included in the icon or bit map that represents that
item, not in a separate icon or bit map as in the tree icon and tree text
views. The container control does not provide default collapsed and
expanded bit maps for the tree name view.

- Tree text view

The tree text view is specified by using a logical OR operator to combine
the tree view with the text view (CV _TREE I CV _TEXT). Container items
in this view are displayed as a list of text strings. As in the tree icon view, a
collapsed or expanded icon or bit map is displayed to the left of parent
items.

CV_DETAIL
In the details view, the container items are presented in columns. Each column
can contain icons or bit maps, text, numbers, dates, or times.

• Specify one or both of the following view styles by using an OR operator (/) to
combine them with the specified view. These view styles are optional.

CV_MINI
Produces a mini-icon whose size is based on the Presentation Manager (PM)
SV _CYMENU system value to produce a device-dependent mini-icon.

The CV _MINI view style bit is ignored when:

- The text view (CV _TEXT), tree view (CV _TREE), or details view
(CV _DETAIL) are displayed

- The CCS_MINIRECORDCORE style bit is specified.

If this style bit is not specified and the icon view (CV _ICON) or name view
(CV NAME) is used, the default, regular-sized icon is used. The size of
regt7l'ar-sized icons is based on the value in the siBitmapOrlcon field of the
CNRINFO data structure. If this field is equal to 0, the PM SV _ CXICON and
SV _ CYICON system values for width and height, respectively, are used. Icon
sizes are consistent with PM-defined icon sizes for all devices.

CV_FLOW
Dynamically arranges container items in columns in the name and text views.
These are called flowed name and flowed text views. If this style bit is set for
the name view (CV_NAME) or text view (CV_TEXT), the container items are
placed in a single column until the bottom of the client area is reached. The
next container item is placed in the adjacent column to the right of the filled

Appendix A. Data Types A-35

column. This process is repeated until all of the container items are positioned
in the container. The width of each column is determined by the longest text
string in that column. The size of the window determines the depth of the client
area.

If this style bit is not specified, the default condition for the name and text views
is to vertically fill the container in a single column without flowing the container
items. If this style bit is set for the icon view (CV _ICON) or details view
(CV _DETAIL), it is ignored.

• Specify either of the following to indicate whether the container will display icons or
bit maps:

CA_DRAWICON
Icons are used for the icon, name, tree, or details views. This is the default.
This container attribute should be used with the hptr/con and hptrMinilcon fields
of the RECORDCORE data structure.

CA_DRAWBITMAP
Bit maps are used for the icon, name, tree, or details views. This container
attribute can be used with the hbmBitmap and hbmMiniBitmap fields of the
RECORDCORE data structure.

Notes:

1. If both the CA_DRAWICON and CA_DRAWBITMAP attributes are specified,
the CA_DRAWICON attribute is used.

2. If the CCS_MINIRECORDCORE style bit is specified when a container is
created, the hptr/con field of the MINIRECORDCORE data structure is
used.

• Specify one of the following attributes to provide target emphasis for the name, text,
and details views. If neither ordered nor mixed target emphasis is specified, the
emphasis is drawn around the record.

CA_ORDEREDTARGETEMPH
Shows where a container record can be dropped during direct manipulation by
drawing a line beneath the record. Ordered target emphasis does not apply to
the icon and tree views.

CA_MIXEDTARGETEMPH
Shows where a container record can be dropped during direct manipulation
either by drawing a line between two items or by drawing lines around the
container record. Mixed target emphasis does not apply to the icon and tree
views.

• Specify the following attribute to draw lines that show the relationship between items
in the tree view.

CA_ TREELINE
Shows the relationship between all items in the tree view.

A-3S PM Programming Reference Vol II

• Specify the following to draw container records, paint the background of the
container, or both:

CA_OWNERDRAW
Ownerdraw for the container, which allows the application to draw container
records.

CA_ OWNERPAINTBACKGROUND
Allows the application to subclass the container and paint the background. If
specified, and the container is subclassed, the application receives the
CM_PAINTBACKGROUND message in the subclass procedure. Otherwise, the
container paints the background using the color specified by
SYSCLR_WINDOW, which can be changed by using the
PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX presentation
parameter in the WM_PRESPARAMCHANGED (in Container Controls)

• Specify the following if the container is to have a title:

CA_ CONTAINERTITLE
Allows you to include a container title. The default is no container title.

• Specify one or both of the following container title attributes. These are valid only if
the CA_CONTAINERTITLE attribute is specified.

CA_ TITLEREADONL Y
Prevents the container title from being edited directly. The default is to allow the
container title to be edited.

CA_ TITLESEPARATOR
Puts a separator line between the container title and the records beneath it.
The default is no separator line.

• Specify one of the following to position the container title. These are valid only if
the CA_CONTAINERTITLE attribute is specified.

CA_ TITLECENTER
Centers the container title. This is the default.

CA_ TITLE LEFT
Left-justifies the container title.

CA_ TITLERIGHT
Right-justifies the container title.

• Specify the following to display column headings in the details view:

CA_DETAI LSVI EWTITLES
Allows you to include column headings in the details view. The default is no
column headings.

Appendix A. Data Types A-37

ptlOrigin (POINTL)
Workspace origin.

Lower-left origin of the workspace in virtual coordinates, used in the icon view. The
default origin is (0,0).

cDelta (ULONG)
Threshold.

An application-defined threshold, or number of records, from either end of the list of
available records. Used when a container needs to handle large amounts of data. The
default is O. Refer to the OS/2 Programming Guide for more information about
specifying deltas.

cRecords (ULONG)
Number of records.

The number of records in the container. Initially this field is O.

slBitmapOrlcon (SIZEL)
Icon/bit-map size.

The size (in pels) of icons or bit maps. The default is the system size.

slTreeBitmapOrlcon (SIZEL)
Icon/bit-map size.

The size (in pels) of the expanded and collapsed icons or bit maps used in the tree icon
and tree text views.

hbmExpanded (HBITMAP)
Bit-map handle.

The handle of the bit map to be used to represent an expanded parent item in the tree
icon and tree text views. If neither an icon handle (see hptrExpanded) nor a bit-map
handle is specified, a default bit map with a minus sign (-) is provided.

hbmColiapsed (HBITMAP)
Bit-map handle.

The handle of the bit map to be used to represent a collapsed parent item in the tree
icon and tree text views. If neither an icon handle (see hptrCollapsed) nor a bit-map
handle is specified, a default bit map with a plus sign (+) is provided.

hptrExpanded (HPOINTER)
Icon handle.

The handle of the icon to be used to represent an expanded parent item in the tree icon
and tree text views. If neither an icon handle nor a bit-map handle (see hbmExpanded)
is specified, a default bit map with a minus sign (-) is provided.

A-3S PM Programming Reference Vol II

hptrCollapsed (HPOINTER)
Icon handle.

The handle of the icon to be used to represent a collapsed parent item in the tree icon
and tree text views. If neither an icon handle nor a bit-map handle (see hbmCollapsed)
is specified, a default bit map with a plus sign (+) is provided.

cyLineSpacing (LONG)
Vertical space.

The amount of vertical space (in pels) between the records. If you specify a value that
is less than 0, a default value is used.

cxTreelndent (LONG)
Horizontal space.

The amount of horizontal space (in pels) between levels in the tree view. If you specify
a value that is less than 0, a default value is used.

cxTreeLine (LONG)
Line width.

The width of the lines· (in pels) that show the relationship between tree items. If you
specify a value that is less than 0, a default value is used. Also, if the CA_TREELINE
container attribute of the flWindowAttr field is not specified, these lines are not drawn.

cFields (ULONG)
Number of columns.

The number of FIELDINFO structures in the container. Initially this field is 0.

xVertSplitbar (LONG)
Split bar position.

The initial position of the split bar relative to the container, used in the details view. If
this value is less than 0, the split bar is not used. The default value is negative one
(-1).

CNRLAZVDRAGINFO
Container lazy drag information.

Syntax

typedef . s t ruct ... CNRLAZYDRAGI NFO {
PORAGINFO. -. pDraglnfo;
PRECORDCORE pRecord;
HWND. . .. ' hwndTarget;

}. CNRLAZYDRAGINFO;

Appendix A. Data Types A-39

Fields
pDraglnfo (PDRAGINFO)

Pointer to the DRAGINFO structure.

pRecord (PRECORDCORE)
Pointer to a container RECORDCORE structure.

A value of NULL indicates that the lazy drag set was dropped over whitespace in the
container. Any other value indicates that the lazy drag set was dropped on the record
specified by this field.

hwndTarget (HWND)
Handle of the target winddow that the lazy drag set was dropped on.

COLOR
Color value.

Syntax

CONVCONTEXT
Dynamic-data-exchange conversation context structure.

Syntax

Fields
cb (ULONG)

Length of structure.

This must be set to the length of the CONVCONTEXT structure.

A-40 PM Programming Reference Valli

fsContext (ULONG)
Options.

DDECTXT _ CASESENSITIVE All strings in this conversation are case sensitive.

idCountry (ULONG)
Country code.

usCodepage (ULONG)
Code-page identity.

usLanglD (ULONG)
Language.

Zero is valid and means no language information.

usSubLanglD (ULONG)
Sub-language.

Zero is valid and means no sub-language information.

CREATESTRUCT
Create-window data structure.

Syntax

typedef struct _CREATESTRUCT {
PYOID pPresParams;
PYOID pCtl Data;
UlONG ;,d; .
HWND hwrrdlnsertB.ehind;
HWNO hwndOwner;
LONG cy;
LONG' ex;
LONG y;
LONG x;
ULONG flStyle;
PSZ pszText;
PSZ pszClassName;
HWND ',. nwnctParelit;
• F,CR~ATE$TRUCr;

t¥ped¢f CREATESTRUCt '*PCREATESTRUCT;

Fields
pPresParams (PVOID)

Presentation parameters.

pCtlData (PVOID)
Control data.

Appendix A. Data Types A-41

id (ULONG)
Window identifier.

hwndlnsertBehind (HWNO)
Window behind which the window is to be placed.

hwndOwner (HWNO)
Window owner.

ey (LONG)
Window height.

ex (LONG)
Window width.

Y (LONG)
Y -coordinate of origin.

x (LONG)
X-coordinate of origin.

flStyle (ULONG)
Window style.

pszText (PSZ)
Window text.

pszClassName (PSZ)
Registered window class name.

hwndParent (HWNO)
Parent window handle.

CSBITMAPDATA
This is the bit-map data structure for the circular slider buttons.

Syntax

A-42 PM Programming Reference Vol II

Fields
. hbmLeftUp (HBITMAP)

Handle to the "up" position bit map for the button on the left.

hbmLeftDown (HBITMAP)
Handle to "down" position bit map for the button on the left.

hmbRightUp (HBITMAP)
Handle to the "up" position bit map for the button on the right.

hbmRightDown (HBITMAP)
Handle to the "down" position bit map for the button on the right.

CURSORINFO
Cursor-information structure.

Syntax

typedef struet CURSORINFO {
HWND hwnd;
LONG X;
LONG y;
LONG ex;
LONG ey;
ULONG fSj

RECTl rclClip;
} CURSORINFO;

typedef CURSORINFO *PCURSORINFO;

Fields
hwnd (HWNO)

Window handle.

x (LONG)
X-coordinate.

Y (LONG)
Y -coordinate.

ex (LONG)
Cursor width.

ey (LONG)
Cursor height.

1s (ULONG)
Options.

Appendix A. Data Types A-43

rclClip (RECTL)
Cursor box.

CTIME
Structure that contains time information for a data element in the details view of a container
control.

Syntax

Fields
hours (UCHAR)

Current hour.

minutes (UCHAR)
Current minute.

seconds (UCHAR)'
Current second.

ucReserved (UCHAR)
Reserved.

Control-Data
Pointer to class-specific control data, beginning with a value conforming to a USHORT data
type, which specifies the overall length of the data.

There are several different types of control-data structures:

BTNCDATA
ENTRYFDATA
FRAMECDATA
MLECTLDATA
SBCDATA

Button control data
Entry field control data
Frame control data
Multi-line entry field control data
Scroll bar control data.·

A-44 PM Programming Reference Vol II

DDEINIT
Dynamic-data-exchange initiation structure.

Syntax

typedef struct _DDEINIT {
UlONG cb;
PSZ pszAppName;
PSZ pszTopi c;
UlONG offConvContext;
r DDEINIT;

typedefDDEINlT *PDDEINIT;

Fields
cb (ULONG)

Length of structure.

This must be set to the length of the DDEINIT structure.

pszAppName (PSZ)
Application name.

Pointer to name of the server application.

Application names must not contain slashes or backslashes. These characters are
reserved for future use in network implementations.

pszTopic (PSZ)
Topic.

Pointer to name of the topic.

offConvContext (ULONG)
Conversation context.

Offset to a CONVCONTEXT structure.

Appendix A. Data Types A-45

DELETENOTIFY
Structure that contains information about the application page that is being deleted from a
notebook.

Syntax

Fields
hwndBook (HWND)

Notebook window handle.

hwndPage (HWND)
Application page window handle.

ulAppPageData (ULONG)
Application-specified page data.

hbmTab (HBITMAP)
Application-specified tab bit map.

DDESTRUCT
Dynamic-data-exchange control structure.

Syntax

A-46 PM Programming Reference Vol II

Fields
cbData (ULONG)

Length of the data.

This is the length of data that occurs after the offabData parameter. If no data exists,
this field should contain a zero (0).

fsStatus (USHORT)
Status of the data exchange.

DDE_FACK
DDE_FBUSY
DDE _FN 0 DATA
DDE_FACKREQ
DDE _FRESPONSE
DDE_NOTPROCESSED
DDE_FAPPSTATUS

usFormat (USHORT)
Data format.

Positive acknowledgement
Application is busy
No data transfer for advise
Acknowledgements are requested
Response to WM_DDE_REQUEST
DDE message not understood
A 1-byte field of bits that are reserved for application-specific
returns.

One of the DDE data formats.

DDEFMT TEXT Text format.
Other DDE format registered with the atom manager, using the system

atom table. The predefined DDE formats are guaranteed not to
conflict with the values returned by the atom manager.

offszltemName (USHORT)
Offset to item name.

This is the offset to the item name from the start of this structure. Item name is a null
(OxOO) terminated string. If no item name exists, there must be a single null (OxOO)
character in this position. (That is, ItemName is ALWAYS a null terminated string.)

offabData (USHORT)
Offset to beginning of data.

This is the offset to the data, from the start of this structure. This field should be
calculated regardless of the presence of data. If no data exists, cbData must be zero
(0).

For compatibility reasons, this data should not contain embedded pointers. Offsets
should be used instead.

Appendix A. Data Types A-47

DESKTOP
Desktop background state structure.

Syntax

x;
y;
fl;,
IT i1 eCount;
SZ Fil e126Gl;

typedefDESKTOP *PDESKTOP;

Fields
cbSize (ULONG)

Length of structure.

hbm (HBITMAP)
Bit-map handle of desktop background.

x (LONG)
X desktop coordinate of the origin of the bit map.

Y (LONG)
Y desktop coordinate of the origin of the bit map.

fl (ULONG)
Desktop background state indicators or setting options.

SOT_CENTER The desktop background bit map is, or is to be, centered on the
screen. If this option is specified, then the values of the x the y
parameters are inapplicable.

SOT_DESTROY Any existing desktop background bit map is to be destroyed. The
setting of this option is not returned on the WinQueryDesktopBkgnd
function.

SOT LOADFILE For the WinSetDesktopBkgnd function the bit map is to be loaded
from the filename specified. If the SDT_NOBKGND flag IS also set
then the bit map is loaded but the background is not set. Tiling and
scaling may be performed at load time or later when setting the bit
map.

SDT_NOBKGND There is no desktop background bit map, that is the desktop
background i a solid color. For the WinQueryDesktopBkgnd function
the existing background is to be left unmodified unless
SOT_DESTROY is also specified.

A-48 PM Programming Reference Vol II

The bit map represents a fill pattern. SOT_PATTERN
SOT RETAIN The szFile is, or is to be, remembered for use when the system is

started.
The bit map is, or is to be, scaled to fill the desktop. If this option is
specified, then the values of the x and y parameters are inapplicable.
The bit map is, or is to be, tiled to fill the desktop.

ITileCount (LONG)
Number of images of the bit map to be tiled.

The tile count is the number of images to be drawn in the vertical and horizontal
direction when tiling the desktop background.

szFile[260] (CHAR)
Zero-terminated name of the file containing the bit map.

DEVOPENSTRUC
Open-device data structure.

Syntax

typedef struct _DEVOPENSTRUC {
PSZ ps~LogAddress;
PSZ pszDriverName;
PORIVDATA pdriv;
PSZ pszDataType;
PSZ pszComment;
PSZ pszQueueProcName;
PSZ pszQueueProcParams;
PSZ pszSpoolerParams;
PSZ pszNetworkParams;
} .. DEVOPENSTRUC;

typedef OEVOPENSTRUC *POEVOPENSTRUC;

Fields
pszLogAddress (PSZ)

Logical address.

This is required for an OD_DIRECT device being opened with DevOpenDC; it is the
logical device address, such as "LPT1" on OS/2. Some drivers may accept a file name
for this parameter, or even a named pipe.

Where output is to be queued (for an 00_ QUEUED device), this is the name of the
queue for the output device. The queue name can be a UNC name.

Note: This parameter can be a port name for a printer device context.

Appendix A. Data Types A-49

pszDriverName (PSZ)
Driver name.

Character string identifying the printer driver, for example, LASERJET. The
pszDriverName field of the PRQINF03 structure, associated with the required print
queue, gives the driver and device name, separated by a period, for example
LASERJET.HP LaserJet IIID It can contain only the name up to the period, for example
LASERJET.

pdriv (PDRIVDATA)
Driver data.

Data that is to be passed directly to the PM device driver. Whether any of this is
required depends upon the device driver.

For printer device context, this is a pointer to the job properties data.

pszDataType (PSZ)
Data type.

For a OD_QUEUED or OD_DIRECT device, this parameter defines the type of data that
is to be queued as follows:

PM _ Q_ STD Standard format
PM_Q_RAW Raw format

Note that a device driver can define other data types.

For OD_QUEUED or OD_DIRECT defice types, the default is supplied by the device
driver if pszDataType is not specified. For any other device type, pszDataType is
ignored.

pszComment (PSZ)
Comment.

Optional character string that the printer object displays to the user in a job settings
notebook. It is recommended that the application include its own name in this comment
string.

Note: The job title text is derived from the document name passed to DevEscape
(DEVESC _ STARTDOC).

pszQueueProcName (PSZ)
Queue-processor name.

This is the name of the queue processor for queued output, and is usually the default.

pszQueueProcParams (PSZ)
Queue-processor parameters.

Queue processor parameters (optional). They can include information such as the
number of copies you want to print and the size of the output area on the printed page.

The first parameter (COP) is used for all spool-file formats. The remaining parameters
are valid for PM_Q_STD spool files only. Because PM_Q_STD data are used mainly for
graphic data, these parameters are described in relation to the printing of picture files.

A-50 PM Programming Reference Vol II

The PMPRINT/PMPLOT queue-processor parameters are separated by spaces and are:

COP=n
The COP parameter specifies the number of copies of the spool file that you want
printed. The value of n must be an integer in the range of 1 through 999.

The default is COP= 1 .

ARE=C I w,h,l,t
The ARE parameter determines the 'size and position of the output area. This is
the area of the physical page to which printing is restricted.

The default value of ARE=C means that the output area is the whole page. Note,
however, that the printer cannot print outside its own device clip limits.

To size and position the output area at a specific point on the page, use
ARE=w,h,l,t, where:

W, h

I, t

are the width and height of the desired output area.

are the offsets of the upper-left corner of the output area from
the left (I) and from the top (t) of the maximum output area.

These four values must be given as percentages of the maximum output
dimensions. The maximum output area is the area within the device clip limits.

FIT=S I/,t
The FIT parameter determines which part of the picture is to be printed. You can
request the whole of the picture, scaled to fit the output area; or you can position
the picture (actual size) anywhere within the output area. This could mean that the
picture is clipped at the boundaries of the output area.

The default value of FIT =8 causes the output to be scaled until the larger of the
height or width just fits within the defined output area. The aspect ratio of the
picture is maintained.

To print the picture in actual size, use FIT =I,t, where I,t are the coordinates of the
point in the picture that you want positioned at the center of the output area: I is
measured from the left edge of the picture; and t is measured from the top edge.
The coordinates must be given as percentages of the actual dimensions of the
picture.

XFM=O 11
The XFM parameter enables you to override the picture-positioning and clipping
instructions that are provided by the ARE and FIT parameters, including their
defaults ..

The default value of XFM= 1 allows the appearance of the output to be determined
by the settings of the ARE and FIT parameters.

A value of XFM=O yields output as specified in the picture file. For example,
applications that use many different forms can define different positions on each
form for their output.

Appendix A. Data Types A-51

COL=M IC
The COL parameter enables you to specify color output if you have a color printer.

A value of COL=M creates monochrome output (black foreground with no
background color). This is supported by all devices.

A value of COL=C creates color output. If you request color output on a
monochrome device, the printer presentation driver tries to satisfy your request,
which can cause problems because the only color available is black. For example,
if the picture file specifies a red line on a blue background, both are drawn in black.

The default is COL=M when you are addressing a monochrome printer and COL=C
when you are addressing a color printer.

MAP=N I A
The MAP parameter enables you to decide how the neutral colors (those that are
not specified in the picture file) are printed.

The default value of MAP=N yields a normal representation of the screen picture on
a printed page, which means that the page background is white and the foreground
is black.

A value of MAP=A provides the reverse of the normal representation: the
background is black and the foreground is white on the printed page.

CDP=codepage
The COP parameter overrides the codepage to being used for PM_Q_RAW print
jobs. The print queue driver uses DEVESC_SETMODE to set the codepage, but
not all printer drivers support this device escape.

XLT=O 11
The XL T parameter can eliminate the translation component when printing a
metafile if XL T = 1 .

When the resolution of the device is higher than that of the world coordinate space,
a small translation of world coordinate point (0,0) occurs on the device to preserve
the accuracy of the mapping from world to device coordinate units. For example,
(0,0) becomes (1 ,1) if there are 3 pels to every world coordinate.

Normally, this is not noticeable, but it can be a problem with some devices. For
example, in order to draw a complete row of 80 characters using a device font, a
device may require the text to start at device coordinate position zero. Starting at a
position other than zero may cause one or more characters at the end of the row to
be clipped. In such cases, elimination of the translation is important and can be
accomplished by specifying XL T = 1.

The default is XLT=O.

A-52 PM Programming Reference Vol II

pszSpoolerParams (PSZ)
Spooler parameters.

Spooler parameters (optional) are separated by spaces. They are used for scheduling
print jobs and are as follows:

• The form names that identify the paper to be used, for example, FORM=A4,A5,ENV.
The form names are optional; but if they are provided, the spooler is able to hold off
printing the jobs until the required form is installed in the printer. If the form name is
not provided, the spooler attempts to print the job. The printer driver recognizes
that there is a forms problem and displays a FORMS MISMATCH message box.

• Priority of the print job, for example, PRTY=60. The priority is specified as an
integer in the range 1 through 99; 99 is the highest. The default priority value is 50.
The application can use the spooler priority parameter to prioritize its own jobs;
however, it is not good practice for an application always to use priority 99 in an
attempt to get its jobs printed first.

pszNetworkParams (PSZ)
Network parameters.

Optional parameter that can be used to specify network options; for example,
USER=JOESMITH.

DLGTEMPLATE
Dialog-template structure.

Syntax

typedef struct DLGT~MPLATE {
USHORT· cbTemplate;
USHORT type;
USHORT codepage;
USHORT offadlgti;
USHORT fsTemplateStatus;
USHORT i ItemFocus;
USHORT coffPresParams;
DLGTITEM adl gti [1] ;
} DLGTEMPLATE;

typedef DLGTEMPlATE *PDLGTEMPLATE;

Fields
cbTemplate (USHORT)

Length of template.

type (USHORT)
Template format type.

Appendix A. Data Types A-53

codepage (USHORT)
Code page.

offadlgti (USHORT)
Offset to dialog items.

fsTemplateStatus (USHORT)
Template status.

iltemFocus (USHORT)
Index of item to receive focus initially.

coffPresParams (USHORT)
Count of presentation-parameter offsets.

adlgti[1] (DLGTITEM)
Start of dialog items.

DLGTITEM
Dialog-item structure.

Syntax

Fields
fsltemStatus (USHORT)

Status.

cChiidren (USHORT)
Count of children to this dialog item.

A-54 PM Programming Reference Vol II

eehClassLen (USHORT)
Length of class name.

If zero, offClassName contains the hexadecimal equivalent of a preregistered class
name.,

offClassName (USHORT)
Offset to class name.

If cchClassLen is nonzero, this is the offset to a null-terminated ASCII string that
contains the classname. If cchClassLen is zero, this is of the form Oxhhhh, where hhhh
is the hexadecimal equivalent of the preregistered class name.

eehTextLen (USHORT)
Length of text.

offText (USHORT)
Offset to text.

flStyle (ULONG)
Dialog item window style.

The high-order 16 bits are the standard WS _ * style bits. The low-order 16 bits are
available for class-specific use.

x (SHORT)
X-coordinate of origin of dialog-item window.

Y (SHORT)
V-coordinate of origin of dialog-item window.

ex (SHORT)
Dialog-item window width.

ey (SHORT)
Dialog-item window height.

id (USHORT)
Identity.

offPresParams (USHORT)
Reserved.

offCtlData (USHORT)
Offset to control data.

Appendix A. Data Types A-55

DRAGIMAGE
Dragged-object-image structure which describes the images that are to be drawn under the
direct-manipulation pOinter for the duration of a drag operation.

Syntax

Fields
cb (USHORT)

Size, in bytes, of the DRAGIMAGE structure.

cptl (USHORT)
The number of points in the point array if fI is specified as DRG_POL YGON.

hlmage (LHANDLE)
Handle representing the image to display.

The type is determined by fl.

sizlStretch (SIZEL)
Dimensions for stretching when fI is specified as DRG_STRETCH.

fl (ULONG)
Flags.

DRGJCON

DRG_BITMAP

DRG_POL YGON

DRG_STRETCH

DRG_TRANSPARENT

hlmage is an HPOINTER.

hlmage is an HBITMAP.

hlmage is a pointer to an array of points that will be connected
with GpiPolyLine to form a polygon. The first point of the
array should be (0,0), and the other points should be placed
relative to this position.

If DRGJCON or DRG_BITMAP is specified, the image is
expanded or compressed to the dimensions specified by
sizlStretch.

If DRGJCON is specified, an outline of the icon is generated
and displayed instead of the original icon.

A-56 PM Programming Reference Vol II

DRG_CLOSED If DRG_POL YGON is specified, a closed polygon is formed by
moving the current position to the last point in the array before
calling GpiPolyLine.

cxOffset (SHORT)
X-offset from the pointer hot spot to the origin of the image.

cyOffset (SHORT)
V-offset from the pointer hot spot to the origin of the image.

DRAGINFO
Drag-information structure.

Syntax

. .." .

• typed~f· strucf·.··.DRAGINFp·.·{
.' UtONG ·cb~~~g;r~9~ ::
'USIiORT ..c~l)ra9iteni;.:·
USHO~r; . ·~~Opera~j.9n~; .

•.. HWND:.· . ~wndSQurce;
:. SHQ~T:~Pr9Ri
S~QR1.YRt9P ;
U$tfORT cd~ •. ~elTl;
USHORT.. usReserved;
'}:o,ftAG~~F:Q'

" ····t~P~d$.f: ;()R~~\:~fO.;*P6~A~r~F(); •• ' ' ..

Fields
cbDraginfo (ULONG)

Structure size, in bytes.

The size includes the array of DRAGITEM structures.

cbDragitem (USHORT)
Size, in bytes, of each DRAGITEM structure.

Appendix A. Data Types A-57

usOperation (USHORT)
Modified drag operations.

An application can define its own modified drag operations for use when simulating a
drop. These operations must have a value greater than DO_UNKNOWN. Possible
values are described in the following list:

DO_DEFAULT Execute the default drag operation. No modifier keys are pressed.
DO_COPY Execute a copy operation. The Ctrl key is pressed.
DO_LINK Execute a link operation. The Ctrl+Shift keys are pressed.
DO_MOVE Execute a move operation. The Shift key is pressed ..
DO_UNKNOWN An undefined combination of modifier keys is pressed.

hwndSource (HWND)
Window handle of the source of the drag operation.

xDrop (SHORT)
X-coordinate of drop point expressed in desktop coordinates.

yDrop (SHORT)
Y-coordinate of drop point expressed in desktop coordinates.

cditem (USHORT)
Count of DRAGITEM structures.

us Reserved (USHORT)
Reserved.

DRAGITEM
Drag-object structure.

Syntax

A-58 PM Programming Reference Vol II

Fields
hwndltem (HWNO)

Window handle of the source of the drag operation.

ulitemlD (ULONG)
Information used by the source to identify the object being dragged.

hstrType (HSTR)
String handle of the object type.

The string handle must be created using the OrgAddStrHandle function. The string is of
the form:

typer, type ... J

The first type in the list must be the true type of the object. The following types are
used by the OS/2* shell:

ORT_ASM
ORT_BASIC
ORT _BINOATA
ORT BITMAP
ORT_C
ORT_COBOL
ORT_OLL
ORT_OOSCMO
ORT_EXE
ORT_FONT
ORT _FORTRAN
ORT-,CON
ORT LIB
ORT_METAFILE
ORT_OS2CMO
ORT_PASCAL
ORT_RESOURCE
ORT_TEXT
ORT_UNKNOWN

hstrRMF (HSTR)

Assembler code
BASIC code
Binary data
Bit map
C code
COBOL code
Oynamic link library
OOS command file
Executable file
Font
FORTRAN code
Icon
Library
Metafile
OS/2 command file
Pascal code
Resource file
Text
Unknown type.

String handle of the rendering mechanism and format.

The string handle must be created using the OrgAddStrHandle function. The string is of
the form:

mechfmt[,mechfmt •.. J

Appendix A. Data Types A-59

where mechfmt can be in either of the following formats:

• <mechanism(1),format(1»
• (mechanism(1)[, mechanism(n) ...]) x (format(1)[,format(n) ...])

The first mechanism/format pair must be the native rendering mechanism and format of
the object.

Valid mechanisms are:

"DRM_DDE"
"DRM _OBJECT"
"DRM _ OS2FILE"
"DRM_PRINT"

Valid formats are:

"DRF _BITMAP"
"DRF_DIB"
"DRF DIF"
"DRF _DSPBITMAP"
"DRF _METAFILE"
"DRF _ OEMTEXT"
"DRF _ OWNERDISPLA Y"
"DRF _PTRPICT"
"DRF_RTF"
"ORF_SYLK"
"DRF_TEXT"
"ORF _TIFF"
"ORF _UNKNOWN"

hstrContainerName (HSTR)

Dynamic data exchange
Item being dragged is a workplace object.
OS/2 file
Object can be printed using direct manipulation.

OS/2 bit map
DIB
DIF
Stream of bit-map bits
Metafile
OEM text
Bit stream
Printer picture
Rich text
SYLK
Null-terminated string
TIFF
Unknown format.

String handle of the name of the container holding the source object.

The string handle must be created using the DrgAddStrHandle function.

hstrSourceName (HSTR)
String handle of the name of the source object.

The string handle must be created using the DrgAddStrHandle function.

hstrTargetName (HSTR)
String handle of the suggested name of the object at the target.

It is the responsibility of the source of the drag operation to create this string handle
before calling DrgDrag.

cxOffset (SHORT)
X-offset from the pointer hot spot to the origin of the image that represents this object.

This value is copied from cxOffset in the DRAGIMAGE stru~ture by DrgDrag.

cyOffset (SHORT)
Y -offset from the pointer hot spot to the origin of the image that represents this object.

This value is copied from cyOffset in the DRAGIMAGE structure by DrgDrag.

A-SO PM Programming Reference Vol II

fsControl (USHORT)
Source-object control flags.

DC_OPEN
DC_REF
DC_GROUP
DC_CONTAINER
DC PREPARE

DC _ REMOVEABLEMEDIA

fsSupportedOps (USHORT)

Object is open
Reference to another object
Group of objects
Container of other objects
Source requires a DM_RENDERPREPARE message
before it establishes a data transfer conversation
Object is on removable media, or object cannot be
recovered after a move operation.

Direct manipulation operations supported by the source object.

DO _ COpy ABLE
DO LINKABLE
DO MOVEABLE

DRAGTRANSFER

Source supports DO_COPY
Source supports DO_LINK
Source supports DO_MOVE.

Drag-conversation structure.

Syntax

typedef· struct _DRAGTRANSFER {
ULONG cb;
HWND hwndClient;
PDRAGITEM pdi tern;
HSTR hstrSelectedRMF;

.HSTR hstrRenderToName;
ULONG ul TargetInf();
USHORT usOperation;
USHORT fsReply;

} DRAGTRANSFER;

typedef.DRAGTRANSFER.*PDRAGTRANSFER;

Appendix A. Data Types A-61

Fields
cb (ULONG)

Size, in bytes, of the structure.

hwndClient (HWND)
Handle of the client window.

This can be the target window or a window that represents an object in a container that
was dropped on.

pditem (PDRAGITEM)
Pointer to the DRAG ITEM structure that is to be rendered.

This structure must exist within the DRAGINFO structure that was passed in the
DM_DROP message.

hstrSelectedRMF (HSTR)
String handle for the selected rendering mechanism and format for the transfer
operation.

This handle must be created using DrgAddStrHandle. The target is responsible for
deleting this handle when the conversation is complete. The string is in the format:
<MECHANISM,FORMAT>.

hstrRenderToName (HSTR)
String handle representing the name where the source places, and the target finds, the
data that is rendered.

The target is responsible for deleting this string handle when the conversation
terminates. The contents of this field vary according to the rendering mechanism. See
hstrRMF field in DRAGITEM.

OS/2 File

DDE
Print

The string handle represents the fully qualified name of the file where the
rendering will be placed.
This field is not used.
This field is not used.

ulTargetlnfo (ULONG)
Reserved.

Reserved for use by the target. The target can use this field for information about the
object and rendering operation.

usOperation (USHORT)
The operation.

Values are:

DO_COPY
DO_LINK
DO_MOVE
OTHER

Execute a copy operation.
Execute a link operation.
Execute a move operation.
Execute an application-defined operation.

A-62 PM Programming Reference Vol II

fsReply (USHORT)
Reply flags.

Replay flags for the message. These flags can be set as follows:

DMFL_NATIVERENDER The source does not support rendering for this object. A
source should not set this flag unless it provides sufficient
information at the time. of the drop for the target to perform
the rendering operation. The target must send
DM_ENDCONVERSATION to the source after carrying out
the rendering operation, or when it elects not to do a native
rendering.

DMFL_RENDERRETRY The source supports rendering for the object, but does not
support the selected rendering mechanism and format. The
target can try another mechanism and format by sending
another DM_RENDER message. If the target does not retry,
it must send a DM_RENDERCOMPLETE message to the
source. This flag is set in conjunction with the
DMFL_NATIVERENDER flag.

DRIVDATA
Driver-data structure.

Syntax

Fields
cb (LONG)

Length.

The length of the structure.

IVersion (LONG)
Version.

The version number of the data. Version numbers are defined by particular PM device
drivers.

Appendix A. Data Types A-S3

szDeviceName[32] (CHAR)
Device name.

A string in a 32-byte field, identifying the particular device (model number, and so on).
Again, valid values are defined by PM device drivers.

abGeneraIData[1] (CHAR)
General data.

Data as defined by the Presentation Manager device driver.

The data type of this field is defined by the Presentation Manager device driver. It does
not contain pointers, as these are not necessarily valid when passed to the device
driver.

ENTRYFDATA
Entry-field control data structure.

Syntax

typedef . struct ENTRYFpATA· {
USHORT cb;
USHORT cchEditUmit;
USHORT ichMinSe 1; .
USHORT ichMaxSel;

} ENTRYFDATA;

Fields
cb (USHORT)

Length of control data in bytes.

The length of the control data for an entry field control.

cchEditLimit (USHORT)
Edit limit.

This is the maximum number of characters that can be entered into the entry field
control.

If the operator tries to enter more text into an entry field control than is specified by the
text limit set by the EM_SETTEXTLIMIT message, the entry field control indicates the
error by sounding the alarm and does not accept the characters.

ichMinSel (USHORT)
Minimum selection.

A-S4 PM Programming Reference Vol II

ichMaxSel (USHORT)
Maximum selection.

The ichMinSel and ichMaxSel parameters identify the current selection within the entry
field control. Characters within the text with byte offsets less than the ichMaxSel
parameter and greater than or equal to the ichMinSel parameter are the current
selection. The cursor is positioned immediately before the character identified by the
ichMaxSel parameter.

If the ichMinSel parameter is equal to the ichMaxSel parameter, the current selection
becomes the insertion point.

If the ichMinSel parameter is equal to 0 and the ichMaxSel is greater than or equal to
text limit set by the EM_SETTEXTLIMIT message, the entire text is selected.

ERRORID
Error identity.

Syntax

typedefUlONG ERRORID;

ERRINFO
Error-information structure.

Syntax

typedef struct ERRINFO {
ULONG cbFixedErrlnfo;
ERRORlD idError;
ULONGt::Deta i lLevel ;
ULONG offaoffs.zMsg;
UlONG offBfr'laryData; .

}·ERRINFO;

Fields
cbFixedErrlnfo (ULONG)

Length of fixed data to this structure.

idError (ERRORID)
Error identity.

This is identical to the value returned by WinGetLastError.

Appendix A. Data Types A-65

cDetailLevel (ULONG)
Number of levels of detail.

This is the number of entries in the array of words pointed to by the following field. One
level of detail is provided.

offaoffszMsg (ULONG)
Offset to the array of message offsets.

This is an offset to an array of 16-bit offsets to null-terminated strings. Each string is a
printable message that offers varying levels of information. The first level is the least
amount of detail, and the remaining levels offer more and more detail.

The first level of detail is always an error message string, in the following format:

xxxnnnns

where xxx is the product identifier
nnnn is the message number
s is the message severity letter

W = warning
E = error'
S = severe error
U = unrecoverable

offBinaryData (ULONG)
Offset to the binary data.

This can contain additional information relating to the error.

ESCMODE
Structure for setting printer mode. See DevEscape (DEVESC_SETMODE).

Syntax

This data structure is a more-general version of the of the ESCSETMODE data structure.

A-66 PM Programming Reference Vol II

Fields
mode (ULONG)

Mode.

modedata[1] (BYTE)
Mode data.

ESCSETMODE
Structure for setting printer mode. See DevEscape (DEVESC_SETMODE).

Syntax

typedef struct _ESCSETMODE {
UlONG mode;
USHORT codepage;
I ESCSETMODE;

typedef·ESCSETMODE *PESCSETMODE;

This data structure is a specific-case version of the ESC MODE data structure, used to set
the code page of a printer.

Fields
mode (ULONG)

Mode to be set.

o Set mode to specified code page. Any font can be used.

codepage (USHORT)
Code page.

If zero is specified for the code page, the printer is set to the ha(dware default.

Appendix A. Data Types A-67

FACENAMEDESC
Face-name description structure. See GpiQueryFaceString.

Syntax

t)'fJ~d~f· •• str\.lct.~RAC~NAM~[}ESC ... {
'USHQRT <.\AsSize;
USHORT ',ysWeightClass; •
OSHORTusWidthClass;
USHORT usReserved;
ULONG flOptions;
. }FACENAMEOEst;

typedef FACENAMEOESC·· *PRACENAMEDESC;

Fields
usSize (USHORT)

Length of structure.

usWeightClass (USHORT)
Weight class.

Indicates the visual weight (thickness of strokes) of the characters in the font:

FWEIGHT _DONT _CARE
FWEIGHT_ULTRA_LlGHT
FWEIGHT _EXTRA_LIGHT
FWEIGHT LIGHT
FWEIGHT _SEMI_LIGHT
FWEIGHT _NORMAL
FWEIGHT _SEMI_BOLD
FWEIGHT_BQLD
FWEIGHT _EXTRA_BOLD
FWEIGHT _ULTRA_BOLD

usWidthClass (USHORT)
Width class.

Any font weight satisfies the request.
Ultra-light.
Extra-light.
Light.
Semi-light.
Medium (normal) weight.
Semi-bold.
Bold.
Extra-bold.
Ultra-bold.

Indicates the relative aspect ratio of the characters of the font in relation to the normal
aspect ratio for this type of font:

FWIDTH_DONT _CARE Any font width satisfies the request.
FWIDTH_ULTRA_CONDENSED Ultra-condensed (50% of normal).
FWIDTH_EXTRA_CONDENSED Extra-condensed (62.5% of normal).
FWIDTH_CONDENSED Condensed (75% of normal).
FWIDTH_SEMI_CONDENSED Semi-condensed (87.5% of normal).
FWIDTH_NORMAL Medium (normal).
FWIDTH_SEMLEXPANDED Semi-expanded (112.5% of normal).
FWIDTH_EXPANDED Expanded (125% of normal).

A-68 PM Programming Reference Vol II

FWIDTH_EXTRA_EXPANDED Extra-expanded (150% of normal).
FWIDTH_ULTRA_EXPANDED Ultra-expanded (200% of normal).

usReserved (USHORT)
Reserved.

flOptions (ULONG)
Other characteristics of the font.

FTYPEJTALIC Italic font required. If not specified, non-italic font
required.

FTYPEJTALlC_DONT_CARE Italic and non-italic fonts can satisfy the request. If this
option is specified, FTYPEJTALIC is ignored.

FTYPE_OBLIQUE Oblique font required. If not specified, non-oblique font
required.

FTYPE_OBLlQUE_DONT_CARE Oblique and non-oblique fonts can satisfy the request.
If this option is specified, FTYPE_OBLIQUE is ignored.

Rounded font required. If not specified, non-rounded font
required.

FTYPE_ROUNDED_DONT_CARE Rounded and non-rounded fonts can satisfy the
request. If this option is specified, FTYPE_ROUNDED
is ignored.

FATTRS
Font-attributes structure.

Syntax

typedef struct JATTRS{
USHORT •. l,IsRecordLength;
USHORT fsSelection;
LONG 1 Match;
CHAR szFacenaine[FACESIZE1;
USHOIH idRegiStry;
USHQRT usCodePage;
LONG lMaxBasel tneExt;
LONG lAveCharWidth;
USHORT fsTypei
USHORT fsFontUse;

}FATTRS;

Appendix A. Data Types A-69

Fields
usRecordLength (USHORT)

Length· of record.

fsSelection (USHORT)
Selection indicators.

Flags causing the following features to be simulated by the system.

Note: If an italic flag is applied to a font that is itself defined as italic, the font is slanted
further by italic simulation.

Underscore or strikeout lines are drawn using the appropriate attributes (for
example, color) from the character bundle (see the CHARBUNDLE datatype), not
the line bundle (see L1NEBUNDLE). The width of the line, and the vertical
position of the line in font space, are determined by the font. Horizontally, the
line starts from a point in font space directly above or below the start point of
each character, and extends to a point directly above or below the escapement
point for that character.

For this purpose, the start and escapement pOints are those applicable to
left-to-right or right-to-Ieft character directions (see GpiSetCharDirection in
Graphics Programming Interface Programming Reference), even if the string is
currently being drawn in a top-to-bottom or bottom-to-top direction.

For left-to-right or right-to-Ieft directions, any white space generated by the
character extra and character break extra attributes (see GpiSetCharExtra and
GpiSetCharBreakExtra in Graphics Programming Interface Programming
Reference), as well as increments provided by the vector of increments on
GpiCharStringPos and GpiCharStringPosAt, are also underlined/overstruck, so
that in these cases the line is continuous for the string.

FATTR_SEL_ITALIC
FATTR_SEL_UNDERSCORE
FA TTR _ SEL _BOLD

FATTR_SEL_STRIKEOUT
FATTR SEL OUTLINE

IMatch (LONG)
Matched-font identity.

szFacename[FACESIZE] (CHAR)
Typeface name.

Generate italic font.
Generate underscored font.
Generate bold font. (Note that the resulting characters
are wider than those in the original font.)
Generate font with 9'1eFs~Fl:lel(characters.
Use an outline font with hollow characters. If this flag is
not set, outline font characters are filled. Setting this
flag normally gives better performance, and for
sufficiently small characters (depending on device
resolution) there may be little visual difference.

The typeface name of the font, for example, Tms Rmn.

A-70 PM Programming Reference Vol II

idRegistry (USHORT)
Registry identifier.

Font registry identifier (zero if unknown).

usCodePage (USHORT)
Code page.

If zero, the current Gpi code page (see GpiSetCp in Graphics Programming Interface
Programming Reference) is used. A subsequent GpiSetCp function changes the code
page used for this logical font.

IMaxBaselineExt (LONG)
Maximum baseline extension.

For raster fonts, this should be the height of the required font, in world coordinates.

For outline fonts, this should be zero.

IAveCharWidth (LONG)
Average character width.

For raster fonts, this should be the width of the required font, in world coordinates.

For outline fonts, this should be zero.

fsType (USHORT)
Type indicators.

FATIR_ TYPE_KERNING
FATIR_TYPE_MBCS
FATIR_TYPE_DBCS
FATIR_ TYPE_ANTIALIASED

fsFontUse (USHORT)
Font-use indicators.

Enable kerning (PostScript** only).
Font for mixed single- and double-byte code pages.
Font for double-byte code pages.
Antialiased font required. Only valid if supported by the
device driver.

These flags indicate how the font is to be used. They affect presentation speed and font
quality.

FATIR_FONTUSE_NOMIX Text is not mixed with graphics and can be
written without regard to any interaction with
graphics objects.

FATIR_FONTUSE_OUTLINE Select an outline (vector) font. The font
characters can be used as part of a path
definition. If this flag is not set, an outline
font might or might not be selected. If an
outline font is selected, however, character
widths are rounded to an integral number of
pels.

FATIR_FONTUSE_TRANSFORMABLE Characters can be transformed (for example,
scaled, rotated, or sheared).

Appendix A. Data Types A-71

FFDESCS
Font-file descriptor.

Syntax

FIELDINFO
Structure that contains information about column data in the details view of the container
control. The details view displays each FIELDINFO structure as a column of data that
contains specific information about each container record. For example, one FIELDINFO
structure, or column, might contain icons or bit maps that represent each container record.
Another FIELDINFO structure might contain the date or time that each container record was
created.

Syntax

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the FIELDINFO structure.

A-72 PM Programming Reference Vol II

flData (ULONG)
Data attributes.

Attributes of the data in a field.

• Specify one of the following for each column to choose the type of data that is
displayed in each column:

CFA_BITMAPORICON
The column contains bit-map or icon data.

CFA_DATE
The data in the column is displayed in date format. National Language Support
(NLS) is enabled for date format. Use the data structure described in COATE

CFA_STRING
Character or text data is displayed in this column.

CFA_TIME
The data in the column is displayed in time format. National Language Support
(NLS) is enabled for time format. Use the data structure described in CTIME.

CFA_ULONG
Unsigned number data is displayed in this column. National Language Support
(NLS) is enabled for number format.

• Specify any or all of the following column attributes:

CFA_FIREADONL Y
Prevents text in a FIELDINFO data structure (text in a column) from being edited
directly. This attribute applies only to columns for which the CFA_STRING
attribute has been specified.

CFA_HORZSEPARATOR
A horizontal separator is provided beneath column headings.

CFA_INVISIBLE
Invisible container column. The default is visible.

CFA_OWNER
Ownerdraw is enabled for this container column.

CFA_SEPARATOR
A vertical separator is drawn after this column.

• Specify one of the following for each column to vertically position data in that
column:

CFA_BOTTOM
Bottom-justifies field data.

CFA_TOP
Top-justifies field data.

CFA_VCENTER
Vertically centers field data. This is the default.

Appendix A. Data Types A-73

• Specify one of the following for each column to horizontally position data in that
column. These attributes can be combined with the attributes used for vertical
positioning of column data by using an OR operator (I).

CFA_CENTER
Horizontally centers field data.

CFA_LEFT
Left-justifies field data. This is the default.

CFA_RIGHT
Right-justifies field data.

flTitle (ULONG)
Column heading attributes.

• Specify the following if icon or bit-map data is to be displayed in the column
heading:

CFA_BITMAPORICON
The column heading contains icon or bit-map data. If CFA_BITMAPORICON is
not specified, any data that is assigned to a column heading is assumed to be
character or text data.

• Specify the following to prevent direct editing of a column heading:

CFA_FITITLEREADONL Y
Prevents a column heading from being edited directly.

• Specify one of the following for each column heading to vertically position data in
that column heading:

CFA_TOP
Top-justifies column headings.

CFA_BOTTOM
Bottom-justifies column headings.

CFA_VCENTER
Vertically centers column headings. This is the default.

• Specify one of the following for each column heading to horizontally position data in
that column heading. These attributes can be combined with the attributes used for
vertical positioning of column heading data by using an OR operator (\).

CFA_CENTER
Horizontally centers column headings.

CFA_LEFT
Left-justifies column headings. This is the default.

CFA_RIGHT
Right-justifies column headings.

pTitleData (PVOID)
Column heading data.

Column heading data, which can be a text string, or an icon or bit map. The default is a

A-74 PM Programming Reference Vol II

text string. If the flTitle field is set to the CFA_BITMAPORICON attribute, this must be
an icon or bit map.

offStruct (ULONG)
Structure offset.

Offset from the beginning of a RECORDCORE structure to the data that is displayed in
this column ..

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages.

pUserData (PVOID)
Pointer to user data.

pNextFieldlnfo (struct _FIELDINFO *)
Pointer to the next linked FIELDINFO data structure.

cxWidth (ULONG)
Column width.

Used to specify the width of a column. The default is an automatically sized column that
is always the width of its widest element. If this field is set and the data is too wide, the
data is truncated.

FIELDINFOINSERT
Structure that contains information about the FIELDINFO structure or structures that are
being inserted into a container. This structure is used in the CMJNSERTDETAILFIELDINFO
container message only. See "CMJNSERTDETAILFIELDINFO" on page 22-44 for
information about that message.

Syntax

typedef struct _FIELDINFOINSERT{
.ULONG cb;
PFIELDINFO pFieldlnfoOrder;
UlONG flnval idateHeldlnfo;
ULONGcFieldlnfolnsertj

} FIELOINFOINSERT;

typedef FIELDINFOINSERT.",PFIELDINFOINSERT;

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the FIELDINFOINSERT structure.

Appendix A. Data Types A-75

pFieldlnfoOrder (PFIELDINFO)
Column order.

Orders the FIELDINFO structure or structures relative to other FIELDINFO structures in
the container. The values can be:

CMA FIRST Places a FIELDINFO structure, or list of FIELDINFO structures, at the
front of the list of columns.

CMA_END Places a FIELDINFO structure, or list of FIELDINFO structures, at the
end of the list of columns.

Other Pointer to a FIELDINFO structure that this structure, or list of structures,
is to be inserted after.

flnvalidateFieldlnfo (U LONG)
Update flag.

Flag that indicates an automatic display update after the FIELDINFO structures are
inserted.

TRUE
FALSE

The display is automatically updated after FIELDINFO structures are inserted.
The application must send the CMJNVALIDATEDETAILFIELDINFO message
after the FIELDINFO structures are inserted.

cFieldlnfolnsert (ULONG)
Number of columns.

The number of FIELDINFO structures to be inserted. The cFieldlnfolnsert field value
must be greater than O.

A-76 PM Programming Reference Vol II

FILEDLG
File-dialog structure.

Syntax

typedef struct ...,FILEDLG {
ULONG .cbSize;
ULONG fl;
ULONG ulUser;
LONG lReturn i
LONG lSRC;
PSZ psiTitle;
PSZ . pszOKBiJtton;
PFNWP pfnPlgProc;
PSZ psz IType;
PAPSZ papsz ITyp~L j st;
PSZ pszIDrive;
PAPSZ pap$zIDriveList;
HMODULE . hMod;
CHAR stFu.l1 Fil e[CCHft1AXPATH);
PAPSZ· '. .. papgF9Fi' lenain~; .
UlONG '~dFQFCount;
USHORT 0501910;
SHORT x;
SHORT y;
SHORT . s EAType;

}FILEDLG;

Fields
cbSize (ULONG)

Structure size.

Size of the structure. This field allows future expansion of the structure and must be
initialized with the size of the FILEDLG structure.

Appendix A. Data Types A-77

fl (ULONG)
FDS _ * flags.

Several flags can be specified to alter the behavior of the dialog.

Note: The dialog must be either an "Open" or a "Save As" dialog. If neither the
FDS_OPEN_DIALOG nor the FDS_SAVEAS_DIALOG flag is set, or if both are set, the
dialog will return an error.

FDS _ APPL YBUTTON

FDS_CENTER

FDS _ ENABLEFI LELB

FDS FILTERUNION

FDS HELPBUTTON

FDSJNCLUDE_EAS

FDS_MODELESS

FDS_MULTIPLESEL

FDS_OPEN_DIALOG
FDS _PRELOAD _ VOLINFO

FDS _ SAVEAS _DIALOG

A-78 PM Programming Reference Vol II

An Apply push button is added to the dialog. This is
useful in a modeless dialog.
The dialog is positioned in the center of its parent window,
overriding any specified x, y position.
A custom dialog template is used to create the dialog.
The hMod and usDlglD fields must be initialized.
When this flag is set, the Files list box on a Save As
dialog is enabled. When this flag is not set, the Files list
box is not enabled for a Save As dialog. This is the
default.
When this flag is set, the dialog uses the union of the
string filter and the extended-attribute type filter when
filtering files for the Files list box. When this flag is not
set, the list box, by default, uses the intersection of the
two.
A Help push button of style
(BS_HELPIBS_NOPOINTERFOCUS) with an ID of
DID_HELP _PB is added to the dialog. When this push
button is pressed, a WM_HELP message is sent to
hwndO.
If this flag is set, the dialog will always query extended
attribute information for files as it fills the Files list box.
The default is to not query the information unless an
extended attribute type filter has been selected.
When this flag is set, the dialog is modeless; WinFileDlg
returns immediately after creating the dialog window and
returns the window handle to the application. The
application should treat the dialog as if it were created
with WinLoadDlg. As in the modal (default) dialog case,
the return value is found in the IRe turn field of the
FILEDLG structure passed to WinFileDlg.
When this flag is set, the Files list box for the dialog is a
multiple selection list box. When this flag is not set, the
default is a single-selection list box.
The dialog is an "Open" dialog when this flag is set.
If this flag is set, the dialog will preload the volume
information for the drives and will preset the current
default directory for each drive. The default behavior is
for the volume label to be blank and the initial directory
will be the root directory for each drive.
The dialog is a "Save As" dialog when this flag is set.

ulUser (ULONG)
Used by the application.

This field can be used by an application that is subclassing the file dialog to store its
own state information.

IReturn (LONG)
Result code.

Result code from dialog dismissal. This field contains the 10 of the push button pressed
to dismiss the dialog, DID_OK or DID_CANCEL, unless the application supplies
additional push buttons in its template. If an error occurs on dialog invocation, this field
is set to zero.

ISRC (LONG)
System return code~

This field contains an FDS_ERR return code. When a dialog fails, this field is used to
tell the application the reason for the failure.

pszTitle (PSZ)
Dialog title string.

When this field is NULL, the dialog title defaults to the name of the dialog currently
running.

pszOKButton (PSZ)
OK push button text.

This string is used to set the text of the OK push button. The default text is OK.

pfnDlgProc (PFNWP)
Custom dialog procedure.

NULL unless the caller is subclassing the file dialog. When non-NULL, it pOints to the
dialog procedure of the application.

pszlType (PSZ)
Extended-attribute type filter.

This field contains a pointer to the initial extended-attribute type filter that is applied to
the initial dialog screen. This filter is not required to be in papszlTypeUst.

papszlTypeList (PAPSZ)
Pointer to a table of pointers to extended-attribute types.

Each pOinter in the table points to a null-terminated string, and each string is an
extended-attribute type. These types are sorted in ascending order in the Type
drop-down box. The end of the table is marked by a null pointer. To specify an empty
table, the application sets this field to NULL, or it specifies a table containing only a null
pointer.

Appendix A. Data Types A-79

pszlDrive (PSZ)
The initial drive.

This field contains a pointer to a string that specifies the initial drive applied to the initial
dialog screen. This drive is not required to be in papszlDriveList.

papszlDriveList (PAPSZ)
Pointer to a table of pointers to drives.

Each pointer in the table pOints to a null-terminated string, and each string is a valid
drive or network identifier. These drives and network IDs will be sorted in ascending
order in the Drive drop-down box. The end of the table is marked by a null pointer. To
specify an empty table, the application sets this field to NULL, or it specifies a table
containing only a null pointer.

hMod (HMODULE)
Module for custom dialog resources.

If FDS_CUSTOM is set, this is the HMODULE from which the custom file dialog
template is loaded. NULLHANDLE causes the dialog resource to be pulled from the
module of the current EXE.

szFuIlFile[CCHMAXPATH] (CHAR)
Character array.

An array of characters where CCHMAXPATH is a system-defined constant. On
initialization, this field contains the initial fully-qualified path and file name. On
completion, this field contains the selected fully-qualified path and file name. The simple
file name can be replaced with a string filter, such as *.DAT. When the dialog is
invoked, all drive and path information is stripped from the entry and moved to the
corresponding fields in the dialog.

When a file name is specified, the Files list box is scrolled to the matching file name.
When there is no exact match, the closest match is used.

When a string filter is specified, the dialog is initially refreshed using the results of this
filter intersected with the results of pszlType. After the dialog is initially shown, the string
filter remains in the file name field until a file is selected, or the user overtypes the value.

When a file is selected, szFuliFile is returned to the calling application and is set to the
selected fully-qualified file name.

When more than one file is selected in a multiple file selection dialog, only the topmost
selected file name is returned in this field.

papszFQFilename (PAPSZ)
Pointer to a table of pointers to fully-qualified file names.

Returned to multiple file selection dialogs when the user selects one or more files from
the list box. If the user types the file name in the file name entry field, the file name will
be in szFuliFile and this pOinter will be NULL. When one or more selections are made,
the count of items in this array will be returned in ulFQFCount.

A-SO PM Programming Refe(ence Vol II

This table of pointers is storage allocated by the file dialog. When the application
completes opening or saving all of the files specified, the application must call
WinFreeFileDlgList to free the storage allocated by the file dialog.

ulFQFCount (ULONG)
Number of file names.

Number of file names selected in the dialog. In a single file selection dialog, this value
is 1. In a multiple file selection dialog, this value will be the number of files selected by
the user.

usDlglD (USHORT)
Custom dialog 10.

The 10 of the dialog window. When FDS_CUSTOM is set, this field contains the 10 of
the resource containing the custom dialog template.

x (SHORT)
X-axis dialog position.

This, along with y and hwndP, is used to position the dialog. It is updated in the
structure if the user moves the dialog to a new position. If the FILEDLG structure is
reused, the dialog appears in the position at which it was left each time it is invoked.
The FDS _CENTER flag overrides this position and automatically centers the dialog in its
parent.

Y (SHORT)
V-axis dialog position.

This, along with x and hwndP, is used to position the dialog. It is updated in the
structure if the user moves the dialog to a new position. If the FILEDLG structure is
reused, the dialog appears in the position at which it was left each time it is invoked.
The FDS _CENTER flag overrides this position and automatically centers the dialog in its
parent.

sEAType (SHORT)

FIXED

Selected extended-attribute type.

Returns a selected extended-attribute type to assign to the file name returned in
szFuliFile. This field is a zero-based offset into the papszlTypeList and is returned only
when the Save As dialog is used. A -1 value is returned when the Open dialog is used.

Signed-integer fraction (16:16). This can be treated as a LONG where the value has been
multiplied by 65 536.

Syntax

typedef LONG. FIXED;

Appendix A. Data Types A-81

FONTDLG
Font-dialog structure.

Syntax

Fields
cbSize (ULONG)

Structure size.

This field allows for future expansion of the structure, and must be initialized with the
size of the FONTDLG structure.

A-82 PM Programming Reference Vol II

hpsScreen (HPS)
Screen presentation space.

If not NULLHANDLE, the screen presentation space from which screen fonts are
queried.

hpsPrinter (HPS)
Printer presentation space.

If not NULLHANDLE, the printer presentation space from which printer font are queried.

pszTitle (PSZ)
Dialog title string.

Application-provided dialog title. If NULL, it defaults to "Font."

pszPreview (PSZ)
Font-preview window string.

String to show in font-preview window. If NULL, it defaults to "abcdABCD."

Note: Care is necessary when choosing the string to put in this field. Using many
different characters causes excess memory to be used by the font cache.

pszPtSizeList (PSZ)
Application-provided point size list.

String which contains a list of point sizes to be used as the default list for outline fonts in
the point-size drop-down area. Point sizes are separated by spaces. If NULL, the point
size drop down defaults to 8, 10, 12, 14, 18, and 24.

pfnDlgProc (PFNWP)
Custom dialog procedure.

NULL unless the caller is subclassing the font dialog. When non-NULL, it points to the
dialog procedure of the application.

pszFamilyname (PSZ)
Family name buffer.

Buffer provided by the application for passing the family name of the font. The font
family name used by the application to select a font. When the first character in this
string is NULL, no family name was initially selected, and the dialog defaults to the
system font.

A buffer must. be passed to the font dialog to allow the dialog to return the selected font
family name. The size of this buffer is placed in the usFamilyBufLen field.

fxPointSize (FIXED)
Point size of the font.

If FNTS_OWNERDRAWPREVIEW is set, 0 means the user wants to leave the font size
unchanged and the application must update the preview area~

fl (ULONG)
FNTS _ * flags.

Appendix A. Data Types A-S3

FNTS_APPLYBUTTON

FNTS BITMAPONL Y

FNTS_CENTER

FNTS_CUSTOM

FNTS_FIXEDWIDTHONLY

FNTS_HELPBUTTON

FNTS INITFROMFATTRS

FNTS_MODELESS

FNTS _ NOSYNTHESIZEDFONTS
FNTS _ OWNERDRAWPREVIEW

FNTS_PROPORTIONALONLY

FNTS RESETBUTTON

FNTS_ VECTORONL Y

flFlags (ULONG)
FNTF _ * flags.

FNTF _NOVIEWPRINTERFONTS

A-84 PM Programming Reference Vol II

An Apply push button is added to the dialog. This
is useful in a modeless dialog.
The dialog presents bit-map fonts only. An
application that changes fonts by using the
presentation parameters (PP _* values) could use
this flag.
The dialog is positioned in the center of its parent
window, overriding any specified x,y position.
A custom dialog template is used to create the
dialog. The hMod and usDfgfd fields must be
initialized.
The dialog presents fixed-width (monospace) fonts
only.
A Help push button of style
(BS_HELPIBS_NOPOINTERFOCUS) with an ID of
DID _HELP _BUTTON is added to the dialog. If the
push button is pressed, a WM_HELP message is
sent to the hwndO parameter of the WinFontDlg
function call.
The dialog initializes itself from the font attribute
structure (FATTRS) that is passed.
The dialog is modeless; WinFontDlg returns
immediately after creating the dialog window and
returns the window handle to .the application. The
application should treat the dialog as if it were
created with WinLoadDlg. As in the modal (default)
dialog case, the return value is found in the fRetum
field of the FONTDLG structure passed to
WinFontDlg.
The dialog does not synthesize any fonts.
This flag makes the check boxes in the font dialog
three-state check boxes, enabling the user to leave
certain style attributes unchanged. Additionally, a
WM_DRAWITEM message will be sent to the
owner, providing the owner an opportunity to draw
the preview window itself.
The dialog presents proportionally spaced fonts
only.
A Reset push button is added to the dialog. When
this push button is pressed, the values for the
dialog are restored to their initial values.
The dialog presents vector fonts only.

This flag is initialized only when both hpsScreen
and hpsPrinter are not NULLHANDLE. On input,
this parameter determines whether the printer fonts

FNTF _NOVIEWSCREENFONTS

are to be included in the font list box. The user
controls this with a check box.

This flag is initialized only when both hpsScreen
and hpsPrinter are not NULLHANDLE. On input,
this parameter determines whether the screen
fonts should be included in the font list box. The
user controls this with a check box.

FNTF _PRINTERFONTSELECTED This determines if a printer-specific font is selected
by the user. The application should make an
approximation of this printer font when outputting
to the screen. This is an output-only flag and is
ignored on input.

FNTF _SCREENFONTSELECTED This determines if a screen-specific font is selected
by the user. The application should make an
approximation of this screen font when outputting
to the screen. This is an output-only flag and is
ignored on input.

flType (ULONG)
The selected type bits.

These flags specify what additional attributes the user specified for the font. This field is
used as the flOptions field in the FACENAMEDESC structure for GpiQueryFaceString.

flTypeMask (ULONG)
Mask of type bits to use.

This field is used only if FNTS_OWNERDRAWPREVIEW is specified. It tells which flags
of the flTypeMask field the user wants to change, and is relevant only if the text for
which the font is selected has different faces and styles.

flStyle (ULONG)
Selected style bits.

Flags for any additional selections the user specified for the font. This field is used as
the fsSe/ection field in the FATTRS structure passed to GpiCreateLogFont.

flStyleMask (ULONG)
Mask of style bits to use.

This field is used only if FNTS_OWNERDRAWPREVIEW is specified. It tells which flags
of the flSty/e field the user wants to change and is relevant only if the text for which the
font is selected has different faces and styles.

clrFore (LONG)
Font foreground color.

Foreground color of the font. This color is a value used for the color mode that
hpsScreen is in. If FNTS_OWNERDRAWPREVIEW is specified, this value can be
CLR_NOINDEX, leaving the foreground color "as is."

Appendix A. Data Types A-85

clrBack (LONG)
Font background color.

Background color of the font. This color is a value used for the color mode that
hpsScreen is in .. If FNTS_OWNERDRAWPREVIEW is specified, this value can be
CLR_NOINDEX leaving the background color "as is."

ulUser (ULONG)
Application-defined.

A ULONG that an application uses to store its state information when it is subclassing
the font dialog.

IReturn (LONG)
Return value.

Return value from WinFontDlg. This value is the ID of the push button pressed to
dismiss the dialog, DID_OK or DID_CANCEL, unless the application supplied additional
push buttons in its template.

ISRC (LONG)
System return code.

This field contains an FNTS_ERR return code. When a dialog fails, this field is used to
tell the application the reason for the failure.

IEmHeight (LONG)
Em height.

The Em height of the current font. This is the same as in the FONTMETRICS structure.
It is an output-only parameter and its value has no effect on the behavior of the font
dialog, but is updated when the user dismisses the dialog.

IXHeight (LONG)
X height.

The x height of the current font. This is the same as in the FONTMETRICS structure. It
is an oUfput-only parameter and its value has no effect on the behavior of the font
dialog, but is updated when the user dismisses the dialog.

IExternalLeading (LONG)
External leading.

The external leading of the font. This is the same as in the FONTMETRICS structure. It
is an output-only parameter and its value has no effect on the behavior of the font
dialog, but is updated when the user dismisses the dialog.

hMod (HMODULE)
Module for custom dialog resources.

If FNTS _CUSTOM is set, this is the HMODULE from which the custom font dialog
template is loaded. NULLHANDLE causes the dialog resource to be pulled from the
module of the current EXE.

A-8S PM Programming Reference Vol II

fAttrs {FATTRS)
Font-attribute structure.

Font-attribute structure of selected font. The FATTRS for the selected font. This is
output-only for all fields except usCodePage, which is input/output, and the initial code
page value passed is used for font selection. The value returned is the one for the
matching font.

sNominalPointSize (SHORT)
Font pOint size.

The nominal point size of the font. This is the same as in the FONTMETRICS structure.
It is an output-only parameter and its value has no effect on the behavior of the font
dialog, but is updated when the user dismisses the dialog.

usWeight (USHORT)
Font weight.

The weight of the font. This is the weight-class/boldness the user selects for the font.
This field is used as the usWeightClass field in the FACENAMEDESC structure for
GpiQueryFaceString. When FNTS_OWNERDRAWPREVIEW is set, 0 causes the
application to leave the font weight "as is" and the application must update the preview
area.

usWidth (USHORT)
Font width.

The width of the font. This is the width-class the user selects for the font. . This field is
used as the usWidthClass field in the FACENAMEDESC structure for
GpiQueryFaceString. When FNTS_OWNERDRAWPREVIEW is set, 0 causes the
application to leave the font width "as is" and the application must update the preview
area.

x (SHORT)
The x-axis dialog position.

This, along with y and hwndP, is used to position the dialog. It is updated in the
structure if the user moves the dialog to a new position. This way, the dialog appears in
the position at which it was left each time it is invoked. The FNTS_CENTER flag
overrides this position and automatically centers the dialog in its parent.

y (SHORT)
The y-axis dialog position.

This, along with x and hwndP, is used to position the dialog. It is updated in the
structure if the user moves the dialog to a new position. This way, the dialog appears in
the position at which it was left each time it is invoked. The FNTS_CENTER flag
overrides this position and automatically centers the dialog in its parent.

usDlgld (USHORT)
Dialog ID.

This sets the ID of the dialog window. If FNTS_CUSTOM is set, this is the ID of the
resource that contains the custom dialog template.

Appendix A. Data Types A-87

usFamilyBufLen (USHORT)
Buffersize.

Size of the buffer passed in the pszFamilyname resource that contains the custom
dialog template.

usReserved (USHORT)
Reserved.

This is a reserved field.

FONTMETRICS
Font-metrics structure.

This structure is returned to applications on the GpiQueryFonts and GpiQueryFontMetrics
calls and conveys information from the font creator to the application.

Syntax

A-88 PM Programming Reference Vol II

typedef struct FONTMETRICS {
CHAR szFamilyName[FACESlZE];
CHAR szFaceName[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG 1 EmHei ght;
LONG lXHeight;
LONG lMaxAscender;
LONG 1 MaxDescender;
LONG 1 LowerCaseAscent;
LONG 1 LowerCaseDescent;
LONG 1 Internal Leading;
LONG 1 Externa 1 Lead; ng;
LONG lAve.CharWidth;
LONG 1 MaxCharInc;
LONG 1 EmInc;
LONG lMaxBaselineExt;
SHORT sCharSlope;
SHORT slnlineDir;
SHORT sCharRot;
USHORT usWeightClass;
USHORT usWidthClass;
SHORT sXOeviceRes;
SHORT sYDev;ceRes;
SHORT sFirstChar;
SHORT sLastChar;
SHORT sDefaultChar;
SHORT sBreakChari
SHORT sNominalPointSize;

sMil'lim~mPoi.ntSJze;
sMaxiniulliPOintSize;

Appendix A. Data Types A-89

Fields
szFamilyName[FACESIZE] (CHAR)

Family name.

The family name of the font that describes the basic appearance of the font, for
example, Times New Roman** This string is null terminated, and therefore is limited to
31 characters in length. Longer names may be retrieved by using the FamilyNameAtom
field to retrieve the full name from the System Atom table.

szFaceName[FACESIZE] (CHAR)
Face name.

The typeface name that defines the particular font, for example, Times New Roman Bold
Italic. This string is null terminated, and therefore is limited to 31 characters in length.
Longer names may be retrieved by using the FaceNameAtom field to retrieve the full
name from the System Atom table.

idRegistry (USHORT)
Registry identifier.

The IBM registered number (or zero).

usCodePage (USHORT)
Code page.

Defines the registered code page supported by the font. For example, the original IBM
PC code page is 437. A value of 0 implies that the font may be used with any of the
OS/2 supported code pages.

Where a font contains special symbols for which there is no registered code page, then
code page 65400 is used.

IEmHeight (LONG)
Em height.

The height of the Em square in world coordinate units. This corresponds to the point
size for the font.

IXHeight (LONG)
X height.

The nominal height above the baseline for lowercase characters (ignoring ascenders) in
world coordinate units.

IMaxAscender (LONG)
Maximum ascender.

The maximum height above the baseline reached by any part of any symbol in the font
in world coordinate units. This field may exceed IEmHeight.

IMaxDescender (LONG)
Maximum descender.

The maximum depth below the baseline reached by any part of any symbol in the font in
world coordinate units. This field may exceed IEmHeight.

A-gO PM Programming Reference Vol II

ILowerCaseAscent (LONG)
Lowercase ascent.

The maximum height above the baseline reached by any part of any lowercase (Latin
unaccented "a" through "z") symbol in the font in world coordinate units.

ILowerCaseDescent (LONG)
Lowercase descent.

The maximum depth below the baseline reached by any part of any lowercase (Latin
unaccented "a" through "z") symbol in the font in world coordinate units.

IInternalLeading (LONG)
Internal leading.

The amount of space which, when subtracted from IMaxAscender, gives a font-design
dependent, but glyph-set independent, measure of the distance above the baseline that
characters extend. This calculation approximates the visual top to a row of characters
without actually looking at the characters in the row.

For optimum results, this field should be used by applications to position the first line of
a block of text by subtracting it from IMaxAscender and positioning the baseline that
distance below whatever is above the text.

Note: This does not guarantee that characters will not overwrite information above
them, but does give a font designer's view of where to place the text. Collision
should be tested for, and additional space allocated if necessary.

IExternalLeading (LONG)
External leading.

The amount of guaranteed white space advised by the font designer to appear between
adjacent rows of text. This value may be zero.

Note: The fonts built in to Presentation Manager have zero in this field.

IAveCharWidth (LONG)
Average character width.

This is determined by multiplying the width of each lowercase character by a constant,
adding the products, and then dividing by 1000. The letters involved in this, plus their
constants, are as follows:

Letter
a
b
c
d
e
f
g
h

j
k

Constant
64
14
27
35
100
20
14
42
63
3
6

Appendix A. Data Types A-91

35
m 20
n 56
o 56
P 17
q 4

49
s 56
t 71
u 31
v 10
w 18
x 3
Y 18
z 2
space 166

Note: For fixed pitch fonts, this value will be the same as the (A width + B width + C
width) escapement of each character.

IMaxCharlnc (LONG)
Maximum character increment.

The maximum character increment for the font in world coordinate units.

IEmlnc (LONG)
Em increment.

The width of the Em square in world coordinate units. This corresponds to the point size
of the font. When the horizontal device resolution equals the vertical device resolution
this is equal to the em height.

IMaxBaselineExt (LONG)
Maximum baseline extent.

The maximum vertical space occupied by the font, in world coordinate units. This is the
sum of IMaxAscender and IMaxDescender if both are positive. It is also the sum of
IInternalLeading and IEmHeight.

One possible type of line spacing can be computed by adding IMaxBaselineExt to
IExternalLeading. Such a line spacing, however, would be dependent on the glyph set
included in the font. If a new version of the font should be made available, with new
glyphs, then it is possible that this value will change because one of the new glyphs has
gone above the previous IMaxAscender or below the previous IMaxDescender. More
sophisticated applications will base line spacing on the point size (IEmHeight) of the font,
which is an invariant of the font, multiplied by some factor (for example, 120%) plus any
external leading.

This field may' exceed IEmHeight.

sCharSlope (SHORT)
Character slope.

Defines the nominal slope for the characters of a font. The slope is defined in degrees

A-92 PM Programming Reference Vol II

increasing clockwise from the vertical. An italic font is an example of a font with a
nonzero slope.

Note: The units for this metric are degrees and minutes, encoded as shown in the
following example:

180 degrees 59 minutes would be represented as

< byte 1 > < byte 2 >

< Minutes> < Degrees>

001 1 101 1 101 1 0 1 0 0

59 min 180 degrees

slnlineOir (SHORT)
Inline direction.

The direction in which the characters in the font are designed for viewing. The direction
is defined in degrees increasing clockwise from the horizontal (Ieft-to-right). Characters
are added to a line of text in the inline direction.

Note: The units for this metric are degrees and minutes, encoded as shown in
sCharSlope.

sCharRot (SHORT)
Character rotation.

The rotation of the character glyphs with respect to the baseline, the angle increasing
counter clockwise. This is the angle assigned by the font designer.

Note: The units for this metric are degrees and minutes, encoded as shown in
sCharSlope.

usWeightClass (USHORT)
Weight class.

Indicates the visual weight (thickness of strokes) of the characters in the font:

Value
1
2
3
4
5
6
7
8
9

Description
Ultra-light
Extra-light
Light
Semi-light
Medium (normal)
Semi-bold
Bold
Extra-bold
Ultra-bold

usWidthClass (USHORT)
Width class.

Indicates the relative aspect ratio of the characters of the font in relation to the normal
aspect ratio for this type of font: .

Appendix A. Data Types A-93

Value
1

Description
Ultra-condensed
Extra-condensed
Condensed
Semi-condensed
Medium (normal)
Semi-expanded
Expanded
Extra-expanded
Ultra-expanded

% of normal width
50

2 62.5
3 75
4 87.5
5 100
6 112.5
7 125
8 150
9 200

sXpeviceRes (SHORT)
X-device resolution.

For bit-map fonts this is the resolution in the X direction of the intended target device,
measured in pels per inch.

For outline fonts this is the number of notional units in the X direction of the Em square,
measured in notional units per Em. (Notional units are the units in which the outline is
defined.)

sYDeviceRes (SHORT)
V-device resolution.

For bit-map fonts this is the resolution in the V direction of the intended target device,
measured in pels per inch.

For outline fonts this is the number of notional units in the V direction of the Em square,
measured in notional units per Em. (Notional units are the units in which the outline is
defined.)

sFirstChar (SHORT)
First character.

The code point of the first character in the font.

sLastChar (SHORT)
Last character.

The code point of the last character in the font, expressed as an offset from sFirstChar.

All code points between the first and last character specified must be supported by the
font.

sDefaultChar (SHORT)
Default character.

The code point that is used if a code paint outside the range supported by the font is
used, expressed as an offset from sFirstChar.

sBreakChar (SHORT)
Break character.

The code point that represents the "space" or "break" character for this font, expressed
as an offset from sFirstChar. For example, if the first character is the space in code
page 850, sFirstChar = 32, and sBreakChar = O.

A-94 PM Programming Reference Vol II

sNominalPointSize (SHORT)
Nominal point size.

For a bit-map font, this field contains the height of the font.

For an outline font, this field contains the height intended by the font designer. For
example, some fonts are designed for text use in which case a value of 120 (12 point)
would probably be placed in this field, whereas other fonts are designed for "display" use
("display" is typographer's terminology for larger sizes). This is not the only size at
which the font can be used.

Measured in decipoints (a decipoint is 1/72Oth of an inch).

sMinimumPointSize (SHORT)
Minimum pOint size.

For a bit-map font, this field does not apply. For an outline font, this field contains the
minimum height intended by the font designer. Note that this is not a restriction of the
size at which the font can be used.

Measured in decipoints (a decipoint is 1/72Oth of an inch).

sMaximumPointSize (SHORT)
Maximum point size.

For a bit-map font, this field does not apply.

For an outline font, this field contains the maximum height intended by the font designer.
Note that this is not a restriction of the size at which the font can be used.

Measured in decipoints (a decipoint is 1/72Oth of an inch).

fsType (USHORT)
Type indicators.

Contains this information:

FM TYPE FIXED - -
FM TYPE LICENSED - -
FM_ TYPE_KERNING
FM_ TYPE_64K

FM_TYPE_DBCS
FM_TYPE_MBCS
FM_TYPE_FACETRUNC
FM_TYPE_FAMTRUNC
FM_ TYPE_ATOMS

fsDefn (USHORT)
Definition indicators.

Characters in the font have the same fixed width.
Licensed (protected) font.
Font contains kerning information.
Font is larger than 64KB (KB equals 1024 bytes) in size. If
the following two bits are false, the font is for single-byte
code pages. One of the bits may be set.
Font is for double-byte code pages.
Font is for mixed single- or double-byte code pages.
Font szFaceName has been truncated.
Font szFamilyName has been truncated.
The System Atom table atom values in FamilyNameAtom
and in FaceNameAtom are valid.

Contains the following font definition data:

FM_DEFN_OUTLINE Font is a vector (outline) font; otherwise, it is a bit-map font.

Appendix A. Data Types A-95

FM_DEFN_GENERIC Font is in a format that can be used by the GPI; otherwise, it is
a device font.

fsSelection (USHORT)
Selection indicators.

Contains information about the font patterns in the physical font.

Note: The flags do not reflect simulations applied to the physical font.

Possible values are:

FM _ SEL JTALIC
FM_SEL_UNDERSCORE

FM_SEL_NEGATIVE

FM_SEL_OUTLINE

FM _ SEL JS09241_ TESTED

fsCapabilities (USHORT)
Capabilities.

True indicates that this font is designed as an italic font.
TRUE indicates that this font is designed with
underscores included in each character.
TRUE indicates that this font is designed with the
background and foreground reversed.
TRUE indicates that this font is designed with outline
(hollow) characters.
TRUE indicates that this font is designed with an
overstrike through each character.
TRUE indicates that this font is designed with bold
characters.
This flag indicates that the font has been tested for
compliance to ISO 9241. The presence of this flag
doesn't indicate whether the font passed or failed, only
that it was tested.

Note: While the fonts were primarily tested for meeting
the ISO standard, they have also been designed
to meet the German standard DIN 66 234.
Where the two standards differ, the fonts have
been designed to meet the more stringent
requirement.

This attribute applies only to device fonts.

Characters may not be mixed with graphics. FM_CAP _NOMIX
QUALITY The most significant byte may contain the following numeric value:

ISubscriptXSize (LONG)
Subscript x-size.

o Undefined
1 DP quality
2 DP draft
3 Near Letter Quality
4 Letter Quality

The horizontal size recommended by the font designer for subscripts for this font in
world coordinate units.

A-96 PM Programming Reference Vol II

ISubscriptYSize (LONG)
Subscript y-size.

The vertical size recommended by the font designer for subscripts for this font in world
coordinate units.

ISubscriptXOffset (LONG)
Subscript x-offset.

The baseline x-offset recommended by the font designer for subscripts for this font in
world coordinate units.

ISubscriptYOffset (LONG)
Subscript y-offset.

The baseline y-offset recommended by the font designer for subscripts for this font in
world coordinate units.

Note: Positive numbers indicate an offset below the baseline.

ISuperscriptXSize (LONG)
Superscript x-size.

The horizontal size recommended by the font designer for superscripts for this font in
world coordinate units.

ISuperscriptYSize (LONG)
Superscript y-size.

The vertical point size recommended by the font designer for superscripts for this font in
world coordinate units.

ISuperscriptXOffset (LONG)
Superscript x-offset.

The baseline x-offset recommended by the font designer for superscripts for this font in
world coordinate units.

ISuperscriptYOffset (LONG)
Superscript y-offset.

The baseline y-offset recommended by the font designer for superscripts for this font in
world coordinate units.

IUnderscoreSize (LONG)
Underscore size.

The width (thickness) of the underscore stroke in world coordinate units. This describes
the actual underscore in the font if FM_SE~UNDERSCORE is also set. Otherwise it
describes what the engine will simulate if underscore is requested in GpiCreateLogFont.

IUnderscorePosition (LONG)
Underscore position.

The position of the underscore stroke from the baseline in world coordinate units. This
describes the actual underscore in the font if FM_SEL_UNDERSCORE is also set.

Appendix A. Data Types A-97

Otherwise it describes what the engine will simulate if underscore is requested in
GpiCreateLogFont.

Note: Positive values indicate an offset below the baseline.

IStrikeoutSize (LONG)
Strikeout size.

The width of the strikeout stroke in world coordinate units. This describes the actual
underscore in the font if FM_SEL_STRIKEOUT is also set. Otherwise it describes what
the engine will simulate if overstrike is requested in GpiCreateLogFont.

IStrikeoutPosition (LONG)
Strikeout position.

The position of the strikeout stroke relative to the baseline in world coordinate units.
This describes the actual underscore in the font if FM_SEL_STRIKEOUT is also set.
Otherwise it describes what the engine will simulate if overstrike is requested in
GpiCreateLogFont.

sKerningPairs (SHORT)
Kerning pairs.

The number of kerning pairs in the kerning pair table.

sFamilyClass (SHORT)
Font family design classification.

This value contains a font class and its subclass.

IMatch (LONG)
Matched font identity.

This uniquely identifies the font for a given device and device driver combination. A
positive match number signifies that the font is a generic (engine) font while a negative
number indicates a device font (a native or downloadable font). This value should not
be used to identify a font across system boundaries.

FamilyNameAtom (LONG)
Font family name atom.

This value contains the atom identifier for the font family name in the System Atom
Table.

FaceNameAtom (LONG)
Font facename atom.

This value contains the atom identifier for the font face name in the System Atom Table.

panose (PANOSE)
Panose font descriptor.

This is the Panose descriptor identifying the visual characteristics of the font.

A-98 PM Programming Reference Vol \I

FRAMECDATA
Frame-control data structure.

Syntax

typedef struct _FRAMECDATA {
USHORT cb;
UlONG flCreateFlags;
USHORT hmodResources;
USHORT idResources;
} FRAMECDATA;

typedef FRAMECDATA *PFRAMECDATA;

Fields
cb (USHORT)

Length.

flCreateFlags (ULONG)
Frame-creation flags.

Possible values are described in the following list:

FCF _ TITLEBAR
FCF _SYSMENU
FCF_MENU
FCF _ SIZE BORDER
FCF _MINBUTTON
FCF _ MAXBUTTON
FCF_MINMAX
FCF _ VERTSCROLL
FCF _HORZSCROLL
FCF _ DLGBORDER
FCF_BORDER
FCF _ SHELLPOSITION
FCF _ TASKLIST
FCF _ NOBYTEALIGN
FCF _NOMOVEWITHOWNER
FCFJCON
FCF _ ACCEL TABLE
FCF _ SYSMODAL
FCF _ SCREENALIGN
FCF _ MOUSEALIGN
FCF _HIDEBUTTON
FCF_HIDEMAX
FCF _ AUTOICON
FCF_DBE_APPSTAT

Appendix A. Data Types A-99

FCF _STANDARD

hmodResources (USHORT)
Identifier of required resource.

The standard setting is equivalent to setting
FCF _TITLEBAR, FCF _SYSMENU, FCF _MENU,
FCF _SIZEBORDER, FCF _MINMAX, FCF -,CON,
FCF _ACCELTABLE, FCF _SHELLPOSITION, and
FCF TASKLIST.

This is supplied in an environment-dependent manner.

idResources (USHORT)
Resource identifier.

GRADIENTL
Direction-vector structure.

Syntax

Fields
x (LONG)

X-component of direction.

Y (LONG)
V-component of direction.

HAB
Anchor-block handle.

Syntax

A-1 00 PM Programming Reference Vol II

HACCEL
Accelerator-table handle.

Syntax

typedef LHANDLE HACCEL;

HAPP
Handle of an application.

Syntax

typedef LHANDLE HAPP;

HATOMTBL
Atom-table handle.

Syntax

typedef LHANDLEHATOMTBL;

HBITMAP
Bit-map handle.

Syntax

typedEif LHANDLEHBI TMAP;

Appendix A. Data Types A-101

HOC
Device-context handle.

Syntax

HCINFO
Hardcopy-capabilities structure.

Syntax

Fields
szFormname[32] (CHAR)

Form name.

ex (LONG)
Width (Ieft-to-right) in millimeters.

ey (LONG)
Height (top-to-bottom) in millimeters.

xLeftClip (LONG)
Left clip limit in millimeters.

yBottomClip (LONG)
Bottom clip limit in millimeters.

xRightClip (LONG)
Right clip limit in millimeters.

A-1 02 PM Programming Reference Vol II

yTopClip (LONG)
Top clip limit in millimeters.

xPels (LONG)
Number of pels between left and right clip limits.

yPels (LONG)
Number of pels between bottom and top clip limits.

flAttributes (LONG)

HOOF

Attributes of the form identifier.

HCAPS_SELECTABLE The form is installed on the printer as given by the printer
properties dialog.· It is available from an alternate form source
without operator inteNention. If the form does not have this
bit set, and is used (if the user selects it), a "forms mismatch"
error is generated by the printer object.

HCAPS_CURRENT The form is the one currently selected by the DevOpenDC
DEVOPENSTRUC pdriv field (the job properties).

Dynamic data formatting handle.

Syntax

typedef VOID * HOOF;

Appendix A. Data Types A-103

HELPINIT
Help Manager initialization structure.

Syntax

· ·ie&p~~~f.str\Jc1:,.j4El.PINIt .•. {
.OIQN~ qbfiii'i:
··OLQ~G ~ l~etllr~Code;
· . pSi' pszT.utorialName;
·HgL:PTA~LE htH~JpTabJe;
· HMppULE. h~odHelpTa~leM~dllle; > ..

HMOWLE ·h~oi;l,Accel~c:ti anBa rModu le;
ULONG tdAGcelTabl~~
UWNG i dMtionBar;
PSZ pszHelpwtndowTitle;
ULONG fShowPane 1 I.d;
PSZ ... pszHelpLibraryNanle;
}HEI.,P1NH;

Fields
cb (ULONG)

Count of bytes of the initialization structure.

ulReturnCode (ULONG)
Value returned by the Help Manager from initialization.

o Initialization was successful.

pszTutorialName (PSZ)
Indicates to the Help Manager that the application has a tutorial program.

NULL The application either does not have a tutorial program, or the tutorial name is
specified in each help panel definition.

Other Default tutorial name.

htHelpTable (H ELPT ABLE)
Help table.

The help table or the identity of the help table. If this is the identity of the help table in a
resource file, the low-order word contains the identity of the table and the high-order
word must be OxFFFF.

The help table associates each application window with its help subtable.and the identity
of its extended help panel.

A-104 PM Programming Reference Vol II

hmodHelpTableModule (HMODULE)
Resource file identity.

If the htHelpTable contains the identity of the help table, this field identifies the module
handle returned by the DosLoadModule call by which the application loaded the
resource file.

NULL The resource file containing the help table was appended to the application's
.EXE file.

Other Resource file identity.

hmodAccelActionBarModule (HMODULE)
Handle of the containing DLL.

The handle of the DLL ~hich contains the accelerator table and action bar template to
be used by the Help Manager.

NULL Use the default action bar and accelerator table defined by the Help Manager.
Other Handle of the DLL.

idAccelTable (ULONG)
Identity of the accelerator table.

The accelerator table resides in the DLL provided in the hmodAccelActionBarModule
field.

NULL Use the default accelerator table.
Other Identity of the accelerator table.

idActionBar (ULONG)
Identity of the action bar template used by the Help Manager.

The action bar template resides in the DLL provided in the hmodAccelActionBarModule
field.

NULL Use the default action bar.
Other Identity of the action bar.

pszHelpWindowTitle (PSZ)
Window title for the main help window of this help instance.

fShowPanelid (ULONG)
Show panel identity indicator.

The constants corresponding to the panel identity flags are in the PMHELP.H include
file.

CMIC_SHOW_PANEL-,D
CMIC HIDE PANEL ID - - -

Show the, panel identity on a help panel.
Do not show the panel identity on a help panel.

Appendix A. Data Types A-105

pszHelpLibraryName(PSZ)
Help panel library names.

The names of the help panel libraries that the Help Manager searches on each help
request. The names must be separated by a blank.

The Help Manager looks for the libraries in the path set by the HELP environment
variable. If the library is not found, the Help Manager will look for the libraries in the
current directory.

HElPSUBTABLE
Help subtable.

A help subtable is an array of records, preceded by a value that specifies the size of each
help-subtable record.

Syntax

typedef USHORT _HELPSUBTABLE {
USHORT usSubitemSize;
USHORT Hel pSubTableEntry[] ;

}HELPSUBTA8LE;

The first entry in the help subtable indicates the size of the records that follow in the
subtable. Each of the following entries in the help subtable is a record that consists of a
Field 10 parameter, a Help Panel 10 parameter, and an optional array of application-related
USHORT integers. The minimum number of words in the record is two: the Field 10 and the
Help Panel 10. The last record in the subtable must be a NULL entry.

The Field 10 is the symbolic constant for a field from which the user can request help. The
Field 10 can identify a control, a menu item, or a message box, and must be unique across
the help subtable. The value OxFFFF is reserved for use by the Help Manager.

The Help Panel 10 is the resource 10 (res) of the contextual help panel to be associated with
the field in the Field 10 parameter. This is the panel to be displayed when the user requests
help for the field.

The optional array of USHORT integers is ignored by the Help Manager and can be used to
store information of relevance to the application.

There can be a maximum of 16,000 help subtables for a given help instance and each
subtable can have a maximum of 64K bytes of data.

A-106 PM Programming Reference Vol II

The following figure contains the declaration of a help subtable that contains only Field IDs
and Help Panel IDs. In this subtable, each of the records after the size entry consists of 1
Field 10 and 1 Help Panel 10 for a size of 2. Note that the last record is filled with NULLs (0)
to indicate the end of the array.

HELPSUBTABLE HelpSubTable[]
{

2,
FIELD_ID_l, IDRES_HELPl,
FIELD_ID_2, IDRES_HELP2,
FIELD_ID_3, IDRES_HELP3,
FIELD_ID_4, IDRES_HELP4,
FIELD_ID_5, IDRES_HELP5,
FIELD_ID_6, IDRES_HELP6,
0, 0

/* Size of each record */
/* The first record */
/* The second record */
/* The third record */
/* The fourth record */
/* The fifth record */
/* The sixth record */
/* NULL record == end of the array */

Fields
usSubitemSize (USHORT)

Size of each record of the help subtable.

This entry defines the number of parameters in each record in the rest of the help
subtable. The minimum number of words in each record is two.

2 The minimum number of words in each record of the help subtable. This value
is used when each help subtable record consists only of a Field 10 and Help
Panel 10.

Other This value is used when a help subtable record consists of a Field 10, Help
Panel 10, and an array of application-related USHORT integers.

HelpSubTableEntry[] (USHORT)
Help subtable records.

This is the array of help subtable records, each of which contains a Field 10, a Help
Panel 10, and an optional array of application-related USHORT integers. The last record
of the array must be a NULL entry.

Appendix A. Data Types A-107

HELPTABLE
Help table.

This is a collection of help table entries, each of which has the structure defined below, the
last entry of the collection being a NULL structure.

Syntax

Fields
idAppWindow (U8HORT)

Application window identity.

phstHelpSubTable (PHELP8UBTABLE)
Help subtable for this application window.

idExtPanel (U8HORT)
Identity of the extended help panel for the application window.

HENUM
Window-enumeration handle.

Syntax

HEV
32-bit value used as an event semaphore handle.

Syntax

A-108 PM Programming Reference Vol II

HINI
Initialization-file handle.

Syntax

typedef LHANDlE· HINI;

HLIB
Library handle.

Syntax

typ.edefHMODULE HUB;

HMF
Metafile handle.

Syntax

HMODULE
Module handle.

Syntax

Appendix A. Data Types A-109

HMQ
Message-queue handle.

Syntax

HMTX
32-bit value used as a mutex semaphore handle.

Syntax

HMUX
32-bit value used as a muxwait semaphore handle.

Syntax

HOBJECT
Workplace object handle.

Syntax

A-110 PM Programming Reference Vol II

HPOINTER
Pointer handle.

Syntax

typedef LHANDLE HPOINTER;

HPROGRAM
Program handle.

Syntax

typedef LHANDLE HPROGRAMj

HPS
Presentation-space handle.

Syntax

typedefLHANDtE HP$;

HRGN
Region handle.

Syntax

I

Appendix A. Data Types A-111

HSAVEWP
Frame window-repositioning process handle.

Syntax

HSEM
Semaphore handle.

Syntax

HSPL
Spooler handle.

Syntax

HSTR
String handle.

Syntax

A-112 PM Programming Reference Vol II

HSWITCH
Switch-list entry handle.

Syntax

typedef 'LHANDLE HSWITCH;

HWND
Window handle.

Syntax

typed~f LHANOLE HWNO;

ICONINFO
Icon information data structure.

Syntax

t¥pedefstruct' lCONINFO {
ULONG cb;'
ULONG fFormat;
PSZ pszFileName;
HMODULE hmod;
U~ONG res; d;
ULONG cblconDat,a;,
PVOID' plconoata;

} ICONINFO;

typec{ef)CQN INFO" *:PICONINFO;

Fields
cb (ULONG)

Length of ICONINFO structure.

Appendix A. Data Types A-113

fFormat (ULONG)
Indicates from where the icon resides.

Possible values are:

ICON_FILE
ICON_RESOURCE
ICON_DATA
ICON_CLEAR

pszFileName (PSZ)

Icon file supplied.
Icon resource supplied.
Icon data supplied.
Go back to default icon.

Name of file containing icon data.

This value is ignored if fFormat is not equal to to ICON_FILE.

hmod (HMODULE)
Module containing the icon resource.

This value is ignored if fFormat is not equal to to ICON_RESOURCE.

resid (ULONG)
Identity of icon resource.

This value is ignored if fFormat is not equal to to ICON_RESOURCE.

cblconData (ULONG)
Length of icon data in bytes.

This value is ignored if fFormat is not equal to to ICON_DATA.

plconData (PVOID)
Pointer to buffer containing icon data:

This value is ignored if fFormat is not equal to to ICON_DATA.

IMAGEBUNDLE
Image-attributes bundle structure.

Syntax

A-114 PM Programming Reference Vol II

IPT

Fields
IColor (LONG)

Image foreground color.

IBackColor (LONG)
Image background color.

usMixMode (USHORT)
Image foreground-mix mode.

usBackMixMode (USHORT)
Image background-mix mode.

Insertion point for mUlti-line entry field.

Syntax

typedef .• LONG .IPT;

KERNINGPAIRS
Kerning-pair records structure.

Syntax

typedef'struct:"'KERNINGPAIRS'I
SHORT sFirstChar;
SHORT' sSecQndChar;
~QNG. 1 Kertli n9Amo~ht;

}KERNINGPAIRS; '., .
. . . , -.. ,

typed~f J<ERNINGf>AIRS.~PI<ERNlNGPAIRS;

Fields
sFirstChar (SHORT)

First character of pair.

sSecondChar (SHORT)
Second character of pair.

IKerningAmount (LONG)
Amount of kerning for this pair.

Appendix A. Data Types A-115

LBOXINFO
List box information structure.

Syntax

Fields
IItemlndex (LONG)

Index of the item to insert after.

Possible values are described in the following list:

LIT ENT Add items to the end of the list.

L1T_SORTASCENDING Add items to the list and sort the complete list in ascending
order.

L1T_SORTDESCENDING Add items to the list and sort the complete list in
descending order.

Other Add the items to the list after the specified zero-based
index. Valid range is 0 to 32767.

ulitemCount (ULONG)
Number of items to be inserted into the list.

A maximum of 32768 can be inserted into the list at one time.

reserved (ULONG)
Reserved value, must be O.

reserved2 (ULONG)
Reserved value, must be O.

A-116 PM Programming Reference Vol II

LHANDLE
The handle of a resource.

Syntax

typedef unsigned long LHANDLE;_

LINEBUNDLE
Line-attributes bundle structure.

Syntax

typedef struct -,LINEBUNDLE {
LONG lColor;
LONG lBp.ckC()lor;
USHORT UsMfxM(lde;
USHORT usBackMixMode;
FIXED fxWidth;
LONG 1 GeomWidth;
USHORT usType;
USHORT usEndj
USHORT usJoin;
USHORT usRElserved;

rL1NESONbLE;

Fields
IColor (LONG)

Line foreground color.

IBackColor (LONG)
Line background color.

usMixMode (USHORT)
Line foreground-mix mode.

usBackMixMode (USHORT)
Line background-mix mode.

fxWidth (FIXED)
Line width.

IGeomWidth (LONG)
Geometric line width.

Appendix A. Data Types A-117

usType (USHORT)
Line type.

usEnd (USHORT)
Line end.

usJoin (USHORT)
Line join.

us Reserved (USHORT)
Reserved.

LONG
Signed integer in the range -2147483648 through 2147483647.

Syntax

Note: Where this data type represents a graphic coordinate in world or model space, its
value is restricted to -134217728 through 134217727.

A graphic coordinate in device or screen coordinates is restricted to -32768 through
32767.

The value of a graphic coordinate may be further restricted by any transforms
currently in force, including the positioning of the origin of the window on the screen.
In particular, coordinates in world or model space must not generate coordinate
values after transformation (that is, in device or screen space) outside the range
-32768 through 32767.

A-118 PM Programming Reference Vol II

MARKERBUNDLE
Marker-attributes bundle structure.

Syntax

typedef struct _MARKERBUNDLE {
LONG lColor;
LONG 1 BackColor;
USHORT usMixMode;
USHORT usBackMixMode;
USHORT usSet;
USHORT usSymbo];
SlZEF sizfxCell;
} MARKERBUNDL~;

typedef MARKERBUNDLE *PMARKERBUNDLE;

Fields
IColor (LONG)

Marker foreground color.

IBackColor (LONG)
Marker background color.

usMixMode (USHORT)
Marker foreground-mix mode.

usBackMixMode (USHORT)
Marker background-mix mode.

usSet (USHORT)
Marker set.

usSymbol (USHORT)
Marker symbol.

sizfxCell (SIZEF)
Marker cell.

Appendix A. Data Types A-119

MATRIXLF
Matrix-elements structure.

Syntax

Fields
fXM11 (FIXED)

First element of first row.

fxM12 (FIXED)
Second element of first row.

IM13 (LONG)
Third element of first row.

fxM21 (FIXED)
First element of second row.

fxM22 (FIXED)
Second element of second row.

IM23 (LONG)
Third element of second row.

IM31 (LONG) ,
First element of third row.

IM32 (LONG)
Second element of third row.

IM33 (LONG)
Third element of third row.

A-120 PM Programming Reference Vol II

MB2D
Array of button definitions.

Syntax

typedef struct _MB20 {
CHAR achText [MAX MB20TEXT +1] ;
ULONG idButtons; -
ULONG flStyle;
} MB2D;

typedef MB2D *PMB20;

Fields
achText[MAX_MB2DTEXT +1] (CHAR)

Text of the button.

For example, "Cancel."

Currently, MAX_MB2DTEXT is equal to 70.

idButtons (ULONG)
Button Id returned when selected.

flStyle (ULONG)
Button style flags.

These style flags may be ORed with internal styles.

MB21NFO
Button information block.

Syntax

Appendix A. Data Types A-121

Fields
cb (ULONG)

Current size of the structure.

hlcon (HPOINTER)
Icon handle.

cButtons (ULONG)
Number of buttons.

flStyle (ULONG)
Icon style flags.

Possible values are described in the following list:

MB_APPLMODAL Message box is application modal. This is the default
case. Its owner is disabled; therefore, do not specify the
owner as the parent if this option is used.

MB_ERROR Message box contains a stop sign with a white
background.

MB -,CONASTERISK Message box contains a asterisk icon.

MB_CUSTOMICON Message box contains a custom icon specified in hlcon.

MB_ICONEXCLAMATION Message box contains a exclamation point icon.

MB_ICONHAND Message box contains a hand icon.

MB_ICONQUERY Message box contains a question mark in a box.

MB-,CONQUESTION Message box contains a question mark icon.

MB_INFORMATION Message box contains a black "i" in a box.

MB_MOVEABLE Message box is moveable.

MB_NOICON

MB _ NONMODAL

MB_SYSTEMMODAL

MB WARNING

The. message box is displayed with a title bar and a system
menu, showing only the Move, Close, and Task Manager
choices, which can be selected either by use of the
pointing device or by accelerator keys.

Message box does not contain an icon.

Message box is non modal (the program continues after
displaying the non modal message box).

The message box remains visible until the owner window
destroys it. Two notification messages, WM_MSGBOXINIT
and WM_MSGBOXDISMISS, are used to support this
non-modality.

Message box is system modal.

Message box contains a black "!" in a box.

A-122 PM Programming Reference Vol II

hwndNotify (HWND)
Owner notification handle.

mb2d[1] (MB2D)
Array of button definitions.

MENUITEM
Menu item.

Syntax

typedef struct _MENUITEM {
SHORT iPosition;
USHORT afStyle;
USHORT afAttribute;
USHORT id;
HWND hwndSubMenu;
ULONG hItem;
} MENUITEM;

typedef MENU ITEM *PMENUITEM;

Fields
iPosition (SHORT)

Position.

afStyle (USHORT)
Style.

afAttribute (USHORT)
Attribute.

id (USHORT)
Identity.

hwndSubMenu (HWND)
Submenu.

hltem (ULONG)
Item.

Appendix A. Data Types A-123

MINIRECORDCORE
Structure that contains information for smaller records than those defined by the
RECORDCORE data structure. This data structure is used if the CCS_MINIRECORDCORE
style bit is specified when a container is created.

Syntax

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the MINIRECORDCORE structure.

flRecordAttr (ULONG)
Attributes of container records.

Contains any or all of the following:

CRA _COLLAPSED

CRA CURSORED

Specifies that a record is collapsed.

Specifies that a record will be drawn with a selection
cursor.

CRA_DROPONABLE Specifies that a record can be a target for direct
manipulation.

CRA_EXPANDED Specifies that a record is expanded.

CRA _FILTERED Specifies that a record is filtered, and therefore hidden
from view.

CRA_INUSE Specifies that a record will be drawn with in-use
emphasis.

CRA_RECORDREADONLY Prevents a record from being edited directly.

CRA_SELECTED Specifies that a record will be drawn with selected-state
emphasis.

CRA _TARGET Specifies that a record will be drawn with target
emphasis.

A-124 PM Programming Reference Vol II

ptlleon (POINTL)
Record position.

Position of a container record in the icon view.

preeeNextReeord (struct _MINIRECORDCORE *)
Pointer to the next linked record.

pszleon (PSZ)
Record text.

Text for the container record.

hptrleon (HPOINTER)
Record icon.

Icon that is displayed for the container record.

M LE_SEARCH DATA
Search structure for multiline entry field.

Syntax

typedefstruct . ~SEARCH { ..
USijORT cb;
PCHAR pchFind;
PCHM pchReplace;
SHORTc.C:h Find;
SHORrce:hReplace;
IPT .' ; pfS t~ rt:;
JPl' . .1 pt~top,
USHORT .':cchfound;
} MLE,.;;S~ARCHDATA~.

typedef' M,"dsEAR~~DATA ••• *P~LE_SEARCHDAIA;

Fields
eb (USHORT)

Size of structure.

pehFind (PCHAR)
String to search for.

pehReplaee (PCHAR)
String to replace with.

eehFind (SHORT)
Length of pchFind string.

Appendix A. Data Types A-125

cchReplace (SHORT)
Length of pchReplace string.

iptStart (IPT)
Point at which to start search, or pOint where string was found.

Non-negative Point at which to start search.
Negative Start search from current cursor location.

iptStop (IPT)
Point at which to stop search.

Non-negative
Negative

Point at which to stop search.
Stop search at end of text.

cchFound (USHORT)
Length of string found at iptStart.

MLEMARGSTRUCT
Multiline entry-field margin information.

Syntax

A-126 PM Programming Reference Vol II

Fields
afMargins (USHORT)

Margin in which the event occurred.

The left and right margins are defined as including the corners at the top and bottom,
and the top and bottom margins are contained between them. Therefore, the corners
are included in the sides.

MLFMARGIN_LEFT
MLFMARGIN_RIGHT
MLFMARGIN_ TOP
MLFMARGIN_BOTTOM

usMouMsg (USHORT)
Message identity of the original mouse event.

iptNear (lPT)
Insertion point nearest to the margin event.

MLECTLDATA
Multiline entry-field (MLE) control data structure.

Syntax

typedefstruct .. :-MLECTLOATK {
USHORT .cbCtlData;
USHORT aflEFormat;.
ULONG cchTe~t;
lPT iptArrchQr;
IPTiptCursorj
40NGcxF0f"lliat; •

'LONG .' cyFormat;
ULONG.afFonnatFlags;

} ·'MLECJLDATA;

typedef· ~K~CTI..DATA*PM~ECTLDATA;

Fields
cbCtlData (USHORT)

Length of control data in bytes.

aflEFormat (USHORT)
Import/export format.

This sets the initial import/export format. Setting this value via control data is considered
identical to setting it through the MLM_FORMAT message. The same constants apply
here. The default is MLE_CFTEXT.

Appendix A. Data Types A-127

cchText (ULONG)
Text limit.

The maximum amount of text allowed in the MLE. This value is interpreted identically to
the parameter of MLM_SETTEXTLIMIT. A negative value indicates that the length is
considered unbounded.

iptAnchor (lPT)
Selection anchor point.

iptCursor (IPT)
Selection cursor point.

The iptAnchor and iptCursor parameters identify the beginning and ending points,
respectively, of the selection. These values may range from a through the length of the
text. The default is 0,0 and can be indicated by entering 0,0.

cxFormat (LONG)
Formatting-rectangle width in pels.

cyFormat (LONG)
Formatting-rectangle height in pels.

The cxFormat and cyFormat parameters identify the dimensions in pels of the formatting
rectangle, as can be set by the MLM_SETFORMATRECT message. These values are
considered identical to the two fields in the format rectangle structure referenced in that
message, and the interpretation of the values in these fields is governed by the
afFormatFlags field.

The default is the window size in both dimensions, and can be indicated by a values.

afFormatFlags (ULONG)
Format flags.

These flags govern the interpretation of the cxFormat and cyFormat fields, just as in the
MLM_SETFORMATRECT message. The flag values defined there are also valid in this
field. The default is unlimited in both directions, and is of varying size to match the
window size.

A-128 PM Programming Reference Vol II

MPARAM
4-byte message-dependent parameter structure.

Syntax

I typedef VOID * MPARAM;

Certain elements of information, placed into the parameters of a message, have data types
that do not use all 4 bytes of this data type. The rules governing these cases are:

BOOl
SHORT

The value is contained in the low word and the high word is O.
The value is contained in the low word and its sign is extended into the high
word.

USHORT
NUll

The value is contained in the low word and the high word is O.
The entire 4 bytes are O.

The structure of this data type depends on the message. For details, see the description of
the particular message.

MQINFO
Message-queue information structure.

Syntax

t,ypedefstrijd:,.;,MQINFO {
ULONG cb; . ; .
P1D pid;
TID tid;
ULONG:

·PVOIQ
. LMQINFQ;

Fields
cb (ULONG)

Length of structure.

pid (PID)
Process identity.

tid (TID)
Thread identity.

Appendix A. Data Types A-129

cmsgs (UlONG)
Message count.

pReserved (PVOID)
Reserved.

MRESULT
4-byte message-dependent reply parameter structure.

Certain elements of information, placed into the parameters of a message, have data types
that do not use all 4 bytes of this data type. The rules governing these cases are:

-
BOOl
SHORT

The value is contained in the low word and the high word is o.

USHORT
NUll

The value is contained in the low word and its sign is extended into the high
word.
The value is contained in the low word and the high word is o.
The entire 4 bytes are o.

The structure of this data type depends on the message. For details, see the description of
the particular message.

Syntax

typedef VOID * MRESULT;

NOTIFYDELTA
Structure that contains information about the placement of delta information for a container.
This structure is used in the CN_QUERYDElTA container notification code only. See
"CN_QUERYDElTA" on page 22-27 for information about that notification code.

Syntax

typedef struct _NOTIFYDELTA{
HWND hwndCnr;
ULONG fOe lta;

} NOTIFYDELTA;

typedef NOlIFYDELTA *PNOTIFYOELTA;

A-130 PM Programming Reference Vol II

Fields
hwndCnr (HWND)

Container control handle.

fDelta (ULONG)
Placement of delta information. The values can be:

CMA_DELTATOP The record that represents the delta value scrolls into view at the
top of the client area.

CMA_DELTABOT The record that represents the delta value scrolls into view at the
bottom of the client area.

CMA_DELTAHOME The container scrolls to the beginning of the list of all container
records that are available to be inserted into the container, such
as the first record in a database.

CMA_DELTAEND The container scrolls to the end of the list of all container records
that are available to be inserted into the container, such as the
last record in a database.

NOTIFYRECORDEMPHASIS
Structure that contains information about emphasis that is being applied to a container
record. This structure is used in the CN_EMPHASIS container notification code only. See
"CN_EMPHASIS" on page 22-20 for information about that notification code.

Syntax

typedef struct, _NOTIFYRECORDEMPHASIS {
HWND hwndCnr;
PRECORDCORE pRecord;
ULONG fEmphasisMask;
} NOTIFYRECORDEMPHASIS;

typedef NOTIFYRECORDEMPHASIS *PNOTIFYRECORDEMPHASIS;

Fields
hwndCnr (HWND)

Container control handle.

pRecord (PRECORDCORE)
Pointer to a RECORDCORE data structure whose emphasis attribute has been
changed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
createq, then MINIRECORDCORE should be used instead of RECORDCORE
and PMINIRECORDCORE should be used instead of PRECORDCORE in all
applicable data structures and messages.

Appendix A. Data Types A-131

fEmphasisMask (ULONG)
Changed emphasis attributes.

Specifies the emphasis attribute or attributes that changed in the container record. The
following states can be combined with a logical OR operator (I):

• CRA_CURSORED
• CRAJNUSE
• CRA_SELECTED.

NOTIFYRECORDENTER
Structure that contains information about the input device that is being used with the
container control. This structure is used in the CN_ENTER container notification code only.
See "CN_ENTER" on page 22-22 for information about that notification code.

Syntax

Fields
hwndCnr (HWND)

. Container control handle.

fKey (ULONG)
Flag.

Flag that determines whether the Enter key was pressed or the select button was
double-clicked.

TRUE
FALSE

The Enter key was pressed.
The select button was double-clicked.

A-132 PM Programming Reference Vol II

pRecord (PRECORDCORE)
Pointer to the RECORDCORE data structure over which an action occurred.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE
and PMINIRECORDCORE should be used instead of PRECORDCORE in all
applicable data structures and messages.

• If a user presses the Enter key, a pointer to the record with the selection cursor is
returned.

• If a user double-clicks the select button when the pointer of the pointing device is
over a record, a pointer to the record is returned.

• If a user double-clicks the select button when the pOinter of the pointing device is
over white space, NULL is returned.

NOTIFYSCROLL
Structure that contains information about scrolling a container control window. This structure
is used in the CN_SCROLL container notification code only. See "CN_SCROLL" on
page 22-29 for information about that notification code.

Syntax

typedef struct NOTIFYSCROLL {
HWND. . hwndCnri
LONG lScroll Inc;
UlONG fScro] 1;

} .. NOTI FYSCROll;

typedef.· NOTIFYSCROLL*PNOTI FYSCROLL;

Fields
hwndCnr (HWND)

Container control handle.

IScrollinc (LONG)
Scroll amount.

Amount (in pixels) by which the window scrolled.

fScroll (ULONG)
Scroll flags.

Flags that show the direction in which the window scrolled and the window that was
scrolled.

CMA_HORIZONTAL A window was scrolled horizontally. If the split details view
window is scrolled, a logical OR operator (I) is used to combine
the CMA_HORIZONTAL attribute with either the CMA_LEFT

Appendix A. Data Types A-133

OBJCLASS
Object class structure.

Syntax

Fields

attribute or the CMA _RIGHT attribute to indicate which window
was scrolled. If the unsplit details view window is scrolled, the
CMA_HORIZONTAL attribute is combined with the CMA_LEFT
attribute.

The container window scrolled vertically. If the split details view
window is scrolled, a logical OR operator (I) is used to combine
the CMA _VERTICAL attribute with the CMA _LEFT attribute and
the CMA_RIGHT attribute. If the unsplit details view window is
scrolled, the CMA_ VERTICAL attribute is combined with the
CMA LEFT attribute.

pNext (struct _ OBJCLASS *)
Pointer to the next object class structure.

pszClassName (PSZ)
Class name.

pszModName (PSZ)
Module name.

A-134 PM Programming Reference Vol II

OWNERBACKGROUND
Structure that contains information about painting the container window's background by the
container owner. This structure is used in the CM_PAINTBACKGROUND container
message only. See "CM_PAINTBACKGROUND" on page 22-55 for information about that
message.

Syntax

typedef struct ~OWNERBACKGROUND {
HWND hwnd;
HPS hps;
RECTL r<:lBatkgr6und;
LONG idWindQw;

}OWNERBACKGROUND;

typedef OWNERBACKGROUND.·. *POWNERBACKGROUND;

Fields
hwnd (HWND)

Window handle.

Handle of the window to be painted.

hps (HPS)
Presentation-space handle.

rei Background (RECTL)
Background rectangle.

Background rectangle in window coordinates.

idWindow (LONG)
Window 10.

Identity of the window to be painted.

Appendix A. Data Types A-135

OWNERITEM
Owner item.

Syntax

Fields
hwnd (HWNO)

Window handle.

hps (HPS)
Presentation-space handle.

fsState (ULONG)
State.

fsAttribute (ULONG)
Attribute.

fsStateOld (ULONG)
Old state.

fsAttributeOld (ULONG)
Old attribute.

rclltem (RECTL)
Item rectangle.

idltem (LONG)
Item identity.

hltem (ULONG)
Item.

A-136 PM Programming Reference Vol II

MLEOVERFLOW
Overflow error structure for multiline entry field.

Syntax

typedef struct. Ml,;EOVERFLOW {
ULONG afErrInd;
tONG nBytesOver;
LONG pixHorzOver;
LONG pixVertOver;
} MLEOVERFLQW;

typedefMLEOVER FLOW*: PQVERFlOW;

Fields
afErrlnd (ULONG)

One or more EFR_ * flags.

nBytesOver (LONG)
Number of bytes over the limit.

pixHorzOver (LONG)
Number of pels over the horizontal limit.

pixVertOver (LONG)
Number of pels over the vertical limit.

Appendix A. Data Types A-137

PAGEINFO
Settings page information structure.

Syntax

ty~ed~f·· str~ct PAGEINFO.· .. {
. ULONG cb;'

HWNB hwndPage;
PFNWP pfl1wP;
ULONG resid;
PVOID pCreateparams;'
USHORT dlgid;
USHORT usPageStyleFlags;
USHORT usPageInsertFlags;
USHORT usSettingsFlags;
PSZ pszName;
USHORT idDefaultHelpPanel;
USHORT usReserved2;
PSZ pszHelpLibraryN(irne;
PUSHORT pHelpSubtable;
HMODULE hmoOHelpSubtable;
ULONG ulPage Inser.tI d;

}PAGEINFO;

typedef'PAGElNFO*PPAG£1NFO;

Fields
cb (ULONG)

Length of PAGEINFO structure.

hwndPage (HWND)
Handle of page.

pfnwp (PFNWP)
Window procedure.

resid (ULONG)
Resource identity.

pCreateParams (PVOID)
Pointer to creation parameters.

dlgid (USHORT)
Dialog identity.

usPageStyleFlags (USHORT)
Notebook control page style flags.

usPagelnsertFlags (USHORT)
Notebook control page insertion flags.

A-138 PM Programming Reference Vol II

usSettingsFlags (USHORT)
Settings flag.

This flag must be set to one of the following values:

o You will not get page numbers.

SETTINGS_PAGE_NUMBERS Page numbers will automatically be put on the status
line for pages that have minor pages under the major
tab page.

pszName (PSZ)

If you want to use the page numbers, make sure ALL
pages have this setting.

Pointer to a string containing page name.

idDefaultHelpPanel (USHORT)
Identity of default help panel.

usReserved2 (USHORT)
Reserved value, must be zero.

pszHelpLibraryName (PSZ)
Pointer to name of help file.

pHelpSubtable (PUSHORT)
Pointer to help subtable.

hmodHelpSubtable (HMODULE)
Module handle for help subtable.

ulPagelnsertld (ULONG)
Notebook control page identity.

Appendix A. Data Types A-139

PAGESELECTNOTIFY
Structure that contains information about the application page being selected.

Syntax

Fields
hwndBook (HWNO)

Notebook window handle.

ulPageldCur (ULONG)
Current top page identifier.

ulPageldNew (ULONG)
New top page identifier.

PANOSE
The Panose field in the font metrics will allow for quantitative descriptions of the visual
properties of font faces. The PANOSE definition contains ten digits, each of which currently
describes up to sixteen variations.

Syntax

A-140 PM Programming Reference Vol II

Fields
bFamilyType (BYTE)

Family kind.

o Any
1 No Fit
2 Text and Display
3 Script
4 Decorative
5 Pictorial

bSerifStyle (BYTE)
Serif style.

o Any
1 No Fit
2 Cove
3 Obtuse Cove
4 Square Cove
5 Obtuse Square Cove
6 Square
7 Thin
8 Bone
9 Exaggerated
10 Triangle
11 Normal Sans
12 Obtuse Sans
13 Perp Sans
14 Flared
15 Rounded

bWeight (BYTE)
Weight.

o Any
1 No Fit
2 Very Light
3 Light
4 Thin
5 Book
6 Medium
7 Demi
8 Bold
9 Heavy
10 Black
11 Nord

Appendix A. Data Types A·141

bProportion (BYTE)
Proportion.

o Any
1 No Fit
2 Old Style
3 Modern
4 Even Width
5 Expanded
6 Condensed
7 Very Expanded
8 Very Condensed
9 Monospaced

bContrast (BYTE)
Contrast.

o Any
1 No Fit
2 None
3 Very Low
4 Low
5 Medium Low
6 Medium
7 Medium High
8 High
9 Very High

bStrokeVariation (BYTE)
Stroke Variation.

o Any
1 No Fit
2 Gradual/Diagonal
3 Gradual{Transitional
4 GradualNertical
5 Gradual/Hor:izontal
6 RapidNertical
7 Rapid/Horizontal
8 InstantNertical

bArmStyle (BYTE)
Arm Style.

o Any
1 No Fit
2 Straight Arms/Horizontal
3 Straight Arms/Wedge
4 Straight ArmsNertical
5 Straight Arms/Single Serif
6 Straight Arms/Double Serif

A-142 PM Programming Reference Vol II

7 Non-Straight Arms/Horizontal
8 Non-Straight Arms/Wedge
9 Non-Straight ArmsNertical
10 Non-Straight Arms/Single Serif
11 Non-Straight Arms/Double Serif

bLetterform (BYTE)
Letterform.

o Any
1 No Fit
2 Normal/Contact
3 ONormal/Weighted
4 ONormal/Boxed
5 ONormal/Flattened
6 ONormal/Rounded
7 ONormal/Off Center
8 ONormal/Square
9 Oblique/Contact
10 Oblique/Weighted
11 Oblique/Boxed
12 Oblique/Flattened
13 Oblique/Rounded
14 Oblique/Off Center
15 Oblique/Square

bMidline (BYTE)
Midline.

o Any
1 No Fit
2 Standard/Trimmed
3 Standard/Pointed
4 Standard/Serifed
5 High/Trimmed
6 High/Pointed
7 High/Serifed
8 Constant/Trimmed
9 Constant/Pointed
10 Constant/Serifed
11 Low/Trimmed
12 Low/Pointed
13 Low/Serifed

Appendix A. Data Types A-143

bXHeight (BYTE)
X-Height.

o Any
1 No Fit
2 Constant/Small
3 Constant/Standard
4 Constant/Large
5 Ducking/Small
6 Ducking/Standard
7 Ducking/Large

fbPassedlSO (BYTE)
Font passed ISO test.

The following flags indicate those displays and resolutions at which the font complied
with ISO 9241 .

FMJSO_9518_640
FM_ISO_9515_640
FMJSO_9515_1024
FM_ISO_9517 _640
FMJSO_9517 _1024

fbFailedlSO (BYTE)
Font failed ISO test.

The following flags indicate those displays and resolutions at which the font did not
comply with ISO 9241.

PARAM

FMJSO_9518_640
FMJSO_9515_640
FM_ISO_9515_1024
FMJSO_9517 _640
FMJSO_9517 _1024

Presentation parameter attribute definition.

Syntax

A-144 PM Programming Reference Vol II

Fields
id (ULONG)

Attribute type identity.

These identities are in the range of OxOOOOOOOO to OxFFFFFFFF. The window manager
uses values of this parameter in the range OxOOOOOOOO to PP _USER; therefore, an
application cannot define private presentation parameter attribute identities in this range.
An application should use WinAddAtom to guarantee obtaining a unique identity.

PP_FOREGROUNDCOLOR
PP_BACKGROUNDCOLOR
PP _FOREGROUNDCOLORINDEX
PP _BACKGROUNDCOLORINDEX
PP _HILITEFOREGROUNDCOLOR

PP _HILITEBACKGROUNDCOLOR

PP _HILITEFOREGROUNDCOLORINDEX

PP _HILITEBACKGROUNDCOLORINDEX

PP _DISABLEDFOREGROUNDCOLOR

PP _DISABLEDBACKGROUNDCOLOR

PP _DISABLEDFOREGROUNDCOLORINDEX

PP _DISABLEDBACKGROUNDCOLORINDEX

PP _BORDERCOLOR
PP _BORDERCOLORINDEX
PP _FONTNAMESIZE
PP _ ACTIVECOLOR
PP _ACTIVECOLORINDEX

PP JNACTIVECOLOR
PP JNACTIVECOLORINDEX

PP _ACTIVETEXTFGNDCOLOR

PP _ACTIVETEXTFGNDCOLORINDEX

PP _ACTIVETEXTBGNDCOLOR

PP _ACTIVETEXTBGNDCOLORINDEX

PP JNACTIVETEXTFGNDCOLOR

Foreground color (in RGB) attribute.
Background color (in RGB) attribute.
Foreground color index attribute.
Background color index attribute.
Highlighted foreground color (in RGB)
attribute, for example for selected
menu items.
Highlighted background color (in RGB)
attribute.
Highlighted foreground color index
attribute.
Highlighted background color index
attribute.
Disabled foreground color (in RGB)
attribute.
Disabled background color (in RGB)
attribute.
Disabled foreground color index
attribute.
Disabled background color index
attribute.
Border color (in RGB) attribute.
Border color index attribute.
Font name and size attribute.
Active color value of data type RGB.
Active color index value of data type
LONG.
Inactive color value of data type RGB.
Inactive color index value of data type
LONG.
Active text foreground color value of
data type RGB.
Active text foreground color index value
of data type LONG.
Active text background color value of
data type RGB.
Active text background color index
value of data type LONG.
Inactive text foreground color value of
data type RGB.

Appendix A. Data Types A-145

PP JNACTIVETEXTFGNDCOLORINDEX

PP JNACTIVETEXTBGNDCOLOR

PP JNACTIVETEXTBGNDCOLORINDEX

PP_SHADOW

PP_USER

cb (ULONG)
Byte count of the ab parameter.

ab[1] (BYTE)
Attribute value.

Inactive text foreground color index
value of data type LONG.
Inactive text background color value of
data type RGB.
Inactive text background color index
value of data type LONG.
Changes the color used for drop
shadows on certain controls.
This is a user-defined presentation
parameter.

The format of a value depends on the attribute type identity as follows:

PP_FOREGROUNDCOLOR

PP_BACKGROUNDCOLOR

PP _FOREGROUNDCOLORINDEX

PP _BACKGROUNDCOLORINDEX

PP _HILITEFOREGROUNDCOLOR

PP _HILITEBACKGROUNDCOLOR

PP _HILITEFOREGROUNDCOLORINDEX

PP _HILITEBACKGROUNDCOLORINDEX

PP _DISABLEDFOREGROUNDCOLOR

PP _DISABLEDBACKGROUNDCOLOR

PP _DISABLEDFOREGROUNDCOLORINDEX

PP _DISABLEDBACKGROUNDCOLORINDEX

PP _BORDERCOLOR
PP _BORDERCOLORINDEX

PP _FONTNAMESIZE

A-146 PM Programming Reference Vol II

Foreground color value of data type
RGB.
Background color value of data type
RGB.
Foreground color index value of data
type LONG.
Background color index value of data
type LONG.
Highlighted foreground color value of
data type RGB.
Highlighted background color value of
data type RGB.
Highlighted foreground color index
value of data type LONG.
Highlighted background color index
value of data type LONG.
Disabled foreground color value of data
type RGB.
Disabled background color value of
data type RGB.
Disabled foreground color index value
of data type LONG.
Disabled background color index value
of data type LONG.
Border color value of data type RGB.
Border color index value of data type
LONG.
Font name and size values, of data
type PSZ. The string is in two parts,
separated by a period. The first part is
the font point size and the second part

PCH
Pointer to a character string.

Syntax

typedef unsigned char * PCH;

PCSZ
Pointer to a constant null-terminated string.

Syntax

typedef constchar * pcsz;

PDEVOPENDATA
Open device-data array.

is the font facename, for example,
"12.Helv."

This data type points to data whose format is described by the DEVOPENSTRUC data type.

Syntax

typedefPSZ*POEVOPENPATA;

Appendix A. Data Types A-147

PFN
Pointer to a procedure.

Syntax

In the header file, this is a two-part definition as shown below:

typedef int (APIENTRY _PFN) ();
typedef _PFN *PFN;

PFNWP

PIC

Pointer to a window procedure.

This is the standard function definition for window procedures.

Syntax

The first argument (HWND) is the handle of the window receiving the message. The second
argument (ULONG) is a message identifier. The third argument (MPARAM) is the first
message paramenter (mp1). The fourth argument (MPARAM) is the second message
paramenter (mp2). The function returns an MRESULT. Each message has a specific set of
possible return codes. The window procedure must return a value that is appropriate for the
message being processed.

In the header file, this is a two-part definition as shown below:

typedef MRESULT (EXPENTRY FNWP) (HWND, ULONG, MPARAM, MPARAM);
typedef FNWP *PFNWP;

Window procedures must be EXPORTED in the definitions file used by the linker.

Process identity.

Syntax

A-148 PM Programming Reference Vol II

PIX
Pel count for mUlti-line entry field.

Syntax

typedef LONG PIX;

PRDINF03
Print device information structure (level 3).

Syntax

typedef·struct PRDINF03 {
PSZ pszprinterName;
PSZ pszUserName;
PSZ pszLogAddr;
USHORT uJobIdi
USHORT fsStatus;
PSZ pszStatus;
PSZ pszComment;
PSZ pszDrivers;
USHORT time;
USHORT usTimeOut;
} PRDINF03;

typedefPRIHNF03*PPROINF03;

Fields
pszPrinterName (PSZ)

Print device name.

pszUserName (PSZ)
User who submitted job.

This parameter is valid only while the job is printing. It is NULL for a job submitted
locally.

pszLogAddr (PSZ)
Logical address (for example LPT1).

If NULL or an empty string, the printer is not connected to a logical address.

uJobld (USHORT)
Identity of current job.

If 0, no job is printing.

Appendix A. Data Types A-149

fsStatus (USHORT)
Print destination status.

Use the mask PRO_STATUS _MASK to determine the print job status:

PRO_ACTIVE
PRO_PAUSED

Processing
Not processing, or paused.

Use the mask PRJ_DEVSTATUS for further information about print job status:

PRJ_COMPLETE
PRJJNTERV
PRJ_ERROR

Job complete
Intervention required
Error occurred (in this case, pszStatus may contain a comment
about the error)

PRJ_DESTOFFLINE Print device offline
PRJ _DESTPAUSED Print device paused
PRJ_NOTIFY Raise alert
PRJ_DESTNOPAPER Print device out of paper.

pszStatus (PSZ)
Print device comment while printing.

A comment posted by the print processor of the print device. This parameter is valid
only during printing.

pszComment (PSZ)
Print device description.

pszOrivers (PSZ)
Drivers supported by print device.

List items are separated by commas. Each printer driver name may have a device
name separated by a dot (for example, PLOTTER.HP7475A). The default printer is
listed first.

time (USHORT)
Time job has been printing (minutes)

This parameter applies only during printing.

usTimeOut (USHORT)
Device timeout (seconds)

The time that elapses before the device driver notifies the spooler that the print device
has not responded.

A-1S0 PM Programming Reference Vol II

PRDRIVINFO
Printer driver information structure (level 0).

Syntax

typedef struct PRDRIVINFO {
CHAR szOr1vName[DRIV NAME SlZE+l+DRIV DEVICENAME SIZE+l];
} PRDRIVINFOj . - -. - -

typedef PRORIVINFO *PPRDRIVINFO;

Fields
szDrivName[DRIV _NAME_ SIZE+ 1 +DRIV _DEVICENAME_ SIZE+ 1] (CHAR)

Name of printer driver.

This is the name of the printer driver and device is the format of DRIVER.DEVICE. For
example "IBM4019.IBM Laserprinter E."

PRESPARAMS
Presentation parameter data.

Syntax

typedefstruct";'PRESPARAMS {
ULONGcb;
PARAM apa ral11[il;

}PRESPARAMS;

Fields
cb (ULONG)

Length of the aparam parameter, in bytes.

aparam[1] (PARAM)
Array of presentation attribute parameters.

Appendix A. Data Types A-151

PRINTDEST
PRINTDEST data structure.

Contains all the parameters required to issue a DevPostDeviceModes and DevOpenDC
function calls.

Syntax

Fields
cb (ULONG)

Length of data structure, in bytes.

IType (LONG)
Type of device context.

OD_QUEUED The device context is queued.
OD_DIRECT The device context is direct.

pszToken (PSZ)
Device-information token.

This is always ''*."

ICount (LONG)
Number of items.

This is the number of items present in the pdopData field.

pdopData (PDEVOPENDATA)
Open device context data area.

See DEVOPENSTRUC for information on the format of pdopData.

fl (ULONG)
Flags.

PD_JOB_PROPERTY This flag indicates that DevPostDeviceModes should be called
with DPDM_POSTJOBPROP before calling DevOpenDC.

A-152 PM Programming Reference Vol II

pszPrinter (PSZ)
Name of Printer name.

A name that specifies the device, for example "PRINTER1." The name is used for calling
DevPostDeviceModes.

The printer device name can be found by calling SplQueryQueue and passing to it the
information found in the pszLogAddress field of the DEVOPENSTRUC structure pointed
to by pdopData. SplQueryQueue returns a PRQINF03 structure. The pszPrinters field
in PRQINF03 contains the printer device name to be used.

PRINTERINFO
Print destination information structure.

This structure is used at information level 0.

Syntax

typ¢defstruc;t,PRINIERINFOj
UL.ONGflType;
PSz pszComputerName;
PSZ pszPrintOestinationName;
PSZ pszOescription;
PSZ pszLocalName;
l·· PRINIERINFO;

Fields
flType (ULONG)

Type of printer.

This is a flag used to describe the type of print destination:

SPL_PR_QUEUE Print destination is a queue
SPL_PR_DIRECT _DEVICE Print destination is a direct print device
SPL_PR_QUEUED_DEVICE Print destination is a queued print device

pszComputerName (PSZ)
Computer name.

A NULL string specifies the local workstation.

pszPrintDestinationName (PSZ)
Name of Print Destination.

This is either a queue name or a print device name depending upon the value of flType.
The maximum length of the name in the network case is 256 (including one byte for the
null terminator).

Appendix A. Data Types A-153

pszDescription (PSZ)
Description of print destination.

The maximum length is 48 characters (including one byte for the null terminator).

pszLocalName (PSZ)
Local name of remote print destination.

This is a local port name (for instance "LPT 4") that is connected to the remote print
destination. A NULL string specifies that no connection exists.

PRFPROFILE
Profile structure.

Syntax

,.". ,

typedefst puctjPRFPRQF:ILE .. 1
ULONG cchUserName;

. pSZ '~~zus~r~am~;
ULONG ·.······:~chSys~e~; •....••• ' ~:

;····pSzw::·:.·.~sz$,YsN<t!iier••..•••
1PRFpROnl.;~; ..

tYP~Qef •• P:~FflRqF~~E··. *PPRFPRQn ~E;;

Fields
cchUserName (ULONG)

Length of user profile name.

pszUserName (PSZ)
User profile name.

cchSysLen (ULONG)
Length of system profile name.

pszSysName (PSZ)
System profile name.

A-154 PM Programming Reference Vol II

PRJINF02
Print-job information structure.

This structure provides a subset of the information supplied by PRJINF03. It minimizes the
storage required for job-information retrieval, and is sufficient for most uses.

Syntax

typedef struct PRJINF02 {
USHORT uJobld;
USHORT uPriority;
PSZ pszUserName;
USHORT uPosition;
USHORT fsStatus;
ULONG ulSubmitted;
ULONG ulSize;
PSZ pszComment;
PSZ pszOocument;
} PRJINF02;

typedef PRJINF02 *PPRJINF02;

Fields
uJobld (USHORT)

Job identification number.

uPriority (USHORT)
Job priority.

The job-priority range is 1 through 99, with 99 the highest job priority. (For queue
priorities, 1 is the highest priority.)

The job priority determines the order of jobs in the queue. If multiple queues print to the
same printer, the job at the front of each queue is examined. The job with the highest
priority is printed first; if there is more than one job with the highest priority, the oldest
job with this priority is printed first.

PRJ _MAX_PRIORITY
PRJ_MIN_PRIORITY
PRJ _NO_PRIORITY

pszUserName (PSZ)

Highest priority
Lowest priority
No priority.

User who submitted the job.

This parameter applies only to jobs created by a user and enqueued on a remote server.
A NULL string signifies a local job.

uPosition (USHORT)
Job position in queue.

If 1, the job is scheduled to be the next job printed from this queue.

Appendix A. Data Types A-155

fsStatus (USHORT)
Job status.

To find the job status, use the PRJ_QSTATUS mask:

PRJ_QS_QUEUED
PRJ _ QS _PAUSED
PRJ_QS_SPOOLING
PRJ_QS_PRINTING

Queued
Paused by a SplHoldJob function
Job being created
Printing (bits 2 through 11 are valid).

For further information, use the PRJ_DEVSTATUS mask:

PRJ_COMPLETE
PRJJNTERV
PRJ_ERROR
PRJ_DESTOFFLINE
PRJ_DESTPAUSED
PRJ_NOTIFY
PRJ_DESTNOPAPER
PRJ_DESTFORMCHG
PRJ _ DESTCRTCHG
PRJ _DESTPENCHG

Job complete
Intervention required
Error occurred.
Print destination offline
Print destination paused
Alert should be raised
Print destination out of paper
Printer waiting for form change
Printer waiting for cartridge change
Printer waiting for pen change.

This bit indicates that the job is deleted:

PRJ_DELETED

ulSubmitted (ULONG)
Time job submitted.

Job deleted.

Time format is the same as that stored in the global information segment.

ulSize (ULONG)
Print-job size (bytes).

pszComment (PSZ)
Comment string.

Information about the print job. The maximum length of the string is 48 characters
(including one byte for the null terminator).

pszOocument (PSZ)
Document name.

The document name of the print job (set by the application that submitted the print job).
The maximum length of the string is 260 characters.

A-156 PM Programming Reference Vol II

PRJINF03
Print-job information structure.

This structure is used when complete job details are required. A subset of this information is
supplied by PRJINF02.

Syntax

typedef struct]RJINF03< {
USHORT

< USHORT
PSZ
USHORT
USHORT
ULONG
ULONG
PSZ
PSZ
PSZ
PSZ
PSZ
PSZ
PSZ
PSZ
PSZ
PSZ
PDRIVOATA
PSZ
} PRJ IN F03;

Fields

uJobld;
uPrioritYi
pszUserName;
uPosition;
fsStatus;
ulSubmitted;
ulSize;
pszComment;
pszOocument;
pszNottfyName;
pszOataType;
pszparms;<
ps?Status;
pszQueue;
pszQProcName;
pszQProcParms;
pszDriv~rName;
pDriverOata;
pszPrinterName;

uJobld (USHORT)
Job identification number.

uPriority (USHORT)
Job priority.

The job-priority range is 1 through 99, with 99 the highest job priority. (For queue
priorities, 1 is the highest priority.)

The job priority determines the order of jobs in the queue. If multiple queues print to the
same printer, the job on the front of each queue is examined. The job with the highest
priority is printed first; if there is more than one job with the highest priority, the oldest
job with this priority is printed first.

PRJ_MAX_PRIORITY
PRJ_MIN_PRIORITY
PRJ_NO_PRIORITY

Highest priority
Lowest priority
No priority.

Appendix A. Data Types A-157

pszUserName (PSZ)
User who submitted the job.

This parameter applies only to jobs created by a user on a remote workstation and
queued on a server. A NULL string signifies a local job.

uPosition (USHORT)
Job position in queue.

If 1 , the job is scheduled to be the next job printed from this queue.

fsStatus (USHORT)
Job status.

To find the job status, use the PRJ_QSTATUS mask:

ulSubmitted (ULONG)
Time job submitted.

Time format is the same as that stored in the global information segment.

ulSize (ULONG)
Print-job size (bytes).

pszComment (PSZ)
Comment string.

Information about the print job.

The maximum length of the string is 48 characters (including one byte for the null
terminator) .

pszDocument (PSZ)
Document name.

The document name of the print job (set by the application that submitted the print job).
The maximum length of the string is 260 characters.

pszNotifyName (PSZ)
Messaging alias for print alert.

This parameter is a computer name and applies only to jobs on a remote server queue.
A NULL string is returned for jobs on a local queue.

pszDataType (PSZ)
Data type of submitted file.

This is specified by the pszDataType parameter in the DEVOPENSTRUC structure
passed to the DevOpenDC call when the job is created. The name is truncated to fit the
field if necessary, and contains a trailing NULL.

pszParms (PSZ)
Parameters.

The form of this string is:

parml=vall parm2=va12 .•.

A·158 PM Programming Reference Vol II

pszStatus (PSZ)
Status comment.

A text string, posted by the queue processor, that provides additional job-status
information. The default string type is NULL.

pszQueue (PSZ)
Queue name.

The name of the queue the job is on.

pszQProcName (PSZ)
Queue processor.

The name of the queue processor.

pszQProcParms (PSZ)
Queue processor parameters.

Spaces are used to separate parameters.

pszDriverName (PSZ)
Driver name.

The name of the device driver (for example, "LASERJET"). The device name is part of
pDriverData.

pDriverData (PDRIVDATA)
Job Properties (driver data).

The contents are specific to the device driver.

pszPrinterName (PSZ)
Printer name.

If the job is printing, the printer name, otherwise NULL. .

PROGRAM ENTRY
Program-entry structure.

Syntax

Appendix A. Data Types A-159

Fields
hprog (HPROGRAM)

Program handle.

progt (PROGTYPE)
Program type.

szTitle[MAXNAMEL+ 1] (CHAR)
Program title (null-terminated).

PROGCATEGORY
Program category.

Syntax

typede f·· ULONG PROG~ATEGORY;

PROGDETAILS
Program-details structure.

Syntax

Fields
Length (ULONG)

Length of structure.

progt (PROGTYPE)
Program type.

A-160 PM Programming Reference Vol II

pszTitle (PSZ)
Title.

pszExecutable (PSZ)
Executable file name.

pszParameters (PSZ)
Parameter string.

pszStartupDir (PSZ)
Start-up directory.

pszlcon (PSZ)
Icon-file name.

pszEnvironment (PSZ)
Environment string.

A list of null-terminated strings, ending with an extra NULL character.

swplnitial (SWP)
Initial window position and size.

PROGTYPE
Program-type structure.

Syntax

type~efsfl"uct.· ·PROGTYPE. {
.PROGCATEG'ORY···· - .

ULON.G: ..
}P~OGTYPE;

Fields
progc (PROGCATEGORy)

Program category:

PROG_DEFAULT

PROG_PM

PROG_WINDOWABLEVIO

PROG_FULLSCREEN

PROG_WINDOWEDVDM

PROG_VDM

Default application.

Presentation Manager application.

Text-windowed application.

Full-screen application.

PC DOS executable process (windowed).

PC DOS executable process (full screen).

Appendix A. Data Types A-161

PROG_REAL PC DOS executable process (full screen).
Same as PROG_ VDM.

PROG 31 STDSEAMLESSVDM Windows 3.1 program that will execute in its
own windowed WINOS2 session.

PROG_31_STDSEAMLESSCOMMON Windows 3.1 program that will execute in a
common windowed WINOS2 session.

PROG_31_ENHSEAMLESSVDM Windows 3.1 program that will execute in
enhanced compatibility mode in its own
windowed WINOS2 session.

PROG_31_ENHSEAMLESSCOMMON Windows 3.1 program that will execute in
enhanced compatibility mode in a common
windowed WINOS2 session.

PROG 31 ENH Windows 3.1 program that will execute in
enhanced compatibility mode in a full screen
WINOS2 session.

PROG_31_STD Windows 3.1 program that will execute in a full
screen WINOS2 session.

fbVisible (ULONG)
Visibility attribute.

When testing this field, allow for the possibility that other bits may be defined in the
future. SHEJNVISIBLE and SHE_PROTECTED can be used to mask the visibility and
protected flags, respectively.

SHE_VISIBLE
SHE_INVISIBLE
SHE_UNPROTECTED
SHE PROTECTED

PRPORTINFO

Visible
Invisible
Unprotected
Protected.

Port information structure (level 0).

Syntax

,-
typ~derstruct]RPORTINFO { _
CHAR szportNameIPDLEN+ll;

} ,PRPORTl NFOj

A-162 PM Programming Reference Vol II

Fields
szPortName[PDLEN+ 1] (CHAR)

Name of the port.

This is the name of the port. For example "LPT1."

PRPORTINF01
Port information structure (level 1).

Syntax

typedef struct _PRPORTlNFOl {
PSZ pszPortName;
PSZ pszPortDriverName;
PSZ pszPortDriverPathName;
} PRPORTlNFOl;

typedef PRPORTINFOI *PPRPORTINFOl;

Fields
pszPortName (PSZ)

Name of the port.

This is the name of the port. For example "LPT1."

pszPortDriverName (PSZ)
Name of the port driver.

This is the name of the port driver. For example "PARALLEL."

pszPortDriverPathName (PSZ)
Full path name of the port driver.

This is the full path name of the port driver. For example
"C:\OS2\DLL\PARALLEL.PDR."

Appendix A. Data Types A-163

PRQINF03
Print-queue information structure.

This structure is used at information levels 3 and 4.

Syntax

Fields
pszName (PSZ)

Queue name.

The maximum length of the name in the network case is 256 (including one byte for zero
term i nation).

uPriority (USHORT)
Queue priority.

The range is 1 through 9, with 1 being the highest queue priority.

The default job priority (OefJobPrio) is determined from:
OefJobPrio= 100-(10* uPriority).

A-164 PM Programming Reference Vol \I

If a job is added with PRJ_NO_PRIORITY specified, DefJobPrio is used. If a default
priority higher than the default job priority is specified, the default job priority is used. If
a default priority lower than the default is specified, the specified job priority is used.

PRQ_ DEF _PRIORITY
PRQ_ MAX_PRIORITY
PRQ_ MIN_PRIORITY
PRQ_ NO_PRIORITY

uStartTime (USHORT)

Default priority
Highest priority
Minimum priority
No priority.

Minutes after midnight when queue becomes active.

For example, the value 75 represents 1:15 a.m.

If uStartTime and uUntilTime are both 0, the print queue is always available.

uUntiiTime (USHORT)
Minutes after midnight. when queue ceases to be active.

For example, the value 1200 represents 8 p.m.

If uUntilTime and uStartTime are both 0, the print queue is always available.

fsType (USHORT)
Queue type.

PRQ3_ TYPE_RAW
PRQ3_TYPE_BYPASS

PRQ3_TYPE_APPDEFAULT

pszSepFile (PSZ)
Separator-page file.

Data is always enqueued in the device specific format.
Allows the spooler to bypass the queue processor and
send data directly to the Printer Driver. Setting this bit
allows the spooler to print jobs of type PM_Q_RAW
while they are still being spooled.
This bit is set for the application default queue only.

The path and file name of a separator-page file on the target computer.

This file contains formatting information for the page or pages to be used between print
jobs. A relative path name is taken as relative to the current spool directory. A NULL
string indicates no separator page.

pszPrProc (PSZ)
Default queue-processor.

pszParms (PSZ)
Queue parameters.

This can be any text string or a NULL string.

pszComment (PSZ)
Queue description.

A NULL string results in no comment. The maximum length is 48 characters (including
one byte for the null terminator).

Appendix A. Data Types A-165

fsStatus (USHORT)
Queue status.

PRQ3_PAUSED
PRQ3_PENDING

cJobs (USHORT)

Queue is paused (held).
Queue is pending deletion.

Number of jobs in queue.

pszPrinters (PSZ)
Print devices connected to queue.

This cannot be NULL.

pszDriverName (PSZ)
Default device driver.

pDriverData (PDRIVDAT A)
Default queue job properties.

Note: An application can use pszDriverName, pDriverData, pszPrProc, and pszParms
to construct a valid DevOpenDC call based only on the queue name.

PRQINF06
Print-queue information structure.

This structure is used at information level 6.

Syntax

A-166 PM Programming Reference Vol II

Fields
pszName (PSZ)

Queue name.

The maximum length of the name in the network case is 256 (including one byte for zero
termination) .

uPriority (USHORT)
Queue priority.

The range is 1 through 9, with 1 being the highest queue priority.

The default job priority (DefJobPrio) is determined from:
DefJobPrio=1 00-(10* uPriority).

If a job is added with PRJ_NO_PRIORITY specified, DefJobPrio is used. If a default
priority higher than the default job priority is specified, the default job priority is used. If
a default priority lower than the default is specified, the specified job priority is used.

PRQ_ DEF _PRIORITY
PRQ_ MAX_PRIORITY
PRQ_MIN_PRIORITY
PRQ_ NO_PRIORITY

uStartTime (USHORT)

Default priority
Highest priority
Minimum priority
No priority.

Minutes after midnight when queue becomes active.

For example, the value 75 represents 1 :15 a.m.

If uStartTime and uUntilTime are both 0, the print queue is always available.

uUntiiTime (USHORT)
Minutes after midnight. when queue ceases to be active.

For example, the value 1200 represents 8 p.m.

If uUntilTime and uStartTime are both 0, the print queue is always available.

fsType (USHORT)
Queue type.

PRQ3_ TYPE_RAW

PRQ3_TYPE_BYPASS

Data is always enqueued in the device specific format.

Allows the spooler to bypass the queue processor and
send data directly to the Printer Driver. Setting this bit
allows the spooler to print jobs of type PM_Q_RAW
while they are still being spooled.

This bit is set for the application default queue only.

Appendix A. Data Types A·167

pszSepFile (PSZ)
Separator-page file.

The path and file name of a separator-page file on the target computer.

This file contains formatting information for the page or pages to be used between print
jobs. A relative path name is taken as relative to the current spool directory. A NULL
string indicates no separator page.

pszPrProc (PSZ)
Default queue-processor.

pszParms (PSZ)
Queue parameters.

This can be any text string or a NULL string.

pszComment (PSZ)
Queue description.

A NULL string results in no comment. The maximum length is 48 characters (including
one byte for the null terminator).

fsStatus (USHORT)
Queue status.

PRQ3_PAUSED
PRQ3_PENDING

cJobs (USHORT)

Queue is paused (held).
Queue is pending deletion.

Number of jobs in queue.

pszPrinters (PSZ)
Print devices connected to queue.

This cannot be NULL.

pszDriverName (PSZ)
Default device driver.

pDriverData (PDRIVDATA)
Default queue job properties.

Note: An application can use pszDriverName, pDriverData, pszPrProc, and pszParms
to construct a valid DevOpenDC call based only on the queue name.

pszRemoteComputerName (PSZ)
Remote computer name.

The computer name part of a remote queue for which this queue is a local alias.

pszRemoteQueueName (PSZ)
Remote queue name.

The queue name part of a remote queue for which this queue is a local alias.

A-168 PM Programming Reference Vol II

PRQPROCINFO
Queue processor information structure (level 0).

Syntax

typedef struct_PRQPROCINFO {
CHAR szQProcName[QNLEN+l];
1 PRQPROCINFO;

typedef PR.QPROCINFO*PPRQPROCINFO;

Fields
szQProcName[QNLEN+ 1] (CHAR)

Name of queue processor.

This is the name of the queue processor (driver). For example "PMPRINT."

POINTERINFO
Pointer-information structure.

Syntax

typedef sfruGtPQINTERINFO{
ULONGfPointer;
LO~G~HotSpot;

·[(iNG..... yHotSpot;
···HBITMAr trBmPointer;
FlBI:rM~P ttblllGo16r;
HB ITMAPhBmMi oj Po inter.
FlBITMAP nblTlMil1iColor;
.. }PQINTERINfO;

. i:ypede{ POINtEriINFQ.*PPQINTERINFO;

Fields
fPointer (ULONG)

Bit-map size indicator.

TRUE
FALSE

Pointer-sized bit map
Icon-sized bit map.

xHotSpot (LONG)
X-coordinate of action point.

Appendix A. Data Types A-169

yHotSpot (LONG)
Y -coordinate of action point.

hbmPointer (HBITMAP)
Bit-map handle of pointer.

hbmColor (HBITMAP)
Bit-map handle of color bit map.

hbmMiniPointer (HBITMAP)
Bit-map handle of a pointer to a mini bit map.

hbmMiniColor (HBITMAP)
Bit-map handle of mini color bit map.

POINTL
Point structure (long integers).

Syntax

typedefstructPOINTL{
LONG x;-
LONG y;

l·POINTL;

Fields
x (LONG)

X-coordinate.

y (LONG)
Y -coordinate.

A-170 PM Programming Reference Vol II

POINTS
Point structure (short integers).

Syntax

typedef struct _POINTS {
SHORT X;
SHORT y;
} POINTS;

typedef POINTS *PPOINTS;

Fields
x (SHORT)

X-coordinate.

Y (SHORT)
Y -coordinate.

PQMOPENDATA
Open queue-manager data array.

This data type points to data whose format is described by the DEVOPENSTRUC data type.

Syntax

typedef PSZ* .PQMOPENDATA;·

PSZ
Pointer to a null-terminated string.

If you are using C++ **, you may need to use PCSZ.

Syntax

Appendix A. Data Types A-171

PWPOINT
Pointer to a WPOINT data structure.

Syntax

PVOID
Pointer to a data type of undefined format.

Syntax

QMSG
Message structure.

Syntax

Fields
hwnd (HWND)

Window handle.

msg (ULONG)
Message identity.

mp1(MPARAM)
Parameter 1.

A-172 PM Programming Reference Vol II

mp2 (MPARAM)
Parameter 2.

time (ULONG)
Message time.

ptl (POINTL)
Pointer position when message was generated.

reserved (ULONG)
Reserved.

QUERVRECFROMRECT
Structure that contains information about a container record that is bounded by a specified
rectangle. This structure is used in the CM_QUERYRECORDFROMRECT container
message only. See "CM_QUERYRECORDFROMRECT" on page 22-62 for information
about that message.

Syntax

typedef ·struct· _ QUERYRECFROMRECT·· {
ULONG cb;
RECTl rect;
ULONG fsSearch;

}. QUERYRECFROMRECT;

typedef. QUERYRECFROMRECT ·*PQUERYREC FROMRECT;

Fields
eb (ULONG)

Structure size.

The size (in bytes) of the QUERYRECFROMRECT data structure.

reet (RECTL)
Rectangle.

The rectangle to query, in virtual coordinates relative to the container window origin. If
the details view (CV _DETAIL) is displayed, the x-coordinates of the rectangle are
ignored.

fsSeareh (ULONG)
Search control flags.

One flag from each of the following groups can be specified:

• Search sensitivity:

Appendix A. Data Types A-173

CMA_COMPLETE
Returns the container records that are completely within the bounding rectangle.

CMA_PARTIAL
Returns the container records that are completely or partially within the bounding
rectangle.

• Enumeration order:

CMA_ITEMORDER
Container records are enumerated in item order, lowest to highest.

CMA_ZORDER
Container records are enumerated by z-order, from top to bottom. This flag is
valid for the icon view only.

QUERYRECORDRECT
Structure that contains information about the rectangle of the specified container record,
relative to the container window origin. This structure is used in the
CM_QUERYRECORDRECT container message only. See "CM_QUERYRECORDRECT" on
page 22-64 for information about that message.

Syntax

t~pedef~troct.. . QUERYRE'c()RDRECT{
ULONG· . - (:b;· .
PRECORI)CORE pRec()rd;;
ULONG f~fgh'tSplnWindQW;
ULONG> . fsExteflt;

}.QUERYRECORORECT; .

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the QUERYRECORDRECT structure.

pRecord (PRECORDCORE)
Pointer.

Pointer to the specified RECORDCORE data structure.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages.

A-174 PM Programming Reference Vol \I

fRightSplitWindow (ULONG)
Window flag.

Flag that specifies the right or left window in the split details view.

This flag is ignored if the view is not the split details view.

TRUE
FALSE

Right split window is returned.
Left split window is returned.

fsExtent (ULONG)
Rectangle flags.

Flags that specify the extent of the desired rectangle.

These flags can be combined by using a logical OR operator (I) to return the rectangle
that bounds the icon, the expanded and collapsed icon or bit map, and the text.

CMA_ICON
CMA TEXT

Returns the icon rectangle.
Returns the text rectangle.

CMA _ TREEICON Returns the rectangle of the expanded and collapsed icons or bit
maps. This flag is valid for the tree icon and tree text views only.

RECORDCORE
Structure that contains information for records in a container control. This data structure is
used if the CCS_MINIRECORDCORE style bit is not specified when a container is created.

Syntax

typedef st ruct _ RECORDCORE{
ULONG cb;
ULONG . flRecordAttr;
POINTl pt 1 Icon;
struct _RECORDCORE *preccNextRecord;
~Z ~tIoon;
HPOINTER hptrlcon;
HPOINTER hptrMini Icon;
HBITMAP hbmBitmap;
H~IT.MAP hbmMini8Jtmap;
PTREElTEMDESC pTreeltemDesq
PSZ psiText;
PSZ pszName;
PSZ psz:Tree;

}RECORDCORE;

Fields
cb (ULONG)

The size, in bytes, of the RECORDCORE structure.

Appendix A. Data Types A-175

flReeordAttr (ULONG)
Container record attributes.

This parameter can contain any or all of the following:

CRA_COLLAPSED Specifies that a record is collapsed.

CRA_CURSORED Specifies that a record will be drawn with a selection cursor.

CRA_DISABLED Specifies that a record will be drawn with unavailable-state
emphasis.

CRA_DROPONABLE Specifies that a record can be a target for direct manipulation.

CRA_EXPANDED Specifies that a record is expanded.

CRA_FILTERED Specifies that a record is filtered and, therefore, hidden from
view.

CRAJNUSE

CRA_PICKED

CRA_SELECTED

ptlleon (POINTL)

Specifies that a record will be drawn with in-use emphasis.

Specifies that the container record willi be picked up as part of
the drag set.

Specifies that a record will be drawn with selected-state
emphasis.

Specifies that a record will be drawn with source-menu
emphasis.

Position of a container record in the icon view.

preeeNextReeord (struct _RECORDCORE *)
Pointer to the next linked record.

pszleon (PSZ)
Text for the icon view (CVJCON).

hptrleon (HPOINTER)
Icon that is displayed when the CV _MINI style bit is not specified.

This field is used when the CA_DRAWICON container attribute of the CNRINFO data
structure is set.

hptrMinileon (HPOINTER)
Icon that is displayed when the CV _MINI style bit is specified.

This field is used when the CA_DRAWICON container attribute of the CNRINFO data
structure is set.

hbmBitmap (HBITMAP)
Bit map displayed when the CV _MINI style bit is not specified.

This field is used when the CA_DRAWBITMAP container attribute of the CNRINFO data
structure is set.

A-176 PM Programming Reference Vol II

hbmMiniBitmap (HBITMAP)
Bit map displayed when the CV _MINI style bit is specified.

This field is used when the CA_DRAWBITMAP container attribute of the CNRINFO data
structure is set.

pTreeltemDesc (PTREEITEMDESC)
Pointer to a TREEITEMDESC structure.

The TREEITEMDESC structure contains the icons and bit maps used to represent the
state of an expanded or collapsed parent item in the tree name view.

pszText (PSZ)
Text for the text view (CV_TEXT).

pszName (PSZ)
Text for the name view (CV _NAME).

pszTree (PSZ)
Text for the tree view (CV _TREE).

RECORDINSERT
Structure that contains information about the RECORDCORE structure or structures that are
being inserted into a container. The RECORDINSERT structure is used in the
CMJNSERTRECORD container message only. See "CMJNSERTRECORD" on
page 22-45 for information about that message.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Syntax

typedefstruct_RECORDJNSERT{
,ULONG .. CO;
:P~E~q~OCQ~E pRecordQrder;
PRECO~DCOREpR~C?r~Parentr'
ULONG . flnvaTida~eRecord;

.' ULONG z(jtc;lep
liLO~G: ••..•. '•.•• cRecqrdsJnsert;
1 RECORD INSERT;

· ··t'yped~f;RECORPJNSERt ··*PRECOROt'NSERn

Fields

Appendix A. Data Types A-177

cb (ULONG)
Structure size.

The size (in bytes) of the RECORDINSERT structure.

pRecordOrder (PRECORDCORE)
Record order.

Orders the RECORDCORE structure or structures relative to other RECORDCORE
structures in the container. The values can be:

CMA_FIRST Places a RECORDCORE structure, or list of RECORDCORE structures,
at the beginning of the list of structures.

CMA_END Places a RECORDCORE structure, or list of RECORDCORE structures,
at the end of the list of structures.

Other Pointer to a RECORDCORE structure that this structure, or list of
structures, is to be inserted after.

pRecordParent (PRECORDCORE)
Pointer to record parent.

Pointer to a RECORDCORE structure that is the parent of the record or records to be
inserted. This field is used only with the CMA_FIRST or CMA_END attributes of the
pRecordOrder field.

flnvalidateRecord (ULONG)
Update flag.

Flag that indicates an automatic display update after RECORDCORE structures are
inserted.

TRUE The display is automatically updated after a RECORDCORE structure is
inserted.

FALSE The application must send the CMJNVALIDATERECORD message after a
RECORDCORE structure is inserted.

zOrder (ULONG)
Record z-order.

Positions the RECORDCORE structure in z-order, relative to other records in the
container. The values can be:

CMA_ TOP Places a RECORDCORE structure at the top of the z-order. This is
the default value.

CMA_BOTTOM Places a RECORDCORE structure at the bottom of the z-order.

cRecordslnsert (ULONG)
Number of root level structures.

The number of root level RECORDCORE structures to be inserted. The cRecordslnsert
field value must be greater than o.

A-178 PM Programming Reference Vol II

RECTL
Rectangle structure.

Syntax

typedef struct RECTL {
LONG xLeft;
LONG yBottom;
LONG . xRight;
LONG yTop;
} RECTL;

typedef RECTL *PRECTL;

Fields
xLeft (LONG)

X-coordinate of left-hand edge of rectangle.

yBottom (LONG)
V-coordinate of bottom edge of rectangle.

xRight (LONG)
X-coordinate of right-hand edge of rectangle.

yTop (LONG)
V-coordinate of top edge of rectangle.

RENDERFILE
File-rendering structure.

Syntax

Appendix A. Data Types A-179

Fields
hwndDragFiles (HWND)

Conversation handle.

Created by DrgDragFiles.

hstrSource (HSTR)
Handle to source file name.

hstrTarget (HSTR)
Handle to target file name.

fMove (USHORT)
Operation.

TRUE
FALSE

Move the file.
Copy the file.

usRsvd (USHORT)
Reserved.

RGB
RGB color value.

Syntax

Fields
bBlue (BYTE)

Blue component of the color definition.

bGreen (BYTE)
Green component of the color definition.

bRed (BYTE)
Red component of the color definition.

A-180 PM Programming Reference Vol II

RGB2
RGB color value.

Syntax

typedef struct RGB2 {
BYTE bBlue;
BYTE bGreen;

. BYTE bRed;
BYTE fcOptions;
} RGB2;

typedef RGB2 *P.RGB2;

Fields
bBlue (BYTE)

Blue component of the color definition.

bGreen (BYTE)
Green component of the color definition.

bRed (BYTE)
Red component of the color definition.

fcOptions (BYTE)
Entry options.

These can be ORed together if required:

PC_RESERVED The color entry is reserved for animating color with the palette
manager.

PC_EXPLICIT The low-order word of the color table entry designates a physical
palette slot. This allows an application to show the actual contents
of the device palette as realized for other logical palettes. This does
not prevent the color in the slot from being changed for any reason.

Appendix A. Data Types A-181

RGNRECT
Region-rectangle structure.

Syntax

'." .,...., :~ .~ ": ,,' ~:~'" ;:. • :" < • • ,

.' t~ped~fstrucf:.;.~GNRECT'.J
ULONG . . 'ireS{(lr~;
O~ONG ere;' .

. lJLONG cr~Ret\.tm~ci;
ULONG ulD;r~ctj(on·;

}" RGNRECT;

Fields
ireStart (ULONG)

Rectangle number from which to start enumerating.

Numbering starts from 1.

ere (ULONG)
Number of rectangles that can be returned.

This must be 1 or greater.

ereReturned (ULONG)
Number of rectangles returned.

A value of less than ere indicates that there are no more rectangles to enumerate.

ulDireetion (ULONG)
Direction in which the returned rectangles are to be ordered.

This ordering uses the leading edge of a rectangle:

RECTDIR_LFRT _ TOPBOT
RECTDIR-..RTLF _ TOPBOT
RECTDIR_LFRT _BOTTOP
RECTDIR_RTLF _BOTTOP

SBCDATA
Scroll-bar control data structure.

Left-to-right, top-to-bottom
Rig ht -to-left, top-to-bottom
Left -to-right, bottom-to-top
Right -to-left, bottom-to-top

A-182 PM Programming Reference Vol II

Syntax

typedef struct _SBCDATA{
USHORT cb;
USHORT sHilite;
SHORT posFirst;
SHORT posLast;
SHORT posThumb;
SHORT cVisible;
SHORT cTotal;
} SBCDATA;

typedef SBCDATA *PSBCDATA;

Fields
cb (USHORT)

Length of control data in bytes.

The length of the control data for a scroll-bar control.

This indicates which part of the scroll bar is to be highlighted, if any.

sHilite (USHORT)
Highlighting code.

ZERO
SB_LlNEUP
SB LlNELEFT
SB_LlNEDOWN
SB_LlNERIGHT
SB_PAGEUP
SB_PAGELEFT
SB_PAGEDOWN
SB_PAGERIGHT
SB_SLlDERTRACK

posFirst (SHORT)

No highlighting
Line up arrow
Line left arrow
Line down arrow
Line right arrow
Page up arrow
Page left arrow
Page down arrow
Page right arrow
Slider.

First bound of the scroll-bar range.
I

posLast (SHORT)
Last bound of the scroll-bar range.

posThumb (SHORT)
Slider position.

cVisible (SHORT)
Number of data items visible.

cTotal (SHORT)
Number of data items available.

Appendix A. Data Types A-183

SEARCHSTRING
Structure that contains information about the container text string that is the object of the
search. This structure is used in the CM_SEARCHSTRING container message only. See
"CM_SEARCHSTRING" on page 22-71 for information about that message.

Syntax

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the SEARCHSTRING structure.

pszSearch (PSZ)
Pointer to the search string.

fsPrefix (ULONG)
Search flag.

Search flag that defines the criteria by which the string specified by the pszSearch field
is to be compared with the text of the container records to determine the pointer to the
first matching record.

TRUE Matching occurs if the leading characters of the container record are the
characters specified by the pszSearch field.

FALSE Matching occurs if the container record contains a substring of the characters
specified by the pszSearch field.

fsCaseSensitive (ULONG)
Case sensitivity flag.

Determines case sensitivity of the search.

TRUE The search is case sensitive.
FALSE The search is not case sensitive.

A-184 PM Programming Reference Vol II

usView (ULONG)
View to search.

Search one of the container views for the string. Valid values are:

• CVJCON
• CV_NAME
• CV_TEXT
• CV_TREE
• CV _DETAIL.

SEGOFF
2-byte segment offset in bytes.

Syntax

typedeffollow SEGOFF;

SFACTORS
Scaling factors. See DevEscape.

Syntax

Fields
x (LONG)

X-scaling factor, as an exponent of 2.

Y (LONG)
V-scaling factor, as an exponent of 2.

Appendix A. Data Types A-185

SHORT
Signed integer in the range -32 768 through 32 767.

Syntax

SIZEF
Size structure (FIXED values).

Syntax

Fields
ex (FIXED)

Width.

ey (FIXED)
Height.

SIZEL
Size structure (LONG values).

Syntax

A-186 PM Programming Reference Vol II

Fields
cx (LONG)

Width.

cy (LONG)
Height.

SLDCDATA
Slider control data structure.

Syntax

typedef struct _SLOCDATA {
ULONG cbSize;
USHORT usScalelIncrements;
USHORT usScalelSpac;ng;
USHORT usScale2Increments;
USHORT usSca 1 e2Spaci ng;
} SLDCDATA;

typedef SLDCDATA *PSLDCDATA;

Fields
cbSize (ULONG)

Data length.

Length of the control data in bytes.

usScale11ncrements (USHORT)
Scale increments.

The number of increments to set for the slider control. This number represents the
range of values that can be selected within the slider when the SLS_PRIMARYSCALE1
style bit is specified.

usScale1 Spacing (USHORT)
Scale spacing.

The spacing between increments, expressed in pixels. It represents the unit that is the
smallest division of the scale when the SLS_PRIMARYSCALE1 style bit is specified. If
o is specified, the slider automatically calculates the spacing based on the window size
and the number of increments specified.

usScale21ncrements (USHORT)
Alternate scale increments.

An alternate number of increments to set for the slider control. This number represents
the range of values that can be selected within the slider when the
SLS_PRIMARYSCALE2 style bit is specified.

Appendix A. Data Types A-187

usScale2Spacing (USHORT)
Alternate scale spacing.

An alternate spacing between increments, expressed in pixels. It represents the unit
that is the smallest division of the scale when the SLS_PRIMARYSCALE2 style bit is
specified. If 0 is specified, the slider automatically calculates the spacing based on the
window size and the number of increments specified.

SMHSTRUCT
Send-message-hook structure.

Syntax

Fields
mp2 (MPARAM)

Parameter 2.

mp1 (MPARAM)
Parameter 1.

msg (ULONG)
Message identity.

hwnd (HWND)
Window handle.

model (ULONG)
Message identity.

A-188 PM Programming Reference Vol II

SPBCDATA
Spin Button control data structure.

Syntax

typedef struct _SPBCDATA {
ULONG cbSize; .
ULONG ulTextLimit;
LONG 1 LowerLimit;
LONG 1 UpperLimit;
ULONG idMasterSpb;
pvoro... pHWXCtlData;
} SPBCDATA;

typedef SPBCDATA *PSPBCDATA;

The SPBCOATA structure is used in WinCreateWindow's pCt/Data parameter.

When using this structure the SPBM_SETLIMITS, SPBM_SETTEXTLIMIT, and
SPBM_SETMASTER messages do not need to be specified.

• u/TextLimit and /LowerLimit replace SPBM_SETLIMITS.
• /UpperLimit replaces SPBM_SETTEXTLIMIT.
• idMasterSpb replaces SPBM_SETMASTER.

Fields
cbSize (ULONG)

Size of control block.

ulTextLimit (ULONG)
Entryfield text limit.

ILowerLimit (LONG)
Spin lower limit (numeric only).

IUpperLimit (LONG)
Spin upper limit (numeric only).

idMasterSpb (ULONG)
10 of the servant's master spinbutton.

pHWXCtlData (PVOIO)
Reserved for Pen Ct/Data.

Appendix A. Data Types A-189

SPLERR
Error value in the range 0 to 65 535.

Syntax

STR16
'String of characters, with an implicit length, in a 16-byte field.

Syntax

STR32
String of characters, with an implicit length, in a 32-byte field.

Syntax

STR64
String of characters, with an implicit length, in a 64-byte field.

Syntax

A-190 PM Programming Reference Vol II

STR8
String of 8 characters.

Syntax

typedef CHAR STRB[B];

STYLECHANGE
Style-change structure. This structure is returned by the FNTM_STYLECHANGED message.

All "old" fields describe the style attributes before the user made a change. The other, or
"new", parameters describe the style that will be in effect after this is passed to
WinDefFontDlgProc. When the "old" and "new" values are the same, the user made no
change.

For further details of the parameters, see FONTDLG.

Syntax

typedef .. ·strl.lct ,.;.STYLECHANGE ... {
USHORT l.IsWeight;
USHQRT l.IsWeightOlq;
USHOIH usWidth;
USHORTl.I~WidthOld;
ULONG flTypei
ULON6 .' flTypeOld;
ULONG ~,fl TYPeMask;
ULONGflTypeMaskOld;
ULONG flStyle,;'
UUONG flStyleOld;
ULONG flStylef'i&s,k;
ULONG. f1StYleM~SkOld;
'l<SIYLECtiANGE; ,

Appendix A. Data Types A-191

Fields
usWeight (USHORT)

New weight of font.

usWeightOld (USHORT)
Old weight of font.

usWidth (USHORT)
New width of font.

usWidthOld (USHORT)
Old width of font.

flType (ULONG)
New type of font.

flTypeOld (ULONG)
Old type of font.

flTypeMask (ULONG)
New type mask.

flTypeMaskOld (ULONG)
Old type mask.

flStyle (ULONG)
New selected style bits.

flStyleOld (ULONG)
Old selected style bits.

flStyleMask (ULONG)
New mask of style bits to use.

flStyleMaskOld (ULONG)
Old mask of style bits to use.

A-192 PM Programming Reference Vol II

SWBLOCK
Switch-list block structure.

Syntax

typedef struct _SWBLOCK {
ULONG cswentry;
SWENTRY aswentry[l];

} SWBLOCK;

typedef SWBLOCK*PSWBlOCK;

Fields
cswentry (ULONG)

Count of switch list entries.

aswentry[1] (SWENTRY)
Switch list entries.

SWCNTRL
Switch-list control block structure.

Syntax

Appendix A. Data Types A-193

Fields
hwnd (HWND)

Window handle.

hwndlcon (HWND)
Window-handle icon.

hprog (HPROGRAM)
Program handle.

idProcess (PID)
Process identity.

idSession (ULONG)
Session identity.

uchVisibility (ULONG)
Visibility:

SWL_VISIBLE
SWL_INVISIBLE
SWL_GRAYED

Visible in startup list
Invisible in startup list
Item cannot be switched to (note that it is not actually grayed in the
list).

fbJump (ULONG)
Jump indicator:

SWL_JUMPABLE
SWL_NOT JUMPABLE

PartiCipates in jump sequence
Does not partiCipate in jump sequence.

szSwtitle[MAXNAMEL+4] (CHAR)
Switch-list control block title (null-terminated).

bProgType (ULONG)
Program type.

Possible values are:

PROG_DEFAULT 0
PROG_FULLSCREEN 1
PROG_WINDOWABLEVIO 2
PROG_PM 3
PROG_VDM 4
PROG_WINDOWEDVDM 7

Although there are several other program types for WIN-OS/2 programs, these do not
show up in this structure. Instead, the PROG_VDM or PROG_WINDOWEDVDM
program types are used. For instance, for PROG_31_STDSEAMLESSVDM,
PROG_WINDOWEDVDM is used. This is because all the WIN-OS/2 programs run in
DOS sessions. For example, if a program is a windowed WIN-OS/2 program, it runs in
a PROG_WINDOWEDVDM session. Likewise, if it's a full-screen WIN-OS/2 program, it
runs in a PROG_VDM session.

A-194 PM Programming Reference Vol II

SWENTRV
Switch-list entry structure.

Syntax

typedef struet SWENTRY {
HSWITCH hswiteh;
SWCNTRL swetl;
} SWENTRY;

typedef SWENTRY *PSWENTRY;

Fields
hswitch (HSWITCH)

Switch-list entry handle.

swctl (SWCNTRL)
Switch-list control block structure.

SWP
Set-wind ow-position structure.

Syntax

typedefstruct _SWP {
OLONG f1;
LONG ey;
LONG ex;
LONG y.
LONG X;
HWHO hwndlnsertBehind;
HWNO' hwnd;.
ULONG uJ Reserv.ed} ;
ULONG ulReserved2;

}SWP;

Appendix A. Data Types A-195

Fields
11 (ULONG)

Options.

In alphabetic order:

SWP _ACTIVATE
SWP _DEACTIVATE
SWP_HIDE
SWP _MAXIMIZE
SWP _MINIMIZE
SWP_MOVE
SWP _NOADJUST
SWP_NOERASEWINDOW
SWP _NOREDRAW
SWP _RESTORE
SWP_SHOW
SWP_SIZE
SWP_ZORDER

ey (LONG)
Window height.

ex (LONG)
Window width.

y (LONG)
V-coordinate of origin.

x (LONG)
X-coordinate of origin.

hwndlnsertBehind (HWND)
Window behind which this window is placed.

hwnd (HWND)
Window handle.

uiReserved1 (ULONG)
Reserved value, must be O.

uiReserved2 (ULONG)
Reserved value, must be O.

A-196 PM Programming Reference Vol \I

TID
Thread identity.

Syntax

typedef"LHANDLE TID;

TRACKINFO
Tracking-information structure.

Syntax

typedef struct'-,TRACKINFO{
LONG cxBorder;
LONG CYl3order;
LONG . cxG rid;
LONG cyGrf!i;
tONG cXKeyboard;
LONG cyKeyboard;
RECTL rclTrack;
RECn rcll3()lind~ry;
POINlt ptl~inTrac~SizeJ
POINTL' ptlM~xTrackStze;
UWNG fSj

lTRACKINFO;

Fields
cxBorder (LONG)

Border width.

The width of the left and right tracking sides.

cyBorder (LONG)
Border height.

The height of the top and bottom tracking sides.

cxGrid (LONG)
Grid width.

The horizontal bounds of the tracking movements.

Appendix A. Data Types A-197

cyGrid (LONG)
Grid height.

The vertical bounds of the tracking movements.

cxKeyboard (LONG)
Character cell width movement for arrow key.

cyKeyboard (LONG)
Character cell height movement for arrow key.

rclTraek (RECTL)
Starting tracking rectangle.

This is modified as the rectangle is tracked and holds the new tracking position, when
tracking is complete.

rei Boundary (RECTL)
Boundary rectangle.

This is an absolute bounding rectangle that the tracking rectangle cannot extend; see
also TF _ALLINBOUNDARY.

ptlMinTrackSize (POINTL)
Minimum tracking size.

ptlMaxTraekSize (POINTL)
Maximum tracking size.

fs (ULONG)
Tracking options.

In alphabetic order:

TF _ALLINBOUNDARY

TF_BOTTOM

TF_GRID

TF_LEFT

TF_MOVE

TF_RIGHT

The default tracking is such that some part of the tracking
rectangle is within the bounding rectangle defined by
re/Boundary. This minimum size is defined by exBorder and
cyBorder.

If TF _ALLINBOUNDARY is specified, the tracking is
performed so that no part of the tracking rectangle ever falls
outside of the bounding rectangle.

Track the bottom side of the rectangle.

Tracking is restricted to the grid defined by exGrid and
eyGrid.

Track the left side of the rectangle.

Track all sides of the rectangle.

Track the right side of the rectangle.

A-198 PM Programming Reference Vol II

TF _ SETPOINTERPOS

TREEITEMDESC

The pointer is repositioned according to other flags as
follows:

none

TF_MOVE

TF LEFT

TF TOP

TF_RIGHT

TF_BOTTOM

Pointer is centered in the tracking rectangle.

Pointer is centered in the tracking rectangle.

Pointer is vertically centered at the left of the
tracking rectangle.

Pointer is horizontally centered at the top of
the tracking rectangle.

Pointer is vertically centered at the right of
the tracking rectangle.

Pointer is horizontally centered at the bottom
of the tracking rectangle.

ex, ey, exGrid, and eyGrid are all multiples of exBorder and
eyBorder.

Track the top side of the rectangle.

Structure that contains icons and bit maps used to represent the state of an expanded or
collapsed parent item in the tree name view of a container control.

Syntax

typedef struct TREEITEMOESC{
HBITMAP hbmExpanded.,
HBITMAP hbmCollapsed;
HPOINTER hptrExpanded;
HPOINTER hptrCol1apsed;
} TREElTEMOESC;

typedef TREEITEMOESC *PTREEITEMDESC;

Fields
hbmExpanded (HBITMAP)

Expanded bit-map handle.

The handle of the bit map to be used to represent an expanded parent item in the tree
name view.

hbmColiapsed (HBITMAP)
Collapsed bit-map handle.

The handle of the bit map to be used to represent a collapsed parent item in the tree
name view.

Appendix A. Data Types A-199

hptrExpanded (HPOINTER)
Expanded icon handle.

The handle of the icon to be used to represent an expanded parent item in the tree
name view.

hptrColiapsed (HPOINTER)
Collapsed icon handle.

The handle of the icon to be used to represent a collapsed parent item in the tree name
view.

TREEMOVE
Data structure for moving nodes in the tree to a new parent.

Syntax

Fields
preccMove (PRECORDCOR,J::)

Record to be moved.

preccNewParent (PRECORDCORE)
New parent for preccMove.

A-200 PM Programming Reference Vol II

pRecordOrder (PRECORDCORE)
Record order for siblings.

Possible values are described in the following list:

CMA_FIRST preccMove moves to the FIRST child position of preccNewParent. If
preccNewParent is NUll, preccMove becomes the first root level record
of the container.

CMA_LAST preccMove moves to the LAST child position of preccNewParent. If
preccNewParent is NUll, preccMove becomes the last root level record
of the container.

Other preccMove moves after this record in the list of children of
preccNewParent If preccNewParent is NUll, preccMove moves after the
record specified by pRecordOrder only if that record is also a root level
record.

Note: This record must currently exist in the list of children of
preccNewParent.

flMoveSiblings (Baal)
Flag indicating whether to move siblings.

TRUE All siblings of preccMove. that FOllOW it (from its original location) move to
the new parent as well. pRecordOrder applies if this flag is TRUE.

FALSE Only preccMove itself moves to the new parent; all siblings remain with the old
parent.

UCHAR
Single-byte unsigned character, or unsigned integer in the range 0 through 255.

Syntax

ULONG
Unsigned integer in the range 0 through 4294967295.

Syntax

Appendix A. Data Types A-201

USERBUTTON
User-button data structure.

Syntax

typedefstruct __ USERBUTTON {
HWND hwnd; .
HP$ hps;
ULONG fsState;
ULON.G.fsSta.teOl d;

}USERBUTTON;

typedef USERBUTTON .. *PU~~RBUTTON;

Fields
hwnd (HWND)

Window handle.

hps (HPS)
Presentation-space handle.

fsState (U LONG)
New state of user button.

fsStateOld (ULONG)
Old state of user button.

USHORT
Unsigned integer in the range 0 through 65 535.

Syntax

.':'''' .::: .. ,,;

typedefunsigned.· shortUSHORT;

A-202 PM Programming Reference Vol II

VIOSIZECOUNT
Count of vIa cell sizes. See OevEscape.

Syntax

typedef struct _VIOSIZECOUNT {
LONG maxcount;
LONG count;
} VIOSIZECOUNT;

typedef VIOSIZECOUNT *PVIOSIZECOUNT;

Fields
maxcount (LONG)

Maximum number of vIa cell sizes supported.

count (LONG)
Number of VIO cell sizes returned.

VIOFONTCELLSIZE
vIa cell size. See OevEscape.

Syntax

typedef struct _VIOFONTCELLSIZE {
LONG ex;
LONG cy;
} VIOFONTCELLSIZE;

typedef VIOFONTCELLSIZE*PVIOFONTCELLSIZE;

Fields
ex (LONG)

Cell width.

cy (LONG)
Cell height.

Appendix A. Data Types A-203

VOID
A data area of undefined format.

Syntax

VSCDATA
Structure that contains information about the value set control.

Syntax

typedefsfructvSCDATA· {.
ULONG cbSize;
USHORT usRoWCount;
USHORT usColumnCount;

}VSCDATA;

Fields
cbSize (ULONG)

Data length.

Length of the control data in bytes.

usRowCount (USHORT)
Number of rows.

The number of rows in the value set control. The minimum number of rows is 1 and the
maximum number of rows is 65,535.

usColumnCount (USHORT)
Number of columns.

The number of columns in the value set control. The minimum number of columns is 1
and the maximum number of columns is 65,535.

A-204 PM Programming Reference Vol II

VSDRAGINFO
Structure that contains information about direct manipulation actions that occur over the
value set control.

Syntax

typedef struct;VSDRAGINFO {
PDRAGINFO pDraglnfo;
USHORT usRow;
USHORT usColumn;

} VSDRAGINFO;

typedef VSDRAGINFO *PVSDRAGINFO;

Fields
pDraglnfo (PDRAGINFO)

Pointer to a DRAGINFO structure.

usRow (USHORT)
Row index.

The index of the row over which the direct manipulation action occurred.

usColumn (USHORT)
Column index.

The index of the column over which the direct manipulation action occurred.

VSDRAGINIT
Structure that contains information that is used to initialize a direct manipulation action over
the value set control.

Syntax

typedef struct ... VSDRAGINIT·.·.{
HWNO' hwnd;
LONG x;

'LONG y;
LONG
LONG
USHORT
uSHO~T. ' llsC(jllllJln;
··l·.~SDRAGINJT; .

. ;11~eci~t;·vs~RA~I~IT.;pV~d~A~iNIT.;

Appendix A. Data Types A-205

Fields
hwnd (HWND)

Value set window handle.

Window handle of the value set control.

x (LONG)
X-coordinate.

X-coordinate of the pointing device pointer in desktop coordinates.

Y (LONG)
V-coordinate.

V-coordinate of the pointing device pOinter in desktop coordinates.

ex (LONG)
X-offset.

X-offset from the hot spot of the pointing device pointer, in pels, to the item origin. The
item origin is the lower left corner of the item.

ey (LONG)
V-offset.

V-offset from the hot spot of the pointing device pointer, in pels, to the item origin. The
item origin is the lower left corner of the item.

usRow (USHORT)
Row index.

The index of the row over which the direct manipulation action occurred.

usColumn (USHORT)
Column index.

The index of the column over which the direct manipulation action occurred.

VSTEXT
Value set text structure. This structure is used with the VM_QUERYITEM message only.
See "VM_QUERYITEM" on page 26-10 for information about that message.

Syntax

A-206 PM Programming Reference Vol II

Fields
pszltemText (PSZ)

Pointer to a buffer to copy the string into.

ulBufLen (ULONG)
Buffer size.

Size of the buffer pointed to by the pszltemText field.

WNDPARAMS
Window parameters.

Syntax

typedef struct _WNDPARAMS {
ULONG fsStatus;
ULONG cchText;
PSZ pszText;
ULONG cbPresParams;
PVOID pPresParams;
ULONG cbCtlData;
PVOID pCtlData;
} WNDPARAMS;

typedefWNDPARAMS *PWNDPARAMS;

Fields
fsStatus (ULONG)

Window parameter selection.

Identifies the window parameters that are to be set or queried:

WPM_ CBCTLDATA
WPM_ CCHTEXT
WPM_CTLDATA
WPM_PRESPARAMS
WPM_TEXT

cchText (ULONG)
Length of window text.

pszText (PSZ)
Window text.

cbPresParams (ULONG)

Window control data length
Window text length
Window control data
Presentation parameters
Window text.

Length of presentation parameters.

pPresParams (PVOID)
Presentation parameters.

Appendix A. Data Types A-207

cbCtlData (ULONG)
Length of window class specific data.

pCtlData (PVOID)
Window class specific data.

WPOINT
Window-point data structure (long integers). See POINTL for the form of the structure.

Syntax

#define WPOINT·POINll

WRECT
Window-rectangle data structure. See RECTL for the form of the structure.

Syntax

#defi neWRECTRECTL il
XYWINSIZE

Window position and size structure.

Syntax

A-208 PM Programming Reference Vol II

Fields
x (SHORT)

X-coordinate of window origin.

Y (SHORT)
V-coordinate of window origin.

ex (SHORT)
Window width.

ey (SHORT)
Window height.

fsWindow (USHORT)
Window options.

The values may be ORed together. For example, an invisible iconic window can be
created. Note that if both XYF _MINIMIZED and XYF _MAXIMIZED are specified, the
window is created in a maximized state.

XYF INVISIBLE
XYF MAXIMIZED
XYF MINIMIZED
XYF _ NOAUTOCLOSE

XYF NORMAL

Create the window initially invisible.
Show the window initially maximized.
Show the window initially iconic.
Do not close the window automatically when the VIO
application terminates. This parameter is ignored unless the
program is a VIO-windowed application.
Create the window visible, with a size and position as
specified. This is the default.

Appendix A. Data Types A-209

A-210 PM Programming Reference Vol II

Appendix B. Error Codes

This section lists PM errors returned by WinGetLastError in order of their error numbers. For
explanations of these errors, see Appendix C, "Error Explanations" on page C-1.

Error Number Error Constant
OxOOOO PMERR_OK
Ox0836 NERR_ NetNotStarted
Ox0845 NERR _ Red i rected Path
Ox084B NERR_BufTooSmall
Ox085E NERR InvaiidAPI
Ox0866 NERR_ QNotFound
Ox0867 NERR _ JobNotFound
Ox0868 NERR_DestNotFound
Ox0869 NERR_DestExists
Ox086A NERR_ QExists
Ox086B NERR_ QNoRoom
Ox086C NERR _ JobNoRoom
Ox086D NERR_DestNoRoom
Ox086E NERR_ Destldle
Ox086F NERR _ DestlnvalidOp
Ox0871 NERR _ SpoolerNotLoaded
Ox0872 N ERR _ DestlnvalidState
Ox0874 N ERR_ JoblnvalidState
Ox0875 NERR _ SpoolNoMemory
Ox0876 NERR _ DriverNotFound
Ox0877 NERR_DataTypelnvalid
Ox0878 NERR _ProcNotFound
Ox0925 NERR_ BadDev
Ox0927 NERR_ CommDevlnUse
Ox092F NERR _lnvalidComputer
Ox0961 NERR_ OpenFiles
Ox0965 NERR_ LocalDrive
Ox1001 PMERR_INVALlD_HWND
Ox1001 HMERR_NO_FRAME_WNDJN_CHAIN
Ox1002 PMERR_INVALlD_HMQ
Ox1002 HMERRJNVALlD_ASSOC_APP _WND
Ox1003 PMERR_PARAMETER_OUT_OF_RANGE
Ox1003 HMERR_INVALlD_ASSOC_HELP JNST
Ox1004 PMERR_WINDOW_LOCK_UNDERFLOW
Ox1004 HMERRJNVALlD_DESTROY _HELP _INST
Ox1005 PMERR_WINDOW_LOCK_OVERFLOW
Ox1005 HMERR_NO_HELP JNSTJN_CHAIN
Ox1006 PMERR_BAD _WINDOW _LOCK_COUNT
Ox1006 HMERR _'NVALID_HELP JNSTANCE_HDL
Ox1007 PMERR_WINDOW _NOT_LOCKED
Ox1007 HMERRJNVALlD_QUERY_APP _WND
Ox1008 PMERRJNVALlD_SELECTOR

© Copyright IBM Corp. 1994 8-1

Ox1008
Ox1009
Ox1009
Ox100A
Ox100A
Ox100B
Ox100B
Ox100C
Ox100C
Ox100D
Ox100D
Ox100E
Ox100F
Ox1010
ox1011
Ox1012
Ox1013
Ox1014
Ox1015
Ox1016
Ox1017
Ox1018
Ox1019
Ox101A
Ox101B
Ox101C
Ox101D
Ox101E
Ox101F
Ox1020
Ox1021
Ox1034
Ox1035
Ox1036
Ox1037
Ox1038
Ox1039
Ox103A
Ox103B
Ox103C
Ox103D
Ox103E
Ox103F
Ox1040
Ox1041
Ox1042
Ox1043
Ox1044

HMERR_HELP JNST_CALLEDJNVALID
PMERR_CALL_FROM_WRONG_ THREAD
HMERR_HELPTABLE_UNDEFINE
PMERR_RESOURCE_NOT_FOUND
HMERR_HELP _INSTANCE_UNDEFINE
PMERR INVALID STRING PARM - - -
HMERR_HELPITEM_NOT_FOUND
PMERRJNVALID _HHEAP
HMERRJNVALlD_HELPSUBITEM_SIZE
PMERR_INVALlD_HEAP _POINTER
HMERR _HELPSUBITEM_NOT _FOUND
PMERRJNVALlD_HEAP _SIZE_PARM
PMERRJNVALlD_HEAP _SIZE
PMERRJNVALID _HEAP _SIZE_WORD
PMERR_HEAP_OUT_OF_MEMORY
PMERR_HEAP _MAX_SIZE_REACHED
PMERRJ NVALI D_HATOMTBL
PMERRJNVALID _ATOM
PMERRJNVALID _ATOM_NAME
PMERR_INVALID JNTEGER_ATOM
PMERR_ATOM~NAME_NOT_FOUND

PMERR_QUEUE_TOO_LARGE
PM ERR JNVALID _FLAG
PMERR_INVALID _HACCEL
PMERR _INVALID _HPTR
PMERRJNVALID _HENUM
PMERRJNVALlD_SRC_CODEPAGE
PMERRJNVALlD_DST_CODEPAGE
PMERR_UNKNOWN_COMPONENTJD
PMERR_UNKNOWN_ERROR_CODE
PMERR_SEVERITY _LEVELS
PMERR_INVALlD_RESOURCE_FORMAT
WINDBG_WINDOW_UNLOCK_WAIT
PMERR_NO_MSG_QUEUE
PMERR_WIN_DEBUGMSG
PMERR_QUEUE_FULL
PM ERR_LI BRARY_LOAD_FAI LED
PMERR _PROCEDURE _LOAD_FAILED
PMERR_LI BRARY_DELETE_FAI LED
PMERR _PROCEDURE _DELETE_FAILED
PMERR~RRAY_TOb_LARGE
PMERR_ARRAY_TOO_SMALL
PMERR_DATATYPE_ENTRY_BADJNDEX
PMERR_DATATYPE_ENTRY_CTL_BAD
PMERR_DATATYPE_ENTRY_CTL_MISS
PMERR_DATATYPE_ENTRY JNVALID
PMERR_DATATYPE_ENTRY_NOT_NUM
PMERR_DATATYPE_ENTRY_NOT_OFF

8-2 PM Programming Reference Vol II

Ox1045
Oxi046
Ox1047
Ox1048
Ox1049
Ox104A
Ox104D
Ox104E
Ox104F
Ox1050
Ox1051
Ox1052
Ox1055
Ox1056
Ox1057
Ox1058
Ox1059
Ox1101
Ox1102
Ox1103
Ox1104
Ox1105
Ox1106
Ox1107
Ox1108
Ox1109
Ox110A
Ox110B
Ox110C
Ox110D
Ox110E
Ox110F
Ox1110
Ox1111
Ox1112
Ox1113
Ox1114
Ox1115
Ox1116
Ox1117
Ox1118
Ox1119
Ox111A
Ox111B
Ox111C
Ox111D
Ox111E
Ox111F

PMERR DATATYPE INVALID - -
PMERR_DATATYPE_NOT _UNIQUE
PM ERR_DATATYPE_TOO_LONG
PMERR_DATATYPE_TOO_SMALL
PMERR_DIRECTION_INVALID
PMERR INVALID HAB - -
PMERR-, NVALI D_HSTRUCT
PM ERR LENGTH TOO SMALL - --
PMERR_MSGID_TOO_SMALL
PMERR_NO_HANDLE_ALLOC
PMERR_ NOT -' N_ A_PM _SESSION
PMERR_MSG_QUEUE_ALREADY _EXISTS
PMERR_OLD_RESOURCE
PMERR_ WPDSERVER -,S _ACTIVE
PMERR_WPDSERVER_NOT_STARTED
PMERR _ SOMDD -,S _ACTIVE
PMERR_SOMDD_NOT_STARTED
PMERR-,NVALID _PIB
PMERR-,NSUFF _SPACE_TO_ADD
PMERR_INVALlD_GROUP _HANDLE
PMERR_DUPLICATE_ TITLE
PMERR INVALID TITLE - -
PM ERR -,NVALID _TARGET_HANDLE
PMERR_HANDLE_NOT-'N_GROUP
PMERR_INVALID _PATH_STATEMENT
PMERR_NO_PROGRAM_FOUND
PMERR-,NVALlD_BUFFER_SIZE
PMERR_ BUFFER_TOO _SMALL
PMERR_PL-,NITIALISATION_FAIL
PMERR_CANT_DESTROY_SYS_GROUP
PMERR_INVALlD_TYPE_CHANGE
PMERR-,NVALlD_PROGRAM_HANDLE
PMERR_NOT _CURRENT _PL_ VERSION
PMERR-'NVALlD_CIRCULAR_REF
PMERR_MEMORY _ALLOCATION_ERR
PMERR_MEMORY _DEALLOCATION_ERR
PMERR_ TASK_HEADER_ TOO _BIG
PMERR-,NVALID _INI_FILE _ HANDLE
PMERR_MEMORY_SHARE
PMERR_OPEN_QUEUE
PMERR_CREATE_QUEUE
PMERR_ WRITE_QUEUE
PMERR_READ_QUEUE
PMERR_CALL_NOT_EXECUTED
PMERR_UNKNOWN_APIPKT
PMERR_INITHREAD _EXISTS
PMERR CREATE THREAD - -
PMERR_NO_HK_PROFILE_INSTALLED

Appendix B. Error Codes 8-3

Ox1120 PMERRJNVALlD_DIRECTORY
Ox1121 PM ERR _WILDCARD IN _FILENAME
Ox1122 PMERR_FILENAME_BUFFER_FULL
Ox1123 PMERR_FILENAME_ TOO_LONG
Ox1124 PMERRJNI_FILEJS_SYS_OR_USER
Ox1125 PMERR_BROADCAST_PLMSG
Ox1126 PM ERR 190 INIT DONE - - -
Ox1127 PMERR _ HMOD _FOR _PMSHAPI
Ox1128 PMERR_SET _HK_PROFILE
Ox1129 PMERR_API_NOT _ALLOWED
Ox112A PMERRJN,-STILL_OPEN
Ox112B PMERR_PROGDETAILS_NOT IN_INI
Ox112C PMERR_PIBSTRUCT _NOT JNJNI
Ox112D PMERR_INVALlD_DISKPROGDETAILS
Ox112E PMERR _PROGDETAILS _READ_FAILURE
Ox112F PMERR_PROGDETAILS_WRITE_FAILURE
Ox1130 PMERR_PROGDETAILS_QSIZE_FAILURE
Ox1131 PMERR_INVALlD_PROGDETAILS
Ox1132 PMERR_SHEPROFILEHOOK_NOT _FOUND
Ox1133 PMERR _190PLCONVERTED
Ox1134 PMERR_FAILED_TO_CONVERTJNI_PL
Ox1135 PMERR_PMSHAP,-NOT_INITIALISED
Ox1136 PMERRJNVALID _SHELL_API_HOOKJD
Ox1200 PMERR_DOS_ERROR
Ox1201 PMERR NO SPACE
Ox1202 PMERR INVALID SWITCH HANDLE - - -
Ox1203 PMERR_NO_HANDLE
Ox1204 PMERR_INVALlD_PROCESSJD
Ox1205 PMERR NOT SHELL
Ox1206 PM ERR INVALID WINDOW - -
Ox1207 PMERRJNVALID _POST _MSG
Ox1208 PMERR _INVALID_PARAMETERS
Ox1208 PMERRJNVALID _PARAMETERS
Ox1209 PMERRJNVALID _PROGRAM_TYPE
Ox120A PMERR_NOT_EXTENDED_FOCUS
Ox120B PMERRJNVALID _SESSIONJD
Ox120C PMERR_SMG_INVALlD_ICON_FILE
Ox120D PMERR_SMGJCON_NOT_CREATED
Ox120E PMERR_SHL_DEBUG
Ox1301 PMERR _OPENING _IN'-FILE
Ox1302 PMERR JNI_FILE _CORRUPT
Ox1303 PMERR INVALID PARM - -
Ox1304 PMERR NOT IN IDX - --
Ox1305 PMERR_NO_ENTRIESJN_GROUP
Ox1306 PMERR_IN'-WRITE_FAIL
Ox1307 PMERR IDX FULL
Ox1308 PMERR JNI_PROTECTED
Ox1309 PMERR_MEMORY _ALLOC

8-4 PM Programming Reference Vol II

Ox130A PMERRJNIJNIT _ALREADY_DONE
Ox130B PMERRJNVALlDJNTEGER
Ox130C PMERR_INVALlD_ASCIiZ
Ox130D PMERR_CAN_NOT_CALL_SPOOLER
Ox130D PMERR_ VALIDATION_REJECTED
Ox1401 PMERR_WARNING_WINDOW_NOT_KILLED
Ox1402 PMERR_ERRORJNVALlD_WINDOW
Ox1403 PMERR ALREADY INITIALIZED - -
Ox1405 PMERR_MSG_PROG_NO_MOU
Ox1406 PMERR_MSG_PROG_NON_RECOV
Ox1407 PMERR_WINCONV_INVALlD_PATH
Ox1408 PMERR_PI_NOT JNITIALISED
Ox1409 PMERR_PL_NOT _INITIALISED
Ox140A PMERR_NO_TAS~MANAGER

Ox140B PMERR_SAVE_NOTJN_PROGRESS
Ox140C PMERR_NO_STACK_SPACE
Ox140D PMERRJNVALID _ COLR _FIELD
Ox140E PM ERR_I NVALI D_COLR_VALU E
Ox140F PMERR_COLR_WRITE
Ox1501 PMERR_ TARGET _FILE_EXISTS
Ox1502 PMERR_SOURCE_SAME_AS_TARGET
Ox1503 PMERR_SOURCE_FILE_NOT _FOUND
Ox1504 PMERRJNVALlD_NEW_PATH
Ox1505 PMERR_ TARGET _FILE_NOT _FOUND
Ox1506 PMERRJNVALlD_DRIVE_NUMBER
Ox1507 PMERR_NAME_TOO_LONG
Ox1508 PMERR_NOT _ENOUGH_ROOM_ON_DISK
Ox1509 PMERR_NOT_ENOUGH_MEM
Ox150B PMERR_LOG_DRV _DOES_NOT _EXIST
Ox150C PMERR INVALID DRIVE - -
Ox150D PMERR_ACCESS_DENIED
Ox150E PMERR_NO_FIRST_SLASH
Ox150F PMERR_READ _ ONLY_FILE
Ox151F PMERR_GROUP_PROTECTED
Ox152F PMERRJNVALlD_PROGRAM_CATEGORY
Ox1530 PMERRJNVALlD_APPL
Ox1531 PM ERR_CAN NOT_START
Ox1532 PMERR_STARTEDJN_BACKGROUND
Ox1533 PMERR _INVALID _ HAPP
Ox1534 PM ERR_CAN NOT_STOP
Ox1601 PMERR_INTERNAL_ERROR_1
Ox1602 PMERRJNTERNAL_ERROR_2
Ox1603 PMERRJNTERNAL_ERROR_3
Ox1604 PMERR_INTERNAL_ERROR_ 4
Ox1605 PMERRJNTERNAL _ ERROR_ 5
Ox1606 PMERRJNTERNAL_ERROR_6
Ox1607 PMERRJNTERNAL_ERROR_7
Ox1608 PMERRJNTERNAL_ ERROR_ 8

Appendix B. Error Codes 8-5

Ox1609
Ox160A
Ox160B
Ox160C
Ox160D
Ox160E
Ox160F
Ox1610
Ox1611
Ox1612
Ox1613
Ox1614
Ox1615
Ox1616
Ox1617
Ox1618
Ox1619
Ox161A
Ox161B
Ox161C
Ox161D
Ox1630
Ox1641
Ox1642
Ox1643
Ox1644
Ox1645
Ox1646
Ox1647
Ox1648
Ox1649
Ox164A
Ox164B
Ox164C
Ox164D
Ox164E
Ox164F
Ox1650
Ox1651
Ox1652
Ox1653
Ox1654
Ox1655
Ox1656
Ox1657
Ox1658
Ox1659
Ox165A

PMERR_INTERNAL_ERROR_9
PMERR-'NTERNAL_ERROR_10
PMERR-'NTERNAL_ERROR_11
PMERR_INTERNAL_ERROR_12
PMERR_INTERNAL_ERROR_13
PM ERR _INTERNAL_ERROR_14
PMERR_INTERNAL_ERROR_15
PMERR-'NTERNAL_ERROR_16
PMERR_INTERNAL_ERROR_17
PMERR_INTERNAL_ERROR_18
PMERR_INTERNAL_ERROR_19
PMERR _INTERNAL_ERROR_20
PMERR_INTERNAL_ERROR_21
PMERR_INTERNAL_ERROR_22
PMERR_INTERNAL_ERROR_23
PMERR-'NTERNAL_ERROR_24
PMERR _INTERNAL_ERROR_25
PMERR_INTERNAL_ERROR_26
PMERR_INTERNAL_ERROR_27
PMERR _INTERNAL_ERROR _ 28
PMERR_INTERNAL_ERROR_29
PMERR_INVALlD_FREE_MESSAGE_ID
PMERR_FUNCTION_NOT _SUPPORTED
PM ERR-' NVALI D_AR RAY_CO U NT
PMERR-'NVALlD_LENGTH
PMERR_INVALlD_BUNDLE_TYPE
PMERR INVALID PARAMETER - -
PMERR-'NVALlD_NUMBER_OF _PARMS
PMERR_GREATER_THAN_64K
PM ERR_I NVALI D_PARAMETER_TYPE
PMERR_NEGATIVE_STRCOND_DIM
PMERR-'NVALlD_NUMBER_OF _TYPES
PMERR -,NCORRECT _HSTRUCT
PM ERR -,NVALID _ARRAY_SIZE
PM ERR-'NVALID_CONTROL_DATATYPE
PMERR_INCOMPLETE_CONTROL_SEQU
PM ERR INVALID DATATYPE - -
PMERR-,NCORRECT _DATATYPE
PMERR_NOT _SELF _DESCRIBING_DTYP
PMERR_INVALlD_CTRL_SEQ_INDEX
PMERR _INVALID_TYPE _FOR_LENGTH
PM ERR_I NVALI D_TYPE_FOR_OFFSET
PMERR-, NVALI D_TYPE_FOR_M PARAM
PMERR -,NVALID _MESSAGE-,D
PMERR _ C _LENGTH_TOO _SMALL
PM ERR_APPL_STRUCTURE_TOO_SMALL
PMERR_INVALlD_ERRORINFO_HANDLE
PMERR-, NVALI D_CHARACTER_INDEX

8-6 PM Programming Reference Vol II

Ox1700 WPERR_PROTECTED_CLASS
Ox1701 WPERR INVALID CLASS - -
Ox1702 WPERRJNVALID _ SUPERCLASS
Ox1703 WPERR_NO_MEMORY
Ox1704 WPERR_SEMAPHORE_ERROR
Ox1705 WPERR_ BUFFER_TOO _SMALL
Ox1706 WPERR_ CLSLOADMOD _FAILED
Ox1707 WPERR CLSPROCADDR FAILED - -
Ox1708 WPERR _ OBJWORD _LOCATION
Ox1709 WPERR_INVALID _OBJECT
Ox170A WPERR _MEMORY_CLEANUP
Ox170B WPERR INVALID MODULE - -
Ox170C WPERR JNVALID _ OLDCLASS
Ox170D WPERRJNVALID _NEWCLASS
Ox170E WPERR_NOTJMMEDIATE_CHILD
Ox170F WPERR_NOT_WORKPLACE_CLASS
Ox1710 WPERR_CANT_REPLACE_METACLS
Ox1711 WPERRJNI_FILE_WRITE
Ox1712 WPERR INVALID FOLDER - -
Ox1713 WPERR_ BUFFER_OVERFLOW
Ox1714 WPERR_ OBJECT _NOT_FOUND
Ox1715 WPERR INVALID HFIND - -
Ox1716 WPERRJNVALlD_COUNT
Ox1717 WPERR INVALID BUFFER - -
Ox1718 WPERR _ALREADY_EXISTS
Ox1719 WPERRJ NVALI D_FLAGS
Ox1720 WPERRJNVALID _ OBJECTID
Ox1721 WPERR _INVALID_TARGET _OBJECT
Ox1FOO PMERR_NOT _DRAGGING
Ox2001 PMERR_ALREADY IN_AREA
Ox2001 HMERRJNDEX_NOT _FOUND
Ox2002 PMERR_ALREADY IN_ELEMENT
Ox2002 HMERR_CONTENT_NOT_FOUND
Ox2003 PMERR_ALREADY IN_PATH
Ox2003 HMERR_ OPEN_LlB_FILE
Ox2004 PMERR_ALREADY IN_SEG
Ox2004 HMERR_READ_LlB_FILE
Ox2005 PMERR_ AREA_INCOMPLETE
Ox2005 HMERR_CLOSE_LlB_FILE
Ox2006 PMERR_BASE_ERROR
Ox2006 HMERR_INVALlD_LlB_FILE
Ox2007 PMERR_BITBLT _LENGTH_EXCEEDED
Ox2007 HMERR_NO_MEMORY
Ox2008 PMERR_BITMAP _IN_USE
Ox2008 HMERR_ALLOCATE_SEGMENT
Ox2009 PMERR_ BITMAP _IS_SELECTED
Ox2009 HMERR_FREE_MEMORY
Ox200A PMERR_BITMAP _NOT_FOUND

Appendix B. Error Codes 8-7

0x2008
0x200C
0x2000
0x200E
0x200F
0x2010
0x2010
Ox2011
0x2011
0x2012
0x2013
0x2013
0x2014
0x2015
0x2016
0x2017
0x2018
0x2019
Ox201A
0x2018
0x201C
0x2010
0x201E
0x201F
0x2020
0x2021
0x2022
Ox2023
0x2024
0x2025
0x2026
0x2027
0x2028
0x2029
0x202A
0x2028
0x202C
0x2020
Ox202E
0x202F
0x2030
0x2031
0x2032
0x2033
0x2034
0x2035
0x2036
0x2037

PM ERR BITMAP NOT SELECTED - --
PMERR_BOUNDS_OVERFLOW
PMERR_CALLED_SEGJS_CHAINED
PMERR _CALLED _ SEGJS _CURRENT
PMERR_CALLED_SEG_NOT_FOUND
PMERR_CANNOT_DELETE~LL_DATA

HMERR _PANEL _NOT_FOUND
PMERR_CANNOT_REPLACE_ELEMENT_O
HMERR_DATABASE_NOT_OPEN
PMERR _COL_TABLE _NOT_REALIZABLE
PMERR _COL_TABLE _NOT _REALIZED
HMERR_LOAD_DLL
PMERR_COORDINATE_OVERFLOW
PMERR_CORR_FORMAT_MISMATCH
PM ERR_DATA_TOO_LONG
PMERR _DC JS_ASSOCIATED
PMERR_DESC_STRING_ TRUNCATED
PMERR_DEVICE_DRIVER_ERROR_1
PM ERR _DEVICE_DRIVER_ ERROR_2
PMERR_DEVICE_DRIVER_ERROR_3
PMERR_DEVICE_DRIVER_ERROR_ 4
PMERR_DEVICE_DRIVER_ERROR_5
PMERR_DEVICE_DRIVER_ERROR_6
PMERR _DEVICE _DRIVER_ ERROR_7
PMERR_DEVICE_DRIVER_ERROR_B
PMERR_DEVICE_DRIVER_ERROR_9
PMERR_DEVICE_DRIVER_ERROR_10
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_DOSOPEN_FAILURE
PMERR_DOSREAD_FAILURE
PM ERR _DRIVER_NOT _FOUND
PMERR_DUP _SEG
PMERR_DYNAMIC_SEG_SEQ_ERROR
PMERR_DYNAMIC_SEG_ZEROJNV
PMERR _ELEMENT_INCOMPLETE
PMERR_ESC_CODE_NOT_SUPPORTED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_FONT _AND _MODE_MISMATCH
PMERR_FONT _FILE_NOT _LOADED
PMERR_FONT_NOT_LOADED
PMERR _FONT_TOO _BIG
PMERR_HARDWAREJNIT _FAILURE
PM ERR _HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERRJD_HAS_NO_BITMAP
PMERRJMAGEJNCOMPLETE

8-8 PM Programming Reference Vol II

i

Ox2038
Ox2039
0x203A
0x203B
Ox203C
0x203D
0x203E
0x203F
0x2040
Ox2041
Ox2042
0x2043
0x2044
0x2045
Ox2046
0x2047
0x2048
Ox2049
0x204A
0x204B
0x204C
Ox204D
Ox204E
0x204F
0x2050
0x2051
0x2052
0x2053
0x2054
0x2055
Ox2056
Ox2057
0x2058
0x2059
Ox205A
Ox205B
0x205C
0x205D
Ox205E
Ox205F
0x2060
0x2061
Ox2062
0x2063
0x2064
0x2065
0x2066
0x2067

PMERR_INCOMPAT _COLOR_FORMAT
PMERR _INCOMPAT _COLOR_OPTIONS
PM ERR _INCOMPATIBLE_BITMAP
PMERRJNCOMPATIBLE_METAFILE
PMERRJNCORRECT _DC_TYPE
PMERR_INSUFFICIENT _DISK_SPACE
PMERR_INSUFFICIENT_MEMORY
PMERR_INV _ANGLE_PARM
PMERRJNV _ARC_CONTROL
PMERRJNV _AREA_CONTROL
PMERRJNV _ARC_POINTS
PMERRJNV _ATIR_MODE
PMERR _INV _BACKGROUND_COL _ A ITR
PMERRJNV_BACKGROUND_MIX_ATIR
PMERRJNV _BITBLT _MIX
PMERRJNV _BITBL T _STYLE
PMERR_INV _BITMAP _DIMENSION
PMERRJNV _BOX_CONTROL
PMERRJNV _BOX_ROUNDING_PARM
PMERRJNV _CHAR _ANGLE_ A TIR
PM ERRJNV_CHAR_DIRECTION_ATIR
PMERRJNV _CHAR_MODE_ATIR
PMERRJNV _CHAR_POS_OPTIONS
PMERRJNV _CHAR_SET _ATIR
PMERRJNV_CHAR_SHEAR_ATIR
PMERRJNV _CLIP _PATH_OPTIONS
PMERRJNV _CODEPAGE
PMERRJNV _COLOR_ATIR
PMERR_INV _COLOR_DATA
PMERRJNV _COLOR_FORMAT
PMERRJNV _COLORJNDEX
PM ERR JNV _COLOR_OPTIONS
PMERR_INV _COLOR_START JNDEX
PMERR JNV _COORD_OFFSET
PMERR _INV _COORD_SPACE
PMERRJNV _COORDINATE
PMERR _INV _ CORRELATE_DEPTH
PMERR_INV _CORRELATE_TYPE
PMERRJNV _CURSOR_BITMAP
PMERRJNV_DC_DATA
PMERR INV DC TYPE - - -
PMERRJNV _DEVICE_NAME
PMERRJNV _DEV _MODES_OPTIONS
PMERR_INV _DRAW_CONTROL
PMERR INV DRAW VALUE - - -
PMERR_INV _DRAWING_MODE
PMERRJNV _DRIVER_DATA
PMERRJNV _DRIVER_NAME

Appendix B. Error Codes 8-9

0x2068
0x2069
0x206A
0x2068
0x206C
0x2060
0x206E
0x206F
0x2070
0x2071
Ox2072
0x2073
Ox2074
0x2075
0x2076
Ox2077
0x2078
0x2079
0x207A
Ox2078
0x207C
0x2070
0x207E
Ox207F
0x2080
0x2081
0x2082
Ox2083
Ox2084
0x2085
0x2086
0x2087
Ox2088
0x2089
0x208A
0x2088
0x208C
0x2080
0x208E
0x208F
Ox2090
0x2091
0x2092
0x2093
0x2094
0x2095
0x2096
0x2097

PM ERR-'NV_DRAW_BORDER_OPTION
PMERR-,NV _EDIT_MODE
PMERR-,NV _ELEMENT_OFFSET
PMERR-,NV _ELEMENT_POINTER
PMERR-,NV _END_PATH_OPTIONS
PMERR-,NV _ESC_CODE
PMERR-,NV _ESCAPE_DATA
PMERR-,NV _EXTENDED _LCID
PMERR-,NV _FILL_PATH_OPTIONS
PMERR-,NV _FIRST_CHAR
PMERR-,NV _FONT _ATTRS
PMERR _INV _FONT _FILE_DATA
PMERR-,NV _FOR_ THIS_DC_ TYPE
PMERR_INV _FORMAT_CONTROL
PMERR -'NV _FORMS_CODE
PMERR-,NV _FONTDEF
PMERR-'NV_GEOM_LlNE_WIDTH_ATTR
PMERR-,NV_GETDATA_CONTROL
PMERR -'NV _GRAPHICS _FIELD
PMERR INV HBITMAP
PMERR INV HDC
PMERR-,NV _HJOURNAL
PMERR-,NV _HMF
PMERR-,NV _HPS
PM ERR INV HRGN
PMERR-,NV-,D
PMERR-,NV -'MAGE_DATA_LENGTH
PMERR-,NV-,MAGE_DIMENSION
PMERR-,NV -'MAGE_FORMAT
PMERR-'NV_IN_AREA
PMERR-,NV -'N_CALLED _SEG
PMERR-,NV -'N_CURRENT _EDIT_MODE
PMERR -'NV -'N _DRAW_MODE
PMERR -'NV -'N_ELEMENT
PMERR -'NV -'N_IMAGE
PMERR-,NV -'N_PATH
PMERR-'NV-'N_RETAIN_MODE
PMERR-,NV -'N_SEG
PMERR-,NV -'N_ VECTOR_SYMBOL
PMERR-'NV-'NFO_TABLE
PMERR-,NV _JOURNAL_OPTION
PMERR_INV _KERNING_FLAGS
PMERR-'NV_LENGTH_OR_COUNT
PMERR INV LINE END ATTR - - - -
PMERR-, NV_LI NE_JOI N_ATTR
PMERR-,NV _LlNE_ TYPE_ATTR
PMERR-,NV _LlNE_WIDTH_ATTR
PMERR_INV _LOGICAL_ADDRESS

8-10 PM Programming Reference Vol II

Ox2098
0x2099
0x209A
0x209B
0x209C
Ox209D
0x209E
0x209F
0x20AO
0x20A1
Ox20A2
0x20A3
0x20A4
0x20A5
0x20A6
0x20A7
0x20A8
0x20A9
0x20AA
0x20AB
0x20AC
Ox20AD
0x20AE
0x20AF
0x20BO
0x20B1
0x20B2
Ox20B3
0x20B4
0x20B5
0x20B6
Ox20B7
0x20B8
0x20B9
0x20BA
0x20BB
0x20BC
0x20BD
Ox20BE
0x20BF
0x20CO
0x20C1
Ox20C2
0x20C3
0x20C4
0x20C5
0x20C6
0x20C7

PMERRJNV _MARKER_BOX_ATTR
PMERR_INV _MARKER_SET _ A TTR
PMERRJNV_MARKER_SYMBOL_ATTR
PM ERR INV MATRIX ELEMENT - - -
PMERRJNV _MAX_HITS
PMERRJNV _METAFILE
PMERRJNV _METAFILE_LENGTH
PMERR INV METAFILE OFFSET - - -
PMERRJNV_MICROPS_DRAW_CONTROL
PMERRJNV _MICROPS_FUNCTION
PMERR_INV _MICROPS_ ORDER
PMERRJNV _MIX_ATTR
PMERRJNV_MODE_FOR_OPEN_DYN
PMERRJNV _MODE_FOR_REOPEN_SEG
PMERRJNV _MODIFY _PATH_MODE
PMERRJNV _MULTIPLIER
PMERRJNV _NESTED _FIGURES
PMERRJNV_OR-,NCOMPAT_OPTIONS
PMERR_INV _ORDER_LENGTH
PMERR-,NV _ ORDERING_PARM
PMERR-'NV_OUTSIDE_DRAW_MODE
PMERRJNV _PAGE_VIEWPORT
PMERR-,NV _PATH-,D
PMERR_INV_PATH_MODE
PMERR INV PATTERN ATTR - - -
PMERR-,NV _PATTERN_REF _PT _ATTR
PMERRJNV _PATTERN_SET _ATTR
PMERR-,NV _PATTERN_SET _FONT
PMERR-,NV_PICK_APERTURE_OPTION
PMERR-,NV _PICK_APERTURE_POSN
PMERR_INV_PICK_APERTURE_SIZE
PMERR INV PICK NUMBER - - -
PMERR-,NV _PLAY _METAFILE_OPTION
PMERR-,NV _PRIMITIVE_TYPE
PMERRJNV _PS_SIZE
PMERR-,NV _PUTDATA_FORMAT
PMERR-'NV_QUERY_ELEMENT_NO.
PMERRJNV _RECT
PMERR_INV _REGION_CONTROL
PMERRJNV _REGION_MIX_MODE
PMERR-,NV _REPLACE_MODE_FUNC
PMERR-,NV _RESERVED_FIELD
PMERRJNV _RESET_OPTIONS
PMERR-,NV _RGBCOLOR
PMERRJNV _ SCAN_START
PMERR_INV _SEG_ATTR
PMERR-,NV _SEG_ATTR_ VALUE
PMERRJNV _SEG_CH_LENGTH

Appendix B. Error Codes 8-11

0x20C8
0x20C9
0x20CA
0x20CB
0x20CC
0x20CD
0x20CE
0x20CF
0x2000
Ox2001
Ox2002
Ox2003
Ox2004
Ox2005
0x2006
0x2007
0x2008
0x2009
0x200A
Ox200B
0x200C
0x200D
Ox200E
0x20DF
0x20EO
0x20E1
Ox20E2
Ox20E3
Ox20E4
0x20E5
0x20E6
Ox20E7
Ox20E8
0x20E9
0x20EA
0x20EB
Ox20EC
0x20ED
0x20EE
Ox20EF
Ox20FO
0x20F1
0x20F2
0x20F3
0x20F4
0x20F5
0x20F6
0x20F7

PMERR-,NV _SEG_NAME
PMERR-,NV _SEG_OFFSET
PMERR INV SETID
PMERR_INV _SETID_ TYPE
PMERR INV SET VIEWPORT OPTION - - - -
PMERR-,NV_SHARPNESS_PARM
PMERR-,NV _SOURCE_OFFSET
PMERR-, NV_STOP _DRAW_VALUE
PMERR_INV _ TRANSFORM_TYPE
PM ERR INV USAGE PARM - - -
PMERR-,NV _VIEWING_LIMITS
PMERR_JFILE_BUSY
PMERR_JNL_FUNC_DATA_TOO_LONG
PMERR _KERNING _NOT_SUPPORTED
PMERR_LABEL_NOT _FOUND
PMERR_MATRIX_OVERFLOW
PMERR_METAFILE_INTERNAL_ERROR
PMERR_METAFILE-'N_USE
PMERR_METAFILE_LlMIT_EXCEEDED
PMERR_NAME_STACK_FULL
PMERR_NOT_CREATED_BY_DEVOPENDC
PMERR NOT IN AREA - --
PMERR NOT IN DRAW MODE - - - -
PMERR NOT IN ELEMENT - --
PMERR_NOT _IN_IMAGE
PM ERR NOT IN PATH - --
PMERR NOT IN RETAIN MODE - - - -
PMERR_NOT -'N_SEG
PMERR NO BITMAP SELECTED - - -
PMERR_NO_CURRENT_ELEMENT
PMERR_NO_CURRENT_SEG
PMERR_NO_METAFILE_RECORD_HANDLE
PMERR _ORDER_TOO _BIG
PMERR_OTHER_SET -'0 _REFS
PMERR_OVERRAN_SEG
PMERR_OWN_SET _ID_REFS
PMERR_PATH-,NCOMPLETE
PMERR_PATH_LlMIT _EXCEEDED
PMERR_PATH_UNKNOWN
PMERR_PEL_IS_CLlPPED
PMERR PEL NOT AVAILABLE - - -
PMERR_PRIMITIVE_STACK_EMPTY
PMERR_PROLOG_ERROR
PMERR_PROLOG_SEG_ATTR_NOT_SET
PMERR_PS_BUSY
PMERR _PS -,S _ASSOCIATED
PMERR_RAM_JNL_FILE_TOO_SMALL
PMERR_REALlZE_NOT _SUPPORTED

8-12 PM Programming Reference Vol \I

0x20F8
0x20F9
0x20FA
0x20FB
0x20FC
0x20FO
0x20FE
0x20FF
0x2100
0x2101
Ox21 02
0x2103
0x2104
0x2105
0x2106
0x2107
0x2108
Ox21 09
0x210A
0x210B
0x210C
Ox21 00
0x210E
0x210F
0x2110
0x2111
0x2112
Ox2113
0x2114
0x2115
0x2116
0x2117
0x2118
0x2119
0x2120
0x2120
Ox3001
Ox3002
Ox3003
ox3004
Ox3005
Ox3006
Ox3007
Ox3008
Ox3009
Ox300A
Ox300B
Ox300C

PMERR_REGION-,S_CLlP _REGION
PMERR _ RESOURCE_DEPLETION
PMERR_SEG_AND_REFSEG_ARE_SAME
PMERR_SEG_CALL_RECURSIVE
PM ERR_SEG_CALL_STACK_EMPTY
PMERR_SEG_CALL_STACK_FULL
PMERR _ SEG -,S _CURRENT
PMERR_SEG_NOT_CHAINED
PMERR_SEG_NOT_FOUND
PMERR_SEG_STORE_LlMIT_EXCEEDED
PMERR_SETID-'N_USE
PMERR_ SETID _NOT_FOUND
PMERR _ STARTDOC _NOT_ISSUED
PMERR_STOP_DRAW_OCCURRED
PMERR_ TOO_MANY _METAFILES-'N_USE
PMERR_TRUNCATED_ORDER
PMERR_ UNCHAINED _ SEG_ ZERO -'NV
PMERR_UNSUPPORTED_ATTR
PMERR_UNSUPPORTED_ATTR_VALUE
PMERR _ ENDDOC _ NOT_ISSUED
PMERR _PS _NOT_ASSOCIATED
PMERR-,NV _FLOOD _FILL_OPTIONS
PMERR-,NV _FACENAME
PMERR_PALETTE_SELECTED
PMERR_NO_PALETTE_SELECTED
PM ERR INV HPAL
PMERR_PALETTE_BUSY
PMERR_ START_POINT _CLIPPED
PMERR_NO_FILL
PMERR-,NV _FACENAMEDESC
PMERR-,NV _BITMAP _DATA
PM ERR_I NV_CHAR_ALlG N_ATTR
PMERR_INV _HFONT
PMERR_HFONT -,S_SELECTED
PMERR_DRVR_NOT_SUPPORTED
PMERR_RASTER_FONT
HMERR_DDF_MEMORY
HMERR_ DDF _ALIGN_TYPE
HMERR_DDF_BACKCOLOR
HMERR_DDF_FORECOLOR
HMERR_DDF _FONTSTYLE
HMERR_DDF_REFTYPE
HMERR_DDF _LIST_UNCLOSED
HMERR_DDF _LIST _UNINITIALIZED
HMERR_DDF _LIST _BREAKTYPE
HMERR_DDF _LIST_SPACING
HMERR_DDF _HINSTANCE
HMERR_DDF _EXCEED _MAX_LENGTH

Appendix B. Error Codes 8-13

Ox300D HMERR_DDF _EXCEED_MAXJNC
Ox300E HMERR_DDF JNVALlD_DDF
Ox300F HMERR_DDF _FORMAT_TYPE
Ox3010 HMERR_DDF _I NVALID_PARM
Ox3011 HMERR DDF INVALID FONT - - -
Ox3012 HMERR_DDF _SEVERE
Ox4001 PMERR_SPL_DRIVER_ERROR
Ox4001 MERR_SPL_DRIVER_ERROR
Ox4002 PMERR_ SPL _DEVICE_ERROR
Ox4002 MERR_SPL_DEVICE_ERROR
Ox4003 PMERR_SPL_DEVICE_NOTJNSTALLED
Ox4003 MERR_SPL_DEVICE_NOT JNSTALLED
Ox4004 PMERR_SPL_QUEUE_ERROR
Ox4004 MERR_SPL_QUEUE_ERROR
Ox4005 PMERR_SPL_INV _HSPL
Ox4005 MERR_SPLJNV_HSPL
Ox4006 PMERR_SPL_NO _DISK_SPACE
Ox4006 MERR_SPL_NO_DISK_SPACE
Ox4007 PM ERR SPL NO MEMORY - - -
ox4007 MERR_SPL_NO_MEMORY
Ox4008 PMERR _ SPL _PRINT_ABORT
Ox4008 MERR_SPL_PRINT _ABORT
Ox4009 PMERR_SPL_SPOOLER_NOTJNSTALLED
Ox4009 MERR_SPL_SPOOLER_NOT JNSTALLED
Ox400A PMERR_SPLJNV _FORMS_CODE
Ox400A MERR _ SPL _INV _FORMS_CODE
Ox400B PMERR_SPLJNV _PRIORITY
Ox400B MERR _ SPLJNV _PRIORITY
Ox400C PMERR_SPL_NO_FREE_JOBJD
Ox400C MERR_SPL_NO_FREE_JOB_ID
Ox400D PMERR_SPL_NO_DATA
Ox400D MERR_SPL_NO_DATA
Ox400E PMERR_ SPL JNV _TOKEN
Ox400E MERR_SPLJNV _TOKEN
Ox400F PMERR_SPL_INV _DATATYPE
Ox400F MERR_SPL_INV _DATATYPE
Ox4010 PMERR_SPL_PROCESSOR_ERROR
Ox4010 MERR_SPL_PROCESSOR_ERROR
Ox4011 PMERR_SPLJNV _JOB_I 0
Ox4011 MERR_SPLJNV _JOB_ID
Ox4012 PMERR_SPL_JOB_NOT_PRINTING
Ox4012 MERR_SPL_JOB_NOT_PRINTING
Ox4013 PMERR_SPL_JOB_PRINTING
Ox4013 MERR_SPL_JOB_PRIN:'f'ING
Ox4014 PMERR_SPL_QUEUE_ALREADY_EXISTS
Ox4014 MERR_SPL_QUEUE_ALREADY _EXISTS
Ox4015 PMERR_SPLJNV _QUEUE_NAME
Ox4015 MERR_SPLJNV _QUEUE_NAME

8-14 PM Programming Reference Vol II

Ox4016
Ox4016
Ox4017
Ox4017
Ox4018
Ox4018
Ox4019
Ox4019
Ox401A
Ox401A
Ox401B
Ox401B
Ox401C
Ox401C
Ox401D
Ox401D
Ox401E
Ox401E
Ox401F
Ox401F
Ox4020
Ox4020
Ox4021
Ox4021
Ox4022
Ox4022
Ox4023
Ox4023
Ox4024
Ox4024
Ox4025
Ox4025
Ox4026
Ox4026
Ox4027
Ox4027
Ox4028
Ox4028
Ox4029
Ox4029
Ox402A
Ox402A
Ox402B
Ox402B
Ox402C
Ox402C
Ox402D
Ox402D

PMERR_SPL_QUEUE_NOT_EMPTY
MERR_SPL_QUEUE_NOT_EMPTY
PMERR_SPL_DEVICE_ALREADY _EXISTS
MERR_SPL_DEVICE_ALREADY _EXISTS
PMERR SPL DEVICE LIMIT REACHED - - - -
MERR_SPL_DEVICE_LlMIT _REACHED
PMERR_SPL_STATUS_STRING_TRUNC
MERR_SPL_STATUS_STRING_TRUNC
PMERR_SPL-,NV _LENGTH_OR_COUNT
MERR_SPL_INV_LENGTH_OR_COUNT
PMERR_SPL_FILE_NOT _FOUND
MERR_SPL_FILE_NOT _FOUND
PMERR_SPL_CANNOT_OPEN_FILE
MERR_SPL_CANNOT _OPEN_FILE
PMERR_SPL_DRIVER_NOT -,NSTALLED
MERR_SPL_DRIVER_NOT-'NSTALLED
PMERR_SPL-,NV_PROCESSOR_DATTYPE
MERR_SPL-,NV_PROCESSOR_DATTYPE
PMERR_SPL-'NV_DRIVER_DATATYPE
MERR_SPL_INV_DRIVER_DATATYPE
PMERR_SP~PROCESSOR_NOT _INST
MERR_SPL_PROCESSOR_NOT -,NST
PMERR_SPL_NO_SUCH_LOG_ADDRESS
MERR_SPL_NO_SUCH_LOG_ADDRESS
PMERR_ SPL _PRINTER_NOT _FOUND
MERR _ SPL _PRI NTER_ NOT_FOUND
PMERR_SPL_DD_NOT _FOUND
MERR_SPL_DD_NOT_FOUND
PMERR_SPL_QUEUE_NOT_FOUND
MERR_ SPL _QUEUE_NOT _FOUND
PMERR_SPL_MANY_QUEUES_ASSOC
MERR_SPL_MANY_QUEUES_ASSOC
PMERR_SPL_NO_QUEUES_ASSOCIATED
MERR_SPL_NO_QUEUES_ASSOCIATED
PMERR_SPL_INI_FILE_ERROR
MERR SPL INI FILE ERROR - - - -
PMERR_SPL_NO_DEFAULT_QUEUE
MERR_SPL_NO_DEFAULT_QUEUE
PMERR_SPL_NO_CURRENT_FORMS_CODE
MERR_SPL_NO_CURRENT _FORMS_CODE
PMERR_SPL_NOT _AUTHORISED
MERR_SPL_NOT _AUTHORISED
PMERR_ SPL _TEMP _NETWORK_ERROR
MERR_SPL_TEMP _NETWOR~ERROR
PMERR_SPL_HARD_NETWORK_ERROR
MERR _ SPL _ HARD_NETWORK _ ERROR
PMERR_DEL_NOT _ALLOWED
MERR_DEL_NOT_ALLOWED

Appendix B. Error Codes 8-15

Ox402E
Ox402E
Ox402F
Ox402F
Ox4030
Ox4030
Ox4031
Ox4031
Ox4032
Ox4032
Ox4033
Ox4033
Ox4034
Ox4034
Ox4035
Ox4035
Ox4036
Ox4036
Ox4037
Ox4037
Ox4038
Ox4038
Ox4039
Ox4039
Ox403A
Ox403A
Ox4040
Ox4040
Ox4FC9
Ox4FC9
Ox4FCA
Ox4FCA
Ox4FCB
Ox4FCB
Ox4FCC
Ox4FCC
Ox4FCD
Ox4FCD
Ox4FCE
Ox4FCE
Ox4FCF
Ox4FCF
Ox4FDO
Ox4FDO
Ox4FD1
Ox4FD1
Ox4FD2
Ox4FD2

PMERR_CANNOT_DEL_QP_REF
MERR_CANNOT_DEL_QP_REF
PMERR_CANNOT_DEL_QNAME_REF
MERR_CANNOT_DEL_QNAME_REF
PMERR _CANNOT_DEL _PRINTER _DO_REF
MERR_CANNOT_DEL_PRINTER_DD_REF
PMERR CANNOT DEL PRN NAME REF - - - - -
MERR_CANNOT_DEL_PRN_NAME_REF
PMERR_CANNOT_DEL_PRN_ADDR_REF
MERR_CANNOT_DEL_PRN_ADDR_REF
PMERR_SPOOLER_QP _NOT_DEFINED
MERR_SPOOLER_QP _NOT_DEFINED
PMERR_PRN_NAME_NOT_DEFINED
MERR_PRN_NAME_NOT _DEFINED
PMERR PRN ADDR NOT DEFINED - - - -
MERR_PRN_ADDR_NOT _DEFINED
PMERR _PRINTER_DO_NOT _DEFINED
MERR _PRI NTER _ DO_NOT _DEFI NED
PMERR _PRINTER_QUEUE _ NOT_DEFINED
MERR_PRINTER_QUEUE_NOT_DEFINED
PMERR_PRN_ADDRJN_USE
MERR_PRN _ADDR _IN_USE
PMERR_SPL_TOO_MANY_OPEN_FILES
MERR_SPL_ TOO _MANY _OPEN_FILES
PMERR_SPL_CP _NOT_REQD
MERR_SPL_CP _NOT_REQD
PMERR_UNABLE_ TO _CLOSE_DEVICE
MERR_UNABLE_TO_CLOSE_DEVICE
PMERR_SPLMSGBOXJNFO_CAPTION
MERR_SPLMSGBOX_INFO_CAPTION
PMERR_SPLMSGBOX_WARNING_CAPTION
MERR_SPLMSGBOX_WARNING_CAPTION
PMERR _ SPLMSGBOX _ ERROR_CAPTION
MERR_SPLMSGBOX_ERROR_CAPTION
PMERR _ SPLMSGBOX _SEVERE_CAPTION
MERR_SPLMSGBOX _SEVERE_CAPTION
PMERR_SPLMSGBOX_JOB_DETAILS
MERR_SPLMSGBOX_JOB_DETAILS
PMERR _ SPLMSGBOX _ERROR .-ACTION
MERR _ SPLMSGBOX_ERROR _ACTION
PMERR _ SPLMSGBOX _SEVERE_ACTION
MERR _ SPLMSGBOX_SEVERE _ACTION
PMERR_SPLMSGBOX_BIT _0_ TEXT
MERR_SPLMSGBOX_BIT _0_ TEXT
PMERR _ SPLMSGBOX _ BIT _1_ TEXT
MERR_SPLMSGBOX_BIT _1_ TEXT
PMERR_SPLMSGBOX_BIT_2_TEXT
MERR_SPLMSGBOX_BIT _2_ TEXT

8-16 PM Programming Reference Vol \I

Ox4FD3 PMERR_SPLMSGBOX_BIT _3_ TEXT
Ox4FD3 MERR_SPLMSGBOX_BIT _3_ TEXT
Ox4FD4 PMERR_SPLMSGBOX_BIT _ 4_ TEXT
Ox4FD4 MERR_SPLMSGBOX_BIT_ 4_TEXT
Ox4FD5 PMERR_SPLMSGBOX_BIT _5_ TEXT
Ox4FD5 MERR_SPLMSGBOX_BIT _5_ TEXT
Ox4FD6 PMERR_SPLMSGBOX_BIT _15_ TEXT
Ox4FD6 MERR _ SPLMSGBOX_ BIT _15_ TEXT
Ox4FD7 PMERR_SPL_NOPATHBUFFER
Ox4FD7 MERR_SPL_NOPATHBUFFER
Ox4FD8 MERR_SPL_ALREADY_INITIALISED
Ox4FD9 MERR_SPL_ERROR
Ox5001 PMERR INV TYPE
Ox5001 MERR INV TYPE
Ox5002 PMERR_INV_CONV
Ox5002 MERR INV CONV
Ox5003 PMERRJNV _SEGLEN
Ox5003 MERR INV SEGLEN
Ox5004 PMERR_DUP _SEGNAME
Ox5004 MERR_DUP _SEGNAME
Ox5005 PM ERR INV XFORM
Ox5005 MERR INV XFORM
Ox5006 PMERRJNV _ VIEWLIM
Ox5006 MERRJNV _ VIEWLIM
Ox5007 PMERR_INV _3DCOORD
Ox5007 MERRJNV _3DCOORD
Ox5008 PMERR_SMB_OVFLOW
Ox5008 MERR_SMB_OVFLOW
Ox5009 PMERR_SEG_OVFLOW
Ox5009 MERR SEG OVFLOW
Ox5010 PMERR_PIC_DUP _FILENAME
Ox5010 MERR PIC DUP FILENAME - - -
SPLERR_BASE+OFA1 PMERR_SPL_ERROR_1
SPLERR_BASE+OFA2 PM ERR _ SPL_ ERROR_ 2
SPLERR_BASE+OFA3 PMERR_SPL_ERROR_3
SPLERR_BASE+OFA4 PMERR_SPL_ERROR_ 4
SPLERR_BASE+OFA5 PM ERR _ SPL_ ERROR _ 5
SPLERR_BASE+OFA6 PMERR_SP~ERROR_6

SPLERR_BASE+OFA7 PMERR _ SPL _ ERROR_7
SPLERR_BASE+OFA8 PMERR_ SPL _ ERROR _ 8
SPLERR_BASE+OFA9 PMERR _ SPL.;.. ERROR_ 9
SPLERR_BASE+OFAA PMERR_SP~ERROR_10

SPLERR_BASE+OFAB PMERR_SPL_ERROR_11
SPLERR_BASE+OFAC PMERR_ SPL_ERROR_12
SPLERR_BASE+OFAD PMERR_SPL_ERROR_13
SPLERR_BASE+OFAE PMERR_SPL_ERROR_14
SPLERR_BASE+OFAF PMERR_SP~ERROR_15

SPLERR_BASE+OFBO PMERR_SPL_ERROR_16

Appendix B. Error Codes 8-17

SPLERR_BASE+OFB1
SPLERR_BASE+OFB2
SPLERR_BASE+OFB3
SPLERR_BASE+OFB4
SPLERR_BASE+OFB5
SPLERR_BASE+OFB6
SPLERR_BASE+OFB7
SPLERR_BASE+OFB8
SPLERR_BASE+OFB9
SPLERR_BASE+OFBA
SPLERR_BASE+OFBB
SPL~RR_BASE+OFBC

SPLERR_BASE+OFBD
SPLERR_BASE+OFBE
SPLERR_BASE+OFBF
SPLERR_BASE+OFCO
SPLERR_BASE+OFC1
SPLERR_BASE+OFC2
SPLERR_BASE+OFC3
SPLERR_BASE+OFC4
SPLERR_BASE+OFC5
SPLERR_BASE+OFC6
SPLERR_BASE+OFC7
SPLERR_BASE+OFC8
SPLERR_BASE+OFFF
SPLERR_BASE+OFFD

PMERR_SPL_ERROR_17
PMERR_SPL_ERROR_18
PMERR_SPL_ERROR_19
PMERR_SPL_ERROR_20
PMERR_SPL_ERROR_21
PMERR _ SPL _ ERROR _ 22
PMERR _ SPL _ERROR _ 23
PMERR_SPL_ERROR_24
PMERR_SPL_ERROR_25
PMERR_SPL_ERROR_26
PMERR _ SPL _ERROR _27
PMERR_SPL_ERROR_28
PMERR_SPL_ERROR_29
PMERR_SPL_ERROR_30
PMERR_SPL_ERROR_31
PMERR_SPL_ERROR_32
PMERR_SPL_ERROR_33
PMERR_SPL_ERROR_34
PMERR_SPL_ERROR_35
PMERR_SPL_ERROR_36
PMERR _ SPL _ERROR _ 37
PMERR_SPL_ERROR_38
PMERR_SPL_ERROR_39
PMERR_SPL_ERROR_ 40
PMERR_SPL_ERROR
PMERR_SPL_ALREADY JNITIALISED

8-18 PM Programming Reference Vol II

Appendix C. Error Explanations

This appendix gives an explanation for each PM error. The errors are listed in alphabetic
order. The number associated with each error is given in Appendix B, "Error Codes" on
page B-1.

Error Constant

HMERR_ALLOCATE_SEGMENT

HMERR_CLOSE_LlB_FILE

HMERR_CONTENT_NOT_FOUND

HMERR_DATABASE_NOT_OPEN

HMERR_DDF _ALIGN_TYPE

HMERR_DDF_BACKCOLOR

HMERR_DDF _EXCEED_MAX_INC

HMERR_DDF_FONTSTYLE

HMERR_DDF_FORECOLOR

HMERR_DDF _FORMAT_TYPE

HMERR_DDF _HINSTANCE

HMERR_DDF _INVALlD_DDF

HMERR_DDF _INVALID_FONT

HMERR_DDF _INVALID _PARM

HMERR_DDF _LIST _BREAKTYPE

HMERR_DDF _LIST_SPACING

HMERR_DDF _LIST_UNCLOSED

HMERR_DDF _LIST _UNINITIALIZED

HMERR_DDF_MEMORY

HMERR_DDF_REFTYPE

HMERR_DDF _SEVERE

© Copyright IBM Corp. 1994

Explanation

Unable to allocate a segment of memory
for memory allocation requests from the
Help Manager.

The library file cannot be closed.

The library file does not have any content.

Unable to read the unopened database.

The alignment type is not valid.

The background color is not valid.

The value specified to increment DDF
memory is too large.

The amount of data is too large for the
DDF buffer.

The font style is not valid.

The foreground color is not valid.

The format type specified is invalid.

The DDF instance·is invalid.

The DDF handle is invalid.

The font value specified is invalid.

One of the DDF parameters specified is
invalid.

The value of BreakType is not valid.

The value for Spacing is not valid.

An attempt was made to nest a list.

No definition list has been initialized by
DdfBeginList.

Not enough memory is available.

The reference type is not valid.

Internal error detected by the Help
Manager.

Unable to free allocated memory.

C-1

HMERR_HELPTABLE_UNDEFINE

HMERRJNDEX_NOT _FOUND

HMERR_INVALlD_ASSOC_APP _WND

HMERRJNVALID _ASSOC_HELP JNST

HMERRJNVALlD_HELPSUBITEM_SIZE

HMERR JNVALID _LIB_FILE

HMERR_INVALlD_QUERY _APP _WND

HMERR_LOAD_DLL

HMERR_NO _FRAME_ WND _IN_CHAIN

C-2 PM Programming Reference Vol II

The handle of the instance specified on a
call to the Help Manager does not have the
class name of a Help Manager instance.

The help instance handle specified is
invalid.

Context-sensitive help was requested but
the 10 of the main help item specified was
not found in the help table.

Context-sensitive help was requested but
the 10 of the help item specified was not
found in the help subtable.

The application did not provide a help table
for context-sensitive help.

The index is not in the library file.

The application window handle specified on
the WinAssociateHelplnstance function is
not a valid window handle.

The help instance handle specified on the
WinAssociateHelplnstance function is not a
valid window handle.

The window handle specified as the help
instance to destroy is not of the help
instance class.

The handle specified to be a help instance
does not have the class name of a Help
Manager instance.

The help subtable item size is less than 2.

Improper library file provided.

The application window specified on a
WinQueryHelplnstance function is not a
valid window handle.

Unable to load resource data link library.

There is no frame window in the window
chain from which to find or set the
associated help instance.

The parent or owner chain of the
application window specified does not have
an associated help instance.

Unable to allocate the requested amount of
memory.

HMERR_OPEN_LlB_FILE

HMERR_PANEL_NOT _FOUND

HMERR_READ_LlB_FILE

PMERR_ACCESS_DENIED

PMERR_AREA_INCOMPLETE

PMERR_ARRAY_TOO_SMALL

PMERR_ATOM_NAME_NOT_FOUND

The library file cannot be opened.

Unable to find the requested help panel.

The library file cannot be read.

The memory block was not allocated
properly.

An attempt was made to begin a new area
while an existing area bracket was already
open.

An attempt was made to begin a new
element while an existing element bracket
was already open.

An attempt was made to begin a new path
while an existing path bracket was already
open.

An attempt was made to open a new
segment while an existing segment bracket
was already open.

The application buffer length is less than
the total length required for the (application)
component types.

One of the following has occurred:

• A segment has been opened, closed,
or drawn.

• GpiAssociate was issued while an area
bracket was open.

• A drawn segment has opened an area
bracket and ended without closing it.

More than 4 bytes was attempted to be
inserted or extracted.

The array specified was too small.

The specified atom name is not in the atom
table.

An OS/2 base error has occurred. The
base error code can be accessed using the
OffBinaryData field of the ERRINFO
structure returned by WinGetErrorlnfo.

An attempt was made either to set a bit
map into a device context using
GpiSetBitmap while it was already selected
into an existing device context, or to tag a
bit map with a local pattern set identifier

Appendix C. Error Explanations C-3

(setid) using GpiSetBitmapld while it was
already tagged with an existing setid.

PM ERR_BITMAP _IS_SELECTED An attempt was made to delete a bit map
while it was selected into a device context.

PM ERR_BITMAP _NOT_FOUND A attempt was made to perform a bit-map
operation on a bit map that did not exist.

PMERR_BITMAP _NOT_SELECTED A attempt was made to perform an
operation on presentation space associated
with a memory device context that had no
selected bit map.

PMERR_BOUNDS_OVERFLOW An internal overflow error occurred during
boundary data accumulation. This can
occur if coordinates or matrix
transformation elements (or both) are
invalid or too large.

PMERR_BUFFER_TOO_SMALL The supplied buffer was not large enough
for the data to be returned.

PMERR_C_LENGTH_TOO_SMALL The maximum length of the C structure is
less than the total length required for the
(C) component types.

PMERR~CALLED_SEGJS_CHAINED An attempt was made to call a segment
that has a chained attribute set.

PMERR_CALLED_SEG_IS_CURRENT An.attempt was made to call a segment
that is currently open.

PMERR_CALLED_SEG_NOT_FOUND An attempt was made to call a segment
that did not exist.

PMERR_CAN_NOT_CALL_SPOOLER An error occurred attempting to call the
spooler validation routine. This error is not
raised if the spooler is not installed.

PMERR_CANNOT_DEL_PRINTER_DD_REF Presentation Manager device driver
deletion not possible due to a reference.

PMERR_CANNOT_DEL_PRN_ADDR_REF Printer port deletion not possible due to a
reference.

PMERR_CANNOT_DEL_PRN_NAME_REF Printer deletion not possible due to a
reference.

PMERR_CANNOT_DEL_QNAME_REF Spooler queue deletion not possible due to
a reference.

PM ERR_CAN NOT_DEL_QP _REF Spooler queue processor deletion not
possible due to a reference.

PMERR_CANNOT_STOP The session cannot be stopped.

C-4 PM Programming Reference Valli

PMERR_ COORDINATE_OVERFLOW

PMERR_DATATYPE_ENTRY~CTL_MISS

PMERR_DATATYPE_ENTRY_NOT_NUM

PM ERR_DATATYPE_INVALID

PMERR_DATATYPE_NOT_UNIQUE

PMERR_DATATYPE~TOO_LONG

PMERR_DATATYPE_TOO_SMALL

PMERR_DC_IS_ASSOCIATED

PMERR_DEL_NOT _ALLOWED

PMERR_DESC_STRING_TRUNCATED

An attempt was made to realize a color
table that is not realizable.

An attempt was made to realize a color
table on a device driver that does not
support this function.

An internal coordinate overflow error
occurred. This can occur if coordinates or
matrix transformation elements (or both)
are invalid or too large.

An attempt was made to transfer more than
the maximum permitted amount of data
(64512 bytes) using GpiPutData,
GpiGetData, or GpiElement.

An invalid datatype entry index was
specified.

An invalid datatype entry control was
specified.

The datatype entry control was missing.

The datatype entry specified was not
numerical.

The datatype entry specified was not an
offset.

An invalid datatype was specified.

An attempt to register a datatype failed
because it is not unique.

The datatype specified was too long.

The datatype specified was too small.

An attempt was made to associate a
presentation space with a device context
that was already associated or to destroy a
devic~ context that was associated.

Deletion not possible.

An attempt was made to supply a
description string with GpiBeginElement
that was greater then the permitted
maximum length (251 characters). The
string was truncated.

The function requested is not supported by
the presentation driver.

Appendix C. Error Explanations C-5

PMERR_DEVICE_DRIVER_ERROR_2

PMERR_DEVICE_DRIVER_ERROR_3

PMERR_DEVICE_DRIVER_ERROR_5

PMERR_DEVICE_DRIVER_ERROR_6

PMERR_DEVICE_DRIVER_ERROR_7

PMERR_DEVICE_DRIVER_ERROR_B

PMERR_DEVICE_DRIVER_ERROR_9

PMERR_DOS_ERROR

PMERR_DOSOPEN_FAILURE

PMERR_DOSREAD _FAILURE

C-6 PM Programming Reference Vol II

Miscellaneous error available for use by
user written device drivers.

Miscellaneous error available for use by
user written device drivers.

Miscellaneous error available for use by
user written device drivers.

Miscellaneous error available for use by
user written device drivers.

Miscellaneous error available for use by
user written device drivers.

Miscellaneous error available for use by
user written device drivers.

Miscellaneous error available for use by
user written device drivers.

Miscellaneous error available for use by
user written device drivers.

Miscellaneous error available for use by
user written device drivers.

Miscellaneous error available for use by
user written device drivers.

A DOS call returned an error.

A DosOpen call made during
GpiLoadMetaFile or GpiSaveMetaFile gave
a good return code but the file was not
opened successfully.

A DosRead call made during
GpiLoadMetaFile gave a good return code.
However, it failed to read any more bytes
although the file length indicated that there
were more to be read.

The device driver specified with
DevPostDeviceModes was not found.

During GpiPlayMetaFile, while the actual
drawing mode was draw-and-retain or
retain, a metafile segment to be stored in
the presentation space was found to have
the same segment identifier as an existing
segment.

A called segment has a name that has
already been used by another called
segment in the input PIF.

PMERR_DVNAMIC_SEG_SEQ_ERROR

PMERR_FUNCTION_NOT _SUPPORTED

PMERR_GREATER_THAN_64K

The program title specified in the
PIBSTRUCT already exists within the same
group.

During removal of dynamic segments while
processing GpiDrawChain, GpiDrawFrom,
or GpiDrawSegment, the internal state
indicated that dynamic segment data was
still visible after all chained dynamic
segments had been processed. This can
occur if segments drawn dynamically
(including called segments) are modified or
removed from the chain while visible.

An attempt was been made to open a
dynamic segment with a segment identifier
of zero.

A request to close the spooled output
without first issuing a an ENDDOC was
attempted.

The code specified with DevEscape is not
supported by the target device driver.

During metafile creation or generation of
retained graphics the system has exceeded
maximum segment size.

An attempt was made to draw characters
with a character mode and character set
that are incompatible. For example, the
character specifies an image/raster font
when the mode calls for a vector/outline
font.

An attempt was made to unload a font file
that was not loaded.

An attempt was made to create a font that
was not loaded.

The function is not supported.

A data item or array dimension is greater
than 65 535.

An internal bit map busy error was
detected. The bit map was locked by one
thread during an attempt to access it from
another thread.

Appendix C. Error Explanations C-7

An internal device context busy error was
detected. The device context was locked
by one thread during an attempt to access
it from another thread.

PMERR_HEAP _MAX_SIZE_REACHED The heap has reached its maximum size
(64KB), and cannot be increased.

PMERR_HEAP _OUT_OF _MEMORY An attempt to increase the size of the heap
failed.

PMERR_HFONT_IS_SELECTED An attempt has been made to either
change the owner of a font, or delete when
it is currently selected.

PMERR_HRGN_BUSY An internal region busy error was detected.
The region was locked by one thread
during an attempt to access it from another
thread.

PMERR_HUGE_FONTS_NOT_SUPPORTED An attempt was made using
GpiSetCharSet, GpiSetPatternSet,
GpiSetMarkerSet, or GpiSetAttrs to select a
font that is larger than the maximum size
(64Kb) supported by the target device
driver.

PMERR_ID_HAS_NO_BITMAP No bit map was tagged with the setid
specified on a GpiQueryBitmapHandle
function.

PMERR_IMAGE_INCOMPLETE A drawn segment has opened an image
bracket and ended without closing it.

PMERR_INCOMPATIBLE_BITMAP An attempt was made to select a bit map or
perform a BitBlt operation on a device
context that was incompatible with the
format of the bit map.

PMERR_INCOMPATIBLE_METAFILE An attempt was made to associate a
presentation space and a metafile device
context with incompatible page units, size
or coordinate format; or to playa metafile
using the RES_RESET option (to reset the
presentation space) to a presentation space
that is itself associated with a metafile
device context.

PMERRJNCORRECT _DC_TYPE

C-8 PM Programming Reference Vol II

A data type is specified which is incorrect
for this function.

An attempt was made to perform a bit-map
operation on a presentation space
associated with a device context of a type

PMERR_INSUFFICIENT _DISK_SPACE

PMERR_INSUFFICIENT _MEMORY

that is unable to support bit-map
operations.

A structure handle is non-NULL, and is
invalid for one of the following reasons:

• It is not the handle of a data structure.
• It is the handle of an ERRINFO

structure, which should not be used in
this call.

• A handle block returned by the
bindings to the application has been
used for an in-line structure handle.

User or system initialization file cannot be
closed.

The initialization file could not be extended
to add the required program or group.

The operation terminated through
insufficient disk space.

The operation terminated through
insufficient memory.

An invalid angle parameter was specified
with GpiPartialArc.

An invalid control parameter was specified
with GpiFuliArc.

An invalid options parameter was specified
with GpiBeginArea.

An invalid mode parameter was specified
with GpiSetAttrMode.

An invalid background color attribute value
was specified or the default value was
explicitly specified with GpiSetAttrs instead
of using the defaults mask.

An invalid background mix attribute value
was specified or the default value was
explicitly specified with GpiSetAttrs instead
of using the defaults mask.

An invalid tRop was specified with a
GpiBitBlt or GpiWCBitBlt function.

An invalid options parameter was specified
with a GpiBitBlt or GpiWCBitBlt function.

In processing a bit map, the end of the data
was unexpectedly encountered.

Appendix C. Error Explanations e-g

PMERRJNV _BOX_CONTROL

PMERR_INV_CHAR_SET_ATTR

PMERR_INV _CODEPAGE

C-10 PM Programming Reference Vol II

An invalid dimension was specified with a
load bit-map function.

An invalid control parameter was specified
with GpiBox.

An invalid corner rounding control
parameter was specified with GpiBox.

The text alignment attribute specified in
GpiSetTextAlignment is not valid.

The default character angle attribute value
was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

An invalid character direction attribute value
was specified or the default value was
explicitly specified with GpiSetAttrs instead
of using the defaults mask.

An invalid character mode attribute value
was specified or the default value was
explicitly specified with GpiSetAttrs instead
of using the defaults mask.

An invalid options parameter was specified
with GpiCharStringPos or
GpiCharStringPosAt.

An invalid character setid attribute value
was specified or the default value was
explicitly specified with GpiSetAttrs instead
of using the defaults mask.

An invalid character shear attribute value
was specified or the default value was
explicitly specified with GpiSetAttrs instead
of using the defaults mask.

An invalid options parameter was specified
with GpiSetClipPath.

An invalid code-page parameter was
specified with GpiSetCp.

An invalid color attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using
the defaults mask.

Invalid color table definition data was
specified with GpiCreateLogColorTable.

An invalid format parameter was specified
with GpiCreateLogColorTable.

PMERRJNV _COLOR_INDEX

PMERR_INV _CONV

PMERR_INV _COORD_OFFSET

PMERR_INV _COORDINATE

PMERR_INV _CORRELATE_DEPTH

PMERRJNV _DEV _MODES_OPTIONS

An invalid color index parameter was
specified with GpiQueryRGBColor.

An invalid options parameter was specified
with a logical color table or color query
function.

An invalid starting index parameter was
specified with a logical color table or color
query function.

Invalid conversion-type parameter.

An invalid coordinate offset value was
specified.

An invalid source or target coordinate
space parameter was specified with
GpiConvert.

An invalid coordinate value was specified.

An invalid maxdepth parameter was
specified with GpiCorrelateSegment,
GpiCorrelateFrom, or GpiCorrelateChain.

An invalid type parameter was specified
with GpiCorrelateSegment,
GpiCorrelateFrom, or GpiCorrelateChain.

An invalid pointer was referenced with
WinSetPointer.

An invalid data parameter was specified
with DevOpenDC.

An invalid type parameter was specified
with DevOpenDC, or a function was issued
that is invalid for a
00 METAFILE NOQUERY device context. - -
An invalid options parameter was specified
with DevPostDeviceModes.

An invalid devicename parameter was
specified with DevPostDeviceModes.

An invalid option parameter was specified
with WinDrawBorder.

An invalid control parameter was specified
with GpiSetDrawControl or
GpiQueryDrawControl.

An invalid value parameter was specified
with GpiSetDrawControl.

Appendix C. Error Explanations C-11

PMERR_INV _DRIVER_DATA

PMERR_INV _DRIVER_NAME

PMERRJNV _ESC_CODE

PMERRJNV _FACENAMEDESC

PMERR_INV_FILL_PATH_OPTIONS

PMERR_INV _FLOOD _FILL_OPTIONS

PMERR_INV _FONT _ATTRS

PMERRJNV _FORMS_CODE

C-12 PM Programming Reference Vol II

An invalid mode parameter was specified
with GpiSetDrawControl not
draw-and-retain or draw.

Invalid driver data was specified.

A driver name was specified which has not
been installed.

An invalid mode parameter was specified
with GpiSetEditMode.

An invalid off (offset) parameter was
specified with GpiQueryElement.

An attempt was made to issue GpiPutData
with the element pointer not pointing at the
last element.

An attempt to create or delete a path out of
context of the path bracket was made.

An invalid escape code was used in a call
to DevEscape.

An invalid data parameter was specified
with DevEscape.

An invalid font family name was passed to
GpiQueryFaceString.

The font facename description is invalid.

An invalid options parameter was specified
with GpiFiliPath.

An invalid firstchar parameter was specified
with GpiQueryWidthTable.

Invalid flood fill parameters were specified.

An invalid· attrs parameter was specified
with GpiCreateLogFont.

The font file specified with GpiLoadFonts,
GpiLoadPublicFonts,
GpiQueryFontFileDescriptions, or
GpiQueryFullFontFileDescs contains invalid
data.

An attempt has been made to issue
GpiRemoveDynamics or GpiDrawDynamics
to a presentation space associated with a
metafile device context.

An invalid forms code parameter was
specified with DevQueryHardcopyCaps.

PMERRJNV _HBITMAP

PMERR_INV _HOC

PMERR_INV _HFONT

PMERR_INV _HMF

PMERR_INV _HPAL

PMERRJNV _HRGN

PMERR_INV _10

An invalid geometric line width attribute
value was specified.

An invalid format parameter was specified
with GpiGetData.

An invalid field parameter was specified
with GpiSetGraphicsField.

An invalid bit-map handle was specified.

An invalid device-context handle or (micro
presentation space) presentation-space
handle was specified.

An invalid font handle was specified.

An invalid metafile handle was specified.

An invalid color palette handle was
specified.

An invalid presentation-space handle was
specified.

An invalid region handle was specified.

An invalid IPSid parameter was specified
with GpiRestorePS.

An invalid ILength parameter was specified
with Gpilmage. There is a mismatch
between the image size and the data
length.

An invalid psizllmageSize parameter was
specified with Gpilmage.

An invalid IFormat parameter was specified
with Gpilmage.

An attempt was made to issue a function
invalid inside an area bracket. This can be
detected while the actual drawing mode is
draw or draw-and-retain or during
segment drawing or correlation functions.

An attempt was made to issue a function
invalid inside the current editing mode.

An attempt was made to issue a function
invalid inside an element bracket.

An attempt was made to issue a function
invalid inside an element bracket.

An attempt was made to issue a function
invalid inside a path bracket.

Appendix C. Error Explanations C-13

C-14 PM Programming Reference Vol II

An attempt was made to issue a function
(for example, query) that is invalid when the
actual drawing mode is not draw or
draw-and-retain.

An attempt was made to issue a function
invalid inside a segment bracket.

An invalid order was detected inside a
vector symbol definition while drawing a
vector (outline) font.

An invalid bit-map info table was specified
with a bit-map operation.

An invalid length or count parameter was
specified.

An invalid line end attribute value was
specified.

An invalid line join attribute value was
specified.

An invalid line type attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using
the defaults mask.

An invalid line width attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using
the defaults mask.

An invalid device logical address was
specified.

An invalid marker box attribute value was
specified.

An invalid marker set attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using
the defaults mask.

An invalid marker symbol attribute value
was specified or the default value was
explicitly specified with GpiSetAttrs instead
of using the defaults mask.

An invalid transformation matrix element
was specified.

An invalid maxhits parameter was specified
with GpiCorrelateSegment,
GpiCorrelateFrom, or GpiCorrelateChain.

PMERRJNV _MICROPS_FUNCTION

An invalid metafile was specified with
GpiPlayMetaFile.

An invalid length parameter was specified
with GpiSetMetaFileBits or
GpiQueryMetaFileBits.

An invalid length parameter was specified
with GpiSetMetaFileBits or
GpiQueryMetaFileBits.

A draw control parameter was specified
with GpiSetDrawControl that is invalid in a
micro presentation space.

An attempt was made to issue a function
that is invalid in a micro presentation
space.

An attempt was made to play a metafile
containing orders that are invalid in a micro
presentation space.

An invalid mix attribute value was specified
or the default value was explicitly specified
with GpiSetAttrs instead of using the
defaults mask.

An attempt was made to open a segment
with the ATTR_DYNAMIC segment set,
while the drawing mode was set to
DM_DRAWor DM_DRAWANDRETAIN.

An attempt was made to reopen an existing
segment while the drawing mode was set
to DM DRAW or DM DRAWANDRETAIN. - -
An invalid mode parameter was specified
with GpiModifyPath.

An invalid multiplier parameter was
specified with GpiPartialArc or GpiFuliArc.

Nested figures have been detected within a
path definition.

An invalid or incompatible (with micro
presentation space) options parameter was
specified with GpiCreatePS or GpiSetPS.

An invalid order length was detected during
GpiPutData or segment drawing.

An invalid order parameter was specified
with GpiSetSegmentPriority.

Appendix C. Error Explanations C-15

C-16 PM Programming Reference Vol II

An attempt was made to issue a
GpiSavePS or GpiRestorePS function, or
an output only function (for example,
GpiPaintRegion) from GpiPh;tyMetaFile
without the drawing mode set to
DM DRAW.

An invalid viewport parameter was specified
with GpiSetPageViewport.

An invalid path identifier parameter was
specified.

An invalid pattern symbol attribute value
was specified or the default value was
explicitly specified with GpiSetAttrs instead
of using the defaults mask.

An invalid refpoint attribute value was
specified.

An invalid pattern set attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using
the defaults mask.

An attempt was made to use an unsuitable
font as a pattern set.

An invalid options parameter was specified
with GpiSetPickApertureSize.

An invalid pick aperture position was
specified.

An invalid size parameter was specified
with GpiSetPickApertureSize.

An invalid option parameter was specified
with GpiPlayMetaFile.

An invalid primitive type parameter was
specified with GpiSetAttrs or GpiQueryAttrs.

An invalid size parameter was specified
with GpiCreatePS or GpiSetPS.

An invalid format parameter was specified
with GpiPutData.

An invalid start parameter was specified
with DevQueryCaps.

An invalid rectangle parameter was
specified.

PMERRJNV _RESERVED _FIELD

PMERRJNV _RESET_OPTIONS

PMERR_INV _SEG_NAME

PMERR_INV _SEG_ OFFSET

PMERR_INV _SETID

PMERR_INV _SHARPNESS_PARM

PMERR_INV _TYPE

PMERR_INV _USAGE_PARM

An invalid control parameter was specified
with GpiQueryRegionRects.

An invalid mode parameter was specified
with GpiCombineRegion.

An attempt was made to issue GpiPutData
with the editing mode set to
SEGEM_REPLACE.

An invalid reserved field was specified.

An invalid options parameter was specified
with GpiResetPS.

An invalid rgb color parameter was
specified with GpiQueryNearestColor or
GpiQueryColor.

An invalid scanstart parameter was
specified with a bit-map function.

An invalid attribute parameter was specified
with GpiSetSegmentAttrs,
GpiQuerySegmentAttrs,
GpiSetlnitialSegmentAttrs, or
GpiQuerylnitialSegmentAttrs.

An invalid attribute value parameter was
specified with GpiSetSegmentAttrs or
GpiSetlnitialSegmentAttrs.

An invalid segment identifier was specified.

An invalid offset parameter was specified
with GpiPutData.

An order length exceeds the remaining
segment length in the input PIF.

An invalid setid parameter was specified.

An invalid sharpness parameter was
specified with GpiPolyFilletSharp.

An invalid value parameter was specified
with GpiSetStopDraw.

An invalid options parameter was specified
with a transform matrix function.

Invalid file-type parameter.

An invalid options parameter was specified
with GpiCreateBitmap.

An invalid limits parameter was specified
with GpiSetViewingLimits.

Appendix C. Error Explanations C-17

PMERRJNV _3DCOORD

PM ERR_I NVALI D_AR RAY _SIZE

PMERR_INVALID _ASCIIZ

PMERRJNVALlD_ATOM_NAME

PMERRJNVALID _BUNDLE_TYPE

PMERRJNVALID _CHARACTER_INDEX

PMERR_INVALlD_CONTROL_DATATYPE

PMERR_INVALlD_DATATYPE

PMERR_INVALlD_DST_CODEPAGE

PMERRJNVALID _GROUP _HANDLE

C-18 PM Programming Reference Vol 1.1

A set viewing limits order has an
inconsistent mask and order length in the
input PIF.

A set (default) viewing transform order has
an inconsistent mask and order length in
the input PIF.

An order specifying 3-dimensional
coordinates has been found in the input
PIF.

Attempted to start an application whose
type is not recognized by OS/2.

An array has an invalid count, that is, less
than or equal to zero.

A control data type array size is invalid.

The profile string is not a valid
zero-terminated string.

The specified atom does not exist in the
atom table.

An invalid atom name string was passed.

An invalid bundle type was passed.

On WinNextChar or WinPrevChar, a
character index is invalid, that is, it is less
than 1 or is greater than the string
length+1.

An invalid control data type was specified.

An invalid data type was specified.

The destination code page parameter is
invalid.

On WinFreeErrorlnfo, the ERRINFO is not
the handle of an ERRINFO structure, that
is, it was not created by WinGetErrorlnfo.

An invalid bit was set for a parameter. Use
constants defined by PM for options, and
do not set any reserved bits.

An invalid message identifier was specified.
The call has completed by assuming the
message parameter and reply data types to
be ULONG.

An invalid program-group handle was
specified.

PMERRJNVALlD_HACCEL

PMERRJNVALlD_HATOMTBL

PMERR_INVALlD_HEAP _POINTER

PMERR_INVALlD_HEAP _SIZE

PMERR_INVALlD_HEAP _SIZE_PARM

PMERR_INVALlD_HEAP _SIZE_WORD

PMERR_INVALID _HENUM

PMERR_INVALID _HHEAP

PMERR_INVALlD_HMQ

PMERR_INVALID _HPTR

PMERR_INVALID _HSTRUCT

PMERR_INVALID _HWND

PMERR_INVALlD_INI_FILE_HANDLE

PMERRJNVALID _MESSAGE_ID

PMERR_INVALlD_NUMBER_OF _PARMS

PMERR_INVALlD_NUMBER_OF _TYPES

An invalid accelerator-table handle was
specified.

The application handle passed to
WinTerminateApp does not correspond to a
valid session.

An invalid atom-table handle was specified.

An invalid pointer was found within the
heap.

Invalid data was found within the heap.

Invalid data was found within the heap.

Invalid data was found within the heap.

An invalid enumeration handle was
specified.

An invalid heap handle was specified.

An invalid message-queue handle was
specified.

An invalid pointer handle was specified.

An invalid (null) structure handle was
specified.

An invalid window handle was specified.

An invalid initialization-file handle was
specified.

The specified atom is not a valid integer
atom.

The specified atom is not a valid integer
atom.

A message identifier is invalid.

The number of parameters is invalid.

The function call has an invalid number
(zero) of types.

An application parameter value is invalid for
its. converted PM type. For example: a
4-byte value outside the range -32,768 to
+32,767 cannot be converted to a SHORT,
and a negative number cannot be
converted to a ULONG or USHORT.

A parameter type is invalid for a bundle
mask.

Appendix C. Error Explanations C-19

PMERRJNVALID _PARAMETERS

PMERR_INVALID _PARM

PMERR_INVALlD_PROGRAM_HANDLE

PMERR_INVALlD_SESSION_ID

PMERR_INVALlD_SRC_CODEPAGE

PMERR_INVALID _STRING_PARM

PMERR_INVALlD_SWITCH_HANDLE

PMERR_INVALID _ TYPE_FOR_LENGTH

PMERRJNVALID _ TYPE_FOR_MPARAM

PMERR_INVALID _ TYPE_FOR_ OFFSET

PMERR_INVALlD_WINDOW

PMERR_LABEL_NOT_FOUND

PMERR_MATRIX_OVERFLOW

C-20 PM Programming Reference Vol II

An application parameter value is invalid for
its converted PM type. For example: a
4-byte value outside the range -32768 to
+32767 cannot be converted to a SHORT,
and a. negative number cannot be
converted to a ULONG or USHORT.

A parameter to the function contained
invalid data.

An invalid program handle was specified.

The specified session identifier is invalid.
Either zero (for the application's own
session) or a valid identifier must be
specified.

The source code page parameter is invalid.

The specified string parameter is invalid.

An invalid Window List entry handle was
specified.

An invalid target program-group handle was
specified.

The specified program or group title is too
long or contains invalid characters.

The data type for a control length is invalid.

The message parameter type for a control
MPARAM is invalid, that is, not mparam1 ,
mparam2 or mreply.

The data type for a control offset is invalid.

The window specified with a Window List
call is not a valid frame window.

Kerning was requested on
GpiCreateLogFont call to a presentation
space associated with a device context that
does not support kerning.

The specified element label did not exist.

An internal overflow error occurred during
matrix multiplication. This can occur if
coordinates or matrix transformation
elements (or both) are invalid or too large.

An error occurred during memory
management.

PMERR_MEMORY_ALLOCATION_ERR An error occurred during memory
management.

PMERR_MEMORY _DEALLOCATION_ERR An error occurred during memory
management.

PMERR_METAFILE_IN_USE An attempt has been made to access a
metafile that is in use by another thread.

PMERR_METAFILE_INTERNAL_ERROR An internal inconsistency has been
detected during metafile unlock processing.

PMERR_METAFILE_LlMIT_EXCEEDED The maximum permitted metafile size limit
was exceeded during metafile recording.

PMERR_MSG_QUEUE_ALREADY_EXISTS An attempt to create a message queue for
a thread failed because a message queue
already exists for the calling thread.

PMERR_MSGID_TOO_SMALL The message identifier specified is too
small.

PMERR_NEGATIVE_STRCOND_DIM A negative array dimension was passed for
a data type length.

PMERR_NO_BITMAP _SELECTED An attempt has been made to operate on a
memory device context that has no bit map
selected.

PMERR_NO_CURRENT_ELEMENT An attempt has been made to issue
GpiQueryElementType or GpiQueryElement
while there is no currently open element.

PMERR_NO_CURRENT_SEG An attempt has been made to issue
GpiQueryElementType or GpiQueryElement
while there is no currently open segment.

PMERR_NO_FILL No flood fill occurred because either the
starting point color was the same as the
input color when a boundary fill was
requested, or the starting point color was
not the same as the input color when a
surface fill was requested.

PMERR_NO_METAFILE_RECORD_HANDLE The metafile record handle was not found
during metafile recording, or DevEscape
(DEVESC _ STARTDOC) was not issued
when drawing to a 00_ QUEUED device
context with a pszDataType field of
PM_Q_STD.

PMERR_NO_MSG_QUEUE

PMERR_NO_PALETTE_SELECTED An attempt to realize a palette failed
because no palette was previously selected
into the Presentation Space.

Appendix C. Error Explanations C~21

The limit on the number of Window List
entries has been reached with
WinAddSwitchEntry.

PM ERR_NOT_CREATED_BY_DEVOPEN DC An attempt has been made to destroy a
device context using DevCloseDC that was
not created using DevOpenDC.

PMERR_NOT_CURRENT_PL_VERSION An unexpected data format was found in
the initialization file.

PMERR_NOT _DRAGGING A drag operation is not in progress at this
time.

PMERR_NOTJN_A_PM_SESSION An attempt was made to access function
that is only available from PM programs
from a non-PM session.

PMERR_NOT IN_AREA An attempt was made to end an area using
GpiEndArea or during segment drawing
while not in an area bracket.

PMERR_NOT_IN_DRAW_MODE An attempt was made to issue GpiSavePS
or GpiRestorePS while the drawing mode
was not set to DM_DRAW.

PMERR_NOT_IN_ELEMENT An attempt was made to end an element
using GpiEndElement or during segment
drawing while not in an element bracket.

PMERR_NOT _IN_IDX The application name, key-name or
program handle was not found.

PMERR_NOT _INJMAGE An attempt was made to end an image
during segment drawing while not in an
image bracket.

PMERR_NOT IN_PATH An attempt was made to end a path using
GpiEndPath or during segment drawing
while not in a path bracket.

PMERR_NOT_IN_RETAIN_MODE An attempt was made to issue a segment
editing element function that is invalid when
the actual drawing mode is not set to
retain.

PMERR_NOT _IN_SEG An attempt was made to end a segment
using GpiCloseSegment while not in a
segment bracket.

PMERR_NOT_SELF _DESCRIBING_DTYP A data type is not self-describing.

PMERR_OPENING_INI_FILE Unable to open initialization file (due to lack
of disk space for example).

C-22 PM Programming Reference Vol II

PMERR_PATHJNCOMPLETE

PMERR_PEL_IS_CLlPPED

PMERR_PRN_ADDR_IN_USE

PMERR_PRN_ADDR_NOT _DEFINED

PMERR_PRN_NAME_NOT _DEFINED

PMERR_PROLOG_ERROR

An internal size limit was exceeded while
converting orders from short to long format
during GpiPutData processing. An order
was too long to convert.

An attempt to unload a font failed because
the setid is still being referenced.

An attempt has been made to reset the
owner of a palette when it was busy.

Color palette operations cannot be
performed on a presentation space while a
palette is selected.

The value of a parameter was not within
the defined valid range for that parameter.

An attempt was made to open or close a
segment either directly or during segment
drawing, or to issue GpiAssociate while
there is an open path bracket.

An internal size limit was exceeded during
path or area processing.

An attempt was made to perform a path
function on a path that did not exist.

An attempt was made to query a pel that
had been clipped using GpiQueryPel.

An attempt was made to query a pel that
did not exist in GpiQueryPel (for example, a
memory device context with no selected bit
map).

The Presentation Manager device driver
has not been defined.

The spooler queue for the printer has not
been defined.

A printer is already defined on the port.

The printer port has not been defined.

The printer has not been defined.

A prolog error was detected during drawing.
Segment prologs are used internally within
retained segments and also appear in
metafiles. This error can also arise from an
End Prolog order that is outside a prolog.

Appendix C. Error Explanations C-23

PMERR_PS_IS_ASSOCIATED

PMERR_RESOURCE_DEPLETION

C-24 PM Programming Reference Vol \I

An attempt was made to access the
presentation space from more than one
thread simultaneously.

An attempt was made to destroy a
presentation or associate a presentation
space that is still associated with a device
context.

An attempt was made to access a
presentation space that is not associated
with a device context.

An attempt to create a message queue has
failed because the value specified for the
size of the message queue is too large.

A request was made for the outline of a
bit-map font. Outlines can only be returned
for vector font characters.

An attempt was made to create a realizable
logical color table on a device driver that
does not support this function.

An attempt was made to perform a region
operation on a region that is selected as a
clip region.

An internal resource depletion error has
occurred.

The specified resource identity could not be
found.

The segid and refsegid specified with
GpiSetSegmentPriority were the same.

A call stack empty condition was detected
when attempting a pop function during
GpiPop or segment drawing.

A call stack full condition was detected
when attempting to call a segment using
GpiCallSegmentMatrix, attempting to
preserve an attribute, or during segment
drawing.

An attempt was made to issue GpiGetData
to a segment that was currently open.

An attempt was made to issue
GpiDrawFrom, GpiCorrelateFrom or
GpiQuerySegmentPriority for a segment
that was not chained.

PMERR_SEG_ OVFLOW

PMERR_SETID _NOT_FOUND

PMERR_SMB_ OVFLOW

PMERR_SOMDD JS_ACTIVE

PMERR_SOMDD _NOT_STARTED

PM ERR_SOU RCE_SAME_AS_TARG ET

PMERR_SPL_CANNOT _OPEN_FILE

PMERR_SPL_DD_NOT_FOUND

PMERR_SPL_DEVICE_ALREADY _EXISTS

PMERR_SPL_DEVICE_LlMIT _REACHED

PMERR_SPL_DEVICE_NOT _INSTALLED

PMERR_SPL_DRIVER_ERROR

PMERR_SPL_FILE_NOT _FOUND

PMERR_SPL_HARD_NETWORK_ERROR

PMERR_SPL_INI_FILE_ERROR

PMERR_SPL_INV _DATATYPE

PMERR_SPL_INV_DRIVER_DATATYPE

PMERR_SPL_INV _FORMS_CODE

PMERR_SPL_INV _HSPL

The specified segment identifier did not
. exist.

The input PIF has more than 1000 called
segments. This has overflowed an internal
buffer.

The maximum permitted retained segment
store size limit was exceeded.

An attempt was made to specify a setid
that was already in use as the currently
selected character, marker or pattern set.

An attempt was made to delete a setid that
did not exist.

The input PIF has more than 100 symbol
sets defined. This has overflowed an
internal buffer.

The DSOM daemon is already active.

The DSOM daemon failed to start.

The direct manipulation source and target
process are the same.

Unable to open the file.

The Presentation Manager device driver
definition could not be found.

The device already exists.

The limit on the number of devices has
been reached.

The device has not been installed.

No Presentation Manager device driver
supplied or found.

The Presentation Manager device driver
has not been installed.

Unable to find the file.

Hard network error.

Error accessing the initialization file.

The spool file data type is invalid.

The data type is invalid for the Presentation
Manager device driver.

The forms code for the job is invalid.

The spooler handle is invalid.

Appendix C. Error Explanations C-25

PMERR_SPL_INV.:..,JOB_ID The job id is invalid.

PMERR_SPL_INV_LENGTH_OR_COUNT The length or count is invalid.

PMERR_SPL_INV_PRIORITY The priority for the job is invalid.

PMERR_SPL_INV _PROCESSOR_DATTYPE The data type is invalid for the spooler
queue processor.

PMERR_SPL_INV_QUEUE_NAME

PMERR_SPL_INV _TOKEN

PMERR_SPL_JOB_NOT_PRINTING

PMERR_SPL_JOB_PRINTING

PMERR_SPL_MANY_QUEUES_ASSOC

The spooler queue name is invalid.

The token is invalid.

The print job is not printing.

The print job is already printing.

More than one queue has been associated
with the printer.

PMERR_SPL_NO_CURRENT_FORMS_CODE There is no current forms code defined to

PMERR_SPL_NO_DATA

PMERR_SPL_NO_DEFAULT_QUEUE

PMERR_SPL_NO _DISK_SPACE

PMERR_SPL_NO_FREE_JOBJD

PMERR_SPL_NO _MEMORY

PMERR_SPL_NO_QUEUES_ASSOCIATED

PMERR_SPL_NOT _AUTHORISED

PMERR_SPL_PRINT _ABORT

PMERR_SPL_PRINTER_NOT _FOUND

PMERR_SPL_PROCESSOR_ERROR

PMERR_SPL_QUEUE_ALREADY _EXISTS

PMERR_SPL_QUEUE_ERROR

PMERR_SPL_QUEUE_NOT_EMPTY

PMERR_SPL_QUEUE_NOT_FOUND

C-26 PM Programming Reference Vol II

the Presentation Manager device driver.

No data supplied or found.

There is no default spooler queue for the
printer.

There is not enough free disk space.

There is no free job id available.

There is not enough free memory.

A queue has not been associated with the
printer.

The logical address does not exist (that is,
it is not defined in the initialization file).

Not authorized to perform the operation.

The job has already been aborted.

The printer definition could not be found.

No spooler queue processor supplied or
found.

The spooler queue processor has not been
installed.

The spooler queue already exists.

No spooler queue supplied or found.

The spooler queue contains print jobs.

The spooler queue definition could not be
found.

The spooler is not installed.

PMERR_SPL_ TEMP _NETWORK_ERROR

PMERR_SPL_TOO_MANV_OPEN_FILES

PMERR_SPOOLER_QP _NOT_DEFINED

The print job status string has been
truncated.

Temporary network error.

Too many open files.

The spooler queue processor has not been
defined.

The starting point specified for flood fill is
outside the current clipping path or region.

A request to write spooled output without
first issuing a STARTDOC was attempted.

The application started a new session in
the background.

Segment drawing or GpiPlayMetaFile was
stopped prematurely in response to a
GpiSetStopDraw request.

The maximum number of metafiles allowed
for a given process was exceeded.

An incomplete order was detected during
segment processing.

Unable to close the print device (for
example, powered off or offline).

An attempt was made to open segment
with segment identifier zero and the
ATTR_CHAINED segment attribute not
specified.

An unsupported attribute was specified in
the attrmask with GpiSetAttrs or
GpiQuery Attrs.

An attribute value was specified with
GpiSetAttrs that is not supported.

Ignore this error. It is reserved for system
use.

An overflow occurred for the use count of a
window.

An attempt was made to decrement the use
count of a window below zero.

The window specified in WinSendMsg was
not locked.

The Workplace Shell DSOM Server is
already active.

Appendix C. Error Explanations C-27

WPERR_INVALlD_FLAGS

WPERR_INVALlD_OBJECTID

WPERR_INVALlD_TARGET_OBJECT

C-28 PM Programming Reference Vol II

The Workplace Shell OSOM Server could
not be started.

An invalid flag was specified.

An invalid object 10 was specified.

An invalid target object was specified.

Appendix D. Standard Bit-Map Formats

There are four standard bit-map formats. All device drivers must be able to transiate
between any of these formats and their own internal formats. The standard formats are:

Bitcount Planes
1 1
4
8
24

These formats are chosen because they are identical or similar to all formats commonly used
by raster devices. Only single-plane formats are standard, but it is very easy to convert
these to any multiple-plane format used internally by a device.

Bit-Map Data
The pel data is stored in the bit map in the order that the coordinates appear on a display
screen. That is, the pel in the lower-left corner is the first in the bit map. Pels are scanned
to the right, and upward, from that position. The bits of the first pel are stored, beginning
with the most significant bits of the first byte. The data for pels in each scan line is packed
together tightly, but all scan lines are padded at the end, so that each one begins on a
ULONG boundary.

Bit-Map Information Tables
Each standard-format bit map must be accompanied by a bit-map information table.
Because the standard-format bit maps are intended to be traded between devices, the color
indexes in the bit map are meaningless without more information; for a description of this
structure, see BITMAPINF02.

Some functions use a structure that is similar to BITMAPINF02 but does not have the color
table array; for a description of this structure, see BITMAPINFOHEADER2. Wherever
BITMAPINF02 is shown, BITMAPINFO is also allowed. Similarly, wherever
BITMAPINFOHEADER2 is shown, BITMAPINFOHEADER is also allowed.

© Copyright IBM Corp. 1994 0-1

Bit-Map Example
To make the ordering of all the bytes clear, consider this simple example of a 5-by-3 array of
colored pels:

Red Green Blue Red Green
Blue Red Green Blue Red
Green Blue Red Green Blue

ULONG ExampleBitmap[] {
0x23,0x12,0x30,0x00
0x31,0x23,0x10,0x00
0x12,0x31,0x20,0x00

};

#define BLACK 0x00000000L
#define RED 0x00FF0000L
#define GREEN 0x0000FF00L
#define BLUE 0x000000FFL

struct BitmaplnfoTable Examplelnfo =
5,

};

3,
1,
4,
BLACK,RED,GREEN,BLUE,
BLACK,BLACK,BLACK,BLACK,
BLACK,BLACK,BLACK,BLACK,
BLACK, BLACK, BLACK, BLACK

Bit-Map File Format

/* bottom line */
/* middle line */
/* top line */

/* width */
/* height */
/* planes */
/* bitcount */
/* color table */

The operating system uses the same file format for bit maps, icons, and pointers in resource
files. In the following description, "bit map" refers to bit maps, icons, and pointers unless
otherwise specified.

Two formats are supported. In the first, a single-size version of the bit map is defined. This
is used whatever the target device.

The second format allows multiple versions of the bit map to be defined, including one or
more device-independent versions, and a number of device-dependent versions, each
intended for use with a particular device. I

In the case of icons and pointers, when more than one version of the bit map exists, the
preferred version is one that matches the device size of the icon or pointer; otherwise, the
device-independent version is used to scale a bit map to the required size.

The operating system provides pointers that match the requirements of the display device in
use, typically pointers are 32x32 pels, one bit per plane.

0-2 PM Programming Reference Vol II

Icons provided with the operating system are designed to match the requirements of the
most common display devices. The following versions of each icon are included in each file:

32x32 4 bpp (16 color)
40x40 4 bpp (16 color)
32x32 1 bpp (black and white)
20x20 1 bpp (black and white)
16x16 1 bpp (black and white)

The 32x32 versions are designed for VGA displays and for device-independent use.

The 40x40 version is for 8514/A and XGA displays.

The 20x20 and 16x16 are half-size icons designed for use as mini-icons.

For general bit maps, which may be of arbitrary size, the preferred version is one matching
the requested bit map size; otherwise one matching the display size is selected. If neither is
available, the device-independent version is used from which to scale a bit map.

For both formats, the definition consists of two sections. The first section contains general
information about the type, dimensions, and other attributes of the resource. The second
section contains data describing the pels that make up the bit map(s), and is in the format
specified in "Bit-Map Data" on page D-1.

In the multiple-version format, the first section contains an array of
BITMAPARRAYFILEHEADER or BITMAPARRAYFILEHEADER2 structures. The format of
these structures are as follows:

typedef struct BITMAPARRAYFIlEHEADER {
USHORT' - usType;
UlONG cbSize;
ULONG off Next;
USHORT cxDisplay;
USHORT cyDisplay;
BITMAPFIlEHEADER bfh;

} BITMAPARRAYFI lEHEADER;

typedefBITMAPARRAYFI lEHEADER *PBITMAPARRAYFI lEHEADER;

typedef struet BITMAPARRAYFIlEHEADER2 {
USHORT - usType;
ULONG ebSize;
ULONG off Next;
USHORT.cxDi spl ay;
.USHORT .. ' , '.' cyDispl ay;
BHMAPFILEHEADER,2 . .. bfh2;

}.BITMAPARRAYFllEHEADER2;

typedefBjTMAPARRAYFtlEHEADER2 *PB ITMAPARRAYFI lEHEADER2;

Appendix D. Standard Bit-Map Formats 0-3

The device-independent version must be the first BITMAPARRAYFILEHEADER or
BITMAPARRAYFILEHEADER2 defined.

In the single-size format, the BITMAPARRAYFILEHEADER or
BITMAPARRAYFILEHEADER2 structure is not present. The definition consists of one or two
BITMAPFILEHEADER or BITMAPFILEHEADER2 structures.

The format of the BITMAPFILEHEADER and BITMAPFILEHEADER2 structure are defined
below:

typedef struct_BITMAPFILEHEADER {
USHORT usType;
ULONG cbSize;
SHORT xHotspot;
SHORT yHotspot;
USHORT off Bits;
BITMAPINFOHEADER bmp;
} BITMAPFILEHEADER;

typ.edef BITMAPFILEHEAD.ER *PBITMAPFILEHEADER;

typedef struct _BITMAPFILEHEADER2
USHORT usType;
ULONG cbSize;
SHORT xHotspot;
SHORT yHotspot;
USHORT off Bits;
BITMAPINFOHEADER2 bmp2;
} BITMAPFILEHEADER2;

typedef BITMAPFI LEHEADER2 *PBITMAPFI LEHEADER2;

For icons and pointers, the ey field in bmp is actually twice the pel height of the image that
appears on the screen. This is because these types actually contain two full bit-map pel
definitions. The first bit-map definition is the XOR mask, which contains invert information (0
= no invert, 1 = invert) for the pointer or icon. The second is the AND mask, which
determines whether the painter or the screen is shown (0 = black/white, 1 = screen/inverse
screen).

For color icons or pointers, there are two bit-maps involved: one that is black and white and
consists of an AND and an XOR mask, and one that is color that defines the color content.

The ey field in the BITMAPINFOHEADER2 structure for the color bit-map must be the real
height, that· is, half the value specified for the black and white bit-map. The ex fields must be
the same.

0-4 PM Programming Reference Vol II

The following table shows how these two bit-maps are used for a color icon or pointer:

XOR AND COLOR
1 1 x Invert screen
0 0 x Use color x
0 1 x Transparency
1 0 x Use color x

For color icons or pOinters, two BITMAPFILEHEADER or BITMAPFILEHEADER2 structures
are therefore required:

BITMAPFILEHEADER2 with usType BFT_COLORICON or BFT_COLORPOINTER
BITMAPINFOHEADER2 (part of BITMAPFILEHEADER2)
Color table

BITMAPFILEHEADER2 with same usType
BITMAPINFOHEADER2 (part of BITMAPFILEHEADER2)
Color table

**
bits for one bit-map
**
**
bits for other bit-map
**

The usType for the first BITMAPFILEHEADER2 is either BFT_COLORICON or
BFT _COLORPOINTER. This means that a second BITMAPFILEHEADER2 is present as
part of the definition of a color icon or pointer. The first The first BITMAPFILEHEADER2
structure contains the information for the black and white AND and XOR masks, while the
second BITMAPFILEHEADER2 structure contains the information for the color part of the
pointer or icon.

BITMAPFILEHEADER and BITMAPINFOHEADER can occur in place of
BITMAPFILEHEADER2 and BITMAPINFOHEADER2 in this example.

Appendix D. Standard Bit-Map Formats 0-5

For the multiple version format, the file is as follows:

BITMAPARRAYFILEHEADER2 for device-independent version
BITMAPFILEHEADER2 (part of BITMAPARRAYFILEHEADtR2)

BITMAPINFOHEADER2 (part of BITMAPFILEHEADER2)
Color table

BITMAPFILEHEADER2
BITMAPINFOHEADER2
Color table

only if this is a color icon or pointer

BITMAPARRAYFILEHEADER2 for first device-dependent version
BITMAPFILEHEADER2 (part of BITMAPARRAYFILEHEADER2)

BITMAPINFOHEADER2 (part of BITMAPFILEHEADER2)
Color table

BITMAPFILEHEADER2
BITMAPINFOHEADER2
Color table

only if this is a color icon or pointer

Further BITMAPARRAYFILEHEADER2 groups occur here as required
for additional device-dependent versions

**
bits for one bit-map
**
**
bits for next bit-map
**

And so on for as many bit-maps as necessary.

As before, BITMAPARRAYFILEHEADER, BITMAPFILEHEADER, and
BITMAPINFOHEADER, can occur in place of BITMAPARRAYFILEHEADER2,
BITMAPFILEHEADER2, and BITMAPINFOHEADER2,

0-6 PM Programming Reference Vol II

Appendix E. Fonts Supplied with the OS/2 Operating
System

OS/2* outline fonts and Presentation Manager* bit map fonts are supplied by the operating
system.

OS/2 Outline Fonts
The following Adobe** Type 1 fonts are supplied with OS/2:

Family Name Face Name

Times New Roman** Times New Roman
Times New Roman Bold
Times New Roman Bold Italic
Times New Roman Italic

Helvetica** Helvetica
Helvetica Bold
Helvetica Bold Italic
Helvetica Italic

Courier Courier
Courier Bold
Courier Bold Italic
Courier Italic

Symbol Symbol

The Courier, Tms Rmn, and Swiss family fonts that were supplied with OS/2 release 1.1 and
1.2 are no longer supplied. Using one of the old names results in one of the new fonts listed
above being used, as follows:

Old Family/Face Name Font Used.
Roman/Tms Rmn Times New Roman
Swiss/Helv Helvetica

These fonts are provided in an efficient binary format for use by the OS/2 Adobe Type
Manager. They are also provided in standard Type 1 format (PFB and AFM) for use with the
OS/2 PostScript** printer device driver.

* Trademark of the IBM Corporation.

** Trademarks of Adobe Systems Incorporated, Monotype, and Linotype.

© Copyright IBM Corp. 1994 E-1

Presentation Manager Bit Map Fonts
The following tables list all system bit map fonts available using the Graphics Programming
Interface. The first table applies to hardware that does not conform to the International
Standards Organization (ISO) 9.241. (See "International Standards Organization (ISO) 9241"
on page E-7 for more information on ISO 9241.) The second table lists the fonts supplied
with OS/2 for IBM hardware that does conform to ISO 9241.

During system installation, the operating system determines the type of display adapter
available on your computer and installs only the fonts which match the device resolution.
Since additional device bit map fonts may be available on specific devices, you may have to
install the correct bit map fonts if you change your display device after the operating system
is installed.

Fonts Supplied for ISO 9241 Non-Conforming Hardware
The following information for each font is included in the table:

Points This is the point size of the font, on a device whose resolution matches that of the
font, (see "Device" below).

Ave Wid This is the average width in pels of alphabetic characters weighted according to
US English letter frequencies.

Max Wid This is the maximum width in pels of all characters in the font. This field is not
necessarily the maximum width of any character in the code page. It could be
used to ensure that the horizontal space allocated on a display or printer is big
enough to handle any character.

Height This is the height in pels of the font. This is the minimum number of rows of pels
needed to output any character of the font on a given baseline. This field may be
larger than necessary for a given code page. It could be used to ensure that the
vertical space allocated on a display or printer is big enough to handle any
character.

Device This is the X and Y resolution in pels per inch at which the font is intended to be
used. Only those fonts which match the device resolution of the installed display
driver are available on the system. If the installed display is changed, the install
process will reinstall the proper font sets for the new adapter. The IBM devices
whose device drivers report these resolutions are:

96 x 48
96 x 72
96 x 96
120 x 120

CGA
EGA
VGA and XGA (in 640 x 480 mode)
8514/A and XGA (in 1024 x 768 mode)

Note: These values are approximate representations of the actual resolution,
which in the case of displays depends on which monitor is attached.
Consequently the point size of characters on the screen is also
approximate.

E-2 PM Programming Reference Valli

The following table applies to hardware that does not conform to ISO 9241.

Family Face Name Points AvWid Max Height Device
Wid

Courier Courier 8 8 8 7 96x48

8 8 10 96x72

8 8 13 96x96

9 9 16 120x120

10 9 9 8 96x48

9 9 12 96x72

9 9 16 96x96

12 12 20 120x120

12 12 12 10 96x48

12 12 15 96x72

12 12 20 96x96

15 15 25 120x120

System System 8 6 20 8 96x48
Proportional Proportional

10 6 20 12 96x96

10 6 20 16 96x96

10 8 23 20 120x120

11 10 23 23 120x120

System System 8 8 8 8 96x48
Monospaced Monospaced

10 8 8 12 96x72

10 8 8 16 96x96

10 9 9 20 120x120

Helv Helv 8 5 13 6 96x48

5 13 10 96x72

5 13 13 96x96

6 14 16 120x120

10 6 15 8 96x48

6 14 12 96x72

6 14 16 96x96

7 20 20 120x120

12 7 17 10 96x48

7 17 15 96x72

7 17 20 96x96

Appendix E. Fonts Supplied with the OS/2 Operating System E-3

Family Face Name Points AvWid Max Height Device
Wid

9 21 25 120x120

14 8 21 12 96x48

8 21 18 96x72

8 21 24 96x96

11 26 29 120x120

18 11 26 15 96x48

10 26 22 96x72

11 26 29 96x96

13 34 36 120x120

24 14 35 19 96x48

14 35 28 96x72

14 35 37 96x96

18 45 46 120x120

Tms Rmn Tms Rmn 8 4 12 6 96x48

4 13 10 96x72

4 12 13 96x96

5 14 16 120x120

10 6 15 8 96x48

5 14 12 96x72

5 14 16 96x96

7 19 20 120x120

12 7 18 10 96x48

6 18 15 96x72

6 16 19 96x96

8 23 23 120x120

14 7 21 11 96x48

7 21 16 96x72

7 20 21 96x96

10 26 27 120x120

18 10 26 14 96x48

10 26 20 96x72

10 26 27 96x96

12 34 33 120x120

24 14 35 18 96x48

13 35 26 96x72

E-4 PM Programming Reference Vol II

Family Face Name Points AvWid Max Height Device
Wid

13 35 35 96x96

16 46 43 120x120

Fonts Supplied for ISO 9241 Conforming Hardware
The following table lists the fonts and sizes that have been tested and certified as passing
the ISO 9241 black text on white background criteria for the three IBM displays that conform
to the standard. These displays are:

• 9515 - A 14 inch XGA display.
• 9517 - A 17 inch XGA display.
• 9518 - A 14 inch VGA display.

See "International Standards Organization (ISO) 9241" on page E-7 for information on ISO
9241.

The following information about each font is also included in the table:

P The point size of the font.
AW The average character width in pels in the font.
MW The maximum character width in pels in the font.
HE The height in pels of the font (maximum baseline extent).
Device The X and Y resolution in pels per inch on the device the font is intended to be

used. The IBM devices whose device drivers report these resolutions are:
96 x 96 VGA and XGA (in 640 x 480 mode)
120 x 120 XGA (in 1024 x 768 mode)

Family Face P AW MW HE Device 9515 9517 9518
Name Name

Courier Courier 8 8 8 13 96 96 No No No
ISO 8 10 10 16 120 120 No No n/a

9 8 8 15 96 96 Yes Yes Yes
10 10 10 16 96 96 Yes Yes Yes
10 12 12 20 120 120 No No n/a
12 12 12 20 96 96 Yes Yes Yes
12 15 15 25 120 120 Yes Yes n/a

Appendix E. Fonts Supplied with the OS/2 Operating System E-5

Family Face P AW MW HE Device 9515 9517 9518
Name Name

Helv Helv ISO 8 5 13 13 96 96 No No No
8 7 14 16 120 120 No No n/a
9 6 13 15 96 96 Yes Yes Yes
9 8 20 21 120 120 Yes Yes n/a

10 7 14 16 96 96 Yes Yes Yes
10 9 20 21 120 120 Yes Yes n/a
12 9 17 20 96 96 Yes Yes Yes
12 10 21 25 120 120 Yes Yes n/a
14 10 21 24 96 96 Yes Yes Yes
14 12 26 29 120 120 Yes Yes n/a
18 12 26 29 96 96 Yes Yes Yes
18 15 34 36 120 120 Yes Yes n/a
24 14 34 36 96 96 Yes Yes Yes
24 19 45 46 120 120 Yes Yes n/a

Tms Rmn Tms Rmn 8 5 12 13 96 96 No No No
ISO 8 7 15 16 120 120 No No n/a

9 6 12 15 96 96 Yes Yes Yes
10 7 14 16 96 96 Yes Yes Yes
10 8 17 19 120 120 No Yes n/a
12 8 16 19 96 96 Yes Yes Yes
12 10 23 22 120 120 Yes Yes n/a
14 9 23 22 96 96 Yes Yes Yes
14 11 26 27 120 120 Yes Yes n/a
18 11 26 27 96 96 Yes Yes Yes
18 14 34 34 120 120 Yes Yes n/a
24 14 34 34 96 96 Yes Yes Yes
24 17 46 43 120 120 Yes Yes n/a

System System 9 6 13 15 96 96 Yes Yes Yes
Propor- Propor- 10 6 20 16 96 96 Yes Yes Yes
tional tional 10 8 23 20 120 120 No Yes n/a

12 10 23 22 120 120 Yes Yes n/a

System System 10 8 8 16 96 96 Yes Yes Yes
Mono- Mono- 10 10 10 21 120 120 Yes Yes n/a
spaced spaced

See "International Standards Organization (ISO) 9241" on page E-7 for more information on
ISO 9241. .

E-6 PM Programming Reference Vol II

International Standards Organization (ISO) 9241
ISO 9241 is an international standard covering health and safety in the work place for users
of visual display terminals. Part 3 of this standard covers clarity and legibility of text
displayed on computer screens; it places requirements on minimum sizes and luminance
contrast. The presence of the FM_SEL_IS09241_TESTED flag in the FONTMETRICS
structure indicates that the font has been tested for ISO compliance.

Note: While the fonts were primarily tested for meeting the ISO standard, they have also
been designed to meet the German standard DIN 66234. Where the two standards
differ, the fonts have been designed to meet the stricter requirement.

The FMJSO_xxx flags indicate the results of the test on the three IBM* displays that conform
to the standard. These are the IBM 9515, 9517, and 9518 color displays at the supported
resolutions of 640 x 480 and 1024 x 768. To determine whether a non-IBM display complies
with ISO 9241, contact the manufacturer. The current display type can be established using
VioGetConfig.

In order for applications to meet the standard, they have to ensure that they use only fonts
that have been tested and passed. You can determine this by examining the new
FM_SELJS09241_TESTED flag in the fsSelection parameter in the FONTMETRICS
structure, the FMJSO_xxx flags and the sXDeviceRes and sYDeviceRes fields in the
structure.

See Appendix E, "Fonts Supplied with the OS/2 Operating System" on page E-1 for the
table describing ISO 9241 compliant fonts.

* Trademark of IBM Corporation ..

Appendix E. Fonts Supplied with the OS/2 Operating System E-7

E-8 PM Programming Reference Vol II

Appendix F. Format of Interchange Files

A metafile is a file in which graphics are stored. The file is application-created, and it
contains the graphics orders generated from those GPI calls that are valid in a metafile.
Metafiled graphics can be reused by the application that created them. They can also be
made available to other applications at the same, or at a different, workstation.

This section describes the restrictions which apply when generating the metafile and gives
detail of the overall structure. For the graphics orders descriptions, see "Graphics Orders" in
the Graphics Programming Interface Programming Reference.

Metafile Restrictions
The following restrictions apply to the generation of all metafiles, and also to the generation
of a PM_Q_STD print file to a ~O_QUEUED device:

• If GpiWCBitBlt or GpiBitBlt is used to copy a bit map to a device context in an
application, the application should not delete that bit map handle with GpiDeleteBitmap
before the device context is closed (metafile is closed).

• GpiSetPS must not be used.

• GpiSetPageViewport is ignored.

The following section lists some general rules that must be followed when creating a metafile
that is to be acceptable to SAA-conforming implementations, or replayed into a presentation
space that is in draw-and-retain or retain mode (see "GpiSetDrawingMode" in Graphics
Programming Interface Programming Reference).

• These items must be established or defaulted before any drawing occurs to the graphics
presentation space, and not changed subsequently:

- The graphics field (GpiSetGraphicsField). For an SAA-conforming metafile, the
graphics field must be defaulted or set to no clipping.
The code page for the default character set (GpiSetCp).
The color table or palette (GpiCreateLogColorTable or GpiCreatePalette). The size
of the color table must not exceed 31 KB (KB equals 1024 bytes).
The default viewing transform (GpiSetDefaultViewMatrix).
The setting of the draw controls (GpiSetDrawControl). DCTL_DISPLAY must be
defaulted or set ON.

- The default values of attributes (see "GpiSetDefAttrs" in the Graphics Programming
Interface Programming Reference), viewing limits (see "GpiSetDeNiewingLimits" in
the Graphics Programming Interface Programming Reference), primitive tag (see
"GpiSetDefTag" in the Graphics Programming Interface Programming Reference)
and arc parameters (see "GpiSetDefArcParams" in the Graphics Programming
Interface Programming Reference).

© Copyright IBM Corp. 1994 F-1

• These calls should not be used:

- GpiBitBlt
- GpiDeleteSetld (note that this means that local identifiers cannot be used again

within the picture)
- GpiErase
- GpiExcludeClipRectangle
- GpilntersectClipRectangle
- GpiOffsetClipRegion
- GpiPaintRegion
- GpiResetPS
- GpiSetClipRegion
- GpiSetPel
- GpiSetPS
- DevEscape (for an escape which is metafiled).

• GpiCreateLogFont must not redefine a local identifier that has previously been used
within the picture.

• The metafile context must not be reassociated.

• If a bit map is used as the source of a GpiWCBitBlt operation, or as an area-fill pattern,
it must not be modified or deleted (GpiDeleteBitmap) before the metafile is closed.

• Only these foreground mixes must be used (see "GpiSetMix" in the Graphics
Programming Interface Programming Reference):

- FM DEFAULT
- FM OR
- FM_OVERPAINT
- FM_LEAVEALONE

• Only these background mixes must be used (see "GpiSetBackMix" in the Graphics
Programming Interface Programming Reference):

- BM_DEFAULT
- BM_OVERPAINT
- BM_LEAVEALONE

• If palettes are used (see "GpiCreatePalette" in the Graphics Programming Interface
Programming Reference): the palette that is metafiled is the one in force when the
metafile device context is dissociated from the (final) presentation space. If the palette is
changed during the course of the picture (using GpiSetPaletteEntries), it must therefore
only be with incremental additions.

Note: There is no restriction concerning the use of primitives outside segments. These are
metafiled in segment(s) with zero identifier.

F-2 PM Programming Reference Vol II

Metafile Data Format
This section describes the format of the data in a metafile, as it would be stored in an OS/2*
disk file.

Metafile data is stored as a sequence of structured fields. Each structured field starts with
an eight-byte header consisting of a two-byte length field and a three-byte identifier field.
These are followed by a one-byte flags field and a two-byte segment sequence number field.

The length field contains a count of the total number of bytes in the structured field, including
the length field. The identifier field uniquely identifies the type of the structured field.

The flags and segment sequence number fields are always zero.

Following the header are positional parameters that are optional and dependent on the
particular structured field.

Following the positional parameters are non-positional parameters called triplets. These are
self-defining parameters and consist of a one-byte length field, followed by a one-byte
identifier field, followed by the data of the parameter.

The length field contains a count of the total number of bytes in the triplet, including the
length and identifier fields. The identifier field identifies uniquely the type of the triplet.

A metafile is structured into a number of different functional components; for example,
document and graphics object. Each component comprises a number of structured fields,
and is delimited by "begin-component" and "end-component" structured fields. Structured
fields marked as required, inside an optional structured field bracket, are required if the
containing bracket is present.

The graphics orders that describe a picture occur in the graphics data structured field. See
"Structured Field Formats" on page F-4 for more information.

* Trademark of IBM Corporation

Appendix F. Format of Interchange Files F-3

Structured Field Formats
The format of the various structured fields is given below:

Begin Document

Structured Field Introducer (BOT): required

0-1 Length Oxn+ 1 E
2-4 BDT OxD3A8A8
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Document name C'OOOO 0001'
8 Architecture version OxOO
9 Document security OxOO

Triplets (all required)

o Length Ox05
1 Triplet Id Ox18
2 Interchange set type Ox03 (resource document)
3-4 Base set definition OxOCOO (level 12, version 0)

o Length Ox06
1 Triplet Id Ox01
2-5 GCID

o Length Oxn+ 1
1 <Triplet Id Ox65
2-n Comment, used for metafile description of up to 252 bytes.

Begin Resource Group (BRG): required

Structured Field Introducer

0-1 Length Ox0010
2-4 BRG OxD3A8C6
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Resource group name C'OOOO 0002'

F-4 PM Programming Reference Vol II

Begin Color Attribute (BCA) Table: required

Structured Field Introducer

0-1 Length Ox0010
2-4 8CA OxD3A877
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Color table name CIOOOO 00041

Color Attribute Table (CAD: required

Structured Field Introducer

0-1 Length Oxn+8
2-4 CAT OxD3B077
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

Base Part (required)

o Flags
o Reserved 8 101

1 Reset
BIOI Do not reset to default
BI11 Do reset to default

2-7 Reserved 8 10000001

1 Reserved OxOO
2 LCTID OxOO

Element list(s) (triple generating) are mutually-exclusive. One or other is required.

Element List (repeating)

o Length of this parameter
1 Type Ox01: element list
2 Flags OxOO: reserved
3 Format

Ox01 RG8
4-6 Starting Index

(Top 8yte Truncated)
7 Size of RGB component1 Ox08
8 Size of RGB component2 Ox08
9 Size of RGB component3 Ox08
10 Number of bytes in each following color triple Ox04
11-m Color triples

Appendix F. Format of Interchange Files F-5

Triple Generating

o Length of this parameter OxOA
1 Type Ox02: bit generator
2 Flags

o ABFlag
B'O' Normal

1-7 Reserved B'OOOOOOO'
3 Format

Ox01 RGB
4-6 Starting index (top byte truncated)

7 Size of RGB component1 Ox08
8 Size of RG B component2 Ox08
9 Size of RGB component3 Ox08

End Color Attribute (ECA) Table: required

Structured Field Introducer

0-1 Length Ox0010
2-4 ECA OxD3A977
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Color table name C'OOOO 0004'

Begin Image Object (BIM): optional, repeating

Structured Field Introducer

0-1 Length Ox0010
2-4 BIM OxD3A8FB
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Image name G'xxxx xxxx'

Begin Resource Group (BRG): optional

Structured Field Introducer

0-1 Length Ox0010
2-4 BRG OxD3A8G6
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Resource group name G'xxxx xxxx'

F-6 PM Programming Reference Vol II

Color Attribute Table (BCA): optional

Structured Field Introducer

0-1 Length Ox0010
2-4 BeA OxD3A877
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Color table name C'xxxx xxxx'

Color Attribute Table (CAD: required

Structured Field Introducer

0-1 Length
2-4 CAT OxD3B077
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

Base Part

o Flags OxOO
1 Reserved OxOO
2 LUTID

Element List (repeating)

o Length of this parameter
1 Type Ox01: element list
2 Flags OxOO: reserved
3 Format Ox01: RGB
4-6 Starting index

(top byte truncated)
7 Size of RGB component1 Ox08
8 Size of RGB component2 Ox08
9 Size of RGB component3 Ox08
10 Number of bytes in each following color triple Ox03
11-n Color triples

End Color Attribute Table (ECA): required if BCA present

Structured Field Introducer

0-1 Length Ox0010
2-4 ECA OxD3A977
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Appendix F. Format of Interchange Files F-7

Parameters

0-7 Color Table name C'xxxx xxxx'

End Resource Group (ERG): required if BRG present

Structured Field Introducer

0-1 Length OxOO 1 0
2-4 ERG Ox03A9C6
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Resource Group name C'xxxx xxxx'

Begin Object Environment Group (BOG): optional

Structured Field Introducer

0-1 Length Ox0010
2-4 BOG Ox03A8C7
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Object environment group name C'xxxx xxxx'

Map Color Attribute (MCA) Table: required

Structured Field Introducer

0-1 Length Ox001A
2-4 MCA Ox03AB77
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-1 Length

Triplet (required)

o Length OxOC
1 Triplet type: fully qualified name Ox02
2 Type: ref to Begin Resource Object Ox84
3 100xOO
4-11 Color table name C'xxxx xxxx'

F-8 PM Programming Reference Vol \I

Icid (required)

o Length Ox04
1 Triplet type: resource local 10 Ox24
2 Type color table resource Ox07
3 Local identifier (LUT-IO) Ox01

End Object Environment Group (EOG): required if BOG present

Structured Field Introducer

0-1 Length Ox0010
2-4 EOG Ox03A9C7
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters·

0-7 Object Environment Group name G'xxxx xxxx'

Image Data Descriptor (100): required

Structured Field Introducer

0-1 Lepgth Ox0011
2-4 1000x03A6FB
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

o Unit of measure:
OxOO tens of inches
Ox01 tens of centimeters

1-2 X resolution image points / UOM
3-4 Y resolution image points / UOM
5-6 X extent of image PS
7-8 Y extent of image PS

Image Picture Data (IPD): required

Structured Field Introducer

0-1 Length
2-4 I PO Ox03EEFB
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters (all required and in this order, except that only one of Image LUT-ID and
IDE structure is present)

Appendix F. Format of Interchange Files F-9

Begin Segment

o Type Ox70: begin segment
1 Length of following OxOO

Begin Image Content

o Type Ox91: Begin Image Content
1 Length of following Ox01
2 Format OxFF

Image Size

o Type Ox94: image size
1 Length of following Ox09
2 Units of measure Ox02: logical
3-4 Horizontal resolution
5-6 Vertical resolution
~8 H~g~inpe~

9-10 Width in pels

Image Encoding

o Type Ox95: image encoding
1 Length of following Ox02
2 Compression algorithm Ox03: none
3 Recording algorithm Ox03: bottom-to-top

Image IDE-Size

o Type Ox96: image IDE-Size
1 Length of following Ox01
2 Number of bits per element

Image LUT-ID (For bit maps with other than 24 bits per pel)

o Type Ox97 Image LUT-ID
1 Length of following Ox01
2 LUT-ID

IDE Structure (For bit maps with 24 bits per pel)

o Type Ox9B: IDE structure
1 Length of following Ox08
2 Flags:

o ABFlag
B'O' Normal (Additive)

1-7 Reserved B100000001
3 Format

Ox01 RGB

F-10 PM Programming Reference Vol II

4-6 Reserved OxOOOOOO
7 Size of element 1
8 Size of element 2
9 Size of element 3

Image Picture Data (IPD): required. repeating

Structured Field Introducer

0-1 Length
2-4 IPO Ox03EEFB
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

Image Data

0-1 Type OxFE92: image data
2-3 Length of following
4-n Image data (scan lines of bit maps)

End Image Content (required, only present in last Image Picture Data)

o Type Ox93: End Image Content
1 Length of following OxOO

End Segment (required, only present in last Image Picture Data)

o Type Ox71: end segment
1 Length of following OxOO

End Image Object (ElM): required if BIM present

Structured Field Introducer

0-1 Length Ox0010
2-4 EI M Ox03A9FB
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Image name C'xxxx xxxx'

Begin Graphics Object (BGR): required

Structured Field Introducer

0-1 Length Ox0010
2-4 BGR Ox03A8BB
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Appendix F. Format of Interchange Files F-11

Parameters

0-7 Graphics object name C'OOOO 0007'

Begin Object Environment Group (BOG): optional

Structured Field Introducer

0-1 Length Ox0010
2-4 LOG OxD3A8C7
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Object Environment Group name C'OOOO 0007'

Map Color Attribute Table (MCA): required

Structured Field Introducer

0-1 Length Ox0016
2-4 MCA OxD3AB77
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-1 Length

Triplet (required)

o Length OxOC
1 Triplet type: fully qualified name Ox02
2 Type: ref to Begin Resource Object Ox84
3 ID OxOO
4-11 Color table name C'OOOO 0004'

Map Coded Font (MCA: required, for default font

Structured Field Introducer

0-1 Length Ox20
2-4 MCF OxD3AB8A
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-1 Length

Triplets (required)

F-12 PM Programming Reference Vol II

Font name

o Length OxOC
1 Triplet type: fully qualified name Ox02
2 Type: ref to coded font Ox84
3 100xOO
4-11 Coded font name: C'nnxx xxxx'

where n is OxFF

Icid

o Length Ox04
1 Triplet type: Resource Local 10 Ox24
2 Type: Coded Font Resource Ox05
3 Local identifier (LCIO) OxOO

Font Binary GCID

o Length Ox06
1 Triplet type: Font Binary GCIO Ox20
2-5 GCIO

Map Coded Font (MCA: optional, repeating, for loaded fonts

Structured Field Introducer

0-1 Length Ox58
2-4 MCF Ox03AB8A
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-1 Length

Triplets (required)

Font name

o Length OxOC
1 Triplet type: fully qualified name Ox02
2 Type: ref to coded font Ox84
3 100xOO
4-11 Coded font name

Icid

o Length Ox04
1 Triplet type: Resource Local 10 Ox24
2 Type: coded font resource Ox05
3 Local identifier (LCIO)

Appendix F. Format of Interchange Files F-13

Font Attributes

o Length Ox14
1 Triplet type: Font Descriptor Ox1 F
2 Weight Glass
3 Width Class
4-5 Font Height
6-7 Char Width
8 Descript Flags
9 Usage Codes
10 Family
11 Activity Class
12 Font Quality
13-14 CAP Height
15-16 X Height
17-18 Line Density
19 Use Flags

Font Binary GelD

o Length Ox06
1 Triplet type: Font Binary GCID Ox20
2-5 GCID

Font Typeface

o Length Ox24
Triplet type: fully qualified name Ox02

2 Type: ref to font typeface Ox08
3 ID OxOO
4-35 Font typeface C'xxx .. xxx'

Map Data Resource (MDR): optional, repeating

Structured Field Introducer

0-1 Length Ox1 D
2-4 MDR OxD3ABC3
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-1 Length

Triplets (required)

Bit-map Name

o Length OxOC
1 Triplet type: fully qualified name Ox02
2 Type: ref to Image Object Ox84

F-14 PM Programming Reference Vol II

3 100xOO
4-11 Image name C'xxxx xxxx'

Extended Resource Icid

o Length Ox07
1 Triplet type: Extended Resource Local 10 Ox22
2 Type: Image Resource Ox10
3-6 Bit-map handle

End Object Environment Group (EOG): required if BOG present

Structured Field Introducer

0-1 Length Ox0010
2-4 EOG Ox03A9C7
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Object Environment Group name C'OOOO 0007'

Graphics Data Descriptor (GOD): required

Structured Field Introducer

0-1 Length Oxnnnn
2-4 GOD OxD3A6BB
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters (all required and in this order)

o OxF7 Specify GVM Subset
1 Length of following data Ox07
2 OxBO drawing order subset
3-4 OxOOOO
5 Ox23 Level 3.2
6 Ox01 Version 1
7 Length of following field Ox01
8 Coordinate types in data

Ox04 Intel16
Ox051ntel32

o OxF6 Set Picture Descriptor
1 Length of following data
2 Flags

o B'O' Picture in 2D
1 Picture Dimensions

B'O' Not absolute (PU _ARBITRARY PS)
B'1' Absolute (example: PU_TWIPS PS)

Appendix F. Format of Interchange Files F-15

2 Picture Elements
BIOI Not pels
BI11 Pels (PU _PELS PS)

(Bit 1 must also be set)
3-7 B'OOOOO'

3 OxOO Reserved
4 Picture frame size coordinate type

Ox04 I ntel16
Ox05 Intel32

5 UnitsOfMeasure
OxOO Teninches
Ox01 Decimeter

6-11 or 6-17 (2 or 4 bytes) Resolution.
GPS Units / UOM on x axis
GPS Units / UOM on y axis
GPS Units / UOM on z axis

12-23 or 1S-41 (2 or 4 bytes) Window Size.
GPS X left, X right
GPS Y bottom, Y top
GPS Z near, Z far

o Ox21 Set Current Defaults
1 Length of following data
2 Set Default Parameter Format Ox08
3-4 Mask OxEOOO
5 Names Ox8F
6 Coordinates

OxOO Picture in 2D
7 Transforms

Ox04 Intel16
Ox05 Intel32

S Geometries
Ox041ntel16
Ox05 Intel32

o Ox21 Set Current Defaults
1 Length of following data
2 Set default viewing transform Ox07
3-4 Mask OxCCOC
5 Names Ox8F
6-n M11, M12, M21, M22, M41, M42 Matrix elements

o Ox21 Set Current Defaults
1 Length of following data
2 Set default line attributes Ox01
3-4 Mask - OR of as many of the following bits as are required:

OxSOOO Line type
Ox4000 Line width

F·16 PM Programming Reference Vol II

0x2000 Line end
Ox1000 Line join
Ox0800 Stroke width
Ox0008 Line color
Ox0002 Line mix

5 Flags
OxOF Set indicated default attributes to initial values. (Data field is not present

in this instance).
Ox8F Set indicated default attributes to specified values.

6-n Data - data values as required, in the following order if present.
No space is reserved for attributes for which the corresponding mask flag was
not set.
(1 byte) - Line type
(1 byte) - Line width
(1 byte) - Line end
(1 byte) - Line join
(G bytes) - Stroke width
(4 bytes) - Line color
(1 byte) - Line mix
(G=2 or 4 depending on the Geometrics parameter of Set Default Parameter
Format)

o Ox21 Set Current Defaults
1 Length of following data
2 Set Default Character Attributes Ox02
3-4 Mask - OR of as many of the following bits as are required:

Ox8000 Character angle
Ox4000 Character box
0x2000 Character direction
Ox1000 Character precision
Ox0800 Character set
Ox0400 Character shear
Ox0040 Character break extra
Ox0020 Character extra
Ox0008 Character color
Ox0004 Character background color
Ox0002 Character mix
Ox0001 Character background mix

5 Flags
OxOF Set indicated default attributes to initial values. (Data field is not present in

this case).
Ox8F Set indicated default attributes to specified values.

6-n Data - data values as required, in the following order if present.
No space is reserved for attributes for which the corresponding Mask flag was
not set.
(2*G bytes) - Character angle
(2*G + 4 bytes) - Character box
(1 byte) - Character direction

Appendix F. Format of Interchange Files F-17

(1 byte) - Character precision
(1 byte) - Character set
(2*G bytes) - Character shear
(4 bytes) - Character break extra
(4 bytes) - Character extra
(4 bytes) - Character color
(4 bytes) - Character background color
(1 byte) - Character mix
(1 byte) - Character background mix
(G=2 or 4 depending on the Geometrics parameter of Set Default Parameter
Format)

o Ox21 Set Current Defaults
1 Length of following data
2 Set Default Marker Attributes Ox03
3-4 Mask - OR of as many of the following bits as are required:

Ox4000 Marker box '
Ox1000 Marker precision
Ox0800 Marker set
Ox0100
Ox0008
Ox0004
Ox0002
Ox0001

5 Flags

Marker symbol
Marker color
Marker background color
Marker mix
Marker background mix

OxOF Set indicated default attributes to initial values.
(Data field is not present in this instance)

Ox8F Set indicated default attributes to specified values.
6-n Data - data values as required, in this order if present.

No space is reserved for attributes for which the corresponding Mask flag was
not set.
(2*G bytes) - Marker box
(1 byte) - Marker preCision
(1 byte) - Marker set
(1 byte) - Marker symbol
(4 bytes) - Marker color
(4 bytes) - Marker background color
(1 byte) - Marker mix
(1 byte) - Marker background mix
(G=2 or 4 depending on the Geometrics parameter of Set Default Parameter
Format)

o Ox21 Set Current Defaults
1 Length of following data
2 Set Default Pattern Attributes Ox04

F-18 PM Programming Reference Vol II

3-4 Mask - OR of as many of the following bits as are required:
Ox0800 Pattern set
Ox0100 Pattern symbol
Ox0080 Pattern reference point
Ox0008 Pattern color
Ox0004 Pattern background color
Ox0002 Pattern mix
Ox0001 Pattern background mix
5 Flags

OxOF Set indicated default attributes to initial values.
(Data field is not present in this instance)

Ox8F Set indicated default attributes to specified values.
6-n Data - data values as required, in this order if present.

No space is reserved for attributes for which the corresponding Mask
flag was not set.
(1 byte) - Pattern set
(1 byte) - Pattern symbol
(2*G bytes) - Pattern reference point
(4 bytes) - Pattern color
(4 bytes) - Pattern background color
(1 byte) - Pattern mix
(1 byte) - Pattern background mix
(G=2 or 4 depending on the Geometrics parameter of Set Default
Parameter Format)

o Ox21 Set Current Defaults
1 Length of following data
2 Set Default Image Attributes Ox06
3-4 Mask - OR of as many of these bits as are required:

Ox0008 Image color
Ox0004 Image background color
Ox0002 Image mix
Ox0001 Image background mix

5 Flags
OxOF Set indicated default attributes to initial values. (Data field is

not present in this instance)
Ox8F Set indicated default attributes to specified values ..

6-n Data - data values as required, in this order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
(4 bytes) - Image color
(4 bytes) - Image background color
(1 byte) - Image mix
(1 byte) - Image background mix

o Ox21 Set Current Defaults
1 Length of following data
2 Set Default Viewing Window Ox05

Appendix F. Format of Interchange Files F-19

3-4 Mask - OR of as many of the following bits as are required:
Ox8000 x left limit
Ox4000 x right limit
Ox2000 y bottom limit
Ox1000 y top limit

5 Flags
OxOF Set indicated default attributes to initial values.

(Data field is not present in this case).
Ox8F Set indicated default attributes to specified values.

6-n Data - data values as required, in the following order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
(2*G bytes) - x left limit
(2*G bytes) - x right limit
(2*G bytes) - y bottom limit
(2*G bytes) - y top limit
(G=2 or 4 depending on the Geometrics parameter of Set Default
Parameter Format)

o Ox21 Set Current Defaults
1 Length of following data
2 Set Default Arc Parameters OxOB
3-4 Mask - OR of as many of the following bits as are required:

Ox8000 P value
Ox4000 Q value
0x2000 R value
Ox1000 S value

5 Flags
OxOF Set indicated default attributes to initial values.

(Data field is not present in this case).
Ox8F Set indicated default attributes to specified values.

6-n Data - data values as required, in the following order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
(G bytes) - P value
(G bytes) - Q value
(G bytes) - R value
(G bytes) - S value
(G=2 or 4 depending on the Geometrics parameter of Set Default
Parameter Format)

o Ox21 Set Current Defaults
1 Length of following data
2 Set Default Pick Identifier OxOC
3-4 Mask - OR of as many of the following bits as are required:

Ox8000 Pick identifier

F-20 PM Programming Reference Vol II

5 Flags
OxOF Set indicated default attributes to initial values.

(Data field is not present in this case).
Ox8F Set indicated default attributes to specified values.

6-n Data - data values as required, in the following order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
(4 bytes) - Pick identifier

o OxE7 Set Bit-map Identifier
1 Length of following data Ox07
2-3 Usage Flags Ox8000
4-7 Bit-map handle
8 Lcid

Graphics Data (GAD): optional, repeating

Structured Field Introducer

0-1 Length Oxn+9
2-4 GAD OxD3EEBB
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters (maximum length in one structured field is 32759)

Graphics Segment (optional, repeating)

Segment data (including the Begin Segment parameter) can be split at any point between
successive Graphics Data structured fields.

o Ox70 Begin Segment
1 Length of following data OxOE
2-5 Segment identifier
6 Segment attributes (1)

o 8'1' Invisible
1 8'1' Propagate invisibility
2 8'1' Detectable
3 8'1' Propagate detectability
6 8'1' Dynamic
7 8'1' Fast chaining

7 Segment attributes (2)
o 8'1' Non-chained
3 8'1' Prolog

8-9 Segment data length (low-order 2 bytes)
10-13 Reserved
14-15 Segment data length (high-order 2 bytes)
16-n Graphics orders (see the Graphics Programming Interface Programming

Reference)

Appendix F. Format of Interchange Files F-21

End Graphics Object (EGR)

Structured Field Introducer

0-1 Length Ox0010
2~4 EGR OxD3A9BB
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0·07 Graphics object name C·OOOO OOOT

End Resource Group (ERG): required

Structured Field Introducer

0-1 Length Ox0010
2-4 ERG OxD3A9C6
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Resource Group name C·OOOO 0002·

End Document (EOn: required

Structured Field Introducer

0-1 Length Ox0010
2-4 EDT OxD3A9A8
5 Flags OxOO
6-7 Segment sequence number OxOOOO

Parameters

0-7 Document name C·OOOO 0001·

F-22 PM Programming Reference Vol II

Appendix G. Initialization File Information

Initialization files include information about printers, queues, and system preferences set by
the user from the control panel. Applications can query this information by using the
PrfQueryProfileData, PrfQueryProfilelnt, PrfQueryProfileSize, and PrfQueryProfileString
functions.

All data in initialization files is accessed by a two-level hierarchy of application name, and
key name within an application. Presentation Manager system data is keyed off
"applications" that have names starting with PM_.

The application name/key name combinations that applications may need to use are listed
below, together with the definition of the corresponding data.

Note: Information that is prefixed with PM_SPOOLERxxxx can not always be modified
directly: The spooler validates all attempts to write information to the INI file that it
depends on.

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

© Copyright IBM Corp. 1994

"PM_ Control Panel"
"Beep"
integer
1 or O.

"PM _ Control Panel"
"LogoDisplayTime"
integer
-1 s time s 32767 milliseconds.

Indefinite display -1
No display 0
Timed display >0

"PM _ Control Panel"
"cxDoubleClick"
integer
SV _ CXDBLCLK size in pels.

"PM_ Control Panel"
"cyDoubleClick"
integer
SV _ CYDBLCLK size in pels.

"PM_Control Panel"
"cxMotionStart"
integer
SV _ CXMOTIONSTART size in pels.

"PM_ Control Panel"
"cyMotionStart"
integer
SV _ CYMOTIONSTART size in pels.

G-1

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/Value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

"PM_National"
"iCountry"
integer
country code:

Arabic
Australian
Belgian
Canadian-French
Danish
Finnish
French

785
61
32

2
45

358
33

German 49
Hebrew 972
Italian 39
Japanese 81
Korean 82
Latin-American 3
Netherlands 31
Norwegian 47
Portuguese 351
Simpl. Chinese 86
Spanish 34
Swedish 46
Swiss 41
Trad. Chinese 88
UK-English 44
US-English 1
Other country O.

"PM_National"
"iDate"
integer
O=MDY; 1 =DMY; 2=YMD.

"PM_National"
"iCurrency"
integer
Values have the following meanings:

o Prefix, no separator
1 Suffix, no separator
2 Prefix, 1 character separator
3 Suffix, 1 character separator.

"PM_National"
"iD ig its"
integer
n = number of decimal digits.

G-2 PM Programming Reference Vol II

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/Value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/Value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/Value

Application name
Key name
Type
Content/Value

Application name
Key name
Type
Content/Value

"PM_National"
"iTime"
integer
o = 12-hour clock; 1 = 24-hour clock.

"PM National"
"iLzero"
integer
o = no leading zero; 1 = leading zero.

"PM_National"
"s1159"
string
"am" for example. 3 chars max.

"PM_National"
"s2359"
string
"pm" for example. 3 chars max.

"PM_ National"
"sCurrency"
string
"$" for example. 3 chars max.

"PM_National"
"sThousand"
string
"," for example. 1 char max.

"PM_National"
"sOecimal"
string
"." for example. 1 char max.

"PM_National"
"sOate"
string
"f' for example. 1 char max.

"PM_ National"
"sTime"
string
":" for example. 1 char max.

"PM_ National"
"sUst"
string
"," for example. 1 char max.

Appendix G. Initialization File Information G-3

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

PM_Fonts

string
fully-qualified drive:\path\filename.ext.

"PM_SPOOLER"
"QUEUE"
string
<Queue name>;

where: <Queue name> is the name of the default queue (might
be NUll). This must be a key name for the
PM_SPOOLER_QUEUE application.

"PM_SPOOLER"
"PRINTER"
string
<Printer name>;

where: <Printer name> is the name of the default printer (might
be NULL).

Note: Use the SplQueryDevice and SplQueryQueue functions to retrieve the spooler
configuration data.

G·4 PM Programming Reference Vol II

Appendix H. Virtual Key Definitions

The PC VKEY set is shown in the following table:

Symbol Personal Computer AT Keyboard Enhanced Keyboard

V~BUnON1 These values are only used to These values are only used to
VK_BUnON2 access the up/down and toggled access the up/down and toggled
VK_BUnON3 states of the pointing device states of the pointing device

buttons; they never actually buttons; they never actuaJly
appear in a WM _CHAR message. appear in a WM_CHAR message.

V~BREAK Ctrl + Scroll Lock Ctrl + Pause

V~BACKSPACE Backspace Backspace

V~TAB Tab Tab

VK_BACKTAB Shift + Tab Shift + Tab

VK_NEWLINE Enter Enter

V~SHIFT * Left and Right Shift Left and Right Shift

VK_CTRL * Ctrl Left and Right Ctrl

VK_ALT * Alt Left and Right Alt

VK_ALTGRAF * None Alt Graf (if available)

VK_PAUSE Ctrl + Num Lock Pause

VK_ CAPSLOCK Caps Lock Caps Lock

VK_ESC Esc Esc

VK_SPACE * Space Space

VK_PAGEUP * Numpad 9 Pg Up and Numpad 9

VK_PAGEDOWN * Numpad 3 Pg On and Numpad 3

VK_END * Numpad 1 End and Numpad 1

VK_HOME * Numpad 7 Home and Numpad 7

VK_LEFT * Numpad 4 Left and Numpad 4

VK_UP * Numpad 8 Up and Numpad 8

VK_RIGHT * Numpad 6 Right and Numpad 6

VK_DOWN * Numpad 2 Down and Numpad 2

VK_PRINTSCRN Shift + Print Screen Print Screen

VKJNSERT * Numpad 0 Ins and Numpad 0

VK_DELETE * Numpad &bd. Del and Numpad &bd.

VK_SCRLLOCK Scroll Lock Scroll Lock

VK_NUMLOCK Num Lock Num Lock

VK_ENTER Shift + Enter Shift + Enter and Numpad Enter

VK_SYSRQ SysRq Alt + Print Screen

© Copyright IBM Corp. 1994 H-1

VK_F1 * F1 F1

VK_F2 * F2 F2

VK_F3 * F3 F3

VK_F4 * F4 F4

VK_F5 * F5 F5

VK_F6 * F6 F6

VK_F7 * F7 F7

VK_F8 * F8 F8

VK_F9 * F9 F9

VK_F10 * F10 F10

VK_F11 * None F11

VK_F12 * None F12

VK_F13 None None

VK_F14 None None

VK_F15 None None

VK_F16 None None

VK_F17 None None

VK_F18 None None

VK_F19 None None

VK_F20 None None

VK_F21 None None

VK_F22 None None

VK_F23 None None

VK_F24 None None

VK_MENU * F10 F10

Notes:

1. VKEYs marked with an asterisk (*) are generated irrespective of other shift states (Shift,
Ctrl, Alt, and Alt Graf).

2. VK _ CAPS LOCK is not generated for any of the Ctrl shift states, for PC-DOS
compatibility.

3. Wherever possible, the VK_ name is derived from the legend on the key top of the
1 01-key Enhanced PC keyboard.

H-2 PM Programming Reference Vol II

Appendix I. Notices

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM product, program or service is not intended to state or imply that only IBM's product,
program, or service may be used. Any functionally equivalent product, program, or service
that does not infringe any of IBM's intellectual property rights or other legally protectable
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, programs, or services, except
those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation,
500 Columbus Avenue, Thornwood NY 10594, U.S.A.

Trademarks .
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM
Corporation in the United States or other countries:

IBM
Common User Access
CUA
OS/2
Presentation Manager

The following terms, denoted by a double asterisk (**) in this publication, are trademarks of
other companies as follows. Other trademarks are trademarks of their respective companies.

Adobe
C++
Helvetica
Microsoft
Pentium
PostScript
Times New Roman
Windows

© Copyright IBM Corp. 1994

Adobe Systems Incorporated
AT&T, Incorporated
Linotype
Microsoft Corporation
Intel Corporation
Adobe Systems Incorporated
Monotype
Microsoft Corporation

1-1

1-2 PM Programming Reference Vol II

Glossary

This glossary defines many of the terms used in this
book. It includes terms and definitions from the IBM
Dictionary of Computing, as well as terms specific to
the OS/2 operating system and the Presentation
Manager. It is not a complete glossary for the entire
OS/2 operating system; nor is it a complete
dictionary of computer terms.

Other primary sources for these definitions are:

• The American National Standard Dictionary for
Information Systems, ANS I X3.172-1990,
copyrighted 1990 by the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. These definitions are
identified by the symbol (A) after the definition.

• The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of this
vocabulary are identified by the symbol (I) after
the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement has
not yet been reached among the participating
National Bodies of SC1.

© Copyright IBM Corp. 1994

Glossary Listing

A
accelerator. In SAA Common User Access
architecture, a key or combination of keys that
invokes an application-defined function.

accelerator table. A table used to define which key
strokes are treated as accelerators and the
commands they are translated into.

access mode. The manner in which an application
gains access to a file it has opened. Examples of
access modes are read-only, write-only, and
read/write.

access permission. All access rights that a user
has regarding an object. (I)

action. One of a set of defined tasks that a
computer performs. Users request the application to
perform an action in several ways, such as typing a
command, pressing a function key, or selecting the
action name from an action bar or menu.

action bar. In SAA Common User Access
architecture, the area at the top of a window that
contains choices that give a user access to actions
available in that window.

action pOint. The current position on the screen at
which the pointer is pointing. Contrast with hot spot
and input focus.

active program. A program currently running on
the computer. An active program can be interactive
(running and receiving input from the user) or
noninteractive (running but not receiving input from
the user). See also interactive program and
noninteractive program.

active window. The window with which the user is
currently interacting.

address space. (1) The range of addresses
available to a program. (A) (2) The area of virtual
storage available for a particular job.

X-1

alphanumeric video output. Output to the logical
video buffer when the video adapter is in text mode
and the logical video buffer is addressed by an
application as a rectangular array of character cells.

American National Standard Code for Information
Interchange. The standard code, using a coded
character set consisting of 7-bit coded characters (8
bits including parity check), that is used for
information interchange among data processing
systems, data communication systems, and
associated equipment. The ASCII set consists of
control characters and graphic characters. (A)

Note: IBM has defined an extension to ASCII code
(characters 128-255).

anchor. A window procedure that handles
Presentation Manager* message conversions
between an icon procedure and an application.

anchor block. An area qf
Presentation-Manager-internal resources to allocated
process or thread that calls Winlnitialize.

anchor point. A point in a window used by a
program designer or by a window manager to
position a subsequently appearing window.

ANSI. American National Standards Institute.

APA. All points addressable.

API. Application programming interface.

application. A collection of software components
used to perform specific types of work on a
computer; for example, a payroll application, an
airline reservation application, a network application.

application object. In SM Advanced Common
User Access architecture, a form that an application
provides for a user; for example, a spreadsheet form.
Contrast with user object.

application programming interface (API). A
functional interface supplied by the operating system
or by a separately orderable licensed program that
allows an application program written in a high-level
language to use specific data or functions of the
operating system or the licensed program.

X-2 PM Programming Reference Vol II

application-modal. Pertaining to a message box or
dialog box for which processing must be completed
before further interaction with any other window
owned by the same application may take place.

area. In computer graphics, a filled shape such as a
solid rectangle.

ASCII. American National Standard Code for
Information Interchange.

ASCIIZ. A string of ASCII characters that is
terminated with a byte containing the value O.

aspect ratio. In computer graphics, the
width-to-height ratio of an area, symbol, or shape.

asynchronous (ASYNC). (1) Pertaining to two or
more processes that do not depend upon the
occurrence of specific events such as common
timing signals. (T) (2) Without regular time
relationship; unexpected or unpredictable with
respect to the execution of program instructions.
See also synchronous.

atom. A constant that represents a string. As soon
as a string has been defined as an atom, the atom
can be used in place of the string to save space.
Strings are associated with their respective atoms in
an atom table. See also integer atom.

atom table. A table used to relate atoms with the
strings that they represent. Also in the table is the
mechanism by which the presence of a string can be
checked.

atomic operation. An operation that completes its
work on an object before another operation can be
performed on the same object.

attribute. A characteristic or property that can be
controlled, usually to obtain a required appearance;
for example, the color of a line. See also graphics
attributes and segment attributes.

automatic link. In Information Presentation Facility
(IPF), a link that begins a chain reaction at the
primary window. When the user se,lects the primary
window, an automatic link is activated to display
secondary windows.

AVIO. Advanced Video Input/Output.

B
Bezier curve. (1) A mathematical technique of
specifying smooth continous lines and surfaces,
which require a starting point and a finishing point
with several intermediate points that influence or
control the path of the linking curve. Named after
Dr. P. Bezier. (2) (D of C) In the AIX Graphics
Library, a cubic spline approximation to a set of four
control points that passes through the first and fourth
control points and that has a continuous slope where
two spline segments meet. Named after Dr. P.
Bezier.

background. (1) In multiprogramming, the
conditions under which low-priority programs are
executed. Contrast with foreground. (2) An active
session that is not currently displayed on the screen.

background color. The color in which the
background of a graphic primitive is drawn.

background mix. An attribute that determines how
the background of a graphic primitive is combined
with the existing color of the graphics presentation
space. Contrast with mix.

background program. In multiprogramming, a
program that executes with a low priority. Contrast
with foreground program.

bit map. A representation in memory of the data
displayed on an APA device, usually the screen.

block. (1) A string of data elements recorded or
transmitted as a unit. The elements may be
characters, words, or logical records. (T) (2) To
record data in a block. (3) A collection of contiguous
records recorded as a unit. Blocks are separated by
interblock gaps and each block may contain one or
more records. (A)

block device. A storage device that performs I/O
operations on blocks of data called sectors. Data on
block devices can be randomly accessed. Block
devices are designated by a drive letter (for example,
C:).

blocking mode. A condition set by an application
that determines when its threads might block. For
example, an application might set the Pipemode
parameter for the DosCreateNPipe function so that

its threads perform I/O operations to the named pipe
block when no data is available.

border. A visual indication (for example, a
separator line or a background color) of the
boundaries of a window.

boundary determination. An operation used to
compute the size of the smallest rectangle that
encloses a graphics object on the screen.

breakpoint. (1) A point in a computer program
where execution may be halted. A breakpoint is
usually at the beginning of an instruction where halts,
caused by external intervention, are convenient for
resuming execution. (T) (2) A place in a program,
specified by a command or a condition, where the
system halts execution and gives control to the
workstation user or to a specified program.

broken pipe. When all of the handles that access
one end of a pipe have been closed.

bucket. One or more fields in which the result of an
operation is kept.

buffer. (1) A portion of storage used to hold input
or output data temporarily. (2) To allocate and
schedule the use of buffers. (A)

button. A mechanism used to request or initiate an
action. See also barrel buttons, bezel buttons,
mouse button, push button, and radio button.

byte pipe. Pipes that handle data as byte streams.
All unnamed. pipes are byte pipes. Named pipes can
be byte pipes or message pipes. See byte stream.

byte stream. Data that consists of an unbroken
stream of bytes.

c
cache. A high-speed buffer storage that contains
frequently accessed instructions and data; it is used
to reduce access time.

cached micro presentation space. A presentation
space from a Presentation-Manager-owned store of
micro presentation spaces. It can be used for
drawing to a window only, and must be returned to
the store when the task is complete.

CAD. Computer-Aided Design.

Glossary X-3

call. (1) The action of bringing a computer program,
a routine, or a subroutine into effect, usually by
specifying the entry conditions and jumping to an
entry point. (I) (A) (2) To transfer control to a
procedure, program, routine, or subroutine.

calling sequence. A sequence of instructions
together with any associated data necessary to
execute a call. (T)

Cancel. An action that removes the current window
or menu without processing it, and returns the
previous window.

cascaded menu. In the OS/2 operating system, a
menu that appears when the arrow to the right of a
cascading choice is selected. It contains a set of
choices that are related to the cascading choice.
Cascaded menus are used to reduce the length of a
menu. See also cascading choice.

cascading choice. In SM Common User Access
architecture, a choice in a menu that, when selected,
produces a cascaded menu containing other choices.
An arrow (.....;.) appears to the right of the cascading
choice.

CASE statement. In PM programming, provides the
body of a window procedure. There is usually one
CASE statement for each message type supported
by an application.

CGA. Color graphics adapter.

chained list. A list in which the data elements may
be dispersed but in which each data element
contains information for locating the
next. (T) Synonymous with linked list.

character. A letter, digit, or other symbol.

character box. In computer graphics, the boundary
that defines, in world coordinates, the horizontal and
vertical space occupied by a single character from a
character set. See also character mode. Contrast
with character cell.

character cell. The physical, rectangular space in
which any single character is displayed on a screen
or printer device. Position is addressed by row and
column coordinates. Contrast with character box.

character code. The means of addressing a
character in a character set, sometimes called code
point.

X-4 PM Programming Reference Vol II

character device. A device that performs I/O
operations on one character at a time. Because
character devices view data as a stream of bytes,
character-device data cannot be randomly accessed.
Character devices include the keyboard, mouse, and
printer, and are referred to by name.

character mode. A mode that, in conjunction with
the font type, determines the extent to which
graphics characters are affected by the character
box, shear, and angle attributes.

character set. (1) An ordered set of unique
representations called characters; for example, the
26 letters of English alphabet, Boolean 0 and 1, the
set of symbols in the Morse code, and the 128 ASCII
characters. (A) (2) All the valid characters for a
programming language or for a computer system.
(3) A group of characters used for a specific reason;
for example, the set of characters a printer can print.

check box. In SM Advanced Common User
Access architecture, a square box with associated
text that represents a choice. When a user selects a
choice, an X appears in the check box to indicate
that the choice is in effect. The user can clear the
check box by selecting the choice again. Contrast
with radio button.

check mark. (1) (D of C) In SM Advanced
Common User Access architecture, a (v') symbol that
shows that a choice is currently in effect. (2) The
symbol that is used to indicate a selected item on a
pull-down menu.

child process. In the OS/2 operating system, a
process started by another process, which is called
the parent process. Contrast with parent process.

child window. A window that appears within the
border of its parent window (either a primary window
or another child window). When the parent window
is resized, moved, or destroyed, the child window
also is resized, moved, or destroyed; however, the
child window can be moved or resized independently
from the parent window, within the boundaries of the
parent window. Contrast with parent window.

choice. (1) An option that can be selected. The
choice can be presented as text, as a symbol
(number or letter), or as an icon (a pictorial symbol).
(2) (D of C) In SM Common User Access
architecture, an item that a user can select.

chord. (1) To press more than one button on a
pointing device while the pointer is within the limits
that the user has specified for the operating
environment. (2) (0 of C) In graphics, a short line
segment whose end points lie on a circle. Chords
are a means for producing a circular image from
straight lines. The higher the number of chords per
circle, the smoother the circular image.

class. In object-oriented design or programming, a
group of objects that share a common definition and
that therefore share common properties, operations,
and behavior. Members of the group are called
instances of the class.

class method. In System Object Model, an action
that can be performed on a class object.
Synonymous with factory method.

class object. In System Object Model, the run-time
implementation of a class.

class style. The set of properties that apply to
every window in a window class.

client. (1) A functional unit that receives shared
services from a server. (T) (2) A user, as in a
client process that uses a named pipe or queue that
is created and owned by a server process.

client area. The part of the window, inside the
border, that is below the menu bar. It is the user's
work space, where a user types information and
selects choices from selection fields. In primary
windows, it is where an application programmer
presents the objects that a user works on.

client program. An application that creates and
manipulates instances of classes.

client window. The window in which the application
displays output and receives input. This window is
located inside the frame window, under the window
title bar and any menu bar, and within any scroll
bars.

clip limits.. The area of the paper that can be
reached by a printer or plotter.

clipboard. In SAA Common User Access
architecture, an area of computer memory, or
storage, that temporarily holds data. Data in the
clipboard is available to other applications.

clipping. In computer graphics, removing those
parts of a display image that lie outside a given
boundary. (I) (A)

clipping area. The area in which the window can
paint.

clipping path. A clipping boundary in
world-coordinate space.

clock tick. The minimum unit of time that the
system tracks. If the system timer currently counts
at a rate of X Hz, the system tracks the time every
1/X of a second. Also known as time tick.

CLOCK$. Character-device name reserved for the
system clock.

code page. An assignment of graphic characters
and control-function meanings to all code points.

code pOint. (1) Synonym for character code. (2)
(0 of C) A 1-byte code representing one of 256
potential characters.

code segment. An executable section of
programming code within a load module.

color dithering. See dithering.

color graphics adapter (CGA). An adapter that
simultaneously provides four colors and is supported
by all IBM Personal Computer and Personal
System/2 models.

command. The name and parameters associated
with an action that a program can perform.

command area. An area composed of a command
field prompt and a command entry field.

command entry field. An entry field in which users
type commands.

command line. On a display screen, a display line,
sometimes at the bottom of the screen, in which only
commands can be entered.

command mode. A state of a system or device in
which the user can enter commands.

command prompt. A field prompt showing the
location of the command entry field in a panel.

Common Programming Interface (CPI).
Definitions of those application development

Glossary X-5

languages and services that have, or are intended to
have, implementations on and a high degree of
commonality across the SAA environments. One of
the three SAA architectural areas. See also
Common User Access. architecture.

Common User Access (CUA) architecture.
Guidelines for the dialog between a human and a
workstation or terminal. One of the three SAA
architectural areas. See also Common Programming
Interface.

compile. To translate a program written in a
higher-level programming language into a machine
language program.

composite window. A window composed of other
windows (such as a frame window, frame-control
windows, and a client window) that are kept together
as a unit and that interact with each other.

computer-aided design (CAD). The use of a
computer to design or change a product, tool, or
machine, such as using a computer for drafting or
illustrating.

COM1, COM2, COM3. Character-device names
reserved for serial ports 1 through 3.

CON. Character-device name reserved for the
console keyboard and screen.

container. In SAA Common User Access
architecture, an object that holds other objects. A
folder is an example of a container object. See also
folder and object.

contextual help. In SAA Common User Access
Architecture, help that gives specific information
about the item the cursor is on. The help is
contextual because it provides information about a
specific item as it is currently being used. Contrast
with extended help.

contiguous. Touching or joining at a common edge
or boundary, for example, an unbroken consecutive
series of storage locations.

control. In SAA Advanced Common User Access
architecture, a component of the user interface that
allows a user to select choices or type information;
for example, a check box, an entry field, a radio
button.

X-6 PM Programming Reference Vol II

control area. A storage area used by a computer
program to hold control information. (I) (A)

Control Panel. In the Presentation Manager, a
program used to set up user preferences that act
globally across the system.

Control Program. (1) The basic functions of the
operating system, including DOS emulation and the
support for keyboard, mouse, and video inpuVoutput.
(2) A computer program designed to schedule and to
supervise the execution of programs of a computer
system. (I) (A)

control window. A window that is used as part of a
composite window to perform simple input and
output tasks. Radio buttons and check boxes are
examples.

control word. An instruction within a document that
identifies its parts or indicates how to format the
document.

coordinate space. A two-dimensional set of points
used to generate output on a video display of printer.

Copy. A choice that places onto the clipboard, a
copy of what the user has selected. See also Cut
and Paste.

correlation. The action of determining which
element or object within a picture is at a given
position on the display. This follows a pick
operation.

coverpage window. A window iri which the
application's help information is displayed.

CPl. Common Programming Interface.

critical extended attribute. An extended attribute
that is necessary for the correct operation of the
system or a particular application.

critical section. (1) In programming languages, a
part of an asynchronous procedure that cannot be
executed simultaneously with a certain part of
another asynchronous procedure. (I)

Note: Part of the other asynchronous procedure
also is a critical section. (2) A section of code that is
not reentrant; that is, code that can be executed by
only one thread at a time.

CUA architecture. Common User Access
architecture. '

current position. In computer graphics, the
position, in user coordinates, that becomes the
starting point for the next graphics routine, if that
routine does not explicitly specify a starting point.

cursor. A symbol displayed on the screen and
associated with an input device. The cursor
indicates where input from the device will be placed.
Types of cursors include text cursors, graphics
cursors, and selection cursors. Contrast with pointer
and input focus.

Cut. In SAA Common User Access architecture, a
choice that removes a selected object, or a part of
an object, to the clipboard, usually compressing the
space it occupied in a window. See also Copy and
Paste.

D
daisy chain. A method of device interconnection for
determining interrupt priority by connecting the
interrupt sources serially.

data segment. A nonexecutable section of a
program module; that is, a section of a program that
contains data definitions.

data structure. The syntactic structure of symbolic
expressions and their storage-allocation
characteristics. (T)

data transfer. The movement of data from one
object to another by way of the clipboard or by direct
manipulation.

DBCS. Double-byte character set.

DOE. Dynamic data exchange.

deadlock. (1) Unresolved contention for the use of
a resource. (2) An error condition in which
processing cannot continue because each of two
elements of the process is waiting for an action by,
or a response from, the other. (3) An impasse that
occurs when multiple processes are waiting for the
availability of a resource that will not become
available because it is being held by another process
that is in a similar wait state.

debug. To detect, diagnose, and eliminate errors in
programs. (T)

decipoint. In printing, one tenth of a point. There
are 72 points in an inch.

default procedure. A function provided by the
Presentation Manager Interface that may be used to
process standard messages from dialogs or
windows.

default value. A value assumed when no value has
been specified. Synonymous with assumed value.
For example, in the graphics programming interface,
the default line-type is 'solid'.

definition list. A type of list that pairs a term and
its description.

delta. An application-defined threshold, or number
of container items, from either end of the list.

descendant. See child process.

descriptive text. Text used in addition to a field
prompt to give more information about a field.

Deselect all. A choice that cancels the selection of
all of the objects that have been selected in that
window.

Desktop Manager. In the Presentation Manager, a
window that displays a list of groups of programs,
each of which can be started or stopped.

desktop window. The window, corresponding to
the physical device, against which all other types of
windows are established.

detached process. A background process that
runs independent of the parent process.

detent. A point on a slider that represents an exact
value to which a user can move the slider arm.

device context. A logical description of a data
destination such as memory, metafile, display,
printer, or plotter. See also direct device context,
information device context, memory device context,
metafile device context, queued device context, and
screen device context.

device driver. A file that contains the code needed
to attach and use a device such as a display, printer,
or plotter.

device space. (1) Coordinate space in which
graphics are assembled after all GPI transformations
have been applied. Device space is defined in

Glossary X-7

device-specific units. (2) (0 of C) In computer
graphics, a space defined by the complete set of
addressable points of a display device. (A)

dialog. The interchange of information between a
computer and its user through a sequence of
requests by the user and the presentation of
responses by the computer.

dialog box. In SM Advanced Common User
Access architecture, a movable window, fixed in size,
containing controls that a user uses to provide
information required by an application so that it can
continue to process a user request. See also
message box, primary window, secondary window.
Also known as a pop-up window.

Dialog Box Editor. A WYSIWYG editor that
creates dialog boxes for communicating with the
application user.

dialog item. A component (for example, a menu or
a button) of a dialog box. Dialog items are also used
when creating dialog templates.

dialog procedure. A dialog window that is
controlled by a window procedure. It is responsible
for responding to all messages sent to the dialog
window.

dialog tag language. A markup language used by
the DTL compiler to create dialog objects.

dialog template. The definition of a dialog box,
which contains details of its position, appearance,
and window 10, and the window 10 of each of its
child windows.

direct device context. A logical description of a
data destination that is a device other than the
screen (for example, a printer or plotter), and where
the output is not to go through the spooler. Its
purpose is to satisfy queries. See also device
context.

direct manipulation. The action of using the
mouse to move objects around the screen. For
example, moving files and directories around in the
Workplace Shell.

direct memory access (DMA). A technique for
moving data directly between main storage and
peripheral equipment without requiring processing of
the data by the processing unit.(T)

x-a PM Programming Reference Vol II

directory. A tyRe of file containing the names and
controlling information for other files or other
directories.

display point. Synonym for pel.

dithering. (1) The process used in color displays
whereby every other pel is set to one color, and the
intermediate pels are set to another. Together they
produce the effect of a third color at normal viewing
distances. This process can only be used on solid
areas of color; it does not work, for example, on
narrow lines. (2) (0 of C) In computer graphics, a
technique of interleaving dark and light pixels so that
the resulting image looks smoothly shaded when
viewed from a distance.

DMA. Direct memory access.

DOS Protect Mode Interface (DPMI). An interface
between protect mode and real mode programs.

double-byte character set (DBCS). A set of
characters in which each character is represented by
two bytes. Languages such, as Japanese, Chinese,
and Korean, which contain more characters than can
be represented by 256 code points, require
double-byte character sets. Since each character
requires two bytes, the entering, displaying, and
printing of DBCS characters requires hardware and
software that can support DBCS.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and
is capable of being addressed as a unit. (A)

DPMI. DOS Protect Mode Interface.

drag. In SM Common User Access, to use a
pointing device to move an object; for example,
clicking on a window border, and dragging it to make
the window larger.

dragging. (1) In computer graphics, moving an
object on the display screen as if it were attached to
the pointer. (2) (0 of C) In computer graphics,
moving one or more segments on a display surface
by translating. (I) (A)

drawing chain. See segment chain.

drop. To fix the position of an object that is being
dragged, by releasing the select button of the
pointing device.

drop. To fix the position of an object that is being
dragged, by releasing the select button of the
pointing device. See also drag.

DTL. Dialog tag language.

dual-boot function. A feature of the OS/2
operating system that allows the user to start DOS
from within the operating system, or an OS/2 session
from within DOS.

duplex. Pertaining to communication in which data
can be sent and received at the same time.
Synonymous with full duplex.

dynamic data exchange (DOE). A message
protocol used to communicate between applications
that share data. The protocol uses shared memory
as the means of exchanging data between
applications.

dynamic data formatting. A formatting procedure
that enables you to incorporate text, bit maps or
metafiles in an IPF window at execution time.

dynamic link library. A collection of executable
programming code and data that is bound to an
application at load time or run time, rather than
during linking. The programming code and data in a
dynamic link library can be shared by several
applications simultaneously.

dynamic linking. The process of resolving external
references in a program module at load time or run
time rather than during linking.

dynamic segments. Graphics segments drawn in
exclusive-OR mix mode so that they can be moved
from one screen position to another without affecting
the rest of the displayed picture.

dynamic storage. (1) A device that stores data in a
manner that permits the data to move or vary with
time such that the specified data is not always
available for recovery. (A) (2) A storage in which
the cells require repetitive application of control
signals in order to retain stored data. Such repetitive
application of the control signals is called a refresh
operation. A dynamic storage may use static
addressing or sensing circuits. (A) (3) See also
static storage.

dynamic time slicing. Varies the size of the time
slice depending on system load ,and paging activity.

dynamic-link module. A module that is linked at
load time or run time.

E
EBCDIC. Extended binary-coded decimal
interchange code. A coded character set consisting
of a-bit coded characters (9 bits including parity
check), used for information interchange among data
processing systems, data communications systems,
and associated equipment.

edge-triggered. Pertaining to an event semaphore
that is posted then reset before a waiting thread gets
a chance to run. The semaphore is considered to be
posted for the rest of that thread's waiting period; the
thread does not have to wait for the semaphore to
be posted again.

EGA. Extended graphics adapter.

element. An entry in a graphics segment that
comprises one or more graphics orders and that is
addressed by the element pointer.

EMS. Expanded Memory Specification.

encapsulation. Hiding an object's implementation,
that is, its private, internal data and methods.
Private variables and methods are accessible only to
the object that contains them.

entry field. In SAA Common User Access
architecture, an area where a user types information.
Its boundaries are usually indicated. See also
selection field.

entry panel. A defined panel type containing one or
more entry fields and protected information such as
headings, prompts, and explanatory text.

entry-field control. The component of a user
interface that provides the means by which the
application receives data entered by the user in an
entry field. When it has the input focus, the entry
field displays a flashing pointer at the position where
the next typed character will go.

environment segment. The list of environment
variables and their values for a process.

environment strings. ASCII text strings that define
the value of environment variables.

Glossary X-9

environment variables. Variables that describe the
execution environment of a process. These
variables are named by the operating system or by
the application. Environment variables named by the
operating system are PATH, DPATH, INCLUDE,
INIT, LIB, PROMPT, and TEMP. The values of
environment variables are defined by the user in the
CONFIG.SYS file, or by using the SET command at
the OS/2 command prompt.

error message. An indication that an error has
been detected. (A)

event semaphore. A semaphore that enables a
thread to signal a waiting thread or threads that an
event has occurred or that a task has been
completed. The waiting threads can then perform an
action that is dependent on the completion of the
signaled event.

exception. An abnormal condition such as an I/O
error encountered in processing a data set or a file.

exclusive system semaphore. A system
semaphore that can be modified only by threads
within the same process.

executable file. (1) A file that contains programs or
commands that perform operations or actions to be
taken. (2) A collection of related data records that
execute programs.

exit. To execute an instruction within a portion of a
computer program in order to terminate the
execution of that portion. Such portions of computer
programs include loops, subroutines, modules, and
so on. (T) Repeated exit requests return the user
to the point from which all functions provided to the
system are accessible. Contrast with cancel.

expanded memory specification (EMS). Enables
DOS applications to access memory above the 1 MB
real mode addressing limit.

extended attribute. An additional piece of
information about a file object, such as its data
format or category. It consists of a name and a
value. A file object may have more than one
extended attribute associated with it.

extended help. In SAA Common User Access
architecture, a help action that provides information
about the contents of the application window from
which a user requested help. Contrast with
contextual help.

X-10 PM Programming Reference Vol II

extended-choice selection. A mode that allows
the user to select more than one item from a
window. Not all windows allow extended choice
selection. Contrast with multiple-choice selection.

extent. Continuous space on a disk or diskette that
is occupied by or reserved for a particular data set,
data space, or file.

external link. In Information Presentation Facility, a
link that connects external online document files.

F
family-mode application. An application program
that can run in the OS/2 environment and in the
DOS environment; however, it cannot take
advantage of many of the OS/2-mode facilities, such
as multitasking, interprocess communication, and
dynamic linking.

FAT. File allocation table.

FEA. Full extended attribute.

field-level help. Information specific to the field on
which the cursor is positioned. This help function is
"contextual" because it provides information about a
specific item as it is currently used; the information is
dependent upon the context within the work session.

FIFO. First-in-first-out. (A)

file. A named set of records stored or processed as
a unit. (T)

file allocation table (FAT). In IBM personal
computers, a table used by the operating system to
allocate space on a disk for a file, and to locate and
chain together parts of the file that may be scattered
on different sectors so that the file can be used in a
random or sequential manner.

file attribute. Any of the attributes that describe the
characteristics of a file.

File Manager. In the Presentation Manager, a
program that displays directories and files, and
allows various actions on them.

file specification. The full identifier fora file, which
includes its drive designation, path, file name, and
extension.

file system. The combination of software and
hardware that supports storing information on a
storage device.

file system driver (FSD). A program that manages
file 1\0 and controls the format of information on the
storage media.

fillet. A curve that is tangential to the end points of
two adjoining lines. See also polyfillet.

filtering. An application process that changes the
order of data in a queue.

first-in-first-out (FIFO). A queuing technique in
which the next item to be retrieved is the item that
has been in the queue for the longest time. (A)

flag. (1) An indicator or parameter that shows the
setting of a switch. (2) A character that signals the
occurrence of some condition, such as the end of a
word. (A) (3) (0 of C) A characteristic of a file or
directory that enables it to be used in certain ways.
See also archive flag, hidden flag, and read-only
flag.

focus. See input focus.

folder. A container used to organize objects.

font. A particular size and style of typeface that
contains definitions of character sets, marker sets,
and pattern sets.

Font Editor. A utility program provided with the IBM
Developers Toolkit that enables the design and
creation of new fonts.

foreground program. (1) The program with which
the user is currently interacting. Also known as
interactive program. Contrast with background
program. (2) (0 of C) In multiprogramming, a
high-priority program.

frame. The part of a window that can contain
several different visual elements specified by the
application, but drawn and controlled by the
Presentation Manager. The frame encloses the
client area.

frame styles. Standard window layouts provided by
the Presentation Manager.

FSD. File system driver.

full-duplex. Synonym for duplex.

full-screen application. An application that has
complete control of the screen.

function. (1) In a programming language, a block,
with or without formal parameters, whose execution
is invoked by means of a call. (2) A set of related
control statements that cause one or more programs
to be performed.

function key. A key that causes a specified
sequence of operations to be performed when it is
pressed, for example, F1 and Alt-K.

function key area. The area at the bottom of a
window that contains function key assignments such
as F1=Help.

G
GDT. Global Descriptor Table.

general protection fault. An exception condition
that occurs when a process attempts to use storage
or a module that has some level of protection
assigned to it, such as I/O privilege level. See also
IOPL code segment.

Global Descriptor Table (GDT). A table that
defines code and data segments available to all
tasks in an application.

global dynamic-link module. A dynamic-link
module that can be shared by all processes in the
system that refer to the module name.

global file-name character. Either a question mark
(?) or an asterisk (*) used as a variable in a file
name or file name extension when referring to a
particular file or group of files.

glyph. A graphic symbol whose appearance
conveys information.

GPI. Graphics programming interface.

graphic primitive. In computer graphics, a basic
element, such as an arc or a line, that is not made
up of smaller parts and that is used to create
diagrams and pictures. See also graphics segment.

graphics. (1) A picture defined in terms of graphic
primitives and graphics attributes. (2) (0 of C) The
making of charts and pictures. (3) Pertaining to

Glossary X-11

charts, tables, and their creation. (4) See computer
graphics, coordinate graphics, fixed-image graphics,
interactive graphics, passive graphics, raster
graphics.

graphics attributes. Attributes that apply to graphic
primitives. Examples are color, line type, and
shading-pattern definition. See also segment
attributes.

graphics field. The clipping boundary that defines
the visible part of the presentation-page contents.

graphics mode. One of several states of a display.
The mode determines the resolution and color
content of the screen.

graphics model space. The conceptual coordinate
space in which a picture is constructed after any
model transforms have been applied. Also known as
model space.

Graphics programming interface. The formally
defined programming language that is between an
IBM graphics program and the user of the program.

graphics segment. A sequence of related graphic
primitives and graphics attributes. See also graphic
primitive.

graying. The indication that a choice on a
pull-down is unavailable.

group. A collection of logically connected controls.
For example, the buttons controlling paper size for a
printer could be called a group. See also program
group.

H
handle. (1) An identifier that represents an object,
such as a device or window, to the Presentation
Interface. (2) (D of C) In the Advanced DOS and
OS/2 operating systems, a binary value created by
the system that identifies a drive, directory, and file
so that the file can be found and opened.

hard error. An error condition on a network that
requires either that the system be reconfigured or
that the source of the error be removed before the
system can resume reliable operation.

header. (1) System-defined control information that
precedes user data. (2) The portion of a message

X-12 PM Programming Reference Vol II

that contains control information for the message,
such as one or more destination fields, name of the
originating station, input sequence number, character
string indicating the type of message, and priority
level for the message.

heading tags. A document element that enables
information to be displayed in windows, and that
controls entries in the contents window controls
placement of push buttons in a window, and defines
the shape and size of windows.

heap. An area of free storage available for dynamic
allocation by an application. Its size varies according
to the storage requirements of the application.

help function. (1) A function that provides
information about a specific field, an application
panel, or information about the help facility. (2) (D of
C) One or more display images that describe how to
use application software or how to do a system
operation.

Help index. In SM Common User Access
architecture, a help action that provides an index of
the help information available for an application.

help panel. A panel with information to assist users
that is displayed in response to a help request from
the user.

help window. A Common-User-Access-defined
secondary window that displays information when the
user requests help.

hidden file. An operating system file that is not
displayed by a directory listing.

hide button. In the OS/2 operating system, a small,
square button located in the right-hand corner of the
title bar of a window that, when selected, removes
from the screen all the windows associated with that
window. Contrast with maximize button. See also
restore button.

hierarchical inheritance. The relationship between
parent and child classes. An object that is lower in
the inheritance hierarchy than another object, inherits
all the characteristics and behaviors of the objects
above it in the hierarchy.

hierarchy. A tree of segments beginning with the
root segment and proceeding downward to
dependent segment types.

high-performance file system (HPFS). In the
OS/2 operating system, an installable file system that
uses high-speed buffer storage, known as a cache,
to provide fast access to large disk volumes. The
file system also supports the coexistence of multiple,
active file systems on a single personal computer,
with the capability of multiple and different storage
devices. File names used with the HPFS can have
as many as 254 characters.

hit testing. The means of identifying which window
is associated with which input device event.

hook. A point in a system-defined function where
an application can supply additional code that the
system processes as though it were part of the
function.

hook chain. A sequence of hook procedures that
are "chained" together so that each event is passed,
in turn, to each procedure in the chain.

hot spot. The part of the pointer that must touch an
object before it can be selected. This is usually the
tip of the pointer. Contrast with action point.

HPFS. high-performance file system.

hypergraphic link. A connection between one
piece of information and another through the use of
graphics.

hypertext. A way of presenting information online
with connections between one piece of information
and another, called hypertext links. See also
hypertext link.

hypertext link. A connection between one piece of
information and another.

I
I/O operation. An input operation to, or output
operation from a device attached to a computer.

I-beam pOinter. A pointer that indicates an area,
such as an entry field in which text can be edited.

icon. In SM Advanced Common User Access
architecture, a graphical representation of an object,
consisting of an image, image background, and a
label. Icons can represent items (such as a
document file) that the user wants to work on, and
actions that the user wants to perform. In the

Presentation Manager, icons are used for data
objects, system actions, and minimized programs.

icon area. In the Presentation Manager, the area at
the bottom of the screen that is normally used to
display the icons for minimized programs.

Icon Editor. The Presentation Manager-provided
tool for creating icons.

image font. A set of symbols, each of which is
described in a rectangular array of pels. Some of
the pels in the array are set to produce the image of
one of the symbols. Contrast with outline font.

indirect manipulation. Interaction with an object
through choices and controls.

information device context. A logical description
of a data destination other than the screen (for
example, a printer or plotter), but where no output
will occur. Its purpose is to satisfy queries. See
also device context.

information panel. A defined panel type
characterized by a body containing only protected
information.

Information Presentation Facility (IPF). A facility
provided by the OS/2 operating system, by which
application developers can produce online
documentation and context-sensitive online help
panels for their applications.

input focus. (1) The area of a window where user
interaction is possible using an input device, such as
a mouse or the keyboard. (2) The position in the
active window where a user's normal interaction with
the keyboard will appear.

input router. An internal OS/2 process that
removes messages from the system queue.

input/output control. A device-specific command
that requests a function of a device driver.

installable file system (IFS). A file system in which
software is installed when the operating system is
started.

instance. A single occurrence of an object class
that has a particular behavior.

instruction pointer. In system/38, a pointer that
provides addressability for a machine interface
instruction in a program.

Glossary X-13

integer atom. An atom that represents a predefined
system constant and carries no storage overhead.
For example, names of window classes provided by
Presentation Manager are expressed as integer
atoms.

interactive graphics. Graphics that can be moved
or manipulated by a user at a terminal.

interactive program. (1) A program that is running
(active) and is ready to receive (or is receiving) input
from a user. (2) A running program that can receive
input from the keyboard or another input device.
Compare with active program and contrast with
noninteractive program.

Also known as a foreground program.

interchange file. A file containing data that can be
sent from one Presentation Manager interface
application to another.

interpreter. A program that translates and executes
each instruction of a high-level programming
language before it translates and executes.

interprocess communication (IPC). In the OS/2
operating system, the exchange of information
between processes or threads through semaphores,
pipes, queues, and shared memory.

interval timer. (1) A timer that provides program
interruptions on a program-controlled basis. (2) An
electronic counter that counts intervals of time under
program control.

IOCtl. Input/output control.

IOPL. Input/output privilege level.

IOPL code segment. An 10PL executable section
of programming code that enables an application to
directly manipulate hardware interrupts and ports
without replacing the device driver. See also
privilege level.

IPC. Interprocess communication.

IPF. Information Presentation Facility.

IPF compiler. A text compiler that interpret tags in
a source file and converts the information into the
specified format.

X-14 PM Programming Reference Vol II

IPF tag language. A markup language that
provides the instructions for displaying online
information.

item. A data object that can be passed in a DDE
transaction.

J
journal. A special-purpose file that is used to
record changes made in the system.

K
Kanji. A graphic character set used in Japanese
ideographic alphabets.

KBO$. Character -device name reserved for the
keyboard.

kernel. The part of an operating system that
performs basic functions, such as allocating
hardware resources.

kerning. The design of graphics characters so that
their character boxes overlap. Used to space text
proportionally.

keyboard accelerator. A keystroke that generates
a command message for an application.

keyboard augmentation. A function that enables a
user to press a keyboard key while pressing a
mouse button.

keyboard focus. A temporary attribute of a
window. The window that has a keyboard focus
receives all keyboard input until the focus changes to
a different window.

Keys help. In SAA Common User Access
architecture, a help action that provides a listing of
the application keys and their assigned functions.

L
label. In a graphics segment, an identifier of one or
more elements that is used when editing the
segment.

LAN. local area network.

language support procedure. A function provided
by the Presentation Manager Interface for
applications that do not, or cannot (as in the case of
COBOL and FORTRAN programs), provide their own
dialog or window procedures.

lazy drag. See pickup and drop.

lazy drag set. See pickup set.

LOT. In the OS/2 operating system, Local
Descriptor Table.

LIFO stack. A stack from which data is retrieved in
last-in, first-out order.

linear address. A unique value that identifies the
memory object.

linked list. Synonym for chained Jist.

list box. In SAA Advanced Common User Access
architecture, a control that contains scroll able
choices from which a user can select one choice.

Note: In CUA architecture, this is a programmer
term. The end user term is selection list.

list button. A button labeled with an underlined
down-arrow that presents a list of valid objects or
choices that can be selected for that field.

list panel. A defined panel type that displays a list
of items from which users can select one or more
choices and then specify one or more actions to
work on those choices.

load time. The point in time at which a program
module is loaded into main storage for execution.

load-on-call. A function of a linkage editor that
allows selected segments of the module to be disk
resident while other segments are executing. Disk
resident segments are loaded for execution and
given control when any entry point that they contain
is called.

local area network (LAN). (1) A computer network
located on a user's premises within a limited
geographical area. Communication within a local
area network is not subject to external regulations;
however, communication across the LAN boundary
may be subject to some form of regulation. (T)

Note: A LAN does not use store and forward
techniques. (2) A network inwhich a set of devices
are connected to one another for communication and
that can be connected to a larger network.

Local Descriptor Table (LOT). Defines code and
data segments specific to a single task.

lock. A serialization mechanism by means of which
a resource is restricted for use by the holder of the
lock.

logical storage device. A device that the user can
map to a physical (actual) device.

LPT1, LPT2, LPT3. Character-device names
reserved for parallel printers 1 through 3.

M
main window. The window that is positioned
relative to the desktop window.

manipulation button. The button on a pointing
device a user presses to directly manipulate an
object.

map. (1) A set of values having a defined
correspondence with the quantities or values of
another set. (I) (A) (2) To establish a set of
values having a defined correspondence with the
quantities or values of another set. (I)

marker box. In computer graphics, the boundary
that defines, in world coordinates, the horizontal and
vertical space occupied by a single marker from a
marker set.

marker symbol. A symbol centered on a point.
Graphs and charts can use marker symbols to
indicate the plotted points.

marquee box. The rectangle that appears during a
selection technique in which a user selects objects
by drawing a box around them with a pointing
device.

Master Help Index. In the OS/2 operating system,
an alphabetic list of help topics related to using the
operating system.

maximize. To enlarge a window to its largest
possible size.

Glossary X-1S

media window. The pa:rt of the physical device
(display, printer, or plotter) on which a picture is
presented.

memory block. Part memory within a heap.

memory device context. A logical description of a
data destination that is a memory bit map. See also
device context.

memory management. A feature of the operating
system for allocating, sharing, and freeing main
storage.

memory object. Logical unit of memory requested
by an application, which forms the granular unit of
memory manipulation from the application viewpoint.

menu. In SM Advanced Common User Access
architecture, an extension of the menu bar that
displays a list of choices available for a selected
choice in the menu bar. After a user selects a
choice in menu bar, the corresponding menu
appears. Additional pop-up windows can appear
from menu choices.

menu bar. In SM Advanced Common User
Access architecture, the area near the top of a
window, below the title bar and above the rest of the
window, that contains choices that provide access to
other menus.

menu button. The button on a pointing device that
a user presses to view a pop-up menu associated
with an object.

message. (1) In the Presentation Manager, a
packet of data used for communication between the
Presentation Manager interface and Presentation
Manager applications (2) In a user interface,
information not requested by users but presented to
users by the computer in response to a user action
or internal process.

message box. (1) A dialog window predefined by
the system and used as a simple interface for
applications, without the necessity of creating
dialog-template resources or dialog procedures. (2)
(D of C) In SAA Advanced Common User Access
architecture, a type of window that shows messages
to users. See also dialog box, primary window,
secondary window.

X-16 PM Programming Reference Vol II

message filter. The means of selecting which
messages from a specific window will· be handled by
the application.

message queue. A sequenced collection of
messages to be read by the application.

message stream mode. A method of operation in
which data is treated as a stream of messages.
Contrast with byte stream.

metacharacter. See global file-name character.

metaclass. The conjunction of an object and its
class information; that is, the information pertaining
to the class as a whole, rather than to a single
instance of the class. Each class is itself an object,
which is an instance of the metaclass.

metafile. A file containing a series of attributes that
set color, shape and size, usually of a picture or a
drawing. Using a program that can interpret these
attributes, a user can view the assembled image ..

metafile device context. A logical description of a
data destination that is a metafile, which is used for
graphics interchange. See also device context.

metalanguage. A language used to specify another
language. For example, data types can be
described using a metalanguage so as to make the
descriptions independent of anyone computer
language.

mickey. A unit of measurement for physical mouse
motion whose value depends on the mouse device
driver currently loaded.

micro presentation space. A graphics presentation
space in which a restricted set of the GPI function
calls is available.

minimize. To remove from the screen all windows
associated with an application and replace them with
an icon that represents the application.

mix. An attribute that determines how the
foreground of a graphic primitive is combined with
the existing color of graphics output. Also known as
foreground mix. Contrast with background mix.

mixed character string. A string containing a
mixture of one-byte and Kanji or Hangeul· (two-byte)
characters.

mnemonic. (1) A method of selecting an item on a
pull-down by means of typing the highlighted letter in
the menu item. (2) (0 of C) In SM Advanced
Common User Access architecture, usually a single
character, within the text of a choice, identified by an
underscore beneath the character. If all characters
in a choice already serve as mnemonics for other
choices, another character, placed in parentheses
immediately following the choice, can be used.
When a user types the mnemonic for a choice, the
choice is either selected or the cursor is moved to
that choice.

modal dialog box. In SM Advanced Common
User Access architecture, a type of movable window,
fixed in size, that requires a user to enter information
before continuing to work in the application window
from which it was displayed. Contrast with modeless
dialog box. Also known as a serial dialog box.
Contrast with parallel dialog box.

Note: In CUA architecture, this is a programmer
term. The end user term is pop-up window.

model space. See graphics model space.

modeless dialog box. In SM Advanced Common
User Access architecture, a type of movable window,
fixed in size, that allows users to continue their
dialog with the application without entering
information in the dialog box. Also known as a
parallel dialog box. Contrast with modal dialog box.

Note: In CUA architecture, this is a programmer
term. The end user term is pop-up window.

module definition file. A file that describes the
code segments within a load module. For example,
it indicates whether a code segment is loadable
before module execution begins (preload), or
loadable only when referred to at run time
(Ioad-on-call) .

mouse. In SM usage, a device that a user moves
on a flat surface to position a pointer on the screen.
It allows a user to select a choice 0 function to be
performed or to perform operations on the screen,
such as dragging or drawing lines from one position
to another.

MOUSE$. Character-device name reserved for a
mouse.

multiple-choice selection. In SM Basic Common
User Access architecture, a type of field from which

a user can select one or more choices or select
none. See also check box. Contrast with
extended-choice selection.

multiple-line entry field. In SM Advanced
Common User Access architecture, a control into
which a user types more than one line of information.
See also single-line entry field.

multitasking. The concurrent processing of
applications or parts of applications. A running
application and its data are protected from other
concurrently running applications.

mutex semaphore. (Mutual exclusion semaphore).
A semaphore that enables threads to serialize their
access to resources. Only the thread that currently
owns the mutex semaphore can gain access to the
resource, thus preventing one thread from
interrupting operations being performed by another.

muxwait semaphore. (Multiple wait semaphore). A
semaphore that enables a thread to wait either for
multiple event semaphores to be posted or for
multiple mutex semaphores to be released.
Alternatively, a muxwait semaphore can be set to
enable a thread to wait for any ONE of the event or
mutex semaphores in the muxwait semaphore's list
to be posted or released.

N
named pipe. A named buffer that provides
client-to-server, server-to-client, or full duplex
communication between unrelated processes.
Contrast with unnamed pipe.

national language support (NLS). The
modification or conversion of a United States English
product to conform to the requirements of another
language or country. This can include the enabling
or retrofitting of a product and the translation of
nomenclature, MRI, or documentation of a product.

nested list. A list that is contained within another
list.

NLS. national language support.

non-8.3 file-name format. A file-naming convention
in which file names can consist of up to 255
characters. See also 8.3 file-name format.

Glossary X-17

noncritical extended attribute. An extended
attribute that is not necessary for the function of an
application.

nondestructive read. Reading that does not erase
the data in the source location. (T)

non interactive program. A running program that
cannot receive input from the keyboard or other input
device. Compare with active program, and contrast
with interactive program.

nonretained graphics. Graphic primitives that are
not remembered by the Presentation Manager
interface when they have been drawn. Contrast with
retained graphics.

null character (NUL). (1) Character-device name
reserved for a nonexistent (dummy) device. (2) (D of
C) A control character that is used to accomplish
media-fill or time-fill and that may be inserted into or
removed from a sequence of characters without
affecting the meaning of the sequence; however, the
control of equipment or the format may be affected
by this character. (I) (A)

null-terminated string. A string of (n+ 1) characters
where the (n+ 1)th character is the 'null' character
(OxOO) Also known as 'zero-terminated' string and
'ASCIIZ' string.

o
object. A set of data and actions that can be
performed on that data.

Object Interface Definition Language (OIDL).
Specification language for SOM class definitions.

object window. A window that does not have a
parent but which might have child windows. An
object window cannot be presented on a device.

OIDL. Object Interface Definition Language.

open. To start working with a file, directory, or other
object.

ordered list. Vertical arrangements of items, with
each item in the list preceded by a number or letter.

outline font. A set of symbols, each of which is
created as a series of lines and curves.

X-18 PM Programming Reference Vol II

Synonymous with vector font. Contrast with image
font.

output area. An area of storage reserved for
output. (A)

owner window. A window into which specific
events that occur in another (owned) window are
reported.

ownership. The determination of how windows
communicate using messages.

owning process. The process that owns the
resources that might be shared with other processes.

p
page. (1) A 4KB segment of contiguous physical
memory. (2) (D of C) A defined unit of space on a
storage medium.

page viewport. A boundary in device coordinates
that defines the area of the output device in which
graphics are to be displayed. The presentation-page
contents are transformed automatically to the page
viewport in device space.

paint. (1) The action of drawing or redrawing the
contents of a window. (2) In computer graphics, to
shade an area of a display image; for example, with
crosshatching or color.

panel. In SM Basic Common User Access
architecture, a particular arrangement of information
that is presented in a window or pop-up. If some of
the information is not visible, a user can scroll
through the information.

panel area. An area within a panel that contains
related information. The three major Common User
Access-defined panel areas are the action bar, the
function key area, and the panel body.

panel area separator. In SM Basic Common User
Access architecture, a solid, dashed, or blank line
that provides a visual distinction between two
adjacent areas of a panel.

panel body. The portion of a panel not occupied by
the action bar, function key area, title or scroll bars.
The panel body can contain protected information,
selection fields, and entry fields. The layout and
content of the panel body determine the panel type.

panel body area. See client area.

panel definition. A description of the contents and
characteristics of a panel. A panel definition is the
application developer's mechanism for predefining
the format to be presented to users in a window.

panel 10. In SAA Basic Common User Access
architecture, a panel identifier, located in the
upper-left corner of a panel. A user can choose
whether to display the panel 10.

panel title. In SAA Basic Common User Access
architecture, a particular arrangement of information
that is presented in a window or pop-up. If some of
the information is not visible, a user can scroll
through the information.

paper size. The size of paper, defined in either
standard U.S. or European names (for example, A,
B, A4), and measured in inches or millimeters
respectively.

parallel dialog box. See modeless dialog box.

parameter list. A list of values that provides a
means of associating addressability of data defined
in a called program with data in the calling program.
It contains parameter names and the order in which
they are to be associated in the calling and called
program.

parent process. In the OS/2 operating system, a
process that creates other processes. Contrast with
child process.

parent window. In the OS/2 operating system, a
window that creates a child window. The child
window is drawn within the parent window. If the
parent window is moved, resized, or destroyed, the
child window also will be moved, resized, or
destroyed. However, the child window can be
moved and resized independently from the parent
window, within the boundaries of the parent window.
Contrast with child window.

partition. (1) A fixed-size division of storage. (2)
On an IBM personal computer fixed disk, one of four
possible storage areas ot variable size; one may be
accessed by ~OS, and each of the others may be
assigned to another operating system.

Paste. A choice in the Edit pull-down that a user
selects to move the contents of the clipboard into a
preselected location. See also Copy and Cut.

path. The route used to locate files; the storage
location of a file. A fully qualified path lists the drive
identifier, directory name, subdirectory name (if any),
and file name with the associated extension.

POD. Physical device driver.

peeking. An action taken by any thread in the
process that owns the queue to examine queue
elements without removing them.

pel. (1) The smallest area of a display screen
capable of being addressed and switched between
visible and invisible states. Synonym for display
point, pixel, and picture element. (2) (0 of C) Picture
element.

physical device driver (POD). A system interface
that handles hardware interrupts and supports a set
of input and output functions.

pick. To select part of a displayed object using the
pointer.

pickup. To add an object or set of objects to the
pickup set.

pickup and drop. A drag operation that does not
require the direct manipulation button to be pressed
for the duration of the drag.

pickup set. The set of objects that have been
picked up as part of a pickup and drop operation.

picture chain. See segment chain.

picture element. (1) Synonym for pel. (2) (0 of C)
In computer graphics, the smallest element of a
display surface that can be independently assigned
color and intensity. (T) . (3) The area of the finest
detail that can be reproduced effectively on the
recording medium.

PID. Process identification.

pipe. (1) A named or unnamed buffer used to pass
data between processes. A process reads from or
writes to a pipe as if the pipe were a standard-input
or standard-output file. See also named pipe and
unnamed pipe. (2) (0 of C) To direct data so that
the output from one process becomes the input to
another process. The standard output of one
command can be connected to the standard input of
another with the pipe operator (I).

Glossary X-19

pixel. (1) Synonym for pel. (2) (0 of C) Picture
element.

plotter. An output unit that directly produces a
hardcopy record of data on a removable medium, in
the form of a two-dimensional graphic
representation. (T)

PM. Presentation Manager.

pointer. (1) The symbol displayed on the screen
that is moved by a pointing device, such as a
mouse.. The pointer is used to point at items that
users can select. Contrast with cursor. (2) A data
element that indicates the location of another data
element. (T)

POINTER$. Character-device name reserved for a
pointer device (mouse screen support).

pointing device. In SAA Advanced Common User
Access architecture, an instrument, such as a
mouse, trackball, or joystick, used to move a pointer
on the screen.

pointings. Pairs of x-y coordinates produced by an
operator defining positions on a screen with a
pointing device, such as a mouse.

polyfillet. A curve based on a sequence of lines.
The curve is tangential to the end pOints of the first
and last lines, and tangential also to the midpoints of
all other lines. See also fillet.

polygon. One or more closed figures that can be
drawn filled, outlined, or filled and outlined.

polyline. A sequence of adjoining lines.

polymorphism. A concept whereby the behavior of
an application object is dependent solely upon the
class and contents of the messages received by that
object, and is not affected by any other external
factor.

pop. To retrieve an item from a last-in-first-out
stack of items. Contrast with push.

pop-up window. (1) A window that appears on top
of another window in a dialog. Each pop-up window
must be completed before returning to the underlying
window. (2) (0 of C) In SAA Advanced Common
User Access architecture, a movable window, fixed
in size, in which a user provides information required
by an application so that it can continue to process a
user request.

X-20 PM Programming Reference Vol II

presentation drivers. Special purpose I/O routines
that handle field device-independent I/O requests
from the PM and its applications.

Presentation Manager (PM). The interface of the
OS/2 operating system that presents, in windows a
graphics-based interface to applications and files
installed and running under the OS/2 operating
system.

presentation page. The coordinate space in which
a picture is assembled for display.

presentation space (PS). (1) Contains the
device-independent definition of a picture. (2) (0 of
C) The display space on a display device.

primary window. In SAA Common User Access
architecture, the window in which the main
interaction between the user and the application
takes place; In a multiprogramming environment,
each application starts in its own primary window.
The primary window remains for the duration of the
application, although the panel displayed will change
as the user's dialog moves forward. See also
secondary window.

primitive. In computer graphics, one of several
simple functions for drawing on the screen, including,
for example, the rectangle, line, ellipse, polygon, and
so on.

primitive attribute. A specifiable characteristic of a
graphic primitive. See graphics attributes.

print job. The result of sending a document or
picture to be printed.

Print Manager. In the Presentation Manager, the
part of the spooler that manages the spooling
process. It also allows users to view print queues
and to manipulate print jobs.

privilege level. A protection level imposed by the
hardware architecture of the IBM personal computer.
There are four privilege levels (number 0 through 3).
Only certain types of programs are allowed to
execute at each privilege level. See also IOPL code
segment.

procedure call. In programming languages, a
language construct for invoking execution of a
procedure.

process. An instance of an executing application
and the resources it is using.

program. A sequence of instructions that a
computer can interpret and execute.

program details. Information about a program that
is specified in the Program Manager window and is
used when the program is started.

program group. In the Presentation Manager,
several programs that can be acted upon as a single
entity.

program name. The full file specification of a
program. Contrast with program title.

program title. The name of a program as it is listed
in the Program Manager window. Contrast with
program name.

prompt. A displayed symbol or message that
requests input from the user or gives operational
information; for example, on the display screen of an
IBM personal computer, the DOS A> prompt. The
user must respond to the prompt in order to proceed.

protect mode. A method of program operation that
limits or prevents access to certain instructions or
areas of storage. Contrast with real mode.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in
achieving communication. (I)

pseudocode. An artificial language used to
describe computer program algorithms without using
the syntax of any particular programming
language. (A)

pull-down. (1) An action bar extension that displays
a list of choices available for a selected action bar
choice. After users select an action bar choice, the
pull-down appears with the list of choices. Additional
pop-up windows may appear from pull-down choices
to further extend the actions available to users. (2)
(0 of C) In SAA Common User Access architecture,
pertaining to a choice in an action bar pull-down ..

push. To add an item to a' last-in-first-out stack of
items. Contrast with pop.

push button. In SAA Advanced Common User
Access architecture, a rectangle with text inside.
Push buttons are used in windows for actions that
occur immediately when the push button is selected.

putback. To remove an object or set of objects
from the lazy drag set. This has the effect of
undoing the pickup operation for those objects

putdown. To drop the objects in the lazy drag set
on the target object.

Q

queue. (1) A linked list of elements waiting to be
processed in FIFO order. For example, a queue
may be a list of print jobs waiting to be printed. (2)
(0 of C) A line or list of items waiting to be
processed; for example, work to be performed or
messages to be displayed.

queued device context. A logical description of a
data destination (for example, a printer or plotter)
where the output is to go through the spooler. See
also device context.

R
radio button. (1) A control window, shaped like a
round button on the screen, that can be in a checked
or unchecked state. It is used to select a single item
from a list. Contrast with check box. (2) In SAA
Advanced Common User Access architecture, a
circle with text beside it. Radio buttons are
combined to show a user a fixed set of choices from
which only one can be selected. The circle is
partially filled when a choice is selected.

RAS. Reliability, availability, and serviceability.

raster. (1) In computer graphics, a predetermined
pattern of lines that provides uniform coverage of a
display space. (T) (2) The coordinate grid that
divides the display area of a display device. (A)

read-only file. A file that can be read from but not
written to.

real mode. A method of program operation that
does not limit or prevent access to any instructions
or areas of storage. The operating system loads the
entire program into storage and gives the program
access to all system resources. Contrast with
protect mode.

realize. To cause the system to ensure, wherever
possible, that the physical color table of a device is

Glossary X-21

set to the closest possible match in the logical color
table.

recursive routine. A routine that can call itself, or
be called by another routine that was called by the
recursive routine.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks.

reference phrase. (1) A word or phrase that is
emphasized in a device-dependent manner to inform
the user that additional information for the word or
phrase is available. (2) (D of C) In hypertext, text
that is highlighted and preceded by a
single-character input fieid used to signify the
existence of a hypertext link.

reference phrase help. In SM Common User
Access architecture, highlighted words or phrases
within help information that a user selects to get
additional information.

refresh. To update a window, with changed
information, to its current status.

region. A clipping boundary in device space.

register. A part of internal storage havihg a
specified storage capacity and usually intended for a
specific purpose. (D

remote file system. A file-system driver that gains
access to a remote system without a block device
driver.

resource. The means of providing extra information
used in the definition of a window. A resource can
contain definitions of fonts, templates, accelerators,
and mnemonics; the definitions .are held in a
resource file.

resource file. A file containing information used in
the definition of a window. Definitions can be of
fonts, templates, accelerators, and mnemonics.

restore. To return a window to its original size or
position following a sizing or moving action.

retained graphics. Graphic primitives that are
remembered by the Presentation Manager interface
after they have been drawn. Contrast with
non retained graphics.

X-22 PM Programming Reference Vol \I

return code. (1) A value returned to a program to
indicate the results of an operation requested by that
program. (2) A code used to influence the execution
of succeeding instructions. (A)

reverse video. (1) A form of highlighting a
character, field, or cursor by reversing the color of
the character, field, or cursor with its background; for
example, changing a red character on a black
background to a black character on a red
background. (2) In SM Basic Common User
Access architecture, a screen emphasis feature that
interchanges the foreground and background colors
of an item.

REXX Language. Restructured Extended Executor.
A procedural language that provides batch language
functions along with structured programming
constructs such as loops; conditional testing and
subroutines.

RGB. (1) Color coding in which the brightness of
the additive primary colors of light, red, green, and
blue, are specified as three distinct values of white
light. (2) Pertaining to a color display that accepts
signals representing red, green, and blue.

roman. Relating to a type style with upright
characters.

root segment. In a hierarchical database, the
highest segment in the tree structure.

round-robin scheduling. A process that allows
each thread to run for a specified amount of time.

run time. (1) Any instant at which the execution of
a particular computer program takes place. m (2)
The amount of time needed for the execution of a
particular computer program. (T) (3) The time
during which an instruction in an instruction register
is decoded and performed. Synonym for execution
time.

s
SAA. Systems Application Architecture.

SBCS. Single-byte character set.

scheduler. A computer program designed to
perform functions such as scheduling, initiation, and
termination of jobs.

screen. In SM Basic Common User Access
architecture, the physical surface of a display device
upon which information is shown to a user.

screen device context. A logical description of a
data destination that is a particular window on the
screen. See also device context.

SCREEN$. Character-device name reserved for the
display screen.

scroll bar. In SM Advanced Common User
Access architecture, a part of a window, associated
with a scrollable area, that a user interacts with to
see information that is not currently allows visible.

scrollable entry field. An entry field larger than the
visible field.

scrollable selection field. A selection field that
contains more choices than are visible.

scrolling. Moving a display image vertically or
horizontally in a manner such that new data appears
at one edge, as existing data disappears at the
opposite edge.

secondary window. A window that contains
information that is dependent on information in a
primary window and is used to supplement the
interaction in the primary window.

sector. On disk or diskette storage, an addressable
subdivision of a track used to record one block of a
program or data.

segment. See graphics segment.

segment attributes. Attributes that apply to the
segment as an entity, as opposed to the individual
primitives within the segment. For example, the
visibility or detectability of a segment.

segment chain. All segments in a graphics
presentation space that are defined with the
'chained' attribute. Synonym for picture chain.

segment priority. The order in which segments are
drawn.

segment store. An area in a normal graphics
presentation space where retained graphics
segments are stored.

select. To mark or choose an item. Note that
select means to mark or type in a choice on the

screen; enter means to send all selected choices to
the computer for processing.

select button. The button on a pointing device,
such as a mouse, that is pressed to select a menu
choice. Also known as button 1.

selection cursor. In SM Advanced Common User
Access architecture, a visual indication that a user
has selected a choice. It is represented by outlining
the choice with a dotted box. See also text cursor.

selection field. (1) In SM Advanced Common
User Access architecture, a set of related choices.
See also entry field. (2) In SM Basic Common User
Access architecture, an area of a panel that cannot
be scrolled and contains a fixed number of choices.

semantics. The relationships between symbols and
their meanings.

semaphore. An object used by applications for
signalling purposes and for controlling access to
serially reusable resources.

separator. In SM Advanced Common User
Access architecture, a line or color boundary that
provides a visual distinction between two adjacent
areas.

serial dialog box. See modal dialog box.

serialization. The consecutive ordering of items.

serialize. To ensure that one or more events occur
in a specified sequence.

serially reusable resource (SRR). A logical
resource or object that can be accessed by only one
task at a time.

session. (1) A routing mechanism for user
interaction via the console; a complete environment
that determines how an application runs and how
users interact with the application. OS/2 can
manage more than one session at a time, and more
than one process can run in a session. Each
session has its own set of environment variables that
determine where OS/2 looks for dynamic-link
libraries and other important files. (2) (D of C) In the
OS/2 operating system, one instance of a started
program or command prompt. Each session is
separate from all other sessions that might be
running on the computer. The operating system is
responsible for coordinating the resources that each

Glossary X-23

session uses, such as computer memory, allocation
of processor time, and windows on the screen.

Settings Notebook. A control window that is used
to display the settings for an object and to enable the
user to change them.

shadow box. The area on the screen that follows
mouse movements and shows what shape the
window will take if the mouse button is released.

shared data. Data that is used by two or more
programs.

shared memory. In the OS/2 operating system, a
segment that can be used by more than one
program.

shear. In computer graphics, the forward or
backward slant of a graphics symbol or string of
such symbols relative to a line perpendicular to the
baseline of the symbol.

shell. (1) A software interface between a user and
the operating system of a computer. Shell programs
interpret commands and user interactions on devices
such as keyboards, pointing devices, and
touch-sensitive screens, and communicate them to
the operating system. (2) Software that allows a
kernel program to run under different
operating-system environments.

shutdown. The process of ending operation of a
system or a subsystem, following a defined
procedure.

sibling processes. Child processes that have the
same parent process.

sibling windows. Child windows that have the
same parent window.

simple list. A list of like values; for example, a list
of user names. Contrast with mixed list.

single-byte character set (SeCS). A character set
in which each character is represented by a one-byte
code. Contrast with double-byte character set.

slider box. In SAA Advanced Common User
Access architecture: a p~rt of the scroll bar that
shows the position and size of the visible information
in a window relative to the total amount of
information available. Also known as thumb mark.

SOM. System Object Model.

X-24 PM Programming Reference Vol II

source file. A file that contains source statements
for items such as high-level language programs and
data description specifications.

source statement. A statement written in a
programming language.

specific dynamic-link module. A dynamic-link
module created for the exclusive use of an
application.

spin button. In SAA Advanced Common User
Access architecture, a type of entry field that shows
a scrollable ring of choices from which a user can
select a choice. After the last choice is displayed,
the first choice is displayed again. A user can also
type a choice from the scrollable ring into the entry
field without interacting with the spin button.

spline. A sequence of one or more Bezier curves.

spooler. A program that intercepts the data going
to printer devices and writes it to disk. The data is
printed or plotted when it is complete and the
required device is available. The spooler prevents
output from different sources from being intermixed.

stack. A list constructed and maintained so that the
next data element to be retrieved is the most
recently stored. This method is characterized as
last-in-first-out (UFO).

standard window. A collection of window elements
that form a panel. The standard window can include
one or more of the following window elements: sizing
borders, system menu icon, title bar,
maximize/minimize/restore icons, action bar and
pull-downs, scroll bars, and client area.

static control. The means by which the application
presents descriptive information (for example,
headings and descriptors) to the user. The user
cannot change this information.

static storage. (1) A read/write storage unit in
which data is retained in the absence of control
signals. (A) Static storage may use dynamic
addressing or senSing circuits. (2) Storage other
than dynamic storage. (A)

style. See window style.

subdirectory. In an IBM personal computer, a file
referred to in a root directory that contains the

names of other files stored on the diskette or fixed
disk.

swapping. (1) A process that interchanges the
contents of an area of real storage with the contents
of an area in auxiliary storage. (I) (A) (2) In a
system with virtual storage, a paging technique that
writes the active pages of a job to auxiliary storage
and reads pages of another job from auxiliary
storage into real storage. (3) The process of
temporarily removing an active job from main
storage, saving it on disk, and processing another
job in the area of main storage formerly occupied by
the first job.

switch. (1) In SM usage, to move the cursor from
one point of interest to another; for example, to
move from one screen or window to another or from
a place within a displayed image to another place on
the same displayed image. (2) In a computer
program, a conditional instruction and an indicator to
be interrogated by that instruction. (3) A device or
programming technique for making a selection, for
example, a toggle, a conditional jump.

switch list. See Task List.

symbolic identifier. A text string that equates to an
integer value in an include file, which is used to
identify a programming object.

symbols. In Information Presentation Facility, a
document element used to produce characters that
cannot be entered from the keyboard.

synchronous. Pertaining to two or more processes
that depend upon the occurrence of specific events
such as common timing signals. (T) See also
asynchronous.

System Menu. In the Presentation Manager, the
pull-down in the top left corner of a window that
allows it to be moved and sized with the keyboard.

System Object Model (SOM). A mechanism for
language-neutral, object-oriented programming in the
OS/2 environment.

system queue. The master queue for all pointer
device or keyboard events.

system-defined messages. Messages that control
the operations of applications and provides input an
other information for applications to process.

Systems Application Architecture (SAA). A set of
IBM software interfaces, conventions, and protocols
that provide a framework for designing and
developing applications that are consistent across
systems.

T
table tags. In Information Presentation Facility, a
document element that formats text in an
arrangement of rows and columns.

tag. (1) One or more characters attached to a set of
data that contain information about the set, including
its identification. (I) (A) (2) In Generalized
Markup Language markup, a name for a type of
document or document element that is entered in the
source document to identify it.

target object. An object to which the user is
transferring information.

Task List. In the Presentation Manager, the list of
programs that are active. The list can be used to
switch to a program and to stop programs.

template. An ASCII-text definition of an action bar
and pull-down menu, held in a resource file, or as a
data structure in program memory.

terminate-and-stay-resident (TSR). Pertaining to
an application that modifies an operating system
interrupt vector to point to its own location (known as
hooking an interrupt).

text. Characters or symbols.

text cursor. A symbol displayed in an entry field
that indicates where typed input will appear.

text window. Also known as the via window.

text-windowed application. The environment in
which the operating system performs advanced-video
input and output operations.

thread. A unit of execution within a process. It
uses the resources of the process.

thumb mark. The portion of the scroll bar that
describes the range and properties of the data that is
currently visible in a window. Also known as a slider
box.

Glossary X-25

thunk. Term used to describe the process of
address conversion, stack and structure realignment,
etc., necessary when passing control between 16~bit
and 32-bit modules.

tilde. A mark used to denote the character that is to
be used as a mnemonic when selecting text items
within a menu.

time slice. (1) An interval of time on the processing
unit allocated for use in performing a task. After the
interval has expired, processing-unit time is allocated
to another task, so a task cannot monopolize
processing-unit time beyond a fixed limit. (2) In
systems with time sharing, a segment of time
allocated to a terminal job.

time-critical process. A process that must be
performed within a specified time after an event has
occurred.

timer. A facility provided under the Presentation
Manager, whereby Presentation Manager will
dispatch a message of class WM_TIMER to a
particular window at specified intervals. This
capability may be used by an application to perform
a specific processing task at predetermined intervals,
without the necessity for the application to explicitly
keep track of the passage of time.

timer tick. See clock tick.

title bar. In SAA Advanced Common User Access
architecture, the area at the top of each window that
contains the window title and system menu icon.
When appropriate, it also contains the minimize,
maximize, and restore icons. Contrast with panel
title.

TLB. Translation lookaside buffer.

transaction. An exchange between a workstation
and another device that accomplishes a particular
action or result.

transform. (1) The action of modifying a picture by
scaling, shearing, reflecting, rotating, or translating.
(2) The object that performs or defines such a
modification; also referred to as a transformation.

X-26 PM Programming Reference Vol II

Translation lookaside buffer (TLB). A
hardware-based address caching mechanism for
paging information.

Tree. In the Presentation Manager, the window in
the File Manager that shows the organization of
drives and directories.

truncate. (1) To terminate a computational process
in accordance with some rule (A) (2) To remove
the beginning or ending elements of a string. (3) To
drop data that cannot be printed or displayed in the
line width specified or available. (4) To shorten a
field or statement to a specified length.

TSR. Terminate-and-stay-resident.

unnamed pipe. A circular buffer, created in
memory, used by related processes to communicate
with one another. Contrast with named pipe.

unordered list. In Information Presentation Facility,
a vertical arrangement of items in a list, with each
item in the list preceded by a special character or
bullet.

update region. A system-provided area of dynamic
storage containing one or more (not necessarily
contiguous) rectangular areas of a window that are
visually invalid or incorrect, and therefore are in need
of repainting.

user interface. Hardware, software, or both that
allows a user to interact with and perform operations
on a system, program, or device.

User Shell. A component of OS/2 that uses a
graphics-based, windowed interface to allow the user
to manage applications and files installed and
running under OS/2.

utility program. (1) A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort
program. (T) (2) A program designed to perform
an everyday task such as copying data from one
storage device to another. (A)

u
There are no glossary terms for this starting letter.

v
value set control. A visual component that enables
a user to select one choice from a group of mutually
exclusive choices.

vector font. A set of symbols, each of which is
created as a series of lines and curves.
Synonymous with outline font. Contrast with image
font.

VGA. Video graphics array.

viewing pipeline. The series of transformations
applied to a graphic object to map the object to the
device on which it is to be presented.

viewing window. A clipping boundary that defines
the visible part of model space.

VIO. Video Input/Output.

virtual memory (VM). Synonymous with virtual
storage.

virtual storage. (1) The storage space that may be
regarded as addressable main storage by the user of
a computer system in which virtual addresses are
mapped into real addresses. The size of virtual
storage is limited by the addressing scheme of the
computer system and by the amount of auxiliary
storage available, not by the actual number of main
storage locations. (I) (A) (2) Addressable space
that is apparent to the user as the processor storage
space, from which the instructions and the data are
mapped into the processor storage locations. (3)
Synonymous with virtual memory.

visible region. A window's presentation space,
clipped to the boundary of the window and the
boundaries of any overlying window.

volume. (1) A file-system driver that uses a block
device driver for input and output operations to a
local or remote device. (I) (2) A portion of data,
together with its data carrier, that can be handled
conveniently as a unit.

w
wildcard character. Synonymous with global
file-name character.

window. (1) A portion of a display surface in which
display images pertaining to a particular application
can be presented. Different applications can be
displayed simultaneously in different windows. (A)
(2) An area of the screen with visible boundaries
within which information is displayed. A window can
be smaller than or the same size as the screen.
Windows can appear to overlap on the screen.

window class. The grouping of windows whose
processing needs conform to the services provided
by one window procedure.

window coordinates. A set of coordinates by
which a window position or size is defined; measured
in device units, or pels.

window handle. Unique identifier of a window,
generated by Presentation Manager when the
window is created, and used by applications to direct
messages to the window.

window procedure. Code that is activated in
response to a message. The procedure controls the
appearance and behavior of its associated windows.

window rectangle. The means by which the size
and position of a window is described in relation to
the desktop window.

window resource. A read-only data segment
stored in the .EXE file of an application 0 the .DLL
file of a dynamic link library.

window style. The set of properties that influence
how events related to a particular window will be
processed.

window title. In SAA Advanced Common User
Access architecture, the area in the title bar that
contains the name of the application and the OS/2
operating system file name, if applicable.

workstation. (1) A display screen together with
attachments such as a keyboard, a local copy
device, or a tablet. (2) (0 of C) One or more
programmable or nonprogrammable devices that
allow a user to do work.

Glossary X-27

world coordinates. A device-independent
Cartesian coordinate system used by the application
program for specifying graphical input and
output. (I) (A)

world-coordinate space. Coordinate space in
which graphics are defined before transformations
are applied.

WYSIWYG. What-You-See-Is-What-You-Get. A
capability of a text editor to continually display pages
exactly as they will be printed.

x
There are no glossary terms for this starting letter.

y
There are no glossary terms for this starting letter.

X-28 PM Programming Reference Vol II

z
z-order. The order in which sibling windows are
presented. The topmost sibling window obscures
any portion of the siblings that it overlaps; the same
effect occurs down through the order of lower sibling
windows.

zooming. The progressive scaling of an entire
display image in order to give the visual impreSSion
of movement of all or part of a display group toward
or away from an observer. (I) (A)

8.3 file-name format. A file-naming convention in
which file names are limited to eight characters
before and three characters after a single dot.
Usually pronounced "eight-dot-three." See also
non-8.3 file-name format.

Index

A
ACCEL A-1
ACCEL TABLE A-1
ACCEL TABLE statement 31-1 0
ACCELTABLE statement 31-9
APIRET A-2
Applications

Windowed PM 32-1
APSZ A-2
ARCPARAMS A-2
AREABUNOLE A-3
ASSOCTABlE statement 31-9,31-12
ATOM A-4

B
BOS _ * values 11-6
bit maps

data 0-1
example 0-2
file format 0-2
information tables 0-1
standard formats 0-1

BIT16 A-20
BIT32 A-20
BIT8 A-20
BITMAPARRAYFILEHEAOER A-4
BITMAPARRAYFILEHEAOER2 A-5
BITMAPFILEHEAOER A-6
BITMAPFILEHEAOER2 A-7
BITMAPINFO A-8
BITMAPINF02 A-9
BITMAPINFOHEAOER A-14
BITMAPINFOHEAOER2 A-15
BKM_CALCPAGERECT 23-7
BKM~OELETEPAGE 23-8
BKM _I NSERTPAGE 23-9
BKM_INVALIOATETABS 23-11
BKM_OUERYPAGECOUNT 23-11
BKM_OUERYPAGEOATA 23-13
BKM_OUERYPAGEIO 23-13
BKM_OUERYPAGEINFO 23-15
BKM_OUERYPAGESTYLE 23-16
BKM_OUERYPAGEWINOOWHWNO 23-17
BKM_OUERYSTATUSLINETEXT 23-18

© Copyright IBM Corp. 1994

BKM_OUERYTABBITMAP 23-19
BKM_OUERYTABTEXT 23-19,23-20
BKM_SETOIMENSIONS 23-20,23-21
BKM _ SETNOTEBOOKCOLORS 23-21 , 23-22
BKM_SETPAGEOATA 23-23
BKM_SETPAGEINFO 23-24
BKM_SETPAGEWINOOWHWNO 23-24,23-25
BKM_SETSTATUSLINETEXT 23-26
BKM _ SETT ABBITMAP 23-26
BKM_SETTABTEXT 23-28
BKM_ TURNTOPAGE 23-28, 23-29
BKN_* values 23-3
BKS _ * values 23-1
BM_CLlCK 11-8
BM_ OUERYCHECK 11-8
BM_OUERYCHECKINOEX 11-9
BM_OUERYHILITE 11-10
BM_SETCHECK 11-11
BM_SETOEFAULT 11-12
BM_SETHILITE 11-13
BN_* values 11-6
BOOKPAGEINFO A-21
BOOKTEXT A-23
BOOl A-21
BS_* values 11-1
BTNCOATA A-24
button control data 11-3
button control styles 11-1
button control window processing 11-1
BYTE A-24

c
CA_* values A-36

column headings A-37
drawing and painting A-37
icons or bit maps A-36
ordered target emphasis A-36
title attributes A-37
title position A-37
titles A-37

CATCHBUF A-25
CBM_HILITE 17-6
CBMJSLlSTSHOWING 17-7
CBM_SHOWLIST 17-7
CBN_ * values 1 7-3

X-29

CBS_* values 17-1
CCS_* values

selection types 22-3
styles 22-2

CDATE A-25
CDP parameter A-52
CF _ * values 27-5
CFA_* values A-73

data types A-73
CHAR A-26
CHARBUNDLE A-26
check box 11-1
CLASSINFO A-27
clipboard 26-27

messages 26-27
Clipboard messages 26-27, 27-1
clipping F-1
CM_ALLOCDETAILFIELDINFO 22-31
CM_ALLOCRECORD 22-32
CM_ARRANGE 22-34
CM_CLOSEEDIT 22-35
CM_COLLAPSETREE 22-36
CM_ERASERECORD 22-37
CM_EXPANDTREE 22-38
CM_FILTER 22-39
CM_FREEDETAILFIELDINFO 22-40
CM_FREERECORD 22-42
CM_HORZSCROLLSPLITWINDOW 22-43
CM_INSERTDETAILFIELDINFO 22-44
CMJNSERTRECORD 22-45
CM_INSERTRECORDARRAY 22-47
CM_INVALIDATEDETAILFIELDINFO 22-49
CM_INVALIDATERECORD 22-50
CM_MOVETREE 22-52
CM_OPENEDIT 22-53
CM_PAINTBACKGROUND 22-55
CM_QUERYCNRINFO 22-56
CM_QUERYDETAILFIELDINFO 22-56
CM_QUERYDRAGIMAGE 22-57
CM_QUERYRECORD 22-59
CM_QUERYRECORDEMPHASIS 22-60
CM _ QUERYRECORDFROMRECT 22-61
CM_QUERYRECORDINFO 22-63
CM_QUERYRECORDRECT 22-64
CM_QUERYVIEWPORTRECT 22-65
CM_REMOVEDETAILFIELDINFO 22-66
CM_REMOVERECORD 22-68
CM_SCROLLWINDOW 22-70
CM_SEARCHSTRING 22-70

X-30 PM Programming Reference Vol II

CM_SETCNRINFO 22-71
CM_SETRECORDEMPHASIS 22-74
CM_SETTEXTVISIBILITY 22-77
CM_SORTRECORD 22-76
CMDSRC_* values 9-4, 10-37, 10-49, 10-91, 13-28
CN_* values 22-5

described 22-10
CN_BEGINEDIT 22-10
CN_COLLAPSETREE 22-10
CN_CONTEXTMENU 22-12
CN_DRAGAFTER 22-12
CN_DRAGLEAVE 22-15
CN_DRAGOVER 22-16
CN_DROP 22-18
CN_DROPHELP 22-19
CN_DROPNOTIFY 22-19
CN_EMPHASIS 22-20
CN_ENDEDIT 22-21
CN_ENTER 22-22
CN_EXPANDTREE 22-23
CN_HELP 22-23
CN_INITDRAG 22-24
CN_KILLFOCUS 22-25
CN_PICKUP 22-26
CN_QUERYDELTA 22-27
CN_REALLOCPSZ 22-28
CN_SCROLL 22-29
CN_SETFOCUS 22-29
CNRDRAGINFO A-27, A-28
CNRDRAGINIT A-32
CNRDRAWITEMINFO A-28
CNREDITDATA A-29
CNRINFO A-32, A-33
CNRLAZYDRAGINFO A-39
Code pages 32-1

ASCII 32-12
EBCDIC 32-21
Font support 32-4
OS/2 options for PM 32-3
OS/2 support for multiple 32-4

COL parameter A-52
COLOR A-40
color table F-1
combination-box control data 17-1
combination-box control window processing 17-1
container control window processing

data structures 22-4
icon size, how determined A-35
mini-icon size, how determined A-35
notification codes 22-10

container control window processing (continued)
notification messages 22-5
purpose 22-1
styles and selection types 22-2
window messages 22-31
window words 22-2

container views A-34
contents and format of dialog template 31-24
control classes 9-2
control data 31-28
control statements

predefined 31-30
control window processing 9-2
Control-Data A-44
CONVCONTEXT A-40
coordinates

dialog 31-24
coordinates for dialogs 31-24
COP parameter A-51
CREATESTRUCT A-41
CS_* values

window class styles 1 0-2
CSBITMAPDATA A-42
CSM_QUERYINCREMENT 25-5
CSM_QUERYRADIUS 25-5
CSM _ QUERYRANGE 25-6
CSM_QUERYVALUE 25-6
CSM_SETBITMAPDATA 25-7
CSM_SETINCREMENT 25-7
CSM _ SETRANGE 25-8
CSM_SETVALUE 25-9
CTIME A-44
CURSORINFO A-43
CV_* values

CNRINFO A-34
SEARCHSTRING A-185
view styles A-35

CVR_ * values 10-30

D
data

bit map D-1
data area in a dialog template 31-27
DC _ * values A-61
DDE_* values 29-1,29-2,29-3, A-47
DDEINIT A-45
DDESTRUCT A-46
default colors 11-3,12-3, 13-4, 14-1,15-3,17-2,

18-1,20-2,21-1,25-2

default dialog processing 10-103
default message processing 10-1
default window processing 9-2
DEFAUL TICON keyword 31-3
DELETENOTIFY A-46
DESKTOP A-48
DEVOPENSTRUC A-49
Dialog and Window Template statement 31-9
dialog processing 1 0-1 03

default 10-103
language support 10-120

dialog template
data-area information 31-27
format and contents 31-24
header information 31-26
item information 31-26

direct manipulation messages 28-1
directives 31-6
DLGC _ * values 10-105
DLGTEMPLATE A-53
DLGTEMPLATE statement 31-13
DLGTITEM A-54
DM_DISCARDOBJECT 28-1
DM_DRAGERROR 28-1
DM_DRAGFILECOMPLETE 28-2
DM_DRAGLEAVE 28-4
DM_DRAGOVER 28-4
DM_DRAGOVERNOTIFY 28-7
DM_DROP 28-8
DM_DROPHELP 28-9
DM_DROPNOTIFY 28-10
DM_EMPHASIZETARGET 28-11
DM_ENDCONVERSATION 28-11
DM_FILERENDERED 28-12
DM_PRINTOBJECT 28-13
DM_RENDER 28-14
DM_RENDERCOMPLETE 28-15
DM_RENDERRLE 2~17

DM_RENDERPREPARE 28-18
DMFL_ * values. A-63
DO_* values

DRAGINFO A-58
DRAGITEM A-61

drag messages 28-1
DRAGIMAGE A-56
DRAGINFO A-57
DRAG ITEM A-58
DRAGTRANSFER A-61
DRF _ * values A-60

Index X-31

ORG _* values A-56
ORIVOATA A-63
ORM _ * values A-60
ORT _ * values A-59
OT _ * values 20-1
dynamic data exchange messages 29-1

E
EM_CLEAR 12-6
EM_COPY 12-6
EM_CUT 12-7
EM_PASTE 12-8
EM_QUERYCHANGEO 12-8
EM_QUERYFIRSTCHAR 12-9
EM_QUERYREAOONLY 12-10
EM_QUERYSEL 12-11
EM_SETFIRSTCHAR 12-12
EM_SETINSERTMOOE 12-13
EM_SETREAOONLY 12-13
EM_SETSEL 12-14
EM_SETTEXTLIMIT 12-15
EN_* values 12-4, 16-3
entry field control data 12-3
entry field control window processing 12-1
ENTRYFOATA A-64
ERRINFO A-65
ERRORIO A-65
errors B-1 , C-1
ES _ * dbcsvals 12-2
ES_* values 12-1
ESCMOOE A-66
ESCSETMOOE A-67

F
FACENAMEOESC A-68
FATTR_SEL_* values A-70
FATTR_TYPE_* values A-71
FATTRS A-69
FCF _ * values 13-1
FOM_ERROR 10-106
FOM_FILTER 10-107
FOM_VALIOATE 10-108
FOS _ * values A-78
FFOESCS A-71
FI_* values 13-23
FIO_* values 13-1,21-1
FIELOINFO A-72

X-32 PM Programming Reference Vol II

FIELOINFOINSERT A-75
file dialog 10-106
file format
file formats

bit maps 0-2
icon file 0-2
pOinter 0-2

FILEOLG A-77
FIT parameter A-51
FIXED A-81
FNTF _ * values A-84, A-85
FNTM_FACENAMECHANGEO 10-111
FNTM_FILTERLIST 10-112
FNTM_POINTSIZECHANGEO 10-113
FNTM_STYLECHANGEO 10-114
FNTM_UPOATEPREVIEW 10-115
FNTS _ * values A-83
font dialog 10-109
FONTOLG A-82
FONTMETRICS A-88
fonts supplied with the OS/2 operating system E-1
format and contents of dialog template 31-24
frame control data 13-3
frame control window processing 13-1
FRAMECOATA A-98
FS _ * values 13-3

G
general window styles 10-1
GRAOIENTL A-100

H
HAB A-100
HACCEL A-100
HAPP A-101
HATOMTBL A-101
HBITMAP A-101
HCAPS _ * values A-103
HCINFO A-102
HOC A-102
HOOF A-103
header 31-26
help manager messages 30-1
HELPINIT A-104
HELPSUBTABLE A-106
HELPTABLE A-108
HENUM A-108

HEV A-108
HINI A-108
HliB A-109
HM_ACTIONBAR_COMMAND 30-1
HM CONTROL 30-1
HM -CREATE HELP TABLE 30-2
HM - DISMISS-WINDOW 30-3
HM=DISPLAY-='HELP 30-4
HM_ERROR 30-5
HM EXT HELP 30-7
HM - EXT-HELP UNDEFINED 30-8
HM - GEN-ERAL -HELP 30-8
HM -GENERAL-HELP UNDEFINED 30-9
HM - HELP CONTENTS 30-10
HM -HELP -INDEX 30-10
HM=HELPSUBITEM_NOT _FOUND 30-11
HM INFORM 30-12
HM=INVALIDATE_DDF _DATA 30-12
HM KEYS HELP 30-14
HM=LOAD=HELP _TABLE 30-15
HM_NOTIFY 30-15
HM QUERY 30-17
HM -QUERY DDF DATA 30-19
HM - QUERY - KEYS HELP 30-20
HM - REPLACE HELP FOR HELP 30-20
HM - REPLACE-USING HELP 30-21
HM -SET ACTivE WINDOW 30-22
HM - SET - COVERPAGE SIZE 30-23
HM - SET-HELP LIBRARY NAME 30-24
HM - SET -HELP -WINDOW TITLE 30-25
HM -SET - OBJCOM WINDOW 30-25
HM -SET-SHOW PANEL 10 30-26
HM=SET =USERDATA 30-27
HM TUTORIAL 30-27
HM -UPDATE OBJCOM WINDOW CHAIN 30-28
HMERR_* error constants 30-5 -
HMF A-109
HMODULE A-109
HMQ A-110
HMTX A-110
HMUX A-110
HOBJECT A-110
HPOINTER A-111
HPROGRAM A-111
HPS A-111
HRGN A-111
HSAVEWP A-112
HSEM A-112
HSPL A-112

HSTR A-112
HSWITCH A-113
HT _ * values 10-50
HWND A-113

icon file format 0-2
icon size, how determined A-35
ICONINFO A-113
IMAGEBUNDLE A-114
information tables

bit map 0-1
initialization file G-1
interchange file format F-1
IPT A-115
items in a dialog template 31-26

J
JRN_* values 10-54

K
KC _ * values 10-32
kerning A-98

enable A-71
number of pairs A-98

KERNINGPAIRS A-115
KERNINGPAIRS data structure A-115
keyboard control codes 10-32
keyboard resources 31-10
keyboard statements

keyboard 31-10

L
language support dialog processing 10-120
language support window processing 10-116
LBOXINFO A-115
LHANDLE A-117
lINEBUNDLE A-117
list box control data 14-1
list box control styles 14-1
list box control window processing 14-1
LIT _ * values 14-8
LM_DELETEALL 14-7
LM_DELETEITEM 14-7
LM-,NSERTITEM 14-8

Index X-33

LM JNSERTMUL TITEMS 14-9
LM_OUERYITEMCOUNT 14-10
LM_OUERYITEMHANDLE 14-11
LM_OUERYITEMTEXT 14-12
LM _ OUERYITEMTEXTLENGTH 14-13
LM_OUERYSELECTION 14-13
LM_OUERYTOPINDEX 14-14
LM_SEARCHSTRING 14-15
LM _ SELECTITEM 14-16
LM_SETITEMHANDLE 14-18
~M_SETITEMHEIGHT 14-19
LM _ SETITEMTEXT 14-19
LM ...;SETITEMWIDTH 14-20
LM_SETIOPINDEX 14-21
LN _ * values 14-3
LONG A-118
LS _* values 14-1
LSS_* values 14-15

M
MAp· parameter A-52
MARKERBUNDLE A-119
MATRIXLF A-120
MB2D A-121
MB21NFO A-121
menu control styles 15-1
menu control window processing 15-1
menu item attributes 15-3
menu item styles 15-2
MENU statement 31-9,31-16
MENUITEM A-123
menus

pull-down 31-19
templates 31-20

message processing
introduction 9-1
notation conventions 9-4
types 9-1

message types 9-1
Metafile data format F-3
metafile restrictions F-1
metafiles

general rules F-1
MIA_* values 15-3
mini-icon size, how determined A-35
MINIRECORDCORE A-124
MIS_* values 15-2,31-21
MIT_* values 15-12, 15-15, 15-23

X-34 PM Programming Reference Vol II

MLE_SEARCHDATA A-125
MLECTLDATA A-127
MLEMARGSTRUCT A-126
MLEOVERFLOW A-136
MLM_CHARFROMLINE 16-9
MLM_CLEAR 16-9
MLM_COPY 16-10
MLM_CUT 16-11
MLM_DELETE 16-12
MLM_DISABLEREFRESH 16-12
MLM_ENABLEREFRESH 16-13
MLM_EXPORT 16-14
MLM_FORMAT 16-15
MLM_IMPORT 16-16
MLM_INSERT 16-17
MLM_LlNEFROMCHAR 16-18
MLM_PASTE 16-18
MLM_OUERYBACKCOLOR 16-19
MLM_OUERYCHANGED 16-19
MLM_OUERYFIRSTCHAR 16-20
MLM_OUERYFONT 16-21
MLM_OUERYFORMATLINELENGTH 16-21
MLM_ OUERYFORMATRECT 16-22
MLM_ OUERYFORMA TIEXTLENGTH 16-23
MLM_OUERYIMPORTEXPORT 16-24
MLM_OUERYLINECOUNT 16-25
MLM_OUERYLINELENGTH 16-25
MLM_OUERYREADONLY 16-26
MLM_OUERYSEL 16-27
MLM_OUERYSELTEXT 16-29
MLM_OUERYTABSTOP 16-29
MLM_ OUERYTEXTCOLOR 16-30
MLM_OUERYTEXTLENGTH 16-31
MLM_OUERYTEXTLIMIT 16-31
MLM_OUERYUNDO 16-32
MLM_OUERYWRAP 16-33
MLM_RESETUNDO 16-33
MLM_SEARCH 16-35
MLM_SETBACKCOLOR 16-37
MLM_SETCHANGED 16-37
MLM _ SETFI RSTCHAR 16-38
MLM_SETFONT 16-39
MLM_SETFORMATRECT 16-40
MLM_SETIMPORTEXPORT 16-43
MLM_SETREADONLY 16-43
MLM_SETSEL 16-45
MLM_SETIABSTOP 16-46
MLM_SETIEXTCOLOR 16-46
MLM_SETIEXTLIMIT 16-47

MLM_SETWRAP 16-48
MLM_UNDO 16-49
MLS_* values 16-2
MM_DELETEITEM 15-10
MM_ENDMENUMODE 15-10
MM_INSERTITEM 15-11
MMJSITEMVALID 15-12
MMJTEMIDFROMPOSITION 15-13
MMJTEMPOSITIONFROMID 15-14
MM_QUERYDEFAULTITEMID 15-15
MM_QUERYITEM 15-15
MM_QUERYITEMATTR 15-16
MM_QUERYITEMCOUNT 15-18
MM_QUERYITEMRECT 15-18
MM_QUERYITEMTEXT 15-19
MM_QUERYITEMTEXTLENGTH 15-20
MM_QUERYSELITEMID 15-21
MM_REMOVEITEM 15-22
MM_SELECTITEM 15-23
MM_ SETDEFAUL TITEMID 15-24
MM_SETITEM 15-25
MM_SETITEMATTR 15-26
MM_SETITEMHANDLE 15-27
MM_SETITEMTEXT 15-28
MM_STARTMENUMODE 15-28
MPARAM A-129
MQINFO A-129
MRESULT A-130
MS _ * values 10-8, 15-1
multi-line entry field control data 16-2
multi-line entry field control window processing 16-1
multiple-line statements 31-9

N

ACCELTABLE 31-10
ASSOCTABLE 31-12
DLGTEMPLATE 31-13
MENU 31-16
STRINGTABLE 31-22
WINDOWTEMPLATE 31-13

notation conventions
messages 9-4

notebook control window processing
notification codes 23-3
notification messages 23-3
purpose 23-1
styles 23-1
window messages 23-7

NOTIFYDELTA A-130
NOTIFYRECORDEMPHASIS A-131
NOTIFYRECORDENTER A-132
NOTIFYSCROLL A-133

o
OBJCLASS A-134
owner-notification messages 9-4
OWNERBACKGROUND A-135
OWNERITEM 10-110, A-136

owneritem parameter 22-7
WM_DRAWITEM for container control 22-7
WM_DRAWITEM for font dialog 10-110

P
PAGEINFO A-138
PAGESELECTNOTIFY A-140
PANOSE A-140
PARAM A-144
parent/child/owner relationship 31-29
PC VKEY H-1
PCH A-147
PCSZ A-147
PDEVOPENDATA A-147
PFN A-148
PFNWP A-148
PID A-148
PIX A-148
PL_ALTERED 10-5
PM_* names G-1
PM_Q_* values A-50
pointer file format D-2
POINTERINFO A-169
POINTL A-170
POINTS A-171
PQMOPENDATA A-171
PRD_* values. A-150
PRDINF03 A-149
PRDRIVINFO A-151
predefined control statements 31-30
predefined window classes 31-30
presentation parameters 31-28
presentation space

cached 13-15
PRESPARAMS A-151
PRFPROFILE A-154
PRINTDEST A-152

Index X-35

PRINTERINFO A-153
PRJ_* values. A-150, A-156
PRJ_QS_* values. A-156
PRJINF02 A-155
PRJINF03 A-157
PROG_* values A-161
PROGCATEGORY A-160
PROGDETAILS A-160
PROGRAM ENTRY A-159
PROGTYPE A-161
prompted entry field control window

processing 17-1
PRPORTINFO A-162
PRPORTINF01 A-163
PRQINF03 A-164
PRQINF06 A-166
PRQPROCINFO A-168
PSZ A-171
pull-down menus 31-19
PVOID A-172
PWPOINT A-172

Q
QFC_* values 13-21
QMSG A-172
QUERYRECFROMRECT A-173.
QUERYRECORDRECT A-174
QWL _USER in containers 22-2

R
radio button 11-2
RECORDCORE A-175
RECORDINSERT A-177
RECTL A-178
RENOERFILE A-179
reserved messages 10-1
resource definitions 31-2
resource file specification 31-35
resource files

definitions 31-2
introduction 31-1
source file specification 31-35
syntax definitions 31-1

resource script file
keyboard resources specification 31-1 0
specification 31-2·

resource script file specification
user-defined resources 31-4

X-36 PM Programming Reference Vol II

resource statements
ACCELTABLE 31-10
ASSOCTABLE 31-12
dialog template 31-13
directives 31-6
DLGTEMPLATE 31-13
MENU item 31-18
MENU statement 31-16
multiple-line 31-9
single line 31-3
STRINGTABLE 31-22
user-defined 31-4
window template 31-13
WINDOWTEMPLATE 31-13

RGB A-180
RGB2 A-181
RGNRECT A-182
RT _ * values 31-35

S
SB_* values 10-51, 10-100,27-3,27-7
SBCDATAA-182
SBM_QUERYPOS 18-4
SBM_QUERYRANGE 18-4
SBM_SETPOS 18-5
SBM_SETSCROLLBAR 18-6
SBM_SETTHUMBSIZE 18-7
SBS_* values 18-1
SC _* values 13-27
scroll bar control data 18-1
scroll bar control window processing 18-1
scroll bar styles 18-1
SOT _ * values A-48
SEARCHSTRING A-183, A-184
SEGOFF A-185
SEPARATOR menu item 31-20
SFACTORS A-185
SHORT A-186
SIZEF A-186
SIZEL A-186
SLDCDATA A-187
slider control window processing

data structures 24-4
notification messages 24-5
purpose 24-1
styles 24-1
window messages 24-8

SLM_AOOOETENT 24-8

SLM_QUERYDETENTPOS 24-8,24-9
SLM_QUERYSCALETEXT 24-9,24-10
SLM QUERYSLIDERINFO 24-11
SLM=QUERYTICKPOS 24-13
SLM_QUERYTICKSIZE 24-14
SLM _ REMOVEDETENT 24-15
SLM _ SETSCALETEXT 24-16
SLM_SETSLIDERINFO 24-17
SLM_SETTICKSIZE 24-19
SLS_* values 24-1
SM_ QUERYHANDLE 20-4
SM_SETHANDLE 20-5
SMHSTRUCT A-188
source resource file 31-35
SPBCDATA A-189
SPBM _ OVERRIDESETLIMITS 19-4
SPBM_QUERYLIMITS 19-5
SPBM_QUERYVALUE 19-6
SPBM _ SETARRA Y 19-8
SPBM _ SETCURRENTV ALUE 19-9
SPBM_SETLIMITS 19-9
SPBM_SETMASTER 19-10
SPBM_SETTEXTLIMIT 19-11
SPBM_SPINDOWN 19-12
SPBM_SPINUP 19-13
spin button control window processing 19-1

notification message 19-3
purpose 19-1
styles 19-1

SPLERR A-190
SS_* values 20-1
standard bit-map formats 0-1
static control data 20-2
static control styles 20-1
static control window processing 20-1
STR16 A-190
STR32 A-190
STR64 A-190
STR8 A-191
STRINGTABLE statement 31-9,31-22
STYLECHANGE A-191
submenus 31-19
SV_* values

effect on container icon size A-35
effect on container mini-icon size A-35

SWBLOCK A-193
SWCNTRL A-193
SWENTRY A-194
SWL_ * values A-194

SWP A-195
SWP _ * values 10-101, A-196

T
TBM_QUERYHILITE 21-3
TBM_ SETHILITE 21-4
templates

dialog 31-24
format 31-21
menus 31-20

TF _ * values A-198
TID A-197
title bar

control data 21-1
control window processing 21-1
style 21-1

TRACKINFO A-197
TREEITEMDESC A-199
TREEMOVE A-200
triplets F-3

U
UCHAR A-201
ULONG A-201
user-defined resources 31-4
USERBUTTON A-201
USHORT A-202

v
value set control window processing

data structures 26-5
notification messages 26-6
purpose 26-1
styles 26-1
window messages 26-10

VIA_* values
querying item attributes 26-12
setting item attributes 26-19

VIOFONTCELLSIZE A-203
VIOSIZECOUNT A-203
virtual key definitions H-1
VK_ * values A-2
VM QUERYITEM 26-10
VM=QUERYITEMATTR 26-11,26-12
VM_QUERYMETRICS 26-14
VM_QUERYSELECTEDITEM 26-15

Index X-37

VM_SELECTITEM 26-16
VM_SETITEM 26-17
VM_SETITEMATTR 26-19
VM_SETMETRICS 26-21
VOID A-204
VS_* values 26-1
VSCDAT A A-204
VSDRAGINFO A-205
VSDRAGINIT A-205
VSTEXT A-206

w
WC_* values 9-2,21-1
window class styles 10-2
window processing

button control 11-1
combination-box control 17-1
container control 22-1
control 9-2
default 9-2, 10-1
entry field control 12-1
frame control 13-1
language support 10-116
list box control 14-1
menu control 15-1
multi-line entry field control 16-1
notebook control 23-1
prompted entry field control 17-1
scroll bar control 18-1
slider control 24-1
spin button control 19-1
static control 20-1
value set control 26-1

WINDOWTEMPLATE statement 31-13
WM Y.CTIVATE 10-5
WM_ACTIVATE (in Frame Controls) 13-8
WM _ACTIVATE (Language Support Dialog) 10-120
WM_ACTIVATE (Language Support

Window) 10-116
WM_ADJUSTFRAMEPOS 13-8
WM_ADJUSTWINDOWPOS 10-7
WMY.PPTERMINATENOTIFY 10-7
WM_BEGINDRAG 10-9
WM_BEGINSELECT 10-10
WM_BUTTON1CLlCK 10-11
WM _ BUTTON 1 DBLCLK 10-12
WM_BUTTON1DBLCLK (in Frame Controls) 13-9
WM_BUTTON1DBLCLK (in Multiline Entry

Fields) 16-50

X-38 PM Programming Reference Vol II

WM_BUTTON1DOWN 10-13
WM _ BUTTON1 DOWN (in Frame Controls) 13-10
WM_BUTTON1 DOWN (in Multiline Entry

Fields) 16-50
WM_BUTTON1MOTIONEND 10-14
WM_BUTTON1 MOTIONSTART 10-15
WM_BUTTON1UP 10-16
WM_BUTTON1UP (in Frame Controls) 13-11
WM_BUTTON1UP (in Multiline Entry Fields) 16-51
WM_BUTTON2CLlCK 10-17
WM_BUTTON2DBLCLK 10-18
WM_BUTTON2DBLCLK (in Frame Controls) 13-10
WM _ BUTTON2DOWN 10-19
WM_BUTTON2DOWN. (in Frame Controls) 13-10
WM_BUTTON2MOTIONEND 10-20
WM _ BUTTON2MOTIONSTART 10-21
WM_BUTTON2UP 10-22
WM_BUTTON2UP (in Frame Controls) 13-11
WM _ BUTTON3CLlCK 10-23
WM _BUTTON3DBLCLK 10-23
WM _ BUTTON3DOWN 10-24
WM_BUTTON3MOTIONEND 10-25
WM _ BUTTON3MOTIONSTART 10-27
WM_BUTTON3UP 10-28
WM_CALCFRAMERECT 10-29
WM_CALCFRAMERECT (in Frame Controls) 13-12
WM_CALCVALIDRECTS 10-30
WM _CHAR 10-32

circular slider control 25-9
notebook control 23-30
slider control 24-20
value set control 26-22

WM_CHAR (Default Dialogs) 10-103
WM _CHAR (in Circular Slider Controls) 25-9
WM _CHAR (in Entry Fields) 12-16
WM_CHAR (in Frame Controls) 13-12
WM_CHAR (in List Boxes) 14-22
WM_CHAR (in Multiline Entry Fields) 16-52
WM_CHAR (in Notebook Controls) 23-30
WM_CHAR (in Slider Controls) 24-20
WM _CHAR (in Value Set Controls) 26-22
WM _CHORD 10-34
WM _CLOSE 10-35
WM _CLOSE (Default Dialogs) 10-104
WM_CLOSE (in Frame Controls) 13-13
WM_COMMAND 9-4, 10-37, 13-13
WM_COMMAND (Default Dialogs) 10-104
WM_COMMAND (in Button Controls) 11-5
WM_COMMAND (in Menu Controls) 15-5

WM_ CONTEXTMENU 10-38
WM _CONTROL 9-4, 10-39

container control 22-5
notebook control 23-3
slider control 24-5
value set control 26-6

WM_ CONTROL (in Button Controls) 11-5
WM_ CONTROL (in Circular Slider Controls) 25-3
WM_CONTROL (in Combination Boxes) 17-3
WM_CONTROL (in Container Controls) 22-5
WM_CONTROL (in Entry Fields) 12-4
WM_CONTROL (in List Boxes) 14-3
WM_ CONTROL (in Multiline Entry Fields) 16-3
WM _CONTROL (in Notebook Controls) 23-3
WM_CONTROL (in Slider Controls) 24-5
WM_CONTROL (in Spin Button Controls) 19-3
WM_ CONTROL (in Value Set Controls) 26-6
WM_ CONTROL (Language Support Dialog) 10-120
WM _CONTROL (Language Support

Window) 10-116
WM_CONTROLPOINTER 10-40

circular slider control 25-4
container control 22-6
notebook control 23-4
slider control 24-6
value set control 26-7

WM_ CONTROLPOINTER (in Circular Slider
Controls) 25-4

WM_ CONTROLPOINTER (in Container
Controls) 22-6

WM_CONTROLPOINTER (in Notebook
Controls) 23-4

WM_CONTROLPOINTER (in Slider Controls) 24-5
WM_CONTROLPOINTER (in Value Set

Controls) 26-7
WM_CREATE 10-41
WM_DDE_ACK 29-1
WM_DDE_ADVISE 29-2
WM_DDE_DATA 29-3
WM_DDE_EXECUTE 29-4
WM_DDEJNITIATE 29-4
WM_DDEJNITIATEACK 29-6
WM_DDE_POKE 29-6
WM_DDE_REQUEST 29-7
WM_DDE_TERMINATE 29-8
WM_DDE_UNADVISE 29-9
WM_DESTROY 10-42
WM_DESTROYCLIPBOARD 27-1
WM_DRAWCLIPBOARD 27-2

WM_DRAWITEM 10-42
container control 22-7
font dialog 10-110
notebook control 23-4
slider control 24-6
value set control 26-8

WM_DRAWITEM (in Container Controls) 22-7
WM_DRAWITEM (in Font Dialog) 10-109
WM_DRAWITEM (in Frame Controls) 13-13
WM_DRAWITEM (in List Boxes) 14-4
WM_DRAWITEM (in Menu Controls) 15-5
WM_DRAWITEM (in Notebook Controls) 23-4
WM_DRAWITEM (in Slider Controls) 24-6
WM_DRAWITEM (in Value Set Controls) 26-8
WM_ENABLE 10-43
WM_ENABLE (in Button Controls) 11-14
WM_ENABLE (in Multiline Entry Fields) 16-55
WM_ENDDRAG 10-44
WM_ENDSELECT 10-45
WM_ERASEBACKGROUND 13-14
WM_ERROR 10-46
WM_FLASHWINDOW 13-15
WM_FOCUSCHANGE 10-47
WM_FOCUSCHANGE (in Frame Controls) 13-16
WM_FORMATFRAME 10-48
WM_FORMATFRAME (in Frame Controls) 13-16
WM_HELP 9-4, 10-49
WM_HELP (in Button Controls) 11-7
WM_HELP (in Menu Controls) 15-6
WM _ H ITTEST 10-50
WM_HSCROLL 10-51
WM_HSCROLL (in Horizontal Scroll Bars) 18-3
WM _ HSCROLLCLI PBOARD 27-2
WMJNITDLG 10-52
WMJNITDLG (Default Dialogs) 10-104
WMJNITMENU 10-53
WMJNITMENU (in Frame Controls) 13-17
WMJNITMENU (in Menu Controls) 15-7
WM_JOURNALNOTIFY 10-53
WM_MATCHMNEMONIC 10-55
WM_MATCHMNEMONIC (Default Dialogs) 10-105
WM_MATCHMNEMONIC (in Button

Controls) 11-14
WM_MATCHMNEMONIC (in Static Controls) 20-5
WM_MEASUREITEM 10-55
WM_MEASUREITEM (in Frame Controls) 13-17
WM_MEASUREITEM (in List Boxes) 14-5
WM_MEASUREITEM (in Menu Controls) 15-7
WM_MENUEND 10-56

Index X-39

WM_MENUEND (in Menu Controls) 15-8
WM_MENUSELECT 10-57
WM_MENUSELECT (in Frame Controls) 13-18
WM_MENUSELECT (in Menu Controls) 15-8
WM_MINMAXFRAME 10-58
WM_MINMAXFRAME (in Frame Controls) 13-5
WM_MOUSEMAP 10-58
WM_MOUSEMOVE 10-59
WM_MOUSEMOVE (in Mulitline Entry Fields) 16-55
WM_MOVE 10-60
WM_MSGBOXDISMISS 10-62
WM_MSGBOXINIT 10-62
WM_NEXTMENU 10-63
WM_NEXTMENU (in Frame Controls) 13-18
WM_NEXTMENU (in Menu Controls) 15-9
WM_NULL 10-64
WM_OPEN 10-65
WM_OWNERPOSCHANGE 13-18
WM_PACTIVATE 10-65
WM_PAINT 10-66
WM_PAINT (in Frame Controls) 13-19
WM _PAl NT (Langauge Support Window) 10-116
WM_PAINT (Language Support Dialog) 10-120
WM_PAINTCLIPBOARD 27-4
WM_PCONTROL 10-67
WM_PICKUP 22-78
WM_PPAINT 10-68
WM_PPAINT (Language Support Dialog) 10-121
WM_PPAINT (Language Support Window) 10-117
WM_PRESPARAMCHANGED 10-69

circular slider control 25-10
container control 22-79
notebook control 23-31
slider control 24-22
value set control 26-24

WM_PRESPARAMCHANGED (in Circular Slider
Controls) 25-10

WM_PRESPARAMCHANGED (in Container
Controls) 22-79

WM_PRESPARAMCHANGED (in Notebook
Controls) 23-31

WM_PRESPARAMCHANGED (in Slider
Controls) 24-22

WM_PRESPARAMCHANGED (in Value Set
Controls) 26-24

WM_PSETFOCUS 10-69
WM_PSIZE 10-70
WM_PSYSCOLORCHANGE 10-71
WM_OUERYACCELTABLE 10-72

X-40 PM Programming Reference Vol II

WM _ OUERYBORDERSIZE 13-20
WM_OUERYCONVERTPOS 10-72
WM_OUERYCONVERTPOS (in Button

Controls) 11-15
WM_OUERYCONVERTPOS (in Entry Fields) 12-17
WM_OUERYCONVERTPOS (in Frame

Controls) 13-20
WM_OUERYCONVERTPOS (in List Boxes) 14-23
WM_OUERYCONVERTPOS (in Menu

Controls) 15-29
WM _ OUERYCONVERTPOS (in Scroll Bars) 18-8
WM_OUERYCONVERTPOS (in Static

Controls) 20-6
WM_OUERYCONVERTPOS (in Title Bar

Controls) 21-4
WM_OUERYDLGCODE 10-105
WM_OUERYFOCUSCHAIN 13-21
WM_OUERYFRAMECTLCOUNT 13-22
WM_OUERYFRAMEINFO 13-23
WM_OUERYHELPINFO 10-74
WM_OUERYICON 13-23
WM_OUERYTRACKINFO 10-74
WM_OUERYWINDOWPARAMS 10-75

circular slider control 25-11
slider control 24-23
value set control 26-25

WM_OUERYWINDOWPARAMS (in Button
Controls) 11-15

WM_OUERYWINDOWPARAMS (in Circular Slider
Controls) 25-11

WM_OUERYWINDOWPARAMS (in Entry
Fields) 12-17

WM_OUERYWINDOWPARAMS (in Frame
Controls) 13-24

WM_OUERYWINDOWPARAMS (in List
Boxes) 14-23

WM_OUERYWINDOWPARAMS (in Menu
Controls) 15-30

WM_OUERYWINDOWPARAMS (in Multiline Entry
Fields) 16-56

WM_OUERYWINDOWPARAMS (in Scroll
Bar~) 18-8

WM_OUERYWINDOWPARAMS (in Slider
Controls) 24-23

WM_OUERYWINDOWPARAMS (in Static
Controls) 20-6

WM_OUERYWINDOWPARAMS (in Title Bars) 21-5
WM_OUERYWINDOWPARAMS (in Value Set

Controls) 26-25

WM_QUIT 10-76
WM_REALIZEPALETTE 10-78
WM_RENDERALLFMTS 27-4
WM_RENDERFMT 27-5
WM_SAVEAPPLICATION 10-78
WM_SEM1 10-79
WM_SEM2 10-80
WM_SEM3 10-81
WM_ SEM4 10-82
WM_SETACCELTABLE 10-83
WM_ SETBORDERSIZE 13-25
WM_SETFOCUS 10-83
WM _ SETFOCUS (Language Support

Dialog) 1 0-122
WM_SETFOCUS (Language Support

Window) 1 0-118
WM_SETHELPINFO 10-84
WM_ SETICON 13-25
WM_SETSELECTION 10-85
WM_SETWINDOWPARAMS 10-86

circular slider control 25-12
slider control 24-24
value set control 26-26

WM_SETWINDOWPARAMS (in Button
Controls) 11-15

WM_SETWINDOWPARAMS (in Circular Slider
Controls) 25-12

WM_SETWINDOWPARAMS (in Entry Fields) 12-18
WM_SETWINDOWPARAMS (in Frame

Controls) 13-26
WM_SETWINDOWPARAMS (in List Boxes) 14-23
WM_SETWINDOWPARAMS (in Menu

Controls) 15-30
WM_SETWINDOWPARAMS (in Multiline Entry

Fields) 16-57
WM_SETWINDOWPARAMS (in Scroll Bars) 18-9
WM_SETWINDOWPARAMS (in Slider

Controls) 24-24
WM_SETWINDOWPARAMS (in Static

Controls) 20-7
WM_SETWINDOWPARAMS (in Title Bar

Controls) 21-5
WM_SETWINDOWPARAMS (in Value Set

Controls) 26-26
WM _SHOW 10-87
WM_SINGLESELECT 10-87
WM_SIZE 10-88

notebook control 23-32
value set control 26-26

WM_SIZE (in Frame Controls) 13-26
WM_SIZE (in Notebook Controls) 23-32
WM_ SIZE (in Value Set Controls) 26-26
WM _SIZE (Language Support Dialog) 10-122
WM _SIZE (Language Support Window) 10-118
WM_SIZECLIPBOARD 27-6
WM_SUBSTITUTESTRING 10-89
WM_ SYSCOLORCHANGE 10-90
WM_SYSCOLORCHANGE (Language Support

Dialog) 1 0-122
WM_SYSCOLORCHANGE (Language Support

Window) 10-119
WM_SYSCOMMAND 10-91,11-7,13-27,15-31
WM_SYSCOMMAND (in Title Bar Controls) 21-2
WM_SYSVALUECHANGED 10-92
WM_ TEXTEDIT 10-93
WM_TIMER 10-94
WM_ TRACKFRAME 10-95
WM_TRACKFRAME (in Frame Controls) 13-29
WM_TRACKFRAME (in Title Bar Controls 21-2
WM _ TRANSLA TEACCEL 10-95
WM_TRANSLATEACCEL (in Frame

Controls) 13-30
WM_ TRANSLA TEMNEMONIC 10-96
WM_ TRANSLATEMNEMONIC (in Frame

Controls) 13-30
WM_UPDATEFRAME 10-97
WM_UPDATEFRAME (in Frame Controls) 13-30
WM_VRNDISABLED 10-98
WM_ VRNENABLED 10-98
WM _ VSCROLL 10-99
WM _ VSCROLL (in Vertical Scroll Bars) 18-3
WM_ VSCROLLCLIPBOARD 27-7
WM_WINDOWPOSCHANGED 10-101
WNDPARAMS A-207
WPOINT A-208
WRECT A-208
WS _ * values 10-3

X
XFM parameter A-51
XL T parameter A-52
XYWINSIZE A-208

Index X-41

G25H-7191-00

II II
P25H7191

